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Abstract 

 

The consumption of dietary flavonoids has been associated with reduced cardiovascular 

disease risk, however, many in vitro studies have demonstrated effects using 

supraphysiological concentrations of flavonoids, overlooking the potential bioactivity of 

flavonoid metabolites and additive effects in combination.  

This thesis investigated metabolite activity relative to their unmetabolised precursors, their 

additive activities, and mechanisms of action, on vascular and inflammatory biomarkers of 

endothelial dysfunction. 

20 flavonoids and metabolites were screened for their effects on endothelial nitric oxide 

synthase (eNOS), haem oxygenase-1 (HO-1/Hmox-1), and vascular cell adhesion molecule-1 

(sVCAM-1) in endothelial and smooth muscle cells. Active treatments were further explored 

for effect of concentration, mRNA response, and mechanisms of action (e.g. Nrf2 and NFB). 

Additionally, up to 25 combinations of flavonoids and metabolites were explored, reflecting 

3 unique serum profiles of cyanidin-3-glucoside (C3G) metabolites observed in vivo post-

consumption. 

HO-1 was increased >20 % in response to quercetin and 2 phenolic acids, of which only 

quercetin increased Nrf2 activation (3 fold), suggesting metabolites act on alternative 

pathways to their precursors. 4 combinations of protocatechuic acid (PCA) and PCA-

conjugates significantly increased Hmox-1 (8.7-15.7 %), signifying additive effects. sVCAM-1 

secretion was inhibited in response to 4 phenolic metabolites (10.1-17.2 %) but not their 

precursor structures, suggesting that metabolites are more active than their precursors in 

inflammatory mechanisms of action. sVCAM-1 was also inhibited in response a C3G 

metabolite profile reflecting 24 h (27.84 %) post-bolos sampling, but not at 1 h, indicating 

that anti-inflammatory activities of flavonoid metabolites are modulated by metabolites of 

microbial action which appear many hours post-consumption.  

Data herein suggest multiple mechanisms are modulated by flavonoid metabolites which 

contributes to our understanding of how flavonoids influence physiological responses, and 

therefore the associations between diet and health.  
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Chapter 1. Flavonoids and Cardiovascular Disease: A Review 

of Current Literature. 

 

1.1. Introduction  

Flavonoids are a class of polyphenolic compounds present as secondary metabolites in many 

plants and fruit and are consumed in varied amounts in our diet; common sources are tea, 

berries and red wine (Table 1.1; Spencer, 2012). Flavonoids are considered non-essential 

nutrients as their intake is not considered essential to growth and development (Birt and 

Jeffery, 2013), however, there is a mounting epidemiological evidence suggesting that long-

term consumption of flavonoid-rich foods reduces the occurrence of a number of chronic 

disorders, such as atherosclerosis (Faridi et al., 2008, Lekakis et al., 2005, Oyama et al., 2010, 

Yang and Zhao, 2012), cancer (Su et al., 2012, Adebamowo et al., 2005, Cutler et al., 2008, 

Theodoratou et al., 2007) and neurodegeneration (Spencer, 2009).  

 

Table 1.1. Dietary sources of flavonoids 

Adapted from (Manach et al., 2004) and Phenol Explorer (Rothwell et al., 2013). 

 

Sub-class name 
Example dietary flavonoid 

in this subclass 

Example dietary sources 
(approx. serving size) 

Approximate 
polyphenol content 
per serving size (mg) 

Flavan-3-ols 
(Flavanols)  

(+)-Catechin Chocolate (50 g) 23–30 

(-)-Epicatechin Green tea (200 mL) 20–160 

(-)-Epicatechin-3-O-gallate Black tea (200 mL) 12–100 

Flavanones 

Naringenin Orange juice (200 mL) 40–140 

Hesperetin Grapefruit juice (200 mL) 20–130 

Eriodictyol Lemon juice (200 mL) 10–60 

Flavones 

Apigenin Parsley (5 g) 1.2–9.2 

Luteolin Celery (200 g) 4–28 

  Capsicum pepper (100 g) 0.5–1 

Flavonols 

Quercetin Yellow onion (100 g) 35–120 

Kaempferol Curly kale (200 g) 60–120 

Myricetin Leek (200 g) 6–45 

Anthocyanins 

Cyanidin Blueberry (100 g) 25–500 

Peonidin Black grape (200 g) 60–1500 

Malvidin Red wine (100 mL) 20–35 
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Cardiovascular-related disorders are the most prevalent causes of death in the Western 

world (Mendis et al., 2015). The total cost of cardiovascular disease care in the UK exceeded 

£15.4 billion in 2014 with a predicted increase to £18 billion by 2020 (Tofield, 2013). 

Prevention of chronic disease by means of diet is therefore of great interest to the fields of 

nutrition and medicine.  

Protective effects of dietary flavonoids against cardiovascular-related disorders have been 

observed in numerous randomised-control trials (Barona et al., 2012, Weseler et al., 2011, 

Bondonno et al., 2012, Curtis et al., 2009, Faridi et al., 2008), animal feeding (Bornhoeft et 

al., 2012, Gandhi et al., 2009, Heeba et al., 2012, Loke et al., 2010, Nabavi et al., 2012, Sheng 

et al., 2009) and in vitro studies (Kawai et al., 2008, Tu et al., 2007, Yamagata et al., 2010). 

Unfortunately, the underlying mechanisms of flavonoids cardiovascular bioactivity have yet 

to be elucidated and it has been proposed that their bioactivity is mediated through their 

lesser studied metabolic degradants (Kay et al., 2009). Most previous in vitro studies have 

been conducted using supraphysiological concentrations of single flavonoids, overlooking 

appropriate dose, the potential bioactivity of flavonoid metabolites, and additive effects 

metabolites may have in combination. Additionally, the study of metabolite bioactivity is 

restricted by the limited availability of pure metabolite standards (Rodriguez-Mateos et al., 

2014b, Kay, 2010). Elucidating the cellular effects of flavonoid metabolites at concentrations 

obtainable through diet, is therefore essential to our understanding of flavonoids ‘true’ 

cardiovascular bioactivity. 

 

1.2. Flavonoids 

1.2.1. Structures and Functions in Nature. 

Flavonoids are a family of phytochemicals that share a common flavalium backbone (Figure 

1.1). Antioxidant activities have been attributed to the multiple hydroxyl groups, common 

to all flavonoid structures, coupled with conjugated double-bonds and carbonyl groups 

allowing for stable electron delocalisation (Corcoran et al., 2012). These compounds act as 

scavengers of reactive oxygen species (ROS) in plants, preventing cells from intracellular 
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damage resulting from ultraviolet (UV) light exposure (Agati et al., 2013), amongst other 

activities (anti-fungal, anti-microbial etc.; Corcoran et al., 2012).  

Initial research into flavonoid bioactivity was focused on extrapolating this plant cell 

antioxidant activity to analogous functions in humans and animal systems (Robak and 

Gryglewski, 1988), however, such activity in humans did not account for systemic, tissue, 

and cell concentrations of scavenging substrates/flavonoids, where most tissue levels in vivo 

are too low to act as effective radical scavengers (Brunetti et al., 2013). The need for an 

alternative hypothesis of flavonoid activity has therefore led to a focus on regulation of 

protein and enzyme systems (Kay, 2015). 

Flavonoids are characterised into six chemical sub-classes, based on their structural 

characteristics (Table 1.2). Subclasses of flavonoids share a common C6-C3-C6 structure and 

are further sub-classified by their functional groups (Birt and Jeffery, 2013). Over five 

thousand structurally distinct flavonoids have been identified and characterised, although 

the exact number varies in the literature (Beecher, 2003, Corcoran et al., 2012). 

 

Table 1.2. Structures of common subclasses of flavonoids. 

 
1Derived from Phenol Explorer (Rothwell et al., 2013).  

  

R1 R2 R3

(+)-Catechin OH OH H

(-)-Epicatechin OH OH H

Naringenin H OH H

Hesperetin OH OCH3 H

Apigenin H OH H

Luteolin OH OH H

Daidzein OH H H

Genistein OH H OH

Quercetin OH OH H

Kaempferol H OH H

Cyanidin OH OH H

Peonidin OCH3 OH H

Example dietary 

flavonoids in this 

subclass1

Flavonols

Flavanones

Flavan-3-ols 

(Flavanols) 

Substituent(s)
Sub-class name Common structure 

Anthocyanins

Isoflavones

Flavones

OH

OH O

O

R3

R1

R2

OH

OH

OH
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R 2
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1.2.2. Metabolism and Absorption 

Many flavonoids found in nature are conjugated to sugar moieties, such as β-glycoside (e.g. 

cyanidin-3-glucoside). Consequently, due to their high polarity and occurrence in larger, 

more complex structures, many flavonoids were initially thought to be non-absorbable 

following oral consumption (Bravo, 1998), though postulated to be hydrolysed by intestinal 

bacteria and partially absorbed (Bokkenheuser et al., 1987). There is now evidence to 

suggest that flavonoids are absorbed into the intestinal enterocytes of the small intestine by 

a number of reported mechanisms (Walle, 2004; Figure 1.2).  

 

Figure 1.2. Proposed mechanisms of flavonoid absorption and metabolism. Abbreviations: CβG, 

cytosolic-β-glucosidase; COMT, catechol-O-methyltransferase; LPH, lactase phloridzin hydrolase; 

MRP, multidrug resistance protein; SGLT-1, sodium-dependant glucose transporter; SULT, 

sulfotransferase; UDP-GT, UDP-glucuronosyltransferase. Adapted from Serra et al., 2012 and Kay, 

2006. 

Phenolic metabolite

Excretion

UDP-GT
SULT
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lumen

Portal 
circulation

Colon

Enterohepatic circulation
Liver
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Bacterial 
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MRP

GlycosideFlavonoid aglycone

Metabolic conjugate
(methyl/glucuronide/sulfate)

Intestinal enterocyte

Diffusion (Active/Passive)

CβG

Bile

Systemic circulation
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Flavonoid glycosides may be deconjugated by lactase phlorizin hydrolase (LPH) located on 

the brush border of the small intestine (Day et al., 2003). Aglycones, being less hydrophilic 

than glycoside conjugates, are readily absorbed by intestinal enterocytes. It is believed that 

the uptake process for glycosides is facilitated by the use of an active transport mechanism 

via sodium-dependent glucose transporter-1 (SGLT-1). Hydrolysis of the glycoside may then 

occur intracellularly by cytosolic-β-glycosidase (CβG), and the aglycones may then diffuse 

into the hepatic portal vein by passive diffusion (Day et al., 2003) or be further conjugated 

by phase II enzymes.  

Within the intestinal enterocytes, flavonoid aglycones are subjected to the activity of phase 

II metabolic enzymes; UDP-glucuronosyltransferase (UDP-GT), sulfotransferase (SULT) and 

catechol-O-methyltransferase (COMT; Murota and Terao, 2003), responsible for the 

conjugation to glucuronide, sulfate and methyl moieties, respectively (Singh et al., 2008). 

The resulting products are transported to the liver through the portal vein and may further 

undergo glucuronidation or sulfation and/or methylation within hepatocytes in the liver 

(Singh et al., 2008, Perez-Vizcaino et al., 2012) before entering the systemic circulation and 

ultimately being distributed to the tissues of the body or eliminated via the kidneys (urinary 

excretion; Perez-Vizcaino et al., 2012). Similarly, conjugates may re-enter the small intestinal 

lumen through the enterohepatic circulatory system through bile acids; ultimately these 

compounds are transported to the colon (Serra et al., 2012), where ring fission of flavonoids 

occurs through the action of microbial catabolism (Kumar and Pandey, 2013). 

Colonic microbiota contain a number of metabolic enzymes, such as dehydroxylases, 

decarboxylases, glucosidases, demethylases and esterases (Serra et al., 2012). The process 

of fermentation produces a number of smaller compounds, such as phenolic acids, cinnamic 

acids, phenylacetic acids, phenylpropionic acids and valerolactones (Serra et al., 2012, 

Stalmach et al., 2013). Products of fermentation may then be absorbed, re-absorbed and 

circulate to the liver through the portal vein (resulting in further phase II metabolism) and 

distributed to the tissues, or can be excreted in faeces (Monagas et al., 2010).  

A large proportion of degradants originating from the B-ring of flavonoids appear to circulate 

as phenolic metabolites (Vitaglione et al., 2007, Pimpão et al., 2015). Common phenolic 

metabolites of flavonoids, such as phenolic acids have been detected following the 

consumption of berry anthocyanins (de Ferrars et al., 2014a), cocoa and tea (Clifford et al., 

2013), and citrus fruits (Schar et al., 2015, Pereira-Caro et al., 2014). It has been proposed 

that the flavonoid A-ring is metabolised to oxaloacetate, which is then degraded to CO2 via 
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the citric acid cycle (Walle et al., 2001b), resulting in eventual excretion by exhalation from 

the lungs (Czank et al., 2013). 

Many previous in vitro studies have focused on the bioactivity of flavonoid aglycones, which 

are extensively metabolised, as described above. It has been suggested that the beneficial 

effects of flavonoids are most likely the result of their more abundant bacterial catabolites 

and phase II metabolites (Kay et al., 2009), which are present in the circulation for extended 

periods of time. The study of the bioactivity of these phenolic metabolites is relatively 

contemporary (Heleno et al., 2015, Edwards et al., 2015, di Gesso et al., 2015) and therefore 

are the focus of the present thesis. Additionally, in vitro studies treating with precursor/un-

metabolised structures in isolation do not take into account the additive, antagonistic, or 

synergistic effects that these metabolites may have in combination (Kerimi and Williamson, 

2016). To address this issue, studies presented in this thesis also explored potential additive 

effects of flavonoid metabolites as mixtures or complex profiles. 

 

1.2.3. Bioavailability  

Bioavailability is defined as the available fraction of a substance available to the tissues for 

physiological function and/or storage (Bohn, 2014). The bioavailability of flavonoids is 

generally measured based on approximations derived from plasma concentration (Cmax) of a 

given compound and the time at which this concentration is achieved (tmax; Table 1.3). A 

possible reason for the low recovery of flavonoids, particularly anthocyanins, may be that 

the majority of bioavailability studies conducted to date have generally attempted to detect 

aglycones, or intact or conjugated flavonoid structures (Felgines et al., 2005, Kay et al., 2005) 

and have not identified lower molecular weight metabolites, such as phenolic acids. 

Additionally, the majority of in vivo absorption and metabolism studies have utilised 

flavonoid-rich extracts from fruits, which may have an influence on absorption, and 

production of degradants and metabolites in the body due to the complex mixture of various 

molecules present (Crozier et al., 2009). Bioavailability data are important in the design of 

both in vivo and in vitro studies, as utilised concentrations or doses used should ideally 

reflect physiologically achievable concentrations of flavonoids post-consumption.  
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Table 1.3. Kinetic data for example flavonoids 

Data derived from (Manach et al., 2005, Manach et al., 2004, de Ferrars et al., 2014b). Abbreviations: 

tmax, time to reach maximum plasma concentration; Cmax, plasma concentration at tmax 

 

As previously mentioned, the bioavailability of parent flavonoids, particularly anthocyanins, 

is low, but more recent evidence has suggested that flavonoids largely circulate as their 

chemical degradation products or bacterial catabolites (Kay et al., 2005). A pertinent 

example of this is a study providing a regular dose of orange juice vs. control drink (Schar et 

al., 2015), where the recovered concentration of the total (8) flavanones was 1.75 µM at 5 h 

post-consumption, compared to 13.3 µM of total phenolic intermediates/metabolites at the 

same time point. Likewise, following ingestion of 500 mg 13C-labelled cyanidin-3-glucoside 

(C3G), our group reported a Cmax of 0.14 μM C3G at 1.8 h (Czank et al., 2013), whereas peak 

phenolic metabolites were reported between 2 and 30 h at 10 - 2000 nM (de Ferrars et al., 

2014b). Therefore, while there is little scope to explore flavonoid in vitro activity at 

concentrations >1 µM, there is scope to explore metabolite mixtures at concentrations 

reflective of physiological conditions >10 µM. Additionally, following an initial 0.5-1 h 

spike/peak in concentration in plasma following consumption of a cocoa polyphenol extract 

(Vitaglione et al., 2013) and 13C-labelled cyanidin-3-glucoside (de Ferrars et al., 2014b), 

phenolic metabolites again peaked at 6 h (2.2 µM) and 24 h (4.39 µM). Given that these 

phenolics circulate at higher concentrations for longer periods of time than their precursors, 

there is necessity to investigate whether it is the collective activity of the phenolic 

metabolites which are responsible for the long-term health benefits of flavonoids and 

prevention of cardiovascular disease.  

 

Flavonoid Source Dose (mg) tmax (h) Cmax (µM) 

Quercetin 

  

Pure compound 4000 1.3-1.9 <0.33  

Onion 68 0.7 0.74 

(+)-Catechin  Pure compound 2000 0.5 2.8-5.9 

(-)-Epicatechin 

  

Green tea infusion 32 3-6 0.27 

Chocolate 220 2 4.77 

Naringenin Grapefruit juice 199 4.8 5.99 

Hesperetin Orange juice 126 5.4 2.2 

Cyanidin-3-glucoside Pure (13C) compound 500 1.8 0.14 
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1.3. Flavonoids and Cardiovascular Disease 

1.3.1. Cardiovascular disease 

Cardiovascular disease (CVD) is a global term for a number of diseases relating to the 

cardiovascular system. Common types of CVD include coronary heart disease (CHD; also 

known as ischemic heart disease), peripheral arterial disease, aortic disease (such as aortic 

aneurysm) and stroke (WHO, 2014). The projected number of deaths between 2014 and 

2020 is an estimated 1,422,968 people across six major EU countries, including the UK (Cebr, 

2014). Certain types of CVD (such as atherosclerosis) may be undiagnosed for many years 

prior to a medical event, such as myocardial infarction (McGill et al., 2008). Therefore, long-

term prevention of chronic diseases through the management of diet has become an 

important factor in reducing the risk of CVD (NICE, 2014). 

Epidemiological evidence suggests that the increased consumption of flavonoid-rich foods is 

associated with the reduced risk of CVD (Wang et al., 2014, Mink et al., 2007) though not all 

studies support these associations (Wang et al., 2012, Vogiatzoglou et al., 2015). A 

prospective study involving 156,957 participants from the Nurse’s Health Society and Health 

Professionals Study identified a reduction in the relative risk (8 %) of hypertension in the 

highest quintile of anthocyanin consumption compared to the lowest (Cassidy et al., 2011). 

The Iowa Women’s Health Study identified evidence linking individuals that consumed the 

highest quantities of flavonoid-rich foods to a lower incidence of fatal CVD over a 16 year 

period (Mink et al., 2007). In a cohort of 93,600 healthy women (24- 45 y) there was a 32 % 

reduced risk of myocardial infarction (MI) amongst the highest consumers of anthocyanins 

over 18 y (Cassidy et al., 2013). Multiple classes of flavonoids, such as anthocyanins (Dell'Agli 

et al., 2004), flavan-3-ols (Arts et al., 2001, Geleijnse et al., 2002), flavonols and flavones 

(Knekt et al., 2002), and phenolic acids (Tresserra-Rimbau et al., 2014) are also positively 

associated with the reduced risk of CVD-related death/disorders amongst the highest 

consumers.  

Recommendations for the consumption of flavonoid-rich foods in particular are largely 

based on observations from epidemiological studies (Rangel-Huerta et al., 2015), though 

evidence from meta-analyses of randomised control trials (RCTs) vary in conclusions 

regarding impact on specific factors of cardiovascular disease (Desch et al., 2010, Knekt et 

al., 2002, Wang et al., 2012), potentially due to the lack of consistency between studies (e.g. 

the given dose, length of study, statistical methods utilised, and a lack of biomarkers of 

flavonoid intake; Wallace et al., 2016, Kay et al., 2012, Feliciano et al., 2015). Investigations 

into the potential mechanisms of action of flavonoids in vitro may therefore aid in the design 



Page | 9 
 

of future, targeted RCTs, which together may forward our understanding of flavonoids 

cardiovascular bioactivity.  

 

1.3.2. Atherosclerosis  

Atherosclerosis, a common pathology of coronary heart disease (CHD), is characterised as 

an accumulation of plaque in the arterial wall. The condition originates in the intimal layer 

of the vascular wall, where macrophages develop into foam cells; an inflammatory process 

driven by endothelial cell dysfunction in the layer surrounding the vascular lumen (Sitia et 

al., 2010). Endothelial dysfunction is defined as the modulation of cell phenotype in response 

to a non-adaptive functional state (Sitia et al., 2010). The presence of pro-inflammatory 

factors(such as TNF-α, high levels of oxidised-low density lipoprotein (oxLDL), bacterial 

toxins or viral infection) activates inflammatory cell signalling cascades in endothelial cells, 

such as NFB, which upregulates the transcription and expression of adhesion molecules, 

such as VCAM-1 and E-selectin (Figure 1.3). E-selectins mediate a loose rolling interaction 

that slows passing leukocytes at the surface of activated endothelial cells and facilitates high 

affinity binding to the endothelium which is mediated by the action of VCAM-1 (Hopkins, 

2013). Chemokines, such as the monocyte chemoattractant protein-1 (MCP-1) present in the 

developing atheroma, stimulate circulating leukocytes to migrate into the tunica intima of 

the blood vessels and proliferate. MCP-1 stimulated endocytosis of modified lipoproteins by 

macrophages leads to the formation of foam cells, further upregulating the production of 

pro-inflammatory molecules, such as TNF-α, interleukin-1 beta (IL-1β), tissue factor and 

matrix metalloproteinases (MMPs; Ramji and Davies, 2015). The subsequent recruitment of 

inflammatory T cells, and further release of cytokines and growth factors from leukocytes 

and endothelial cells, leads to the migration and proliferation of smooth muscle cells, which 

then stimulate the degradation of elastin and collagen (Frostegard, 2013). Severe build-up 

of an atheroma eventually leads to the blockage of the artery, or rupture of the lesion, 

resulting in infarction and death. Multiple animal studies utilising flavonoids have reported 

reductions in atheroma size, or slowed atheroma progression, following the consumption of 

quercetin (Shen et al., 2013), anthocyanins (Mauray et al., 2012), and phenolic acids (Wang 

et al., 2010). 
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Figure 1.3. Pathogenesis of atherosclerosis. 1) Chronic low-level inflammation of the endothelium by 

any of a number of stimulants, such as cytokines (e.g. TNF-α), high ox-LDL, or shear stress, leads to 

expression of surface adhesion molecules (e.g. E-selectin, VCAM-1). 2) Monocytes adhere to the 

endothelial cell surface by rolling and tethering. 3) Cytokine secretion by endothelial and monocytic 

cells, leads to monocyte infiltration, proliferation, and differentiation into macrophages. 4) 

Macrophages absorb oxLDL to form foam cells. 5) Foam cells die to form a necrotic core. 6) Smooth 

muscle cells (SMCs) migrate to stabilise the core and form a fibrous cap. 6) The atheroma may 

eventually rupture and lead to thrombosis, which may induce myocardial infarction or stroke. 

Abbreviations: OxLDL, oxidised low density lipoprotein; SMCs. Smooth muscle cells. Adapted from Full 

et al., 2009. 

 

1.3.3 Endothelial dysfunction 

Endothelial dysfunction is an early-stage pathology in the development of atherosclerosis; 

characterised as the reduced availability of nitric oxide (NO) and consequential imbalance of 

endothelial homeostasis held by the ‘healthy’ endothelium (Figure 1.4; Rajendran et al., 

2013). Under normal conditions, endothelial cells primarily regulate vasodilation by NO and 

prostacyclin (PGI2) levels (Deanfield et al., 2007). The presence of NO aids in the suppression 

of NFB activation and the consequent expression of inflammatory proteins, such as VCAM-

1 and TNF-α. Additionally, blood clotting is inhibited by the expression of anti-thrombotic 

proteins such as plasminogen activator inhibitor 1 (PAI-1) and von Willebrand factor (vWF) 
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(van Hinsbergh, 2012). In ‘healthy’ individuals, there is an absence of circulating cell stress 

markers, such as circulating endothelial cells (CECs) and endothelial microparticles (EMPs), 

and markers which mediate endothelial repair, such as endothelial progenitor cells (EPCs), 

are increased (Burger and Touyz, 2012). Conversely, in the presence of endothelial 

dysfunction, vasodilation is impaired and coagulation factors and inflammation are 

upregulated and there is a high level of circulating endothelial stress markers. It is postulated 

that flavonoids may prevent the development of atherosclerosis by restoring endothelial 

homeostasis and preventing endothelial dysfunction, such as by the induction of 

vasodilators and anticoagulants (Angelone et al., 2011, Jimenez et al., 2015) and inhibition 

of cytokines and adhesion molecules (Burris et al., 2014, Chen et al., 2002, Noll et al., 2012). 

 

 

Figure 1.4. Characteristics of the healthy and dysfunctional endothelium. Abbreviations: CECs, 

circulating endothelial cells; EMPs, endothelial microparticles; EPCs, endothelial progenitor cells; IL-

6, interleukin-6; NO, nitric oxide; PAI-1, plasminogen activator inhibitor-1; PGI2, prostacyclin; ROS, 

reactive oxygen species; TNF-α, tumour necrosis factor alpha; VCAM-1, vascular cellular adhesion 

molecule-1; vWF, von Willebrand factor. Adapted from Rajendran et al., 2013. 

 

1.3.2. Biomarkers of endothelial dysfunction 

1.3.2.1. Nitric oxide homeostasis and oxidative stress 

a) Endothelial nitric oxide synthase  

A disruption ofnitric oxide (NO) homeostasis is a contributing factor in the progression of 

endothelial dysfunction, which can lead to atherosclerosis. Endothelial nitric oxide synthase 

(eNOS) is considered a critical regulator of NO homeostasis and is therefore a key clinical 

target for the treatment or management of chronic cardiovascular disorders (Heiss et al., 
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2015). Clinical measures of vascular function, such as flow-mediated vasodilation (FMD; 

Grassi et al., 2015), are, at least in part, regulated by endothelium-derived nitric oxide (NO) 

levels (Green et al., 2014). Cellular NO levels has therefore been a target of interest for 

previous flavonoid studies (Tribolo et al., 2013). Certain flavonoids may enhance vascular 

function through modulating the expression of eNOS (Woodman and Chan, 2004), which 

subsequently increases NO. 

eNOS produces NO by the oxidation of L-arginine to L-citrulline (Figure 1.5), which is 

catalysed via a cofactor, tetrahydrobiopterin (BH4), by electron transfer to the amine group 

of L-arginine (Alp and Channon, 2004). Disruption of eNOS is referred to as eNOS uncoupling, 

which can promote the transition of a normal endothelium into a dysfunctional endothelium 

by the increase in reactive oxygen species (ROS) production. eNOS uncoupling occurs in the 

presence of oxidative stress, where there are reduced levels of substrates L-arginine and 

BH4; in this state the enzyme produces ROS, such as superoxide (O2-), peroxynitrite (ONOO-) 

and hydrogen peroxide (H2O2; Kawashima and Yokoyama, 2004). The transcriptional, post-

transcriptional and post-translational regulation of eNOS expression is affected by a number 

of physical, chemical and hormonal factors such as bradykinin, oestradiol, intracellular 

calcium (Ca2+), shear stress and vascular endothelial growth factor (VEGF; Rafikov et al., 

2011). In vitro studies have shown that eNOS expression is increased in response to multiple 

subclasses of flavonoids, such as anthocyanins (Lazze et al., 2006), flavan-3-ols (Martinez-

Fernandez et al., 2015), and flavanones (Rizza et al., 2011), though the study of phenolic 

metabolites on eNOS expression is relatively contemporary (Edwards et al, 2015).  

 

Figure 1.5. Functional and dysfunctional eNOS activity. A) Functional eNOS activity produces NO 

under normal physiological conditions. B) Dysfunctional eNOS activity produces superoxide 

radicals which may react with NO, reduced its bioavailability and producing ONOO- radicals. 

 

eNOS

BH4

NADPH

NADP+ + e-

L-arginine + O2

L-citrulline + NO

eNOS

BH4

NADPH

NADP+ + e-

L-arginine + O2

L-citrulline + NO O2
-

ONOO-

Functional eNOS activity Uncoupled eNOS activity



Page | 13 
 

Interestingly, the flavonol, quercetin has been shown at supraphysiological concentrations 

to decrease eNOS expression, which appears to be blocked when the structure is 

metabolically conjugated with glucuronide, however this effect has not been demonstrated 

at physiologically achievable concentrations (Tribolo et al., 2013), conversely, 

concentrations of ≤10 µM of quercetin has been seen to increase eNOS expression (Shen et 

al., 2012). These studies further support the requirement for in vitro studies to utilise 

concentrations which resemble physiologically achievable concentrations observed in vivo. 

A recent study into structure-activity relationships, at a physiologically achievable 

concentration of 1 µM, of multiple flavonoids suggested that chemical structure significantly 

affects the ability to increase eNOS mRNA expression in vitro (Martinez-Fernandez et al., 

2015). Furthermore, it has been seen that common phenolic metabolites of flavonoids, 

protocatechuic acid (PCA) and vanillic acid (VA) also upregulate eNOS expression (Edwards 

et al., 2015) in a concentration dependent manner. These studies suggest that flavonoids 

and/or their metabolites, may influence eNOS expression in endothelial cells, though their 

effects at physiologically achievable concentrations, or additive effects of multiple 

metabolites in combination, have yet to be explored. 

b) Haem oxygenase-1   

Haem oxygenase-1 (HO-1) catalyses the oxidation and degradation of intracellular haem 

(Figure 1.6). The by-products of this reaction are carbon monoxide (CO), ferrous iron (Fe2+), 

and biliverdin IXα, which is subsequently reduced in the presence of NADPH and biliverdin 

reductase to produce the bilirubin IXα (Araujo et al., 2012). Intracellular HO-1 protein 

expression is low in the absence of cellular stress, but can be induced in response to a 

number of physical and chemical stimuli, such as NO, cytokines, oxLDL, and phytochemicals. 

HO-1 is of interest as a therapeutic target due to the bioactivity of its by-products, 

particularly CO and bilirubin; CO at low levels confers vasodilatory (Leffler et al., 2011) and 

anti-inflammatory activity (Ryter et al., 2006), whereas bilirubin increases NO in mice (Liu et 

al., 2015) and is known to scavenge ROS in vitro (Abraham and Kappas, 2008).  
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Figure 1.6. Degradation of Haem by Haem oxygenase-1 (HO-1) 

 

ApoE-deficient mice fed a high fat diet with quercetin expressed raised levels of HO-1 protein 

in the aorta against those not fed quercetin and this appeared to be protective against the 

development of atherosclerosis (Shen et al., 2013). In vitro studies have identified links 

between the upregulation of HO-1 in response to quercetin and the reduction in the 

expression of inflammatory biomarkers (Sun et al., 2015). Likewise, the flavanone naringenin 

attenuates smooth muscle cell proliferation and migration by upregulation of HO-1 (Chen et 

al., 2012) and similar effects have been observed in endothelial cells in response to the 

anthocyanin cyanidin-3-glucoside (C3G; Speciale et al., 2013, Sorrenti et al., 2007). 

Previously, few studies reported increased HO-1 protein expression in response to 

physiological concentrations of these flavonoids and recently one study observed HO-1 

protein expression in response to phenolic metabolites of flavonoids (protocatechuic acid 

and vanillic acid; Edwards et al., 2015). Given the diversity of flavonoid metabolites and the 

impact of flavonoids on multiple cells types, study into the effects of phenolic metabolites 

on HO-1 expression is warranted. 

 

1.3.2.2. Low level chronic inflammation 

a) Tumour necrosis factor-α 

Tumor necrosis factor-alpha (TNF-α) is a cytokine that plays a central role in the pathogenesis 

of a number of diseases, such as atherosclerosis, inflammatory bowel diseases (IBDs) and 

rheumatoid arthritis (Brenner et al., 2015). TNF-α functions as either a membrane-traversing 

protein or may be cleaved from the cell surface by TNF-α converting enzyme (TACE) to 

circulate as a soluble protein (Hehlgans and Pfeffer, 2005). The progression of 

atherosclerosis is strongly associated with circulating TNF-α levels in the blood (Bruunsgaard 

et al., 2000).  In a study of 32 males aged 58.2 ± 12 y with a particular variant of 

atherosclerosis, coronary artery ectasia, circulating TNF-α expression levels were 15.6 ± 11.2 

pg/mL vs. 7.8 ± 3.7 pg/mL compared to an age and sex matched control group (Aydin et al., 
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2009). The knockout of TNF-α in ApoE-deficient mice reduced atherosclerotic lesion size by 

50%, again suggesting that TNF-α is a major contributing factor to the development of 

atherosclerosis (Branen et al., 2004). There have been many clinical studies investigating the 

effects of flavonoids on TNF-α expression, however, a meta-analysis of 32 RCTs found no 

direct effects of flavonoids on TNF-α expression in humans (Peluso et al., 2013). A lack of 

consistency and poor controls between and within the studies was noted and may be a factor 

in the lack of positive findings. 

b) Vascular cell adhesion molecule-1 

Vascular adhesion molecule-1 (VCAM-1) is primarily expressed in endothelial cells, but may 

also be present to a lesser extent in other inflammatory cell types (e.g. macrophages, 

myoblasts, dendrites). The earliest stages of atherosclerosis pathogenesis involve the 

systematic expression of adhesion molecules which mediate the tethering (L- and P-

selectins), rolling attachment, and arrest at cell surface (VCAM-1, E-selectins, and ICAMs) 

and transmigration (ICAMs and PECAMs) of monocytes into the arterial intima (Galkina and 

Ley, 2007, Blankenberg et al., 2003; Figure 1.7). Of these proteins, VCAM-1 is considered 

critical and essential to atherosclerosis pathogenesis (Ley and Huo, 2001) and mice with 

defective VCAM-1 expression (VCAM-1D4D; 2-8% VCAM-1 relative to wild-type), fed a high 

cholesterol diet, had lesser-developed lesions after 8 weeks relative to wild-type mice 

(Cybulsky et al., 2001). VCAM-1 expression is upregulated following activation of the NFB 

transcription factor pathway in response to a number of stimuli, such as TNF-α, oxLDL 

(Yurdagul et al., 2016), and cluster of differentiation 40 ligand (CD40L; expressed by CD4+ T 

lymphocytes; Pamukcu et al., 2011). Membrane-bound VCAM-1 may be cleaved from the 

endothelial cell surface forming a soluble molecule (sVCAM-1), though the exact mechanism 

for this is not certain. Previous studies have suggested that VCAM-1 shedding may be 

mediated by TNF-α converting enzymes (TACE; e.g. ADAM17) following stimulation with 

phorbol 12-myristate 13-acetate (PMA; Garton et al., 2003) and TNF-α (via TIMP-3; Singh et 

al., 2005). 

Expression levels of circulating adhesion molecules have been postulated to be predictive of 

clinical events, despite the uncertainty of their roles in CVD pathology (Hope and Meredith, 

2003). sVCAM-1 is found at considerably high levels in the plasma of patients with 

atherosclerosis (Miwa et al., 1997) and considered an important predictor of risk of death 

from coronary heart disease (Blankenberg et al., 2001). Furthermore, sVCAM-1 expression 

directly correlates with membrane-bound VCAM-1 levels (Kjaergaard et al., 2013) and 
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remains stable in plasma (Hartweg et al., 2007), which makes it an ideal experimental 

biomarker in models of endothelial dysfunction. 

 

 

Figure 1.7. Cell adhesion and roles of adhesion molecules during early stages of atherosclerosis. 1) 

L- and P-Selectins function primarily in the process of tethering and rolling of monocytes on the 

endothelial membrane. 2) Vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion 

molecules (ICAMs), E-selectins, and integrins induce firm adhesion. 3) ICAMs and platelet endothelial 

cellular adhesion molecules (PECAMs) are involved in transmigration of cells from the vessel lumen 

into the underlying intimal layer. 4) Cellular adhesion molecules, except integrins, may be cleaved by 

proteolytic enzymes (e.g. metalloproteases (MMPs)) from the cell surface and circulate as soluble 

forms (sVCAM-1, sICAM-1, etc.). Adapted from Blankenberg et al., 2003. 

 

In vitro studies using human endothelial cells have observed an inhibition of VCAM-1 in 

response to various subclasses of flavonoids, such as flavan-3-ols (Ludwig et al., 2004), 

anthocyanins (Speciale et al., 2010), flavones (Choi et al., 2004), and flavanones 

(Nizamutdinova et al., 2008). However, these studies observed activity at concentrations 

from 5 to 60 µM, which does not reflect physiologically achievable concentrations. 

Therefore, future studies should investigate the activity of flavonoids at physiologically 

achievable concentrations and account for the extensive metabolism of flavonoids. 

More recently, studies have focused on the effects of flavonoid metabolites on the inhibition 

of VCAM-1 and monocyte adhesion (Claude et al., 2014, Chanet et al., 2013), though these 

have looked primarily at the phase II conjugated parent structures, rather than the bacterial 

catabolites. Until recently, only a few studies from our group have focused on unconjugated 
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and conjugated phenolic metabolites (di Gesso et al., 2015, Amin et al., 2015), where one 

has reported bioactivities of mixtures of flavonoid metabolites.  

c) Interleukin-6 

Raised serum IL-6 expression has been shown as highly predictive of CVD (Cesari et al., 2003) 

and of future cardiac events and is involved in the induction of endothelial dysfunction 

(Bhagat et al., 1997) and the activation of acute-phase proteins (Scheller et al., 2011). In a 

study of 718 patients, high levels of serum IL-6 was significantly associated with 

cardiovascular mortality (Su et al., 2013) and atherosclerotic lesion size was significantly 

increased in ApoE-deficient mice injected with recombinant IL-6 (Huber et al., 1999). In vitro, 

IL-6 has been shown to induce the proliferation of smooth muscle cells (Garcia-Lafuente et 

al., 2009). Following a 4-week anthocyanin-rich bilberry juice intervention, significantly 

lower plasma concentrations of IL-6 were reported in subjects who consumed the treatment 

relative to the placebo control (Karlsen et al., 2010). IL-1β stimulated IL-6 expression in 

Grave’s orbital fibroblasts was significantly reduced by >50 µM quercetin and by the 

flavanones, hesperetin and naringenin (100 µM) in murine adipocytes (Yoshida et al., 2010). 

As previously mentioned, there are few studies which have looked at physiologically 

achievable concentrations of flavonoids and of their phenolic metabolites on IL-6 secretion. 

This is particularly pertinent given that conjugated phenolic metabolites of flavonoids have 

recently been seen by our group to significantly reduce the secretion of sIL-6 by human 

endothelial cells (Amin et al., 2015).  

 

1.3.3. Regulatory mechanisms of endothelial dysfunction 

1.3.3.1. Transcription factor regulation  

a) Nuclear factor-erythroid-2-related factor 2 

The nuclear factor-erythroid-2-related factor 2 (Nrf2) transcription factor is a key sensor and 

master regulator of oxidative stress and is expressed ubiquitously in all tissues (Uhlen et al., 

2015). Activation of Nrf2 leads to the transcription of proteins which have antioxidant and 

anti-inflammatory properties, which may protect against endothelial dysfunction, and is 

therefore a potential therapeutic target for CVD (Reuland et al., 2013). Nrf2 protein levels in 

the cytosol are negatively regulated by association with Kelch-like ECH associated protein 1 

(Keap1). Keap1 is a scaffold protein that recruits Cul-3/Rbx1 E3 ubiquitin ligase, which leads 

to the ubiquitination and degradation of Nrf2 by the 26S proteasome (Niture et al., 2014). 

This mechanism has been demonstrated by the increase in Nrf2 expression following 

proteasome inhibition (Sekhar et al., 2000).  Following translocation to the nucleus, activated 
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Nrf2 binds to an enhancer, the antioxidant response element (ARE), in the regulatory regions 

of over 250 cellular antioxidants, detoxification enzymes and other cytoprotective proteins, 

including haem oxygenase-1 (HO-1), NAD(P)H dehydrogenase quinone-1 (NQO1), and 

glutamate–cysteine ligase (GCL; Hybertson et al., 2011). It has been observed that certain 

flavonoids may have regulatory effects on the Nrf2 pathway (Moosavi et al., 2016). In aged 

rat hearts, Nrf2 expression was upregulated in response to hesperidin (Elavarasan et al., 

2012) and Nrf2-dependent HO-1 expression in response to quercetin is thought to be 

dependent on ERK1/2 phosphorylation (Liu et al., 2012).  

The mechanism(s) by which Nrf2-regulated transcription (Figure 1.8) is activated has been a 

topic of much debate. Initially, it was postulated that Keap1/Nrf2 binding was destabilised 

by modification of the cysteines of Keap1 in the presence of oxidative stress (Dinkova-

Kostova et al., 2002), leading to the liberation of Nrf2 from the complex. This mechanism has 

not been unequivocally demonstrated in vitro, in fact, the presence of inducers of Nrf2 

activation, such as sulforaphane, were not able to separate the proteins (Eggler et al., 2005). 

An alternative proposal is that the ubiquitination of Nrf2, which signals degradation by the 

26S proteasome is inhibited, potentially by disruption of the binding site. This then leads to 

the accumulation of Keap1/Nrf2 in the cytoplasm, eventually resulting in the saturation of 

Keap1, increase of free Nrf2 in the cytoplasm, and subsequent translocation and activation 

of transcription (Lee and Johnson, 2004). This stabilisation mechanism is most commonly 

accepted and resembles other characterised mechanisms, such as p53 in response to 

ionising and ultraviolet (UV) radiation, which leads to a reduction in Mdm2 E3 ubiquitin 

ligase binding ability (Honda and Yasuda, 2000). Additionally, Nrf2 activation has been shown 

to be upregulated in the presence of the phosphorylation, and targeted degradation, of 

negative regulators of Nrf2, such as Keap1 and Bach1, as demonstrated following 1 h 

treatment with tert-butylhydroquinone (t-BHQ), a potent phenolic antioxidant (Kaspar and 

Jaiswal, 2010, Kaspar et al., 2012). 
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Figure 1.8. Regulation of the Nrf2-mediated transcription pathway. The binding of Nrf2/MAF to ARE 

initiates the transcription of antioxidant, stress-responsive and phase II detoxifying proteins. 

Abbreviations:  ARE, antioxidant-response element; Bach1, BTB And CNC Homology 1; Cul3, cullin-3; 

GCL, γ-glutamate cysteine ligase; HO-1, haem oxygenase-1; Keap1, kelch-like ECH-associated protein-

1; NQO1, NAD(P)H:quinone oxidoreductase; Nrf2, nuclear factor-erythroid-2-related factor 2;  Rbx1, 

RING-box protein-1; Ub, ubiquitin. Adapted from Kim et al., 2010. 

 

It has been postulated that Keap1 directly interacts with inhibitors of the TNF-α stimulated 

NFB transcription pathway, leading to the inhibition of pro-inflammatory protein 

expression (Jiang et al., 2012), as was also observed in endothelial cells treated with 

epigallocatechin gallate (EGCG; Han et al., 2012). Additionally, Nrf2-dependant HO-1 and 

NQO1 induction causes a reduction in pathological biomarkers of atherosclerosis, such as 

MCP-1 (Kim et al., 2010) and VCAM-1 (Zakkar et al., 2009), suggesting that there is cross talk 

between the pathways in activated endothelial cells and that there is the potential for 

flavonoids to have an effect, directly or indirectly, on these interactions (Chan et al., 2011). 

 

b) NFB

The phenotypic switch of endothelial cells to a dysfunctional state is partly as a result of low 

level chronic inflammation, and the expression of many pro-inflammatory biomarkers, such 

as adhesion molecules, cytokines, growth factors and chemokines, are under the 

transcriptional regulation of the nuclear factor B (NFB; Figure 1.9; Ferre et al., 2010). NFB 

is implicated in the initiation of atherosclerosis by the induction of inflammatory and 

immune responses (Ramji et al., 2015) and flavonoids have been seen to inhibit targets 

within this pathway (Gonzalez et al., 2011). In resting cells, the NF-B family of proteins (p65, 

RelB, c-Rel, p50, and p52), are retained in the cytoplasm as homo- or hetero-dimers bound 

to inhibitors of B (IB; Hayden et al., 2004). 
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NFB-mediated transcription is activated by a number of upstream signalling cascades, in 

response to various stimuli, such as pro-inflammatory cytokines (e.g. TNF-α), phorbol esters, 

lipopolysaccharide (LPS), and antigens (Sakurai et al., 2003). Following TNF-α binding to the 

TNF-α receptor-1 (TNFR1), a scaffold referred to as the TNFR1-associated death domain 

(TRADD) protein is recruited. TRADD recruits a number of adaptor proteins, such as receptor-

interacting protein (RIP) kinases and TNFR-associated factors (TRAF2/5). These are 

responsible for the activation of downstream kinases, including several mitogen-activated 

protein kinase kinases (MAPKKKs), such as TGF-β-activated kinase 1 (TAK1). TAK1 is an 

endogenous inhibitor of a family of proteins called inhibitors of Ikinases (IKKs) in resting 

cells and previous studies have shown that TNF-α stimulated NF-B activation is dependent 

on TAK1 phosphorylation (Sakurai et al., 2003). 

The IKK complex consists of two kinase subunits, IKKβ and IKKα, and a regulatory subunit, 

IKKγ (Bremner et al., 2002). The phosphorylation of these kinase subunits leads to the 

phosphorylation of IBssuch as IBα at Ser32 and Ser36, and p65 at Ser538, leading to the 

ubiquitination and rapid proteasome-mediated degradation of IB, the translocation of 

NFB to the nucleus, and the subsequent transcription of pro-inflammatory proteins, such 

as VCAM-1 and IL-6 (Kempe et al., 2005).  Previous studies have shown that IBα is 

significantly upregulated in rats fed soybean isoflavones (Yuan et al., 2012), which is 

inversely related to NFB transcription levels and therefore the expression of pro-

inflammatory proteins. The phenolic metabolite, protocatechuic acid (PCA), has been shown 

to inhibit monocyte adhesion to TNF-α activated mouse aortic endothelial cells (MAEC) by 

reducing the NFB-DNA binding ability (Wang et al., 2010) and reduces the LPS stimulated 

production of inflammatory cytokines through inhibiting the activation of JNK, ERK and p38 

in macrophages (Min et al., 2010). 
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Figure 1.9. TNF-α activated NFB transcription factor and signalling kinase cascades. ERK1/2, 

extracellular-signal-regulated kinase 1/2; IB, inhibitor of B; IKK, inhibitor of B kinase; JNK, c-Jun 

N-terminal kinases; MAPKKKs, mitogen-activated protein kinase kinase kinases; MEKs, mitogen-

activated protein kinase kinases; NFB, nuclear factor B; p38, mitogen-activated protein kinase; 

PI3K, phosphoinositide 3-kinase; TAB1-2, TAK1 binding protein; TAK1, TGFβ-activated kinase 1; 

TRADD, TNFR1-associated DEATH domain; TNF-α, tumour necrosis factor-α; TNFR1, TNF receptor-

1. Adapted from Wilson et al., 2009. 
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As previously mentioned, other MAPKKKs upstream of IKK are activated by proteins in the 

TRADD complex. Downstream MAPKs, such as extracellular signal-regulated kinases 

(ERK1/2), c-Jun N-terminal kinase (JNK), and p38 MAPK, have been shown to be rapidly 

phosphorylated in response to TNF-α in endothelial cells (Yoshizumi et al., 2004). TAK1 has 

been seen to phosphorylate MEKKs leading to the activations of JNK and p38 (Landstrom, 

2010) as well as PI3K (Faurschou and Gniadecki, 2008), which leads to the activations of Akt1 

and ERKs (Wang et al., 2012).  NFB activation can be partly suppressed by inhibitors of 

ERK1/2 (PD98059), JNK (SP600125), and p38 (SB203580; Kang et al., 2006), suggesting that 

the activation of these proteins may, in part, be dependent on the TNF-α stimulated 

phosphorylation of these protein kinases. TNF-α induced Akt1 phosphorylation has been 

reported to activate the NFB pathway by inducing the phosphorylation of IKKα at Tyr32 

(Ozes et al., 1999). It has been previously demonstrated that inhibitors of Akt1 

phosphorylation (LY294002 and wortmannin) partially inhibit TNF-α induced NFB-DNA 

binding, suggesting that Akt1 phosphorylation, at least in part, is also associated with the 

activation of the NFB pathway (Kang et al., 2006). Rat aortic endothelial cells transfected 

with RNAi for ERK2 and Akt1 had increased expression of VCAM-1 following stimulation with 

10 ng/mL TNF-α, suggesting that these kinases are negative regulators of NFB-mediated 

VCAM-1 expression (Pott et al., 2016).  

The inhibition of TNF-α stimulated lipolysis by flavanones hesperetin and naringenin in 

mouse adipocytes has been shown to be dependent on ERK1/2 phosphorylation, suggesting 

that flavonoids may target NFB indirectly through other kinases. Flavanol metabolites have 

also been found to inhibit both NFB and p38-MAPK regulated monocyte adhesion to 

endothelial cells (Claude et al., 2014), indicating also that flavonoid metabolite are active in 

both these pathways, as has been seen for butein, which inhibited the expression of 

adhesion molecules via JNK inhibition, as well as by inhibiting IB degradation (Kojima et al., 

2014), further suggesting that flavonoids may act on signal transduction kinases dependent 

and independent of NFB. These studies together suggest that flavonoid metabolites may 

act in multiple simultaneous pathways which may ultimately reduce the expression of pro-

inflammatory proteins which drive the pathogenesis of atherosclerosis. This therefore 

warrants the exploration of multiple mechanisms of action, rather than focusing on NFB in 

isolation. 
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1.4.  Hypotheses, Rationale, & Aims 

Rationale for study design. The lack of dietary relevance of contemporary cell culture 

studies in the field of nutrition is apparent, given the use of precursor structures at 

supraphysiological concentrations, which may explain why the underlying mechanisms of 

action of many phytochemicals (such as flavonoids) are still unknown (Kay, 2010).  

 

Rationale for culture models. The modulation of acute vascular responses, such as flow-

mediated dilation, post-consumption of flavonoids have been shown to correlate with 

modulations in flavonoid metabolite profiles (Rodriguez-Mateos et al., 2014a, Schar et al., 

2015), while anti-inflammatory effects are observed following more chronic intervention 

(Zhu et al., 2013).  

 

Primary Hypothesis. It is therefore hypothesised that flavonoid metabolite profiles are 

associated with specific mechanisms affecting differential physiological responses as they 

are systematically metabolised and eliminated from the body. 

 

Thesis aims.  

1. Determine whether metabolism of flavonoids affected their bioactivity on vascular 

(Chapters 3 & 4) and inflammatory (Chapter 5) biomarkers of endothelial dysfunction. 

2. Determine potential additive or synergistic activity of flavonoids and their metabolites 

in combination (Chapters 3-6). 

3. Determine the effects of concentration on bioactivity (Chapters 3, 5, & 6). 

4. Determine potential mechanisms of action (Chapters 3, 5, & 6). 

5. Determine the structure-activity relationship between metabolite treatments (Chapter 

5). 

 

Aim-specific rationales. 

1) Flavonoids and their phenolic metabolites have differential bioactivities on vascular 

and inflammatory biomarkers of endothelial dysfunction. 

Flavonoids undergo extensive metabolism by the activities of colonic bacteria and phase 

II metabolism. The resultant structures are diverse in their structural nature and, for the 

purpose of this investigation, focus was given to phenolic B-ring metabolites that differ 
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by the 3’ and 4’ configuration patterns. 6 flavonoids, 14 conjugated and unconjugated 

phenolic metabolites, and 25 combinations thereof, were screened across 4 

biomarkers, in biological triplicate, totalling 408 experiments, each in technical 

duplicate. Biomarkers investigated were eNOS and HO-1 (Chapters 3 & 4) in vascular 

cells and sVCAM-1 in TNF-α stimulated endothelial cells (Chapter 5). Active treatments 

from these screens were utilised in further experiments, which include mRNA and 

mechanistic studies (Chapters 3 & 5). 

2) Flavonoids and their phenolic metabolites have additive or synergistic bioactivities in 

combination. 

Flavonoids and their metabolites do not circulate in isolation following ingestion, but 

exist as complex mixtures of metabolites at various concentrations (Czank et al., 2013, 

Pereira-Caro et al., 2014, Serra et al., 2012), thus it is important that this is reflected in 

the design of cell culture experiments exploring the bioactivities of dietary components 

(Kerimi and Williamson, 2016). Few studies have explored the effects of flavonoids in 

combination, despite some indication of differential activities when in combination 

relative to isolation (Koga and Meydani, 2001, Harasstani et al., 2010). Mixtures of equal-

molar concentrations of structurally similar compounds were screened for their effect 

on HO-1 (Chapter 3 & 4) and sVCAM-1 (Chapter 5). It was hypothesised that this method 

of screening would provide better understanding of structure-activity relationships, and 

which may help elucidate potential additive effects in future studies. Further 

investigations were then conducted in the inflammatory model utilising unique human 

peak plasma compositions of metabolites (Chapter 6) identified in a 13C-labelled 

cyanidin-3-glucoside conducted by our group previously.  

3) Flavonoids and their phenolic metabolites have differential bioactivities at 

physiologically achievable concentrations relative to supraphysiological 

concentrations. 

The effects of flavonoids on biomarkers of endothelial dysfunction are not necessarily 

amplified by increased concentration, making it feasible that flavonoids and their 

metabolites may be more active at the lowest concentrations, as seen by others in our 

group (di Gesso et al., 2015). For this reason, active treatments from each screen (HO-1 

and sVCAM-1) were further explored for their effect on increasing concentrations on 

HO-1 (Chapter 3) and sVCAM-1 (Chapter 5). 

4) Flavonoid phenolic metabolites are active in transcription factor and signalling kinase 

cascade pathways. 
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Flavonoids and their metabolites regulate the activity of a number of vascular and 

inflammatory pathways. The present investigationfocused on the effects of active 

treatments from each screen on basal Nrf2 transcription factor expression, Akt1, and 

ERK1/2 phosphorylation (Chapter 3). For active treatments from the sVCAM-1 screen 

(Chapter 5), their effect on TNF-α stimulated NFB (phosphorylated p65) expression, 

and phosphorylation of TNF-α stimulated Akt1, ERK1/2, p38, and JNK was also 

investigated (Chapter 5 & 6). 

5) Structure-activity relationships can be determined between structurally similar 

flavonoids and metabolites.  

Investigations of structure-activity relationships (SAR) are important to improving our 

understanding of how metabolism alters phytochemical activity. As previous studies 

have reported the SAR of flavonoids and their metabolites (Lotito and Frei, 2006, Chen 

et al., 2004a, Krga et al., 2016, di Gesso et al., 2015), we aimed to draw conclusions based 

on relationships between conjugated and unconjugated phenolic metabolites in vascular 

cells (Chapter 5). 
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Chapter 2. Methods & Materials 

 

2.1. General Materials and Equipment 

T75, 6-well, 24-well, and 96-well cell culture plates were purchased from Greiner Bio-one 

(Stonehouse, UK). Nalgene General Long-Term Storage Cryogenic Tubes (1.5 mL) and 

Nunclon 12-well plates were purchased from Fisher Scientific (Loughborough, UK). Human 

plasma-derived fibronectin (lyophilized powder, BioReagent) and Trypan Blue solution 

(0.4%, liquid, sterile-filtered) were purchased from Sigma Aldrich (Dorset, UK).  

 

2.2. General Reagents and Buffers 

Water. All water utilised was of Milli-Q grade (18.2 MΩ cm-1), with the exception of that used 

for RNA extraction, which was diethylpyrocarbonate (DEPC) treated (RNase-free) water 

purchased from Fisher Scientific (Loughborough, UK). Water and buffers used for cell culture 

were sterilised by autoclaving in-house. 

Phosphate Buffer Solution. For Western blotting experiments, Phosphate Buffer Solution 

(PBS) tablets were purchased from Thermofisher Scientific (Loughborough, UK; 1 x solution, 

pH 7.4 with no correction). For ELISA kits, PBS from tablets was not utilised following 

manufacturer recommendation that this may affect assay sensitivity (R&D Systems), instead, 

a solution of 137 mM NaCL, 2.7 mM KCl, 10 mM Na2HPO4•2 H2O and KH2PO4 (pH corrected 

to 7.4) was prepared using in-house reagents. 

Cell lysis buffers. For protein samples for Western blotting, NP-40 lysis buffer (containing 

1 % (octylphenoxy)polyethoxyethanol, 150 mM NaCl, 20 mM Tris and 10 % glycerol (pH 8.0)) 

was prepared using in-house reagents and supplemented with Complete Protease Inhibitor 

Cocktail (Roche Applied Bioscience; Burgess Hill, UK; 1 tablet/10 mL) and phosphatase 

inhibitor (in 100 % DMSO solution; Sigma Aldrich; 0.1 % final concentration). For preparation 

of protein samples for eNOS and HO-1 ELISAs, Sample Buffer #1 (R&D Systems, Abingdon; 

containing 1 mM EDTA, 0.5 % Triton X-100 in PBS) was used. For preparation of protein 

samples for rat Hmox-1, an Extraction Reagent 2 (lysis buffer) was provided in the Hmox-1 

ELISA kit purchased from Enzo LifeSciences (Exeter, UK). 
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2.3. Treatment Solutions 

a) Materials  

Flavonoids and phenolic metabolites. Conjugated metabolites (protocatechuic acid-3-

glucuronide (PCA3G), protocatechuic acid-4-glucuronide (PCA4G), protocatechuic acid-3-

sulfate (PCA3S), protocatechuic acid-4-sulfate (PCA4S), vanillic acid-4-glucuronide (VA4G), 

vanillic acid-4-sulfate (VA4S), isovanillic acid-3-glucuronide (IVA3G), isovanillic acid-3-sulfate 

(IVA3S), benzoic acid-4-glucuronide (BA4G), and benzoic acid-4-sulfate (BA4S)) were 

synthesised at the University of St. Andrews, UK (Zhang et al., 2012). All flavonoids and 

unconjugated phenolic acids were obtained from Sigma Aldrich (Dorset, UK), with the 

exception of cyanidin-3- glucoside and peonidin-3-glucoside (Extrasynthase, France). 

Cell culture assay treatments. Human tumour necrosis factor-α (TNF-α; recombinant, 

expressed in E.Coli), (E)-3-(4-t-Butylphenylsulfonyl)-2-propenenitrile (BAY 11-7085; 

NFB/IB inhibitor), PD98059 (ERK1/2 inhibitor), and dimethyl sulfoxide (DMSO; Hybri max, 

sterile filtered, bioreagent (99.7%)) were purchased from Sigma Aldrich (Dorset, UK). 

InSolutionTM LY294002 (Akt/PI3K inhibitor) was purchased from Millipore (Watford, UK).  

b) Preparation of treatment solutions 

Individual treatments. Stock solutions of all compounds were prepared in 100 % DMSO at 

200 mM and stored at -80 oC, with the exception of cyanidin-3-glucoside and peonidin-3-

glucoside, which were stored at 40 mM, and sulfate- conjugated phenolic acids, which were 

stored at 25 mM in 50 % DMSO (50 % PBS) to maintain stability whilst reducing final DMSO 

concentrations in working solutions. Working solutions of all treatments were added to 

supplemented media to the appropriate concentrations (0.01 µM, 0.1 µM, 1 µM, 10 µM, 50 

µM, or 100 µM) immediately prior to treatment. 

Combination treatments. Treatments containing mixtures of compounds consisted of 

equimolar concentrations of the constituent treatment compounds to a cumulative 

concentration of 1 µM or 10 µM, for example, a combination comprising of four constituents 

would require 0.25 µM of each to equate to a cumulative concentration of 1 µM or 2.5 µM 

of each to equate to 10 µM. 
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2.4. Cell Culture Techniques 

2.4.1. General Cell Culture Protocols 

Culture plate coating. Cell culture plates were washed once with PBS prior to the addition 

of 5 µg/mL fibronectin coating solution (Table 2.1) and incubated at room temperature for 

1 h. Fibronectin solution was then removed and plates were washed twice with sterile PBS. 

Remaining PBS was aspirated and plates were incubated at 37°C for >2 h, or until dry. Plates 

were then stored at 4oC for <1 month, if not used immediately. 

 

Table 2.1. Fibronectin coating solution for cell culture plates 

Culture plate Surface Area (cm2) Volume of solution (µL) Fibronectin/cm2 

96 well 0.3 25 0.41* 

24 well 2 100 0.25 

12 well 4 200 0.25 

6 well 10 500 0.25 

T75 75 4000 0.26 

*Higher volume of coating solution utilised due to relatively large meniscus effect 

 

Thawing cells. All cells were purchased frozen in 10 % DMSO (90 % media) in cryogenic tubes 

in a liquid nitrogen storage container and transported on dry ice when required. Vials were 

thawed briefly in a water bath at 37C and cells transferred into 20-25 mL supplemented cell 

culture medium in a pre-warmed (37C), fibronectin-coated, T75 cell culture flask. Cells were 

examined in the first instance under an inverted phase contrast microscope for evidence of 

contaminants or artefacts, before being incubated at 37oC, 5 % CO2, in a humidified 

atmosphere. Supplemented media was replenished <24 h following thawing to remove 

remaining DMSO from solution.  

Cell counting. Cells were counted using a haemocytometer. Monolayers were detached by 

use of either Trypsin Passage Pack (HUVEC and RASMC) or DetachKit (HCAEC). Briefly, cell 

culture media was removed and cells washed with Hank's Balanced Salt Solution (HBSS). 

Trypsin was added to the appropriate volume and plates were incubated at room 

temperature for <5 min. Detachment was confirmed under a light microscope. An equal 

volume of Trypsin Neutralising Solution (TNS; containing phosphate and HEPES-buffered 

saline solution and 10 % foetal bovine serum (FBS)) was then added and cell solutions 

transferred to a 15 mL falcon tube and mixed by inversion. 10 µL of cell solution in media 

was then removed and mixed with 10 µL of trypan blue and loaded onto a haemocytometer 
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slide. Cell viability was determined by visual inspection under an inverted phase contrast 

microscope at x20 magnification. The number of cells in four 1 mm x 1 mm grids were 

totalled and a mean was established. This value was then doubled to account for the 1:1 

trypan blue dilution. The number of cells/mL was determined using the following equation: 

 

 Cells/ml of suspension = Number of cells counted (dilution corrected) x 104  

 

2.4.2. Human umbilical vein endothelial cells  

a) Materials  

Early passage human umbilical vein endothelial cells (HUVECs) (cryopreserved, pooled 

donors), large vessel endothelial growth medium (containing 2 % FBS, human epidermal 

growth factor, human fibroblast growth factor, 25 µg/mL gentamycin, 50 ng/mL 

amphotericin, hydrocortisone and heparin) and Trypsin Passage Packs (containing 0.025 % 

trypsin and 0.01 % EDTA, TNS, and HBSS solution) were purchased from Caltag Medsystems 

(Buckingham, UK).  

b) Methods 

Cells were routinely cultured in fibronectin-coated T75 flasks, using supplemented large 

vessel endothelial cell growth medium at 37°C and 5 % CO2. HUVECs were sub-cultured using 

a Trypsin Passage Pack according to manufacturer’s instructions, as described in ‘2.4.1 Cell 

Counting’ and were used at passage 3 or 4. 

 

2.4.3. Rat aortic smooth muscle cells  

a) Materials  

Cryopreserved, second passage, pooled Clonetics rat aortic smooth muscle cells (RASMCs) 

from adult Sprague Dawley rats were purchased from Lonza Biologics (Slough, UK). 

Dulbecco’s modified Eagle’s medium: F12 (DMEM), gentamycin/amphotericin (GA-1000), 

FBS, Trypsin Passage Pack (containing 0.025 % trypsin and 0.01 % EDTA) were purchased 

from Caltag Medsystems (Buckingham, UK). Final growth media in DMEM contained 0.1 % 

gentamycin/amphotericin and 20 % FBS. 

b) Methods 

Cells were routinely cultured in fibronectin coated T75 flasks, using Dulbecco’s modified 

Eagle’s medium: F12 containing 0.1 % antibiotics (GA-1000) and 20 % FBS, at 37°C and 5 % 

CO2. RASMC were sub-cultured using Trypsin Passage Pack according to manufacturer’s 
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instructions, as described in ‘2.4.1 Cell Counting’, and were starved in serum-free DMEM for 

24 h prior to experiments. Cell were starved due to a high volume of serum (20 %), which 

favours the growth of RASMC, but which is believed to negatively affect assay outcomes 

(Boulton et al., 1998, Steffen et al., 2008), thus a serum-free assay was selected, as also 

described by others (Kim et al., 2009). Cells were used between passages 3 and 6.   

 

2.4.4. Human coronary artery endothelial cells  

a) Materials  

Cryopreserved, second passage, single donor human coronary artery endothelial cells 

(HCAECs), endothelial cell medium MV (containing 5 % v/v foetal calf serum, endothelial cell 

growth supplement, recombinant human epidermal growth factor, heparin, and 

hydrocortisone) and Detach Kit (containing 0.04 % trypsin and 0.03 % EDTA) were purchased 

from PromoCell GmbH (Heidelberg, Germany). 

b) Methods 

Cells were routinely cultured in fibronectin coated T75 flasks, using endothelial cell medium 

MV at 37°C and 5 % CO2. HCAEC were sub-cultured using a Detach Kit, according to 

manufacturer’s instructions, as described in ‘2.4.1 Cell Counting’. Cells were used between 

passages 3 and 6.   

 

2.5. Biochemical Techniques 

2.5.1. WST-1 cell viability assay 

a) Materials 

Cell proliferation reagent WST-1 [(4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1, 

3-benzene disulphonate)] was purchased from Roche Applied Science (Burgess Hill, UK). 

Absorbance values were recorded using an OMEGA Plate Reader from BMG LABTECH (Bucks, 

UK). 

b) Methods 

Cell viability was measured using the WST-1 assay according to conditions optimised 

previously by our lab group (M.Edwards, PhD Thesis, 2013). Specific assay conditions are 

given in respective chapters. Cells were seeded in triplicate into fibronectin coated 96-well 

plates and incubated for 24 h at 37oC, 5 % CO2, in a humidified atmosphere. Treatments were 

added to confluent cells at the maximum concentration utilised in subsequent experiments. 

Controls included a blank (media only) as a negative control (no effect on cell proliferation) 
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and were treated with PBS only as a positive control (inhibitor of cell proliferation). Following 

24 h treatment, 10 μL WST-1 Cell Proliferation Reagent was added to each well and 

incubated as before for 4 h, and absorbance was measured at 450 nm using a BMG plate 

reader. 

 

2.5.2. Enzyme-linked immunosorbent assay  

a) Materials 

DuoSet human VCAM-1 ELISA kit, DuoSet human IL-6 ELISA kit, and DuoSet human HO-1 

were purchased from R&D systems (Abingdon, UK). Additional reagents: optical ELISA plates, 

ELISA plate sealers, Reagent Diluent 2 (blocking buffer; containing 1 % BSA, 0.05 % NaN3 in 

PBS), Streptavidin-horseradish peroxidase (HRP) solution (1:1), Substrate Solution kit 

(containing Colour Reagent A (H2O2) and Colour Reagent B (Tetramethylbenzidine)) were 

purchased from R&D systems (Abingdon, UK). A stop solution (containing 2N H2SO4) was 

made using in-house reagents. Rat Hmox-1 ELISA Kits (containing a microtiter plate, 5X 

Extraction reagent 2, Sample diluent, Wash buffer concentrate, Antibody, Conjugate, TMB 

Substrate, and Stop solution 2) were purchased from Enzo Lifesciences (Exeter, UK). 

Absorbance values for all ELISA plates were recorded using an OMEGA plate reader from 

BMG LABTECH (Bucks, UK).  

b) Methods 

Human eNOS. Human eNOS protein levels were determined using an eNOS Quantikine Kit 

(R&D Systems; Abingdon, UK) according to manufacturer’s instructions. Briefly, 100 µL Assay 

Diluent RDW1 was added to each well, followed by the addition of 100 µL samples or 

standards in duplicate. Plates were sealed using ELISA plate sealers and incubated for 2 h 

with shaking. Samples were removed and plates were washed 6 times with 1x Wash Buffer 

(containing buffer surfactant with preservatives). 200 µL of Enzyme Conjugate was then 

added to each well. Plates were sealed and incubated for 2 h with shaking. The wash step 

was repeated prior to the addition of 200 µL of Substrate Solution to each strip at 10 sec 

intervals. After 15 min, 50 µL Stop Solution was added to each strip at 10 sec intervals as 

before. Plates were placed briefly on plate shaker to ensure thorough mixing, and read 

immediately at 450 nm (corrected for 570 nm) using an optical BMG microplate reader. 

Human HO-1. Human HO-1 protein levels in recovered cell culture supernatants were 

assayed using a Human HO-1 DuoSet ELISA kit (R&D Systems; Abingdon, UK), according to 

the manufacturer’s instructions. Briefly, 96-well optical ELISA plates were incubated with 

100 µL Capture Antibody Solution (containing 8.0 µg/mL rat anti-human HO-1 antibody in 
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PBS) overnight at room temperature. Solutions were removed and plates were washed 6 

times with 0.05 % Tween 20 in PBS. Reagent Diluent 2 (1x) was added to each well and plates 

were incubated for 1 h at room temperature. Plates were washed prior to the addition of 

100 µL samples or standards in duplicate and incubated for 1 h at room temperature with 

shaking. The previous wash step was repeated prior to addition of a Detection Antibody 

Solution (containing 0.2 µg/mL goat anti-human HO-1 antibody in Reagent Diluent 2 (1x)) for 

2 h at room temperature with shaking. The wash step was repeated prior to the addition of 

100 µL Streptavidin-HRP solution for 20 min. Following a final wash step, 100 µL Colour 

Substrate Solution was added to each strip at 10 sec intervals. After 20 min, 50 µL of Stop 

Solution was added to each strip at 10 sec intervals as before. Plates were placed briefly on 

plate shaker to ensure thorough mixing, and read immediately at 450 nm (corrected for 570 

nm) using an optical BMG microplate reader. 

Rat Hmox-1. Hmox-1 protein expression was determined by rat HO-1 ELISA according to the 

manufacturer’s instructions. Briefly, lysates were prepared using Extraction Buffer and 

dilutions were made in Sample Buffer. 100 µL of prepared samples or standards were loaded 

to anti-rat HO-1 Immunoassay plates in duplicate. Plates were sealed using ELISA plate 

sealers and incubated for 1 h with shaking. Samples were removed and plates were washed 

4 times with 1x Wash Buffer (containing buffer surfactant with preservatives). 100 µL of rat 

HO-1 antibody (containing rabbit anti-rat HO-1 antibody). 200 µL of rat HO-1 Conjugate 

(containing HRP conjugated rabbit IgG) was then added. Plates were sealed and incubated 

for 30 min with shaking as before. The wash step was repeated prior to the addition of 100 

µL of TMB Substrate to each strip at 10 sec intervals. After 15 min, 100 µL Stop Solution 2 

was added to each strip at 10 sec intervals as before. Plates were placed briefly on plate 

shaker to ensure thorough mixing, and read immediately at 450 nm using an optical BMG 

microplate reader 

sVCAM-1 and sIL-6. Human sVCAM-1 and sIL-6 protein levels in recovered cell culture 

supernatants were assayed using a Human VCAM-1/CD106 DuoSet ELISA kit or Human IL-6 

ELISA kit (R&D Systems; Abingdon, UK), according to the manufacturer’s instructions. Briefly, 

96-well optical ELISA plates were incubated with 100 µL Capture Antibody Solution 

(containing mouse anti-human VCAM-1 or mouse anti-human IL-6 antibody in PBS) 

overnight at room temperature. Solutions were removed and plates were washed 6 times 

with 0.05 % Tween 20 in PBS. Reagent Diluent 2 (1x) was added to each well and plates were 

incubated for 1 h at room temperature. Supernatants were centrifuged at 2000 x g for 5 

minutes and diluted 1:5 in Reagent Diluent 2 (R&D Systems; Abingdon, UK), except for basal 
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and negative controls, which were not diluted (due to basal protein expression levels near 

the lower detection limit of the standard curve). The wash step was repeated prior to the 

addition of 100 µL samples or standards and incubated for 1 h at room temperature with 

shaking. The wash step was repeated prior to the addition of a Detection Antibody Solution 

(containing biotinylated sheep anti-human VCAM-1 or biotinylated goat anti-IL-6 antibody 

in Reagent Diluent 2 (1x)) for 2 h at room temperature with shaking. Plates were washed 

prior to the addition of 100 µL Streptavidin-HRP solution for 20 min. Following a final wash 

step, 100 µL of Colour Substrate Solution was added at 10 sec intervals. After 20 min, 50 µL 

of Stop Solution was added to each strip at 10 sec intervals as before. Plates were placed 

briefly on plate shaker to ensure thorough mixing, and read immediately at 450 nm 

(corrected for 570 nm) using an optical BMG microplate reader. 

 

2.5.3. Real Time-qPCR  

a) Materials  

TRIzol reagent, SuperScript II Reverse Transcriptase (with 5x first strand buffer and 100 mM 

dithiothreitol (DTT)), and MicroAmp optical microplates were obtained from Life 

Technologies (Paisley, UK). Chloroform and propan-2-ol were purchased from Thermofisher 

Scientific (Loughborough, UK) and 200 proof ethanol (absolute; for molecular biology) was 

purchased from Sigma Aldrich (Dorset, UK). RiboLock RNase inhibitor, DNase I (with 10x 

reaction buffer with MgCl2, and 50 mM EDTA), dNTP PCR mix (10 mM), and oligo (dT) primers 

(100 μM) were purchased from Thermofisher Scientific (Loughborough, UK). PrecisionPLUS 

2x qPCR Master Mix with SYBR Green and custom primers for all target genes (human HO-1, 

VCAM-1, IL-6 and rat HMOX-1) were purchased from Primer Design (Southampton, UK; Table 

2.2), as were human and rat geNORM housekeeping gene primers (Table 2.3). The 

NanoDrop2000 spectrophotometer and ABI7500 RT-qPCR system were purchased from 

Thermofisher Scientific (Loughborough, UK). 

 
Table 2.2. Primers of target genes for RT-qPCR 

 Gene  Species Sense primer (5’-3’) Antisense primer (3’-5’) 

HO1 Human ATGGCCTCCCTGTACCACATC TGTTGCGCTCAATCTCCTCCT 

Hmox1 Rat TTCAGAAGGGTCAGGTGTCC GGAAGTAGAGTGGGGCATAGA 

VCAM1 Human CAGGCTAAGTTACATATTGATGACAT GAGGAAGGGCTGACCAAGAC 

IL6 Human GCAGAAAACAACCTGAACCTT ACCTCAAACTCCAAAAGACCA 
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 Table 2.3. Reference genes from geNORM kit description 

 

 

 

b) Methods 

RNA extraction & quantification. Total RNA was extracted from cells by phenol-chloroform 

extraction using TRIzol reagent according to the manufacturer’s protocol with minor 

adjustments. Briefly, following media removal and cell wash steps, 1 mL of TRIzol reagent 

was added to each well, mixed repeatedly by pipetting to homogenise the cells, and the plate 

was frozen overnight at -80oC. Upon complete thawing, homogenates were transferred to 

1.5 mL Eppendorf tubes and 200 μL of chloroform was added. Tubes were shaken vigorously 

by hand for 15 sec and vortexed for 10 sec, followed by incubation at room temperature (RT) 

for 10 min. Samples were centrifuged for 20 min at 12,000 x g, 4oC. 400 µL of the uppermost, 

clear, aqueous layer was transferred to a new tube. 500 µL of propan-2-ol was added and 

samples were vortexed for 10 sec. Tubes were then incubated at RT for 10 min prior to 

centrifugation for 15 min at 12,000 x g, 4oC. Supernatants were discarded and 1 mL 70 % 

ethanol (30 % RNase-free water) was added to each tube. Samples were again centrifuged 

for 10 min at 12,000 x g, 4oC. All ethanol was removed from the pellet via pipetting and 

evaporation at RT. Twenty microliters of RNase-free water was added to each sample and 

mixed by pipette prior to freezing overnight at -80oC. RNA was quantified by use of the 

NanoDrop2000 spectrophotometer and the quality of samples was determined by its purity 

ratio (A260/280). 

Reverse transcription PCR. 1 µg of each RNA sample was incubated with DNase I, DNase I 

buffer, and RiboLock for 30 min at 37oC. Each sample was then incubated with oligo(dT) 

primers, dNTP PCR mix, and EDTA for 10 min at 65oC, followed by the addition of first strand 

Gene name Host Description 

PPIA Human Peptidylprolyl isomerase A (cyclophilin A) 

PRDM4 Human  PR domain containing 4 

TYW1 Human tRNA-yW synthesizing protein-1 

UBE2D2 Human  Ubiquitin-conjugating enzyme E2D2 

UBE4A Human Ubiquitination factor E4A 

VIPAS39 Human  VPS33B interacting protein, apical-basolateral polarity regulator, spe-39 

18S Rat 18S Ribosomal RNA 

Gapdh Rat Glyceraldehyde-3-phosphate dehydrogenase 

Nupl2 Rat Nucleoporin-like protein 2 

Stau1 Rat Staufen double-stranded RNA binding protein 1 

Tomm22 Rat Translocase of outer mitochondrial membrane 22 

Zgpat Rat Zinc Finger, CCCH-Type With G Patch Domain 
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buffer, DTT, and RiboLock for 2 min at 420C. Reverse transcription of RNA to cDNA was 

performed by the addition of SuperScript® II Reverse Transcriptase and incubated for 50 min 

at 42oC. The reaction was then stopped by incubation for 15 min at 70oC. 

Real time-qPCR. Real-time quantitative PCR (RT-qPCR) was carried out using 25 ng of cDNA 

of each sample, with the addition of target gene primers (Table 2.1) added to PCR Precision 

master mix with SYBR Green (Primer Design) and nuclease-free water to a final reaction 

volume of 20 µL. RT-qPCR was carried out using the ABI7500 system, wherein the reaction 

was activated at 95oC for 10 min prior to 50 cycles of denaturation and data collection (15 

sec at 95°C and 1 min at 60oC per cycle, respectively). Recorded Ct values for target genes 

were normalised to two geNORM reference/housekeeping genes, selected based on their 

stability, as established using qPCR data analysis software qbasePLUS2 (Biogazelle; Zwinjaarde, 

Belgium).  

geNORM analysis. Identification of reference genes utilised for normalisation of Ct data was 

conducted using a geNormPLUS kit (PrimerDesign; Southampton UK). Primer sets for six 

stably expressed human and rat reference genes (Table 2.2) were designed, pre-validated 

and supplied by PrimerDesign. These were used to select optimal reference genes for 

RASMC, and TNF-α stimulated HCAEC. Reference genes for HUVEC were pre-determined by 

our group following the same protocol (Amin, PhD thesis, 2014). Ct values obtained from RT-

qPCR were analysed by use of qbasePLUS software (version 2.3; Biogazelle; Zwijnaarde, 

Belgium) which determined relative gene stability across a number of treated samples, as 

well as optimal number of reference genes (Hellemans et al., 2007). 

Melt-curve analysis. All primers were purchased pre-validated for their specificity, though 

melt curve data (Tm) were checked against their expected values to confirm specificity of 

primer annealing and monitor presence of contaminants, as recommended in the MIQE 

guidelines (Taylor et al., 2010). Acceptable melt curves displayed a single sharp peak at 

expected Tm. A no-reverse-transcription control and a no-template control (no DNA) were 

also included in every run for each primer set tested to confirm no DNA contamination and 

to assess primer-dimer formation. Example melt curves for each gene of interest are 

provided in the Appendix, Chapter 9.6). 
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Determination of fold change values. Fold change from specified control was calculated 

using 2-ΔΔCt determination, as described by others (Livak and Schmittgen, 2001), where: 

Ct= raw amplification data value 

ΔCt= Ct [control]-Ct[treatment] 

ΔΔCt = ΔCt [target gene]-ΔCt [reference gene] 

Fold change from control = 2-ΔΔCt 

 

2.5. Western blotting  

A) Materials 

Pierce BCA Protein Assay Kit was purchased from Thermofisher Scientific (Loughborough, 

UK). NuPAGE Tris-Glycine Sodium Dodecyl Sulfate (SDS) and LDS Sample Buffer (2X) was 

purchased from Life Technologies (Paisley, UK). Tween 20 and Brilliant Blue were purchased 

from Sigma Aldrich (Dorset, UK). PrecisionPlus Protein Dual Colour Ladder, 10 % Mini-

PROTEAN TGX Precast Gels, Trans-Blot SD Semi-Dry Transfer Cell, Mini-PROTEAN Cell, BioRad 

Tris-SDS (20x) and TGS (20x) were purchased from Bio-Rad Laboratories (Hamel Hempstead, 

UK). Immobilon-FL polyvinylidene difluoride (PVDF) membrane was purchased from 

Millipore (Watford, UK). Protein-Free T20 (TBS) blocking buffer was purchased from 

Thermofisher Scientific (Loughborough, UK). Odyssey Infrared Imaging System and Odyssey 

Infrared Imaging System Application Software (version 3.0.21) were purchased from Li-Cor 

Biosciences (Cambridge, UK).  

B) Methods 

Sample preparation. Protein concentrations of each sample were determined against a 

standard curve of known albumin concentrations by use of a Pierce BCA Assay Kit, according 

to the manufacturer’s instructions. 25 µg of total protein was used in each experiment. In 

preparation for gel electrophoresis, lysates were reduced using NuPAGE sample reducing 

agent (1 M DTT) in NuPAGE LDS sample buffer, vortexed for 5 sec and heated to 95oC for 5-

10 minutes, followed by 5 sec vortex and brief centrifugation at 12000 x g prior to gel loading.  

Polyacrylamide gel electrophoresis. PrecisionPlus Protein Dual Colour standards (containing 

comparative molecular weight markers 250 kDa-10 kDa) or prepared protein samples were 

loaded onto 10 % SDS-PAGE gels and run using a BioRad Mini-PROTEAN Cell at 25 mA (one 

gel) or 35 mA (two gels) until completion.  

Western transfer. Filter papers and membranes were equilibrated for at least 15 min in 20 % 

methanol (80 % 1x Tris-glycine buffer). Immobilon-FL PVDF membranes were activated by 
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incubation with 100 % methanol for 60 sec and equilibrated in 20 % methanol (80 % 1x Tris-

glycine buffer) for at least 15 min prior to transfer. Proteins were then transferred onto 

methanol-activated membranes at 25 V for 60 min using a BioRad Trans-Blot SD Semi-Dry 

Transfer Cell.  

Gel staining. Equal protein transfers were confirmed visually using Brilliant Blue staining of 

the gels, as described by others (Dong et al., 2011). Briefly, following transfer, gels were 

placed into 0.25 % Brilliant Blue stain (10 % acetic acid, 20 % methanol, 70 % water) for 1 h 

at room temperature with gentle rocking. Staining solution was collected for re-use and gels 

were washed several times in distilled water and imaged at 700 nm using Odyssey Infrared 

Imaging System (Li-Cor (version 3.0.21)). Gel staining solutions were recycled <3 times. 

Western blot. Membranes were blocked using T20 blocking buffer for 1 h at room 

temperature, and incubated overnight at 4°C in the appropriate concentration of primary 

and loading control antibodies (Table 2.4). Primary antibody solutions were collected and 

replaced with infrared (IR)-labelled secondary antibodies in PBS (0.1 % Tween; 10 % T20 

blocking buffer) and incubated at room temperature for 1 h away from light. Antibody 

solutions were again collected and membranes were washed with 0.1 % Tween in PBS for 3 

x 10 min. After the final wash step, membranes were briefly washed 2 x with PBS (no Tween) 

and imaged and quantified by densitometry at 700 nm and 800 nm using Odyssey Infrared 

Imaging System and Odyssey Infrared Imaging System Application Software, respectively (Li-

Cor (version 3.0.21)).  
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Table 2.4. Primary and secondary antibodies used in Western blotting assays 

Target Host  Supplier  Product code Dilution 

p-p65(Ser536) Rabbit Abcam  ab28856 1:2000 

pAkt1 (Ser473) Rabbit Abcam  ab81283 1:5000 

Akt1 Rabbit Abcam  ab32505 1:5000 

pErk1/2* Rabbit Abcam  ab76165 1:200 

ERK1/2 Rabbit Abcam  ab17942 1:2000 

p-SAPK/JNK (Thr183/Tyr185) Mouse CST1  CS 9255 1:2000 

SAPK/JNK Rabbit CST1  CS 9258 1:2000 

p-p38 MAPK (Thr180/Tyr182) Mouse CST1  CS 9216 1:2000 

p38 MAPK Rabbit CST1  CS 9212 1:2000 

Nrf2  Rabbit Abcam  ab62352 1:1000 

GAPDH Chicken Millipore  ab2302 1:15000 

Chicken IgG (IRDye® 680LT) Donkey Li-Cor  926-68075 1:15000 

Rabbit IgG (IRDye® 800CW) Goat Li-Cor  926-32211 1:15000 

Mouse IgG (IRDye®800CW) Goat Li-Cor  926-32210 1:15000 

*pErk1(pT202/pY204)+ pErk2(pT185/pY187) 1Cell Signalling Technologies (Hitchin, UK). 

 

2.6. Statistical analysis 

Specific data analyses are described in each respective chapter. In general, effects between 

treatment and control in cell viability assays, and in assays where controls were not included 

in multiple comparisons (such as unstimulated and negative controls in TNF-α stimulated 

VCAM-1 assays), were determined by use of Student’s t-test using Microsoft Excel (version 

2013). Treatment effects (and multiple comparisons) were established by one-way analysis 

of variance (ANOVA) followed by post-hoc test of least square difference (LSD) using SPSS 

for Windows (version 22.0; IBM, New York, USA). Data were considered significant where 

p≤0.05 and, for the purpose of screening, statistical trends were identified where p≤ 0.15. 

Data are presented graphically or in tabular form as percentage or fold change of the positive 

control ± SD, as specified. 
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Chapter 3. Effect of flavonoids and their metabolites on the 

basal expression of vascular biomarkers in endothelial cells. 

 

3.1. Introduction 

Epidemiological studies have demonstrated positive associations between diets high in 

flavonoid-rich foods and the reduced risk of cardiovascular disease (CVD; Wang et al., 2014, 

Rodriguez-Mateos et al., 2014b), though the underlying mechanisms of action of flavonoids 

have been elusive. Human feeding studies have observed that certain flavonoids have 

beneficial effects on vascular function, such as blood flow and flow-mediated vasodilation 

(FMD; Grassi et al., 2015), both of which are regulated by endothelium-derived nitric oxide 

(NO) levels (Green et al., 2014). NO homeostasis has therefore been a target of interest for 

previous flavonoid in vitro studies (Tribolo et al., 2013). The disruption of NO homeostasis is 

a driving factor in the progression of endothelial dysfunction, which can lead to 

atherosclerosis (Lusis, 2000, Chapidze et al., 2007).  

NO homeostasis in endothelial cells is disrupted in response to high levels of reactive oxygen 

species (ROS), such as superoxide (O2-). The production of O2- is stimulated by NADPH oxidase 

(NOX) activity, and it has previously been hypothesised that flavonoids may decrease O2- 

production by inhibition of NOX (Schewe et al., 2008), thus subsequently increasing NO and 

justifying the observed improvements in FMD following consumption of flavonoids (Hooper 

et al., 2012). However, many previous in vitro studies attempting to elucidate the 

mechanisms underlying this activity have utilised supraphysiological concentrations of 

precursor flavonoids and have not determined the bioactivity of their more bioavailable 

phenolic degradants (Kay, 2010). Additionally these treatments have been studied in 

isolation, which does not take into account their potential additive, antagonistic or 

synergistic effects (Kerimi and Williamson, 2016).  

Our group have previously demonstrated that a number of anthocyanin 

degradants/phenolic acids decreased O2- but did not have detectable effects on NOX activity 

in endothelial cells (Edwards et al., 2015). Activity was instead suggested to be due to other, 

indirect proteins involved in the maintenance of vascular homeostasis, such as endothelial 

nitric oxide synthase (eNOS) and haem oxygenase-1 (HO-1). Certain flavonoids may enhance 

vascular function through modulating expression levels of eNOS (Woodman and Chan, 

2004), which subsequently increases NO. Furthermore, eNOS expression is stabilised in 

response to cellular bilirubin, derived from haem degradation by HO-1 (Kawamura et al., 
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2005). HO-1 expression has been shown to be induced in response to certain polyphenols, 

such as curcumin and epigallocatechin-gallate (Scapagnini et al., 2011) through activation of 

the oxidative stress sensor, Nrf2 (Zhang et al., 2008) and associated signalling kinases, Akt1 

and ERK1/2 (Niture et al., 2014, Moosavi et al., 2016). The effects of phenolic metabolites of 

flavonoids on these targets context have yet to be explored. 

The present study aimed to establish if physiologically relevant concentrations of phenolic 

metabolites have differential bioactivities relative to their unmetabolised precursor 

structures (Table 3.1) in the modulation of eNOS and HO-1 protein expression in human 

umbilical vein endothelial cells (HUVEC). The secondary aim was to establish whether 

flavonoids and their metabolites act additively when in combination. Finally, we aimed to 

determine whether the magnitude of response of the most active treatments were in 

response to increased concentration and whether these affected regulatory signalling 

pathways, such as Nrf2, Akt1 and ERK1/2. 
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Table 3.1. Structures of flavonoids and metabolites included in treatments.  

 

Abbreviations: OH, hydroxyl; Glc, oxygen-linked-glucuronide; Glu, glucoside; Sul, sulfate; OCH3, 

oxygen-linked methyl group. Adapted from Warner et al., 2016.  

Name General structure Substiuents1

Naringenin

Hesperetin

Quercetin

(-)-Epicatechin

R1= H; R2= OH

R1= H; R2= OCH3

R1= OH; R2= OH

R1= OH; R2= OH

Peonidin-3-glucoside R1= H; R2= OCH3

Cyanidin-3-glucoside R1= H; R2= OH

4-hydroxybenzoic acid R1= H; R2= OH

Benzoic acid-4-glucuronide R1= H; R2= Glc

Benzoic acid-4-sulfate R1= H; R2= Sul

Protocatechuic acid R1= OH; R2= OH

Protocatechuic acid-3-glucuronide R1= Glc; R2= OH

Protocatechuic acid-4-glucuronide R1= OH; R2= Glc

Protocatechuic acid-3-sulfate R1= Sul; R2= OH

Protocatechuic acid-4-sulfate R1= OH; R2= Sul

Vanillic acid R1= OCH3; R2= OH; 

Vanillic acid-4-glucuronide R1= OCH3; R2= Glc; 

Vanillic acid-4-sulfate R1= OCH3; R2= Sul; 

Isovanillic acid R1= OH; R2= OCH3

Isovanillic acid-3-glucuronide R1= Glc; R2= OCH3

Isovanillic acid-3-sulfate R1= Sul; R2= OCH3
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3.2. Methods 

Experiment specific details are provided below while comprehensive methodological 

descriptors are provided in detail in Chapter 2.  

3.2.1. Treatment solutions 

Stock solutions of flavonoids and metabolites (listed in Table 3.1) were prepared in DMSO 

and stored as described in Chapter 2. Working solutions of 1 mM of each analyte were made 

up in supplemented media before being diluted to a final concentration of 0.1 µM, 1 µM, 10 

µM, or 50 µM, or to equimolar concentrations for combined treatments (for example, in a 

10 µM mixture consisting of 4 constituents, each would contain 2.5 µM of each constituent). 

Treatment combinations were designed based on their structural similarities and based on 

activity when screened in isolation. Treatment solutions were prepared in supplemented 

media and stored at 4oC, with the exception of cyanidin-3-glucoside and peonidin-3-

glucoside, which were added immediately prior to the experiments to maintain stability.  

3.2.2. Cell culture  

Cryogenically stored, pooled donor, human umbilical vein endothelial cells (HUVECs) were 

cultured and maintained as described in Chapter 2. All cells were incubated for at least 24 

hours at 37oC, 5 % CO2, in a humidified atmosphere, prior to experiment commencement. 

HUVECs were used between passages 3 and 4.  

3.2.3. Cell viability 

HUVEC were seeded at 20,000 cells/well in fibronectin coated 96-well plates and grown to 

confluence in supplemented media. Cells were treated with 10 µM of each treatment, or 

0.02 % DMSO (vehicle control) in media. PBS (cells, no media) was used as a positive assay 

control. The WST-1 assay was carried out as described in Chapter 2.  

3.2.4. eNOS and HO-1 protein expression 

HUVEC were seeded at 100,000 cells/well in fibronectin coated 12-well plates. Cells were 

treated with 0.1 µM, 1 µM, 10 µM, or 50 µM treatment solution or 0.02 % DMSO (vehicle 

control) and incubated for 18 h (eNOS) or 16 h (HO-1) at 37oC, 5 % CO2, in a humidified 

atmosphere. Cell culture supernatants were then removed and cells were washed 3 x with 

PBS on ice. Cell lysates were stored at -80oC until required. Samples underwent a single 

freeze-thaw cycle, incubated to room temperature, and vortexed for 3 x 5 sec then 

centrifuged at 2000 x g, 10 min, at 4oC immediately prior to use. Protein expression of eNOS 

and HO-1 were determined by commercially available enzyme-linked immunosorbent assays 

(ELISAs), as described in Chapter 2. 
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3.2.5. HO-1 mRNA expression 

HUVEC were seeded at 200,000 cells/well in fibronectin coated 6-well plates. Cells were 

treated with 10 µM treatment solution or 0.02 % DMSO (vehicle control). Cell culture 

supernatant was removed and cells washed 3 x with PBS on ice. Total RNA was extracted, 

reverse transcribed, and RT-qPCR was conducted as described in Chapter 2. Reference 

genes, UBE2D2 and PRDM4, were used to normalise the data, as described in Chapter 2. 

3.2.6. Total Nrf2 protein expression and signalling kinase Akt1 and ERK1/2 

phosphorylation. 

HUVEC were seeded at 200,000 cells/well in fibronectin coated 6-well plates. Cells were 

treated with inhibitors, LY294002 (Akt1) or PD98059 (ERK1/2), for 1 h prior to treatment 

with 10 µM treatment solutions or 0.02 % DMSO (vehicle control) for 6 h (Nrf2) or 15 min 

(Akt, pAkt, ERK1/2, pERK1/2). Cells were washed 3 x with PBS on ice and lysed with NP-40 

lysis buffer and frozen at -80oC until required. Samples underwent a single freeze-thaw cycle, 

incubated to room temperature, vortexed for 3 x 5 sec, and centrifuged at 2000 x g, 10 min, 

at 4oC immediately prior to use. Protein concentrations were determined by BCA assay, and 

protein separated and probed by SDS-PAGE and Western blotting, as described in Chapter 

2. Densitometry values were normalised to GAPDH reference gene. Normalised 

densitometry values for phosphorylated Akt1 and ERK1/2 were normalised to their total 

protein Akt1 and ERK1/2. 

3.2.7. Data analysis 

For cytotoxicity experiments, absorbance values were reported as a mean of three 

independent replicates and differences from an untreated control were determined by use 

of Student’s t-test using Microsoft Excel (version 2013). eNOS and HO-1 protein (pg/mL) and 

HO-1 mRNA (fold change) were recorded as the mean of two technical duplicates and 

reported as a mean of three independent replicates ± SD (n=3), relative to an untreated 

control (no DMSO). Protein expression data determined by Western blotting were reported 

relative to the vehicle control (DMSO only) where data represent the mean ± SD of three 

independent replicates as above. Treatment effects were determined relative to the vehicle 

control (DMSO) and established by one-way analysis of variance (ANOVA) with post-hoc 

least square difference (LSD) using SPSS for Windows (version 22.0). For screening purposes, 

treatments displaying non-significant values of p≤0.15 were taken forward, for validation in 

subsequent concentration-response analysis. 
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3.2.8. Method optimisation  

Method optimisation experiments were conducted to identify a positive control and optimal 

treatment time for the upregulation of HO-1 expression (Appendix; Chapter 9.1.1; Figure 

3.1). Endogenous reference genes for normalisation of Ct data for target genes (UBE2D2 and 

PRDM4) were selected based on previously established method optimisation by our group 

(Amin PhD thesis, 2014).  

 

 

Figure 3.1. Method optimisation experiments for Chapter 3. See 

Appendix 9.1. Abbreviations: HO-1, haem oxygenase-1; LPS, 

lipopolysaccharide; SFN, sulforaphane. Abbreviations for mRNA 

reference genes can be found in Chapter 2.5.3. 

  

A. HO-1 protein time course
16, 18, 24 h

B. HO-1 protein positive 
control

SFN, LPS

C. mRNA reference gene(s)
PPIA, PRDM4, UBE2D2,
UBE4A, TYW1,
VIPA39S

16 h SFN UBE2D2 & 
PRDM4
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3.3 Results 

3.3.1. Effect of treatments on cell viability.  

6 flavonoids and 13 phenolic acid metabolites were screened in endothelial cells (HUVEC) 

for their effect at 10 µM for 24 h on cell viability by use of WST-1 (Table 3.2). No significant 

effects (p≤0.05) on cell viability were observed in either cell type in response to treatments 

used. 

 

Table 3.2. Effects on cell viability 

 Absorbance value (% of untreated control) 

Average ± SD p 

Vehicle control (VC) 103.21 ± 4.47 0.67 

Hesperetin (HES) 95.33 ± 5.72 0.57 

Peonidin-3-Glucoside (P3G) 108.00 ± 0.86 0.29 

Naringenin (NAR) 86.61 ± 1.76 0.20 

(-)-Epicatechin (EPI) 101.58 ± 1.70 0.33 

Quercetin (QUE) 112.70 ± 12.08 0.07 

Cyanidin-3-Glucoside (C3G) 104.70 ± 1.34 0.77 

4-hydroxybenzoic acid (4HBA) 96.69 ± 6.24 0.70 

Benzoic acid-4- Glc (BA4G) 100.50 ± 4.47 0.74 

Benzoic acid-4-Sul (BA4S) 104.68 ± 3.74 0.24 

Protocatechuic acid (PCA) 93.97 ± 2.32 0.55 

Protocatechuic acid -3-Glc (PCA4G) 102.77 ± 7.80 0.76 

Protocatechuic acid -4- Glc (PCA4S) 101.91 ± 4.99 0.94 

Protocatechuic acid -3-Sul (PCA3S) 99.15 ± 4.55 0.81 

Protocatechuic acid -4-Sul (PCA4S) 103.77 ± 5.63 0.62 

Vanillic acid (VA) 98.44 ± 4.06 0.85 

Isovanillic acid (IVA) 102.32 ± 9.39 0.91 

Vanillic acid-4-Glc (VA4G) 99.85 ± 3.08 0.80 

Isovanillic acid-3-Glc (IVA3G) 102.79 ± 2.41 0.29 

Vanillic acid-4-Sul (VA4S) 96.76 ± 9.67 0.45 

Cell viability was assessed after 4 h incubation with WST-1 reagent and is presented as a percentage 

of an untreated control. Columns represent the mean of three independent replicates ± SD. Treatment 

effects were determined relative to an untreated control by use of Student’s t-test using Microsoft 

Excel (version 2013). Abbreviations: Glc, glucuronide; Sul, sulfate. 
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3.3.2. Effect of flavonoids and their metabolites on eNOS protein. 

6 flavonoids and 13 phenolic metabolites were screened for their effect at 1 µM on eNOS 

protein in HUVEC (Figure 3.2). No treatments were significantly different from the vehicle 

control (VC; 0.02 % DMSO), therefore no treatments were taken forward from this screen 

for further exploration of combined activity and dose response. 

 

 

Figure 3.2. Effect of flavonoids and metabolites on eNOS protein. HUVEC were treated to a final 

concentration of 1 µM or 0.02 % DMSO (VC) for 18 h. eNOS protein was quantified by ELISA and 

presented as a percentage of an untreated control. Data represents the average of 3 independent 

replicates ± SD (n=3). Analysis was performed relative to vehicle control by use of one-way ANOVA 

with post-hoc LSD. Abbreviations: 4HBA, 4-hydroxybenzoic acid; BA4G, benzoic acid-4-glucuronide; 

BA4S, benzoic acid-4-sulfate; C3G, cyanidin-3-glucoside; EPI, (-)-epicatechin; HES, hesperetin; IVA3G, 

isovanillic acid-3-glucuronide; IVA3S, isovanillic acid-3-sulfate; NAR, naringenin; P3G, peonidin-3-

glucoside; PCA, protocatechuic acid; PCA3G, protocatechuic acid-3-glucuronide; PCA4G, 

protocatechuic acid-4-glucuronide; PCA3S, protocatechuic acid-3-sulfate; PCA4S, protocatechuic 

acid-4-sulfate; QUE,  quercetin; VA, vanillic acid; VA4G, vanillic acid-4-glucuronide; VA4S, vanillic acid-

4-sulfate; VC, vehicle control. 
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3.3.4. Effect of flavonoids and their metabolites on HO-1 protein. 

6 flavonoids and 13 phenolic metabolites were screened for their effect at 1 µM on HUVEC 

HO-1 protein expression (Figure 3.3). HO-1 protein was significantly upregulated in 

response to 2 phenolic metabolites, 4HBA (121.63 ± 1.31, p ≤0.001) and PCA4S (122.72 ± 

8.73, p= 0.05), and there was a trend for an increase of HO-1 in response to quercetin 

(132.24 ± 30.77, p= 0.07).  

 

Figure 3.3. Effect of flavonoids and metabolites on HO-1 protein. HUVEC were treated to a final 

concentration of 1 µM or 0.02 % DMSO (VC) for 16 h. HO-1 protein was quantified by ELISA and 

presented as a percentage of an untreated control. Data represents the average of 3 independent 

replicates ± SD (n=3). Labelled means without a common letter differ (one-way ANOVA with post-hoc 

LSD), p≤ 0.05; Ɨ p≤0.15 to VC. Abbreviations: 4HBA, 4-hydroxybenzoic acid; BA4G, benzoic acid-4-

glucuronide; BA4S, benzoic acid-4-sulfate; C3G, cyanidin-3-glucoside; EPI, (-)-epicatechin; HES, 

hesperetin; IVA3G, isovanillic acid-3-glucuronide; IVA3S, isovanillic acid-3-sulfate; NAR, naringenin; 

P3G, peonidin-3-glucoside; PCA, protocatechuic acid; PCA3G, protocatechuic acid-3-glucuronide; 

PCA4G, protocatechuic acid-4-glucuronide; PCA3S, protocatechuic acid-3-sulfate; PCA4S, 

protocatechuic acid-4-sulfate; QUE,  quercetin; VA, vanillic acid; VA4G, vanillic acid-4-glucuronide; 

VA4S, vanillic acid-4-sulfate; VC, vehicle control. 
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Selected treatments containing one or more of the active compounds were taken forward 

to explore concentration responsiveness and additive effects. No combination treatments 

actively increased HO-1 protein (Figure 3.4).  

 

 

Figure 3.4. Effect of mixtures of flavonoids and metabolites on HO-1. HUVEC were treated to a 

cumulative concentration of 10 µM or 0.02 % DMSO (VC) for 16 h. HO-1 protein was quantified by 

ELISA. Data represents the average of 3 independent replicates ± SD (n=3). Treatment effects were 

determined by one-way ANOVA with post hoc LSD. Abbreviations: 4HBA, 4-hydroxybenzoic acid; 

BA4G, benzoic acid-4-glucuronide; BA4S, benzoic acid-4-sulfate; C3G, cyanidin-3-glucoside; EPI, (-)-

epicatechin; HES, hesperetin; NAR, naringenin; P3G, peonidin-3-glucoside; PCA, protocatechuic acid; 

PCA3S, protocatechuic acid-3-sulfate; PCA4S, protocatechuic acid-4-sulfate; QUE, quercetin; VA, 

vanillic acid; VC, vehicle control. 
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Three analytes, quercetin, 4HBA, and PCA4S, were investigated for the effect of increasing 

concentration (0.1-50 µM) on HO-1 protein expression (Figure 3.5). HO-1 protein 

expression was increased by <20% in response to 1 µM of each treatment, though this 

effect was not amplified by increasing the concentration above 1 µM. 

 

  

Figure 3.5. Effect of dose of quercetin and 2 phenolic metabolites on HO-1 protein. A) Quercetin B) 

4-hydroxybenzoic acid (4HBA), C) Protocatechuic acid-4-sulfate (PCA4S). HUVEC were treated with 

specified concentration (µM) of each treatment or 0.02 % DMSO (VC) for 16 h. HO-1 protein was 

quantified by ELISA. Columns represent mean of three independent replicates ± SD (n=3). Labelled 

means without a common letter differ significantly, p≤ 0.05 (ANOVA with post hoc LSD). 

Abbreviations: 4HBA, 4-hydroxybenzoic acid; PCA4S, protocatechuic acid-4-sulfate. 
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(p=0.67). Quercetin and 4HBA were taken forward to explore their effect on transcription 

factor (Nrf2) expression.  

 

 

Figure 3.6. Effect of quercetin, 4-hydroxybenzoic acid, 

and PCA-4-sulfate on HO-1 mRNA expression. 

Treatments were added to HUVEC at a final concentration 

of 10 µM or 0.02 % DMSO for 6 h, HO-1 mRNA is presented 

relative to an untreated control (no DMSO) following 

normalisation to reference genes UBE2D2 and PRDM4. 

Data represents the average of 3 independent replicates 

± SD (n=3). Analysis was performed by one-way ANOVA 

with post-hoc LSD, **p ≤0.01, *p ≤0.05. Abbreviations: 

4HBA, 4-hydroxybenzoic acid; PCA4S, protocatechuic 

acid-4-sulfate; VC, vehicle control. 

 

3.3.6. Effect of quercetin and 4-hydroxybenzoic acid on total Nrf2 protein expression in the 

presence of Akt1 and ERK1/2 inhibitors. 

Quercetin and 4HBA were measured for their effect on total Nrf2 protein expression in 

HUVEC, and their apparent effect in the presence of inhibitors of Akt1 (LY294002) or ERK1/2 

(PD98059; Figure 3.7). Nrf2 expression was increased in response to quercetin relative to 

the vehicle control (2.89 fold, p=0.002), and there was a moderate, though not significant, 
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Figure 3.7. Effect of inhibitors of Akt1 and ERK1/2 on quercetin and 4-hydroxybenzoic acid 

induced total Nrf2 protein expression. A) Quercetin, B) 4-hydroxybenzoic acid. Inhibitors of Akt1 

phosphorylation (LY294002) and ERK1/2 phosphorylation (PD98059) were added to HUVEC 

media 1 h prior to the addition of 10 µM quercetin, 10 µM 4HBA, or 0.02 % DMSO (vehicle 

control), for 6 h. Total Nrf2 protein was determined by densitometry, normalised to reference 

gene, GAPDH, and presented relative to vehicle control (0.02 % DMSO). Blots are representative 

of one of three independent replicates and columns are representative of three independent 

replicates ± SD (n=3). Labelled means without a common letter differ significantly, p≤ 0.05 

(ANOVA with post hoc LSD). Abbreviations: 4HBA, 4-hydroxybenzoic acid. 

 

3.3.7. Effect of quercetin, 4-hydroxybenzoic acid and protocatechuic acid-4-sulfate on 

vascular signal transduction pathways. 

Quercetin, 4HBA and PCA4S (10 µM) were measured for their effect on Akt1 and ERK1/2 

phosphorylation in HUVEC (Figure 3.8). Quercetin induced the phosphorylation of Akt1 (1.50 

fold, p=0.03) and ERK1/2 (1.57 fold, p=0.04) relative to the vehicle control, whereas no 

effects were observed in response to 4HBA or PCA4S on the phosphorylation of either 

protein. Inhibitors of Akt1 (LY294002) and ERK1/2 (PD98059) phosphorylation significantly 

inhibited the phosphorylation of their respective targets in each experiment.  
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Figure 3.8. Effect of quercetin, 4-hydroxybenzoic acid and protocatechuic acid-4-sulfate on Akt1 and 

ERK1/2 phosphorylation. A) Quercetin, B) 4-hydroxybenzoic acid (4HBA), C) Protocatechuic acid-4-

sulfate (PCA4S). Inhibitors of Akt1 phosphorylation (LY294002) and ERK1/2 phosphorylation 

(PD98059) were added to HUVEC 1 h prior to the addition of 10 µM quercetin, 4HBA, PCA4S, or 0.02 

% DMSO (vehicle control), for 15 min. Relative concentrations of phosphorylated and total protein 

were determined by densitometry, normalised to reference gene, GAPDH, and presented relative to 

the vehicle control. Blots are representative of one of three independent replicates and columns are 

representative of three independent replicates ± SD (n=3). Labelled means without a common letter 

differ significantly, p≤ 0.05 (ANOVA with post hoc LSD). 
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3.4. Discussion 

Flavonoid intake has been positively associated with the reduced risk of cardiovascular 

diseases and defining this relationship will aid our knowledge regarding how diet may 

influence and optimise health (Feliciano et al., 2015). Flavonoids have been linked to 

improvements in vascular function and blood pressure (Grassi et al., 2015), though their 

mechanisms of action have yet to be elucidated. It has been suggested that flavonoids and 

their metabolites improve vascular function through regulation of endothelial nitric oxide 

synthase (eNOS; Shen et al., 2012) and the oxidant-response protein, HO-1 (Liu et al., 2012, 

Sorrenti et al., 2007). The expression of HO-1 is primarily mediated by the transcription 

factor Nrf2, which is activated in response to a number of stimuli, such as oxidative stress or 

through signalling kinase activation, such as Akt1 and ERK1/2 (Niture et al., 2014, Moosavi 

et al., 2016).  

It has been postulated that phenolic metabolites of flavonoids, which are present at higher 

concentrations for longer periods of time than their precursors, underlie flavonoids’ 

cardiovascular bioactivity (Kay et al., 2009, Heleno et al., 2015). Recent work from our group 

have studied the effects of phenolic metabolites of flavonoids (protocatechuic acid (PCA) 

and vanillic acid (VA)) on eNOS and HO-1 expression (Edwards et al., 2015), though the study 

of their phase II metabolites in this context is relatively novel, as is the study of their 

combined effects.  

6 commonly consumed flavonoids and 13 metabolites, identified in human feeding studies 

(Clifford et al., 2013, de Ferrars et al., 2014b, McKay et al., 2015, Pimpão et al., 2015, Schar 

et al., 2015), were screened for their effects on eNOS (Figure 3.2) and HO-1 (Figure 3.3) 

protein expression in human endothelial cells (HUVEC). Of the treatments screened, 1 

flavonoid (quercetin) and 2 phenolic acid metabolites (4-hydroxybenzoic acid (4HBA) and 

protocatechuic acid-4-sulfate (PCA4S)) increased HO-1 protein expression >20 %. Quercetin, 

4HBA, and PCA4S were further investigated for the effect of increased concentration (Figure 

3.5), where each treatment again increased HO-1 protein in response to 1 µM, but this 

response was not amplified in response to increased concentration (10 µM- 50 µM). 

Subsequent experiments demonstrated that quercetin and 4HBA significantly upregulated 

HO-1 mRNA expression (Figure 3.6) but only quercetin increased total Nrf2 protein (Figure 

3.7) and additionally induced the phosphorylation of Akt1 and ERK1/2 signalling kinases 

(Figure 3.8). These data suggest that quercetin, but not 4HBA and PCA4S is active in these 

signalling pathways and that phenolic metabolites act via alternative mechanisms. Mixtures 

of quercetin and structurally similar flavonoids (7 equimolar mixtures) and 11 mixtures of 
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4HBA and PCA4S and their structurally similar metabolites, to a cumulative concentration of 

10 µM, were screened for their effect on HO-1 protein (Figure 3.4), though no effects were 

observed, suggesting no additive effects. 

It has been postulated that flavonoids may exert their vascular effects by the increase of 

eNOS expression, which leads to an increase in nitric oxide (NO) bioavailability (Rodriguez-

Mateos et al., 2014). The increase in NO may, in part, contribute to improved flow-mediated 

dilation observed following the consumption of certain flavonoids (Hooper et al., 2008). 

Previous in vitro studies which have observed the effects of flavonoids on eNOS expression 

lack dietary relevance, as precursor flavonoids at supraphysiological concentrations are 

commonly utilised (Kay, 2010). In the present study, eNOS protein expression did not 

increase in response to 1 µM of any treatment and it is possible that the concentration 

utilised was not high enough to elicit a response. Lazze et al., who utilised the anthocyanin 

cyanidin (an aglycone of cyanidin-3-glucoside), demonstrated a 46 % increase in eNOS 

protein at 100 µM (Lazze et al., 2006), whereas serum concentrations of a 13C-labelled 

cyanidin-3-glucoside (C3G) has been reported several magnitudes lower (0.14 µM; de Ferrars 

et al., 2014b), which suggests that these studies are not reflective of a physiologically 

achievable response. Increasing the screening concentration may therefore have elicited a 

response. That said, certain studies suggest that the concentration response of eNOS may 

be non-linear (such that increasing the concentration may not increase response). Most 

notably, eNOS expression has been shown to increase in response to <10 µM quercetin 

(Shen et al., 2012), whereas it is significantly reduced following treatment with 30 µM-100 

µM quercetin (Jackson and Venema, 2006), suggestive of a non-linear concentration 

response. Bovine endothelial cells (BAEC) treated with cyanidin-3-glucoside showed 

increased eNOS levels at 0.1 µM (Xu et al., 2004), with more modest increases in eNOS at 1 

µM and 0.01 µM, which is again indicative of a non-linear, ‘bell-curve’ response. A similar 

response was observed by others in our group (H.Amin PhD thesis, 2014), which does not 

correspond to the response in the present study, though it should be noted that these 

previous studies utilised a 24 h treatment time whereas the present study utilised 18 h, 

suggesting this response may be time-dependent. Concentrations of <1 µM of precursor 

flavonoids are therefore indicated for future studies. In contrast, phenolic metabolites of 

flavonoids are present at much higher concentrations in the serum relative to their precursor 

structures (Schar et al., 2015, Pimpão et al., 2015), for example serum vanillic acid (VA) levels 

have been reported as high as 2.7 µM following consumption of 500 mg C3G (de Ferrars et 

al., 2014b) and 4 µM following consumption of a Montmorency tart cherry extract (Keane et 
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al., 2015). VA has previously been shown to increase eNOS expression between 1 µM- 10 

µM in an apparently concentration-dependent manner, suggesting that, whereas eNOS 

response to precursor flavonoids is non-linear, the response to phenolic metabolites is 

linear, though further evidence, such as through a thorough concentration-response 

experiment (e.g. 0.01 µM-100 µM) utilising multiple phenolic metabolites, are required 

verify these conclusions.  

The oxidant-response protein HO-1 has been implicated in cellular defence activity of 

flavonoids, potentially through its enzymatic by-products, bilirubin and carbon monoxide 

(CO; Szabo et al., 2004). In agreement with previous studies (Lin et al., 2004, Chow et al., 

2005, Sun et al., 2015), the present study demonstrated that HO-1 was upregulated in 

response to quercetin in human endothelial cells. A recent study from our group utilising 

monocytic cells (J. di Gesso PhD thesis, 2015) also demonstrated that quercetin upregulated 

HO-1 at 10 µM and 50 µM. Phenolic acid metabolites, PCA4S and 4HBA, increased 

endothelial HO-1 protein by >20% (Figure 3.3), suggesting that these may be involved in 

antioxidant defence at a physiologically achievable concentration (1 µM; de Ferrars et al., 

2014b). It is interesting that PCA4S increased HO-1 protein where its unconjugated structure, 

protocatechuic acid (PCA), did not. PCA has previously been shown to induce the HO-1 

transcription regulator, Nrf2 in murine macrophages (Vari et al., 2011), though the 

concentration used in this study was 25 µM, and so the result of the present study may again 

be due to the utilisation of a low, physiologically achievable concentration (de Ferrars et al., 

2014b). The data from the present study does suggests that metabolic conjugation increases 

bioactivity, as has been suggested by others, such as by Edwards et al., who demonstrated 

that methyl conjugation of PCA to vanillic acid (VA) increased HO-1 protein (Edwards et al., 

2015) and similar conclusions have been made for phenolic acids in inflammatory models of 

endothelial dysfunction (Amin et al., 2015).  

Few studies have explored the combined effects of flavonoids and their metabolites (di 

Gesso et al., 2015, Krga et al., 2016), despite some indication of differential activities relative 

to their constituents in isolation (Heeba et al., 2012, Khandelwal et al., 2012, Koga and 

Meydani, 2001, Liebgott et al., 2000), which suggest that flavonoids and their metabolites 

may have additive or synergistic effects. In the present study, the vast majority of treatments 

screened in isolation at 1 µM did not have an effect on HO-1 expression. In vivo, total 

phenolic metabolite concentrations are >10 µM (Pimpão et al., 2015, Schar et al., 2015), 

which was the rationale behind utilising a cumulative 10 µM concentration, and equimolar 

concentrations of structurally similar compounds were used to potentially elucidate 
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structure-activity relationships. In the present study we explored 7 mixtures of flavonoids 

and 10 mixtures of conjugated and unconjugated phenolic metabolites, based on the active 

treatments in the HO-1 screen and their structurally similar treatments, as well as one 

treatment, which contained 13 phenolic metabolites (0.77 µM of each constituent). None of 

the treatments utilised appear to affect HO-1 protein expression. Interestingly, this suggests 

not only that there are no apparent additive effects in combination, but that the presence 

of the treatments which were previously active in isolation at 1 µM are not active in 

combination treatments up to 5 µM (in the case of treatments with 2 constituents). Although 

direct comparison between isolated and combined treatments was not possible in this case, 

it does, to some extent, suggest antagonistic activity. Theoretically, structurally similar, 

though non-bioactive, treatments may block the target activity site, or interaction may occur 

between compounds in the mixture, as has been seen in acellular experiments (Hidalgo et 

al., 2010). It is possible that this activity is as a result of the ‘artificial’ equimolar construction 

of the mixtures, whereas the unique molar ratios of metabolites observed in vivo may elicit 

additive or synergistic activities, which are explored in future investigations (Chapter 6). 

Wallerath et al. observed the effects of red wine polyphenols relative to their constitutive 

anthocyanins and phenolic acids in isolation (1 µM-33 µM; Wallerath et al., 2005), on eNOS 

expression in human EA.hy 926 endothelial cells. It was observed that the red wine 

polyphenol mixture greatly increased eNOS expression relative to its constituents in 

isolation. A key limitation of this study was that the polyphenol composition of red wine is 

not equivalent its composition following consumption due to extensive polyphenol 

metabolism (Kroon et al., 2004). Nevertheless, this work does present interesting data 

regarding the cumulative effects of flavonoid relative to in isolation, and it remains to be 

seen whether physiologically relevant metabolites of flavonoids equally possess additive or 

synergistic effects following consumption.  

Quercetin, 4HBA and PCA4S were investigated for their effect on HO-1 mRNA expression, 

which was increased significantly in response to quercetin, as has been advocated by others 

(Zerin et al., 2013), and was also increased in response to 4HBA, which has not been 

previously demonstrated. No response was observed in response to PCA4S, suggesting that 

it may not be active in the transcriptional pathways affecting HO-1 (such as Nrf2), but may 

act post-translationally. Alternatively, there may be a discrepancy due to the use of a single 

treatment time, suggesting that the use of multiple time points may provide further insight 

into regulation of HO-1 protein and mRNA by flavonoid metabolites. 
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HO-1 expression is regulated by the transcription factor Nrf2, which is activated in response 

to a number of stimuli, such as phytochemicals, reactive oxygen species (ROS) and signalling 

kinase activation (e.g. Akt1 and ERK1/2; Niture et al., 2014). Total Nrf2 protein was 

significantly upregulated following treatment with 10 µM quercetin, which is in agreement 

with previous studies at 5-50 µM (Granado-Serrano et al., 2012, Zerin et al., 2013). This effect 

may be dependent on Akt1, which could be validated in future studies by use of a basal 

inhibitor control (Weng et al., 2011). Nrf2 protein was not significantly increased in response 

to 4HBA, which may be due to the low magnitude of response, which magnified the variation 

observed between replicates. 

Finally, the effect of quercetin, 4HBA and PCA4S on Akt1 and ERK1/2 signalling kinase 

phosphorylation were determined. Akt1 and ERK1/2 were phosphorylated in response to 

quercetin which may be potential mechanisms of Nrf2 activation (and subsequent HO-1 

protein expression). 4HBA and PCA4S did not affect Akt1 and ERK1/2 phosphorylation, 

though these may be active in other molecular pathways influencing HO-1 expression, such 

as PKC, JNK, and p38 MAPK (Tanigawa et al., 2007), or by receptor binding effects (Surh, 

2003). It has also been suggested that flavonoids may act on endogenous inhibitors of 

signalling kinases, such as thioredoxin (inhibits ASK1, upstream of JNK and p38 MAP kinases; 

Lu et al., 2006). The present study highlights the requirement for future studies to explore 

alternative mechanisms of action which metabolites of flavonoids may be active, for 

example in inflammatory mechanisms such as NFB (di Gesso et al., 2015, Amin et al., 2015).  

The present study provides unique insight into the effects of flavonoid phenolic metabolites 

on biomarkers of vascular homeostasis, and into their combined activity. However, there are 

certain limitations to this work. The use of human umbilical vein endothelial cells (HUVECs) 

may be seen as a limitation, as they do not originate from the arterial wall. Previous work 

from our group demonstrated that the expression of HO-1 protein in HUVEC in response to 

vanillic acid (0.1 µM -10 µM) were comparable to the more physiologically relevant cell type, 

human coronary artery endothelial cells (HCAEC; Edwards et al., 2015). This suggests that 

HUVEC are a suitable model to screen for the effects of flavonoids, but that data should be 

validated in HCAEC in future studies. The use of single treatment times for screening all 

treatments may have been a limitation as treatments may differ between uptake and time 

to act upon target site, depending on their structural characteristics. Rizza et al., who utilised 

the flavanone, hesperidin (glycoside-conjugated hesperetin), investigated the effect of 

increased concentration (0.01 µM – 10 µM) in the first instance, followed by the 

concentration of the greatest effect size (10 µM) across several time points (Rizza et al., 
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2011). A similar system for each of the treatments in the present study would have optimised 

the current screen; this would have been extremely time and cost ineffective but may be 

indicated for future studies. The magnitude of effect on Nrf2 protein observed in the present 

study was relatively small, which may have magnified the variation between replicates. 

Additionally, it is possible that the vehicle (DMSO) masked the effect on Nrf2 signalling, as 

DMSO is known to upregulate Nrf2-regulated protein expression (Liang et al., 2011), this 

could be verified in future studies by use of a basal control. An alternative solution would be 

to dissolve treatment directly into media, thus negating the requirement of a vehicle; this 

would not have been possible for quercetin given its low water solubility (Ribeiro et al., 

2009), though is a future consideration for the more soluble phenolic acid metabolites, such 

as utilised for VA (Edwards et al., 2015). Nrf2 expression in HUVECs is relatively low 

compared to other tissues, such as liver and brain (Vallejo et al., 2000), and thus detection 

via Western blotting proved difficult. Future studies should consider the use of a negative 

cellular control, such as RNA interference directed against Nrf2 (siNrf2), as used by others 

(Zhai et al., 2013). For the purpose of elucidating mechanisms, a more appropriate model of 

Nrf2 pathway activation could be the use of hepatocytes, such as HepG2 cells, as expression 

of Nrf2 expression is much higher, potentially increasing the measurable effect at lower 

concentrations (Krajka-Kuzniak et al., 2015). It should be noted, however, that the uptake of 

flavonoids and their metabolites is dependent on cell type (Spencer et al., 2004) and 

hepatocytes contain multiple phase II metabolites, which may therefore alter treatments 

differentially to endothelial cells into a more/less bioactive form. Validation in endothelial 

cells would still therefore be necessary in this case. 

In conclusion, data collected on the vascular bioactivity and mechanisms of flavonoids and 

their phenolic metabolites suggest that conjugated metabolites of flavonoids do not appear 

to be active on the targets investigated at concentrations achievable through diet, 

suggesting that they have alternative mechanisms of action. It has been postulated that 

endothelial dysfunction, a key pathological driver of atherosclerosis (Hopkins, 2013), is 

influenced by low-level inflammation, which has a direct impact of NO availability in 

endothelial and smooth muscle cells (Chapidze et al., 2007). Therefore the present evidence 

suggests the phenolic metabolites of flavonoids are acting via another mechanism, possibly 

inflammatory (Amin et al., 2015, di Gesso et al., 2015), and these mechanisms are further 

explored in the chapters following. 
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Chapter 4. Effect of flavonoids and their metabolites on the 

basal expression of haem oxygenase-1 in vascular smooth 

muscle cells. 

 

4.1. Introduction 

Beneficial effects of flavonoids have been observed on vascular function, such as in blood 

flow and flow-mediated vasodilation (Grassi et al., 2015), which are regulated in-part by 

endothelium-derived nitric oxide (NO) levels (Green et al., 2014). Work presented previously 

(Chapter 3) suggested that certain flavonoid metabolites may indirectly affect intracellular 

NO by the upregulation of oxidant-response protein, haem oxygenase-1 (HO-1), which leads 

to the reduction in ROS, and maintenance of endothelial homeostasis. Vascular smooth 

muscle cells (VSMCs) contain various sources of ROS, such as NAPDH oxidases (NOX; Louis 

and Zahradka, 2010), which under conditions of stress lead to VSMC proliferation, migration 

and cytokine production, which are critical to the progression of atherosclerosis (Lusis, 

2000). 

HO-1 and HO-2 are rate-limiting enzymes in the catabolism of haem to form biliverdin 

(converted to antioxidant bilirubin by biliverdin reductase), carbon monoxide (CO), and free 

iron. HO-1, specifically, is upregulated under conditions of oxidative-stress, which is believed 

to be a protective mechanism in the prevention of atherosclerosis (Araujo et al., 2012). HO-

1 and CO inhibit NOX1 and prevent VSMC migration (Rodriguez et al., 2010), which makes 

HO-1 a key therapeutic target in the pathogenesis of atherosclerosis (Kim et al., 2011). 

Previous studies have shown that HO-1 expression is upregulated in VSMCs in response to 

various phytochemicals such as, quercetin (Lin et al., 2004), naringenin (Chen et al., 2012), 

and curcumin (Pae et al., 2007), though many past studies have utilised supraphysiological 

concentrations of flavonoids and the studies into the bioactivity of their more bioavailable 

phenolic metabolites is relatively novel (Edwards et al., 2015). Additionally, previous studies 

have suggested synergistic or additive activity of flavonoids and their metabolites in 

combination in VSMC (Keane et al., 2015, Pantan et al., 2016), though these studies have not 

explore the combined effects of conjugated phenolic metabolites of flavonoids identified in 

human feeding studies (Pimpão et al., 2015, de Ferrars et al., 2014a, Schar et al., 2015).  

The primary aim of the present study was to determine the activity of 6 dietary flavonoids 

common to the Western diet and 13 phenolic metabolites identified in human feeding 
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studies (Chapter 3, Table 3.1) on Hmox-1 (human HO-1 orthologue in rats) expression in rat 

aortic smooth muscle cells (RASMCs), to assess their relative vascular bioactivity. The 

secondary aim was to identify whether flavonoids and their metabolites possess additive 

activity on Hmox-1 expression in combination. Finally, we aimed to determine whether 

active treatments affected Hmox-1 mRNA expression, with a view to suggesting potential 

mechanisms of action. 
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4.2. Methods. 

Experiment specific details are provided below while comprehensive methodological 

descriptors are provided in detail in Chapter 2.  

4.2.1. Treatment solutions 

Stock solutions of flavonoids and metabolites were prepared in DMSO and stored as 

described in Chapter 2. Working solutions of 1 mM of each analyte were made up in 

supplemented media before being diluted to a final concentration of 10 µM, or to equimolar 

concentrations for combined treatments (for example, in 10 µM mixtures consisting of 4 

constituents, each would contain 2.5 µM of each constituent). Treatment combinations 

were designed based on their structural similarities and based on activity when screened in 

isolation. Treatment solutions were prepared in supplemented media and stored at 4oC, with 

the exception of cyanidin-3-glucoside and peonidin-3-glucoside, which were added 

immediately prior to the experiments to maintain stability.  

4.2.2. Cell culture  

Cryogenically stored, rat aortic smooth muscle cells (RASMC) were cultured and maintained 

as described in Chapter 2. All cells were incubated for at least 24 hours at 37oC, 5 % CO2, in 

a humidified atmosphere, prior to experiment commencement. Cells were used between 

passages 3 and 6. 

4.2.3. Cell viability 

RASMC were seeded at 10,000 cells/well in fibronectin coated 96-well plates and grown to 

confluence in supplemented media. Cells were treated with 10 µM of each treatment, or 

0.02 % DMSO (vehicle control) in media. PBS (cells, no media) was used as a negative control. 

WST-1 protocol was carried out as described in Chapter 2.  

4.2.4. Hmox-1 protein expression 

RASMC were seeded at 300,000 cells/well in fibronectin coated 6-well plates. Supplemented 

media was replaced by serum free media 24 h prior to experiment commencement. Cells 

were treated with 10 µM treatment or 0.02 % DMSO (vehicle control) and incubated for 24 

h at 37oC, 5 % CO2, in a humidified atmosphere. Cells were washed 3 x with PBS, lysed with 

Extraction Reagent Buffer, and stored at -80oC until required. Protein expression of rat 

Hmox-1 was determined by commercially available enzyme-linked immunosorbent assay 

(ELISA), as described in Chapter 2. 
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4.2.5. Hmox-1 mRNA expression.  

RASMC were seeded at 100,000 cells/well in fibronectin coated 12-well plates. 

Supplemented media was replaced by serum-free media 24 h prior to experiment 

commencement. Cells were treated with 10 µM treatment solution or 0.02 % DMSO (vehicle 

control) for 6 h at 37oC, 5 % CO2, in a humidified atmosphere. Cell culture supernatant was 

removed and cells washed 3 x with PBS on ice. RNA was extracted, reverse transcribed and 

RT-qPCR was conducted as described in Chapter 2. Reference gene expression, Zgpat and 

Stau1, were determined by geNORM analysis as the most appropriate stable genes, the 

geometric mean of which were used to normalise the data in subsequent experiments, as 

described in Chapter 2. 

4.2.6. Data analysis 

For cytotoxicity experiments, absorbance values were reported as a mean of three 

independent replicates and differences relative to an untreated control (no DMSO) were 

determined by use of Student’s t-test using Microsoft Excel (version 2013). Hmox-1 proteins 

(pg/mL) and mRNA (fold change) were recorded as the mean of two technical duplicates and 

reported relative to an untreated control. Treatment effects were determined relative to the 

vehicle control (DMSO) and established by one-way analysis of variance (ANOVA) with post-

hoc least square difference (LSD). Analyses were conducted using SPSS for Windows (version 

22.0; IBM, New York, USA). Data were considered significant where p≤0.05. For screening 

purposes, treatments displaying non-significant values of ≤0.15 were taken forward, for 

validation in subsequent combination and mRNA experiments. 

4.2.7. Method optimisation 

Method optimisation experiments were conducted to identify the appropriate screening 

concentration for the upregulation of Hmox-1 expression in RASMC (Appendix; Chapter 

9.2.1.; Figure 4.1). Endogenous reference genes for normalisation of Ct data for target genes 

were selected by use of rat geNORM kit and qBASE analysis software as described in Chapter 

2 (Appendix; Chapter 9.2.2).  
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Figure 4.1. Method optimisation experiments for Chapter 4. See Appendix 

9.2. Abbreviations: Hmox-1, haem oxygenase-1; NAR, naringenin; PCA, 

protocatechuic acid; VA, vanillic acid. Abbreviations for mRNA reference 

genes can be found in Chapter 2.5.3.  

 

  

A. Hmox-1 protein 
concentration response
Quercetin, PCA, NAR, VA

1, 10, 100 µM 

B. mRNA reference gene(s)
18S, Gapdh, Nupl2, Stau1, 
Tomm22, Zgpat

10 µM Zgpat & Stau1
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4.3. Results 

4.3.1. Effect of treatments on cell viability.  

6 flavonoids and 13 phenolic acid metabolites were screened in RASMC for their effect at 10 

µM for 24 h on cell viability by use of WST-1 (Table 4.1). No significant effects (p≤0.05) on 

cell viability were observed in response to treatments used. 

 

Table 4.1. Effects on cell viability 

 Absorbance value (% of untreated control) 

Average ± SD p-value 

Vehicle control (VC) 85.98 ± 11.83 0.21 

Hesperetin (HES) 100.15 ± 24.35 0.92 

Peonidin-3-Glucoside (P3G) 94.11 ± 15.70 0.55 

Naringenin (NAR) 96.55 ± 19.32 0.72 

(-)-Epicatechin (EPI) 105.63 ± 11.08 0.53 

Quercetin (QUE) 141.61 ± 21.49 0.06 

Cyanidin-3-Glucoside (C3G) 92.90 ± 12.86 0.50 

4-hydroxybenzoic acid (4HBA) 94.67 ± 13.59 0.65 

Benzoic acid-4- Glc (BA4G) 115.85 ± 15.06 0.21 

Benzoic acid-4-Sul (BA4S) 96.36 ± 11.83 0.74 

Protocatechuic acid (PCA) 97.67 ± 9.36 0.68 

Protocatechuic acid -3-Glc (PCA4G) 92.96 ± 6.95 0.20 

Protocatechuic acid -4- Glc (PCA4S) 97.97 ± 17.97 0.81 

Protocatechuic acid -3-Sul (PCA3S) 102.94 ± 12.08 0.67 

Protocatechuic acid -4-Sul (PCA4S) 103.71 ± 19.83 0.77 

Vanillic acid (VA) 91.58 ± 3.24 0.07 

Isovanillic acid-3-Sul (IVA3S) 112.20 ± 7.47 0.09 

Vanillic acid-4-Glc (VA4G) 109.25 ± 8.75 0.19 

Isovanillic acid-3-Glc (IVA3G) 113.52 ± 15.00 0.28 

Vanillic acid-4-Sul (VA4S) 117.57 ± 12.37 0.12 

Cell viability following 10 µM treatment for 24 h was assessed after 4 h incubation with WST-1 reagent 

and is presented as a percentage of an untreated control (no DMSO). Columns represent the mean of 

three biological replicates ± SD. Effects relative to an untreated control were determined by use of 

Student t-test using Microsoft Excel (version 2013). Abbreviations: Glc, glucuronide; Sul, sulfate. 
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4.3.2. Effect of flavonoids and metabolites on Hmox-1 

6 flavonoids and 13 phenolic metabolites were screened for their effect at 10 µM on RASMC 

Hmox-1 protein expression after 24 h treatment (Figure 4.2). Hmox-1 expression was 

increased in response to 2 flavonoids, quercetin (189.39 ± 29.92 %, p=0.01) and peonidin-

3-glucoside (175.76 ± 33.71 %, p=0.02), and there was a non-significant increase in Hmox-

1 in response to protocatechuic acid (PCA; 122.00 ± 13.77 %, p=0.09). Treatment mixtures 

containing quercetin, peonidin-3-glucoside or PCA were taken forward to observe their 

effects in combinations of structurally similar compounds. 

 

Figure 4.2. Effect of flavonoids and their metabolites on Hmox-1 protein. Treatments were added 

to RASMC to a final concentration of 10 µM or 0.02 % DMSO (VC) for 24 h, Hmox-1 protein was 

quantified by ELISA and presented as a percentage of an untreated control (no DMSO). Data 

represents the average of 3 independent replicates ± SD (n=3). Labelled means without a common 

letter differ significantly (ANOVA with post hoc LSD, p≤0.05). Abbreviations: 4HBA, 4-hydroxybenzoic 

acid; BA4G, benzoic acid-4-glucuronide; BA4S, benzoic acid-4-sulfate; C3G, cyanidin-3-glucoside; EPI, 

(-)-epicatechin; HES, hesperetin; IVA3G, isovanillic acid-3-glucuronide; IVA3S, isovanillic acid-3-

sulfate; NAR, naringenin; P3G, peonidin-3-glucoside; PCA, protocatechuic acid; PCA3G, 

protocatechuic acid-3-glucuronide; PCA4G, protocatechuic acid-4-glucuronide; PCA3S, 

protocatechuic acid-3-sulfate; PCA4S, protocatechuic acid-4-sulfate; QUE,  quercetin; VA, vanillic 

acid; VA4G, vanillic acid-4-glucuronide; VA4S, vanillic acid-4-sulfate; VC, vehicle control. 
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7 mixtures of flavonoids and 11 mixtures of conjugated and unconjugated phenolic 

metabolites were screened at 10 µM for their effect on RASMC Hmox-1 protein expression 

after 24 h treatment (Figure 4.3). Hmox-1 expression was increased relative to vehicle 

control (DMSO) following treatment with the mixture consisting of equimolar 

concentrations of hesperetin and peonidin-3-glucoside (43.62 ± 1.58 %, p≤0.001). 4 of the 

11 mixtures of conjugated and unconjugated metabolites (PCA and VA; PCA and PCA3G; 

PCA and PCA4G; PCA and PCA3S) increased Hmox-1 expression (p≤0.05) by ≥8.72 % (PCA 

and PCA3G).  

 

 

Figure 4.3. Effect of mixtures of flavonoids and metabolites on Hmox-1 protein. RASMC were treated 

to a cumulative concentration of 10 µM for 24 h or 0.02 % DMSO (vehicle control), Hmox-1 protein 

was quantified by ELISA. Data represents the average of 3 independent replicates ± SD (n=3). Labelled 

means without a common letter differ significantly (ANOVA with Post Hoc LSD, p≤0.05).  Abbreviations: 

ALL, combination of 13 phenolic metabolites; C3G, cyanidin-3-glucoside; EPI, (-)-epicatechin; HES, 

hesperetin; naringenin; P3G, peonidin-3-glucoside; PCA, protocatechuic acid; PCA3G, protocatechuic 

acid-3-glucuronide; PCA4G, protocatechuic acid-4-glucuronide; PCA3S, protocatechuic acid-3-sulfate; 

PCA4S, protocatechuic acid-4-sulfate; QUE,  quercetin; VA, vanillic acid; VC, vehicle control. 
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4.3.2. Effect of quercetin, peonidin-3-glucoside, and protocatechuic acid on Hmox-1 mRNA 

expression in RASMC 

Quercetin, P3G, and PCA were screened for their effect on Hmox-1 mRNA expression in 

RASMCs after 6 h treatment (Figure 4.4). Hmox-1 mRNA expression appeared to increase in 

response to quercetin (3.09 fold, n=2). No apparent response was observed in response to 

P3G or PCA. 

 

 

Figure 4.4. Effect of quercetin, peonidin-3-glucoside, and 

PCA on Hmox-1 mRNA. Treatments were added to RASMC 

at a final concentration of 10 µM for 6 h or 0.02 % DMSO 

(VC), Hmox-1 protein was quantified by RT-qPCR relative to 

reference genes Stau1 and Zgpat and presented as fold 

change relative to an untreated control (no DMSO). Data 

represents the average of 2 independent replicates ± SD 

(n=2). 
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4.4. Discussion 

Flavonoid consumption has been positively associated with the reduced risk of 

cardiovascular diseases (Wang et al., 2014), partially thought to be through their apparent 

effects on vascular function (Grassi et al., 2015), though their mechanisms of action have yet 

to be elucidated. It is now well understood that bacterial catabolism of flavonoids reduces 

the bioavailability of the parent flavonoids and produces a number of phenolic metabolites 

(Keppler and Humpf, 2005, Feliciano et al., 2015), though the study of their bioactivity is 

relatively contemporary (Heleno et al., 2015), as is the study of their additive or synergistic 

effects in combination (Krga et al., 2016, di Gesso et al., 2015, Keane et al., 2015). The 

present study aimed to investigate the effects of 6 flavonoids and 13 phenolic metabolites 

on haem oxygenase-1 (Hmox-1) protein expression in rat aortic smooth muscle cells 

(RASMC) and to observe their potential additive or synergistic effects in equimolar 

combinations. Hmox-1 prevents VSMC migration by the inhibition of superoxide producing 

NAPDH oxidases (Rodriguez et al., 2010), which makes Hmox-1 a key therapeutic target in 

the prevention of atherosclerosis (Kim et al., 2011) and an appropriate target for the present 

investigation. 

2 flavonoids (quercetin and peonidin-3-glucoside (P3G)) and one metabolite (protocatechuic 

acid (PCA)) upregulated Hmox-1 protein in RASMCs (Figure 4.2), as did 1 mixture, consisting 

of hesperetin and peonidin-3-glucoside, 1 mixture consisting of PCA and VA and 3 mixtures 

containing PCA and its sulfate (PCA3S) or glucuronide (PCA3G and PCA4G) conjugates (Figure 

4.3). These data suggest that conjugated metabolites of flavonoids do not actively increase 

Hmox-1 protein in isolation, but may act additively or synergistically. 

Quercetin significantly induced Hmox-1 protein in the present study which is in accordance 

with previous studies, where it has previously been shown to upregulate Hmox-1 and other 

oxidant response genes through activity on transcription factor, Nrf2 (Chow et al., 2005a, 

Shih et al., 2004, Lin et al., 2004, Tanigawa et al., 2007, Granado-Serrano et al., 2012, Liang 

et al., 2013, Sun et al., 2015). It has been observed that 10 – 30 μM quercetin significantly 

induced HO-1 protein in murine macrophages (Cho and Kim, 2013) and 50 μM quercetin 

induced HO-1 protein levels between 4 - 12 h in rat hepatocytes (Liu et al., 2012). It should 

be noted that quercetin circulates as its aglycone structure at very low concentrations. In a 

feeding study of fried onions (equivalent of 64 mg of quercetin aglycone), a peak mean 

plasma concentration of 0.65 µM was detected at 3 h (Hollman et al., 1996). Certain studies 

have been unable to detect the quercetin aglycone post-consumption (Heeba et al., 2012). 

Given that phenolic metabolites exist at higher concentrations for longer periods of time in 
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the circulation, greater focus should be given to their bioactivity is indicated in future 

studies.  

Quercetin largely circulates as glucuronide/sulfate metabolites, which are considered to be 

significantly less bioactive relative to the aglycone structure (Lodi et al., 2008, Tribolo et al., 

2008, Tribolo et al., 2013). Quercetin-glucuronides may anionically bind to the cell surface 

of circulating macrophages leading to the cleavage of glucuronic acid and release of the 

quercetin aglycone (Ishisaka et al., 2013). However, a recent in vitro study on the effect of 

quercetin-3-glucuronide on NOX1 inhibition (Jimenez et al., 2015), suggested that a high 

concentration (100 µM) of the conjugated metabolite was required to de-conjugate enough 

glucuronic acid to exert a significant effect on NOX inhibition. Quercetin-3-glucuronide is 

thought to act by different mechanisms to its aglycone, as it has been shown to inhibit JNK 

phosphorylation and subsequent transcription of inflammatory genes in vascular smooth 

muscle cells (VSMCs; Yoshizumi et al., 2002). These studies suggest that flavonoid aglycones 

may be active on vascular mechanisms of action (such as NOX inhibition or Hmox-1 

expression), but that metabolic conjugation may alter activity the target toward 

inflammatory mechanisms of action, such as the expression of adhesion molecules (Amin et 

al., 2015).  

The anthocyanin, P3G, also upregulated Hmox-1 protein to an equivalent extent as quercetin 

(Figure 4.2). The effect of P3G in this pathway is lesser studied relative to quercetin and so 

it is difficult to compare these data directly to previous studies, and, to our knowledge, this 

is the first time that this effect has been reported on Hmox-1 expression, although retinal 

epithelial (ARPE-19) cells preincubated with bilberry extract (containing P3G) demonstrated 

increased HO-1 expression by 5.5 fold (Milbury et al., 2007). It should be noted that P3G is 

unstable and rapidly degrades to phenolic acid derivatives at physiological pH and therefore 

has low plasma bioavailability, which has also been shown in vivo for the structurally similar 

anthocyanin, cyanidin-3-glucoside (de Ferrars et al., 2014b). The relevance of these data to 

physiologically achievable effects in a nutritional context therefore remains to be 

established. Of greater interest is the apparent reduction of activity between P3G and its B-

ring derivative, vanillic acid (VA), suggesting that the activity of anthocyanins on Hmox-1 

expression observed in vitro may in fact be lost in vivo due to chemical degradation or 

bacterial catabolism. This is contrary to findings of others in our group, who have concluded 

that conjugation increases bioactivity in inflammatory mechanisms in endothelial and 

monocytic cell types (Amin et al., 2015, di Gesso et al., 2015), which further suggests that 
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conjugation may reduce efficacy of phenolic metabolites on oxidant-response mechanisms 

but may increase efficacy in inflammatory mechanisms.  

It was surprising that no effect on Hmox-1 was observed in the present study in response to 

VA, given that a significant increase in HO-1 protein in human endothelial cells has previously 

been observed at this concentration (Edwards et al., 2015), which suggests cell type- and/or 

species-specific effects. A recent study of P3G on TNF-α stimulated adhesion molecules by 

endothelial cells (Krga et al., 2016) demonstrated that it was only bioactive at the 

physiologically achievable concentration of 0.1 µM, but not at concentrations ≥0.2 µM. 

These data suggest that whereas effect on vascular biomarkers may be apparent in vitro at 

supraphysiological concentrations (as in the present study), this anthocyanin may act in 

inflammatory pathways at low, physiologically relevant concentrations (Kuntz et al. 2015). 

PCA, a prominent metabolite common to multiple flavonoids subclasses (Schar et al., 2015, 

de Ferrars et al., 2014b), modestly (though not significantly, p=0.09), increased Hmox-1 

protein. It may be predicted that with increased concentration, this result may have reached 

significance, given that plasma concentrations may reach 16 µM (Keane et al., 2015) and this 

could be validated in future studies. It should be noted that PCA does not circulate for 

extended periods of time, but is more likely to be methylated by catechol-O-methyl 

transferase (COMT) enzymes (Zhu, 2002) and circulate at higher levels as vanillic acid (de 

Ferrars et al., 2014b). Past studies have suggested that the catechol moiety was likely 

responsible for the activity of PCA (Kakkar and Bais, 2014). As such, further work is required 

on the effect of conjugation of the catechol group to establish its effects on mechanisms and 

magnitudes of effect. 

7 mixtures of flavonoids and 11 mixtures of phenolic metabolites were designed based on 

their structural similarities and where activity was observed in our original screen (Figure 

4.2; quercetin, P3G and PCA), and studied for their effect on Hmox-1 protein expression 

(Figure 4.3). Here, equimolar mixtures of substituents were utilised (to a cumulative 

concentration of 10 µM, such that a mixture of 2 constituents would have equivalent 

concentrations of 5 µM). Hmox-1 protein was increased in response to a mixture containing 

equimolar concentrations of hesperetin and P3G, though this was to the same relative 

magnitude as P3G in isolation at 10 µM. These data either suggest additive activity or that 

this bioactivity is sustained by P3G at 5 µM, which future studies could confirm by use of a 

concentration-response experiment. 4 mixtures of phenolic metabolites containing PCA 

actively increased Hmox-1 protein, which is of particular interest as the concentration used 

is achievable following flavonoid consumption (Schar et al., 2015) and therefore is a 
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potentially physiologically achievable effect. In a study by Keane et al., following the feeding 

of 30 mL or 60 mL Montmorency tart cherry extract (equivalent to 90 or 180 cherries) to 12 

healthy males (Keane et al., 2015), mean peak concentrations of PCA and VA in plasma were 

16 µM  and 2 µM, respectively. These concentrations were doubled to 32 µM and 4 µM in 

vitro to include maximum achievable concentrations in vivo and utilised to determine their 

effect on VSMC proliferation and migration. No effect was observed in response to either 

metabolite in isolation, but a mixture of PCA+VA increased VSMC migration, suggestive of a 

beneficial, additive effect. Interestingly, the present study observed that PCA and VA, in 

isolation, also did not significantly increase Hmox-1 expression, but a combination consisting 

of 5 µM of each metabolite (to a cumulative concentration of 10 µM) significantly 

upregulated Hmox-1 protein. This firstly may support the hypothesis that these abundant 

metabolites act additively on Hmox-1 expression and, secondly, may present a potential 

mechanism of action for the aforementioned in vivo experiment (Keane et al., 2015), as 

Hmox-1 protein upregulation is positively associated with VSMC migration in vitro, which 

may prevent lesion rupture (Araujo et al., 2012). Additionally, it has recently been 

demonstrated that angiotensin II-induced inflammation is inhibited by the synergistic 

activity of atorvastatin and cyanidin-3-glucoside in vascular smooth muscle cells (Pantan et 

al., 2016), though an unmetabolised flavonoid, these data do support the evidence of 

additive or synergistic effects in VSMC and merit further exploration in future studies. 

Effects of active treatments on Hmox-1 mRNA were investigated to infer potential 

mechanisms of action. Hmox-1 mRNA was only apparently increased in response to 

quercetin, but not to P3G or PCA. These data may suggest, as previously demonstrated in 

Chapter 3, that only quercetin is active on Hmox-1 transcription, which indicates activation 

of upstream transcription factor, Nrf2, which may be confirmed in future studies. The 

present investigation focused on the putative mechanisms of action of the phenolic 

metabolites, the vast majority of which were not active on downstream protein, Hmox-1. In 

addition, the effects observed for quercetin are already established in the literature (Liang 

et al., 2013, Cho and Kim, 2013, Granado-Serrano et al., 2012, Tanigawa et al., 2007, Lin et 

al., 2004) and therefore no mechanistic studies were carried forward. 

The present study has provided novel insight into the effects of flavonoids and their 

metabolites on oxidant response protein, Hmox-1, in VSMCs, however, there were certain 

limitations to this work. The use of a rat-derived cell type, as opposed to human cells, may 

be seen as a limitation as the phenotypes and expression levels of cellular proteins may not 

be conserved between species (Kotokorpi et al., 2007). An advantage to the use of RASMC 
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is that there is direct relevance of such bioactivity studies to animal studies which have 

observed the effects of quercetin-glucuronides/sulfate metabolites (Lodi et al., 2009) and 

anthocyanins (Ziberna et al., 2013). Effect size of vascular biomarkers in response to 

flavonoids may differ in rat relative to human cell types, and therefore, although cost 

prohibitive, future work should validate key findings in a human cell type, such as human 

coronary artery smooth muscle cells (HCASMCs), to confirm their relevance. 

The treatment concentration (10 µM) utilised in the present study may be seen as a 

limitation, certainly for the precursor flavonoids, and conjugated and unconjugated 

metabolites circulate at a vast range of concentrations (de Ferrars et al., 2014b). A more 

appropriate screening model would have been to screen the precursor flavonoids at 0.1 µM 

and phenolic metabolites at 10 µM, this would allow comparison at physiologically relevant 

concentrations but would not have allowed direct comparisons for structure-activity 

relationship investigations. Furthermore, 10 µM may not be a concentration to which VSMC 

are exposed to, as these cells are not directly exposed to circulating factors in the blood, 

unlike endothelial cells. Future studies could improve the physiological relevance of this 

study by the development of an endothelial/VSMC co-culture model (Truskey, 2010). 

In conclusion, the present study has demonstrated that 2 precursor flavonoids relevant to 

the UK diet and 1 associated metabolite induced Hmox-1 total protein in VSMCs, and that 

bioactivity is apparently increased in combination by additive or synergistic activity. To 

further these conclusions, future work is required to elucidate the individual bioactivities of 

the treatment constituents of these combinations and bioactivity within cellular signalling 

experiments should be explored to identify which mechanism(s) of action these treatments 

may act upon. The primary outcome of the present investigation was that only one of the 

investigated metabolites was (moderately) active on the biomarker investigated, whereas 

recent studies suggest that flavonoid metabolites may be more active in inflammatory 

mechanisms of action, such as inflammation-driven adhesion molecule expression (Krga et 

al., 2016, Amin et al., 2015), which will be the focus of the succeeding work (Chapters 5 & 

6).  
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Chapter 5. Effect of flavonoids and their metabolites on 

inflammatory mechanisms in human endothelial cells. 

 

5.1. Introduction 

Positive associations have been made between diets high in flavonoid-rich foods and the 

reduced risk of cardiovascular disease (CVD; Wang et al., 2014), leading to studies focusing 

on biomarkers relating to direct vascular reactivity, affecting blood pressure, heart rate 

variability and flow mediated vasodilation (Kay et al., 2012, Ried et al., 2012). However, low 

level chronic inflammation, attributed to the expression of vascular adhesion molecules on 

the surface of the endothelium, has long been implicated as a driving factor in the early 

stages of atherosclerosis (Ley and Huo, 2001, Lusis, 2000). Tumour necrosis factor-alpha 

(TNF-α) is a cytokine that serves as a mediator in a number of diseases, such as 

atherosclerosis, and stimulates the production of a number of pro-inflammatory 

biomarkers (Nakao et al., 2003), such as circulating levels of soluble vascular adhesion 

molecule-1 (sVCAM-1), an important predictor of risk of death from coronary heart disease 

(Blankenberg et al., 2001). TNF-α stimulated sVCAM-1 expression therefore provided a 

logical target for exploring the potential mechanisms of action of flavonoid metabolites in 

the present investigation.  

Previous studies have demonstrated potentially beneficial effects of flavonoids on some 

inflammatory mechanisms in vitro, including inhibition of the adhesion of leukocytes to 

endothelial cells (Chanet et al., 2013, Chen et al., 2004, Claude et al., 2014). The 

mechanisms underlining these effects are unknown, potentially as previous in vitro 

investigations have focused on the activity of unmetabolised flavonoids, which are found 

in relatively low abundance in the circulation compared to their metabolites, and have 

considerably shorter half-lives (de Ferrars et al., 2014b, Pereira-Caro et al., 2014, Rodriguez-

Mateos et al., 2014a, McKay et al., 2015). It has therefore been suggested that the biological 

activity observed in human studies results from the activity of products of flavonoid 

metabolism (i.e., products of bacterial catabolism, absorption and further phase II 

metabolism; Kay et al., 2009). Additionally, many past in vitro studies have utilised 

supraphysiological concentrations of precursor/unmetabolised flavonoids, while only a 

limited few have reported the activity of free phenolic acids (Edwards et al., 2015). Until 

recently (Amin et al., 2015, di Gesso et al., 2015) few have explored the activity of phase II 

conjugates of phenolic acid derivatives (Kling et al., 2014, Olejarz et al., 2014, Sevgi et al., 
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2014, Juurlink et al., 2014), primarily as a result of the lack of availability of synthetic 

standards (Rodriguez-Mateos et al., 2014d). 

The present study explored the hypothesis that phenolic metabolites of flavonoids have 

differential biological activities to their precursor structures, and that metabolites in 

combination may have additive or synergistic effects on inflammation. We therefore 

screened 6 flavonoids found commonly in the Western diet, 14 human metabolites, as 

previously reported (Czank et al., 2013, de Ferrars et al., 2014b, Rodriguez-Mateos et al., 

2014a, Pereira-Caro et al., 2014), and 25 combinations of the flavonoids and their 

metabolites (at equimolar concentrations), for their ability to reduce sVCAM-1 protein 

secretion by TNF-α stimulated human umbilical vein endothelial cells (HUVECs). 

Concentration response relationships of the active treatments were also explored for their 

effect on protein and mRNA, including four physiological (between 0.01 µM and 10 µM) 

and one supraphysiological (100 µM) concentration. The most active treatment was further 

assessed for activity on the transcription factor NFB and on key kinases reported to 

regulate TNF-α –induced adhesion molecule expression (p38, JNK, ERK1/2, and Akt1). 
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5.2. Methods  

Experiment specific details are provided below while comprehensive methodological 

descriptors are provided in detail in Chapter 2.  

5.2.1. Treatment solutions 

Stock solutions of flavonoids and metabolites were prepared in DMSO and stored as 

described in Chapter 2. Working solutions of 1 mM of each analyte were made up in 

supplemented media before being diluted to a final concentration of 0.01 µM, 0.1 µM, 1 

µM, 10 µM, or 100 µM, or to equimolar concentrations for treatments (for example, each 

in a mixture consisting of 4 constituents, each would be 0.25 µM, to a cumulative 

concentration of 1 µM).  

5.2.2. Cell culture  

Cryogenically stored, pooled donor, human umbilical vein endothelial cells (HUVECs) were 

cultured and maintained as described in Chapter 2. All cells were incubated for at least 24 

hours at 37oC, 5 % CO2, in a humidified atmosphere, prior to experiment commencement. 

All cells were used between passages 3 and 4.  

5.2.3. sVCAM-1 and sIL-6 protein expression 

HUVEC were seeded at 80,000 cells/well in fibronectin coated 24-well plates. For treatment 

effect experiments, cells were pre-treated for 30 min with 0.01 µM, 0.1 µM, 1 µM, 10 µM, 

or 100 µM treatment solution, or 0.02 % DMSO (vehicle control) prior to the addition 10 

ng/mL TNF-α, followed by 18 h incubation at 37oC, 5 % CO2, in a humidified atmosphere. 

Supernatants were collected on ice, centrifuged at 2000 x g for 10 min at 4oC, and stored at 

-80oC until required. Samples underwent a single freeze-thaw cycle, incubated to room 

temperature, and vortexed for 3 x 5 sec immediately prior to use. Supernatants were 

diluted 1:5 in Reagent Diluent #2 (R&D Systems) prior to commencing the assay, with the 

exception of the unstimulated control, which was not diluted. Protein expression of sVCAM-

1 and sIL-6 were determined by commercially available enzyme-linked immunosorbent 

assay (ELISA), as described in Chapter 2. 

5.2.4. VCAM-1 mRNA expression 

HUVEC were seeded at 200,000 cells/well in fibronectin coated 6-well plates. For treatment 

effect experiments, cells were pre-treated for 30 min with 0.01 µM, 0.1 µM, 1 µM, 10 µM, 

or 100 µM treatment solution, 0.02 % DMSO (vehicle control) or 10 µM BAY-11 7085 (NFB 

inhibitor), prior to 4 h stimulation with 10 ng/mL TNF-α. Cell culture supernatants were 

removed and cells washed 3 x with PBS. Total RNA was extracted, reverse transcribed and 
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RT-qPCR carried out as described in Chapter 2. Reference genes, UBE2D2 and PRDM4, were 

used to normalise the data in subsequent experiments. 

5.2.5. NFB p65, p38 MAPK, JNK, Akt, and ERK1/2 protein expression  

HUVEC were seeded at 200,000 cells/well in fibronectin coated 6-well plates. Cells were 

treated with 0.1 µM, 1 µM, 10 µM, or 100 µM protocatechuic acid (PCA) or 0.02 % DMSO 

(vehicle control) for 30 min followed by addition of TNF-α (10 ng/mL) for 15 min. Cells were 

washed 3x with PBS and cells lysed with NP-40 lysis buffer. Total protein concentrations 

were determined by BCA assay and proteins were separated and probed by SDS-PAGE and 

Western blotting, respectively, as described in Chapter 2. Densitometry values were 

normalised to GAPDH reference protein. 

5.2.6. Data analysis 

Protein (pg/mL) or mRNA (fold change) were recorded as the mean of two technical 

duplicates, and reported relative to the TNF-α positive control (containing TNF-α without 

DMSO) as a mean of three independent replicates ± SD (n=3). Protein from Western blotting 

(infrared density) were reported as singular measures relative to TNF-α positive control 

(containing TNF-α without DMSO). Treatment effects for ELISAs, PCRs, and Western blots 

were established by one-way analysis of variance (ANOVA) with post-hoc least square 

difference (LSD) conducted using SPSS for Windows (version 22.0; IBM, New York, USA). 

Untreated and negative controls were not included in the ANOVA for treatment effect but 

presented graphically, where a student t-test established difference relative to vehicle 

control (DMSO) using Microsoft Excel (version 2013). Data were considered significant 

where p≤0.05. For screening purposes, treatments displaying nonsignificant values (p≤0.15) 

were taken forward for validation in subsequent concentration analysis. 

5.2.7. Method optimisations 

Method optimisation experiments were conducted to identify the TNF- α concentration (10 

ng/mL), stimulation time (18 h), for the upregulation of sVCAM-1 expression (Figure 5.1; 

Appendix, Chapter 9.3). The effect of concentration of PCA across each time point was 

determined when cells were either pre-treated or co-incubated with TNF-α (pre-treatment). 

The effect of PCA was in TNF-α stimulated HUVEC was also validated in HCAEC. Endogenous 

reference genes for normalisation of Ct data for target genes were selected based on 

previous optimisation experiments conducted by our group (Amin PhD thesis, 2014). TNF-α 

stimulated expression time of NFB p65 and the phosphorylation of signalling kinases, Akt1, 

ERK1/2, p38 and JNK were determined (15 min).  
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Figure 5.1. Method optimisation experiments for Chapter 5- A-D) sVCAM-1 protein, E-F) NFB p65 expression and signalling kinase expression. See Appendix 9.3. 

Abbreviations: HCAEC, human coronary artery endothelial cells; HUVEC, human umbilical vein endothelial cells; PCA, protocatechuic acid; TNF-α, tumour necrosis 

factor α. 
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5.3. Results 

5.3.1. Effect of flavonoids and their metabolites on TNF-α stimulated sVCAM-1 secretion 

6 flavonoids and 14 phenolic metabolites were screened at a concentration of 1 µM for 

their ability to reduce TNF-α stimulated sVCAM-1 secretion by HUVECs (Figure 5.2). 

Precursor flavonoids had no effect on sVCAM-1 secretion, although there was a moderate, 

but non-significant (p= 0.14) increase in the secretion of sVCAM-1 following treatment with 

(-)-epicatechin. The metabolite PCA significantly decreased sVCAM-1 secretion (p= 0.05) 

and moderate but non-significant effects were observed for treatment with sulfate (PCA4S, 

p= 0.07; PCA3S p= 0.14) and glucuronide (IVA3G, p= 0.15) conjugates of PCA. Active 

treatments were taken forward to explore concentration response.  
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Figure 5.2. Effect of flavonoids and phenolic acid metabolites on TNF-α stimulated sVCAM-1 

protein secretion. A) Flavonoids, B) Anthocyanin glucosides, C) Unconjugated phenolic acids, D) 

Conjugated phenolic acids. Data were normalized to a TNF-α control and columns represent the 

mean ± SD of three independent experiments, n=3. Different letters indicate significant difference 

following post hoc LSD (p ≤ 0.05). Comparisons of untreated control relative to vehicle control 

(DMSO) were established via student t-test, *p≤ 0.05. Abbreviations: 4HBA, 4-hydroxybenzoic acid; 

BA4G, benzoic acid-4-glucuronide; BA4S, benzoic acid-4-sulfate; C3G, cyanidin-3-glucoside; EPI, (-) 

epicatechin; HES, hesperetin; IVA, isovanillic acid; IVA3G, isovanillic acid-3-glucuronide; IVA3S, 

isovanillic acid-3-sulfate; NAR, naringenin; P3G, peonidin-3-glucoside; PCA, protocatechuic acid; 

PCA3G, protocatechuic acid-3-glucuronide; PCA4G, protocatechuic acid-4-glucuronide; PCA3S, 

protocatechuic acid-3-sulfate; PCA4S, protocatechuic acid-4-sulfate; QUE, quercetin; VA, vanillic 

acid; VA4G, vanillic acid-4-glucuronide; VA4S, vanillic acid-4-sulfate. 

 

Seven treatments containing mixtures of flavonoids and 18 treatments containing 

combinations of phenolic metabolites were also investigated for their effect on sVCAM-1 

secretion (Figure 5.3), however, no activity was observed at a cumulative concentration of 

1 µM of the compounds. 
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Figure 5.3. Effect of mixtures of flavonoids and 

phenolic acid metabolites on TNF-α stimulated 

sVCAM-1 protein secretion. A) Flavonoid mixtures, 

B) Phenolic acid mixtures, C) Conjugated and 

unconjugated phenolic metabolite mixtures. Data 

were normalized to a TNF-α control and columns 

represent the mean ± SD of three independent 

experiments, n=3. Different letters infer significant 

difference following post hoc LSD (p ≤ 0.05). 

Comparisons of untreated control relative to vehicle 

control (DMSO) were established via student t-test. 

*p≤ 0.05. Abbreviations: 4HBA, 4-hydroxybenzoic 

acid; BA4G, benzoic acid-4-glucuronide; BA4S, 

benzoic acid-4-sulfate; C3G, cyanidin-3-glucoside; 

EPI, (-) epicatechin; HES, hesperetin; IVA, isovanillic 

acid; IVA3G, isovanillic acid-3-glucuronide; IVA3S, 

isovanillic acid-3-sulfate; NAR, naringenin; P3G, 

peonidin-3-glucoside; PCA, protocatechuic acid; 

PCA3G, protocatechuic acid-3-glucuronide; PCA4G, 

protocatechuic acid-4-glucuronide; PCA3S, 

protocatechuic acid-3-sulfate; PCA4S, 

protocatechuic acid-4-sulfate; QUE, quercetin; VA, 

vanillic acid; VA4G, vanillic acid-4-glucuronide; VA4S, 

vanillic acid-4-sulfate.
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5.3.2. Effect of concentration of PCA and IVA metabolites on sVCAM-1 secretion.  

sVCAM-1 secretion was investigated following treatment with 0.01 µM -100 µM of the 

active treatments PCA, PCA3S, PCA4S, and IVA3G (Figure 5.4). IVA, although not active in 

the sVCAM-1 protein screen, was also included in order to establish structure-activity 

relationships with PCA and IVA conjugates. Here, PCA significantly reduced sVCAM-1 levels 

in a concentration dependent manner between 1 µM and 100 µM, while PCA3S and IVA 

were only active at levels between 10 µM and 100 µM, and PCA4S and IVA3G were only 

active at 100 µM
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Figure 5.4. Effect of concentration of phenolic acid 

metabolites on TNF-α stimulated sVCAM-1 protein 

secretion. A) Protocatechuic acid (PCA), B) 

Protocatechuic acid-3-sulfate (PCA3S), C) Protocatechuic 

acid-4-sulfate (PCA4S), D) Isovanillic acid (IVA), E) 

Isovanillic acid-3-glucuronide (IVA3G). Data were 

normalized to a TNF-α control and columns represent the 

mean ± SD of three independent experiments, n=3. 

Different letters infer significant difference following 

post hoc LSD (p ≤ 0.05). Comparisons of untreated 

control relative to vehicle control (DMSO) were 

established via Student’s t-test, *p≤ 0.05 
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5.3.3. Effect of PCA metabolites on sIL-6 protein expression.  

To determine whether the apparent concentration responsive effects of PCA, PCA3S, and 

PCA4S on sVCAM-1 were pathway specific, the effects of these metabolites were 

investigated for a differentially regulated, secreted inflammatory biomarker, soluble 

interleukin-6 (sIL-6), in response to TNF-α stimulation (Figure 5.5). sIL-6 protein expression 

was significantly increased up to 14 fold (p≤0.001) following 18 h stimulation with TNF-α. 

Pre-incubation with PCA, PCA3S or PCA4S did not have any significant effects on sIL-6 

secretion.   

 

Figure 5.5. Effect of concentration of phenolic acid metabolites on TNF-α stimulated sIL-6 protein 

secretion. A) Protocatechuic acid (PCA), B) Protocatechuic acid-3-sulfate (PCA3S), C) Protocatechuic 

acid-4-sulfate (PCA4S). Data were normalized to a TNF-α control and columns represent the mean ± 

SD of three independent replicates (n=3). Comparisons between treatments were determined using 

one-way ANOVA with post hoc LSD. The comparisons between an untreated control relative to 

vehicle control (DMSO) were established via Student’s t-test, *p≤0.001. 
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5.3.4. Effect of PCA and IVA metabolites on VCAM1 mRNA expression 

To identify whether the effects on sVCAM-1 protein were mirrored in VCAM1 mRNA 

expression, HUVECs were treated with PCA, PCA3S, PCA4S, IVA or IVA3G at concentrations 

between 0.01 µM and 100 µM (Figure 5.6). TNF-α significantly induced VCAM-1 mRNA 

expression after 4 h (p≤0.01), and this effect was fully inhibited by treatment with the 

negative control (IBα-inhibitor, BAY 11-7085). Treatment with 100 µM PCA was the only 

treatment to significantly inhibit VCAM-1 mRNA expression (78 % inhibition). 
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Figure 5.6. Effect of concentration of phenolic acid 

metabolites on TNF-α stimulated VCAM-1 mRNA expression. 

A) Protocatechuic acid (PCA), B) Protocatechuic acid-3-sulfate 

(PCA3S), C) Protocatechuic acid-4-sulfate (PCA4S), D) 

Isovanillic acid (IVA), E) Isovanillic acid-3-glucuronide (IVA3G). 

Data were normalized to a TNF-α control and columns 

represent the mean ± SD of three independent experiments 

(n=3). Different letters infer significant difference following 

post hoc LSD (p ≤ 0.05). Comparisons of untreated control 

relative to vehicle control (DMSO) were established via 

Student’s t-test, *p≤ 0.05. 
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5.3.5. Effect of TNF-α stimulation on NFB pathway activation 

The effects of PCA (0.1 µM - 100 µM) were tested for their effect on NFB pathway 

activation. Expression of phosphorylated p65 (Figure 5.7) was significantly increased 

relative to the vehicle control, whereas the IBα inhibitor, Bay 11-7085, significantly 

inhibited this expression (p≤0.001). No differential effects were observed on either 

biomarker in response to PCA. Other TNF-α activated signalling kinases were therefore 

further investigated to elucidate PCA mechanism of action. 

 

 

Figure 5.7. Concentration response of PCA on NFB p65 phosphorylation. Data 

were normalized to an unstimulated control and columns represent the mean ± SD 

of three independent replicates (n=3). Treatment effects were compared by use of a 

one-way ANOVA with post hoc LSD (p ≤ 0.05). Comparisons of untreated or negative 

control relative to vehicle control (DMSO) were established via Student’s t-test, *p≤ 

0.05. 

 

5.3.6. Effect of PCA on TNF-α stimulated signalling kinase phosphorylation 

The effects of PCA (0.1 µM - 100 µM) were tested for their effect on TNF-α stimulated Akt1, 

ERK, p38, and JNK phosphorylation (Figure 5.8). No differential effects were observed on 

kinase phosphorylation following treatment with PCA. 
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Figure 5.8. Concentration response of PCA on signalling kinase phosphorylation. Data were 

normalized to a TNF-α control and columns represent the mean of three independent replicates ± 

SD (n=3). Blots are representative of one of three independent replicates. Treatment effects were 

compared by use of a one-way ANOVA with post hoc LSD (p ≤ 0.05). Comparisons of untreated or 

negative control relative to vehicle control (DMSO) were established via Student’s t-test, *p≤ 0.05. 
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5.4. Discussion 

Previous studies have demonstrated potentially beneficial effects of flavonoids on 

inflammation in vivo, including inhibition of the adhesion of leukocytes to endothelial cells 

(Chen et al., 2002, Wang et al., 2010). However, the mechanisms underlining these effects 

are unknown, potentially as previous in vitro investigations have focused on the activity of 

unmetabolised flavonoids, which are found in low abundance in the circulation compared 

to their chemical degradants, bacterial catabolites, and phase II metabolites (Kay, 2010, 

Murota and Terao, 2003).  

sVCAM-1 was a logical target to investigate the vasoprotective activity of flavonoids as it is 

a clinical predictor of risk of death from cardiovascular disease (Blankenberg et al., 2001) 

and previous studies have demonstrated beneficial effects of flavonoids on adhesion of 

leukocytes to endothelial cells (Chanet et al., 2013, Chen et al., 2004b, Claude et al., 2014). 

Only the phenolic metabolites of flavonoids inhibited sVCAM-1 protein secretion in a model 

of pro-inflammatory stress (i.e. TNF-α stimulation), which supports the hypothesis that 

common phenolic metabolites have differential activities to their precursor structures. 

These findings are supported by additional recent studies demonstrating that metabolites 

were active on sIL-6 and sVCAM-1 production following stimulation with CD40 and oxidised-

LDL (oxLDL) in vascular endothelial cells and TNF-α following LPS stimulation in human 

monocytes (Amin et al., 2015, di Gesso et al., 2015).  

In the present study, 20 flavonoids and their metabolites and 25 combinations of 

structurally similar compounds were explored for their effects in TNF-α stimulated HUVECs. 

Four phenolic metabolites demonstrated inhibitory activity on sVCAM-1 secretion. PCA 

demonstrated the greatest activity, displaying a strong inhibitory effect on sVCAM-1, which 

appeared to be amplified with increased concentration. Inhibition of VCAM-1 mRNA was 

observed in response to PCA, however, this was only apparent at a supraphysiological 

concentration of 100 µM and did not appear to affect NFB pathway activation or other 

signalling kinase activations at any of the concentrations used (0.1 µM- 100 µM). 

Furthermore, mixtures of metabolites and flavonoids showed no activity toward sVCAM-1, 

suggesting no additive activity at sub-micromolar concentrations (cumulative 

concentrations adding up to 1 µM). 

Five treatments were further explored for their concentration-responsive effects on 

sVCAM-1 protein (Figure 5.4), four of these (PCA, PCA3S, PCA4S, and IVA3G) demonstrated 

inhibition of sVCAM-1, and one (IVA) was selected to draw conclusions regarding structure-

activity relationships between the PCA and IVA conjugates. Of the compounds screened, 
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PCA was the most active across the concentration range tested, and this activity is in line 

with previous studies, where it has been shown to inhibit the expression of inflammatory 

mediators, including adhesion molecules (Kakkar and Bais, 2014, Min et al., 2010). The 

activity of PCA is comparable to its aldehyde equivalent (protocatechuic aldehyde), in a 

recent report identifying a dose-dependent reduction in the TNF-α stimulated sVCAM-1 

(Zhou et al., 2005); this supports the premise that the catechol moiety of flavonoid 

metabolites holds significant anti-inflammatory activity (Rimbach et al., 2004). As discussed 

in Chapter 4, it should be noted that PCA, given its reactive catechol moiety, is rapidly 

methylated by catechol-O-methyltransferase (COMT; Zhu, 2002) and does not persist in the 

systemic circulation at any appreciable concentration for significant periods of time (de 

Ferrars et al., 2014a, Czank et al., 2013, de Ferrars et al., 2014b), whereas its metabolite, 

vanillic acid (VA), for example, is reported to exist at much higher concentrations and have 

a considerably longer half-life (de Ferrars et al., 2014a, Czank et al., 2013, de Ferrars et al., 

2014b, Schar et al., 2015). 

The lack of dietary relevance of contemporary cell culture studies in the field of nutrition is 

apparent, given the use of precursor structures at supraphysiological concentrations, which 

may explain why the underlying mechanisms of action of many phytochemicals (such as 

flavonoids) are still unknown (Kay, 2010). It is therefore interesting that we observed a 

trend in the inhibition of sVCAM-1 in response to PCA at concentrations as low as 0.1 µM, 

as previous studies have identified serum concentrations of PCA ranging between 0.15 µM 

(de Ferrars et al., 2014b) and 1.5 µM (Vitaglione et al., 2007, de Ferrars et al., 2014a) after 

consumption of a pure cyanidin-3-glucoside, fruit juice, or elderberry extract, suggesting 

that this concentration and effect is achievable through diet.  

We sought to explore if the observed effect on sVCAM-1 protein was reflected in the 

expression of VCAM-1 mRNA, as advocated by others (Wang et al., 2010, Amin et al., 2015). 

PCA was only active here at 100 µM, suggesting PCA is not directly active on mRNA 

transcription or in other relevant signalling pathways investigated (NFB, JNK, p38, Akt1, 

ERK1/2), at physiologically achievable concentrations, but it is therefore likely acting post-

translationally, such as through other cellular enzymes, e.g. glutathione peroxidase (GPx; 

d'Alessio et al., 1998), this would be an interesting line of enquiry, as other studies have 

shown upregulation of GPx following treatment with quercetin (Granado-Serrano et al., 

2012) and catechin (Simos et al., 2012). Additionally, it is conceivable that flavonoids or 

their metabolites could interact with the cleavage of the protein from the surface of 

endothelial cells (Videm and Albrigtsen, 2008), such as by interaction with TNF-α converting 
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enzyme, ADAM17 (Garton et al., 2003), a suggested mediator of VCAM-1 shedding from 

the surface of endothelial cells. Future cell culture studies exploring the mechanisms of 

action of PCA at physiological concentrations may elucidate alternative post-translational 

or receptor-binding activities.  

Investigations of structure-activity relationships (SAR) are important to improving our 

understanding of how metabolism alters phytochemical activity. As previous studies have 

reported the SAR of flavonoids (Martinez-Fernandez et al., 2015, Lotito and Frei, 2006), we 

aimed to draw conclusions based on relationships between conjugated and unconjugated 

phenolic metabolites. Of the 5 metabolites studied in detail, PCA had the greatest inhibitory 

effect on sVCAM-1 secretion, with PCA3S, PCA4S and IVA having equally lesser activity, and 

IVA3G having little or no effect (Figure 5.9), suggesting that sequential conjugation the 

hydroxyl and carboxyl moieties systematically reduces potency on sVCAM-1 secretion.  

 

 

Figure 5.9. Relative inhibition of sVCAM-1 in response to PCA, PCA3S, PCA4S, IVA, and IVA3G, at 

10 µM. Structures are presented in the order of decreasing activity. Statistical comparisons were 

established using one-way ANOVA with post hoc LSD, where > sign represents a significant difference 

in effect between compounds (p≤ 0.05). Abbreviations: PCA, protocatechuic acid; PCA3S, 

protocatechuic acid-3-sulfate; PCA4S, protocatechuic acid-4-sulfate; IVA, isovanillic acid; IVA3G, 

isovanillic acid-3-glucuronide. 
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et al., 2004, Winterbone et al., 2009), however, the opposite has recently been reported in 

oxLDL stimulated HUVECs, where conjugation of PCA increased the activity on sVCAM-1 

(Amin et al., 2015), suggesting that the effects of conjugation is dependent on the 

inflammatory stimulus, and thus the upstream signal transduction pathway involved, which 

has also been suggested for other precursor flavonoids (Xu et al., 2007). This again may 

support the hypothesis that mechanisms of action lie upstream of key signal transduction 

pathways. Overall, this SAR analysis supports the theory that PCA bioactivity is related to 
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its catechol moiety and substitution of these systematically reduces activity. Therefore, it is 

possible that there are differential bioactivities of flavonoid metabolites post-consumption, 

as they are systematically metabolised and eliminated from the circulation. 

Flavonoids and their metabolites do not circulate in isolation following ingestion, but exist 

as complex mixtures of metabolites at various concentrations (Czank et al., 2013, Pereira-

Caro et al., 2014, Serra et al., 2012), thus it is important that this is reflected in the design 

of cell culture experiments exploring the bioactivities of dietary components. Few studies 

have explored the effects of flavonoids in combination, despite some indication of 

differential activities when in combination relative to isolation (Koga and Meydani, 2001, 

Harasstani et al., 2010). In the present study we explored an extensive array of mixtures of 

flavonoids and flavonoid metabolites (25 mixtures in total). Inhibitory effects on sVCAM-1 

secretion from mixtures totalling 1 µM in concentration (cumulative concentration of 

analytes present in an equimolar ratio) were not observed in the present study. Here, 

treatments represented concentrations of each analyte between 0.5 µM and 0.17 µM and 

it is possible that these concentrations were too low to elicit a quantifiable response, 

whereas a recent human study identified total phenolic metabolites to reach 13.3 µM 

following consumption of orange juice (Schar et al., 2015), thus greater cumulative 

concentrations are indicated in future cell culture studies. Given that mixtures of phenolic 

metabolites have shown differential effects to their constituents in isolation in LPS 

stimulated THP-1 cells (di Gesso et al., 2015), cumulative effects of these metabolites may 

be cell-type or stimulus specific. It is possible that the non-natural construction of 

equimolar concentrations of analytes does not render activity, and that a more appropriate 

method to investigate additive or synergistic effects would be to mimic mixtures/profiles 

of serum metabolites reported following human consumption studies; this was the focus of 

a future investigation (Chapter 6).  

This study has provided novel insight into the differential activity of flavonoid metabolites 

compared to their precursor structures, and explored their potential for additive effects, 

though there are certain limitations of this work. Firstly, the measurement of soluble 

VCAM-1 over membrane-bound VCAM-1 could be seen as a limitation as it is the 

membrane-bound VCAM-1 that binds directly to leukocytes in the progression of 

atherosclerosis (Lusis, 2000). However, it has been reported that sVCAM-1 protein levels 

directly correlate with levels of surface-bound VCAM-1 (Kjaergaard et al., 2013) and 

sVCAM-1 has been suggested as a more appropriate biomarker of endothelial cell activation 

(Videm and Albrigtsen, 2008); that said, further investigation of the relative activity of these 
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metabolites on surface-bound VCAM-1 would verify such correlations (Kjaergaard et al., 

2013). The cell culture model utilised could be considered a limitation, as HUVECs do not 

originate from the arterial walls, however, HUVECs are a well characterised cell type used 

extensively to study endothelial dysfunction and a validation study (Appendix; Chapter 

9.3.4) regarding the effect of PCA on human coronary artery endothelial cells (HCAECs) 

appears to suggest that the two cell types have similar responses to both TNF-α and PCA. 

These data are in support of previous studies demonstrating that both cell types provide 

similar protein and mRNA response (Luu et al., 2010). The concentration of TNF-α (10 

ng/mL) used to stimulate sVCAM-1 in the present study could also be viewed as a limitation. 

10 ng/mL was selected as it is a commonly reported concentration utilised in the literature 

(Catalan et al., 2012, Chen et al., 2002, Kwon et al., 2005, Zhou et al., 2005), however, 

physiologically, plasma concentrations are reported as low as 0.001-0.04 ng/mL in patients 

with coronary artery disease (Aydin et al., 2009) but may reach 2 ng/mL in patients who 

have suffered myocardial infarction (Skoog et al., 2002). The secretion of sVCAM-1 in 

response to TNF-α stimulated HUVEC was ten-fold less than HCAEC, so the use of 

physiological concentrations of TNF-α may have made detection of effects difficult, as such 

the study presented in Chapter 6 explored the most appropriate concentration of TNF-α by 

use of a concentration-response experiment. The stimulation time of 18 h was chosen as 

this was consistently reported in the literature (Chen et al., 2001, Zhou et al., 2005) and 

validated in preliminary experiments (Appendix; Chapter 9.3), however, theoretically, each 

metabolite could have different time points of maximal activity, which could also be 

explored in future time-course experiments. Furthermore, the design of the treatment 

mixtures used in this investigation was quite artificial, as equimolar ratios would do not 

reflect serum concentrations observed in human studies, however, given the large variation 

in plasma metabolites observed between subjects in these studies, this was a practical way 

to elucidate additive effects. As discussed above, future studies could utilise metabolites at 

range of concentrations based on levels reported in human feeding studies (de Ferrars et 

al., 2014b, Pereira-Caro et al., 2014, Rodriguez-Mateos et al., 2014a), as will be the focus of 

Chapter 6.  

It is known that flavonoids rarely survive the process of first pass metabolism in their native 

state (Kay et al., 2005), as evident from the low bioavailability reported for precursor 

flavonoids (Pimpão et al., 2014, Pimpão et al., 2015, Schar et al., 2015). Instead, flavonoids 

persist in the systemic circulation as methylated, glucuronidated, and sulfated forms of 

flavonoid and phenolic derivatives (Day et al., 2001, Mullen et al., 2006, Czank et al., 2013, 
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de Ferrars et al., 2014b). The present study supports previous reports that metabolism of 

flavonoids to phenolic acids alters their anti-inflammatory effects (Lotito et al., 2011, Al-

Shalmani et al., 2011, Lodi et al., 2012, Lotito and Frei, 2006). These data indicate that the 

degradation of flavonoids to phenolic acids, which is believed to be largely facilitated by 

microbiota in the colon (de Ferrars et al., 2014b, Serra et al., 2012), increases their overall 

bioactivity, whereas further conjugation by phase II enzymes may have differential effects 

on activity (Amin et al., 2015, di Gesso et al., 2015). Therefore, certain flavonoids consumed 

in our habitual diet may require prior metabolism before they can exert their maximal 

effects and metabolites may possess differential bioactivities as they are systematically 

metabolised and eliminated from the circulation.  

In conclusion, the present study provides novel insight into the anti-inflammatory activity 

of conjugated and unconjugated phenolic metabolites of flavonoids contributing to our 

understanding of how these dietary phytochemicals contribute to cardiovascular health.  
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Chapter 6. Effect of peak serum anthocyanin metabolite 

profiles on inflammatory mechanisms in human coronary 

artery endothelial cells. 

 

6.1. Introduction 

The understanding of anthocyanin metabolism is relatively contemporary, though it is 

commonly accepted that their degradation is a result of their chemical instability and the 

impact of bacterial catabolism, resulting in a number of circulating phenolic acid metabolites 

(Keppler and Humpf, 2005, Kay et al., 2005). The phenolic metabolites also undergo 

extensive phase II metabolism (Stalmach et al., 2013), resulting in a diversity of conjugated 

structures (Pimpão et al., 2015). As anthocyanin metabolites do not circulate in isolation 

following ingestion, but exist as complex mixtures of metabolites at various concentrations 

(Czank et al., 2013, Pereira-Caro et al., 2014, Serra et al., 2012), it is important that this is 

also reflected in the design of experiments exploring the bioactivities of anthocyanins.  

As anthocyanin metabolites are now known to be the primary circulating structures post 

consumption, the study of their activity has become the primary focus of recent works. 

Anthocyanin metabolites have been shown to inhibit the expression of a number of 

inflammatory biomarkers, such as those involved in vascular adhesion and chemotaxis 

(Mauray et al., 2012), which are important in the pathogenesis of chronic inflammatory 

diseases (Gimbrone and Garcia-Cardena, 2016). Soluble vascular cellular adhesion molecule-

1 (sVCAM-1) is an important predictor of death from coronary artery disease (Blankenberg 

et al., 2001) and a common biomarker of endothelial activation (Videm and Albrigtsen, 

2008). Equally, high levels of soluble interleukin-6 (sIL-6) is significantly associated with 

cardiovascular mortality (Su et al., 2013). We have recently shown that certain phenolic 

metabolites of flavonoids (e.g. protocatechuic acid (PCA)) inhibit TNF-α stimulated secretion 

of sVCAM-1 by human umbilical vein endothelial cells (HUVEC; Warner et al., 2016), and our 

group have also demonstrated this effect on sIL-6 (Amin et al., 2015). sVCAM-1 and sIL-6 

therefore provided logical targets for exploring the potential mechanisms of action of 

anthocyanin metabolites in the present investigation. 

In our recent study (Chapter 5; Warner et al., 2016), equimolar mixtures of phenolic 

metabolites totaling 1 µM did not affect secretion of sVCAM-1 by HUVEC. It was suggested 

that these concentrations were too low to elicit a quantifiable response, whereas recent 
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human studies have identified total phenolic metabolites at concentrations magnitudes 

higher (Schar et al., 2015) and, as such, exploring greater cumulative concentrations (> 10 

µM) are indicated. The present study therefore explored the activity of mixtures of 

metabolites between 0.19 µM and 43 µM. 

The metabolism of a common dietary anthocyanin, cyanidin-3-glucoside (C3G), was recently 

investigated and 29 metabolites were identified following the consumption of 500 mg 13C-

labelled cyanidin-3-glucoside (C3G; Czank et al., 2013, de Ferrars et al., 2014b; Figure 6.1). 3 

distinct peaks in C3G metabolites were observed postprandially; one at 0.5 h -1 h, one at 6 

h and one at 24 h; each spike/peak in blood levels represented distinct metabolite profiles. 

These peaks in blood metabolites have also been observed following consumption of cocoa 

flavan-3-ols (Vitaglione et al., 2013) and citrus flavanones (Pereira-Caro et al., 2015), 

suggesting this is a common modal response for the kinetics of flavonoids metabolites. Given 

that these phenolics circulate at higher concentrations for longer periods of time relative to 

their precursors, there is scope to investigate the collective activity of unique profiles of 

phenolic metabolites on inflammatory mechanisms in the present investigation. 

 

Figure 6.1. Serum pharmacokinetic profiles of C3G and its metabolites in humans after the 

consumption of 500 mg 13C5-C3G in eight healthy male participants. Data represent mean 

concentration of specified metabolites from 8 participants. Abbreviations: BA, benzoic acid; BAL, 

benzaldehyde; C3G, cyanidin-3-glucoside; GlcA, glucuronide; M34dhbz, methyl-3, 4-

dihydroxybenzoate; PCA, protocatechuic acid; PGA, phloroglucinaldehyde; VA, vanillic acid. Adapted 

from (de Ferrars et al., 2014b).  
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The primary aim of the present study was to investigate the effects of unique serum profiles 

of C3G metabolites observed to peak in vivo at 1 h, 6 h, and 24 h post consumption on 

sVCAM-1 and sIL-6 protein secretion by human coronary artery endothelial cells (HCAECs). 

The secondary aim was to investigate the effects of metabolite profiles across a range of 

concentrations, reflecting levels ten-fold lower (<0.5 µM) and ten-fold higher (<50 µM) than 

mean concentrations (<5 µM) observed by Czank et al. (Czank et al., 2013). Finally, the 

effects of the highest concentrations (<50 µM) were studied to establish their mechanistic 

effects on VCAM-1 and IL-6 mRNA and by targeting key inflammatory targets (NFB p65, p38 

MAPK, and JNK). 
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6.2. Methods 

Experiment specific details are provided below while comprehensive methodological 

descriptors are provided in detail in Chapter 2.  

6.2.1. Treatment solutions 

Stock solutions were prepared and stored as described in Chapter 2. Working solutions of 1 

mM of each required treatment constituent were prepared in supplemented media before 

being diluted to their highest working concentration (1.9 µM, 2.0 µM, 4.4 µM as observed at 

1 h, 6 h, 24 h respectively; Czank et al., 2013; Table 6.1) and stored at 4oC, with the exception 

of cyanidin-3-glucoside, which was added immediately prior to the final dilutions in order to 

maintain stability. Solutions were subsequently diluted in supplemented media as required 

(Table 6.1) immediately prior to experiment commencement.  

 

Table 6.1: Serum profile mixture constituents and concentrations 

Abbreviations: 4-HBA, 4-hydroxybenaldeyde; BA, benzoic acid; C3G, cyanidin-3-glucoside; Glc, 

glucuronide; IVA, isovanillic acid; PCA, protocatechuic acid; PGA, phloroglucinaldehyde; Sul, sulfate; 

VA, vanillic acid.  

 

6.2.2. Cell culture  

Three vials of human coronary artery endothelial cells (HCAEC; from different, single donors) 

were cultured and maintained as described in Chapter 2. All cells were incubated for at least 

Analyte  

  

Final  profile concentration (nM) 

1 h profile 6 h profile 24 h profile 

C3G 5 50 500 0 0 0 0 0 0 

PCA 4 40 400 8 80 800 1 10 100 

PGA 3 30 300 55 550 5500 5 50 500 

BA -4-Glc 1 10 100 4 40 400 4 40 400 

PCA-4-Glc 2 20 200 3 30 300 0 0 0 

PCA-3-Sul 7 70 700 2 20 200 2 20 200 

PCA-4-Sul 7 70 700 2 20 200 2 20 200 

VA 110 1100 11000 80 800 8000 136 1360 13600 

IVA 12 120 1200 0 0 0 0 0 0 

VA-4-Glc 1 10 100 2 20 200 0 0 0 

IVA-3-Glc 1 10 100 2 20 200 0 0 0 

VA-4-Sul 0 0 0 0 0 0 17 170 1700 

IVA-3-Sul 0 0 0 0 0 0 17 170 1700 

4-HBA 1 10 100 1 10 100 1 10 100 

Ferulic acid 29 290 2900 21 210 2100 59 590 5900 

Hippuric acid 7 70 700 23 230 2300 194 1940 19400 

   190 1900 19000 203 2030 20300 438 4380 43800 
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24 hours at 37oC, 5 % CO2, in a humidified atmosphere, prior to experiment commencement. 

All cells were used between passages 3 and 6.  

6.2.3. Cell viability 

HCAEC were seeded at 20,000 cells/well in fibronectin coated 96-well plates and grown to 

confluence in supplemented media. Cells were treated with highest working concentrations, 

or 0.01% DMSO (vehicle control), with or without TNF-α (10 ng/mL), and PBS (cells, no 

media) was used as a negative assay control. WST-1 was carried out as described in Chapter 

2.  

6.2.4. sVCAM-1 and sIL-6 protein expression 

HCAEC were seeded at 60,000 cells/well in fibronectin coated 24-well plates. Cells were 

treated for 30 min with peak metabolites profiles identified previously at 1 h, 6 h, 24 h post 

consumption (Table 6.1) or 0.01 % DMSO (vehicle control) prior to the addition of 0.1 ng/mL 

TNF-α, and incubated for 18 h at 37oC, 5 % CO2, in a humidified atmosphere. Supernatants 

were collected on ice, centrifuged at 2000 x g for 10 min at 4oC, and stored at -80oC until 

required. Samples underwent a single freeze-thaw cycle, were incubated to room 

temperature, and vortexed for 3 x 5 sec immediately prior to use. Supernatants were diluted 

1:1 in Reagent Diluent (R&D Systems) prior to commencing the assay. Protein expression of 

sVCAM-1 and sIL-6 were determined by commercially available enzyme-linked 

immunosorbent assay (ELISA), as described in Chapter 2. 

6.2.5. VCAM-1 and IL-6 mRNA expression 

HCAEC were seeded at 200,000 cells/well in fibronectin coated 6-well plates. Cells were pre-

treated for 30 min with the highest working concentrations of each serum profile or 0.01 % 

DMSO (vehicle control) prior to the addition of 0.1 ng/mL TNF-α, and incubated for 4 h at 

37oC, 5 % CO2, in a humidified atmosphere. Cell culture supernatants were removed and cells 

washed 3 x with PBS. Total RNA was extracted, reverse transcribed, and RT-qPCR were 

conducted as described in Chapter 2. Aliquots were taken prior to freezing and geNORM 

analysis was carried out to determine stable reference genes (VIPAS39 and PRDM4), the 

geometric mean of which were used to normalise the data in subsequent experiments. 

6.2.6. Phospho-NFB p65, p38 MAPK and JNK expression  

HCAEC were seeded at 200,000 cells/well in fibronectin coated 6-well plates. Cells were pre-

treated for 30 min with the highest working concentrations of each serum profile or 0.01 % 

DMSO (vehicle control) prior to the addition of 10 ng/mL TNF-α, and incubated for 15 min at 

37oC, 5 % CO2, in a humidified atmosphere. Cells were washed 3 x with PBS and cells were 
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lysed with NP-40 lysis buffer; total protein concentrations were determined by BCA assay, 

and proteins were separated and probed by SDS-PAGE and Western blotting, respectively, 

as described in Chapter 2.  

6.2.7. Data analysis 

Cell viability data (optical density) were recorded as a mean of 2 technical replicates and 

effects were determined relative to an untreated control (media only) by Students t-test 

using Microsoft Excel (version 2013). sVCAM-1 and sIL-6 protein (pg/mL) or mRNA (fold 

change) were recorded as the mean of two technical duplicates, and reported relative to the 

TNF-α positive control (containing TNF-α without DMSO). Treatment effects were 

established by one-way analysis of variance (ANOVA) with post-hoc least square difference 

(LSD) conducted using SPSS for Windows (version 22.0; IBM, New York, USA). Untreated 

controls were not included in the ANOVA for treatment effect but presented graphically, 

where Students t-test established difference relative to vehicle control (DMSO). Phospho-

NFB p65 expression (infrared density) data were normalised to GAPDH reference gene and 

phospho-p38 MAPK and phospho-JNK data were normalized to total p38s and total JNKs, 

respectively, and treatment effects were established relative to the vehicle control (DMSO) 

by one-way analysis of variance (ANOVA) with post-hoc least square difference (LSD) 

conducted using SPSS. Data were presented graphically as a fold change of vehicle control 

(DMSO). All data represents the mean ± SD of three biological replicates (n=3). 

6.2.8. Method optimisations 

sVCAM-1 and sIL-6 stimulation time and concentration (0.1 ng/mL TNF-α; 24 h) and VCAM-

1 and IL-6 mRNA stimulation time (4 h) were determined in method optimisation 

experiments (Figure 6.2; Appendix; Chapter 9.4). Endogenous reference genes for 

normalisation of Ct data for target genes were selected by use of human geNORM kit and 

qBASE analysis software as described in Chapter 2. Stimulation time for phospho-protein 

expressions (15 min) were as optimised for Chapter 5.   

 

 

Figure 6.2. Method optimisation experiments for Chapter 6. See Appendix 9.4. Abbreviations: sIL-6, 

soluble interleukin-6; sVCAM-1, soluble vascular cell adhesion molecule-1; TNF-α, tumour necrosis 

factor-alpha. Abbreviations for mRNA reference genes are listed in Chapter 2.5.3. 
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6.3. Results 

6.3.1. Effect of peak cyanidin-3-glucoside metabolite profiles on endothelial cell viability 

Three unique profiles of cyanidin-3-glucoside metabolites (Table 6.1) were produced to 

reflect peak concentrations observed in a previous feeding intervention (Czank et al., 2013). 

Metabolites were prepared in media and used to treat human coronary artery endothelial 

cells, in the presence or absence of 10 ng/mL TNF-α, for 24 h (Table 6.2). Cell viability was 

assessed by the addition of WST-1 reagent. No cytotoxicity was observed in response to any 

treatment. 

 

Table 6.2: Effect of peak metabolite profiles on endothelial cell viability  

 

Cell viability (absorbance as percentage of untreated control absorbance), vehicle control (medium 

with 0.01 % DMSO) and highest working concentrations of treatment compounds (19 µM, 20 µM, 44 

µM at 1 h, 6 h, 24 h respectively; Czank et al., 2013), with and without 10 ng/mL TNF-α. Data shown 

as mean of three independent replicates ± SD (n=3). Difference from untreated control (media only) 

were determined by Student’s t-test using Microsoft Excel (version 2013). 

 

6.3.2. Effect of peak cyanidin-3-glucoside metabolite profiles on sVCAM-1 protein 

expression 

Cyanidin-3-glucoside metabolite treatments (Table 6.1) were used to determine their effect 

on TNF-α stimulated sVCAM-1 secretion by HCAEC (Figure 6.3). Effects were explored across 

a range of concentrations (ten-fold lower and ten-fold higher than the mean concentrations 

observed by Czank et al.; Table 6.1). sVCAM-1 expression was significantly reduced relative 

to the vehicle control by metabolite profiles at 6 h (-30.07 ± 11.41 %, p≤0.001) and 24 h (-

27.84 ± 3.09 %, p≤0.001) at the mean (1.9 µM, 2.0 µM, 4.4 µM at 1 h, 6 h, 24 h respectively) 

and ten-fold (19 µM, 20 µM, 44 µM at 1 h, 6 h, 24 h respectively) concentrations. The lowest 

concentrations of each profile (0.19 µM, 0.20 µM, 0.44 µM at 1 h, 6 h, 24 h respectively) 

significantly reduced sVCAM-1 secretion (p≤0.05).  

 Absorbance (% of untreated control)  

Treatment 
Unstimulated   TNF-α 10 ng/mL   

Mean ± SD p Mean ± SD  p 

DMSO 0.01% 112.77 ± 9.42 0.17 102.90 ± 5.20 0.52 

1 h profile 98.68 ± 7.57 0.77 96.37 ± 7.50 0.53 

6 h profile 96.84 ± 6.67 0.53 94.21 ± 4.00 0.18 

24 h profile 93.84 ± 5.19 0.23 89.10 ± 5.58 0.12 
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Figure 6.3. Effect of peak metabolite profiles on sVCAM-1 protein expression. HCAEC were treated 

with 3 concentrations of 3 serum metabolites profiles (ten-fold lower and ten-fold higher than the 

mean concentrations observed by Czank et al.; Table 6.1) prior to the addition of 0.1 ng/mL TNF-α 

for 24 h. Data were normalised to a TNF-α control (no DMSO) and columns represent the mean ± SD, 

n = 3 biological replicates. Labelled means without a common letter differ, p≤ 0.05 (ANOVA with post 

hoc LSD). *Different from DMSO, p≤ 0.05 (t-test). 

 

6.3.3. Effect of peak cyanidin-3-glucoside metabolite profiles on VCAM-1 mRNA expression 

Peak metabolite profiles were used to determine their effect on TNF-α stimulated VCAM-1 

mRNA expression in HCAEC (Figure 6.4). TNF-α stimulated VCAM-1 mRNA was significantly 

reduced relative to the vehicle control, in response to metabolite profiles at 1 h (p=0.02) and 

6 h (p= 0.03).  
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Figure 6.4. Effect of peak metabolite profiles on VCAM-1 mRNA 

expression.  HCAEC were treated with the highest concentration of 

peak metabolite mixtures (19 µM, 20 µM, 44 µM at 1 h, 6 h, 24 h 

respectively; Czank et al., 2013) and stimulated with 0.1 ng/mL 

TNF-α for 4 h. Data were normalised to a TNF-α control (no DMSO) 

and columns represent the mean ± SD, n = 3 biological replicates. 

Labelled means without a common letter differ significantly, p≤ 

0.05 (ANOVA with post hoc LSD). *Different from DMSO, p≤ 0.05 

(t-test). 

 

6.3.4. Effect of peak cyanidin-3-glucoside metabolite profiles on sIL-6 protein expression 

Cyanidin-3-glucoside metabolite treatments (Table 6.1) were used to determine their effect 

on TNF-α stimulated sIL-6 secretion by HCAEC (Figure 6.5). Effects were explored across a 

range of concentrations (ten-fold lower and ten-fold higher than the mean concentrations 

observed by Czank et al.; Table 1). No profile reduced sIL-6 secretion relative to the vehicle 

control.  
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Figure 6.5. Effect of peak metabolite profiles on sIL-6 protein expression. HCAEC were treated with 

three concentrations of three serum metabolites profiles (ten-fold lower and ten-fold higher than 

the mean concentrations observed by Czank et al.; Table 6.1) in media prior to the addition of 0.1 

ng/mL TNF-α for 24 h. Data were normalised to a TNF-α control and columns represent the mean ± 

SD, n = 3 biological replicates. Labelled means without a common letter differ significantly, p≤ 0.05 

(ANOVA with post hoc LSD). *Different from DMSO, p≤ 0.05 (t-test). 

 

6.3.6. Effect of peak cyanidin-3-glucoside metabolite profiles on IL-6 mRNA expression 

Cyanidin-3-glucoside metabolite treatments (Table 6.1) were used to determine their effect 

on TNF-α stimulated IL-6 mRNA expression in HCAEC (Figure 6.6). TNF-α stimulated IL-6 

mRNA expression was reduced by half in response to all treatments (p≤0.05). 
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Figure 6.6. Effect of peak metabolite profiles on IL-6 mRNA expression.  

HCAECs were treated with the highest concentration of peak metabolite 

mixtures (19 µM, 20 µM, 44 µM at 1 h, 6 h, 24 h respectively; Czank et al., 

2013) and stimulated with 0.1 ng/mL TNF-α for 4 h and mRNA expression 

was determined by RT-qPCR. Data were normalized to a TNF-α control and 

columns represent the mean ± SD, n=3 biological replicates. Labelled means 

without a common letter differ significantly, p≤ 0.05 (ANOVA with post hoc 

LSD). *Different from DMSO, p≤ 0.05 (t-test). 

 

6.3.7. Effect of peak cyanidin-3-glucoside metabolite profiles on NFB p65, p38 MAPK, and 

JNK phosphorylation. 

Metabolite profiles were explored for their effect on TNF-α stimulated NFB transcription 

factor p65 (Figure 6.7) and p38 and JNK MAP kinase phosphorylation (Figure 6.8). No effect 

was observed on TNF-α stimulated phospho-p65 expression, whereas p38 expression 

increased by approximately 1.2 fold (p≤0.05) in response to all treatments, and JNK 

phosphorylation decreased relative to the vehicle control following treatment with the 

metabolite profile at 24 h (0.6-fold, p≤0.05).  
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Figure 6.7. Effect of peak metabolite profiles on phosphorylated 

NFB p65 expression. HCAEC were treated with the highest 

concentration of peak metabolite mixtures (19 µM, 20 µM, 44 µM 

at 1 h, 6 h, 24 h respectively; Czank et al., 2013), and stimulated 

with 10 ng/mL TNF-α  for 15 min. Data were normalized to the 

vehicle control (DMSO) and columns represent the mean ± SD, n = 

3 biological replicates. Blots are representative of one of three 

replicates. Labelled means without a common letter differ 

significantly, p≤ 0.05 (ANOVA with post hoc LSD). Comparisons of 

untreated cells to vehicle control (DMSO) were established via 

Student’s t-test, *p≤ 0.05. 
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Figure 6.8. Effect of peak metabolite profiles on phosphorylation of p38 and JNK MAP kinases. 

HCAEC were treated with the highest concentration of peak metabolite mixtures (19 µM, 20 µM, 44 

µM at 1 h, 6 h, 24 h respectively; Czank et al., 2013), were stimulated with 10 ng/mL TNF-α for 15 

min. Data were normalized to the vehicle control (DMSO) and columns represent the mean ± SD, 

n=3 biological replicates. Blot are representative of one of three replicates. Comparisons of 

untreated cells to vehicle control (DMSO) were established via Student’s t-test, *p≤0.05.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Basal VC 1h 6h 24h

p
p

3
8

 /
to

ta
l p

3
8

(f
o

ld
 c

h
an

ge
)

b

b

a
a

*

TNF-α (10 ng/mL)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Basal VC 1h 6h 24h

p
JN

K
/t

o
ta

l J
N

K
 (

fo
ld

 c
h

an
ge

)

a

b

a,b

a

*

TNF-α (10 ng/mL)

phospho-JNK
57/46.5 kDa

GAPDH
37 kDa

phospho-p38
40 kDa

GAPDH
37 kDa

p38
38 kDa

JNK
54/46 kDa



Page | 107 
 

6.4. Discussion 

Flavonoids may exert their cardiovascular benefits through the modulation of inflammatory 

biomarkers which drive the progression of atherosclerosis (Wallace, 2011). The vast majority 

of previous studies have investigated the mechanisms of action of flavonoid glycosides and 

aglycones using ex vivo and in vitro systems, but few have explored the effects of their more 

physiologically relevant metabolites, which are produced after extensive chemical and 

microbial degradation and metabolic conjugation (i.e. glucuronide, methyl and sulfate 

derivatives; de Ferrars et al., 2014a, Stalmach et al., 2013). Many past studies have also 

utilised foods or plant extracts containing a number of compounds (Davis et al., 2006, Kuntz 

et al., 2015, Taverniti et al., 2014), without knowledge of the exact composition or 

concentrations of individual constitutes, making it difficult to determine the active 

components. Alternatively, the design of in vitro studies utilising bioactive compounds in 

isolation do not take into account the additive, antagonistic or synergetic activities these may 

have in combination. The study of the cumulative activity of phenolic metabolites is relatively 

novel (Warner et al., 2016, di Gesso et al., 2015, Krga et al., 2016) and its exploration may 

help elucidate the beneficial effects of flavonoids observed in vivo. 

Previous investigations have noted that metabolic conversion of anthocyanins alter their 

biological activity (Amin et al., 2015, Edwards et al., 2015, Warner et al., 2016, Krga et al., 

2016). The present study is the first to explore the activity of physiologically relevant profiles 

of metabolite identified following the consumption of the common dietary class of flavonoid, 

anthocyanins. Herein, we have utilised profiles of cyanidin-3-glucoside (C3G) metabolites 

identified by Czank et al. (Czank et al., 2013), with the aim of elucidating the potential 

mechanisms of action of anthocyanins. Three unique treatments were explored based on 

the mean concentrations of metabolites peaked in serum, representing 1 h, 6 h, and 24 h 

postprandial blood samples (Figure 6.1). It was hypothesised that the beneficial effects of 

anthocyanins may occur as a result of varying compositions and concentrations of 

metabolites, which could have differential biological activities, as they are systematically 

metabolised and eliminated from the body. 

The key findings from the present study were that the mixtures of metabolites used have 

significant inhibitory effects on sVCAM-1 protein secretion (Figure 6.2) and this was achieved 

at concentrations reflective of those identified in vivo (de Ferrars et al., 2014b), suggesting 

this activity is physiologically achievable. The inhibition of sVCAM-1 in response to the 

mixtures of metabolites representing peak kinetic profiles at 24 h was greater than 

metabolite profiles identified at 6 h post-consumption. The anti-inflammatory activity of 
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flavonoid metabolites may therefore be modulated to a greater extent by profiles of 

metabolites which appear many hours post consumption (6 h -24 h), suggesting metabolites 

of microbial origin are responsible for the chronic anti-inflammatory activity of anthocyanins 

(Kay et al., 2009).  

Few studies have explored the effects of flavonoids in combination (di Gesso et al., 2015), 

despite some indication of differential activities when in combination relative to isolation 

(Heeba et al., 2012, Khandelwal et al., 2012, Koga and Meydani, 2001, Liebgott et al., 2000). 

The present study demonstrated that the effect of mixtures mimicking blood profiles of 

metabolites of cyanidin-3-glucoside appear to have effect greater than the ‘artificial’ equal 

molar concentrations of mixed metabolites explored previously (Chapter 5). Previous studies 

have utilised rat serum post consumption of flavonoids (Koga and Meydani, 2001). Here, 

serum containing metabolites of (+)-catechin were shown to significantly reduce U937 

adhesion to human aortic endothelial cells (HAEC) relative to the pure metabolite in 

isolation. Conversely, quercetin metabolism appeared to neutralise the anti-inflammatory 

activity of the pure compound, as has been demonstrated in other models of cellular 

adhesion (Winterbone et al., 2009). The limitations of this study design are that plasma 

contains many bioactive components other than flavonoid metabolites, making it difficult to 

compare treatments relative to pure compounds; in addition, rat metabolism differs from 

human metabolism, making it difficult to directly apply rodent findings to humans. There is 

scope to carry out similar experiments using human serum in future work, though limitations 

still exist regarding the use of appropriate controls, as described above.  

The highest mean serum concentration of metabolites detected in our recent tracer study 

feeding 500 mg of 13C-labelled anthocyanins (equivalent to the consumption of  

approximately 100g of blackberries; Manach et al., 2004) was observed at 24 h post 

consumption and totalled 4.38 µM (de Ferrars et al., 2014b). In this study the inter-individual 

variation was high (for example, serum Cmax for hippuric acid was 1962 ± 1389 nM), indicating 

the mean concentration could vary greatly. The present study sought to address the issue of 

variation in blood profiles by utilising concentrations across the lowest and highest 

concentrations reported between individuals (0.80 µM – 13.18 µM; Czank et al., 2013). As 

such, we used two serial ten-fold dilutions of the maximal concentrations observed at each 

time point where metabolites peaked in the serum (1 h, 6 h, 24 h) to explore effect size across 

a range of physiologically relevant concentrations. Surprisingly, no statistical differences in 

the inhibition of sVCAM-1 protein expression were observed between the observed mean 

(Czank et al., 2013) and ten-fold concentrations of the metabolite profiles. We initially 
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hypothesised that lower concentrations of metabolites would have a lesser effects size than 

the highest concentration, which would have supported the conclusion that the 

concentrations of the metabolites used in our previous experiments (Warner et al., 2016, di 

Gesso et al., 2015) were too low to elicit a significant response. This suggests that there is 

something unique about these profiles/mixtures of metabolites. This outcome is an 

important finding as the concentrations reflect those which could be reached following 

consumption of 500 mg (or less) of anthocyanins, which reflects achievable levels following 

dietary consumption of anthocyanin-rich foods (Rodriguez-Mateos et al., 2014a). As phenolic 

metabolites are common to a number of dietary flavonoids and food sources (Heleno et al., 

2015), it is possible that serum profiles utilised in the present study could be exceeded 

following a habitual polyphenol-rich diet, given that consumption in Europe has been 

estimated between 744 mg/day - 1786 mg/day (Zamora-Ros et al., 2015). As effects were 

observed at the lowest concentrations in the present study (between 0.19 µM and 0.44 µM), 

the evidence suggests that even low levels of dietary consumption would have beneficial 

effects on inflammatory status. 

The effects of the treatments on VCAM-1 and IL-6 mRNA expression were investigated to 

determine whether these would reflect the protein expression profiles and to suggest 

potential mechanisms of action. In our previous experiments (Chapter 5), it was observed 

that only PCA inhibited VCAM-1 mRNA expression at 100 µM, which provided the rationale 

behind our concentration-response hypothesis. It is interesting that VCAM-1 and IL-6 mRNAs 

were reduced by half in response to the 3 peak serum mixtures, the total metabolite 

concentrations of which were 19 µM, 23 µM, and 44 µM, respectively. In the case of IL-6 

activity, the relative increase in total concentration of each respective treatment did not 

appear to alter the magnitude of response, whereas the lower concentrations (peak 

metabolite compositions at 1 h (19 µM) and 6 h (22 µM) post-consumption) appeared to 

reduce VCAM-1 mRNA to the greatest extent relative to the vehicle control. Given 

differential complexity of the metabolite structures and concentrations in the present 

treatment mixtures, and given that few showed activity when studied in isolation in the 

present thesis, it appears that certain metabolites utilised in the present study act additively 

or synergistically, potentially through effecting multiple pathways simultaneously. Multiple 

pathways are indeed thought to be affected following anthocyanin metabolite treatment, 

for example, aortas of ApoE-deficient mice fed an anthocyanin-rich bilberry extract, analysed 

by Pathway Miner (DNA microarray), demonstrated the modulation 1261 genes which code 

for proteins involved in the regulation of cellular processes, including adhesion and 
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inflammatory biomarker expression (Mauray et al., 2012). There is therefore scope for future 

studies to more broadly explore the activities of these serum metabolites in vitro. 

Pharmacological methods currently exist to statistically assess the synergistic activity of 

particular drugs and chemicals, however these methodologies are rarely applied to mixtures 

as complex as those utilised herein. Harasstani et al. utilised a method referred to as 

isobolographic analysis to evaluate the inhibition of inflammatory biomarker secretion in a 

RAW 264.7 cell model (Harasstani et al., 2010), which identified that flavonoids chrysin, 

kaempferol, morin and silibinin had highly effective synergistic activity in combination 

compared to in isolation. The flavonoids in combination significantly lowered the overall IC50 

value for the three biomarkers tested, which is an interesting finding for combination 

treatment strategies, though it still holds limited relevance to nutrition as the IC50 

concentrations ranged from 2.28 µM (kaempferol + chrysin) to 14.19 µM (morin + silibinin). 

Even at the lowest observed concentration where effects were seen, it is clear this study 

holds lesser relevance to nutritional studies as feeding studies have reported maximal 

plasma concentrations of kaempferol and chrysin as 0.10 µM (DuPont et al., 2004)  and 0.02 

µM (Walle et al., 2001a), respectively. Given that flavonoid phenolic metabolite 

concentrations can achieve maximal plasma concentrations of 13.3 µM (Schar et al., 2015), 

isobolographic analysis may be utilised in future studies to assess synergistic activities of 

complex mixtures of physiologically relevant metabolites, as used herein. 

NFB is a key transcription factor pathway in the TNF-α stimulated expression of adhesion 

molecules in endothelial cells (Hopkins, 2013). In the present study, no effect was observed 

on the expression of phosphorylated p65 in response to any of the treatments used, 

suggesting that the mixtures used may not be active in the NFB pathway, as was suggested 

previously in our recent work (Warner et al., 2016) and corroborated by others (Krga et al., 

2016). In both these studies, it was shown that gut metabolites of flavonoids reduced TNF-α 

stimulated expression of adhesion molecule proteins, but showed no activity on mRNA 

expression, suggesting these may be active in alternative mechanisms which influence 

adhesion molecule expression, such as AP-1 via p38 and JNK MAP kinases.  

As observed for sVCAM-1 protein, the metabolite profile at 24 h post consumption inhibited 

JNK activation to the greatest extent, suggesting that this profile of most likely large 

intestine-derived metabolites, is active in this pathway. However, the same profiles also 

increased p38 phosphorylation, which was an unexpected outcome as this would imply a 

pro-inflammatory effect (Zarubin and Han, 2005). Nevertheless, it is apparent that the effects 

observed on the molecular targets investigated do not fully reflect changes to protein or 
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mRNA expression, suggesting that other unexplored mechanisms of action, both pre- and 

post-transcriptional, may be affected by the treatment mixtures. Future studies should 

explore activity on TNF-α receptor 1 (TNFR1), which is a key modulator of NFB induced 

expression of adhesion molecule expression, irrespective of p38 MAPK or JNK (Zhou et al., 

2007). 

The present study addressed several limitations of previous works which have applied 

plasma or serum post-consumption of flavonoids in vitro, presenting difficulties in untangling 

effects of metabolites relative to other serum or plasma components (i.e., proteins, 

electrolytes, hormones, antigens, etc.). Non-phenolic components of serum/plasma, which 

are often present in much greater concentrations than phenolic constituents, make it 

difficult to elucidate the origin of any activity observed and few studies have studied their 

mechanisms of action (Harasstani et al., 2010, Koga and Meydani, 2001). The novelty of the 

present study is that the experiments can be appropriately controlled for vehicle, which 

allows a more direct exploration of mechanism of action. This in itself has the limitation that 

the metabolites themselves may act differentially in serum relative in cell culture media, and 

certain flavonoids have been shown to interact with serum albumin in acellular conditions 

(Bi et al., 2004). Furthermore, it is feasible that not all phenolic metabolites in the serum for 

this study were detected in the first instance (de Ferrars et al., 2014a) due to absence of 

appropriate standards (Kay, 2010), likewise the sensitivity of the detection methods are a 

determinant, leading to variation between clinical sample concentrations and which were 

modelled in the present study. Concentrations of total metabolites may therefore be higher 

than those described. Future studies could address these limitations in a single study by 

comparing serum treatments from a human clinical study, to those extracted, to mixtures of 

pure analytes mimicking blood composition, as used herein. In such a case, appropriate 

controls could be utilised to establish the effects of the various treatment matrices relative 

to the metabolites in question. 

No effects were observed on sIL-6 protein expression in the present study, though it is 

possible that effects were masked by large variation between replicates. A parallel study 

from our group conducted in TNF-α (10 ng/mL)-stimulated human umbilical vein endothelial 

cells (HUVEC) demonstrated inhibitory effects of the same profiles on sVCAM-1 and sIL-6 in 

response to all treatments (M.Smith PhD Thesis, 2016). It is possible that the reduced 

stimulus (TNF-α) concentration (0.1 ng/mL in the present study relative to 10ng/mL) 

increased variation as a result of low sIL-6 induction, making it difficult to quantify significant 

activity. Therefore, the obtained results are likely associated with the use of a more 



Page | 112 
 

physiological relevant level of stimulus, whereas a more pharmacological dose of TNF-α may 

have allowed a greater magnitude of effect to be observed. A recent study by Kuntz et al. 

utilised two concentrations of TNF-α; 1 ng/mL TNF-α to mimic a low-grade inflammatory 

state and 10 ng/mL to mimic high-grade inflammation. Replicating this model of low- vs. 

high- grade inflammation, future studies could explore activity across a range of stimulus 

concentrations from 0.1-10 ng/mL (Kuntz et al., 2015a). 

Limited data is available correlating acute anthocyanin metabolite profiles in human studies 

with inflammatory biomarkers, potentially as immediate/acute effects (aside from vascular 

reactivity) are rarely observed in healthy volunteers (Schar et al., 2015) and only a few 

studies have been conducted in subjects with inflammatory conditions, such as 

hypercholesterolemia (Zhu et al., 2013), where anti-inflammatory effects are observed over 

prolonged periods of time (e.g. 12-24 weeks; Zhu et al., 2013). Data from the present study 

suggest that the metabolite profile with the maximum inflammatory effect was observed at 

24 h post-consumption. Conversely, improvements in flow-mediated dilation (FMD) and 

blood pressure in response to the feeding to anthocyanins are observed between 1 h and 6 

h post-consumption (maximum response at 2 h; Rodriguez-Mateos et al., 2014a). In this 

study, following the consumption of a drink containing blueberry anthocyanins, benzoic and 

vanillic acids positively correlated with FMD at 1–2 h, whereas hippuric, hydroxyhippuric, 

and homovanillic acids correlated with the FMD at 6 h. These data suggests an acute-phase 

modulatory vascular response of phenol metabolites. Based on these findings and those of 

the present study it may be possible that an immediate vascular response, mediated by very 

low levels of parent flavonoids and their immediate degradation products, is succeeded by a 

delayed anti-inflammatory response, mediated by products of colonic bacterial catabolism 

and hepatic phase II conjugation. Future studies should establish if these peak metabolite 

profiles similarly affect expression levels of biomarkers of nitric oxide homeostatis (e.g. 

endothelial NO synthase (eNOS)) and acute antioxidant enzymes (e.g. haem oxygenase-1 

(HO-1), and glutathione peroxidase (GPx)) at the same time points. As FMD is, at least in part, 

moderated by NO (Green et al., 2014), it may be postulated that levels of these proteins, 

would increase as a result of profiles of flavonoids and metabolites observed at 1 h and 6 h. 

This would ultimately suggest a dual mechanistic activity of metabolites, which may shed 

light on how flavonoids act chronically to modulate a number of physiological responses. 

In conclusion, the present study identified that mixtures of anthocyanin metabolites 

identified post consumption of dietary achievable levels of anthocyanins have significant 

inhibitory effects on sVCAM-1 protein secretion, suggesting this is a physiologically 
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achievable effect. Further work is required to elucidate the multiple mechanisms at play and 

their cumulative or synergistic activity at the tissue level, ultimately informing our 

understanding of how anthocyanins and other flavonoids impact cardiovascular health.
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Chapter 7. General Discussion & Future Perspectives 

 

7.1. General Discussion 

Protective effects of dietary flavonoids against cardiovascular-related disorders have been 

observed in numerous randomised-control trials (Barona et al., 2012, Weseler et al., 2011, 

Bondonno et al., 2012, Curtis et al., 2009, Faridi et al., 2008), animal feeding (Bornhoeft et 

al., 2012, Gandhi et al., 2009, Heeba et al., 2012, Loke et al., 2010, Nabavi et al., 2012, Sheng 

et al., 2009) and in vitro studies (Kawai et al., 2008, Tu et al., 2007, Yamagata et al., 2010). 

Many studies have been conducted using supraphysiological doses of single flavonoids, 

overlooking the potential bioactivity of flavonoid metabolites and the additive effects 

flavonoid metabolites may have in combination (Keane et al., 2015, Harasstani et al., 2010, 

Krga et al., 2016, di Gesso et al., 2015). Elucidating the cellular effects of flavonoid 

metabolites at concentrations obtainable through diet, will enhance our understanding of 

flavonoid cardiovascular bioactivity. 

Flavonoids undergo extensive metabolism by the activities of colonic bacteria. The resultant 

structures are diverse in their structural nature and, for the purpose of this investigation, 

focus was given to phenolic B-ring derived metabolites, as activity has been suggested 

previously by our group in vascular (Edwards et al., 2015, Amin et al., 2015) and 

inflammatory (di Gesso et al., 2015) cells types. The selected treatments for the present 

investigations differ primarily by the moieties present at the 3’ and 4’ positions, which allow 

elucidation of potential structure-activity relationships. This thesis screened the effects of 

flavonoids common to the UK diet, and associated conjugated and unconjugated phenolic 

metabolites, for their effect of eNOS and HO-1 proteins in basal endothelial and vascular 

smooth muscle cells (VSMCs; Chapters 3 & 4) and sVCAM-1 and sIL-6 (Chapters 5 & 6) in TNF-

α stimulated endothelial cells (Figure 7.1).  Additionally, multiple combination treatments 

were designed based on their structural similarities, as would be present in the systemic 

circulation post-consumption of a meal rich in a particular flavonoid. Treatments were 

screened from ‘protein-to-pathway’, and were selected for further study based on their 

relative bioactivities, in order to elucidate potential mechanisms of action responsible for 

the effects on the biomarkers observed.  
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Figure 7.1. Experiment and treatment schematic. Abbreviations: 4-HBA, 4-hydroxybenzoic acid; C3G, cyanidin-3-glucoside; eNOS, endothelial nitric oxide synthase; HCAEC, 

human coronary artery endothelial cells; HO-1/Hmox-1, haem oxygenase-1; HUVEC, human umbilical vein endothelial cells; IVA, isovanillic acid; IVA3G, isovanillic acid-3-

glucuronide; P3G, peonidin-3-glucoside; PCA, protocatechuic acid; PCA3S, protocatechuic acid-3-sulfate; PCA4S, protocatechuic acid-3-sulfate; RASMC, rat aortic smooth 

muscle cells; sIL-6, soluble interleukin-6; sVCAM-1, soluble vascular cellular adhesion molecule-1. 
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In order to determine the potential bioactivities of flavonoids and metabolites on vascular 

function, all treatments were screened in isolation (at a physiologically achievable 

concentration of 1 µM) for their effects on endothelial nitric oxide synthase (eNOS) and 

haem oxygenase-1 (HO-1) protein in human umbilical vein endothelial cells (HUVEC; Chapter 

3). One flavonoid (quercetin) and 2 phenolic acid metabolites (4-hydroxybenzoic acid (4HBA) 

and protocatechuic acid-4-sulfate (PCA4S)) increased HO-1 protein expression. The vast 

majority of phenolic metabolites had no effect on either protein, suggesting they are 

relatively inactive within these mechanisms. Subsequently, 7 equimolar mixtures of 

flavonoids containing quercetin and 11 mixtures containing 4HBA and/or PCA4S, to a 

cumulative concentration of 10 µM, were screened for their effect on HO-1 protein, though 

no significant effects were observed, which suggests that combining these treatments does 

not increase their efficacy and therefore does not indicate additive or synergistic activity. 

Quercetin, 4HBA, and PCA4S were further investigated for the effect of increased 

concentration, where each treatment again resulted in increased HO-1 protein in response 

to 1 µM, but this response was not amplified in response to greater concentrations (10 µM- 

50 µM), which may indicate negative feedback regulation of this protein with increased 

concentration of metabolites. Subsequent experiments demonstrated that quercetin and 

4HBA significantly upregulated HO-1 mRNA expression but only quercetin increased total 

Nrf2 protein and induced the phosphorylation of Akt1 and ERK1/2 signalling kinases. These 

data support previous literature which cites quercetin as active in the activation of oxidant-

response pathways, but also suggests that flavonoid metabolites, such as 4HBA and PCA4S 

upregulate HO-1 protein by alternative mechanisms. 

Treatment effects were further investigated on Hmox-1 protein expression in rat aortic 

smooth muscle cells (RASMC; Chapter 4). Two flavonoids (quercetin and peonidin-3-

glucoside) and one metabolite (protocatechuic acid (PCA)) actively upregulated Hmox-1, 

though, again, only quercetin significantly increased Hmox-1 mRNA expression. Quercetin 

has previously been shown to upregulate Nrf2-related genes (Liu et al., 2012, Chow et al., 

2005, Lin et al., 2004, Tanigawa et al., 2007), though it has limited activity reported at 

concentrations below 1 µM. Conjugation of quercetin has been seen to reduce the activity 

of quercetin in vascular pathways, whereas quercetin-3-glucuronide has been seen to inhibit 

inflammation, such as JNK phosphorylation (Yoshizumi et al., 2002), suggesting that 

conjugation of flavonoids and their metabolites may alter their target to inflammatory 

mechanisms of action. Likewise, P3G significantly upregulated Hmox-1 protein, but at 0.1 

µM has been shown to inhibit inflammation-driven vascular adhesion, which was not 
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observed at concentrations greater than 0.2 µM (Krga et al., 2016). These data suggest that, 

whereas vascular pathways are activated in response to P3G at supraphysiological 

concentrations (as in the present study), P3G may act in inflammatory pathways at 

physiological concentrations (Kuntz et al., 2015). PCA, a prominent metabolite common to 

multiple flavonoids subclasses (Schar et al., 2015, de Ferrars et al., 2014b), modestly, though 

not significantly (p=0.09), increased Hmox-1 protein. Past studies have identified the 

catechol hydroxyls of PCA as responsible for its bioactivity (Kakkar and Bais, 2014) and 

previous studies from our group have identified PCA as active within inflammatory 

mechanism of action, where activity was lessened upon conjugation of catechol hydroxyls 

to sulfate, glucuronide and methyl moieties (Warner et al., 2016). Overall, these data suggest 

that conjugation of metabolites may reduce their efficacy on Hmox-1 protein expression, 

although other sources have suggested that conjugation of metabolites may increase their 

efficacy in inflammatory mechanisms of action (di Gesso et al., 2015, Amin et al., 2015).  

Flavonoids and their metabolites do not circulate in isolation following ingestion, but exist 

as complex mixtures of metabolites at various concentrations (Czank et al., 2013, Pereira-

Caro et al., 2014, Serra et al., 2012), thus it is important that this is reflected in the design of 

cell culture experiments exploring the bioactivities of dietary components. Few studies have 

explored the effects of flavonoids in combination, despite some indication of differential 

activities when in combination relative to isolation (Koga and Meydani, 2001, Harasstani et 

al., 2010). Hmox-1 protein was increased in response to 4 mixtures of phenolic metabolites 

containing PCA, which is of particular interest as the concentrations used are achievable 

following flavonoid consumption (Schar et al., 2015) and therefore it is a potentially 

physiologically achievable effect. Interestingly, the present study observed that PCA and VA, 

in isolation, also did not significantly increase Hmox-1 expression, but a combination 

consisting of 5 µM of each metabolite (to a cumulative concentration of 10 µM) significantly 

upregulated Hmox-1 protein; a similar effect was identified by Keane et al. on VSMC 

migration (Keane et al., 2015). These data further support the growing evidence of additive 

or synergistic effects between flavonoids and metabolites (Krga et al., 2016, di Gesso et al., 

2015) and merits further exploration in future studies. 

Given that the metabolites under investigation did not appear to actively increase basal 

expression of eNOS and HO-1 proteins, and that previous studies have suggested that 

metabolites of flavonoids may be active in inflammatory mechanisms of action (Krga et al., 

2016, di Gesso et al., 2015, Amin et al., 2015), 20 flavonoids and their metabolites and 25 

combinations of structurally similar compounds were explored for their effects in TNF-α 
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stimulated HUVECs (Chapter 5). Four phenolic metabolites demonstrated inhibitory activity 

on sVCAM-1 secretion. PCA demonstrated the greatest activity, displaying a strong 

inhibitory effect on sVCAM-1, which appeared to be amplified with increased 

concentration. Inhibition of VCAM-1 mRNA was also observed in response to PCA, however, 

this was only apparent at a supraphysiological concentration of 100 µM and did not appear 

to affect NFB pathway activation or other signalling kinase activations (JNK, p38, Akt1, 

ERK1/2). This has been shown previously for other metabolites of anthocyanins (Krga et al., 

2016), suggesting that PCA likely acts upon post-translational pathway targets, such as 

glutathione peroxidase (GPx; d'Alessio, Moutet et al. 1998), as studies have shown 

upregulation of GPx following treatment with quercetin (Granado-Serrano, Martin et al. 

2012) and catechin (Simos, Verginadis et al. 2012). Additionally, it is conceivable that 

flavonoids and/or their metabolites could interact with the cleavage of the protein from 

the surface of endothelial cells (Videm and Albrigtsen 2008), such as by interaction with 

TNF-α converting enzyme, ADAM17 (Garton, Gough et al. 2003). Mixtures of metabolites 

and flavonoids showed no activity toward sVCAM-1, suggesting no additive activity at sub-

micromolar concentrations (cumulative concentrations adding up to 1 µM), though the 

exploration of these combinations at greater concentrations requires investigation; as was 

the focus of the subsequent study (Chapter 6). 

Three unique treatments were explored for their activity on sVCAM-1 and sIL-6 secretion by 

human coronary artery endothelial cells (HCAECs); where treatments were designed based 

on the time points of metabolites peaked in serum, representing 1 h, 6 h, and 24 h 

postprandial blood samples (Chapter 6). It was hypothesised that the beneficial effects of 

anthocyanins may occur as a result of varying profiles/compositions and concentrations of 

metabolites, which could have differential biological activities as anthocyanins are 

systematically metabolised along the gastrointestinal tract and eliminated from the body. 

Here, mixtures of metabolites had significant inhibitory effects on sVCAM-1 protein 

secretion, which was achieved at concentrations (2.0 µM-4.4 µM) reflective of those 

identified in vivo (de Ferrars et al., 2014b), suggesting this activity is physiologically 

achievable. The inhibition of sVCAM-1 in response to the mixtures of metabolites 

representing peak kinetic profiles at 24 h was greater than metabolite profiles identified at 

6 h post consumption, suggesting that the anti-inflammatory activity of flavonoid 

metabolites may be modulated to a greater extent by profiles of metabolites which appear 

many hours post-consumption (6 h -24 h), further supporting the hypothesis that 

metabolites of microbial origin are responsible for the anti-inflammatory activity of 
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anthocyanins (Kay et al., 2009). Although none of the constructed ‘artificial’ treatments 

(representing cumulative concentration of 1 µM) were active at this concentration on 

sVCAM-1 (Chapter 5), the serum mixtures reflecting profiles of C3G metabolites (Chapter 6) 

inhibited the molecule at the lowest concentrations reported (to a cumulative concentration 

of 0.19 µM-0.44 µM), suggesting that specific combinations of metabolites increase their 

efficacy. These conclusions appear to support findings from a recent clinical study, which 

demonstrated that metabolites profiles are associated with specific physiological responses 

(such as seen for flow mediated dilation, which correlated with specific metabolite profiles 

1 h- 6 h (Rodriguez-Mateos et al., 2014a) as they are systematically metabolised and 

eliminated from the body. Future studies should therefore consider multiple mechanistic 

activities of metabolite profiles observed in vivo, i.e. initial (<6 h) metabolite profiles may 

affect vascular responsiveness followed by a delayed (>6 h) anti-inflammatory response 

mediated by products of bacterial catabolism, absorption, and phase II conjugation. 

 

7.2. Future perspectives 

Elucidating the mechanisms by which flavonoids and their metabolites in vitro may improve 

vascular function and inhibit inflammation in vivo is essential to understanding how 

flavonoids impact cardiovascular health. This may in turn provide insight into how flavonoids 

and other food bioactives influence health and therefore which specific types and quantities 

of certain foods are most protective against inflammation and vascular disease.  In order to 

elucidate these mechanisms, it is important that future in vitro investigations optimise for 

physiological relevance. 

The specific biomarkers investigated are a potential limitation to the present investigation, 

given that an anthocyanin-rich bilberry extract was reported to modulate at least 1261 

genes, which may contribute to the progression or regression of atherosclerosis (Mauray et 

al., 2012). The use of DNA and protein microarrays may therefore be a consideration to 

highlight novel mechanisms of action on which flavonoid metabolites may act. 

The use of human umbilical vein endothelial cells (HUVECs) may have been a limitation on 

the present investigations, as HUVEC do not originate from the arterial wall. Previous 

investigations from our group of the vascular effects of polyphenols have demonstrated that 

the expression of HO-1 in HUVEC and human coronary artery endothelial cells (HCAECs) in 

response to cyanidin-3-glucoside, PCA, and VA, are similar in both cell types (Edwards et al., 

2015), thus HUVECs were a logical and financially viable model to use to screen a large 

number of treatments, though key results from such screens should be validated in HCAECs. 
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HCAEC utilised in Chapter 6 addresses this limitation and improves the physiological 

relevance of the study, though aortic endothelial cells could also have been used. Arterial 

rather than aortic cells were utilised as atherosclerosis is likely to develop in arteries where 

there is slow, or ‘disturbed’, flow (Hopkins, 2013). Endothelial cells grown on cell culture 

dishes are only exposed to reactants on the exposed surface of the cell, which is not 

reflective of their in vivo state. 3D-models, in which cells are grown within extracellular 

matrix (ECM) gels, are considered a more appropriate model as this allows cells to grow and 

interact with their medium at multiple surfaces, as would be situated in vivo (Pampaloni et 

al., 2007). 3D- cultures also have greater stability and longer lifespans compared to 

traditional 2D cultures, which may enable the chronic effects of flavonoids and their 

metabolites to be studied more effectively. Even more pioneering is the microfabrication of 

‘organs on a chip’, as utilised more commonly in the fields of drug-delivery and toxicity (Huh 

et al., 2013). An example of such a model is the AngioChip (Zhang et al., 2016), which consists 

of layers resembling microchips stacked into a 3D blood vessel. Within this is a matrix of 

parenchymal cells surrounding a perfused, microchannel network coated with endothelial 

cells modelling a functional vessel lumen. The use of such models could be used in parallel 

to flavonoid feeding studies to more effectively study the ‘real-time’ effects of flavonoids 

and their metabolites, on processes such as monocyte adhesion in endothelial dysfunction.  

The use of rat smooth muscle cells (SMCs), as opposed to human, may be a limitation as the 

phenotypes and expression levels of cellular proteins may not be conserved between species 

(Kotokorpi et al., 2007). That said, the data from the present study could more easily be 

translated into animal models, such as in models mimicking in vivo anatomical structures, 

e.g. excised arterial rings and organ baths (Bell and Gochenaur, 2006, Sanchez et al., 2006, 

Ko et al., 2010). The effect size of vascular biomarkers in response to flavonoids may differ 

in rat relative to human cell types, and therefore, although cost prohibitive, future work 

should validate key findings in a human cell type, such as human coronary artery smooth 

muscle cells (HCASMCs), to confirm their relevance. 

The use of endothelial cells or smooth muscle cell cultures in isolation may be seen as a 

limitation in the context of physiological relevance as, in vivo, the two cell types exist in close 

contact and cross-talk across an elastic intimal layer (Lodi et al., 2012). For example, eNOS is 

an endothelium derived enzyme, but ultimately its key bioactive endpoint (nitric oxide) 

targets the smooth muscle of the arterial vessel (Lusis, 2000). It may be interesting therefore 

to utilise a co-culture system, such as developed by others (Lodi et al., 2012), whereby the 

combined effects of these metabolites could be investigated. Ideally, these effects could be 
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mapped against an ex vivo model of rat aorta to elucidate target mechanisms. Arterial cells 

in particular are not static cells, but constantly cross talk with surrounding smooth muscle 

cells to expand and contract to facilitate blood flow, this in itself presents additional stresses 

and activates certain pathways in cells. Smooth muscle cells are not directly exposed to the 

circulation (and therefore circulating flavonoid metabolites) and so their intercellular 

concentrations of flavonoids would presumably be lower relative to endothelial cells. To 

address this, future studies could conduct an animal feeding study, followed by tissue 

extraction and high-resolution mass spectrometry (MS), which would elucidate the relative 

concentrations of flavonoid metabolites in SMCs. The metabolite profiles detected could 

then be mimicked in vitro to elucidate potential mechanisms. Alternatively, this issue may 

also be addressed by the use of an endothelial/SMC co-culture model (Truskey, 2010); 

enabling the endothelial cells to be exposed to the treatments in the first instance, where 

some intracellular endothelial metabolism of certain flavonoids is thought to occur (Toro-

Funes et al., 2014, Rodriguez-Mateos et al., 2014c), followed by exposure to the smooth 

muscle cells to metabolites which diffuse or are transported from the endothelial cells. 

In Chapter 6, the metabolite profiles with the maximum anti-inflammatory effect were 

observed at 6 h and 24 h post-consumption. Conversely, maximum effects on flow-mediated 

dilation (FMD) in response to the anthocyanin feeding have been observed at 2 h (Rodriguez-

Mateos et al., 2014a). Overall, these data suggests an acute-phase modulatory vascular 

response of phenol metabolites followed by a delayed anti-inflammatory response many 

hours post-consumption. Based on these findings and those of the present study it may be 

possible that an immediate vascular response, mediated by very low levels of parent 

flavonoids and their immediate degradation products, is succeeded by a delayed anti-

inflammatory response, mediated by products of colonic bacterial catabolism and hepatic 

phase II conjugation. Future studies may observe whether these peak metabolite profiles 

similarly affect expression levels of biomarkers of nitric oxide homeostasis at the same time 

points. These effects could be confirmed most effectively by the use of a randomised-control 

trial (RCT) which would target the effects of specific metabolite composition of labelled 

flavonoids across multiple time points, and their effects on vascular function, such as by 

FMD, and inflammatory biomarkers, such as sVCAM-1. Given that metabolites have been 

shown to be present in the circulation at 48 h (Czank et al., 2013), such studies should be 

extended to beyond this time point. Ideally, such a study would recruit a population who 

have relatively healthy vascular systems but elevated inflammatory biomarkers, such as 

those with metabolic syndrome (Scarpellini et al., 2012), especially given recent evidence 
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suggesting that flavonoids may be protective against this condition (Bhaswant et al., 2015). 

Data from such a study would better address the hypothesis of multiple mechanisms of 

metabolite activity, which may shed light on how flavonoids and their metabolites act 

chronically to modulate a number of physiological responses. 

In summary, the present thesis provides novel insights into the bioactivity of flavonoids and 

their phenolic metabolites, their combined activities, and the potential mechanisms by 

which they may exert protective effects. The present investigation is, to the best of the 

author’s knowledge, the first work to demonstrate the effects of conjugated phenolic 

metabolites on vascular and inflammatory biomarkers in endothelial and smooth muscle 

cells and the first study to observe that treatments which mimic plasma profiles following 

consumption of C3G appear to have greater anti-inflammatory activity relative to 

systematically constructed equimolar combinations of flavonoids. This thesis therefore 

provides evidence that may contribute to our understanding of the bioactivity of flavonoids 

in humans and therefore our understanding of the associations between diet and health.  
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Chapter 9. Appendices & Method Optimisation 

9.1. Appendices for Chapter 3 

9.1.1. Effect of time on naringenin, sulforaphane, and lipopolysaccharide on HO-1 

Sulforaphane (SFN), lipopolysaccharide (LPS) and naringenin were screened for their effect 

on HUVEC haem oxygenase-1 (HO-1) protein at 16 h, 18 h, and 24 h, in order to identify a 

time point and suitable positive control (Figure 9.1). HO-1 was significantly upregulated in 

response to SFN at all time-points tested, and there was an apparent, but non-significant 

increase in HO-1 in response to naringenin relative to basal at 16 h (2908.85 ± 453.86 pg/mL, 

p=0.10), therefore 16 h was used in subsequent HO-1 assays.  

 

 

Figure 9.1. Effect of positive controls on expression of HO-1 protein. Treatments were added to 

HUVEC to a final concentration of 10 µM (SFN and NAR) or 10 ng/mL (LPS) for 16 h, 18 h and 24 h, HO-

1 protein was quantified by ELISA. Data represents the average of 3 independent replicates. Labelled 

means without a common letter differ significantly, p≤0.05 (ANOVA with post hoc LSD). Abbreviations: 

LPS, lipopolysaccharide; NAR, naringenin; SFN, sulforaphane. 

 

9.2. Appendices for Chapter 4 

9.2.1. Determination of screening concentration for phenolics on Hmox-1  

In order to select an optimal screening concentration as an appropriate positive control for 

the induction of Hmox-1 in rat aortic smooth muscle cells (RASMCs), the effect 10 µM 

sulforaphane (SFN), 1 µM- 100 µM of quercetin, naringenin, protocatechuic acid (PCA) and 

vanillic acid (VA) on Hmox-1 protein expression was determined by ELISA following 16 h, 18 

h, and 24 h treatment (Figure 9.2). Hmox-1 protein expression was increased by the greatest 
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magnitude in response to 100 µM quercetin, SFN and 100 µM naringenin. Effects on Hmox-

1 protein appeared to increase with concentration, thus the maximum physiological 

concentration of 10 µM was selected to screen the effects of chosen treatments in 

subsequent experiments. 

 

 

Figure 9.2. Effect of sulforaphane (SFN) and flavonoids on the on Hmox-1 protein 

expression in RASMC. Concentrations are in µM or 0.1 % DMSO. 10 µM SFN was utilised 

as a positive control. Columns represent percentage values of Hmox-1 relative to an 

untreated control (no DMSO), of two independent replicates ± SD (n =2). Abbreviations: 

NAR, naringenin; QUE, quercetin; PCA, protocatechuic acid; VA, vanillic acid. 

 

9.2.2. Determination of suitable reference genes for RT-qPCR 

Optimal reference genes were selected using geNormPLUS kit (PrimerDesign Ltd).  Six pre-

validated, stably expressed, rat reference genes were run in parallel to Hmox-1 mRNA 

experiments (Figure 9.3). Resultant Ct values were analysed using the geNorm function in 

qbasePLUS software (version 2.3, Biogazelle NV, Zwijnaarde, Belgium) to assess gene 

stability across all samples, and the optimal number of genes was also determined as 

described by others (Hellemans et al., 2007). 
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It was determined that 2 reference genes were required for normalisation and Zgpat and 

Stau1 were identified to be the most stable reference genes. The geometric mean of the Ct 

values obtained for Zgpat and Stau1 were therefore used as a normalisation factor in the 

determination of Hmox-1 mRNA expression in response to selected treatments. 

 

 

Figure 9.3. Reference gene stability (geNorm M) for RASMC. Cells were 

treated with 10 µM quercetin, protocatechuic acid, peonidin-3-glucoside or 

0.02 % DMSO for 6 h and RT-qPCR was used to determine relative 

amplification. Genes are arranged in order of increasing stability from left 

to right. 

 

 

9.3. Appendices for Chapter 5 

9.3.1. Determination of TNF-α stimulation concentration on sVCAM-1 secretion  

A concentration-dependent increase in sVCAM-1 expression was observed between 0.1 

ng/mL - 20 ng/mL TNF-α after 24 h (Figure 9.4). The apparent effect size appears to stabilise 

between 10 ng/mL and 20 ng/mL, which may limit the observed effect size in response to 

select treatments, therefore a stimulation concentration of 10 ng/mL was utilised in 

subsequent experiments. 
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Figure 9.4. Effect of TNF-α concentration on sVCAM-1 production. 

HUVEC were stimulated with TNF-α at concentrations between 0 and 20 

ng/mL for 24 h. sVCAM-1 in cell culture supernatants was measured in 

duplicate by ELISA. The experiment was carried out using a single cell 

population, where error bars represent the standard deviation between 

two technical measurements. 

 

9.3.2. Effect of TNF-α stimulation time on sVCAM-1 secretion by HUVEC.  

A time-dependent increase in sVCAM-1 expression was observed between 4 h and 18 h TNF-

α (10 ng/mL) stimulation (Figure 9.5). A stimulation time of 18 h was therefore utilised in 

subsequent experiments. 

 

 

Figure 9.5. Effect of TNF-α incubation time on sVCAM-1 expression in 

HUVEC. Cells were then stimulated with 10 ng/mL TNF-α for 4 h, 6 h, 18 h or 

24 h. sVCAM-1 protein levels were determined by ELISA.  The experiment was 

carried out using a single cell population; error bars represent the SD between 

technical replicates. 
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9.3.3. Effect of pre- or co-incubation of PCA with TNF-α.  

To determine whether a pre-treatment or co-incubation of select treatments and TNF-α 

stimulants was the most appropriate assay for subsequent screening experiments, two 

experiments were conducted (Figure 9.6). Firstly, HUVEC were treated for 30 min with (10 

µM PCA) followed by 4-24 h stimulation with TNF-α (10 ng/mL; pre-treatment). Secondly, 10 

µM PCA and TNF-α (10 ng/mL) were co-incubated for 4-24 h with no pre-treatment (co-

incubation). Following 30 min pre-treatment with PCA, there was a significant difference in 

sVCAM-1 protein relative to the vehicle control (DMSO) after 18 h (p≤0.01) and 24 h (p≤0.05) 

stimulation. A pre-treatment assay was therefore selected for subsequent experiments.  

 

 

Figure 9.6. Effect of treatment assay on inhibition of TNF-α stimulated sVCAM-1 by PCA with A) 

Pre-treatment or B) Co-incubation. A) HUVEC were pre-treated for 30 min with 10 µM PCA followed 

by 4-24 h stimulation with 10 ng/mL TNF-α. B) HUVEC were treated with 10 µM PCA and 10 ng/mL 

TNF-α (co-incubation) for 4-24 h. Effects relative to vehicle control (0.02 % DMSO) at each time point 

were determined at each time point by one-way ANOVA (post hoc LSD), *p≤0.05, **p≤0.01, 

****p≤0.001. Abbreviations: PCA, protocatechuic acid; VC, vehicle control. 

 

9.3.4. Determination of HUVEC as suitable cell type relative to HCAEC 

To confirm that the response of TNF-α stimulated sVCAM-1 protein expression in human 

umbilical vein endothelial cells (HUVECs) were comparable to their more physiological cell 

type, human coronary artery endothelial cells (HCAECs), a concentration-response 

experiment utilising 0.1 µM- 10 µM PCA, 0.02 % DMSO (vehicle control), or 10 µM BAY 11-

7085 (NFB inhibitor) was conducted on HUVEC and HCAEC in parallel (Figure 9.7). sVCAM-

1 protein secreted by HCAEC appeared to be 10x greater than HUVEC, and the effect at 10 

µM was greater, suggesting some concentration response activity between 1 µM-10 µM. 

HUVEC were therefore confirmed as an appropriate cell model for subsequent experiments. 
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Figure 9.7. Effect of PCA concentration of TNF-α stimulated sVCAM-1 protein in A) HUVEC and B) 

HCAEC. Cells were treated for 30 min with 0.1 µM-10 µM PCA, 0.02 % DMSO, or 10 µM BAY 11-7085, 

followed by addition of TNF-α (10 ng/mL), for 18 h. Columns represent the mean of two independent 

replicate ± SD (n=2). Abbreivations: BAY, BAY 11-7085; HCAEC, human coronary artery endothelial 

cell; HUVEC, human umbilical vein endothelial cell; PCA, protocatechuic acid. 

 

9.3.5. Determination of TNF-α stimulation time on phospho-NFB p65 expression 

NFB pathway activation was determined by p65 phosphorylation in response to TNF-α (10 

ng/mL) stimulation for 15-60 min (Figure 9.8). Phosphorylated p65 expression was increased 

17.7 fold in response to 10 ng/mL TNF-α after 15 min (p≤0.001), followed by an apparent time-

dependent decrease with increased incubation time. 15 min was therefore used to screen for 

the effects of PCA on NFB activation. 
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Figure 9.8. Stimulation time response of TNF-α on NFB p65 

phosphorylation. Data were normalized to a TNF-α control and 

columns represent the mean ± SD of three independent 

replicates, n=3. Blots represent one of three independent 

replicates. Different letters infer significant difference following 

post hoc LSD (p≤0.05). 

 

9.3.6. Effect of TNF-α stimulated signalling kinase phosphorylation   

Phosphorylation of multiple signalling kinases was determined following TNF-α stimulation 

following incubation for 15 min, 30 min, and 60 min (Figure 9.9). Akt1 phosphorylation was 

increased >2 fold and p38 and JNK phosphorylation was increased by 15 and 4 fold, respectively, 

in response to TNF-α after 15 min, followed by an apparent time-dependent decrease with 

increased incubation time. 15 min was used to screen for the effects of PCA on TNF-α stimulated 

signalling kinase activation. 
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Figure 9.9. Stimulation time response of TNF-α on signalling 

kinase phosphorylation. Blots are representative of a single 

cell population (n=1).  

 

9.4. Appendices for Chapter 6 

9.4.1. Determination of TNF-α stimulus on sVCAM-1  

In order to identify an optimal time point at which to study the effects of the serum mimic 

mixtures on the induction of sVCAM-1, a time course study was conducted (Figure 9.10A). 

TNF-α (10 ng/mL) significantly upregulated sVCAM-1 secretion by HCAEC after 6 h, 18 h, and 

24 h incubation, with the largest induction relative to basal observed at 24 h (1570.48 ± 29.37 

%, p≤0.001). This time point (24 h) was taken forward to test for the effect of concentration 

response to TNF-α (Figure 9.10B). sVCAM-1 secretion was amplified with increasing 

concentration and an initial aim of the study was to reduce TNF-α concentration close to 

physiological concentrations, whilst enabling detectable levels of sVCAM-1 protein. As 0.1 

ng/mL TNF-α significantly increased sVCAM-1 relative to basal (1056.59 ± 60.26 %, p≤0.001), 

this concentration was taken forward for subsequent experiments.  
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Figure 9.10. Determination of time and concentration of TNF-α 

stimulus on sVCAM-1. Data were recorded for each replicate as 

the mean of two technical replicates. Columns represent mean 

sVCAM-1 protein expression of three independent replicates ± 

SD (n=3). Labelled means without a common letter differ 

significantly, p≤0.05 (ANOVA with post hoc LSD). Abbreviation: 

BAY, BAY 11-7085. 

 

9.4.2. Determination of TNF-α stimulus on sIL-6 

TNF-α (10 ng/mL) significantly upregulated sIL-6 secretion by HCAEC after 6 h, 18 h, and 24 

h incubation, with the largest induction relative to basal observed at 24 h (566.81 ± 39.87 %, 

p≤0.001) (Figure 9.11). sIL-6 secretion was amplified with increasing concentration, 0.1 

ng/mL TNF-α significantly increased sVCAM-1 relative to basal (106.78 ± 31.72 %, p≤0.01). 
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Figure 9.11. Determination of time and concentration of TNF-α 

stimulus on sIL-6. Data were recorded for each replicate as the mean 

of two technical replicates. Columns represent mean sVCAM-1 protein 

expression of three independent replicates ± SD (n=3). Labelled means 

without a common letter differ significantly, p≤0.05 (ANOVA with post 

hoc LSD). Abbreviation: BAY, BAY 11-7085. 

 

9.4.3. Validation of TNF-α stimulation time on VCAM-1 and IL-6 mRNA 

In order to identify an optimal time point at which to study the treatment effects on TNF-α 

stimulated VCAM-1 and IL-6 mRNAs, a time course was carried out (Figure 9.12). The 

maximal response was observed at 4h where there was a fourteen fold increase VCAM-1 

mRNA, and a 3 fold increase in IL-6, thus 4 h was selected as the optimal time point to take 

forward.   
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Figure 9.12. Effect of TNF-α stimulation time on VCAM-1 and IL-

6 mRNA expression. A) VCAM-1 B) IL-6. Columns represent 

mRNA expression, normalised to reference genes VIPA39 and 

PRDM4, relative to an untreated control of a single cell 

population (n=1).  

 

9.4.4. Determination of suitable reference genes for RT-qPCR 

Optimal reference genes were selected using geNormPLUS kit (PrimerDesign Ltd).  Six pre-

validated stably expressed human reference genes were run in parallel to stimulated and 

unstimulated HCAEC (Figure 9.13). Resultant Ct values were analysed using the geNorm 

function in qbasePLUS software (version 2.3, Biogazelle NV, Zwijnaarde, Belgium) to assess 

gene stability across all samples, and the optimal number of  genes was also determined as 

described by others (Hellemans et al., 2007). 
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It was determined that 2 reference genes were required for normalisation and VIPA39 and 

PRDM4 were identified to be the most stable reference genes. The geometric mean of the 

Ct values obtained for VIPA39 and PRDM4 were therefore used as a normalisation factor in 

the determination of VCAM-1 and IL-6 mRNA expression in response to selected treatments. 

 

 

Figure 9.13. Reference gene stability (geNorm M) for stimulated and unstimulated 

HCAEC. Genes are arranged in order of increasing stability from left to right. 

 

9.5. Melt curve analysis for target genes 

Specific target gene primers were purchased pre-validated from Primer Design 

(Southampton, UK), though specificities were additionally confirmed by melt-curve analysis 

following data collections.  Samples with a melting temperature (Tm) not within the expected 

value range provided on the batch specific data sheet, or that had multiple Tm, were 

disregarded. 
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9.5.1. Example melt curves for Chapter 3 

 

Figure 9.14. Validation of specificity of real time PCR amplification for A) HO-1 B) UBE2D2 and C) 

PRDM4. Melt curve analysis of RT-qPCR product following 50 cycles denaturation/data collection. Real 

time PCR was conducted using 25 ng cDNA generated from basal (unstimulated) HUVEC, and cells 

incubated with 10 μM quercetin, 4-hydroxybenzoic acid, or protocatechuic acid-4-sulfate for 6 h. 

 

9.5.2. Example melt curves for Chapter 4 

 

Figure 9.15. Validation of specificity of real time PCR amplification for A) Hmox-1 B) Zgpat and C) 

Stau1. Melt curve analysis of RT-qPCR product following 50 cycles denaturation/data collection. Real 

time PCR was conducted using 25 ng cDNA generated from basal (unstimulated) HUVEC, and cells 

incubated with 10 μM quercetin, peonidin-3-glucoside, or protocatechuic acid for 6 h. 
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9.5.3. Example melt curves for Chapter 5 

 

Figure 9.16. Example of validation of specificity of real time PCR amplification for A) VCAM-1 B) 

UBE2D2 and C) PRDM4. Melt curve analysis of RT-qPCR product following 50 cycles 

denaturation/data collection. Real time PCR was conducted using 25 ng cDNA generated from basal 

(unstimulated) HUVEC, and cells incubated with 0.01-100 μM protocatechuic acid or 0.01-100 μM 

protocatechuic acid-4-sulfate for 4 h. 
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9.5.4. Example melt curves for Chapter 6 

 

Figure 9.17. Validation of specificity of real time PCR amplification for A) VCAM-

1 B) IL-6 C) VIPA39 and D) PRDM4. Melt curve analysis of RT-qPCR product 

following 50 cycles denaturation/data collection. Real time PCR was conducted 

using 25 ng cDNA generated from basal (unstimulated) HUVEC, and cells 

incubated with peak serum mixtures for 4 h. 

 

 


