
Constructing Phylogenetic

Networks based on Trinets

James William Oldman

School of Computing Sciences

University of East Anglia

A thesis submitted for the degree of

Doctor of Philosophy

September 2015

c© This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with the author and that

use of any information derived there from must be in accordance with current

UK Copyright Law. In addition, any quotation or extract must include full

attribution.

mailto:J.Oldman@uea.ac.uk
http://www.uea.ac.uk/computing
http://www.uea.ac.uk

Declaration

No portion of the work referred to in this thesis has been submitted

in support of an application for another degree or qualification at this

or any other university or other institute of learning.

Acknowledgements

I would like to first acknowledge and thank my supervisors Prof Vin-

cent Moulton, Dr Taoyang Wu and Dr Geoffrey McKeown for their

continuous support and collaboration throughout the past four years.

I would also like to thank all my past and present colleagues in the

Computational Biology Laboratory for making the last four years even

more enjoyable. I would like to thank the University of East Anglia for

the financial support and funding provided throughout the project, in

particular for providing me with the opportunity to attend research

conferences. Finally, I would like to thank all my family and friends

for their understanding, encouragement and support throughout my

PhD.

I would like to dedicate this thesis to my family and close friends...

Statement of Originality

I certify that this thesis, and the research to which it refers, are the

product of my own work, and that any ideas or quotations from the

work of other people, published or otherwise, are fully acknowledged.

Abstract

The motivation of phylogenetic analysis is to discover the evolutionary

relationships between species, with the broader aim of understanding

the origins of life. Our understanding of the molecular character-

istics of species through DNA sequencing permanently changed the

approach to understanding the evolution of species. Indeed, the ad-

vancement of technology has played a major role in the fast sequencing

of DNA as well as the use of computers in solving biological problems

in general. These evolutionary relationships are often visualised and

represented using a phylogenetic tree. As a natural generalisation of

phylogenetic trees, phylogenetic networks are used in biology to rep-

resent evolutionary histories that contain reticulate, or non-treelike

events such as recombination, hybridisation and horizontal gene trans-

fer. The reconstruction of explicit phylogenetic networks from biolog-

ical data is currently an active area of phylogenetics research. Here

we consider the problem of constructing such networks from trinets,

that is, phylogenetic networks on three leaves. More specifically, we

present the SeqTrinet and TriLoNet methods, which form a supernet-

work based approach to constructing level-1 phylogenetic networks

directly from multiple sequence alignments.

Contents

Contents vi

List of Figures ix

1 Introduction 1

2 Background 5

2.1 Chapter summary . 5

2.2 Definitions and terminology . 5

2.3 Phylogenetic trees . 7

2.3.1 Building phylogenetic trees 8

2.3.2 Triplets . 9

2.4 Phylogenetic networks . 10

2.4.1 Definitions and terminology 12

2.4.2 Level-k networks . 13

2.4.3 Reconstructing networks from triplets 14

2.5 Trinets . 15

2.6 Types of reticulation events . 18

2.7 Formats for representing trees and networks 19

2.7.1 Newick format . 19

2.7.2 DOT format . 21

2.8 Concluding remarks . 22

3 Sequences to trinets 23

3.1 Chapter summary . 23

vi

CONTENTS

3.2 Overview . 23

3.3 Method . 24

3.4 Pseudocode . 30

3.5 κ threshold experiments . 32

3.5.1 Generating collections of weighted trinets 32

3.5.2 Simulation of recombination data sets 33

3.5.3 Experiments and results 36

3.6 Concluding remarks . 39

4 Network construction 40

4.1 Chapter summary . 40

4.2 Definitions . 40

4.3 Theoretical results . 43

4.4 The TriLoNet algorithm . 46

4.4.1 Finding small SN-sets . 47

4.4.2 Constructing binets . 50

4.4.3 Constructing a cactus . 50

4.4.4 Main TriLoNet algorithm 52

4.5 Concluding remarks . 55

5 Simulations and real data sets 57

5.1 Chapter summary . 57

5.2 Noise simulation experiments . 57

5.2.1 Extracting trinets from phylogenetic networks 58

5.2.1.1 Initial trinet extraction approach 58

5.2.1.2 TriExtract algorithm 59

5.2.2 Comparing TriLoNet to Lev1athan 63

5.2.3 Measures . 64

5.2.4 Simulation results . 65

5.2.5 Reticulation difference experiments 68

5.2.6 Triplet and trinet noise difference 71

5.3 Artificial data simulation experiments 71

5.4 Application to real data sets . 77

vii

CONTENTS

5.4.1 HIV data . 78

5.4.2 Eel data . 87

5.4.3 Hepatitis B Virus data . 88

5.4.4 Giardia parasite data . 91

5.4.5 Fungus data . 94

5.4.6 Dryopteris fern data . 95

5.4.7 Sedge and rush plant data 100

5.5 Concluding remarks . 102

6 Conclusions 103

6.1 Conclusions . 103

6.2 Future work . 104

6.2.1 Level-2 or higher networks 104

6.2.2 Non-dense input . 105

6.2.3 Quarnets . 105

6.2.4 Constructing networks from sequences 106

6.2.5 Extension and improvements to program 106

6.3 Final words . 107

References 108

viii

List of Figures

2.1 An example of rooted phylogenetic trees on the setX = {a, b, c, d, e, f}.
The tree shown in (a) includes the representation of vertices as

points and the direction of arcs, however as shown in (b) for sim-

plicity the direction of the arcs and representation of vertices as

points can be omitted. 8

2.2 The three possible triplets on the set {x, y, z}, denoted xy|z, xz|y
and yz|x. 9

2.3 (a) A phylogenetic networkN on the leaf setX = {a, b, c, d, e, f, g, h, i}.
(b) The highlighted paths to every element in Y = {c, e, i}. (c)

The result of suppressing multiple arcs in (b). (d) Suppressing ver-

tices with in-degree 1 and out-degree 1 in (c) results in the subnet

N |Y with Y = {c, e, i}. 13

2.4 A level-1 phylogenetic network on the set X = {a, b, c, d, e, f, g, h, i,
j, k, l,m, n, o, p, q, r, s, t, u, v, w}. 14

2.5 An illustration from [Iersel and Moulton, 2013] showing that three

level-1 networks can all have the same set of triplets, Tr(N1) =

Tr(N2) = Tr(N3) = {T1, T2}. Dotted lines are used to show how

T1 is contained in the networks N1, N2 and N3. 16

2.6 The eight binary rooted level-1 trinets on {x, y, z}. 17

2.7 The two types of level-1 binets on {x, y}. 18

2.8 Representing a phylogenetic tree on the leaf set X = {a, b, c, d}
using the Newick format. 20

2.9 Representing a phylogenetic network using the eNewick format. . 21

ix

LIST OF FIGURES

2.10 Displaying trinets using the DOT format. The trinet S1(a, b; c)

shown in (a) includes labels of all vertices for illustration, how-

ever as shown in (b), for simplicity the interior vertices can be

represented as points. 22

3.1 A multiple sequence alignment on {x, y, z} depicting the identifi-

cation of informative sites, which are 1, 3, 4, 6, 7, 8, 10, 11, 12, 13

and 15. 25

3.2 Using the informative site support weights to calculate δt for {x, y, z}. 26

3.3 Deciding between a S1 and S2 trinet. 28

3.4 The two types of binet. 28

3.5 Binet Structures. 29

3.6 Generating arc lengths on a T1 trinet. 32

3.7 Extracting the two trees embedded in an S2 trinet and computing

the arc lengths. 33

3.8 An example of the simulation of a recombinant data set on an

S2(y; z;x) trinet. Seq-Gen is used to simulate the evolution of

sequences of length 5 on the two trees yz|x and xz|y embedded

in S2(y; z;x). The two data sets are concatenated to give a MSA

with sequences of length 10 on three taxa x, y and z. 35

3.9 A table presenting the percentage of correctly separated trinets for

each type of trinet with a γ value of 0.1 and the κ threshold varied

between 4 and 10. 36

3.10 A table presenting the percentage of correctly separated trinets for

each type of trinet with a γ value of 0.2 and the κ threshold varied

between 4 and 10. 37

3.11 A table presenting the percentage of correctly separated trinets for

each type of trinet with a γ value of 0.3 and the κ threshold varied

between 4 and 10. 37

3.12 A table presenting the percentage of correctly separated trinets for

each type of trinet with a γ value of 0.4 and the κ threshold varied

between 4 and 10. 37

x

LIST OF FIGURES

3.13 A table presenting the percentage of correctly separated trinets for

each type of trinet with a γ value of 0.5 and the κ threshold varied

between 4 and 10. 38

4.1 Example of a level-1 phylogenetic network. The network contains

a cherry N1, a reticulate-cherry N2 and a cactus N3 as indicated

by the dotted circles. Here all arcs are directed from the root, and

the arc highlighted in bold is a cut-arc. 41

4.2 An illustration of a cactus. The support of the cactus is {a1, . . . , ap,

b1, . . . , bq, z}. 42

4.3 Digraph Ω(T(N)) for the network N shown in Figure 4.1. 43

5.1 (a) A level-1 phylogenetic networkN on the setX = {a, b, c, d, e, f, g,
h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w}. (b) The two example trinets

N4(g; e; b) and S2(o; v; r) extracted from N 59

5.2 Summary of the results from the comparison study for TriLoNet

Lev1athan. 66

5.3 Summary of the triplet consistency results comparing TriLoNet

against Lev1athan. 66

5.4 Summary of the trinet consistency results comparing TriLoNet

against Lev1athan. 67

5.5 The plot of ε against the average triplet (C ′, triangle markers) and

trinet (C, square markers) consistency scores . The x-axis is la-

belled by ε and the y-axis is labelled by average triplet and trinet

consistency. The solid lines correspond to the average triplet and

trinet consistency for the networks constructed by TriLoNet. The

dotted lines correspond to the average triplet and trinet consis-

tency for the networks constructed by Lev1athan. 67

5.6 Comparing the difference in the number of reticulation vertices

from the original input networks to the networks constructed by

TriLoNet and Lev1athan for the 100 networks containing between

21-30 leaves. 69

xi

LIST OF FIGURES

5.7 Comparing the difference in the number of reticulation vertices

from the original input networks to the networks constructed by

TriLoNet and Lev1athan for the 100 networks containing between

51-60 leaves. 69

5.8 Comparing the difference in the number of reticulation vertices

from the original input networks to the networks constructed by

TriLoNet and Lev1athan for the 100 networks containing between

91-100 leaves. 69

5.9 The figure displays the median difference of the number of reticu-

lations in the phylogenetic networks constructed by TriLoNet and

Lev1athan compared to the original randomly generated networks.

The x-axis is labelled by the number of leaves and the y-axis is la-

belled by the number of reticulations. 70

5.10 The 6 phylogenetic networks presented in [Holland et al., 2002].

The networks in (i) have an unbalanced topology, with the network

containing R1 as the most unbalanced. The positioning of the

reticulations in relation to their parents is close, intermediate and

divergent for R1, R2 and R3 respectively. The networks in (ii) have

a balanced topology. Similarly, the positioning of the reticulations

in relation to their parents is close, intermediate and divergent for

R4, R5 and R6 respectively. 73

5.11 Network constructed on entire HIV sequence alignment. 80

5.12 Network on HIV entire alignment (1-9953) with H removed. . . . 81

5.13 Network constructed on the first HIV subalignment covering char-

acter sites 1 - 2699, with a κ value of 3.0. 83

5.14 Network constructed on the second subalignment of the HIV data

set covering character sites 2700 - 8925, with a κ value of 1.0. . . 84

5.15 Network constructed on the third subalignment of the HIV data

set covering character sites 8926 - 9953, with a κ value of 1.0. . . 85

5.16 The phylogenetic network constructed on the HIV data set with a

κ value of 1.0. 86

5.17 Network constructed on the data set presented in [Aoyama et al.,

2001]. 88

xii

LIST OF FIGURES

5.18 Network constructed by TriLoNet on the data set presented in [Bol-

lyky et al., 1996]. 90

5.19 Network constructed by TriLoNet on the data set presented in

[Bollyky et al., 1996] with taxon HBVDNA removed. 91

5.20 Network constructed by TriLoNet on the eel data set presented

in [Cooper et al., 2007]. 92

5.21 Network constructed by TriLoNet on the eel data set presented

in [Cooper et al., 2007] using breakpoints to weight the subalign-

ments. 93

5.22 Network constructed by TriLoNet on the data set presented in

[O’Donnell et al., 2000]. 95

5.23 Network constructed by TriLoNet on the data set presented in [Sessa

et al., 2012] with a κ value of 6.5. 97

5.24 Network constructed by TriLoNet on the data set presented in [Sessa

et al., 2012] with a κ value of 7.0. 99

5.25 Network constructed by TriLoNet on the data set presented in [Starr

et al., 2007]. 101

xiii

Chapter 1

Introduction

Before the second half of the 20th Century, much of the work in the classification

and study of evolutionary relationships between species was based on the mor-

phological characteristics of species. However, our understanding of the molecular

characteristics of species through DNA sequencing permanently changed this ap-

proach to understanding the evolution of species. Indeed, the advancement of

technology has played a major role in the fast sequencing of DNA as well as

the use of computers in solving biological problems in general. Phylogenetics is

one such area that has greatly benefited from the collaboration of researchers in

computational, mathematical and biological disciplines. In many ways computer

science acts as the bridge between mathematics and biology; the theoretical ideas

are developed into algorithms which are then implemented as analysis tools for

use by biologists.

The motivation of phylogenetic analysis is to discover the evolutionary rela-

tionships between species, with the broader aim of understanding the origins of

life. These relationships are often visualised and represented using a phylogenetic

tree, with the Tree of Life being an example [Maddison et al., 2007]. Phylogenetic

trees are useful for displaying speciation events, shown as branching in the tree,

where one species speciates into two or more species. Phylogenetic trees and their

construction have been extensively studied, see e.g [Semple and Steel, 2000].

Even though phylogenetic trees have proven to be useful in biology, in re-

cent years there has been significant interest in studying evolution that involves

reticulate, or non-treelike evolutionary events. While evolution is believed to be

1

primarily a branching process, genes and genomes are not necessarily inherited

vertically; they can also be inherited via a lateral process. These events include

recombination, horizontal gene transfer (HGT) and hybridisation and result in

a network rather than a tree structure. Such reticulate events are believed to

occur in organisms such as bacteria, plants, viruses and certain groups of fishes

and frogs [Than et al., 2008]. Trees are of more limited use when trying to infer

an evolutionary history of a set of taxa which is believed to contain non-treelike

evolutionary events.

Phylogenetic networks extend the definition of phylogenetic trees by facilitat-

ing the modelling of reticulate evolutionary events. They are used in scenarios

for which a tree structure is not sufficient to model a proposed evolutionary his-

tory. There currently exist a range of well established algorithms for computing

unrooted phylogenetic networks that implicitly represent evolution [Huson et al.,

2010]. However, this is not so much the case for rooted phylogenetic networks

which aim to explicitly represent evolutionary histories. Hence, there is at present

a great interest in creating practical computational methods for inferring rooted

phylogenetic networks.

Rooted phylogenetic networks provide both a computationally interesting and

biologically relevant area in science with room for much research into the devel-

opment of efficient algorithms and heuristics. Although recently there have been

several algorithms proposed that construct such networks [Jansson and Sung,

2006], [Huber et al., 2011b], [Habib and To, 2011] (for example, from triplets

i.e. phylogenetic trees on precisely three leaves), none have become established

and reliable enough to become standard tools. As suggested in [Huber and Moul-

ton, 2013], a better understanding of how to reconstruct phylogenetic networks

from basic structures may thus be necessary to achieve this.

The work in this thesis is concerned with the construction of rooted phyloge-

netic networks from trinets, that is, phylogenetic networks with precisely three

leaves that we construct from DNA sequence data.

[Huber and Moulton, 2013] presented an algorithm that decides whether a

dense set of trinets (i.e. one that contains a trinet on every 3-element subset

of a set) can be displayed by a level-1 network or not and, if so, constructs

that network. This work extends that of [Huber and Moulton, 2013] as here

2

we present an algorithm called TriLoNet that will, given a dense set of trinets

(possibly obtained from sequence data), always construct a binary rooted level-

1 rooted phylogenetic network thus addressing some of the problems associated

with noisy input data.

Thesis chapter summary

We now briefly summarise the chapters presented in the rest of this thesis:

• In Chapter 2 we introduce the key background terminology required for

the rest of the thesis. This includes some definitions on graph theory, phy-

logenetic trees, phylogenetic networks and some discussion on various ap-

proaches to constructing trees and networks.

• In Chapter 3 we present an algorithm called SeqTrinet, a new approach to

constructing phylogenetic networks on three leaves from multiple sequence

alignments. We detail the key steps of the method and present the pseu-

docode for the algorithm. We also present experiments where we simulate

some simple recombinant data sets evolved down phylogenetic networks to

help inform parameter choice in the method.

• In Chapter 4 we describe in detail the key steps of the TriLoNet algorithm

along with the necessary proofs and pseudocode. The theoretical proofs and

results presented in this chapter were produced in collaboration with Dr

Taoyang Wu. The implementation of all the algorithms shown was carried

out by myself.

• In Chapter 5 we present results from three experiments designed to eval-

uate the performance of TriLoNet. We begin with a comparison study be-

tween TriLoNet and Lev1athan, a level-1 triplet-based network construction

algorithm [Huber et al., 2011b]. We then artificially simulate recombinant

sequence data for some simple scenarios following a similar methodology

used in [Holland et al., 2002]. We also consider seven real biological data

sets containing known recombination to test the ability of TriLoNet to iden-

tify recombinant taxa from sequence data. TriLoNet has been implemented

in Java and is freely available.

3

• Finally, in Chapter 6 we conclude our findings by summarising our con-

tributions as well as considering some possible future theoretical ideas and

technical improvements to the work presented here.

We currently have a manuscript in preparation for publication, entitled TriLoNet:

A supernetwork approach to construct level-1 phylogenetic networks. The authors

are James Oldman, Taoyang Wu, Leo Van Iersel and Vincent Moulton.

4

Chapter 2

Background

2.1 Chapter summary

This chapter introduces the relevant background information and terminology

required for the rest of the thesis. Section 2.2 outlines the basic graph theory used

in this thesis. Section 2.3 introduces the concept of phylogenetic trees, triplets

and tree construction methods. Section 2.4 then covers phylogenetic networks,

trinets and some current network construction algorithms.

2.2 Definitions and terminology

We begin with some basic definitions and notation. The choice of terminology

mainly follows [Huson et al., 2010]. A graph G = (V,E) consists of a finite set

V = V (G) of vertices and a finite set E = E(G) of edges, with each edge e ∈ E
consisting of a pair e = {u, v} of distinct vertices in V . Two vertices u and v

are adjacent if e = {u, v} is an edge in E and u and v are called the endpoints

of e. An undirected path P = u0, u1, u2 · · · , uk is a sequence of vertices starting

at u0 and ending at uk (denoted as u0 → uk) connected by a sequence of edges

(none of which occur more than once), with ui−1 and ui being adjacent to edge

ei for 1 ≤ i ≤ k. The length of a path is the number of edges it contains. With

G = (V,E) as a graph, H = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E

where all edges in E ′ contain only vertices in V ′. A cycle in a graph is a path for

5

which the first vertex is equal to the last vertex u0 = uk, with this vertex being

the only vertex to occur more than once.

A digraph, also called a directed graph N = (V,E) consists of a finite set

V = V (N) of vertices and a finite set E = E(N) of arcs. Each arc consists of

an ordered pair a = (u, v) of vertices in V in which u is said to be a parent of v

and v a child of u. All digraphs in this thesis contain no loops, that is, no vertex

is the child of itself. A directed path is a sequence u0, u1, · · · , uk of vertices such

that (ui−1, ui) ∈ E holds for 1 ≤ i ≤ k. An acyclic graph is a digraph that does

not contain any directed path starting and ending at the same vertex.

An acyclic digraph N induces a canonical partial order ≺N on its vertex set

V , that is, v ≺N u if there exists a directed path from u to v. In this case, we

shall say that u is below v. For simplicity, when the digraph N is clear from the

context, �N will be written as �. In addition, we write v � u if v = u or v ≺ u.

A least common ancestor of u and v is a lowest vertex w in N such that both

v � w and u � w hold.

Suppose that N = (V,E) is a digraph. Arc a = (u, v) in E, is said to be

directed from u to v. Vertices u and v in V are incident to a. Such an arc a is

an out-edge of u and an in-edge of v. The in-degree of vertex u is the number of

vertices v in V such that (v, u) is an arc, and the out-degree of u is the number of

vertices w in V with (u,w) as an arc. The degree of a vertex in N is the sum of

its in-degrees and out-degrees. A vertex ρ is a root of the directed graph (V,E)

if ρ has in-degree 0. If an acyclic digraph N contains a unique root, which is

usually designated by ρ = ρ(N), then it will be referred to as a rooted acyclic

digraph. A leaf is a vertex of in-degree 1 and out-degree 0. The set of leaves of

N is denoted by L(N). Any vertex in N that is neither a root or leaf is referred

to as an interior vertex. In addition, an interior vertex is a tree vertex if it has

in-degree 1, and a reticulation vertex if it has in-degree greater than 1.

The definition of a subgraph can also used for digraphs. Suppose that N =

(V,E) is a digraph. Let N be the undirected graph associated with N which is

obtained by discarding the direction of the arcs in N . Then N is connected if N is

connected, that is, there exists an undirected path between every pair of distinct

vertices in N . Note that a rooted acyclic digraph is necessarily connected. Let

v be a vertex of N . Then v is a cut-vertex of N if the removal of v disconnects

6

N . Similarly, a cut-arc is an arc of N whose removal disconnects N . A cut-

arc is referred to as trivial if it is incident with a leaf. A directed graph is

biconnected if it contains no cut-vertex. A biconnected component of N is a

maximal biconnected subgraph, which is called trivial if it contains precisely one

arc (which is necessarily a cut-arc), and non-trivial otherwise.

Given some graph N = (V,E), to delete an edge e means that e is removed

from the set of edges E. For the deletion of a vertex v from N , firstly v is removed

from vertex set V and secondly, all edges incident to v are deleted. A vertex v

in a directed graph is suppressible if it has in-degree 1 and out-degree 1 and v

is suppressed by connecting the parent of the in-edge of v to the child of the

out-edge of v by an arc and then deleting v.

2.3 Phylogenetic trees

Throughout this thesis, we assume that X is a non-empty, finite set (which will

usually represent a set of species or organisms). Unless explicitly stated otherwise,

we shall assume |X| ≥ 3. A subset Y of X is called a singleton if |Y | = 1, and

non-singleton if |Y | ≥ 2. A tree is a connected graph with no cycles.

A rooted tree T = (V,E) is a connected acyclic digraph with precisely one

root vertex ρ, with every arc being directed away from the root. A phylogenetic

tree T on X is a rooted tree in which no vertex aside from the root can have degree

2, together with a bijective labelling of the elements in X on to the leaves in T

so that in particular every leaf has a unique label. The leaf set of a phylogenetic

tree T is denoted by L(T).

Given a vertex v in a phylogenetic tree T , the subtree Tv of T is the restriction

of T on the set of vertices that are below of v, with v being designated as the

root. Moreover, {x, y} is called a cherry of T , x, y ∈ X, if there exists a subtree

of N whose leaf set is precisely {x, y}.
Phylogenetic trees are often drawn as a cladogram to represent ancestral re-

lationships. The set of extant species X are usually drawn at the bottom. The

hypothetical ancestors of these current day species are drawn above, with the

root at the top of the diagram. The direction of the arcs is often omitted, see

Figure 2.1(b).

7

Given input data about a given set of current species, which could be molecular

or morphological, one of the main aims in phylogenetic analysis is to reconstruct

a phylogenetic tree that reflects the evolutionary relationship between this set

of species. There are many methods to reconstruct such a tree. One that is

particularly related to the theme of this thesis is to reconstruct a tree from a set

of triplets, which we describe in Section 2.3.2.

c

a b d e f

(a)

c

a b d e f

(b)

Figure 2.1: An example of rooted phylogenetic trees on the set X =
{a, b, c, d, e, f}. The tree shown in (a) includes the representation of vertices
as points and the direction of arcs, however as shown in (b) for simplicity the
direction of the arcs and representation of vertices as points can be omitted.

2.3.1 Building phylogenetic trees

A multiple sequence alignment (MSA) is an alignment of three or more biological

sequences. All MSA’s mentioned in this thesis are comprised of DNA sequences

on the alphabet {A,C,G, T}. Phylogenetic trees are often inferred from a multi-

ple sequence alignment of DNA sequences. The two main approaches to solving

the phylogenetic tree reconstruction problem are sequence-based methods and

distance-based methods. Sequence-based methods attempt to find a phyloge-

netic tree that best describes a multiple sequence alignment whereas distance-

based methods use a distance matrix [Huson et al., 2010]. Sequence-based meth-

ods include maximum parsimony, maximum likelihood and Bayesian methods.

Neighbor-joining and the unweighted pair group method using arithmetic aver-

ages (UPGMA) are two well known distance-based reconstruction methods [Hu-

son et al., 2010].

8

The Maximum Parsimony and Maximum Likelihood methods provide fast

and accurate results for small numbers of taxa [Jin et al., 2007]. Maximum par-

simony follows the minimum evolution principle and the idea of Occam’s razor;

preferring the least complex explanation for an observation [Semple and Steel,

2003]. There are two problems known as the small parsimony problem and the

large parsimony problem. The small parsimony problem can be solved in poly-

nomial time through the use of the Fitch algorithm [Fitch, 1971]. With the large

parsimony problem, the aim is to find the most parsimonious tree given only a

set of sequences. The large parsimony problem is known to be NP-hard so cannot

be solved in polynomial time. Many of the problems in computational biology

are NP-hard so the development and application of heuristics play an important

part in phylogenetic analysis [Jin et al., 2009].

2.3.2 Triplets

A triplet is a phylogenetic tree on three leaves. There are three possible triplets

on a set of three taxa. For instance, Figure 2.2 depicts the three possible triplets

on the set {x, y, z}. We use the notation xy|z to represent the triplet in which

{x, y} is a cherry.

x y z x z y y z x

Figure 2.2: The three possible triplets on the set {x, y, z}, denoted xy|z, xz|y
and yz|x.

Let Tr denote a set of triplets. If Tr is a set of triplets then its leaf set L(Tr)

is defined as
⋃
T∈Tr L(T). A set of triplets Tr is called dense if for every set of

three taxa {x, y, z} ⊆ L(Tr) at least one of the triplets of the form xy|z, xz|y, yz|x
belongs to the triplet set Tr.

9

A triplet xy|z is said to be consistent with a tree T if the triplet is an embedded

subtree of T , i.e. a lowest common ancestor of x and y in T is a proper descendant

of a lowest common ancestor of x and z in T [Jansson et al., 2006].

The Aho algorithm [Aho et al., 1981], also known as the BUILD algorithm

is one of the first methods to construct a phylogenetic tree from a collection

of phylogenetic trees. Such methods are also called supertree methods [Huber

et al., 2011b]. Trees can be constructed from a set of triplets Tr using the Aho

algorithm if such a tree exists that is consistent with all given input triplets.

The algorithm uses a top-down approach from the root to the leaves. The

main idea of the algorithm is to partition the leaf set of a set of triplets Tr into

blocks. A block B is dependent on the triplets in Tr. The algorithm outputs

a tree with a root vertex whose children are the roots of the trees obtained by

recursing on each block. Only the rooted triplets in Tr whose three leaves belong

to a block are considered when recursing on B. The base case of the recursion

is met when the leaf set consists of a single leaf. Any subset of leaves with size

greater than 2 is partitioned into blocks by making use of an Aho graph, defined

in Algorithm 1. For a more thorough description, see [Jansson et al., 2012].

The Aho algorithm can be unsuccessful if the input is not consistent with

a tree. Thus the algorithm is not very useful for noisy data. The Aho algo-

rithm makes use of what is known as an auxiliary or Aho graph. In practice the

algorithm usually reports ”No tree exists” due to the encountering of only one

connected component in an Aho graph. One compromise to deal with finding

only one component in the Aho graph as described in [Semple and Steel, 2000]

and [Page, 2002], is to identify a minimum set of edges that when deleted from

the graph will result in a graph with two connected components [Huson et al.,

2010].

2.4 Phylogenetic networks

A phylogenetic network can very generally be described as any graph used to

show evolutionary relationships between a set that labels some of its vertices,

usually the leaves [Huson et al., 2010]. The two main categories of phylogenetic

networks are rooted and unrooted. Rooted phylogenetic networks are used to

10

Algorithm 1 Aho Algorithm

INPUT: A set of rooted triplets Tr on a leaf set X.
OUTPUT: Minimal rooted tree labelled by X that is consistent with Tr if one
exists, otherwise it reports “No tree exists”.

1: If |X| = 1 then construct a tree R with a single vertex x and return R
2: If |X| = 2 then construct and return a tree R with a two vertices x and y
3: if |X| >= 3 then
4: Construct Aho graph AG(Tr) = (V,E) with V = X and (y, z) is an edge

in E if and only if there exists x such that the triplet yz|x ∈ Tr.
5: if AG contains one connected component then
6: return “No tree exists”
7: else if AG contains more than one connected component then
8: for all vertex sets U of each connected component in AG do
9: Compute set of triplets Tr|U
10: Recursively compute phylogenetic subtree restricted to Tr|U
11: end for
12: end if
13: end if
14: Create root vertex ρ
15: Join all subtrees by connecting ρ to the root of each the subtrees

11

visualise reticulate evolutionary events for which a tree based model may not be

the best representation tool. In this thesis we will be mainly focusing on rooted

phylogenetic networks.

2.4.1 Definitions and terminology

A phylogenetic network N = (V,E) on X is a connected acyclic digraph with a

unique root ρ and leaves uniquely labelled by the elements in X (that is, there is

a bijective mapping between L(N) and X). We will usually just assume L(N) =

X in case the labelling is clear from the context. Without loss of generality,

throughout this thesis we will also assume that N does not contain any vertex

with in-degree 1 and out-degree 1, and all leaves have in-degree 1. The network

N is binary if each tree vertex, as well as the root, has out-degree 2, and each

reticulation vertex has in-degree 2 and out-degree 1.

Two phylogenetic networks N1 = (V1, E1) and N2 = (V2, E2) on X are said to

be isomorphic, denoted by N1
∼= N2, if there exists a bijection f : V1 → V2 such

that f(x) = x for all x ∈ X, and (u, v) is an arc in N1 if and only if (f(u), f(v))

is an arc in N2.

Given a network N on X and a subset Y ⊆ X, a vertex in N is a stable

ancestor of Y if it is contained in every path from the root to some leaf x ∈ Y .

Note that for two stable ancestors u and v of Y , we have either u � v or v � u.

Therefore, there exists a unique vertex w in N , which will be referred to as the

lowest stable ancestor of Y in N and denoted by lsaN(Y) = lsa(Y), such that

w is a stable ancestor of Y while no vertex below w is a stable ancestor of Y .

Note that if |Y | ≥ 2, then there exists two elements x and y in Y such that

lsa(Y) = lsa({x, y}). In addition, we have lsa(x) = x for a leaf x in N .

Suppose N is a phylogenetic on X. A cluster is any subset of X, excluding

the empty set ∅. Note that X itself is regarded as a cluster. With u as a vertex

in a digraph, let ch(u) be the set of children of u.

If u is a vertex in a network V (N), let the cluster induced by u, denoted by

CN(u) = C(u) be defined as the subset of the taxa in V (N) below u. If vertex u

is a leaf vertex then C(u) = {u}. Let C(N) = {C(u) : u ∈ V (N)} denote the set

of clusters displayed by N .

12

The subnet or subnetwork of N on Y , denoted by N |Y , is defined as the

subgraph obtained from N by deleting all vertices that are not on any path from

lsa(Y) to elements in Y and subsequently suppressing all in-degree 1 and out-

degree 1 vertices and parallel arcs. Note that by definition N |X = N if and only

if lsa(X) = ρ(N), in this case N is referred to as a recoverable network. Note

that every subnet of N is necessarily recoverable. The process of obtaining the

subnet N |Y with Y = {c, e, i} is illustrated in Figure 2.3.

a

b

c

d

e
f

g

h

i

(a)

c

e

i

(b)

c
e

i

(c)

c
e

i

(d)

Figure 2.3: (a) A phylogenetic network N on the leaf set X =
{a, b, c, d, e, f, g, h, i}. (b) The highlighted paths to every element in Y = {c, e, i}.
(c) The result of suppressing multiple arcs in (b). (d) Suppressing vertices with
in-degree 1 and out-degree 1 in (c) results in the subnet N |Y with Y = {c, e, i}.

2.4.2 Level-k networks

Suppose N is a phylogenetic network. Then N is a level-k (k ≥ 0) network if

each of its biconnected components contains at most k reticulation vertices. To

some extent, the concept of the level of a network can be regarded as a measure

of its ‘distance’ to being a phylogenetic tree. For instance, N is a level-0 network

if and only if it is a phylogenetic tree.

Level-1 networks are relatively tree-like in terms of structure and hence some-

what more tractable to deal with. An example level-1 network is shown in Figure

2.4. It is for this reason that current research is focusing on developing new tools

and evaluation methods for level-1 networks. Their relatively simplistic struc-

13

ture provides a good starting point; once these structures have been properly

understood the next logical step is to investigate level-k networks, for k > 1.

a

b c
d

e

f
g

h i

j
k

l
m

n

o

p

q r
s w

t

u

v

Figure 2.4: A level-1 phylogenetic network on the set X = {a, b, c, d, e, f, g, h, i,
j, k, l,m, n, o, p, q, r, s, t, u, v, w}.

2.4.3 Reconstructing networks from triplets

As with tree reconstruction, there are several ways to reconstruct phylogenetic

networks from various types of input data. Such input data includes splits, clus-

ters, sequences, distances, trees, quartets and triplets [Huson et al., 2010]. One

method closely related to our work is the construction of networks from triplets.

14

There exist several methods that construct rooted phylogenetic networks from

a set of triplets including those presented in [Jansson and Sung, 2006], [Jansson

et al., 2006], [To and Habib, 2009], [Huber et al., 2011b], [Byrka et al., 2010]

and [Habib and To, 2011].

A triplet xy|z is said to be consistent with a network N if that network

contains a subdivision of the triplet, i.e. if N contains vertices u 6= v and pairwise

internally vertex-disjoint paths u→ x, u→ y, v → u and v → z [van Iersel et al.,

2009]. Given a network N , the set Tr(N) denotes the set of all triplets that are

consistent with N . A set of triplets is consistent with a network if every triplet

in that set is consistent with the network.

As mentioned above, the Aho algorithm will, given a set of triplets as input,

construct a tree that is consistent with all input triplets, if such a tree exists. The

work in [Jansson and Sung, 2006] demonstrated that it is possible to reconstruct

in polynomial-time a rooted level-1 phylogenetic network from a dense set of

triplets if there exists such a network that is consistent with every triplet in the

input. However, if the input is not required to be dense then the problem becomes

NP-hard. Work by [van Iersel et al., 2009] has further extended the construction

of a network from a dense set of triplets to level-2 phylogenetic networks.

In case such networks exist, the polynomial-time algorithms presented in [van

Iersel and Kelk, 2011] construct the simplest possible level-1 and level-2 networks,

that is the ones containing the minimum number of reticulations that are consis-

tent with the dense triplet input set. In the case where the input set is precisely

equal to the set of triplets consistent with some network, the resulting network

produced as output is minimised in terms of both level and the overall number

of reticulations in the network.

2.5 Trinets

A tree T can always be described by its rooted triplet encoding, i.e. T is the

unique phylogenetic tree containing the set of triplets Tr(T) that arises from

taking all combinations of three leaves in T [Iersel and Moulton, 2013]. However, a

phylogenetic network is not always encoded by the triplets it contains [Gambette

and Huber, 2012]. An example from [Iersel and Moulton, 2013] illustrated in

15

Figure 2.5 shows that three different networks can all contain the same set of

triplets.

z

y

x

x

y

z
x

y

z

x y z zyx

N1 N2 N3 T1 T2

Figure 2.5: An illustration from [Iersel and Moulton, 2013] showing that three
level-1 networks can all have the same set of triplets, Tr(N1) = Tr(N2) =
Tr(N3) = {T1, T2}. Dotted lines are used to show how T1 is contained in the
networks N1, N2 and N3.

In light of this, [Huber and Moulton, 2013] suggested the possibility of trying

to encode networks instead by subnetworks with three leaves. Motivated by this,

we define a trinet to be a phylogenetic network with precisely three leaves. Given

a set of trinets T, we let L(T) = ∪T∈TL(T) be the leaf set of T. A trinet set T

on X is a non-empty set of trinets with L(T) = X and L(T) 6= L(S) for distinct

trinets S and T in T. If Y ⊆ X with |Y | ≥ 3, we let TY be the subset of T

consisting of those trinets T in T with L(T) = Y . A set T of trinets on X is

called dense on X if for each subset Y ⊆ X with |Y | = 3, there exists precisely

one trinet T in T with L(T) = Y , that is, TY = {T}. Finally, given a phylogenetic

network N on X, let

T(N) = {N |Y : Y ⊆ X and |Y | = 3}

be the dense trinet set on X induced by N .

There are fourteen non-isomorphic level-1 trinets on three leaves shown in [Hu-

ber and Moulton, 2013]. Note that there are precisely eight binary non-isomorphic

level-1 trinets, as depicted in Fig. 2.6.

Another important structure we consider is called a binet, which is a phylo-

genetic network on two leaves. Note that there are two types of binets, as shown

in Figure 2.7. The first type of binet, T0, consists of a vertex v with two leaf

16

x y z

T1(x,y;z)

x y zz x y

x y z

z y xx z y

N1(x,y;z) N2(x,y;z)

N3(x;y;z) N4(x;y;z) N5(x;y;z)

x y zx y z

S1(x,y;z) S2(x;y;z)

Figure 2.6: The eight binary rooted level-1 trinets on {x, y, z}.

vertices x and y. This binet is denoted by T0(x, y).

The second type is S0 which is a network with cycle of size three that contains

two leaves. The binet in Figure 2.7 is denoted by S0(x; y). Note the ordering of

the leaves, leaf x is on the side of the cycle and leaf y is below the reticulation

vertex.

Here we will use a notation system that indicates the interchangeability be-

tween leaves. For instance, in the trinet with type T1(x, y; z), leaves x and y are

interchangeable, which are separated by a comma, while y and z are distinguish-

able, which are separated by a semicolon. The same convention applies to types

N1, N2 and S1, in which the leaves x and y are interchangeable. For the other

four types, the three leaves are distinguishable. For a type T0 binet, the leaves x

and y are interchangeable whereas for a type S0 binet, the two leaves x and y are

distinguishable by a semicolon.

17

x

y

S0(x; y)T0(x, y)

x y

Figure 2.7: The two types of level-1 binets on {x, y}.

Approaching the problem of reconstructing a level-1 phylogenetic network

using trinets instead of triplets may be more beneficial as a set of trinets ex-

actly encode (uniquely describe) the level-1 network that is produced [Huber and

Moulton, 2013]. In other words, if N and N ′ are phylogenetic networks with

T(N) = T(N ′) then N ∼= N ′.

2.6 Types of reticulation events

Phylogenetic networks extend the phylogenetic tree model with the extra possi-

bility that two branches combine into one new branch at a reticulation vertex.

Evolutionary events displayed on a phylogenetic network in which two branches

lead to the same vertex are known as reticulation events. These evolutionary

events imply convergence between objects [Jansson and Sung, 2006]. Any non-

treelike event such as recombination, Horizontal Gene Transfer and hybridisation

can be modelled by a reticulation [van Iersel, 2009]. The work presented in this

thesis is mainly concerned with the reconstruction of phylogenetic networks that

model recombination events.

Recombination is a process by which pieces of DNA are broken and then

recombined to produce new combinations of alleles, this process creates genetic

diversity at the level of genes that reflects differences in the DNA sequences of

different organisms [Scitable, 2015]. Horizontal (Lateral) Gene Transfer (HGT)

involves the direct transfer of genes from one organism to another. HGT is

common among bacteria, even amongst bacteria that share a distant relation. It

has been shown to be a key factor in the evolution of many organisms. HGT

18

is also believed to be a driving factor of increased drug resistance [Gyles and

Boerlin, 2013] when one bacterial cell acquires resistance and quickly transfers

the resistance genes to many species. Hybridisation is an evolutionary process in

which two lineages combine their DNA to form a new lineage. The term hybrid

refers to the sexual crossing of two different lineages that go on to produce a new

offspring [Morin, 2007].

2.7 Formats for representing trees and networks

In this section we discuss two file formats required in later chapters. The Newick

format is used to represent phylogenetic trees and networks and the DOT format

will be used to provide a visual representation of phylogenetic networks.

2.7.1 Newick format

The topology of a rooted phylogenetic tree can be described in a single line using

the Newick format, also known as Newick notation. The format itself was adopted

in 1986 and has become the standard notation for the representation of trees in

computer readable form [Jin et al., 2009]. A pair of parentheses are used to

represent internal vertices. Leaves are represented by its taxon label.

The children of an internal vertex are enclosed between the set of parentheses

representing that internal vertex. The children of a vertex are separated by

commas. Internal vertices can also be labelled by inserting a label directly after

the closing parenthesis representing that vertex [Huson et al., 2010]. A semicolon

is used to terminate the tree description. Figure 2.8 illustrates the representation

of a simple phylogenetic tree using the Newick format.

Unrooted phylogenetic trees can also be represented using the Newick format.

It is also possible to represent edge lengths in the description. A semicolon is

written after the vertex, followed by the edge length to represent the length of

the branch immediately below that vertex.

19

a b c d

((a,b),(c,d));

Figure 2.8: Representing a phylogenetic tree on the leaf set X = {a, b, c, d} using
the Newick format.

The extended-Newick (eNewick) format builds upon this representation and

applies the same principle to representing phylogenetic networks. In one imple-

mentation of the eNewick format, a network is represented by its underlying tree

structures. The method presented in [Jin et al., 2009] represents a network as a

collection of trees.

Another implementation of the eNewick format proposed in [Morin and Moret,

2006] requires the repeated labelling of a reticulate vertex so as to identify which

vertices need to be merged together, we have chosen to follow this convention

in this thesis. The network is modified so that all but one incoming edge of a

reticulate vertex is cut. The new vertices formed from this modification are then

given the same label. The labelling convention here for a reticulate vertex is #Hi

where i is a number. Figure 2.9 presents an example of a level-1 phylogenetic

network and the corresponding eNewick string representation.

20

d

b

c a

(d,((a,(b)#H1),(c,#H1)));

Figure 2.9: Representing a phylogenetic network using the eNewick format.

2.7.2 DOT format

The DOT format is popular for displaying both directed and undirected graphs [Gansner

et al., 2006]. The output network resulting from the TriLoNet algorithm pre-

sented in Chapter 4 is displayed in DOT format. The internal vertices are la-

belled arbitrarily. The DOT file contains a list of arcs, for example, the arcs

(n0, n1), (n0, n2), (n1, a), (n1, n3), (n2, b), (n2, n3), (n3, c) construct the trinets shown

in Figure 2.10.

21

n0

n1 n2

n3a b

c

(a)

a b

c

(b)

Figure 2.10: Displaying trinets using the DOT format. The trinet S1(a, b; c)
shown in (a) includes labels of all vertices for illustration, however as shown in
(b), for simplicity the interior vertices can be represented as points.

2.8 Concluding remarks

We have outlined the necessary background definitions required for the rest of

this thesis. In particular, we have introduced the concept of phylogenetic trees

and why phylogenetic networks may be a more appropriate to visualise reticulate

evolutionary events. The next chapter will present a new approach to constructing

a dense collection of trinets from sequence data.

22

Chapter 3

Sequences to trinets

3.1 Chapter summary

In this chapter we present an approach to constructing a dense set of trinets from

a multiple sequence alignment on a set of taxa X. This will allow us to apply

our network reconstruction algorithm TriLoNet presented in Chapter 4 to real

biological data sets.

3.2 Overview

To date, several methods, including MPNet [Fischer et al., 2015] and PhyloNet [Than

et al., 2008], have been proposed to construct phylogenetic networks from se-

quence data based on some parsimony score. However, a problem in common

with all of these methods is that they are unable to distinguish between an S1

and S2 trinet (defined in section 2.5), because they are based on the trees in the

network and the two trees embedded in each of these two networks are identical.

In this chapter we present a novel approach for constructing trinets from

sequence data which allows us to address this problem. This method, called

SeqTrinet will take as input a multiple sequence alignment on a set of taxa X

and associate a trinet to each subset in
(
X
3

)
, the collection on the subsets of X

containing three elements. The SeqTrinet algorithm can be roughly divided into

the following four parts:

23

1. Compute a score δt on each subset t = {x, y, z} in
(
X
3

)
, introduced to

measure the tree-likeness of the subalignment on the elements in t.

2. Using δt and a threshold κ divide the set
(
X
3

)
into a subset Σ that contains

those t ∈
(
X
3

)
with δt greater than or equal to κ and a subset Π that contains

those t ∈
(
X
3

)
with δt less than κ.

3. Assign to every entry in Π a trinet, which is of type S1 or S2.

4. Using the binets displayed by the trinets associated with the elements in Π,

assign a trinet to every element in Σ.

The details of the SeqTrinet algorithm are presented in Section 3.3, with

pseudocode in Section 3.4 and the experiments to determine the κ threshold to

be used in Step 2 in Section 3.5.

3.3 Method

In this section, we present a detailed description of our SeqTrinet algorithm. We

assume we are given as input a multiple sequence alignment (MSA) A on a set of

taxa X that has been preprocessed to remove sites containing gaps or any other

characters other than {A,C,G, T}.

Step 1

In this first step we compute a score δt for each subset t = {x, y, z} in
(
X
3

)
.

Recall that a triplet xy|z is a decomposition of {x, y, z} into a pair {x, y} and

a singleton {z}. The three possible triplets on {x, y, z} are xy|z, xz|y and yz|x,

which correspond to the three phylogenetic trees on {x, y, z}, see Figure 3.2.

One of the key concepts used in our approach for this step is the identification

of the informative character sites in A, where an informative site is a site for which

precisely two of the three sequences are the same character. Non-informative

sites, i.e. sites with three identical characters or three different characters are

disregarded. For a triplet xy|z, we compute a support weight w(xy|z) that, over

every site in A, counts the sites in A for which the character in sequence x and

24

sequence y have the same and the character in sequence z is different. Note that

for the set {x, y, z}, w(xy|z)+w(xz|y)+w(yz|x) is therefore equal to the number

of informative sites in A.

An example of how informative sites are identified from a A is shown in

Figure 3.1. The support weight for each of the three potential triplets of the

three sequences is recorded in the three support weights w(xy|z), w(xz|y) and

w(yz|x). Support weight w(xy|z) is equal to 7 because of sites 1, 3, 6, 11, 12, 15,

w(xz|y) = 4 because of sites 4, 7, 10, 13 and w(yz|x) = 1 because of site 8. Sites

2, 5, 9 and 14 are uninformative sites as the characters are either all identical or

all different. Then for t = {x, y, z}, δt = 6−4
4−1

= 2
3
.

A A G G T C C T G T T G A G Cx
y

z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Site

Taxa

A C G A T C T A G G T G T A C

T T T G T G C A G T C A A T G

Figure 3.1: A multiple sequence alignment on {x, y, z} depicting the identification
of informative sites, which are 1, 3, 4, 6, 7, 8, 10, 11, 12, 13 and 15.

With three support weights computed and assuming without loss of generality

w(xy|z) ≥ w(xz|y) ≥ w(yz|x), the δ score on t denoted by δt is defined as the

difference between the highest and second highest support weight divided by the

difference between the second highest and lowest support weight, that is,

δt =
w(xy|z)− w(xz|y)

w(xz|y)− w(yz|x)
.

If the value of the denominator is equal to zero then we follow the convention

that δt = w(xy|z)− w(xz|y). Note that a similar number is defined for quartets

in [Holland et al., 2002] which is used to determine tree-likeness of a distance

matrix.

We have included the optional ability to specify breakpoints in the sequences

which introduces some scaling into the trinet calculation. This may be useful in

cases where breakpoints are known, and in particular when the lengths of these

25

different regions vary, causing one portion of the MSA to heavily influence the

overall weighting. If breakpoints are used, the δt score is calculated to give equal

weighting to the different regions of the sequence alignment.

For example, given a MSA A on a set of taxa X with two breakpoints, the

MSA can be split into three separate regions. For i = 1, 2, 3, let ni denote the

length of that region. We replace the quantity w(xy|z) in the equation for δt by

n1w1(xy|z) + n2w2(xy|z) + n3w3(xy|z)

n1 + n2 + n3

and similarly for w(xz|y) and w(yz|x).

x y z

w(xy|z) = 6

x z y y z x

w(xz|y) = 4 w(yz|x) = 1

w(xy|z) - w(xz|y) = 2
w(xz|y) - w(yz|x) = 3 t =

(6 - 4)

(4 - 1)

t= 0.6666

Figure 3.2: Using the informative site support weights to calculate δt for {x, y, z}.

Step 2

We next use a threshold κ to decompose
(
X
3

)
into two disjoint subsets Σ and Π,

that will be treated differently in the following steps. Formally, Σ consists of all

t ∈
(
X
3

)
with δt greater than or equal to κ and Π consists of all t ∈

(
X
3

)
with δt

less than κ. Intuitively, the set Σ contains the t ∈
(
X
3

)
which give rise to triplet

topologies which are highly supported by A, and Π contains those t ∈
(
X
3

)
whose

triplet topologies are less clear and should probably be represented by an S1 or

S2 trinet.

After performing some experiments (see Section 3.5) we found that a κ value

between 6.0 and 7.0 works well in practice. Again considering the example in

Figure 3.1, the value of δt suggests the set t does not show high support for any

particular triplet over the other two possibilities. Therefore this set t will later

be assigned either a S1 or S2 trinet.

26

Step 3

Having decomposed
(
X
3

)
into Σ and Π, in this step we will assign to each t ∈ Π

a trinet, which will be of type S1 or S2. To do this, we determine for each

t = {x, y, z} in Π which of the three taxa x, y, z is to be placed under the

reticulation vertex. To this end for each x ∈ X we compute a score rx. The score

rx counts the number of times leaf x appears in the sets contained in Π. Then,

for every t ∈ Π, the taxon x in t with the highest score rx will be designated to

the taxon below the reticulation in S1 or S2. If two or more of the taxa for a

t ∈ Π have an equal maximal rx score then from these taxa we choose uniformly

at random the leaf to be placed under the reticulation.

With the taxon under the reticulation decided from the set t = {x, y, z}, we

next from the three support weights w(xy|z), w(xz|y) and w(yz|x) examine the

two highest scoring associated triplets. The cherries from these two triplets are

then used to determine whether t will give rise to an S1 or S2 trinet.

More specifically, assuming that xy|z and xz|y are the two triplets with the

highest support weights such that w(yz|x) ≤ w(xz|y) ≤ w(xy|z), we associate to

t = {x, y, z} in Π either an S1 or S2 trinet with leaves in t in the following way:

• If rx ≥ ry and rx ≥ rz then t is assigned the trinet S1(y, z;x);

• If ry ≥ rx and ry ≥ rz then t is assigned the trinet S2(z;x; y);

• If rz ≥ rx and rz ≥ ry then t is assigned the trinet S2(y;x; z), (see Fig-

ure 3.3).

The idea behind this is to make sure the two triplets with the highest support

weights are embedded in the assigned trinet. The set of trinets obtained from

this step is denoted by TΠ.

27

x y z

Two highest

scoring triplets

on {x,y,z}

y x z

x z y

If t(x) is greater

than t(y) and t(z)

If t(y) is greater

than t(y) and t(z)

y x z

If t(z) is greater

than t(x) and t(y)

z x y

Figure 3.3: Deciding between a S1 and S2 trinet.

Step 4

The last step of SeqTrinet is to associate a trinet to every t = {x, y, z} in Σ.

For simplicity, we assume that the highest support weight for the three triplets

associated with t is w(xy|z).

Recall from Chapter 2 that there are two types of binets, as shown in Fig-

ure 3.4. We use the binets displayed by the trinets in TΠ to associate a trinet to

each t = {x, y, z} in Σ. The idea behind this step is to associate trinets to the

sets in Σ so as to maximise the consistency of the binets displayed by the trinets

associated with the elements in Π.

x

y

S0(x; y)T0(x, y)

x y

Figure 3.4: The two types of binet.

More specifically, for each t = {x, y, z} let a1, a2 and a3 be the number of

trinets in TΠ that display the binets T0(x, y), S0(x; y) and S0(y;x), respectively.

These scores determine the binet type and order on the cherry {x, y} in T1(x, y; z).

An S0(x; y) or S0(y;x) binet is chosen over a T0(x, y) binet only if a2 or a3 is

28

greater than a1. If a2 and a3 are equal and also both greater than a1 then a2 is

selected as the maximum.

S0(y;x)

y x

S0(x;y)

x y

T0(x,y)

x y

S0(z;*)S0(*;z)T0(*,z)
* z * z z *

a1 a2 a3

b1 b2 b3

Figure 3.5: Binet Structures.

Next we follow a similar process to determine the structure and position of

leaf z. Again, we let b1, b2 and b3 be the number of trinets in TΠ that display the

binets T0(z, ∗), S0(z; ∗) and S0(∗; z) respectively, with ∗ ∈ {x, y}. Then, similarly,

an S0(∗; z) or S0(z; ∗) is chosen over T0(z, ∗) only if b2 or b3 is greater than b1.

If b2 and b3 are equal and also both greater than b1 then b2 is selected as the

maximum. Using the maximum ai scores and the maximum bi scores we use the

following table to determine the trinet on {x, y, z}. For example, if a3 and b1 are

maximal we assign the trinet N3(y, x; z).

29

Table 3.1: The lookup table used in Step 4 of the algorithm.

ai bi Trinet

a1 b1 T1(x, y; z)

a1 b2 N1(x, y; z)

a1 b3 N2(x, y; z)

a2 b1 N3(x, y; z)

a2 b2 N4(x, y; z)

a2 b3 N5(x, y; z)

a3 b1 N3(y, x; z)

a3 b2 N4(y, x; z)

a3 b3 N5(y, x; z)

3.4 Pseudocode

We now present in pseudocode the SeqTrinet algorithm that takes as input a

multiple sequence alignment A on a set of taxa X and outputs a dense set of

trinets T on X.

30

Algorithm 2 SeqTrinet Algorithm

INPUT: Multiple sequence alignment A on set of taxa X and a threshold κ.

OUTPUT: Dense set of trinets T on X.

for Every t = {x, y, z} ∈
(
X
3

)
do

Compute w(xy|z), w(xz|y) and w(yz|x) using informative sites

end for

Calculate δt for every t = {x, y, z} in
(
X
3

)
Let Σ = {t ∈

(
X
3

)
: δt ≥ κ} and Π = {t ∈

(
X
3

)
: δt < κ}.

for Every leaf a ∈ X do

ra = number of t ∈ Π containing a

end for

for Every t = {x, y, z} ∈ Π do

Assign z ∈ {x, y, z} with maximum rz score as the leaf below reticulation

Select cherries from two highest values from w(xy|z), w(xz|y) and w(yz|x)

if Both cherries contain z then

Associate t to S1(x, y; z)

else

if z is contained in first cherry {z, y} then

Associate t to S2(x, y; z)

end if

if z is contained in second cherry {z, y} then

Associate t to S2(x, y; z)

end if

end if

end for

BΠ = binets displayed by the S1 and S2 trinets associated with every t in Π

for Every triplet with highest support weight w(xy|z) associated with t in Σ

do

Use BΠ and lookup table to associate t to trinet of type other than S1 or S2

end for

Output a dense set of trinets on X corresponding to the elements in Σ ∪ Π.

31

3.5 κ threshold experiments

When developing the SeqTrinet algorithm we performed some experiments to

identify an appropriate value for the κ threshold used in Step 2 of the SeqTrinet

algorithm. To this end, we conducted a simulation study using the Seq-Gen [Ram-

baut and Grass, 1997] software for simulating molecular sequence data.

3.5.1 Generating collections of weighted trinets

We generate a collection TrC of arc-weighted trinets for which the distance from

the root of a trinet to each of the three leaves is the same. This is assumed as we

are assuming a molecular clock which is required in the Seq-Gen software. For

example, given an arc a = (u, v), a weight of 5 would indicate there would be 5

substitutions per site in the time taken for the sequence to evolve from u to v.

The trinets of type T1 in this collection TrC are generated in the following

way. Given trinet t = T1(x, y; z) in Figure 3.6 as an example, the parameters d1

and d2 are varied such that d1 = i and d2 = 100− i for 1 ≤ i < 100. With these

parameters we generate a collection of 99 weighted T1 trinets.

x y z

d1

d2 d2

d1 + d2

Figure 3.6: Generating arc lengths on a T1 trinet.

For trinets of type other than T1 in the collection TrC, we generate arc-weighted

trinets in the following way. Given the trinet S2(y; z;x) presented in Figure 3.7

as an example, each of the four parameters d1, d2, d3, d4 are varied between 1 and

20 while the total height i.e d1 + d2 + d3 + d4 is 20. More precisely, we generate

32

solutions {d1, d2, d3, d4} such that d1 + d2 + d3 + d4 = 20 with 1 ≤ di ≤ 20 for

1 ≤ i ≤ 4. For all trinet types other than T1 the total height is also set to

20, where the number 20 is chose to set a reasonable size for the collection of

weighted trinets and to also keep the computational time reasonable. The use of

these parameters resulted in a collection of 153 weighted S2 trinets.

x z y

d1

d2

d3
d4

x z y x z y

d 1
+

 d
2

+
 d

3
+

 d
4 d1

d 3
+

 d
3

+
 d

4

d
2 +

 d
3 +

 d
4

d
2 +

 d
3 +

 d
4

d2

d 3
+

 d
4 d

3 +
 d

4

d
2 +

 d
3 +

 d
4

d
3

+
 d

4

Figure 3.7: Extracting the two trees embedded in an S2 trinet and computing
the arc lengths.

A similar approach was used to obtain collections for the other types of trinets.

For trinets of type S2, four parameters were used to generate the arc weights. The

number of parameters required for a particular type of trinet is dependent on the

number of arcs in a trinet of that type. The total size of each collection for each

trinet type is presented in Table 3.2.

Trinet Type T1 N1 N2 N3 N4 N5 S1 S2

Size of collection 99 171 153 152 815 679 323 153

Table 3.2: Number of trinets generated in each collection for each type of trinet.

3.5.2 Simulation of recombination data sets

Having generated the collection of weighted trinets, we now generate an MSA for

each weighted trinet in TrC. For the trinets that displayed one or more trees such

that the root vertex of that tree and the root vertex of the trinet were not equal,

the expected substitution rate for that tree was calculated in proportion to the

expected substitution rate for a tree that shared its root vertex with the trinet.

33

An example of identifying the trees in an S2 trinet is show in Figure 3.7. The

total height of the S2 trinet is equal to d1 +d2 +d3 +d4. The tree zy|x is also the

same height. The height of the other tree xz|y embedded in S(y;z;x) is a proportion

of the total height of the trinet equal to d2 + d3 + d4.

An expected substitution rate of 0.3 was used in the experiments performed

in [Holland et al., 2002], for the following simulation experiments we tested this

value as well as some values above and below. For each expected substitution

rate γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and for the tree zy|x the expected number of

substitutions from the root to each taxa is calculated as

d1 + d2 + d3 + d4

d1 + d2 + d3 + d4

× γ,

and for the tree xy|z the expected number of substitutions from the root to each

taxa is calculated as
d2 + d3 + d4

d1 + d2 + d3 + d4

× γ.

A similar approach is taken to compute the expected substitution rate for every

tree embedded in each trinet in proportion to the total height of the trinet.

We then used Seq-Gen [Rambaut and Grass, 1997] to simulate recombina-

tion sequence data sets. Seq-Gen is able to, given a tree topology, simulate the

evolution of sequences along that tree. By concatenating two sequence data sets

produced by two different tree topologies such that the first tree underlies the first

part of the sequence alignment and the second tree underlies the second portion,

we simulate a recombination data set. An example of this sequence concatenation

is presented in Figure 3.8, where the first to the fifth characters are simulated

from the tree (yz|x) and the sixth to tenth characters are simulated from the tree

xz|y.

34

x z y x z y

G A G C A A C C T A x
y

z

1 2 3 4 5 6 7 8 9 10

Site
Taxa

A C G G T T C G G T

A C G G T A C C T A

Figure 3.8: An example of the simulation of a recombinant data set on an
S2(y; z;x) trinet. Seq-Gen is used to simulate the evolution of sequences of length
5 on the two trees yz|x and xz|y embedded in S2(y; z;x). The two data sets are
concatenated to give a MSA with sequences of length 10 on three taxa x, y and
z.

In Seq-Gen we used the K2P model [Kimura, 1980] of sequence evolution which

is selected in Seq-Gen by setting the model parameter to mHKY , t2.0 (to set

the transition-transversion bias to 4) and parameter l5000 for the lengths of the

sequences to be generated. As discussed in the next section, in the experiments

we vary d the scale tree length parameter. All other parameters were left with

their default settings.

We used Seq-Gen to simulate the evolution of sequences on all of the trinets.

As Seq-Gen takes trees as input, we used the trees embedded in the trinets. The

trinet T1 contains only one embedded tree on three leaves (itself), trinets N1, N2

and N3 each contain two trees. Trinets of type N4, N5 both contain four trees,

again distinguished by the selection of the root vertex and last stable ancestor of

leaves x and y. Trinets S1, S2 each contain two different trees.

For each tree embedded in a trinet and for each taxa, sequences of length

35

5,000 were generated. For the trinet T1 the same tree was used to generate two

sets of sequences which were then concatenated. All sequences produced from

the trees inside trinets aside from N4 and N5 were 10,000 characters in length.

As trinets N4 and N5 contained four embedded trees, the sequences produced for

these trinets were 20,000 characters in length.

3.5.3 Experiments and results

For each experiment we fix the expected substitution rate for some γ ∈ {0.1, 0.2,
0.3, 0.4, 0.5} and vary κ between 4 and 10, with the aim of selecting an appropriate

value for κ. For each weighted trinet t ∈ TrC we generate a multiple sequence

alignment Stγ on the three taxa of t as described above. We next compute δ(Stγ)

for every trinet in the collection TrC. A weighted trinet is said to be correctly

separated by κ if δ(Stγ) < κ when t is of type S1 or S2 and δ(Stγ) ≥ κ otherwise.

For each expected substitution rate and each κ value between 4.0 and 10.0 we

calculated the average number of correctly separated trinets for the collection of

trinets TrC introduced in Section 3.5.1. These results are presented in Table 3.3

and indicate that a κ value of 6.0 or 7.0 would be suitable for separating S1 and

S2 trinets from the other types of trinet since these values would be a reasonable

compromise in the for the identification of T1 trinets as well as S1 and S2 trinets.

T1 N1 N2 N3 N4 N5 S1 S2 Average
Kappa

4 95.96 97.08 100.00 99.34 99.88 99.85 81.11 73.86 93.38

5 92.93 97.08 100.00 99.34 99.88 99.85 84.83 77.78 93.96

6 90.91 96.49 99.35 98.68 99.88 99.85 86.38 81.05 94.07

7 85.86 95.91 98.69 96.71 99.63 99.85 88.24 84.31 93.65

8 84.85 94.74 97.39 96.05 99.26 99.71 89.16 84.97 93.27

9 83.84 94.15 96.08 95.39 98.90 99.26 90.40 86.93 93.12

10 81.82 92.40 95.42 94.74 98.40 98.82 91.64 88.24 92.69

0.1

Figure 3.9: A table presenting the percentage of correctly separated trinets for
each type of trinet with a γ value of 0.1 and the κ threshold varied between 4
and 10.

36

0.2
T1 N1 N2 N3 N4 N5 S1 S2 Average

Kappa
4 93.94 100.00 99.35 100.00 100.00 100.00 81.11 73.86 93.53

5 88.89 99.42 99.35 99.34 99.88 100.00 85.45 79.74 94.01

6 88.89 99.42 99.35 98.68 99.88 100.00 87.93 81.70 94.48

7 86.87 98.83 99.35 98.68 99.63 99.85 89.78 84.97 94.75

8 84.85 98.25 98.69 98.03 99.63 99.85 90.71 86.93 94.62

9 83.84 98.25 98.69 97.37 99.51 99.85 92.57 88.24 94.79

10 81.82 97.08 98.69 97.37 99.26 99.85 92.57 88.89 94.44

Figure 3.10: A table presenting the percentage of correctly separated trinets for
each type of trinet with a γ value of 0.2 and the κ threshold varied between 4
and 10.

0.3
T1 N1 N2 N3 N4 N5 S1 S2 Average

Kappa
4 96.97 100.00 100.00 99.34 100.00 100.00 77.71 73.86 93.48

5 90.91 100.00 99.35 99.34 100.00 99.85 80.19 77.78 93.43

6 87.88 99.42 99.35 98.03 100.00 99.85 85.76 82.35 94.08

7 86.87 99.42 98.69 98.03 99.88 99.71 87.93 84.97 94.43

8 82.83 99.42 98.69 96.71 99.88 99.71 89.47 86.93 94.20

9 81.82 98.25 98.04 95.39 99.63 99.56 92.26 88.89 94.23

10 81.82 97.66 96.73 94.74 99.63 99.41 92.88 90.20 94.13

Figure 3.11: A table presenting the percentage of correctly separated trinets for
each type of trinet with a γ value of 0.3 and the κ threshold varied between 4
and 10.

0.4
T1 N1 N2 N3 N4 N5 S1 S2 Average

Kappa
4 91.92 100.00 100.00 100.00 100.00 100.00 77.09 73.86 92.86

5 90.91 98.25 100.00 99.34 100.00 100.00 81.73 77.12 93.42

6 90.91 98.25 100.00 98.03 99.88 100.00 85.76 79.08 93.99

7 90.91 97.66 100.00 97.37 99.75 100.00 87.62 81.70 94.38

8 87.88 97.66 99.35 96.05 99.14 99.85 89.47 84.31 94.21

9 87.88 97.66 98.69 94.74 98.65 99.85 90.40 87.58 94.43

10 87.88 97.66 98.04 92.76 98.28 99.85 92.26 89.54 94.53

Figure 3.12: A table presenting the percentage of correctly separated trinets for
each type of trinet with a γ value of 0.4 and the κ threshold varied between 4
and 10.

37

0.5
T1 N1 N2 N3 N4 N5 S1 S2 Average

Kappa
4 88.89 98.25 99.35 97.37 100.00 100.00 77.09 71.90 91.60

5 88.89 97.66 99.35 96.05 100.00 100.00 79.57 77.78 92.41

6 88.89 97.08 99.35 95.39 99.88 100.00 82.35 80.39 92.92

7 88.89 95.32 97.39 95.39 99.63 100.00 84.52 81.05 92.77

8 86.87 94.74 97.39 94.74 99.39 99.85 85.76 83.66 92.80

9 85.86 94.74 95.42 94.08 99.14 99.85 87.62 86.93 92.95

10 83.84 94.74 95.42 92.76 98.53 99.71 89.47 89.54 93.00

Figure 3.13: A table presenting the percentage of correctly separated trinets for
each type of trinet with a γ value of 0.5 and the κ threshold varied between 4
and 10.

γ

κ 0.1 0.2 0.3 0.4 0.5

4 93.38 93.53 93.48 92.85 91.60

5 93.96 94.00 93.42 93.41 92.41

6 94.07 94.47 94.07 93.98 92.91

7 93.65 94.74 94.43 94.37 92.77

8 93.26 94.61 94.20 94.21 92.79

9 93.11 94.78 94.22 94.43 92.95

10 92.68 94.44 94.13 94.53 93.00

Table 3.3: Average percentage across all types of trinets correctly separated for
κ values between 4 and 10 for expected substitution rate γ between 0.1 and 0.5.

A κ value of 9 or 10 increases the percentage of S1 and S2 trinets with a score

below κ. However, using this value impacts on the identification of T1 trinets.

Loosely speaking, using a value this high would mean our algorithm would identify

T1 trinets as either S1 or S2 trinets. The variation of the κ parameter variation

had less impact on the identification of Ni, 1 ≤ i ≤ 5 trinets in comparison to

trinets of type T1, S1 and S2.

38

3.6 Concluding remarks

We have introduced a method with four key steps that will output a dense set of

trinets when given as input a multiple sequence alignment. We have also detailed

the experiments we performed and found a suitable κ threshold value of 6.5 to be

used in Step 2 of the SeqTrinet algorithm. We will now use the output produced

by SeqTrinet as input to our main algorithm TriLoNet, presented in Chapter 4.

39

Chapter 4

Network construction

4.1 Chapter summary

In this chapter, we present the algorithm TriLoNet which constructs level-1 phy-

logenetic networks from a dense collection of trinets. We begin with some prelim-

inary definitions as well as some useful theoretical results. We then describe the

key steps of the TriLoNet algorithm and include some proofs on its complexity

and consistency.

4.2 Definitions

We begin by introducing some additional notation that we will need in this chap-

ter. There are three types of subnets that will be particularly important for our

approach to reconstructing level-1 networks. The first one is a cherry of N . This

is a subnet consisting of an interior vertex of N incident with two leaves (see

Figure 4.1). We also consider reticulate cherries, which are like cherries except

they contain a cycle of length 3 (see Figure 4.1).

40

a

b c

d

i

e

f

g

h

j

N1

N2

N3

Figure 4.1: Example of a level-1 phylogenetic network. The network contains
a cherry N1, a reticulate-cherry N2 and a cactus N3 as indicated by the dotted
circles. Here all arcs are directed from the root, and the arc highlighted in bold
is a cut-arc.

The other type of subnet of special interest is a cactus or a subnet with at least

three leaves whose associated undirected graph contains one cycle and each vertex

is either contained in this cycle or a child of a vertex of this cycle (see Figure 4.1).

More precisely, a cactus in a network N on X is the subnet H = N |Y for some

subset Y = {a1, . . . , ap, b1, . . . , bq, z} of X with p + q ≥ 2 such that H contains

exactly one cycle and p + q + 1 pendant leaves as shown in Figure 4.2. Here

41

z will be referred to as the bottom leaf of H, and its leaf set Y the support of

H. For brevity, we also say that the tuple (a1, a2, . . . , ap : b1, b2, . . . , bq : z), or

equivalently (b1, b2, . . . , bq : a1, a2, . . . , ap : z), is a cactus.

a1

a2

ap

z

b1

b2

bq

Figure 4.2: An illustration of a cactus. The support of the cactus is {a1, . . . , ap,
b1, . . . , bq, z}.

Following [Iersel and Moulton, 2013], a subset A of X is called a CA-set (Cut-

Arc set) of N if there exists a cut-arc (u, v) of N such that A = C(v). That is,

A is a CA-set if there exists a cut-arc (u, v) in the network such that a taxon

is contained in A precisely when it is below v. A CA-set contains at least two

leaves as here we consider only cut-arcs not incident with a leaf. We call a CA-set

minimal if no proper subset B of A is a CA-set. Note that a minimal CA-set in

a network is necessarily the leaf set of a cherry, reticulate-cherry or a cactus.

Next, we extend the concept of SN-sets, which were introduced for construct-

ing networks from triplets [Jansson and Sung, 2006], [Jansson et al., 2006]. A

subset A of taxa is called an SN-set of a collection T of trinets if it is a singleton

or, for every trinet T in T which contains precisely two taxa from A, these two

taxa form a CA-set of T . This definition is in agreement with those in [Jansson

and Sung, 2006; Jansson et al., 2006] when each trinet in the collection T is type

T1, that is, it is a triplet. In addition, a subset of taxa is an SN-set of T(N) if and

only if it is a singleton, the set X or a CA-set of N (see, also [Iersel and Moulton,

2013, Theorem 1]).

Finally, a small SN-set is a non-singleton SN-set for which none of its proper

non-singleton subsets is an SN-set. More precisely, an SN-set A (with |A| ≥ 2) of

42

a collection of trinets T is called a small SN-set if A ⊆ X, but no proper subset

B ⊂ A with |B| > 1 is an SN-set.

4.3 Theoretical results

The first step of our TriLoNet algorithm is to identify small SN-sets. For a set

T of dense trinets on X we construct a digraph on X: (x, y) is an arc in Ωi(T)

for taxon x to y if and only if there is no taxon z ∈ X − {x, y} such that the

set {x, z} is a CA-set for the trinet T in T with leaf set {x, y, z}. For example,

Figure 4.3 is the digraph Ω(T(N)) for the trinets T(N) induced by the network

N depicted in Figure 4.1.

g

h

i
e

f

a
b

c

d

j

Figure 4.3: Digraph Ω(T(N)) for the network N shown in Figure 4.1.

In general, a subset A of the vertex set of a digraph is called a sink set if

there exists no arc (u, v) in the digraph with u ∈ A and v 6∈ A. In addition, a

sink set A in a digraph G is minimal if none of its proper subsets is a sink set.

We refer to a sink set A as small if A is non singleton and none of its proper,

non-singleton subsets is a sink set. For the network N depicted in Figure 4.1,

the minimal CA-sets are {b, c}, {d, j} and {e, f, g, h, i}, and these are the same

as the minimal sink sets in Ω(T(N)) (see Figure 4.3). As a generalisation of this

observation, the following theorem relates minimal CA-sets, small SN-sets, and

minimal sink sets for a level-1 network N .

Theorem 4.3.1. Suppose that N is a level-1 phylogenetic network on X with

|X| ≥ 3. Then the following assertions are equivalent for subsets A ⊂ X with

1 < |A| < |X|:
(i) A is a minimal CA-set in N .

43

(ii) A is a small SN-set of T(N).

(iii) A is a minimal sink set in Ω(T(N))

To establish this theorem, we need the following three lemmas. The first

one relates CA-sets and SN-sets, whose proof is omitted as it follows directly

from [Iersel and Moulton, 2013, Theorem 1].

Lemma 4.3.2. Suppose that N is a level-1 network on X with |X| ≥ 3 and A is

a subset of X with 1 < |A| < |X|. Then A is an SN-set in T(N) if and only if A

is a CA-set in N . �

The second lemma relates SN-sets to sink subsets in the digraph Ω.

Lemma 4.3.3. Suppose that T is a dense collection of trinets on X with |X| ≥ 3.

Let A be an SN-set of T with |A| ≥ 2. Then A is a sink set in Ω(T).

Proof. Suppose that (x, y) is an arc in Ω(T) and x ∈ A. Then it suffices to show

y ∈ A. To this end, fix a taxon a ∈ A− {x}. Without loss of generality, we may

further assume a 6= y as otherwise we clearly have y ∈ A.

Next, since T is dense, there exists a unique trinet T in T with leaf set {x, y, a}.
Noting that (x, y) ∈ Ω(T), it follows that the set {x, a} is not a CA-set in the

trinet T . This implies that y ∈ A as otherwise A ∩ {x, y, a} has cardinality two

and is not a CA-set in T , a contradiction to the fact that A is an SN-set.

For a network N , the third lemma relates minimal sink sets in the digraph

Ω(T(N)) to CA sets in N .

Lemma 4.3.4. Suppose that N is a binary level-1 phylogenetic network on X

with |X| ≥ 3, and A is a minimal sink set in Ω(T(N)). Then |A| ≥ 2 and hence

A is a small sink set. In addition, A is either the set X or a CA-set in N .

Proof. For simplicity, let T = T(N). Suppose that A is a minimal sink set in

Ω(T). We may assume that |A| < |X| as otherwise the lemma clearly holds.

Fix a taxon x ∈ A and let p(x) be the parent of x in N . Note that for each

y ∈ C(p(x))−{x} and a trinet T in T that contains both x and y, leaf y is below

the parent of x in T . This implies that there exists no taxon z in X−{x, y} such

that the subset {x, z} is a CA-set for the trinet in T with leaf set {x, y, z}. Hence

44

(x, y) is an arc in Ω(T). Therefore, we have C(p(x)) ⊆ A because A is a sink set

in Ω(T).

Note that we may further assume that p(x) is not the root of N because

otherwise we have X = C(p(x)) = A, a contradiction. Denoting the parent of

p(x) by x∗, we divide the remainder of our proof into the following two cases:

Case i: The arc (x∗, p(x)) is a cut-arc in N . Then C(p(x)) is a CA-set

of N with 2 ≤ |C(p(x))| < |X|. By Lemma 4.3.4 and Lemma 4.3.3 it follows

that C(p(x)) is a sink set in Ω(T). Using the minimality of A, we must have

C(p(x)) = A, from which we can conclude that |A| ≥ 2 and A is a CA-set in N ,

as required.

Case ii: The arc (x∗, p(x)) is not a cut-arc in N . Let H be the cycle that

contains p(x). In addition, let h∗ be the reticulate vertex contained in H, and

let B denote the subset of X consisting of elements y ∈ X that are below some

vertex in H. Then |B| ≥ 2. In addition, the set B is either X or a CA-set in

N . Hence B is necessarily a sink set in Ω(T). Now we have the following two

subcases.

The first subcase is h∗ = p(x). Then x is the only child of h∗. In addition,

for each element y ∈ B − {x} and a trinet T in T that contains both x and y,

taxon x is the only child of a reticulate vertex v in T and y is below some vertex

in the biconnected component of T containing v. Hence (x, y) is an arc in Ω(T).

This implies B ⊆ A because A is a sink set in Ω(T). In addition, it follows that

|B| < |X| and B is a CA-set in N . Finally, by the minimality of A, we have

A = B, and thus |A| ≥ 2 and A is a CA-set in N , as required.

The other subcase is that h∗ 6= p(x). Then h∗ is below p(x) in N , and hence

C(h∗) ⊂ C(p(x)) ⊆ A. Note that we must have |C(h∗)| = 1 as otherwise C(h∗) is a

CA-set of N and hence also a sink set in Ω(T) by Lemma 4.3.4 and Lemma 4.3.3,

a contradiction to the minimality of A. In addition, |A| ≥ 2. Denoting the leaf

below h∗ by h, then (x, h) is an arc in Ω(T). By an argument similar to that

in the first subcase, it follows that (h, y) is an arc in Ω(T) for all y ∈ B − {h}.
Therefore, B is a subset of A and hence |B| < |X|. This implies that B is a

CA-set of N . On the other hand, by the minimality of A we have A = B. Hence

A is a CA-set in N , which completes the proof of the theorem.

45

With the last three lemmas, we are in a position to prove the main result of

this section.

Proof of Theorem 4.3.1: To simplify notation, let T = T(N). The equivalence

between (i) and (ii) follows directly from Lemma 4.3.4.

We will first show that (ii) implies (iii). To this end, suppose that A is a small

SN-set of T. Then by Lemma 4.3.3 we know that A is a sink set in Ω(T). Note

that if A were not a minimal sink set in Ω(T), then there would exist a subset

A′ ⊂ A so that A′ is a minimal sink set in Ω(T). By Lemma 4.3.4, we have

|A′| > 1 and A′ is a CA-set of N . By Lemma 4.3.4, it follows that A′ is an SN-set

of T, a contradiction to the assumption that A is a small SN-set of T. Therefore

we can conclude that A is a minimal sink set in Ω(T), as required.

It remains to show (iii) implies (ii). To this end, assume that A is a minimal

sink set in Ω(T). Then by Lemma 4.3.4 and Lemma 4.3.4 it follows that A is an

SN-set of T. Note that if A were not a small SN-set of T, then there would exist

a subset A′ ⊂ A such that |A′| > 1 and A′ is an SN-set of T. By Lemma 4.3.3,

A′ is a sink set in Ω(T), a contradiction to the assumption that A is a minimal

sink set in Ω(T). Therefore we can conclude that A is a small SN-set of T, as

required. �

4.4 The TriLoNet algorithm

In this section, we present the main algorithm of TriLoNet to reconstruct level-1

networks from a dense set of level-1 trinets. We adopt a bottom-up approach,

a feature shared with the Neighbor-Joining algorithm used for the inference of

phylogenetic trees [Saitou and Nei, 1987]. Loosely speaking, given a dense trinet

set T on X, we first identify an appropriate subset Y of X and construct a cherry,

reticulate cherry or cactus NY on Y using the restriction of T on Y . Next, we

compute the trinet set T∗ induced by T on the set X∗ formed by replacing the

subset Y in X with a new element y∗ and then we obtain a level-1 network N∗

from T∗ recursively. Finally, we combine the two level-1 networks NY and N∗ to

form a level-1 network on X.

46

4.4.1 Finding small SN-sets

Here, we introduce the FindSmallSNSet(X,T) algorithm to identify small SN-sets

Y of X for a dense trinet set on X. It works as follows.

We first identify the the smallest i such that ϕ(x, y) > |X| − 2 − i holds for

some pair x, y in X. We construct a digraph Ω with V (D) = X and (x, y) is

an arc in D if and only if ϕ(x, y) > |X| − 2 − i. If we are unable to identify

a graph containing at least one edge then we output Y = X. Otherwise, we

construct the condensed digraph Ω∗(T) of Ω using Tarjan’s algorithm [Tarjan,

1972] which identifies the strongly connected components of a graph. Essentially,

the connected components of Ω form the vertex set of Ω∗(T) and (π1, π2) is an

arc in Ω∗(T) if and only if for some vertex there exists an arc from some vertex

in L(π1) to some vertex in L(π2).

For each vertex u in Ω∗(T), let πu be equal to the set of vertices in Ω contained

in the strongly connected component corresponding to u. The set A∗ is equal to

the set of leaves contained in Ω∗(T). If there is a leaf in A∗ such that |πu| is

greater than or equal to two then we return πa for some a ∈ A∗ such that the size

of |πa| is greater than one and |πa| ≤ |πu| for all u ∈ A∗ with |πu| ≥ 2.

If this condition is not met then we consider the set B∗, the set of all parents

of leaves contained in Ω∗(T). For every b ∈ B∗, let π∗b be the union of πb and

πu over all descendants u of b in Ω∗(T). Finally, we return the set π∗b for some

b ∈ B∗ such that |π∗b | ≤ |π∗u| for all u ∈ B∗ with π∗u ≥ 2.

Lemma 4.4.1. Given a dense set of binary level-1 trinets T on X with |X| ≥ 3,

algorithm FindSmallSNSet(X,T) outputs a subset of X of size at least two in

O(|X|3) time. In addition, if T = T(N) holds for a binary level-1 network N ,

then FindSmallSNSet(X,T) returns a subset of X that is a small SN-set of T.

Proof. Let n = |X|. Note first by line 15 and line 19 the algorithm will output a

subset of X with size at least two.

Next, we show that the running time of the algorithm is O(n3). Since T

contains precisely n(n − 1)(n − 2)/6 trinets, the first for loop (lines 2 - 9) in

the algorithm has run-time O(n3). Based on the values of ϕ, the digraph Ω can

be constructed in time O(n2). In addition, computing the condensed digraph

Ω∗ of Ω from the digraph Ωi has run-time O(n2) using the well-known Tarjan’s

47

Algorithm 3 FindSmallSNSet(X,T)

INPUT: A dense set of binary level-1 trinets T on a leaf set X with |X| ≥ 3 .
OUTPUT: A subset of X containing at least two elements (that is a small
SN-set of T when T = T(N) holds for a binary level-1 network N on X).

1: let ϕ : X ×X → Z≥0 be defined as ϕ((x, y)) = 0 for all (x, y) ∈ X ×X
2: for all T ∈ T do
3: if T = T1(x, y; z) or T = Ni(x, y; z) for 1 ≤ i ≤ 2 or T = Nj(x; y; z) for

3 ≤ j ≤ 5, then
4: ϕ(a, b) = ϕ(a, b) + 1 for all a ∈ {x, y, z} and b ∈ {x, y}
5: end if
6: if N = S1(x, y; z) or T = S2(x; y; z) then
7: ϕ(a, b) = ϕ(a, b) + 1 for all a ∈ {x, y, z} and b ∈ {x, y, z}
8: end if
9: end for
10: find the smallest i such that ϕ(x, y) > |X| − 2− i holds for some x, y in X
11: construct the digraph Ω = Ωi(T) on X in which (x, y) is an arc if and only if

ϕ(x, y) > |X| − 2− i
12: construct the condensed digraph Ω∗(T) of Ω; for each vertex u in Ω∗(T), let

πu be the set of vertices in Ω contained in the strongly connected component
corresponding to u

13: let A∗ be the set of leaves in Ω∗(T)
14: if |πu| ≥ 2 holds for some u ∈ A∗ then
15: return πa for some a ∈ A∗ such that |πa| > 1 and |πa| ≤ |πu| for all

u ∈ A∗ with |πu| ≥ 2
16: end if
17: let B∗ be the set consisting of all parents of leaves in Ω∗(T)
18: for each b ∈ B∗, let π∗b be the union of πb and πu over all descendant u of b

in Ω∗(T)
19: return π∗b for some b ∈ B∗ such that |π∗b | ≤ |π∗u| for all u ∈ B∗ with |π∗u| ≥ 2

48

algorithm Tarjan [1972]. Moreover vertices in Ω∗i with out-degree 0 can be checked

in timeO(n). Therefore, setsA∗ andB∗ can be constructed in timeO(n). Because

the set π∗b for each b ∈ B∗ can be constructed in O(n2) by a breadth-first search,

we conclude that the running time of the algorithm is O(n3).

Finally, we shall establish the correctness of the algorithm. By lines 13 - 14,

the output π ⊆ X is a strongly connected component of Ω(T) containing at least

two elements. Therefore it remains to prove the last statement of the lemma,

that is, if T = T(N) for a binary level-1 network N on X, then the output of the

algorithm is a small SN-set of T. We have the following two cases to consider.

Case i: The network N contains no cut-arcs. Then N is necessarily a cactus

as |X| ≥ 3 and there exists only one small SN-set of T, that is, the set X itself.

On the other hand, let v be the reticulate vertex of T and z ∈ X be the only

child of v in T. Then for each element x ∈ X − {z}, both arcs (x, z) and (z, x)

are contained in Ω. Hence, Ω = Ω1 and it contains only one strongly connected

component, i.e., X itself. Therefore, the algorithm terminates at line 15 and

outputs X, as required.

Case ii: The network contains some cut-arcs. Then let π be a strongly

connected component in Ω such that it has out-degree 0 in Ω∗.

We shall first show that π must form a sink set in Ω(T). Indeed, if π is not

a sink set, then there exists x ∈ π and y ∈ X − π such that (x, y) is an arc in

Ω(T), and hence the out degree of π in the condensed digraph of Ω(T) is at least

one, a contradiction.

Next, since each sink set of a digraph must be the union of the vertex sets of

a set of strongly connected components, we know π must be a minimal sink set.

Finally, since N contains cut-arcs and all elements below a cut-arc in N must

be a sink set in Ω, we know that π does not contain all elements of X. Hence by

Lemma 4.3.4 it follows that 1 < |π| < n and π is a CA-set in N containing at

least two taxa. By Theorem 4.3.1, it follows that π is a small SN-set of T. This

implies that A∗ is not empty and that |πa| ≥ 2 holds for some a ∈ A∗. Therefore,

the algorithm terminates at line 15 and the output is a small SN-set of T, as

required.

49

4.4.2 Constructing binets

Our next step is to construct cherries, reticulate-cherries and cacti, on a subset Y .

In this step we will associate a network to Y given as output from Algorithm 3.

This step consists of Algorithm 4 and 5, according to whether the size of the

subset is two or more. We first deal with the case when the size is two. See

Section 4.4.3 for how to deal with subsets of size three or more.

If the set Y contains precisely two elements then the network NY associated

to Y will be a binet which is obtained using the Binet(T, Y) algorithm (see Al-

gorithm 4 for the pseudocode). For example, given Y = {x, y}, there are three

possible binets on Y ; namely T0(x, y), S0(x; y) and S0(y;x). One of these three

binets is selected and returned as the binet on Y by using a majority rule us-

ing the number of trinets in T displaying NY . We now show that Binet(T, Y) is

correct and has running time O(|X|).

Lemma 4.4.2. Given a dense set T of binary level-1 trinets on X with |X| ≥ 3

and a subset Y ⊂ X with size two, Binet(T, Y) outputs a binet on Y in time

O(|X|). In addition, if T = T(N) holds for a level-1 network N , then Binet(T, Y)

outputs N |Y .

Proof. Noting that the for loop (lines 2 - 7) in the algorithm will terminate in

time O(|X|) and Ni (1 ≤ i ≤ 3) constructed in the algorithm is a binet on Y , we

can conclude that the algorithm will output a binet on Y in time O(|X|).
If T = T(N) holds for a level-1 network N , then there exists k ∈ {1, 2, 3} so

that N |Y = Nk holds. Thus after the for loop, we have ti = |X| − 2 if i = k, and

ti = 0 for i ∈ {1, 2, 3} − {k}. In other words, the output of Binet(T, Y) is Nk, as

required.

4.4.3 Constructing a cactus

Having presented the algorithm to deal with the blocks with two leaves (cherries

and reticulate cherries), we next deal with the case where the subset Y obtained

from Algorithm 3 contains more than two leaves. Here we present the subroutine

to construct a cactus from a dense trinet set (see Algorithm 5 for the pseudocode).

50

Algorithm 4 Binet(T, Y)

INPUT: A dense set of binary level-1 trinets T on X and a subset
Y = {x, y} (X.
OUTPUT: A binet on Y (which equals N |Y if T is induced by a binary level-1
network N).

1: let ti = 0 for 1 ≤ i ≤ 3
2: let N1 = T0(x, y), N2 = S0(x; y), and N3 = S0(y;x)
3: for all z ∈ X − {x, y} do
4: find the trinet T ∈ T with leaf set {x, y, z}
5: find the index i ∈ {1, 2, 3} so that T |Y is isomorphic to Ni

6: ti = ti + 1
7: end for
8: find the smallest index j ∈ {1, 2, 3} with tj ≥ max{t1, t2, t3}
9: return the network Nj

In more detail, we obtain a cactus H = (A : B : g) from the subset Y in

the following way. Firstly, we identify one leaf g ∈ Y as the bottom leaf of H

selected by a majority rule using the S1 and S2 trinets in T (lines 2 - 7). Next we

construct a digraph D, with the vertex set equal to Y − g and with the arc set

constructed using trinets of type S2 in T. Let A and B be two empty lists. From

the digraph D, we select and place into A the vertex with minimum in-degree

and maximum out-degree over all vertices in V (D). The other vertices are then

sorted into the two lists and removed from Y until Y is empty lines (12 - 22).

The cactus H = (A : B : g) is then returned.

We now show that CactusFitting(T) is correct and runs in polynomial time.

Lemma 4.4.3. Given a dense set T of binary level-1 trinets on X with |X| ≥ 3,

CactusFitting(T) outputs a cactus in O(|X|3) time. In addition, if T = T(H)

holds for a cactus H, then CactusFitting(T) returns H.

Proof. Since the for loop (lines 2 - 6) in the algorithm will terminate in O(|X|3)

iterations, and the while loop (lines 11 - 23) will terminate in O(|X|2) time, the

algorithm will output a cactus with run-time O(|X|3).

Now assume that T = T(H) holds for a cactus H with support X. Denote the

bottom leaf of H by z′, and let A′ and B′ be the two lists so that H = (A′ : B′ : z′).

51

Let p and q denote the number of elements contained in A′ and B′, respectively.

Then we have p+q = |X|−1. In addition, list the elements in A′ as (a1, a2, . . . , ap),

and those in B′ as (b1, b2, . . . , bq).

For each trinet T ∈ T, we have T = S1(x, y; z) for some x, y, z ∈ X if and

only if z = z′, and either x ∈ A′, y ∈ B′ or x ∈ B′, y ∈ A′. On the other hand,

T = S2(x; y; z) or T = S2(y;x; z) holds precisely when z = z′, and x, y ∈ A′

or x, y ∈ B′. Therefore, for the function ϕ defined in the algorithm, we have

ϕ(x) = 0 for all x 6= z′ and

ϕ(z′) =

(
p

2

)
+

(
q

2

)
+ pq > 0.

It follows that ϕ(z′) ≥ ϕ(x) for all x ∈ X, and hence the element g constructed

in line 7 is z′. In addition, the digraph D constructed in line 8 has vertex set

X − {z′} and arc set

{(ai, aj) : 1 ≤ i < j ≤ p} ∪ {(bi, bj) : 1 ≤ i < j ≤ q}.

This implies that the vertex in D that has the maximum out-degree is either a1

(with out-degree p) or b1 (with out-degree q) in D. Thus, for the two lists A

and B constructed in the algorithm, we have {A,B} = {A′, B′}. It follows that

algorithm outputs a cactus (A : B : g) or (B : A : g). Since in both cases the

output is H, this completes the proof of the lemma.

4.4.4 Main TriLoNet algorithm

With the subroutines described in Algorithms 3, 4 and 5, we now present in

Algorithm 6 the main TriLoNet algorithm. It works as follows.

If the subset Y obtained from Algorithm 3 is equal to X itself, the algorithm

stops and outputs the network NY (lines 7 - 8) . Otherwise, this step continues

recursively as follows: (i) we compute the trinet set T∗ induced by T on the set

X∗ formed by replacing the subset Y in X with a new taxon y∗ (line 10), (ii) we

obtain a level-1 network N∗ for T ∗ recursively (line 13), and (iii) we combine the

two networks Ny and N∗ to form a level-1 network on X by replacing the taxon

52

Algorithm 5 CactusFitting(T, X)

INPUT: A dense set of binary level-1 trinets T on a leaf set X with |X| ≥ 3.
OUTPUT: A cactus with support X (which equals to H if T = T(H) holds for
a cactus H on X).

1: let ϕ(x) = 0 for all x ∈ X
2: for all T ∈ T do
3: if T = S1(x, y; z) or T = S2(x; y; z) for some x, y, z ∈ X then
4: ϕ(z) = ϕ(z) + 1
5: end if
6: end for
7: find one taxon g ∈ X with ϕ(g) ≥ ϕ(x) for all x ∈ X
8: construct the digraph D on X − {g} in which (x, y) is an arc if T|{g,x,y} =
{S2(x; y; g)}

9: let A and B be two empty lists
10: choose a vertex a1 in D that has the maximum out-degree, and let A = (a1)

and put Y = X − {g, a1}
11: while Y 6= ∅ do
12: choose a vertex x in Y that has the maximum out-degree over all vertices

in Y
13: let ta (resp. tb) be the number of vertices u in A (resp. u in B) such that

|ch(u) ∩ ch(x)| ≥ 0.5|ch(x)| holds in D
14: let t′a = ta + |B| − |tb| and t′b = tb + |A| − |ta|
15: if |B| > 0 then
16: let t′a = t′a/|A| and t′b = t′b/|B|
17: end if
18: if t′a ≥ t′b then
19: put A = (A, x)
20: else put B = (B, x)
21: end if
22: put Y = Y − {x}
23: end while
24: return the cactus (A : B : g)

53

y∗ in N∗ with NY (line 15).

We now show that TriLoNet is consistent, meaning that the algorithm will,

given a dense set of trinets obtained from a rooted level-1 phylogenetic network

N as input, output N .

Theorem 4.4.4. Given a dense set T of binary level-1 trinets on X with |X| ≥ 3,

TriLoNet(T) outputs a level-1 network on X in time O(|X|4). In addition, if

T = T(N) holds for a level-1 network N , then TriLoNet(T) outputs N .

Proof. Let n = |X|. First, assuming that the worse case running time of this

algorithm is f(n), we shall show that f(n) = O(n4). For simplicity, let m denote

the size of the subset Y constructed in line 2. Then we have 2 ≤ m ≤ n. By

Lemma 4.4.1, line 2 has run time O(n3). By Lemma 4.4.3 and Lemma 4.4.2,

the network N1 in the algorithm is constructed in O(m3). If m = n, then the

algorithm terminates by line 8 and the run time is O(n3). Therefore we may

assume that m < n. This implies the set X∗ constructed in line 10 has size

n−m+ 1. If m = n− 1, then line 12 is executed and we have f(n) = O(n3) by

Lemma 4.4.2. Otherwise, we have f(n) = f(n−m+ 1) +O(n3), and solving the

recursion on f(n) shows that f(n) = O(n4), as required.

We now establish the claim that TriLoNet outputs a level-1 network on X

which is N if T = T(N) holds for a level-1 network N . We use induction on n.

The base case n = 3 is trivial as in this case T contains exactly one trinet T ,

which is returned by line 2. Now assume that there exists n0 > 3 such that the

claim holds for all n with 3 ≤ n < n0, and we shall establish the induction step

by showing that it also holds for n = n0.

We begin with showing that TriLoNet outputs a level-1 network on X. By

the induction assumption, Lemma 4.4.3 and Lemma 4.4.2, we know that both N1

and N2 are level-1 networks, and hence we can conclude that the output of the

algorithm must be a level-1 network on X.

Finally, we need to show that the algorithm returns N . To begin with, note

that the subset Y of X obtained in line 2 is a small SN-set of T by Lemma 4.4.1,

and hence also a minimal CA-set in N in view of Theorem 4.3.1. Therefore, it

follows that N |Y must be a cherry, reticulate-cherry or cactus. Together with

Lemma 4.4.3 and Lemma 4.4.2, this implies that N |Y = N1 holds for the network

54

N1 constructed in the first if loop (lines 3 - 6). If X = Y , then the algorithm

terminates by line 8 and returns N1 = N , as required. Therefore we may assume

X 6= Y .

Now let y∗ be the element in Y that is chosen by the algorithm in line 10.

Note that different choices of y∗ lead to the same output of the algorithm. Using

Lemma 4.4.2 and the induction assumption, we know N2 = N |X∗ . Since replacing

the leaf y∗ in N |X∗ with N |Y results in the network N , we can conclude that the

output of the algorithm is N , as required.

Algorithm 6 The main algorithm: TriLoNet(T)

INPUT: A dense set of binary level-1 trinets T on X with |X| ≥ 3.
OUTPUT: A binary level-1 network on X (which is N if T = T(N) holds for a
binary level-1 network N).

1: if |X| = 3, return the unique network in T

2: identify a subset Y ⊆ X with |Y | ≥ 2 by calling FindSmallSNSet(X,T)
3: if |Y | = 2 then
4: construct a network N1 on Y by calling Binet(T, Y)
5: else construct a level-1 network N1 on Y by calling CactusFitting(T|Y , Y)
6: end if
7: if X = Y then
8: return N1

9: end if
10: choose an element y∗ in Y , and let X∗ = (X − Y) ∪ {y∗}
11: if |X∗| = 2 then
12: construct a network N2 on X∗ by calling Binet(T, X∗)
13: else recursively call TriLoNet(T|X∗) to obtain a level-1 network N2 on X∗

14: end if
15: return the level-1 network obtained from N2 by replacing the leaf y∗ with

the network N1

4.5 Concluding remarks

We have presented some theoretical results on the equivalence of CA-sets in net-

works, SN-sets in collections of trinets and minimal sink sets in digraphs. We

55

have presented the TriLoNet algorithm and shown that it is consistent, meaning

that, given the dense set of trinets of a level-1 network N as input, it will always

output N . We have also given pseudocode for TriLoNet. In the next chapter we

evaluate the performance of the TriLoNet algorithm, on both artificial and real

biological data sets.

56

Chapter 5

Simulations and real data sets

5.1 Chapter summary

In this chapter we present sections detailing various simulations that we carried

out to test SeqTrinet and TriLoNet. In Section 5.2.1 we outline a new approach to

extracting trinets from phylogenetic networks, a step required for the comparison

of two networks that we use in Section 5.2. In the Section 5.2 we present and

discuss a noise simulation experiment which includes a comparison of TriLoNet

with Lev1athan [Huber et al., 2011b], a triplet based network reconstruction

approach mentioned in Chapter 2. In Section 5.3, we then present some results

following a similar methodology used in [Holland et al., 2002] to test the SeqTrinet

algorithm presented in Chapter 3. Finally, in Section 5.4, to test the usability of

our network approach we apply TriLoNet to some real biological sequence data

sets.

5.2 Noise simulation experiments

The experiments and methodology presented in this section follow a similar ap-

proach to those presented in [Huber et al., 2011b]. The aim of the experiments in

this section is to test the robustness and reconstructive power of TriLoNet when

the input data had been subjected to varying amounts of noise. We also compare

our results to Lev1athan. We used the same random level-1 network generator

57

that was used in [Huber et al., 2011b] Lev1athan.

5.2.1 Extracting trinets from phylogenetic networks

In this section, we consider two different approaches to extracting the set of

trinets from a level-1 phylogenetic network. We start by outlining an intuitive

approach in Section 5.2.1.1; see [Huber and Moulton, 2013] for a more thorough

description. We then present an alternative and more efficient approach that we

found to work better in practice in Section 5.2.1.2. This is a key step needed to

compute the metric based on trinets that we introduce in Section 5.2.3 where we

extend a measure described in [Huber et al., 2011b] that used triplets to compare

two networks.

5.2.1.1 Initial trinet extraction approach

In our preliminary experiments we implemented and used the definition first de-

scribed by [Huber and Moulton, 2013] to identify and extract the trinets induced

by a level-1 phylogenetic network. Given a binary level-1 network N on a leaf set

X as input, the output of the algorithm is a dense collection of trinets displayed

by N . The general outline of the trinet extraction algorithm is as follows.

• For every subset of three leaves in X, identify their lowest stable ancestor

(lsa);

• From this vertex, we then highlight all paths to the three leaves and combine

these paths into a single digraph;

• Repeatedly remove vertices from this digraph with in-degree 0 out-degree

1, vertices with in-degree 1 out-degree 1 and any parallel arcs until none

remain

In more detail, the first step is to for every subset of three Y = {x, y, z}
leaves in X, identify the vertex lsa(Y). From this vertex, we then highlight all

paths to the leaves {x, y, z} and combine these paths into a single digraph. We

use a Depth First Search approach to identify the paths from lsa(Y) to each of

the three leaf vertices. The next step is to repeatedly remove vertices from the

58

digraph with in-degree 0 out-degree 1, vertices with in-degree 1 out-degree 1 and

any parallel arcs until none remain. The resulting digraph is isomorphic to one

of the eight binary level-1 trinets.

Figure 5.1 illustrates the extraction process for two example trinets. Suppose

N is a phylogenetic network on the leaf setX = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o,
p, q, r, s, t, u, v, w}. Figure 5.1(a) highlights the paths in N used in the extraction

of two example trinets shown in Figure 5.1(b), N4(g; e; b) and S2(o; v; r).

a

b c
d

e

f
g

h i

j
k

l
m

n

o

p

q r
s w

t

u

v

(a)

b

e g o

v

r

(b)

Figure 5.1: (a) A level-1 phylogenetic network N on the set X = {a, b, c, d, e, f, g,
h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w}. (b) The two example trinets N4(g; e; b) and
S2(o; v; r) extracted from N .

We implemented this algorithm and found it to be too slow for practical use

with networks containing above 70 taxa. We thus developed a more complex but

also more efficient algorithm called TriExtract to obtain the dense collection of

trinets from a level-1 phylogenetic network, which we now describe.

5.2.1.2 TriExtract algorithm

The TriExtract algorithm takes as input a rooted binary level-1 phylogenetic

network N with leaf set X and returns the dense collection of trinets on X

displayed by N . The high level idea of the algorithm is to first find all the binets

B(N) displayed by N and then use this information to obtain the dense collection

59

of trinets T(N). We now describe in more detail the key steps of the algorithm

and then present it as pseudocode.

Step 1

We begin by performing a topological sort on the vertices in the network N [Kahn,

1962]. For every arc {u, v} from vertex u to vertex v, u comes before v in the

ordering. This gives us v1, ..., vm where v1 is the root and the descendants of vi

have subscripts greater than i. This is a necessary step for the identification of

the Lowest Stable Ancestor (lsa) for every binet. Once we have an ordering of

the vertices in the network, we next identify for every vertex v ∈ V (N) the cluster

C(v) by using the Depth First Search algorithm. Recall from Chapter 2 that the

cluster C(v) is the set of taxa in N reachable on some path from v.

Step 2

The next step is to obtain the collection of binets B(N) from the network N . For

each binet we need to determine the binet type, the lsa and the binet ordering

(for type S0 binets). Here we construct the lsa table, a data structure that maps

each distinct pair of leaves x, y to its lowest stable ancestor in N .

Recall that there are two types of binet; T0 and S0, which we refer to as

a cherry and reticulate-cherry respectively. For example, the binets T0(x, y) and

S0(x; y) are shown in Figure 3.4. Note the ordering of the leaves in type S0 binets.

In this step we consider only interior tree vertices; leaf vertices and reticulation

vertices are ignored.

For every interior tree vertex v in N , we construct sets A and B in X. Given

that we only consider vertices with out-degree 2, for a vertex v with children wl

and wr we let A = C(wl) and B = C(wr).

We also consider the set differences A \B and B \A. The pair of elements in

the sets (A \B)× A and (B \ A)×B correspond to the binets in B for which v

is the lsa. The lsa for a given binet is recorded once and is not overwritten.

For two leaves {x, y}, if x or y is contained in A ∩ B then the corresponding

binet will be a reticulate-cherry, otherwise the binet on {x, y} will be T0(x, y). If

x is contained in A ∩ B then the corresponding binet is S0(x; y), otherwise it is

60

S0(y;x).

Step 3

Using the collection of binets B in N and the lsa table obtained from Step 2, we

compute the collection of trinets T(N). For each subset of three leaves {x, y, z}
in X we consider the binets on {x, y}, {x, z} and {y, z}. We then consider the

following sub-steps depending on the types of the three binets:

• If the three binets on {x, y}, {x, z} and {y, z} are all cherries then the

trinet on {x, y, z} will be of type T1, see Figure 2.6 for an illustration of the

different types of trinets. The binet with a different lsa to the other two is

isomorphic to the cherry in the trinet. For example, if lsa(x, z) = lsa(y, z)

then the corresponding trinet will be T1(x, y; z).

• If two of the binets are of type T0 then the corresponding trinet on {x, y, z}
will be of type N3. The type S0 binet is isomorphic with the reticulate-

cherry in the corresponding trinet. For example, given the binets S0(x; y),

T0(x, z) and T0(y, z) the corresponding trinet is N3(x; y; z).

• If none of the three binets are of type T0 then the trinet on {x, y, z} is either

of type N4 or N5. Consider the two S0 binets with the same leaf under the

reticulation vertex. If the lsa for both of these binets is identical then the

corresponding trinet is of type N4, otherwise it is of type N5.

– If the trinet is of type N4 then the binet with a different lsa is iso-

morphic with the reticulate-cherry contained in the trinet. For exam-

ple, given the binets S0(x; y), S0(z;x) and S0(z; y) with lsa(x, y) = u,

lsa(x, z) = v and lsa(y, z) = v, the corresponding trinet isN4(x; y; z).

– If the trinet is of type N5 then the binet with a different lsa from

the other two is isomorphic with the reticulate-cherry contained in the

trinet. For example, given the binets S0(x; y), S0(x; z) and S0(y; z)

with lsa(x, y) = u, lsa(x, z) = v and lsa(y, z) = v, the corresponding

trinet is N5(x; y; z).

61

• If one of the binets is of type T0 then the trinet on {x, y, z} will be of

type N2, S1, N1 or S2. Consider the two S0 binets. If the leaf below the

reticulation in these binets is not identical then the corresponding trinet

will be of type N2 and the cherry in this trinet is isomorphic to the T0

binet. Given the binets T0(x, y), S0(x; z) and S0(y; z), the corresponding

trinet is N3(x, y; z).

– If the lsa for each of the three binets is identical then the correspond-

ing trinet will be of type S1. The leaf below the reticulation vertices

in the type S0 binets is set as the leaf below the reticulation vertex

in the S1 trinet. For example. given the binets T0(x, y), S0(x; z) and

S0(y; z), the corresponding trinet is S1(x, y; z).

– To distinguish between a type S2 and N1 trinet we have to consider

C(lsa(x, y)), with x and y being the two leaves from the type T0 binet.

Given three binets T0(x, y), S0(x; z) and S0(y; z), if z ∈ C(lsa(x, y))

then the corresponding trinet is of type S2, otherwise it is of type N1.

– If the trinet is of type S2, the leaf z below the reticulation vertex is

equal to the leaf below the reticulation vertices in the two S0 binets.

The child of the lsa of the type T0 binet in N that is a leaf vertex is

set as x for the corresponding trinet S2(x; y; z).

– If the trinet is of type N1, the type T0 binet is isomorphic to the

cherry in the trinet. Given the binets T0(x, y), S0(x; z) and S0(y; z),

the corresponding trinet is N1(x, y; z).

Pseudocode

In summary, we present the pseudocode for the TriExtract algorithm in Algo-

rithm 7.

62

Algorithm 7 TriExtract(N)

INPUT: A binary rooted level-1 phylogenetic network N on the set of taxa X.

OUTPUT: The dense collection of trinets T(N) on X.

1: Topologically sort vertices of N

2: for all v ∈ V (N) do

3: Compute C(v)

4: With wl and wr as children of v, compute Cl = C(wl) and Cr = C(wr)

5: end for

6: Let B = ∅ and T = ∅
7: Fill lsa table and compute binet type for every binet on {x, y} ∈ B (see Step

2)

8: for all subsets {x, y, z} ∈
(
X
3

)
do

9: Compute trinet T on {x, y, z} using binets on {x, y}, {x, z} and {y, z} ∈ B

and add T to T (see Step 3)

10: end for

11: Return T

5.2.2 Comparing TriLoNet to Lev1athan

We generate random level-1 phylogenetic networks by using the Lev1Generator

program [Huber et al., 2011a]. The random level-1 network generator is guaran-

teed to output a level-1 phylogenetic network M . From this network we extract

the set of triplets Tr(M) and trinets T(M) displayed by M for use as input to

Lev1athan and TriLoNet, respectively.

We use a parameter ε to control the amount of noise in the input data. To

introduce noise to a set of trinets, we uniformly at random select a specified per-

centage of trinets and change their types as well as the leaf orderings. Our noise

generator algorithm takes a set of trinets T(M) and ε as input parameters and

outputs Tε(M) with ε% of trinets changed. Using our approach to extract a set of

triplets from a set of trinets we also compute the set of triplets Trε(M) contained

in the trinets in Tε(M) to use as input to Lev1athan. Note that changing the

trinet type does not necessarily change the triplets contained inside that trinet.

63

In total 7200 phylogenetic networks were randomly generated and used in the

noise simulation experiments. All of the randomly generated networks used in

our simulation had no vertices of out-degree 3 or higher. We obtain a collection

M of random level-1 networks that contains 100 networks with leaf sizes in the

range 1 + (10× j) to 10× (j + 1) for each 2 ≤ j ≤ 9.

Our network construction algorithm TriLoNet constructs a network N1 and

Lev1athan constructs a network N2. The set of trinets T(N1) is extracted from

N1, from which Tr(N1) is obtained. The set of trinets T(N2) is extracted from

N2, from which Tr(N2) is obtained. Here we compare the trinets and triplets

displayed in the networks constructed by TriLoNet (T(N1) and Tr(N1)) and

Lev1athan (T(N2) and Tr(N2)) firstly to the trinet and triplet sets from the

original randomly generated networks (T(M) and Tr(M)) and secondly to the

trinet and triplet sets subjected to noise (Tε(M) and Trε(M)).

5.2.3 Measures

The first measure we considered which was also used by [Huber et al., 2011b] was

the triplet-network triplet consistency measure C ′ where

C ′(N,M) =
|Tr(M) ∩ Tr(N)|
|Tr(M)|

. (5.1)

This measure indicates the fraction of triplets in Tr(N) consistent with Tr(M).

We extended this measure to trinets to determine the fraction of trinets in a given

trinet set that is consistent with a network, viz

C(N,M) =
|T(M) ∩ T(N)|
|T(M)|

. (5.2)

The aim of the experiments is to measure the similarity between a randomly

generated level-1 network M and the network N1 that TriLoNet outputs and the

network N2 that Lev1athan outputs when the trinets extracted from M have

been subjected to noise. Note that C(N,M) = 1 implies that N is equal to M ,

although this does not necessarily hold for the C ′-score.

In the experiments we recorded four consistency measures for TriLoNet and

four consistency measures for Lev1athan. For the triplet consistency score C ′,

64

for TriLoNet we recorded the following (the same measures hold for Lev1athan

by replacing N1 with N2.):

C ′(N,M) =
|Tr(M) ∩ Tr(N1)|

|Tr(M)|
. (5.3)

C ′(N,M) =
|Trε(M) ∩ Tr(N1)|

|Trε(M)|
. (5.4)

and for the trinet consistency score C we recorded

C(N,M) =
|T(M) ∩ T(N1)|
|T(M)|

. (5.5)

C(N,M) =
|Tε(M) ∩ T(N1)|
|Tε(M)|

. (5.6)

We also considered using as a measure the number of reticulation vertices

in the original input network in comparison with the networks generated by

Lev1athan and TriLoNet. This measure was useful in determining the number of

reticulation vertices incorrectly created or removed by Lev1athan and TriLoNet.

5.2.4 Simulation results

In our noise simulation experiments the parameter ε is used to control the amount

of noise in the data used as input. The values of ε we used in our experiments

were ε = 0, 1, 2, 5, 10, 15, 20, 25, 30. The results of the experiments are presented

in Table 5.2.

65

TriLoNet 1 0.9965 0.9896 0.9636 0.9051 0.8206 0.7504 0.6925 0.6474

Lev1athan 1 0.9959 0.9968 0.9964 0.9957 0.9951 0.9951 0.9941 0.9921

TriLoNet 1 0.9826 0.9608 0.8820 0.7786 0.6647 0.5642 0.4956 0.4394

Lev1athan 0.9987 0.2536 0.2308 0.1751 0.1395 0.1225 0.1167 0.1125 0.1326

TriLoNet 1 0.9874 0.9718 0.9215 0.8298 0.7268 0.6458 0.5831 0.5360

Lev1athan 1 0.9878 0.9804 0.9559 0.9161 0.8786 0.8434 0.8106 0.7796

TriLoNet 1 0.9727 0.9416 0.8382 0.7015 0.5664 0.4536 0.3751 0.3120

Lev1athan 0.9987 0.2514 0.2267 0.1676 0.1279 0.1076 0.0980 0.0902 0.0998

C
o

n
si

st
e

n
cy

 S
co

re
s

Perfect

Triplets

Trinets

Noisy

Triplets

Trinets

Noise Percentage

0pc 1pc 2pc 5pc 10pc 15pc 20pc 25pc 30pc

Figure 5.2: Summary of the results from the comparison study for TriLoNet
Lev1athan.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 5 10 15 20 25 30

C
o

n
siste

n
cy

 S
co

re

Noise Percentage %

Triplet Consistency Scores

TriLoNet -

Perfect

Lev1athan -

Perfect

TriLoNet -

Noisy

Lev1athan -

Noisy

Figure 5.3: Summary of the triplet consistency results comparing TriLoNet
against Lev1athan.

66

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 5 10 15 20 25 30

C
o

n
siste

n
c
y

 S
c
o

re

Noise Percentage %

Trinet Consistency Scores

TriLoNet -

Perfect

Lev1athan -

Perfect

TriLoNet -

Noisy

Lev1athan -

Noisy

Figure 5.4: Summary of the trinet consistency results comparing TriLoNet against
Lev1athan.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 5 10 15 20 25 30

C-score C'-score

Figure 5.5: The plot of ε against the average triplet (C ′, triangle markers) and
trinet (C, square markers) consistency scores . The x-axis is labelled by ε and
the y-axis is labelled by average triplet and trinet consistency. The solid lines
correspond to the average triplet and trinet consistency for the networks con-
structed by TriLoNet. The dotted lines correspond to the average triplet and
trinet consistency for the networks constructed by Lev1athan.

We first tested both algorithms by using as input Trε(M) and Tε(M), with ε

having a value of 0, this represents perfect data. Our algorithm was always able

67

to reconstruct back the original network when ε was equal to 0. Interestingly

there were some instances where Lev1athan was unable to correctly reconstruct

back the correct network even when ε was equal to 0. It was especially interesting

to observe that for low levels of noise (1, 2,5), our algorithm was in some cases

able to correct all of the trinets in the input Tε(M) that had been affected by

noise so that the set of trinets N1 was equal to T(M).

As expected, there was a general decrease in the consistency scores as the

value of ε was increased for both the trinet and triplet measures. The triplet

consistency scores for Lev1athan were above 99% even up to ε with a value of 30.

For the same measure our scores were similar at low values of ε (0.9965 with ε = 1

and 0.9896 with ε = 2) however TriLoNet’s triplet consistency score decreased

linearly for the other values of ε.

There was a considerable difference when comparing the trinet consistency

scores of our algorithm and Lev1athan. With a ε value of 1 Lev1athan was able

to correctly construct back an average of 25% of trinets contained in the original

input network. For the same ε value our algorithm was able to correctly construct

back an average of 98% of the trinets contained in the original network.

For all tested values of ε our algorithm outperformed Lev1athan in both trinet

consistency measures. As the value of ε increased, the difference in performance

between our algorithm and Lev1athan decreased.

5.2.5 Reticulation difference experiments

To further investigate the difference in the average triplet consistency scores be-

tween TriLoNet and Lev1athan, we computed the difference in the number of

reticulations between the original input networks and the networks constructed

by the two algorithms.

We first considered the phylogenetic networks constructed from input with ε =

1. Interestingly, as the number of taxa in the networks increased, the difference in

the number of reticulations between the networks constructed by TriLoNet and

Lev1athan compared to the original networks also increased. This can be seen in

Figures 5.6, 5.7 and 5.8.

68

-2

-1

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

D
if

fe
re

n
ce

1pc Reticulation Difference: 21-30 Leaves

TriLoNet Lev1athan

Figure 5.6: Comparing the difference in the number of reticulation vertices
from the original input networks to the networks constructed by TriLoNet and
Lev1athan for the 100 networks containing between 21-30 leaves.

-2

-1

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

D
if

fe
re

n
ce

1pc Reticulation Difference: 51-60 Leaves

TriLoNet Lev1athan

Figure 5.7: Comparing the difference in the number of reticulation vertices
from the original input networks to the networks constructed by TriLoNet and
Lev1athan for the 100 networks containing between 51-60 leaves.

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

D
if

fe
re

n
ce

1pc Reticulation Difference: 91-100 Leaves

TriLoNet Lev1athan

Figure 5.8: Comparing the difference in the number of reticulation vertices
from the original input networks to the networks constructed by TriLoNet and
Lev1athan for the 100 networks containing between 91-100 leaves.

For three values of ε (1,5,10), Figure 5.9 presents the difference in the me-

dian number of reticulations in the networks outputted by the two algorithms

69

compared to the original input networks. As the value of ε and size of the net-

works increase, Lev1athan on average introduces more reticulation vertices than

TriLoNet. This could explain why Lev1athan is able to correctly infer a higher

percentage of triplets but not trinets.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

N
u

m
b

er
 o

f
re

ti
cu

la
ti

o
n

s

Number of leaves

1pc 5pc 10pc

Figure 5.9: The figure displays the median difference of the number of retic-
ulations in the phylogenetic networks constructed by TriLoNet and Lev1athan
compared to the original randomly generated networks. The x-axis is labelled by
the number of leaves and the y-axis is labelled by the number of reticulations.

The results of the reticulation number comparison measure are summarised

in Table 5.1. This table shows that in most cases (all cases when the input has

not been subjected to noise), Lev1athan constructs and outputs networks with a

higher number of reticulations than TriLoNet.

ε 0 1 2 5 10 15 20 25 30
% 0 1.5 2.5 3.125 3.125 6.0 8.75 9.625 12.875

Table 5.1: The percentage of networks where the difference in the number
of reticulations in the network constructed by TriLoNet is higher than the
number of reticulations in the network constructed by Lev1athan for ε ∈
{0, 1, 2, 5, 10, 15, 20, 25, 30}

.

70

5.2.6 Triplet and trinet noise difference

One motivation in subjecting a set of trinets to noise in the experiments in this

section was to attempt to provide TriLoNet and Lev1athan with input that was

as similar as possible. To do this, we subjected the set of trinets extracted

from a randomly generated level-1 network to noise; this set of trinets was given

to TriLoNet as input. The set of triplets contained in each of the trinets was

given to Lev1athan. It should be noted that subjecting a set of trinets to a

certain amount of noise does not necessarily cause the same amount of noise

to be found in the triplets contained in the trinets. For example, consider the

trinet N3(x; y; z). Changing this trinet to N1(y, x; z) does not change the triplet

contained within both of these networks. With this in mind, we compared the

difference in noise between the sets of trinets and triplets. These results are

summarised in Table 5.2. It is interesting to note that the method we chose to

obtain input to the two algorithms causes the input to Lev1athan to contain less

noise in comparison with the input to TriLoNet.

ε
Number of taxa 1 2 5 10 15 20 25 30

21-30 0.67 1.31 3.27 6.49 9.84 13.12 16.40 19.57
31-40 0.65 1.31 3.28 6.53 9.78 13 16.35 19.63
41-50 0.66 1.31 3.26 6.54 9.83 13.11 16.37 19.63
51-60 0.66 1.31 3.28 6.54 9.85 13.08 16.32 19.61
61-70 0.65 1.32 3.27 6.55 9.82 13.06 16.37 19.63
71-80 0.65 1.31 3.28 6.55 9.83 13.1 16.34 19.67
81-90 0.65 1.32 3.27 6.55 9.83 13.1 16.38 19.64
91-100 0.66 1.31 3.28 6.54 9.83 13.1 16.37 19.64

Table 5.2: A table summarising the average amount of noise in the triplet sets
given to Lev1athan as input compared to the amount of noise in the set of trinets
used as input to TriLoNet.

5.3 Artificial data simulation experiments

To test the performance of TriLoNet on sequence data, we performed some simu-

lation experiments. To do this we followed a similar approach to [Holland et al.,

71

2002]. In particular, we simulated the evolution of artificial sequence data on

six phylogenetic networks presented in Figure 5.10 containing recombinant taxa

using Seq-Gen [Rambaut and Grass, 1997]. We then used this sequence data as

input to SeqTrinet to create a dense set of trinets to take as input to TriLoNet.

We varied parameters including the sequence length, the κ threshold and the

left-right sequence contribution percentages.

Seq-Gen [Rambaut and Grass, 1997] when given a phylogenetic tree as input

outputs a sequence alignment obtained by simulating evolution of nucleotide se-

quences along the tree, with the option of selecting from a number of models for

the substitution process. To obtain a simulated sequence alignment containing

a recombinant taxon we generated and then concatenated sequence alignments

from two trees with the same leaf set but different topology. Each alignment

was obtained by generating and concatenating alignments from the 2 underly-

ing trees in each network in Figure 5.10. Initially, in the concatenated sequence

alignments the first 50% of sites are from the first tree and the second 50% are

from the second tree.

We used the following parameters in Seq-Gen: -mHKY, which when used in

conjunction with -f0.25,0.25,0.25,0.25, to set nucleotide frequencies to use the

K2P Model; -t2.0, to give a transition-transversion bias of κ = 4 and -d0.3, to

scale the tree lengths. The expected number of substitutions from the root to

each leaf was 0.3. The sequence length parameter was initially set to -l 25,000

to give a total sequence length of 50,000 for the alignments generated for each

of the networks. A threshold parameter of κ = 6.5 was initially used for these

experiments.

The six networks presented are denoted here as AN1, AN2, AN3, AN4, AN5

and AN6. Each contains 9 taxa with 1 recombinant in each network.

72

a b c d he f gR1 R2 R3 a b c d he f gR4 R5 R6

(i) (ii)

Figure 5.10: The 6 phylogenetic networks presented in [Holland et al., 2002].
The networks in (i) have an unbalanced topology, with the network containing
R1 as the most unbalanced. The positioning of the reticulations in relation to
their parents is close, intermediate and divergent for R1, R2 and R3 respectively.
The networks in (ii) have a balanced topology. Similarly, the positioning of the
reticulations in relation to their parents is close, intermediate and divergent for
R4, R5 and R6 respectively.

For each of the six networks we generated 100 multiple sequence alignments.

We used these sequence alignments as input to SeqTrinet and generated 100 dense

sets of trinets. These trinet sets were used as input into TriLoNet. TriLoNet

completed 100 runs on average for each of the six networks in 46 seconds. We

used the measures defined in Section 5.2.3 to examine the ability of TriLoNet to

construct phylogenetic networks from sequence data. The results are summarised

in Table 5.3.

AN1 AN2 AN3 AN4 AN5 AN6
Average Triplet Consistency Score 100 100 87.57 100 100 100
Average Trinet Consistency Score 97.26 97.73 83.07 100 100 100

Table 5.3: Average triplet and trinet consistency scores for the six phylogenetic
networks presented in 5.10 constructed from sequence alignments with length
50,000.

73

Artificial Network 1 (AN1) is the most unbalanced of the six networks, with

the recombinant parent taxa a and b positioned closely with taxon R1. For the

experiments on phylogenetic network AN1, in 94 out of 100 runs the network

constructed by TriLoNet exactly matched the network that was used to generate

the alignment. In some of the cases where a trinet consistency score of 100 was

not achieved, taxon a was placed under the reticulation in place of taxon R1. In

the other network an extra reticulation vertex was inserted, which created a gall

with taxa g and h on either side and the rest of the network below this extra

reticulation vertex.

Artificial Network 2 (AN2) has an unbalanced topology, and the parent taxa

a and d of the recombinant taxon R2 are at an intermediate distance from R2.

Similarly for AN2, 96 out of 100 runs resulted in the correct network being con-

structed by TriLoNet. For one of the incorrectly constructed networks, an extra

reticulation was inserted, creating a gall similar to the one described above for

the three incorrect networks in the AN1 experiments. In the other case, an extra

reticulation was inserted that placed taxon g below a reticulation, with taxon h

on one side of the gall and the rest of the network on the other side.

Artificial Network 3 (AN3) has an unbalanced topology, and recombinant

taxon R3 has taxa a and h as divergent parents. For the experiments on AN3, in

several of the 100 runs the same network was constructed with taxa a and b in a

cherry, whereas in the original network taxa a and b are located under separate

arcs. Taxon g is located under a separate arc in the networks constructed by

TriLoNet, whereas in the original network g is positioned in the same cactus

as all other taxa. Interestingly, increasing the κ threshold value increased the

number networks correctly constructed by TriLoNet. A κ value of 15.0 resulted

in all networks constructed by TriLoNet matching the original network.

For the more balanced phylogenetic networks AN4, AN5 and AN6, TriLoNet

was able to exactly reconstruct the original network on which Seq-Gen evolved

the sequences down. Artificial Network 4 (AN4) is the most balanced of the 6

networks, with the recombinant parent taxa a and b positioned closely with taxon

R4. Artificial Network 5 (AN5) has an balanced topology, the parent taxa a and

d of the recombinant taxon R5 are at an intermediate distance from R5. Artificial

Network 6 (AN6) has a balanced topology, recombinant taxon R6 has divergent

74

parents, taxa a and h.

We repeated the above experiments and changed the total sequence length

from 50,000 to 1,000, 10,000 and 100,000. The results are presented in Table 5.5

, Table 5.4 and Table 5.6.

AN1 AN2 AN3 AN4 AN5 AN6
Average C ′-score 91.94 91.47 89.87 96.21 95.71 96.45
Average C-score 31.67 33.64 80.74 39.70 43.08 94.33

Table 5.4: Average triplet and trinet consistency scores for the six phylogenetic
networks presented in 5.10 constructed from sequence alignments with length
1,000.

AN1 AN2 AN3 AN4 AN5 AN6
Average C ′-score 99.93 99.57 89.74 100 100 100
Average C-score 66.44 71.71 80.96 95.51 98.05 100

Table 5.5: Average triplet and trinet consistency scores for the six phylogenetic
networks presented in 5.10 constructed from sequence alignments with length
10,000.

AN1 AN2 AN3 AN4 AN5 AN6
Average C ′-score 100 100 87.50 100 100 100
Average C-score 99.77 100 83.35 100 100 100

Table 5.6: Average triplet and trinet consistency scores for the six phylogenetic
networks presented in 5.10 constructed from sequence alignments with length
100,000.

The same general trends can be seen when compared to the experiments where

the multiple sequence alignments had length 50,000 and 100,000, although the

shortening of the sequence length decreased the number of phylogenetic networks

that exactly match the input networks. In particular, the average trinet consis-

tency scores for the more unbalanced networks (AN1, AN2, AN3) decreased, with

AN1 and AN2 being more difficult to accurately reconstruct from the sequence

alignments.

Decreasing the κ value from 6.5 to 2.0 for the experiments with AN1 and

sequence length 10,000 resulted in TriLoNet constructing the correct network for

75

each of the 100 runs. However, with network AN3, increasing κ to 20.0 resulted in

TriLoNet correctly constructing each network. As suggested by the experiments

on the HIV data set subalignments in Section 5.4.1, increasing κ tends to highlight

the more network-like features of a data set. This increase seems to force the taxa

in the cherry {a, b} found in several of the networks constructed with a κ = 6.5

to separate and be placed under separate arcs.

We next varied the κ threshold on the alignments with sequences of length

50,000 to see what impact this would have on the topologies of the networks,

the results are summarised in Table 5.7. The results here suggest that a lower

κ threshold causes TriLoNet to correctly construct AN1, an unbalanced network

with close parents. With networks AN3 and AN6 (divergent parents), a higher κ

threshold increases the average triplet and trinet consistency scores.

Kappa Value AN1 AN2 AN3 AN4 AN5 AN6

1.0
Average C ′-score 100 98.88 60.14 100 100 72.98
Average C-score 100 98.81 46.86 100 100 63.44

2.0
Average C ′-score 100 98.88 72.32 100 100 64.07
Average C-score 100 98.81 63.1 100 100 50.86

3.0
Average C ′-score 100 99.98 74.38 100 100 100
Average C-score 100 99.98 65.83 100 100 100

4.0
Average C ′-score 100 100 87.36 100 100 100
Average C-score 99.77 100 83.15 100 100 100

5.0
Average C ′-score 100 100 87.5 100 100 100
Average C-score 99.41 99.41 83.15 100 100 100

6.0
Average C ′-score 100 100 87.5 100 100 100
Average C-score 98.73 99.08 83.15 100 100 100

7.0
Average C ′-score 100 100 88.16 100 100 100
Average C-score 96.19 96.82 83.86 100 100 100

8.0
Average C ′-score 100 100 91.93 100 100 100
Average C-score 93.5 92.15 88.71 100 100 100

9.0
Average C ′-score 100 100 96.51 100 100 100
Average C-score 90.71 87.13 95.18 100 100 100

10.0
Average C ′-score 100 100 98.84 100 100 100
Average C-score 87.6 80.59 98.1 100 100 100

Table 5.7: The average triplet and trinet consistency scores for the six networks
presented in 5.10. The κ threshold used in SeqTrinet has been varied between
1.0 and 10.0.

76

In all of the experiments on the six networks above, the first 50% of the

sequence alignment is generated using the tree with the recombinant attached to

its left parent and the second 50% is generated using the tree with the recombinant

attached to its right parent. We also tried varying this contribution to 75%-25%

with a κ = 6.5. The results are summarised in Table 5.8. This has some impact

on the average triplet and trinet consistency scores, in particular for network

AN3. There is also a slight decrease in the scores for AN1, AN2 and AN6.

AN1 AN2 AN3 AN4 AN5 AN6
Average C ′-score 100 100 61.21 100 100 96.12
Average C-score 94.29 94.06 48.27 100 100 94.77

Table 5.8: Average triplet and trinet consistency scores for the six phylogenetic
networks presented in 5.10 constructed from sequence alignments with length
33,333, κ = 6.5 and a 75%-25%. contribution

As remarked in [Holland et al., 2002] and supported by our results, we found

it more difficult to accurately identify recombinant taxa in networks with unbal-

anced topologies. One possible reason for this would be the combination of long

and short branch lengths. The length of the sequences also impacts the abil-

ity of TriLoNet to reconstruct phylogenetic networks; it being easier to correctly

construct networks from longer sequence alignments.

5.4 Application to real data sets

In this section we apply TriLoNet to seven real biological data sets. The data sets

presented in this section are multiple sequence alignments that we preprocessed

to remove any sites containing gaps and any characters other than the four nu-

cleotides {A,C,G, T}. Unless stated otherwise, the trinet sets were constructed

using a κ value of 6.5. For the discussion in choosing this value see Chapter 3.

All network images in this section were produced using the GraphViz [Gansner

et al., 2006] software package; see Chapter 2 for details.

The first data set containing HIV-1 virus sequences that we tested was also

studied in [Huber et al., 2011b]. This offers further comparison between the

TriLoNet and Lev1athan network construction algorithms. To further test and

77

apply TriLoNet we also examined six data sets presented in [Morrison, 2015]. This

resource hosts data sets containing known recombinants and our aim was to see if

they could be detected in the networks constructed by TriLoNet. Each of the data

sets chosen has been previously studied, so we can use this biological background

to help interpret the networks constructed by TriLoNet. The six data sets we

considered include sequences of freshwater eels [Aoyama et al., 2001], Hepatitis

B Virus (HBV) [Bollyky et al., 1996], Giardia parasite [Cooper et al., 2007], a

fungus causing wheat scab [O’Donnell et al., 2000], North American Dryopteris

(a group of ferns) [Sessa et al., 2012] and partial sequences from sedge and rush

plants [Starr et al., 2007].

5.4.1 HIV data

To test our network construction algorithm and compare the results to those pro-

duced in [Huber et al., 2011b] we tested a HIV-1 virus data set first analysed

in [Salemi and Vandamme, 2003]. The Human Immunodeficiency Virus (HIV)

causes the Acquired Immunodeficiency Syndrome (AIDS) condition. The virus

attacks and weakens the human immune system which provides further oppor-

tunity for other viruses and germs to thrive. Inferences made from phylogenetic

approaches has aided in the understanding in the evolution of HIV [Castro-Nallar

et al., 2012].

The multiple sequence alignment contains one known recombinant sequence

(KAL−153), sequences A,B,D, F,G,H, J and two already identified breakpoints

at sites 2700 and 8926. These two breakpoints induce three subalignments 1-2699,

2700-8925 and 8926-9953. A break point is the position in a sequence where it

is believed that foreign genetic material is integrated into the existing sequence.

The KAL− 153 strain is believed to be a recombinant of taxa A and B [Salemi

and Vandamme, 2003].

As remarked in [Huber et al., 2011b], Lev1athan, Cluster networks and Galled

networks (two methods implemented in Dendroscope) all had issues with this

data set. Rather than using the Lev1athan algorithm, [Huber et al., 2011b] used

an optimal simple level-1 network construction algorithm (Algorithm 2, [Huber

et al., 2011b]) which by definition constructs a network with only one reticulation

78

vertex. The study in in [Huber et al., 2011b] tested the Cluster networks and

Galled networks approaches and the results postulated between two and four

recombination events for this data set.

The network constructed by TriLoNet on the entire alignment is shown in

Figure 5.11. The leaf H was identified as a recombinant which is not correct.

Interestingly, the parent of taxon H is unresolved in the phylogenetic tree con-

structed on the sub-alignment 2700-8925, as shown in Figure 9 [Huber et al.,

2011b].

79

H

KAL-153

G

D

B

A

J

F

Figure 5.11: Network constructed on entire HIV sequence alignment.

80

Based on this information, we removed H from the input and ran TriLoNet

again on the entire alignment; the resulting network is shown in Figure 5.12. Our

algorithm correctly identified leaf KAL− 153 as a recombinant of taxa A and B.

KAL-153

J

F

G

D

A

B

Figure 5.12: Network on HIV entire alignment (1-9953) with H removed.

To better understand why taxon H was selected and positioned under a retic-

ulation vertex, we examined the set of trinets containing taxon H constructed by

SeqTrinet from the input sequence data. All but one of these trinets were of type

S1 or S2 with H as the leaf below the reticulation vertex. Similarly, we examined

the set of trinets containing taxon K and found that several of these trinets were

of type S1 or S2 with K being placed below a reticulation vertex. However, in

every trinet of type S1 or S2 containing both H and K, it was taxon H that was

placed below a reticulation vertex. This would be a possible reason for causing

81

taxon H instead of K to be selected as a leaf below a reticulation vertex in the

network constructed by TriLoNet.

We also investigated what would happen when TriLoNet was run on the sub-

alignments mentioned above. Note that a phylogenetic tree is constructed for

each subalignment in [Huber et al., 2011b], which we used for comparison with

the networks constructed by TriLoNet.

For the first subalignment taking κ = 6.5 resulted in TriLoNet constructing

a cactus with taxon H below the reticulation vertex (not shown). We then

varied κ to determine the impact this parameter had on the topology of the

networks constructed by TriLoNet. The network constructed by TriLoNet on

this subalignment, with a κ = 3.0 is shown in Figure 5.13. This could indicate

that lower κ threshold values brings out the more tree-like features of a data set.

In this network taxon H is still placed under a reticulation vertex. Reassuringly,

taxa B and D are siblings and taxa A and K are siblings, a similarity shared with

the corresponding phylogenetic tree for this subalignment presented in [Huber

et al., 2011b].

82

H

J

F

GB D A KAL-153

Figure 5.13: Network constructed on the first HIV subalignment covering char-
acter sites 1 - 2699, with a κ value of 3.0.

The second subalignment on this data set consists of sites 2700 - 8925 and

is the largest of the three subalignments. The network constructed by TriLoNet

using a κ value of 6.5 was also a cactus with taxon H below a reticulation vertex

(not shown). The network constructed by TriLoNet on this subalignment, with

a κ value of 1.0 is shown in Figure 5.14. Lowering the κ parameter from 6.5 to

1.0 increased the number of reticulation vertices in the network constructed by

TriLoNet while also grouping taxa B, D, K as well as taxa A, G in a similar way

to the second phylogenetic tree in Figure 9 [Huber et al., 2011b].

83

J

H

F

KAL-153

D

B

A G

Figure 5.14: Network constructed on the second subalignment of the HIV data
set covering character sites 2700 - 8925, with a κ value of 1.0.

The third subalignment on this data set consists of sites 8926 - 9953. TriLoNet

had more difficulty in constructing a network similar to the third phylogenetic

tree presented in Figure 9 [Huber et al., 2011b]. One reason for this could the that

this subalignment is much shorter than the other two subalignments in this data

set. With a κ value of 6.5, TriLoNet constructed a cactus with taxon F under

a reticulation vertex (not shown). Changing κ to 1.0 resulting in a phylogenetic

network shown in Figure 5.15, with taxa A and K and taxa B and D as cherries,

84

a feature shared with the third phylogenetic tree presented in Figure 9 [Huber

et al., 2011b].

G

J

H

F

B D

A KAL-153

Figure 5.15: Network constructed on the third subalignment of the HIV data set
covering character sites 8926 - 9953, with a κ value of 1.0.

We also varied the κ value parameter in SeqTrinet to see what impact this

would have on the networks constructed by TriLoNet. This allows for the restric-

tion or relaxation of the condition in determining if a trinet should be of type S1

85

or S2 if κ is above a certain threshold, or any other type otherwise. Lowering this

parameter from 6.5 to 1.0 causes more trinets to be considered as having a more

tree-like topology. Interestingly, with a κ value of 1.0 the network constructed by

TriLoNet (Figure 5.16) on the entire sequence alignment shares similarities with

the topology of the phylogenetic tree shown in Figure 9 [Huber et al., 2011b]

constructed on the second sub-alignment. Taxa A and G are siblings and taxa

B, D and K are in close proximity, with K placed under a reticulation vertex.

J

H

F

A G

KAL-153

D

B

Figure 5.16: The phylogenetic network constructed on the HIV data set with a
κ value of 1.0.

86

5.4.2 Eel data

The multiple sequence alignment presented in [Aoyama et al., 2001] contained

39 Anguilla eel partial gene sequences of length 1140 before preprocessing. The

sequences come from a family of catadromous eels that spend their lives in fresh-

water environments and, with the exception of Anguilla anguilla, are mostly found

along the eastern margins of the Australian, Eurasian, African and American con-

tinents [Aoyama et al., 2001]. The study aimed to understand why these eels are

absent from the South American eastern coastline and the South Atlantic as well

as why the two Atlantic species became separated from those in the Indo-Pacific

region. Figure 8 [Aoyama et al., 2001] depicts the suggested molecular phyloge-

netic relationships and dispersion of the genus Anguilla. Phylogenetic analysis

was used to examine the geographic distribution and dispersal of the species.

Supplementary notes from [Morrison, 2015] suggest that AB021780 A.bicolor

bicolor is a recombinant between A. bicolor (AF006708, AF006709, AF006710,

AB021774) (from position 477) and A.mossambica (AF074864, AF074865, AB021782)

(up to position 456). We were unable to identify A. bicolor bicolor as a recombi-

nant leaf although we did identify several clades/ species groupings in the network

constructed by TriLoNet (see Figure 5.17). These groupings include A. mossam-

bica, A. anguilla, A. rostrata, A. mamorata, A. japonica, A. reinhardti, A. bicolor

pacifica and A. australis australis. In the network constructed by TriLoNet the

species AB021771 A. megastoma was located below a large gall.

There are some similarities between the network we constructed and the phy-

logenetic tree presented in Figure 3 [Aoyama et al., 2001]. The A. australis aus-

tralis and A. australis schmidti taxa from the Oceania species lineage were closely

grouped in a non-trivial gall in the network constructed by TriLoNet. The A.

celebesensis and A. megastoma taxa from the Tropical Pacific species lineage were

also positioned closely in the network. Similarities with Figure 8 [Aoyama et al.,

2001] include the close proximity of the A.rostrata, A.anguilla and A.mossambica

species.

87

AB021771_A.megastoma

AB021779_A.borneensis

AB021781_A.obscura

AF006710_A.bicolor_bicolor

AB021780_A.bicolor_bicolor

AB021773_A.interioris

AB021777_A.celebesensis

AF006713_A.australis_australis

AB021775_A.australis_australis

AB021769_A.australis_schmidti

AF006712_A.australis_australis

AF074863_A.marmorata

AF006704_A.marmorata

AB021778_A.marmorata

AF006705_A.marmorata

AB021768_A.reinhardti

AF006707_A.reinhardti

AF006706_A.reinhardti

AF006703_A.japonica

AF006702_A.japonicaAB021772_A.japonica

AF006708_A.bicolor_pacifica

AB021774_A.bicolor_pacifica

AF006709_A.bicolor_pacifica

AF006715_A.anguilla

AF006714_A.anguilla

AB021776_A.anguilla AF006716_A.rostrata

AB021767_A.rostrata

AF006717_A.rostrata

AF074865_A.mossambica

AB021782_A.mossambica

AF074864_A.mossambica

AF006711_A.dieffenbachi AB021770_A.dieffenbachi

AF006719_A.malgumoraAF006718_A.malgumora

AF074866_A.bengalensis_labiata AB021783_A.nebulosa_nebulosa

Figure 5.17: Network constructed on the data set presented in [Aoyama et al.,
2001].

5.4.3 Hepatitis B Virus data

The multiple sequence alignment presented in [Bollyky et al., 1996] is a compar-

ison of 25 hepatitis B virus (HBV) isolates with complete genome sequences of

length 3229. HBV is an infectious virus that attacks the liver. In several areas

of the world HBV causes significant mortality and morbidity, in particular trop-

ical Africa and East Asia. In 1993 approximately 10 to 15% of the population in

these areas were chronic HBV carriers [Merican et al., 1993]. High rates of chronic

infections are also found in the Amazon and the southern areas of eastern and

central Europe. Today, approximately 240 million people are chronically affected

by HBV and an estimated 780,000 people die each year [Organisation, 2015b].

The work in [Bollyky et al., 1996] used phylogenetic analysis to investigate if

recombination was a factor in the genetic diversity in the 25 genomes.

In [Bollyky et al., 1996], two of the isolates were positioned differently in the

three phylogenetic trees reconstructed from different open reading frames, a result

of recombination between viruses of different genomic and antigentic types. The

phylogenetic network constructed by TriLoNet for the data set is presented in

88

Figure 5.18. Table 1 in [Bollyky et al., 1996] details the genotypes A, B, C, D

and F of each taxa in the phylogenetic network. The genotypes are colour-coded

in Figure 5.18 with genotype A in grey, genotype B in blue, genotype C in orange,

genotype D in green and genotype F in pink. We anticipated that taxa HBVDNA

and HPBADW1 might be selected as recombinants in the network constructed

by TriLoNet. TriLoNet constructed a network placing taxon HBVDNA under a

reticulation vertex. However, this was not the case for HPBADW1, instead, taxa

HBVADW and HPBADR1CG were placed under non-trivial reticulation vertices.

The two viruses HBVDNA and HPBADW1 clustered with different genotypes

in different open reading frames. These two taxa were located in different viral

genotype groups in the trees presented in Figure 1 of [Bollyky et al., 1996],

this suggests that these taxa are recombinants. In the first two trees taxon

HPBADW1 is in genotype B however in the third tree it is in genotype A. The

taxon HBVDNA is in genotype D in the first tree and genotype A in the second

and third trees.

Table 2 in [Bollyky et al., 1996] summarises the localisation of recombination

events in the HBV sequences. Isolate HBVDNA has parental lineage from virus

XXHEPA from genotype D and virus HUMPREX from genotype A. These taxa

and genotype groups are positioned closely to HBVDNA in the network con-

structed by TriLoNet. Similarly, isolate HPBADW1 has parental lineage from

virus HPBAD2 from genotype B and virus HPBADWZCG from genotype A.

The positions of the taxa in Figure 5.18 clearly form distinct groups corre-

sponding to their genotype. However, this data set may highlight a limitation of

a level-1 network construction approach; we believe that this data set could be

more appropriately represented using a level-2 phylogenetic network which could

better represent a more complex pattern of evolution for the recombinant taxa

HBVDNA and HPBADW1.

89

HBVADW4A

HBVDNA

HPBMUT

HPBADW1

HBVAYWMCG

HPBHBVAA

XXHEPAV

XXHEPA

HPBADW2

HPBADWZCG

HPBADR1CG

HPBETNC

HPBADRC

HPBCG

HPBADRA

HEHBVAYR

HBVADR4

HBVADRMHPBCGADR

HBVADW

HVHEPB

HUMPRECX

HBVADW2

HPBADW3HPBADWZ

F

D

D

D

D

D

D

B

B

B

B A

AA

A

A

CC

C C C

C

C

C

C

Figure 5.18: Network constructed by TriLoNet on the data set presented in [Bol-
lyky et al., 1996].

We then tried removing taxon HBVNDA from the input sequence alignment

and constructed another network on this data set to determine if taxon HBVNDA

had any affect on not identifying the other recombinant taxon HPBADW1 in the

previously constructed network. This resulted in a similar network, in which

the taxon HPBADW1 was now correctly located below a reticulation vertex.

This network is shown in Figure 5.19, indicating that the parental lineage of

HPBADW1 originates from genotypes A and B.

90

HBVADW4A

HPBMUT

XXHEPA

HBVAYWMCG

HPBHBVAA

XXHEPAV

HPBADW1

HPBADW2

HPBADWZCG

HPBADR1CG

HPBETNC

HPBADRC

HPBCG

HPBADRA

HEHBVAYR

HBVADR4

HBVADRM HPBCGADR

HPBADW3HPBADWZ

HBVADW

HVHEPB

HUMPRECX

HBVADW2

F

D

D

D

D

D

A

B

B

B B

A A

A

A

CC

CCC

C

C

C

C

Figure 5.19: Network constructed by TriLoNet on the data set presented in [Bol-
lyky et al., 1996] with taxon HBVDNA removed.

5.4.4 Giardia parasite data

Giardia is a parasite that causes giardiasis through the infection of the intestines.

Infection from this single-celled organism with two nuclei often occurs from the

consumption of contaminated water or food [Organisation, 2015a]. In this paper,

Giardia human faecal isolates were obtained from a population in Lima, Peru, an

area that is highly endemic for giardiasis in humans. The study in [Cooper et al.,

2007] raised questions on using evidence from population genetics to suggest that

recombination is present in Giardia, with results suggesting distinctly different

histories between the three examined chromosome loci.

The data set presented in [Cooper et al., 2007] contained 7 sequences of length

17010 for three partial chromosome sequences. Chromosome 3 represented char-

acter sites 1 - 5979, Chromosome 4 represented sites 5980 - 7444 and Chromosome

91

5 represented sites 7445 - 17010.

TriLoNet placed taxon G. intestinalis isolate 335 below a reticulation vertex,

as shown in Figure 5.20, as well as placing isolate G. lamblia ATCC 50803 WB

as the outgroup and isolates 303 and 305 as siblings. Figure 3 in [Cooper et al.,

2007] presents three maximum likelihood trees on the three chromosomes. In the

second tree isolate 335 is a sibling of isolate 55 and in the third tree the parent

vertex of isolates 335, 55 and JH is unresolved. The topology of the network

constructed by TriLoNet shares most resemblance to the maximum likelihood

tree on chromosome 5 presented in Figure 3 [Cooper et al., 2007].

WB

335

246

55

JH

303 305

Figure 5.20: Network constructed by TriLoNet on the eel data set presented
in [Cooper et al., 2007].

If the breakpoints are known, in Step 1 of Section 3.3 we explain how we

can adapt TriLoNet to use this information to calculate the κ value for each

individual subalignment such that each subalignment contributes equally to the

92

total κ value. This may be useful if there is a large variation in the number of

character sites in particular subalignments. For the data set presented in [Cooper

et al., 2007], Chromosome 4 is represented by 1,465 sites whereas Chromosome 5

is represented by 9,566 sites. The phylogenetic network presented in Figure 5.21

was constructed by TriLoNet using the two breakpoints as input parameters.

The trinet S2(JH; 55; 335) displayed by this network which is consistent with the

three trees in Figure 3 [Cooper et al., 2007].

WB

335

303

305

246

JH

55

Figure 5.21: Network constructed by TriLoNet on the eel data set presented
in [Cooper et al., 2007] using breakpoints to weight the subalignments.

93

5.4.5 Fungus data

Fusarium graminearum, also known as Gibberella zeae is a plant pathogen which

causes a fungal disease called fusarium head blight on both wheat and bar-

ley. Worldwide, this disease causes billions of dollars in economic losses an-

nually [De Wolf et al., 2003]. This disease has become an epidemic problem,

not only because of the economic impact from decreased seed yield and quality,

but also because seeds infected with fusarium graminearum are also often con-

taminated with mycotoxins that cause harm to animals [O’Donnell et al., 2000].

Results from the study in [O’Donnell et al., 2000] include a phylogenetic tree

presented in Figure 3, [O’Donnell et al., 2000] which highlights seven lineages of

the Fusarium graminearum clade, indicating possible geographic origin.

The data set presented in [O’Donnell et al., 2000] contained 37 sequences of

length 4146 with taxa 28338 and 28721 identified as recombinants. The net-

work constructed by TriLoNet on this data set pictured in Figure 5.22 shares

strong topological similarities with the phylogenetic tree presented in Figure

3 [O’Donnell et al., 2000], in particular the grouping of the seven lineages. The

colour-coding in Figure 5.22 correspond to the Pan-Northern Hemisphere (grey),

Asian (yellow), African (purple), South-Central American (green), African (pink),

African (blue) and South American (orange) in Figure 3 [O’Donnell et al., 2000].

In [O’Donnell et al., 2000] it is reported that strain 28721 is a hybrid strain

containing alleles from lineages 2 and 6 of the Fusarium graminearum clade. Our

findings support this; taxon 28721 is a recombinant leaf in the network con-

structed by TriLoNet, which is closely positioned to 28436, 28723, 29010 (African

lineages) as well as 6101, 13818, 26156 and 28720 (Asian lineages).

The taxon 28338 was not identified as a recombinant and was not a focus of

the study by [O’Donnell et al., 2000], although it was closely grouped with 28062,

28065 and 28334. This group of taxa from sequences of F.pseudograminerum were

used as an outgroup to root the tree presented in Figure 3 [O’Donnell et al., 2000].

This is supported by TriLoNet as this group of taxa is under a different arc from

all other taxa in the network.

94

13393

28721

28439

13721

25491

25805

5883

29169

28063

28336

6394

13383

29011

26916

29105

29020

6101

26156

13818

28720

28436

28723 290102903

28585 28718

26752

2675426755

28062

28338

29148 25797

254753288

28334 28065

Figure 5.22: Network constructed by TriLoNet on the data set presented in
[O’Donnell et al., 2000].

5.4.6 Dryopteris fern data

The study in [Sessa et al., 2012] aimed to explore the reticulate evolution in North

American Dryopteris, Dryopteridaceae woodferns. It is believed that recombina-

tion has been a part of the evolutionary history of Dryopteris. This group of

ferns has been widely studied, in particular in North America due to the sus-

pected extensiveness of reticulate evolution via allopolyploid hybridisation [Sessa

et al., 2012].

The data set presented in [Sessa et al., 2012] contained 27 taxa with eight

partial gene sequences of length 6042 from Dryopteris ferns with the sequence

D. celsa EBS27 as a recombinant taxon, diverging from its paternal parent, D.

goldiana, and from its maternal parent, D. ludoviciana.

95

One hypothesis represented in Figure 1 [Sessa et al., 2012] postulates D.

goldiana and D. clintoniana as parents of D. celsa. The maximum likelihood

tree in Figure 2 [Sessa et al., 2012] places D. celsa closely with D. ludoviciana

and D. goldiana. The network constructed by TriLoNet presented in Figure 5.23

supports this, even though it does not identify D. celsa as a recombinant taxon.

Figure 5 [Sessa et al., 2012] presents a reticulation network showing hypothesised

polyploidisation events, again suggesting the parentage of taxa D. ludoviciana and

D. goldiana to D. celsa.

96

D
.lu
do
vi
ci
an
a_
EB
Sl
ud
3

D
.o
lig
od
on
ta
_E
37
4

D
.g
ol
di
an
a_
EB
S7
2

D
.c
el
sa
_E
BS
27

D
.a
rg
ut
a_
EB
S3
6

D
.sc
ot
tii
_E
33
0

D
.c
hr
ys
oc
om
a_
E3
20

D
.a
lp
es
tri
s_
E3
14

D
.m
ar
gi
na
lis
_E
BS
17

P.
an
de
rs
on
ii_
EB
S3
9

P.
m
un
itu
m
_E
BS
34

D
.c
am
py
lo
pt
er
a_
EB
S1
9

D
.d
ila
ta
ta
_S
ch
ue
ttp
el
z5
35

D
.in
te
rm
ed
ia
_E
BS
44

D
.c
ris
pi
fo
lia
_N
H
58

D
.a
nt
ar
ct
ic
a_
E3
78

D
.in
te
rm
ed
ia
_E
BS
69

D
.re
m
ot
a_
E2
85

D
.c
ris
ta
ta
_E
SB
26

D
.c
ar
th
us
ia
na
_E
BS
41

D
.c
lin
to
ni
an
a_
EB
S8

D
.c
ar
th
us
ia
na
_E
BS
43

D
.a
ss
im
ili
s_
E1
17

D
.e
xp
an
sa
_E
BS
33

D
.a
us
tri
ac
a_
E1
19

D
.c
au
ca
sic
a_
E3
18

D
.fi
lix
-m
as
_E
BS
32

Figure 5.23: Network constructed by TriLoNet on the data set presented in [Sessa
et al., 2012] with a κ value of 6.5.

97

Interestingly, using a κ parameter value of 7.0 in the SeqTrinet algorithm re-

sulted in the identification of D. celsa EBS27 as a recombinant taxon as it swapped

positions with D. ludoviciana EBSlud3. This network is shown in Figure 5.24.

Both networks constructed by TriLoNet to an extent support the findings of

[Sessa et al., 2012] as the three taxa D. ludoviciana, D. goldiana and D. celsa

were placed within the same gall but with slightly different positions.

98

D
.c
el
sa
_E
BS
27

D
.o
lig
od
on
ta
_E
37
4

D
.g
ol
di
an
a_
EB
S7
2

D
.lu
do
vi
ci
an
a_
EB
Sl
ud
3

P.
an
de
rs
on
ii_
EB
S3
9

P.
m
un
itu
m
_E
BS
34

D
.a
rg
ut
a_
EB
S3
6

D
.sc
ot
tii
_E
33
0

D
.c
hr
ys
oc
om
a_
E3
20

D
.a
lp
es
tri
s_
E3
14

D
.m
ar
gi
na
lis
_E
BS
17

D
.c
am
py
lo
pt
er
a_
EB
S1
9

D
.d
ila
ta
ta
_S
ch
ue
ttp
el
z5
35

D
.in
te
rm
ed
ia
_E
BS
44

D
.c
ris
pi
fo
lia
_N
H
58

D
.a
nt
ar
ct
ic
a_
E3
78

D
.in
te
rm
ed
ia
_E
BS
69

D
.re
m
ot
a_
E2
85

D
.c
ris
ta
ta
_E
SB
26

D
.c
ar
th
us
ia
na
_E
BS
41

D
.c
lin
to
ni
an
a_
EB
S8

D
.c
ar
th
us
ia
na
_E
BS
43

D
.a
ss
im
ili
s_
E1
17

D
.e
xp
an
sa
_E
BS
33

D
.a
us
tri
ac
a_
E1
19

D
.c
au
ca
sic
a_
E3
18

D
.fi
lix
-m
as
_E
BS
32

Figure 5.24: Network constructed by TriLoNet on the data set presented in [Sessa
et al., 2012] with a κ value of 7.0.

99

5.4.7 Sedge and rush plant data

The multiple sequence alignment presented in [Starr et al., 2007] contains 22 se-

quences of length 1399 with partial gene sequences from Cyperaceae Juss (sedge)

and selected Juncaceae (rush) plants. Sedge plants are found in a wide range of

habitats and are widely distributed. Uses include construction material, paper

manufacture and medicines [Starr et al., 2007].

The study aimed to investigate the evolutionary relations within Cyperaceae

using molecular characteristics, given that morphological features alone are not

able to do so. These relationships are not well known, partly due to the large ge-

netic diversity of the Cyperaceae family. The study also suggests that the position

of the recombinant Oxychloe andina (Juncaceae) in previous analyses as either

a sister or as nested within Cyperaceae is because it is a Juncaceae/Cyperaceae

chimera [Starr et al., 2007]. A chimeric sequence contains DNA from two or more

parents. Figure 3 [Starr et al., 2007] presents some phylogenetic trees resulting

from their analyses in meeting their objective of determining the phylogenetic

position of Oxychloe andina [Starr et al., 2007]. The results from [Starr et al.,

2007] suggest that the first half of the sequence probably represents a correct

Oxychloe andina sequence, whereas the second half is derived from a Cyperaceae

contamination during DNA extraction or PCR amplification.

The network constructed by TriLoNet by taking these sequences as input

placed taxon Oxychloe andina below a reticulation vertex as shown in Figure 5.25.

The Cyperus taxa are placed on the opposite side of the gall to the Juncus taxa.

The phylogenetic trees in Figure 3 [Starr et al., 2007] also suggest two distinct

regions Juncaceae and Cyperaceae with Prionium serratum as an outgroup. The

outgroup taxa Prionium serratum is a sister species to the others and is separated

from the other taxa in the network constructed by TriLoNet. Taxon Oxychloe

Y12978 in Figure 3(c) [Starr et al., 2007] is a sibling of Distichia acicularis, this

taxon is positioned closely with the recombinant, in the network constructed

by TriLoNet. Similarly, taxa Scirpus polystachyus, Carex monostachya are posi-

tioned closely to the recombinant. The taxa Luzula nivea, Luzula purpureosplendens,

Luzula multiflora and Luzula novaecambriae form a separate cactus structure,

with Luzula nivea placed under a reticulation vertex. The Luzula taxa are lo-

100

cated within the Juncaceae region in the phylogenetic trees presented in Figure

3 [Starr et al., 2007], a feature shared with the network constructed by TriLoNet.

Prionium_serratum

Oxychloe_andina

Becquerelia_cymosa

Rhynchospora_nervosa

Coleochloa_abyssinica

Hypolytrum_nemorum

Isolepis_nodosa

Carex_monostachya

Cyperus_papyrus

Scirpus_polystachyus

Cyperus_involucratus

Juncus_vaginatus

Juncus_effusus

Juncus_trifidus

Juncus_kraussii

Rostkovia_magellanica

Marsippospermum_grandiflorum

Distichia_acicularis

Luzula_nivea

Luzula_novaecambriae

Luzula_multiflora

Luzula_purpureosplendens

Figure 5.25: Network constructed by TriLoNet on the data set presented in [Starr
et al., 2007].

101

5.5 Concluding remarks

In this chapter we have presented a series of experiments and real data sets to

evaluate our approach to phylogenetic network construction. We also compared

TriLoNet with Lev1athan, a triplet based reconstruction algorithm. TriLoNet is

able to always correctly reconstruct a phylogenetic network from a dense set of

trinets not containing noise whereas this is not always the case with Lev1athan.

Lev1athan on average has a higher triplet consistency score in comparison to

TriLoNet, however, the phylogenetic networks constructed by Lev1athan tend

to contain many more reticulation vertices. We found that TriLoNet achieved a

higher trinet consistency score than Lev1athan, with a considerable difference in

the experiments with lower levels of noise.

We simulated artificial sequence alignments with recombinant taxa on six

networks presented in [Holland et al., 2002] and varied the sequence length, κ

threshold and left-right sequence contribution. The results support the proposal

in [Holland et al., 2002] that is is more difficult to identify recombination in

data sets generated with unbalanced topologies. We also found it to be easier to

correctly identify recombination in longer rather than shorter multiple sequence

alignments.

We ran TriLoNet on several real biological data sets with suggested recombi-

nation. We have shown that TriLoNet can in some cases identify recombination

taxa. In particular, we were able to correctly identify the recombinant taxa in

each data set aside from the eel data set and fungus data set where only one of

the two recombinants present was selected. The network constructed from the

data set presented in [Bollyky et al., 1996] may indicate that a level-2 network

construction approach would be able to better represent the relationships inferred

from sequences with more complex patterns of recombination.

TriLoNet is a positive step towards constructing networks directly from se-

quence data.

102

Chapter 6

Conclusions

6.1 Conclusions

The rapid sequencing of DNA has fuelled the growth of the area of phylogenetics

in recent years. Much of the focus until recently has been on the construction of

phylogenetic trees. However, as not all data may be best represented by tree-like

structures, more emphasis is now being placed on the use of phylogenetic net-

works to represent more complex patterns of evolution. Although not yet widely

adopted by biologists as much of the work in phylogenetic network construction is

relatively new, approaches using phylogenetic networks are becoming increasingly

popular.

The key scientific contribution of this thesis is the introduction and implemen-

tation of the SeqTrinet and TriLoNet methods, which form a supernetwork based

approach to constructing level-1 phylogenetic networks directly from multiple se-

quence alignments. TriLoNet is the first method to use a supernetwork approach

to construct level-1 networks from noisy data by puzzling together information

contained in smaller networks. TriLoNet also allows the use of breakpoints in

a sequence alignment although they are not required. TriLoNet has been im-

plemented in Java and accepts input from NEXUS [Maddison et al., 1997] and

FASTA [Zhang Lab, 2015] files, two of the popular formats used in phylogenetics

for representing sequence data.

In more detail, in Chapter 3 we introduced a new approach called SeqTrinet

to constructing phylogenetic networks on three leaves from DNA sequence data.

103

In Chapter 4 we then described the TriLoNet algorithm. In Chapter 5 we pre-

sented the results of three simulation and comparison studies. We showed that,

particularly when the input contains low levels of noise, TriLoNet compares well

with Lev1athan, a triplet based level-1 network construction approach. We also

introduced a novel approach called TriExtract for extracting trinets from level-1

phylogenetic networks, which we then used as a measure for the comparison of two

phylogenetic networks since the trinets displayed by a level-1 network uniquely

determine that network. We also used artificially generated sequence data con-

taining suggested recombination as input to TriLoNet. The results indicate that

TriLoNet is able to detect simple recombinant events from sequence data without

the use of breakpoints. We then used several real biological data sets contain-

ing known recombinant data and found in most cases that TriLoNet was able to

identify these recombinant taxa.

6.2 Future work

Here we consider some extensions as well as some possible future directions that

could be taken. These include theoretical research ideas as well as some technical

extensions to TriLoNet.

6.2.1 Level-2 or higher networks

An obvious although non-trivial direction from here would be to develop and

implement a level-2 or higher network construction algorithm. Level-1 networks

are a good starting point for the representation of data sets that may not be best

represented by a phylogenetic tree. However, as indicated by the HBV data set in

Chapter 5, the use of higher level networks may be more appropriate for data sets

containing more complex evolutionary events. The work in [Iersel and Moulton,

2013] has shown that for level-2 networks, the trinets uniquely determine the

network. This indicates it should be possible to develop an algorithm to construct

level-2 phylogenetic networks from trinets. It should be noted that there are many

more level-2 trinets than level-1 trinets. Particularly for noisy data, this increase

104

in the number of possibilities would provide even more of a challenge to puzzle

these pieces together into a network. It would also be interesting to investigate

the computation of level-2 trinets from sequence data. As we have seen, the

detection of evolutionary patterns from sequence data is a non-trivial problem

for even level-1 trinets so mapping even more complex events from sequence data

would present a considerable challenge.

6.2.2 Non-dense input

TriLoNet currently works on the assumption that any input given is dense. Dense

triplet sets have been used in many of the current triplet based network construc-

tion techniques due to them leading to a more structured network. In reality

triplet sets are not always dense Huson et al. [2010], so relaxing this condition

and allowing the input set of trinets to be non-dense would widen the appeal and

usage of TriLoNet. It has been shown in [Huber et al., 2014a] that it is NP-hard

to construct a binary level-1 network from a non-dense set of trinets. They also

present a non-polynomial time algorithm for this problem that could be imple-

mented. Alternatively, it would also be interesting to investigate developing a

heuristic to address noisy data.

6.2.3 Quarnets

Here we have constructed phylogenetic networks from networks on three leaves.

It would be interesting to investigate how an approach using quarnets (phyloge-

netic networks on four leaves) or even larger networks might be developed. It is

not clear how using these more complex building blocks would impact on the net-

works constructed from this input. Something to consider here would be that the

number of quarnets on a set of taxa quickly increases in comparison the number of

trinets on the same set of taxa (O(n4) vs O(n3), with n the number of taxa). The

additional information contained in quarnets could potentially improve the qual-

ity of networks constructed as quarnets should provide more topological insight.

However, even though quarnets (or larger networks) provide more information

that trinets, it would be much more complex to interpret this and develop an

105

algorithm to fit them together in a meaningful way. Also, it is known that even

if all subnetworks of a network are given, these do not necessarily determine the

network [Huber et al., 2014b], and so it is not clear when quarnets (or larger

networks) will uniquely determine networks.

6.2.4 Constructing networks from sequences

We spent a considerable amount of time developing an approach to obtain a

set of trinets from a multiple sequence alignment. One of the main challenges of

constructing a set of trinets as opposed to a set of triplets from this data has been

to identify the detailed evolutionary events displayed by trinets but not triplets.

A key example of this is the difficultly in identifying the difference between an

S1 and S2 trinet for three taxa in a multiple sequence alignment. Several current

methods of mapping sequences to networks such as [Jin et al., 2007] and [Fischer

et al., 2015] use the trees embedded inside the network to compute the parsimony

score of a network. However, these methods have limitations when applied to

trinets since a trinet is not always encoded by the triplets it contains. This is

a problem that would benefit from further investigation and a situation where

moving from tree-based to network-based thinking could be beneficial.

Another possible avenue for investigation would be a maximum likelihood ap-

proach for the construction of networks from sequence data. As with the current

parsimony approaches, methods that construct networks using a likelihood ap-

proach compute the likelihood on the trees embedded in the network [Yu et al.,

2014]. The issue again with this approach is that these trees do not necessarily

determine the network, and so we would probably need to develop new models

to address this problem.

6.2.5 Extension and improvements to program

TriLoNet constructs trinets from DNA sequence data and currently only con-

siders {A,C,G, T}. It would be useful to extend this part of the program to

process character sites with gaps as well as the other nucleic acid codes. Cur-

rently TriLoNet will accept noisy input data, it would be interesting to modify

106

TriLoNet to accept input where a portion of the data is missing. A graphical user

interface would make TriLoNet more accessible and provide a better user experi-

ence. One feature that would be useful could be to allow the user to select and

highlight trinets contained in a network and compare this to the corresponding

trinet obtained from a sequence alignment. Also, it would not be too difficult

to enable file formats other than NEXUS and FASTA to be accepted as input

to TriLoNet. Currently, TriLoNet can read in a single file in NEXUS, FASTA

and TNETS format and will output the results to a text file as well as a eNewick

string that can be viewed in Dendroscope. It would be useful to modify this to

allow the batch processing of multiple input files.

6.3 Final words

In this thesis we developed and implemented an approach to constructing level-1

phylogenetic networks directly from DNA sequence data. We hope the contri-

bution of our supernetwork approach is a positive step toward the development

of new network construction methods that can represent complex evolutionary

scenarios such as recombination and lateral gene transfer.

107

References

Aho, A., Sagiv, Y., Szymanski, T., and Ullman, J. (1981). Inferring a tree from

lowest common ancestors with an application to the optimization of relational

expressions. SIAM Journal on Computing, 10(3):405–421. 10

Aoyama, J., Nishida, M., and Tsukamoto, K. (2001). Molecular phylogeny and

evolution of the freshwater eel, genus anguilla. Molecular Phylogenetics and

Evolution, 20(3):450–459. xii, 78, 87, 88

Bollyky, P. L., Rambaut, A., Harvey, P. H., and Holmes, E. C. (1996). Recombi-

nation between sequences of hepatitis b virus from different genotypes. Journal

of Molecular Evolution, 42(2):97–102. xiii, 78, 88, 89, 90, 91, 102

Byrka, J., Guillemot, S., and Jansson, J. (2010). New results on optimizing rooted

triplets consistency. Discrete Applied Mathematics, 158(11):1136–1147. 15

Castro-Nallar, E., Pérez-Losada, M., Burton, G. F., and Crandall, K. A. (2012).

The evolution of hiv: inferences using phylogenetics. Molecular phylogenetics

and evolution, 62(2):777–792. 78

Cooper, M. A., Adam, R. D., Worobey, M., and Sterling, C. R. (2007). Popula-

tion genetics provides evidence for recombination in giardia. Current Biology,

17(22):1984–1988. xiii, 78, 91, 92, 93

De Wolf, E., Madden, L., and Lipps, P. (2003). Risk assessment models for

wheat fusarium head blight epidemics based on within-season weather data.

Phytopathology, 93(4):428–435. 94

108

REFERENCES

Fischer, M., Van Iersel, L., Kelk, S., and Scornavacca, C. (2015). On computing

the maximum parsimony score of a phylogenetic network. SIAM Journal on

Discrete Mathematics, 29(1):559–585. 23, 106

Fitch, W. M. (1971). Toward defining the course of evolution: minimum change

for a specific tree topology. Systematic zoology, pages 406–416. 9

Gambette, P. and Huber, K. (2012). On encodings of phylogenetic networks of

bounded level. Journal of Mathematical Biology, 65(1):157–180. 15

Gansner, E., Koutsofios, E., and North, S. (2006). Drawing graphs with dot. 21,

77

Gyles, C. and Boerlin, P. (2013). Horizontally transferred genetic elements and

their role in pathogenesis of bacterial disease. Veterinary Pathology Online,

page 0300985813511131. 19

Habib, M. and To, T.-H. (2011). Constructing a Minimum-Level Phylogenetic

Network from a Dense Triplet Set in Polynomial Time. ArXiv e-prints. 2, 15

Holland, B. R., Huber, K. T., Dress, A., and Moulton, V. (2002). plots: A tool

for analyzing phylogenetic distance data. Molecular Biology and Evolution,

19(12):2051–2059. xii, 3, 25, 34, 57, 71, 73, 77, 102

Huber, K. and Moulton, V. (2013). Encoding and constructing 1-nested phylo-

genetic networks with trinets. Algorithmica, 66(3):714–738. 2, 16, 18, 58

Huber, K., van Iersel, L., Kelk, S., and Suchecki, R. (2011a). Lev1generator.

http://www.uea.ac.uk/~x3002128/lev1generator/. [Online; accessed 12-

May-2015]. 63

Huber, K., van Iersel, L., Kelk, S., and Suchecki, R. (2011b). A practical algo-

rithm for reconstructing level-1 phylogenetic networks. IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics, 8(3):635–649. 2, 3, 10, 15,

57, 58, 64, 77, 78, 79, 82, 83, 84, 85, 86

109

http://www.uea.ac.uk/~x3002128/lev1generator/

REFERENCES

Huber, K., van Iersel, L., Moulton, V., Scornavacca, C., and Wu, T. (2014a).

Reconstructing phylogenetic level-1 networks from nondense binet and trinet

sets. arXiv preprint arXiv:1411.6804. 105

Huber, K. T., Van Iersel, L., Moulton, V., and Wu, T. (2014b). How much

information is needed to infer reticulate evolutionary histories? Systematic

biology, page syu076. 106

Huson, D., Rupp, R., and Scornavacca, C. (2010). Phylogenetic Networks. Con-

cepts, Algorithms and Applications. Cambridge University Press. 2, 5, 8, 10,

14, 19, 105

Iersel, L. and Moulton, V. (2013). Trinets encode tree-child and level-2 phyloge-

netic networks. Journal of Mathematical Biology, pages 1–23. ix, 15, 16, 42,

44, 104

Jansson, J., Lemence, R. S., and Lingas, A. (2012). The complexity of inferring

a minimally resolved phylogenetic supertree. SIAM Journal on Computing,

41(1):272–291. 10

Jansson, J., Nguyen, N., and Sung, W. (2006). Algorithms for combining rooted

triplets into a galled phylogenetic network. SIAM Journal on Computing,

35(5):1098–1121. 10, 15, 42

Jansson, J. and Sung, W.-K. (2006). Inferring a level-1 phylogenetic network

from a dense set of rooted triplets. Theor. Comput. Sci., 363(1):60–68. 2, 15,

18, 42

Jin, G., Nakhleh, L., Snir, S., and Tuller, T. (2007). Efficient parsimony-based

methods for phylogenetic network reconstruction. Bioinformatics, 23(2):e123–

e128. 9, 106

Jin, G., Nakhleh, L., Snir, S., and Tuller, T. (2009). Parsimony score of phylo-

genetic networks: Hardness results and a linear-time heuristic. Computational

Biology and Bioinformatics, IEEE/ACM Transactions on, 6(3):495 –505. 9,

19, 20

110

REFERENCES

Kahn, A. B. (1962). Topological sorting of large networks. Communications of

the ACM, 5(11):558–562. 60

Kimura, M. (1980). A simple method for estimating evolutionary rates of base

substitutions through comparative studies of nucleotide sequences. Journal of

Molecular Evolution, 16(2):111–120. 35

Maddison, D. R., Schulz, K.-S., and Maddison, W. P. (2007). The tree of life

web project. Zootaxa, 1668(Linnaeus Tercentenary: Progress in Invertebrate

Taxonomy):19–40. 1

Maddison, D. R., Swofford, D. L., and Maddison, W. P. (1997). Nexus: an exten-

sible file format for systematic information. Systematic Biology, 46(4):590–621.

103

Merican, I., Sherlock, S., McIntyre, N., and Dusheiko, G. (1993). Clinical, bio-

chemical and histological features in 102 patients with chronic hepatitis c virus

infection. QJM, 86(2):119–125. 88

Morin, M. M. (2007). Phylogenetic Networks: Simulation, Characterization, and

Reconstruction. PhD thesis, University of New Mexico, Department of Com-

puting Science. 19

Morin, M. M. and Moret, B. M. (2006). Netgen: generating phylogenetic networks

with diploid hybrids. Bioinformatics, 22(15):1921–1923. 20

Morrison, D. (2015). The Genealogical World of Phylogenetic Networks. http:

//phylonetworks.blogspot.co.uk/p/datasets.html. [Online; accessed 7-

May-2015]. 78, 87

O’Donnell, K., Kistler, H. C., Tacke, B. K., and Casper, H. H. (2000). Gene

genealogies reveal global phylogeographic structure and reproductive isolation

among lineages of fusarium graminearum, the fungus causing wheat scab. Pro-

ceedings of the National Academy of Sciences, 97(14):7905–7910. xiii, 78, 94,

95

Organisation, W. H. (2015a). Giardiasis Disease Information. http://www.who.

int/ith/diseases/giardiasis/en/. [Online; accessed 12-May-2015]. 91

111

http://phylonetworks.blogspot.co.uk/p/datasets.html
http://phylonetworks.blogspot.co.uk/p/datasets.html
http://www.who.int/ith/diseases/giardiasis/en/
http://www.who.int/ith/diseases/giardiasis/en/

REFERENCES

Organisation, W. H. (2015b). Hepatitis B Factsheet No 204. http://www.who.

int/mediacentre/factsheets/fs204/en/. [Online; accessed 12-May-2015].

88

Page, R. (2002). Modified mincut supertrees. In Guig, R. and Gusfield, D., edi-

tors, Algorithms in Bioinformatics, volume 2452 of Lecture Notes in Computer

Science, pages 537–551. Springer Berlin Heidelberg. 10

Rambaut, A. and Grass, N. C. (1997). Seq-gen: an application for the monte

carlo simulation of dna sequence evolution along phylogenetic trees. Computer

applications in the biosciences : CABIOS, 13(3):235–238. 32, 34, 72

Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Molecular biology and evolution, 4(4):406–

425. 46

Salemi, M. and Vandamme, A.-M. (2003). The phylogenetic handbook: a practical

approach to DNA and protein phylogeny. Cambridge University Press. 78

Scitable, N. E. (2015). Recombination. http://www.nature.com/scitable/

definition/recombination-226. [Online; accessed 10-Sep-2015]. 18

Semple, C. and Steel, M. (2000). A supertree method for rooted trees. Discrete

Applied Mathematics, 105:147–158. 1, 10

Semple, C. and Steel, M. (2003). Phylogenetics. Oxford lecture series in mathe-

matics and its applications. Oxford University Press. 9

Sessa, E. B., Zimmer, E. A., and Givnish, T. J. (2012). Unraveling reticulate

evolution in north american dryopteris (dryopteridaceae). BMC evolutionary

biology, 12(1):104. xiii, 78, 95, 96, 97, 98, 99

Starr, J. R., Gravel, G., Bruneau, A., and Muasya, A. M. (2007). Phylogenetic

implications of a unique 5.8 s nrdna insertion in cyperaceae. Aliso: A Journal

of Systematic and Evolutionary Botany, 23(1):84–98. xiii, 78, 100, 101

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal

on Computing, 1(2):146–160. 47, 49

112

http://www.who.int/mediacentre/factsheets/fs204/en/
http://www.who.int/mediacentre/factsheets/fs204/en/
http://www.nature.com/scitable/definition/recombination-226
http://www.nature.com/scitable/definition/recombination-226

REFERENCES

Than, C., Ruths, D., and Nakhleh, L. (2008). Phylonet: a software package

for analyzing and reconstructing reticulate evolutionary relationships. BMC

Bioinformatics, 9(1):322. 2, 23

To, T.-H. and Habib, M. (2009). Level-k phylogenetic network can be constructed

from a dense triplet set in polynomial time. ArXiv e-prints. 15

van Iersel, L. (2009). Algorithms, Haplotypes and Phylogenetic Networks. PhD

thesis, Eindhoven University of Technology. 18

van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Hagen, F., and Boekhout, T.

(2009). Constructing level-2 phylogenetic networks from triplets. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 6(4):667 –681. 15

van Iersel, L. and Kelk, S. (2011). Constructing the simplest possible phylogenetic

network from triplets. Algorithmica, 60:207–235. 10.1007/s00453-009-9333-0.

15

Yu, Y., Dong, J., Liu, K. J., and Nakhleh, L. (2014). Maximum likelihood infer-

ence of reticulate evolutionary histories. Proceedings of the National Academy

of Sciences, 111(46):16448–16453. 106

Zhang Lab, U. o. M. (2015). What is FASTA format? http://zhanglab.ccmb.

med.umich.edu/FASTA/. [Online; accessed 10-Sep-2015]. 103

113

http://zhanglab.ccmb.med.umich.edu/FASTA/
http://zhanglab.ccmb.med.umich.edu/FASTA/

	Contents
	List of Figures
	1 Introduction
	2 Background
	2.1 Chapter summary
	2.2 Definitions and terminology
	2.3 Phylogenetic trees
	2.3.1 Building phylogenetic trees
	2.3.2 Triplets

	2.4 Phylogenetic networks
	2.4.1 Definitions and terminology
	2.4.2 Level-k networks
	2.4.3 Reconstructing networks from triplets

	2.5 Trinets
	2.6 Types of reticulation events
	2.7 Formats for representing trees and networks
	2.7.1 Newick format
	2.7.2 DOT format

	2.8 Concluding remarks

	3 Sequences to trinets
	3.1 Chapter summary
	3.2 Overview
	3.3 Method
	3.4 Pseudocode
	3.5 threshold experiments
	3.5.1 Generating collections of weighted trinets
	3.5.2 Simulation of recombination data sets
	3.5.3 Experiments and results

	3.6 Concluding remarks

	4 Network construction
	4.1 Chapter summary
	4.2 Definitions
	4.3 Theoretical results
	4.4 The TriLoNet algorithm
	4.4.1 Finding small SN-sets
	4.4.2 Constructing binets
	4.4.3 Constructing a cactus
	4.4.4 Main TriLoNet algorithm

	4.5 Concluding remarks

	5 Simulations and real data sets
	5.1 Chapter summary
	5.2 Noise simulation experiments
	5.2.1 Extracting trinets from phylogenetic networks
	5.2.1.1 Initial trinet extraction approach
	5.2.1.2 TriExtract algorithm

	5.2.2 Comparing TriLoNet to Lev1athan
	5.2.3 Measures
	5.2.4 Simulation results
	5.2.5 Reticulation difference experiments
	5.2.6 Triplet and trinet noise difference

	5.3 Artificial data simulation experiments
	5.4 Application to real data sets
	5.4.1 HIV data
	5.4.2 Eel data
	5.4.3 Hepatitis B Virus data
	5.4.4 Giardia parasite data
	5.4.5 Fungus data
	5.4.6 Dryopteris fern data
	5.4.7 Sedge and rush plant data

	5.5 Concluding remarks

	6 Conclusions
	6.1 Conclusions
	6.2 Future work
	6.2.1 Level-2 or higher networks
	6.2.2 Non-dense input
	6.2.3 Quarnets
	6.2.4 Constructing networks from sequences
	6.2.5 Extension and improvements to program

	6.3 Final words

	References

