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The development and decay of a turbulent vortex tangle driven by the Gross-Pitaevskii equation
is studied. Using a recently-developed accurate and robust tracking algorithm, all quantised vortices
are extracted from the fields. The Vinen’s decay law for the total vortex length with a coefficient
that is in quantitative agreement with the values measured in Helium II is observed. The topology of
the tangle is then investigated showing that linked rings may appear during the decay. The tracking
also allows for determining the statistics of small-scales quantities of vortex lines, exhibiting large
fluctuations of curvature and torsion. Finally, the temporal evolution of the Kelvin wave spectrum
is obtained providing evidence of the development of a weak-wave turbulence cascade.
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The full understanding of turbulence in a fluid is one of
the oldest yet still unsolved problems in physics. A fluid
is said to be turbulent when it manifests excitations oc-
curring at several length-scales. Due to the large number
of degrees of freedom and the nonlinearity of the govern-
ing equations of motion, the problem is usually tackled
statistically by introducing assumptions and closures in
terms of correlators. This is the case in the seminal work
of Kolmogorov in 1941 based on the idea of Richardson’s
energy cascade, where energy in classical fluids is trans-
ferred from large to small scales [1].

Superfluids form a particular class among fluids char-
acterised essentially by two main ingredients: the lack
of dissipation and the evidence that vortex circulation
takes only discrete values multiple of the quantum of cir-
culation [2]. Superfluid examples are superfluid liquid
Helium (He II) and Bose-Einstein condensates (BECs)
made of dilute Alkali gases. Here the superfluid phase is
usually modelled via a complex field describing the order
parameter of the system and vortices appear as topolog-
ical defects where the superfluid density vanishes.

In three spatial dimensions those defects organise
themselves into closed lines (or even open lines at the
boundaries if confining sides are considered) of different
configurations. Any vortex line point induces a veloc-
ity field which affects the motion of any object in the
system including the vortex line itself. In general, even
for a single closed vortex line, the dynamics are chaotic
and the problem does not have analytical solutions. Su-
perfluid turbulence regards the study of the evolution of
many vortex lines, a tangle, which induce velocity field
gradients in the fluid at several length scales.

Different mathematical models have been devised to
mimic the dynamics of a superfluid. An example is the
vortex filament (VF) model based on the Biot-Savart law

that relates vorticity and velocity [3]. This model is able
to mimic the dynamics of dense vortex tangles due to a
relatively fast numerical integration technique [4]. The
VF model implicitly assumes that the superfluid den-
sity is constant everywhere and the vortex structure is
a line with vanishing core. This assumption is generally
satisfied in He II where the characteristic experimental
setup sizes, and consequently the largest scales of the
motion, are order of 10−1m and the vortex core is or-
der of 1Å = 10−10m. Moreover, since He II is in its
liquid phase, the compressibility effects can be usually
neglected. However, the VF model fails to describe vor-
tex reconnections. These are rapid changes in the topol-
ogy of the vortex configuration which occur naturally in
a superfluid [5] and are one of the main mechanisms re-
sponsible for the energy transfer. Reconnections are thus
introduced by some ad-hoc mechanism.

Another superfluid model that admits quantised vor-
tices and inherently possesses vortex reconnections is the
Gross-Pitaevskii (GP) equation that describes the evolu-
tion of the superfluid order parameter ψ. In contrast to
the VF model, the GP equation allows density fluctua-
tions in terms of phonons and density depletion at the
vortex cores. Although it has been formally derived as
a mean-field theory for a dilute boson gas in the limit of
zero temperature [6], it also qualitatively reproduces He
II dynamics. The vortex core size here is order of the
healing length ξ, the only intrinsic characteristic length-
scale of the model; nowadays experimental techniques
are able to create BEC setups that are 101 − 102 heal-
ing lengths where superfluid turbulence can develop [7].
In turbulent superfluids, vortices constantly re-arrange
themselves following reconnections into complex tangles
with non-trivial geometrical, algebraic and topological
properties [8]. At small scales, helical excitations of vor-
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tex lines known as Kelvin waves (KWs) are believed to be
the ultimate mechanism of energy dissipation via phonon
emission [9]. To study such dynamics, the GP equation
has the advantage that no extra modelling is needed (un-
like the VF model). However GP does not provide direct
information on vortices.

In this work we apply a novel numerical algorithm [10]
to track accurately the configuration of a turbulent vor-
tex tangle evolving accordingly to the GP model. Firstly,
we show that after the onset of turbulence, the vortex line
density satisfies the Vinen’s decay law [11] with a coef-
ficient that is in agreement with the values measured in
He II. Different algebraic and topological quantities of
the tangle are then measured. The tracking allows for
obtaining curvature and torsion distributions of the vor-
tex tangle. Finally, we perform a direct measurement of
KWs during the dynamics and compute a KW spectrum
that appears to be consistent with the L’vov-Nazarenko’s
weak-wave turbulence theoretical prediction [12].

The GP model for the condensate wave-function ψ is

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + g|ψ|2ψ, (1)

where m is the mass of the bosons and g = 4πa~2/m,
with a the s-wave scattering length. Madelung’s transfor-
mation ψ(x, t) =

√
ρ(x, t)/m exp [im~ φ(x, t)] relates the

wave-function ψ to a superfluid of density ρ(x, t) and ve-
locity v = ∇φ. The quantum of circulation about the
ψ = 0 vortex lines is Γ = h/m. When Eq.(1) is linearised

about a constant value ψ = ψ̂0, the sound velocity is

given by c = (g|ψ̂0|2/m)
1/2

, with dispersive effects tak-
ing place at length scales smaller than the healing length

ξ = (~2/2m|ψ̂0|2g)
1/2

.
In the simulations presented here, the mean density is

fixed to the unity and the physical constants in Eq.(1)
are determined by the values of ξ and c = 1. The quan-
tum of circulation results in Γ = 4πc ξ/

√
2. Numeri-

cal integration of Eq.(1) is performed using a standard
pseudo-spectral code. We integrate an initial condition
characterised by the so-called Taylor-Green flow [13], a
well-studied flow in superfluid turbulence. Symmetries
are not enforced during the evolution and we use resolu-
tions of 2563 and 5123 uniformly-distributed collocation
points with ξ = 2π/256 and ξ = 2π/512 respectively.
Mirror symmetries are broken during the evolution al-
though traces of such symmetries will be present even at
very large times. With units used in this work, the large
eddy turnover time is order of the unity.

The Taylor-Green flow initially contains a configura-
tion of unstable large-scale rings that develop to create a
turbulent tangle. Vortices can be spotted by plotting the
low-value iso-surfaces of the density field as displayed in
Fig.1. Low-density regions corresponding to vortex lines
are plotted in red, while density fluctuations (sound) are
rendered in light blue. The initial condition is visualised

2

the GP equation has the advantage that no extra mod-
elling is needed (unlike the VF model). However GP
does not provide direct information on vortices. An ac-
curate small-scale tracking of vortex lines in a turbulent
GP field can reveal new insights of quantum turbulence
but remains a challenging task.

In this Letter we apply a novel numerical algorithm
[10] to track accurately the configuration of a turbulent
vortex tangle evolving accordingly to the GP model. We
focus on the evolution and decay of the tangle. Firstly,
we show that after the onset of turbulence, the vortex
line density satisfies the Vinen’s decay law [11] with a
coe�cient that is in agreement with He II. Di↵erent al-
gebraic and topological quantities of the tangle are then
measured. The tracking allows for obtaining curvature
and torsion distributions of the vortex tangle. Finally,
we perform a direct measurement of KWs during the dy-
namics and compute a KW spectrum that appears to be
consistent with the L’vov-Nazarenko theoretical predic-
tion [12].

The GP model for the condensate wave-function  is
given by

i~
@ 

@t
= � ~2

2m
r2 + g| |2 , (1)

where m is the mass of the bosons and g = 4⇡a~2/m,
with a the s-wave scattering length. Madelung’s transfor-
mation  (x, t) =

p
⇢(x, t)/m exp [im

~ �(x, t)] relates the
wave-function  to a superfluid of density ⇢(x, t) and ve-
locity v = r�. The quantum of circulation about the
 = 0 vortex lines is � = h/m. When Eq.(1) is linearised

about a constant value  =  ̂0, the sound velocity is

given by c = (g| ̂0|2/m)
1/2

with dispersive e↵ects tak-
ing place at length scales smaller than the healing length

⇠ = (~2/2m| ̂0|2g)
1/2

. In the simulations presented in
this Letter, the mean density is fixed to the unity and
the physical constants in Eq.(1) are determined by the
values of ⇠ and c = 1. The quantum of circulation re-
sults in � = 4⇡c ⇠/

p
2. Numerical integration of Eq.(1)

is performed using a standard pseudo-spectral code. We
integrate the so-called Taylor-Green flow [13] with no
enforced symmetries at resolutions 2563 and 5123 with
⇠ = 2⇡/256 and ⇠ = 2⇡/512 respectively (see Supplemen-
tal Material for details). Symmetries are broken during
the evolution although traces will be present even at very
large times. With units used in this work, the large eddy
turnover time is order of the unity.

The Taylor-Green flow initially contains a configura-
tion of unstable large-scale rings that develop to create a
turbulent tangle. Vortices can be easily spotted by plot-
ting the low-value iso-surfaces of the density field as dis-
played in Fig.1a. Low-density regions corresponding to
vortex lines are plotted in red, while density fluctuations
(sound) are rendered in light blue. We track the vortex
lines forming the tangle with a recently-developed algo-
rithm [10]. Vortex lines are followed using the pseudo-
vorticity field [14] and the exact vortex position is ob-

a) b)

c) d)

e) f)

FIG. 1. (Color online) a) Isosurface of density field at t = 0.
Low-density regions corresponding to vortex lines are plotted
in red, while density fluctuations (sound) are rendered in light
blue. b) Corresponding vortex tracking. c) and d) Idem as
a) and b) respectively but for t = 12. . Di↵erent colors
correspond to di↵erent vortices. Resolution 2563.

tained by a Newton-Raphson method. The algorithm
is robust and accurate as it takes full advantage of the
spectral resolution of the field. The intermesh values of
the field  and its derivatives needed for the Newton-
Raphson method are directly evaluated by Fourier trans-
forms, the location of vortices are thus found with pre-
cision given the machine-✏ (doubles in the present simu-
lations). It allows for identifying separately each single
line forming the tangle. Figure 1b shows the correspond-
ing tracked tangle displaying in di↵erent colors all the
496 vortex rings (see Supplemental Material for a movie
showing the full evolution and details of the algorithm).

During the decay, vortices radiate phonons that pop-
ulate the small-scales creating a thermal bath that ex-
changes energy and momentum with the vortices. This
process mimics mutual friction and leads eventually to
the total annihilation of vortex rings [15]. In superfluids
such a decay is modelled by the Vinen equation [11] for

FIG. 1. (Color online) (left) Isosurfaces of density field at
different times. Low-density regions that correspond to vortex
lines are plotted in red, while density fluctuations (sound) are
rendered in light blue. (right) Corresponding tracked vortices.
Different colours correspond to different vortices. Snapshots
taken at t = 0 (a and b), t = 12 (c and d) and t = 105 (e and
f). Resolution 2563.

in Fig.1a, the complex turbulent tangle at t = 12 in
Fig1c, and the final state at t = 105, where few vor-
tices are present with a lot of sound in the background,
in Fig.1e. We track the vortex lines with a recently-
developed algorithm [10] that allows for identifying sep-
arately each single line forming the tangle. Vortex lines
are followed using the pseudo-vorticity field as in [14]
and the exact vortex positions are obtained by apply-
ing a Newton-Raphson method. The algorithm is robust
and accurate as it takes full advantage of the spectral
resolution. The intermesh values of the field ψ and its
derivatives needed for the Newton-Raphson method are
directly evaluated by Fourier transforms, the locations of
vortices are thus found with precision given the machine-
ε (double in the present simulations). See [10] for all
technical details and a complete validation of the algo-
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FIG. 2. (Color online) a) Temporal evolution of the vor-
tex line density: tracked data are plotted using blue cir-
cles, volume estimation in solid red line. b) Long time
decay of ∆L (see text), together with Vinen’s prediction
∆LVinen = [χ2

Γ
2π

(t − t0)]−1, setting χ = 0.65 (solid black

line). Resolution 2563.

rithm. Figure 1 (b, d and f) shows the corresponding
tracked vortices displayed in different colours (see Sup-
plemental Material at [URL will be inserted by publisher]
for a movie of full time evolution).

We focus first on the later evolution times. During the
decay, vortices radiate phonons at small-scales creating
a thermal bath that exchanges energy and momentum
with the vortices. This process mimics mutual friction
and leads eventually to the total annihilation of vortex
rings [15]. In superfluids such a decay is modelled by the
Vinen equation [11] for vortex line density L:

dL
dt

= −χ2
Γ

2π
L2 , (2)

where χ2 is a constant of order of unity. Its solutions
manifest a L ∼ t−1 behaviour at long times: this power-
law decay has been named quantum turbulent decay and
measured in He II experiments [16] and VF numerical
simulations [17]. In Fig.2a we show the temporal evolu-
tion of L. It is worth noticing that it grows at the ini-
tial stages: this is caused by the instability of the initial
Taylor-Green configuration and the subsequent vortex
stretching due to numerous vortex reconnections. The
data is compared with an estimation of L obtained by
computing the ratio between the volume of points such
that ρ(x) < 0.2 and the corresponding surface of a perfect
two-dimensional vortex profile. This latter method has
become a standard technique within GP numerical sim-
ulations to compute the vortex line density [18]. Even

if this technique is able to capture the qualitative be-
haviour of L, it fails to grasp at long times the power-law
predicted by Vinen’s equation. This is shown in Fig.2b
where the measured ∆L(t) = (L(t)−1 − L(t0)−1)−1, set-
ting t0 = 17, is compared to Vinen’s prediction. We can
explain this discrepancy by reasoning that the vortex core
size (proportional to the uniform condensate state) varies
in time because more and more sound excitations are cre-
ated by the superfluid decay, altering the estimation of
L by fixing the (non time-dependant) density threshold.
The tracked data also allow for determining the numeri-
cal constant χ2 = 0.65. This value is in remarkable agree-
ment with experimental values measured in He II in the
low temperature limit [11]. Between the time of maxi-
mal vortex length (t ≈ 8.5) and t0 there is a faster decay
that could be explained by the quasi-classical turbulent
decay law [19], although the data (not shown here) do
not allow for a precise corroboration and further studies
are needed.

From Fig.1 and the movie provided in the Supplemen-
tal Material, it is clear that the complexity of tangle first
increases and then decreases. The complexity of tangle
can be measured by computing the changes in some of its
algebraic and topological quantities [8]. We compute the
total average crossing C̄ =

∑
i 6=j Ci,j , the total linking

Lk =
∑
i6=j Lkij , and the writhe Wr =

∑
iWri, by di-

rectly performing the line integrals over the vortex ring(s)
[8] as

C̄i,j = 1
4π

∮
Ci
∮
Cj

∣∣∣ (Ri−Rj)·dRi×dRj

|Ri−Rj)|3
∣∣∣ (3)

Lkij = 1
4π

∮
Ci
∮
Cj

(Ri−Rj)·dRi×dRj

|Ri−Rj)|3 (4)

Wri = 1
4π

∮
Ci
∮
Ci

(Ri−R′
i)·dRi×dR′

i

|Ri−Rj)|3 . (5)

Here Ri corresponds the points identifying the ith ring
Ci; for the writhe number, Ri and R′i correspond to two
different points of the same ring. In Fig.3a we plot the
total number of rings Nrings and C̄ normalised by their
initial values versus time. It is worth noticing that the av-
erage crossing number reaches qualitatively a maximum
at the same stage of the vortex line L maximum, while
the ring number maximum is slightly shifted forward in
time. The former observation follows the idea that vor-
tex lines simultaneously stretch, bend and coil during
reconnection events. The latter is due to the fact that
longer vortex rings continue to break into pieces dur-
ing the evolution until the tangle density becomes low
enough and the main vortex length dissipation mecha-
nism is given by sound interaction. We then focus on the
center-line helicity Hc/Γ

2 = Lk +Wr [20] related to the
helicity in classical fluid dynamics, an important inviscid
invariant. The linking number Lk takes integer values
and gives information about the number of linked rings
present in the system, whereas the writhe takes real val-
ues and its contribution comes from self-linked (knots),
an integer contribution, and KWs [21]. Figure 3b shows
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FIG. 2. (Color online) a) Temporal evolution of the vortex
line density: tracked data are plotted using blue circles, vol-
ume estimation in solid red line. The inset shows the long
time decay of �L (see text), together with Vinen’s prediction
�LVinen = [�2

�
2⇡

(t � t0)]
�1, with � = 0.65 (solid black line).

timation of L by fixing the (non time-dependant) density
threshold. The tracking data also allow for determining
the numerical constant �2 = 0.65. This value is in re-
markable agreement with experimental values measured
in He II in the low temperature limit [11]. Between the
time of maximal vortex length (t ⇡ 8.5) and t0 there
is a faster decay that could be explained by the t�3/2

turbulent decay law [19], although the data (not shown
here) do not allow for a precise corroboration. [DP: this
is something that we removed to make the letter
shorter, we could put it back maybe? If so I would
remove the inset in figure 2.a, label it as figure 2.b
and add this latest scaling as figure 2.c.]

From the movie and snapshots provided in the Supple-
mental Material, it is clear that the complexity of tan-
gle first increases and then decreases. The complexity
of tangle can be measured by computing the changes in
some of its algebraic and topological quantities [8]. In
Fig.3a we plot the total number of rings Nrings and the
average crossing number C̄ normalised by their initial
values versus time. It is worth noticing that the aver-
age crossing number reaches qualitatively a maximum at
the same stage of the vortex line L maximum, while the
ring number maximum is slightly shifted forward in time.
The former observation follows intuitively the idea that
vortex lines simultaneously stretch, bend and coil dur-
ing reconnection events. The latter may be due to the
fact that longer vortex rings continue to break into pieces
during the evolution until the tangle density becomes low
enough and the main vortex length dissipation mecha-
nism is given by sound interaction. The total crossing
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FIG. 3. (Color online) a) Temporal evolution of the (nor-
malised) total number of rings and crossing number. At t = 0,
Nrings(0) = 128 and C̄(0) = 758. b) Temporal evolution the
total linking Lk, writhe Wr and center-line helicity Hc. c)
Visualisation of two linked rings at t = 21. Resolution 2563.

C̄ =
P

i 6=j Ci,j , total linking Lk =
P

i 6=j Lkij , and writhe

Wr =
P

i Wri can be computed directly performing the
line integrals over the vortex ring(s) [8] as

Ci,j = 1
4⇡

H
Ci

H
Cj

��� (Ri�Rj)·dRi⇥dRj

|Ri�Rj)|3
��� (3)

Lkij = 1
4⇡

H
Ci

H
Cj

(Ri�Rj)·dRi⇥dRj

|Ri�Rj)|3 (4)

Wri = 1
4⇡

H
Ci

H
Ci

(Ri�R0
i)·dRi⇥dR0

i

|Ri�Rj)|3 , (5)

where Ri and R0
i correspond the points identifying the

ith ring Ci. For the writhe number, Ri and R0
i corre-

spond to two di↵erent points of the same ring. Here
we focus on the central line helicity Hc/�

2 = Lk + Wr
[20]. This quantity is the analogous to helicity in classi-
cal fluid dynamics, an important inviscid invariant. The
linking number Lk takes integer values and gives infor-
mation about the number of linked rings present in the

FIG. 3. (Color online) a) Temporal evolution of the (nor-
malised) total number of rings and crossing number. At t = 0,
Nrings(0) = 128 and C̄(0) = 758. b) Temporal evolution the
total linking Lk, writhe Wr and center-line helicity Hc/Γ

2.
c) Visualisation of two linked rings at t = 21. d) Visualisation
of a ring with high Wr at t = 24.5. Resolution 2563.

the temporal evolution of these three quantities. Ini-
tially, Lk = Wr = 0, as expected for the Taylor-Green
flow. Surprisingly, during the evolution Lk becomes non-
zero, indicating the presence of linked rings, such as the
ones displayed in Fig.3c [22]. This is remarkable as in the
GP model sufficiently simple vortex configurations usu-
ally decay by reducing their complexity [23]. Once the
decay is established, no linked rings are present and only
writhe contributes to Hc. Note that the writhe number
is not enough to determine whether a ring is self-linked
(knotted) or not. The center-line helicity however fluc-
tuates about a zero mean, an indication of the presence
of KWs. KWs are indeed apparent in Fig.3d where an
unknotted ring with high Wr is displayed. KWs have al-
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FIG. 4. (Color online) a) PDFs of curvature  normalised
by their respective mean values hi at di↵erent times (same
legend as (b)). The inset displays the temporal evolution
of the mean and rms values of . b) PDFs of torsion ⌧ at
di↵erent times. The inset emphasises their ⌧�3 power-law
tail. Resolution 2563.

system, whereas the writhe takes real values and its con-
tribution comes from self-linked (knots), resulting in an
integer contribution, and KWs [21]. Figure 3b shows the
temporal evolution of these three quantities. Initially,
Lk = Wr = 0, as expected for the Taylor-Green flow.
Surprisingly, during the evolution Lk becomes non-zero,
indicating the presence of linked rings, such as the ones
displayed in Fig.3c [22]. This is remarkable as in the
GP model su�ciently simple vortex configurations usu-
ally decay by reducing their linking number [23]. Once
the decay is established, no linked rings are present and
only writhe contributes to Hc. Note that the writhe
number is not enough to determine whether a ring is
self-linked (knotted) or not. The center-line helicity fluc-
tuates about a zero mean, an indication of the presence
of KWs. KWs have already been indirectly observed in
the Taylor-Green flow during the turbulent stage [24],
in agreement with the large values of writhe observed
around t ⇠ 10. [DP: shall we add also the plot of
one ring with a lot of writhe?] Explicit definitions
are given in the Supplemental Material. The total num-
ber of rings and the average crossing number vary, as
expected, in a similar manner to the total vortex length
in Fig.2a (See Fig.3 in the Supplemental Material).

We now study statistical properties of some geomet-
rical quantities of the vortex filaments. We explore
the time behaviour of the probability density functions
(PDFs) of the curvature  and torsion ⌧ of the entire set
of vortices in the system. In Fig.4a we present the PDF
of curvature, normalised by its mean value, at di↵erent
stages. The temporal evolution of the mean curvature

hi and its rms value rms are also displayed in the in-
set. We can observe that hi increases rapidly at early
stages and then almost saturates, an indication that the
average vortex size (inversely proportional to the curva-
ture) slowly decreases at later times. The rms value of
the curvature presents the same tendency with the excep-
tion of peaks. These are evidences of reconnection events
where high values of curvature are found in localised re-
gions. It is worth noticing that the PDFs, rescaled by
their mean curvature, exhibit a relatively good collapse
to a self-similar form. This latter observation indicates
a power-law behaviour ⇠ 1 at small curvature values,
while an exponentially-decaying tail is present at large
curvature values. A similar behaviour has also been ob-
served within the VF model [25]. In Fig.4c we plot the
torsion PDFs at the same stages. The mean torsion is
always about zero and there is no evidence of any skew-
ness in the PDFs. Like the mean curvature, the torsion
standard deviation increase rapidly at early stages (data
not shown). The distributions’ tails show an universal
power-law behaviour of ⌧�3 at all times, meaning that
the second and higher moments of the torsion diverge
during the decay. The same scaling appears in vortex
tangles of random wave fields that are solutions of the
Helmholtz equation [26]. This might be an indication
that for one-time small-scale quantities, quantum turbu-
lent tangles could be interpreted as random vortices.

The large curvature fluctuations and the torsion fluctu-
ation about a zero mean suggest also the presence of KWs
at all scales propagating on quasi-planar vortex rings. By
exploiting the accuracy of the tracking algorithm we are
able to directly detect KWs on those rings. Competing
theories have been put forward to statistically predict a
power-law KW spectrum in the form of nk ⇠ k�↵ (here
k is the Kelvin wavenumber) and to explain the energy
transfer through KW scales. Vinen et al. considered
strong nonlinear interactions and derived by a scaling
argument the exponent ↵V = 3 [27]. On the other hand,
assuming weak nonlinearity (small amplitude KWs com-
pared to their respective wavelengths), Kozik&Svistunov
[28] and L’vov&Nazarenko [12] obtained the exponents
↵KS = 17/5 and ↵LN = 11/3 respectively considering
two di↵erent orders of interaction. We compute the KW
spectra of the 50 largest rings during the evolution of the
tangle applying a Gaussian kernel in order to establish
the unperturbed ring (see Supplemental Material for de-
tails). The spectra, averaged over the rings, are shown for
di↵erent times in Fig.5a. It is evident that all accessible
KW modes get populated at early times due to recon-
nection events that trigger the cascade [29]. We observe
KW spectra exhibiting power-laws with an exponent in-
dependent of time where the best scaling is appreciated
at the time where the rings are the longest (4  t  7).
To get the best estimation of the power-law exponent,
we repeated the Taylor-Green decay in a simulation box
twice larger; in this new configuration the scaling range
spans almost two wavenumber decades. In Fig.5b we
show the spectrum at t ⇠ 5: the observed power-law ex-

FIG. 4. (Color online) a) PDFs of curvature κ normalised
by their respective mean values 〈κ〉 at different times (same
legend as (b)). The inset displays the temporal evolution
of the mean and rms values of κ. b) PDFs of torsion τ at
different times. The inset emphasises their τ−3 power-law
tail. Resolution 2563.

ready been indirectly observed in the Taylor-Green flow
during the turbulent stage [24], in agreement with the
large values of writhe observed around t ∼ 10.

We now study statistical properties of some geomet-
rical quantities of the vortex filaments by exploring
the time behaviour of the probability density functions
(PDFs) of the curvature κ and torsion τ of the entire set
of vortices in the system. In Fig.4a we present the PDF
of curvature, normalised by its mean value, at different
stages. The temporal evolution of the mean curvature
〈κ〉 and its rms value κrms are also displayed in the in-
set. We can observe that 〈κ〉 increases rapidly at early
stages and then almost saturates, an indication that the
average vortex size (inversely proportional to the curva-
ture) slowly decreases at later times. The rms value of
the curvature presents the same tendency with the excep-
tion of peaks. These are evidences of reconnection events
where high values of curvature are found in localised re-
gions. It is worth noticing that the PDFs, rescaled by
their mean curvature, exhibit a relatively good collapse
to a self-similar form. This latter observation indicates
a power-law behaviour ∼ κ1 at small curvature values,
while an exponentially-decaying tail is present at large
curvature values. A similar behaviour has also been ob-
served within the VF model [25]. In Fig.4b we plot the
torsion PDFs at the same stages. The mean torsion is al-
ways about zero and there is no evidence of any skewness
in the PDFs. The distributions’ tails show an universal
power-law behaviour of τ−3 at all times, meaning that
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the second and higher moments of the torsion diverge
during the decay. The same scaling appears in vortex
tangles of random wave fields that are solutions of the
Helmholtz equation [26]. This may be an indication that
for one-time small-scale quantities, quantum turbulent
tangles can be interpreted simply as random vortices.

The large curvature fluctuations and the torsion fluc-
tuation about a zero mean are evidences of KWs at all
scales propagating on quasi-planar vortex rings. By ex-
ploiting the accuracy of the tracking algorithm we are
able to directly detect KWs on those rings. Compet-
ing theories have been put forward to statistically pre-
dict a power-law KW spectrum in the form of nk ∼ k−α
(here k is the Kelvin wavenumber) and explain the en-
ergy transfer through KW scales. Vinen et al. considered
strong nonlinear interactions and derived by a scaling ar-
gument the exponent αV = 3 [27]. On the other hand,
assuming weak nonlinearity (small amplitude KWs com-
pared to their respective wavelengths), Kozik&Svistunov
[28] and L’vov&Nazarenko [12] obtained the exponents
αKS = 17/5 and αLN = 11/3 respectively considering
two different orders of interaction. We can compute the
KW spectrum of a ring R by applying a Gaussian ker-
nel of width αL in order to establish the configuration
of the unperturbed ring Rump. This can be used to de-
fine the KWs on it as RKW(s) = R(s)−Rump(s), where
s ∈ [0, L] is the arc-length parametrisation of the ring.
Being RKW a periodic set of 3 signals (one for each spa-
tial dimension), the KW spectrum is then defined as

nk = |R̂KW(k)|2 + |R̂KW(−k)|2, where R̂KW(k) is the
Fourier transform of RKW(s). In [10] we checked that
this procedure is able to capture well the KWs super-
imposed on a ring. Here we compute the KW spectrum
averaging over the spectra of the 50 largest rings such
that it has small fluctuations and it always spans over
two Kelvin wavelength decades. For the Gaussian filter,
we use the value α = 0.1; varying this fraction weakly
modifies the large-scale values of the spectrum, but the
data in the inertial range remain unchanged. The KW
spectra are shown for different times in Fig.5a. It is evi-
dent that all accessible KW modes get populated at early
times due to reconnection events that trigger the cascade
[29]. We observe KW spectra exhibiting power-laws with
an exponent independent of time where the best scal-
ing is appreciated at the time where the rings are the
longest (4 ≤ t ≤ 7). To get the best estimation of the
power-law exponent, we repeated the Taylor-Green de-
cay in a simulation box twice larger; in this new con-
figuration the scaling range spans almost two wavenum-
ber decades. In Fig.5b we show the spectrum at t ∼ 5:
the observed power-law exponent is close to the weak-
wave turbulence predictions and seems to agree with the
L’vov&Nazarenko αLN = 11/3 one. This can be better
appreciated by looking at the compensated spectra with
respect to αLN and αKS showed in the inset. This find-
ing supports the result in favour of L’vov&Nazarenko’s
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FIG. 5. (Color online) a) Temporal evolution of KW spectra
(averaged over the 50 longest rings). Resolution 2563. b)
KW spectrum at t ⇠ 5 (averaged over the 50 longest rings)

for run at resolution 5123. The dashed line displays the k�11/3

scaling. The inset displays the respective k11/3 (solid blue)

and k17/5 (dashed red) compensated spectra.

ponent agrees with the L’vov&Nazarenko ↵LN = 11/3
prediction. This can be better appreciated by looking at
the compensated spectra with respect to ↵LN and ↵KS

showed in the inset. This finding corroborates the result
in favour of L’vov&Nazarenko’s prediction previously ob-
tained while studying the KW oscillations about a per-
fect straight line in the GP model [30]. We highlight
that although the weak-wave turbulence prediction for
the KW spectrum was formally derived for KWs on an
isolated straight vortex line using the VF model, it re-
markably turns out to be valid in a dense turbulent tan-

gle also driven by the GP model. This is certainly due to
the fact that the predicted KW spectrum was found for
the longest rings. Small rings quickly loose their energy
by phonon radiation and also exchange momentum with
sound waves. Both contributions are important to under-
stand dissipation of superfluids at very low temperature
and further studies are still needed to fully comprehend
the relevance of such mechanisms.

Tracking vortices in GP turbulence opens a new way
for studying and understanding the topological config-
uration and properties of quantum vortex tangles. Al-
though unlikely, we show that rings can link creating a
local (in time and space) fluctuation of helicity. It will be
of great interest to repeat a similar analysis in a GP set-
ting where the mean helicity of the flow is not zero, like
the ABC flow introduced in [21] where linking and self-
linking processes could be substantially enhanced. Over-
all, the results presented in this Letter confirm that some
predictions traditionally associated to superfluid liquid
Helium become important in weakly-interacting BECs at
low temperature described by the GP model. Nowadays
BEC experimentalists are able to create and track few
vortices in harmonic traps [31, 32]. A controlled exper-
imental setting with a turbulent BEC, such as the one
presented in this Letter, has yet to be achieved but it
should be realisable in the near future.
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prediction previously obtained while studying the KW
oscillations about a perfect straight line in the GP model
[30]. We highlight that although the weak-wave turbu-
lence prediction for the KW spectrum is formally derived
for KWs on an isolated straight vortex line using the VF
model, it remarkably turns out to be valid in a dense
turbulent tangle also driven by the GP model. This is
certainly due to the fact that the predicted KW spectrum
was found for the longest rings. Small rings quickly loose
their energy by phonon radiation and exchange momen-
tum with sound waves. Both contributions are impor-
tant to understand dissipation of superfluids at very low
temperature and further studies are still needed to fully
comprehend the relevance of such mechanisms.

Tracking vortices in GP turbulence opens a new way
for studying and understanding the topological config-
uration and properties of quantum vortex tangles. Al-
though unlikely, we show that rings can link creating a
local (in time and space) fluctuation of the center-line
helicity. It will be of great interest to repeat a simi-
lar analysis setting where the mean helicity of the flow
is not zero, like the ABC flow introduced in [21] where
linking and self-linking processes could be substantially
enhanced. Overall, the results presented in this work
confirm that some predictions traditionally associated to
superfluid liquid Helium become important in weakly-
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interacting BECs at low temperature described by the
GP model. Nowadays BEC experimentalists are able to
create and track few vortices in harmonic traps [31, 32].
A controlled experimental setting with a turbulent BEC,
such as the one presented in this work, has yet to be
achieved but it should be realisable in the near future.
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