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Abstract


[bookmark: _GoBack]A dust storm climatic regionalisation of the Arabian Peninsula (AP) that aims to categorise the region into several cohesive sub regions is conducted. This approach was carried out by grouping together similar wet season climatological features of Dust Storm Activity (DSA). A common period of 30 years (1983-2013) for 38 meteorological weather stations across the AP was utilised.  The mathematical, statistical and subjective methods that are employed in the process of regionalisation resulted in dividing the region into three sub regions. Each of the sub regions North, North Western and Central (NWC), North East (NE) and South, West and Coastal (SWC) shows distinct features of its own. Subsequently, the temporal trend of the representative station (Key Station) for each sub region is examined. It is found that only the Northeastern  part of the region has a significant positive trend over the last 30 years. However, this positive increase in DSA is not associated with an increase in wind speed. This study assists future research in exploring the relationship between large scale forcing and the AP sub regional DSA. As well, this could enhance regional DSA forecast and future projections. 
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1.	Introduction

The Arabian Peninsula is located in the south west of Asia and to the north east of Africa. It is surrounded by the Arabian Gulf to the east, Arabian Sea to the south and the Red Sea to the west. The total area of the peninsula is approximately 3,000,000 square kilometres. Desert is the most prominent feature in the peninsula, however, mountain ranges are the prominent feature in the southwestern corner. Due to the location of the peninsula, which is bounded mostly from all directions by local and distant dust sources, most populated areas in the region are severely affected by dust storms (Prospero et al., 2002). Thus, any change in dust storm frequency could lead to significant impacts on the economy, environment, ecosystem, human beings and the global radiation budget (Natsagdorj et al., 2003).
The visibility could be severely reduced during an outbreak of dust storms. Kutiel and Furman (2003) have categorised dust activities based on the reduction in horizontal visibilities: the term raising/blowing dust is used when the horizontal visibility is less than 11 km, a dust storm is desiganted when the horizontal visibility is less than 1 km and a severe dust storm when the horizontal visibility is less than 200 m.
The mechanisms that favour the generation of dust storms in the AP vary with season. In the wet season (October - May) dust storms are caused by prefrontal and postfrontal winds that are associated with eastward travelling depressions from the Mediterranean Sea. However, in summer, the persistent northerly and north westerly winds induced by the Indian monsoon low pressure system are the main cause (Prospero et al., 2002; Taghavi and Asadi, 2008; Hamidi et al., 2012; Alharbi et al., 2014).
Due to the lack of AP climate understanding, the AP has become an area of interest for many researchers. Many climate studies are conducted for the region for different climatic fields and one of the most interesting fields is forecasting dust storm activity. However, to do so, the characteristics and behaviour of DSA needs to be well understood. In an early attempt, Middleton (1986) has regionalised the Middle East area based on the season that has the highest dust activity. However, the data used was short in duration (1950 – 1960) and covered varying lengths between stations. Later, Kutiel and Furman (2003) have spatially delimited the region based on the temporal behaviour of dust activity. The data used here was monthly time series for 21 years record (1973 – 1993), constructed based on the reduction in horizontal visibility to below 11 km. Notaro et al. (2013) have utilised eight years (2005 – 2012) of daily deep blue Aerosol Optical Depth (AOD) measurements at 550 nm to regionalize dust activity across Saudi Arabia, based on the source regoins. They applied cluster analysis to backward trajectories, which led to the identification of the primary dust sources for each station/area within Saudi Arabia. Yu et al. (2013) found a reasonable consistency between dust surface observations, remotely sensed AOD obtained from Multiangle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) as well as surface measurements of AOD measured from the Aerosol Robotic Network (AERONET).  This was achieved by utilising 10 year record of data for remotely sensed and surface measured AOD to examine the seasonal cycle of dust activity across Saudi Arabia. Yu et al. (2015) also used empirical orthogonal function (EOF) to study the spatial mode of dust variability across Saudi Arabia to identify the climatic controls on Saudi Arabian dust activities. As well, they have identified a positive trend in dust activity across the Arabian Peninsula since 2000.
 
Climate regionalization is a useful technique which enables researchers to discriminate climate variables of a region into sub regions based on similar long-term seasonal variability (Kutzbach, 1967; Richman and Lamb, 1985, 1987; Ogallo, 1989; Eklundh and Pilesjö, 1990; White et al., 1991; Bunkers et al., 1996; Cahalan et al., 1996). Therefore, dividing the spatial continuum of a dust storm climatology into a manageable number of quasi-homogeneous areas makes the process of temporal trend analysis and correlations with climatic large-scale forcings more convenient (Comrie & Glenn 1998). 
Such techniques could be automated (objective) or manual (subjective). The automated approaches involve the application of mathematical and statistical tools (respectively, Principal Components Analysis and Correlations). On the other hand, manual approaches involve some form of human intervention that has to be conducted within the process of regionalization. No method is totally objective, as the subjective choice of the number of components retained has to be made. Additionally,  other decisions made are likely based on prior knowledge of the region (Virmani 1980, Yarnal 1993; Almazroui et al. 2014a and 2015). 
In this research, Principal Components Analysis (PCA) and correlations of surface observations of dust storms are used to identify the patterns within DSA that have similar spatial characteristics during the wet season. As well as the application of regionalization, subjective methods are also utilised. Thereafter, the temporal trends of the resulted dust storm sub-regional patterns are investigated. This study offers new insights into dust storm patterns and their behaviour during the wet season in the region.
This research differs from the analysis of Kutiel and Furman (2003) and Yu et al (2015) in four ways: (a) dust storm time series for each surface station are constructed based on horizontal visibility reduction to below 1 km, while considering the minimum wind speed needed to lift dust for each respective area, (b) the application of objective and subjective climate regionalization, (c) analysis is implemented on a common period that spans the 30 years (1983 – 2013) and (d) DSA characteristics and behaviour are only examined during the wet season.


2.	Data

Dust storms are phenomena that cannot be directly measured like other meteorological variables such as precipitation, pressure and temperature. Their occurrence can be observed or in remote areas can be remotely sensed or extrapolated from other climatic variables like visibility and wind speed.
Satellite data could provide valuable information about the occurrence of dust storms, especially with advanced remote sensing instruments like the Ozone Monitoring Instrument. Yet, these new instruments only provide a short record of data and thus will not fulfil the objective of this study. However, Yu et al. (2013) found a reasonable consistency between remotely sensed AOD and surface dust observations. Hence, remotely sensed AOD was subjected to PCA to validate the reliability of this study before final regionalisation output. Monthly remote sensed AOD data gridded with a 0.25° spatial resolution is used in this study. These data were obtained from the National Aeronautics and Space Administration (NASA). The AOD data set is the level 2 AOD at 558 nm measured by MISR instrument (2000 – 2013). This AOD data set is quality assured and the cloud contaminated pixels have been removed. However, not all AOD gridded pixels that cover the AP are subjected to PCA; only the pixels values within ±0.25° of the location of each station are used (Yu et al., 2013). Thus, only 38 of monthly AOD time series are used, where each covers the location of the selected stations. This is because the results from performing PCA on 38 indices will definitely differ from the results obtained from performing PCA on all 360 indices (MISR could cover the AP with at least 360 grid points), and this will not assist in the validation process of the final results of this study. 
DSA phenomena do not occur at some locations every day or every month. Yet during the course of a season, almost all stations encounter this phenomenon. Therefore, it is more valuable and meaningful to analyse DSA patterns on seasonal time scales.
The data used in this study were collected from 38 meteorological weather stations which comprise a record of hourly observations of wind speed and visibility (figure 1 and table 1).  However, the number of stations involved is relatively low when considering the overall area of the AP. In addition to this, the Empty Quarter desert (EQ) has no meteorological weather station. This is because this part of the region is not populated by human beings and is very far away from the nearest populated area. Consequently, no data record is available for this area (figure 1). 
To meet the recommended period for long-term climate assessments, a record of 30-year is selected for all stations (WMO, 2011). A common period (1983-2013) has been used to avoid the bias that could be caused by inter-annual and decadal fluctuations when using different periods between stations (Almazroui et al., 2014a). As well, this assists in capturing the possible influence of major synoptic circulation pattern on the resulted dust storm sub-regions in follow up studies. 
This study has adopted a strict role in station selection at earlier stages, only stations that have at least 75% data presence are selected. However, due to the low station density in the AP and for better dust storm spatial analysis, stations that have more than 50% of complete data were included. This resulted in having 85% of selected stations having more than 80% of data presence and 15% having between 52% and 72.5% of data presence (table 1).
	Currently many data sources are available for researchers to retrieve climate data. However, NOAA/National Climatic Data Center (NCDC) strictly applies rigorous quality checking procedures to their archived global data (WMO, 2008). This is considered a precautionary procedure to avoid any possible data issues that could occur at local meteorological offices and to assure the quality of the archived data. Therefore, NCDC climate data are the optimal choice for this research.   
Normally climate data providess the user with a report that summarizes the daily weather (WMO, 1988). However, due to the lack of awareness in the AP region of the importance of climate data before 2001, the daily summary reports that normally provide the researcher with the occurrence of any special weather phenomenon like haze, dust and fog are mostly missing and inaccurate for most of the stations.
To overcome this major obstacle a 30-year period of daily dust storm activity for each surface station was constructed. In order to achieve this, we adopted the Kutiel and Furman (2003) definition of a dust storm and severe dust storm, which is a reduction in horizontal visibility to below 1 km. As well, we adopted Clements et al. (1963) definition for the minimum wind speed needed to suspend dust in the air based on different soil types. The AP regional soil type is comprehensively studied by Goudie and Middleton (2001), Washington et al. (2003) and UCAR/COMET (2010) (see their Appendix A for the soil type and wind threshold needed to suspend dust for each location). Therefore, a dusty day is considered when a visibility of lower than 1 km occurs with the minimum wind speed required to suspend dust for that respective location at least once during the day.



3. Methodology

Several studies have indicated that dust activities across the AP have increased with time. Chin et al. (2014) revealed a slight increase in AOD across the Middle East since 1980 and they attributed this increase to the increase in surface wind speeds. As well, Notaro et al. (2015) found positive trends in northern of AP dust activity since 2000, which was attributed to the persistent drought across the Fertile Crescent. In addition to this, Yu et al. (2015) found a positive trend in dust activity since 2000 over the northern of the AP. However, this increase in dust activity is believed to be part of a distinct decadal variability in Saudi Arabian dust activity. To enhance the understanding of the behaviour of DSA in the Peninsula, this research willinvestigate and analyse longer-term trends of DSA across the AP.
To produce dust storm time series for the wet season, monthly total numbers of dusty days (defined above) are summed for each month at each station. After monthly time series for each station are constructed, wet season time series are created by summing all dusty days between wet season months from October to May for each year. Hence, each station has a single value for the wet season each year, which gives us a total of 30 values for each station. By doing this, the effect of seasonality is minimised. This is because the behaviour and causes of dust storms in the AP in the wet season are completely different from the dry season (Prospero et al., 2002; Taghavi and Asadi, 2008; Hamidi et al., 2012; Alharbi et al., 2014) (all stations wet season DSA time series are in Appendix A). Then, a matrix of all stations wet season DSA activity is constructed, which is then utilised in the regionalisation process. We refer to this overall activity as an index. 
.

3.1. Wet season DSA distribution (Climatology) 

Climate is recognised as the average, total or variability of a certain variable over a period of time. The WMO considers the period of 30 years to be the minimum period needed to define the climatology of a variable. To define a wet season climatology for DSA across the AP, the total number of dusty days for each station is calculated and plotted spatially. Boyles and Raman (2003) postulated that when stations are unevenly spaced in a domain, Kriging interpolation technique would be more appropriate to be used for spatial analysis of a variable. Thus, this technique is applied in this research for DSA spatial analysis as the stations in the selected domain are unevenly spaced. This is undertaken mainly to help with the mapping of the results across the AP. 
3.2. Climate Regionalization based on Dust storms frequencies

PCA is a technique used to reduce a large dataset into a manageable number of components (Jollife, 1993; Tabachnick and Fidell, 2007; Almazroui et al. 2015). This assists in identifying spatially cohesive dust storm regions based on seasonal pattern similarity and variability (figure 2 for PCA steps flow chart).  
There are two types of PCA, T-Mode and S-Mode. The T-Mode PCA is used to correlate between different fields, on the other hand, S-Mode PCA is used to correlate between different temporal series. The data matrix is constructed with multiple stations over time, so S-mode PCA is applied in the current analysis (Comrie and Glenn, 1998). This study performs the PCA using a covariance matrix, as it is conducted on a single variable that has one scale (Fung, 1995). In addition to this, PCA performed using a correlation matrix generates standardized data; hence distinguishing stations with relatively low dust storm frequency from others would likely be unachievable and chances of having a group that represents such stations would be low. We want to be able to distinguish regions with high and low levels of DSA as well as common interannual variability. 
Several steps are conducted prior to finalizing the dust storm sub-regions. The first step is determining the number of retained Principal Components (PCs). There are many methods to determine the number of PCs to retain and selecting the proper process is crucial. This is because extracting too few components might result in missing valuable common variance and extracting too many components might results in having undesirable error variance (Jolliffe, 1993; Costello and Osborne, 2005; Tabachnick and Fidell, 2007). As a result, the appropriate number of sub regions will not be accurate.
The first method for extracting the number of PCs to retain are Kaiser’s Criterion and Jolliffe’s Criterion, both being considered rules of thumb to determine the correct number of PCs. Both criteria suggest retaining components that have eigenvalues of  1.0 and  0.7 respectively (Kaiser, 1960; Jolliffe, 1886). However, both criteria could substantially overestimate the number of PCs extracted (Costello and Osborne, 2005; Fidell, 2009). Another approach is extracting PCs from a variance explained threshold, one can keep components that account for 90% or to a lesser extent 70% of variance (Jolliffe, 2002; Stevens, 2002; Almazroui et al. 2014a). The fourth approach is the mean eigenvalue rule, this rule utilizes components that score more than or equal to the mean eigenvalue. This method is regarded to be strict as it potentially underestimates the actual number of PCs that have to be retained. The Scree curve plot test is another approach used to extract PCs. The elbow of the curve (point of inflexion) is the determinant for the number PCs to retain, all components that are above the point of inflexion are retained. However, this method is only reliable when the sample size is not less than 200 (Cattell, 1978; Gorsuch, 1983; Wilks, 2006). . Parallel Analysis (PA) is considered as the most accurate approach in extracting the proper number of PCs (Fabrigar et al., 1999; Hayton et al, 2004; Henson and Roberts, 2006). This technique generates eigenvalues from an artificial data set. Then, the original and artificial eigenvalues are compared with each other, for example eigenvalue artificial of PC6 artificial compared with eigenvalue original of PC6 original and so on. Only PCs that have eigenvalues greater than or equal to the artificial eigenvalues are retained (Hayton et al, 2004; Watkins, 2008). In this research, all above methods are implemented to guarantee the proper extraction of PCs.      
While extracting the appropriate number of PCs, it is essential to remove all stations that have weak loading scores (< 0.5). Retaining such stations canlead to having unstable structure at the final PCA result. This is achieved  by running PCA (Unrotated) on all stations, and stations that are not loaded on to any of the major components with sufficient large component loadings ( in this study) are removed (Henson and Roberts, 2006). These stations are considered unclassified. Thus, the final number of retained PCs is determined only on stations that have sufficient component loadings. Thereafter, stations that loaded significantly are assigned to a PC according to its highest loading score.. Hence, each station is only assigned to one PC.  
Then, rotation is performed to attain the best simple structure, which assists in having each station significantly loaded on only one component (Gorsuch, 1983; Comery and Lee, 1992). As well, this procedure supports the identification of key stations within each sub region. 
Two major rotational techniques are available for this study, Orthogonal and Oblique (Tabachnick and Fidell, 2007). Orthogonal rotations (Quartimax, Varimax and Equamax) are when components will not to be correlated with each other (perpendicular to each other or rotated 90 from each other) (Rummel, 1970; Decoster, 1998). Quartimax rotation is used to minimize the number of components required to explain the variable in use (Gorsuch, 1983). Varimax rotation means that each component has a small number of large loadings and a large number of small loadings and this assists in the process of interpretation if the results due to the high values of explained variance (Yong and Pearce, 2013). Equamax rotation is a combination of Quartimax and Varimax (Tabachnick and Fidell, 2007). In contrast, Oblique rotations (Direct Oblimin and Promax) are when components can be correlated with each other (not rotated 90 from each other). Direct Oblimin simplifies the structure and the mathematics of the outputs, hence, is easier to interpret. In Promax rotation, the simple structure is achieved by raising the loadings to the power of four and this increases the correlations between components (Gorsuch, 1983; Yong and Pearce, 2013).  It is recommended by White et al. (1991) that the use of Oblique rotations for climate regionalization, as it produced stable results when compared with orthogonal types. 
This study implements all types of rotations mentioned above and then follows the recommendations of Tabachnick and Fidell (2007)on selecting the best type of rotation. This is achieved by analysing the resulting component correlation matrix (for each of the Oblique rotations) and component transformation matrix (for each of the orthogonal rotations).
After applying rotation on the extracted PCs, the highest positive scores within each component is determined using a key station for that component. This assists in having a single cohesive region with one clear centre  (e.g. Wigley et al., 1984; Almazroui et al. 2014a). As well, key stations could be used as representatives for their respective sub regions and correlated with global climate forcing series. 
Thereafter, key stations are correlated with all unclassified stations and the results of the correlations assists in assigning unclassified stations to their appropriate sub region. However, if any of the unclassified stations fails to correlate significantly with any of the key stations, these stations will be assigned to sub groups subjectively. This is achieved by locating such stations within the same sub region of the closest regionalised station. This process is influenced by the geographical location and prior knowledge of the region.    
The outcomes of regionalisation should present similarity between stations DSA patterns within each sub region, meanwhile, the arithmetic averages of each sub region should not be similar. Therefore, for evaluating the outcomes of the regionalization process, stations DSA frequencies are plotted against each other for each sub region. This assists in determining the pattern consistency between stations within each sub region, and thus, the outcomes of regionalisation. As well, the arithmetic averages for each sub region are plotted against each other, assisting in and determining the dissimilarity between sub regions. After finalising the final sub regions based on surface observations, the same steps will be conducted on the AOD data obtained from MISR. This step is to validate the results of the findings of this research. 
 

3.3. Trend analysis

There are several trend analysis techniques that could be applied for this study, such as linear trend analysis and complex trends analysis. Complex trend analysis techniques are not considered suitable for this research. This is because such techniques could be applied differently between different locations (Boyles and Raman, 2003). The equations used in complex trend analysis techniques are allowed to change from one station to another to obtain the best fit between the curve and data. For example, when two stations have a slope value of 0.5, it does not mean that both slopes are equal in the magnitude, as both have been calculated from different best-fit equations. Even more, each equation is modified for its particular time series (different formulas for different time series). Hence, stations cannot be compared between each other for spatial analysis, as the slope magnitude scale is uneven between different locations. In contrast, linear trends use a common formula for all locations/stations, thus, the slope magnitude scale is the same for all locations/stations (Boyles and Raman, 2003). 
In this study, to detect any changes in DSA and wind speeds that might have occurred for each sub region, slopes of linear trends are fit to the standardised time series (fitting a straight line using the least square method). Trend analysis is performed for several time windows; the entire 30 years, the first and second halves of the time series (1983 – 1998 and 1999 – 2013 respectively) and division into three periods where each part covers 10 years (from 1983 to 1992, 1993 to 2002 and 2002 to 2013).
Linear trends are considered the best choice available to compare changes between different stations across a region over a common period (Boyles and Raman, 2003). Consequently, this study only implements this simple statistical method on DSA time series of the key stations (which are considered representative of each sub regions).

4. Results and discussion

4.1. Regional Dust Strom Climatology

The entire region is effected by dust storms  as shown in figure 3. However, the spatial distribution varies significantly over the domain with the northern and north eastern parts of AP having the highest frequency of occurrence during the wet season. However, the frequency of events gradually decreases towards the western and southern coastal areas where dust storms activities are considerably lower. This is because both areas are bounded by mountain ranges to the east and north respectively. These mountain ranges act as a barrier that isolates both coastal areas from the main DSA areas of AP (Washington et al., 2003). Most of the dust storms that strike the western coasts of the AP come across the Red Sea from Africa (Taghavi and Asadi, 2008; Notaro et al., 2013). 
The topographic features of the area play a crucial role in the evolvement of this spatial distribution. This is because the Arabian plateau is flat in the northeast and east and higher elsewhere. In addition to this, the existence of mountain ranges east of the Arabian Gulf force winds to be funneled over the northeastern and eastern parts of the region from a northwesterly direction most of the year (Prospero et al., 2002). Dust from the erodible alluvial plain of the Tigris and Euphrates basins, which are major dust sources for the region is transported to the northeastern and eastern parts of the AP. Thus, a higher frequency of DSA is expected over those parts of the region (Prospero et al., 2002; Washington et al., 2003; Hamidi et al., 2013). 

4.2. Climate regionalization 

Unrotated PCA has been applied to the wet season dust storm indices covariance matrix. In order to obtain the appropriate number of PCs that corresponds with the recommended percentage of the total variance explained, the Scree plot is examined The initial results suggest that PCs between PC4 and PC8 overlap and this gives an indication to the possibility of retaining only four PCs (not shown). 
Kaiser’s criterion and Jolliffe’s criterion are then applied to confirm the results of the Scree test. In this analysis both methods severely overestimated the number of PCs to retain. Both respectively suggested 27 and 28, particularly considering that the maximum number is 38, so both criteria are rejected
While applying PA following recommendations of Watkins (2008), it is observed that PA as well over estimated the true number of PCs. The PA 1000 simulations suggested retaining 19 PCs; hence, this method was rejected.
On the other hand, the mean eigenvalue score analysis indicates only four components are greater than the mean eigenvalue. Hence, this method concurs with result of the Scree test. Therefore, four PCs are retained and considered to be the preliminary number of retained PCs. The total variance explained for the four selected components is 70.4% and this considered to be an acceptable percentage.
 While examining the stability of each of the extracted PCs, it was found that the fourth PC was unstable and weak as it has less than three stations that are substantially loaded onto it. As a result, PC4 is removed following the recommendations of Tabachnick and Fidell (2007). Consequently, the extracted number of PCs is three and these explain 70.4% of the total variance. PC1 contributes 48.6%, PC2 contributes 13.7% and PC3 contributes 8.1%. The resulting number of stations that are used in the final PCA run is 20; the remainder of stations that unclassified.  Stations that are significant loaded to a PC are assigned according to their highest loading score (see table 2). 
Subsequently, rotations are applied to the extracted four PCs and on the final pool of stations (20).  Scores obtained from all methods of rotation were spatially plotted to investigate any significant differences. It was found that the spatial distributions of loading patterns for each rotation method are very similar to each other for all PCs. Hence, all plots are almost the same for each PC for all rotation methods (not shown). Therefore, the application of any rotation method does not significantly alter the results. 
However, for optimizing the application of rotated PCA, Tabachnick and Fidell (2007) recommendations on the selection of the appropriate rotation method are considered. It is found that Promax rotation provided the simplest structure for interpretation, and thus, it is the suitable rotation method for this analysis. After the application of Promax rotation, the total explained variance barely changed and stations loaded on the same components as shown earlier in table 2. The Promax rotated loading patterns for the resulting three PCs are shown in figure 4 witheach of the three PCs having its core centred in a different location. The resulting scores indicate that the key stations for each PC (sub region) are Rafha (PC1), Alhasa (PC2) and Jeddah (PC3). Thus, our PCA-based preliminary regionalization is established and each key station is considered to represent its own sub region (figure 5).
In order to assign unclassified stations, the correlation coefficients between key stations and all unclassified stations are examined (see correlation coefficients Table Appendix A). It is found that the unclassified stations significantly correlated (at 95% confidence interval) with at least one key station except Abha, Damascus, Dubai and Gizan (Station ID 38, 16, 24 and 32).
Albaha, Altaif are significantly correlated with all key stations. However, both had their highest correlations with Jeddah (PC3), so they are placed with PC3. As well, Almadinah, Alwejh, Khamis Mushait, Makkah, Ras Alkhamah, Salalah, Seiyon and Sharjah are placed with PC3 due to their significant correlations with the key station Jeddah (PC3). Amman is placed with PC1 due to its significant correlation with key station Rafha (PC1). Cairo has significantly correlated with key station Alhasa (PC1), however, due to its geographical location it is subjectively placed with PC1. Because of their geographical locations, Sanaa and Sur are placed subjectively with PC3 in spite of their significant correlations with key station Rafha (PC1).  The four stations that failed to correlate significantly with any group are assigned subjectively as follows; Abha, Dubai and Gizan are located in PC3 sub region due to their geographical location. Damascus is subjectively placed in PC1 sub region due to its geographical location.
After assigning all 38 stations mathematically (PCA), statistically (Correlations) or subjectively (regional knowledge), the final dust storm climatic sub regions are shown in (figure 6) and have been given new names according to their geographical location. . PC1 is North, North Western and Central of AP (NWC), PC2 is North East (NE), and PC3 is South, West and Coastal areas of AP (SWC).
Subsequently, the outcome of regionalization is examined by comparing between the three arithmetic averages of the sub regions. As well, the main DSA characteristics for each sub region are depicted from this comparison (Almazroui et al., 2014a) (figure 7 and table 3). It is found between October and January, the DSA behaviour for all sub regions are not significantly different from each other. However,  the SWC sub region starts to be substantially different and lower in DSA than the arithmetic average,  and for NE and NWC after January. Meanwhile, NE and NWC sub regions have similar DSA characteristics throughout the season. Except in April where the NE sub region is significantly different and lower from (NWC) sub region and the arithmetic average. Contrary, in April the NWC sub region is significantly greater than the arithmetic average. 
The results of the regionalisation based on the AOD data obtained from MISR show very similar distribution patterns to the findings of this study (see Appendix B for distribution pattern plots and correlations between MISR AOD & observations at each location). Therefore, the constructed 30 years DSA indices and the results of regionalisation based on surface observations are robust as they are consistent with the findings of an independent data set (MISR AOD data).


4.3. Regional trend analysis

The trend analysis results reveal that DSA for the NWC sub region has not significantly changed during the 30 years. However, DSA in the NE sub region has significantly increased over the past 30 years (+0.0028 at 95% confidence interval). However, the wind speed has significantly decreased for the NE sub region during the same period. For the SWC sub region a significant decrease in DSA is observed (-0.0022 at 95% confidence interval). However, no significant wind speed trends are observed for this sub region during the 30 years period. Hence, significant changes in DSA in these two sub regions (NE and SWC) could not be linked to changes in wind speeds between 1983 and 2013. 
During the first 15 years of the time series, DSA significantly decreased in the SWC sub region  (-0.0094 at 95% confidence interval), but there were no other significant trends observed in the other sub regions. In contrast, for this period, winds speed has significantly increased in the SWC sub region (+0.006 at 95% confidence interval). Thus, the DSA decrease can not be associated to changes in wind speeds. 
DSA in the other two sub regions (NWC and NE) has significantly increased during the second 15 years period (respectively, +0.006 and +0.011 at 95% confidence interval), butwind speed trends reveal that only wind speeds in the NE sub region have significantly increased (+0.0156 at 95% confidence interval). Thus, the increase in DSA for this sub region could possibly be attributed to the increase in wind speeds. On the other hand, the DSA trend in the NWC sub region cannot be linked to increases in winds speeds. 
The only DSA significant trend observed during the first 10 years (1983 -1992) is an increase in the NWC sub region (+0.012 at 95% confidence interval). Yet, this increase could not be attributed to increases in wind speeds as no wind speed significant trend is observed for this period. 
For all sub regions, no DSA significant trends were found during the second 10 years period (1993 – 2002). Trends analysis for the last 10 years period (2003 – 2012) shows that DSA has only significantly increased in the NE sub region (+0.013 at 95% confidence interval). As well, wind speed trends analysis reveals a significant increase in wind speed for this period (+0.0096 at 95% confidence interval). Consequently, the DSA increase in this sub region could possibly be associated with increases in wind speeds (see Appendix A for DSA and wind speeds linear slopes analysis).
4.4. Discussion

The DSA seasonal fluctuations, shown in figures 7 display the characteristics based on averaged monthly DSA events for each sub region.  The NWC sub region which covers the largest area of the AP is characterised by a steady increase in DSA as the wet season progresses, until it reaches its maximum in April then starts to decline in May. This is consistent with the finding of Yu et al. (2013). The maximum DSA  is 41 events (95% confidence interval of 2.9, 8.4), which is significantly greater than the regional average for the NE and SWCsub regions, respectively by (25%, 55% and 80%) for the same month. The SWC sub region has similar characteristics to the regional average; however, their magnitudes are significantly distinct from each other in April. Meanwhile, the characteristics of the NWC sub region are similar to the NE sub region, except in April. On the other hand, the NWC sub region is distinctly different in magnitude and characteristics between (February and May) from the SWC sub region. 
With respect to the differences between this study and Kutiel and Furman (2003) in the dust activity selection criteria and the time of the season, Kutiel and Furman (2003) have identified this region to have distinct characteristics from the remainder of their domain (named region “b” in their paper). In addition to this, Yu et al. (2015) have found that this part of the region has distinct characteristics from the rest of their domain. 
The NE ub region covers the north eastern area of the region, this sub region has two peaks that occur in March and May (respectively, 29 and 31 events, 95% confidence interval of 2.2, 5.9). Notaro et al. (2013) postulated that dust activities in the north eastern part of Saudi Arabia (Alhasa station) peak in early spring (March) and in the middle of the summer (June). This is observed for this sub region, DSA starts to increase in May after the substantial reduction to 18 events in April (95% confidence interval of 2.2, 5.9), which is 35% lesser than its March month value. Generally, the NE sub region has similar characteristics to the regional average and the NWC sub region, except in April where it is substantially lower by 41% and 55% than the regional average and the NWC sub region respectively. 
Both Kutiel and Furman (2003) and Yu et al. (2015) find that the north eastern and southwestern parts of the region have the same characteristics. Thus, both are considered to be in one sub region. This conflicts with our findings  This could be due to the regionalisation technique adopted in this study, or from the unique observation time series utilised in this study that assisted in delimiting this large part of the region into two distinct sub regions. In addition to this, DSA in the north eastern part of the AP is substantially different from the southwestern part (figure 3). Therefore, the separation between them that is implied by the regionalisation process adopted in this research is robust. 
The SWC sub region has the quietest DSA in the AP, as it is distinctly lower in magnitude than the rest of the sub regions and the regional average. The DSA begins to be substantially different form the remainder of the sub regions after January. Notaro et al. (2013) found that the peak month during our wet season for this part of the region is February or Mach. As shown in figure 7, the maxima for the SWC sub region occurs in March (12 events, 95% confidence interval of 0.01, 2.1), which is consistent with Notaro et al. (2013).  
Overall, all sub regions show a seasonal signal that corresponds well with the climatology of the region. After December the polar jet shifts southward, which enhances the contrast in temperature between northern and southern airmasses over the AP (Taghavi and Asadi, 2008). Consequently, the atmospheric conditions become unstable for most of the season and AP becomes prone to the passage of frontal systems. This instability continues and enhances through the wet season until May (Wilkerson, 1991 and Bartlett, 2004). Thus, DSA would be higher at the end of the wet season and this is consistent for all sub regions as shown in figure 7. 
The trend analysis finding of this study oppose the findings of Chin et al. (2014), which associated the increase in dust activity in the Middle East to the increase in regional wind speeds. This is because the significant changes in regional DSA are mostly not associated with changes in winds speeds. This is based on trend analysis; where only two out of the seven significant changes in DSA (which counts for 28.5%) could be linked to changes in wind speeds. In addition to this, several significant changes in wind speed in all sub regions have not lead to significant changes in DSA. As well, on two occasions the increase in DSA concurs with significant decreases in wind speeds. Therefore, this study might support either or both of the findings of Notaro et al. (2015) and Yu et al. (2015). 
The trend analysis of this study agrees with the finding of Notaro et al. (2015) and Yu et al (2015), where both postulated a significant increase in dust activity in the northern and north eastern parts of the region after 2000. DSA in the NE and NWC sub regions has significantly increased in the last 15 years of the time series (1999 – 2013). 

5. Conclusions

This study has determined climatic sub regions for the AP based on wet season variability of dust storms. The regionalisation procedures conducted in this study employed mathematical, statistical and subjective methods. A common period of 30 years of data for 38 stations was used to distinguish between dust storm sub regions of the AP. Three sub regions were determined for the AP, the characteristics of the sub regions beginning to become distinct from each other after February. As well, all sub regions reflected the seasonal signal of the regional climate like depression passages that are strongly associated with regional DSA. In addition to this, the output of the regionalisation process was verified with an independent data set (MISR AOD data). Both showed similar regional pattern distribution. This indicates that the constructed DSA indices utilized in this study could be used as representatives for historical regional dust events analysis. In addition to this, the validation process showed the reliability of the remotely sensed AOD data, which could be used in the future when they provide a 30 year data record.. 
Subsequently, temporal trends for time series of key stations within each sub region are analysed. Only the NE sub region  showed significant positive DSA trend for the 30 year time series. However, this significant trend is found not to be associated with changes in wind speeds. Some studies suggested that positive trends in DSA could possibly be attributed to decadal variability in dust activity (Shao et al., 2013 and Yu et al., 2015), while Notaro et al. (2015) attributed the significant trend in DSA to persistent drought across the Fertile Crescent. However, another factor should be considered, which is mentioned in the Early Warning and Assessment Technical Report of The United Nations Environment Program (UNEP Demise of an Ecosystem, 2001). The report reveals that the land use change in northern Iraq, southern Syria and southern Turkey, and the construction of dams has severely affected the Mesopotamian Marshlands. This has led to significant lowering of the river levels, which led to an abundance of alluvial deposits ready to be suspended by air. 
Some limitations of this study should be accounted for. First, The small number of the available stations that had a minimum of 30 years of data record, resulted in having a lower DSA spatial resolution of region. If all the meteorological weather stations in the AP provided 30 years data records (450 stations are in the AP), the DSA spatial resolution would have been significantly higher and provided more valuable information to this study. In addition to this, the Empty Quarter desert has no stations that met the requirements for this study. As well, this area is considered as a major dust/dust source that could significantly alter the results. However, this issue should be resolved in the coming 15 years, as the remotely sensed AOD will provide a minimum data of 30 years. Second, a longer record of data would have provided a better knowledge of the regional DSA patterns variations with time. 
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