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Abstract 

As the first barrier to the external environment, the epicuticular waxes have a number of key roles 

in plant physiology. Although the wheat wild progenitors display a diversity of epicuticular wax 

phenotypes, the glaucous (visible wax) phenotype dominates cultivated varieties. However, the UK 

winter wheat variety Shamrock is unusual in that it exhibits a non-glaucous phenotype, conferred 

by the wild emmer gene Inhibitor of Wax 1 (Iw1). UK field trials with Shamrock associated a yield 

advantage of 4.15% with Iw1. This PhD tests the hypothesis that Iw1 imparts an advantage for 

wheat yield and physiology in the UK.  

 

Crossing Shamrock with six glaucous UK winter wheat varieties (Malacca, Alchemy, Hereward, Xi19, 

Robigus and Einstein) created non-glaucous near isogenic lines (NILs) with Iw1. NILs were grown at 

multiple field trial locations in the east of England over four years. A long-term shade trial reducing 

incoming light by 40 and 60% was also carried out in 2014. Yield, and various physiological 

components including water use efficiency (WUE) and spectral properties, were measured. 

 

Iw1 reduced flag leaf photosynthetically active radiation (PAR) reflectance by 15-40% and canopy 

reflectance by 12-20% (p<0.05). Despite this, Iw1 did not affect flag leaf PAR absorbance or canopy 

temperature, and conferred no advantage under long-term shading. Furthermore, there was no 

difference between NILs in photoinhibition following an extended period of high light stress. Iw1 

did not affect WUE or yield. However, non-glaucous Hereward and Alchemy NILs yielded 

4.96±1.15% (p<0.001) and 2.59±1.01% (p=0.045) more than their glaucous counterparts, although 

this advantage did not map to Iw1.  

 

Iw1 offered no advantage to UK winter wheat under normal UK growing conditions, nor under long-

term shading. However, the yield advantage associated with the Iw1 introgression in Hereward and 

Alchemy is significant within a backdrop of plateauing wheat yields and worth pursuing. 
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Chapter 1 Introduction 
 

1.1 Food production 
The world population reached 7.3 billion by mid-2015, and by 2050 is projected to rise to 9.7 billion 

(United Nations, 2015).  To keep up with demand, global food production will need to increase by 

around 70% over the next 35 years (FAO, 2009), equating to around a 2.4%  increase in global crop 

yields per year (Ray et al., 2013). However, a growing population places multiple demands on land. 

In addition to food crops, biofuel use is growing, more land for meat and dairy production will be 

required, and greater expansion of urban areas will be necessary. These competing demands mean 

that, in terms of crop production, increasing yields rather than clearing more land will be the most 

sustainable way forwards (Foley et al., 2011; Godfray et al., 2010). Sustainable intensification also 

requires more efficient use of pesticides, fertilizer, and limited resources such as water (Cattivelli 

et al., 2008; Porter et al., 2014). Yet further strain is being placed on the food supply from the 

changing climate. Not only are global temperatures increasing, but instances of climate variability 

and extremes of climate are on the rise (Gourdji et al., 2013; Tingley & Huybers, 2013). These 

changes are already having an impact on agricultural systems. For example, it has been estimated 

that climate change has reduced wheat yields by 2.9% globally between 1980 and 2008, when 

taking account of changes to temperature, precipitation and CO2 levels (Lobell et al., 2011). As such, 

an understanding of which traits are beneficial to crop yield under particular environmental 

conditions is required to adapt agricultural systems as the climate changes.  

  

  

Figure 1. 1 Yield of maize, rice, soybean and wheat between 1961 and 2014 

Annual population growth over the same period is also shown. Generated using FAO stat 

http://faostat3.fao.org/compare/E accessed on 21/02/16 
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Together, maize, rice wheat and soybean provide nearly two thirds of the worlds calories (Ray et 

al., 2013). Not only that, but wheat and rice are important sources of dietary protein, providing 

21% and 13% of protein respectively (Shiferaw et al., 2013).  These crops are therefore important 

targets for yield improvement. The increase in global yield of wheat, rice, soybean and maize 

between 1961 and 2014 is shown in Figure 1.1, alongside population growth.  The adoption of new 

varieties and technologies in the green revolution of the 1960s allowed large increases in yield 

potential of wheat and rice (Evenson & Gollin, 2003). However, yield improvement has since been 

declining year on year. Between 1966 and 1979 wheat yields increased on average by 3.6% per 

year, and between 1984 and 1994 by only 2.8% (Dixon et al., 2008). A 2013 study showed that 

between 1989 and 2008 global rates of yield increase for wheat had fallen to just 0.9% per year. 

Continuing at this rate, wheat yields will only have increased by 38% by 2050 (Ray et al., 2013). 

Similarly with rice production, current rates of yield improvement will lead to an increase in 

production of only 42% over the next 3-4 decades.  Furthermore, an in depth analysis of global crop 

yields by region between 1961 and 2008 indicates that yields are now stagnating in 37% of wheat 

and 35% of rice growing regions (Ray et al., 2012). The identification of novel ways to improve yields 

of wheat, rice, and other major food crops, is now of high importance to ensure future food 

security. Wheat provides 41% of calories and 50% of proteins from total cereal consumption daily 

(Shiferaw et al., 2013) making it an important target for yield improvement.  

 

1.2 Targets for wheat yield improvement 
Grain yield in wheat is related to the proportion of carbon allocated to grain, termed harvest index, 

and how much biomass the plant can produce (Figure 1.2). Since the 1960s significant increases in 

wheat harvest index (HI) have been achieved, for example through the use of dwarfing genes 

(Mathews et al., 2006). This increased allocation of carbon to grain has resulted in great 

improvements to yield (Shearman et al., 2005). However, whilst genetic variation of HI does still 

exist in elite germplasm in the range of 0.4-0.55 (Sayre et al., 1997; Shearman et al., 2005), many 

now argue that we are approaching the maximum possible HI, and scope for further improvement 

is limited. More recent increases in yield potential have been associated with increasing biomass 

(Fischer & Edmeades, 2010), suggesting that future efforts should focus on this portion of the yield 

equation (Furbank et al., 2015; Parry et al., 2011).  

The amount of biomass produced is determined in part by crop radiation use efficiency (RUE), which 

is normalised on the amount of light that can be intercepted or absorbed by the crop and how 

efficiently this light can then be used (Furbank et al., 2015). Photosynthesis (net canopy carbon 

gain) in particular is now the target of many projects aiming to increase yield, as research indicates 

that substantial improvements to photosynthetic efficiency are still possible within elite wheat 
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germplasm (Long et al., 2006; Zhu et al., 2010).  There are over 60 metabolic reactions in 

photosynthetic carbon metabolism (Zhu et al., 2007). Ribulose-1, 5-bisphosphate 

carboxylase/oxygenase (Rubisco) is the enzyme that carries out the reaction that fixes CO2 during 

photosynthesis. As the primary carboxylase in C3 plants it has a key role in photosynthesis. As such, 

the genetic modification of this enzyme and its regulators, to improve efficiency of carbon fixation, 

is currently the focus of many researchers (Parry et al., 2007).  

 

In addition to the carboxylation of CO2, Rubisco catalyses the oxygenation of O2. Its activity and 

efficiency of carbon fixation is therefore sensitive to CO2 concentration. One approach to improve 

photosynthesis is to engineer Rubisco such that its specificity to CO2 relative to O2 is increased. This 

would decrease photorespiration, potentially increasing photosynthesis (Zhu et al., 2010). A study 

that simulated canopy photosynthesis found that average Rubisco specificity in C3 crops is not 

optimised to current levels of atmospheric CO2 at 400 ppm, finding that it is instead more suited to 

pre-industrial CO2 levels of around 220 ppm. Their work suggests that should C3 Rubisco specificity 

be optimised for the current atmosphere, the same amount of Rubisco could assimilate around 

10% more carbon (Zhu et al., 2004). However, it has been found that where the specificity of 

Rubisco is increased, the rate of carboxylation becomes lower (Bainbridge et al., 1995; Zhu et al., 

2004). This trade-off means that how Rubisco is engineered will depend on the target species, 

environment, and desired result. This could vary even between organs of the same plant and within 

crop canopy. For example, further down the canopy where photosynthesis is light limited, 

increased Rubisco specificity to CO2 could increase photosynthesis. However in the upper leaves 

that are not light limited, increased specificity could lower the rate of light saturated 

photosynthesis. Therefore ideally Rubisco with a fast catalytic rate would be present at the top of 

the canopy, becoming more specific moving down (Zhu et al., 2004).  

 

Improvement of Rubisco specificity could be achieved through the genetic engineering of crop 

plants to express Rubisco of another species. For example expressing highly specific Rubisco of red 

alga Griffithsia monolis in C3 crops could allow increases in photosynthesis of 27% if expressed in 

lower regions of the canopy (Long et al., 2006; Zhu et al., 2004). However, genetically modifying a 

plant to express the Rubisco of another species is a challenge. Each of the subunits of Rubisco is 

coded from a different region in the genome and expression of each component needs to be 

coordinated to produce a functional enzyme (Zhu et al., 2010). Therefore this has yet to be applied 

successfully in the field.  
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Another option is the introduction of the C4 mechanism to concentrate carbon from crops such as 

maize and sorghum into C3 crops such as wheat and rice. This results in a reduction or removal of 

photorespiration, increasing efficiency of photosynthesis. Although to date there has been limited 

success in wheat, this technique has been demonstrated in oat-maize addition lines. Introduction 

of maize chromatin into C3 oat plants resulted in the successful expression of C4 photosynthetic 

enzymes, although limited change was recorded in photosynthesis in the addition lines indicating 

there is substantial progress yet to be made (Kowles et al., 2008). Other projects have focused on 

increasing the photosynthetic capacity of non-leaf plant tissue, which can contribute up to 25% of 

carbon to grain filling (Gebbing & Schnyder, 1999).  

 

Research of this kind into the intracellular processes relating to photosynthesis is important for 

achieving higher RUE. However, this needs to be done in parallel with research focussed on crop 

structure and morphology. RUE represents the biomass produced per unit radiation intercepted 

(Figure 1.2). However, light interception in general has been neglected in the past and not been 

selected for in breeding programmes (Reynolds et al., 2011).  This is therefore an important target 

for improvement that could allow further increases in yield when applied in conjunction with higher 

light use efficiency. It should be noted that in sub-optimal environments, resistance to biotic and 

abiotic stress is of higher priority for yield. For example, in drought prone environments yield is 

considered to be equal to water use x water use efficiency x HI (Reynolds & Tuberosa, 2008). This 

will need to be a factor taken into consideration increasingly as the climate changes and more 

regions of the world experience extremes of climate.   

 

Figure 1. 2 Grain yield components 

Grain yield can be improved through increasing the harvest index, or increasing 

biomass. Adapted from Furbank et al., (2015) 
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1.3 Advances in wheat breeding genetics 
To date, genetic progress concerning yield has primarily been achieved through crossing varieties 

with favourable traits and then selecting offspring that display a desired phenotype (Reynolds et 

al., 2011). However, over the past two decades great advances in molecular biology have been 

made, enabling significant improvements in the understanding of crops at the genetic level (Slafer, 

2003). The subsequent development of numerous resources, such as high throughput sequencing 

and new bioinformatics tools, will assist in identifying beneficial genes for crop improvement. A 

thorough knowledge of the genes that confer beneficial traits will also enable the more efficient 

assembly of new genotypes and speed up the breeding process. However, an accompanying 

understanding of traits at the physiological level is vital for identifying interactions between traits 

and developing selection criteria (Araus et al., 2002; Jackson et al., 1996; Slafer, 2003). 

Furthermore, finding a genetic basis for more complex traits remains difficult. In these instances, a 

clear understanding of plant physiology is of even greater significance. Moving forwards, a fully 

integrated approach is required, whereby both the underlying genetics and physiology of desirable 

traits are understood.  

 

1.4 Improving wheat genetic diversity 
One issue currently facing wheat breeding is lack of genetic diversity from which to select beneficial 

traits. The expansion of this gene pool is now a priority for the advancement of wheat yield. This 

problem is a result of the domestication process, an understanding of which requires knowledge of 

the history of wheat (Figure 1.3). The cultivated wheat varieties grown today originate from the 

tetraploid wild emmer Triticum turgidum species dicoccoides (AABB), which is the result of the 

hybridization of T. urartu with a member of the Sitopsis family that is as yet unknown (Haider, 

2013).  The domestication of wheat from this wild progenitor began around 10,000 years ago in the 

Fertile Crescent (Nesbitt & Samuel, 1998; Tanno & Willcox, 2006), and tetraploid durum wheat (T. 

durum) was directly derived from selecting wild emmer (T.dicoccoides) for desired traits (Haudry et 

al., 2007).  A second hybridization event, whereby T. dicoccoides was crossed with a wild diploid 

grass Aegilops tauchii (Jia et al., 2013), resulted in allohexaploid bread (or common) wheat 

(T.aestivum). Over the past 10,000 years, the refinement of T. durum and T. aestivum species for 

their use in agriculture and as a food source has resulted in the selection of a narrow range of traits 

and physiological divergence from the wild progenitors. For example, reduced seed shattering, free 

threshing and a soft glume were selected for early on as traits that improved yields and made 

harvest more efficient (Tzarfati et al., 2013). Subsequently, components of seed size and shape 

(Eckardt, 2010; Golan et al., 2015) and plant stature (Borojevic & Borojevic, 2005) have also been 

selected for, amongst other characteristics contributing to yield. It is a side effect of this selection 

process that potentially beneficial alleles have been lost from the gene pool. Analysis of nucleotide 
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diversity within the genome of T. durum and T. aestivum indicate an overall respective loss of 

genetic diversity of 84% and 69% in comparison to T.dicoccoides (Haudry et al., 2007). The loss of 

diversity is particularly evident within the T. aestivum D genome, nucleotide diversity of which has 

reduced by around 90% due to inability to freely backcross. This presents a problem whereby there 

is a lack of potential alleles within the gene pool for yield improvement.  

 

A solution to this problem is to out-cross modern wheat varieties to other species within the 

Triticeae tribe (Skovmand et al., 2001). This provides a source of novel traits that could increase 

yields, disease resistance, and resilience within marginal environments (Zamir, 2001). For example, 

introgressions from the Secale cereale (rye) genome, in particular the short arm of chromosome 1R 

(1RS), have been widely used in breeding programmes since the 1930s (Reynolds et al., 2011). 

Wheat varieties containing the 1RS translocation have been shown to be higher yielding, drought 

tolerant and have high nitrogen use efficiency (Ehdaie et al., 2003). A more recent project at the 

Centre for Wheat and Maize Improvement (CIMMYT), Mexico, has been the development of 

synthetic wheat varieties. This involved crossing T. dicoccoides and Ae. tauschii to develop over 

1000 synthetic wheat lines (Dreisigacker et al., 2007; Rana et al., 2013; Warburton et al., 2006). 

These lines can be crossed with elite wheat varieties to expand genetic variation and introduce 

desirable traits such as improved disease resistance and tolerance to biotic and abiotic stresses. 

Promising effects on yield, disease resistance and genetic diversity have been demonstrated in 

Mexico and China after incorporating these synthetic varieties into breeding varieties (Dreisigacker 

 
Figure 1. 3 The history of modern wheat 

T. durum is a diploid (AABB), and T. aestivum is a hexaploid (AABBDD). This 

polyploidy was a result of hybridization events shown in the schematic.  
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et al., 2007; Yang et al., 2009). More recently, a new synthetic wheat programme has been 

developed at the National Institute for Agricultural Botany (NIAB), UK, which targets a distinct set 

of Ae. tauchii accessions not incorporated into the CIMMYT programme.  

 

Whilst the synthetic wheats offer great potential, in particular where the D genome is concerned, 

the wild ancestors of wheat have been used for some time to introduce advantageous traits into 

cultivated germplasm. For example, T. dicoccoides has already been successfully used to confer 

resistance to a number of diseases in cultivated wheat including stripe rust (Fahima et al., 1998; 

Nevo et al., 1986), powdery mildew (Nevo et al., 1985), and stem rust (Nevo et al., 1991). Research 

has also been carried out into the use of T. dicoccoides for improvement of more complex traits 

such as photosynthetic rates (Carver et al., 1989; Evans & Dunstone, 1970) and increased grain 

protein content (Gerechter-Amitai & Stubbs 1970; Uauy et al., 2006; Uauy et al., 2006). However, 

whilst this remains a promising area of research, there has to date been limited success in the field 

regarding these more complex traits. One trait for which there is high variability within wild wheat 

progenitors such as T. dicoccoides and Ae. tauchii, is epicuticular wax type, the focus of this PhD.  

 

1.5 Epicuticular wax  
Epicuticular waxes are an important component of the plant cuticle (Edwards et al., 1996) which is 

primarily composed of cutin and waxes (Figure 1.4). Intracuticular waxes are embedded within the 

complex polymer matrix of the cuticular layer and cuticle proper, whilst epicuticular waxes coat the 

external surface (Kerstiens, 2007; Kolattukudy, 1980; Post-Beittenmiller, 1996). The cuticle is the 

first point of contact between the plant and the external environment and as such has a number of 

key roles in plant physiology. These include influencing plant-insect interactions (Cervantes et al., 

2002; Morris et al., 2000; Ni et al., 1998), providing protection from certain fungal pathogens (Tsuba 

et al., 2002), reflecting radiation within the photosynthetically active and ultra violet spectra 

(Holmes & Keiller, 2002) and reducing excessive water loss from the plant surface (Woodward, 

1998). Given this importance in modulating the plant-environment interaction, specific adaptations 

of the cuticle and associated components to particular environmental conditions would be 

expected to be beneficial for plant fitness. For example, quantity of epicuticular wax has been 

shown to increase under drought stress (González & Ayerbe, 2010; Uddin & Marshall, 1988), whilst 

plants in high irradiance environments can display more reflective epicuticular waxes (Close et al., 

2007; Richardson et al., 2003). Accordingly, the maintenance of a range of epicuticular wax 

phenotypes within a species might be expected, as is the case in the wheat wild relatives. However, 

this is not the case in cultivated wheat, where variation in epicuticular wax is limited. In fact, the 

same phenotype persists in wheat growing regions around the globe. Given the role of the 
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epicuticular waxes in plant physiology, in particular their association with water and radiation use, 

they are a potential target for increasing biomass and adapting wheat to variable environmental 

conditions. The following sections of this chapter present an overview of epicuticular wax 

morphology and biochemistry. This will enable understanding of the possible epicuticular wax 

phenotypes in wheat, and how this trait might be used in breeding programmes.  

 

1.6 Epicuticular wax synthesis 
There are many different types of epicuticular wax, each varying in biochemistry and morphology 

dependant on plant ecology. The most common compounds in plant waxes are straight chain, 

saturated primary alcohols, aldehydes and fatty acids of predominantly even chain length. 

Secondary alcohols n-alkanes, and ketones are also present of largely odd chain length. 

Hydrocarbon chains can be branched or unsaturated, with odd or even chain lengths between 20-

34 carbons. A large number of compounds can make up epicuticular wax, and accordingly a variety 

of morphological structures have been identified, determined to a large extent by wax composition. 

 
Figure 1. 4 Components of the plant cuticle 

The plant cuticle main components are cutin and waxes. Both intracuticular waxes 

within the cuticle matrix and epicuticular waxes covering the plant surface are a key 

cuticular component. From Antoniou Kourounioti et al., (2013) 
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Some examples of these morphologies, including plates, tubules, filaments and crusts, are shown 

in Figure 1.5 (Koch & Ensikat, 2008).  

Despite the variety of epicuticular wax types across the plant kingdom, the biosynthetic pathways 

involved in wax production are relatively well conserved across all plant species (Post-Beittenmiller, 

1996). The first step of epicuticular wax synthesis takes place in the plastids of the epidermal cells, 

where the fatty acid synthase multi-enzyme complex adds activated units of malonyl CoA to a 

carbon acceptor in a cycle of reactions that generates acyl chains of 16 or 18 carbons (C16/ C18) in 

length. Depending on the tissue and developmental stage, these C16/C18 products will then be 

used for synthesis of glycerolipids, waxes, cutin or suberin (Post-Beittenmiller, 1996; von Wettstein-

knowles, 2012). Partitioning between these various destinations also depends on chain length and 

saturation. For instance, unsaturated C18 chains are used for glycerolipid, cutin and suberin 

biosynthesis whilst saturated C18 chains are used for cuticular wax biosynthesis. The mechanisms 

regulating this partitioning, such as enzyme specificity or substrate availability, are likely to be a key 

regulatory point controlling epicuticular wax quality and quantity (Kolattukudy, 1980; Post-

Beittenmiller, 1996; von Wettstein-knowles, 2012). 

 
Figure 1. 5 Examples of epicuticular wax morphology 

Scanning Electron Microscope images of (a) Crusts (bar = 100 µm), (b) filaments (bar = 

10 µm), (c & d) tubules (bar = 1 µm), (e) plates (bar = 10 µm), and (f) platelets (bar = 1 

µm). Each structure is normally around 0.2-100 µm in size. Figure from Koch & Ensikat 

(2008). 
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The C16/C18 chains destined for cuticular wax synthesis are exported from the epidermal cell 

plastids and transported to the endoplasmic reticulum of the epidermal tissues (Kolattukudy, 1968; 

Lessire et al., 1982; Whitfield et al., 1993). Here, very long chain fatty acids (VLCFAs) of C20-C34 are 

generated by elongase enzyme complexes (Evenson & Post-Beittenmiller, 1995; Whitfield et al., 

1993) and serve as precursors to the three parallel pathways generating epicuticular wax 

components. Figure 1.6 shows a simplified diagram displaying the major steps, products and 

intermediates of the three pathways (a) decarbonylation, (b) acyl reduction and (c) β-ketoacyl-

elongation. Each pathway is responsible for contributing a number of different compound classes 

to final epicuticular wax composition. A number of other compounds not shown in Figure 1.6 are 

also produced via these pathways, for example very long chain esters, triterpenoids, flavenoids and 

phenolics (von Wettstein-knowles, 2012; Post-Beittenmiller, 1996; Koch & Ensikat, 2008). However 

these are present in much smaller quantities. The compounds synthesised in the endoplasmic 

reticulum via these three pathways are then translocated to the plasma membrane and eventually 

to the cell wall and outer surface of the plant (Samuels et al., 2008).   

 

 

Figure 1. 6 The three major pathways of epicuticular wax biosynthesis 

The major steps, products and intermediates in the three epicuticular wax biosynthetic 

pathways of decarbonylation, acyl reduction and β-ketoacyl elongation. Figure from Post-

Beittenmiller, (1996). 
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It is thought that all three of the biosynthetic pathways detailed in Figure 1.6 are found in the 

epidermal tissues of most plant species. It is the relative contribution of each pathway that varies 

between organs and species, creating distinct epicuticular waxes. Additionally, the genetics 

determining how, when, and where these pathways are expressed within the plant will vary 

considerably. Minor alterations to wax biochemistry can result in significant changes to visual 

appearance and potentially modify the properties of the epicuticular waxes. 

 

1.7 Glaucousness in cereal crops 
Wheat, and other temperate grasses such as barley, can display a glaucous phenotype, meaning 

the plants have layer of visible epicuticular wax covering the external surfaces. This gives the plant 

a distinctive bluish-grey colouring. The opposing phenotype, non-glaucous, is used to describe 

plants that lack these visible waxes. The resulting appearance is bright green, also termed 

viridescent (Figure 1.7).  The major biochemical difference between these two wax phenotypes is 

a change in expression of the β- ketoacyl- elongation pathway (Figure 1.6c). The glaucous 

epicuticular waxes in wheat contain β-diketone and OH- β-diketone compounds, which result in 

the formation of wax tubules (Figure 1.8b) that protrude from the plant surface (Baker, 1982; 

Meusel et al., 2000). Non-glaucous waxes lack these products from the β- ketoacyl- elongation 

pathway, resulting in the formation of wax platelets shown in Figure 1.8a (Bianchi & Figini, 1986; 

King & von Wettstein-Knowles, 2000). This change in morphology alters light scattering from the 

plant surface, hence determining visual appearance.  

 

Figure 1. 7 Non-glaucous and glaucous wheat in the field 

The non-glaucous wheat on the left lacks visible waxes exhibiting a bright green, 

viridescent phenotype. On the right are glaucous wheat plants, with a bluish-grey 

appearance and visible waxes.  
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Wax morphology and composition can also determine visual appearance for other cereal crops such 

as maize and sorghum. Glossy mutants of maize have a more viridescent appearance than the wild 

type. In contrast to wheat, rather than complete absence of a compound class, both wild type and 

mutants contain waxes composed of n-alkanes, aldehydes, alcohols and esters, just in differing 

proportions (Bianchi et al., 1979). Consequently, rather than the distinct morphologies displayed in 

Figure 1.8, the same wax crystalline structures can be identified in both glossy mutants and wild 

type maize, but these differ in density and distribution. For example, 40% of the surface of wild 

type maize has been found to be covered in crystalline wax structures, whereas in glossy mutants 

this is in the region of 10-18% (Beattie & Marcell, 2002). Another commonly grown crop, sorghum 

can have a waxy bloom (glaucous), or have a bloomless appearance (non-glaucous). Similarly to 

maize, no compound class or morphological structure is clearly absent from the epicuticular waxes 

of bloomless plants, although bloomless plants do tend to have lower quantities of C16-C34 fatty 

acids, in particular C28 and C30 (Jenks et al., 2000).  This comparison across wheat, maize and 

sorghum demonstrates that different underlying wax biochemistries can result in very similar visual 

phenotypes.  

 

1.8 Epicuticular wax genetics in wheat 
The majority of cultivated wheat varieties display a glaucous phenotype, and non-glaucousness is 

rare in elite varieties. Conversely, wild progenitors of wheat such as T. dicoccoides and Ae. Tauchii 

show wide variation in glaucousness, indicating that genetic diversity for epicuticular wax has been 

lost during domestication. Five genes are currently known to determine whole plant glaucousness 

in wheat (Figure 1.9). Given the polyploid nature of wheat, and redundancy in the genome, these 

 Figure 1. 8 SEM images of wax platelets and tubules 

The wheat flag leaf abaxial surface of (a) a non-glaucous plant showing platelet 

epicuticular wax structures and (b) a glaucous plant with visible wax showing the 

tubular wax structures that form in the presence of β-diketones. 
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genes are present as homologues on multiple chromosomes, with a number of genes conferring 

the same phenotype.  

 

WAX-1 (W1), on the short arm of chromosome 2B (2BS) is a dominant gene, presence of which 

results in a whole plant glaucous phenotype (Allan & Vogel, 1960; Tsunewaki, 1964). Inhibitor of 

Wax -1 (Iw1), also on 2BS, is a dominant inhibitor of glaucousness, and is dominant over W1. 

Presence of Iw1 results in the absence of β-diketone and OH- β-diketone compounds from all aerial 

organs, conferring a non-glaucous phenotype (Adamski et al., 2013; Driscoll & Jensen, 1964; Jensen 

& Driscoll, 1962). A non-glaucous phenotype can arise from having two non-functional copies of 

W1 (w1/w1), or one copy of Iw1 (Iw1/W1). Iw1 and W1 are very close on chromosome 2BS, but 

Tsunewaki & Ebana (1999) showed recombination between the two loci, proving that they are not 

allelic. As such the exact interaction between W1 and Iw1 appears to be complex and is to date not 

fully understood. However, W1 has been recently been cloned in wheat (Adamski & Uauy, personal 

communication), which should allow further progress in the understanding of this interaction. 

Homologous genes with the same effect on the epicuticular waxes, Iw2 and W2, are found on the 

short arm of chromosome 2D (Liu et al., 2006; Yoshiya et al., 2011; Zhang et al., 2013). Both Iw1 

and Iw2 can inhibit the action of both WAX genes, so conferring non-glaucousness in a range of 

genetic backgrounds (Tsunewaki & Ebana, 1999). However, the Inhibitor of Wax genes are thought 

to be either absent, or present in a non-functional form, in the majority of cultivated wheat 

germplasm. More recently W3 has been identified on chromosome 2BS, thought to be closely 

linked to W1 and complement the action of W1 and W2 (Zhang et al., 2015). 

 

 
Figure 1. 9 Genes determining epicuticular wax in wheat 

W1, W2 and W3 confer a glaucous phenotype in wheat, whilst Iw1 and Iw2 act as glaucous 

inhibitors. The presence of these wax-inhibiting genes confers a non-glaucous phenotype. 

Other genes also modify the epicuticular waxes.  
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In addition to these wax genes influencing whole plant glaucousness, a number of ‘other wax 

modifiers’ (Figure 1.9) have been identified that alter glaucousness of individual organs. For 

example, Iw3, mapped to the short arm of chromosome 1B, only inhibits glaucousness in the spike, 

with β-diketone compounds still synthesised in all other aerial organs (Wang et al., 2014). Another 

example is a QTL, named Qw.aww-3A, identified on chromosome 3A, presence of which results in 

visibly more waxy flag leaves (Bennett et al., 2012).  

 

1.9 The effect of glaucousness on wheat physiology and yield 
The genetics of glaucousness and precise interaction between the genes is still not fully understood. 

Much of the research in this area is relatively new and rapidly progressing. However, the effect of 

glaucousness on crop physiology and yield has been studied for some time in a number of cereal 

crops including wheat, barley and sorghum. Glaucous plants of a number of crop species have been 

shown to be between 5 and 30% higher yielding than non-glaucous varieties of the same species 

(Clarke & McCaig, 1982; Febrero et al., 1998; Jefferson et al., 1989; Johnson et al., 1983.; Merah et 

al., 2000; Premachandra et al., 1994; Richards et al., 1986). In addition, glaucous plants have 

repeatedly been found to reflect more incoming light within the PAR, UV and infrared spectra than 

non-glaucous (Febrero et al., 1998; Holmes & Keiller, 2002; Jefferson et al., 1989; Johnson et al., 

1983). This characteristic has been shown to result in cooler canopies (Jefferson et al., 1989; 

Mondal et al., 2014; Richards et al., 1986), and could provide protection from excessive PAR and 

UV radiation (Close et al., 2007; Mohammadian et al., 2007; Richardson et al., 2003). However, in 

some environments this could present a disadvantage in terms of reduced light interception 

(Febrero et al., 1998). Less consistent results have been obtained regarding water use efficiency 

(WUE). Work in wheat indicate that glaucous varieties may have higher WUE (Richards et al., 1986), 

which would allow better growth within a water-stressed environment. However, there is 

disagreement on this, with some work indicating that over the long term, glaucousness actually 

reduces WUE (Febrero et al., 1998; Merah et al., 2000; Monneveux et al., 2004), and a few studies 

reporting no difference in WUE between glaucous and non-glaucous lines (Adamski et al., 2013; 

Johnson et al., 1983). These multiple effects on yield and physiology will be discussed in more depth 

within Chapters 3-6.  

 
With potential implications for RUE, yields, and WUE, the effects of glaucousness are important in 

the context of current wheat breeding. However, there is a gap in this existing literature. A large 

proportion of the studies regarding glaucousness in cereal crops were carried out in a 

Mediterranean environment. Cereal crops are grown across the globe in diverse regions. Given the 

importance of the epicuticular waxes in terms of plant interaction with the environment, a blanket 

application of epicuticular wax type across growing regions may not be the most productive 
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approach. For example, more recent work in wheat suggests that glaucousness may only increase 

yields under water stressed conditions (Merah et al., 2000). In fact, the non-glaucous phenotype 

has been reported to confer a significant yield benefit under optimum growing environments such 

as the UK of up to 5% (Merah et al., 2000; Simmonds et al., 2008). An additional problem with 

existing work regarding epicuticular waxes in cereal crops is lack of defined germplasm. There are 

many forms of epicuticular wax, with wide variation in biochemistry, morphology and underlying 

genetics. Each of these factors is likely to affect wax properties and plant physiology, but have often 

not been specified in past studies. Therefore it is of high priority that the genetics and biochemistry 

of epicuticular wax are characterised alongside any physiology work. This would allow better 

comparison between studies and an understanding of under which circumstances specific 

epicuticular wax genes could be of benefit.  

 

1.10 Research aims 
To address these issues, this PhD will focus on the specific Inhibitor of Wax gene, Iw1, which derives 

from T. dicoccoides (Simmonds et al., 2008). Yield increases of around 2.4 - 5.6% have been 

associated with Iw1 in UK germplasm (Simmonds et al., 2008). Iw1 has also been associated with 

significantly delayed senescence (Simmonds et al., 2008), and shown not to affect water use 

efficiency within a UK environment (Adamski et al., 2013). This latter study also characterised the 

genetics of Iw1, and precise action on epicuticular wax biochemistry in UK germplasm (Adamski et 

al., 2013). This potential to significantly increase yields and the availability of well-defined 

germplasm makes Iw1 an ideal candidate to further assess the effect of non-glaucousness on 

physiology and yield in more detail. Using near isogenic lines with and without Iw1, I aim to answer 

the question: Does non-glaucousness, as conferred by Iw1, confer an advantage for yield and 

physiology of UK wheat?  

 
To answer this overarching question, a number of hypotheses will be addressed across the results 

chapters: 

 In Chapter 3 the Iw1 germplasm will be defined in terms of epicuticular wax biochemistry, 

and potential yield effects conferred by Iw1 will be investigated to address the first 

hypothesis: (i) Iw1 increases yield and delays senescence across a wide range of UK winter 

wheat varieties. 

 In Chapter 4 I will address the spectral properties of Iw1 NILs to explore effects of non-

glaucousness on RUE and test the hypotheses that (i) the reduced reflectance of non-

glaucous wheat leaves and canopies makes more PAR available to photosynthetic tissues, 

and that (ii) non-glaucous canopies have a higher temperature in the field.  



16 
 

 Water use efficiency, a trait often associated with glaucousness, will then be addressed in 

Chapter 5, with the hypothesis that (i) there is no effect of non-glaucousness as conferred 

by Iw1 on water use efficiency within a UK (East of England) environment.  

 Finally, the role of glaucousness in determining plant interaction with the environment 

when PAR availability is altered will be explored in Chapter 6. These facets will be studied 

both through exposure to intense light levels in a controlled environment, and a long term 

study whereby Iw1 NILs were exposed to long-term low level irradiance in the field. I 

hypothesise that (i) the increased reflectance of glaucous epicuticular waxes provides 

protection when exposed to high levels of light, and that (ii) reduced reflectance of non-

glaucous epicuticular waxes would prove beneficial under low solar-irradiance.  
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Chapter 2: Materials and Methods 
Detailed within this chapter are the materials and methodology that have relevance throughout 

the thesis. Methods specific to each part of the project are described within the relevant results 

chapters (Chapters 3 – 6).  

 

2.1 Germplasm 
 

2.1.1 Near Isogenic Lines (NILs) 
The non-glaucous hexaploid UK winter wheat variety Shamrock is a bread making wheat (Nabim 

group 1) derived from UK adapted germplasm (CWW 4899/25) crossed with a T. dicoccoides 

derivative (Comp Tig 323-1-3 M). Shamrock was crossed to the glaucous variety Shango, also a 

hexaploid UK winter wheat, to create a doubled haploid (DH) population containing 87 lines, as 

detailed by Simmonds et al., (2008). To understand the effect of Iw1 in multiple genetic 

backgrounds, a non-glaucous Shamrock x Shango DH line containing around 30% of alleles from 

Shamrock including Iw1 was crossed to six hexaploid UK winter wheat varieties that confer the 

glaucous phenotype: Malacca, Alchemy, Hereward, Xi19, Robigus and Einstein (Table 2.1). These 

six varieties represent a range of bread and biscuit making wheats with varying properties. 

Hereward is the lowest yielding of the six varieties, but is of high quality, whilst the highest yielding 

of the group, Xi19, also has the lowest grain quality. Alchemy is the most disease resistant of the 

six varieties, with the highest yield in the untreated trial.  

 

Near isogenic lines (NILs) were created through selection using six molecular markers (full details 

of markers are described in Adamski et al., 2013). Shamrock was crossed to each of the six glaucous 

varieties, and plants that were heterozygous at the Iw1 interval (non-glaucous) were selected and 

subsequently backcrossed to the recurrent parent variety (e.g. Hereward). Plants were backcrossed 

 

Table 2. 1 Quality and yield traits for relevant wheat germplasm 

Traits of Hereward, Malacca, Alchemy, Xi19, Robigus and Einstein from the HGCA recommended 

list 2009/10 (AHDB, 2009) 
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twice, and those that were heterozygous across the complete region self-pollinated to generate 

four streams of homozygous BC2F2 NILs, 87.5% genetically identical in the background. One stream 

of BC2F2 NILs was taken forwards and two more backcrosses were made. The resulting BC4F1 plants 

were self-pollinated to generate two streams of homozygous BC4F2 NILs that were 96.9% genetically 

identical in the background. Germplasm of both the BC2F2 and BC4F2 NILs was bulked up at Church 

Farm in Hege-90 plots (1 m2) in the 2009-2010 field season for BC2F2 and 2011-2012 for BC4F2. 

Throughout this thesis the BC4F2 NILs were used for all measurements; both NIL streams were used 

for yield, and one stream was selected for all other measurements (the streams displayed the same 

epicuticular wax phenotype). BC2F2 NILs were only used in the 2011-2012 yield trials.  

 

The nomenclature used through-out this thesis to refer to the NILs uses Iw1+ for non-glaucous NILs 

that contain the Shamrock introgression, and iw1- for glaucous NILs that lack the Shamrock 

introgression. Where NILs of multiple varieties are compared simultaneously a slight variation on 

this is used. For Malacca NILs, MS (Malacca x Shamrock) is followed by either ‘+’ or ‘-‘, donating 

Iw1+ or iw1-. Accordingly, NILs of the other varieties are named AS+/- (Alchemy), HS+/- (Hereward), 

XS+/- (Xi19), ES+/- (Einstein) and RS+/- (Robigus).  

 

2.1.2 Recombinant Lines 
All non-glaucous (Iw1+) NILs contained an introgressed region from Shamrock on the short arm of 

chromosome 2B. This regions contains an unknown number of genes. Therefore in order to map 

specific traits more accurately within the introgressed regions a number of recombinant lines were 

also generated. The recombinant lines were generated at the same time as the NILs. After selfing 

the BC4F1 plants, BC4F2 individuals with recombination across the region (as opposed to being 

homozygous across the complete region as with the NILs) were selected as recombinants and 

genotyped as explained below.  

 

Genotyping recombinant lines 

To genotype the Hereward and Alchemy recombinant lines, DNA was extracted from seedlings at 

around the two-leaf stage for two biological replicates per recombinant. Leaf tissue was harvested 

and placed in 1.2 mL round collection tubes in a 96 well collection plate (AB-0564, Thermo Fisher 

Scientific ABgene, Massachusetts, USA), each tube containing 1 x 3 mm tungsten bead (69997, 

Quiagen, Hilden, Germany). Tissue was then freeze dried for 48 hr, or until completely dry. Sealing 

mats were then placed over the plates (AB-0674, Thermo Fisher Scientific ABgene, Massachusetts, 

USA), and samples ground to fine powder in a Spex GenoGrinder 2000 (SPEX sample prep, 

Stanmore, UK). Samples were ground for 2 min at 160 strokes per min (20 Hz) and spun in a 

centrifuge (4-15c, Sigma, Dorset, UK) at 2700 rpm for 1 min. Samples were repeatedly ground and 

spun until powder was sufficiently fine. 500 µl extraction buffer (0.1M Tris-HCl, pH 7.5, 0.05 EDTA 
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pH 8.0, 1.25% SDS) preheated to 65 °C was added to each tube in the plate and mixed by pipetting. 

Plates were sealed with clear plastic seals (ABI Thermo Fischer Scientific, Massachusetts, USA) and 

shaken in the genogrinder at 500-700 strokes per min for about 1 min. Samples were incubated at 

65 °C for 1 hr. Subsequently plates were moved to the fridge (4 °C) for about 15 min to cool to room 

temperature, prior to the addition of 250 µl 6M ammonium acetate at 4 °C to each tube in the 

plate. Samples were mixed by pipetting and left for 25 min in the fridge. Cooled plates were 

removed from the fridge and centrifuged for 15 min at 5000 rpm to precipitate proteins and plant 

tissue. 600 µl of supernatant from each tube within the plate was transferred into a new collection 

tube containing 360 µl propan-2-ol and mixed by pipetting. Samples were left for 5 min to allow 

DNA to precipitate, prior to being centrifuged for 15 min at 5000 rpm to pellet the DNA. The 

supernatant was tipped off, and tubes were inverted to allow the remaining fluid to drain off the 

DNA pellet. The pellet was washed in 500 µl 70% ethanol, and centrifuged for 15 min at 5000 rpm. 

The supernatant was again discarded and collection tubes incubated at 65 °C with the lid off to dry. 

The pellet was re-suspended in 100 µl ddH2O and sealed with a mat. The plate was then vortexed 

and left at 65 °C to dislodge the pellet. 1 in 10 dilution plates were made using ddH2O.  

 

A total of twenty SNP based KASPar markers for chromosome arm 2BS were developed for the 

Hereward and Alchemy recombinant lines. Primer sequences for KASPar markers are shown in 

Appendix A1. KASPar assays were performed by James Simmonds on extracted DNA from seedlings 

of Hereward and Alchemy recombinant lines in 384 well plates. Each well contained 2.5 µL KASP 

master mix (LGC, Middlesex, UK), 2.5 µL of DNA, and 0.07 µL primer mix. A Mastercycler pro 384 

(Eppendorf, Stevenage, UK) was used to carry out the PCR using the following program: Start 

temperature of 95 ⁰C maintained for 5 min, followed by ten touchdown cycles, whereby 

temperature was held at 95 ⁰C for 20 sec followed by a touchdown at 65 ⁰C for 25 sec, which was 

reduced by 1 ⁰C per cycle. 30-40 cycles of amplification (95 ⁰C for 10 sec, 57 ⁰C for 60 sec), followed 

this. Following PCR, a SAFIRE Fluorescent Scanner (Tecan, Männedorf, Switzerland) was used to 

read the plates, and output was viewed using KlusterCaller (LGC, Middlesex, UK). Genotypes of all 

Hereward and Alchemy recombinant lines are shown in Appendix A2 and A3.  

 

2.2 Glasshouse grown material 
Where plant material was grown in a glasshouse the following procedure was followed. Seeds were 

placed on damp filter paper in petri dishes and left for 48 hr at 4 °C to germinate. They were then 

incubated at room temperature for 48 hr in the light. Once shoots had started to appear they were 

sown into P60 trays containing peat and sand. This was composed of: 15% grit, 85% fine peat, 2.7 

kg m-3 Osmocote, 0.5 kgm-3 wetting agent (H2Gro, Everris, Geldermalsen, The Netherlands), 4 kg m 

-3 Maglime (Francis Flower, Somerset, UK), 1kg m-3 PG Mix fertilizer (Yara, Lincolnshire, UK, 

www.yara.co.uk) (Borrill et al., 2015). Plants were vernalized at 16 hr light/ 8 hr dark, 6 °C/ 4 °C, for 
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6 weeks and then re-potted into 1 L pots containing cereal mix also described by Borrill et al., 

(2015): 20% horticultural grit, 40% sterilized soil, 40% medium grade peat, 1.3 kg m-3 PG Mix 14-16-

18 (www.yara.co.uk), 1kg m-3 Osmocote Exact Mini, 0.5 Kg m-3 wetting agent (H2Ogro), 3 Kg m-3 

Maglime and 300 gm-3 Exemptor (Bayer, Leverkusen, Germany). Plants were then grown in a 

glasshouse with the temperature maintained at approx. 20 ⁰C during the day, 16 ⁰C night, and 

humidity at 70%, with 16 hr supplementary light per 24 hr cycle. 

 

2.3 Field Trials  
Field trials for yield and physiology were carried out at Church Farm (Bawburgh, Norfolk, NR9; 

52.633477, 1.185645) in harvest years of 2012, 2013, 2014 and 2015. NILs were drilled in Hege-90 

(6 m2) plots in a randomized block design, with five blocks, one replication per block. Full field plans 

for 2013, 2014 and 2015 are shown in Appendix A4. Yield trials were also carried out by wheat 

breeders at at multiple sites across a number of years in East Anglia to assess yield only. These sites 

were: Drinkstone (Suffolk, IP30; 52.221036, 0.866089) in 2012, Dukes (Cambridgeshire, CB10; 

52.042318, 0.311799) in 2012, Ickelton (Cambridgeshire, CB10; 52.070658, 0.174296) in 2012, 

Pampisford (Cambridgeshire, CB2; 52.110779, 0.184817) in 2013, Wolferton (Norfolk, PE31; 

52.827926, 0.45601) in 2012, 2013 and 2014 and Woolpit (Suffolk, IP30; 52.224758, 0.887937) in 

2013. In 2012 Drinkstone and Wolferton used a randomized block design with two blocks only, one 

replication per block. In all other years and breeder locations a randomized block design with four 

blocks, one replication per block was used. At all sites (including Church Farm) BC2 NILs were grown 

in the 2012 trials, and BC4 NILs used in all subsequent years.  

 

2.4 Wheat Growth Stages  
Throughout this PhD the decimal code for measuring wheat growth is used to identify specific plant 

developmental stages (Figure 2.1). This decimal code was first described by Zadoks et al., (1974).  

 

 

Figure 2. 1 The decimal code for wheat growth stages 

This system for describing wheat developmental stages was first described by Zadoks 

et al., (1974) Figure from AHDB (2015) 

 

http://www.yara.co.uk/


21 
 

A number of key growth stages were identified and used as sampling time points throughout this 

PhD. The epicuticular waxes of both Iw1+ and iw1- NILs are identical during the early stages of 

development, all with a non-glaucous appearance. Visible, glaucous, epicuticular waxes develop in 

iw1- NILs between GS31, the start of stem elongation where the first node is detectable, and GS39, 

the final stage of stem elongation just prior to booting. At this point the flag leaf blade is visible. 

There was slight variation between years in terms of glaucous wax development, but this was 

generally at GS32 or GS33 (approximately one week after GS31). Therefore any pre-wax sampling 

was carried out at GS31. The majority of physiological measurements were taken between anthesis 

(flowering) and 14 days post anthesis (DPA). GS61 is the start of flowering, and flowering is 

complete by GS69. Exact date of flowering can be difficult to determine accurately, so where 

appropriate heading date (GS55-GS59) was used as a surrogate, the point at which ¾ of the 

inflorescence of ¾ of the plot are emerged. Maturation (senescence) was defined as the date when 

¾ of the plot are ¾ senesced (between GS87 and GS93). Dates of drilling, heading and maturation 

for harvest years 2013, 2014 and 2015 are shown in Table 2.2. 

 

 

 

2.5 Weather data 
Weather data from Church Farm for 2012-2015 were not available. However, data for temperature, 

relative humidity and precipitation were obtained from the National Institute of Agricultural Botany 

(NIAB) farm (Cambridgeshire, CB24 9N2; 52.242727, 0.107642) to provide a broad comparison 

between years (Figure 2.2). In general 2014 was the warmest year, with the exception of July and 

August, where 2013 reached the highest average temperature. Prior to May 2013 was the coldest 

year, reflected in the late heading date for this harvest year. With the exception of July, 2014 was 

the wettest summer, with the highest total rainfall and average relative humidity (RH).   

 

 

 

 

 

Table 2. 2 Key developmental dates during the harvest years of 2013, 2014 and 2015 

Dates of heading and maturation. Early indicates the date of the first recorded instance at that 

stage, and late is the final date at which that developmental stage was recorded. 
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 Figure 2. 2 Weather data for the East of England for 2013, 2014 and 2015 

Data collected from the NIAB farm weather station (a) average temperature for each month (b) 
average relative humidity for each month (c) total rainfall for each month. 
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Chapter 3: Characterising the yield and wax profile of Iw1 germplasm 
 

3.1 Summary 
The majority of UK wheat varieties display a glaucous phenotype during reproductive growth 

stages, meaning the external surfaces are covered in a layer of visible waxes giving the plant a 

bluish-grey appearance. Shamrock is an unusual variety in that it displays a non-glaucous 

phenotype conferred by the wild emmer gene Inhibitor of Wax 1 (Iw1). Recent work with Shamrock 

suggested that Iw1 conferred a significant yield advantage. Consequently Shamrock was crossed to 

a number of glaucous UK wheat breeding varieties to create near isogenic lines (NILs) differing for 

the presence and absence of Iw1 and investigate this further.  

 

Field trials using the Iw1 NILs over multiple years and locations showed that Iw1 does not confer a 

yield advantage in the majority of varieties tested. Two varieties, Alchemy and Hereward, did show 

an average yield increase associated with the Iw1 introgression of 2.59% and 4.96% respectively. 

However, further analysis with recombinant lines suggests that this yield benefit is attributable to 

a closely linked gene rather than Iw1 itself.  

 

The second component of this chapter describes the composition of the epicuticular waxes of Iw1 

NILs. The meaning of the word glaucousness and the wax composition determining this phenotype 

will vary between environments, species and varieties, even between plants with similar visual 

appearance. Therefore specifically characterising the composition of both the Iw1+ and iw1- NILs 

enables any differences between NILs to be attributed to specific wax components. The major 

component accounting for around 80% of the epicuticular waxes of both Iw1+ and iw1- NILs was 

shown to be primary alcohols The glaucous iw1- NILs had a significant β- and OH-β-diketone 

component, which was absent from the Iw1+ NILs. n-Alkanes were present in both Iw1+ and iw1- 

waxes, accounting for around 50-10% of the waxes. These compounds were slightly upregulated in 

Iw1+ NILs compared to iw1- NILs.  
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3.2 Introduction 
 

3.2.4 The UK wheat variety Shamrock has a non-glaucous phenotype conferred by Iw1 
The UK winter wheat variety Shamrock is a cross between a Triticum dicoccoides derivative and 

adapted UK germplasm. Unusually amongst cultivated wheat, Shamrock lacks the more common 

visible waxes of domesticated varieties, displaying a bright green, non-glaucous phenotype. In 

addition to non-glaucousness, Shamrock has a number of traits that lend it to further study for crop 

improvement. For example it performs consistently over a range of environments in terms of yield, 

making it resilient to changes to agronomy and environmental conditions (Simmonds et al., 2008). 

Non-glaucousness in Shamrock is conferred by the dominant gene Inhibitor of Wax 1 (Iw1). Iw1 is 

located on chromosome 2BS of wild emmer wheat and introgressed into Shamrock. As an epistatic 

inhibitor of glaucousness, Iw1 inhibits the β-ketoacyl-elongation pathway during wax biosynthesis 

(Chapter 1, Figure 1.6c). This eliminates compounds unique to this pathway (β- and OH-β- 

diketones) from the epicuticular waxes.  

 

3.2.5 Delayed senescence and higher yields map to Iw1 
To investigate this non-glaucous trait further, Simmonds et al., (2008) crossed Shamrock with the 

glaucous wheat variety Shango (Figure 3.1) to create a doubled haploid (DH) population. The 

population showed 1:1 segregation for the non-glaucous trait, indicating that the trait was 

controlled by a single gene. Field trials in Norwich, UK, over two seasons (2004-2005 and 2005-

2006) showed that non-glaucous lines had significantly delayed senescence by 1.5 days, and a 

significantly higher yield of 2.4-5.6% compared to glaucous lines. QTL analysis mapped the higher 

yield and delayed senescence to the same location as the non-glaucous trait (Iw1) on chromosome 

2B (Simmonds et al., 2008).  

 

Shamrock 

Shango 

Figure 3. 1 Non-glaucous Shamrock and glaucous Shango in the field 
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Many studies in wheat have reported a positive correlation between delayed flag leaf senescence 

and yield (Gaju et al., 2011; Hawkesford et al., 2013; Kichey et al., 2007; Verma et al., 2004). Grain 

filling in wheat occurs between flowering and senescence. Therefore a longer period of 

photosynthesis after flowering could produce more photosynthates that are transferred to the 

grain increasing yields. This was suggested by Simmonds et al., (2008) as the mechanism by which 

yield was increased in the non-glaucous DH lines, although how the epicuticular waxes might 

determine senescence was not explored. However, there is evidence to show that under certain 

conditions photosynthesis during grain filling may not be the limiting factor for grain yield (Borrás 

et al., 2004; Reynolds et al., 2005). A study in wheat found that, whilst the percentage of flag leaf 

area remaining green 35 days after flowering was correlated with grain yield under both irrigated 

and non-irrigated conditions, the association was significantly stronger under drought (Verma et 

al., 2004). More recent research has provided evidence that the relationship between extended 

photosynthesis and increased yield only exists under stress such as drought, heat (Gregersen et al., 

2013; Lopes & Reynolds, 2012) or low nitrogen (Derkx et al., 2012; Gaju et al., 2014). Under optimal 

conditions yield may be limited not by substrate availability but by sink factors within the plant 

(Borrás et al., 2004; Borrill et al., 2015; Reynolds et al., 2005). Under these circumstances extended 

photosynthesis would not be of benefit as the plant cannot use any additional photosynthates. For 

example, research conducted in a glasshouse has shown that an extension of green canopy duration 

of 10% resulted in no difference in final grain yield, even though the plants were continuing to 

photosynthesise (Borrill et al., 2015). This work found that grain yield was limited by activity of the 

starch synthase enzyme found in the grain, rather than availability of photosynthates, so the 

additional carbon fixed was not going into the grain. This limiting effect of starch synthase on grain 

filling has also been reported in field grown material (Yang et al., 2004). The UK could be considered 

a low stress environment, thus factors other than continued photosynthesis and extended green 

canopy duration may be more important for increasing wheat yields.   

 

The conclusion that non-glaucousness increases wheat yields is opposing to the majority of past 

studies, that show non-glaucous wheat and barley plants to be lower yielding than glaucous plants 

(Febrero et al., 1998; Johnson et al., 1983; Monneveux et al., 2004; Watanabe, 1994). Reductions 

in yield as high as 26% have been reported in non-glaucous barley plants (Febrero et al., 1998), and 

reductions of around 5-30% have been associated with non-glaucousness in wheat (Monneveux et 

al., 2004). However, the bulk of these studies were carried out in a Mediterranean environment 

characterised by warm and dry summers. Under these conditions wheat often experiences water 

stress and drought during the growing season. Glaucousness has traditionally been considered 

beneficial for plant water use efficiency (Richards et al.,1986) and thus could confer an advantage 

to plants in water stressed environments, leading to higher yields (this will be explored further in 
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Chapter 5).  The work in the Shamrock x Shango DH population was carried out in a UK environment 

where water supply is less limiting. This suggests that in an environment where water stress is not 

a major constraint, non-glaucous plants could have the advantage. This hypothesis is further 

supported by the work of Merah et al., (2000), who carried out field trials of glaucous and non-

glaucous durum wheat in the Mediterranean over two years. In the first year of measurement, only 

285 mm total rainfall fell during the growing season (November – June), with a long drought from 

February until harvest. Glaucous plants yielded significantly more grain (around 3 g plant-1 

compared to 1-2 g plant-1 for non-glaucous), confirming previous finding that glaucous plants are 

at an advantage under drought stress. However, in the second year of measurement, total rainfall 

over the growing season was 933 mm, and no drought occurred until the final two months (May 

and June). In this case the water stress occurred only after the majority of plant biomass had been 

formed. Under these conditions, the non-glaucous plants had significantly more biomass than 

glaucous (around 12-13 g plant-1 compared to around 10 g plant-1 biomass of glaucous plants), 

suggesting an advantage to non-glaucous plants under these conditions. There was no difference 

in final grain yield between glaucous and non-glaucous plants, potentially because grain filling was 

still occurring when water supply became limiting, thus negating any benefit conferred by non-

glaucousness up until that point.  

 

3.2.6 Characterising Iw1 induced non-glaucousness 
Finding novel ways to improve crop yields and feed a growing population is currently of high priority 

for agriculture (Hawkesford et al., 2013; Thornton, 2012), so further exploration of the relationship 

between Iw1 and yield was of importance.  Near isogenic lines (NILs) were developed for further 

study by crossing Shamrock to six glaucous UK wheat varieties. Using marker assisted backcrossing 

six pairwise NILs were developed, providing a powerful genetic tool to assess the action of Iw1 in 

multiple genetic backgrounds. Subsequent work with the Iw1 NILs fine mapped Iw1 to a sub cM 

interval on chromosome arm 2BS and a number of candidate genes were suggested (Adamski et 

al., 2013). In addition to the fine mapping, Adamski et al., (2013) also fully characterised the wax 

composition of NILs both with and without Iw1 over the growing season.  

 

Wax composition of Iw1 germplasm (including the NILs and the original Shamrock and Shango 

varieties) grown in the field was assessed at Growth Stage 31 (Adamski et al., 2013) which is during 

stem elongation, prior to emergence of the flag leaf. At this point in development, plants both with 

and without Iw1 cannot be distinguished visually and display a non-glaucous phenotype. Wax 

profile analysis revealed that there was no difference in epicuticular wax composition or total wax 

load between tissues of plants with or without Iw1; in both cases primary alcohols with a chain 

length of 28 carbons (C28POH) made up the majority of the wax.  
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The analysis was repeated on samples collected at Growth stage 47 (during booting, prior to ear 

emergence and flowering), at which point NILs without Iw1 (iw1-) have developed visible waxes 

and display a glaucous phenotype, whilst NILs with Iw1 (Iw1+) still have the non-glaucous 

phenotype. At this point there was still no significant difference between NILs in terms of total wax 

load indicating that wax load does not alter plant visual appearance, although wax composition at 

this point was significantly different.  

 

Figure 3.2 shows the typical epicuticular wax composition of (a) glaucous, iw1- tissue and (b) non-

glaucous Iw1+ tissue. At a retention time of 17.31 minutes a C28POH peak can clearly be seen and 

is one of the most abundant wax components in both the Iw1+ and iw1- chromatograms, indicating 

these compounds are maintained in the waxes in large proportions throughout development. 

However, in addition to C28POH, other POH compounds of various chain lengths are present, in 

addition to n-alkanes, fatty acids and methylalkylresorcinols (MARs). Peaks for these compounds 

can be identified in chromatograms of both Iw1+ and iw1- tissue in similar amounts. The major 

difference between the two ion chromatograms, highlighted in red on Figure 3.2, is the presence 

of β-diketones and OH- β-diketones in large amounts in the glaucous iw1- tissue between a 

retention time of 18.14 and 20 min. These major peaks are completely absent from the spectra of 

non-glaucous Iw1+ tissue.  

 

This same analysis was also repeated at flowering and senescence. Total wax load in both Iw1+ and 

iw1- plants increased, as did the quantity of all compounds present in the waxes. Furthermore, at 

these later time points iw1- plants did have a significantly higher wax load than Iw1+, indicating 

that wax load increased at a faster rate in the glaucous plants. However, at no point during the 

time-course were β-diketones and OH- β-diketones recorded in the Iw1+ plants in any significant 

quantity, whilst these compounds continued to make up a large proportion of the glaucous iw1- 

waxes (between 12 and 70% dependant on variety).  

 

This characterisation of the epicuticular waxes shows that Iw1 induces glaucousness through the 

inhibition of the biochemical pathway that synthesises β-diketones and OH- β-diketones (Chapter 

1: β-ketoacyl-elongation pathway, Figure 1.6c). Wax analysis from multiple tissues, including 

peduncle and flag leaf, demonstrated that the effect of Iw1 was consistent across all organs 

measured. 
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3.2.7 Aims 
The Iw1 NILs provide a powerful genetic resource to explore the effect of Iw1 in multiple genetic 

backgrounds, and assess under which conditions the non-glaucous trait could confer a yield 

advantage within the UK. These NILs are at backcross four, meaning they are 97% identical in the 

genetic background (with the exception of the introgressed region containing Iw1). Any differences 

observed between NILs can therefore be attributed directly to the introgressed region containing 

Iw1. Furthermore, having a fully characterised wax profile for the Iw1 NILs is advantageous in terms 

of interpreting any observed differences between NILs. This chapter aims to:  

(i) Test the hypothesis that Iw1 increases yield and delays senescence across a wide 

range of UK winter wheat varieties  

 

(ii) Confirm that the wax profile data presented in Adamski et al., 2013 is relevant to 

the plant material and environments used in the present work. 

 
 

 

 
Figure 3. 2 Total ion chromatograms for flag leaf epicuticular wax  

From (a) Shango (iw1-) and (b) Shamrock (Iw1+). The red box highlights the β-diketone and 

OH- β-diketone peaks present in iw1- tissue that are completely absent from the Iw1+ 

chromatogram. Chain length is donated by CXX, and compound classes are abbreviated to 

ALK (n-Alkane), POH (Primary Alcohol), FA (Fatty Acid), β-Dik (β-diketone) and ALD 

(Aldehyde). Adapted from Adamski et al., (2013). 
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3.2 Materials and Methods 
 

3.2.1 Field evaluation and phenotyping 
 

3.2.1.1 Location and germplasm 
To assess yield and green canopy duration, field trials using near isogenic lines (NILs) were carried 

out at seven sites across four years in East Anglia as specified in Chapter 2, section 2.3. NILs of 

Malacca, Alchemy, Hereward, Xi19, Robigus and Einstein were grown. At all sites BC2 NILs were 

grown in the harvest year of 2012, and BC4 NILs used in all subsequent years. Hereward and 

Alchemy BC4 recombinant lines were also sown at Church Farm in both the harvest years of 2014 

and 2015, and the Hereward lines only sown at Docking in the 2015 harvest year.  

 

3.2.1.2 Phenotyping yield 
To phenotype yield weight of grains per plot was measured and normalised to 15% moisture 

content. Data were standardised across all trials to Tonnes per Hectare.  

 

3.2.1.3 Near isogenic line analysis 
Using the Tonnes per Hectare data, yield was analysed by pairwise comparison between NILs at 

each site. An overall ANOVA for each trial was also carried out.  Yield was very variable between 

years and trials. Therefore to enable better visual comparison between years and locations, within 

each trial the yield of glaucous iw1- NILs of each variety was said to be 100% and the percentage 

increase in yield associated with Iw1 was calculated for each variety. A positive value therefore 

indicates a yield advantage of Iw1, whilst a negative value indicates a decrease in yield associated 

with Iw1.  

 

Church Farm was affected by widespread bunt infection in the 2014 harvest year. As such, large 

amounts of the plot had to be removed and discarded prior to harvest. Bunt affects only the kernels 

of the plant, converting the kernal into a sorus of black teliospores. This occurred late in 

development towards maturity after GS71. Plants displaying infected kernals were removed so only 

healthy plants remained. Physiology work was carried out earlier in plant development at anthesis 

(around GS61-69) and healthy regions of plot or individuals were selected for measurement. 

Therefore this data were not affected. However, yield data was measured as number of grains per 

plot. Due to large amounts of some plots being discarded this resulted in unreliable yield data. 

Therefore 2014 Church Farm yields were excluded from the overall analysis.  

 

3.2.1.4 Recombinant analysis 
To map the yield effect within the introgressed region, QTL analysis using QTL Cartographer 

(Bioinformatics Research Centre, NC State University, http://statgen.ncsu.edu/qtlcart/) was carried 
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out using the yield and marker data (Appendix A2 and A3) for each recombinant line. Recombinant 

yield data were also analysed by ANOVA, to test the single marker significance of the difference 

between mean yield values of recombinant lines carrying the Shamrock allele and those carrying 

the Hereward or Alchemy allele at each marker location. Due to the limited data available for the 

recombinant lines, the bunt-infested 2014 data was included in analysis. However, where possible, 

plots in the field that were heavily infected with bunt were noted and removed from analysis so as 

to only use representative data.  

 

3.2.1.5 Phenotyping green canopy duration 
In the harvest years of 2013 and 2014 the flowering date for each plot was recorded, defined as the 

day in which 3⁄4 of the plot had 3⁄4 of their inflorescences emerged. Date of senescence, defined 

as the day where a loss of chlorophyll was observed in peduncles and leaves for 3⁄4 of the plot, was 

also recorded. Calculation of the number of days between flowering date and full plant senescence 

for each plot gave the green canopy duration. Data were analysed by overall ANOVA including both 

years and all varieties, and by pairwise comparison between NILs within each individual year.  

 

3.2.2 Epicuticular wax profiles 
Epicuticular wax extraction and analysis was carried out as described in Adamski et al., (2013) with 

some minor modifications. As such the full method is detailed below.  

 

3.2.2.1 Extraction of epicuticular wax 
Three flag leaves were collected in the field at anthesis, one each from each plot in the field at 

Church Farm in 2014 for NILs of Malacca, Alchemy and Hereward. Samples were collected in 15 mL 

polypropylene tubes that had been pre-weighed, and immediately frozen on dry ice for 

transportation. Tubes were then re-weighed to determine sample fresh weight prior to storage at 

-80 ⁰C.  

 

To extract the epicuticular waxes, each flag leaf was placed into a glass tube with a 

polytetrafluoroethylene screw cap lid. 5 mL chloroform (Analytical Grade, Fischer Scientific) was 

added in addition to triacontane (Sigma 263842, Poole, UK) as an internal standard (35 µg/mL). 

Tubes were laid horizontal such that all flag leaf tissue was submerged in the chloroform/ 

triacontane solution and left for 10 min at room temperature. Tubes were agitated for 10 sec three 

times during the 10 min period. Subsequently, flag leaves were removed from the glass tubes, and 

the extracts were dried down in an evaporator (EZ-2 Genevac, Ipswich, UK). Once dry, 1-2 mL 

chloroform was added to each glass tube to re-suspend the wax extract, which was then transferred 

to a glass GC-MS vial that had been pre-weighed (Agilent Technologies, USA). Samples were dried 
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down under nitrogen gas, and any residue evaporated through heating at 80 ⁰C (approx. 5-10 min). 

Once completely dry, the vial was re-weighed to determine the total wax load.  

 

3.2.2.2 Gas chromatography-mass spectrometry (GC-MS) 
Prior to gas chromatography-mass spectrometry (GC-MS), dry wax samples were dissolved in 100 

µL 1:1 pyridine (Cat. No. 270920, Sigma, Poole UK) and TMS-BSTFA (15238, Sigma, Poole UK) and 

heated to 80 ⁰C for 1 hr to derivatise. During this time samples were vortexed three times, once at 

the start and then every 20 min during the hour.  

 

GC-MS was carried out as described in Adamski et al., (2013) on an Agilent GC 6890N gas 

chromatograph (Agilent Technologies, Wilmington, Delaware, USA) coupled to a 5973 Inert Mass 

Selective Detector. An Agilent 7683 automatic sampler was used to make automated splitless 3 µL 

injections. The column was a ZB 5ht (Zebron, 7HG-G015-02, Phenomenex Torrance, CA, USA), 30.0 

m x 250 µm x 0.1 µm fitted with a 5m guard column on the front end. Throughout chromatography 

the inlet temperature was maintained at 250 ⁰C, Helium carrier gas was maintained at flow rate 0.8 

mL min-1, and inlet pressure at 11.06 psi. The initial oven temperature was set to 140 ⁰C, and this 

temperature was maintained for 1 min. Subsequently, temperature was ramped up by 10 ⁰C each 

min until a maximum temperature of 400 ⁰C was reached. This final temperature was maintained 

for 5 min. The manufacturer’s recommended default settings were used on the mass spectrometer 

set to electron ionisation in positive mode (70 eV), quad temperature of 150 ⁰C and source 

temperature 230 ⁰C.  

 

3.2.2.3 Quantification of wax compounds 
The Iw1 germplasm has been characterised previously in terms of wax composition, identifying 53 

compounds in total, 26 of these accounting for >95% of the total wax load (Adamski et al., 2013). 

Here, relative abundances of the 17 most abundant major wax components, including all n-alkanes, 

primary alcohols, Fatty acids, MARs and β-diketones, were quantified using the Agilent GC 

Chemstation software (D.03.00). Compounds of interest were identified using diagnostic ions, and 

the areas of total ion chromatogram peaks calculated through automatic integration using the 

Chemstation Custom Reports function. The known quantity of internal standard was then used to 

quantify compounds of interest and μg compound per mg leaf tissue calculated. The remaining 9 

compounds, including aldehydes and OH- β-diketones, were not quantified but their presence or 

absence was confirmed. Data were grouped into compound classes to analyse the effect of Iw1 

over all varieties, in addition to pairwise comparison between NILs.  
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3.3 Results 

 

3.3.1 Yield 

 

3.3.1.1 Yield of near isogenic lines 

Yield trials of Iw1 NILs were grown across five years in multi-site experiments at locations in Norfolk, 

Suffolk and Cambridgeshire. Yield in Tonnes per Hectare was measured, and the percentage 

increase in yield associated with Iw1 calculated for each NIL pair for each trial. Figure 3.3 shows the 

percentage difference in yield between NILs, with the mean yield increase associated with Iw1 

marked in red. When data were analysed across all six varieties there was no significant effect of 

Iw1 on grain yield (p=0.146; Figure 3.3). However, there was a significant effect of trial (p<0.001) 

and variety (p<0.001) on the percentage yield difference between NILs. The ANOVA showed a 

significant interaction between trial and Iw1 (p<0.001), but overall no significant interaction 

between Iw1 and variety (p=0.50). However, despite this, pairwise comparisons for each variety 

revealed that Iw1 had a different effect in different genetic backgrounds.  

 

Figure 3. 3 Percentage increase in yield associated with Iw1 

Increase in yield of Iw1+ in comparison to iw1- NILs of Xi19, Alchemy, Einstein, 

Hereward, Robigus and Malacca, averaged over field trials across five years from 

multiple locations. Boxes show the 25th and 75th percentile with the median 

marked in black. Whiskers show the 10th and 90th percentile, with the highest and 

lowest data points plotted in black. The mean is shown in red. Significance is 

indicated according to p<0.05 (*), p<0.001 (***) 
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The Iw1 introgression resulted in a significant yield increase of 4.96% in Hereward (p< 0.001) and 

2.59% in Alchemy NILs (p=0.045). In the other four genetic backgrounds (Xi19, Einstein, Robigus 

and Malacca), the Iw1 introgression did not have a significant effect on yield. Malacca displayed the 

most neutral effect, with an average percentage difference between NILs of only 0.17% over all 

trials.  

 
To explore the yield data in more detail Table 3.1 shows the percentage difference in yield between 

NILs for each individual trial. Consistent with Figure 3.3, Hereward and Alchemy were the only 

varieties for which Iw1 had a significantly positive effect in any one trial. Hereward was unique 

among the varieties in that in no trial did Iw1 have a negative effect on yield, although the 

consistent yield benefit was only statistically significant in 4 out of 10 trials. Only in Einstein did Iw1 

ever have a significantly negative effect on yield, with Iw1+ NILs yielding significantly less than iw1- 

in two trials during the 2012 harvest year.  

 

 

Although yield data were collected at multiple field sites, all other data presented in this thesis were 

collected at Church Farm only. Therefore it is important that the Church Farm yield data is 

representative of the overall data. An overall analysis of the Church Farm data from 2012 shows 

that there was no significant effect of Iw1 (p=0.933) but borderline significant interaction between 

Iw1 and variety (p=0.057), likely a function of the significantly positive yield increase of 10.52% in 

 Table 3. 1 Percentage increase in yield associated with Iw1 within each individual trial 

Pairwise comparison between NILs of each variety for each trial was carried out on plot yield. 

Significance is indicated according to p<0.05 (*), p<0.01 (**), p<0.001(***). Significant positive 

increases in yield associated with Iw1 are highlighted in green, a significantly negative effect of 

Iw1 on yield is highlighted in grey. Trials for which data were unavailable are marked with a dash 

(-). Trials at Drinkstone and Wolferton during 2012 only had two independent replicates from 

each NIL. All other trials had at least 4 independent replicates. 
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the Hereward NILs (p=0.011) compared to a significantly negative decrease of 8.55% in Einstein 

(p=0.05). Conversely, In 2013 Iw1 had an overall significant effect (p=0.008) with no interaction 

with variety (p=0.562); there was no significant effect in Hereward or Alchemy in this year although 

both are positive. In 2015, where only Alchemy and Hereward were grown, the effect of Iw1 was 

significant (p=0.005) with no interaction with variety (p=0.893). Hereward was again the variety 

that showed the most consistent increase in yield associated with Iw1 at Church Farm. This effect 

was significant in 2012 (p=0.011) and borderline significant in 2015 (p=0.059). The effect of Iw1 on 

yield in Alchemy was also significant in two of the three Church Farm trials; 2013 (p=0.001) and 

2015 (p=0.039). Taking account of all trials it can be concluded that there is a significant yield 

benefit conferred by the Iw1 introgression in Alchemy and Hereward. However, this effect was not 

seen in all varieties leading to the conclusion that the non-glaucousness trait (and Iw1) itself is not 

responsible for the increased yield. 

 

3.3.1.2 Yield of recombinant lines 

To better define the genetic interval related to increased yield, Alchemy and Hereward NILs with 

recombination across the Iw1 region in both varieties were developed. These lines were derived 

from the original NILs and carry only a segment of the Iw1 introgression allowing a more precise 

definition of the yield effect in Hereward and Alchemy backgrounds. Both sets of recombinant lines 

were grown at Church Farm (2014 and 2015 harvest years), and the Hereward recombinants were 

also grown at Docking (2015).  The location of Iw1 relevant to a selection of markers is shown in 

the chromosome schematic at the base of Figure 3.4.  Yield data had a continuous distribution and 

hence was analysed as a quantitative trait.  

 

For Hereward (Figure 3.4a), the yield effect was associated with the region of chromosome 2B 

containing Iw1, but the effect was only significant for the Church Farm 2015 trial (LOD-score>2.5). 

In Alchemy (Figure 3.4b) there was no clear effect in 2014, although in this year there was severe 

bunt infection in the field which may have confounded the data. The QTL from 2015 however does 

mirror that of Hereward, showing strongest linkage with the portion of the chromosome in which 

Iw1 is located, but this was again not significant and tentative at least.  

 

Yield data of recombinant lines were also analysed by ANOVA. This tested the significance of the 

individual markers for difference between mean yield values of recombinant lines carrying the 

Shamrock allele and those carrying the Hereward of Alchemy alleles at each marker location (Table 

3.2).  
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Figure 3. 4 Yield QTL of recombinant lines 

Lines of (a) Hereward and (b) Alchemy. The location of Iw1 is shown on the 

chromosome diagram (bottom).  The y-axis shows the LOD-score test statistic at 

each chromosome position. A score of 2.5 (shown by the dotted line) or above 

donates significance. 
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For Hereward, when data from all three trials were combined there was a significant effect of trial 

on yield for every marker (p<0.05). However, for no marker was there a significant interaction 

between genotype (Iw1) and trial. This indicates that although overall crop yield was dependent on 

environmental conditions, the effect of genotype on yield was stable across the various years and 

locations. In Alchemy, when data from both trials were analysed together the association between 

yield and each marker was again significantly different between trials (p<0.05). However, in this 

case there was also a significant interaction between genotype and trial for all markers between 0 

and 16.83 cM (p<0.05). This interaction can clearly be seen in Figure 3.6, whereby the QTL curves 

look very different for the two trials. Furthermore, no significant difference between lines carrying 

the Shamrock allele and those with the Alchemy allele was found at any location when both trials 

were analysed together. Due to the widespread bunt infection in 2014 and the effect this could 

have had on the results, only data collected in the 2015 trial was included in the analysis presented 

in Table 3.2 and interpretation in the following paragraphs. Due to the absence of interaction in 

Hereward all three trials were included in the Table 3.2 analysis and subsequent interpretation.  

Table 3. 2 Mapping the yield effect within the Iw1 introgression 

An ANOVA was carried out to test the difference between mean yields of recombinant lines 

carrying the Shamrock allele and those carrying the Hereward allele at each marker location. For 

Hereward, data was combined across the three field trials (Church Farm 2014 and 2015, Docking 

2014). For Alchemy only data from the Church Farm 2015 is included in the analysis. The relevant 

p value for each marker is shown in the table. Levels of significance are indicated by p<0.05 (*), 

p<0.01 (**), p<0.001 (***). 
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For both varieties there was a significant difference between the yield of recombinants with and 

without the Shamrock Iw1 allele (Hereward, p<0.001; Alchemy, p = 0.008). However, there is tight 

linkage between Iw1 and the two distal markers on the chromosome arm (BS00084668 and 

BS00009972), a relationship that can also be seen in Figure 3.6. Therefore the current set of 

recombinants does not provide sufficient resolution to assess the exact location of the yield effect 

and to determine if this is due to Iw1 itself or to a closely linked gene. There was also a significant 

effect at the markers proximal to Iw1 (at a distance of 10.41 cM in Hereward, 9.26 cM in Alchemy), 

although this was less significant than for Iw1 in both varieties. In Alchemy there was no significant 

difference between the yield of recombinants carrying the Shamrock allele and those with the 

Alchemy allele at any other location on the chromosome. However, for Hereward there did seem 

to be some effect between 44.64 and 45.19 cM, although this was not as significant as the effect 

recorded at 0-1.77 cM.   

 

3.3.2 Green canopy duration 

Green canopy duration is a measure of the number of days between flowering and senescence. 

This is linked to grain filling period, an extension of which has been reported to have a positive 

effect on yield and could explain the yield effect of Iw1 observed in the Hereward and Alchemy 

NILs. Dates of flowering and senescence were recorded for NILs of Xi19, Alchemy, Einstein, 

Hereward, Robigus and Malacca over two years at Church Farm. Table 3.3 shows the number of 

days between these two growth stages for NIL pairs.  

 
Overall there was a significant effect of Iw1 (p<0.001), year (p<0.001) and variety (p<0.001) on 

green canopy duration. There was a significant interaction between year and variety (p<0.001), but 

no interaction between Iw1 and variety (p=0.330) or Iw1 and year (p=0.382). This indicates that the 

Iw1 introgression did have a significant effect on green canopy duration which was consistent 

across years and varieties. This can be seen from Table 3.3, where the overall effect of Iw1 is to 

extend the green canopy duration. Only Robigus demonstrated a (non-significant) negative effect 

of Iw1 in both years. The extended green canopy duration is only a small effect; where Iw1 was 

associated with a delay in senescence this was only by around one day. Pairwise comparison 

revealed that even though the effect of Iw1 was very significant overall, when considering individual 

NIL pairs, differences were not always significant. Hereward was the only variety for which the 

delayed senescence of Iw1+ NILs was significant in both 2013 with 0.8 days difference (p < 0.05) 

and 2014 with 1.5 days difference (p = 0.003). Alchemy also had a significant delay in senescence 

associated with Iw1 of 0.9 days in 2013 (p=0.004), but showed no difference in 2014. 
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To understand the relationship between green canopy duration and yield for these field trials, the 

adjusted yield for each plot was compared with the green canopy duration for that same plot. Iw1+ 

NILs are shown in green, and iw1- NILs in grey in Figure 3.5.  

 

Figure 3. 5 Adjusted yield compared to green canopy duration for Iw1 NILs 

Yield of each plot compared to the green canopy duration for that plot for (a) 2013 and (b) 2014 

at Church Farm. Data are included for NILs of all six varieties, Iw1+ NILs in green and iw1- in 

black. In 2013 (a) there was a significant correlation between green canopy duration and yield 

(p<0.001) and a significant regression between the two variables (r2 = 0.486; p<0.001). In 2014 

(b) there was no significant correlation between variables.  

 

Table 3. 3 Green canopy duration 

Green canopy duration was calculated as the number of days between flowering and senescence. 

Data were recorded for NILs of all six varieties. Overall Iw1 significantly increased green canopy 

duration (p<0.001), although pairwise comparison showed that this effect was not significant 

between all NIL pairs. Significance is indicated at the level p<0.05 (*), p<0.01 (**). 
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In 2013 (Figure 3.5a) there was a significant correlation between green canopy duration and yield 

(Pearsons correlation co-efficient = 0.697; p<0.001). Further analysis with linear regression shows 

that extended green canopy duration did result in a significantly higher yield (r2 = 0.482; p<0.001), 

suggesting that green canopy duration may have been a determinant of yield in these trials. 

However, there is no clear distinction between the NILs in Figure 3.5a. In 2014 there was no 

significant correlation between green canopy duration and yield (Pearsons correlation co-efficient 

= 0.147; p=0.146), showing that for these field trials green canopy duration was not a determinant 

of yield. However, 2014 was the year of severe bunt infection in the field, so yield data may not be 

as reliable as in 2013. Again, there is no clear distinction between NILs with and without Iw1 in 

Figure 3.5b.   

 
Comparison of the percentage difference in yield between NILs against the difference in green 

canopy duration indicates that there was no clear correlation between the two parameters (Figure 

3.6). Alchemy and Hereward, the varieties that show the most consistent yield benefit of the Iw1 

introgression, did have the biggest extension of green canopy duration associated with the 

introgression in 2013 (Figure 3.6a), but taking the other four varieties into account there is no clear 

relationship. Again in 2014 (Figure 3.6b) Hereward had the longest increase in green canopy 

duration associated with the Iw1 introgression, but the relationship was absent for Alchemy. Again, 

this data may be skewed by bunt infection, as can be seen from the Einstein NILs, in which a 23% 

yield increase was recorded in the Iw1+ NILs.  

 

 

 Figure 3. 6 Percentage yield increase associated with Iw1 compared to green canopy extension 
for each variety 

The increase in yield associated with Iw1 plotted against the average extension of green canopy 

duration associated with Iw1 in (a) 2013 and (b) 2014. Each point on the scatter graph represents 

the average difference between NILs of one variety for one year.  
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3.3.3 Wax profile  
The Iw1 germplasm has been characterised previously to assess wax composition, identifying 53 

compounds, 26 of which accounted for >95% of the total wax load (Adamski et al., 2013). In this 

PhD, the bulk of the physiology work was carried out at using BC4 NILs of the varieties Alchemy, 

Malacca and Hereward at anthesis. Therefore epicuticular waxes were extracted from flag leaves 

of field grown BC4 Iw1 NILs in the field in 2014 from these three varieties in order to confirm wax 

composition was as expected and changes to appearance and physiology could be attributed to 

presence or absence of β- and OH-β-diketones in the epicuticular waxes. Relative abundances of 

the major wax components n-alkanes and primary alcohols (POH), in addition to fatty acids and 

MARs, were quantified. 

 Overall, POH of chain length C24 to C30 made up around 80% of the epicuticular waxes of both 

Iw1+ and iw1- NILs (Figure 3.7). Of the four POH compounds present in the wax, C28 POH made up 

by far the biggest component, ranging from 4 to 8 µg/mg leaf tissue depending on variety. There 

was no significant effect of Iw1 on C28 POH quantity (p = 0.758) nor interaction with variety (p = 

0.364). In fact the only POH on which Iw1 had a significant effect was C24 (p = 0.019), of which Iw1+ 

 

Figure 3. 7 Quantity of primary alcohols (POH) in the epicuticular wax 

POH in the epicuticular waxes of Iw1+ and iw1- NILs of Alchemy, Hereward and 

Malacca. P values for the effect of Iw1 over all three varieties are shown on the chart. 

Pairwise comparison showed no significant difference between individual NIL pairs for 

any chain length. N=3, error bars = S.E. 
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NILs of all varieties had higher quantities than iw1-. For C24 POH there was no effect of variety (p = 

0.270) nor interaction between Iw1 and variety (p = 0.150), and pairwise comparison revealed that 

for no NIL pair was the difference in C24 quantity significant.   

 
After POH, n-alkanes were the second major component of the epicuticular waxes present in both 

Iw1+ and iw1- NILs (Figure 3.8), contributing around 0.1-0.6 µg wax per mg leaf area dependant on 

chain length. Figure 3.8 shows that Iw1 had the effect of significantly increasing quantity of n-

alkanes in the epicuticular waxes for C29 (p = 0.045) and C31 (p = 0.032) and borderline significant 

for C27 (p = 0.052). For no chain length was there a significant difference in quantity between 

varieties, and there was no interaction between variety and Iw1 (C27, p = 0.409; C29, p = 0.934; 

C31, p = 0.734). However, when analysed by pairwise comparison there was no significant 

difference between any NIL pair for any of the three n-alkanes.  In total, n-alkanes accounted for 

around 10% of total wax load in the Iw1+ NILs, and 3-5% in iw1- NILs.  

 

 

Figure 3. 8 Quantity of n-alkanes in the epicuticular wax 

Overall p values for the effect of Iw1 across all three varieties are shown on the 

chart. Pairwise comparison shows no significant differences between NILs within 

varieties. N=3, error bars = S.E 
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Fatty acids and MARs were also present in the epicuticular waxes in very small amounts, with a 

combined contribution of around 5% (Figure 3.9 and 3.10). Figure 3.9 shows that there was no 

significant effect of Iw1 on any MAR (C19, p = 0.445; C21, p=0.712; C23, p= 0.728; C25, p=0.876; 

C27, p=0.978).  

 
Similarly, there was overall no significant effect of Iw1 on C22 (p = 0.718), C24 (p = 0.871) or C28 (p 

= 0.610) fatty acids (Figure 3.10).  However, there was an overall significant effect of Iw1 on C32 

fatty acids (p = 0.001). There were also significant differences between varieties for C32 fatty acids 

(p=0.008), and the interaction between variety and Iw1 was significant (p=0.013). However, when 

interpreting this data it is important to note that the quantity of fatty acids in the waxes was very 

minor in comparison to n-alkanes and POH. In particular, C32 fatty acids were only present in 

quantities under 1 x 10-5 µg/mg leaf tissue so their significance to overall wax properties compared 

to other components will be small.  

 

Figure 3. 9 Quantity of C19, C21, C23, C25 and C27 MARs in the epicuticular wax 

Overall p values for the effect of Iw1 across all three varieties are shown on the 

chart. There is no effect of Iw1 on quantity of any MAR. N=3, error bars = S.E. 
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Figure 3. 10 Quantity of C22, C24, C28 and C32 fatty acids in the epicuticular waxes 

Overall p values for the effect of Iw1 across all three varieties are shown on the chart. 

There is a significant effect of Iw1 on C32 fatty acids (p = 0.001). n= 3, error bars = S.E. 

 

Table 3. 4 Quantity of β-diketones at anthesis in the epicuticular waxes at anthesis 

There was a significant difference between NILs of Alchemy (p < 0.001), Hereward (p < 0.001) and 

Malacca (p = 0.01). n=3. 



44 
 

Table 3.4 demonstrates a significant difference between NILs of Alchemy (p < 0.001), Hereward (p 

< 0.001) and Malacca (p = 0.01) in quantity of β-diketones; these compounds were present in 

quantities of around 0.5 - 0.7 µg/mg leaf tissue in iw1- leaves, accounting for 5-10% of total wax 

load, whereas they were only present in trace amounts in Iw1+ flag leaves. Over all there was no 

difference in β-diketone quantity between varieties (p = 0.553), and no interaction between Iw1 

and variety (p = 0.551) indicating that Iw1 had the same effect on epicuticular wax biochemistry in 

all three varieties.  

 
The data presented here for epicuticular wax composition are in agreement with that reported in 

Adamski et al., 2013, indicating that data reported in the 2013 study are applicable to the 

germplasm and environmental conditions used in the present work.  Importantly, it suggests that 

the effect of Iw1 on wax composition is stable across years and environments.  
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3.5 Discussion 

 

3.5.1 Iw1 did not confer a yield advantage 

The initial work that investigated non-glaucousness in Shamrock reported that Iw1 increased yields 

by 2.4 to 5.6 % in a UK field environment (Simmonds et al., 2008). This agreed with previous findings 

that, whilst glaucousness proves beneficial for both water use and yield in water stressed 

environments (Febrero et al., 1998; Johnson et al., 1983; Monneveux et al., 2004; Watanabe, 1994), 

non-glaucous plants may have the advantage under well-watered conditions (Merah et al., 2000). 

However, in the Iw1 NILs, the Iw1 introgression did not lead to any significant yield advantage or 

disadvantage in four of the six varieties wheat varieties assessed. This leads to the conclusion that 

non-glaucousness and Iw1 alone do not affect yield in a temperate, UK environment. The Iw1 

introgression did have a positive effect on yield in NILs of two varieties suggesting the action of Iw1 

may depend on genetic background. The use of Iw1 NILs in the present work, in addition to 

biochemical wax analysis, allows results to be specifically linked to changes in genetics and 

epicuticular wax composition. This provides a  significant advantage when compared to the work 

of Merah et al., (2000) who assessed 16 durum wheat accessions of contrasting glaucousness. They 

did not specifically characterise the underlying genetics or epicuticular biochemistry of these 

accessions, and as such, the 30 – 50% increase in biomass they observed in the non-glaucous lines 

under adequate water supply could have been the result of genetic differences between accessions 

other than presence or absence of visible waxes.  

 

Hereward showed the clearest yield benefit in the Iw1+ NILs. The yield increase of around 5% in 

this variety was consistent with the effects seen in the original Shamrock x Shango DH population. 

Alchemy also showed increased yield in the Iw1+ non-glaucous NILs, but this was less consistent 

than in Hereward, and the overall effect (around a 3% yield increase) was less significant. Taking 

account of yield data from all six varieties, and analysis of the recombinant lines, it seems likely that 

the yield benefit in both Alchemy and Hereward is coming not from Iw1 itself, but from a closely 

linked gene. There are a number of possible explanations why only two of the six varieties 

demonstrated this effect. It is possible that Hereward and Alchemy contained a deleterious allele 

within the introgressed region of chromosome 2B that was having a negative effect on yield. 

Replacing this with the Shamrock allele allowed yield to increase. Alternatively, there could be some 

interaction between the introgressed region and another gene in the background and only with this 

specific combination is there a yield benefit. These explanations could also apply to the Shango 

population initially studied where a yield benefit was recorded. Shango NILs have been created to 

assess this affect, but to date limited data is available so strong conclusions cannot be drawn.  
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Yield data is continuous rather than discrete and consequently has to be mapped as a QTL. This 

means that the trait cannot be defined to a precise genetic interval between two markers. 

Therefore it was not possible to determine the exact portion of chromosome responsible for the 

yield advantage. However the 5% yield increase reported in Hereward is significant, and has 

potential benefit for UK agriculture. It will therefore be important to develop materials and 

methods to more specifically map this effect and understand which aspect of the Iw1+ Hereward 

NILs physiology and genetics is conferring this.  

 

3.5.2 Iw1 extended grain filling by around 2% 

A suggested factor contributing to the increased yield observed in non-glaucous lines of the 

Shamrock x Shango DH population was delayed canopy senescence that mapped to Iw1 (Simmonds 

et al., 2008).  In the Iw1 NILs, the Iw1 introgression was associated with an overall significantly 

longer green canopy duration of around one day. This represents a 1.8% increase in green canopy 

duration in 2013, and a 2.2% increase in 2014. This is comparable (if slightly less) than the 3% 

increase observed in non-glaucous lines from the Shamrock x Shango population (Simmonds et al., 

2008).  

 
Correlation analysis of the Church Farm yield data indicates that, at least in 2013, green canopy 

duration was a determinant of yield overall, with a difference of around 8 days green canopy 

duration between the highest and the lowest yielding plots. It has been suggested by a number of 

studies that delayed canopy senescence may only be of benefit under sub-optimal growing 

conditions such as drought and heat stress, where supply of substrate does not keep up with sink 

demand within the plant  (Borrás et al., 2004; Gregersen et al., 2013; Lopes & Reynolds, 2012; 

Reynolds et al., 2005; Verma et al., 2004). This could explain the discrepancy in correlation observed 

over the two trials. In comparison to 2014, 2013 was generally warmer from June onwards, 

resulting in the fields drying out very quickly and a shorter green canopy duration overall. Under 

these circumstances the plants may have been more water stressed. Whilst it would not have been 

beneficial to delay senescence by too long under these conditions, those plants that went through 

senescence at the later time point would have had around a week longer to photosynthesise. Under 

stressed conditions this could have provided enough substrate to enhance grain filling and increase 

yields. 2014 was cooler and the plants experienced a longer growing season. There was no strong 

correlation between yield and green canopy duration, potentially because the plants were not 

stressed, so were limited by sink rather than source factors. Notably, conclusions drawn from this 

2014 data should be treated with caution due to the severe bunt infection.  
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Although green canopy duration could have been a determinant of yield in the trials as a whole, 

there was no strong evidence that the Iw1 introgression extends green canopy in a way that 

increases yield. This suggests that even though Iw1 may indeed be responsible for delayed 

senescence, factors other than grain filling period were more important in determining yield 

differences between NILs in these field trials. Any effect of the non-glaucous trait on extended 

green canopy duration and yield has not been previously reported within a Mediterranean, or 

similarly stressful, environment, where substrate availability may be limiting. However it could be 

that, at least where drought stress is concerned, the benefits of glaucousness on water use could 

outweigh any small extension on grain filling of the non-glaucous varieties. Alternatively, earlier 

senescence may be beneficial in a Mediterranean environment, allowing the plant to avoid the 

terminal drought stress that often occurs in these environments.  

 

3.5.3 The effect of Iw1 on epicuticular wax was global across three wheat varieties 

Analysis of wax composition confirmed that β- and OH-β-diketones were present in glaucous lines 

of all three varieties lacking Iw1 and made up a significant proportion of total wax load. These 

compounds were only recorded in trace amounts in non-glaucous lines with Iw1, indicating that 

synthesis of these compounds was inhibited in the presence of Iw1. Additionally, no differences 

were observed between the three varieties. 

 

As well as this major effect on the β-ketoacyl-elongation pathway, other effects of Iw1 on wax 

composition reported by Adamski et al., (2013) were confirmed in the plant material used here. 

Overall, although Iw1 did have a significant effect of increasing quantity of n-alkanes, there was no 

difference between NILs in terms of POHs (with the exception of C24), fatty acids or MARs. Crucially, 

no differences between varieties, or interaction between variety and Iw1 on any major wax 

component were recorded. This indicates that within these three wheat varieties genetic 

background has no effect on Iw1 action in terms of epicuticular wax biochemistry. This suggests 

that the global effects of Iw1 can be studied using these NILs. We would expect that any common 

difference between NILs of the three varieties could be attributed to the Iw1 gene itself rather than 

background genetics.  

 

Characterising the wax composition of the Iw1 germplasm prior to detailed study is of high 

importance. The definition of the word glaucousness, in terms of amount of epicuticular wax and 

exact composition will vary between species and even varieties of the same species with differing 

genetics. In wheat there are a number of genes that determine epicuticular wax type. Aside from 

Iw1 and W1, Inhibitior of Wax 2 and Wax 2 have also been studied (Liu et al., 2006; Yoshiya et al., 

2011; Zhang et al., 2013) in addition to Inhibitor of Wax 3 and Wax 3 (Wang et al., 2014; Zhang et 
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al., 2015). Although the phenotypes may visually appear similar, all six of these epicuticular wax 

genes work via a slightly different mechanism conferring glaucousness (or non-glaucousness) in a 

variety of ways as detailed below. 

 

For example, the inhibition of glaucousness in wheat by Iw3 is confined to the spike, with all other 

organs in an Iw3+ plant covered in visible β-diketone-containing waxes, whereas in wheat 

containing Iw1 β-diketones are inhibited in all organs of the plant (Adamski et al., 2013; Wang et 

al., 2014). Specifically to wax composition, wheat plants with glaucousness conferred by W3 have 

waxes composed of 63.3% diketones, 34% n-alkanes and only 0.7% primary alcohols (Zhang et al., 

2015). This is quite different from the glaucousness observed in the iw1- NILs, in which primary 

alcohols are by far the largest epicuticular wax component making up around 80% of wax, n-alkanes 

around 5% and β-diketones also around 5-10%. These differing biochemistries could mean that the 

waxes have quite different properties despite having the same visual appearance. It is therefore 

vital that all studies into glaucousness specify the genetics and biochemistry associated with their 

germplasm in order to allow better comparison between studies. This is something that has not 

always been considered in the past, and thus makes understanding the mechanisms behind any 

observed effects on plant physiology difficult.  

 

3.5.4 Conclusions 

Overall, data from the Iw1 NILs suggest there is no global effect of non-glaucousness as conferred 

by Iw1 on yield within a UK environment. However, there was an associated yield increase observed 

in Hereward and Alchemy. Although likely not linked to Iw1, this was significant, and given the 

backdrop of plateauing wheat yields combined with population growth, is worth pursuing. 

However, work with the NILs suggests that it is not an extended grain filling period that is 

responsible for this yield benefit. Further exploration and identification of exactly what is causing 

this yield increase could be beneficial for future wheat breeding.  

 

Keeping the yield data in mind, Hereward, Alchemy and Malacca were chosen to take forwards for 

more detailed study of plant physiology. This provides a contrast; two varieties that demonstrated 

differing yield advantages associated with the Iw1 introgression, and Malacca, for which the 

introgression proved to have no effect. Having detailed wax composition data for NILs of these 

three varieties will place this work at a significant advantage in comparison to many studies of this 

type that went before. Any effects of the epicuticular waxes on physiology can be attributed to 

specific changes to epicuticular wax biochemistry rather than using the terms glaucous or non-

glaucous in a general sense based on appearance. Furthermore, we can be certain that the effects 

of Iw1 on epicuticular wax biochemistry are the same across all three varieties.  
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Chapter 4: The effect of Iw1 on plant and canopy spectral properties 
and subsequent effect on photosynthesis and temperature 

 
4.1 Summary 
This chapter explores the effects of changing epicuticular wax biochemistry and structure on plant 

spectral properties, and how this impacts on photosynthesis and plant productivity. Glaucous 

plants are known to have increased reflectance of light within the ultra violet (UV), infrared and 

photosynthetically active radiation (PAR) spectra. However, It is not understood exactly which 

components of the epicuticular waxes, or leaf biochemistry, are causing these changes in 

reflectance. Furthermore, spectral components other than reflectance, such as light transmission, 

have not been explored. Consequently there is limited understanding of how much impact this 

change in reflectance has on the amount of light a plant can absorb.  

 

These issues were studied with respect to PAR through measurement of flag leaf reflectance, 

transmission and absorbance. Canopy light interception was also explored. To further understand 

how these spectral changes were impacting on plant physiology, components of photosynthesis 

known to change under altered light availability were measured. Canopy temperature was also 

briefly studied.  

 

Glaucous plants without Iw1 reflected more light at both the single leaf and canopy level than the 

non-glaucous plants with Iw1, confirming results of previous studies in other environments. It was 

conclusively shown that the β- and OH-β-diketone components of cuticular wax cause this 

increased reflectance, and that waxes without these compounds have no impact on leaf 

reflectance. However, no evidence was found that this change in reflectance alters PAR absorbed 

by the leaf, and glaucousness had no effect on photosynthesis or canopy temperature in any of the 

wheat varieties studied.  

 

 

 

 

 

 

 

 

 



50 
 

4.2 Introduction 
 

4.2.1 Changes to plant spectral properties have implications for plant physiology 
The spectral properties of a plant will modulate the amount of light that is absorbed by plant 

tissues. These properties are determined both by internal factors such as pigmentation, and 

external components of the plant surface such as epicuticular waxes and pubescent hairs. Variation 

in these internal and external factors will determine both visual appearance and how the plant uses 

incoming light.  

 

Figure 4.1 shows the portion of the electromagnetic spectrum of most relevance to plant 

physiology. Within the visible spectrum (380 – 780 nm), the plant uses light between 400 nm and 

700 nm for photosynthesis. As such this light is termed photosynthetically active radiation (PAR).  

The ability to absorb enough PAR for optimum photosynthetic rates is highly important. However, 

the amount of PAR absorbed needs to be in balance with PAR that is used during photosynthesis. 

PAR in excess of the amount that can be used in photosynthesis can cause damage to the 

photosystems reducing photosynthetic rate (photoinhibition). Exposure to high levels of PAR also 

results in the production of reactive oxygen species (ROS) which cause further damage to plant 

tissue and slow the repair of the photosystems after photoinhibition. Prolonged exposure to 

excessive PAR can cause damage to the photosystems that is irreversible. Therefore mechanisms 

to protect photosynthetic tissues from high light and limit exposure are important within certain 

environments (Long & Humphries, 1994; Olascoaga et al., 2014).  

 

Light within the ultra violet (UV) spectrum is also absorbed by plant tissue. Exposure to excessive 

UV can be very detrimental to plant tissues damaging DNA, reducing plant growth, and lowering 

photosynthetic rates (Caldwell et al., 1989). However, exposure to levels of UV under typical 

sunlight conditions is unlikely to cause extreme damage. Furthermore, there is evidence that 

acclimation to biologically realistic (not extreme) levels of UV-B could be beneficial for the plant. 

For example, many leaf adaptations to continuous UV-B exposure such as increased leaf thickness 

(Bornman & Vogelmann, 1991) and higher quantities of phenolic compounds such as flavonoids 

(Bassman, 2004) can provide protection from photoinhibition under high levels of PAR, thus 

allowing the plant to be more productive (Wargent & Jordan, 2013). Absorbance of light within the 

infrared spectrum will influence plant temperature. Temperature is key in regulating a number of 

key developmental processes such as flowering and grain filling. It also has a role in a number of 

metabolic processes such as photosynthesis (Acevedo et al., 2002). Therefore adaptations to 

facilitate either reflection of excess, or absorbance of more heat, depending on conditions, is 

essential. How a plant responds to its environment in terms of light regulation right across the 
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spectrum is highly important, and determined by a number of morphological and biochemical 

adaptations.  

 

At the single leaf level, the total light absorbed can be considered as a function of two processes, 

reflectance and transmission (Figure 4.2). Of all the incoming light that reaches the plant, a small 

amount will be reflected directly off the surface. The rest passes into the plant, but a portion of this 

will be transmitted through the tissues un-used. The total light absorbed will depend on the amount 

of light lost through each of these processes. Epicuticular waxes cover all surfaces of land plants 

and have an important role in determining spectral properties. How these spectral properties might 

influence yield is of key interest in this PhD. As photosynthesis is of high importance for plant 

productivity, this chapter will mainly focus on components of light absorbance within the PAR 

spectrum, with some exploration of infrared.  

 

 

Figure 4. 2 Factors affecting the amount of incoming light absorbed by a plant 

How much light is reflected from the surface and how much light is transmitted through the 

tissue both affect how much light the tissue can absorb. Light Absorbed = 1 – (Reflected + 

Transmitted). 

 Figure 4. 1 The electromagnetic spectrum between 10 nm and 1 mm 

Epicuticular waxes contribute to reflection of excessive radiation within the ultra violet (UV) 
and infrared wavelengths. Photosynthetically active radiation (400 – 700 nm) is the light within 
the visible spectrum (380 – 780 nm) that the plant can use for photosynthesis.  
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4.2.2 The effect of epicuticular waxes on spectral properties 
The effect of epicuticular waxes on light reflectance, particularly within the PAR spectrum, has been 

widely investigated. A 2002 study of 45 different species found that epicuticular wax removal 

significantly reduced leaf reflectance at both 680 nm (PAR) and 330 nm (UV) (Holmes & Keiller, 

2002). Furthermore, this study compared glaucousness, pubescent hairs and woolly hairs, and 

found glaucousness to be the most effective method of light reflectance. Glaucous species reflected 

around 10-20% more UV and 5-10% more PAR spectra than non-glaucous species with pubescent 

or woolly hairs. More specifically to wheat, glaucous epicuticular waxes have been repeatedly 

found to increase reflectance of wheat and barley by around 5-10% at the single leaf level (Jefferson 

et al., 1989; Johnson et al., 1983) and 20% at the canopy level (Febrero et al., 1998) compared to 

non-glaucous waxes. However, specifically which properties of these waxes affects the reflective 

properties has not been directly addressed. For example, PAR reflectance of wheat has been found 

to increase linearly with quantity of epicuticular wax (Johnson et al., 1983), yet many types of 

glaucousness are determined by changes to wax biochemistry rather than total wax load.  

 

It has been widely assumed that the increased reflectance of glaucous epicuticular waxes reduces 

light interception. However, any effect of epicuticular wax type on light transmission has not been 

studied previously at either the single leaf or canopy level. Consequently the effect of glaucousness 

on overall light interception is unclear.  

 

4.2.3 Changes to PAR absorbance could impact on leaf level photosynthesis 
If the greater PAR reflectance observed in glaucous wheat varieties does indeed lead to lower PAR 

absorbance, less PAR would be available to the photosynthetic tissues of glaucous plants. 

Photosynthesis of cultivated wheat is 90% light saturated at PAR levels of 1000 µmol m-2 s-1. Full 

saturation is reached between 1000 and 1500 µmol m-2 s-1 dependent on variety, at which point 

light is no longer limiting to photosynthesis (Acevedo et al., 2002). However, prolonged exposure 

to levels of PAR above this saturation point can damage the photosynthetic machinery, reducing 

photosynthetic capacity (Monneveux, et al., 2003; Ögren & Rosenqvist, 1992; Yang et al., 2006). 

Therefore the increased reflectance of glaucous epicuticular waxes could prove beneficial or 

detrimental to productivity depending on environmental conditions.  

 

Wheat is grown in many high light intensity environments such as Ciudad Obregon in Mexico where 

light levels are frequently above 1500 µmol m-2 s-1 for much of the day (Figure 4.3b). The more 

reflective glaucous epicuticular waxes could be advantageous in this instance, providing protection 

from high light (this photoprotective mechanism of the waxes will be further explored in Chapter 

6). Conversely, in environments such as the UK it is more likely that plants will not be receiving 

enough light to reach photosynthetic maximum. Figure 4.3a shows a typical sunny day during 
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summer in Norfolk, UK. The PAR levels are much more variable than for Obregon, only above 1500 

µmol m-2 s-1 for a small portion of the day. The majority of the time plants in this environment are 

experiencing PAR levels of around 1000 µmol m-2 s-1 or below. Under these circumstances non-

glaucous plants would be at an advantage if their reduced reflectance facilitated greater PAR 

absorbance, thus allowing for faster photosynthetic rates.  

 

Photosynthesis has long been a target for crop improvement, with many studies claiming that 

increasing photosynthetic rates is the answer to achieving higher grain yields in wheat (Makino, 

2011). If non-glaucous waxes do increase PAR interception this could provide a novel way to 

increase radiation use efficiency within environments where PAR is regularly below the saturation 

point. The effect of glaucousness on photosynthesis has been investigated previously at the single 

leaf level, but there is lack of agreement in the literature regarding the relationship. For example, 

Johnson et al., (1983) found no difference in light saturated photosynthesis between glaucous and 

non-glaucous NILs of durum and bread wheat. However, they did not test any light level below 

saturation. Conversely, a decrease in photosynthesis of 5- 23% has been observed in glaucous 

sorghum and wheat compared to non-glaucous (Chatterton et al., 1975; Richards et al., 1986). 

However, these studies do not state the light conditions making interpretation and subsequent 

comparison of existing studies difficult. 

 

 

  Figure 4. 3 Typical incoming PAR at midday for two contrasting wheat growing regions 

The charts show incoming PAR for a clear sunny day in (a) Norfolk, UK, and (b) Ciudad 

Obregon, Mexico. Obregon data obtained from Monneveux et al., (2003). The dotted red 

line indicates the PAR level at which photosynthesis is 90% light saturated. The solid red 

line indicates the PAR level above which extended exposure could cause photoinhibition. 
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4.2.4 Conclusions drawn at the canopy level may differ from the leaf level 
Whilst it is important to study physiology at the leaf level, to fully understand how physiological 

processes might impact on crop interaction with the environment it is vital that work is translated 

up to the canopy level. This is because conclusions drawn at the canopy level can be quite different 

to those from leaf level measurement. For example, green plants are very efficient at absorbing 

incoming PAR. The exact proportion of PAR absorbed by the photosynthetic tissues will vary 

between species, but is generally considered to be around 85% (Zarate-Valdez et al., 2015). 

However, work on a number of common British crops, including wheat and barley, found that in 

the field the crop canopy only intercepted around 40% of incoming visible light (Monteith, 1977). 

This was averaged across the season, taking account of all growth stages where canopy structure 

and ground coverage will vary considerably as the plants develop. These factors cannot be taken 

into account when looking at individual leaves or organs. Furthermore, the light available to 

photosynthetic tissues will not be homogenous moving down the canopy, introducing yet further 

complication in extrapolating results from the individual to canopy level.  

 

Traditionally in wheat, the flag leaf at the top of the canopy has been considered the most 

important organ in terms of producing photosynthates for wheat grain filling, potentially 

contributing over 80% of final grain weight (Thorne, 1965). However, values reported in the 

literature for the contribution of different organs to grain filling vary widely, and depend heavily on 

wheat variety and environmental conditions. The stem has been frequently reported to contribute 

8–25% of photosynthates to final grain yield (Merah & Monneveux, 2015; Zhang et al., 2011), with 

some studies reporting values as high as 44% (Hannachi et al., 1996). Under water stress the ear 

and peduncle together have been found to contribute over 73% to grain weight (Zhang et al., 2011), 

and a recent study that shaded the flag leaf during plant development only recorded a 5% decline 

in grain weight (Merah & Monneveux, 2015). These studies all indicate that organs other than the 

flag leaf can have a key role in grain filling. Therefore the amount of light available at different levels 

of the canopy could have an important influence on final grain yield. The spectral properties of 

leaves at the top of the canopy could have an impact on the light available to those further down 

that may usually capture less light. Although an important consideration, this is not something that 

has been investigated in relation to glaucousness, perhaps due to difficulties associated with 

studying gas exchange and light interception at this scale.  

 

4.2.5 Changes to spectral properties within the infrared wavelengths will influence 
canopy temperature 
In addition to greater PAR reflectance, glaucous crop plants are also considered to reflect more 

light at infrared wavelengths and have significantly reduced tissue temperature. This has been 

shown to be the case in wheat, with photosynthetic tissues of glaucous plants being up to 0.7⁰C 
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cooler than non-glaucous under drought in the field, and 0.3⁰C cooler in a well-watered glass house 

(Richards et al., 1986). Comparable results in a range of wheat and grass species were later found 

by Jefferson et al., 1989. A more recent study in wheat even found that cuticular wax production 

and crop temperature both map to the same QTL on wheat chromosomes 1B, 3D and 5A indicating 

that wax type is a strong determinant of crop temperature (Mondal et al., 2014).  

 

Temperature is a key regulator of a multitude of plant metabolic processes including 

photosynthesis (which will be studied in the Iw1 NILs). Air temperatures of 20 – 25 ⁰C have been 

reported as optimum for growth of wheat and barley (Acevedo & Silva, 2002; Hossain et al., 2012; 

Hossain et al., 2016), and temperatures in excess of this can severely limit yield and photosynthesis 

(Acevedo et al., 2002). However, studies in rice show that where temperatures are nearing these 

maxima, only a small decrease in tissue temperature could result in great yield improvement. 

Conversely, where temperatures are below the photosynthetic optimum, as is often the case in the 

UK, a small increase could greatly  improve yield (Polley, 2002). Therefore, within the UK the non-

glaucous phenotype could offer a significant advantage under sub-optimal temperatures if 

canopies are slightly warmer.  

 

4.2.6 Aims  
This chapter will focus on the effects of changing leaf and canopy spectral properties on the 

availability of PAR to photosynthetic tissues. The effect of glaucousness on canopy temperature will 

also be explored. This chapter will test the hypotheses that: 

(i) Reduced reflectance of non-glaucous (Iw1+) wheat leaves and canopies makes more 

PAR available to photosynthetic tissues. 

(ii) Non-glaucous (Iw1+) canopies have a higher temperature in the field. 
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4.3 Materials and Methods 
 

4.3.1 Canopy PAR reflectance measurements 
To confirm previous findings that glaucous canopies reflect more PAR than non-glaucous, 

reflectance of PAR from the top of the crop canopy was measured in the field during the harvest 

year of 2013 for NILs of Robigus, Xi19, Malacca and Alchemy and 2014 for Hereward, Malacca and 

Alchemy. All measurements were taken within 14 days of anthesis when the canopy is green and 

canopy morphology remains approximately stable.   

 

Two hemispherical PAR quantum sensors (SKP215, Skye Instruments, UK) were attached to a pole 

(SKL 910, Skye Instruments, UK) at a height of 1.8 m above the canopy. One sensor faced upwards 

logging all incoming light, and a second sensor faced down towards the canopy. This second sensor 

had a collar that restricted the field of view to 25⁰, therefore detecting light from an area of 0.5 m2. 

A bubble on the pole ensured that the sensors were level over the canopy. Both sensors were 

connected to a Spectrosense + data logger (SKP 215LQ/SS2, Skye Instruments, UK). Measurements 

were taken at mid-day between 12 and 2 pm. Measurements were taken at 5 locations per plot, 

with 30 measurements logged at each location. One average value for each of incoming and 

reflected light was then calculated per plot. Four plots were measured from each NIL. The 

percentage incoming light reflected up off the top of the canopy was calculated and data were 

analysed both by overall ANOVA and pairwise comparison within varieties.  

 

4.3.2 Measurement of PAR within the canopy 
In order to investigate the effect of glaucousness on fractional interception, the proportion of 

incoming light that is intercepted by the canopy (Gonias et al., 2012), two 1 m long PAR line 

quantum sensors (SKP215LQ/SS2, Skye Instruments) with 33 photodiodes spaced at equal distances 

along the length were used. These sensors were attached to the Spectrosense + data logger 

alongside the two PAR sensors detailed in section 4.3.1.  

 

In 2013 one line sensor was placed on the floor. Another was placed in line with the base of the 

second leaf, which is mid-way down the canopy. Measurements on the floor and middle of the 

canopy were taken simultaneously with the incoming and reflected light measurements described 

in section 4.3.1 to ensure that data were comparable across all 4 sensors. Figure 4.4 shows 

placement of all four sensors within the crop canopy. Approximately 30 measurements were taken 

at 3-5 locations per plot and combined into one average value per plot. For each genotype three 

plots were measured. All measurements were taken within 14 days of anthesis. Data were collected 

for NILs of Robigus, Xi19, Malacca and Alchemy. The ratio of incoming light to light at the mid-way 
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point, and light on the floor was calculated, and from this the percentage incoming light reaching 

various canopy levels was obtained.  

 

In 2014 the methods were modified slightly. Placement of all four sensors within and above the 

canopy remained the same, but sensors were left in position for extended periods of time.  Sensors 

were left at a single location in the canopy for one hour, taking a total of 90 measurements. Two 

locations per plot were measured and data combined to get an average per plot. Three plots per 

NIL were measured. Data were obtained for three plots per NIL for Malacca and Alchemy and 

analysed both by overall ANOVA and pairwise comparison within varieties.  

 

 

 

 

 

 

Figure 4. 4 Schematic showing PAR sensor set-up for measurement of canopy light 
interception 

A sensor above the canopy measures incoming PAR (a), and a second sensor above the 

canopy measures PAR reflected from the top of the canopy within a 25 ⁰ field of view (b). 

Bar sensors containing 33 equidistant photodiodes were placed within the plot (c and d), 

one positioned in line with the second leaf (mid-way), and another on the canopy floor. 

Wheat plants are coloured in green, sensors in grey and PAR in orange. 
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4.3.3 Integrating sphere measurements 
Spectral properties of glaucous and non-glaucous epicuticular waxes were also investigated at the 

flag leaf level. Flag leaves were sampled from five independent replications in the field at anthesis 

during the 2014 harvest season at anthesis. Leaves were cut at the base and transported with their 

ends in water to prevent dehydration. Leaves were kept at 4 ⁰C with the ends in water until 

measurement. The spectral properties of flag leaves were analysed using an integrating sphere.  

Figure 4.5 illustrates how the sphere works. A halogen projector lamp (15 V/150 W; Philips, 

Hamburg, Germany) was set up together with a fibre optic illuminator (COLD SPOT, PICL-NEX; 

NIPPON P-I CO.LTD, Tokyo, Japan) to provide a light source. For each leaf transmission through the 

leaf was measured as shown in Figure 4.5a. The leaf was placed with the adaxial surface facing the 

light source. A reflective backing of cardboard covered in silver foil was placed on the back of the 

sphere. Any light transmitted through the leaf into the sphere was detected by a 

spectrophotometer, measuring light at every wavelength between 400 and 700 nm. To account for 

the light lost in the gap between the leaf and light source, in addition to any minor modifications 

to the sphere between measurements, a blank measurement with no leaf (Q1) was taken prior to 

measuring leaf transmission (Qt). Leaf transmission was calculated as: 

 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑄𝑡

𝑄1
 

 

The reflectance of light off the surface of each leaf was also measured, shown in Figure 4.5b. In this 

case the leaf was placed at the back of the sphere between the sphere and reflective backing, with 

the light shining through the sphere onto the leaf. Again, the adaxial surface was always facing the 

light source. Leaf reflectance (Qr) at every wavelength between 400-700 nm was measured using 

the spectrophotometer. In order to account for light lost between the light source and leaf, and 

any minor alterations in integrating sphere set up between experiments a blank measurement (Q2) 

with the exact same set up but with no leaf was taken each time. Leaf reflectance was calculated 

as: 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 =  
𝑄2 − 𝑄𝑟

𝑄𝑟
 

 

From measurement of transmission and reflectance, total PAR absorbed by each leaf was calculated 

using the formula:  

 

Absorbance = 1- (Transmission + Reflectance) 
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Absorbance, transmission and reflectance are all given as a proportion. Accordingly a leaf would 

have an absorbance of 1.0 when transmission and reflectance are both 0. Therefore total PAR 

absorbance cannot be greater than 1 in these measurements. However, on occasion average 

absorbance was calculated above 1. This was due to the nature of measurement. The errors 

associated with the integrating sphere measurement are quite large, and at wavelengths where the 

proportion of incoming PAR absorbed was high, the error resulted in values over 1.0. This error 

should be taken into account when interpreting the data presented from these measurements.   

 

For transmission, absorbance and reflectance, data were averaged over 400 –700 nm for each NIL. 

Data were also divided into red (640-700 nm), blue (425-490 nm) and green (490-550 nm) 

wavelengths and average for each found. Data were analysed both by overall ANOVA and pairwise 

comparison within varieties and wavelengths. Certain individual wavelengths were also chosen to 

assess difference between NILs where the greatest divergence was observed but differences 

between NILs were not significant.  

 

 

4.3.4 Wax removal experiment 
To specifically understand how the epicuticular waxes affect leaf spectral properties, epicuticular 

waxes were mechanically removed with gum arabic (Gum Arabic from acacia tree, Sigma Aldrich, 

UK). Glasshouse grown material of Hereward, Alchemy and Malacca NILs was used during this 

 
Figure 4. 5 Schematic showing set-up of the integrating sphere for measurement of flag 
leaf spectral properties 

For transmission (a), a fibre optic light source shines light through the leaf into the sphere 

which is painted completely white on the inside. Light bounces off the sphere internal 

surface and into a light sensor at the top of the sphere, linked to a spectrophotometer that 

measures light at every wavelength between 400 and 700 nm. For reflectance (b), light is 

shone through the sphere onto the leaf at the back of the sphere. Light reflected by the leaf 

(rather than absorbed) is detected by the light sensor. In both cases leaves were set up such 

that the adaxial surface was facing the light source.   

(a) (b) 
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experiment grown as detailed in Chapter 2 section 2.2. Flag leaves were sampled at anthesis as 

described in section 4.3.3.  

 

Gum arabic powder was mixed with water to create a paste thin enough to spread. The paste was 

spread over the entire surface of the leaf and left to dry. Once dry the hardened gum arabic was 

peeled off the leaf surface, removing the epicuticular waxes in the process. This process was carried 

out on both the adaxial and abaxial leaf surfaces prior to measurement. For each NIL, five leaves 

with mechanically removed epicuticular waxes, and five control leaves (no changes made to the 

leaf surface) were then subject to the integrating sphere measurements and data analysis described 

in section 4.3.3. Following measurement with the integrating sphere leaves were imaged using 

Scanning Electron Microscopy (SEM) to confirm absence of epicuticular waxes in treated leaves, 

and presence as normal in control leaves.  

 

4.3.4.1 Scanning Electron Microscopy 
Cryo SEM imaging was carried out by Kim Findlay and Elaine Barclay in the Bioimaging facility at the 

John Innes Centre in a manner similar to that described in Adamski et al., (2013). In brief: 

Immediately after measurement with the integrating sphere, flag leaves were dissected and 

attached to an aluminium stub using O.C.T compound (BDH Laboratory supplies, Poole, UK). The 

stub was then snap frozen in liquid nitrogen prior to being placed onto the cryo-stage of a CT1500HF 

cryo-transfer system (Gatan, Oxford, England). The sample was kept at -95 ⁰C for 3 min, and then 

sputter coated with platinum for 135 sec at 10 mA at -110 ⁰C or colder. The sample was transferred 

to the cryo-stage of a Philips XL30 FEG SEM (FEI, Eindhoven, The Netherlands). The sample was 

viewed with the secondary electron detector at 3 kV, kept at -140 ⁰C throughout imaging. A number 

of images were taken of each sample to confirm presence or absence of waxes across the surface.   

 

4.3.5 Extraction of photosynthetic pigments 
If increased reflectance of glaucous epicuticular waxes reduces the light available to the 

photosynthetic tissues, photosynthetic pigments might be upregulated to compensate for this. Flag 

leaf sampling was carried out in the field during the harvest years of 2014 and 2015 for NILs of 

Hereward Malacca and Alchemy from five independent replications at Growth Stage 31 (prior to 

visible wax appearance) and Growth Stage 61-69 (anthesis, wax visible). At anthesis flag leaves were 

collected and at GS31 the newest fully unfurled leaf was taken. Leaves were collected in the field 

and snap frozen immediately on site in liquid nitrogen. They were then stored in the dark at -80 ˚C 

until use.   

 

Methods of pigment extraction were adapted from Inskeep & Bloom, 1985. Three discs of 8 mm 

diameter from each leaf were placed into a pre-weighed light proof 5 mL micro centrifuge tube 
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(C2500-OB, MTC-Bio, USA). Discs were taken one each from base of the leaf, mid-point and as near 

the leaf tip as possible, and combined in a single tube (preliminary results showed no significant 

difference in pigment content between leaf sections). Tubes containing leaf discs were weighed 

again to calculate total weight of tissue.  

 
3 mL N,N-Dimethylformamide (analytical grade, Sigma Aldrich, UK) was added to each tube. Tubes 

were then left for 48-64 hr on a horizontal shaker at 4 ̊ C until there was no further change in colour. 

Leaf discs did remain a very pale green colour, but this was consistent across all discs and no more 

pigment leached out after this point.  

 
Pigment-containing Dimethylformamide was transferred to an optical glass cuvette (6030-OG, 

Hellma, UK), and absorbance measured in a spectrophotometer (Pharmacia Biotech, Ultraspec 

1000E) at 664 (A664), 647 (A647) and 480 (A480) nm. The following equations from Wellburn, 1994 

were used to calculate chlorophyll a (chla), chlorophyll b (chlb) and carotenoid content: 

 

Chla = 11.65A664 - 2.69A647 

Chlb = 20.81A647 - 4.53A664 

Carotenoids = (1000A480 - 0.89Chla - 52.02Chlb)/ 245 

 
Results were then controlled for by both fresh weight and leaf area and analysed both by overall 

ANOVA and pairwise comparison within varieties.  

 

4.3.6 Light curves 
Light curves were taken on flag leaves in the field using a LI-6400XT (LI-COR Biosciences) to 

investigate whether the reduced reflectance of non-glaucous flag leaves has any effect on 

photosynthesis. Measurements were taken within two weeks of anthesis. During this period plants 

are at their photosynthetic maximum and there is little change in photosynthetic capacity (Molero 

& Lopes, 2012). In order to avoid the post-midday depression of photosynthesis (Xu & Shen, 2005), 

measurements were taken in the morning, with the first measurement no earlier than 9 am, and 

the last finishing no later than 12 pm. Four biological repeats were taken on each line measured. 

Measurements were taken on NILs of Malacca and Alchemy during the harvest year of 2013 and 

2014, Robigus and Xi19 in 2013, and Hereward in 2014 and 2015. In 2015 Hereward was explored 

further through use of the recombinant lines HS17 and HS21 (iw1-) alongside HS26 and HS32 (Iw1+). 

Rationale for choice of recombinant lines is detailed in section 4.3.6.2.  

 

Upon placing the leaf in the chamber it was allowed to equilibrate at a PAR level of 1000 µmol m-2 

s-1 for 10 min or until stable. Subsequently, PAR was increased to 1500 µmol m-2 s-1, and then 

reduced through 1000, 750, 500, 400, 300, 200, 100, 50 and 0 µmol m-2 s-1. At each light level gas 
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exchange components including photosynthetic rate were logged after the leaf had equilibrated to 

the new conditions.  

 

Throughout all measurements, flow was maintained at 300 µmol, reference CO2 was set to 500 

µmol mol-1 and the leaf temperature was set to 20 ⁰C. An effort was made to maintain relative 

humidity between 50 and 70%. Where this was not possible given variable field conditions, it was 

allowed no higher than 75% or lower than 45%. Whilst plants for measurement were selected to 

be representative of the plot, those with flag leaves that were healthy and big enough to fill the 

leaf chamber were chosen.  

 

Measurements were not corrected for absorbance, and leaf PAR absorbance was assumed to be 

85% as per the LI-COR standard settings (LI-COR Biosciences, 2011). Although integrating sphere 

measurements were taken on the NILs measurements were variable and it was not possible to take 

these measurements in the field on every leaf to correspond with light curve measurements. 

However, these results also indicated that there was no significant difference in PAR absorbance 

between NIL pairs of any variety.  

 

For each variety, differences between NILs in the assimilation data were analysed at each level of 

PAR by pairwise comparison, and an overall ANOVA that included both years of measurement.   

 

4.3.6.1 Light curve fitting model 
Data were fit to the model described in LI-COR Application Note #10 in order to generate a light 

response curve: 

 

 

 

Where A is assimilation, Qa gives the absorbed quanta per unit leaf area in the chamber, Amax is 

assimilation under saturating light, Ao is the dark assimilation rate and p is a curvature parameter. 

Φ is photochemical efficiency at low light levels calculated from the slope of the curve. Using the 

light response curve generated from the model apparent quantum efficiency (AQE) was calculated.  

The raw assimilation data were used to calculate light saturated assimilation (Amax), dark respiration 

(Ao) and light compensation point (the intercept on the curve).  For each curve parameter data were 
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analysed by overall ANOVA inclusive of all varieties and years, and by pairwise comparison between 

NILs.    

 

4.3.6.2 Selection of Hereward recombinant lines for light curve analysis 
Recombinant lines with contrasting introgressions within the region were chosen to further 

investigate the effect of Iw1 on photosynthesis in Hereward. Table 4.1 shows the genotypes of 

selected lines in addition to the NILs (HS+ and HS-). The recombinants HS26 (Iw1+) and HS17         

(iw1-) were chosen, in addition to HS21 (Iw1+) and HS32 (iw1-). Both recombinant pairs have 

contrasting recombinant fractions to allow trait mapping within the region. The genotypes for all 

26 recombinants are shown in Appendix A2.  

 

 

 

 

 

 

Marker Distance 
chromosome 
2BS (cM) 

HS26    HS17 HS32 HS21 HS+ HS- 

BS00084668 0 B A B A B A 
BS00009972 1.15 B A B A B A 

Iw1 1.77 B A B A B A 
BS00070900 10.41 A B B A B A 
BS00010318 10.41 A B B A B A 
BS00045163 12.68 A B B A B A 
BS00010637 17.98 A B A B B A 
BS00065040 17.98 A B A B B A 
BS00063694 17.98 A B A B B A 
Bra1190 28.27 A B A B B A 
BS00009848 19.18 A B A B B A 
BS00064156 44.64 A B A B B A 
BS00022734 45.19 - B A B B A 
BS00022060 45.19 A B A B B A 
BS00064155 45.19 A B A B B A 

Table 4. 1 The genotypes of four Hereward recombinant lines (HS26, HS17, HS32 and HS21) 
and the NILs 

Fourteen markers within the introgressed region were run on recombinant lines. Grey cells 

containing an A indicate that recombinant has the Hereward allele, whilst a B in a green cell 

indicates presence of the Shamrock allele. HS17 and HS21, both have the iw1- Hereward allele 

(A) resulting in a glaucous phenotype, whilst HS26 and HS32 are both non-glaucous and have 

the Iw1+ Shamrock allele (B). The HS+ and HS- NILs are also shown. 
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 4.3.8 Canopy temperature 
Canopy temperature was measured during the 2013 harvest year in the field on NILs of Hereward, 

Einstein, Robigus and Alchemy, Xi 19 and Malacca. Measurements were taken within 14 days of 

anthesis on a warm, dry day with clear sky (no cloud cover) 

 

An infrared thermometer was moved slowly along the top of the plot at a constant distance from 

the top of the canopy for three sec, and average temperature for this time period ⁰C recorded. 

This was repeated three times per plot, and an average taken to get a single value per plot. 

Temperature was recorded for four plots (independent replications) of each line. To minimise the 

effect of changing air temperature, a single variety was measured at a time, alternating between 

plots of Iw1+ and iw1- NILs.  

 
Data were analysed by overall ANOVA and pairwise comparison between NILs.  
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4.4 Results 
 

4.4.1 Canopy spectral properties 
 

4.4.1.1 Canopy PAR reflectance 
A major function of the epicuticular waxes is to alter light scattering from the plant surface affecting 

the spectral properties of the plant. This effect has previously been shown in numerous crop species 

including wheat, where glaucousness increases reflectance of the crop canopy in the field (Jefferson 

et al., 1989; Johnson et al., 1983).  

 

To confirm this effect, whole canopy light reflectance was measured across the PAR spectrum (400-

700 nm) in the 2013 and 2014 field season. Both incident and reflected PAR was measured and the 

percentage of incoming PAR reflected calculated. Malacca and Alchemy were measured in both 

2013 and 2014, and there was no difference between years. Therefore data from both years have 

been combined in Figure 4.6.  

 

 Figure 4. 6 Canopy reflectance of PAR (400-700 nm) in the field at anthesis 

Measurements were taken in 2013 and 2014 for Malacca and Alchemy and combined to 

get an average over both years (n=8). Hereward was measured in 2014 only and Xi19 and 

Robigus in 2013 only (n=4). Across all three varieties Iw1 significantly reduces reflectance 

(p<0.001). Significance of pairwise comparison within varieties is indicated on the chart 

p<0.05 (*), p<0.001(***). Error bars = S.E. 
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Figure 4.6 shows that consistently across all five varieties, Iw1+ canopies reflected significantly less 

PAR than iw1- canopies (ANOVA; p<0.001). There were also significant differences in reflectance 

between varieties (p<0.001) that could have resulted from differences in canopy architecture and 

morphology. However there was no statistically significant interaction between variety and Iw1, or 

year and Iw1, indicating that the reduced reflectance was independent of genetic background and 

year. When data were analysed within each variety by pairwise comparison, differences between 

NILs remained significant for all five varieties; Hereward (Independent samples t-test; p=0.043), 

Alchemy, Malacca, Hereward, Robigus, Xi19 (p<0.001). Notably the proportion of PAR reflected up 

from the canopy was very low, in the region of 0.03-0.05%. 

 

4.4.1.2 PAR availability within the canopy  
To further investigate canopy spectral properties and assess PAR penetrating to deeper levels of 

the canopy, sensors were placed both mid-way through the canopy and on the canopy floor during 

the summer of 2013 (Figure 4.7). For direct comparison, measurements at these lower levels were 

taken simultaneously with PAR reflected from the top of the canopy and incoming PAR.   

 

 

Figure 4.7a shows that there was no significant difference between Iw1+ and iw1- canopies in terms 

of light available at the mid-way point (p=0.136). As with reflectance from the top of the canopy 

(Figure 4.6), analysis with overall ANOVA indicated that there were significant differences between 

varieties (p<0.001), but no significant interaction between variety and Iw1 (p=0.940). Pairwise 

comparison revealed no significant differences between NILs in terms of light reaching the mid-way 

point. Figure 4.7b shows the percentage of incoming PAR that reached the floor. There was no 

significant effect of Iw1 overall (p=384), but again there was a significant difference between 

 Figure 4. 7 Canopy fractional interception of PAR at anthesis in 2013 

PAR was detected (a) within the canopy at the mid-way point and (b) on the floor of the 

canopy, both expressed as a percentage of incoming light. Measurements were taken at 

anthesis in 2013. Pairwise comparison showed no significant difference between NILs of 

any variety. N=3, Error bars = S.E. 
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varieties (p<0.001). The interaction between variety and Iw1 was significant (p=0.02), likely due to 

the reversed effects of Iw1 in Malacca and Xi19 in comparison to Alchemy and Robigus. For all 

varieties around 25-30% of incoming PAR was detected at the midway point, and around 10- 12% 

of incoming PAR was detected at floor level. This indicates that although a very small percentage 

of light was reflected from the top of the canopy, a large proportion of this light was absorbed by 

the floor.   

 

The same measurements were taken the following year in 2014 using a modified method described 

in methods 4.3.2 on Malacca and Alchemy NILs, where-by PAR sensors were left at a chosen 

location for an extended period of time (Figure 4.8). Using the new method, there was overall no 

significant effect of Iw1 on light detected at the floor level (Figure 4.8b, p=0.163) or mid-way down 

(Figure 4.8a, p=0.123) the canopy. Additionally, there was no consistency between the two 

experiments (Figures 4.7 and 4.8) in terms of overall trends. These data from 2013 and 2014 

indicate that there is no effect of Iw1 on canopy fractional interception of PAR.  

 

4.4.2 Leaf spectral properties 
 

4.4.2.1 Spectral measurements on field grown leaves  
To support the canopy reflectance measurements, spectral properties were studied at the leaf level 

using an integrating sphere. PAR reflected from the surface of the leaf and PAR transmitted through 

the leaf were measured at each individual wavelength between 400 and 700 nm using field grown 

flag leaves at anthesis. PAR absorbed at each wavelength was then calculated.   

 
Figure 4. 8 Canopy fractional interception of PAR at anthesis in 2014 

Par was detected (a) within the canopy at the mid-way point and (b) on the floor of the canopy, 

both expressed as a proportion of incoming light. There was no significant difference between 

NILs of either variety at the floor or mid-way level. N=3, Error bars = S.E. 
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Figure 4. 9 PAR reflected from the flag leaf surface of Iw1 NILs 

Reflectance of (a) Hereward, (b) Alchemy and (c) Malacca NILs measured using an integrating 

sphere. A moving average was taken across the spectrum to smooth the data. At no individual 

wavelength is there a significant difference between NILs of any variety.  N= 5, error bars = S.E. 



69 
 

 

 
Figure 4. 10 PAR transmitted through the flag leaf 

Measured using an integrating sphere bewteen 400 and 700 nmfor NILs of (a) Hereward, (b) 

Alchemy and (c) Malacca. A moving average was taken across the spectrum to smooth the data. 

At no individual wavelength is there a significant difference between NILs of any variety. N= 5, 

error bars = S.E. 
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Figure 4. 11 PAR absorbed by the flag leaf calculated from transmission and reflectance 
measurements 

Absorbance was calculated for NILs of (a) Hereward, (b) Alchemy and (c) Malacca. A moving 

average was taken across the spectrum to smooth the data. At no individual wavelength is there 

a significant difference between NILs of any variety. N= 5, error bars = S.E. 
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Figure 4.9 shows reflectance at each individual wavelength across the PAR spectrum for (a) 

Hereward, (b) Alchemy and (c) Malacca. It is clear that for all three varieties Iw1+ flag leaves 

consistently reflected less light than iw1- across the PAR spectrum. This difference was less marked 

in Alchemy than in Hereward and Malacca, with more overlap in reflectance spectra between the 

NILs. For all varieties there was a lot of variation associated with the measurement, with 

overlapping error bars. The result of this was that at no individual wavelength was there a 

significant difference in reflectance.  

 

When PAR was divided into red (640-700 nm), blue (425-490 nm) and green (490-550 nm) light 

there was a significant difference in reflectance between the three light colours (p=0.021). 

However, there was no statistical interaction between light colour and Iw1 (p=0.959), indicating 

that the relationship between Iw1+ and iw1- leaves did not change across the PAR spectrum. This 

constant relationship between the NILs can also be seen in Figure 4.9.  

 

Figure 4.10 shows transmission across the PAR spectrum for all the three varieties. As with 

reflectance, there was a difference in amount of light transmitted at different points in the PAR 

spectrum. All flag leaves transmitted significantly more light in the middle of the PAR spectrum 

(p<0.001), which is green light. Furthermore, in terms of transmission, there was limited difference 

between NILs on the ends of the spectrum (400-500 nm and 600-700 nm), whilst the NILs appeared 

to diverge in the middle of the spectrum. Again, there was large variation associated with this 

measurement, so at no individual wavelength was the difference between NILs significant for any 

variety. 

 

Regarding the difference in green light transmission between NILs, Figure 4.10 indicates that the 

direction of change was not consistent across all three varieties. The iw1- NILs of Malacca and 

Alchemy transmitted 6% and 25.82% less green light respectively than Iw1+ NILs, whilst for 

Hereward iw1- NILs actually transmitted 15.15% more green light. There was no statistically 

significant interaction between light type and Iw1 (p=0.729).  

 

Figure 4.11 shows PAR absorbance across the spectrum. Overall, there was a significant reduction 

in absorbance of green light (p=0.032), but no interaction between Iw1 and light colour (p=0.982). 

At no individual time point was there a significant difference between NILs. Furthermore, as with 

transmission, there was no consistent trend across the three varieties in terms of effect of Iw1 on 

absorbance. 
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To more directly compare the leaf level data with the canopy, PAR reflected, transmitted and 

absorbed by the flag leaf was averaged over the full 400-700 nm spectrum (Figure 4.12).  

 

 

From the averaged data it is clear that, as with the canopy, Iw1+ flag leaves of all varieties 

consistently reflected less PAR than iw1- leaves (Fig. 4.12a). However, overall these leaf level 

differences were not significant (p=0.150). Figure 4.12b shows that there was no significant effect 

of Iw1 on PAR transmission through the leaf (p=0.235). Furthermore, there was no consistent trend 

across the three varieties as seen in the reflectance data. The primary difference between the 

epicuticular waxes of the NILs is the presence or absence of β-diketones and OH- β – diketones. 

Therefore from these data it can be concluded that transmission of light through the leaf is not 

affected by presence of these compounds in the epicuticular waxes. Although a consistent trend in 

reflectance was seen across varieties, this, combined with the variable transmission data, resulted 

 
Figure 4. 12 Spectral properties of the flag leaf averaged over the PAR spectrum (400 - 
700 nm) 

The charts show (a) average reflectance of light from the leaf surface over 400-700 nm 

(b) average transmission of light through the flag leaf was measured at every 

wavelength across the PAR spectrum (400-700 nm) (c) average PAR absorbed across the 

PAR spectrum. There was no significant difference in reflectance, transmission or 

absorbance between NILs of any variety by pairwise comparison. N=5, error bars = S.E. 
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in no significant effect of Iw1 on PAR absorbance overall (p=0.641). Additionally there was no 

interaction between Iw1 and variety (p=0.553). Presence of β-diketones and OH- β – diketones in 

the epicuticular waxes did not have an effect on PAR absorbance at the leaf level.  

 

4.4.2.2 The effect on flag leaf spectral properties after mechanical epicuticular wax removal  
In order to gain further understanding of the role epicuticular waxes play on leaf spectral 

properties, gum arabic was used to mechanically remove epicuticular waxes from glasshouse grown 

flag leaves at anthesis. Subsequently PAR transmission and reflectance were measured using an 

integrating sphere.  

A scanning electron microscope (SEM) was used to confirm that the epicuticular waxes had been 

removed following treatment with gum arabic, and that epicuticular waxes were present as normal 

in control leaves. Example images are shown in Figure 4.13.  

 

In Figure 4.13 epicuticular wax structures surrounding the stomata can be seen in both the Iw1+ 

and iw1- control leaves. These waxes are absent from the gum arabic treated leaves, revealing a 

smooth leaf surface. Also noted whilst doing this work, prior to wax removal Iw1+ leaves were 

bright green in colour, whilst iw1- had a bluish-grey bloom. After treatment with gum arabic leaves 

 
Figure 4. 13 SEM images of Iw1+ and iw1- Alchemy NILs with and without epicuticular 
waxes 

Images show presence of epicuticular waxes around stomata in control leaves of both 

NILs, and absence of epicuticular waxes after mechanical removal with gum arabic. Due to 

the destructive nature of SEM imaging the same leaves could not be used in the control 

and treatment groups. 
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of both NILs were green in colour and could not be distinguished visually. This indicated that it was 

the epicuticular waxes responsible for difference in appearance of glaucous and non-glaucous 

plants rather than another factor such as pigmentation.   

 

 

Figure 4.14a shows that over all three varieties the PAR reflectance of glaucous (iw1-) flag leaves 

treated with gum arabic was significantly reduced compared to control leaves (p=0.001), although 

when analysed by pairwise comparison within each single variety this reduction was not significant. 

However, in the non-glaucous Iw1+ leaves (Figure 4.14b) there was overall no significant change in 

reflectance after treatment with gum arabic (p=0.345). For Hereward it appears reflectance of Iw1+ 

Figure 4. 14 The spectral properties of flag leaves with and without intact epicuticular 
waxes 

Gum arabic was used to mechanically remove epicuticular waxes from Hereward, Alchemy 

and Malacca NILs. The charts show reflectance of control and gum arabic treated leaves 

averaged across 400-700 nm measured using an integrating sphere for (a) iw1- and (b) Iw1+ 

NILs. Flag leaf light transmission across 400-700 nm measured using an integrating sphere 

for (c) iw1- and (d) Iw1+ NILs. Pairwise comparison between control and treated leaves for 

each NIL revealed no significant differences. N=5, error bars = S.E. 
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leaves may even have increased after wax removal, but this increase was not significant, nor was 

there a significant interaction between variety and treatment (p=0.727). Overall, when Iw1+ and 

iw1- NILs of all varieties were analysed together, there was a significant interaction between gum 

arabic treatment and Iw1 (p=0.003), supporting the contrasting effect of wax removal on PAR 

reflectance between NILs.  

 

Consistent with previous results from the experiment on field grown flag leaves (Figure 4.12), 

untreated Iw1+ flag leaves reflected less light than iw1- leaves, although again this difference was 

not significant (Figure 4.14). In the gum arabic treated group there were no significant differences 

between NILs. These results provide evidence that β-diketones and OH-β-diketones are responsible 

for increasing reflectance of iw1- leaves, and that waxes lacking these compounds have no or 

limited effect on PAR reflectance.  

 

Figures 4.14c and 4.14d show PAR transmission of control and treated leaves. For neither iw1- nor 

Iw1+ leaves was there a consistent change in transmission across varieties or NILs after gum arabic 

treatment. This provides further support to the conclusion that leaf PAR transmission is not affected 

by β-diketones and OH-β-diketones in the epicuticular waxes. Furthermore, data indicate that the 

epicuticular waxes overall in these wheat varieties have no effect on PAR transmission. When the 

PAR spectrum was divided into red, blue and green, the effect of wax removal remained the same 

across the spectrum, as there was no significant interaction between light type and treatment for 

reflectance (p=0.078) or transmission (p=0.828).  

 

4.4.3 Effects on Photosynthesis 
 

4.4.3.1 Photosynthetic pigments  
If the amount of PAR available to photosynthetic tissues changes, a plant would be expected to 

acclimate or adapt to this new light level in order to maximise efficiency of carbon assimilation. 

Photosynthetic pigments, known to change in amount dependent on light conditions (Valladares & 

Niinemets, 2008), were extracted from flag leaves collected in the field at anthesis and 

spectroscopy was used to determine the quantity of chlorophyll a, chlorophyll b and carotenoids. 

Data were normalised on leaf area.  

 

Figure 4.15a shows flag leaf chlorophyll a content over two years. When pairwise comparisons 

between NILs were made within individual years there were very few significant effects. However, 

there was a consistent trend across varieties and years for Iw1+ flag leaves to have less chlorophyll 

a than iw1- leaves. When analysed over all varieties this effect was significant in 2014 (p=0.040), 

2015 (p=0.06), and when both years were combined (p=0.01). Furthermore, there was no 
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significant difference between years (p=0.734) or interaction between Iw1 and year (p=0.906). 

Overall there was a significant difference in chlorophyll a content between varieties (p=0.022), but 

no significant interaction between Iw1 and variety (p=0.590). 

 

For chlorophyll b (Figure 4.15b) there was no significant difference between NILs or varieties in 

either year, although in 2015 there was a significant interaction between Iw1 and variety (p=0.017), 

coming from the Alchemy NILs. There was a significant difference between these NILs (p=0.002), 

but no difference between NILs of the other two varieties. There was no significant effect of Iw1 on 

carotenoids (Figure 4.15c) in either year.  
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Figure 4. 15 Concentration of photosynthetic pigments per unit leaf area at anthesis 

Quantity of (a) chlorophyll a (Chl a), (b) chlorophyll b (Chl b) and (c) carotenoids in µg mm-2 leaf 

area in flag leaves of Hereward, Alchemy and Malacca NILs collected in 2014 and 2015. Significant 

differences between NILs by pairwise comparison is indicated on the chart p<0.05 (*), p<0.01 

(**). N=5, error bars = S.E. 
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To investigate further the effect of Iw1 on photosynthetic pigments, samples were collected at 

GS31 in 2014. This growth stage is a week prior to synthesis of β-diketones in the waxes, so both 

Iw1+ and iw1- NILs have non-glaucous waxes with the same chemistry.  

 

Figure 4.16 shows that there was no significant or consistent difference in chlorophyll a content 

between NILs of any variety at GS31. At GS31 β-diketones and OH-β-diketones are absent from 

both Iw1+ and iw1- NILs, such that all NILs have the same wax profile. Differences in chlorophyll a 

content were only evident at anthesis, where waxes of Iw1+ and iw1- are biochemically different. 

 

Figure 4. 16 Quantity of photosynthetic pigments per unit leaf area at GS31 

Concentration of (a) chlorophyll a (Chl a) (b) chlorophyll b (Chl b) and (c) carotenoids per 

mm2 leaf area. The newest expanded leaf at GS31 (prior to visible wax appearance) was 

collected for Hereward, Alchemy and Malacca. There was no significant difference between 

NILs of any variety for any pigment. N=5, error bars = S.E. 
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This indicates that it could be differing properties of the waxes at anthesis that cause divergence in 

chlorophyll a content between NILs.  

 

The chlorophyll a/b ratio is usually approximately 3:1, and reported to increase when a plant is 

adapted to lower light availability (Dong et al., 2015; Li et al., 2010; Valladares & Niinemets, 2008; 

Zheng et al., 2011). Table 4.2 shows the chlorophyll a/b ratio for NILs of all three varieties across 

years at anthesis.  

 

The minor changes recorded in chlorophyll a and b content associated with Iw1 (Figure 4.15) did 

not alter the chlorophyll a/b ratio, and when data were analysed overall there was no significant 

effect of Iw1 on the chlorophyll a/b ratio (p=0.154). Further analysis with pairwise comparison 

showed that across two years there was no significant difference in the chlorophyll a/b ratio 

between NILs for Malacca and Hereward. For Alchemy there was a significant increase in the 

chlorophyll a/b ratio associated with Iw1 (p=0.017) when data from both years were combined. 

This increase was coming from the 2015 data, for which the difference between NILs was also 

significant (p=0.025). However, there was no difference in the 2014 Alchemy data. This, combined 

with results from the other two varieties, indicates that there is no effect of Iw1 on the chlorophyll 

a/b ratio.   

 

4.4.3.2 Flag leaf carbon assimilation 
Further exploration of the changes to carbon assimilation that could result from differences in light 

availability between NILs was carried out by way of light curves measurement in the field for 

Malacca and Alchemy in 2013 and 2014, and Hereward in 2014 and 2015 (Figure 4.17).  

 

 

Table 4. 2 The chlorophyll a/b ratio in flag leaves at anthesis 

Chlorophyll a and b were extracted from NILs of Hereward, Alchemy and Malacca in 2014 and 

2015 at anthesis. Significant differences between NILs in the chl a/b ratio are indicated in the 

table at the level p<0.05 (*) 
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For Alchemy (Figures 4.17c and 4.17d) there was no difference between the NILs in carbon 

assimilation at any light level from 0 – 1500 µmol m-2 s-1 in either 2013 or 2014. Although there was 

a significant effect of year on carbon assimilation, with maximum assimilation at 1500 µmol m-2 s-1 

being significantly higher in 2014 (p=0.01), there was no interaction of year with Iw1 (p=0.908). 

Malacca carbon assimilation in 2013 and 2014 is shown in Figures 4.17e and 4.17f respectively. For 

Malacca there was no significant difference in assimilation between years and also no significant 

effect of Iw1 at any light level. There was a trend for Iw1+ NILs to have higher assimilation across 

the entire light curve in 2013. However, at no time point was this difference significant, and this 

effect was absent in the 2014 data. Hereward is the only variety that displayed a consistent 

difference in assimilation between NILs over both years of measurement (Figure 4.17a and 4.17b). 

Iw1+ NILs had significantly higher photosynthesis than iw1- at light levels of 750 µmol m-2 s-1 and 

above (p<0.05). However, this effect was absent from the other two varieties, so is likely not due 

to Iw1, but potentially a closely linked gene within the introgression.  

 

As there was no significant interaction between year and Iw1 for any variety, data for both years 

were combined to calculate the light curve parameters light saturated assimilation rate (Amax), dark 

respiration (Ao) and apparent quantum efficiency (AQE) and light compensation point (Table 4.3). 

For neither Alchemy nor Malacca was there an effect of Iw1 on any light curve parameter indicating 

that Iw1 and epicuticular waxes do not influence photosynthesis. However, in Hereward Iw1+ NILs 

were able to assimilate carbon at a significantly higher rate at higher light levels, achieving a 

significantly higher Amax (p=0.013). 

 

When Amax values of iw1- NILs are compared across the three varieties, that of Hereward is 

significantly lower (p=0.006), with an average Amax of 18.53 µmol CO2 m-2 s-1 in comparison to around 

22-24 µmol CO2 m-2 s-1 for the other two varieties. However, the Iw1 introgression increased the 

Amax of Hereward to 21.65 CO2 m-2 s-1, which is more comparable to that of the other two varieties. 

From this it can be hypothesised that the introgressed region in Hereward has replaced a 

deleterious allele that was previously reducing light saturated photosynthesis. Light curves were 

also measured on NILs of Robigus and Xi19 in 2013, and no significant difference in carbon 

assimilation was found at any light level from 0 – 1500 µmol m-2 s-1 or at any light curve parameter 

(see Appendix A4). This further supports conclusions drawn from Malacca and Alchemy that there 

is no effect of Iw1 on photosynthesis.  
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Figure 4. 17 Rate of flag leaf photosynthesis across various levels of PAR 

Carbon assimilation between 0-1500 µmol m-2 s-1 was measured in the field using a LI-COR 

6400XT for NILs of Hereward in (a) 2014 and (b) 2015, Alchemy in (c) 2013 and (d) 2014, and 

Malacca in (e) 2013 and (f) 2014. Significant differences between NILs at each light level are 

indicated on the chart, p<0.05 (*), p<0.01 (**). N=4, error bars = S.E. 
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4.4.3.3 Carbon assimilation at different levels in the canopy 
Section 4.4.1.2 explored light penetration into the canopy through placing PAR sensors inside the 

canopy, but this work proved inconclusive. An indirect way to understand this is to measure 

photosynthesis at various levels within the canopy. If the amount of light penetrating the canopy 

was altered by Iw1, this would have an impact on photosynthesis further down. Therefore carbon 

assimilation at PAR levels between 0 and 1500 µmol m-2 s-1 was measured on the second leaf for 

NILs of Alchemy, Malacca, Xi19 and Robigus in 2013 and compared to the flag leaf. The light curve 

parameters AQE, light compensation point, Amax and Ao were calculated, all of which would be 

expected to change in a plant adapted to altered light conditions (Table 4.4).  

 

Results from an overall ANOVA indicate that there was no difference between the flag leaf and 

second leaf for Ao (p=0.127), light compensation point (p=0.361) or AQE (p=0.077). Furthermore 

there was no interaction between leaf type and Iw1 for any of these parameters. There was an 

overall significant difference between the flag and second leaf for Amax (p=0.003). This can be seen 

from Table 4.4 whereby for every NIL, with the exception of Xi19 Iw1+, the flag leaf has a higher 

Amax than the second leaf, although this difference was only significant for Robigus iw1- NILs 

(p=0.049) when analysed by pairwise comparison. However, there was no interaction between leaf 

type and Iw1 in an overall analysis (p=0.560), nor was there an interaction within any individual 

 

Table 4. 3 Light curve parameters of field grown flag leaves at anthesis 

AQE (apparent quantum efficiency), Amax (light saturated assimilation), Ao (dark respiration) and 

light compensation point for NILs of Hereward, Alchemy and Malacca. Measurements were 

taken over two years and the average over both years is shown (n=8). There was no difference 

between light curve of NILs from any variety with the exception of Hereward, for which Iw1+ 

flag leaves reach a significantly higher Amax (p = 0.013). 
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variety. These data suggest that there is no effect of Iw1 on light conditions within the canopy, at 

least to the extent that photosynthetic machinery of the plant might be affected.  

 

4.4.3.4 Exploring Hereward carbon assimilation using recombinant lines 
In addition to the NILs, a number of recombinant lines of Hereward were grown in the field in 2015. 

These were used to further explore the increased Amax observed in Iw1+ NILs and map the effect 

more specifically within the region. The non-glaucous (Iw1+) recombinants HS26 and HS32 were 

chosen alongside the glaucous (iw1-) recombinants HS17 and HS21. A simple schematic of the 

introgressed region of 2BS for each of these four recombinants is shown in Figure 4.18. Rationale 

for recombinant selection is detailed in methods section 4.2.7. Portions of the chromosome from 

Shamrock (Iw1+) are green, and those from Hereward (iw1-) are grey.  

 

 
Table 4. 4 Light curve parameters for the flag leaf and second leaf 

Robigus, Xi19, Alchemy and Malacca NILs (n=4). For AQE, light compensation and Ao there was 

no difference between the flag and second leaf for either Iw1+ or iw1- NILs of any variety. Flag 

leaves of Malacca Iw1+ NILs had significantly higher Amax than the second leaf (p=0.016), and 

there was a borderline significant difference between the Amax of the flag and second leaf for 

Alchemy Iw1+ NILs and Robigus iw1- NILs. 
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Figure 4.19 shows carbon assimilation at each level of PAR for the four recombinant lines measured 

together with data for the NILs from 2015. Lines containing the Shamrock Iw1 allele (non-glaucous) 

are shown in green, and those without Iw1 (glaucous) are shown in black. NILs are indicated by 

solid lines, and the recombinants are dashed. When considering just the NILs, there was a 

significant difference in assimilation between NILs with and without Iw1 at 1500, 1000, 750 and 

500 µmol m-2 s-1 (p<0.05), data for which was presented in detail in Figure 4.14. When the four 

recombinants together with the two NILs were included in analysis, the effect of Iw1 was borderline 

significant at 1000 µmol m-2 s-1 (p=0.044) and 1500 µmol m-2 s-1 (p=0.045), as indicated in Figure 

4.16. However, post hoc testing indicated that this effect was coming from the Iw1+ NILs. The Iw1+ 

NILs had a significantly higher assimilation than iw1- NILs and all 4 recombinants, and there was no 

significant difference between any recombinant line and the iw1- NIL.  

 

Table 4.5 shows light curve parameters for the NILs and recombinants. When considering just the 

NILs (Table 4.3), there was no significant difference between NILs for any light curve parameter 

with the exception of Amax, for which Iw1+ NILs had significantly higher Amax than iw1- (p=0.024). 

When all four recombinants and both NILs were included in analysis (Table 4.5), there was a 

significant effect of both Iw1 (p=0.045) and line (p=0.044) on Amax. However, post hoc testing 

showed that this effect was coming from Hereward only, which was significantly different from the 

other 5 lines. For no other light curve parameter was there an effect of Iw1 or line when all 

recombinants and both NILs were included in analysis.  

 

 

Figure 4. 18 The introgressed region on chromosome 2BS for 4 Hereward recombinant lines 

The genotype of recombinant lines HS17 (iw1-), HS21 (iw1-), HS26 (Iw1+) and HS32 (Iw1+). 

Portions of the chromosome from the Shamrock parent are coloured in green, and those from 

the Hereward parent are shown in grey. The location of Iw1 itself is marked in red. Data for one 

marker in HS26 were not available, and this region is coloured in white on the schematic. 
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Figure 4. 19 Photosynthesis of 4 Hereward recombinant lines and the NILs at various levels 
of PAR 

Carbon assimilation was measured between 0-1500 µmol m-2 s-1 in the field on flag leaves at 

anthesis using a LI-COR 6400 XT in 2015. The chart shows data for non-glaucous (Iw1+) 

recombinants HS26 and HS32, glaucous (iw1-) recombinants HS17 and HS21, and 2015 data 

for the near isogenic lines labelled Iw1+ and iw1-. A significant effect of Iw1 on assimilation is 

shown on the graph where p<0.05 (*). N=4, error bars = S.E. 

Table 4. 5 Flag leaf light curve parameters for Hereward recombinant lines and NILs 

Column 1 shows the name of each of the six lines and column two donates whether that line 

carries the Shamrock Iw1 allele (Iw1+) or not (iw1-). Data was analysed by ANOVA to 

understand if presence of Iw1 had an effect on any parameter or if there was a significant 

difference between the 6 lines. For Amax there was a significant effect of both Iw1 (p=0.045) 

and line (p=0.044). For no other parameter was there a significant difference between the 6 

lines, or between those with and without Iw1. N=4. 
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4.4.4 Canopy temperature 
Tissue temperature plays a role in the regulation of a number of important metabolic processes, 

including photosynthesis which was investigated here. In order to understand if changes to canopy 

spectral properties resulting from glaucousness are affecting canopy temperature, an infrared 

thermometer was used to measure the temperature of NILs of five varieties in 2013 (Figure 4.20).  

 

There was no significant difference in temperature between Iw1+ and iw1- canopies overall 

(p=0.606), and no interaction between Iw1 and variety (p=0.837). Further analysis with pairwise 

comparison revealed no significant difference in temperature for any NIL pair within each variety. 

Calculation of percentage difference in temperature between NILs demonstrated no consistent 

trend or direction of change in terms of difference in temperature.   

 

 

 

 

 

Figure 4. 20 Canopy temperature measured in the field using an infrared 
thermometer 

Each bar represents an average from four plots, with each plot sub-sampled three 

times. Pairwise comparison revealed no significant difference between NILs of any 

variety. Percentage increase in temperature of Iw1+ canopies compared to iw1- is 

shown above each NIL pair. Error bars = S.E. 
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4.5 Discussion 
The biochemistry and structure of epicuticular wax is already known to alter the amount of PAR 

reflected from the surface of both the plant and canopy, and has been reported to influence canopy 

temperature. This chapter set out to explore how the spectral properties of five wheat varieties are 

altered by absence of β- and OH-β-diketones when Iw1 is present. In addition I tested the 

hypothesis that reduced reflectance of non-glaucous (Iw1+) plants makes more PAR available to 

photosynthetic tissues and increases canopy temperature, both of which could be beneficial for 

photosynthesis under UK conditions.  

 

4.5.1 Iw1 significantly reduced PAR reflectance 
The PAR reflected from the crop canopy was significantly reduced in non-glaucous plants by around 

12-20% compared to the glaucous Iw1- plants. This confirms findings of previous studies of PAR 

reflectance in wheat and barley canopies who report similar values (Febrero et al., 1998; Jefferson 

et al., 1989; Johnson et al., 1983). The same trend, although not significant, was also observed at 

the leaf level consistently across the three varieties.  

 

Although increased reflectance with glaucousness has been widely reported previously, the exact 

component of the epicuticular waxes leading to this increase has not been clear. Holmes & Keiller, 

2002 found that mechanical removal of waxes from glaucous Eucalyptus species and Kalanchoe 

pumila species significantly reduced reflectance within the PAR spectrum by around 10-20%. 

However, they did not have a contrasting non-glaucous genotype or species for comparison. In this 

study, removal of epicuticular waxes from glaucous iw1- leaves resulted in a significant decrease in 

reflectance of 15 – 40%, whilst there was no effect of wax removal on the reflectance of Iw1+ non-

glaucous leaves. The mechanical method of wax removal ensured that epicuticular waxes were 

removed without modifying internal leaf chemistry or other structures on the leaf surface and 

cuticle. Therefore this work provides evidence that it is the presence of β-diketone and OH-β-

diketone compounds in the epicuticular waxes that are increasing reflectance in glaucous NILs, and 

that the platelet waxes of non-glaucous plants has limited effects on leaf reflectance.  

 

Interestingly, in Hereward there was a small but consistent increase in reflectance of Iw1+ leaves 

following wax removal. This was not significant, but was seen consistently across all replicates 

suggesting a biological effect. This should be studied further in the future, to confirm the effect and 

to understand any particular features of Hereward flag leaves or waxes that may cause non-

glaucous epicuticular waxes to actually reduce leaf reflectance.  
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4.5.2 PAR absorbance of single leaves was not affected by Iw1 
Simply because the leaf and canopy reflect less light does not mean that more light is available to 

photosynthetic tissues. At the single leaf (and canopy) level, PAR absorbed also depends on how 

much light is transmitted through the leaf, something that has not been previously studied in 

relation to glaucousness. The visible epicuticular waxes of the glaucous iw1- NILs are made up of 

tubular morphological structures, whilst the epicuticular waxes of non-glaucous Iw1+ NILs form flat 

platelet structures across the plant surface (Chapter 3). Although these structural differences cause 

clear changes to visual appearance and PAR reflectance, this work found neither type of wax had 

any impact on leaf PAR transmission. Some (non-significant) differences in PAR transmission not 

linked to glaucousness were recorded between NILs, varieties, and before and after treatment with 

gum arabic. Internal leaf factors such as leaf chemistry and water content can change dynamically 

according to leaf status and overall condition, and might be expected to vary depending on factors 

such as sampling time. The most likely explanation is that these internal changes influenced PAR 

transmission through the leaf during the experiments. This could be confirmed through future 

experimentation.  

 

Overall, PAR absorbance was not affected by glaucousness in any of the varieties investigated. This 

suggests that even though Iw1+ non-glaucous flag leaves reflect less PAR, they do not absorb more, 

implying a more complex interplay between light reflectance, absorption and genotype than 

previously thought. However, it is difficult to draw conclusions about canopy light interception 

based solely on single leaf measurements. For example, a previous study in Pinus sylvestris showed 

that the extent to which glaucousness increased reflectance and altered leaf optical properties 

varied according to sampling time point within the growing season and location within the canopy 

(Olascoaga et al., 2014). The work presented here only looked at flag leaves collected at a single 

time point. Further information on how Iw1+ is influencing leaf and canopy spectral properties 

could be obtained by taking leaf spectral measurements at multiple points throughout the growing 

season and from different levels in the canopy. Additionally, work in maize has shown that canopy 

light interception is more heavily influenced by crop morphology such as leaf angle, sun angle, leaf 

distribution and vertical foliage distribution rather than epicuticular waxes (Hatfield & Carlson, 

1979; Stewart et al., 2003). These are factors that were not measured in the present work. 

However, the use of NILs means that morphological differences between NIL pairs should be 

minimal, if not completely absent, therefore any differences observed between pairs in terms of 

light interception can be attributed to the waxes (or a closely linked gene within the introgressed 

region).  

 

In this project, light sensors were placed within the canopy to understand how canopy light 

interception was changing with glaucousness. However, although various methods were tried, 
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conclusive data could not be obtained. One major issue with canopy light interception of wheat, 

and other cereal crops, is that seeds are drilled in uniform rows. Light can directly penetrate 

through without being affected by surrounding plants, and parts of the sensors remain completely 

uncovered by plants so just measuring incoming light.  

 

Classical descriptions of canopy light interception such as the Monsi-Saki theory on canopy 

structure and function (Hirose, 2005) can be applied to analyse  canopy photosynthesis and light 

interception. This theory is based on both light within the canopy and photosynthesis of individual 

leaves under varying levels of light. It enables analysis of the structure of plant communities and 

scaling up of photosynthesis from the leaf to canopy level. In addition to the photosynthetic light 

response of a single leaf, this theory and other classical canopy models place emphasis on canopy 

structure, leaf arrangement within the canopy (for example horizontal or vertical leaves) and leaf 

nitrogen distribution. These factors were not measured in the Iw1 NILs used in this PhD. This could 

be considered for future work in order to further understand light availability within the canopy 

and the effect on photosynthesis. However, however the use of NILs that are 96.9% genetically 

identical in the background ensures that differences in terms of canopy structure and arrangement 

are minimal if not absent completely. Therefore, the usefulness of these models in regards to the 

Iw1 NILs could be limited. 

 

4.5.3 Iw1 had no effect on photosynthesis 
In the absence of definitive data on canopy light interception, one parameter that could be used as 

a surrogate is photosynthesis, which is heavily dependent on light availability. For example, the 

concentration of photosynthetic pigments is known to increase in wheat under shade conditions as 

has the chlorophyll a/b ratio indicating an increase in the number of light harvesting complexes 

relative to other pigments (Dong et al., 2015; Li et al., 2010; Valladares & Niinemets, 2008; Zheng 

et al., 2011). This allows the plant to absorb more PAR light over a greater range. Therefore if more 

PAR is available to non-glaucous Iw1+ NILs on a long-term basis it might be expected that they 

would have reduced pigment concentration and a reduced chlorophyll a/b ratio. Confirming this 

hypothesis, Iw1+ flag leaves did have significantly less chlorophyll a per unit leaf area than iw1-, 

suggesting some compensation by glaucous leaves experiencing reduced light availability. A study 

on long term irradiance in winter wheat found that, where light levels are reduced to 60% of 

maximum plants showed an approximate 30% increase in chlorophyll a (Zheng et al., 2011). 

Although the difference in the Iw1 NILs was subtle and not always significant, there was around a 

10% increase in chlorophyll a content recorded in some glaucous flag leaves. Over a long period of 

time, this could be enough to affect plant physiology. However, there was no change in the 

chlorophyll a/b ratio, indicating no compensation for the reduced chlorophyll a through an increase 

in light harvesting complexes (chlorophyll b), as would be expected in a shade acclimated leaf.  
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In addition to pigments, other aspects of photosynthesis are known to change with reduced light 

availability. A metadata analysis from a variety of species found strong evidence that shade adapted 

plants have reduced light compensation point, higher quantum yield, lower light saturated 

photosynthesis and lower dark respiration rate (Valladares & Niinemets, 2008). However, 

investigation of photosynthesis using light curves in the Iw1 NILs showed no change in any of these 

parameters linking to Iw1, leading to the conclusion that glaucousness has no effect on 

photosynthesis. This agrees with previous work that found no effect of glaucousness on light 

saturated photosynthesis of the flag leaf (Johnson et al., 1983). This conclusion was limited by the 

fact that these measurements were taken on single leaves, whereby maximum potential carbon 

assimilation was determined at each light level under optimum conditions. Measurement of whole 

canopy gas exchange in the field over a period of time could have led to different conclusions.  

Another possibility is that small differences between NILs in terms of PAR availability have been 

compensated for by changes to chlorophyll a content, so leading to no difference in overall carbon 

assimilation. Another limitation of his work on the Iw1 NILs was that the flag leaf was the only organ 

investigated. Richards et al., (1986) record an increase in photosynthesis under irrigated conditions 

of 23% associated with non-glaucousness in wheat ears, whilst they recorded no difference 

between glaucous and non-glaucous flag leaves. Had it been possible to measure photosynthesis 

in other organs within the Iw1 NILs conclusions may have been different.  

 

Not only was there no effect of Iw1 on flag leaf parameters, there was also no effect of Iw1 on 

photosynthesis of the second leaf. This indicates that there was no difference between NILs in 

terms of light conditions within the canopy. However, when interpreting these results it should be 

noted that PAR absorbed is only one function of plant energy input and consumption. Multiple 

additional factors such as efficiency of photosynthetic machinery within the plant, tissue 

temperature and water status (Olascoaga et al., 2014) all contribute towards how much available 

PAR is actually used in photosynthesis. It was not possible to measure these parameters in the Iw1 

NILs.  

 

4.5.4 Hereward Iw1+ NILs had increased light saturated assimilation 
The one variety that did show a change in photosynthesis associated with Iw1 was Hereward; Iw1+ 

NILs had significantly increased flag leaf photosynthesis at higher light levels, achieving significantly 

higher Amax. However, this is likely not due to the change in epicuticular waxes as the effect was not 

seen in any other variety tested. This conclusion is further supported by use of recombinant lines. 

No recombinant achieved Amax levels comparable with the Iw1+ NILs, suggesting that there may be 

multiple alleles within the introgressed region that improve photosynthesis and work 

synergistically. Presence of all Shamrock alleles would be required to have an impact on overall 
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photosynthesis. However, these data are preliminary, only collected in one field trial using four 

recombinant lines. Ideally these data need to be collected in future years using multiple 

recombinants in order to more conclusively understand where the effect in the Hereward Iw1+ NILs 

is coming from.  

 

It is also clear from the Amax data that Hereward is the lowest performing variety of all those 

measured in terms of photosynthetic rate. This wheat variety was originally bred for quality rather 

than quantity (Chapter 2 Table 2.1), and as such higher yields and rates of photosynthesis were not 

selected for.  Addition of Iw1 brings the Amax of Hereward up to the level of the other varieties. From 

this it can be hypothesised that there may be one, or a number of, deleterious alleles in that region 

of the chromosome having a negative effect on photosynthesis. By introducing in the Iw1 

introgression, any deleterious alleles are replaced with a beneficial Shamrock allele, allowing for 

higher light saturated photosynthesis. Previous studies have reported an increase in photosynthesis 

with glaucousness of up to 23% in sorghum leaves and wheat ears (Chatterton et al., 1975; Richards 

et al., 1986). However, the use of NILs of multiple varieties in the present work demonstrates that 

without precise genetic stocks it is difficult to attribute observed effects to the epicuticular waxes, 

or as suggested here, to another closely linked gene.  

 

4.5.5 Photosynthesis is not the only factor determining yield 
Hereward is not only the one variety that demonstrates some improvement in photosynthesis with 

addition of the Iw1 introgression, it is also the variety that displays the most significant and 

consistent yield benefit, with a yield increase of around 5% mapping near to Iw1 (Chapter 3). 

Although there is limited evidence of a direct link between Iw1 and the higher Amax, this raises the 

question of whether or not the effects on photosynthesis in this variety are linked to yield.  

 

Over 90% of biomass of crops such as maize, wheat and rice is thought to be derived from 

photosynthetic products, and as such a number of studies claim that improvements to 

photosynthesis are the answer to achieving the higher crop yields we require to feed a growing 

population (Makino, 2011). A number of studies in wheat have reported a strong correlation 

between light saturated photosynthesis and grain yield (Fischer et al., 1998; Jiang et al., 2003). 

However, this is not a simple relationship, and depends heavily on genetics, environment, and the 

specific limitations to growth within that environment (Fischer et al., 1998; Hubbart et al., 2007; 

Long et al., 2006; Makino, 2011). No correlation between photosynthesis and yield has been found 

within environments or genetic backgrounds where improved photosynthesis is not the limiting 

factor to growth (Evans & Dunstone, 1970). Taking this into account it is possible that substrate 

availability and increasing biomass production was not a limiting factor within the Church Farm field 

trials, and as such higher rates of photosynthesis did not result in higher grain yield. Alternatively, 
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the increased photosynthesis of Hereward Iw1+ NILs may be contributing to the observed increase 

in yield. However, if a number of other environmental and genetic factors are also contributing to 

this, this would explain why no effect or direct link with Iw1 and yield was observed in the 

recombinant lines. It should be noted that these measurements of photosynthesis were taken 

within an IRGA leaf chamber, where conditions such as temperature, CO2 and RH were constant 

and optimum for leaf photosynthesis. A previous study of 64 elite wheat varieties in the UK that 

also used instantaneous gas exchange found no consistent correlation between grain yield and flag 

leaf photosynthesis (Driever et al., 2014). This suggests a discrepancy between possible Amax 

measured in an IRGA leaf chamber and the reality in the field, where conditions are rarely constant 

or optimum.   

 

4.5.6 Canopy temperature was not affected by Iw1 
Temperature is an important factor that can influence the rate of photosynthesis and other 

metabolic processes. Although materials were not available to directly measure the reflectance and 

transmission of infrared light from the leaf or canopy as was done for the PAR spectrum, canopy 

temperature was measured in the field using an infrared thermometer. No difference was found 

between NILs using this method. This is contrary to previous work which does find glaucous wheat 

canopies to be up to 0.7 ⁰C cooler in the field (Richards et al., 1986; Jefferson et al., 1989). However, 

both of these studies found this difference to be under drought stress conditions. In the UK field 

environment wheat is not typically heat or drought stressed, which may account for lack of 

difference between the NILs. A further issue with this work is the practicality of taking these types 

of measurements in the field. In the UK frequent cloud cover and wind means that the air 

temperature is constantly changing. Methods of canopy temperature measurement were 

developed in regions where air temperature is predictable and constant. A better method to use 

within the UK could be a thermal camera on a drone above the crop, but this would still be affected 

by frequent fluctuations in air temperature far greater than the 0.5-1 ⁰C expected temperature 

difference between NILs.   

 

There is no difference in photosynthesis correlating with glaucousness in the Iw1 NILs. This indicates 

that if there is a difference between NILs in terms of temperature, it is not sufficient to have an 

impact on photosynthesis. Data available from wheat regarding the magnitude of temperature 

change required to affect photosynthesis indicates that a change of around 10 °C is required to 

impact on photosynthetic rate (Yamasaki et al., 2002), although some studies in wheat even report 

no change in photosynthesis after a temperature increase of 15 °C (Alonso et al., 2008). The 

decrease in tissue temperature previously recorded in glaucous plants compared to non-glaucous 

is considerably smaller than this (Richards et al., 1986), so any effect on photosynthesis under 

normal UK conditions, if at all, is probably negligible. Nevertheless, under extremes of temperature 
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a small change in tissue temperature could have a marked impact. Temperature would also be 

expected to affect transpiration rate. This, and other components of water use efficiency, will be 

considered in Chapter 5.  

 

4.5.7 Conclusions 
Overall, the work presented in this chapter confirmed that non-glaucous leaves and canopies do 

reflect less PAR than glaucous canopies, but found no evidence that this lead to increased PAR 

absorbance by single leaves or increased light interception by the canopy. Furthermore, no 

evidence was found that changes to leaf spectral properties affect canopy temperature to an extent 

that would be beneficial to the plant in a UK environment. Glaucousness and Iw1 was found to have 

no effect on photosynthesis of leaves at multiple levels within the canopy. However, glaucous (iw1) 

flag leaves were found to have increased chlorophyll a, potentially compensating for any reduced 

PAR availability these leaves are experiencing.  

 

Iw1+ NILs of Hereward did display increased photosynthesis. Although this does not appear to be 

linked to Iw1, differences were significant, and potentially worth pursuing in terms of crop 

improvement, particularly given the significant yield increases also seen in Iw1+ NILs of this variety.   
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Chapter 5: The effect of Iw1 on water use efficiency in the UK field 

environment 

 

5.1 Summary 
A primary function of the plant cuticle, of which both epicuticular and intracuticular waxes are a 

major component, is the prevention of excessive water loss from the plant surface. Water use 

efficiency (WUE) is defined as the water lost through transpiration per mole of carbon gained in 

photosynthesis. The development of more water use efficient crops is becoming increasingly 

important to sustain agriculture under a changing climate.  

 

This chapter explores WUE in the field for Iw1+ and iw1- near isogenic lines of three wheat varieties 

(Malacca, Alchemy and Hereward). The role of epicuticular waxes in WUE was investigated through 

measurement of a number of physiological parameters in field grown plant material including 

stomatal conductance, cuticular conductance, and carbon assimilation parameters. Carbon isotope 

discrimination was used to integrate all parameters and gain an understanding of water use over 

the growing season.  

 

Overall, within the field trials in East Anglia where water stress in the field is not a major issue, Iw1 

had no effect on WUE, and β- and OH- β- diketones had no effect on water movement through the 

cuticle.  
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5.2 Introduction 
The major challenge that faced plants upon colonization of the land was water stress. As such the 

earliest land plants had a well-developed cuticle composed of cutin and wax (Edwards et al., 1996), 

a primary function of which was to limit water loss through the plant surface (Woodward, 1998). 

The fact that all land plants still have this waxy cuticle today is a testament to just how important 

this function of the cuticle is. However, the cuticle not only acts as a barrier to water vapour, but 

also to carbon dioxide used during photosynthesis (Woodward, 1998). Stomata, pores within the 

cuticle through which gases can diffuse, overcome this problem allowing CO2 into the plant but 

water vapour can also diffuse out simultaneously. The process of CO2 and water vapour diffusion 

in and out of the plant becomes a delicate balancing act. Regulation of this process will determine 

how much carbon is available for photosynthesis and how much water the plant can conserve.  

 

Supply and demand of water available to the plant is heavily influence by climate (Rosenzweig et 

al., 2001). It is projected that the rapidly changing climate will have a huge influence on water 

availability for agricultural production, and indeed is already having a negative effect. In particular 

the instance of extreme weather events and desertification are both projected to increase in 

severity over the coming decades with a significantly negative effect on food supply (IPCC 2014).  

For example, severe drought between 2008 and 2011 in Kenya, where wheat is the second most 

important agricultural commodity (Monroy et al., 2013), lead to reduced crop yields resulting in 

economic losses of 1.5 billion dollars (FAO, 2015). This, and other similar events, puts food security 

and how to increase the WUE of crop plant species firmly in the spotlight. Associated issues are 

now of great interest to both researchers and policy makers in the UK and around the world. Since 

the epicuticular waxes are such a key component of the cuticle, their optimisation for the 

environment in which a plant grows is potentially an effective method that could be employed to 

increase WUE of major crop plants.  

 

5.2.1 Defining water use efficiency  

WUE can be defined by total plant productivity through determining the ratio of biomass produced 

to overall transpiration rate. Alternatively, a simpler definition which will be used throughout this 

chapter, is leaf level instantaneous (or intrinsic) WUE: 

 

𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑊𝑎𝑡𝑒𝑟 𝑈𝑠𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝐴𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 

𝑇𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 
 

 

In the above equation, assimilation is the moles of carbon gained in photosynthesis, and 

transpiration is moles of water used for transpiration (Polley, 2002). Therefore, at the simplest 
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level, WUE could be improved either through increasing photosynthesis (without a corresponding 

increase in transpiration) or reducing transpiration during photosynthesis. 

 

5.2.2 Assimilation 

The influence of glaucousness on carbon assimilation was explored in Chapter 4, primarily in 

relation to light availability. In the wheat varieties tested in my work, the presence of β- and OH- 

β- diketones did not directly link to changes in flag leaf photosynthetic rate at different light levels. 

Crucially, the methods used did not assess exactly what was happening in the field at the canopy 

level as all measurements were taken under optimal conditions for leaf photosynthesis. Carbon 

assimilation is an important component of WUE. As such a number of other parameters linked to 

efficiency of the plant photosynthetic machinery will be explored in the present chapter.  

 

5.2.3 Transpiration 
The second component of instantaneous WUE is transpiration, which is the combination of two 

processes. Primarily water is lost through open stomata (stomatal conductance), and a smaller 

contribution is made by water loss through the cuticle (cuticular conductance). Studies measuring 

overall transpiration report that glaucous wheat plants could have up to 50% lower day time 

transpiration than non-glaucous (Richards et al., 1986) and equivalent work in sorghum has 

reported up to a 26% reduction in transpiration of glaucous plants (Chatterton et al., 1975). 

However, both of these studies were carried out under controlled conditions in a glasshouse, so 

results may differ significantly from the situation in the field. To fully understand how glaucousness 

may reduce transpiration, each component of transpiration needs to be studied individually in 

addition to overall measurement in field grown material.  

 

5.2.3.1 Stomatal conductance 
Stomata are the main interface between the internal leaf and the atmosphere (Kaiser, 2009), and 

as such stomatal conductance is the primary component of transpiration. Guard cells surrounding 

the stomata control opening and closing of the pores according to internal and external conditions. 

This process regulates gas exchange, balancing photosynthesis and water loss (Roelfsema & 

Hedrich, 2005). Many species from drought prone environments confer various epicuticular wax 

adaptations to limit water loss through stomata such as the formation of a wax roof over the pore 

(Roth-Nebelsick et al., 2013) or waxy stomatal plugs that reduce maximum conductance (Brodribb 

& Hill, 1997). However, there are limited studies concerning the relationship between epicuticular 

waxes and stomatal conductance in temperate environments and cereal crops, perhaps because 

drought is a less serious concern. Existing work has reported that where tubular (β- diketone 

containing) epicuticular waxes are present in glaucous wheat and barley plants, they do appear to 
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be clustered around the stomata as can be seen in Figure 5.1 (King & von Wettstein-Knowles, 2000). 

This indicates that glaucous epicuticular waxes may have a role in limiting water loss through the 

stomata. However, the magnitude of this effect, if any at all, remains uncertain. Work in the field 

in Canberra, Australia by Johnson et al., (1983) showed glaucous wheat lines to have around an 8% 

reduction in flag leaf stomatal conductance compared to non-glaucous, although this was not 

significant. The Richards et al., (1986) glasshouse study found reductions in stomatal conductance 

in wheat ears of 30%-60% associated with glaucousness. 

 

 

An alternative mechanism of controlling water loss through the stomata is to adapt to 

environmental conditions and alter the frequency and patterning of stomata in particular organs 

(Casson & Gray, 2008). Zeiger & Stebbins (1972) were the first to report a possible link between 

epicuticular wax biosynthesis and stomatal development with their work in barley. The barley 

eceriferum-g mutant not only has a glossy (rather than non-glossy) spike, but also has clustered 

stomata. A subsequent study in Arabidopsis (Arabidopsis thaliana) identified the high carbon 

dioxide (hic) mutant which had reduced stomatal density under high CO2. The HIC gene encodes a 

3-ketoacyl coenzyme A synthase protein, which is involved in very long chain fatty acid elongation, 

an important step in wax biosynthesis. Therefore this study again suggested a link between 

 

Figure 5. 1 SEM images showing tubular epicuticular waxes clustering around the 
stomata 

Tubular structures are present in glaucous wheat plants without Iw1 (b and d), whilst in 

non-glaucous plants that have Iw1 these tubular wax structures are absent (a and c). Scale 

bars = 10 µm. Figure adapted from Adamski et al., 2013. 
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stomatal development and epicuticular wax (Gray et al., 2000). Since this, a number of other studies 

in the model plant Arabidopsis have suggested that there could be a relationship between 

epicuticular wax and stomatal development. However, the exact interplay between these two 

factors is still not agreed, as different studies report a variety of effects dependent on underlying 

genetics. For example, in wax2 mutants the amount of epicuticular wax is decreased, and this 

corresponds with a reduced stomatal index (Chen et al., 2003), whilst both the gain-of-function 

shine mutants and plants with the gene WIN1/SHIN demonstrate increased leaf cuticular wax 

correlating with a significant decrease in stomata (Aharoni et al., 2004; Yang et al., 2011). Despite 

these studies in Arabidopsis suggesting a possible link between stomatal and wax development, 

any certain relationship remains to be determined. It is likely that these multiple conclusions are a 

result of the interaction between numerous environmental factors, such as altered permeability of 

the leaf to water or differences in the absorption of light, and genetics (Casson & Gray, 2008). 

Furthermore, there have been no studies in cereal crops that report a clear relationship between 

epicuticular waxes and stomata since the 1972 study in barley.  

 

5.2.3.2 Cuticular conductance 

Cuticular conductance is the loss of water through the cuticle, and makes a smaller, yet important, 

contribution to overall transpiration. Unlike stomatal conductance, water movement through the 

cuticle cannot be readily controlled depending on environmental conditions. Therefore plants 

require specific adaptations to their environment in terms of cuticle permeability to water.  

Epicuticular wax is an important cuticular component and consequently expected to affect cuticular 

conductance. Leaf water permeability has been correlated to leaf waxiness rather than cuticle 

thickness in the past, indicating that the wax component of the cuticle is a key determinant of 

permeability (Schönherr, 1976).  Additionally, significantly increased cuticular conductance 

following complete removal of wax has been recorded in a number of species (Denna, 1970; Hall & 

Jones, 1961). Numerous subsequent studies have shown that in wheat, barley and sorghum, 

epicuticular wax load increases under drought and water stress (González & Ayerbe, 2010; Haley et 

al., 1993; Premachandra et al., 1992; Uddin & Marshall, 1988), suggesting that these waxes play an 

important role in drought resilience. These studies all support the hypothesis that epicuticular wax, 

and hence glaucousness, is likely to be an important parameter in cuticular transpiration, thus a 

potential determinant of WUE. 

 

Exactly which components of the epicuticular waxes affect cuticular conductance is questionable. 

Observations in barley, maize, sorghum and wheat, show cuticular conductance can increase by up 

to 75% after complete removal of the waxes, but wax quantity appears not to be correlated with 

rate of conductance (Araus et al., 1991; Jenks et al., 1994; Larsson & Svenningsson, 1986; 
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Premachandra et al., 1994; Ristic & Jenks, 2002). This indicates that wax structure and composition 

could be more important than quantity for determining cuticle permeability to water (Jenks et al., 

1992; King & von Wettstein-Knowles, 2000; Premachandra et al., 1994). However, the relationship 

between wax composition and permeability to water is not yet clear, perhaps due to difficulty 

manipulating wax structure and composition or inability to find novel ways to thoroughly 

investigate this aspect of transpiration.  

 

To some extent data from cereals supports a hypothesis that cuticular conductance is affected by 

glaucousness. A recent study in bread wheat with glaucousness conferred by the W3 locus found 

glaucousness to reduce water loss through the cuticle by around 15% compared to non-glaucous 

(w3/w3) plants that had 99% less β-diketones in addition to around a 63% reduction in total wax 

load (Zhang et al., 2015). Conversely, studies in durum wheat (Merah et al., 2000) and barley 

(Febrero et al., 1998) have found no difference in cuticle permeability to water between glaucous 

and non-glaucous tissue. Theses multiple conclusions indicate that the relationship between 

glaucousness and cuticular conductance is not a simple one. There are many forms of glaucousness 

specific to species and environmental conditions. As described in Chapters 1 and 3, the visual 

glaucous appearance can be achieved in a variety of ways, and underlying biochemistry can be quite 

different, even where the same compounds are present. For example, the pathways synthesising 

β- and OH-β-diketones are different in wheat and barley than for the same compounds in 

Arabidopsis (Samuels et al., 2008; von Wettstein-knowles, 2012). It is likely that interplay between 

a number of factors such as genetics, epicuticular wax composition, study material and growth 

environment determines the influence of glaucousness on cuticular conductance.   

 

5.2.4 Overall water use efficiency 

 

5.2.4.1 Studies using instantaneous gas exchange 

Whilst breaking down water use into individual components is vital, information on both 

assimilation and transpiration needs to be combined for full understanding. Although there are now 

accurate methods available to measure these different parameters, such as leaf conductance to 

CO2 and water vapour, it can still be difficult to understand how these constituents relate and 

interact to produce a picture of overall WUE. Two extensive studies on durum and bread wheat 

under both irrigated and non-irrigated conditions have used gas exchange measurements and 

biomass to study the effect of glaucousness on WUE (Johnson et al., 1983; Richards et al., 1986). 

Through measurement of WUE in terms of grams of plant biomass produced per kg water, Richards 

et al., (1986) showed that glaucous plants were on average 9% more water use efficient throughout 

development than non-glaucous under moderate drought conditions, but there was no significant 
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difference overall under irrigated conditions. Gas exchange measurement showed that this 

increase in WUE was derived more from a reduction in transpiration rather than increased 

photosynthesis. However, although Johnson et al., (1983) reported increased transpiration with 

glaucousness, and even recorded the assimilation/transpiration ratio to be 43% higher in glaucous 

compared to non-glaucous wheat lines on one occasion, overall they find no significant difference 

between glaucous and non-glaucous lines in terms of WUE. This highlights the problem with 

reliance on instantaneous gas exchange measurement only. Whilst these measurements are 

informative, plant water use is likely to change over the course of the growing season as both plant 

physiology and environmental conditions dramatically change over time. Therefore conclusions 

drawn from these types of measurement may not be an accurate representation of water use 

throughout all stages of plant growth.  

 

5.2.4.2 Studies using carbon isotope discrimination 

An alternative method to assess plant WUE is through measurement of carbon isotope composition 

of plant matter. C3 plants discriminate against 13C during photosynthesis, partly because 13C diffuses 

through the stomata slower than 12C. In addition to this Rubisco (D-ribulose 1,5 bisphosphate 

carboxylase/oxygenase), the enzyme involved in the first step of carbon fixation during 

photosynthesis, has a preference for 12C over 13C. Carbon isotope discrimination (Δ13C) is a measure 

of the 13C/ 12C ratio of plant biomass relative to that of air (Farquhar et al., 1989; Farquhar & 

Richards, 1984). Processes determining this ratio are shown in Figure 5.2.  

 

In Figure 5.2 ‘g’ donates stomatal conductance, C stands for carbon, and W stands for water vapour. 

Accordingly, the figure shows the process of stomatal conductance to carbon (gc), as CO2 diffuses 

from the atmosphere (Ca) into the leaf (Ci). Farquhar & Richards (1984) showed that Δ13C increases 

 
Figure 5. 2 Diffusion of CO2 and water vapour through the stomata 

Carbon (C) moves through stomata by process of stomatal conductance to CO2 (gc) 

from the atmosphere (Ca) to the inside of the leaf (Ci) during photosynthesis. Water 

vapour also moves through the stomata (stomatal conductance to water, gw) from the 

inside of the leaf (Wi) to the atmosphere (Wa). 
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when there is a relative increase in the partial pressure of CO2 inside the leaf relative to that of air. 

Photosynthesis is also related to the concentration gradient between internal and atmospheric CO2:  

 

 

Water vapour (W) can also diffuse through the stomata. This process occurs together with diffusion 

of CO2 into the plant and is termed stomatal conductance to water vapour (gw, Figure 5.2). This is 

the primary component of transpiration and can be controlled by the plant. Although cuticular 

conductance is also a part of transpiration, the contribution is far less and does not depend on 

stomata being open. Therefore is relation to Δ13C, WUE can be expressed as:  

 

 

 

 

This indicates that the Ci/Ca ratio is negatively related to intrinsic WUE, and Δ13C is negatively 

related to WUE. An advantage of this method of measurement over gas exchange is that it 

integrates information from plant gas exchange over a long period of time.  

 

Studies investigating the relationship between WUE and glaucousness using carbon isotopes have 

tended to reach opposing conclusions to those using instantaneous gas exchange measurements. 

Under water stressed conditions glaucousness in wheat has frequently been associated with higher 

Δ13C of around 1-3‰ when measured in a number of tissues including grain and flag leaf (Merah et 

al., 2000; Monneveux et al., 2004). This indicates that over a long period of time, glaucousness 

actually reduces WUE. However, this effect is likely to be highly dependent on environmental 

conditions. Work within a temperate UK environment in wheat has found no effect of glaucousness 

on ∆13C (Adamski et al., 2013). Another study found flag leaf ∆13C to be higher in glaucous that non-

glaucous plants only under early water stress (Merah et al., 2000). It should be noted however that 

a study in barley found a positive correlation between glaucousness and Δ13C under both irrigated 

and rainfed conditions (Febrero et al., 1998), a result comparable to the studies detailed earlier 

carried out under water stress. A draw back of the use of carbon isotopes is that it is not possible 

to separate out the different physiological processes of assimilation and transpiration that are 

contributing to the final value. As such Δ13C is best used in conjunction with other measures such 

as biomass and instantaneous gas exchange measurement.  

 

 

𝑃ℎ𝑜𝑡𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 = 𝑔𝑐(𝐶𝑎 − 𝐶𝑖) 

𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑊𝑎𝑡𝑒𝑟 𝑈𝑠𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑔𝑐(𝐶𝑎 − 𝐶𝑖)

𝑔𝑤
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5.2.5 Aims 

Overall the literature appears to suggest that under drought stress there is some effect of 

glaucousness on WUE, whether this be positive or negative. However, this relationship may be 

absent where water availability is not a limiting factor. Therefore, through employment of both gas 

exchange measurement and carbon isotopes I aim to test the hypothesis that 

 

(i) There is no effect of non-glaucousness as conferred by Iw1 on WUE within a UK (East 

of England) environment.  
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5.3 Methods 

 

5.3.1 Dark adapted chlorophyll fluorescence 

Carbon assimilation is one component of instantaneous WUE. To gain understanding of any 

differences in photosynthetic efficiency between Iw1+ and iw1- NILs, dark-adapted chlorophyll 

fluorescence parameters were measured using a Handy PEA (Hansatech Instruments, Norfolk, UK) 

in the field in the 2013 and 2014 harvest years. Measurements were taken within 14 days of 

anthesis, the point at which wheat reach maximum photosynthetic capacity (Molero & Lopes, 

2012) . Measurements were taken on NILs of Malacca, Alchemy and Hereward. Forty flag leaves 

from independent biological replicates were measured from each line, ten from each of four plots.  

 

Leaf clips were placed on the flag leaves. The clips had a small shutter that could be closed over the 

leaf when the clip was attached to exclude incoming light. Leaves were left to dark adapt for 40 

min, after which point the handy PEA was used to measure chlorophyll fluorescence.  Measurement 

of Iw1+ and iw1- leaves of the same variety were made on the same day simultaneously to minimise 

possible variation over time.  

 

Minimum fluorescence yield in the dark adapted state (Fo) and maximum fluorescence yield in the 

dark adapted state (Fm) were measured. Variable fluorescence (Fv) can be calculated from: 

 

𝐹𝑣 = 𝐹𝑚 − 𝐹𝑜 

 

The value of Fv/Fm then gives the maximum efficiency of photosystem II (PSII). Data were analysed 

by overall ANOVA including all varieties and years, and by pairwise comparison to assess differences 

between Iw1 NILs for each variety within each year. 

 

5.3.2 Measurements using infrared gas analyser (IRGA) 

The LI-COR 6400XT (LI-COR Biosciences) infrared gas analyser (IRGA) system was used to take 

measurements on flag leaves within 14 days of anthesis on flag leaves of Malacca and Alchemy NILs 

in 2013 and 2014, and Hereward NILs in 2014 and 2015. Four biological replicates were measured 

for each line.  

 

The leaf, upon being placed in the leaf chamber was allowed to equilibrate at a photosynthetically 

active radiation (PAR) level of 1000 µmol m-2 s-1 for 10 min or until stable. Subsequently, PAR was 

increased to 1500 µmol m-2 s-1, and then reduced through 1000, 750, 500, 400, 300, 200, 100, 50 

and 0 µmol m-2 s-1. Throughout all measurements flow was maintained at 300 µmol, reference CO2 
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was set to 500 µmol mol-1 and the leaf temperature was set to 20 ⁰C. An effort was made to 

maintain relative humidity between 50 and 70%. Where this was not possible given variable field 

conditions, it was allowed no higher than 75% or lower than 45%. Whilst plants for measurement 

were selected to be representative of the plot, those with flag leaves that were healthy and big 

enough to fill the leaf chamber were chosen. Various parameters were logged at each light level as 

detailed in sections 5.3.2.1 - 5.3.2.2.  

 

5.3.2.1 Light adapted chlorophyll fluorescence 

Actinic light was set to ‘on’. At each light level from 1500 to 0 µmol m-2 s-1 a rectangular flash of 

fluorescence with 10% blue light was applied to the leaf. Fs’ (steady state chlorophyll fluorescence 

in the light adapted state) and Fm’ (maximum fluorescence yield in the light adapted state) were 

logged at each light level. The quantum yield of Photosystem II in the light-adapted state (ΦPSII) 

was calculated using the equation: 

 

𝜙𝑃𝑆𝐼𝐼 =  
𝐹𝑚′ − 𝐹𝑠′

𝐹𝑚′
 

 

Like Fv/Fm, ϕPSII provides an indication of and how well the fundamental photosynthesis machinery 

is functioning (E H Murchie & Lawson, 2013). Data were analysed by pairwise comparison at each 

light level for each NIL within each year individually. In addition to an overall ANOVA at each light 

level by variety to compare across the two years.  

 

5.3.2.2 Gas exchange CO2 and water vapour 

The IRGA system was also used to measure components of instantaneous WUE. Gas exchange 

components of CO2 and water vapour including photosynthetic rate, internal CO2 concentration, 

transpiration and stomatal conductance were logged at each light level. Data for carbon 

assimilation at each light level were presented in Chapter 4 section 4.4.3.2. The ratio of stomatal 

conductance to assimilation was calculated at each light level and data for the NILs analysed by 

pairwise comparison.  

 

5.3.2.3 Calculation of water use efficiency from gas exchange measurement 

WUE at each level of PAR between 0 and 1500 µmol m-2 s-1 was calculated from the gas exchange 

data according to the equation: 

𝑊𝑎𝑡𝑒𝑟 𝑈𝑠𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝐴𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 (𝑚𝑜𝑙 𝐶𝑂2 𝑚−2 𝑠−1)

𝑇𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑜𝑙 𝐻2𝑂 𝑚−2 𝑠−1)
 

 



105 
 

where Assimilation is the moles of carbon gained in photosynthesis, and Transpiration is the moles 

of water used for transpiration (Polley, 2002). 

5.3.3 Transpiration components 

Overall transpiration was measured using the IRGA detailed in section 5.3.2. However, transpiration 

has a number of components: cuticular conductance and stomatal conductance. These parameters 

were measured in field grown flag leaves in the Iw1 NILs. 

 

5.3.3.1 Cuticular conductance 

Flag leaves were collected at anthesis from independent replications in the field. In 2013 and 2014 

NILs of Malacca and Alchemy were sampled with 15 and 5 replications respectively. Flag leaves of 

Hereward BC4 NILs were collected in 2015 across 5 replications.  

 

Flag leaves were left overnight at 4⁰C in the dark with the ends in water. This saturated the leaves 

with water and ensured stomata were shut. The following day, water saturated leaves were 

weighed (Satorius analytical balance BP61S), called time point 0, and then placed in the dark at 

~50% relative humidity and 25 ⁰C to dehydrate for the full duration of the experiment. After the 

first weighing (time point 0), flag leaves were weighed every 20 min for 120 min, and then again at 

240 and either 260 or 280 min. The leaves were then freeze-dried for 48 hr, and the dry weight 

recorded.  

 

The following equation was used to calculate water content (g) per unit dry weight (g): 

 

𝑊𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑔 𝑔−1 ) =  
𝐹𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 

 

Data from time points 0 and 20 min were discarded as leaves were still equilibrating to conditions 

during this time. Water content per unit dry weight at 40 min was treated as 100%, and water 

content at all other subsequent time points was calculated as a percentage of 40 min. Percentage 

water content between NILs was compared at each time point for each variety by pairwise 

comparison. A regression line was fitted between 40 and 120 min to confirm a linear relationship 

between water loss and time. Overall rate of water loss (calculated as the gradient of the regression 

line for each leaf) was then analysed using overall ANOVA including all varieties and years.  

 

5.3.3.2 Stomatal density 

Flag leaves were collected from independent replications in the field and stored with their ends in 

water, 3 biological replications per NIL. On the same day, leaf impressions were made of both the 

adaxial and abaxial leaf surfaces using Xantopren L-blue dental putty (Heraeus Kulzer International, 
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Germany) and Universal Activator (Heraeus Kulzer International, Germany) to create a negative 

impression of the leaf. Clear nail varnish was then spread onto the negative impression and peeled 

off once dry using clear sellotape to create a positive impression. Each positive impression was 

stuck onto a microscope slide. Three positive impressions per side of each leaf were created; one 

each from the top, middle and bottom of the leaf.  

 

A light microscope (M205 fluorescent stereo, Leica Microsystems, UK) was used to take an image 

of 9 fields of view per positive impression. The field of view was 2.89 mm, magnification 80 x. Any 

deviation from this was recorded and controlled for accordingly. The number of stomata within 

each field of view were counted, and stomata per mm2 calculated to get stomatal density. Average 

stomatal density over all 9 sub-samples was taken to give stomatal density per positive impression. 

No difference in stomatal density was found between the three portions of the leaf. Therefore all 

27 measurements were combined into a single number to get mean stomatal density per adaxial 

or abaxial surface.  

 

Statistics were therefore done on three values per NIL per side of each leaf. Data were analysed 

both by overall ANOVA combining all varieties and years, and pairwise comparison for each variety 

within each year.  

 

5.3.5 Bulk δ13C measurement and calculation of Δ13C 

Flag leaves were sampled from three independent replications in the field at anthesis and 40 DPA. 

Tissue collected in the field was immediately frozen on dry ice and stored at -80 ⁰C. Samples were 

freeze dried, and then each freeze dried sample was cut up and placed into a 1.5 mL eppendorf 

tube (Eppendorf, UK) with 1 x 3 mm tungsten bead (Quiagen 69997). Samples were ground to fine 

powder using a genogrinder (Tissue Lyser, Quiagen). For each sample, 2 x ~0.5 mg powder was 

weighed out into individual silver foil parcels, and run on a Thermo Finnigan Deltaplus XP isotope 

ratio mass spectrometer interfaced to a Costech Elemental Combustion System CHNS-O 4010 as 

described in Adamski et al., (2013) to measure δ13C. ~0.5 mg of in-house collagen and casein 

standards were run every 20 samples.  

 

Carbon isotope composition is expressed relative to Vienna PeeDee belemnite standard (VPDB). 

The change in δ13C of the collagen standard during the run was used to control for drift and correct 

sample δ13C values accordingly.  Δ13C was then calculated using the following formula from 

Farquhar et al., (1989): 
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∆ = (
𝛿𝑎 −  𝛿𝑝

1000 +  𝛿𝑝
) 𝑥 1000 

In this equation δa is the ambient CO2, value, assumed to be -8 ‰, and δ p is the sample δ13C value. 

As each sample was run in duplicate an average of the two was taken to get one value per sample.  
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5.4 Results 
 

5.4.1 Carbon assimilation 

Carbon assimilation is one component of WUE. Chapter 4 explored the effect of Iw1 and 

epicuticular wax type on photosynthesis at light levels between 0 and 1500 µmol m-2 s-1 and found 

no effect of Iw1 on carbon assimilation. This chapter aims to ascertain whether there are any 

differences in function and efficiency of the photosynthetic machinery between Iw1+ and iw1- NILs 

and thus further explore photosynthetic efficiency.  

 

5.4.1.1 Dark adapted chlorophyll fluorescence 

Measurement of chlorophyll fluorescence allows assessment of the performance of photosynthetic 

machinery and pathways within a plant. Certain fluorescence parameters were measured in the 

field at anthesis on dark adapted flag leaves. Table 5.1 shows values for minimum (Fo) and maximum 

(Fm) fluorescence yield in the dark adapted state. Fv (variable fluorescence) / Fm is the quantum yield 

of photosystem II (PSII) in the dark adapted state.  

 

 

 

An overall ANOVA that taking accounts of all varieties and years indicated that there was no 

significant effect of Iw1 on Fv/Fm (p= 0.317), but the effect of Iw1 was dependent on both year of 

measurement (p=0.014) and variety (p<0.001). These interactions are clear from the Fv/Fm data in 

Table 5.1, which shows that there was a significant difference between NILs of Malacca (p<0.001) 

and Alchemy (p<0.001) in 2013 only. However, the direction of this effect was not consistent 

between the two varieties; Malacca Iw1+ flag leaves had higher Fv/Fm than iw1-, yet in Alchemy this 

effect was reversed. Furthermore, for all flag leaves the Fv/Fm values were within the healthy range, 

Table 5. 1 Dark adapted chlorophyll fluorescence for field grown flag leaves at anthesis 

Fo (minimum fluorescence yield in the dark adapted state), Fm (maximum fluorescence yield in 

the dark adapted state), and Fv/Fm (quantum yield of PSII in dark adapted state) using a Handy 

PEA. Measurements were taken on flag leaves in the field at anthesis for NILs of Malacca, 

Alchemy and Hereward. N=40. P values for pairwise comparison between NILs for each variety 

are shown. 
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approximately 0.83 (Björkman & Demmig, 1987), indicating that PSII of all flag leaves tested was 

fully functioning. No difference in Fv/Fm between NILs of any variety was recorded in 2014.  

 

Taking account of all years and varieties there was a significant effect of Iw1 on Fo (p<0.001) and 

Fm (p<0.001). However, for both of these parameters there was again a statistically significant 

interaction of Iw1 with year (Fo, p<0.001; Fm, p<0.001), and for Fo an interaction with variety 

(p<0.001). Pairwise comparison revealed that, as for Fv/Fm, there were only significant effects in 

2013, and the direction of change was inconsistent between varieties.  

 

In conclusion, Iw1, and absence of β- and OH-β-diketones from the epicuticular waxes, has no effect 

on chlorophyll fluorescence parameters. Although significant, minor changes observed in 2013 

were not seen in any other year.   

 

5.4.1.2 Light adapted chlorophyll fluorescence 

The quantum yield of PSII can also be measured in the light adapted state to further understand 

efficiency and function. Light adapted ΦPSII was measured at levels of PAR between 0 and 1500 

µmol m-2 s-1 using a LICOR-6400XT in the field over two years at anthesis (Figure 5.1).  

 

An overall analysis combining the two years for Hereward NILs (Figure 5.1a and 5.1b) showed that 

Iw1+ flag leaves had significantly higher ΦPSII than iw1- at 1500 µmol m-2 s-1 (p = 0.01) and 1000 

µmol m-2 s-1  (p = 0.036), and there was no interaction between year and Iw1 (1500 µmol m-2 s-1, p 

= 0.710; 1000 µmol m-2 s-1, p = 0.870). However, pairwise comparison of Hereward NILs within each 

year individually revealed no significant differences, although the overall trend is clear. Figure 5.1c 

shows Alchemy NILs in 2013. Iw1+ flag leaves had significantly higher ΦPSII than iw1- at 1500 µmol 

m-2 s-1 (p = 0.030) and 1000 µmol m-2 s-1 (p = 0.024). However this was not the case at any other 

light level in 2013, and no difference between NILs was recorded in 2014 (Figure 5.1d). For Malacca 

NILs (Figure 5.1e and 5.1f) there was no effect of Iw1 on ΦPSII in either year.  

 

The subtle increases in ΦPSII observed in Hereward and Alchemy Iw1+ NILs indicates there is 

potentially some small effect of the introgressed region containing Iw1 on ΦPSII. However, it is 

unlikely that this is due directly to the epicuticular waxes. There is no difference in the wax profile 

of the three varieties (Chapter 3) and the effect was not seen at all in the Malacca NILs, nor 

consistently in Alchemy. Furthermore, whether or not these small increases would make a 

significant difference to plant productivity in the field is questionable.  
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Figure 5. 3 Light adapted chlorophyll fluorescence measurement of flag leaves in the 
field 

ΦPSII (Fv’/Fm’) at light levels between 0 and 1500 µmol m-2 s-1 was measured for flag leaves 

at anthesis for Hereward in (a) 2014 and (b) 2015, Alchemy in (c) 2013 and (d) 2014 and 

Malacca in (e) 2013 and (f) 2014. Significance by pairwise comparison is indicated at the 

level p<0.05 (*). N=4, error bars = S.E. 
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5.4.2 Transpiration 

The second component of WUE is transpiration, a combination of cuticular and stomatal 

conductance. In order to understand how inhibition of β- and OH-β-diketones within the 

epicuticular waxes affects water loss, various methods were used to measure water loss through 

the stomata and cuticle.  

 

5.4.2.1 Cuticular conductance 

Water movement through the cuticle when the stomata are closed is often reported to be affected 

by epicuticular waxes (Monneveux et al., 2004; Zhang et al., 2015). To assess the effect of Iw1 on 

cuticular conductance, water saturated flag leaves were dehydrated in the dark for 120 min, and 

fresh weight measured every 20 min for field grown NILs of Malacca, Alchemy and Hereward (Figure 

5.4).  

 

Pairwise comparison between NILs within each year showed that for no variety was there a 

significant difference in percentage water content between NIL pairs at any time point over the two 

hr time period. Additionally, an overall ANOVA revealed no effect of Iw1 on rate of water loss 

(p=0.853), although there was an effect of year on the rate of water loss (p<0.001). This is clear 

from the comparison between 2013 and 2014 for Alchemy (Figure 5.4a and 5.4b) and Malacca 

(Figure 5.4c and 5.4d). The summer of 2013 was very dry with little precipitation and low relative 

humidity in comparison to 2014 (Chapter 2 Figure 2.2). These differences in weather conditions 

between years could be responsible for changes to development of the cuticle and thus 

permeability to water. However, there was no interaction between year and Iw1 (p=0.385), 

indicating that the differences between NILs were not influenced by changes in environmental 

conditions between years.    

 

After 120 min, leaves were left to dehydrate in the dark for a further 2 hr, and weighed again at 

240 min and then at either 260 or 280 min (Table 5.2). Pairwise comparison showed that for all 

three varieties there was still no difference between NILs in percentage water content at any of 

these final time points. This shows that NILs of all varieties were losing water at the same rate 

across the full four hr time frame of this experiment.  

 

These results indicate that presence of OH- β- and β-diketones in the epicuticular waxes does not 

affect water loss through the flag leaf cuticle in these wheat varieties.  
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Figure 5. 4 Cuticular conductance of flag leaves at anthesis 

Water loss through the cuticle when stomata were shut was measured over a period of 120 

min. Water content at 40 min was taken as 100%, and water content at each subsequent time 

point calculated as a percentage of this. This was done for field grown flag leaves of Alchemy 

NILs in (a) 2013 and (b) 2014, Malacca NILs in (c) 2013 and (d) 2014, and (e) Hereward NILs in 

2015 only. Equations of regression lines are displayed on each chart; Iw1+ in green and iw1- in 

black. For no variety or year was there a significant difference between NILs in terms of water 

content at any time point, or rate of water loss over the 2 hr. N= 15 in 2013, 5 in 2014, 5 in 

2015. Error bars = S.E. 
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5.4.3.2 Stomatal conductance 

Stomatal conductance relative to assimilation at various light levels between 0 and 1500 µmol m-2 

s-1 was recorded in the field at anthesis using a LI-COR 6400 XT (Figure 5.5). The ratio of stomatal 

conductance to assimilation was calculated at each PAR level, and analysed by pairwise 

comparison. 

 

In 2014 for Hereward (Figure 5.5a) and Alchemy (Figure 5.5d) Iw1+ flag leaves tended to have higher 

stomatal conductance than iw1- leaves at equivalent levels of carbon assimilation. However, these 

differences between NILs in terms of stomatal conductance relative to assimilation were not 

statistically significant for either Hereward or Alchemy. Unfortunately the 2013 Alchemy (Figure 

5.5c) and 2015 Hereward data (Figure 5.5b) show very low levels of stomatal conductance so could 

be unreliable and have been excluded from interpretation. However, the trend for Iw1+ flag leaves 

to have higher stomatal conductance is still present within both of these data sets. For Malacca 

(Figure 5.5e and 5.5f) this trend was absent in both years and there were again no significant 

differences between NILs.  

 

 
Table 5. 2 Percentage water content of flag leaves after 240 - 280 minutes of dehydration 

Dark adapted flag leaves were dehydrated in the dark for four hours. Fresh weight was 

recorded after four hours (240 min) and then again at either 260 or 280 min. Dry weight was 

used to calculate water content at both these time points as a percentage of water content 

after 40 min of dehydration (100%). This was done for field grown flag leaves of Malacca and 

Alchemy NILs over two years, and Hereward NILs in 2015 only. There was no significant 

difference at any time point in terms of water content between NILs. N= 15 in 2013, 5 in 2014, 

5 in 2015. 
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Overall, these data indicate that stomatal conductance is not significantly affected by presence of 

OH- β- and β-diketones in the epicuticular waxes. NILs of all varieties were equally efficient in terms 

of water lost through stomatal conductance relative to carbon assimilation.   

 

 Figure 5. 5 Stomatal conductance (gs) and carbon assimilation at a range of PAR levels 

Measurements were taken between 0 and 1500 µmol m-2 s-1 in the field at anthesis for 

Hereward in (a) 2014 and (b) 2015, Alchemy in (a) 2013 and (b) 2014 and Malacca in (e) 2013 

and (f) 2014. The ratio of stomatal conductance to assimilation was calculated at each light 

level and analysed by pairwise comparison between NILs. There was no significant difference 

between NILs of any variety in any year in terms of stomatal conductance relative to 

assimilation at any light level. N=4, error bars = S.E. 
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5.4.2.3 Stomatal density 

To further understand how stomatal development and function might be affected by Iw1, the 

stomatal density of flag leaf samples collected in 2014 and 2015 was investigated. Stomata were 

counted on both the adaxial and abaxial leaf surfaces and the number of stomata per mm2 leaf area 

was calculated (Figure 5.6).   

 

 

 

In 2014 on the adaxial surface there was an overall significant difference in stomatal density 

between NILs (p=0.001); Iw1+ NILs had more stomata per mm2 than iw1-, significantly so in 

Hereward (p=0.021) and Alchemy (p=0.044). There was also an overall significant effect of Iw1 on 

the abaxial leaf surface (p<0.001). However, in this case only for Hereward did Iw1+ flag leaves have 

significantly more stomata per mm2 than iw1- leaves (p<0.001). For the other two varieties there 

was no significant difference between NILs and the effect was actually reversed, as supported by 

the significant interaction between Iw1 and variety (p=0.003).  

 

In 2015 there was overall no significant difference in stomatal density between NILs on the adaxial 

surface (p=0.255), and no interaction with variety (p=0.663). There was also no significant effect of 

Iw1 on the abaxial surface (p=0.844). Pairwise analysis of 2015 data revealed no effect of Iw1 within 

any variety on either surface.  

 

 
Figure 5. 6 Stomatal density on the abaxial and adaxial surfaces of the flag leaf 

Number of stomata were counted per mm2 at anthesis for NILs of Hereward, Alchemy and 

Malacca NILs from samples collected in (a) 2014 and (b) 2015. Significant differences by 

pairwise comparison are indicated at p<0.05 (*), p<0.001 (***). N=3, error bars = S.E. 
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Overall, taking both years into consideration, it appears that the epicuticular waxes do not 

consistently affect stomatal density. Although there was a small effect in 2014 on the adaxial 

surface, this was not observed consistently in all years or varieties. This effect could have been due 

to natural variation in the plants, or a very specific plant interaction with the environment in that 

year. 

 

5.4.3 Overall water use efficiency 

WUE is a function of transpiration and carbon assimilation, both of which have been explored 

individually in relation to glaucousness. Combining both factors together into a single value is 

essential to understand overall water use of the plant.   

 

5.4.3.1 Transpiration versus Assimilation 

Carbon assimilation at PAR levels between 0 and 1500 µmol m-2 s-1 was measured in the field at 

anthesis over two years (data are presented in Chapter 4). Transpiration, the sum of water loss 

through both the stomata and cuticle, was recorded simultaneously. WUE at each light level was 

then calculated using the formula WUE = Assimilation/ Transpiration.  

 

Figure 5.7 shows that there was no significant difference in instantaneous WUE between NILs of 

any variety in either year of measurement. It seems the significantly higher carbon assimilation 

recorded for Hereward Iw1+ NILs in Chapter 4 did not translate into significantly higher WUE. These 

data indicate that Iw1 does not affect WUE in these varieties within a UK environment.  
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5.4.3.2 Carbon isotope discrimination (∆13C) 

Measurement of assimilation and transpiration using gas exchange shows potential WUE at one 

time point in the growing season. However, environmental conditions and plant physiology 

fluctuate over the growing season. ∆13C provides an estimate of WUE that takes into account many 

factors including major components of transpiration and carbon assimilation. Furthermore these 

Figure 5. 7 Instantaneous water use efficiency for flag leaves at anthesis 

Carbon assimilation/ Transpiration at PAR levels between 0 and 1500 µmol m-2 s-1 was 

measured in the field for NILs of Hereward in (a) 2014 and (b) 2015, Alchemy in (c) 2013 and 

(d) 2014 and Malacca in (e) 2013 and (f) 2014. Analysis by pairwise comparison shows that 

there was no significant difference between NILs of any variety in terms of WUE at any light 

level. N=4, error bars = S.E. 
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factors are integrated over the growing season, allowing understanding of what the plant is actually 

doing in the field.  

 

∆13C of flag leaves sampled at anthesis and 40 days post anthesis (DPA) was measured in 2014 

(Figure 5.8). Overall there was no effect of Iw1 on ∆13C at anthesis p= 0.145 (Figure 5.8a), neither 

was there an effect of variety (p=0.139). When analysed by pairwise comparison within varieties 

there were no significant differences between NILs of any variety. Similarly, at 40 DPA (Figure 5.8b) 

there was no effect of Iw1 on ∆13C (p=0.562).  

 

 

∆13C of the Malacca and Alchemy Iw1 NILs has previously been measured in various tissues at 

anthesis and senescence (GS93), and no difference was found between NILs (Adamski et al., 2013), 

a result that has been verified by the 2014 field data presented here. To further confirm the result 

in Hereward, a variety not previously studied, flag leaf samples were also collected in the field at 

anthesis in 2015. Iw1+ NILs had an average ∆13C of 19.03 ± 0.04 ‰, and iw1- a value of 19.11 ± 

0.10 ‰. This difference between the NILs of 0.08 ‰ was not significant (p = 0.487). Together with 

measurement of instantaneous gas exchange, these data provide evidence that there is no effect 

of non-glaucousness as conferred by Iw1 on WUE over the growing season in these wheat varieties 

in a UK environment. 

 

 Figure 5. 8 Carbon isotope discrimination of field growth flag leaves 

Measured at (a) anthesis and (b) 40 days post anthesis for NILs of Hereward, Alchemy and 

Malacca in 2014. For no variety was there a significant difference between NILs at either 

sampling time point. N=3, error bars = S.E. 
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5.5 Discussion 
Through measurement of a number of gas exchange and chlorophyll fluorescence parameters in 

the field in addition to use of stable carbon isotopes, this chapter set out to address the hypothesis 

that non-glaucousness, as conferred by Iw1, does not affect WUE within an environment such as 

the East of England. This hypothesis was opposing to the findings of many previous studies 

regarding glaucousness, which found a difference between glaucous and non-glaucous plants in 

WUE both when using gas exchange and carbon isotopes. However, many of these past studies 

were carried out in Mediterranean climates, where plants experience frequent water stress under 

the hot and dry conditions. This is quite different to UK conditions, where water supply during the 

growing season is usually adequate and drought is not currently a major issue.   

 

5.5.1 Iw1 had no effect on carbon assimilation 

Chapter 4 investigated carbon assimilation of the flag leaf at varying light levels, and found that 

absence of β- and OH-β-diketones from the epicuticular waxes had no effect on photosynthesis. 

The chlorophyll fluorescence parameters investigated in this chapter further support this 

conclusion. There was no correlation between glaucousness and chlorophyll fluorescence for either 

the dark or light adapted measurements, indicating that there was no effect of Iw1 on PSII capacity. 

Even within 2013, where significant differences were recorded between NILs for Fv/Fm, all flag 

leaves were within the range of a healthy plant (Björkman & Demmig, 1987). This indicates that all 

NILs were responding in the same way to the environment in terms of stress, and capacity of PSII 

was not compromised by presence, or absence, of Iw1.  

 

Interestingly Hereward Iw1+ NILs did have significantly higher ϕPSII at higher levels of light. This 

corresponds to the Chapter 4 carbon assimilation data, for which Iw1+ NILs had higher 

photosynthetic rate at these same light levels.  It is possible that increased ϕPSII capacity could be 

a contributing factor to the observed increase in photosynthesis. However, as discussed before, it 

appears that this increase in photosynthesis is not related directly to Iw1 itself, but is a result of 

one, or several closely linked genes within the Iw1 introgression region.  

 

The next step to ascertain the underlying mechanism causing the increased photosynthesis of 

Hereward Iw1+ NILs would be ACi curves; measurement of carbon assimilation at varying levels of 

carbon dioxide whilst light is held at a constant, saturating value. If the increased photosynthesis of 

Hereward NILs is not due to an effect of epicuticular waxes on light availability, ACi curves could 

shed light on other possible contributing factors such as maximum electron transport rate and 

catalytic activity of the enzyme Rubisco (Farquhar et al., 1980). These measurements were 
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attempted during the summer of 2015, but data collected were not useable due to issues with 

stomatal conductance. ACi curves should be a priority for future work on the Hereward NILs.  

 

5.5.2 Iw1 did not affect water movement through the flag leaf cuticle 

A key function of the cuticle is widely recognized to be prevention of excessive water loss through 

the plant surface. The Malacca, Alchemy and Hereward varieties used in the present work showed 

no difference between glaucous and non-glaucous NILs in terms of cuticular conductance across a 

four-hour experiment. This leads to the conclusion that the presence of β- and OH-β-diketones in 

the epicuticular waxes does not affect water movement across the cuticle of the flag leaf.  

 

This is the opposite conclusion to that drawn in a recent study in wheat specifically linking presence 

of β-diketones to a 15% increase in water loss over a 4 hour dehydration of the flag leaf-sheath 

(Zhang et al., 2015). This study focussed on bread wheat with wax locus W3, which confers 

glaucousness through the presence of OH- β- and β-diketones. The non-glaucous plants in this 2015 

study, rather than conferring a functional copy of Iw1 or Iw2, had two non-functional copies of W3 

(genotype w3/w3). Where glaucousness is conferred in the absence of Iw1 in the present study, 

primary alcohols are the most abundant compound, followed by β-diketones and then n-alkanes 

(Chapter 3).  However, although appearing visually similar, the most abundant compound in the 

W3 plants of Zhang et al., (2015) were reported to be n-alkanes contributing 63.3% to total wax 

load, followed by β-diketones, with only trace amounts of primary alcohols present. The opposing 

conclusions reached regarding cuticular conductance could be a consequence of these differing 

wax compositions. There could be some interaction between β-diketones and n-alkanes that results 

in reduced cuticle permeability that doesn’t occur when primary alcohols are the major component. 

An alternative explanation could be that cuticle permeability is affected by wax load. The non-

glaucous plants lacking functional W3 had significantly reduced wax load as no other compound 

was upregulated to account for loss of β-diketones. In contrast, the difference in wax load between 

the Iw1 NILs is less dramatic because β-diketones make up a smaller proportion of the glaucous 

waxes of iw1- NILs, and upregulation of n-alkanes in Iw1+ slightly compensates for the loss of 

diketone compounds. 

 

In addition to the Zhang et al. (2015) study, a number of others have investigated glaucousness in 

relation to cuticle permeability in wheat and barley with varying results. For example Merah et al. 

(2000) and Febrero et al. (1998) find no effect of glaucousness on cuticle permeability supporting 

the result in the Iw1 NILs, whilst Monneveux et al. (2004) find water movement through the cuticle 

to decrease with glaucousness. An issue with interpreting the results of these earlier studies is that 

they do not provide a precise biochemical profile of the epicuticular waxes in question. Because 
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there can be many forms of glaucousness, this makes it difficult to determine the reasons for any 

discrepancy between studies. However, the relationship between epicuticular wax biochemistry 

and water permeability has been studied in detail in species other than cereal crops. 

 

Work using Brazilian species from the Caatinga and Cerrado, in addition to a study in Jatropha 

mollissima, show that n-alkanes and tripterpenes are the most effective barriers to water loss 

(Figueiredo et al., 2012; Oliveira et al., 2003). However, in the Iw1 NILs,  non-glaucous Iw1+ NILs of 

all varieties had significantly higher quantities of n-alkanes than glaucous iw1- NILs (See Chapter 3 

and Adamski et al., 2013). This indicates that these additional quantities of n-alkanes were either 

not enough to affect cuticle permeability, or that in wheat n-alkanes do not have an important role 

in cuticular conductance. A study in barley found poor correlation between cuticular conductance 

and quantity of a number of wax components including n-alkanes, aldehydes, primary alcohols, 

fatty acids and esters (Larsson & Svenningsson, 1986). 

 

A second finding of these studies using the Brazilian species was that plants with significantly 

reduced cuticular conductance had compounds with longer than average chain length in their 

epicuticular waxes (Figueiredo et al., 2012; Oliveira et al., 2003). This is supported by the work of 

Macková et al., (2013), who found that the epicuticular waxes of Lepidium sativum plants subjected 

to simulated drought stress had aliphatic compounds with significantly longer chain lengths than 

those not under stress. Fatty acid, alcohol and n-alkane chain lengths of C26 and longer were up-

regulated under stress, whilst chain lengths shorter than this were down-regulated. Presence of 

longer chain lengths could lead to higher hydrophobicity of the cuticle and decrease cuticular water 

loss. In the Iw1 NILs, whilst there were some differences in quantity of various compounds between 

NILs, compound classes of the same chain length were present in all NILs, which could explain the 

lack of difference in terms of cuticular conductance. This is a theory that has not yet been explored 

in cereal crops.  

 

Further work is required to ascertain if differences in underlying wax biochemistry are causing these 

differing conclusions regarding glaucousness and cuticle permeability in wheat and barley. An 

alternative explanation could be that the extent to which cuticular conductance is affected by 

epicuticular waxes varies according to tissue type and organ studied. For example, in the Iw1 NILs 

only the flag leaf was considered whereas Zhang et al. (2015) studied the flag leaf sheath.  There is 

some evidence in wheat that where the flag leaf is concerned epicuticular waxes play only a minor 

role in cuticular transpiration, with other factors being more important (Araus et al., 1991; Johnson 

et al., 1983; Richards et al., 1986). For example, Araus et al., (1991) suggest that deposition of silica 

in the cuticle is important in the upper leaves of cereal crops  and may be a key factor in leaf water 
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permeability. However, this conclusion regarding the role of epicuticular wax in flag leaf 

permeability to water has been drawn using plants where glaucousness only affected the abaxial 

surface of the flag leaf. In the Iw1 NILs both the adaxial and abaxial leaf surfaces have the same 

type of wax. It would be of interest to investigate cuticular conducatance in organs other than the 

flag leaf in the Iw1 NILs to confirm if results vary between different tissues. There is also evidence 

to suggest that intracuticular waxes are in fact more important than epicuticular waxes in terms of 

functioning as a barrier to transpiration, whereas epicuticular waxes are more involved in 

wettability and light reflection (Koch & Ensikat, 2008; Svenningson & Liljenberg 1986). This is 

something that should be further investigated in the future using the Iw1 NILs as in the bulk of work 

to date no distinction has been made between the intra or epicuticular waxes.  

 

Some of the discrepancies between studies with regards to cuticular conductance could be a 

function of the methodology adopted by different research studies. Separating out the 

contributions of stomatal and cuticular conductance to overall water loss is not easy. Cuticular 

transpiration is defined as transpiration at maximum stomatal closure, so the term can only be 

correctly applied when stomata are totally closed, or shut so tightly that their contribution to 

transpiration is negligible (Kerstiens, 1996). However, measurements of transpiration under dark 

conditions, in which stomata should be closed, show that epidermal conductance may be 

correlated with stomatal density (Muchow & Sinclair, 1989) indicating that stomata do not fully 

close (although not all studies agree on this (Araus et al., 1991). Therefore, results of cuticular 

transpiration need to be interpreted with caution due to uncertainty over the extent of stomatal 

contribution, which could vary between studies and methods used. For example, the work of Zhang 

et al. (2015) does not state that measurement of cuticular conductance was carried out in the dark. 

 

5.5.3 There was no consistent effect of Iw1 on stomata 

To assess whether non-glaucousness conferred by Iw1 has any impact on regulation of plant water 

loss via the stomata, both stomatal conductance under optimal conditions and stomatal density of 

field grown flag leaves were measured.  

 

5.5.3.1 Stomatal conductance 

Overall there was no significant effect of Iw1 on stomatal conductance. Particularly with regards to 

Malacca, both Iw1+ and iw1- NILs had identical levels of stomatal conductance at equivalent levels 

of carbon assimilation. In Alchemy and Hereward however, there was a (non-significant) trend over 

both years for Iw1+ flag leaves to have around 10-20% higher stomatal conductance relative to 

iw1-, which might indicate that the tubular waxes of glaucous plants are functioning to subtly 

reduce stomatal conductance as has previously been suggested (King & von Wettstein-Knowles, 
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2000). This is comparable to the findings of Johnson et al., (1983), who found a non-significant 

increase in stomatal conductance of around 8% associated with non-glaucousness in wheat. Much 

greater increases in stomatal conductance of 30-60% were associated with non-glaucousness by 

Richards et al., (1986), although this study was carried out within a glasshouse. Further hard 

evidence of any link between glaucousness and stomatal conductance or the mechanism by which 

this may happen, is lacking from the literature. The distinction seen here between the Malacca NILs 

and the other two varieties in terms of stomatal conductance in relation to glaucousness provides 

an opportunity and resource to study the link between epicuticular waxes and stomatal 

conductance. Investigation of the distribution and concentration of biochemicals comprising 

epicuticular wax (Chapter 3) showed that Iw1 functions the same within all three varieties, and 

there was no statistical interaction between Iw1 and variety for any major wax component. It is 

therefore not differences in wax composition between varieties that is affecting stomatal 

conductance. However, a detailed study of exactly how wax structures are arranged across the 

surface of the flag leaf (and other organs) in the Iw1 NILs has not been carried out. For example, 

one possibility is that glaucous flag leaves of Alchemy and Hereward have tubular epicuticular 

waxes more heavily clustered around stomatal openings than Malacca flag leaves.  

 

5.5.3.2 Stomatal density 

The relationship between stomatal density and epicuticular wax genes has been investigated in the 

literature more than any link with stomatal conductance. However, whilst studies in Arabidopsis 

show that the type of epicuticular wax may be linked with stomatal patterning and development, a 

large variety of effects have been observed and no clear conclusion about this relationship has been 

reached (Aharoni et al., 2004; Gray et al., 2000; Yang et al., 2011; Zeiger & Stebbins, 1972). 

Moreover, there is limited evidence of any link in cereal crops. In keeping with this, data from the 

Iw1 NILs in 2015 shows no effect of glaucousness on stomatal density on either the abaxial or 

adaxial surface. In 2014 (on the adaxial surface only) Iw1+ NILs overall had significantly more 

stomata than iw1-. However, the change was subtle and it is possible that this 2014 effect was 

simply due to natural variation in the plants. Alternatively there could be some genotype x 

environment interaction whereby Iw1 increases stomatal density only under particular conditions 

present in the field in 2014 and not 2015. For example 2014 overall was warmer and more humid 

than 2015 (Chapter 2), a set of conditions that might influence action of Iw1. This work on stomatal 

density on the Iw1 NILs is by no means comprehensive; it provides a preliminary conclusion that 

any effect, if at all, of Iw1 on stomatal numbers is subtle and inconsistent. Other components of 

stomatal development such as stomatal size and clustering have not yet been assessed.  
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Any potential effect of Iw1 on stomatal development does not appear to affect water loss through 

the stomata; the patterns observed across varieties and years in stomatal conductance did not 

appear to correlate with stomatal density. For example, the significantly increased stomatal density 

in 2014 for Iw1+ NILs did not translate to a significant increase in stomatal conductance. There is 

both evidence that stomatal density correlates with cuticular conductance (Muchow & Sinclair, 

1989) , and that there is no link between the two (Araus et al., 1991). No difference was observed 

in terms of cuticular conductance for the Iw1 NILs, indicating that any minor changes in stomatal 

density were not affecting water movement across the cuticle.  

 

5.5.4 Iw1 did not affect water use efficiency within a UK environment 

Measurement of transpiration in relation to photosynthesis through gas exchange revealed no 

difference between NILs of any variety. From this I conclude that Iw1 induced non-glaucousness 

does not affect instantaneous WUE within a UK environment. Even for Hereward, where Iw1+ had 

significantly higher carbon assimilation than iw1- (Chapter 4), there was no difference in water use, 

indicating that Iw1+ NILs also increased their transpiration. Comparable work using gas exchange 

measurements has found glaucous wheat to be more WUE than non-glaucous only under drought 

stressed conditions (Richards et al., 1986). A later study measured WUE in 4 lines of Sorghum, each 

with a normal (glaucous) and bloomless (non-glaucous) mutant. They only found glaucousness to 

confer an advantage in one line under irrigated conditions, with no effect of glaucousness on WUE 

in the other three. However, under drought conditions 3 out of the 4 lines demonstrated 

significantly increased WUE associated with glaucousness (Premachandra et al., 1994). This would 

explain why no difference between Iw1 NILs was observed in the present work. In Norfolk, where 

these plants where grown, plants were not subject to severe water stress during growth.  

 

Gas exchange measurement provides only an instantaneous measure of WUE at the single leaf 

level, and conclusions drawn could be quite different from the reality in the field. However, 

conclusions from the gas exchange work were confirmed by ∆13C, which provides an integrative 

measurement of WUE right across the growing season in the field. No difference in ∆13C was 

recorded in flag leaf tissue between NILs of any variety either at anthesis, at which point 

photosynthates from the flag leaf start to fill the grain, or just prior to senescence when the plant 

is at physiological maturity and grain are fully formed. This confirms finding from previous work 

using these same Iw1 NILs, in which no difference in ∆13C of flag leaf, spike or grain was found 

between NILs (Adamski et al., 2013) . The combination of the data presented by Adamski et al., 

(2013) and the data collected in 2014 and 2015 field trials conclusively shows that there is no 

difference in WUE in the field between Iw1 NILs.  This supports the evidence from studies using 
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both gas exchange (Premachandra et al., 1994) and carbon isotope measurements (Merah et al., 

2000) that suggest glaucousness only effects WUE under drought stress.  

 

5.5.5 Conclusions 

The data presented in this chapter provide evidence that there is no difference between Iw1 NILs 

in terms of WUE within a UK environment. Currently, the literature is lacking in studies investigating 

glaucousness and water use within the UK with regards to glaucousness. Additionally there is a lack 

of specific information on the genetic and biochemical basis for the types of glaucousness 

presented within existing studies. The combination of these factors makes it difficult to ascertain 

whether the lack of difference in WUE observed here is due to environmental conditions, the 

specific type of non-glaucousness conferred by Iw1, or a combination of the two. To understand 

this, glaucous Mediterranean wheat varieties with glaucousness could be used to generate Iw1 near 

isogenic lines. These NILs could be grown under water stress in a Mediterranean environment and 

WUE assessed. 
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Chapter 6: The role of glaucousness in modulating plant – light 
interaction 
 

6.1 Summary 
Iw1 inhibits β- and OH-β-diketones in the epicuticular waxes. In Chapter 4 the β- and OH-β-

diketones were shown to be responsible for an increase in PAR reflectance of the flag leaves of 15-

40% from the flag leaf surface. In the field the crop canopy of iw1- NILs reflected around 12-20% 

more PAR than Iw1+. It has been hypothesised that this difference could alter the way glaucous and 

non-glaucous plants respond to environmental conditions in terms of light availability. The 

increased reflectance of iw1- NILs may provide photoprotection, enabling glaucous plants to 

withstand higher levels of light stress, whilst the reduced reflectance of non-glaucous Iw1+ NILs 

may provide an advantage when light levels are sub-optimal.  

 

Many wheat growing regions frequently experience light levels in excess of the light saturation 

point for wheat (1000-1500 µmol m-2 s-1 PAR). Extended periods of exposure to these conditions 

can cause photoinhibition and reduce photosynthesis. To investigate the possible photoprotective 

properties of glaucous epicuticular waxes, excised flag leaves were subject to 1500 µmol m-2 s-1 for 

a three hour period. However, no difference in amount of post-stress photoinhibition was found 

between Iw1+ and iw1- NILs as measured using dark adapted chlorophyll fluorescence. This 

indicated that epicuticular waxes containing β- and OH-β-diketones do not offer increased 

photoprotection. Furthermore, no effect of Iw1 was found in dark adapted chlorophyll fluorescence 

parameters 20 hours post stress, indicative of no differences in their ability to recover from high 

light stress.  

 

Sub-optimal light conditions below saturation point could also cause problems for wheat 

productions. This may become a particular problem in the future as wheat growing regions shift to 

more Northern climes, and aerosols and pollutants cause global dimming. Selection for traits that 

allow optimum plant function under these conditions could be of benefit. Response of plants to 

low level irradiance was tested in the field in 2014. Iw1 NILs of Hereward, Alchemy and Malacca 

were subject to 3 months shading reducing incoming light by 40% and 60% from GS39 (the start of 

stem elongation) until harvest. Various physiological parameters were measured over the course 

of the growing season to assess acclimation to shade conditions. This included factors contributing 

to photosynthesis, water use and yield. Overall NILs yield was significantly reduced by both levels 

of shading (p<0.05). However, there was limited difference in other physiological parameters 

measured. Furthermore, there was no difference in the response of Iw1+ and iw1- NILs indicating 

no advantage attributable to non-glaucousness under low level irradiance. 
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6.2 Introduction 
 

6.2.1 High light causes photoinhibition 
The photosynthetic rate of plants growing in the field varies throughout the day. On a cloudy day 

with weak sunlight photosynthesis generally follows the diurnal pattern shown in Figure 6.1, curve 

1. Photosynthesis increases through the morning until peak sunlight at midday. After this point 

photosynthetic rate declines throughout the afternoon as light levels drop. However, on a clear day 

with more intense sunlight, peak sunlight can exceed the amount of light that can be absorbed by 

the photosynthetic machinery. In wheat photosynthesis generally becomes light saturated 

between 1000 and 1500 µmol m-2 s-1 of PAR (Acevedo et al., 2002). At this saturation point light is 

no longer limiting to photosynthetic rate. Absorption of excess light by the chlorophyll for 

prolonged periods of time damages the reaction centre subunits of photosystem II (PSII), most 

notably the D1 protein (Ohnishi & Murata, 2005). The D1 protein can be repaired by process of 

biodegradation and de novo protein synthesis (Aro et al., 1993), and as long as the repair process 

exceeds the rate at which the reaction centres are being damaged, photosynthetic rate can be 

maintained. However, when the rate of damage exceeds repair, photosynthetic capacity is reduced 

in a process termed photoinhibition (Monneveux, et al., 2003; Ögren & Rosenqvist, 1992; Yang et 

al., 2006). In the field this photoinhibition is exhibited as a ‘mid-day depression’ of photosynthesis. 

The pattern of photosynthesis for a plant experiencing this depression can be seen in Figure 6.1, 

curve 2. In this circumstance photosynthesis increases until just before mid-day. At this point there 

is a fast drop in photosynthetic rate due to photoinhibition caused by intense peak sunlight. 

However, repair of the D1 protein allows re-generation of the PSII reaction centres and a second 

peak in photosynthesis can occur in the late afternoon (Figure 6.1, curve 2). The time spent in this 

mid-day depression, and how severe the reduction in photosynthesis, will depend on the relative 

rate of protein repair compared to damage.  

 

Figure 6.1, curve 3, shows the scenario for a plant suffering a more serious mid-day depression in a 

very high light environment. Excessive light levels become a problem for the plant when the repair 

process cannot keep up with the rate at which the reaction centres are damaged. In addition to 

direct damage to PSII, absorption of excess light can cause production of reactive oxygen species 

(ROS) such as superoxide, hydrogen peroxide and singlet oxygen (Chen et al., 2011).  These ROS 

species exacerbate photoinhibition through the inhibition of protein synthesis and repair of the D1 

protein (Murata et al., 2007). Within this very high light environment, peak photosynthesis occurs 

much earlier in the day as photoinhibition occurs even before maximum sunlight levels are reached. 

This is followed by a gradual decline in photosynthetic rate. The damage done to photosystems 

early on is so severe that they do not recover and no second peak in photosynthetic rate occurs.  
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Although excessive sunlight is a contributing factor to photoinhibition, the reduction in 

photosynthetic capacity is usually a result of multiple abiotic stresses, the effects of which cannot 

be distinguished. Extremes of temperature, salt stress and oxidative stress can further intensify the 

effects of photoinhibition by supressing the repair of photodamaged PSII (Xu & Shen, 2005). It is 

thought that this could be via a mechanism whereby ROS levels within the cells are increased under 

stress, which inhibit the translation factors required for PSII repair. Additionally, temperature stress 

can destabilize translation machinery required for D1 protein synthesis (Takahashi & Murata, 2008). 

In the absence of these multiple stresses, the mid-day depression observed in the field is more likely 

to result from a reduction in in the quantum yield of CO2 rather than the reductions to 

photosynthetic capacity and light saturated photosynthesis associated with photoinhibition 

(Murchie & Niyogi, 2011).  

 

 
 Figure 6. 1 Light saturated photosynthesis (Amax) over the course of a typical day 

Three scenarios that occur in the field between 6 am and 6 pm. Line 1 shows the situation on a 
dull cloudy day where no photoinhibition occurs. Line 2 shows photoinhibition at noon leading to 
a mid-day depression of photosynthesis and subsequent recovery that can occur on a clear sunny 
day. In environments with very intense sunlight photosynthetic machinery may be unable to 
recover from the initial photoinhibition, a situation shown in Line 3. Figure from Xu & Shen, 
2005. 
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6.2.2 A number of protective mechanisms prevent excessive photoinhibition 
A reduction in the quantum yield of CO2 can result from a number of photoprotective processes 

that occur under high light levels in order to prevent excessive photoinhibition. At the sub cellular 

level, a common mechanism of photoprotection is the dissipation of excess light energy from the 

PSII antennae complexes as heat in the process of non photochemical quenching (NPQ). This 

process is stimulated by the PsbS subunit of photosystem II (Kiss et al., 2008; Li et al., 2000) 

alongside the carotenoid pigments zeaxanthin and violaxanthin formed under excess excitation 

energy by the xanthophyll cycle (Chen et al., 2011; Demmig-Adams & Adams, 1992; Gilmore, 1997; 

Niyogi, 1999). In addition to NPQ, electron transport can be altered to protect photosynthetic 

machinery from excessive light levels. One mechanism by which this is thought to happen is by 

cyclic electron flow, whereby electrons flow around PS I in a process that results in ATP synthesis 

only, and electrons are not passed to a terminal electron acceptor. Exactly how this process assists 

in photoprotection is still unclear, but it is thought that it has the effect of lowering cell PH, 

stimulating processes that feed into NPQ (Kramer & Evans, 2011). Another method by which 

electron transport is altered is through the Mehler reaction. During this reaction one molecule of 

O2 to two molecules of H2O becomes reduced at the reducing side of PSI. This is via electrons that 

were generated from two H2O molecules at PSII. The overall result of this process is the scavenging 

of ROS species hydrogen peroxide and superoxide, in addition to the dissipation of PSII excitation 

energy (Foyer & Shigeoka, 2011).  

 

In addition to the photoprotective mechanisms detailed above that can reduce the quantum yield 

of CO2, plants have a number of other strategies to cope with high light. Antioxidant enzymes are 

present in the plant to counteract ROS formation under high light (Chen et al., 2011; Noctor & 

Foyer, 1998), and many plants synthesise the red anthocyanin pigments in response to abiotic 

stress such as drought, low temperature and UV radiation. A strong correlation has been found 

between photoprotection and concentration of anthocyanin, thought to maintain PSII activity 

under extended high light levels (Gould et al., 2010). Other morphological and physical adaptations 

to avoid absorbing excess light include a) protective pubescent hairs and epicuticular waxes that 

reflect light (Holmes & Keiller, 2002), b) increases in leaf thickness (Sims & Pearcy, 1992), and c) 

changes to leaf angle under unfavourable conditions (Bonos & Murphy, 1999). Many growing 

environments for wheat, for example Ciudad Obregon (see Chapter 4, Figure 4.3), have intense 

sunlight for much of the day.  As such it is important to identify traits that might enable reduced 

photoinhibition and increased productivity under high light levels.  

 

6.2.3 The effect of low light levels on crop production 
In contrast to Ciudad Obregon, other wheat growing environments, such as the UK, experience sub-

optimal light intensities for much of the growing season. Annual solar radiation available in the UK 
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under normal current circumstances is shown in Figure 6.2. Maximum light levels of around 25-30 

MJ/m2 are reached between May and July, equivalent to around 1700-1800 µmol m-2 s-1  PAR 

(Boelee et al., 2012)1. These light levels are enough to cause photoinhibition and a mid-day 

depression of photosynthesis. However, cloud cover can reduce the incoming radiation by up to 

two thirds to around 5-10 MJ/m2 light (300-600 µmol m-2 s-1 PAR), well below light saturation point 

for photosynthesis of 1000 – 1500 µmol m-2 s-1 (AHDB, 2015). Under these conditions physiological 

adaptations to maximise light interception would be of benefit to growth and development.  

 

The number of wheat growing regions with sub-optimal light conditions is likely to increase in the 

future. Global levels of irradiation are decreasing annually, thought to be a result of increasing 

aerosols and pollutants in the atmosphere from human activity (Ramanathan & Feng, 2009). A 

metastudy that combined data from 39 individual sites, each with a minimum of 20 complete year’s 

data, concluded that global radiation has been decreasing on average by around 2.7% per decade. 

The greatest declines in solar radiation were recorded in Hong Kong, where light levels have been 

dropping by 1.05% every year. In the UK (measurements taken at Aberporth, Wales), radiation was 

found to be decreasing by around 0.32% every year  (Stanhill & Cohen, 2001). In parallel with these 

changes, wheat growing regions are expected to shift in the coming decades. For example, wheat 

is currently grown up to 55⁰ North in North America. Due to the warming climate some modelling 

scenarios project that these growing regions will shift Northwards up to 65 ⁰N by 2050, and similar 

changes are expected in Northern Eurasia (Ortiz et al., 2008). Moving North, the amount of light 

available generally reduces. This, in combination with global dimming means it is important to 

understand the effect of reduced radiation on crop production, and investigate how cropping 

systems and varieties could be adapted to cope with new conditions.  

                                                           
1 Boelee et al., (2012) provide details of conversion of MJ/m2 to PAR within Appendix A. This method was 
used to estimate PAR in Figure 6.3 to illustrate PAR available throughout the UK growing season.  
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6.2.4 Low solar radiation reduces yield  
Many studies into the effect of low light conditions on wheat production have shown grain yield to 

significantly decrease upon application of shade both prior to and after anthesis (Beed et al., 2007; 

Estrada-Campuzano et al., 2008; Mitchell et al., 1996; Slafer et al., 1994; Wang et al., 2003). This 

work has been carried out in a range of germplasm from the USA, South America, UK and China, 

demonstrating consistent effects in wheat varieties across the world. However, many of these 

studies were carried out with short term shade applied for around 20 days at various growth stages 

(Beed et al., 2007; Estrada-Campuzano et al., 2008; Slafer et al., 1994; Wang et al., 2003). Although 

it is important to understand the effect of reduced light at different developmental stages, an issue 

with these short-term shade studies is that plant acclimation to long term changes in environmental 

conditions cannot be investigated. Furthermore, some studies were carried out under controlled 

conditions in pots (Mitchell et al., 1996). Glasshouse conditions are quite different from those in 

the field, and as such there can be large discrepancy between results.  

 

A number of longer term shading trials in the field have been carried out in winter wheat in China. 

In China, levels of solar radiation are decreasing by around 6% per decade (Che et al., 2005) which 

is significantly faster than the global average, highlighting the significance of this type of research 

for maintaining high levels of wheat production in that country. These long term experiments 

applied shading a month prior to anthesis, with shading covering the plots for a total of two months. 

 

Figure 6. 2 Annual solar radiation received by crops in the field in the UK 

The green line shows clear, cloudless days, and the orange line shows solar energy under 

full cloud. Figure from AHDB (2015) Wheat Growth Guide 
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Decreases in the quantum yield of PSII (ΦPSII), electron transport rate (ETR), the chlorophyll a/b 

ratio, and light saturated photosynthesis (Amax) were observed in plants grown under various levels 

of shade ranging from reductions of incoming light from  8–80 % (Li et al., 2010; Mu et al., 2010; 

Zheng et al., 2011) . All these features have been previously reported as characteristics of shade 

tolerant species (Valladares & Niinemets, 2008), indicating the plasticity of Chinese winter wheat 

to acclimate to shade conditions. In the majority of these studies grain yield was also decreased in 

relation to shade. Reducing incoming light by 22% consistently resulted in yield reductions of 5-10% 

dependent on variety (Li et al., 2010; Mu et al., 2010), and reducing incoming light by 30% resulted 

in a 16-25% yield reduction (Mu et al., 2010). In every study the percentage loss in yield was less 

than the corresponding light reduction, even in the less shade tolerant varieties, indicating some 

physiological compensation by plants subject to shade. One study even found that plants subject 

to reductions in incoming light of 8% and 15% even exhibited a corresponding increase in yield 

compared to control of 2% and 1.3%, respectively (Li et al., 2010).   

 

6.2.5 The role of epicuticular waxes in modulating plant-light interactions 
Specific adaptations to prevailing light conditions are required for optimum plant growth. The 

epicuticular waxes are the first barrier between a plant and its environment, and their biochemistry 

can determine the spectral properties of the plant surface (Chapter 4). Therefore the optimisation 

of epicuticular waxes both in terms of wax load and biochemistry could be one way in which a plant 

can adapt to its light environment. For example, a study in Quercus velutina (black oak) sampled 

leaves from upper positions in the canopy regularly exposed to full sunlight in addition to leaves 

from the lower 3 m of the canopy that were permanently in the shade. Shade leaves were found to 

have thinner cuticle membranes on both the adaxial and abaxial leaf surface, with reduced 

quantities of all cuticle components including epicuticular waxes (Osborn & Taylor, 1990). Another 

study in Tradescantia pallida cv. Purpurea (Rose) found leaves from low light intensity 

environments had a lower density of epicuticular wax platelets than those grown under high light 

(Sousa Paiva et al., 2003). Similar findings were observed in a study on the rhizome herb Valeriana 

jatamansi. Plants grown in the field under 50% shade demonstrated a 50% reduction in total wax 

load compared to plants grown under natural light (Pandey & Nagar, 2002). All of these studies 

suggest that epicuticular wax load is an important component of acclimation and adaptation to sun 

or shade. 

 

A study using the South African flowering plant Leucadendron lanigenum found that the 

epicuticular waxes in this species increased PAR reflectance from the plant surface by around 4%. 

These epicuticular waxes were mechanically removed from the leaves, and leaves both with and 

without intact epicuticular waxes were exposed to two hrs of full sunlight. After exposure, the dark-

adapted chlorophyll fluorescence parameter Fv/Fm, indicative of PSII efficiency, was reduced by 10% 
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in leaves with intact waxes. However, those with the waxes removed demonstrated around a 20% 

reduction in Fv/Fm indicating greater damage to PSII. This indicates that the epicuticular waxes could 

have a significant role in photoprotection (Mohammadian et al., 2007). However, similar studies in 

other species, including a study in the tree species Juniperus thurifera (Esteban et al., 2014) and a 

study into flowering plants of the family Bromeliceae (Pierce et al., 2001), found no difference in 

Fv/Fm after exposure to high light levels between plants with and without intact epicuticular waxes. 

The extent to which the ability to withstand extreme light levels is determined by epicuticular waxes 

is therefore questionable and likely to be dependent on species and wax type.  

 

The presence of Iw1 inhibits β- and OH-β-diketones in the epicuticular waxes. This change in 

biochemistry results in a decrease in PAR reflectance of around 15-40% from the flag leaf surface, 

and around 12-20% from the canopy in the field (Chapter 4). A comparable decrease in reflectance 

of non-glaucous plants compared to glaucous had been reported previously in a range of species 

(Holmes & Keiller, 2002; Jefferson et al., 1989; Johnson et al., 1983) and it has been suggested that 

the epicuticular waxes have a role in regulating light availability to the plant (Koch & Ensikat, 2008). 

However, the literature is lacking information regarding glaucousness in wheat in response to 

extreme light conditions. A study by Close et al., (2007) was carried out on the tree Eucalyptus 

urnigera, which  exists in both glaucous and non-glaucous forms on Mount Wellington in Tasmania, 

Australia. Glaucous phenotypes are found on the upper portion of the cline, where conditions are 

very open, and particularly in winter, reflectance of light from snow covering can create high light 

conditions. In contrast, non-glaucous phenotypes are found at the lower sites, where the canopy is 

closed and available PAR is lower. It is thought that the reflective glaucous waxes provide 

photoprotection at higher sites, whilst lower reflectance of non-glaucous tissues at the lower sites 

allows increased interception of incoming light, and greater ability to compete with other species 

for light. Similar results were obtained in a study into Alaskan Picea monana (black spruce) and 

P.glauca (white spruce) on an elevation gradient from 610-1050 meters. In both species surface 

reflectance of the leaves was found to increase with altitude, consistent with greater levels of 

irradiance. This corresponded with a reduction in chlorophyll content and increase in yellow 

colouring, both of which are known stress responses (Richardson et al., 2003). Both of these studies 

suggest that leaf surface reflectance could be a strong determinant of ability to withstand 

environmental stress.  

 

6.2.6 Aims 
I hypothesise that the increased reflectance of glaucous (iw1-) epicuticular waxes could provide 

protection from excessive light levels to the crop canopy and reduce the amount of PAR that 

reaches the photosystems. Conversely, the reduced reflectance of non-glaucous epicuticular wax 

could enable greater PAR absorption by the crop canopy under low light conditions. This chapter 
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will explore the response of Iw1 NILs to variable light conditions to understand under which 

conditions the glaucous (or non-glaucous) phenotype could be most beneficial. This chapter aims 

to test the following hypothesis: 

 

(i) Increased reflectance of glaucous iw1- NILs provides protection from photoinhibition 

upon exposure to high light. 

(ii) The reduced reflectance of non-glaucous Iw1+ NILs provides an advantage under long-

term low solar irradiance. 

 

Within hypothesis (ii), an advantage attributed to non-glaucous NILs under low solar irradiance 

could be assessed in a number of ways. As such, to test hypothesis (ii) the following sub-hypotheses 

will be addressed: 

 

(a) Iw1+ NILs will yield higher under low-level light than iw1- NILs. 

(b) Iw1- NILs will display greater acclimation to reduced light levels in terms of changes to 

photosynthesis or the plant cuticle   
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6.3 Materials and Methods 
 

6.3.1 Flag leaf response to high light stress 
To test the hypothesis that glaucous (iw1-) epicuticular waxes provide greater photoprotection 

than non-glaucous (Iw1+) waxes, excised flag leaves of Hereward, Alchemy and Malacca NILs were 

exposed to saturating light for an extended period of time to assess levels of PSII inhibition. 

 

6.3.1.1 Plant material 
NILs of Hereward, Alchemy and Malacca were grown under glasshouse conditions as described in 

Chapter 2 (2.2). A week prior to measurement (GS55-59) plants were transferred to a controlled 

environment room (CER) to acclimate to environmental conditions: Lighting was on an 8 hr dark, 

16 hr light cycle, with PAR levels maintained between 200-300 µmol m-2 s-1 during hours of light. 

Relative humidity (RH) was maintained at around 70%, and the temperature was 20 ⁰C during hours 

of light and 15 ⁰C during dark hours.  

 

6.3.1.2 Light stress group 
Measurements were taken between anthesis (GS61) and 14 days post anthesis (DPA). To measure 

the effect of light stress, flag leaves were cut from the plant to a length of 12 cm. Oil paint was used 

to mark each leaf at the tip on the adaxial surface such that it could be identified throughout the 

experiment. 10-12 biological repeats were used for each NIL. Directly after excision from the plant 

leaves were dark adapted for 40 min using leaf clips, and during dark adaptation the ends of the 

leaves were kept in water so that leaves would remain saturated and not suffer water stress. After 

40 min pre-stress chlorophyll fluorescence measurements were taken using a Handy PEA 

(Hansatech, UK).  Leaves were subsequently placed in a water bath (6 cm deep) with the adaxial 

surface facing upwards below a high pressure sodium (HPS) light. The water temperature was 

maintained at 20-24⁰C throughout. A PAR sensor at the level of the water bath was used to check 

plants were receiving 1500 µmol m-2 s-1, and this level of light was maintained for 3 hr. After 3 hr, 

leaves were removed from the water bath, and returned to ambient light level (200-300 µmol m-2 

s-1).  Leaf clips were immediately placed on the leaves, and left to dark adapt for 40 min with the 

ends in water. Post-stress measurements of dark adapted chlorophyll fluorescence were then 

taken.  

 

6.3.1.3 Control group 
Leaves in the control group were also excised from the plant, labelled with oil paint and pre-stress 

dark adapted chlorophyll fluorescence measured in the same manner as the stress group. Leaves 

were then placed into a 6 cm deep water bath which was maintained at 20-24⁰C in the same room 

as the stress group for the same 3 hr period of time. However, the HPS light was not used, so leaves 
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were experiencing ambient light of 200-300 µmol m-2 s-1 for the full 3 hr duration. After 3 hr leaves 

were removed from the water bath, and leaf clips placed on the leaves with their ends in water. 

Post stress dark adapted measurement was taken in the same way as for the stress group.  

 

6.3.1.4 Recovery from light stress 
Recovery post stress was measured for NILs of Alchemy and Malacca. Leaves from both the control 

and stressed groups of these varieties were placed back in the water bath after post stress dark 

adapted chlorophyll fluorescence measurement. Water bath temperature was maintained at room 

temperature and leaves were left to recover under CER conditions (8 hr at 200-300 µmol m-2 s-1, 16 

hr dark) for 20 hr. Dark adapted chlorophyll fluorescence was measured periodically using the 

method described previously.  

 

6.3.1.5 Data analysis 
At all time-points of measurement (pre-stress, post-stress and recovery) Fo, Fm and Fv/Fm were 

recorded and averaged over 10-12 biological replicates per NIL. An overall ANOVA was carried out 

for each chlorophyll fluorescence parameter, and pairwise comparison between NILs of the same 

variety carried out.  

 

6.3.2 Response to long term low level irradiance 
To test the hypothesis that Iw1+ NILs would be at an advantage under low light levels, NILs of 

Hereward, Alchemy and Malacca were grown in the field under long-term shading.  

 

6.3.2.1 Experimental design 
NILs of Hereward, Alchemy and Malacca were grown at Church Farm, Bawburgh, in 2014 in Hege-

90 (6 m2) plots to assess the effect of long-term low irradiance. All three NILs were grown in three 

blocks in the field. Within each block 5 independent replications of each NIL were arranged in a 

randomized block design with 1 replication per block. Figure 6.3 shows this experimental design in 

the field. Each block had a buffer of 1 Hege-90 plot of the variety Soissons around the main 

experiment, and four Soissons plots were drilled between each of the three blocks. The full field 

plan is shown in Appendix A7. 
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All three blocks were drilled on the 16th October and grown under natural light (no shade). On 9th 

May one block was left as a control under natural light, one layer of spectrally neutral polyolefin 

net (Svensson Solaro, Farmtek, USA) was erected over the second block, and a double layer of 

netting over the third block. Nets were erected at a height of 2.13 m (7 feet) to allow for circulation 

of air above the canopy to continue as normal. At this point the plants were around GS33. Visible 

epicuticular waxes had developed on the iw1- NILs around the 1st May. All plants reached heading 

between 24th May and 1st June, and reached maturity between 16th July and 2nd August. This large 

range of dates for both heading and maturity was a result of the shading, with plants under the 

shade heading 1-2 weeks later than control plants.  

 

According to the manufacturer specifications the single layered netting transmitted 73% PAR, and 

the double layer transmitted 49% PAR when tested using an integrating sphere. In order to confirm 

this in the field simultaneous measurements of PAR were made under shade and control plots, with 

PAR sensors placed at the level of the crop canopy (Figure 6.4). Under the double layered nets PAR 

levels were reduced by 65% compared to control at the highest light level measured (control PAR 

1700 µmol) and 54% at the lowest PAR level measured (control PAR 76 µmol). There was less of a 

range under the single layer nets, with a reduction of incoming light of 42% at the highest light level 

measured (control PAR 1833 µmol) and 38% at the lowest light level (control PAR 185 µmol). 

Therefore the two shade environments will be referred to as 60% and 40% shade throughout this 

chapter, as an average across the spectrum.  

 
Figure 6. 3 Field trials layout for the low level irradiance trial 

Each of the three blocks has 5 independent replications of each NIL of Hereward, Alchemy 

and Malacca surrounded by a buffer zone of Soissons. Five blocks of Soissons were drilled 

between each of the three blocks. 
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Within this chapter, all yield data (6.4.2.2) was collected within this experimental design as was 

physiology data from 40 and 60% shade. However, due to limited resources, control (no shade) 

physiology data detailed within results sections 6.4.2.3., 6.4.2.4 and 6.4.2.5 was collected from the 

main Church Farm experiment detailed within Chapter 2 section 2.2 and has been presented before 

within Chapters 4 and 5. Where ‘control’ is stated within these sections it is therefore referring to 

the main experiment. The shade trial and main experiment were located in close proximity within 

the same field. Therefore environmental conditions would have been comparable across both.  

 

6.3.2.2 Field environmental conditions under shade 
Environmental conditions other than light availability can affect plant development and might have 

been affected by the netting placed over the trial. Therefore to understand differences in 

environmental conditions between the three blocks, temperature and RH data loggers (Tinytag, 

West Sussex, UK) were placed within each of the three experimental blocks on 21st May. Data for 

both parameters were logged 9 times per hr continually until data loggers were removed on 8th 

August when plants were harvested.  

 
Figure 6. 4 PAR levels under the shade plots compared to control 

PAR was simultaneously measured under the double netting and control, and under single 

netting and control. Regression lines shows a linear relationship between control PAR 

levels and those for both shade environments 
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Daytime temperature and relative humidity were defined as all values between 7 am and 6 pm. RH 

values recorded at times that coincided with rain (100% RH under control conditions) were 

excluded from analysis. The average per day was then calculated for each of the two parameters.  

 

6.3.2.3 Phenotyping yield 
According to the hypothesis that Iw1+ NILs would be at an advantage under low level irradiance 

iw1- NILs would be expected to show a greater decrease in yield under shade than Iw1+ NILs.  In 

order to test this, yield was measured in all three treatment blocks as weight of grains per plot and 

normalised to 15% moisture content. Average yield per NIL was calculated per treatment block and 

analysed both by pairwise comparison and overall ANOVA.  

 

6.3.2.4 Photosynthesis 
Any advantage conferred by Iw1+ under low level irradiance may also present in differences 

between NILs in terms of acclimation to lower light levels. To test this, various components affecting 

photosynthesis known to change in plants exposed to long term shading were assessed.  

 

6.3.2.4.1 Extraction of photosynthetic pigments 
Concentration of carotenoids, chlorophyll a and chlorophyll b in flag leaf tissue from Hereward, 

Alchemy and Malacca NILs at anthesis was quantified. Five flag leaves of each NIL were collected 

from each treatment block, one from each independent replication within the block. Full details of 

sampling method, extraction and analysis are available in Chapter 4 section 4.3.5.  

 

6.3.2.4.2 Carbon assimilation 
Carbon assimilation at various levels of PAR between 0 and 1500 µmol m-2 s-1 was measured in flag 

leaves of Hereward, Alchemy and Malacca at anthesis from the control and 60% shade blocks. For 

each of the environments four flag leaves of each NIL were measured, one from each independent 

replication 1-4 within the block. Light curve parameters were calculated and averaged over all four 

flag leaves. Full details of method of measurement and analysis are available in Chapter 4 section 

4.3.6.  

 

6.3.2.4.3 Chlorophyll fluorescence 
Both light and dark adapted chlorophyll fluorescence were measured from control and 60% shade 

environments using methods detailed in Chapter 5 sections 5.3.1 (dark adapted) and 5.3.2.1 (light 

adapted. NILs of Hereward, Alchemy and Malacca were measured. For each of the two treatment 

blocks forty flag leaves of each NIL were measured, ten each from four independent replications 

within each block. 
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6.3.2.5 Effects on the cuticle 
Cuticular components are also known to change in plants exposed to varying light levels. 

Differences between NILs in terms of epicuticular waxes, stomata, and transpiration were 

measured to test the hypothesis that iw1- display greater acclimation to low level irradiance.   

 

6.3.2.5.1 Epicuticular waxes 
Epicuticular wax biochemistry was assessed in NILs of Hereward, Alchemy and Malacca at anthesis 

and 40 DPA. Five flag leaves of each NIL were collected from each treatment block, one from each 

independent replication within the block. Epicuticular waxes were extracted in chloroform, the 

biochemical profile of wax extracts analysed through GC-MS and the 17 most abundant wax 

components quantified. Full methods for wax extraction and analysis are detailed in Chapter 3 

section 3.2.2.  

 

6.3.2.5.2 Stomatal density  
Flag leaves were collected from the field at anthesis from NILs of Hereward, Alchemy and Malacca 

from control, 40% shade and 60% shade blocks. Three flag leaves were collected from each 

treatment block, one each from three independent replications within each block. Stomatal density 

per mm2 were quantified according to methods detailed in Chapter 5 section 5.3.3.2.  

 

6.3.2.5.3 Cuticular conductance 
In 2014 cuticular conductance was measured in NILs of Malacca and Alchemy grown under control, 

40% shade and 60% shade at anthesis. Five flag leaves were collected from each treatment block, 

one from every independent replication within each block. Full methods of measurement and 

analysis are detailed in Chapter 5 section 5.3.3.1.   

 

6.3.2.5.4 Stomatal conductance 
Stomatal conductance at various levels of PAR between 0 and 1500 µmol m-2 s-1 was measured in 

flag leaves of Hereward, Alchemy and Malacca at anthesis from the control and 60% shade blocks. 

For each of the two treatment blocks, four flag leaves of each NIL were measured, one from each 

of four independent replications within the block. Full details of measurement and data analysis 

are available in Chapter 5, section 5.3.2.  

 

6.3.2.6 Overall water use efficiency 
Both photosynthesis and transpiration affect water use efficiency (WUE). Furthermore, netting over 

the shade blocks affected temperature and RH, both of which may affect plant water use. Therefore 
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to understand how differences in acclimation between the NILs was affecting WUE both 

instantaneous gas exchange and carbon isotopes were used.  

 

6.3.2.6.1 Instantaneous gas exchange 
Instantaneous gas exchange measurements of carbon assimilation and transpiration were taken on 

flag leaves of Hereward, Alchemy and Malacca NILs from control and 60% shade at anthesis. For 

each of the two experimental blocks, four flag leaves of each NIL were measured, one from each of 

four independent replications within the block. Gas exchange measurements were then used to 

calculate overall WUE Full details of methods and analysis can be found in Chapter 5 sections 5.3.2.   

 

6.3.2.6.2 Bulk δ13C measurement and calculation of 13C discrimination 
Flag leaves of Hereward, Alchemy and Malacca NILs were sampled from control, 40% shade and 

60% shade at anthesis and 40 DPA. Three flag leaves of each NIL were collected from each 

treatment block, one from each independent replication within the block. Full of details of methods 

and analysis can be found in Chapter 5 section 5.3.5.  
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6.4 Results 
 

6.4.1 The role of epicuticular waxes in photoprotection 
The increased reflectance of PAR by glaucous epicuticular waxes has been suggested to have a role 

in photoprotection. Reflecting excess PAR from the plant surface could reduce the photoinhibition 

that can occur to PSII under high light levels. To explore this effect, excised flag leaves from both 

glaucous and non-glaucous NILs were exposed to 1500 µmol m-2 s-1 PAR for 3 hr and dark adapted 

chlorophyll fluorescence parameters recorded before and after stress. A control group of excised 

leaves were exposed to ambient light (200-300 µmol m-2 s-1) for the 3 hr (Table 6.1).  

 

Overall, flag leaves that were exposed to the light stress had significantly increased Fo (p<0.001), 

decreased Fm (p<0.001) and decreased Fv/Fm (p<0.001) after the three hour period. However, a 

significant change in all three parameters was also recorded in control leaves of Hereward and 

Malacca (p<0.05), and in Alchemy a significant change in Fm and Fv/Fm was observed (p<0.05). In all 

cases the recorded change in control leaves was not as great as the change observed in stressed 

leaves. This difference in response is reflected in the statistically significant interaction between 

treatment group and change in chlorophyll fluorescence (p<0.001).  

 

An overall analysis that was inclusive of all three varieties, both the pre and post stress time points, 

and control and light stressed leaves shows that there was no significant effect of Iw1 on Fo 

(p=0.413), Fm (p=0.074) or Fv/Fm (p=0.167). There was no significant interaction between Iw1 and 

time point of measurement for any parameter, indicating that the lack of difference between NILs 

Table 6. 1 The difference between dark adapted chlorophyll fluorescence measurement 
before and a period of light stress 

The difference in the dark adapted chlorophyll fluorescence parameters Fo, Fm and Fv/Fm before 

and after exposure to light stress calculated as pre stress – post stress. For no variety does Iw1 

have a significant effect on the change in any chlorophyll fluorescence parameter after stress. 

N=10-12. 
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in chlorophyll fluorescence parameters remained the same when measured both before and after 

the 3 hour light stress period. This conclusion was further supported by pairwise comparison 

between NILs seen in Table 6.1. Furthermore there was no significant interaction between Iw1 and 

treatment group, indicating that the difference between NILs in chlorophyll fluorescence 

parameters was the same in both the control and treated groups. In conclusion these data show 

that under these experimental conditions glaucous epicuticular waxes do not provide 

photoprotection. 

 

In the field, the total reduction in carbon assimilation caused by photoinhibition will be determined 

not only by a plant’s ability to withstand high light levels at mid-day, but also the ability to recover 

normal levels of photosynthesis post exposure. To assess rate of recovery, after the three hour 

exposure to 1500 µmol m-2 s-1, Malacca and Alchemy flag leaves were moved to ambient light 

conditions (200-300 µmol m-2 s-1), and dark adapted Fv/Fm measured again after 20 hours. Leaves in 

the control group were maintained at ambient light throughout.  

 

For both Alchemy (Figure 6.5a) and Malacca (Figure 6.5b) there was a significant increase in Fv/Fm 

of stressed leaves after 20 hours in recovery compared to immediately post stress (p<0.001). For 

Malacca there was a significant decrease in Fv/Fm of control leaves after 20 hours (p=0.003), but the 

same significant decrease was not observed in Alchemy (p=0.925) indicating that the Alchemy 

leaves could better maintain PSII function after excision from the plant. At no time point was there 

a significant difference between NILs of Malacca or Alchemy, indicating that not only does Iw1 have 

no effect on Fv/Fm after high light exposure, but additionally that Iw1 does not affect ability to 

recover from high light stress in these wheat varieties.  
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 Figure 6. 5 Recovery of flag leaves after a 3 hour period of high light stress 

NILs of (a) Alchemy and (b) Malacca were measured before and after light stress. Time 

point 0 hours indicates the pre stress Fv /Fm measurement. The stress period is shown 

shaded in blue. Post stress measurements were taken at 3 hours. Leaves were left under 

ambient light to recover and Fv /Fm measured again after 20 hours. N=10-12, error bars = 

S.E. 
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6.4.2 The effect of epicuticular waxes on plant response to long term low radiation 
To explore any effect of glaucousness on the physiological response to long term low level radiation 

in the field, NILs of Hereward, Alchemy and Malacca were grown in 2014 under polyolefin covers 

that reduced incoming light by 40% and 60%. A control trial with no covering was also grown.  

 

6.4.2.1 Field environmental conditions  
Temperature and RH were monitored within each trial to understand the effect of the shading on 

environmental parameters other than light. Unfortunately long term solar radiation data were not 

available, although the reduction in PAR under shading across a variety of light levels was measured 

to confirm consistency (see Figure 6.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6. 6 Average daily (a) temperature and (b) RH under 40% and 60% shade trials and 
control 

Data were measured 9 times per hour from the 25th May until 8th August (harvest). The chart 

shows the daily average (6 am – 7 pm).  
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Figure 6.6 shows the average daily temperature and RH for the control, 40% shade and 60% shade 

plots. Figure 6.7 shows the difference in conditions between the shade and control for both 40 and 

60% shading. Overall, on the warmest days the control trial tended to be around 2 ⁰C hotter than 

the 60% trial and 0.5 - 1.0 ⁰C hotter than the 40% shade trial (Figure 6.6a and 6.7a). On cooler days 

the temperature difference between the control and shaded trials was reduced if not absent 

completely for 40% shade. The opposite trend was present when considering RH (Figure 6.6b). The 

  

Month 

Figure 6. 7 Difference in temperature between control and shade plots 

The difference was calculated as shade – control for (a) temperature and (b) RH. The red line 

at 0 indicates the point where there is no difference between the shade and control 

environments. Any values above the line indicate higher values recorded within the shade 

compared to control, whilst values below the line indicate that higher values were recorded 

in the control plot. 
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60% shade trail had the highest RH at all time points, particularly on less humid days where the 60% 

shade trial had up to 10-15% higher RH than the control. On overall more humid days this difference 

between the control and shade trials was reduced, with little difference in RH between control and 

40% shade, but around a 5% increase in RH under 60% shade. Temperature and RH are important 

environmental parameters affecting plant physiology. Therefore it will be important to take these 

general trends into account when considering any differences in physiology seen between the three 

shade environments.  

 

6.4.2.2 Grain yield 
Grain yield provides a measure of overall plant performance. To understand if Iw1+ plants were at 

an advantage in the shade in terms of productivity, yield was measured for NILs of Malacca, 

Hereward and Alchemy in the control trial and the 40% and 60% shade trials.  

 

Figure 6.8 shows the difference in yield between NILs in each of the three environments. In 

Hereward (Figure 6.8a) the effect of Iw1 on yield was not significant overall (p=0.093), and pairwise 

comparison within each of the three environments indicated that there were no significant 

differences between NILs. However, in the control and 60% shade environments there was a 

respective 4.79 and 4.32% increase in yield associated with Iw1, which is consistent with data 

previously reported in the Iw1 yield trials (Chapter 3). There was a significant interaction between 

shade and Iw1 (p=0.027) as under 40% shade the difference between NILs was reduced. Under 

these intermediate conditions Iw1 only conferred a 2.37% yield advantage. A similar trend was 

recorded in Alchemy (Figure 6.8b). In Alchemy Iw1 had a significant effect on yield overall (p=0.016), 

with a significant 6.40% yield increase associated with Iw1 under control conditions (p=0.024), and 

 

Figure 6. 8 Adjusted yield of Iw1+ and iw1- NILs under shade and control conditions 

Average yield for (a) Hereward (b) Alchemy and (c) Malacca under 40% shade, 60% shade 

and control conditions. Percentage increase in yield of Iw1+ compared to iw1- is shown 

above each pair. Significant differences between NILs are indicated by * (p<0.05). 
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a (non-significant) 2.68% yield increase under 60% shade. However, the difference between NILs 

was only 0.07% under 40% shade, although the interaction between Iw1 and yield in this case was 

not significant (p=0.168). Malacca consistently displayed a much smaller difference between NILs 

in all three environments (Figure 6.8c), again consistent with conclusions from the yield trials 

(Chapter 3), and there was no significant effect of Iw1 on yield overall (p=0.390).There was even a 

negative effect of Iw1 under control and 40% shade conditions, which again is consistent with data 

reported previously in Chapter 3. There was no statistically significant interaction between Iw1 and 

shade for Malacca (p=0.570).  

 

Table 6.2 shows the percentage loss of yield for plants grown in the shade compared to control. 

There was a significant difference in yield between all three environments (p<0.001), and the effect 

of shade was also significant for all three varieties individually (p<0.001). Yield was consistently 

reduced by around 30% under 40% shade compared to control, and by around 50% under 60% 

shade. In conclusion, although the yield of all three varieties was significantly affected by light 

availability, non-glaucous plants with Iw1 had no advantage under the low light.  

 

 

6.4.2.3 Photosynthesis 
Photosynthesis is highly dependent on light availability and as such plants adapted to long term low 

light levels have a number of adaptations to maximise efficiency of carbon assimilation (Valladares 

& Niinemets, 2008). If non-glaucous Iw1+ plants are at an advantage under shade conditions, iw1- 

material may be expected to show greater acclimation to the shade in terms of photosynthetic 

parameters.  

 

6.4.2.3.1 Photosynthetic pigments 
Carotenoids, chlorophyll a and chlorophyll b were extracted from flag leaves of Hereward, Alchemy 

and Malacca NILs grown in the field under control, 40% shade and 60% shade conditions (Figure 

6.9). Pigment quantity per mm2 leaf area was quantified by spectroscopy.  

 

 

Table 6. 2 Percentage yield loss of shade grown plants compared to control 

NILs of Hereward, Alchemy and Malacca. Yield within all three shade environments is significantly 

different (p<0.05) but there is no difference in response between NILs.  
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Overall analysis incorporating all three shade environments and varieties showed that statistically 

there was no effect of Iw1 (p=0.333) or shade (p=0.197) on quantity of chlorophyll a (Figure 6.9a, b 

and c). Furthermore there were no significant interactions between Iw1, shade and variety. Under 

control conditions Iw1+ NILs of all varieties had consistently higher quantities of chlorophyll a than 

iw1- (p=0.040) as reported previously in Chapter 4. This same effect was also seen under 40% shade 

in Hereward and Alchemy although overall there was no effect of Iw1 on chlorophyll a (p=0.184). 

Comparison of control and 40% shade in Hereward and Alchemy NILs (Figures 6.9a and 6.9b) shows 

that there is a (non-significant) increase in the difference in chlorophyll a content between NILs 

under 40% shade compared to control. For Hereward iw1- NILs had 0.005 µg mm-2 more chlorophyll 

a under control conditions, whilst under 40% shade iw1- had 0.007 µg mm-2 more chlorophyll a. In 

Alchemy this trend was also present. Under control conditions there was a difference of 0.004 µg 

mm-2 between NILs, whilst this increased to 0.009 µg mm-2 under 40% shade. This might suggest 

that Iw1+ NILs did have an advantage in the shade and iw1- NILs had to compensate more for the 

reduced light availability. However, this trend was absent in Malacca and did not extend to 60% 

shade in any of the three varieties. Overall under 60% shade there was no effect of Iw1 on 

chlorophyll a (p=0.386) although Malacca iw1- NILs still had (non-significantly) increased 

chlorophyll a quantity. However, in Hereward and Alchemy the trend was actually reversed under 

60% shade, with Iw1+ NILs having higher quantity of chlorophyll a. This interaction between variety 

and Iw1 however was not significant (p=0.219).  

 

Similar trends were present for chlorophyll b quantity although overall there was no significant 

effect of Iw1 (p=0.093) or shade (p=0.185) on chlorophyll b. When analysed at the variety level 

there were no significant effects of Iw1 or shade. Trends in the carotenoid data were slightly 

different. There was overall no significant effect of Iw1 on carotenoid concentration (p=0.149) but 

there were significant differences both between varieties (p<0.001) and shade environments 

(p=0.002). This can be seen in Figure 6.9g- 6.9i, whereby across all varieties there appears to be a 

positive relationship between carotenoid content and light level. However, these differences were 

quite subtle, and when analysed at the variety level, the effect of shade was no longer significant.   
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The chlorophyll a/b ratio was also analysed (Table 6.3), as this is has been reported to decrease 

under reduced light levels (Dong et al., 2015; Li et al., 2010; Valladares & Niinemets, 2008; Zhang 

et al., 2011). Overall varieties there was no significant effect of shade on the chlorophyll a/b ratio 

(p=0.464), neither was there an effect of Iw1 (p=0.251) or variety (p=0.272). Furthermore there 

were no significant interactions between shade and Iw1 nor shade and variety. When analysed at 

the variety level for none of the three varieties was the effect of shade significant (p values in Table 

6.3), and there was no interaction with Iw1.  

 

 

Figure 6. 9 The effect of shade on chlorophyll a, chlorophyll b and carotenoids in the flag 
leaf 

Chlorophyll a in (a) Hereward, (b) Alchemy and (c) Malacca, chlorophyll b in (d) Hereward, 

(e) Alchemy and (f) Malacca, and carotenoids in (g) Hereward, (h) Alchemy and (i) Malacca. 

Extracted from flag leaves at anthesis grown under control (C), 40% shade and 60% shade 

conditions. Pairwise comparison revealed no significant difference between NILs. N=5, 

error bars = S.E. 
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Overall, these pigment data show that for none of the three photosynthetic pigments assessed did 

shade significantly affect quantity in either the Iw1+ or iw1- NILs, and the chlorophyll a/b ratio did 

not change.  

 

 

 

6.4.2.3.2 Carbon assimilation 
In order to further assess differences in acclimation to shade by the NILs, carbon assimilation at 

PAR levels between 0 and 1500 µmol m-2 s-1 was measured in flag leaves at anthesis for Hereward, 

Alchemy and Malacca under 60% shade and control conditions. The light curve parameters 

apparent quantum efficiency (AQE), light compensation point, light saturated carbon assimilation 

(Amax) and dark respiration (Ao) were calculated using the model described in methods section 

4.3.6.1 (Table 6.4).  

 

Overall there was no effect of shade on AQE (p=0.669). There was a significant difference between 

varieties (p<0.001), as Malacca NILs had a lower AQE that the other two varieties, but no effect of 

Iw1 (p=0.254), nor any significant interaction between shade and Iw1. Pairwise comparison showed 

that for no NIL was there a significant difference between leaves from control or 60% shade. 

Similarly there was no overall effect of shade on Amax (p=0.090), light compensation point (p=0.992) 

or Ao (p=0.344). Additionally for no parameter was there an interaction between shade and Iw1, 

and pairwise comparison for each individual NIL showed no effect of shade on any parameter. In 

conclusion these data indicate that in this trial the efficiency of instantaneous carbon assimilation 

at various light levels was not affected by long-term shading, and there was no advantage attributed 

to NILs with Iw1.  

 

 

Table 6. 3 The chlorophyll a/b ratio in flag leaves at anthesis grown under shade and control 
conditions 

Values for Hereward, Alchemy and Malacca NILs. The overall p value for the effect of shade on 

the ratio is shown for each variety. 
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Table 6. 4 Light curve parameters for field grown flag leaves from 60% shade and control 
conditions 

AQE, light compensation point, Amax and Ao for NILs of Hereward, Alchemy and Malacca at 

anthesis from 60% shade and control. P values of pairwise comparison between control 

and shade leaves are shown. N=4. 
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6.4.2.3.3 Chlorophyll fluorescence 
Both dark and light adapted chlorophyll fluorescence parameters provide an indication of PSII 

function, and have been reported to alter in plants exposed to long term shade. Table 6.5 details 

the dark-adapted chlorophyll fluorescence parameters Fo, Fm and Fv/Fm for flag leaves of Hereward, 

Alchemy and Malacca NILs at anthesis grown under 60% shade and control. Overall, Fo was 

significantly reduced under 60% shade compared to control (p<0.001) and this effect can be seen 

in all NILs. There was no statistically significant effect of Iw1 on Fo (p=0.270) nor interaction between 

Iw1 and shade. However, when analysed by pairwise comparison the effect of shade on Fo was only 

significant for Iw1+ NILs of Alchemy and Malacca. There was a significant effect of shade on Fm 

(p<0.001). In every NIL Fm was significantly increased in the shade, but again there was no significant 

effect of Iw1 nor interaction between shade and Iw1. Similarly for Fv/Fm, flag leaves from 60% shade 

had overall significantly higher Fv/Fm than control leaves (p<0.001) and there was no difference 

between leaves with and without Iw1 (p=0.928) and no significant interactions. This chlorophyll 

fluorescence data indicates that flag leaves from the shade have a more efficient PSII, and this effect 

appears to come more from an increase in Fm rather than reduction in Fo. However, the Fv/Fm values 

of control plants were still between 0.804-0.823, which is considered a healthy range indicating no 

severely detrimental effects on PSII.  

 

 

The light adapted chlorophyll fluorescence parameters Fm’ and Fs’ were also measured in flag leaves 

under 60% shade and control conditions. ΦPSII and electron transport rate (ETR) were calculated 

from the data for Hereward, Alchemy and Malacca NILs (Figure 6.10). In Hereward there was a 

significant effect of shade on both ΦPSII (Figure 6.10a) and ETR (Figure 6.10b) at 1500, 1000 and 

750 µmol m-2 s-1 (p<0.001). In both cases control leaves had significantly higher values. However, 

Table 6. 5 Dark adapted chlorophyll fluorescence parameters for shade and control grown 
flag leaves at anthesis 

Fo, Fm and Fv/Fm for flag leaves of Hereward, Alchemy and Malacca NILs grown under control 

and 60% shade conditions. P values for pairwise comparison between control and shade 

leaves are shown. N=40. 
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although Iw1+ leaves tended to have slightly higher ΦPSII and ETR than iw1- within both 

environments, this effect of Iw1 was not significant at any light level. Furthermore the difference 

between NILs did not change significantly according to shade, indicated by the insignificant 

interactions between shade and Iw1. In neither Alchemy nor Malacca was there a significant effect 

of shade or Iw1 on ΦPSII or ETR at any light level. However, Iw1+ NILs in the shade did tend to have 

a (non-significantly) lower value of both ΦPSII and ETR than iw1- NILs grown in the shade and 

control leaves.   
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6.4.2.4 Effects on the cuticle 
In addition to photosynthesis, another component of plant physiology that may change under 

shade conditions is the plant cuticle. Cuticular conductance, epicuticular waxes, stomatal density 

and stomatal conductance were assessed to understand acclimation to shade by the NILs, and any 

interaction between the effect of Iw1 on the cuticle and light availability.  

 

Figure 6. 10 Light adapted chlorophyll fluorescence parameters for flag leaves grown 
under control and 60% shade 

ΦPSII for NILs of (a) Hereward (c) Alchemy and (d) Malacca. ETR under 60% shade and 

control conditions for (b) Hereward, (d) Alchemy, and (f) Malacca. Significance by pairwise 

comparison is indicated at p<0.001 (***). N=4, error bars = S.E. 
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6.4.2.4.1 Cuticular conductance 
Cuticular conductance was assessed in flag leaves of NILs grown under control, 40% shade and 60% 

shade for Alchemy and Malacca NILs (Figure 6.11). Overall the effect of shade on rate of water loss 

was significant (p<0.001), but there was no significant difference between varieties or NILs.  When 

analysed for each individual NIL the effect of shade on AS- (Figure 6.11a) was borderline significant 

(p=0.052), and was significant (P<0.05) for AS+ (Figure 6.11b), MS- (Figure 6.11c) and MS+ (Figure 

6.11d). Although all three varieties showed the same trend, the exact relationship between the 

three environments did differ. Post hoc Tukey testing showed that for AS+ 40% shade leaves had 

significantly faster water loss than both control and 60% shade, for MS- 60% shade significantly 

differed from the other two environments, and for MS+ 40% and 60% shade were significantly 

different from one another, but neither differed from control.  

 

 Figure 6. 11 Cuticular conductance of flag leaves grown under control, 40% shade and 60% 
shade 

Water loss over an 80 minute period for (a) AS- (b) AS+ (c) MS- (d) MS+ for flag leaves from 

control, 30% shade and 60% shade conditions. Regression lines are shown, and the equation of 

each line is displayed in black for control, green for 40% shade and blue for 60% shade. N=5, 

error bars = S.E. 
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6.4.2.4.2 Epicuticular wax 
To understand the effect of changing the light environment on epicuticular wax development and 

composition, flag leaf epicuticular wax biochemistry was analysed at anthesis, around a month after 

shade was introduced. Each compound class is present in the wax in a variety of chain lengths. To 

more clearly present overall trends, the various chain lengths have been grouped together to 

present one value per compound class in Figure 6.12. Detailed data for individual chain lengths are 

available in Appendix A6. Where there was a discrepancy between chain lengths in the response to 

shade within a compound class this has been highlighted in the text.  

 

An overall analysis of total wax load (Figure 6.12a) inclusive of all three light environments and 

varieties indicated that there was no significant difference between NILs with or without Iw1 

(p=0.352), no effect of shading (p=0.763) and no statistical interaction between shade and Iw1. 

Analysis of each individual NIL shows that for no NIL was there a significant difference between the 

three environments in terms of total wax load. Repeating the same analysis for fatty acids (FA), 

primary alcohols (POH), and methylalkylresorcinols (MARs) showed there was no significant effect 

of Iw1 (p>0.1) or shade (p>0.1) on quantity of any of these compound classes and no significant 

interaction between shade and Iw1. This can be seen from the bar charts, whereby there are no 

consistent shade dependent trends across NILs (Figures 6.12 b, d and e). n-Alkanes were 

significantly affected by presence of Iw1 (p=0.002), with Iw1+ NILs consistently having more n-

alkanes in the epicuticular waxes than iw1- NILs (Figure 6.12c). This trend was present across all 

three shade environments, and there was no significant effect of shade on n-alkanes (p=0.511) and 

no statistically significant interaction between Iw1 and shade (p=0.655). Although the three way 

interaction between Iw1, variety and shade was not significant statistically (p=0.697), there do 

appear to be some non-significant variety specific effects on n-alkane quantity. For example, in 

Alchemy the differences in n-alkane quantity between Iw1+ and iw1- NILs in the control 

environment (p=0.096) were greater than the differences between NILs in 40% shade (p=0.425) 

and 60% shade (p=0.786).  

 

β-diketones (β-DK) were the only wax component for which shade had a significant effect 

(p=0.011). In both Malacca and Hereward (Figure 6.12f) β-DK quantity appeared to decrease as light 

levels were reduced, although for neither variety was this effect significant when analysed at the 

variety level (Hereward, p=0.110; Malacca, p=0.383). However, there was a significant statistical 

interaction between shade and variety (p=0.001), as Alchemy iw1- NILs appeared to respond 

slightly differently. The effect of shading on Alchemy was statistically significant (p=0.030), with a 

negative relationship between light level and β-DK quantity (Figure 6.12f). However there was large 

standard error associated with the mean for 40% shade. Two of the samples this mean was based 
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on had a high value for β-DK and two were low. Therefore no data point could be excluded as an 

outlier. Unfortunately more samples were not available for this NIL to check these values.  

 

Epicuticular wax composition was also assessed at 40 DPA which was around 10 days prior to full 

plant senescence. At this point the shading had been erected over the trial for around 2 months. 

Overall at 40 DPA there was a significant effect of shade on total wax load (p=008). This can be seen 

 

Figure 6. 12 Epicuticular wax composition at anthesis for flag leaves grown under 
control and shaded conditions 

Charts showing (a) total wax load calculated from GCMS data (b) Fatty Acids (c) n-alkanes 

(d) primary alcohols (e) MARs and (f) β-diketones. Quantity of all chain lengths of each 

compound class have been grouped to give one overall value for each compound class, 

and then the average of five flag leaves taken. Significance is indicated at the p<0.05(*) 

level. N= 5, error bars = S.E. 
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in Figure 6.13a, where flag leaves from 40% shade plants control tend to have lower wax load than 

those from the control environment or 60% shade (with the exception of Alchemy Iw1+ NILs). 

However, the response to shade did not significantly differ between NILs. There was no significant 

effect of Iw1 on total wax load (p=0.106), and no significant interaction between Iw1 and shade 

(p=0.429). Analysis of total wax load within each individual NIL showed that there was a significant 

effect on total wax load for iw1- NILs of Alchemy (p=0.001), with post hoc testing showing that this 

effect came from 40% shade which was significantly lower than the other two environments. There 

was also a significant effect in Iw1+ NILs of Hereward (p=0.043), with a significant difference 

between 40 and 60% shade. The same pattern was seen in all other NILs, but the effect was not 

significant at this level.  

 

Overall there was a significant effect of shade (p=0.002) and variety (p=0.013) on FA quantity 

(Figure 6.13b). However there was no significant effect of Iw1. Analysis at the level of individual 

NILs indicated that there was an effect of shade on FA quantity in all NILs with the exception of AS+. 

However, the overall trends were less consistent across NILs as with total wax load, although the 

interaction between shade and Iw1 was not significant. In all cases control plants had the highest 

quantity of FAs. Post hoc testing showed that in AS- and HS+ leaves from 40% shade had 

significantly reduced levels in comparison to both control and 60% shade leaves. In HS- and MS- 

there was no significant difference between the two shade environments, but control leaves had 

significantly higher quantities of FAs. Looking at individual FAs the same overall trends were present 

in all NILs for C22, C24 and C28 FAs. However, there was no significant effect of shade on C32 FAs 

(p=0.162). The C32 FAs were present only in very small quantities, so this did not affect the overall 

trends seen in for the combined FA data. 

 

At 40 DPA Iw1 still had a significant effect on n-alkane quantity (p<0.001), with Iw1+ NILs of all 

varieties having greater quantities of n-alkanes than iw1-. However, this effect of Iw1 on n-alkanes 

was not dependant on light level, with no significant interaction between Iw1 and shade. 

Independent of Iw1, shade did have a significant effect on quantity of n-alkanes (p<0.001), with a 

positive relationship between light level and n-alkane quantity in most cases. This effect of 

downregulation of in the shade was coming from the C27, C29 and C31 chain lengths, with levels 

of all three reduced in shade leaves compared to those from the control trial.  

 

There was a significant effect of shade on POH quantity (p=0.011), although this effect was quite 

subtle in comparison to FAs and n-alkanes (Figure 6.13d). Across all six NILs leaves from 40% shade 

tended to have less POHs than those grown in control or 60% shade. However when analysed by 

NILs this was only significant for iw1- NILs of Alchemy (p=0.008). Overall Iw1 did not affect POH 
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quantity, nor was there any interaction between Iw1 and shade. Again, the effect of shade was 

significant across all the POH chain lengths and consistent with the combined data. The amounts of 

C24 and C26 alcohols were significantly higher in control leaves compared to 40 and 60% shade, 

whilst C28 and C30 had a significant reduction in 40% but no significant difference between control 

and 60% shade leaves.  

 

There was an overall significant effect of shade on MARs (p=0.001). However, across the NILs the 

direction of this effect was inconsistent (Figure 6.13e). There was a trend in some NILs for quantity 

of MARs to be increased in shade leaves but this was not present in NILs of all varieties, supported 

by a significant interaction between Iw1 and shade (p=0.009). At the compound specific level, as 

with the general data, MARs were less consistent than the other compound classes. For example in 

C19 MARs there was only a borderline significant effect of shade (p=0.045), and no interactions 

with any other factor, whereas in C21 MARs there was a significant effect of shade (p=0.014), 

variety (p<0.001) and Iw1 (p=0.002), and a significant interaction between both shade and variety 

(p=0.01) and shade and Iw1 (p=0.02). Notably MARs are present in very small quantities in 

comparison to the other compound classes present in the epicuticular wax.  

 

Overall there was a significant effect of shade on β-DKs (p=0.003), with a positive relationship 

between light level and β-DK quantity present across all three varieties (Figure 6.13f). Post hoc 

testing showed that overall this effect was coming from the control leaves, which had significantly 

higher quantities of β-DKs than leaves from either shade environment (Tukey). Overall there was 

no significant interaction between shade and variety (p=0.968), although analysis at the variety 

level showed that the effect of shade was only significant for Hereward (p=0.001) with control being 

significantly different from the other two.  
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In conclusion, although there appears to be no consistent effect of shade on the epicuticular waxes 

at anthesis, at 40 DPA two general trends are clear from the epicuticular waxes. For some 

compound classes there was a positive relationship between light level and quantity, whilst for 

others, including total wax load, leaves from 40% shade had reduced quantity of epicuticular wax 

compounds in comparison to leaves from the control and 60% shade groups. However, the effect 

of Iw1 on the epicuticular waxes did not change across the three shade environments.  

 

 

Figure 6. 13 Epicuticular wax composition at 40 DPA for flag leaves grown under shade 
and controlled conditions 

Charts showing (a) total wax load calculated from GCMS data (b) Fatty Acids (c) n-

alkanes (d) primary alcohols (e) MARs and (f) β-diketones. Quantity of all chain lengths of 

each compound class have been grouped to give one overall value for each compound 

class, and then the average of five flag leaves taken. A significant effect of shade for each 

NIL is indicated at level p<0.05 (*), p<0.01 (**), p<0.001 (***). N= 5, error bars = S.E. 
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6.4.2.4.3 Stomatal density 
Stomatal density was measured for flag leaves from both shade and control conditions (Figure 

6.14). 

 

 

 

 Figure 6. 14 Flag leaf stomatal density for NILs grown under controlled and shade conditions 

NILs of Hereward on the (a) adaxial and (b) abaxial surface, Alchemy on the (c) adaxial and (d) 

abaxial surface and Malacca on the (e) adaxial and (f) abaxial surface. Significance between 

NILs by pairwise comparison is indicated on the chart p<0.05 (*). N=3, error bars = S.E.   
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An overall analysis inclusive of all three varieties and shade environments indicated that there was 

no significant effect of Iw1 (p=.162) or shade (p=0.269) on stomatal density of the adaxial surface 

(Figure 6.14a, c and e). On the abaxial surface (Figure 6.14b, d, f), although there was no significant 

effect of shade on stomatal density (p=0.372), there was a significant effect of Iw1 (p=0.012), a 

significant interaction between Iw1 and shade (p=0.001), and borderline significant interaction 

between Iw1, shade and variety (p=0.056).Further analysis at the variety level shows these 

interactions in more detail.  

 

On the abaxial surface of Hereward (Figure 6.14b) although shade had no significant effect on 

stomatal density overall (p=0.696), there was a significant interaction between shade and Iw1 

(p<0.001). Under both control and 60% shade conditions Iw1+ flag leaves had significantly 

increased stomatal density (p<0.05), whilst this effect was reversed under 40% shade. In Alchemy 

(Figure 6.14d) under 40% shade iw1- flag leaves also had significantly higher stomatal density on 

the abaxial surface (p<0.05), although unlike Hereward this effect was also present, but not 

significant, under control conditions. In Malacca there was no effect of shade on stomatal density 

on either the adaxial (Figure 6.14e) or abaxial (Figure 6.14f) surface.  

 

6.4.2.4.4 Stomatal conductance 
In addition to stomatal density, stomatal conductance at varying levels of PAR between 0 and 1500 

µmol m-2 s-1 was recorded to investigate stomatal function under optimum conditions. Figure 6.15 

shows stomatal conductance in relation to carbon assimilation across this range of PAR. Across NILs 

of the three varieties there was no consistent or significant effect of Iw1 or shade on stomatal 

conductance in relation to carbon assimilation. These measurements were taken in a leaf chamber 

under optimum conditions, so indicate no change in stomatal function or development between 

shade environments.  

 

This data, together with information on stomatal density, indicates that the change in 

environmental conditions had no consistent effect on stomatal development and function across 

varieties, and there was no significant difference in the response of NILs with and without Iw1.  
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Figure 6. 15 Stomatal conductance relative to carbon assimilation at various levels of PAR 
for flag leaves grown under control and 60% shade 

Charts show (a) Hereward, (b) Alchemy and (c) Malacca. For no variety was there a 

significant effect of shade or Iw1 on the ratio of stomatal conductance to carbon 

assimilation at any level of PAR measured. N=4, error bars = S.E. 
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6.4.2.5 Water use efficiency 
Photosynthesis and properties of the cuticle can change in a plant acclimated to lower light levels. 

Both of these factors can affect WUE. WUE will also be affected by temperature and RH, both of 

which were altered under the varying levels of shade. Overall WUE of NILs in the shade trial was 

assessed through measurement of instantaneous gas exchange at anthesis for flag leaves 

Hereward, Alchemy and Malacca NILs from control and 60% shade (Figure 6.16). Carbon isotope 

discrimination (Δ13C) of flag leaves at anthesis and 40 DPA was also measured for NILs of the three 

varieties under control, 40% shade and 60% shade (Figure 6.17).  These data provide an integrated 

measure of water use across the growing season.  

 

 

 

Figure 6. 16 Instantaneous water use efficiency for flag leaves grown under control and 
60% shade 

NILs of (a) Hereward, (b) Alchemy and (c) Malacca at anthesis from control and 60% shade. 

WUE was calculated from carbon assimilation and transpiration data measured at levels of 

PAR between 0 and 1500 µmol. There was no significant effect of shade or Iw1 for any 

variety. N=4, error bars = S.E. 
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The instantaneous WUE in the field calculated from gas exchange measurements of transpiration 

and assimilation indicated that for no variety was there a significant effect of either shade or Iw1 

on WUE at anthesis (Figure 6.16). Additionally there was no consistent trend across the three 

varieties. For example, in Alchemy (Figure 6.16b) Iw1+ NILs within the 60% shade appear to have 

higher WUE than iw1- under shade and both NILs in the control environment, whereas in Hereward 

 Figure 6. 17 Carbon isotope discrimination of flag leaf tissue grown under control and 
shade conditions 

Hereward NILs at (a) anthesis and (b) 40 DPA, Alchemy NILs at (c) anthesis and (d) 40 DPA 

and Malacca NILs at (e) anthesis and (f) 40 DPA. P values show the difference between 

the three shade environments for each NIL. N=3, error bars = S.E. 
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(Figure 6.16c) iw1- NILs under 60% shade tended to have the lowest WUE. However, the Δ13C data 

(Figure 6.17), which integrates the plant’s WUE over the entire growing season provides a slightly 

different conclusion.  

 

Overall at anthesis (Figure 6.17a, c and e) there was no significant effect of shade on Δ13C (p=0.138). 

Neither was there a significant difference between NILs (p=0.924), or varieties (p=0.325). At 40 DPA 

however, the effect of shade was significant (p<0.001), with an overall positive relationship 

between Δ13C and light availability. Post hoc testing (Tukey) showed that there was an overall trend 

for leaves grown under control conditions to have a significantly higher Δ13C than leaves grown 

under 40% and 60% shade, whilst there was no significant difference between the two shade 

environments. This indicates that plants grown in the shade were more WUE than those from the 

control environment; shade leaves were losing less water for every mole of carbon that they 

assimilated. There was no effect of Iw1 overall (p=0.402), nor a significant difference between NILs 

in any of the three environments (control, 40% shade or 60% shade) confirming previous findings 

that Iw1 does not affect plant WUE (Chapter 5).  

 

6.4.2.6 Field trial in 2015 
This shade trial, with the same experimental design, was repeated in the 2015 harvest year. Yield 

and cuticular conductance were both measured. However, there were some technical issues with 

the netting during the trial, which could be seen from the RH and temperature data from 2015; 

there were periods of time whereby there was no difference between the shade blocks and control 

for these parameters. However, because it was not possible to measure incoming PAR across the 

growing season in the three blocks, the light conditions that the plants were experiencing during 

this time were not certain. Therefore data have not been included for interpretation within this 

chapter. However, although less significant, decreases in yield were observed between the three 

blocks (yield was reduced by around 15% within the 40% shade block and by around 30% under 

60% shade) and there was still no difference between the responses of Iw1 NILs of any variety. 

Cuticular conductance was also measured. Whilst a trend similar to 2014 was seen in Malacca and 

Alchemy, the differences between the three environments were heavily reduced and not 

significant. Hereward NILs were also measured in 2015 and no difference in cuticular conductance 

between the three blocks was recorded.  
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6.5 Discussion 
 

6.5.1 Glaucousness conferred by β- and OH-β-diketones did not provide protection 
from high light levels 
No difference was found between Iw1+ and iw1- flag leaves of any variety in terms of ability to 

withstand a three hour period of high light stress. This indicates that epicuticular waxes with 

increased reflectance caused by presence of β- and OH-β-diketones provide no added protection 

from excessive PAR. Furthermore, there was no difference between NILs in terms of their ability to 

recover from high light stress. This lack of photoprotection provided by the glaucous epicuticular 

waxes could be explained by the integrating sphere work carried out in Chapter 4. The total PAR 

absorbed by single flag leaves did not differ between Iw1+ and iw1- leaves, despite an increase in 

reflectance of 15-40% associated with glaucousness. Total PAR absorption should be investigated 

in other species where increased reflectance has been associated with glaucousness (Close et al., 

2007; Holmes & Keiller, 2002; Johnson et al., 1983), as this could differ depending on epicuticular 

wax biochemistry. For example, the major difference between Iw1+ and iw1- NILs is the presence 

of β- and OH-β-diketones. Any other differences between NILs in terms of epicuticular wax load 

and biochemistry are limited. It could be that significant increases in wax quantity, or upregulation 

of different compound classes within the wax, could provide more protection from high light. Other 

forms of glaucousness, such as that of sorghum or maize where visual wax appearance is 

determined by biochemical changes other than β- and OH-β-diketones could confer more 

photoprotective properties (Beattie & Marcell, 2002; Jenks et al., 2000).  

 

Alternatively, the lack of difference between Iw1 NILs found in the present work could be a function 

of the methodology. The use of detached leaves to investigate characteristics such as resilience to 

high light stress offers a simple, practical approach that can be carried out with minimal space and 

resources. The methods employed here have been used in numerous previous studies to 

investigate photoinhibition in winter wheat and other species (Chen et al., 2011; Gould et al., 2010; 

Li et al., 2010; Wang et al., 2000; Yang et al., 2006). However, the use of detached leaves may result 

in very different responses to stress than those that might occur with intact plants in the field. 

Sharma et al., (2014) used 41 spring wheat cultivars known to differ in heat tolerance to test the 

difference in response of detached and intact flag leaves to heat stress. Using detached leaves 

significant differences in heat tolerance were found between cultivars, and response of each 

particular cultivar was consistent across two separate experiments. However, when the same 

experiment was carried out using intact plants results were different. Cultivar response did not 

correlate with the results in detached leaves. This work suggests that the genetic and physiological 

processes that determine severity of stress response are different in leaves that have been 
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detached from the plant and those that are still intact. Furthermore, varieties selected for their 

tolerance to a stress using a detached leaf method may not be the most stress tolerant in the field.  

 

An additional issue with the use of detached leaves is that many responses to environmental 

stresses require feedback mechanisms from within the plant over the long term. For example plants 

transferred into a high light environment have been shown to develop thicker leaves, curled leaf 

edges, higher mesophyll and epidermal thickness, alter their concentrations of chlorophyll and 

photo protective carotenoids as well as develop differences in their light saturated photosynthesis 

(Bailey et al., 2001; Sims & Pearcy, 1992). The ability to acclimate in this way cannot be assessed 

using detached leaves. The same is true for avoidance mechanisms employed by plants such as 

changes to leaf angle (Bonos & Murphy, 1999). This raises the possibility that over a longer period 

of exposure to high light stress acclimation, and productivity could differ between NILs.  

 

In the present work it was not possible to investigate intact plant response to high light stress in 

the Iw1 NILs. Although there was no difference between flag leaves in terms of PAR absorbed, the 

effect in the field could be different. Glaucous iw1- canopies in the field reflected 12-20% more PAR 

than their non-glaucous counterparts (Chapter 4). Light dynamics within the canopy can be very 

different from the spectral properties of single leaves. Therefore increased reflectance could offer 

greater protection to the population in the field. A time course experiment to assess chlorophyll 

fluorescence parameters throughout the day could assess any difference between the NILs in terms 

of their mid-day depression of photosynthesis and subsequent recovery. This work would need to 

be carried out in an environment where light levels at noon are consistently above 1500 µmol m-2 

s-1 for an extended period of time to fully understand response to high light levels. In the UK, 

although these conditions do occur, weather can be unpredictable and it would be difficult to do 

such an experiment over an extended period of time.  

 

One component of high light stress not investigated in this PhD was the effect of glaucousness on 

response to UV. It was not possible to measure leaf reflectance and transmission within the UV 

spectrum, and the HPS light used in the high light experiment does not emit light at UV wavelengths. 

Work by Holmes & Keiller (2002) suggests that glaucousness significantly increases reflectance of 

light at UV wavelengths (measured at 330 nm). Whilst exposure to excessive UV can be highly 

damaging to plant tissue resulting in impaired growth and photosynthesis (Caldwell et al., 1989), 

more recent work has found that continuous exposure to moderate UV-B does not damage the 

plant tissue, but could provide a photoprotective advantage. Many leaf adaptations to UV including 

increased leaf thickness (Bornman & Vogelmann, 1991) also provide protection under high levels 

of PAR (Wargent & Jordan, 2013). Under field conditions, where levels are PAR are more likely to 
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be damaging than UV, plants have had slightly greater UV exposure could be at an advantage. 

Whether or not glaucous Iw1 NILs display increased UV reflectance, and the effect of this on plant 

physiology, should be investigated in the future.  

 

6.5.2 Non-glaucousness conferred no advantage under low level irradiance 
The second part of this work focussed on the response of Iw1 NILs to long term reductions in solar 

irradiation. Grain yield provides an overall assessment of plant productivity over the course of the 

growing season. In general, across all six lines, yield was reduced by around 30% and 50% compared 

to control under 40% and 60% shade respectively. This is quite a substantial yield loss, but does 

suggest some acclimation to the new conditions to compensate for reduced light availability. 

Reductions in shade of this severity over a long term period have not been widely studied in the 

literature. However, a short term study assessed grain yield parameters when plants were subject 

to 50% shade between GS32 and GS55 (heading). Shading reduced the number of grains by 55%, 

number of spikes by 45%, and number of grains per spike by 30% (Slafer et al., 1994). These yield 

losses are more severe than in the present long term study, suggesting limited acclimation of the 

plants to this short term shade. More comparable to the present work, a study in China reduced 

incoming light from one month prior to anthesis until maturity in winter wheat by 33%. In the two 

wheat cultivars studied, Yangmai 158 and Yangmai 11, yield was reduced by 18 and 25% 

respectively (Mu et al., 2010). The proportionate difference between percentage yield loss and 

percentage light reduction is comparable to that of the Iw1 NILs.   

 

Although all three varieties of wheat assessed in this study demonstrated a significant decline in 

yield on application of shade, for no variety was there a significant difference between NILs in terms 

of the response to low level light. This indicates that the non-glaucous phenotype did not provide 

an advantage under low level irradiance. For Hereward and Alchemy there did seem to be a small, 

consistent effect, whereby the difference in yield between Iw1+ and iw1- NILs was reduced under 

40% shade compared to control and 60% shade; under 40% shade any yield benefit of the Iw1 

introgression was lost. The yield benefit in non-glaucous NILs of Hereward and Alchemy is likely 

coming not from Iw1 itself but from a closely linked gene (Chapter 3). This loss of yield benefit does 

not correlate with light availability, so could be a function of environmental conditions other than 

light. The 40% shade environment was potentially the least stressful, with intermediate levels of 

light, temperature and RH. It could be that the gene(s) responsible for the yield advantage offer no 

benefit under this specific combination of conditions. Alternatively, application of 60% shade in the 

present study could mask any subtle differences in response between the Iw1 NILs. For example, 

further work in China with Yangmai 158 and 11 indicates that these cultivars were able to more 

effectively acclimate to lower levels of shading, with yield losses of only 7-10% associated with a 
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22-23% reduction of incoming light, and only a 2.3% loss of yield with 15% shade (Li et al., 2010; 

Mu et al., 2010).  

 

6.5.3 There was no change in any photosynthetic parameter under shade conditions 
When exposed to a change in prevailing light conditions plants respond over both the short and 

long term with a number of mechanisms.  For example, leaf angle can change immediately, 

increasing the angle of incidence under low light thus decreasing the light reflected from the leaf 

allowing more light to be absorbed (Mc Millen & Mc Clendon, 1979; Raven, 1994). Chloroplast 

position in the leaf can also change over a short time-scale, moving towards the periclinal walls 

under low light to maximise light absorbance (Kasahara et al., 2002). Acclimation over a longer 

term can also take place to maximise the light available to photosynthesis. Leaves exposed to long 

term shade can be thinner than sun leaves, resulting in more efficient light absorption by 

chloroplasts (Lichtenthaler et al., 2007; Terashima et al., 2001). In addition shade leaves have 

been reported to have a lower chlorophyll a/b ratio (Lichtenthaler et al., 2007; Valladares & 

Niinemets, 2008), exhibit higher amounts of photosynthetic enzymes and changes to the electron 

transport rate ( Murchie & Niyogi, 2011; Valladares & Niinemets, 2008). Other characteristics of 

shade leaf photosynthesis include a lower light compensation point and dark respiration rate, and 

a higher quantum yield (Valladares & Niinemets, 2008). All of these adaptations allow shade 

plants to use limited light more efficiently and maximise productivity.  

 

In the Iw1 NILs neither chlorophyll content nor the chlorophyll a/b ratio was altered under shade 

conditions compared to control, or was there a difference in the response of NILs with or without 

Iw1. Other studies in wheat that applied shading to the crop for a comparable amount of time did 

observe changes in pigment content. For example, significant increases in chlorophyll a and b 

were found by Mu et al., (2010) after long term shading of 22% and 33% and by Li et al., (2010) 

under shading as low as 8%. Zheng et al., (2011) studied more severe shading comparable to the 

present work. In their study Chinese winter wheat of the variety Yangmai 13 was subject to 60% 

shade and 40% shade. These plants exhibited increases of 30-37% in concentration of both 

chlorophyll a and b in the flag leaf at anthesis, and a decrease in the chlorophyll a/b ratio from 

3.41 under control conditions, to 3.16 under 60% shade and 2.92 under 80% shade. Interestingly, 

the Iw1 NILs in the present work had a chlorophyll a/b ratio of around 2.62 – 2.85 under both 

shade and control conditions, which is lower than the value under 80% shade in the Chinese 

germplasm.  

 



172 
 

No significant change in Amax was found in the Iw1 NILs under shade conditions, although Alchemy 

did display a non- significant decrease in Amax of around 2 µmol m-2 s-1 under 60% shade in both 

Iw1+ and iw1- NILs. This was a parameter also measured by Zheng et al., (2011), who had Amax 

values of around 25 µmol m-2 s-1 under controlled conditions at anthesis comparable to that of the 

Iw1 NILs if not slightly lower. However, under 60% shade this declined significantly by 5 µmol m-2 s-

1. The work of Mu et al., (2010) also found significant changes to Amax at anthesis under less severe 

shade conditions. Under 33% shade a reduction of 3 µmol m-2 s-1 was reported in a shade tolerant 

wheat cultivar, whilst Amax of the less tolerant cultivar reduced by twice as much.  

 

It appears that the Iw1 NILs have not acclimated their photosynthesis to the reduced light levels. It 

is possible that shading was applied too late in development for plants to acclimate by anthesis. 

However, measurements in this work were carried out on the flag leaf, which had not yet emerged 

when shade was applied. Therefore the flag leaf developed fully under reduced light conditions. 

Furthermore, the three Chinese studies described above all applied shade around one month prior 

to anthesis, which is comparable to the time scale used in the present work. The discrepancy 

between the result of the Chinese studies and the Iw1 NILs could be due to germplasm; all of the 

studies listed were carried out in Chinese varieties. These varieties may be better able to adapt to 

new conditions. Alternatively the UK varieties used in the present work could already be adapted 

for growth under low light levels, as exemplified by the low chlorophyll a/b ratio. The result of this 

may be that there is limited room for further acclimation.   

 

One parameter that did change according to shade (although not according to presence of Iw1) was 

dark adapted chlorophyll fluorescence. Fv/Fm was significantly increased in flag leaves from 60% 

shade compared to control conditions. This appears to stem more from an increase in Fm rather 

than a decrease in Fo. These data indicate that plants from the control plots had slightly reduced 

function of their PSII compared to shade leaves, likely due to photoinhibition from high light. 

Supporting this conclusion, levels of carotenoids were found to be positively correlated with light 

availability. These pigments are associated with protection against oxidative processes under high 

light, and can dissipate excess light energy (Bartley & Scolnik, 1995; Young, 1991), indicating more 

light stress within the control plots. However, differences between control and 60% shade leaves 

both in terms of carotenoids and Fv/Fm were subtle and do not indicate severe photoinhibition in 

the control plot. These changes in Fv/Fm are consistent with results previously reported in long term 

shade trials with wheat (Li et al., 2010; Zheng et al., 2011).  

 

Although neither Alchemy nor Malacca NILs displayed any change in ETR or ΦPSII under shade, 

both Iw1+ and iw1- NILs of Hereward demonstrated a significant decline in both ETR and ΦPSII 
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under 60% shade, an effect that has also been reported by Zheng et al., (2011). This decline in light 

adapted fluorescence parameters corresponding with an increase in dark adapted Fv/Fm could 

indicate that although PSII has a higher potential activity in the shade, more of the excited energy 

may be dissipated in non-photochemical processes (Roháĉek, 2002). This could have been further 

explored had it been possible to calculate non-photochemical quenching (NPQ) in the Iw1 

germplasm. 

 

In general there was no difference in the response of NILs with and without Iw1 in terms of change 

in parameters related to photosynthesis, but there was potentially a small effect in terms of 

chlorophyll content. Iw1+ NILs had significantly lower levels of chlorophyll a under control 

conditions than iw1- (Chapter4). This effect appeared to be amplified under 40% shade in Hereward 

and Alchemy, indicating that under 40% shade iw1- NILs had to further increase levels of chlorophyll 

a and were at greater disadvantage. However, the effect was not significant statistically and was 

not present in Malacca NILs. Conclusions drawn from this would be opposing to the yield data, 

whereby the any advantage conferred by Iw1 tended to be reduced under 40% shade.  

 

6.5.4 Total wax load was reduced under shade conditions 
Many studies have shown that sun leaves have higher quantities of epicuticular wax than shade 

leaves of the same species (Osborn & Taylor, 1990; Pandey & Nagar, 2002; Sousa Paiva et al., 2003). 

Analysis of epicuticular wax load of flag leaves at 40 DPA confirms that this is the case in the Iw1 

NILs. In general, flag leaves grown under control conditions had a higher wax load and higher 

quantity of individual wax components than leaves grown in the shade. However, this may not be 

an effect solely of the change in light level. In this field trial, as level of shade was increased, 

temperature decreased and RH increased. Separating out the effects of these three factors in the 

field is often difficult as they rarely occur in isolation. For example, in wheat and barley, epicuticular 

wax load has been shown to increase under drought stress (González & Ayerbe, 2010; Haley et al., 

1993), but these studies were carried out in the field where an increase in temperature often 

accompanies terminal drought. However, studies in glasshouse grown plants have shown that 

epicuticular wax load does increase in wheat (Uddin & Marshall, 1988) and sorghum 

(Premachandra et al., 1994) when temperature is held constant and plants are exposed to water 

stress. Furthermore, a study in Brassica oleracea found epicuticular wax load to be negatively 

related with RH when all plants were kept at 21 ⁰C. Interestingly, in this study when RH was held 

constant and temperature was varied between 15 and 35 ⁰C, there appeared to be a negative 

relationship between temperature and epicuticular wax load (E. A. Baker, 1974). It is likely that the 

reduced wax load under shade conditions recorded in the Iw1 NILs is a combination of both lower 

light levels and higher RH compared to control conditions. Notably, in some instances, wax load, 

and quantity of wax components is lowest under 40% shade, rather than 60% shade. This is possibly 
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because 40% shade presents the least stressful of the three environments and plants down-

regulate wax production accordingly.  Notably for no wax component (excluding β-diketones) was 

there a significant difference in the response to shade of Iw1+ and iw1- NILs of any variety. From 

this it can be concluded that in no environment were the Iw1+ (or iw1-) NILs at an advantage, and 

both glaucous and non-glaucous plants were experiencing equal levels of abiotic stress.  

 

Despite these marked differences in epicuticular wax load at 40 DPA, there were no significant 

differences between the three environments at anthesis (GS61-69). It is possible that plants had 

not had time to acclimate to the new conditions at this stage. However, epicuticular wax synthesis 

is a dynamic process, and at this sampling point shading had been in place for around a month. A 

study in Prunus laurocerasus found that waxes had re-appeared on the plant only 2 days after 

complete removal of the epicuticular waxes, and normal wax development had resumed within 5 

days (Jetter & Schäffer, 2001). This ability to regenerate and adapt the epicuticular waxes does 

seem to be heavily dependent on species and developmental stage (Neinhuis et al., 2001). For 

example, a study on 16 species found that in leaves where epicuticular waxes were well established 

and no longer developing, wax removal only resulted in  re-generation in 6 of the 16 species, 

whereas in developing leaves 13 out of 16 species exhibited wax regeneration, some starting to 

synthesise new waxes immediately after wax removal (Koch et al., 2009). A time-course experiment 

in Iw1 NILs of Malacca and Alchemy indicated that epicuticular wax composition was dynamic 

throughout plant development (Adamski et al., 2013). Furthermore, the flag leaf had not yet 

emerged at the point when shading was applied, so the leaf and its waxes would have fully 

developed under shade conditions. From this I conclude that either the signals determining flag leaf 

epicuticular wax were already in place prior to shading and could not be altered, or altering the 

epicuticular wax composition would not have been beneficial to plant function at this stage.  

 

6.5.5 Iw1+ NILs had significantly higher cuticular conductance under 40% shade 
Although there was no change in epicuticular waxes at anthesis, there did appear to be some effect 

of shade on cuticular conductance at this point, and a difference in response between NILs. Leaves 

from 40% shade had significantly faster rates of water loss through the cuticle than those from 60% 

shade or control. These measurements were taken in the laboratory using excised leaves, indicating 

an effect from some morphological change in the leaves themselves rather than altered 

evaporative demand. Although no consistent differences were found at anthesis in terms of total 

wax load or other wax component, epicuticular wax is not the only cuticular component sensitive 

to environmental changes. For example, increases in leaf thickness have frequently been reported 

under high light, including increased deposition of all cuticular components (Osborn & Taylor, 1990; 

Sousa Paiva et al., 2003). Leaf thickness has also been reported to increase under low humidity 

(Torre et al., 2003; Wright & Westoby, 2002) and high temperatures (Djanaguiraman et al., 2011). 
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Neither leaf nor cuticle thickness were measured in the present study, and could have resulted in 

changes to cuticular conductance. For example leaves of Baroness roses (Rosa x hybrid) grown in 

90% humidity had a poorly developed epidermis, more intercellular airspaces, and less palisade and 

spongy mesophyll parenchyma cells than plants grown under 70% humidity. This lead to 

significantly higher rates of water loss after being detached from the plant (Torre et al., 2003). 

However, in the Iw1 NILs, flag leaves with the fastest rate of water loss were recorded in the 

intermediate environment. This suggests a complex interaction between light, humidity and 

temperature. This is something that should be investigated under controlled conditions to 

understand precisely where the effect is coming from.  

 

6.5.6 Stomatal function was not affected in either Iw1+ or iw1- NILs 
Stomatal density is heavily influenced by environmental factors. Studies in a number of species 

have found stomatal density to be significantly reduced in shade leaves compared to sun leaves 

(Gay & Hurd, 1975; Poole et al., 1996), and a negative relationship between stomatal density and 

temperature (Beerling & Chaloner, 1993; Ciha & Brun, 1975; Luomala et al., 2005) as well as 

humidity (Torre et al., 2003). However, in the present work stomatal density was not significantly 

affected by the change in environmental conditions, and there was no consistent difference in 

response between Iw1+ and iw1- NILs indicating no interaction between these environmental 

conditions and the action of Iw1 on stomatal development. Other parameters known to be 

important in stomatal function such as patterning and anatomy (Lawson & Blatt, 2014) were not 

assessed in the present trial. However, instantaneous measurement of stomatal conductance 

under optimal conditions across various levels of PAR found no consistent difference between 

leaves from control and 60% shade conditions. This indicated no change in stomatal function under 

the shade.  

 

6.5.7 Water use efficiency was negatively related to light availability 
Overall at anthesis, instantaneous gas exchange measurement of transpiration indicated no 

difference between shade environments, and combined with the carbon assimilation data no 

difference in WUE was found between shade environments. Additionally there was no effect of Iw1 

on WUE in any environment. However, conclusions drawn from the carbon isotope discrimination 

data are slightly different. At anthesis there is no difference in flag leaf Δ13C between the three 

environments which indicates no difference in WUE. However, at 40 DPA WUE appears to be 

negatively related to light availability.  Under the shade, plants were exposed to lower 

temperatures and higher relative humidity than control. These conditions are conducive to low 

evapotranspiration. A reduction in evapotranspiration less than the corresponding reduction to 

photosynthesis under low light conditions would increase WUE. The discrepancy between the 

conclusions drawn from the Δ13C at anthesis compared to 40 DPA could be due to the nature of 
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these data. Δ13C is an integrated measure of plant activity over a period of time. At anthesis the 

plant had only been photosynthesising and transpiring under the shade for one month. At 40 DPA, 

over a month later, changes to the C12/C13 ratio would have had more time to accumulate within 

the plant tissue.  

 

6.5.8 Conclusions 
In the low level irradiance trial, plants grown in the shade under low level irradiance did down-

regulate quantity of epicuticular waxes. Although this was likely to be an effect not only of light, 

this result does indicate that epicuticular wax may play a role in protection from high light levels. 

However, in the water bath experiment there was no difference between the Iw1+ and iw1- NILs 

of any variety in terms of their response to high light. This suggests that although β- and OH-β-

diketones increase PAR reflection of the epicuticular waxes, this does not alter the plant interaction 

with the environment in terms of PAR made available to the photosynthetic tissues.  

 

Irrespective of Iw1, the germplasm used in this study appeared to compensate to some extent to 

the long term shade conditions, demonstrated by losses of yield under low light proportionately 

smaller than the levels of shading applied. However none of the physiological parameters measured 

were significantly altered in the shade environments compared to control. This indicates that other 

factors not measured may have been changing under the shade conditions to compensate for the 

reduced light. Additionally, yield losses could have been further reduced had these parameters 

acclimated to the shade conditions. Moving forwards it could be beneficial to identify UK wheat 

germplasm that can better acclimate to reduced light.  

 

A recurring theme throughout the long term shade study was for the 40% shade environment to 

differ from both control and 60% shade both in terms of overall trends and, in some cases, 

interactions between Iw1+ and iw1- NILs. Each of the three environments assessed within this study 

had a unique set of environmental conditions and any changes in physiology could not be attributed 

to any one parameter. The 40% shade environment could be considered the least stressful of the 

three environments, with lower temperatures and higher humidity than control, but higher light 

levels than 60% shade. It is possible that this unique set of conditions set it apart from control and 

60% shade. Alternatively, 60% shade could have been so severe that any minor differences in 

acclimation between NILs were masked. Further investigation of more low level shading in the 

range of 10- 50% shade could provide more insight into the ability of UK germplasm to adapt to 

lower light levels, and any differences between the glaucous and non-glaucous phenotype.   

 

This work has opened up a number of avenues for further exploration, and as only one year of data 

was available could be treated as a preliminary study to more in depth work. Further field trials 
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using UK germplasm in addition to experimentation under controlled conditions whereby the 

effects of light, temperature and RH can be distinguished would provide more insight.  
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Chapter 7: Conclusions and synthesis 
 

There is currently limited variation in domesticated wheat germplasm for epicuticular wax type, 

with the majority of cultivated varieties displaying a glaucous, visible wax, phenotype. However, 

our understanding of the effect of glaucousness on the physiology of wheat and other cereal crops 

is based mainly on research carried out within a Mediterranean climate. This could therefore be of 

limited relevance for other environments. To contribute towards this gap in the scientific literature, 

this PhD aimed to answer the question: Does non-glaucousness, as conferred by Iw1, provide an 

advantage for yield and physiology of UK wheat?  

 
This chapter will summarise the key findings of the PhD in relation to this overall aim, and identify 

any specific areas in which the research should be taken forward. Limitations to the research, and 

suggestions for how these issues might be overcome in future studies will then be explored. Finally, 

I consider the key lessons learnt during the PhD process in regards to the study of crop physiology, 

and provide some suggestions as to how these could be addressed in the future.  

 

7.1 Key findings and future directions 
 

7.1.1 Non-glaucousness conferred by Iw1 offered no yield advantage 
The majority of existing literature suggests that the glaucous phenotype confers a yield benefit 

under drought (Clarke & McCaig, 1982; Febrero et al., 1998; Jefferson et al., 1989; Johnson et al., 

1983; Merah et al., 2000; Premachandra et al., 1994; Richards et al., 1986), whilst non-glaucousness 

may offer an advantage under optimum conditions (Merah et al., 2000; Simmonds et al., 2008). 

However, during this PhD project the non-glaucous phenotype (Iw1) was found to offer no yield 

advantage in UK field trials. Yield is a complex and variable trait. The outcomes of this PhD, and 

their opposition to existing literature, highlight the importance of studying yield over multiple years 

and locations in a number of genetic backgrounds prior to drawing conclusions.  

 
Although no yield benefit was associated with Iw1 itself, this work found that one or a number of 

genes within the introgressed region on chromosome 2BS might confer a yield advantage. Two 

of the six varieties tested, Hereward and Alchemy, did show a yield benefit associated with the Iw1 

introgression of around 3% and 5% respectively. Work with the recombinant lines showed that this 

yield effect was most likely coming from a closely linked gene rather than Iw1 itself. Given that 

global wheat yields are currently only increasing by 0.9% per year (Ray et al., 2013), potential yield 

improvements of the magnitude described above would be worth pursuing.  The next steps will be 



179 
 

to identify exactly where this effect is mapping on the chromosome and identify any possible 

candidate genes. Non-glaucous NILs of Hereward had significantly higher light saturated 

photosynthesis of the flag leaf than their glaucous counterparts. Improved photosynthesis of the 

flag leaf has been linked to higher yields in wheat (Fischer et al., 1998; Jiang et al., 2003), suggesting 

a possible mechanism by which yield was improved in the Iw1+ NILs. However, this same effect was 

not recorded in the Alchemy NILs, and further exploration with Hereward recombinant lines did 

not map this effect to the same place as yield. This indicates that yield is being improved via an 

alternative mechanism.  

 

7.1.2 Non-glaucousness as conferred by Iw1 had no effect on water use efficiency 
Components of assimilation and transpiration, in addition to carbon isotope discrimination, were 

measured in order to understand WUE in the field. The conclusion was reached that there was no 

effect of Iw1 and non-glaucousness on WUE confirming previous work in the UK using Iw1 NILs 

(Adamski et al., 2013).  However, this is contrary to previous work carried out in Mediterranean 

environments, where both positive (Richards et al., 1986) and negative (Febrero et al., 1998; Merah 

et al., 2000; Monneveux et al., 2004) effects of glaucousness have been found on water use. In 

addition to environmental conditions, the effect of glaucousness on WUE could be determined by 

the specific biochemical make-up of the epicuticular waxes. This could differ between studies 

depending on the underlying genetics. Therefore, to understand this discrepancy, Iw1 would need 

to be introgressed into various glaucous Mediterranean wheat varieties, and WUE assessed under 

drought stress. This would provide direct comparison with the present work.  

 
Previously, concerns around WUE may have prevented the introgression of traits linked to non-

glaucousness into breeding varieties. However, this work demonstrates that, at least where Iw1 is 

concerned, this should not be factored into decisions regarding UK breeding. For example, the yield 

benefit in Hereward appears to be mapping very closely to Iw1 in a way that the yield and non-

glaucous trait cannot currently be separated by recombination. This region can now be further 

investigated on the understanding that there would be no negative effect on WUE.  

 

7.1.3 Reduced reflectance of non-glaucous epicuticular waxes does not change PAR 
absorbance   
Epicuticular wax morphology determines light scattering from the plant surface, and glaucousness 

has been widely reported to increase PAR reflectance (Febrero et al., 1998; Jefferson et al., 1989; 

Johnson et al., 1983). Adding to this knowledge, this PhD conclusively showed that it is the β-

diketones and OH-β-diketones in the epicuticular waxes that increase PAR reflectance of the flag 
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leaf. Waxes lacking these compounds did not alter flag leaf reflectance. However, this work also 

showed that even though non-glaucous Iw1+ flag leaves reflect less PAR, there was no overall 

increase in PAR absorbance of Iw1+ flag leaves. This conclusion was supported by data that 

showed no effect of glaucousness on flag leaf photosynthesis at varying light levels.  

 
This PhD also showed that Iw1+ NILs had reduced PAR reflectance at the crop canopy level, 

confirming findings of previous studies. However, measurement of light interception at various 

levels in the canopy proved inconclusive. Canopy dynamics can be quite different to the single leaf 

level, so it is possible that the reduced reflectance does change the light available further down the 

canopy. Light interception is an important component of radiation use efficiency, which itself is a 

target for yield improvement. Therefore, this will be an important parameter to measure in the 

future as better technologies become available. Also at the crop canopy level, the increased 

reflectance of glaucous canopies has previously been linked to significantly lower temperatures 

(Jefferson et al., 1989; Richards et al., 1986). However, in the Iw1 NILs there was no effect of 

glaucousness on canopy temperature.  

 

7.1.4 The increased reflectance of glaucous (iw1-) epicuticular waxes offers no 
additional photoprotection from high PAR, nor do they present a disadvantage under 
low light conditions 
To further investigate the difference in spectral properties between NILs, plant response to high 

PAR intensity was measured in the laboratory setting. However, the increased reflectance of 

glaucous iw1- epicuticular waxes offered no added photo-protection from high levels of PAR. This 

could be because there was no difference in total PAR absorbance between NILs. Alternatively this 

could have been due to methodology. It was only possible to do this work in a laboratory setting 

using excised leaves. This may limit the relevance of the conclusions in terms of application in the 

field. Reflectance outside of the PAR spectrum, and response to other forms of radiation, such as 

excessive light in the UV spectrum or infrared was not explored in this PhD. Glaucous epicuticular 

waxes have been shown to increase reflectance outside of the visible light spectrum (Holmes & 

Keiller, 2002), so this could be an avenue for future exploration with respect to the Iw1 NILs.  

 
Although high light intensities could not be investigated over the long term in the field, it was 

possible to study the effect of low-level irradiance on plant physiology. The main conclusion of this 

work was that the reduced reflectance of Iw1+ waxes offered no advantage under low-level 

irradiance. In a more general sense, changes that might be expected in certain physiological 

parameters on exposure to shade, such as increased pigmentation, were not observed in any of the 

three varieties. It is possible that UK germplasm is already adapted to low light levels, and cannot 
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improve further. Alternatively, factors other than those measured such as canopy structure and 

morphology were changing. Experiments of this kind within a UK setting are uncommon, and thus 

it is difficult to draw solid conclusions from this initial set of data. Further experiments of this kind 

will be important to answer these open questions and understand how wheat varieties can best be 

adapted to changing light conditions.  

 
Overall, based on the data presented in this thesis, and the previous literature I have reached the 

conclusion that Iw1 offers no physiological advantage to wheat within the current UK 

environment. This conclusion could perhaps be applied to other agricultural systems with similar 

climatic conditions. However, the UK climate is projected to change over the coming decades. In 

order to future-proof food production we need to understand how these environmental changes 

will manifest and adopt particular sets of traits accordingly.  

 

7.2 Limitations  
Specific limitations associated with the various methodologies employed in this research have been 

discussed within the relevant chapters. However, there were a number of limitations that persisted 

throughout the PhD. Ability to overcome these could have significantly improved progress and 

allowed a more in depth understanding of plant physiology.  

 

7.2.1 Measurement at the canopy level was not always possible 
Lack of equipment to take physiological measurements at the canopy level in the field proved to be 

a major limitation. For example, all gas exchange measurements were taken using an IRGA on single 

leaves. During these measurements, leaves are placed into a chamber and gas exchange measured 

under optimum conditions. However, the activity of the canopy as a whole could be quite different 

to that of single leaves. Therefore an understanding of gas exchange, not just of the flag leaf but 

the entire plant or canopy, would be beneficial. The use of carbon isotopes did provide an 

integrated measure of WUE over a period of time (but again, just in single organs), and 

measurement of yield indicated productivity over the entire growing season. However, within both 

of these surrogate measures, specific components contributing to the end result cannot be 

separated out.  

 
Another aspect of this research where measurement at the canopy level would have been 

beneficial was the work on spectral properties. Although reflectance from the crop canopy was 

successfully measured, measurement of the amount of light penetrating the canopy was less 

conclusive. This is an area that is a challenge for crop physiology in general as the majority of cereal 
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crops are drilled in rows. This makes measurement of light interception difficult due to interference 

from large gaps in the canopy. Progress is being made in this area and new techniques are being 

developed. For example imaging technologies able to measure amount of shadow cast by forest 

canopies could have application in the crop sciences. However there is still progress to be made. 

Light interception is an important component of radiation use efficiency, which itself is a target for 

improving yield potential. Therefore this will be a valuable area to focus resources in the future.  

 

7.2.2 Low-throughput phenotyping  
The amount of data that could be collected during this PhD was limited by the low-throughput 

nature of many of the phenotyping techniques employed. For example the use of an IRGA system 

to take gas exchange measurements allowed only four to five flag leaves per day to be measured 

in the field. Another example was the integrating sphere used to measure leaf spectral properties. 

This took considerable time to take measurements on each leaf.  These labour intensive, time-

consuming processes, place limits on data generation and require careful prioritisation of 

germplasm for phenotyping. For example, I chose to focus on the flag leaf for the majority of 

measurements to gain a comprehensive picture of the physiology of this organ in glaucous and non-

glaucous plants. However, measurement on multiple organs such as the inclusion of the spike and 

leaf sheath would have been more informative and provided a more complete over-view of plant 

physiology. Higher-throughput processes (or more time) would have made this possible.  

 
The availability of instrumentation and techniques for high-throughput phenotyping is becoming 

more widespread. This is an area of research that has rapidly progressed over the past 3 years of 

this PhD project. For example, the use of drones and image analysis are becoming more 

commonplace in field phenotyping. It is now possible to measure components such as 

transpiration, canopy temperature and plant growth over large populations in the field in short 

periods of time. However, although this generates large quantities of data, there can be a trade-off 

with resolution. Although the low-throughput phenotyping methods employed in this PhD did not 

allow assessment of large amounts of plant material, they did provide detailed information on a 

small subset. Ideally both low and high throughput phenotyping techniques would be used in 

parallel in future work to provide both a general overview of the population, and detailed 

information about specific individuals.  

 

7.3 Personal thoughts moving forwards 
The research also highlighted a number of areas in which I think the crop physiology field as a whole 

should treat as priority in the future. A theme running throughout this PhD was the importance of 
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using well-defined germplasm to assess crop physiology. The Iw1 NILs and recombinant lines used 

in this work had a clearly defined introgressed region into chromosome 2BS. The genetics of Iw1 

was understood as far as possible, and the use of molecular markers within the region allowed traits 

to be mapped to specific locations on the chromosome. Furthermore, the effect of Iw1 on 

epicuticular wax biochemistry had been previously studied in depth in a variety of organs at a 

number of developmental stages (Adamski et al., 2013). This genetic and biochemical 

understanding informed the conclusions drawn from the physiology work. This allowed any 

differences between the NILs to be attributed, or not, to Iw1 and the non-glaucous trait. Past work 

regarding the effect of glaucousness on yield and physiology has not always used near isogenic lines 

or characterised the genetics and biochemistry underlying the wax phenotype. This can make 

comparison between studies difficult and does not allow clear understanding of any observed 

difference between glaucous and non-glaucous phenotypes.   

 
Leading on from this, a second lesson learned from this research is the importance of integrating 

genetics and physiology. Without inter-disciplinary research combining these two areas, progress 

will be slower in terms of identifying complex traits that could contribute to yield. This is also vital 

for an understanding of how the benefits conferred by a trait may differ between environments. 

Developments in molecular biology have moved forwards very fast in recent years. For example, 

during the course of this PhD the draft genome for T. aestivum was published (Mayer et al., 2014), 

allowing great progress in genetic marker selection for desirable traits and identification of 

candidate genes. These developments are resulting in very large amounts of genetic data being 

generated about crop plant species. However, it is very important that developments in physiology 

keep pace with this. Identification of novel candidate genes and QTL for yield improvement cannot 

be applied in the field without an accompanying understanding of plant physiology.  

 

Finally, this work demonstrates the importance of studying a trait across multiple environments in 

a variety of germplasm. Taking account of the conclusions from this PhD, and from other studies 

into glaucousness in the literature, the same phenotype can lead to very different effects on yield 

and physiology dependent on environmental conditions. This will become increasingly important 

into the future as the climate changes. To maximise the efficiency of different agricultural systems, 

the cultivars and phenotypes used must be optimised for those particular environmental 

conditions. Knowledge of how a particular trait affects yield over a range of environments would 

aide informed decision making regarding which traits to prioritise during breeding.  For example, 

regions projected to experience greater drought and heat might consider adopting the glaucous 

phenotype in their wheat varieties, whereas those projected to experience temperate conditions 

would not need to consider glaucousness as a priority when choosing germplasm characteristics. 
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Having clear recommendations connecting environmental conditions with a particular set of 

physiological traits would help select germplasm for growing regions both now and in the future. 
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Abbreviations 
 

Δ13C  Carbon isotope discrimination 

Amax   Light saturated assimilation 

A0   Dark respiration point 

AQE   Apparent quantum efficiency 

BC2    Backcross 2 

BC4    Backcross 4 

DH  Doubled haploid 

DNA    Deoxyribonucleic acid 

DPA   Days post anthesis 

ETR  Electron transport rate 

GC-MS  Gas chromatography mass spectrometry 

GS            Growth stage 

IRGA         Infrared gas analyser 

KASPar    Kbioscience competitive allele specific PCR genotyping system 

MAR      Methylalkylresorcinols 

NIL            Near isogenic line 

PAR          Photosynthetically active radiation 

PCR         Polymerase chain reaction 

POH  Primary alcohol 

PSII  Photosystem II 

QTL   Quantitative trait loci 

RH  Relative humidity 

RUE    Radiation use efficiency 

SEM Scanning electron microscope 

WUE  Water use efficiency 
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Appendices 
 

A1 KASPar Markers for genotyping recombinant lines 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNP name FAM primer HEX primer Common primer 

BS00084668 CACCATAGTCGCCCT
CAAATCCT 

ACCATAGTCGCCCTC
AAATCCC 

GCTGAGGCCACTAAACCA
ACATTCAT 

BS00009972 GATGCATATATTTTT
GGCTCTACAGG 

CATGATGCATATATT
TTTGGCTCTACAGA 

GTGCCAGAAATGAGACG
GTTGAAGAT 

BS00070900 AGGATGCGTTGTTTG
CCAACTCTA 

GGATGCGTTGTTTGC
CAACTCTG 

GCCATCCACCACCACCAT
AAGTTA 

BS00010318 GACAAAGTTGGTGGT
AAATTCTCTTAC 

GGACAAAGTTGGTG
GTAAATTCTCTTAT 

GCAAGCATGCCTTCCACC
ACCAA 

BS00045163 CCTCTGCAACGCCGC
CGC 

CCTCTGCAACGCCGC
CGT 

TATGCGGGTCGGCGATGA
CGTT 

BS00010637 AGCCCCCAAGGTACT
CGATC 

AGCCCCCAAGGTACT
CGATT 

CATGAGTGACGATCCAAG
TTTCAAAGATT 

BS00073542 AGGATGCGTTGTTTG
CCAACTCTA 

GGATGCGTTGTTTGC
CAACTCTG 

GCCATCCACCACCACCAT
AAGTTA 

BS00063694 ACTGCAATGATTCTT
GTGCGAGCA 

CTGCAATGATTCTTG
TGCGAGCC 

GATGATGGCATCAACCAT
GGTTTAAACAT 

BS00006788 GTGTATCATTTCCTTT
GTGCGGATTC 

GTGTATCATTTCCTTT
GTGCGGATTT 

GTGCAGTTTCTACTTGAA
GCGACAAATTT 

BS00065040 AAGGTCAGTTCTTGG
TTTGCCTCA 

GGTCAGTTCTTGGTT
TGCCTCC 

AAGCAAAGCGCCAACTGC
AACGTAA 

Bra1190 TGTGGTGTATCATTT
CCTTTGTGT 

TGTGGTGTATCATTT
CCTTTGTGC 

CTTGAAGCGACAgATTTG
AAGAATC 

BS00009848 CACAAAGCGCGACCA
AGATCATC 

CACAAAGCGCGACC
AAGATCATG 

GGCTCGTGCTAAGGCTGC
TGAT 

BS00064156 CGCTGAGATGTTTGT
TTGTTGCAG 

CGCTGAGATGTTTGT
TTGTTGCAC 

CGTTTAGCATACTGCATA
CAGTAGTCATA 

BS00022734 GGAAAAATCGATCTC
ACTGCT 

CTGGAAAAATCGATC
TCACTGCC 

AATGAAGTGGCGCTGTCT
TGAAATAGTTT 

BS00022060 CGCGTCAGCACATCC
TGCG 

CCGCGTCAGCACATC
CTGCA 

GCTGGATGGTGCTCCTGG
AACAA 

BS00064155 ATATTCGTTTAGCAT
ACTGCATACAGC 

CATATTCGTTTAGCA
TACTGCATACAGT 

GCTGAGATGTTTGTTTGTT
GCACCATTAT 

BS00003719 GCAGCAAAGAAGTTA
GCAGAAATATAC 

GCAGCAAAGAAGTT
AGCAGAAATATAG 

GAAGGGCGGTAGAAGAA
GCAAACAT 

BS00076982 AAATAGCGTTAAGAT
GTTTGGAGGAC 

GAAATAGCGTTAAG
ATGTTTGGAGGAT 

CAATATCCGCTATAGCAG
GTCTTTTCATT 

BS00071995 GTATGATCCATGATT
AGCTGGCTTAC 

AGTATGATCCATGAT
TAGCTGGCTTAT 

CAAGTTAGCAATCCCTCT
GGCCTAA 

BS00064156 CGCTGAGATGTTTGT
TTGTTGCAG 

CGCTGAGATGTTTGT
TTGTTGCAC 

CGTTTAGCATACTGCATA
CAGTAGTCATA 
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A2 Hereward recombinant genotypes 
Marker locations with the Shamrock allele are donated by B, and the Hereward allele as A. 

 

A2.1 Hereward recombinants HS1 – HS17 
 

 

A2.2 Hereward recombinants HS18 – HS33 
 

2BS 
Distance 
(cM) 

Marker HS18 HS19 HS20 HS21 HS22 HS23 HS26 HS28 HS30 HS31 HS32 HS33 

0 BS00084668 B A B A B A B A B A B A 

1.15 BS00009972 B A B A B A B A B A B A 

1.77 Iw1 B A B A B A B A B A B A 

10.41 BS00070900 B A B A B B A A B A B A 

10.41 BS00010318 B A B A B B A A B A B A 

12.68 BS00045163 B A B A B B A A B A B A 

17.98 BS00010637 A A B B B B A B A A A B 

17.98 BS00065040 A A B B B B A - A A A B 

17.98 BS00063694 A A B B B B A B A A A B 

18.27 Bra1190 A A B B B B A B A A A B 

19.18 BS00009848 A B B B B B A B A A A B 

44.64 BS00064156 A B B B A B A B A B A - 

45.19 BS00022734 A B B B A B - B A B A - 

45.19 BS00022060 A B B B A B A B A B A B 

45.19 BS00064155 A B B B A B A B A B A - 

 

2BS 
Distance 
(cM) 

Marker HS1 HS1C HS2 HS2C HS3 HS4 HS5 HS5C HS8 HS9 HS10 HS14 HS17 

0 BS00084668 - A B A - B A B A B A B A 

1.15 BS00009972 - A - A B B A B A B A B A 

1.77 Iw1 B A B A B B A B A B A B A 

10.41 BS00070900 A A A A B B A B A B - B B 

10.41 BS00010318 A A A A B B A B A B B B B 

12.68 BS00045163 A A A A B A A B A B - B B 

17.98 BS00010637 A A A A B B B B A - - B B 

17.98 BS00065040 A A A A B B B B A B - B B 

17.98 BS00063694 A A A A B B B B A B - B B 

18.27 Bra1190 A A A A - - B B A B - B B 

19.18 BS00009848 - A  A A A A B A A B A B 

44.64 BS00064156 A A A A A A B B B A B A B 

45.19 BS00022734 A A A A A A B B B A B A B 

45.19 BS00022060 A A A A A A B B B A B A B 

45.19 BS00064155 A A A A A A B B B A B A B 
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A3 Alchemy recombinant genotypes 
Marker locations with the Shamrock allele are donated by B, and those with the Alchemy allele with 

an A.  

 

A3.1 Alchemy recombinants AS1-AS7 
 

 

 

 

 

 

 

 

 

 

 

 

A3.2 Alchemy recombinants AS7C – AS15 
 

 

 

 

 

2BS 
Distance 
(cM) 

Marker AS1 AS1C AS2 AS3 AS4 AS4C AS5 AS5C AS6 AS7 

0 BS00084668 B A B B A A A A A A 

1.15 BS00009972 B A B B A A A A A A 

1.15 Iw1 B A B B A A A A A A 

9.26 BS00010318 B A A B A A A A A B 

9.26 BS00070900 B A A B A A A A A B 

11.53 BS00073542 B A A B A A A A A B 

16.88 BS00063694 B A A A A A B A A B 

16.88 BS00006788 B A A A A A B A A B 

17.00 Bra1190 B A A A A A B A A B 

18.03 BS00003719 B A A A A A B A A B 

18.61 BS00076982 A A A A A B B A B B 

32.68 BS00071995 B A A A A B A A A A 

43.49 BS00064156 B A A - A B A A A A 

2BS 
location 
(cM) 

Marker AS7C AS8 AS8C AS9 AS9C AS10 AS11 AS12 AS13 AS14 AS15 

0 BS00084668 A A B B B A B A A A B 

1.15 BS00009972 A A B B B A B A A A B 

1.15 Iw1 A A B B B A B A A A B 

9.26 BS00010318 A A B A B A A A A A B 

9.26 BS00070900 A A B A B A A A A A/? B 

11.53 BS00073542 A A B A B A A A A A/? B 

16.88 BS00063694 A A A A B A A A B B B 

16.88 BS00006788 A A A A B A A A B B B 

17.00 Bra1190 A A A A B A A A B B B 

18.03 BS00003719 A B B A B A A A B B A 

18.61 BS00076982 A B B A B B A B B B A 

32.68 BS00071995 A A A A A A A A A A A 

43.49 BS00064156 A A A A A A A A A A A 
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A4 Church Farm field plans  
Within the field plans, NILs are indicated as described in Chapter 2 section 2.1.1: Malacca = MS+, 

MS-; Alchemy = AS+, AS-; Hereward = HS+, HS-; Xi19 = XS+, XS-; Einstein = ES+, ES-; Robigus = RS+, 

RS-. Parent varieties are also shown using the key Malacca = M, Alchemy = A, Hereward = H, Xi19 = 

X, Einstein = E, Robigus = R, Shamrock = S. Recombinant lines of all varieties are also shown using 

the nomenclature parent x parent followed by a number, for example Malacca recombinant 1 = 

MS1. Germplasm with no relevance to this PhD was removed from the plan and shown as a blank 

box. Each of the five blocks within each experiment is shown in a different colour.  

 

A4.1 2013 field plans 
In 2013 Alchemy, Robigus, Einstein and Hereward germplasm were grown in one trial, and Malacca 

and Xi19 in a second. Trials were next to each other in the same field, but are shown here on 

individual field plans.  

Alchemy, Robigus, Einstein, Hereward: 

10 9 8 7 6 5 4 3 2 1  

A  RS1  ES2 AS- R H  ES- 1 

AS-  RS1C  ES3 AS- RS- HS-  ES+ 2 

AS+  RS2  ES3C AS+ RS- HS+  ES- 3 

AS-  RS3  ES1 AS+ RS+ HS+  ES+ 4 

AS+  RS4  ES1C A RS+ HS-  ES1 5 

AS2  RS5  E AS4 RS7 HS2  ES1C 6 

AS3  RS5C  ES- AS4C RS5 HS2C  ES2 7 

AS1  RS6  ES+ AS1 RS5C HS1  ES3 8 

AS1C  RS7  ES- AS1C RS1 HS1C  ES3C 9 

AS4C  RS8  ES+ AS2 RS1C   AS- 10 

AS4  RS9  RS9 AS3 RS2   AS+ 11 

E  RS9C  RS9C HS- RS9   AS- 12 

ES-  R  RS3 HS- RS9C   AS+ 13 

ES+  RS-  RS5 HS+ RS6   AS1 14 

ES-  RS+  RS5C HS+ RS3   AS1C 15 

ES-  RS-  RS6 HS1 RS4   AS2 16 

ES3  RS+  RS7 HS1C RS8   AS3 17 

ES3C  AS2  RS8 HS2 ES-   AS4 18 

ES1C  AS3  RS4 HS2C ES+  E AS4C 19 

ES1 RS- AS4 ES2 RS2 H ES-  A HS- 20 

ES2 RS+ AS4C ES1 RS- RS1 ES+   HS+ 21 

HS2 RS- AS1 ES1C RS- RS1C E  R HS- 22 

HS2C RS+ AS1C ES3 RS+ R ES1  H HS+ 23 

HS1 RS1 A ES3C RS+  ES1C  RS2 HS1 24 
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HS1C RS1C AS- ES+   ES3  RS3 HS1C 25 

HS+ RS2 AS+ ES+   ES3C  RS4 HS2 26 

HS- RS3 AS- ES-   ES2  RS5 HS2C 27 

HS+ RS4 AS+ ES-   AS3  RS5C RS- 28 

HS- RS9C H E   AS1 A RS6 RS+ 29 

H RS9 HS1 HS-   AS1C AS- RS7 RS- 30 

R RS7 HS1C HS+   AS2 AS+ RS8 RS+ 31 

RS5C RS8 HS2 HS-   AS4 AS- RS9 RS1 32 

RS5 RS6 HS2C HS+   AS4C AS+ RS9C RS1C 33 

 

 

Xi19 and Malacca: 

10 9 8 7 6 5 4 3 2 1  

XS36-1 XS18-1 XS21-1 XS12-1 XS10-
C4 

XS13-2 XS50 XS11-1 XS14-1 MS- 1 

XS19-1 XS7-1 XS15-1 XS12-2 XS10-2 XS13-
C2 

XS18-1 XS11-
C5 

XS14-2 MS+ 2 

XS53 XS5-1 XS16-1 XS12-
C1 

XS10-
C2 

XS13-4 XS49 XS11-
C1 

XS14-
C1 

MS- 3 

XS30-1 XS39-1 XS8-1 XS12-
C2 

XS10-1 XS13-
C1 

XS30-1 XS11-2 XS14-
C2 

MS+ 4 

XS28-1 XS25-1 XS19-1 XS- XS52 XS16-1 XS26-1 XS1-1 XS15-1 MS1 5 

XS50 XS17-1 XS29-1 XS+ XS40-1 XS22-1 XS47-1 XS2-1 XS16-1 MS1C 6 

XS48 XS14-1 XS32-1 XS- XS9-1 XS49 XS27-1 XS35-1 XS17-1 MS2 7 

XS45-1 XS14-2 XS33-1 XS+ XS9-C4 MS- XS25-1 XS4-1 XS18-1 MS3 8 

XS34-1 XS14-
C1 

XS4-1 XS34-1 XS9-C1 MS+ XS10-1 XS53 XS19-1 MS4 9 

XS40-1 XS14-
C2 

XS23-1 XS27-1 XS9-4 MS+ XS10-
C4 

XS42-1 XS20-1 MS4C 10 

XS22-1 XS38-1 XS30-1 XS37-1 XS47-1 MS- XS10-
C2 

XS13-
C2 

XS21-1 M 11 

XS15-1 XS9-4 XS17-1 XS11-1 XS35-1 MS3 XS10-2 XS13-2 XS22-1 S 12 

XS33-1 XS9-C1 XS20-1 XS11-2 XS24-1 MS2 XS40-1 XS13-
C1 

XS23-1 X 13 

XS46-1 XS9-1 XS22-1 XS11-
C1 

XS39-1 MS1 XS14-
C1 

XS13-4 XS24-1 XS- 14 

XS23-1 XS9-C4 XS36-1 XS11-
C5 

XS21-1 MS1C XS14-2 XS31-2 XS25-1 XS+ 15 

XS27-1 MS- XS35-1 XS40-1 XS36-1 MS4 XS14-
C2 

XS3-1 XS26-1 XS- 16 

XS3-1 MS+ XS24-1 XS38-1 XS18-1 MS3C XS14-1 XS16-1 XS27-1 XS+ 17 

XS11-
C1 

MS- XS39-1 XS52 XS23-1 M XS9-1 XS19-1 XS28-1 XS1-1 18 

XS11-1 MS+ XS47-1 XS10-2 XS28-1 S XS9-C4 XS12-
C2 

XS29-1 XS2-1 19 

XS11-2 MS3 XS14-1 XS10-1 XS32-1 X XS9-C1 XS12-1 XS30-1 XS3-1 20 
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XS11-
C5 

MS1 XS14-
C1 

XS10-
C2 

XS30-1 XS+ XS9-4 XS12-2 XS31-2 XS4-1 21 

XS35-1 MS1C XS14-
C2 

XS10-
C4 

XS38-1 XS- XS21-1 XS12-
C1 

XS32-1 XS5-1 22 

XS32-1 MS3 XS14-2 XS13-4 XS25-1 XS- XS8-1 XS39-1 XS33-1 XS6-1 23 

XS47-1 MS4C XS49 XS13-
C1 

XS19-1 XS+ XS33-1 XS15-1 XS34-1 XS7-1 24 

XS31-2 MS4 XS48 XS13-
C2 

XS27-1 XS11-2 XS43-1 XS45-1 XS35-1 XS8-1 25 

XS51 M XS3-1 XS13-2 XS20-1 XS11-
C5 

XS46-1 XS48 XS36-1 XS9-1 26 

XS16-1 S XS6-1 MS2 XS33-1 XS11-
C1 

XS23-1 XS36-1 XS37-1 XS9-4 27 

XS20-1 X XS28-1 MS3 XS42-1 XS11-1 XS37-1 XS7-1 XS38-1 XS9-C1 28 

XS37-1 XS- XS2-1 MS1 XS5-1 XS48 XS24-1 XS5-1 XS39-1 XS9-C4 29 

XS44-1 XS- XS43-1 MS1C XS31-2 XS12-1 XS29-1 XS22-1 XS40-1 XS10-1 30 

XS13-4 XS+ XS45-1 MS4 XS44-1 XS12-
C1 

XS32-1 XS44-1 XS41-1 XS10-2 31 

XS13-
C1 

XS+ XS44-1 MS4C XS43-1 XS12-
C2 

X XS38-1 XS42-1 XS10-
C2 

32 

XS13-2 XS12-1 XS51 MS- XS41-1 XS12-2 S XS17-1 XS43-1 XS10-
C4 

33 

XS13-
C2 

XS12-
C1 

XS7-1 MS+ XS45-1 XS50 M XS28-1 XS44-1 XS11-1 34 

XS41-1 XS12-
C2 

XS1-1 MS+ XS46-1 XS26-1 MS2 XS51 XS45-1 XS11-2 35 

XS52 XS12-2 XS41-1 MS- XS29-1 XS17-1 MS1 XS6-1 XS46-1 XS11-
C1 

36 

XS2-1 XS8-1 XS50 M XS6-1 XS51 MS1C XS34-1 XS47-1 XS11-
C5 

37 

XS29-1 XS49 XS31-2 S XS8-1 XS15-1 MS4 XS52 XS48 XS12-1 38 

XS26-1 XS6-1 XS18-1 X XS37-1 XS53 MS4C XS41-1 XS49 XS12-2 39 

XS4-1 XS42-1 XS5-1 XS42-1 XS7-1 XS1-1 MS3 XS20-1 XS50 XS12-
C1 

40 

XS43-1 XS10-
C2 

XS46-1 XS9-C1 XS2-1 XS14-
C2 

MS- XS- XS51 XS12-
C2 

41 

XS21-1 XS10-1 XS53 XS9-1 XS4-1 XS14-1 MS+ XS+ XS52 XS13-2 42 

XS24-1 XS10-2 XS26-1 XS9-C4 XS34-1 XS14-2 MS- XS- XS53 XS13-4 43 

 XS25-1 XS9-4 XS3-1 XS14-
C1 

MS+ XS+ XS13-
C2 

XS13-
C1 

 44 
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A4.2 2014 field plans 
All six varieties were grown in the same trial in 2014. They have been separated by variety here for 

ease of interpretation.  

 

Xi19: 

XS45-0 XS16-1 XS47-1 XS3-1 XS13-2 XS41-1 XS1-1 XS72 XS63 1 

XS45-1 S XS20-1 XS5-1 XS46-1  XS14-1 XS25-1 XS11-1 2 
XS68 X XS19-1 XS9-1 XS12-1 XS58 XS10-1 XS48 XS17-1 3 

XS- XS- XS+ XS+ XS30-1 XS60 XS51 XS50 XS15-1 4 

XS10-1 XS9-1 XS60 XS1-1 XS15-1 XS19-1 XS25-1 XS51  5 
XS58  XS14-1 XS50 XS72 XS47-1 XS12-1 XS46-1 XS16-1 6 

XS45-1 XS30-1 XS48 S XS+ XS- XS63 XS13-2 XS5-1 7 
XS20-1 XS3-1 XS11-1 X XS- XS+ XS17-1 XS68 XS41-1 8 

XS25-1 XS68 XS9-1 XS16-1 XS1-1 XS51 XS72 XS48 XS13-2 9 
XS12-1 XS19-1 XS5-1 XS45-1 XS20-1 XS10-1  XS17-1 XS46-1 10 

XS50 XS+ XS+ XS41-1 XS58 XS15-1 XS30-1 XS11-1 X 11 
 XS- XS- XS63 XS14-1 XS3-1 XS47-1 XS60 S 12 

XS10-1 XS17-1 XS14-1 XS30-1 XS48 XS72 XS20-1 XS25-1  13 
XS11-1 XS9-1 XS51 XS45-1  S X XS5-1 XS60 14 

XS47-1 XS16-1 XS46-1 XS15-1 XS1-1 XS41-1 XS13-2 XS- XS+ 15 
XS50 XS63 XS12-1 XS19-1 XS68 XS3-1 XS58 XS- XS+ 16 

XS14-1 XS3-1 XS5-1 XS9-1 XS58 XS13-2 XS48 XS20-1 XS19-1 17 
XS1-1 XS60 XS11-1 XS10-1 XS47-1 XS41-1 XS16-1 XS72 XS51 18 
XS30-1 XS63 XS68 XS46-1 XS17-1 XS45-1 XS50 XS25-1 XS12-1 19 

 S X XS- XS+ XS+ XS- XS15-1  20 

1 2 3 4 5 6 7 8 9  
 

Malacca: 

S MS7C MS8 MS12 MS1 MS5C M 1 

MS11 MS5 MS6 MS1C MS23 MS10 MS14C 2 

MS- MS- MS19 MS3 MS4 MS4C MS2 3 

MS+ MS+ MS18 MS15 MS7 MS20 MS14 4 

MS8 MS20 MS11 MS12 MS6 MS18 MS10 5 
MS23 MS14C M S MS14 MS3 MS4C 6 

MS15 MS7C MS7 MS+ MS+ MS- MS- 7 

MS1 MS1C MS2 MS4 MS19 MS5C MS5 8 

MS4 MS4C MS14 MS8 MS6 MS3 MS1C 9 
MS7C MS7 MS14C MS23 MS2 MS5 MS1 10 

MS+ MS- MS15 MS5C MS18 MS19 M 11 
MS- MS+ MS20 MS11 MS10 MS12 S 12 

MS20 MS10 MS8 MS6 MS7 MS7C MS12 13 
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MS2 MS3 MS18 MS14 MS14C MS23 MS19 14 

MS15 MS1 MS1C M MS5 MS+ MS- 15 
MS4 MS4C MS11 S MS5C MS- MS+ 16 

MS10 MS7C MS7 MS4 MS4C MS2 MS11 17 
MS19 MS23 MS3 MS18 MS1C MS1 MS8 18 
MS14C MS14 MS15 MS12 MS20 MS5 MS5C 19 

S M MS- MS+ MS- MS+ MS6 20 

10 11 12 13 14 15 16  
 

 

Robigus: 

RS33 RS41 RS6 RS38 RS7 RS26 RS37  1 

RS39 RS36 RS1 RS40 RS15 RS9 RS21 R 2 

RS2 RS42 RS43 RS4 RS23 RS8 RS30 RS11 3 

RS4 RS- RS+ RS- RS+ RS14 RS3 S 4 

RS23 RS2 RS36 RS30 RS4 RS1 RS42 RS41 5 
R RS5 RS8 RS39 RS43 RS21 RS38 RS14 6 

S RS26  RS37 RS6 RS9 RS+ RS+ 7 

RS11 RS7 RS15 RS33 RS3 RS40 RS- RS- 8 

RS9 RS14 RS37 RS21 RS15 RS8 RS39 RS26 9 

RS3 RS40 RS41 RS43 RS- RS+ RS11 RS38 10 

RS30 RS23 RS42 RS6 RS- RS+ RS7 RS5 11 

RS33 RS2 RS1 RS4 R S  RS36 12 

RS40 RS37 RS21 RS7 RS5 RS11 RS4 RS9 13 
 RS1 RS23 RS26 RS38 RS15 RS41 RS2 14 

RS39 RS43 RS33 RS8 RS42 RS- RS+ R 15 
RS14 RS3 RS36 RS6 RS30 RS- RS+ S 16 

RS7 RS41 RS30 RS1 RS43 RS4 RS37 RS23 17 

RS- RS+ RS39 RS11 RS15 RS2 RS26 RS21 18 
RS- RS+ RS3 RS40 RS36 RS9 RS6 RS14 19 

 R S RS42 RS5 RS38 RS33 RS8 20 

17 18 19 20 21 22 23 24  
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Hereward: 

HS3 HS31 HS2 HS10 HS28 HS+ HS+ HS33 1 

HS18 HS22 HS2C HS26 HS21 HS- HS- HS14 2 

HS19 HS4 HS1C HS1 HS5 HS32 HS17 HS8 3 

 HS30 S H HS5C HS20 HS23 HS9 4 

HS17 HS21 HS30 HS8 HS31 HS3 HS32 HS1C 5 
HS28 HS5 HS5C HS4 HS23 HS26 HS2C HS1 6 

HS14 HS19 HS20 HS18 HS10 HS22 HS2 S 7 

HS- HS- HS+ HS+ HS33 HS9 H  8 

H HS28 HS21 HS3 HS32 HS4 HS33 HS5 9 

S HS2C HS10 HS17 HS26 HS19 HS31 HS5C 10 

HS8 HS2 HS23 HS1 HS18 HS22 HS- HS+ 11 

 HS9 HS20 HS1C HS30 HS14 HS+ HS- 12 

HS30 HS32 HS8 HS9 HS19 HS17 HS3 HS26 13 
HS2C HS2 HS10 HS31 HS23 HS28 HS22 HS20 14 

HS- HS+ HS33 HS14 H HS21 HS1 HS1C 15 
HS+ HS- HS4 HS18 S HS5C HS5  16 

HS31 HS10 HS5 HS5C HS22 HS23 HS20 HS18 17 

HS32 HS26 HS19 HS21 HS9 HS30 HS8 HS28 18 

HS33 HS14 HS3 HS- HS+ HS2 HS4 HS17 19 

 HS1C HS1 HS+ HS- HS2C H S 20 

25 26 27 28 29 30 31 32  
 

Alchemy: 

S AS8 AS9C AS2  1 

AS12 AS11 AS1C AS+ AS- 2 

AS4 AS3 AS14 AS- AS+ 3 

AS4C AS10 AS1 A AS15 4 

AS11 AS15 AS10 AS4C AS1C 5 

AS- AS+ AS- AS+ AS1 6 

AS9C AS12 AS2  A 7 

AS3 AS8 AS14 S AS4 8 

 AS4C AS10 AS- AS+ 9 

AS8 AS11 AS3 AS+ AS- 10 

AS14 AS1 A S AS2 11 

AS15 AS9C AS12 AS1C AS4 12 

AS9C AS15 AS11 AS8 AS12 13 

AS4 AS- AS- AS+ AS+ 14 

S AS14 AS10 AS1 AS2 15 

A AS4C AS3 AS1C  16 

AS1 AS3 AS8 AS14 A 17 

AS1C AS2 AS4C AS12 S 18 
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AS- AS+ AS4 AS11 AS15 19 

AS+ AS- AS9C AS10  20 

33 34 35 36 37  

 

Einstein: 

ES4 ES2 ES11 ES- ES+ 1 

ES4C ES9 ES7 ES+ ES- 2 

ES6 ES3 ES7C S ES1 3 

ES5 ES3C ES5C E ES1C 4 

S ES+ ES9 ES4 ES7C 5 

E ES- ES3 ES4C ES3C 6 

ES1C ES- ES1 ES7 ES6 7 

ES11 ES+ ES5 ES5C ES2 8 

ES5 ES7C ES+ ES+ ES1 9 

ES2 ES5C ES- ES+ ES4C 10 

ES11 ES1C E ES3 ES9 11 

ES6 ES4 S ES3C ES7 12 

ES9 ES5 ES4 ES4C E 13 

ES5C ES6 ES2 ES7 S 14 

ES1 ES3 ES1C ES- ES+ 15 

ES3C ES11 ES7C ES+ ES- 16 

ES7C ES7 ES6 ES9 ES11 17 

ES4 ES4C ES5C ES5 ES3C 18 

ES+ ES- ES- ES+ ES3 19 

E S ES1 ES1C ES2 20 

38 39 40 41 42  
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A4.3 2015 field plans 
Only Hereward and Alchemy germplasm were grown in 2015 in two trials next to each other in the 

field.  

Hereward: 

 HS28 HS17 HS9 H HS+ HS- HS- HS+ S HS14 HS27  17 

HS3C HS8 HS3 HS32 HS25 HS18 HS5 HS8C HS21 HS16 HS20 HS6  16 

HS5C HS7 HS15 HS33 HS12 HS23 HS24 HS4 HS1- HS6C HS30 HS1 HS13 15 

HS1 HS5 HS31 HS21 HS13 HS17  HS31 HS19 HS2 HS11 HS22 HS26 14 

HS23 HS15 HS27 HS10 HS25 HS14 HS32 HS12 HS3 HS7 HS22 HS19 HS15
6 

13 

HS33 HS8C HS8 HS3C HS6C HS20 HS26 HS6 HS30 HS+ HS- HS+ HS- 12 

HS18 HS6 HS4 HS24 HS9  HS11 HS2 HS18 H S HS5C HS28 11 

HS16 HS30 HS9 HS20 HS2 HS22 HS7 HS10 HS8 HS25 HS12 HS28 HS15 10 

HS5C HS6C HS3 HS17 HS24 HS23 HS21 H S HS31 HS3C HS4 HS33 9 

HS- HS- HS+ HS+ HS1 HS11 HS5  HS19 HS13 HS27 HS32 HS8C 8 

HS20 HS25 HS2 HS28 HS11 HS18 HS27 HS26 HS16 HS15  HS14 HS26 7 

HS9 HS10 HS22 HS31 HS17 HS30 HS7 HS32 HS3 HS29 HS19 HS6C HS6 6 

HS24 HS33 HS14 HS12 HS21 HS8C HS13 HS1 HS3C HS5C HS23 HS4 HS8 5 

HS28 HS29 HS30 HS31 HS32 HS33 HS- HS+ HS+ HS- H S HS5 4 

HS15 HS16 HS17 HS18 HS19 HS20 HS21 HS22 HS23 HS24 HS25 HS26 HS27 3 

HS5 HS5C HS6 HS6C HS7 HS8 HS8C HS9 HS10 HS11 HS12 HS13 HS14 2 

 H S HS+ HS- HS- HS+ HS1 HS2 HS3 HS3C HS4  1 

1 2 3 4 5 6 7 8 9 10 11 12 13  
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Alchemy: 

 AS+ AS+ AS- AS- S A  17 

AS10 AS4 AS6 AS1  AS15 AS9 AS8 16 
AS14 AS12 AS5 AS13 AS9C AS11 AS7 AS5C 15 
AS9C AS11 AS3   AS8C AS3 AS2 14 
S AS6 AS5C AS13 AS8 AS7C AS8C AS2 13 

A AS14 AS1 AS15 AS10 AS9 AS12 AS5 12 

  AS7 AS4 AS- AS+ AS- AS+ 11 

AS11 AS15 AS12 AS1 AS9C AS2 AS9  10 

AS4 AS7C AS+ AS+ AS- AS- AS5C AS13 9 

AS10 AS3 AS8C A S AS5 AS14 AS6 8 

AS+ AS- AS4 AS10 AS1  AS8 AS7 7 
AS- AS+ AS8 AS8C AS7C AS14 AS5C AS15 6 

AS5 AS9 AS9C AS7 AS12 AS6 A S 5 

AS13 AS14 AS15  AS2 AS13 AS11 AS3 4 

AS7C AS8 AS8C AS9 AS9C AS10 AS11 AS12 3 
AS1 AS2 AS3 AS4 AS55 AS5C AS6 AS7 2 

 A S AS+ AS- AS- AS+  1 

1 2 3 4 5 6 7 8  
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A5 Robigus and Xi19 light curves  
Light curves for NILs of Robigus and Xi19 were obtained using a LI-COR 6400XT during the harvest 

year of 2013. 

 

A5.1 Robigus 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Average ± S.E p 

Iw1+ iw1- 

AQE  0.045 ± 0.001 0.045 ± 0.001 0.774 

Light Compensation 4.44± 0.87 3.86± 0.73 0.628 

Amax 21.00 ± 1.97 20.12 ± 0.78 0.690 

Ao 0.33 ± 0.77 -0.167 ± 0.75 0.660 
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A5.2 Xi19 
 

 Average ± S.E  p 

 Iw1+ iw1-  

AQE 0.045 ± 0.003 0.044 ± 0.002 0.979 

Light compensation 3.64 ± 1.63 4.61 ± 0.51 0.589 

Amax 21.24 ± 0.51 21.51 ± 1.21 0.844 

Ao 0.50 ± 0.91 0.19 ± 0.71 0.451 
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A6 Shade trial wax profiles 

 

FA = fatty acid, POH = primary alcohol, MAR = methylacylresorcinol 

P values show the effect of shade when each NIL was analysed by ANOVA 

individually  

T indicates trace amounts were present less than 0.0000 µg/mg plant tissue 

- Indicates missing data 

 

A6.1 Alchemy wax profile 
 

 Wax quantity in µg/mg leaf tissue  

Anthesis  Senescence  

C22 FA 

 AS+ AS- AS + AS- 

Control 0.0098 ± 0.0031 0.0072 ± 
0.0036 

0.0101 ± 
0.0009 

0.0120 ± 
0.0006 

30% Shade 0.0106 ± 0.0023 0.0145 ± 
0.0058 

0.0087 ± 
0.0063 

0.0071 ± 
0.0058* 

50% Shade 0.0103 ± 0.0027 0.0173 ± 
0.0055 

0.0139 ± 
0.0062 

0.0093 ± 
0.0005 

p 0.976 0.397 0.308 p<0.001 

C24 FA 

 AS + AS - AS + AS - 

Control 0.0297 
±  

0.0122 

0.0530 
±  

0.0203 

0.0234 
±  

0.0045 

0.0138 
±  

0.0009* 

30% Shade 0.0221 
±  

0.0095 

0.0182 
±  

0.0067 

0.0171 
±  

0.0026 

0.0084 
±  

0.0007* 

50% Shade 0.0321 
±  

0.0153 

0.0254 
±  

0.0102 

0.0281 
±  

0.0092 

0.0105 
±  

0.0018 

p 0.816 0.22 0.457 0.021 

C28 FA 

 AS+ AS - AS + AS - 

Control 0.1024 
±  

0.0396 

0.1138 
±  

0.0088 

0.1601 
±  

0.0175 

0.1310 
±  

0.0051 

30% Shade 0.1112 
±  

0.0254 

0.1358 
±  

0.0409 

0.1173 
±  

0.0119 

0.0829 
±  

0.0062* 

50% Shade 0.1087 
±  

0.1445 
±  

0.1995 
±  

0.1165 
±  
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0.0380 0.0461 0.0860 0.0121 

p 0.982 0.845 0.107 0.004 

C32 FA 

 AS+ AS - AS + AS - 

Control T 0.0009 
±  

0.0006 

0.0002 
±  

0.0001 

0.0010 
±  

0.0001 

30% Shade T - 0.0003 
±  

0.0001 

0.0018 
±  

0.0004 

50% Shade T 0.0005 
±  

0.0002 

0.0003 
±  

0.0001 

0.0021 
±  

0.0008 

p 0.488 0.612 0.580 0.336 

C24 POH 

 AS+ AS - AS + AS - 

Control 0.7918 
±  

0.1976 

0.2195 
±  

0.1255 

0.5353 
±  

0.0526 

0.2751 
±  

0.0030* 

30% Shade 0.8043 
±  

0.1951 

0.5020 
±  

0.1675 

0.4481 
±  

0.0344 

0.1725 
±  

0.0151* 

50% Shade 0.7217 
±  

0.2374 

0.5840 
±  

0.1973 

0.7263 
±  

0.2982 

0.2290 
±  

0.0277 

p 0.959 0.341 0.345 0.007 

C26 POH 

 AS+ AS - AS + AS - 

Control 0.3607 
±  

0.1882 

0.3537 
±  

0.1701 

0.1666 
±  

0.0128 

0.1438 
±  

0.0073* 

30% Shade 0.4732 
±  

0.1963 

0.6094 
±  

0.3023 

0.1446 
±  

0.0126 

0.0922 
±  

0.0081* 

50% Shade 0.4886 
±  

0.3422 

0.9670 
±  

0.5157 

0.2222 
±  

0.0791 

0.1256 
±  

0.0152 

p 0.916 0.551 0.506 0.015 

C28 POH 

 AS+ AS - AS + AS - 

Control 3.6107 
±  

0.7623 

4.0812 
±  

0.2190 

2.6544 
±  

0.2229 

2.6679 
±  

0.1120 

30% Shade 4.0973 
±  

0.9656 

4.8944 
±  

1.3427 

2.3400 
±  

0.2254 

1.9910 
±  

0.1664* 

50% Shade 3.6926 
±  

5.6025 
±  

4.2516 
±  

2.6577 
±  
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1.2166 1.6773 1.5736 0.1349 

p 0.927 0.728 0.498 0.01 

C30 POH 

 AS+ AS - AS + AS - 

Control 0.1124 
±  

0.0269 

0.1018 
±  

0.0029 

0.0882 
±  

0.0073 

0.0758 
±  

0.0054 

30% Shade 0.1425 
±  

0.0365 

0.1266 
±  

0.0342 

0.0780 
±  

0.0078 

0.0515 
±  

0.0045* 

50% Shade 0.1133 
±  

0.0466 

0.1462 
±  

0.0472 

0.1352 
±  

0.0523 

0.0764 
±  

0.0064 

p 0.796 0.697 0.643 0.01 

C27 n-Alkane 

 AS+ AS - AS + AS - 

Control 0.0870 
±  

0.0310 

0.0307 
±  

0.0083 

0.0757 
±  

0.0159 

0.0397 
±  

0.0039* 

30% Shade 0.0199 
±  

0.0045 

0.0229 
±  

0.0078 

0.0432 
±  

0.0059 

0.0133 
±  

0.0036 

50% Shade 0.0728 
±  

0.0164 

0.0488 
±  

0.0128 

0.0586 
±  

0.0300 

0.0203 
±  

0.0025 

p 0.716 0.617 0.051 0.001 

C29 n-Alkane 

 AS+ AS - AS + AS - 

Control 0.3269 
±  

0.1043 

0.0805 
±  

0.0557 

0.3069 
±  

0.0422* 

0.1611 
±  

0.0084* 

30% Shade 0.0177 
±  

0.0094 

0.0298 
±  

0.0096 

0.1957 
±  

0.0156 

0.0744 
±  

0.0053 

50% Shade 0.3391 
±  

0.1059 

0.2151 
±  

0.0668 

0.3023 
±  

0.1547* 

0.0892 
±  

0.0068 

p 0.925 0.316 0.018 <0.001 

C31 n-Alkane 

 AS+ AS - AS + AS - 

Control 0.1729 
±  

0.0442 

0.1110 
±  

0.0362 

0.1665 
±  

0.0375 

0.1534 
±  

0.0142* 

30% Shade 0.1870 
±  

0.0963 

0.1363 
±  

0.0594 

0.1034 
±  

0.0309 

0.0728 
±  

0.0040 

50% Shade 0.1170 
±  

0.2034 
±  

0.1420 
±  

0.0649 
±  
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0.0405 0.0657 0.0512 0.0128 

p 0.771 0.51 0.66 <0.001 

MAR19 

 AS+ AS - AS + AS - 

Control 0.0270 
±  

0.0061 

0.0212 
±  

0.0016 

0.0126 
±  

0.0006 

0.0138 
±  

0.0017* 

30% Shade 0.0621 
±  

0.0111 

0.0446 
±  

0.0169 

0.0135 
±  

0.0014 

0.0084 
±  

0.0008 

50% Shade 0.1783 
±  

0.0715 

0.1990 
±  

0.0668 

0.0142 
±  

0.0026 

0.0070 
±  

0.0013 

p 0.967 0.616 0.564 0.01 

MAR21 

 AS+ AS - AS + AS - 

Control 0.0601 
±  

0.0139 

0.0524 
±  

0.0038 

0.0280 
±  

0.0014 

0.0270 
±  

0.0018* 

30% Shade 0.2908 
±  

0.0550 

0.1829 
±  

0.0554 

0.0289 
±  

0.0021 

0.0190 
±  

0.0008* 

50% Shade 0.0001 
±  

0.0001 

0.0759 
±  

0.0429 

0.0378 
±  

0.0070 

0.0198 
±  

0.0030 

p 0.946 0.642 0.584 0.032 

MAR23 

 AS+ AS - AS + AS - 

Control 0.0683 
±  

0.0192 

0.0600 
±  

0.0051 

0.0369 
±  

0.0022 

0.0327 
±  

0.0023* 

30% Shade 0.1870 
±  

0.0963 

0.1363 
±  

0.0594 

0.0383 
±  

0.0027 

0.0235 
±  

0.0009* 

50% Shade 0.0004 
±  

0.0004 

1.1186 
±  

0.3523 

0.0518 
±  

0.0095 

0.0256 
±  

0.0029 

p 0.989 0.712 0.354 0.024 

MAR25 

 AS+ AS - AS + AS - 

Control 0.0206 
±  

0.0051 

0.0205 
±  

0.0015 

0.0155 
±  

0.0013 

0.0145 
±  

0.0013 

30% Shade T 0.1100 
±  

0.0622 

0.0166 
±  

0.0025 

0.0109 
±  

0.0011 

50% Shade 0.0295 
±  

0.0348 
±  

0.0214 
±  

0.0104 
±  
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0.0102 0.0117 0.0048 0.0013 

p 0.965 0.833 0.873 0.085 

MAR27 

 AS+ AS - AS + AS - 

Control 0.0201 
±  

0.0040 

0.0218 
±  

0.0013 

0.0088 
±  

0.0025 

0.0105 
±  

0.0011* 

30% Shade 0.0015 
±  

0.0015 

1.2784 
±  

0.7799 

0.0110 
±  

0.0012 

0.0050 
±  

0.0013* 

50% Shade 0.0684 
±  

0.0250 

0.0848 
±  

0.0298 

0.0136 
±  

0.0028 

0.0074 
±  

0.0012 

p 0.9 0.609 0.655 0.026 
 

A6.2 Malacca wax profile 
 

 Wax quantity in µg/mg leaf tissue 

Anthesis Senescence 

C22 FA 

 MS+ MS- MS+ MS- 

Control 0.0181 
±  

0.0056 

0.0149 
±  

0.0050 

0.0121 
±  

0.0008* 

0.0122 
±  

0.0025 

30% Shade 0.0078 
±  

0.0020 

0.0159 
±  

0.0098 

0.0090 
±  

0.0018 

0.0076 
±  

0.0019 

50% Shade 0.0126 
±  

0.0084 

0.0111 
±  

0.0046 

0.0071 
±  

0.0007* 

0.0087 
±  

0.0007 

p 0.341 0.71 0.035 0.226 

C24 FA 

 MS+ MS- MS+ MS- 

Control 0.0460 
±  

0.0156 

0.0178 
±  

0.0060 

0.0151 
±  

0.0023 

0.0151 
±  

0.0031 

30% Shade 0.0070 
±  

0.0021 

0.0206 
±  

0.0123 

0.0141 
±  

0.0018 

0.0090 
±  

0.0023 

50% Shade 0.0193 
±  

0.0173 

0.0162 
±  

0.0092 

0.0138 
±  

0.0034 

0.0090 
±  

0.0008 

p 0.246 0.883 0.929 0.13 

C28FA 

 MS+ MS- MS+ MS- 

Control 0.1171 
±  

0.1169 
±  

0.1200 
±  

0.1403 
±  
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0.0475 0.0420 0.0097* 0.0267* 

30% Shade 0.0548 
±  

0.0038 

0.1165 
±  

0.0719 

0.0831 
±  

0.0126 

0.0823 
±  

0.0042 

50% Shade 0.0867 
±  

0.0530 

0.0975 
±  

0.0265 

0.0767 
±  

0.0047 

0.0757 
±  

0.0034 

p 0.549 0.562 0.016 0.014 

C32 FA 

 MS+ MS- MS+ MS- 

Control  
T 

0.0002 
±  

0.0001 

 
T 

0.0004 
±  

0.0001 

30% Shade 0.0001 
±  

0.0001 

0.0002 
±  

0.0001 

 
T 

0.0025 
±  

0.0019 

50% Shade - 0.0005 
±  

0.0004 

0.0008 
±  

0.0004 

0.0012 
±  

0.0003 

p 0.623 0.863 0.66 0.468 

C24 POH 

 MS+ MS- MS+ MS- 

Control 1.4189 
±  

0.4609 

0.4881 
±  

0.1631 

0.6027 
±  

0.0552* 

0.3224 
±  

0.0659 

30% Shade 0.5484 
±  

0.0980 

0.5657 
±  

0.3680 

0.4347 
±  

0.0609 

0.2204 
±  

0.0058 

50% Shade 1.0859 
±  

0.4901 

0.4292 
±  

0.1627 

0.3310 
±  

0.0667* 

0.2041 
±  

0.0190 

p 0.282 0.538 0.026 0.078 

C26 POH 

 MS+ MS- MS+ MS- 

Control 1.3026 
±  

0.5366 

0.7816 
±  

0.4279 

0.2279 
±  

0.0168 

0.1906 
±  

0.0372 

30% Shade 0.2043 
±  

0.0234 

0.7097 
±  

0.5570 

0.1692 
±  

0.0316 

0.1379 
±  

0.0040 

50% Shade 0.4862 
±  

0.3061 

0.3836 
±  

0.2337 

0.1599 
±  

0.0104 

0.1370 
±  

0.0109 

p 0.276 0.767 0.091 0.147 

C28 POH 

 MS+ MS- MS+ MS- 

Control 6.7009 
±  

5.0228 
±  

3.4110 
±  

3.2760 
±  
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1.9203 1.5996 0.3795 0.6072 

30% Shade 3.4620 
±  

0.0857 

5.6612 
±  

3.3190 

2.3667 
±  

0.3988 

2.4544 
±  

0.0948 

50% Shade 5.1414 
±  

2.6087 

4.6480 
±  

1.3642 

2.9512 
±  

0.1554 

3.2451 
±  

0.1833 

p 0.405 0.637 0.123 0.16 

C30 POH 

 MS+ MS- MS+ MS- 

Control 0.1923 
±  

0.0539 

0.1311 
±  

0.0414 

0.1194 
±  

0.0107 

0.1146 
±  

0.0260 

30% Shade 0.1191 
±  

0.0001 

0.1606 
±  

0.0990 

0.0844 
±  

0.0199 

0.0662 
±  

0.0033 

50% Shade 0.1863 
±  

0.1248 

0.1142 
±  

0.0372 

0.0978 
±  

0.0067 

0.0896 
±  

0.0039 

p 0.569 0.582 0.226 0.074 

C27 n-Alkane 

 MS+ MS- MS+ MS- 

Control 0.1625 
±  

0.0492 

0.0599 
±  

0.0185 

0.0705 
±  

0.0116* 

0.0524 
±  

0.0152* 

30% Shade 0.0118 
±  

0.0006 

0.0191 
±  

0.0126 

0.0420 
±  

0.0050 

0.0232 
±  

0.0060 

50% Shade 0.1255 
±  

0.0545 

0.0494 
±  

0.0165 

0.0267 
±  

0.0068* 

0.0166 
±  

0.0010* 

p 0.123 0.547 0.009 0.03 

C29 n-Alkane 

 MS+ MS- MS+ MS- 

Control 0.5157 
±  

0.2100 

0.2337 
±  

0.0773 

0.3768 
±  

0.0357* 

0.2228 
±  

0.0494* 

30% Shade 0.0155 
±  

0.0014 

0.0226 
±  

0.0160 

0.2449 
±  

0.0221 

0.1274 
±  

0.0112 

50% Shade 0.5880 
±  

0.2607 

0.1683 
±  

0.0480 

0.1557 
±  

0.0361 

0.0727 
±  

0.0097* 

p 0.541 0.554 0.001 0.006 

C31 n-Alkane 

 MS+ MS- MS+ MS- 

Control 0.1303 
±  

0.0680 
±  

0.1163 
±  

0.0496 
±  
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0.0489 0.0152 0.0027* 0.0026* 

30% Shade 0.0924 
±  

0.0116 

0.0816 
±  

0.0477 

0.0776 
±  

0.0058 

0.0417 
±  

0.0069 

50% Shade 0.1676 
±  

0.0739 

0.0464 
±  

0.0112 

0.1095 
±  

0.0029* 

0.0338 
±  

0.0049* 

p 0.382 0.553 0.004 0.013 

MAR19 

 MS+ MS- MS+ MS- 

Control 0.0262 
±  

0.0080 

0.0269 
±  

0.0074 

0.0151 
±  

0.0032 

0.0112 
±  

0.0020 

30% Shade 0.0376 
±  

0.0084 

0.0500 
±  

0.0286 

0.0075 
±  

0.0010 

0.0110 
±  

0.0011 

50% Shade 0.1300 
±  

0.1102 

0.1306 
±  

0.0561 

0.0123 
±  

0.0013 

0.0110 
±  

0.0010 

p 0.529 0.617 0.065 0.995 

MAR21 

 MS+ MS- MS+ MS- 

Control 0.0580 
±  

0.0168 

0.0428 
±  

0.0114 

0.0221 
±  

0.0020 

0.0189 
±  

0.0036 

30% Shade 0.2202 
±  

0.0414 

0.2118 
±  

0.1223 

0.0185 
±  

0.0031 

0.0187 
±  

0.0023 

50% Shade 0.0001 
±  

0.0001 

0.0150 
±  

0.0109 

0.0341 
±  

0.0035* 

0.0232 
±  

0.0032 

p 0.718 0.527 0.007 0.501 

MAR23 

 MS+ MS- MS+ MS- 

Control 0.0639 
±  

0.0235 

0.0480 
±  

0.0087 

0.0343 
±  

0.0031 

0.0237 
±  

0.0046 

30% Shade 0.0924 
±  

0.0116 

0.0816 
±  

0.0477 

0.0298 
±  

0.0053 

0.0233 
±  

0.0028 

50% Shade  
T 

0.1985 
±  

0.0551 

0.0507 
±  

0.0038* 

0.0319 
±  

0.0041 

p 0.615 0.647 0.01 0.228 

MAR25 

 MS+ MS- MS+ MS- 

Control 0.0184 
±  

0.0137 
±  

0.0106 
±  

0.0085 
±  
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0.0063 0.0036 0.0015 0.0014 

30% Shade  
T 

0.0277 
±  

0.0266 

0.0098 
±  

0.0013 

0.0094 
±  

0.0026 

50% Shade 0.0225 
±  

0.0071 

0.0276 
±  

0.0129 

0.0176 
±  

0.0018* 

0.0144 
±  

0.0026 

p 0.78 0.695 0.007 0.214 

MAR27 

 MS+ MS- MS+ MS- 

Control 0.0180 
±  

0.0039 

0.0142 
±  

0.0033 

0.0062 
±  

0.0016 

0.0048 
±  

0.0021 

30% Shade  
T 

0.3342 
±  

0.2363 

0.0042 
±  

0.0011 

0.0052 
±  

0.0015 

50% Shade 0.0562 
±  

0.0332 

0.0467 
±  

0.0238 

0.0141 
±  

0.0013* 

0.0087 
±  

0.0014 

p 0.938 0.525 <0.001 0.227 
 

 

 

 

A6.3 Hereward wax profile 
 

 Wax quantity in µg/mg leaf tissue 

Anthesis Senescence 

C22 FA 

 HS+ HS- HS+ HS- 

Control 0.0103 
±  

0.0031 

0.0200 
±  

0.0043 

0.0091 
±  

0.0005 

0.0126 
±  

0.0014 

30% Shade 0.0156 
±  

0.0026 

0.0165 
±  

0.0035 

0.0065 
±  

0.0002* 

0.0089 
±  

0.0010 

50% Shade 0.0096 
±  

0.0029 

0.0116 
±  

0.0022 

0.0096 
±  

0.0005 

0.0086 
±  

0.0007 

p 0.583 0.367 0.001 0.099 

C24 FA 

 HS+ HS- HS+ HS- 

Control 0.0175 
±  

0.0106 

0.0277 
±  

0.0070 

0.0132 
±  

0.0029 

0.0142 
±  

0.0015 

30% Shade 0.0351 0.0204 0.0087 0.0093 
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±  
0.0109 

±  
0.0047 

±  
0.0016 

±  
0.0013 

50% Shade 0.0239 
±  

0.0092 

0.0169 
±  

0.0051 

0.0146 
±  

0.0041 

0.0092 
±  

0.0008 

p 0.442 0.534 0.301 0.37 

C28 FA 

 HS+ HS- HS+ HS- 

Control 0.1171 
±  

0.0475 

0.1169 
±  

0.0420 

0.1424 
±  

0.0082 

0.1491 
±  

0.0136 

30% Shade 0.0548 
±  

0.0038 

0.1165 
±  

0.0719 

0.1094 
±  

0.0061* 

0.0941 
±  

0.0123 

50% Shade 0.0867 
±  

0.0530 

0.0975 
±  

0.0265 

0.1448 
±  

0.0115 

0.1067 
±  

0.0102 

p 0.747 0.515 0.018 0.069 

C32 FA 

 HS+ HS- HS+ HS- 

Control  
T 

 
T 

 
T 

0.0002 
±  

0.0001 

30% Shade 0.0001 
±  

0.0001 

0.0002 
±  

0.0001 

0.0004 
±  

0.0001 

0.0004 
±  

0.0001 

50% Shade 0.0001 
±  

0.0001 

0.0003 
±  

0.0001 

0.0003* 
±  

0.0001 

0.0006 
±  

0.0002 

p 0.376 0.325 0.033 0.468 

C24 POH 

 HS+ HS- HS+ HS- 

Control 0.9447 
±  

0.2733 

0.6976 
±  

0.1499 

0.6250 
±  

0.0304 

0.3431 
±  

0.0582 

30% Shade 1.1036 
±  

0.3757 

0.6751 
±  

0.1552 

0.4653 
±  

0.0386* 

0.2502 
±  

0.0286 

50% Shade 0.6723 
±  

0.1687 

0.3535 
±  

0.0709 

0.6241 
±  

0.0456 

0.2650 
±  

0.0308 

p 0.931 0.462 0.02 0.259 

C26 POH 

 HS+ HS- HS+ HS- 

Control 0.4346 
±  

0.2716 

0.8415 
±  

0.2453 

0.1569 
±  

0.0062 

0.1797 
±  

0.0232 

30% Shade 0.6780 
±  

0.7073 
±  

0.1383 
±  

0.1439 
±  
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0.2657 0.2692 0.0066 0.0121 

50% Shade 0.4544 
±  

0.2394 

0.4913 
±  

0.2101 

0.1898 
±  

0.0067* 

0.1289 
±  

0.0133 

p 0.823 0.641 0.002 0.12 

C28 POH 

 HS+ HS- HS+ HS- 

Control 3.6513 
±  

1.2132 

5.8761 
±  

1.2119 

2.1140 
±  

0.1179 

2.8082 
±  

0.3057 

30% Shade 4.6963 
±  

0.8932 

6.8088 
±  

1.7923 

2.3199 
±  

0.1419 

2.4849 
±  

0.3475 

50% Shade 4.1135 
±  

1.0422 

3.9442 
±  

0.8067 

2.6579 
±  

0.2103 

2.9832 
±  

0.2657 

p 0.836 0.619 0.117 0.831 

C30 POH 

 HS+ HS- HS+ HS- 

Control 0.1475 
±  

0.0524 

0.1361 
±  

0.0296 

0.0922 
±  

0.0019 

0.0671 
±  

0.0060 

30% Shade 0.2045 
±  

0.0682 

0.1820 
±  

0.0527 

0.0994 
±  

0.0088 

0.0606 
±  

0.0090 

50% Shade 0.1344 
±  

0.0359 

0.1062 
±  

0.0244 

0.1286 
±  

0.0186 

0.0898 
±  

0.0079 

p 0.817 0.522 0.099 0.78 

C27 n-Alkane 

 HS+ HS- HS+ HS- 

Control 0.1110 
±   

0.0381 

0.1006 
±   

0.0222 

0.1018 
±  

0.0032* 

0.0766 
±  

0.0099* 

30% Shade 0.0164 
±   

0.0026 

0.0222 
±   

0.0052 

0.0459 
±  

0.0073 

0.0368 
±  

0.0056 

50% Shade 0.0544 
±   

0.0166 

0.0390 
±   

0.0073 

0.0584 
±  

0.0114 

0.0223 
±  

0.0032 

p 0.981 0.159 0.002 <0.001 

C29 n-Alkane 

 HS+ HS- HS+ HS- 

Control 0.4821 
±  

0.1635 

0.3003 
±  

0.0655 

0.4039 
±  

0.0078* 

0.2178 
±  

0.0200* 

30% Shade 0.0257 
±  

0.0358 
±  

0.2348 
±  

0.1393 
±  
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0.0054 0.0093 0.0246 0.0210 

50% Shade 0.3067 
±  

0.0933 

0.1507 
±  

0.0316 

0.3082 
±  

0.0201 

0.1033 
±  

0.0172* 

p 0.933 0.255 0.001 0.005 

C31 n-Alkane 

 HS+ HS- HS+ HS- 

Control 0.1977 
±  

0.0583 

0.0765 
±  

0.0254 

0.1406 
±  

0.0108 

0.0782 
±  

0.0157 

30% Shade 0.1542 
±  

0.0595 

0.0628 
±  

0.0121 

0.0993 
±  

0.0093 

0.0464 
±  

0.0031 

50% Shade 0.1159 
±  

0.0355 

0.0535 
±  

0.0111 

0.0740 
±  

0.0131 

0.0357 
±  

0.0044 

p 0.945 0.544 <0.001 0.1 

MAR19 

 HS+ HS- HS+ HS- 

Control 0.0183 
±  

0.0072 

0.0364 
±  

0.0079 

0.0094 
±  

0.0020 

0.0130 
±  

0.0037 

30% Shade 0.1178 
±  

0.0322 

0.0574 
±  

0.0074 

0.0116 
±  

0.0018 

0.0117 
±  

0.0024 

50% Shade 0.1195 
±  

0.0306 

0.1006 
±  

0.0276 

0.0090 
±  

0.0013 

0.0086 
±  

0.0013 

p 0.98 0.633 0.563 0.567 

MAR21 

 HS+ HS- HS+ HS- 

Control  0.0414 
±  

0.0164 

0.0519 
±  

0.0107 

0.0125 
±  

0.0017* 

0.0154 
±  

0.0030 

30% Shade 0.5045 
±  

0.1819 

0.2031 
±  

0.0278 

0.0167 
±  

0.0013 

0.0192 
±  

0.0037 

50% Shade  
T 

0.0147 
± 

0.0066 

0.0211 
± 

0.0004 

0.0170 
± 

0.0028 

P 0.07 ± 0.02 14.74 ± 6.58 21.05 ± 0.37* 16.99 ± 2.78 

MAR23 

 HS+ HS- HS+ HS- 

Control 0.0429 
±  

0.0244 

0.0516 
±  

0.0088 

0.0196 
±  

0.0027 

0.0180 
±  

0.0026 

30% Shade 0.1542 
±  

0.0628 
±  

0.0257 
±  

0.0221 
±  
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0.0595 0.0121 0.0016 0.0044 

50% Shade 0.0002 
±  

0.0002 

0.2314 
±  

0.0804 

0.0358 
±  

0.0007* 

0.0230 
±  

0.0032 

p 0.827 0.46 0.002 0.715 

MAR25 

 HS+ HS- HS+ HS- 

Control 0.0144 
±  

0.0069 

0.0173 
±  

0.0037 

0.0054 
±  

0.0009* 

0.0071 
 ±  

0.0011 

30% Shade 0.0025 
±  

0.0022 

0.0295 
±  

0.0142 

0.0085 
±  

0.0004* 

0.0075 
±  

0.0012 

50% Shade 0.0176 
±  

0.0053 

0.0229 
±  

0.0053 

0.0124 
±  

0.0004* 

0.0084 
±  

0.0013 

p 0.962 0.652 <0.001 0.449 

MAR27 

 HS+ HS- HS+ HS- 

Control 0.0216 
±  

0.0104 

0.0234 
±  

0.0045 

0.0054 
±  

0.0021 

0.0053 
±  

0.0024 

30% Shade 0.0653 
±  

0.0646 

0.4139 
±  

0.1526 

0.0107 
±  

0.0008 

0.0050 
±  

0.0030 

50% Shade 0.0460 
±  

0.0138 

0.0440 
±  

0.0112 

0.0088 
±  

0.0044 

0.0089 
±  

0.0034 

p 0.953 0.4 0.267 0.431 
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A7 Shade trial field plan 
 

  = Soissons      

Block:  1 2 3 4 5  

60% SHADE            

  AS+ MS+ HS+ AS- MS-  

  AS- MS- HS- AS+ MS+  

  HS+ AS- MS- HS- AS+  

  HS- AS+ MS+ HS+ AS-  

  MS- HS- AS+ MS+ HS+  

  MS+ HS+ AS- MS- HS-  

        

        

        

        

        

40% SHADE        

  AS+ MS+ HS+ AS- MS-  

  AS- MS- HS- AS+ MS+  

  HS+ AS- MS- HS- AS+  

  HS- AS+ MS+ HS+ AS-  

  MS- HS- AS+ MS+ HS+  

  MS+ HS+ AS- MS- HS-  

        

        

        

        

        

CONTROL        

  AS+ MS+ HS+ AS- MS-  

  AS- MS- HS- AS+ MS+  

  HS+ AS- MS- HS- AS+  

  HS- AS+ MS+ HS+ AS-  

  MS- HS- AS+ MS+ HS+  

  MS+ HS+ AS- MS- HS-  

        

 

 

 

 

 

 


