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Abstract

The objective of meta-analysis is to combine results from several independent studies in

order to make evidence more generalisable and provide evidence base for decision making.

However, recent studies show that the magnitude of effect size estimates reported in many

areas of research have significantly changed over time. These temporal trends can be dramatic

and even lead to the loss or gain of the statistical significance of the cumulative treatment

effect (Kulinskaya and Koricheva, 2010). Standard sequential methods including cumulative

meta-analysis, sequential meta-analysis, the use of quality control charts and penalised z-test

have been proposed for monitoring the trends in meta-analysis. But these methods are only

effective when monitoring in fixed effect model (FEM) of meta-analysis. For random-effects

model (REM), the analysis incorporates the heterogeneity variance, τ2 and its estimation

creates complications. This thesis proposes the use of a truncated CUSUM-type test (Gombay

method) for sequential monitoring in REM, and also examines the effect of accumulating

evidence in meta-analysis. Simulations show that the use of Gombay method with critical

values derived from asymptotic theory does not control the Type I error. However, the

test with bootstrap-based critical values (retrospective Gombay sequential bootstrap test

for REM) leads to a reduction of the difference between the true and nominal levels, and

thus constitutes a good approach for monitoring REM. Application of the proposed method

is illustrated using two meta-analytic examples from medicine. Two kinds of bias associated

with accumulating evidence, termed “sequential decision bias” and “sequential design bias” are

identified. It was demonstrated analytically and by simulations that both types of sequential



biases are non negligible. Simulations also show that sequential biases increase with increased

heterogeneity.
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Chapter 1

Introduction

1.1 Brief history of meta-analysis

Since the middle of the 20th century, there has been considerable increase in the volume

of scientific research in nearly every field with new findings daily challenging the existing

evidence. There is a need to carefully summarize the available literature and perform a

review of the data. Traditional method of assimilating accumulating information based

on discursive reviews can not adequately provide accurate, reliable and valid summaries

of research (Glass et al., 1984), and thus more objective methods are required. Meta-

analysis is a statistical method that provides the first step to such objectivity (Schmidt,

1992), allows to combine results from many studies and accurately estimate the effect of

interest (Hedges, 1987, Rosenthal, 1978). Such analyses have become a very commonly

used methodology for quantitative review in the medical and social sciences.

Meta-analysis started with a paper on a medical problem by Pearson (1904). He
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analysed data on the correlation between inoculation and mortality for different groups

of soldiers across the British Empire and found a statistical significance in the effect

(correlation coefficient). This is considered to be the first meta-analysis. Pearson was

very critical about the consistency of individual study results and how future research

can be improved, and thus his work possesses the characteristics of a correct meta-

analysis (Vorosbcsuk, 2010). Further contributions and advances in the subject were

made by Cochran (1937), Fisher (1934), Pearson (1933), Tippett et al. (1931), Yates

and Cochran (1938). In particular, Pearson (1933) and Tippett et al. (1931) inde-

pendently proposed a method for combining statistical tests using the product of the

p-values across studies. Pearson (1933) commented that “when a number of indepen-

dent tests of significance have been made, it sometimes happens that although few or

none are significant, the aggregate gives an impression that the probabilities are on the

whole lower than would often have been obtained by chance”. These early procedures for

statistically combining results of independent studies, though important, were under

utilized (Cooper, 2007).

The use of meta-analysis in the social sciences and education research started in

the 1970’s, first with publications by Glass (1976) and Smith and Glass (1977) on

integrating findings in education and psychotherapy. Glass (1976) coined the term

“meta-analysis” and defined it as a statistical analysis of large collection of results from

individual studies for the purpose of integrating findings. Meta-analysis is a quanti-

tative statistical analysis of several independent studies on the same topic with the

purpose of testing the pooled data for statistical significance. Glass (1976) argued
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that such analyses are needed to contain and make sense of the large volumes of re-

search literature available in education and social sciences. Meta-analysis has gained

acceptance and is now used in many areas of science as the formal statistical method

for quantitative evidence synthesis. It is used in numerous applications to synthesize

and strengthen evidence about the treatment efficacy and provide evidence for deci-

sion making. Meta-analysis helps to decide when evidence of benefit or harm of a new

intervention is statistically significant and scientifically convincing to adopt or reject

the investigated treatment (DerSimonian and Laird, 1986, Leimu and Koricheva, 2004,

Pogue and Yusuf, 1997, Kuppens and Onghena, 2012). It is now accepted in medicine as

the standard statistical technique used for gauging sufficiency in accumulated evidence.

This is evidenced by the rising number of publications using meta-analysis in medical

science which has increased exponentially in recent years. For example, the number of

publications on MEDLINE about meta-analysis has increased from less than 300 in 1985

to more than 3000 in 2005, see Khoshdel et al. (2006), Kulinskaya and Morgenthaler

(2012). In addition, there is large number of books written and published primar-

ily focusing on meta-analytic methods. See Chalmers et al. (2002), Hedges (1987),

Hedges and Olkin (1985), Schmidt (1992), Rosenthal and DiMatteo (2001) for further

information on the history and recent developments in meta-analysis. Introduction to

meta-analysis is provided in Chapter 2.
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1.2 Problem of temporal trends in meta-analysis

Meta-analysis is in several ways is a very powerful method of analysis (Arnqvist and

Wooster, 1995). It allows one to go beyond the limits of a single study and establish

what are the consistent findings about an intervention effect. Meta-analysis makes use

of both published and unpublished results, and without it useful information are left

fallow or are at least under-utilized. By combining information from several studies

meta-analysis allows the combined sample size to achieve a higher statistical power for

the outcome of interest compared to the less precise measures derived from single indi-

vidual studies. The precision with which treatment effect is estimated largely depends

on the sample size, and since meta-analysis has larger combined sample size it provides

more accurate estimates of the effect of interest. Meta-analysis facilitates the investiga-

tion of heterogeneity- a measure of inconsistency of treatment effects across all studies,

allows inference on summary estimates and generalisation of evidence. By its ability to

extract clear answers from the research literature, it has made a difference in the lives

of many patients by providing answers to clinical questions about their care, answers

that might not have been obtained from individual studies (Rosenthal and DiMatteo,

2001). Meta-analysis is also used to decide whether enough evidence has been gathered

so that further trials are unnecessary.

However recent publications in many areas of research reveal that scientific evidence

is not static and tends to change over time. New studies either strengthen or challenge

the conclusions of previous findings, resulting in changes in the effects and their vari-
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ance over time. For example, Hodgson et al. (1989) found a significant decline in the

sensitivity of chest X-rays in detecting hypersensitivity pneumonitis of about 1.4 % per

annum, which they claimed to be a result of secular trends in knowledge and earlier

diagnosis or changes in the disease itself. Nieuwkamp et al. (2009) found a decrease in

case fatality of aneurysmal sub-arachnoid haemorrhage during the period 1960-1995,

which they attributed to improvement in early diagnostic and treatment strategies.

Similar temporal changes have also been reported in education (Hyde et al., 1990),

medicine (Gehr et al., 2006), psychology (Brugger et al., 2011, Twenge. et al., 2008,

Grabe et al., 2008) to mention but a few. These temporal trends in effect size esti-

mates can be dramatic and often lead to the loss or gain of the statistical significance

(Kulinskaya and Koricheva, 2010). If meta-analysis is conducted by ignoring temporal

trends when trends are actually present, its results and conclusions can be impaired

and any statistical inference about the treatment effect will be misleading. Therefore

appropriate statistical techniques that are suitable for monitoring the trends in changes

in effect size estimates are required so that results and conclusions of meta-analysis can

be interpreted based on the time it was conducted.

A number of sequential methods have been proposed for monitoring the trends in

changes in effect size estimates in meta-analysis, see Lau et al. (1992), Leimu and Ko-

richeva (2004), Pogue and Yusuf (1997), Wetterslev et al. (2008), Higgins et al. (2011),

Whitehead (1997b), Bollen et al. (2006), Kulinskaya and Koricheva (2010), Lan et al.

(2003). The methods allow researchers to gauge sufficiency of evidence (Lau et al., 1992,

Pogue and Yusuf, 1997, Wetterslev et al., 2008) and can be used for monitoring the
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trends in effect size estimates (Leimu and Koricheva, 2004, Kulinskaya and Koricheva,

2010, Ioannidis and Trikalinos, 2005). However these methods of monitoring effect size

estimates are based on the solid statistical theory only in the fixed effect model (FEM)

of meta-analysis. For random-effects model (REM), the analysis incorporates the het-

erogeneity variance, τ 2 and its estimation creates complications in the analysis.

Chapter 3 reviews the standard sequential methods in meta-analysis. A new method

based on the use of Gombay (2003) truncated CUSUM-type test is proposed in Chapter

4. It is used for sequential change detection for parametric models involving a nuisance

parameter. The Gombay method consists of a sequence of score tests about a parame-

ter of interest and terminates at a fixed truncation point, see Chapter 4 for a detailed

description of the method. In the application of the Gombay methods in random-effects

model of meta-analysis, the heterogeneity parameter, τ 2 is treated as a nuisance pa-

rameter, a parameter that is not of immediate interest but must be accounted for in

the course of the analysis. The Gombay (2003) method has solid statistical foundations

and may constitute a better and more efficient sequential approach to monitoring effect

size estimates in random-effects meta-analysis. However, results of simulations given

in Chapter 4 show that the test based on the asymptotic critical values suggested in

Gombay (2003) is disappointing. Results of this Chapter are published in International

Journal of Mathematical, Computational, Statistical, Natural and Physical Engineer-

ing, see Dogo et al. (2015). Therefore bootstrap critical values are introduced in Chapter

5 for the use with the Gombay test for sequential random-effects meta-analysis. It is

hoped that the new method will provide an alternative approach to sequential random
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effects meta-analysis as well as stimulate further research on the subject. Results of

this Chapter were submitted as Sequential change detection and monitoring of tempo-

ral trends in random-effects meta-analysis by Samson Henry Dogo, Allan Clark, Elena

Kulinskaya (2015) to Research Synthesis Method for publication.

1.3 The effect of existing evidence on meta-analysis

The idea that results from previous meta-analyses should be used for design of new

trials is widely recognised. For example, the UK Medical Research Council requires a

comprehensive review of existing evidence before funding trials (Glasziou et al., 2006).

The guidelines of several medical journals including the Journal of American Medical

Association and the Lancet state that all reports of clinical trials must include a sum-

mary with direct reference to existing meta-analyses (Goudie et al., 2010).

There are two ways of using existing evidence to inform further research. The first

is using existing information in making decision to conduct a new trial (sequential de-

cision). The second is using previous meta-analyses and systematic reviews to design

the next trial (sequential design). That is both the decision to conduct an experiment

and the subsequent design of this experiment may depend on the results of previous

experiments, and after the new experiment is conducted the results are combined in an

updated meta-analysis.

Sequential and cumulative meta-analysis are established statistical methods in fixed

and random effects models of meta analyses. See Whitehead (1997a); Higgins et al.
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(2011); Bollen et al. (2006); van der Tweel and Bollen (2010) to name a very few.

Often, in a sequential analysis after each trial the only decision is whether or not to

add the next trial in a sequence of independent trials. Whilst not advocating the ap-

proach and remarking on its inherent flaws, van der Tweel and Bollen (2010) noted

“The usual approach is to repeatedly test the null hypothsis of equal effectiveness of two

treatments on the cumulative data. If the test result is not statistically significant, a

new trial is added and the test is repeated”. Moreover a systematic review can also lead

to the conclusion that a new trial is unnecessary (Goudie et al., 2010).

Chapter 6 explores a different approach to standard sequential meta-analysis in that

after K studies are accumulated and their results combined, a meta-analyst has an ac-

tive role in decision-making and the design of subsequent, (K+1)th study, participating

in the study team. The effect of evidence from previous meta-analyses on the decision-

making and the biases associated with sequential decision and sequential design are

examined. Results of this Chapter were accepted for publication as Sequential biases

in accumulating evidence by Elena Kulinskaya, Richard Huggins, Samson Henry Dogo

in Research Synthesis Methods on the 27-Aug-2015.

1.4 Outline of thesis

The outline of the thesis is as follows. Chapter 2 introduces the preliminaries of meta-

analysis including the concept of effect size, its measurement and the models used to

combine results from different studies in meta-analysis. Chapter 3 is the introduction
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to sequential analysis including some sequential designs and review of the methods for

monitoring trends in meta-analysis. Chapter 4 introduces a new approach to sequential

random-effects meta-analysis. Chapter 5 presents Gombay test for REM with boot-

strap critical values. Problems to do with sequential bias in accumulating evidence are

discussed in Chapter 6. Chapter 7 is the summary and conclusions of the thesis.

1.5 Publications

• Dogo, S. H., Clark, A., and Kulinskaya, E. (2015). A sequential approach for

random-effects meta-analysis. International Journal of Mathematical, Computa-

tional, Statistical, Natural and Phisical Engineering, 9(1).

• Dogo, S. H., Clark, A., and Kulinskaya, E. (2015). Sequential change detection

and monitoring of temporal trends in random-effects meta-analysis. Submitted

on the 15-Oct-2015 for publication in Research Synthesis Methods.

• Kulinskaya, E., Huggins, R., and Dogo, S. H. (2015). Sequential biases in accu-

mulating evidence. Accepted for publication in Research Synthesis Methods on

27-Aug-2015.
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Chapter 2

Preliminaries of meta-analysis

This Chapter presents the basics of meta-analysis which are fundamental in understand-

ing the methodologies used in this research. The first Section describes the theoretical

concept of effect size and its measurement. The second Section discusses the two mod-

els: fixed and random-effects models used to combine results from individual studies in

meta-analysis and their statistical properties.

2.1 Theoretical concept of effect size

Traditional methods to establish the presence or otherwise of a treatment effect in a

study are often based on the use of p-values, the probability of observing results in the

study (or results more extreme) given that the null hypothesis is true. However the

p-value is not reliable and has many controversies. The p-value depends on the sample

size, see Sullivan and Feinn (2012), Lin et al. (2013). For example, the p-value of a
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Figure 2.1: Relationship between sample size (n) and the average p-value calculated
from data generated from 100000 simulations of x ∼ N(µ0, σ

2/n), H0 : µ0 = 0, σ2 =
0.025 and sample size n.

two-sided single sample t-test is calculated as

p-value= 2 ∗ tcdfn−1

{
−
∣∣∣ X̄−µs/
√
n

∣∣∣} (2.1)

where X̄ is the sample mean, s is the sample standard deviation, n is the sample size

and tcdfn−1 is the cumulative t-distribution function with n − 1 degrees of freedom.

Using this formula, a simulation was conducted to explore the relationship between

the p-value and the sample size. To do this, data were generated from the normal

distribution x ∼ N(µ0, σ
2/n), and the p-value was calculated using (2.1) with µ = µ0,

σ2 = 0.025 and n taking values from 1 to 500. The procedure was repeated 100000

times for each value of n and the average of p-values plotted against n, see Figure 2.1.

Clearly, the p-value depends on the sample size n, in fact the p-value tends to zero with
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increase in the value of n. Therefore, even when there is no treatment effect of practical

importance, increase in sample size can lead to a very small p-value and thereby results

in false rejection of the null hypothesis (false positive result). The p-value does not

inform the researcher of the benefits, harms or magnitude of the treatment effect.

If the p-value is small and the null hypothesis is rejected, the researcher can only

conclude that the treatment effect is significantly different from zero which has no

practical relevance. Anscombe (1956) remarked that the use of p-value is irrelevant,

what is needed for researchers is the effect size and its standard error. Effect sizes are a

necessary compliment to statistical significance testing because they provide important

information that such tests alone can not offer (Ledesma et al., 2009).

Effect size is an alternative statistical tool for evaluating the effect of a treatment. It

measures how large or small is a relationship between two or more variables in sampled

data. Effect size is the common currency that summaries the findings from a specific

area of research (Becker, 2000). It is an objective and standardized measure of the

magnitude of the observed effect (Field, 2005). For binary data it is often calculated as

odds ratio, risk difference or relative risk. For continuous data it is often calculated as

mean difference, means ratio, standardized mean difference or correlation.

Effect sizes are usually presented with their confidence intervals. The confidence

interval (CI) is an interval containing the population parameter with a specified level

of confidence.

There are many ways to construct the confidence intervals for effect size including

the inversion approach (see Venables (1975), Harlow et al. (1997)), bootstrap method

12



(see Efron (1987), Efron and Tibshirani (1994), Efron (1982)), and the most commonly

used method which relies on the asymptotic normality of the distribution of effect size

(Hedges and Olkin (1985);Hess and Kromrey (2004). The following Sections present the

common effect size measures in meta-analysis together with their confidence intervals,

based on the asymptotic normality. These CI’s at (1-α)% are generally given by

CI = y ± z1−α/2
√

var(y), (2.2)

where y is the effect size measure and z1−α/2 is the (1−α/2)-th percentile of the standard

normal distribution.

2.2 Effect size measures

There exist different types of effect size measures used in meta-analysis depending on

the type of data and the objective of the research. Here we consider only those that

are relevant to this research.

2.2.1 Effect size measures for continuous data

In meta-analysis, effect size measures for continuous data are used when studies out-

comes are measured on a continuous scale. These outcomes include variables such

as height, weight, blood pressure and temperature. The research interest is usu-

ally focussed on comparing mean difference or ratio between treatment and control

groups (Sutton et al., 2000). The effect size measures for continuous data are grouped
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into two families, the d (difference) and r (relationship). We begin with the d family,

starting with mean difference.

2.2.1.1 Mean difference

The mean difference measures the amount by which a treatment intervention changes

the outcome on average compared with the control. It is useful when different studies

outcomes are measured on the same scale.

Consider a study in which the outcomes are measured as means in two groups,

treatment and control, and the focus is to compare the means. Let µt and µc be the

means of the treatment and control groups estimated by the sample means X̄t and X̄c,

respectively. The mean difference is given by

ϑ = µt − µc, estimated by ϑ̂ = X̄t − X̄c. (2.3)

Its variance is given by

var(ϑ) =
σ2
t

nt
+ σ2

c

nc
, estimated by var(ϑ̂) =

S2
t

nt
+ S2

c

nc
, (2.4)

where σ2
t and σ2

c are the variances of the treatment and control groups estimated by

their sample variances S2
t and S2

c , respectively, and nt and nc are the sample sizes of

the treatment and control groups, respectively. The mean difference has the advantage

of easy computation and it is easily interpretable.
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2.2.1.2 Standardized mean difference

The mean difference effect size depends on the units of the measurements of the studies

outcomes, and thus can not provide any meaningful information to the researcher when

scale differs across the studies. To address this problem, the mean difference in (2.3) is

scaled by dividing it with an appropriate standard deviation to obtain the standardized

mean difference effect size measure. The standardized mean difference conveys the size

of the effect relative to the variance in the sample data. The main assumption is that

the variance is constant across the groups; σ2
c = σ2

t = σ2. There are three different

ways described below to define the standard deviation in the denominator.

Glass’s Delta

According to Glass (1976), the most reasonable procedure to calculate the effect size is

to divide the mean difference by the control group standard deviation. His argument was

that pooling two variances could lead to different standardized values of the identical

mean difference within an experiment where several treatments were compared to a

control (Hedges, 1981). Glass’s delta is given by

∆ = µt−µc
σc

, estimated by ∆̂ = X̄t−X̄c
Sc

, (2.5)

where Sc is the estimate of the control group standard deviation. The variance of

Glass’s Delta is calculated by

var(∆) =
nt + nc
ntnc

+
∆2

2(nc − 2)
. (2.6)
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The differences in sample variances across groups can introduce bias in the effect size

estimate thereby makes the Glass’s Delta unreliable. We do not pursue this measure

further.

Cohen’s d

This effect size measure was proposed by Cohen (1988) as the mean difference divided

by the pooled standard deviation to correct the likely bias in the Glass’s Delta effect

size estimate. The Cohen’s d is given by

d = µt−µc
σ

, estimated by d̂ = X̄t−X̄c
Sp

, (2.7)

where

Sp =

√
(nt − 1)S2

t + (nc − 1)S2
c

nt + nc
. (2.8)

The variance of the Cohen’s d is given by

var(d) =
nt − nc
ntnc

+
d2

2(nt − nc)
. (2.9)

Hedges (1981) g

This is another alternative standardized mean difference estimator of the effect size

given by

g =
X̄t − X̄c

SpH
, (2.10)

where SpH is the pooled standard deviation suggested by Hedges (1981) as

SpH =

√
(nt − 1)S2

t + (nc − 1)S2
c

nt + nc − 2
. (2.11)
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The Hedges’s g is biased especially when the sample size is small. Hedges and Olkin

(1985) proposed a correction factor given by

J =

(
1− 3

4(nt − nc)− g

)
, (2.12)

and the approximately unbiased estimator is given by

g∗ = g × J. (2.13)

In general, the standardized mean difference effect size is easy to calculate and

has consistent interpretation across different research studies. However, the unit-less

values of its estimates require a more sophisticated acquaintance with the details of the

application (Gibbons et al., 1977). Moreover, standardized mean difference effect sizes

are only useful when research findings are not required to be expressed in the units of

their measurement.

2.2.1.3 r family

The r or correlation family of effect sizes includes measures of the association between

two variables. Correlation is well known to many researchers and is the most widely

used effect size measure (Field, 2005), especially when research interest is in the rela-

tionship between variables in the treatment and control groups. The r family include

the Pearson’s product moment correlation (r) when both variables are continuous, the

phi coefficient(φ) when both variables are dichotomous, point biserial coefficient (rpb)

when one variable is continuous and one is dichotomous, and the Spearman’s rank cor-

relation coefficient (rho (ρ)) when both variables are ranked.
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When the population correlation is close to 1 the distribution of its sample estimates

becomes skewed (Rosenthal et al., 1994) and this makes the correlation r unstable. Also,

it makes the combination and interpretation of correlations difficult and complicated.

The Fisher’s transformation, Z = 1
2

log
(

1+r
1−r

)
is usually used to stabilize the variance

of the sample correlation. The distribution of Z is approximately normal with variance

equal to σ2(Z) = (n− 3)−1, where n is the sample size. The Fisher’s transformation, Z

is the effect size measure usually used in meta-analysis of Pearson correlations.

2.2.2 Effect size measures for binary data

A binary outcome is a response which assumes one out of two values. These values

may be in the form of yes or no, agree or disagree, success or failure, effective or

ineffective, exposed or unexposed, conform or not conform, etc. In many sciences,

experiments are often conducted to compare treatment and control groups with the

outcomes measured on binary scale. Table 2.1 is an example of a contingency table

showing how binary outcomes from comparative studies can be summarised. In the

next sections, the common effect size measures for binary data used in meta-analysis

are presented.

2.2.2.1 Risk difference

The risk difference is an important effect size measure often used in meta-analysis. It

describes the absolute changes in the risk that are attributed to the treatment arm. It is

simply the difference between the probabilities of an event in two groups. Consider an
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Table 2.1: An example of a contingency table for binary outcomes in comparative

studies

No. having event No. not having event Sample size P(event)

Treatment Group X nt −X nt P̂t = X/nt

Control Group Y nc − Y nc P̂c = Y/nc

experiment in which two groups, treatment (t) and control (c) are compared in respect

to outcomes measured on a binary scale. Let Pt and Pc denote the probabilities of the

event, and nt and nc be the sample sizes of the groups, respectively. The risk difference

effect size is estimated by

R̂D = P̂t − P̂c, (2.14)

and its variance is given by

var(RD) =
Pt(1− Pc)

nt
+

Pc(1− Pt)

nc
. (2.15)

Risk difference is the simplest procedure for estimating the effect from binary outcomes.

However the range of its variability is restricted by the magnitude of the probabilities

Pt and Pc (Hedges et al., 1999) which is a major disadvantage to the effect size.

2.2.2.2 Relative risk

Relative risk is widely used in medicine because it is easy to understand and interpreted

by both clinicians and the patients. It is simply the ratio between the probabilities of
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an events in the treatment and control groups. Relative risk is estimated by

R̂R = P̂t/P̂c, (2.16)

and it takes values from 0 to∞. The variance of the log of its estimate is approximately

var(log R̂R) ≈ 1− Pt

ntPt
+

1− Pc
ncPc

. (2.17)

2.2.2.3 Odds ratio

The odds is another form of expressing probabilities, and it is widely used in gambling.

The odds is the ratio of the probability that an event of interest occurs to the probability

that it does not occur. When binary experimental outcomes are generated from two

treatment arms, the effect size can be measured by the ratio of the odds of the event of

interest between the two groups and the parameter is called the odds ratio. Odds ratio

is estimated by

γ̂ =
P̂t/(1− P̂c)

P̂c/(1− P̂t)
, (2.18)

and the variance of the sample log odds ratio is approximately

var(log γ̂) =
1

ntPt

+
1

nt(1− Pt)
+

1

ncPc

+
1

nc(1− Pc)
. (2.19)

Remark 2.2.1. It is important to note that we do not provide a detailed discussion of

the effect size measures presented above. The usage of any of the effect size measure

depends on the objectives of the study, the practical importance and the type of scale

in which the studies outcomes were measured. Effect size measures should be chosen

in such a way that the results of meta-analyses are easily interpretable and comparable

across all studies.
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2.3 Models for combing results in meta-analysis

A fundamental issue in meta-analysis is the choice of an appropriate model that de-

scribes the underlying effect sizes from the different studies. There are two models used

to combine results in meta-analysis; the fixed- and random-effects models (Hedges and

Vevea, 1998, Hunter and Schmidt, 2000, Sutton et al., 2000). These models use differ-

ent assumptions that lead to a different calculation and interpretation of the combined

effect.

2.3.1 Fixed effect model

Fixed effect model (FEM) of meta-analysis assumes that all the included studies inves-

tigate the same population and therefore share a common location parameter. Denote

by y1, y2, ..., yK the estimates of treatment effects derived from K studies. When y′is

are sample means or mean difference, the fixed effect model is given by

yi = θ + ei, (2.20)

where θ is the common location parameter, ei ∼ N(0, σ2
i ) is the sampling error, σ2

i are

the within-study variances, for i=1, 2, ..., K. For other effects measures, approximate

normality of y′is holds when the sample sizes ni of the studies are relatively large.

Appropriate estimates S2
i of the variances σ2

i are easily calculated for all effect sizes used

in meta-analysis and are habitually treated as known constants (Viechtbauer, 2007).

In FEM, each study is assigned a weight proportional to the inverse of the within-
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study variance, which is denoted by wi = 1/S2
i . The combined effect is estimated as a

weighted mean of the individual effect estimates given by

θ̂FEM =
∑
i

wiyi/W, (2.21)

where W =
K∑
i=1

wi. The variance of the combined effect is given by the inverse of the

sum of weights, W−1.

2.3.1.1 Inference in FEM

Standard inference in FEM is based on approximate normality of the distribution of

the combined effect, θ̂FEM ∼ N (θ,W−1). Therefore the confidence intervals of the

population treatment effect are given by

θ̂FEM ± z1−α/2W
− 1

2 . (2.22)

To test the hypothesis for the presence or otherwise of a treatment effect, H0 : θ = 0

against H1 : θ1 6= 0, the Wald’s statistic

ZW = W
1
2 |θ̂FEM | (2.23)

is compared with the critical values for the standard normal distribution.

Often, in order to test the hypothesis of homogeneity of treatment effects, H0 : θ1 =

θ2 = ... = θK = θ against θi 6= θj, for some i 6= j, the Cochran Q statistic

Q =
K∑
i=1

wi(yi − θ̂FEM)2. (2.24)

plays an important role in meta-analysis. It is widely used in inference on heterogeneity

of treatment effects. The Q statistic is routinely assumed to follow the chi-square

22



distribution with K−1 degrees of freedom χ2
K−1, though this is true only for very large

sample sizes, see Hoaglin (2015).

2.3.2 Random-effects model

Random-effects model (REM) is generally preferred to the fixed effect model (Hunter

and Schmidt, 2000) due to its ability to account for variation across the studies. The

random effects model allows generalisation of mean effects θi across studies and it

assumes that they are sampled from a population of parameters with mean θ. Random-

effects model is a two level model given by

yi = θi + ei; ei ∼ F (0, σ2
i )

θi = θ + εi; εi ∼ G(0, τ 2),

(2.25)

where F and G come from an arbitrary short-scale families of distribution and σ2
i and

τ 2 are the within- and between-study variances, respectively. The most popular choice

is two normal distributions. Then marginally the random effects model is defined by

yi = θ + ξi; ξi ∼ N(0, τ 2 + σ2
i ). (2.26)

The between-study variance, τ 2 describes the degree of inconsistency among the effect

estimates. The special case where τ 2 = 0 implies that the effect sizes, θ1 = θ2 = ... = θK

are homogeneous (Viechtbauer, 2007), and the resulting model reduces to FEM in

(2.20). The weights assigned to studies in REM are inverse variance weights defined by

w∗i = wi(τ
2) = (τ 2 + σ2

i )
−1. Estimated values of τ 2 and σ2

i are substituted in practice.

Similar to FEM, the combined effect in REM is estimated as a weighted mean of the
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individual effect estimates, θ̂REM =
∑
i

w∗i yi/
∑
i

w∗i .

2.3.3 Mixed-effects meta-regression model

Effect estimates on some study-level covariates such as patients mix, time, climate

change, etc. This increases heterogeneity between the studies effects, and it is difficult

to use the standard random-effects model to describe the results. Meta-regression model

allows results from studies to relate to study-level covariates. The mixed-effects meta-

regression model is based on the assumption that yi|xi ∼ N(xiβ, τ
2 + σ2

i ), where yi is

the estimated effects from the ith study, i =1, 2, ..., K, xi is the vector of the study

level covariates and β is a p × 1 vector of regression parameters. Thus the model is

described by

yi = xiβ + θi + ei; θi ∼ N(0, τ 2) and ei ∼ N(0, σ2
i ). (2.27)

Equivalently, matrix form (Jackson et al., 2014) of this model is

Y |X ∼ N(Xβ,∆ + τ 2I), (2.28)

where Y is a column vector containing the yi, X is the K × p design matrix whose ith

row is xi, ∆ is a diagonal matrix containing the σ2
i and I is K ×K identity matrix.

2.3.3.1 Estimation of heterogeneity in treatment effects, τ 2

The between-study variance, τ 2 has a crucial role in assessing the degree of consistency

of treatment effects across the studies (Higgins et al., 2003), and thus its estimation is an

important issue in meta-analysis. This section introduces some of the common methods
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for estimating τ 2. Each method differs in terms of precision and bias in estimating τ 2,

and therefore may have a different effect on sequential testing of the treatment effects.

In Sections 4.3 and 5.2, the DerSimonian and Laird (1986), Higgins et al. (2011), Paule

and Mandel (1982) and REML estimators of τ 2 are used to examine by simulation how

this affects the sequential testing for random-effect meta-analysis.

Method of moments

Suppose, ai are constants corresponding to the effect estimates yi for i=1, 2, ...., and

that the combined effect, θ̂ =
∑
i

aiyi/
∑
i

ai. Then the expected value is

E

{∑
i

ai(yi − θ̂)2

}
=
∑
i

ai(τ
2 + σ2

i /ni)−
∑
i

a2
i (τ

2 + σ2
i /ni)/

∑
i

ai, (2.29)

where σ2
i and ni are the variances and sample sizes, respectively (DerSimonian and

Kacker, 2007). Equation (2.29) can be simplified to obtain

E

{∑
i

ai(yi − θ̂)2

}
= τ 2

{∑
i

ai −
∑
i

a2
i /
∑
i

ai

}
+

{∑
i

a2
iσ

2
i /ni −

∑
i

(aiσ
2
i /ni)/

∑
i

ai

}
.

(2.30)

Substituting S2
i for σ2

i and solving (2.30) for τ 2, the moment estimator of τ 2 is given

by

τ̂ 2
MM =

∑
i

ai(yi − θ̂)2 −
{∑

i

aiS
2
i −

∑
i

a2
iS

2
i /
∑
i

ai

}
∑
i

ai −
∑
i

a2
i /
∑
i

ai
. (2.31)

The value of τ̂ 2
MM is constrained to non-negative values, and the constants ai are usually

chosen as the weights assigned to the studies.
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The Cochran (1954) method

The Cochran (1954) method is a moment method where a fixed constant 1/K is assigned

to each study as the weight, and K is the number of studies in the meta-analysis.

The combined effect is determined by the arithmetic mean of the effect estimates,

θ̂C =
K∑
i=1

yi/K. Substituting θ̂C for θ̂ and 1/K for ai in (2.31), the Cochran (1954)

estimator is defined by

τ̂ 2
C =

1

K − 1

K∑
i=1

(yi − θ̂C)2 − 1

K

K∑
i=1

S2
i , (2.32)

and is also constrained to non-negative values.

DerSimonian and Laird (1986) Method

The DerSimonian and Laird (1986) estimator can be calculated by substituting wi =

ni/σ̂
2
i in (2.31). The estimator is given by

τ̂ 2
DL =

Q− (K − 1)

C
, (2.33)

where Q =
K∑
i=1

wi(yi − θ̂)2 and C =
K∑
i=1

wi −
K∑
i=1

w2
i

K∑
i=1

wi

.

Higgins et al. (2011) Method

Higgins et al. (2011) proposed an estimator of τ 2 specifically for sequential testing. The

estimator is modified from DerSimonian and Laird (1986) method using semi-Bayes

approach and is defined by

τ̂ 2
H =

2λ+Kτ̂ 2
DL

2η +K − 2
, (2.34)
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where λ and η are parameters of a prior inverse gamma distribution for τ 2.

Paule and Mandel (1982) Method

Denote w∗i (τ
2) = (τ 2 + σ2

i )
−1, the weights assigned to studies in REM as a function of

τ 2. Define Q(τ 2) =
∑
w∗i (τ

2)(yi − θ̂(τ 2))2. The Paule and Mandel (1982) estimator of

τ 2 is calculated from the solution of the estimating equation for the expected value of

the Q statistic under H0 given by

Q2(τ 2)− (K − 1) = 0, (2.35)

The Paule and Mandel (1982) estimator is statistically optimal, in the sense that the

estimator is not biased and has minimum variance, when the distribution of the effect

estimates is normal. However the method does not generally require any normality

assumptions (DerSimonian and Kacker, 2007).

Maximum likelihood method

All the methods discussed above are moment estimators with the exception of Paule and

Mandel (1982) which is iterative. There are other alternative approaches for estimating

τ 2 based on maximum and restricted maximum likelihood. The standard assumption

in random-effects model is that the distribution of the effect estimates is normal, yi ∼

N(θ, τ 2 + σ2
i ). The log-likelihood function of θ and τ 2 is then given by

l(θ, τ 2) = −1

2

∑
log(τ 2 + σ2

i )−
1

2

∑ (yi − θ)2

τ 2 + σ2
i

+ C, (2.36)
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where C is a constant. Setting the partial derivatives with respect to θ and τ 2 equal to

zero and solving the resulting equation, the maximum likelihood (ML) estimates of θ

and τ 2 are given by

θ̂REM =
∑
i

w∗i yi/
∑
i

w∗i and τ̂ 2
ML =

∑
w∗2i [(yi−θ̂REM )2−σ2

i ]∑
w∗2i

, (2.37)

where w∗i = (τ 2 +σ2
i )
−1 is the weight assigned to studies in REM. The solution of (2.37)

is determined iteratively starting with an initial value τ̂ 2
REM = τ 2

0 , and should the result

converge to a negative value, it is truncated at zero (Viechtbauer, 2007).

Restricted maximum likelihood method

In a finite sample the maximum likelihood estimator, τ̂ 2
ML underestimates the popula-

tion heterogeneity (Corbeil and Searle, 1976), and it is negatively biased (Corbeil and

Searle, 1976, Viechtbauer, 2005). The restricted maximum likelihood (REML) is the

alternative approach to correct the underestimation. Its log-likelihood function is given

by

lR(τ 2) = −1

2

∑
log(τ 2 + σ2

i )− log
∑ 1

τ 2 + σ2
i

− 1

2

∑ (yi − θ̂REM)2

τ 2 + σ2
i

+ C, (2.38)

where C is a constant. Setting the partial derivative equal to zero and solving the

resulting equation, the restricted maximum likelihood estimate is given by

τ̂ 2
R =

∑
w∗2i [(yi − θ̂REM)2 − σ2

i ]∑
w∗2i

+
1∑
w∗i
, (2.39)

and also computed iteratively in the same manner as in τ̂ 2
ML.
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2.3.3.2 Confidence intervals for τ 2

The confidence interval (CI) for τ 2 indicate the precision with which the heterogeneity

variance is estimated. It contains important information for the associated analysis

of heterogeneity (Viechtbauer, 2007). Several methods for constructing the confidence

interval for τ 2 have been proposed, but presented here are only a few that can be applied

to the estimators of τ 2 discussed in Section 2.3.3.1.

Wald-type confidence intervals for τ 2

From the maximum and restricted maximum likelihood functions of τ 2 in equations

(2.36) and (2.38), respectively, it can be shown (Viechtbauer, 2007, Rao et al., 1981) that

the variances, var(τ̂ 2
ML) = 2

∑
w2
i and var(τ̂ 2

REML) = 2
(∑

w2
i − 2

∑
w3
i∑
wi

+
(
∑
w2
i )2

(
∑
wi)2

)−1

.

Based on the asymptotic normality of τ̂ 2
ML and τ̂ 2

REML the 100(1−α)% Wald confidence

intervals for τ 2 are given (Biggerstaff and Tweedie, 1997, Viechtbauer, 2007) by

τ̂ 2
ML ± z1−α/2

√
2
∑

w2
i (2.40)

and

τ̂ 2
REML ± z1−α/2

√
2

(∑
w2
i − 2

∑
w3
i∑
wi

+
(
∑
w2
i )

2

(
∑
wi)2

)−1

, (2.41)

where z(1−α) is the 100(1− α/2)th percentile of the standard normal distribution.

Biggerstaff and Tweedie (1997) method

The Biggerstaff and Tweedie (1997) method is based on the Cochran Q-statistic given

in equation (2.24) and used for constructing CI for τ 2 estimated by DerSimonian and
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Laird (1986) method. The expected value and variance of the Q-statistic are given by

E[Q] = (K − 1) +
(
S1 +

S2
2

S1

)
τ 2 and var[Q] = 2(K − 1) + 4

(
S1 +

S2
2

S1

)
τ 2 + 2

(
S2 + 2S3

S1
+

S2
2

S2
1

)
τ 4,

(2.42)

where Sj =
∑

(wi)
j andK is the number of studies. Using this, Biggerstaff and Tweedie

(1997) proposed to approximate distribution for τ 2 by a gamma distribution with shape

and scale parameters given by γ(τ 2) = (E[Q])2

var[Q]
and φ(τ 2) = var[Q]

E[Q]
, respectively. Let

f(y/γ(τ̂ 2)) be the approximate density of τ̂ 2, the 1 − α percent CI is the obtained

(Biggerstaff and Tweedie, 1997, Viechtbauer, 2007) by finding the two values of τ̂ 2 that

satisfy the following equation

∞∫
Q/φ(τ2)

f(y/γ(τ̂ 2)) = α/2. (2.43)

Profile likelihood method

The profile likelihood method uses the contour plots of the profile likelihood of τ 2 to

construct CI, see Viechtbauer (2007), Hardy and Thompson (1996). A contour plot

is a two dimensional plot that shows one-dimensional curves, called contour lines. In

other words it is a plot that displays 3-dimensional relationship in two dimensions. For

example, a 95% CI of τ 2 can be obtained when contour plots of the profile likelihood

of τ 2 satisfy the equation

L(τ 2) > L(τ̂ 2)− 3.84/2, for L(τ 2) = −1
2

∑
ln (τ 2 + σ2

i )− 1
2

ln
∑(

1
τ2+σ2

i

)
− 1

2

∑ (yi−θ̂)2
τ2+σ2

i
,

(2.44)
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where 3.84 is the 5% point of the χ2
1 distribution (Viechtbauer, 2007, Hardy and Thomp-

son, 1996).

Bootstrap confidence intervals

Viechtbauer (2007) proposed the use of parametric and non-parametric bootstrap pro-

cedures for obtaining the CIs of τ 2. In this method, a set of B bootstrap estimates {τ̂ 2
b :

b=1, 2, ..., B} of τ 2 are obtained from B bootstrap samples of the data. Then ordering

the set {τ̂ 2
b : b=1, 2, ..., B} in ascending order the 1− α percent CI’s are given by the

(100α/2)th and 100(1− α/2)th empirical percentiles of the τ̂ 2
b .

2.3.3.3 Inference in random-effects model

As in FEM, standard inference in random-effects model is based on the asymptotic

normality of the combined effect, θ̂REM ∼ N (θ, (
∑
w∗i )

−1). The confidence intervals

are defined by

θ̂REM ± z1−α/2

(∑
w∗i

)− 1
2

(2.45)

where z1−α/2 is the (1−α/2)th percentile of the normal distribution. Due to the addition

of the heterogeneity variance in REM, its confidence intervals are wider in comparison

to FEM. Therefore the inference in REM is more conservative in terms of statistical

significance of the combined effect.

To test for the presence or otherwise of a treatment effect, the Wald statistic,

ZW =
(∑

w∗i

) 1
2 |θ̂REM | (2.46)
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is compared with the critical values of the standard normal distribution. The Q statistic

given in (2.24) is used to test the hypothesis of heterogeneity for the existence of the

variance component τ 2, H0 : τ 2 = 0 vs H1 : τ 2 > 0.
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Chapter 3

Review of sequential methods and

methods for monitoring trends in

meta-analysis

In recent years, temporal changes in effect size have been reported in many fields of

research. Examples are given in Hodgson et al. (1989); Nieuwkamp et al. (2009); Hyde

et al. (1990); Twenge. et al. (2008); Gehr et al. (2006); Grabe et al. (2008). Temporal

changes in effect sizes present a serious danger to the validity of results and conclusions

of meta-analysis, and thus several methods have been proposed to monitor the trends

so that results and conclusions in meta-analysis can be interpreted based on the time

it was conducted. This Chapter reviews the common methods used for monitoring

the temporal trends in magnitude of effect sizes in meta-analysis with special focus on

sequential methods in meta-analysis. The first Section introduces sequential analysis.
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The second Section reviews the standard sequential methods in meta-analysis including

‘simplistic methods’ for monitoring trends in meta-analysis. The third Section focuses

on adaptive methods for sequential decisions in clinical trials.

3.1 Sequential analysis

Sequential analysis was initially introduced during World War II in response to the

overwhelming demands for methods of testing the efficiency of aircraft gunnery (Lai,

2001). In this method of analysis the sample size is not fixed in advance, instead data

are evaluated as more observations are collected, and further sampling is stopped in

accordance with a predefined stopping rule as soon as significant result is observed.

Sequential methods are popular in many areas where sequential monitoring of process

outputs is required. For example, they are used in engineering, monitoring of prices of

goods and services and quality control. In meta-analysis, sequential methods are in-

creasingly becoming popular, see Whitehead (1997a); Higgins et al. (2011); Bollen et al.

(2006); van der Tweel and Bollen (2010) as examples. They are used for gauging suf-

ficiency in accumulating evidence (Lau et al., 1992, Pogue and Yusuf, 1997, Wetterslev

et al., 2008) and serve as an appropriate statistical tool to monitor any possible trends in

meta-analysis. This Section introduces three sequential methods; the sequential prob-

ability ratio test, the CUSUM scheme and group sequential methods. The properties

and the advantages of the sequential methods in the context of meta-analysis are also

highlighted.
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3.1.1 Sequential probability ratio test (SPRT)

Introduced by Wald (1945), SPRT is a sequential test for a simple null hypothesis

H0 against a simple alternative hypothesis H1. It is based on a likelihood ratio which

is treated as a function of the observations. Consider a sequence of independent and

identically distributed random variables X1, X2, X3, .... with the same probability

density function, f(X). To test the null hypothesis H0 : f = f0 against the alternative

hypothesis H1 : f = f1, the SPRT stops sampling at the stage

N = inf

{
n > 1 : λn /∈ (A,B)

}
, (3.1)

where

λn =
n∏
i=1

f1(Xi)

f0(Xi)
(3.2)

is the likelihood ratio at stage n and 0 < A < B <∞ are stopping boundaries. When

stopping occurs, decisions are taken as follows. If λn ≤ A decide H0, if λn ≥ B decide

H1. The choice of the stopping boundaries, A and B depends on the pre-specified Type

I and II error probabilities.

3.1.1.1 Stopping boundaries and the error probabilities

The decision not to reject or reject a statistical hypothesis depends on the costs asso-

ciated with committing an error (Hubbard and Bayarri, 2003). This could be a Type

I or Type II error. The Type I error (false rejection) is the probability of deciding H1

when H0 is true; while the Type II error (false acceptance) is the probability of decid-

ing H0 when H1 is true. To establish their relationship with the stopping boundaries,
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denote the Type I and Type II error probabilities by α = P(H1|H0), the probability

of H1 given that H0 is true and β = P(H0|H1), the probability of H0 given that H1 is

true, respectively. Let X = (x1, x2, ..., xn) and pj(X) =
n∏
i=1

fj(xi), j=(0,1). Define the

decision sets R0={(x1, ..., xn); N = n and λN ≤ A} and R1={(x1, ..., xn); N = n and

λN ≥ B}. The power of the test is given by

1− β =P(H1|H1)

=

∫
R1

p1(X)dX

=

∫
R1

p1(X)

p0(X)
p0(X)dX

=

∫
R1

λnp0(X)dX

≥B
∫
R1

p0(X)dX

=BP(H1|H0)

=Bα.

(3.3)
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Similarly,

1− α =1− P(H1|H0)

=P(H0|H0)

=

∫
R0

p0(X)dX

=

∫
R0

λ−1
n p1(X)dX

≥A−1

∫
R0

p1(X)dX

=A−1P(H0|H1)

=A−1β

(3.4)

Treating the inequalities of (3.3) and (3.4) as approximate equalities and solving for A

and B, the stopping boundaries are defined by

A = β/(1− α) and B = (1− β)/α. (3.5)

See the detailed derivation in Lauritzen (2004) and Nowak (2011).

3.1.1.2 Sample size of SPRT

The expected sample size of SPRT is the average number of observations required

before a decision is arrived at. The formula of the expected sample size for the SPRT is

derived based on the Wald’s equation, see Nowak (2011). The Wald’s equation states

that if N is a stopping time with respect to an independent and identically distributed
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sequence {Xn : n ≥ 1}, and if E[N ] <∞ and E[|X|] <∞ then

E

{
N∑
n=1

Xn

}
= E[N ]E[X] (3.6)

Since X1, X2, .... are independent and identically distributed random variables, the

logarithm of the likelihood statistic in (3.2)

log(λn) =
n∑
i=1

log(f1(Xi)/f0(Xi)) (3.7)

is a sum of independent and identically distributed variables. Let N be the first n ≥ 1

such that log(λn) /∈ (a, b), where a = log(A) and b = log(B). Therefore, by (3.6),

E [log(λN)] = µjEj[N ], (3.8)

where µj = Ej

[
log f1/f0

∣∣Hj

]
, for j=0, 1. But E[log(λN)] ≈ aPr(λn ≤ A) + bPr(λn ≥ B),

see Siegmund (1985). It follows that the expected sample size of the SPRT under the

null and alternative hypotheses are given by

E0[N ] = µ−1
0

{
α log

(
1− β
α

)
+ (1− α) log

(
β

1− α

)}
(3.9)

and

E1(N) = µ−1
1

{
(1− β) log

(
1− β
α

)
+ β log

(
β

1− α

)}
, (3.10)

where µ0 = E0[log(f1/f0)] and µ1 = E1[log(f1/f0)], (see Siegmund (1985)).

For the case of testing a simple null hypothesis against a simple alternative hypoth-

esis, Wald and Wolfowitz (1948) showed that the SPRT leads to optimal solution of

testing H0 against H1, in the sense that it minimizes both E0[N ] and E1[N ] among
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all tests whose sample size N has a finite expectation under H0 and H1 with error

probabilities satisfying

P0(Reject H0)≤ α and P1(Reject H1)≤ β. (3.11)

Remark 3.1.1. The optimality and the applicability of SPRT to any observations with

known distribution are desirable properties in sequential testing. However the SPRT is

designed for testing a simple null hypothesis against simple alternative, and therefore its

optimality property is restricted to such situations (Lai, 2001, Siegmund, 1985). This

lack of optimality in general may have serious consequences that can prevent its uses in

meta-analysis.

3.1.2 The cumulative sum (CUSUM) scheme

Shewhart (1931) introduced statistical quality control charts, a class of sequential

methods for monitoring and evaluation of the quality of products from continuous pro-

duction line. In his monitoring scheme, a statistic is computed from fixed size samples of

observations taken at regular intervals, which is then compared to predefined monitor-

ing boundaries. If the value of the statistic is within the boundaries, the process is said

to be in control. If the current value crosses the boundaries, then the process is out of

control and corrective measures need to be taken to put the process back under control.

However Shewhart (1931) sequential monitoring chart is a “single sample” scheme with

the decision solely depending on the current sample although the results of previous

samples are available on the chart (Lai, 2001). Motivated by these shortcomings, Page
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(1954) modified the SPRT to develop the CUSUM scheme. The CUSUM scheme is

a good alternative procedure for monitoring process when detection of small changes

is important. It has the advantage of incorporating all information in the sequence of

values (Montgomery, 2000).

Consider a sequence of independent and identically distributed observations, X1,

X2, X3, .... and a reference point k chosen between the target value µ0 and the value

corresponding to a point in the observations considered to be just unsatisfactory µ1.

The CUSUM statistic is computed by summing the successive differences Xi − k for

i=1, 2, 3, .... to build up a series given by

Sn =
n∑
i=1

(Xi − k). (3.12)

A graph of the statistic Sn against the sample number (time) is called the CUSUM

chart. If the path of the CUSUM chart is moving horizontally, then the process is in

control. But if at any point of sampling the path rises significantly above or falls below

the target value, µ0 then the process is said to be out of control and something must

be done to correct the process. A CUSUM chart designed to detect an upward trend

is called upper CUSUM and the CUSUM chart for detecting downward trend is called

lower CUSUM. The recursive formulae starting from zero for computing the upper and

the lower CUSUMs are given by

S+
n = max

{
0, Xn − (µ0 + k) + S+

n−1

}
and S−n = max

{
0, (µ0 − k)−Xn + S−n−1

}
,

(3.13)
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Figure 3.1: V-mask Procedure

respectively. The constant k = (µ1−µ0)/2 is a reference point chosen mid-way between

the mean target value µ0 and the value of the parameter µ1 considered to be just

unsatisfactory.

3.1.2.1 Methods for detecting a change in mean of a process using a CUSUM

scheme

The common methods of deciding when there is a change in monitored process using the

CUSUM scheme include decision interval scheme, V-mask procedure and the CUSUM

procedure.
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V-mask procedure

A visual method for deciding when a change in monitored process occurred using the

CUSUM is the V-mask procedure described by Barnard (1959). This method super-

imposes a V-shaped mask on the CUSUM chart in such a way that the vertex of the

V-mask is pointed forward at a distance d (lead distance) from the latest point on the

chart. The angle between the two arms of the V-mask is 2θ, where θ = 6 ABO = 6 OBC

is the angle between an arm of the V-mask and the horizontal axis, see Figure 3.1.

Performance of the V-mask procedure is measured by the lead distance, d and the

angle θ, which are often chosen empirically (Wieringa et al., 1999). As long as the

plotted values of the CUSUM remain within the arms of the V-mask, the process is in

control. However if a point on the chart reaches or crosses the arms, then the process

will be considered to have gone out of control. The probability of Type I error in the

V-mask procedure is proportional to the lead distance, d and the angle θ (Montgomery,

2000, Woodward and Goldsmith, 1967). See Barnard (1959) and Wieringa et al. (1999)

for more discussion of this method.

Decision interval scheme

In the decision interval scheme, a reference point k is chosen mid-way between the value

of the parameter under the null hypothesis, µ0 and the value of the parameter under

the alternative hypothesis, µ1. Then say for an upper CUSUM, as long as the S+
n is less

than k, the process is in control. If at any point in sampling the value of S+
n reaches or
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crosses the reference point k, a CUSUM chart is started. When the CUSUM reaches or

crosses the decision interval line h, then it is concluded that the process has gone out

of control. The general detection criterion for this scheme is given by

S+
n ≥ h or S−n ≤ −h (3.14)

A reasonable choice for the value of the decision interval line h is usually set at h = 5σ,

where σ is standard deviation of the observation, see Montgomery (2000). However,

the decision interval line can also be determined to satisfy a desired average run length

ARL (which we shall discuss later) using a method called the thumb rule. For detecting

a shift with magnitude ∆ = µ1 − µ0 6= 0 and ∆ > k, the thumb rule is defined by

ARL(∆) = 1 +
h

∆+ k
. (3.15)

Shu and Jiang (2006) derived a relationship between the ARL approximation by Sieg-

mund (1985) and the the decision interval line given by

h =
log {1 + 2k2ARL0 + 2.332k}

2
− 1.166. (3.16)

Figure 3.2 is an example of a two-sided decision interval scheme. See Montgomery

(2000), Wieringa et al. (1999), Woodward and Goldsmith (1967) for a detailed descrip-

tion of the decision interval scheme.

CUSUM procedure

The Page (1954) CUSUM procedure is a special case of repeated sequential probability

ratio test (RSPRT), where the stopping boundaries a = logA = 0 and b = logB = h.
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Figure 3.2: Decision Interval Scheme with the red points above the upper interval line
(h) indicate out-of-control signal in the upper CUSUM.

In SPRT the decision rule is a function of the exit time, N = inf {n > 1 : λn /∈ (A,B)}

and λn =
n∏
i=1

f1(Xi)
f0(Xi)

, see (3.1) and (3.2). At the exit time when λn ≥ A, the SPRT

terminates in favour of H0. But in the CUSUM procedure instead of terminating the

test, the SPRT is continually restarted as long as the decision favours H0 until the time

when λn ≥ B and the decision favours H1. This is to say that the CUSUM procedure is

a repeated SPRT. To define the CUSUM procedure, consider the following hypotheses.

H0 : X1, ..., Xn ∼ f0

H1 : X1, ..., XK−1 ∼ f0 and XK , ..., Xn ∼ f1,

(3.17)
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where K is an unknown time of change. The likelihood ratio for the hypotheses is given

by

λn,K =

K−1∏
i=1

f0(Xi)
n∏

i=K

f1(Xi)

n∏
i=1

f0(Xi)
, (3.18)

and the maximum likelihood ratio is

SnK =
n∑

i=K

log (f1(Xi)/f0(Xi))

=Sn −min
0≤K≤n SK .

(3.19)

Page (1954) proposed the stopping rule for the test as

N =
{
n : Sn −min

0≤K≤n SK ≥ h
}
, (3.20)

where h is determined by the stopping boundaries of SPRT such that a = logA = 0

and b = logB = h.

The optimality of the CUSUM in terms of optimal stopping time have been well

established. See for example Moustakides (1986), who proved its optimality property

similarly to the optimality in sequential probability ratio test.

3.1.2.2 The average run length (ARL) of a CUSUM

The average run length (ARL) is used as a major criterion for selecting a suitable

CUSUM procedure (Woodall, 1983) as well as a tool for evaluation of its performance.

It is the average number of observations required before a CUSUM scheme signals an

alarm for a change. A high ARL should be expected when the process is operating

at a satisfactory level and low when it is operating at unsatisfactory level. There are
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numerous ways to calculate the ARL, however we present here the Page (1954) integral

method and Siegmund (1985) approximation of the ARL.

Page (1954) integral method:

In equation (3.12), H0 is accepted when Sn =
n∑
i=1

(Xi − k) is less than or equal to zero,

and therefore only the first X such that (X − k) > 0 is necessary to accumulate scores.

Let z be the first score such that it is bounded by 0 and h. The CUSUM is a repeated

SPRT and terminates at the first time when a test crosses the boundary line h. In this

case a single SPRT is defined by a path starting at z and ending either at 0 or at h.

For a new observation X, the current score results to z + X − k, provided it belongs

to the open interval (0, h). If z + X − k ≤ 0, the test stops and a new test is started

from 0, and for z+X − k ≥ h the test stops and decision is taken. Let P(z) denote the

probability that a test starts at z and ends at point z ≤ 0. Denote N(z) as the average

sample number of the test starting at z. Let L(z) denote the ARL of the CUSUM that

starts at z, but all subsequent tests start at 0. Let f(X) denote the probability density

of the observations, and F (x) be the cumulative distribution. For a single test that

starts the score z the probability of the first event is P(k − z), and for the subsequent

event the probability is P(y), where y = z + X − k. Page (1954) proposed that the

probability of a test that starts from z can be generalised by the following Fredhorlm’s

integral equations of second kind given by

P(z) = F (k − z) +
h∫
0

P(y)f(y + k − z)dy, 0 ≤ z ≤ h. (3.21)
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Similarly,

N(z) = 1 +
h∫
0

N(y)f(X + k − z)dy, 0 ≤ z ≤ h and (3.22)

L(z) = 1 + L(0)F (k − z) +
h∫
0

L(y)f(X + k − z)dy, 0 ≤ z ≤ h. (3.23)

Page (1954) showed that the ARL of the CUSUM solution of equations (3.21) and

(3.22) is given by

L(0) =
N(0)

1− P(0)
, (3.24)

where N(0) and P(0) are special cases where z = 0.

Equations (3.21) and (3.22) are usually solved numerically. Examples of such numer-

ical results include the statistical nomograms for computing the ARL of the CUSUM

by Woodall (1983) and Dobben de Bruyn (1968).

Siegmund (1985) approximation:

The Siegmund (1985) approximation formula for the ARL of the CUSUM is the most

simple and the most widely used method. The formula is derived based on a one-sided

CUSUM and it is given by

ARL =
e−2∆b + 2∆b− 1

2∆2
, (3.25)

for ∆ 6= 0, ∆ = δ∗ − k for the upper CUSUM and ∆ = −δ∗ − k for the lower CUSUM,

k = (µ1 +µ0)/2 is the reference point, δ∗ = (µ1−µ0)/σ, σ is the standard deviation and

b = log(B) is the upper boundary of the SPRT described in (3.2). The ARL under the

null hypothesis is calculated when δ∗ = 0, and under the alternative hypothesis when
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δ∗ 6= 0. The ARL of the two-sided CUSUM can be calculated from the formula

1

L
=

1

L1

+
1

L2

, (3.26)

where L1 and L2 are the ARLs of the lower and upper CUSUMs, and L is the ARL of

the two-sided CUSUM.

Remark 3.1.2. The ability of the CUSUM to include all information from the sequence

of observations as well as detect small changes is important and makes it a desirable

statistical tool for monitoring trends in meta-analysis. Unfortunately, in the CUSUM

scheme it is required that the sequence of observations be independent and identically

distributed, and this may not be satisfied in meta-analysis. However there are exten-

sions of the CUSUM scheme developed by Gombay (2003), and Gombay and Serbian

(2005) which have the CUSUM properties and can therefore serve as a good alternative

procedure to monitor the trends in meta-analysis.

3.1.3 Group sequential methods

Clinical trials investigate the effectiveness of new drugs or therapeutic procedures. Tri-

als last for several weeks, months or years with their results accumulating continuously

over the duration. Ethical, administrative as well as economic reasons often require that

the accumulating data be evaluated at intervals to allow for early stoppage. Among

the methods suggested for evaluation of the accumulating data at intervals is the use of

repeated significance testing (see Armitage et al. (1969) and McPherson (1974)). How-

ever periodic evaluation of the accumulating data using standard significance testing

48



can greatly inflate the Type I error (Armitage et al., 1969). ARMITAGE et al. (1975)

showed that repeated significance testing can be a useful sequential method. Pocock

(1977) used normal response with known variance to illustrate how the desired Type I

error can be achieved in multiple significance testing of accumulating data. The proce-

dures are referred to as the group sequential methods (see Chow et al. (2007), Jennison

and Turnbull (2000)). They have multiple advantages. For example, group sequential

methods are as efficient as the fully sequential methods in terms of low expected sam-

ple size and allow early stoppage of trials while retaining the overall error probability

(Jennison and Turnbull, 2000). In meta-analysis they are used to address the issue of

inflated Type I error in cumulative meta-analysis (see Pogue and Yusuf (1997), Higgins

et al. (2011), Whitehead (1997a)) as well as to determine when sufficiency is attained

in cumulative evidence.

To illustrate the general approach to group sequential methods, consider a clinical

trial in which a treatment arm is being compared with control arm, and a planned

total of N patients is divided into K groups. Let the response be a normal variable

with variance σ2, and the means µt and µc for treatment and control groups, respec-

tively. The interest is to test the null hypothesis of no difference between the means,

H0 : θ = µt − µc = 0 against H1 : θ = µt − µc 6= 0. Assume that equal number of n

patients are accumulated in each arm of the experiment at each interim analysis. At

the k-th interim analysis a standardized statistic is calculated as

Zk = 1√
2nkσ2

{
nk∑
i=1

Xti −
nk∑
i=1

Xci

}
, for k=1, 2, ..., K, (3.27)
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whereXti andXci are the observations in the treatment and control groups, respectively.

The variance σ2 is unknown and is usually estimated from the sample data at each

interim analysis. For each of the standardized statistics Zk, a critical value Ck is chosen

and the test terminates with the rejection of H0 if Zk ≥ Ck; and if the test continues to

the K-th analysis and ZK < CK , the test terminates and H0 is accepted. In each of the

analyses, a nominal level α
′

is chosen to achieve a pre-specified Type I error probability

α. In other words

P(Z1 ≥ C1 or Z2 ≥ C2 or...or ZK ≥ CK) = α. (3.28)

3.1.3.1 Sample size calculation based on power requirement

Sample size calculation based on power requirement is an important issue in planning

controlled trials. Consider the problem of testing the null hypothesis of no treatment

difference, H0 : θ = µt − µc = 0 against the two sided alternative H1 : θ = µt − µc 6= 0

with a significance level α and power 1 − β at µt − µc = ±θ. In a fixed sample size

test the standardized statistic in (3.27) reduces to Zf = 1√
2nσ2

{
n∑
i=1

Xti −
n∑
i=1

Xci

}
, and

H0 is rejected if Zf ≥ z1−α + z1−β, where z is the critical value of the standard normal

distribution (Jennison and Turnbull, 2000). The expected value

E[Zf ] =E

[
1√

2nσ2

{
n∑
i=1

Xti −
n∑
i=1

Xci

}]

=± θ
√
{n/(2σ2)}.

(3.29)

Since it is often preferred to recommend a superior of the two treatments, the negative

value is ignored in practice. Therefore, equating the positive value θ
√
{n/(2σ2)} with
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z1−α/2 + z1−β, and solving for n the sample size in the fixed sample test is given by

nf =
{
z1−α/2 + z1−β

}2
2σ2/θ2. (3.30)

The maximum sample size ng in a treatment arm of a group sequential test required

to reject the null hypothesis with significance level α and power 1− β at µt − µc = ±θ

is a function of K, α and β, and is proportional to σ2/θ2 (Jennison and Turnbull,

2000). Since in the fixed sample test the sample size is also proportional to σ2/θ2, a

ratio of the maximum sample size of group sequential test to the sample size of fixed

sample test is defined as a function R(K,α, β). The values of R(K,α, β) are usually

calculated numerically for different group sequential designs and provided as tables in

many statistical textbooks. It follows that for a group sequential test with a maximum

of K interim analyses the sample size per treatment arm ng and the number of patients

per treatment arm per group mg needed to achieve a power requirement of 1 − β are

given by

ng = R(K,α, β)nf and mg = R(K,α, β)nf/K, (3.31)

respectively. For a detailed derivation and discussion see Jennison and Turnbull (2000),

Chow et al. (2007) and the references therein.

3.1.3.2 Pocock’s Test

The Pocock (1977) test is the most straightforward and widely used method. The

Pocock’s critical values, Ck = CP (K,α) are functions of the Type I error probability,

α and the total number of planned interim analyses K. In Pocock’s test the repeated
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Figure 3.3: Pocock type monitoring boundaries with a maximum of 5 interim analyses

significance testing is conducted at a constant nominal level α
′
, and therefore the same

critical value is used throughout the interim analyses. For example, the Pocock’s critical

values for two-sided test in a group sequential experiment with 5 interim analyses at

0.05 significance level are equal to CP (5, 0.05) = ±2.413 (see Figure 3.3).

The decision in Pocock’s test after analysis k=1, 2, ..., K-1 is that if |Zk| ≥ CP (K,α)

then stop and reject H0; otherwise continue to analysis k+1. After analysis K, if

|ZK | ≥ CP (K,α) then stop, reject H0; otherwise stop and accept H0. The sample size

per treatment arm and the number of patients per treatment per arm per group needed

to achieve a power requirement of 1 − β in Pocock’s test is determined in the same

manner as in (3.31) with R(K,α, β) = RP (K,α, β).
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Figure 3.4: O’Brien-Fleming type monitoring boundaries with a maximum of 5 interim
analyses

3.1.3.3 O’Brien-Fleming test

In the O’Brien and Fleming (1979) test the nominal significance level increases as

the testing progresses, and therefore the test has relatively wider boundaries, and it is

more conservative at the early stages (see Figure 3.4). This characteristic is desirable in

clinical trials to prevent the possibility of spurious findings when information available

in the analysis is still small. Another advantage of the O’Brien-Fleming test is that

it allows the investigators to perform interim analyses at the last stage with a higher

significance level nearly equal to the nominal level. The decision to continue or stop

the trial is the same as in Pocock’s test.
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3.1.3.4 The error spending design

The Pocock’s and O’Brien-Fleming tests require the number of interim analyses to

be specified in advance and the groups be equally spaced with equal information size

(number of observations). However, in practical situations these conditions are difficult

to satisfy. For example, in consecutive clinical trials the decision to run another trial

may lead to the choice of a larger or smaller sample size for the next study. As a result,

the information accumulated at each interim analysis may not be equally spaced, and

the implication is that the overall Type I error may be far from the target value (Chow

et al., 2007).

Lan and DeMets (1983) introduced a flexible method that provides a solution to

stopping boundary problem that can be readily adapted to clinical trials and cumulative

meta-analyses (Pogue and Yusuf, 1997). The procedure is based on a spending function,

α(t) which characterises the rate at which error rate is spent. The spending function,

α(t) is non-decreasing. It assigns the proportion of the Type I error probability spent

at each interim analysis. The variable t is the information fraction which at k-th

interim analysis is determined by the total amount of information at k divided by the

expected maximum information in the analysis, tk = Ik/Imax. The scale of information

fraction, tmax is chosen so that the maximum is 1, and the spending function satisfies

the conditions α(0) = 0 and α(1) = α. The choice of a spending function, α(t) results

in a choice of a particular group sequential method.

Suppose the standardized statistics Zk for k=1, 2, .... in (3.27) correspond to the
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information fraction tk and that 0 < t1 < t2 < ... < tK = 1. In the spending error design

the critical value Ck at the information time tk is determined from the accumulated

information between 0 and tk by solving the equation

P(Z1 ≥ C1 or Z2 ≥ C2 or...or Zk ≥ Ck) = α(tk). (3.32)

Note that the critical values Ck are determined by the spending function α(t) and the

information fractions t1, t2, ..., tk but does not depend on future information fractions

or the number of interim analyses K. However if the experiment continues to the time

tk+l, the critical values Ck, Ck+1, ..., Ck+l can be defined to satisfy the probability

P(Zk < Ck or Zk+1 < Ck+1 or Zk+2 < Ck+2 or...or Zk+l ≥ Ck+l) = α(tk+l) − α(tk),

where α(tk+l) − α(tk) is the increase in the significance level between the tk and tk+l.

The alpha spending functions for Pocock and O’Brien-Fleming test are respectively

given by

α(t) = min {α log[1 + (e− 1)t], α} and α(t) = 2
{

1− Φ(zα/2/
√
t)
}
, (3.33)

where Φ is the cumulative distribution function of the standard normal distribution.

3.1.3.5 Whitehead triangular test

The triangular test is described using the score statistics, Sk = Zk
√
Ik for k=1, 2, ...,

K, where Ik is the information size corresponding to the k-th interim analysis. The

score statistics Sk are assumed to be multivariate normal with Sk ∼ N(θIk, Ik), and to

have independent increments S1, S2−S1, ..., SK−SK−1 (Jennison and Turnbull, 2000).

For group sequential testing of the null hypothesis H0 : θ ≤ 0 against an alternative
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H1 : θ > 0 with Type I error α at θ = 0 and power 1 − α at θ = δ, Whitehead and

Stratton (1983) proposed a general continuation region for the score statistic defined as

S ∈ (L = − 2
α

log
(

1
2α

)
+ δ

4
Ik, U = 2

δ
log
(

3
4α

)
+ δ

2α
Ik), (3.34)

where Ik is the information at interim analysis k=1, 2, ..., K. These are the monitoring

boundaries of the triangular test, and the maximum information of the test is chosen

such that 0 < Imax ≤ 8
δ2 log( 1

2α
)

(Jennison and Turnbull, 2000). If the boundaries meet

at the final stage, the K-th interim analysis, then the maximum information of the

triangular test can be calculated by

Imax =
4a

δ
. (3.35)

For the case of unequal information increments at the interim analyses, Whitehead

(1997b) used a result due to Siegmund (1985) and modified the boundaries of the

triangular test in (3.34) to

L = −2
δ

log
(

1
2α

)
+ 0.583

√
Imax

K
+ 3δ

4
k
K
Imax and U = 2

δ
log
(

1
2α

)
− 0.583

√
Imax

K
+ δ

4
k
K
Imax.

(3.36)

The triangular test terminates at the first time when Sk /∈ (L,U), and at termination

H0 is rejected if Sk > U , and H0 is accepted if Sk < L. Figure 3.5 is an example of a

one-sided triangular test. The two-sided (double) triangular designs are also available.
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Figure 3.5: Whitehead triangular test
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3.2 Methods for monitoring trends in meta-analysis

The methods for monitoring trends in meta-analysis can be subdivided into two groups:

simplistic and sequential methods.

3.2.1 Simplistic methods for monitoring trends in meta-analysis

The “simplistic methods” for monitoring trends in magnitude of effect size can be de-

scribed as initial or chronologically first approaches. They are easy and straightforward

approaches in terms of calculation and interpretation of results, but have considerable

draw-backs.

3.2.1.1 Homogeneity analysis

In meta-analysis, homogeneity analysis is usually conducted to test the hypothesis of

no difference in treatment effects across studies. When testing the homogeneity of k

studies, the Q statistic in (2.24) is compared with the chi-squared distribution with k−1

degrees of freedom, Q =
k∑
i=1

wi(yi − θ̂FEM)2 ∼ χ2
k−1. If the null hypothesis is rejected, it

means that the studies are heterogeneous. To use this method for monitoring temporal

trends in meta-analysis, studies arranged in a chronological order are subdivided into

subgroups according to publication year, for example, by decades, then homogeneity

analysis is conducted across the subgroups. The approach is simple, and has been used

by many researchers, see Higgins et al. (2003) as an example. However this method

ignores the gradual character of temporal changes and their possible occurrence within
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as well as between study groups. Therefore, it is a ‘crude method’ (Kulinskaya and

Koricheva, 2010).

3.2.1.2 Correlation/regression

Correlation and regression are popular statistical methods used to studying relation-

ships between two or more variables. In meta-analysis, the relationship between the

effect size and year of publication (Jennions and Møller, 2002) can be measured by the

Pearson’s product moment correlation given by

ρ(X, Y ) =
[(X − µX)(Y − µY )]

σXσY
, (3.37)

where µX and µY are means, and σX and σY are standard deviations.

Alternatively, the trends in meta-analysis are often estimated using the regression

slopes, see Shi and Copas (2004) for an example of a meta-regression model of alcohol

use versus breast cancer. The regression model for monitoring changes in effects size

in random-effects meta-analysis is based on the assumption given (Baker and Jackson,

2010) by

yi ∼ N(θ + tiβ, τ
2 + σ2

i ), (3.38)

where yi is the estimated treatment effect from the ith study at the time point ti, θ is

the mean treatment effect, β is the regression coefficient, τ 2 is the between-study vari-

ance and σ2
i is the within-study variance usually assumed to be known but estimated

by the sampling variance. The regression model in (3.38) is valid only when linear

trends are suspected, however Baker and Jackson (2010) proposed a general model for
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monitoring the trends that can accommodate both linear and non-linear trends based

on the assumption given by yi ∼ N(θ exp(−(Tn − Ti)φ), τ 2 + σ2
i ), where Tn is the date

for the most recent study, Ti is the date for the ith study and φ is the shape parameter.

Correlation and regression constitute reasonable approaches for monitoring trends

in meta-analysis, however the methods require that the magnitude of the effect sizes ex-

hibit monotone increase or decrease with time which is not always possible (Kulinskaya

and Koricheva, 2010, Leimu and Koricheva, 2004).

3.2.1.3 The use of standardized testing

Standardized testing may also be used to establish the presence or otherwise of temporal

changes in a meta-analysis. For example, a null hypothesis of no difference between the

results of a current study and the combined results of previous studies can be tested

by calculating the Z statistic

Z = (yk − ȳk−1)
√
wk + w̄k−1, (3.39)

where yk and ȳk−1 are the estimate from the current study and the combined effect of

previous studies, respectively, and wk and w̄k−1 are the corresponding weights, (see Ioan-

nidis and Trikalinos (2005), Koricheva et al. (2013) for more discussion of this method).

3.2.2 Standard sequential methods for meta-analysis

Several sequential methods for meta-analysis have been proposed for monitoring tem-

poral changes in magnitude of effect sizes. This Section reviews four different methods

that are widely used.
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Figure 3.6: Forest plot of CMA of BGC vaccine for tuberculosis. Data and results are
obtained from R library metafor (Viechtbauer, 2010), and results are combined using
fixed effect model.

3.2.2.1 Cumulative meta-analysis

Historically, the first method proposed by Lau et al. (1992) was cumulative meta-

analysis (CMA) which can be described as an open sequential test. The method involves

pooling effect size estimates in a cumulative manner as new trial results are published.

More exactly, CMA entails conducting a series of meta-analyses with successive addi-

tion of new effect size estimates from studies at interim analyses. Lau et al. (1992) had

proposed the use of CMA for monitoring interventions across several randomized con-

trolled trials, with the goal of understanding when evidence becomes definitive. CMA

is routinely used for monitoring temporal changes in effect sizes (see Lau et al. (1992),
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Figure 3.7: Forest plot of CMA of BGC vaccine for tuberculosis. Data and results
obtained from R library metafor (Viechtbauer, 2010), and results are combined using
random-effects model.

Ioannidis and Trikalinos (2005), Leimu and Koricheva (2004)). When the results are

arranged in a chronological sequence according to year of publication, the plotted values

of the combined effects, θ̂k and confidence intervals calculated consecutively for k=1, 2,

..., K can reveal temporal patterns (Kulinskaya and Koricheva, 2010).

Suppose yi for i=1, 2, .... are the effect size estimates obtained sequentially. The

cumulative effect at the k-th interim analysis is estimated by θ̂k =
k∑
i=1

wiyi/
k∑
i=1

wi, where

wi are the weights assigned to the studies according to the meta-analytic model used.

Plotted values of estimates of cumulative effects against time allow visual monitoring of

tangential increase or decrease in effect size over time. Figures 3.6 and 3.7 are examples

of forest plots of CMA of BCG vaccine for tuberculosis. Data and results are obtained

from R library metafor (Viechtbauer, 2010) and results are combined using fixed- and
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random-effects models, respectively.

Cumulative meta-analysis can reveal whether there is consistency in the results of

consecutive studies and indicate a point at which no further studies are required be-

cause the definitive conclusion is reached. Further, it has the advantage of revealing

uneven irregular changes in effect sizes as well as multiple shifts in opposite directions

(Leimu and Koricheva, 2004). CMA as a graphical tool is useful for initial inspection

of the data, but as in any visual method it might be subject to misinterpretation, and

therefore needs to be supplemented by a formal statistical method (Kulinskaya and

Koricheva, 2010, Leimu and Koricheva, 2004, Koricheva et al., 2013). In addition, by

definition CMA involves repeated analysis of the accumulating evidence and thus, even

if there is no treatment effect, multiple testing involved leads to the inflation of Type I

error.

3.2.2.2 Sequential meta-analysis

The second group of methods is sequential meta-analysis (SMA). These methods involve

the use of formal group sequential boundaries to monitor CMA and were proposed by

Pogue and Yusuf (1997) to address the issue of inflated Type I error in CMA. The

crossing monitoring boundaries of group sequential methods can indicate significant

change in cumulative effect and may be used to stop a meta-analysis when there is

sufficient evidence of effect based on pre-specified significance level and power (Higgins

et al., 2011). There are several group sequential designs which can maintain the overall

significance level, however Lan and DeMets (1983) alpha spending method is more
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flexible in the sense that it does not require the number or the times of interim analyses

to be specified in advance (See Section 3.1.3.4). Since meta-analysis is a continuous

process and the number of interim analyses is not known in advance, Pogue and Yusuf

(1997) suggested the use of Lan and DeMets (1983) method for SMA.

A key issue in conducting a SMA is the calculation of the optimum information

size (OIS) needed to define the monitoring boundaries. The OIS is the amount of

information needed to detect a significant treatment effect had a well-designed trial

been planned. It is a function of the maximum sample size required to achieve the

power requirement for the test at the given significant level. Lan and DeMets (1983)

used standard methods with small significance level α and high power 1− β of 90% or

95% to calculate the maximum sample size. For example, for the mortality rates Pc of

10% in the control group, and treatment effect, ∆ = Pc − Pt, the Type I error may be

set at 1% and the power at 90%. The sample size per treatment required to achieve

the power requirement is given by

n = 2× (Z̄α+Z̄1−β)2/2P ∗(1−P ∗)
∆2 , where P ∗ = (Pc + Pt)/2 (3.40)

The calculation of the OIS is based on fixed effects model and hence the method is only

appropriate for FEM. A number of methods were proposed to correct this. Wetterslev

et al. (2008) used a heterogeneity inflated OIS to account for heterogeneity in treatment

effects, but this method is problematic (Kulinskaya and Wood, 2014). Whitehead

(1997a) describes the use of standard stopping boundaries for random-effects meta-

analysis. Bollen et al. (2006) and van der Tweel and Bollen (2010) used the double
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triangular test in a retrospective meta-analysis. Higgins et al. (2011) proposed a

sequential method for random-effects meta-analysis that uses a semi-Bayes procedure

to update evidence on the among-study variance, starting with an informative prior

distribution that may be based on findings from a previous meta-analyses. A common

issue for these methods is that the monitoring boundaries are generally defined based

on FEM and do not incorporate the presence of heterogeneity in treatment effects. As

a result, as revealed by simulations, these methods have shown a considerable inflation

of the Type I error when the values of τ 2 are large, see Higgins et al. (2011), Wetterslev

et al. (2008). Therefore using such methods in random-effects model can lead to spurious

statistical inference.

3.2.2.3 Use of quality control charts

In the theory of control charts, variability in on-line process measurements is assessed

by constructing monitoring boundaries. These boundaries are also known as control

limits and are constructed based on the distribution of the observed values of the

process. When the process mean is within the control limits, the process is said to

be statistically in-control (variability is due to chance). However if at any stage the

process mean crosses the control limits, the process will be considered to be out-of-

control (variability is due to assignable causes and corrective action needs to be taken).

There are several quality control charts including Shewhart (1931) and Page (1954)

CUSUM charts, see Section 3.1.

Kulinskaya and Koricheva (2010) proposed the use of quality control charts for
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detection of outliers and temporal trends in meta-analysis. The use of QC charts in

meta-analysis is straightforward if the sequential effect estimates are independent and

their distribution can be approximated by the normal distribution. For example, let

yi ∼ N(θ, σ2
i ) for i=1, 2, .... be estimates of effect size from consecutive studies and θ be

a target value. The control limits for monitoring the meta-analysis are determined based

on the values of θ and σ2
i . As more studies are conducted and results are combined,

if the mean of the process is close to θ, the process is said to be in-control (no change

in treatment effect). However, when adding the results of new studies and the mean

crosses the control limits, then the process will be considered to be out-of-control (there

exists a change in treatment effect). The method is simple and had successfully been

applied to fixed effect model. However for random-effects model the estimation of τ 2

introduces dependency between the sequential effects (Kulinskaya and Koricheva, 2010)

and hence their distribution is not consistent with the standard assumptions of the QC

charts.

3.2.2.4 Penalised Z testing

The last group of methods involves the “penalised Z test” introduced by Lan et al.

(2003). This is an alternative approach to address the issue of inflated Type I error in

CMA. The method is based on the use of the law of iterated logarithm to ‘penalize’

for the multiple testing in CMA. The usual Wald test for significance of the combined

effect at the k-th interim analysis is adjusted by a constant factor, and is defined by

Z∗(k) =
S(k)√

λΓk log log(Γk)
, (3.41)
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where λ is the adjustment factor determined using simulation, S(k) is the sum of the

estimates of treatment effects up to the k-th interim analysis and Γk is the sum of weights

assigned to studies. Lan et al. (2003), Hu et al. (2007) claim that the ‘penalized Z test’

exhibits a good control of the Type I error in CMA both in FEM and REM when a

reasonable value of λ is used. For example, the value of λ = 1.5 was found to control

the Type I error in FEM, while the value of λ = 2 was found to control the Type I

error in REM when relative risks, odds ratio and risks difference effect sizes were used

to combine results of up to 25 studies (Hu et al., 2007). The choice of λ is important

in controlling the Type I error, however its value varies according to the type of effect

measure, number of studies, average studies size and amount of heterogeneity in the

treatment effects. Therefore the determination of the ‘reasonable value of λ’ can be

difficult in practice.

3.3 Adaptive clinical trials

In clinical trials, trial procedures and statistical methods are usually pre-specified at

the beginning of the trial. However if they are wrongly chosen this may lead to failure

in the study. Adaptive clinical trials allow modification of trial procedures and the

statistical methods in an ongoing trial based on data accumulating during the progress

of the trial, while maintaining the integrity and validity of the trial. The purpose is

to provide investigators the flexibility to identify the best/optimal clinical benefit of

the test treatment under study without compromising the validity and integrity of the
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intended study (Chow et al., 2008), as well as increase the probability of success of the

intended trial. The procedure in adaptive clinical trials is such that at some stages

during the trial a decision is made on whether to abandon or continue with the trial,

based on review of accumulated information from preceding stages. If the decision is

to continue, then the next study is designed using the results from the previous stages

(Jennison and Turnbull, 2005). There are several adaptive methods in clinical trials

that include sample size re-estimation, adaptive randomization, adaptive dose finding

and adaptive hypotheses, but for the purpose of this work only sample size re-estimation

is discussed here.

3.3.1 Sample size re-estimation

In calculating the sample size of a clinical trial, investigators usually make assumptions

about the expected treatment effect and the variance of the outcome variable(s). If the

assumptions are not correct and the actual values of the parameters differ substantially

from the expected, the sample size may be too small or large, thereby under-powering

or overpowering the study, both of which have serious consequences. For example, an

underpowered study may lead to inability to detect the treatment effect and making

the trial inconclusive. While an overpowered study leads to wastage of resources that

may be used elsewhere. Sample size re-estimation allows the parameter estimates to be

updated during an ongoing trial, and then used to modify the sample size accordingly.

Suppose that after n1 observations per group have been taken, the standardized

statistic Z1 =
√
n1/2σ̂2(Ȳ1 − X̄1) is computed. Assume n1 is large enough so that
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σ2 can be estimated after n1 observations has been taken. Proschan and Hunsberger

(1995) proposed a standard method for calculating the number of the additional ob-

servations n2 = n2(z1) based on the observed z1 using conditional power (CP). Let

CPδ(n2, zα|z1) denote the conditional probability that Z based on n1 +n2 observations

exceeds the critical value zα, given that Z1 = z1, and that (µy − µx)/σ = δ. Proschan

and Hunsberger (1995) conditional power approach is given by

CPn2,Zα|Z1 = Pr (Z > Zα|Z1 = z1, δ)

=1− Z

{
Zα
√

2(n1 + n2)− Z1

√
2n1 − n2δ√

2n2

}
,

(3.42)

where the treatment difference in standardized form δ is replaced with the observed

estimate.

Sample size calculation generally requires that the standard deviation of the pro-

cess/observations be known. When the standard deviation is unknown, it is estimated

from previous data on the topic or at least from a pilot study. However treating es-

timates obtained from data observed at interim stage as true values lead to the same

problem faced at the original calculation of the sample size before conducting the study.

More so, when a clinical trial starts with a small sample size, re-estimating the sample

size based on observed treatment difference instead of the actual clinical difference that

need to be detected can cause bias and be misleading (Chow et al., 2008). Chapter 6

provided more discussions on sample size re-estimation with regard to sequential bias

in accumulating evidence in meta-analysis.
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Chapter 4

A sequential method for

random-effects meta-analysis

As earlier mentioned in the introductory Chapter, temporal changes in magnitude of

effect sizes reported in many areas of research can impair the validity of results and

conclusions in meta-analysis. Standard sequential methods proposed for monitoring

the trends are based on solid statistical theory only in fixed effect approach, and there-

fore are not suitable for sequential random-effects meta-analysis. The major obstacle

in simple application of the sequential methods in random-effect meta-analysis is han-

dling of the between-study variance, τ 2 (Higgins et al., 2011). When the number of

studies are few many estimators of τ 2 underestimate it. This Chapter introduces the

use of a truncated CUSUM-type test (Gombay method) for the sequential random-

effects meta-analysis. The Gombay method is a sequential change detection test for

parametric models in the presence of a nuisance parameter. A nuisance parameter is a
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parameter that is not of immediate interest but must be accounted for in the course of

the analysis. So in the application of the method in random-effects meta-analysis, the

between-study variance is treated as the nuisance parameter. The Gombay method is

a large-sample method suitable for most practical problems whether their observations

are independent or not.

Section 4.1 describes the Gombay method. Section 4.2 formulates the Gombay

method for random-effects model of meta-analysis. Section 4.3 is the report on a sim-

ulation study of the Gombay test for sequential REM with standard critical values

obtained from asymptotic theory. Discussion of the Gombay method based on critical

values derived from asymptotic theory is presented in Section 4.4.

4.1 The Gombay Method

Before presenting the Gombay method we briefly introduce the score test which is

closely related to the Gombay method.

4.1.1 Score test

The score test introduced by Rao (1948) is a fixed sample size test of a null hypothesis

that a parameter of interest takes a particular value. Let X be an independent random

variable with density f(X,ω), where ω is a parameter of interest. The score test statistic

for testing a null hypothesis H0 : ω = ω0 is defined (Rao, 1948) by

S(ω) =
[µ(ω)]2

I(ω)
, (4.1)

71



where µ(ω) = ∂
∂ω

log [f(X,ω)] is known as the score vector and I(ω) = var [µ(ω)] =

EX

[
(µ(ω))2] = EX

[(
∂
∂ω

log[f(X,ω)]
)2
]

is the Fisher information and the derivatives

taken at ω0. Under the null hypothesis the statistic S(ω) is χ2 distributed with 1

degrees of freedom (Rao, 1948).

In most statistical problems ω is rarely only a parameter of interest. Let ω = (θ, η),

such that the observed variable X ∼ f(., θ, η), θ is a vector of real parameters of

interest and η is the vector of nuisance parameter. Since the interest is in inference

about the parameters of interest θ, it is important to find a way to deal with the

nuisance parameter. One way to eliminate the nuisance parameter is by conditioning

the score statistic, (see (Lindsey, 1983, Basu, 1977)). A suitable statistic is chosen, say

g(x ∈ X) : (x ∈ X,ω)→ (y ∈ Y, θ) such that the conditional distribution of µc depends

on ω only through θ. The conditional score vector may be defined (Lindsey, 1983) by

g(x ∈ X) = µ(ω)− E [µ|T ] , (4.2)

where T is a sufficient statistic whose sampling distribution depends on θ only. If θ

is real-valued, the information corresponding to g(x ∈ X) is obtained from a Fisher

information matrix for the parameters (θ, η) given (Gombay and Serbian, 2005, Lindsey,

1983) by

I =

Iθθ Iθη

Iηθ Iηη

,

and the marginal information about θ, also known as the effective information, is given

by I(θ) = Iθθ − IθηI−1
ηη Iηθ, see (Bera and Bilias, 2001, Gombay and Serbian, 2005).
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4.1.2 Sequential hypotheses and Gombay test statistic

The Gombay method is a sequential change detection test for parametric models in the

presence of a vector nuisance parameter. It is closely related to the score test described

above. However the score test is a fixed sample size test of a null hypothesis that a

parameter of interest takes a particular value, while the Gombay test is a sequential

change detection test with the test statistic defined by the maximum of a sequence of

score statistics Sj = S|X(j) = c(X1, X2, ..., Xj) calculated from the sequence of observed

data, Gk = max {S1, S2, ..., Sk}. Below we describe the Gombay method introduced as

test I in Gombay and Serbian (2005). Consider a sequence of independent random

variables (r.v.) X1, X2, .... ∼ fθi,ηi , where f is a probability density function, θ is a

(vector) parameter of interest and η is a nuisance parameter. Consider a test for the

composite hypothesis

H0: θi = θ0, ηi = η; i = 1, 2, .... against alternatives

H1:


θi = θ0, ηi = η; i = 1, 2, ...r,

θi = θ0 + ∆θ, ηi = η; i ≥ r + 1,

where r ≥ 1 is an unknown time of change, ∆θ, a shift in the value of the parameter of

interest from θ0 and η an unknown nuisance parameter. The null value of the vector of

parameter of interest θ0 can take any value from Rd. In the context of meta-analysis,

comparing a treatment and a control group, the null value of the effect parameter may

be set at θ0 = θT − θC = 0; while for a meta-analysis of stage IV clinical trials with

the research interest to detect any possible shift from a known effect of a treatment,
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Table 4.1: Critical values of two-sided Gombay test C(α), χ2
1 distribution χ2

1(α) and

standard normal distribution Z1−α

K 10 10 50 50 50 100 100 100 1000 1000 1000

α 0.025 0.05 0.010 0.025 0.05 0.010 0.025 0.05 0.010 0.025 0.05

C(α) 4.0177 3.4710 4.5032 3.9438 3.5164 4.4892 3.9606 3.5566 4.5062 4.0363 3.6772

C∗(α) 4.5544 4.0077 4.9229 4.3635 3.9360 4.8859 4.3572 3.9532 4.8588 4.3889 4.0297

Z1−α 1.9599 1.6449 2.3263 1.9599 1.6449 2.3263 1.9599 1.6449 2.3263 1.9599 1.6449

the null hypothesis may be set at a value other than zero, say θ0 = θp, where θp is the

value of the known effect of the treatment from results of previous studies.

Denote ψ = (θ, η). The log-likelihood function at the k-th interim analysis is

l(ψ) =
∑k

i=1 ln f(Xi, ψ), and the score vector for θ and η is defined by

Vk(θ0, η) =
∂l(ψ)

∂ψ
=

k∑
i=1

∂

∂ψ
log fθ0η(Xi). (4.3)

In order to define a test statistic for the hypotheses about θ, a Fisher information matrix

I for k observations is partitioned as

I =

Iθθ Iθη

Iηθ Iηη

,

where

I11 =
(
−E ∂2

∂θ2
l(θ, η)

)
, I22 =

(
−E ∂2

∂η2
l(θ, η)

)
and I12 = I t21 =

(
−E ∂2

∂θ∂η
l(θ, η)

)
.
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Replacing the nuisance parameter η with its restricted maximum likelihood estimate

η̂k, obtained from the solution of

k∑
i=1

∂

∂η
log f(Xi : θ0, η) = 0, (4.4)

the conditional efficient score vector Vk is given by

Vk(θ0, η̂k) =
k∑
i=1

∂

∂θ
log fθ0η̂(Xi). (4.5)

This vector is also sometimes termed effective score vector and its variance Γk(θ0, η) =

I11 − I12I
−1
22 I21 is called effective information, (Bera and Bilias, 2001). Note that for

independent and identically distributed r.v.’s, this variance increases linearly with the

number of observations: Γk(θ0, η) = kΓ1(θ0, η). Under some standard regularity condi-

tions guaranteeing the existence and consistence of a sequence of maximum likelihood

estimates given by Serfling (1980) and Lehmann (2001), Gombay and Serbian (2005)

showed that under H0, as k →∞, the effective score vector can be written as

Vk(θ0, η̂k) =
k∑
i=1

∂

∂θ
log fθη̂k

=
k∑
i=1

{
∂

∂θ
log fθ0η

}

−
k∑
i=1

{
∂

∂η
(log fθ0η) I

−1
22 (θ0, η)I21(θ0, η)

}

+O(log log k)

=
k∑
i=1

Zi +O(log log k),

(4.6)

where Zi are independent identically distributed (i.i.d.) random variables with expected

value E[Zi] = 0 and the covariance matrix cov(Zi) = k−1Γk(θ0, η), for Γk(θ0, η) =
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I11 − I12I
−1
22 I21. It follows that the statistic

Tk =
√
kΓk(θ0, η)−1/2

k∑
i=1

∂

∂θ
log fθ0,η̂k (4.7)

is asymptotically (k →∞) the sum of i.i.d. random variables with mean 0 and variance

1, and thus a sequence of statistics {Tk} can be approximated by a standard Wiener

process. In order to use the statistic Tk, for testing the covariance Γk(θ0, η) is replaced

with its estimate Γk(θ0, η̂k). Gombay (2003) and Gombay and Serbian (2005) introduced

a sequential change detection test based on statistic Tk in (4.7) as follows. For k =

2, 3, · · · , K, where K is a truncation point, reject H0 in favor of a positive change

∆θ > 0 at time k if

G(K) =max
1<k≤K

1√
K
Tk ≥

√
KC(α) (4.8)

and if no such k, k ≤ K, exists do not reject H0. The asymptotic critical values C(α)

of this 1-sided test are calculated by

C(α) =(2 log logK)−
1
2 (− log(− log(1− α)) + 2.5 log logK − 1

2
log π), (4.9)

where α is the significance level and K is the truncation point or the maximum number

of observations. For the two-sided test based on |Tk|, the critical values are given by

C∗(α) =(2 log logK)−
1
2 (− log(−1

2
log(1− α)) + 2.5 log logK − 1

2
log π). (4.10)

Table 4.1 shows that the critical values of the Gombay test decrease with increase

in maximum number of observations (studies) K, and with increase in the value of

significance level α. The critical values of the Gombay test are higher compared with

the critical values Z1−α obtained from standard normal distribution. See Gombay
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(2003) and Gombay and Serbian (2005) for a detailed derivation and discussion of this

method.

4.2 Formulation of the Gombay test statistic for

REM

To apply the Gombay method in random-effects model of meta-analysis, assume studies

are conducted independently and sequentially over time. However, in practice a diffi-

culty can arise in determining the order in which studies are performed or published.

For example the year of publication of two or more studies may coincide. Where such

difficulty arises the order is selected randomly. Each study estimates a treatment ef-

fect, yi for i=1, 2, .... with variance σ2
i . Assume that there is no correlation between

the effect size estimates and the variances. Under the null hypothesis, H0, each ef-

fect estimate is normally distributed with the same mean θ, yi ∼ N (θ, (ŵ∗i )
−1), where

ŵ∗i = (τ̂ 2 + σ2
i )
−1 is the estimate of the weight in random effects model. The mean

parameter, θ is the population treatment effect and it is estimated at the step k as

weighted mean of the individual effect estimates, θ̂k =
∑k

i=1 ŵ
∗
i yi/

∑k
i=1 ŵ

∗
i , k=1, 2, .....

Let θ = θ0 be the null value of the effect parameter. As more studies are conducted and

results are continually combined, the goal is to determine when the combined effect, θ̂k

changes significantly from the null value, θ0 if at all, and stop further studies.
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The log likelihood function required to define the Gombay test statistic is given by

L
(
yi : θ, τ 2

)
=

1

2

{
log ŵ∗i − ŵ∗i (yi − θ0)2 + C

}
, (4.11)

where C is a constant. The efficient score statistic is Vk =
∑k

1 ŵ
∗
i (yi−θ0). This familiar

statistic is routinely used in meta-analysis for testing a value of the mean in k studies.

Its variance is Γk =
∑k

1 E[ŵ∗i ]. In the sequential setting, the Gombay test statistic is

based on the maximum of the standardised and scaled by
√
k score statistics (4.8) given

by

Tk =

√
k

k∑
i=1

ŵ∗i (yi − θ0)√
k∑
i=1

E[ŵ∗i ]

. (4.12)

Because the probability distribution of τ̂ 2 is unknown, the expected value of the es-

timated weight ŵ∗i in (4.12) needs to be approximated. Assuming that the expected

value E[τ̂ 2
i ] = τ 2 for i=1, 2, ..., K, the expected value of the estimated weight esti-

mates in (4.12) can be approximated by the first term in their Taylor series expansion,

E[ŵ∗i ] = w∗i (τ
2). The between-study variance component τ 2 is estimated using the full

information available from k studies, τ̂k, or from all K studies, τ̂ 2
K .

We proposed a sequential test using the weights w∗i = wi(τ̂
2
k ) and E[ŵ∗i ] = w∗i (τ̂

2
k ) in

(4.12), and based on the maximum (over all k ≤ K) of
√
kTk, see Dogo et al. (2015).

The τ 2 was estimated by one of the methods by DerSimonian and Laird (1986); Higgins

et al. (2011); Paule and Mandel (1982) and the REML. In what follows, the Gombay

test statistics based on the four above estimators are denoted by GDL, GH, GMP and

GREML, respectively.
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4.3 The simulation study.

The objectives of the simulation study presented in this Section is to evaluate the Type

I error rate and the power of Gombay test for REM with standard critical values in

relation to the number of studies K in the meta-analysis, average studies sizes n, and

the amount of heterogeneity in the treatment effects τ 2. The simulation study also

compares the performance of the Gombay test for REM with standard critical values

based on four different estimators of τ 2; DerSimonian and Laird (1986), Higgins et al.

(2011), Paule and Mandel (1982) and the REML.

The data for the simulations were generated as follows. For studies i=1, 2, ..., K,

the sample sizes were generated from normal distribution, ni ∼ N
(
n, n

4

)
rounded to

the nearest integer and values less than 3 were truncated at 3. The sample variances,

S2
i were generated from the scaled Chi-squared distribution, S2

i ∼
σ2
i

(ni−1)
χ2
ni−1. The

effect size estimates were generated from normal distribution, yi ∼ N (∆θ, σ2/ni + τ 2),

where ∆θ is the difference in the null value of effect parameter θ0 and the alter-

native θ0 + h. Critical values were calculated based on 5 % significance level and

the null value of the effect parameter set at θ0 = 0. The sequential testing starts

with a minimum of two studies and stops as soon as a boundary value is reached

or after the Kth interim analysis. For each combination of the following variables:

σ2 = 1, ∆θ = (0.00, 0.05, 0.10, 0.15, 0.20), n = (20, 50, 100, 1000), K = (10, 30, 50) and

τ 2 = (0.00, 0.015, 0.030, 0.045, 0.060), a total of 10,000 simulations were conducted, then

the empirical power of the test to reject H0 was calculated and recorded. The values
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Figure 4.1: Overall Type I error achieved by Gombay test for REM with standard critical values

at the nominal 0.05 level based on DerSimonian and Laird (1986); Higgins et al. (2011); Paule and

Mandel (1982) and REML estimators of τ2 (GDL -red line, GH - green, GPM - yellow and GREML

- purple line, respectively). K is the number of studies; n is the average sample size of studies; ∆θ

is the amount of shift in value of the effect parameter from θ0, τ2 is the value of the between-study

variance. The black straight line represents the nominal 0.05% level for the test.80



Figure 4.2: Power of Gombay test for REM with standard critical values at the nominal 0.05 level

based on DerSimonian and Laird (1986); Higgins et al. (2011); Paule and Mandel (1982) and REML

estimators of τ2 (GDL -red line, GH - green, GPM - yellow and GREML - purple line, respectively).

K is the number of studies; n is the average sample size of studies; ρ is the power of the test and ∆θ

is the amount of shift in value of effect parameter from θ0; τ2 is the between-study variance.81



Figure 4.3: Power of Gombay test for REM with standard critical values against τ2 based on

DerSimonian and Laird (1986); Higgins et al. (2011); Paule and Mandel (1982) and REML estimators

of τ2 (GDL -red line, GH - green, GPM - yellow and GREML - purple line, respectively). K is the

number of studies; n is the average studies size; ρ is the power and τ2 is the between-study variance.

∆θ is the amount of shift in value of effect parameter from θ0.
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Figure 4.4: Deviations in power ∆ρ of Gombay test for REM with standard critical values at 5%

level from the mean powers of the four tests based on DerSimonian and Laird (1986); Higgins et al.

(2011), Paule and Mandel (1982) and REML estimators of τ2 (GDL -red line, GH - green, GPM -

yellow and GREML - purple line, respectively). K is the number of studies; n is the average studies

size; ∆ρ is the deviation in power from the mean power of the tests based on 4 estimators of τ2, ∆θ

is the amount of shift in value of the effect parameter from θ0; τ2 is the between-study variance.
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of the variables used in the simulation were specifically chosen to cover most of the

practical situations. See the results in Figures 4.1-4.4.

4.3.1 Type I Error of the Gombay test for REM

A key issue in testing of statistical hypothesis is the ability to achieve good power while

maintaining the probability of Type I error, that is, the probability of false rejection.

Figure 4.1 shows the overall Type I errors achieved by Gombay test for REM with

standard critical values based on four estimators of τ 2; DerSimonian and Laird (1986);

Higgins et al. (2011), Paule and Mandel (1982) and the REML (GDL, GH, GPM and

GREML, respectively). When n=20, the values of Type I error rates achieved by the

test based on all the four estimators are below the nominal level of 0.05. But as n

increases to 50, GDL, GPM and GREML cross the nominal 5% level for larger values

of τ 2. The achieved level of GH is still below the nominal level for all studied values

of heterogeneity. When n=100, the Type I error rates achieved by the tests based on

all the four estimators of τ 2 increase and cross the nominal level when τ 2 = 0.025 for

GDL, GPM and GREML and when τ 2 = 0.04 for GH. For all values of n and τ 2, GDL,

GPM and GREML produce higher Type I error rates compared to GH.

In general, the Gombay test for REM with standard critical values does not control

the Type I error rate well. The Type I errors achieved by the Gombay method increase

with increase in K, n and τ 2, and the tests do not control the Type I error rate. Besides,

the levels achieved by the tests in FEM when τ 2 = 0 are practically zero.
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4.3.2 Statistical Power of Gombay test for REM

Figures 4.2-4.4 show the analysis of the power of Gombay test for REM based on Der-

Simonian and Laird (1986); Higgins et al. (2011), Paule and Mandel (1982) and the

REML estimators of τ 2. As expected, the power increases with increase in the number

of studies K, average study size n and the value of the population treatment effect θ.

Figure 4.3 demonstrates that the power decreases with increase in heterogeneity τ 2.

This should be expected as the increase in variability makes detection of a treatment

effect more difficult. However, counter-intuitively the power increases with heterogene-

ity when n=20. The reason for this is the extreme conservativeness of the Gombay test

for REM when n is relatively small, see Figure 4.1. Without the control of Type I error

rate, a comparison of power is pointless. However, Figure 4.4 shows comparison of the

power of the tests based on four different estimators of τ 2 when the value of τ 2 = 0.06.

The differences in the power between the four tests are very small. When n = 20

GREML is more powerful, followed by GDL, GMP and GH is the least powerful. To

some extend this is also true for larger values of n, however as the value of θ increases,

the power of GH increases and it eventually becomes more powerful compared to the

other three tests.

4.4 Discussion

This Chapter has considered the use of asymptotic Gombay method for sequential

meta-analysis that incorporates random effects and accounts for heterogeneity amount
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of the treatment effects. The Gombay test statistic for REM has been defined based

on four different estimators of τ 2; DerSimonian and Laird (1986), Higgins et al. (2011),

Paule and Mandel (1982) and REML methods. However, simulations of the Gombay

test for REM with standard critical values obtained from asymptotic theory show that

the test does not control the Type I error rate well. As was shown in the simulation

results, the Type I error achieved by the test is close to zero when the value of τ 2 is

small. In contrast, larger values of τ 2 lead to considerable inflation of the Type I error

rate. The Type I error of the test also depends on the values of the average sample size

n and the number of studies K in the analysis.

Without the control of type I error, the comparison of power of the tests based on

different estimators of τ 2 is not valid, though the test based on REML estimator of τ 2

appears to result in the higher statistical power compared to the tests based on other

three estimators considered.

In general, the use of Gombay method with the standard critical values obtained

from asymptotic theory is disappointing. However the Gombay method has some impor-

tant characteristics that can be improved upon to provide a better sequential approach

for random-effects meta-analysis. In particular, the lack of control of the Type I error

rate by the proposed test can be explained by the use of asymptotic approximations

based on Wiener’s process (see Gombay and Serbian (2005)) to obtain the critical val-

ues of the Gombay test.

Another problem that might have contributed to the lack of control of the Type

I error rate by the proposed method is that the Gombay method assumed that the
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sample observations have the same distribution f . However, in REM the variances of

estimated effects differ, and the sequence {Tk} can by Wiener process only for very

large within-studies sample sizes which make within-study variances σ2
i negligible. In

the next Chapter, bootstrap critical values shall be determined for the use with the

Gombay test. The results of this Chapter are published in International Journal of

Mathematical, Computational, Statistical, Natural and Physical Engineering, see Dogo

et al. (2015).
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Chapter 5

Gombay test for REM with

bootstrap critical values

In the previous Chapter, the Gombay method was introduced for sequential moni-

toring of temporal changes in effect sizes in random-effects meta-analysis. However,

simulation has shown that Gombay test for REM with standard critical values does

not control the Type I error rate well. The standard critical values of the Gombay

method are determined based on asymptotic approximation of the distribution of the

test statistic under the null hypothesis, see Gombay and Serbian (2005). Asymptotic

theory often provides inaccurate approximation of finite sample distributions of test

statistic (Horowitz, 1997). As follows from the simulations in Section 4.3, a poor ap-

proximation of the distribution of the Gombay test statistic for REM under the null

hypothesis leads to a test that does not control the Type I error rate and has low sta-

tistical power. Bootstrap-based critical values are introduced in this Chapter for the
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use with the Gombay method. For simplicity, this test is referred to as retrospective

Gombay sequential bootstrap test for REM.

The bootstrap is a method for estimating the distribution of an estimator or a test

statistic by re-sampling the data (Horowitz, 2001). The data in bootstrap method is

treated as if it were the population with the aim to evaluate the distribution of interest.

The bootstrap is a computer-based method which substitutes considerable amounts of

computation in place of theoretical analysis (Efron and Tibshirani, 1985). Bootstrap-

based critical values produce spectacular reduction in the finite sample error compared

to the asymptotic ones (Hall and Horowitz, 1996), and provide dramatic reductions

in the difference between the true and nominal levels of a test (Horowitz, 1997). In

Section 5.1, the retrospective Gombay sequential bootstrap test for REM is presented.

Section 5.2 reports on simulations of retrospective Gombay sequential bootstrap test

for REM. Sections 5.3 and 5.4 present the application and discussion of the use of ret-

rospective Gombay sequential bootstrap test in random-effects model of meta-analysis,

respectively.
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5.1 The retrospective Gombay sequential bootstrap

test for REM

Define the retrospective Gombay sequential bootstrap test statistic for REM for detec-

tion of a shift ∆θ in the effect parameter from θ0 by

GK =max
1<k≤K

1√
K

k∑
i=1

w∗i (τ̂
2
K)(yi − θ0)√

k∑
i=1

w∗i (τ̂
2
K)

. (5.1)

The statistics
k∑
i=1

ŵ∗i (yi−θ0) and
k∑
i=1

ŵ∗i (τ̂
2
K) are the estimates of the efficient score vector

and the value of the Fisher information at the k-th interim analysis calculated based on

the best estimate of τ 2 from all available K studies, τ̂ 2
K . Note that as the knowledge of

τ̂ 2
K is required, this is not a true sequential test. This is rather a method allowing ret-

rospective analysis of the sequential combined effects in random-effects meta-analysis.

5.1.1 Bootstrap procedure

Consider the following one- and two-sided retrospective tests for the existence of a shift

from θ0, say ∆θ. The tests are to be performed after combining K studies. Define Tk,

for k=2, ..., K as

Tk =

k∑
i=1

ŵ∗i (τ̂
2
K)(yi − θ0)√

k∑
i=1

ŵ∗i (τ̂
2
K)

, (5.2)

Test: For k =2, 3, ..., K, reject H0 if Tk ≥ KC(α) (one-sided) or |Tk| ≥ KC∗(α)

(two-sided) and if no such k, k ≤ K, exists do not reject H0. The critical values C(α)
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and C∗(α) are to be calculated by bootstrap. Let

G∗ =max
2≤k≤K

{
1√
K
Tk

}
and G∗∗ =min

2≤k≤K

{
1√
K
Tk

}
.

The calculation of the bootstrap critical values is based on the percentiles of the em-

pirical distribution of G∗ and G∗∗ calculated from the set of bootstrap samples of the

data. The step procedure for the calculations are as follows.

1. From the observed data, calculate the effect estimates yi, the sample variances S2
i ,

study sizes, ni, and other sample statistics as required, for i=1, 2, ..., K. Calculate

τ̂ 2
K using one of the methods for estimating τ 2 by DerSimonian and Laird (1986),

Higgins et al. (2011), Paule and Mandel (1982) or REML.

2. Use the values of τ̂ 2
K , the null value of the effect parameter, θ0 and other sam-

ple statistics to draw B independent bootstrap samples of the effect estimates

from an appropriate distribution, i.e. the distribution of the sampled data from

studies. Calculate or generate from an appropriate distribution B bootstrap esti-

mates of the within-study variances, S2
bi

, for i=1, 2, ..., K. A standard choice for

constructing bootstrap test is to use B=1000.

3. Use the bootstrap values {(ybi , S2
bi

), i=1, 2, ..., K} to calculate the estimate of

τ 2, τ̂ 2
b for each sample b=1, 2, ..., B, and the corresponding estimated weights in

random-effects model as wbi = (τ̂ 2
b + S2

bi
)−1.

4. For each bootstrap sample b =1, 2, ..., B, calculate the sequential statistics

Tbk =
k∑
i=1

w∗bi(ybi − θ0)/

√√√√ k∑
i=1

w∗bi. (5.3)
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Find G∗b and G∗∗b statistics as follows.

G∗b =max
2≤k≤K

{
K−

1
2Tbk

}
; G∗∗b =min

2≤k≤K

{
K−

1
2Tbk

}
(5.4)

5. Order the bootstrap replicates of G∗b and G∗∗b , as G∗1 ≤ G∗2 ≤ G∗3 ≤ ... ≤ G∗B and

G∗∗1 ≤ G∗∗2 ≤ G∗∗3 ≤ ... ≤ G∗∗B . For a one-sided test, the upper critical values

are given by [B × (1− α) + 1]th element in the sequence of {G∗b}, while the lower

critical values are calculated by [B × α]th element in the sequence of {G∗∗}. Use

α/2 instead of α for the two-sided test.

Step 2 of the above bootstrap procedure is very effect measure specific. Below are

presented the details for several popular effect measures available in the R program

provided in the Appendix.

5.1.2 Sample mean

When the effect of interest yi is the sample mean of the ni normally distributed obser-

vations, and its variances S2
i = s2

i /ni for the sample variance s2
i , generate B bootstrap

effects ybi ∼ N(θ0, τ̂
2 + S2

i ) and B bootstrap estimates of the within-study variances,

S2
ib ∼ S2

i χ
2
ni−1, for i = 1, 2, ..., K.

5.1.2.1 Mean difference

When the effect of interest yi is the difference of the treatment (T) and control (C) sam-

ple means of normally distributed observations, denote sample variances in the two arms

by s2
iT and s2

iC , with the sample sizes niT and niC , respectively. The variance of the mean
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difference is S2
i = s2

iT/niT + s2
iC/niC . Generate B bootstrap effects ybi ∼ N(θ0, τ̂

2 + S2
i )

and B pairs of the bootstrap within-arms sample variances, s2
biT ∼ s2

iTχ
2
niT−1/(niT − 1)

and s2
biC ∼ s2

iCχ
2
niC−1/(niC − 1), for i = 1, ..., K. Then calculate the within-studies

variances, S2
bi = s2

biT/niT + s2
biC/niC .

5.1.2.2 Standardised mean difference

The standardised mean difference (SMD) δ = (µT i − µCi)/σ is estimated by yi =

J(Ni)(X̄T i − X̄Ci)/spi for the pooled sample variances s2
pi = [(niT − 1)s2

iT + (niC −

1)s2
iC ]/(Ni−2), where Ni = nCi+nT i and J = Γ[(Ni−2)/2]/(

√
(Ni − 2)/2Γ[(Ni−3)/2])

is a constant depending only on the total sample size Ni. The variance is estimated by

(see (Hedges and Olkin (1985), p. 104-5))

S2
i =

(Ni − 2)NiJ
2
i

(Ni − 4)nCinT i
+

(
(Ni − 2)J2

i

Ni − 4
− 1

)
y2
i := Ai +Biy

2
i , (5.5)

whereA andB depend only on sample sizes.
√
nT inCi/Niyi has non-central t-distribution

with Ni−2 degrees of freedom, and the non-centrality parameter
√
nT inCi/Niδ, denoted

by t(Ni−2,
√
nT inCi/Niδ). Generate B bootstrap effects ybi from [J(Ni)Ni/

√
nT inCi]×

t(Ni − 2,
√
nT inCi/Niδ) distribution and calculate their variances S2

bi from equation

(5.5).

5.1.3 Binomial effect measures

Denote the numbers of events in the control and treatment arms of the studies by XCi

and XT i, respectively. Let a = 0. When XCi = 0 or XCi = nCi, take a = 1/2. Estimate
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probabilities pCi = (XCi − a)/(nCi + 2a). When the effect of interest yi is the log odds

ratio or the log relative risk, discard the studies with XCi + XTi = 0 or nCi + nT i and

adjust the total number of studies K accordingly.

5.1.3.1 Log odds ratio

When the effect of interest yi is the log odds ratio, generate B vectors of length K

containing within-study log odds ratios θbi ∼ N(θ0, τ̂
2). Given the values of pCi and θbi,

the logits in the treatment groups are logit(pTbi)+θbi. Hence calculate the probabilities

pTbi and simulate the numbers of the study outcomes XTbi and XCbi from the binomial

distributions Binom(nT i, pTbi) and Binom(nCi, pCi), respectively. Following Gart et al.

(1985) to obtain unbiased estimators of the log odds ratios and their variances, calculate

the log odds ratios as ybi = log[(XTbi+1/2)/(nT i−XTbi+1/2)]−log[(XCbi+1/2)/(nCi−

XCbi+1/2)] and the variances are S2
bi = (XTbi+1/2)−1 +(nT i−XTbi+1/2)−1 +(XCbi+

1/2)−1 + (nCbi −XCbi + 1/2)−1.

5.1.3.2 Log relative risk

In case of log relative risks yi, generate B vectors of length K containing within-study

mean log relative risks θbi from N(θ0, τ̂
2) distribution with the i-th distribution trun-

cated on the left at − log pCi, i = 1, ..., K. The use of truncated normal distributions

to restrict the range of the possible values of log relative risks is required to guaran-

tee the treatment probabilities below 1. Given the values of pCi and θbi, calculate the

probabilities in the treatment groups pTbi = pCiexp(θbi). Generate the numbers of the
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study outcomes XTbi and XCbi from the binomial distributions Binom(nT i, pTbi) and

Binom(nCi, pCi), respectively. Following Pettigrew et al. (1986) to obtain the unbiased

estimators of the log relative risk and their variances, calculate the log relative risk

as log((XTbi + 1/2)/(nT i + 1/2)) + log((XCbi + 1/2)/(nCi + 1/2)) and the variances as

S2
bi = (XTbi + 1/2)−1 − (nT i + 1/2)−1 + (XCbi + 1/2)−1 − (nCi + 1/2)−1.

5.1.3.3 Risk difference

In case of risk difference yi, generate B vectors of length K containing within-study

mean risk differences θbi from N(θ0, τ̂
2) distributions with the ith distribution truncated

to the interval

[-pCi, 1 − pCi], i = 1, ..., K. The use of truncated normal distributions to restrict

the range of possible values of risk differences is required to guarantee the treatment

probabilities below 1. Given the values of pCi and θbi, calculate the probabilities in

the treatment groups pTbi = pCi + θbi. Generate the numbers of the study outcomes

XTbi and XCbi from the binomial distributions Binom(nT i, pTbi) and Binom(nCi, pCi),

respectively. Calculate the risk differences as ybi = XTbi/nT i−XCbi/nCi and the variance

as S2
bi = (XTbi+a)(nT i−XTbi+a)/(nT i−2a)3 +(XCbi+a)(nCi−XCbi+a)/(nCi−2a)3.

Use a = 0 unless XTbi = 0 or XTbi = nT i or XCbi = 0 or XCbi = nCi, in which case use

a = 1/2.
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Figure 5.1: Type I errors achieved by retrospective Gombay sequential bootstrap test for REM
based on DerSimonian and Laird (1986), Higgins et al. (2011), Paule and Mandel (1982) and
REML estimators of τ 2 (GDL -red line, GH - green, GPM - yellow, GREML - purple line, penalized
Z-test-darkgrey, and SMA based on Pocock’s boundaries-pink, respectively) . K is the number of
studies; n is the average sample size; ∆θ is the shift in effect parameter from θ0 = 0, τ 2 is the
between-study variance. The black straight line represent the nominal level of 5% for the test.
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Figure 5.2: Deviation of Type I error ∆α achieved by retrospective Gombay sequential bootstrap
tests for REM from the nominal level based on DerSimonian and Laird (1986), Higgins et al.
(2011), Paule and Mandel (1982) and the REML estimators of τ 2 (GDL -red line, GH - green,
GPM - yellow and GREML - purple line, respectively). K is the number of studies; n is the average
sample size; ∆θ is the shift in effect parameter from θ0 = 0, τ 2 is the between-study variance and
nominal level of the tests is α = 0.05. The black straight line corresponds to point where the
difference is zero. 97



Figure 5.3: The power of retrospective Gombay sequential bootstrap test for REM based on
DerSimonian and Laird (1986), Higgins et al. (2011), Paule and Mandel (1982) and REML
estimators of τ 2 (GDL -red line, GH - green, GPM - yellow and GREML - purple line, respectively)
against ∆θ. K is the number of studies; n is the average sample size; ρ is the power while ∆θ is
the change in effect parameter from θ0 = 0, τ 2 is the between-study variance.
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Figure 5.4: Deviations of power of retrospective Gombay sequential bootstrap test for REM from
the mean power of the tests based on DerSimonian and Laird (1986), Higgins et al. (2011), Paule
and Mandel (1982) and REML estimators of τ 2 (GDL -red line, GH - green, GPM - yellow and
GREML - purple line, respectively) when τ 2 = 0.05. K is the number of studies; n is the average
sample size; ∆ρ is the deviations in power from the average power of the four tests while ∆θ is the
change in effect parameter from θ0 = 0, τ 2 is the between-study variance.
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Figure 5.5: Deviations of power of retrospective Gombay sequential bootstrap test for REM from
the mean power of the tests based on DerSimonian and Laird (1986), Higgins et al. (2011), Paule
and Mandel (1982) and REML estimators of τ 2 (GDL -red line, GH - green, GPM - yellow and
GREML - purple line, respectively) when ∆θ = 0.05. K is the number of studies; n is the average
sample size; ∆ρ is the deviations in power from the average power of the four tests while ∆θ is the
change in effect parameter from θ0 = 0, τ 2 is the between-study variance.
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Figure 5.6: The power of retrospective Gombay sequential bootstrap test for REM based on
DerSimonian and Laird (1986), Higgins et al. (2011), Paule and Mandel (1982) and REML
estimators of τ 2 (GDL -red line, GH - green, GPM - yellow and GREML - purple line, respectively)
when ∆θ = 0.05 against τ 2. K is the number of studies; n is the average sample size; ρ is the
power while ∆θ is the change in effect parameter from θ0 = 0, τ 2 is the between-study variance.
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5.2 Simulation Study

To evaluate the properties of the retrospective Gombay sequential bootstrap test pre-

sented in Section 5.1, a simulation study was conducted. The observed estimates of the

treatment effect were generated using the normal distribution, yi ∼ N(∆θ, τ 2 + σ2
i ),

where ∆θ is the difference in the null value of effect parameter θ0 and the alternative

θ0 + h. The studies sizes were generated using the normal distribution, ni ∼ N
(
n, n

4

)
rounded to the nearest integer and truncated on the left at 3, n is the average sample

size of the studies. Estimates of sample variances, σ̂2
i were generated using scaled Chi-

square distributions, σ̂2
i ∼

σ2
i

(ni−1)
χ2
ni−1. This choice ensures that E[σ̂2

i ] = σ2
i . Estimated

variances of estimated treatment effects yi are S2
i = σ̂2

i /ni. The data for each simulated

meta-analysis consisted of a total of K estimates of the observed treatment effects, their

estimated variances, and corresponding sample sizes {(yi, S2
i , ni), i = 1, · · · , K}. For

each dataset four bootstrap-based tests were calculated using different estimators of τ 2:

DerSimonian and Laird (1986), Higgins et al. (2011), Paule and Mandel (1982) and

REML (GH, GDL, GPM and GREML, respectively), the penalized Z-test by Lan et al.

(2003) with λ = 2, and SMA based on Lan-DeMets alpha-spending function (Lan and

DeMets, 1983) and Pocock’s boundaries as implemented in program ldbands from the

R package Hmisc (Casper and Perez, 2006). Following Wetterslev et al. (2008), the OIS

for SMA was inflated by an adjustment factor (1− I2)−1 for the I2 inconsistency index

I2 = (Q− (K− 1))/Q (this method is referred to as SMA in the rest of the paper). We

used one-sided tests and the significance level was fixed at α = 0.05. The null value of
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the effect parameter was taken as θ0 = 0 and the calculation of each bootstrap critical

value was based on B = 1000 bootstrap replications. We generated 1000 datasets for

each of the 270 combinations of the following variables chosen to represent a realistic

range of the parameters values:

σ2 = 1,

∆θ = (0.00, 0.05, 0.10, 0.15, 0.20),

n = (20, 50, 100, 1000),

K = (20, 50, 100) and

τ 2 = (0.00, 0.01, 0.02, 0.03, 0.04, 0.05).

For each scenario the number of times the test rejects the null hypothesis was recorded.

The results are presented in Figures 5.1-5.6.

Figures 5.1 compare the overall Type I error rates achieved by retrospective Gombay

sequential bootstrap test for REM based on Higgins et al. (2011), DerSimonian and

Laird (1986), Paule and Mandel (1982) and REML estimators of τ 2 (GH, GDL, GPM

and GREML), the penalised Z-test and SMA. Type I error rates in bootstrap-based

tests with all the four estimators of τ 2 are relatively stable and close to the nominal

level. When K = 20, the values of Type I error rates achieved by GH and GDL are

somewhat higher compared to GPM and GREML, but as K increases to 50 and 100

there is very little difference between the four tests, as is clearer from Figure 5.2. Over-

all, even though there is no clear-cut winners, it appears that the GPM performs slightly

better for smaller studies, and the GREML for large studies. In contrast, the Type I

error rates for the penalised Z-test and the SMA are unsatisfactory. They are far from
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nominal value of 5% and increase with increasing values of K, n and τ 2. Interestingly,

the SMA Type I error rate is mostly below the nominal level and seems to be unstable

when n ≤ 100 and K ≥ 50, but it explodes with increasing τ 2 and n = 1000.

Figures 5.3- 5.6 show the analysis of power of the retrospective Gombay sequen-

tial bootstrap test for REM based on DerSimonian and Laird (1986), Higgins et al.

(2011), Paule and Mandel (1982) and REML estimators of τ 2. In Figure 5.3, as to be

expected, the power of the test increases with increase in number of studies K, average

studies size n and the population treatment effect θ. In contrast, Figure 5.6 shows

that power decreases with increase in heterogeneity variance τ 2. This also should be

expected because increase in variability is known to result to wider confidence interval

thereby making it difficult to detect the presence of an effect especially when it is small.

Figure 5.4 compares power between the four tests when τ 2 = 0.03. For K = 20 the

results show that GH and GDL are more powerful compared to GPM and GREML;

when K = 50 no clear difference in power is observed between the four tests, and as

K increases to 100, GREML becomes more powerful compared to other three tests. In

Figure 5.5 when τ 2 = 0.05, no clear difference is observed anywhere in terms of the

power of the four tests. The power of the retrospective Gombay sequential bootstrap

tests for REM based on all the four different estimators is approximately the same.

Bias of the Type I error rate achieved in our simulations are as follows. Let

TK = TK(X1, ..., XK) be a statistic for testing H0 and CK(α) be the corresponding

bootstrap critical value. If TK is pivotal statistic, i.e. a statistic whose distribution

does not depend on unknown parameter(s), Hall and Horowitz (1996), and Horowitz
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and Savin (2000) showed that

P {|TK | > CK(α)} = α +O(K−2), (5.6)

where α is the nominal level. Since our retrospective Gombay bootstrap test statistic

is asymptotically pivotal and K=(20,50,100), the maximum estimate of the bias in the

Type I error rate achieved is 0.0025 which is negligible. Similarity between the results

of the tests based on the different estimators of τ 2 can be explained by the fact that all

the estimators were of a similar quality in regards to bias and precision when estimating

τ 2.

To summarise on the basis of the simulations, the use of Gombay method with

bootstrap critical values provides a remarkable reduction in the difference between the

true and nominal levels of the test in comparable to the Gombay test for REM with

critical values derived from asymptotic method. The test controls the Type I error rate

well irrespective of the number of studies, studies sizes, the amount of heterogeneity

in the treatment effects or the method of estimating τ 2, and also has high statistical

power. Therefore, this research concentrates on the application of the retrospective

Gombay sequential bootstrap test for REM in the following two examples of medical

meta-analysis.

5.3 Examples

To demonstrate the application of the retrospective sequential bootstrap tests, this

section consider two examples of medical meta-analyses. The results of the bootstrap
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tests are compared with the results obtained from CMA, CUSUM and SMA. The data

for each meta-analysis were sorted chronologically according to year of publication, from

the earliest to the latest. Where the year of publication of two or more studies coincide,

the order was selected randomly. Cumulative meta-analysis were conducted using R

package metafor (Viechtbauer, 2010). SMA was based on Lan-DeMets alpha-spending

function (Lan and DeMets, 1983) and Pocock’s boundaries as implemented in the R

package ldbounds (Casper and Perez, 2006). CUSUM charts were obtained from the R

package qcc (Scrucca, 2004).

5.3.1 Magnesium for myocardial infarction

The first application is based on the systematic review conducted by Li et al. (2007)

to examine the effectiveness of the use of intravenous magnesium for the treatment of

acute myocardial infarction. For simplicity, the data is referred to as the magnesium

data. The data consist of 23 trials published from 1984 to 2004. The outcome of interest

is mortality from acute myocardial infarction and the treatment effects are recorded as

log-odds ratios. A correction factor 0.5 was added to each entry in the data and the

log-odds ratios and its variances were calculated by

ϕ̂i = log
[

(xT+0.5)(nC−xC)
(xC+0.5)(nT−xT )

]
; σ2

i (ϕ̂) = 1
xT+0.5

+ 1
nT−xT

+ 1
xC+0.5

+ 1
nC−xC

. (5.7)

A negative value of ϕi indicates that mortality has been reduced and therefore favours

the use of intravenous magnesium. A standard random effects meta-analysis of the data

indicates a significant benefit in the use of magnesium with combined effect -0.2644
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(p-value=0.0015), τ̂ 2
DL = 0.037 and the value of Q-statistic is equal to 56.1405 with

p-value< 0.0001. The data and the results of the analysis are presented in Tables 8.1

and 8.2 in the Appendix.

Let ϕ be the true value of the estimates of the log-odds ratio, ϕ̂i. For testing

the effectiveness of the new intervention, consider the null hypothesis of no effect of

intravenous magnesium, H0: ϕ = 0. The CMA based on random-effects model and

DerSimonian and Laird (1986) estimator of τ 2 at the target value of 0 first indicates

significant effect with value -1.01 (p-value=0.016) at trial 3. However this result may

be spurious due to the inflated Type I error rate in CMA. The CUSUM, SMA and the

penalized Z-test with the same target value indicate a significant effect at trial 7. When

the bootstrap based tests are used with the same target value of 0. GH and GDL reject

H0 at trials 5 with statistics values -0.4990 and -0.4984, respectively; while GPM and

GREML reject H0 at trials 6 with statistics values -0.5156 and -0.4892, respectively,

see Figure 5.8. Hence for this data the bootstrap-based tests are more powerful in

comparison to the CUSUM, SMA and the penalised Z-test.

Having established that intravenous magnesium is a significantly effective for acute

myocardial infarction, it is important to monitor for any possible trend in the effect

over time. In Figure 5.7, the beginning of an upward trend in the effectiveness of

the use of intravenous magnesium for the treatment of acute myocardial infarction,

so the CMA at this stage, -0.934 (cumulative log-odds ratio at trial 7) is set as the

new target value. Figure 5.7 shows the analysis of the magnesium data using CMA

based on random-effects model and SMA based on Pocock’s boundaries, the penalised
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Z-test and CUSUM. The horizontal line across the CMA corresponds to the combined

log-odds ratio of -0.934 at stage 7. The CMA plot on Figure 5.7 exhibits a gradual

increase in effect (corresponding to reduction in survival benefit), and the deviation

from the horizontal line at -0.934 becomes significant at trial 10. The CUSUM chart

also indicates the significant change at trial 10. The penalised Z-test (Hu et al., 2007,

Lan et al., 2003) with the same target value crosses the upper boundary at trial 14

and SMA at trial 15. In Figure 5.9, GH and GDL methods indicate significant change

at trial 15, while GPM and GREML indicate significant change at trials 20 and 22,

respectively. As to be expected, the CMA and the CUSUM are liberal since they

are based on fixed effect boundaries. The performance of the bootstrap based tests

is consistent with the conclusion in the simulation study that GH and GDL are more

liberal tests compared to GPM and GREML when the number of studies is not large.

5.3.2 Nicotine replacement therapy for smoking cessation

The second example is based on the systematic review by Stead et al. (2008) on testing

the effectiveness of nicotine replacement therapy (NRT) for smoking cessation. Kulin-

skaya and Koricheva (2010) have reproduced and analysed the data using QC charts,

and detected temporal changes in the effect of nicotine on smoking cessation. It will be

interesting to see if such changes can be detected by retrospective Gombay sequential

bootstrap test for REM. The data consist of 53 trials published from 1979 to 2005.

The outcome of interest is the effect of nicotine containing chewing gum compared to
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control in aiding smoking cessation. The effect measure used is the log-relative risk

estimated by

φ̂i = log
[
xT .nC
xC .nT

]
with variance estimated by σ2

i (φ̂) = nT−xT
xT .nT

+ nC−xC
xC .nC

. (5.8)

A positive value of φ̂i means that NRT is effective for smoking cessation. A random

effects meta-analysis based on DerSimonian and Laird (1986) estimator of τ 2 indicates

a significantly different from zero; log relative risk of 0.36 (RR=1.43), p-value< 0.0001;

τ̂ 2
DL = 0.017 and Q-statistic=65.77 with p-value=0.09. This means that the studies are

not very heterogeneous, and therefore it will be interesting to see the performance of

the retrospective Gombay sequential bootstrap test for REM in comparison with the

standard methods which are based on fixed effect model. The data and results of the

analysis are presented in Tables 8.3-8.8 in the Appendix.

Let φ be the true value of the estimates of the log-relative risk, φ̂i. For a new

intervention the objective is to test the null hypothesis of no effect of chewing gum,

H0 : φ = 0. The CMA based on random-effects model of the data indicates a significant

result (p-value=0.031) at trial 3; SMA indicates significant result (z-value of 3.23 is

greater than the upper bound of 2.81) at trial 5. The penalized Z-test based on the

adjustment factor of λ = 2 indicates significant result (test value of 1.92 is greater than

Z1−0.05 = 1.64) at trial 7, while the CUSUM indicates a significant result at trial 5.

For the retrospective Gombay sequential bootstrap test for REM, GDL, GH, GPM and

GREML indicate a significant result at trial 7 with test values of 0.5615, 0.5615, 0.5668

and 0.5468, respectively. Thus we conclude that there is a significant effect of NRT.
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To monitor for any possible trend in the effect over time, observe that in Figure

5.10 the CMA begins to show a gradual increase in effect from trial 5. So a new target

value of 0.41 that corresponds to the combined log-relative risk at trial 5 is set. Observe

that in Figures 5.10 and 5.12 only the CUSUM indicates a significant result at trial 38.

However it is worth to note that the CUSUM test by its definition does not take into

account the heterogeneity variance, τ 2 in random-effects model of meta-analysis, and

thus the result is likely to be spurious.

5.4 Discussion of the use of Gombay method for

sequential random-effects meta-analysis

One of the objectives in this thesis has been to find a suitable statistical method for

monitoring temporal trends in effect sizes in random-effects meta-analysis. In the pro-

cess, the use of the Gombay method which has solid statistical foundations with the

advantage of applicability to parametric models in the presence of nuisance parame-

ter was introduced in Chapter 4. However, using the Gombay method with standard

critical values derived from asymptotic theory leads to a test with incorrect probabil-

ity of Type I error rate. As commented by Horowitz (1997), ‘Asymptotic theory often

provides inaccurate approximation of the limiting distributions of test statistic, which

can result in a test with different true and nominal levels ’. Therefore, this Chapter

considered the use of bootstrap-based critical values with Gombay method for the se-

quential random-effects meta-analysis (retrospective Gombay sequential bootstrap test
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for REM). Simulations were conducted for the test based on four different estimators

of τ 2; DerSimonian and Laird (1986), Higgins et al. (2011), Paule and Mandel (1982)

and the REML. As have been shown, the bootstrap critical values provide a remarkable

reduction in the difference between the true and the nominal level.

The Type I error rates achieved by the retrospective Gombay sequential bootstrap

test for REM based on all the four estimators of τ 2 considered are close to the nomi-

nal level. The test based on DerSimonian and Laird (1986) and Higgins et al. (2011)

estimators of τ 2 have more statistical power compared to the test based on Paule and

Mandel (1982) and the REML when the number of studies is small and the reverse is

the case when the number of studies is large. The retrospective Gombay sequential

bootstrap test controls the Type I error better than the penalized Z-test and SMA.

Unlike the penalized Z-test and SMA where the Type I errors vary for different values

of K, n and τ 2, the Type I errors in Gombay test for REM with bootstrap critical

values based on all the four estimators of τ 2 considered are relatively stable.

This Chapter also demonstrated the application of the Gombay method to odds

ratio and relative risk effect sizes using two meta-analytic examples from medicine.

As have been shown, the method allows sequential evaluation of treatment effect and

monitoring of temporal trends in magnitude of effect sizes. Statistical significance of

the treatment effect is established in both examples while temporal trends are detected

in the first example, see Figures 5.9 and 5.12. The retrospective Gombay sequential

bootstrap test is comparable to the other methods in terms of early detection of shifts

in treatment effect. As have been seen, CMA, SMA and the CUSUM all detect change
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in magnitude of effect at stage 7. For the retrospective Gombay sequential bootstrap

test, GDL and GH indicate significant shift in treatment effect at trial 6 while GPM

and GREML at trial 5 in the first example. In the second example, the CUSUM and

SMA detect change in magnitude of effect at stage 5, while the penalized Z-test and

the retrospective Gombay sequential bootstrap tests based on all the four estimators of

τ 2 at stage 7.

In many conventional sequential methods for meta-analysis, the between-study vari-

ation, τ 2 is not included in the determination of the sequential boundaries, and this

often leads to the inflation of Type I error when the treatment effects are substantially

heterogeneous. But in the retrospective Gombay sequential bootstrap test, the problem

is taken care of as the τ 2 is included in the calculation of the bootstrap critical values.

As can be seen, the retrospective Gombay sequential bootstrap test for REM controls

the Type I error better compared to the penalized Z-test and SMA.

Calculation of the bootstrap critical values requires that the entire data be avail-

able at the start of the analysis, and therefore the application of the present method

may be limited to retrospective meta-analysis. However meta-analysis is a quantita-

tive approach for systematic assessment of the results of previous research in order to

arrive at conclusions about the body of research (Petitti, 1999). Therefore, sequential

methods in retrospective meta-analysis can be used to decide whether enough evidence

has been gathered so that further trials are unnecessary. They can also be used for

deciding whether an existing meta-analysis should be updated or not. The Gombay

method with bootstrap critical values can be used prospectively when the maximum
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number of studies K required for the analysis is known in advance. Roloff et al. (2013),

Kulinskaya and Wood (2014) discussed how the maximum number of studies required

in a sequential meta-analysis can be determined in FEM and REM based on power

analysis. Their methods can be utilised for this purpose.

In general, the Gombay method with bootstrap critical values controls the Type I

error well irrespective of the number of studies, average sample size and the amount of

heterogeneity in treatment effects. The method is comparable with standard sequential

methods in meta-analysis in terms of allowing sequential evaluation of accumulating ev-

idence and early detection of shifts in treatment effect. On the basis of the simulations,

the DerSimonian and Laird (1986) and Higgins et al. (2011) estimators of τ 2 work well

in the Gombay test for REM work well for small and medium number of studies, while

Paule and Mandel (1982) and REML estimators are slightly better for large studies.
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Figure 5.7: Analysis of magnesium for myocardial infarction (Li et al., 2007) data using
Cumulative, CUSUM, Sequential meta-analysis and penalised Z-test for magnesium
data. CMA and SMA are based on τ̂ 2

DL. The horizontal line is the combined log odds
ratio -0.934 (OR=0.393) at trial 7. The same value is the target value for SMA. The
red dotted line is the upper-boundary value for the one-sided test which is first crossed
at trial 13. The control limits for CUSUM chart (dashed lines) are defined at ±5σ. The
red dashed line on the penalised Z-test plot is the one-sided upper boundary value.
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Figure 5.8: Analysis of magnesium for myocardial infarction (Li et al., 2007) data
using the retrospective Gombay sequential bootstrap test for REM based on Higgins
et al. (2011), DerSimonian and Laird (1986), Paule and Mandel (1982) and REML
estimators of τ 2 (GDL, GH, GPM and GREML). The target value is set at 0, and
the red dashed lines in GDL, GH, GPM and GREML plots are the one-sided lower
boundary values.
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Figure 5.9: Analysis of magnesium for myocardial infarction (Li et al., 2007) data
using the retrospective Gombay sequential bootstrap test for REM based on Higgins
et al. (2011), DerSimonian and Laird (1986), Paule and Mandel (1982) and REML
estimators of τ 2 (GDL, GH, GPM and GREML). The target value is set at −0.934,
and the red dashed lines in GDL, GH, GPM and GREML plots are the one-sided upper
boundary values.
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Figure 5.10: Analysis of Stead et al. (2008) data using Cumulative, CUSUM, Sequential
meta-analysis and penalised Z-test. CMA and SMA are based on REM and τ̂ 2

DL. The
horizontal line is the combined log relative risk 0.41 (RR=1.51) at trial 5. The same
value of 0.41 is used as the target value for SMA. The control limits for CUSUM charts
are defined at ±5σ. The red dotted lines on the SMA plots and penalised Z-test are
the upper and lower boundary values for two-sided tests.
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Figure 5.11: Analysis of Stead et al. (2008) data using the retrospective Gombay se-
quential bootstrap test for REM based on Higgins et al. (2011), DerSimonian and Laird
(1986), Paule and Mandel (1982) and REML estimators of τ 2 (GDL, GH, GPM and
GREML). The target value is set at 0 and the red dashed lines in GDL, GH, GPM and
GREML tests plots are the upper boundary values for one-sided tests.
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Figure 5.12: Analysis of Stead et al. (2008) data using the retrospective Gombay se-
quential bootstrap test for REM based on Higgins et al. (2011), DerSimonian and Laird
(1986), Paule and Mandel (1982) and REML estimators of τ 2 (GDL, GH, GPM and
GREML). The target value is set at 0.41 and the double red dashed lines in GDL, GH,
GPM and GREML tests plots are the lower and upper boundary values for two-sided
tests. 119



Chapter 6

Sequential bias in accumulating

evidence.

The effect of existing evidence in meta-analysis was introduced in Section 1.3 of Chapter

1. Two ways of using existing evidence to inform further research, sequential decision

and sequential design, were identified. This Chapter discusses the bias arising in these

methods. Specifically, Section 6.1 discusses sequential decision bias, models for prob-

ability of running the next trial and simulations on sequential decision bias. Section

6.2 discusses sequential design bias and simulations on the sequential design bias. In

Section 6.3, the application of sequential decision and sequential design bias is provided

using an example of a meta-analysis by Johnson (1993). Section 6.4 is discussion of

sequential bias in accumulating evidence.
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6.1 Sequential decision bias

As defined in Section 1.3, sequential decision is a method of using existing information

in making decision to conduct a new trial. The next sections discuss the bias associated

with this method. It is assumed throughout this Section that the estimates of an effect

θ̂i ∼ N(θ, σ2
i ).

6.1.1 Bias derivation

To illustrate sequential decision bias, consider the following simple situation. Suppose

there is a study which had estimated the effect of interest, θ, by θ̂1 and its variance by

s2
1. A researcher is considering the usefulness of running another study. Suppose that

the probability of running this new study p1 = p(θ̂1, S
2
1 , θ) is a function of the estimated

effect and the effect of clinical interest θ0, that is the same in both studies. If the second

study is conducted, denote by ωi the normalized inverse variance weights for θ̂i, that

is, ω1 + ω2 = 1. Then the combined effect is

θ̂(2) =


ω1θ̂1 + ω2θ̂2, with probability p(θ̂1, S

2
1 , θ0)

θ̂1, with probability 1− p(θ̂1, S
2
1 , θ0)

(6.1)

Assuming that θ̂1 and θ̂2 are independent, and that the weights are either non-random,

as is common to assume in meta-analysis, or at least independent of the estimated

effects, which is true for the means of the continuous outcomes and the usual weights
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based on inverse sample variances, the expected value of the combined effect is

E[θ̂(2)] = E
{
p(θ̂1, S

2
1 , θ0)(ω1θ̂1 + ω2θ̂2) + (1− p(θ̂1, S

2
1 , θ0))θ̂1

}
. (6.2)

Substituting 1− ω1 for ω2 equation (6.2) results to

E[θ̂(2)] =E
{
p(θ̂1, S

2
1 , θ0)ω1θ̂1 + p(θ̂1, S

2
1 , θ0)(1− ω1)θ̂2 + (1− p(θ̂1, S

2
1 , θ0))θ̂1

}
=E

{
E
{
p(θ̂1, S

2
1 , θ0)ω1θ̂1 + p(θ̂1, S

2
1 , θ0)(1− ω1)θ̂2 + (1− p(θ̂1, S

2
1 , θ0))θ̂1|θ̂1

}}
=E

{
p(θ̂1, S

2
1 , θ0)(1− ω1) + θ̂1 − p(θ̂1, S

2
1 , θ0)(1− ω1)θ̂1

}
=θ + (ω1 − 1)cov(p(θ̂1, S

2
1 , θ0), θ̂1).

(6.3)

Assume that the expected value of the probability, E(p(θ̂1, θ0)) 6= 0 and let Y = 1 if the

second trial is conducted and zero otherwise. Suppose Y and θ̂2 are conditionally inde-

pendent given θ̂1. Then the conditional expectation given the second trial is conducted

is given by

E

{
θ̂(2)

∣∣∣∣Y = 1

}
=

E
{

(ω1θ̂1 + ω2θ̂2)Y
}

p(Y = 1)

=
E
{

E
{

(ω1θ̂1 + ω2θ̂2)Y |θ̂1

}}
p(Y = 1)

=
E
{
ω1θ̂1p(θ̂1, S

2
1 , θ0) + (1 + ω1)θp(θ̂1, S

2
1 , θ0)

}
p(Y = 1)

=
θE(p(θ̂1, S

2
1 , θ0)) + ω1E(θ̂1p(θ̂1, S

2
1 , θ0)− θp(θ̂1, S

2
1 , θ0))

E(p(θ̂1, θ0))

=θ +
ω1cov(p(θ̂1, S

2
1 , θ0), θ̂1)

E(p(θ̂1, S2
1 , θ0))

+ ω1

{
E(θ̂1 − θ)

}
.

(6.4)

Thus, unless cov(p(θ̂1, S
2
1 , θ0), θ̂1) = 0, both the unconditional and conditional expec-

tations are biased. The last term in the above equation, though zero for an unbiased
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estimator θ̂1, is retained intentionally, so that the equation can be generalized to the

case of K sequential decisions and trials. Similarly, the conditional expectation given

that the second trial is not conducted is given by

E

{
θ̂(2)

∣∣∣∣Y = 0

}
=E(θ̂1

∣∣∣∣Y = 0)

=
E
{
θ̂1(1− Y )

}
p(Y = 0)

=
E
{
θ̂1(1− E(Y |θ̂1))

}
p(Y = 0)

=
E
{
θ̂1(1− p(θ̂1, S

2
1 , θ0)))

}
p(Y = 0)

=θ − cov(p(θ̂1, S
2
1 , θ0), θ̂1)

1− E(p(θ̂1, S2
1 , θ0))

.

(6.5)

Remark 6.1.1. Suppose K trials were run sequentially, and the decision to run trial

i + 1 was dependent on the cumulative results from the first i trials, θ̂(i) =
j∑
j=1

ωj θ̂j for

i = 1, 2, ..., K−1. Equation 6.3 can be applied directly to cumulative effect θ̂(K−1) and

the effect in the K−th trial θ̂K, to obtain a recurrent equation for sequential decision

bias

EK(θ̂K − θ) = ω(K−1)EK−1(θ̂(K−1)− θ) + ωK+1cov(p(K−1), S
2
(K−1), θ̂(K−1))

[
E(p(K−1))

]−1
.

(6.6)

In equation 6.6, Ei(.) is the conditional expectation given i trials, and ω(i) =
i∑
1

ωj/
i+1∑

1

ωj

is the normalized weight for θ̂(i). Similarly, pi−1 = p(θ̂(i−1), S
2
(i−1), θ0) is the probability

of running the i− th trial.
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Figure 6.1: Probability of conducting a second trial and the bias in the unconditional and con-
ditional means when the second trial is conducted (Y=1) and not conducted (Y=0), given by
equations (1), (2) and (3), respectively. The X-axis is the true value of θ (effect parameter) while
the Y-axis is the target value θ0. The parameter values are σ = 0.2, t = 3, and ω1 = ω2 = 1/2.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Biases of unconditional (left) and conditional Y = 1 (right) expected values of the
cumulative effects θ̂(2) at the second study for τ 2 values of 0 (blue), 0.02 (green), 0.04 (yellow)
and 0.06 (red). The rows 1 to 3 correspond to the biases in power-law with t = 3, extreme
value (r = 0.8) and probit (r = 0.8)models with α = 0 and β = 1, respectively. Results from
10000 simulations at each value of θ = 03(0.05)0.7 for the target value of θ0 = 0.5, equal weights
ω1 = ω2 = ω3 and the variance σ2 = 1/3 (corresponding to the within-study variance s2

1 = 19.94
and sample size of n1 = 61 in Example of Section 6.3).

125



(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Biases of unconditional (left) and conditional Y = 1 (right) expected values of the
cumulative effects θ̂(3) at the second study for τ 2 values of 0 (blue), 0.02 (green), 0.04 (yellow)
and 0.06 (red). The rows 1 to 3 correspond to the biases in power-law with t = 3, extreme
value (r = 0.8) and probit (r = 0.8) models with α = 0 and β = 1, respectively. Results from
10000 simulations at each value of θ = 03(0.05)0.7 for the target value of θ0 = 0.5, equal weights
ω1 = ω2 = ω3 and the variance σ2 = 1/3 (corresponding to the within-study variance s2

1 = 19.94
and sample size of n1 = 61 in Example of Section 6.3).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Biases of unconditional (left) and conditional Y = 1 (right) expected values of the
cumulative effects θ̂(2) at the second study for τ 2 values of 0 (blue), 0.02 (green), 0.04 (yellow)
and 0.06 (red). The rows 1 to 3 correspond to the biases in power-law with t = 3, extreme
value (r = 0.8) and probit (r = 0.8) models with α = 0 and β = 1, respectively. Results from
100000 simulations at each value of θ = 03(0.05)0.7 for the target value of θ0 = 0.5, equal weights
ω1 = ω2 = ω3 and the variance σ2 = 1/3 (corresponding to the within-study variance s2

1 = 19.94
in example of Section 6.3) and sample size of n1 = 500.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Biases of unconditional (left) and conditional Y = 1 (right) expected values of the
cumulative effects θ̂(3) at the second study for τ 2 values of 0 (blue), 0.02 (green), 0.04 (yellow)
and 0.06 (red). The rows 1 to 3 correspond to the biases in power-law with t = 3, extreme
value (r = 0.8) and probit (r = 0.8) models with α = 0 and β = 1, respectively. Results from
100000 simulations at each value of θ = 03(0.05)0.7 for the target value of θ0 = 0.5, equal weights
ω1 = ω2 = ω3 and the variance σ2 = 1/3 (corresponding to the within-study variance s2

1 = 19.94
in example of Section 6.3) and sample size of n1 = 500.
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Figure 6.6: The conditional probability given that θ̂1 = θ, and the unconditional prob-
ability as a function of the true value θ of θ0 of conducting the second trial for the
power calculation rule of equations (6.17) and (6.18) with n1 = 60, σ2

1 = 19.9, a = 30
and b = 80.

6.1.2 Models for probability of running the next trial Pr(θ̂, θ0)

To estimate the resultant biases numerically, a model for the probability of running the

next trial, Pr(θ̂, S2
1 , θ0) is required. This Section first introduces three simple models

namely; power-law, extreme value and probit models, and then a more complex model

based on power calculation in Section 6.1.2.4. Each of the models differs in terms of def-

inition of the probability of conducting the next trial, and thus may result in a different
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Figure 6.7: Estimated percent unconditional (solid line) and conditional (Y=1 dashed
line, Y=0 dot-dashed line) bias from 10000 simulations as a function of θ for the power
calculation rule of equations (6.17) and (6.18), with σ2

1 estimated by the sample variance
of the first trial of the example in the next Section 6.3, S2

1 = 19.99, sample size n1 = 60,
a = 30, b = 80 and a second trial of size 80 is conducted if a < n2 < b.
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value of the bias. This is investigated empirically using simulations of unconditional

and conditional means of the combined effect at stages 2 and 3 based on the power-law,

extreme value and probit models in Section 6.1.2.3.

6.1.2.1 Power-law probability model

At the initial stages of clinical trials, if initial results are “promising” i.e. the combined

estimate of results from studies is close to the effect of clinical interest θ0, the trial is

more likely to be continued. But if the initial results are not “promising” the combined

estimate of results from studies will be significantly different from the target value

and the trial may be stopped. Therefore in the power-law model, “promising” results

increase the probability of running the next trial, and no further trials are required

when the effect is at least θ0. For θ0 > 0 and some t > 0, the power-law model for the

probability of next trial is defined by

Pr(θ̂, S2, θ0) =


(θ̂/θ0)t for 0 < θ̂ < θ0

0 elsewhere

(6.7)

The variability of the estimator S2 is not taken into account in this model, and thus

it is a very simplistic model. The function P(θ̂, S2, θ0) = Pr(θ̂, θ0) is a distribution

function from the power-law family of distributions on [0, θ0] and t = 1 corresponds to

uniform distribution. To evaluate the expected values, E[Pr(θ̂, θ0)], E[θ̂,Pr(θ̂, θ0)] and

131



the covariance cov[θ̂,Pr(θ̂, θ0)], the following integrals are required.

E
{

Pr(θ̂, θ0)
}

=

θ0∫
0

(
θ̂/θ0

)t 1√
2πσ2

e−(θ̂−θ)2/(2σ2)dθ̂

E
{
θ̂Pr(θ̂, θ0)

}
=θ0

θ0∫
0

(
θ̂/θ0

)t+1 1

2πσ2
e−(θ̂−θ)2/(2σ2)dθ̂

cov
(
θ̂,Pr(θ̂, θ0)

)
=

θ0∫
0

(
θ̂/θ0

)t
(θ̂ − θ) 1√

2πσ2
e−(θ̂−θ)2/(2σ2)dθ̂

(6.8)

From these equations, it can be seen that the covariance between θ̂ and Pr(θ̂, θ0) is

negative if θ̂ > θ0, so a negative bias for the conditional expectation of the probability

of conducting the next trial is expected in this case. If θ0 > θ the bias is positive. The

heat maps in Figure 6.1 show the bias for the unconditional and conditional mean as

a function of 0 ≤ θ, θ0 ≤ 1 for t = 3, ω1 = ω2 = 1/2 and variance σ2 = 1/3 (the value

obtained as S2
1/n1 from the first trial in the example in Section 6.3). The unconditional

and conditional biases given that the second trial is not conducted are positive when

θ0 > θ, while the reverse is the case for the conditional bias given that the second trial

is conducted. These biases are investigated empirically using simulations in Section

6.1.2.3.

6.1.2.2 Extreme value and probit models

These models are derived based on a class of t-models for publication bias by Copas

(2013). The models are of the form a(θ/σ) for an arbitrary function a(.). The general
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form of these models is defined by

Pr(θ̂, S2, θ0, r) =


[1−G((θ − θ0)/σ)]/[1−G((r − 1)θ0/σ)] for 0 < r(θ)

0 elsewhere,

(6.9)

for a distribution function G(.). For the extreme value model, the distribution function

G(.) is given by

G(θ, σ2, θ0) = exp(− exp((θ0)/σ)), (6.10)

and for probit model

G(θ, σ2, θ0) = Φ(α + β(θ − θ0)/σ). (6.11)

6.1.2.3 Empirical investigation of biases of the unconditional and condi-

tional means based on power-law, extreme value and the probit

models.

The simulations in this Section investigate the biases of unconditional and conditional

means for the combined effects at stages 2 and 3, θ̂(2) and θ̂(3) based on power-law, ex-

treme value and probit probability models using simulations. The effect of the variance

component τ 2 and studies sizes on the bias were investigated. The simulations were

designed as follows.

For j = 1, ..., K, where K is the number of simulations.

1. Simulate two effect size estimates θ̂1j and θ̂2j from normal distribution, N(θ, τ 2 +

σ2/n) for studies 1 and 2, and let ω1 and ω2 be the normalised weights assigned

to the studies 1 and 2, respectively.
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2. Compute ¯̄p1j = Pr(θ̂1j, S
2
1j, θ0) the probability of conducting the second trial, and

use ¯̄p1j to generate Y1j from Bernoulli distribution, B(1, ¯̄p1j). Y1j = 1 if the second

trial is conducted and zero otherwise.

3. Compute the unconditional and conditional combined effects at stage 2 by

θ̂j(2) =(ω1θ̂1j + ω2Y1j θ̂2j)/(ω1 + ω2Y1j)

and

θ̄j(2) =Y1j(ω1θ̂1j + ω2θ̂2j)/(ω1 + ω2),

(6.12)

respectively.

4. Generate the effect size estimate for the third study, θ̂3j and let ω3 be its nor-

malised weight so that ω1 = ω2 = ω3 = 1/3.

5. Compute ¯̄p2j = Pr(θ̂j(2), S
2
1j, θ0) the probability of conducting a third trial and

generate Y2j from Bernoulli distribution, B(1, ¯̄p2j). Y2j = 1 if the third trial is

conducted and zero otherwise.

6. Compute the unconditional and conditional combined effects at stage 3 by

θ̂j(3) =(ω1θ̂1j + ω2Y1j θ̂2j + ω3Y2j θ̂3j)/(ω1 + ω2Y1j + ω3Y2j)

and

θ̄j(2) =Y2jY1j(ω1θ̂1j + ω2θ̂2j + ω3θ̂3j)/(ω1 + ω2 + ω3),

(6.13)

respectively.

7. Repeat steps 1 to 6 for j=1, ..., K, where K is the number of simulations and
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calculate the unconditional and conditional means at stages i=2 and 3 by

θ(i) =
K∑
j=1

θ̂j(i)/K and Ei =
K∑
j=1

θ̄j(i), respectively. (6.14)

The entire simulations were conducted based on the following combinations of param-

eter values; K = 10000, θ=(0.00, 0.05, 0.10, ..., 0.95), τ 2=(0.00, 0.02, 0.04, 0.06) and

θ0 = 0.5, n = (62, 500) and the variance σ2 was taken equal to the sample variance

σ̂2
1 = 19.99 of the first trial of the example in Section 6.3.

Figures 6.3-6.5 show the biases of the unconditional and conditional expectation of

θ̂(i) for i=1, 2 based on the power-law, extreme value and probit models. For the power-

law model, the most biased is the conditional estimator when a new trial is conducted.

It can be seen that in this model the unconditional means are reasonably precise, but

the step 2 conditional means has a considerable positive bias when the actual effect is

small in comparison to the target value θ0. The step 3 conditional means appear to be

even more biased for small values of the actual effect. Increase in τ 2 causes increased

bias in the power-law model. Biases for σ2 = 0.04 (corresponding to sample size of 500)

are given in Figures 6.4 and 6.5. Here the impact of τ 2 is more visible.

For the extreme value and probit models, the unconditional expected values over-

estimate the mean, and conditional expected values underestimate the actual mean,

also bias increases with each step i in decision-making. The biases also increase with

increase in τ 2.

Based on the simulations, it can be concluded that different rules and different pa-

rameters could give quite different results but these indicate that biases do occur when
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data dependent rules are used to determine if the next trial should be conducted.

6.1.2.4 The power calculation model for Pr(θ̂, S2, θ0)

This Section explores the situation where the probability of conducting a new trial

depends on power calculations. Consider the case where two studies may be conducted

and normally distributed means are used to estimate an effect size θ that is the same in

each trial. Typically, if the power calculation yields a small sample size for the second

trial, the increase in total power of subsequent meta-analysis will be minor and it may

be decided that it is not worth proceeding with the study. Alternatively, the power

calculation may yield a large sample size and it may not be possible to achieve the

desired power based on the available resources. Let the first study result in an estimate

θ̂1 of θ. The objective is to determine a sample size n2 for a next study, so that the

combined effect θ̂(2) =
(
w1θ̂1 + w2θ̂2

)
/ (w1 + w2) will be significantly different from

zero (2-sided) at significance level α with 1− β power at the target value θ0. Here the

wi, i=1,2 are the unnormalized weights. The level α should be chosen to account for the

multiple testing, but the details of such adjustment are beyond the scope of this work.

The variance of the combined effect is then (w1 + w2)−1. The sample size calculation

for the Wald test of the combined effect in meta-analysis is based on setting

θ0√
var
(
θ̂(2)

) = θ0

√
w1 + w2 = Z1−α/2 + Z1−β. (6.15)

Now, w2 = n2/σ
2
2 and the resulting equation solved for n2 yields

n2 =

(
C2

θ2
0

− w1

)
σ2

2, (6.16)
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where C = Z1−α/2 + Z1−β. The difficulties arise when n2 is computed using the effect

estimate θ̂1 from the first trial as the effect size θ0. In order to solve this problem the

variance σ2
2 may be estimated by the sample variance of the first trial, S2

1 . Then the

sample size is taken to be

n2 =
C2S2

1

θ̂2
1

− n1. (6.17)

If θ̂1 is normally distributed and independent of the sample variance S2
1 which has d1

degrees of freedom (d1 = n1−1 for one sample, but this notation is introduced for more

generality), then d1S
2
1/σ

2
1 ∼ χ2(d1) and the probabilities associated with the experiment

can be computed analytically. For example, suppose that it is decided to conduct a

new study of size b if a < n2 ≤ b for some points a and b. Then given θ̂1 = θ1, the

conditional probability a new trial is conducted is given by

Pr(a, b, θ1) = Pr
{
a ≤ n2 ≤ b|θ̂1 = θ1

}
= Pr

{
a ≤ C2S2

1

θ̂2
1

− n1 ≤ b

∣∣∣∣θ̂1 = θ1.

}

= Pr

{
(a+ n1)θ2

1

C2
≤ S2

1 ≤
(b+ n1)θ2

1

C2

}
= Pr

{
(a+ n1)d1θ

2
1

C2
≤ χ2(d1) ≤ (b+ n1)d1θ

2
1

C2

}
.

(6.18)

The unconditional probability of conducting a new trial as a function of θ may be

computed by integrating the conditional probability over the density

f(θ1, θ, σ
2
1) of θ1: Pr(a, b) =

∞∫
−∞

Pr(a, b, θ1)f(θ1 : θ, σ2
1)dθ1. (6.19)

If θ̂1 ∼ N(θ, σ2
1/n1) is unbiased, there is no need to perform this integration. Instead,

note that F = n1θ̂
2
1/S

2
1 has a non-central F1,d1(λ) distribution with non-centrality
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parameter λ = n1θ
2/σ2

1. If a new trial is conducted when a ≤ n2 ≤ b, the unconditional

probability of this is given by

Pr {a < n2 ≤ b} = Pr

{
a ≤ C2S2

1

θ̂2
1

− n1 ≤ b

∣∣∣∣θ̂1 = θ1

}

= Pr

{
(a+ n1)θ2

1

C2
≤ S2

1 ≤
(b+ n1)θ2

1

C2

}
= Pr

{
(a+ n1)θ2

1

C2
≤ n1θ

2
1

F1,d1(λ)
≤ (b+ n1)θ2

1

C2

}
= Pr

{
n1C

2

b+ n1

≤ F1,d1(λ) ≤ n1C
2

a+ n1

}
.

(6.20)

The plot of the unconditional and conditional probabilities for n1 = 60, σ2
1 = 20,

parameters taken from the first trial in the example discussed in Section 6.3 is given in

Figure 6.6. It is assumed that a = 30 and b = 80 in the plots. Figure 6.7 is the plot

of the estimated percentage unconditional bias as a function of θ from 10000 simulated

experiments for the same scenario with n1 = 60, σ2
1 = 19.94 if a second experiment of

size 80 is conducted when 30 ≤ n2 ≤ 80. The conditional bias is calculated over the

simulations where a second trial was/was not conducted.

Remark 6.1.2. If the decision to run trial i + 1 of size b is taken when a < ni+1 ≤ b

for some i ≥ 1, denote the cumulative combined effect from the first i trials θ̂(i) =

i∑
j=1

wj θ̂j/W(i) for W(i) =
i∑

j=1

wj, and the cumulative sample size n(i) =
i∑

j=1

nj. Equation

(6.16) changes to

ni+1 =

(
C2

θ0

−W(i)

)
σ2
i+1, (6.21)

where σ2
i+1 is the variance of the trial (i+1). If the variances across trials are assumed

equal, this variance can be estimated by the pooled sample variance S2
(i). Also, for

reasonably large study sizes, n(i)∗ = W(i)S
2
(i) ≈ n(i). Under the homogeneity of study
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variances, the conditional and unconditional probabilities of a new trial being conducted

are approximated by equations (6.18) and (6.20) with substitution of n∗(i), degrees of

freedom d(i) = n(i)−i and the cumulative effect θ̂(i) instead of n1, d1 and θ̂1, respectively.

6.2 Sequential design bias

Having made an implicit decision prior to designing the second trial, it important to

explore how the knowledge of the results of the first trial used in the design of the

second trial affects the combined effect. Resultant bias is referred to as design bias.

Suppose in continuation of the approach in Section 6.1, n2 observations were used to

conduct the new experiment instead of the b observations. For the ith trial, i=1, 2,

.... with ni observations, the weights are ni/σ
2
i , and the effect estimate θ̂ = X̄i. The

combined effect over two trials is then θ̂(2) =
2∑
i=1

wiθ̂i/
2∑
i=1

wi. Note that n2 = 0 yields

w2 = 0 and θ̂(2) = θ̂1. In what follows, assume that the estimates of the effect size and

variances are independent, which will hold for samples from normal populations and

approximately for other situations.

In practice, σ2
2 is unknown, therefore a guess value is needed to determine the sample

size. Denote this by σ2
g . A common option is to take σ2

g = σ2
1, which is explored in

Section 6.2.1. Then take

n2 =

(
C2

θ0

− w1

)
σ2
g =

(
C2

θ0

− w1

)
d2σ2

2, (6.22)

where d2 = σ2
g/σ

2
2. This is positive if C2 > w1θ

2
0 or n1 < C2σ2

1/θ
2
0. Let n2 = max (n2, 0).

Set d = 0 whenever n2 = 0. Therefore, with w2 = n2/σ
2
2 = (C2/θ0−w1)d2, the combined
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estimate over the two trials is then

θ̂(2) =
w1θ̂1 + w2θ̂2

w1 + w2

= θ̂2 +
w1(θ̂1 − θ̂2)

w1 + w2

. (6.23)

As long as the value of θ0 used in the sample size calculation is a constant decided by

clinical considerations, the expected value of the cumulative effect given by equation

(6.23) is equal to θ, and is unbiased. But in the absence of this clinical knowledge,

when designing the second trial it is tempting to use the value θ̂1 + δ for some constant

δ for the sample size calculation. In clinical trials this can form the basis of proceeding

with a phase III trial. That is,

n2 =

(
C2

(θ̂1 + δ)2
− w1

)
(6.24)

and ŵ2 = (C2/(θ̂1 + δ)2 − w1)d2. To examine this situation, for simplicity suppose σ2
1

is known. Note that if θ̂1 is large then n2 given by (6.23) can be negative and in this

case further experiment is not conducted. Now,

E(θ̂1|n2 ≤ 0) = E

(
θ̂1

∣∣∣∣θ̂1 ≥

√
c2

w1

− δ

)
= θ +

σ1√
n1

φ(h)

1− Φ(h)
,

where h = {(
√
c2/w1−δ)−θ}/(σ1/

√
n1). For example, if θ = 0.2, σ2

1 = 19.94, α = 0.05,

β = 0.2, δ = 0.2 and n1 = 60 then E(θ̂1|n2 ≤ 0) = 3.0848 >> 0.2 = θ. That is, if

the trials are stopped after the first experiment because the observed result had the

desired power for the observed effect size then a highly biased conditional estimate can

be obtained. Fortunately, the bias diminishes with increase in n1, so that for n1 = 200,

E(θ̂1|n2 ≤ 0) = 1.6506, and for n1 = 1000, E(θ̂1|n2 ≤ 0) = 0.7003. In the limit, the bias
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is zero. Similarly,

E(θ̂1|n2 > 0) = E

(
θ̂1

∣∣∣∣θ̂1 <

√
c2

w1

− δ

)
= θ − σ1√

n1

φ(h)

Φ(h)
.

Then E(θ̂(2)) = E(θ̂1|n2 ≤ 0){1 − Φ(h)} + E(θ̂(2)|n2 > 0)Φ(h). Suppose that we guess

the variance σ2 exactly; var(θ̂1) = 1/w1. Then

E
(
θ̂(2)|n2 > 0

)
=E

(
θ̂(2)|θ̂1 <

√
C2

w1

− δ

)

=θ +
w1

C2
E

{
(θ̂1 − θ)(θ̂ − δ)2

∣∣∣∣θ̂1 <

√
C2

w1

− δ

}

≤θ +
w1

C2

E
{

(θ̂1 − θ)(θ̂1 + δ)2
}

Φ(h)

=θ +
2(θ + δ)

C2Φ(h)
.

(6.25)

As a consequence of (6.24), it follows that

E(θ̂(2)) ≤ θ +

(
φ(h)σ1√

n1

+
2(θ + δ)

c2

)
, (6.26)

giving an upper bound on the bias. That is, if δ > 0 and α = 0.05, β = 0.2 then

c2 = 7.85 and the bias is not greater than 25%. In the general case, for an arbitrary d

value,

θ̂(2) = θ̂2 +
w1(θ̂1 − θ̂2)(θ̂1 + δ)2

w1(θ̂1 + δ)2(1− d2) + d2c2
.

At d = 0 this is just θ̂1 and is unbiased. However, this is of little practical use for at

d = 0 we would not conduct the second experiment. Now, for an arbitrary d,

E(θ̂(2)) = θ + E

{
w1(θ̂1 − θ)(θ̂1 + δ)2

w1(θ̂1 + δ)2(1− d2) + d2c2

}
, (6.27)

which is analytically intractable and we investigate its behaviour using simulations.
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6.2.1 Simulations for the sequential design bias

This Section investigates Sequential design bias empirically based on a small simulation

study. Specifically, the objective in the simulation is to examine the bias in sequential

design relative to different values of d. The simulation was designed as follows.

1. Simulate a trial with n1 observations using the normal distribution with mean θ0

and variance σ2
1.

2. Let θ̂1 be the sample mean and σ̂2
1 the sample variance. Compute w1 = n1/σ̂

2
1.

3. For a given guess σ2
g

(a) Compute

n2 =

(
C2

(θ̂1 + δ)2
− w1

)
σ2
g ,

If n2 < 5, replace it with n2 = 5, for n2 ≥ 1000, replace it with n2 = 1000.

(b) Simulate a second trial with n2 observations. Let θ̂2 be the sample mean and

σ2
2 be the sample variance.

(c) Compute w2 = n2/σ̂
2
2 and

θ̂(2) =
w1θ̂1 + w2θ̂2

w1 + w2

.

To evaluate a specific guess such as σ2
g = σ̂2

1, step 3 is carried out once for each

simulation. To evaluate the effect of different guesses, step 3 is repeated for different

values. As this required different sized trials in step 3 (b) for different guesses, this step

was repeated 100 times for each trial in step 1.
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Figure 6.8: Plot of the percent bias against d for simulations described in Section 6.2.1.
The parameter values are σ̂2

1 = 19.94, σ̂2
2 = 24.96, n1 = 60, θ = 0.2, δ = 0.2, α = 0.05

and β = 0.2

The parameter values used for the first simulation are θ = 0.2, δ = 0.2, α = 0.05,

β = 0.2, σ2
1 = 19.94, σ2

2 = 24.96 and n1 = 60 so that w1 = 3.00. Then c2/θ2 − w1 =

136.22 > 0. A total of 1000 simulated initial experiments were conducted, parameter d

was taken from 0.1 to 10 in steps of 0.1. 100 second trials were simulated in step 3 (b)

for each value of d.

The means of the combined estimators for each value of d are plotted in Figure 6.8.
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As there is some variability due to the random sampling, an R (R Core, 2012) package

locfit (Loader, 2012) is used to smoothly estimate the mean. It is clear from this plot

that the bias can be substantial over a range of guesses for σ2
2. With δ = 0, the bias

was around 15% less but still of concern. If we took σ2
g = σ̂2

1 then the mean percentage

bias over the simulations was 49.9% with standard deviation of 3.16 so the bias was

uniformly high. As a check, the values of θ and σ2
2 with δ = 0 were used to compute

n2, and the mean bias was found to be close to zero (0.129%). The bias was 0.042%,

also close to zero, when θ and σ̂2
1 again with δ = 0 were used to compute n2, which

confirms that the bias arises from using the estimated value of θ̂1 to decide to carry out

the second experiment and compute the sample size.

6.3 Example of Johnson (1993) meta-analysis

This section illustrates the sequential decision bias and sequential design bias using an

example of a meta-analysis conducted by Johnson (1993). The meta-analysis comprised

9 studies comparing sodium monouorophosphate (SMFP) to sodium fluoride (NaF)

dentifrices in the prevention of caries. The data is referred to as Johnson (1993) meta-

analysis. The outcome of interest was the dental score and the effect is estimated by

mean difference defined by

∆̂ = X̄SMFP − X̄NaF , (6.28)

where X̄SMFP and X̄NaF are the sample means of SMFP and NaF dental scores, respec-

tively. A positive value of ∆̂ favours sodium monouorophosphate (SMFP), and indicates

144



that it is the better of the two dentifrices in the prevention of caries. In order to use

equation (6.16), the variances and the sample sizes need to be estimated. Given equal

variances σ2
1SMFP = σ2

1NaF = σ2
1 in the treatment (SMFP) and control (NaF) arms of

the first trial of sample sizes N1SMFP and N1NaF , respectively, the variance of the dif-

ference of the sample means is var(X̄1SMFP −X̄1NaF ) = σ2
1

(
N−1

1SMFP +N−1
1NaF

)
= σ2

1/n1

for the effective sample size n1. The effective sample size is calculated by the geometric

mean of the sample sizes of the two arms, n1 =
(
N−1

1SMFP +N−1
1NaF

)−1
. For the second

trial in the two-arms setting, the effective sample size is calculated by the geometric

mean of the sample sizes of the two arms N2SMFP and N2NaF . For balanced trial the

required sample size is N2 = 4n2 since n2 = (4/N2)−1 = N2/4.

Standard fixed-effect meta-analysis of summary data and the cumulative meta-

analysis, respectively, obtained with R package ‘meta’ (Schwarzer, 2010) are given in

Figure 6.9 (a) and (b). Heterogeneity was not detected (Q=5.38 at 8 degrees of free-

dom, and I2 = 0), so fixed effect model was used. The first three studies failed to

reach significance but showed positive effect. The combined effect after three trials,

θ̂(3) = 0.52 is just significant (p-value=0.048), 95% confidence interval [0.01; 1.04]. It

will be interesting to see how a decision to continue with the trials could be made during

the initial stages of accumulating evidence, and what would be an effect of designing

the subsequent trial to show the significantly stronger effect of SMFP.

For the first three trials considered separately, the effective sample sizes were n=(61.30,

81.06, 69.24) and the pooled sample variances S2=(19.94, 24.96, 8.56), respectively.

Assuming a standard choice of 5% significance level and power of 80%, the constant
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C = zα/2 + z1−β = 2.802. After the first trial, the value of n2 calculated from (6.17)

is 150.35. Assume that a new trial of size b is conducted if a < n2 < b for a = 50

and b = 500, and the true parameter values are θ = 0.28 (combined effect from 9

trials), and σ2 = 21.62 (pooled variance from 9 trials). Under these assumptions, the

estimated unconditional probability of continuation of next trial from equation (6.20)

is P = 0.349. The F-distribution used to calculate this probability has d1 = N − 2

degrees of freedom, where N is the total sample size of the first trial. If the sample

sizes were not restricted from below, take a = 0, and the resulting estimated probability

of continuation is P = 0.412. To assess the resultant sequential bias, 10000 simulations

were performed with n1 = 62 (the effective sample size of the first trial), θ = 0.28 and

σ2 = 19.94 for a = 50 and b = 500. From the simulation, the estimated probability of

continuation after the first trial is 0.343, percentage unconditional bias after two trials

is -19.92%, conditional bias given the decision to stop is -34%, and conditional bias

given decision to continue is 8.13%. It is clear from the results that these biases are far

from negligible.

If the second trial were run first, the estimated sample size for the next trial is

1718 > b, and the next trial would not be run. Now suppose that the first two trials

were run independently from each other, but the decision is required about the third

trial. The variances in these two trials are approximately similar, therefore, the sample

size and the probability of continuation with the next trial can be calculated according

to Remark 6.1.2. The value of n∗(2) = 141.27 is very close to the cumulative effective

sample size n(2) = 142.36. The sample size calculation from equation (6.21) results in
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n = 376.02. The conditional probability to continue is 0.25. Taking a = 0 increases

the probability to 0.30. This probability of continuation is low, and therefore, it is

doubtful that the next trial would be funded. But as it happened, the third trial with

an effective sample size of 69.24 was run regardless, resulting in marginal significance

of the combined effect (θ̂(3) = 0.52, p-value=0.049) of SMFP.

6.4 Discussion of sequential bias in meta-analysis

This Chapter examined sequential bias in accumulating evidence in meta-analysis. Two

types of biases were identified, namely sequential decision bias and sequential design

bias. It was demonstrated theoretically and by simulations that both sequential decision

bias and sequential design bias can arise in sequential and cumulative meta-analyses

when the results of previous studies influence the design of a new study. The power-law,

extreme value and probit models for determining the probability of conducting the next

trial were introduced, followed by a power calculation model. As was demonstrated,

biases do occur when data dependent rules are used to determine if the next trial should

be conducted. The setting differs from the standard sequential meta-analysis in that a

meta-analyst has an active role in the design of the subsequent trial aiming at a defini-

tive meta-analysis. As we have seen, both the conditional and unconditional biases

can be non-negligible. Thus caution needs to be exercised in conducting meta-analysis

when prior knowledge has been used to design the trials being studied.

The sample size calculations explored in this Chapter are based on unconditional
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power of the Wald test for the combined effect. Roloff et al. (2013) advocated using

conditional power approach, but the method may not alleviate the bias. The design

bias arising from conditional power approach is discussed in context of the designed

extension of a clinical trial by Denne (2000). In particular, that paper compared the

biases of the estimated effects in conditional and unconditional settings, and found that

the differences were minor; see Figure 2 (Denne, 2000).

For designing a new study, a simple fixed effect model is considered for meta-analysis,

but even then, the problems of sequential biases become visible. These results should

be applicable in random effects model with a necessary change from designing just one

study to designing several studies of the same sample size, see Roloff et al. (2013),

Kulinskaya and Wood (2014).

Sequential meta-analysis results in inflation of Type I error due to multiple testing.

This problem is not discussed here. A number of procedures aimed at adjustment of

significance level to maintain the overall Type I error have been described in Pogue

and Yusuf (1997), Wetterslev et al. (2008), Lan and DeMets (1983), van der Tweel and

Bollen (2010), Roloff et al. (2013), Higgins et al. (2011). Such adjustment will result in

larger sample sizes of the new studies (equations (6.17) and (6.22)) and may decrease

sequential biases (equation (6.27)) through increase in critical values at a lower level.

The probability models assumed that a new study is more likely if the existing ev-

idence is in favour of a new treatment than if it is the other way around. However

the details of how the interplay between the effect size and the uncertainty may affect

the sequential biases were not considered. The value of information (VOI) approach
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(Claxton et al., 2002, Claxton and Sculpher, 2006) is an alternative method to decide on

the necessity of further research. This method is based on economic modelling compar-

ing the costs involved in further research to benefits of reduction in uncertainty. This

method is widely used in contemporary health policy decision- making, (Claxton and

Sculpher, 2006). It would be of great interest to investigate the existence of sequential

decision bias resulting from this approach.
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(a)

(b)

Numer of studies combined: k=9

MD 95%-CI z p.value

Fixed effect model 0.2833 [0.1023; 0.4644] 3.0671 0.0022

b

Quantifying heterogeneity:

tau^2 < 0.0001; H = 1 [1; 1.38]; I^2 = 0% [0%; 47.7%]

Test of heterogeneity:

Q d.f. p.value

5.38 8 0.7162

Figure 6.9: Figure showing data and results from Johnson (1993) meta-analysis. Plot
(a) is fixed-effect meta-analysis while (b) is the cumulative meta-analysis.
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Chapter 7

Summary and conclusions

Meta-analysis provides accurate estimate of the treatment effect, allows for hypothesis

testing and the construction of confidence intervals of the treatment effect. However,

temporal changes in magnitude and direction of effect sizes reported in many areas of

research (Hodgson et al. (1989), Nieuwkamp et al. (2009), (Hyde et al., 1990), (Gehr

et al., 2006), Brugger et al. (2011), Twenge. et al. (2008), Grabe et al. (2008)) can be

dramatic and even lead to the loss or gain of the statistical significance of the cumulative

treatment effect (Kulinskaya and Koricheva, 2010). Numerous sequential methods have

been proposed for monitoring the trends in meta-analysis (Lau et al., 1992, Leimu and

Koricheva, 2004, Pogue and Yusuf, 1997, Wetterslev et al., 2008, Higgins et al., 2011,

Whitehead, 1997b, Bollen et al., 2006, Kulinskaya and Koricheva, 2010, Lan et al.,

2003). However these methods are based on statistical theory applicable only to fixed

effect model (FEM) of meta-analysis. For random-effects model (REM), the analysis

incorporates the heterogeneity variance, τ 2 and its estimation creates complications.
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The main objective in this thesis was to identify an appropriate statistical techniques

that are suitable for monitoring trends in random effects model of meta-analysis. This

has been achieved by proposing the use of retrospective CUSUM-type test based on

sequential procedure by Gombay (2003), Gombay and Serbian (2005) in combination

with bootstrap critical values for sequential random-effects meta-analysis. Simulations

show that the Type I error rates for the new method are closer to the nominal level

in comparison to the existing methods, and are not affected by increase in the level of

heterogeneity τ 2.

In random-effects meta-analysis, the heterogeneity of treatment effect across studies

creates inferential problems due to non-independence of increments. In the proposed

method with bootstrap critical values, the problem does not arise as estimated between-

study variance τ 2 is included in the calculation of the bootstrap critical values.

Calculation of bootstrap critical values can be computationally intensive. However,

with contemporary high performance computers this should not present much difficulty.

Computationally intensive methods involving bootstrapping and permutation tests are

becoming common in meta-analysis (Gumedze and Jackson, 2011). An R program for

calculating the bootstrap based CUSUM-type test with DerSimonian and Laird (1986),

Higgins et al. (2011), Paule and Mandel (1982) and REML estimators of τ 2 is provided

in the Appendix.

The drawback of using bootstrap-based critical values is that the resulting method

is not true sequential method, and can be used only for retrospective analysis. Even

then, it is certainly worthwhile when reviewing the usefulness of an intervention over
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time. It can be usefully combined with CMA to envisage the trajectory of a cumu-

lative meta-analysis. Unfortunately, as numerous simulations in this work and other

authors have repeatedly demonstrated, well-behaved sequential methods for random

effects meta-analysis are not yet in existence. In contrast, regardless of the method

used to estimate τ 2, the proposed method controls the Type I error irrespective of the

number of studies, their sizes and the amount of heterogeneity in treatment effects.

Another issue considered is the effect of accumulating evidence in meta-analysis.

Two kinds of bias associated with accumulating evidence, termed “sequential decision

bias” and “sequential design bias”were identified. In Chapter 6, it was demonstrated

theoretically and by simulation that both sequential decision bias and sequential design

bias can arise in sequential and cumulative meta-analysis when the results of previous

studies influence the decision to proceed or the design of a new study. Simple models for

probability of conducting the next trial were introduced, and an example was provided

to demonstrate how decision on whether to continue or stop further trials affects the

estimated treatment effect. The setting differs from standard sequential meta-analysis

in that a meta-analyst has an active role in the design of the subsequent trial aiming at

definitive meta-analysis. Both unconditional and conditional biases were found to be

far from negligible. Therefore caution needs to be exercised in conducting meta-analysis

when prior knowledge has been used to design new trials being studied.

In clinical trials, favourable results of a phase II trial may be used to design the

phase III trial, “Estimates of treatment effects and variability from earlier trials are

traditionally used in the design of trials at the next stage” (Kirby et al., 2012). This
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setting is different from meta-analysis in that results are not combined. Moreover, the

decision to conduct the phase III trial depends on a significant result in the phase II

trial, whereas with meta-analysis guiding research, the sequential trial may be termi-

nated once significance is attained. However, the problem of resulting biases is already

recognised in drug development (Wang et al., 2010), and methods of adjustment are

sought (Kirby et al., 2012). Perhaps a closer analogy for the sequential decision bias is

with group-sequential clinical trials, where a significant result at an interim stage would

stop the trial, but otherwise the result of sequential interim stages are accumulated and

combined. In this setting the existence of sequential bias is widely recognised and the

means of adjustment for this bias have been developed, Whitehead (1986). This ad-

justment is possible because of the explicit decision rules in these trials. Design bias

is similar to the bias induced by mid-trial sample size re-estimation in adaptive trials,

Li et al. (2002), Wang et al. (2010). However, methods of sequential bias adjustment

in meta-analytic setting are more difficult to develop than in sequential and adaptive

clinical trials. The bias depends not only on the unknown true value or the precision

of the effect θ, but also on the strategy for making the decision to continue or stop,

and of choosing the sample size of the next study. If such a strategy is made explicit,

by, say, the Research Council, development of an appropriate bias adjustment should

be possible. Development of such a strategy though appears to be an important and

complicated problem deserving concerted efforts of statisticians and decision-makers.

To the best of the authors knowledge this is the first time that this important issue

is raised in the context of the sequential decision-making associated with the managed
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accumulation of evidence. Existence of sequential biases raises a number of important

research questions. What is the best way to decide on the usefulness of a new trial?

How to design this trial so that the resulting combined estimate is the least biased?

How to adjust the combined effect to minimise this bias? All these question need to be

addressed if evidence-based development of science is to be achieved.
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Chapter 8

Appendix

8.1 R programs for SMA, penalised Z-test and retrospec-

tive Gombay test

8.1.1 Program for sequential meta-analysis (SMA)

Usage

SMA(xT,vT,nT,xC,vC,nC,u0,type.E,level,ty,type.tau,title,stat)

Arguments

xT: Number of events in treatment group when data is binary and sample mean when data

is continuous.

xC: Number of events in control group when data is binary and sample mean when data is

continuous.

vT: Sample variance of treatment group when data is continuous.

vC: Sample variance of control group when data is continuous.

nT: Sample size of treatment group.

nC: Sample size of control group.

174



type.E: A character string ”MD”, ”SMD”, ”OR”, ”RR” and ”RD” specify the type of effect

size measure used.

• ”MD”: Mean difference

• ”SMD”: Standardized mean difference

• ”OR”: Odds ratio

• ”RR”: Relative risk

• ”RD”: Risk difference

ty: A character string ”lt”,”ut” and ”dt” specifying the type of test.

• ”lt”: Lower-sided test

• ”ut”: Upper-sided test

• ”dt”: Double-sided test

type.tau: A character string ”H”, ”DL”, ”MP” and ”REML” specifying the estimator of τ 2

used.

• ”H”: Higgins method

• ”DL”: DerSimonian-Laird estimator

• ”PM”: Paule-Mandel estimator

• ”REML”: Restricted maximum-likelihood estimator
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level: Significance level.

u0: Target value.

title: Title of the graph ” .... ”.

stat: Logical statement T or F to provide more statistics below the graph.

Details

This program works in conjunction with the R package ldbounds to calculate the Wald’s test

statistic of the cumulative meta-analysis and the group sequential boundaries. The program also

provides graphical representation of the results.

Required function

R script below is the function required for the calculations.

SMA<-function(xT,vT,nT,xC,vC,nC,type.E,level,u0,ty,type.tau,title,stat){

## This statistics calculate the effect size estimate.

if(type.E=="MD"){

y<-xT-xC

v<-vT/nT+vC/nC

}else{

if(type.E=="SMD"){

N<-nT+nC

pooledva<r-((nT-1)*vT+(nC-1)*vC)/(N-2)

J<-gamma((N-2)/2)/(sqrt((N-2)/2)*gamma((N-3)/2))

y<-J*(xT-xC)/sqrt(pooledvar)

v<-((N-2)*N*J)/((N-4)*nC*nT)+((N-2)*J^2/(N-4)-1)*y^2

}else{

if(type.E=="OR"){

pT<-(xT+.5)/(nT+.5)
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pC<-(xC+.5)/(nC+.5)

y<-log(pT*(1-pC)/(pC*(1-pT)))

v<-1/(xT+.5)+1/(nT-xT)+1/(xC+.5)+1/(nC-xC)

}else{

if(type.E=="RR"){

pT<-(xT+.5)/(nT+.5)

pC<-(xC+.5)/(nC+.5)

y<-log(pT)-log(pC)

v<-1/(xT+.5)-1/(nT+.5)+1/(xC+.5)-1/(nC+.5)

}else{

if(type.E=="RD"){

pT<-(xT+.5)/(nT+.5)

pC<-(xC+.5)/(nC+.5)

y<-pT-pC

v<-(xT+.5)*(nT-xT)/(nT+.5)^3+(xC+.5)*(nC-xC)/(nC+.5)^3

}}}}}

K<-length(y)

## This statistic calculates tausquared estimates based on the 4 estimators H,

## DL, MP and REML.

tau<-function(y,v){

K<-length(y)

if(K<2){

H<-0

DL<-0

MP<-0

RM<-0

}else{

tau0<-0.01

eta<-1.5

W<-1/v
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theta<-sum(W*y)/sum(W)

Q<-sum(W*(y-theta)^2)

C<-sum(W)-sum(W^2)/sum(W)

DL<-pmax((Q-(K-1))/(C),0)

H<-(2*(eta-1)*tau0+(K*DL))/(2*(eta-1)+K)

lb<-0

ub<-1000000000000000

f<-function(t,y,v){

sum((1/(v+t))*(y-sum(y/(v+t))/sum(1/(v+t)))^2)-K+1

}

if(f(lb,y=y,v=v)*f(ub,y=y,v=v)<0){

MP<-as.numeric(uniroot(f,c(lb,ub),tol=0.0001,y=y,v=v)[1])

}

else{

MP<-0

}

tau<-0

M<-0

while(M<K){

tauold<-tau

W<-1/(v+tauold)

theta<-sum(W*y)/sum(W)

tau<-pmax((sum((W^2*(((y-theta)^2)-v)))/sum(W^2))+1/sum(W),0)

M<-M+1

}

RM<-tau

}

tau<-c(H,DL,MP,RM)

tau

}
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## This statistic calulate SMA.

n<-(1/nT+1/nC)^(-1) ## this statistic calculates the effective sample size.

K<-length(y)

w<-1/v

theta<-sum(w*y)/sum(w)

Q<-sum(w*(y-theta)^2)

I<-(Q-(K-1))/Q ## this statistic calculates the rate of inconsistency in treatment effect.

Imax<-sum(n)/(1-I) ## this statistic calculates the heterogeneity

## adjusted optimum information size.

est<-IF<-zval<-numeric(K)

for(k in 1:K){

yk<-y[1:k]

vk<-v[1:k]

nk<-n[1:k]

IF[k]<-sum(nk)/Imax ## this statistic calculates the information fraction

## at the kth study.

if(type.tau=="H"){

tauhat<-tau(yk,vk)[1]

}else{

if(type.tau=="DL"){

tauhat<-tau(yk,vk)[2]

}else{

if(type.tau=="PM"){

tauhat<-tau(yk,vk)[3]

}else{

if(type.tau=="REML"){

tauhat<-tau(yk,vk)[4]

}}}}

wk<-1/(vk+tauhat)

est[k]<-sum(wk*(yk-u0))/sum(wk)

179



zval[k]<-est[k]/sqrt((sum(wk))^(-1))

}

t<-IF

if((ty=="lt")|(ty=="ut")){

level<-2*level

}else{

level<-level

}

## This statistic calculates the Pocock’s boundary values from the R package

## ldbounds.

lb<-round(as.numeric(bounds(t=t,iuse=c(2,2),

alpha=c(level/2,level/2))$lower.bound),digits=2)

ub<-round(as.numeric(bounds(t=t,iuse=c(2,2),

alpha=c(level/2,level/2))$upper.bound),digits=2)

if(ty=="lt"){

res<-data.frame(estimates=est,z.value=zval,boundary=lb)

}else{

if(ty=="ut"){

res<-data.frame(estimates=est,z.value=zval,boundary=ub)

}else{

res<-data.frame(estimates=est,z.value=zval,lower.bound=lb,upper.bound=ub)

}}

## These statistics are for the graphical representation

X<-c(1:K)

if((ty=="lt")|(ty=="ut")){

C<-res$boundary

plot(X,zval,axes=FALSE,pch=1,col="black",type="b",ylim=c(min(c(C+.05,zval)),

max(c(C+.05,zval))),xlab=expression(Studies),ylab=expression(paste("zval")),

main=title)

par(new=TRUE)
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plot(X,C,axes=FALSE,pch=1,lty=5,col="red",type="l",ylim=c(min(c(C+.05,zval)),

max(c(C+.05,zval))),xlab=expression(Studies),ylab=expression(paste("zval")),

main=title)

axis(1,at=seq(X[1],max(X),1),labels=TRUE)

axis(2,,labels=TRUE)

box(which="plot",col="blue")

mmin<-min(c(C+.05,zval))-1

if(stat==TRUE){

if(ty=="lt"){

xpoints<-which(zval<=C)

}else{if(ty=="ut"){

xpoints<-which(zval>=C)

}}

if(length(xpoints>0)){

par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="blue",adj=0)

mtext(length(xpoints),side=1,line=7,col="blue",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic:

",side=1,line=9,col="blue",adj=0)

mtext(xpoints[1],side=1,line=10,col="blue",at=2)

mtext(round(zval[xpoints[1]],digits=4),side=1,line=10,col="blue",at=8)

}else{

par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="blue",adj=0)

mtext(length(xpoints),side=1,line=7,col="blue",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic:

",side=1,line=9,col="blue",adj=0)

mtext("NULL",side=1,line=10,col="blue",at=2)

mtext("NULL",side=1,line=10,col="blue",at=8)

}
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}

}else{

C1<-res$lower.bound

C2<-res$upper.bound

plot(X,zval,axes=FALSE,pch=1,col="black",type="b",ylim=c(min(c(C1-.05,zval)),

max(c(C2+.05,zval))),xlab=expression(Studies),ylab=expression(paste("zval")),

main=title)

par(new=TRUE)

plot(X,C1,axes=FALSE,pch=1,col="red",lty=5,type="l",ylim=c(min(c(C1-.05,zval)),

max(c(C2+.05,zval))),

xlab=expression(Studies),ylab=expression(paste("zval")),main=title)

par(new=TRUE)

plot(X,C2,axes=FALSE,pch=1,col="red",lty=5,type="l",ylim=c(min(c(C1-.05,zval)),

max(c(C2+.05,zval))),

xlab=expression(Studies),ylab=expression(paste("zval")),main=title)

axis(1,at=seq(X[1],max(X),1),labels=TRUE)

axis(2,,labels=TRUE)

box(which="plot",col="blue")

if(stat==T){

xpoints<-c(which(zval<=C1),which(zval>=C2))[order(c(which(zval<=C1),

which(zval>=C2)),decreasing=FALSE)]

if(length(xpoints>0)){

par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="blue",adj=0)

mtext(length(xpoints),side=1,line=7,col="blue",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic:

",side=1,line=9,col="blue",adj=0)

mtext(xpoints[1],side=1,line=10,col="blue",at=2)

mtext(round(zval[xpoints[1]],digits=4),side=1,line=10,col="blue",at=8)

}else{
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par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="blue",adj=0)

mtext(length(xpoints),side=1,line=7,col="blue",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic:

",side=1,line=9,col="blue",adj=0)

mtext("NULL",side=1,line=10,col="blue",at=2)

mtext("NULL",side=1,line=10,col="blue",at=8)

}

}

}

}
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Examples

# Example with manually read input of binary data with odd ratio as the efect
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measure

# Source(F:SMA)

# xT<-c(12,9,18,16,45)

# nT<-c(41,50,36,40,59)

# xC<-c(15,7,23,42,34)

# nC<-c(44,39,51,61,77)

# SMA(xT,nT,xC,nC,u0,"OR",level,"lt","DL",title="SMA of REM",stat=T)

# Example with manually read input of continuous data with standardized mean

difference

# as the efect measure

# Source(F:SMA)

# xT<-c(0.133,0.125,0.087,0.094,0.109,0.062)

# vT<-c(0.025,0.001,0.009,0.098,0.102,0.003)

# nT<-c(41,50,36,40,59,45)

# xC<-c(0.072,0.067,0.100,0.057,0.059,0.107)

# vC<-c(0.053,0.018,0.010,0.068,0.089,0.011)

# nC<-c(44,39,51,61,77)

# SMA(xT,vT,nT,xC,vC,nC,u0,"SMD",level,"lt","DL",title="SMA of REM",stat=T)

8.1.2 Program for calculating the penalised Z-test (PZ)

Usage

PZ(xT,vT,nT,xC,vC,nC,u0,level,ty,lamda,title,stat)

Arguments

xT: Number of events in treatment group when data is binary and sample mean when data

is continuous.

xC: Number of events in control group when data is binary and sample mean when data is
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continuous.

vT: Sample variance of treatment group when data is continuous.

vC: Sample variance of control group when data is continuous.

nT: Sample size of treatment group.

nC: Sample size of control group.

type.E: A character string ”MD”, ”SMD”, ”OR”, ”RR” and ”RD” specifying the type of effect

size measure used.

• ”MD”: Mean difference

• ”SMD”: Standardized mean difference

• ”OR”: Odds ratio

• ”RR”: Relative risk

• ”RD”: Risk difference

ty: A character string ”lt”,”ut” and ”dt” specifying the type of test.

• ”lt”: Lower-sided test

• ”ut”: Upper-sided test

• ”dt”: Double-sided test

level: Significance level.

u0: Target value.

lamda: The adjustment constant for penalised Z-test of CMA

title: Title of the graph ” .... ”.
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stat: Logical statement T or F to provide more statistics below the graph.

Details

This program calculates the penalized Z-test of the cumulative meta-analysis and provides graph-

ical representation of the results.

Required function

R script below is the function required for the calculation of the penalised Z-test.

PZ<-function(xT,vT,nT,xC,vC,nC,type.E,level,u0,ty,lamda,title,stat){

## This statistics calculate the effect size estimate.

if(type.E=="MD"){

y<-xT-xC

v<-vT/nT+vC/nC

}else{

if(type.E=="SMD"){

N<-nT+nC

pooledva<r-((nT-1)*vT+(nC-1)*vC)/(N-2)

J<-gamma((N-2)/2)/(sqrt((N-2)/2)*gamma((N-3)/2))

y<-J*(xT-cC)/sqrt(pooledvar)

v<-((N-2)*N*J)/((N-4)*nC*nT)+((N-2)*J^2/(N-4)-1)*y^2

}else{

if(type.E=="OR"){

pT<-(xT+.5)/(nT+.5)

pC<-(xC+.5)/(nC+.5)

y<-log(pT*(1-pC)/(pC*(1-pT)))

v<-1/(xT+.5)+1/(nT-xT)+1/(xC+.5)+1/(nC-xC)

}else{

if(type.E=="RR"){

pT<-(xT+.5)/(nT+.5)
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pC<-(xC+.5)/(nC+.5)

y<-log(pT)-log(pC)

v<-1/(xT+.5)-1/(nT+.5)+1/(xC+.5)-1/(nC+.5)

}else{

if(type.E=="RD"){

pT<-(xT+.5)/(nT+.5)

pC<-(xC+.5)/(nC+.5)

y<-pT-pC

v<-(xT+.5)*(nT-xT)/(nT+.5)^3+(xC+.5)*(nC-xC)/(nC+.5)^3

}}}}}

K<-length(y)

## This statistic calculates tausquared estimate based DL method.

tauhat<-function(y,v){

K<-length(y)

if(K<2){

DL<-0

}else{

W<-1/v

theta<-sum(W*y)/sum(W)

Q<-sum(W*(y-theta)^2)

C<-sum(W)-sum(W^2)/sum(W)

DL<-pmax((Q-(K-1))/(C),0)

}

DL

}

## This statistic calculates the Penalised Z-test of CMA.

tau<-Z<-P<-Ik<-numeric(K)

for(k in 1:K){

yk<-y[1:k]

vk<-v[1:k]
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tau[k]<-tauhat(yk,vk)

if(tau[k]==0){

tau[k]<-var(vk)

}else{

tau[k]<-tau[k]}

if(k==1){

wk<-1/vk

}else{

wk<-1/(tau[k]+vk)}

Ik<-sum(wk)

Sk<-sum(wk*(yk-u0))

if(Sk<=1){

nn<-1

}else{

nn<-log(log(Ik))}

P[k]<-pmax(nn,1)

Z[k]<-Sk/sqrt(lamda*Ik*P[k])

if((ty=="lt")|(ty=="ut")){

level<-level

}else{

level<-level/2}

lb<-rep(qnorm(level,lower.tail=TRUE),K)

ub<-rep(qnorm(level,lower.tail=FALSE),K)

if(ty=="lt"){

res<-data.frame(z.value=Z,boundary=lb)

}else{

if(ty=="ut"){

res<-data.frame(z.value=Z,boundary=ub)}else{

res<-data.frame(z.value=Z,lower.bound=lb,upper.bound=ub)}}

## These statistics are for the graphical representation
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X<-c(1:K)

if((ty=="lt")|(ty=="ut")){

C<-res$boundary

plot(X,Z,axes=FALSE,pch=1,col="black",type="b",ylim=c(min(c(C+.05,Z)),

max(c(C+.05,Z))),xlab=expression(Studies),ylab=expression(paste("zval")),

main=title)

par(new=TRUE)

plot(X,C,axes=FALSE,pch=1,lty=5,col="red",type="l",ylim=c(min(c(C+.05,Z)),

max(c(C+.05,Z))),xlab=expression(Studies),ylab=expression(paste("zval")),

main=title)

axis(1,at=seq(X[1],max(X),1),labels=TRUE)

axis(2,,labels=TRUE)

box(which="plot",col="blue")

if(stat==TRUE){

if(ty=="lt"){

xpoints<-which(Z<=C)

}else{if(ty=="ut"){

xpoints<-which(Z>=C)

}}

if(length(xpoints>0)){

par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="black",adj=0)

mtext(length(xpoints),side=1,line=7,col="black",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic:

",side=1,line=9,col="black",adj=0)

mtext(xpoints[1],side=1,line=10,col="black",at=2)

mtext(round(Z[xpoints[1]],digits=4),side=1,line=10,col="black",at=8)

}else{

par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="black",adj=0)

189



mtext(length(xpoints),side=1,line=7,col="black",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic:

",side=1,line=9,col="black",adj=0)

mtext("NULL",side=1,line=10,col="black",at=2)

mtext("NULL",side=1,line=10,col="black",at=8)}}}else{

C1<-res$lower.bound

C2<-res$upper.bound

plot(X,Z,axes=FALSE,pch=1,col="black",type="b",ylim=c(min(c(C1-.05,Z)),

max(c(C2+.05,Z))),xlab=expression(Studies),ylab=expression(paste("zval")),

main=title)

par(new=TRUE)

plot(X,C1,axes=FALSE,pch=1,col="red",lty=5,type="l",ylim=c(min(c(C1-.05,Z)),

max(c(C2+.05,Z))),xlab=expression(Studies),ylab=expression(paste("zval")),

main=title)

par(new=TRUE)

plot(X,C2,axes=FALSE,pch=1,col="red",lty=5,type="l",ylim=c(min(c(C1-.05,Z)),

max(c(C2+.05,Z))),xlab=expression(Studies),ylab=expression(paste("zval")),

main=title)

axis(1,at=seq(X[1],max(X),1),labels=TRUE)

axis(2,,labels=TRUE)

box(which="plot",col="blue")

if(stat==T){

xpoints<-c(which(Z<=C1),which(Z>=C2))[order(c(which(Z<=C1),which(Z>=C2)),

decreasing=FALSE)]

if(length(xpoints>0)){

par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="black",adj=0)

mtext(length(xpoints),side=1,line=7,col="black",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic:

",side=1,line=9,col="black",adj=0)
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mtext(xpoints[1],side=1,line=10,col="black",at=2)

mtext(round(Z[xpoints[1]],digits=4),side=1,line=10,col="black",at=8)

}else{

par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="black",adj=0)

mtext(length(xpoints),side=1,line=7,col="black",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic: ",side=1,line=9,col="black",adj=0)

mtext("NULL",side=1,line=10,col="black",at=2)

mtext("NULL",side=1,line=10,col="black",at=8)}}}}
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Examples

# Example with manually read input of binary data with odd ratio as the efect

measure

# Source(F:PZ)

# xT<-c(12,9,18,16,45)

# nT<-c(41,50,36,40,59)

# xC<-c(15,7,23,42,34)

# nC<-c(44,39,51,61,77)

# PZ(xT,nT,xC,nC,"OR",level,u0,"lt",lamda,title="PZ of REM",stat=T)
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# Example with manually read input of continuous data with standardized mean

difference

# as the efect measure

# Source(F:SMA)

# xT<-c(0.133,0.125,0.087,0.094,0.109,0.062)

# vT<-c(0.025,0.001,0.009,0.098,0.102,0.003)

# nT<-c(41,50,36,40,59,45)

# xC<-c(0.072,0.067,0.100,0.057,0.059,0.107)

# vC<-c(0.053,0.018,0.010,0.068,0.089,0.011)

# nC<-c(44,39,51,61,77)

# PZ(xT,vT,nT,xC,vC,nC,"SMD",level,u0,"lt",lamda,title="PZ of REM",stat=T)

8.1.3 Program for the bootstrap test

Usage

Bootstraptest(xT,vT,nT,xC,vC,nC,type.E,level,u0,ty,type.tau,title,stat)

Arguments

xT: Number of events in treatment group when data is binary and sample mean when data

is continuous.

xC: Number of events in control group when data is binary and sample mean when data

is continuous.

vT: Sample variance of treatment group when data is continuous.

vC: Sample variance of control group when data is continuous.

nT: Sample size of treatment group.

nC: Sample size of control group.

type.E: A character string ”MD”, ”SMD”, ”OR”, ”RR” and ”RD” specifying the type of

192



effect size measure used.

• ”MD”: Mean difference

• ”SMD”: Standardized mean difference

• ”OR”: Odds ratio

• ”RR”: Relative risk

• ”RD”: Risk difference

ty: A character string ”lt”,”ut” and ”dt” specifying the type of test.

• ”lt”: Lower-sided test

• ”ut”: Upper-sided test

• ”dt”: Double-sided test

type.tau: A character string ”H”, ”DL”, ”MP” and ”REML” specifying the estimator of τ 2

used.

• ”H”: Higgins

• ”DL”: DerSimonian-Laird estimator

• ”PM”: Paule-Mandel estimator

• ”REML”: Restricted maximum-likelihood estimator

level: Significance level.

u0: Target value.
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title: Title of the graph ” .... ”.

stat: Logical statement T or F to provide more statistics below the graph.

Details

This program calculates the Gombay test with bootstrap based critical values for random-effects

meta-analysis and produce graphical representation of the results.

Required function

R script below is the function required for the calculations of the bootstrap test.

Bootstraptest<-function(xT,vT,nT,xC,vC,nC,type.E,level,u0,ty,type.tau,title,

stat){

## This statistics calculate the effect size estimate.

if(type.E=="MD"){

y<-xT-xC

v<-vT/nT+vC/nC

}else{

if(type.E=="SMD"){

N<-nT+nC

pooledva<r-((nT-1)*vT+(nC-1)*vC)/(N-2)

J<-gamma((N-2)/2)/(sqrt((N-2)/2)*gamma((N-3)/2))

y<-J*(xT-xC)/sqrt(pooledvar)

v<-((N-2)*N*J)/((N-4)*nC*nT)+((N-2)*J^2/(N-4)-1)*y^2

}else{

if(type.E=="OR"){

pT<-(xT+.5)/(nT+.5)

pC<-(xC+.5)/(nC+.5)

y<-log(pT*(1-pC)/(pC*(1-pT)))

v<-1/(xT+.5)+1/(nT-xT)+1/(xC+.5)+1/(nC-xC)

}else{
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if(type.E=="RR"){

pT<-(xT+.5)/(nT+.5)

pC<-(xC+.5)/(nC+.5)

y<-log(pT)-log(pC)

v<-1/(xT+.5)-1/(nT+.5)+1/(xC+.5)-1/(nC+.5)

}else{

if(type.E=="RD"){

pT<-(xT+.5)/(nT+.5)

pC<-(xC+.5)/(nC+.5)

y<-pT-pC

v<-(xT+.5)*(nT-xT)/(nT+.5)^3+(xC+.5)*(nC-xC)/(nC+.5)^3

}}}}}

K<-length(y)

## This statistic calculates tausquared estimates based on the 4 estimators

"H", "DL", "PM" and "REML".

tau<-function(y,v){

K<-length(y)

if(K<2){

H<-0

DL<-0

MP<-0

RM<-0

}else{

tau0<-0.01

eta<-1.5

W<-1/v

theta<-sum(W*y)/sum(W)

Q<-sum(W*(y-theta)^2)

C<-sum(W)-sum(W^2)/sum(W)

DL<-pmax((Q-(K-1))/(C),0)
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H<-(2*(eta-1)*tau0+(K*DL))/(2*(eta-1)+K)

lb<-0

ub<-1000000000000000

f<-function(t,y,v){

sum((1/(v+t))*(y-sum(y/(v+t))/sum(1/(v+t)))^2)-K+1

}

if(f(lb,y=y,v=v)*f(ub,y=y,v=v)<0){

MP<-as.numeric(uniroot(f,c(lb,ub),tol=0.0001,y=y,v=v)[1])

}

else{

MP<-0

}

tau<-0

M<-0

while(M<K){

tauold<-tau

W<-1/(v+tauold)

theta<-sum(W*y)/sum(W)

tau<-pmax((sum((W^2*(((y-theta)^2)-v)))/sum(W^2))+1/sum(W),0)

M<-M+1

}

RM<-tau

}

tau<-c(H,DL,MP,RM)

tau

}

## This statistic calculates the bootstrap based test.

C<-numeric(1)

G<-numeric(K)

## These statistics calculates tau estimate of tau-squared.
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if(type.tau=="H"){

tauhat<-tau(y,v)[1]

}else{

if(type.tau=="DL"){

tauhat<-tau(y,v)[2]

}else{

if(type.tau=="PM"){

tauhat<-tau(y,v)[3]

}else{

if(type.tau=="REML"){

tauhat<-tau(y,v)[4]

}}}}

## The section determines the boostrap critical values.

GGa<-GGb<-numeric(10000)

for (i in 1:10000){

SS<-TT<-numeric(K)

## These statistics generate the bootstrap effect size estimates and the

sample variances.

if(type.E=="MD"){

bxT<-rnorm(K,u0,sqrt(tauhat+vT))

bxC<-rnorm(K,0,sqrt(tauhat+vC))

TT<-bxT-bxC

SS<-(vT/((nT-1)))*rchisq(K,nT-1)+(vC/((nC-1)))*rchisq(K,nC-1)

}else{

if(type.E=="SMD"){

noncentralpar<-rt(K,N-2,sqrt(nT*nC/N)*y)

y<-rnorm(K,u0,sqrt(tauhat))

TT<-J*N/noncentralpar

SS<-((N-2)*N*J)/((N-4)*nC*nT)+((N-2)*J^2/(N-4)-1)*TT^2

}else{
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if(type.E=="OR"){

xbar<-rnorm(K,u0,sqrt(tauhat))

pTb<-pC*exp(xbar)/(pC*exp(xbar)+1-pC)

xTb<-rbinom(K,nT,pTb)

xCb<-rbinom(K,nC,pC)

TT<-log((xTb+0.5)/(nT+0.5))-log((xCb+0.5)/(nC+0.5))

SS<-(xTb+0.5)^(-1)-(nT+0.5)^(-1)+(xC+0.5)^(-1)-(nC+0.5)^(-1)

}else{

if(type.E=="RR"){

xbar<-pmin(rnorm(K,u0,sqrt(tauhat)),-log(pC))

pTb<-pC*exp(xbar)

xCb<-rbinom(K,nC,pC)

xTb<-rbinom(K,nT,pTb)

pTb<-(xTb+.5)/(nT+.5)

pCb<-(xCb+.5)/(nC+5)

TT<-log(pTb)-log(pCb)

SS<-1/(xTb+.5)-1/(nT+.5)+1/(xCb+.5)-1/(nC+.5)

}else{

if(type.E=="RD"){

xbar<-pmin(pmax(rnorm(K,u0,sqrt(tauhat)),-pC),1-pC)

pTb<-xbar+pC

xCb<-rbinom(K,nC,pC)

xTb<-rbinom(K,nT,pTb)

TT<-xTb/nT-xCb/nC

a<-SS<-numeric(length(nT))

for (mm in 1:length(nT)){

if((xTb[mm]==0)|(xTb[mm]==nT[mm])|(xCb[mm]==0)|(xCb[mm]==nC[mm])){

a[mm]<-.5

}else{

a[mm]<-0
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}

SS[mm]<-(xTb[mm]+a[mm])*(nT[mm]-xTb[mm]+a[mm])/(nT[mm]+2*a[mm])^3+(xCb[mm]

+a[mm])*(nC[mm]-xCb[mm]+a[mm])/(nC[mm]+2*a[mm])^3

}

}}}}}

## These statistics re-calculate tau-squared estimate from the bootstrap data.

if(type.tau=="H"){

that<-tau(TT,SS)[1]

}else{

if(type.tau=="DL"){

that<-tau(TT,SS)[2]

}else{

if(type.tau=="PM"){

that<-tau(TT,SS)[3]

}else{

if(type.tau=="REML"){

that<-tau(TT,SS)

}}}}

g<-numeric(K)

for(k in 1:K){

Tk<-SSk<-W<-numeric(k)

Tk<-TT[1:k]

SSk<-SS[1:k]

W<-1/(SSk+that)

#These statistics calculate the Gombay test statistic from bootstrap data.

g[k]<-round(sum(W*(Tk-u0))/sqrt(K*sum(W)),digits=4)

}

GGa[i]<-min(g[1:K])

GGb[i]<-max(g[1:K])
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}

##This statistics compute the bootstrap critical values based on 4 different

estimators of tau.

if(ty=="lt"){ ##lower one-sided critical values

C<- sort(GGa,decreasing=FALSE)[round(length(GGa)*level)]

}else{

if(ty=="ut"){ ##upper one-sided critical values

C<- sort(GGb,decreasing=FALSE)[round(length(GGb)*(1-level))]

}else{ ##two-sided critical values

C<- c(sort(GGa,decreasing=FALSE)[round(length(GGa)*(level/2))],sort(GGb,

decreasing=FALSE)

[round(length(GGb)*(1-level/2))])

}

}

gg<-numeric(K)

## This statistic calculate Gombay test statistic for REM based on the real data.

for(k in 1:K){

wk<-Tk<-Sk<-numeric(k)

Tk<-y[1:k]

Sk<-v[1:k]

wk<-1/(Sk+tauhat)

gg[k]<-round(sum(wk*(Tk-u0))/sqrt(K*sum(wk)),digits=4)

}

## These statistics are for the graphical representation

X<-c(1:K)

if((ty=="lt")|(ty=="ut")){

C<-c(rep(C,K))

results<-data.frame("G"=gg,"bound.G"=C)

plot(X,gg,axes=FALSE,pch=1,col="black",type="b",ylim=c(min(c(C+.05,gg)),
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max(c(C+.05,gg))),xlab=expression(Studies),ylab=expression(paste("Gk")),

main=title)

par(new=TRUE)

plot(X,C,axes=FALSE,pch=1,lty=5,col="red",type="l",ylim=c(min(c(C+.05,gg)),

max(c(C+.05,gg))),xlab=expression(Studies),ylab=expression(paste("Gk")),

main=title)

axis(1,at=seq(X[1],max(X),1),labels=TRUE)

axis(2,,labels=TRUE)

box(which="plot",col="blue")

if(stat==TRUE){

if(ty=="lt"){

xpoints<-which(gg<=C)

}else{if(ty=="ut"){

xpoints<-which(gg>=C)

}}

if(length(xpoints>0)){

par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="black",adj=0)

mtext(length(xpoints),side=1,line=7,col="black",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic:

",side=1,line=9,col="black",adj=0)

mtext(xpoints[1],side=1,line=10,col="black",at=2)

mtext(round(gg[xpoints[1]],digits=4),side=1,line=10,col="black",at=8)

}else{

par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="black",adj=0)

mtext(length(xpoints),side=1,line=7,col="black",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic:

",side=1,line=9,col="black",adj=0)

mtext("NULL",side=1,line=10,col="black",at=2)
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mtext("NULL",side=1,line=10,col="black",at=8)

}

}

}else{

C1<-c(rep(C[1],K))

C2<-c(rep(C[2],K))

results<-data.frame("G"=gg,"lower.bound"=C1,"upper.bound"=C2)

plot(X,gg,axes=FALSE,pch=1,col="black",type="b",ylim=c(min(c(C1-.05,gg)),

max(c(C2+.05,gg))),xlab=expression(Studies),ylab=expression(paste("Gk")),

main=title)

par(new=TRUE)

plot(X,C1,axes=FALSE,pch=1,col="red",lty=5,type="l",ylim=c(min(c(C1-.05,gg)),

max(c(C2+.05,gg))),xlab=expression(Studies),ylab=expression(paste("Gk")),

main=title)

par(new=TRUE)

plot(X,C2,axes=FALSE,pch=1,col="red",lty=5,type="l",ylim=c(min(c(C1-.05,gg)),

max(c(C2+.05,gg))),xlab=expression(Studies),ylab=expression(paste("Gk")),

main=title)

axis(1,at=seq(X[1],max(X),1),labels=TRUE)

axis(2,,labels=TRUE)

box(which="plot",col="blue")

if(stat==T){

xpoints<-c(which(gg<=C1),which(gg>=C2))[order(c(which(gg<=C1),which(gg>=C2)),

decreasing=FALSE)]

if(length(xpoints>0)){

par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="black",adj=0)

mtext(length(xpoints),side=1,line=7,col="black",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic:

",side=1,line=9,col="black",adj=0)
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mtext(xpoints[1],side=1,line=10,col="black",at=2)

mtext(round(gg[xpoints[1]],digits=4),side=1,line=10,col="black",at=8)

}else{

par(mar=c(11,2,2,2))

mtext("Number of times H_0 is rejected: ",side=1,line=6,col="black",adj=0)

mtext(length(xpoints),side=1,line=7,col="black",adj=0)

mtext("The first time H_0 is rejected and value of its test statistic:

",side=1,line=9,col="black",adj=0)

mtext("NULL",side=1,line=10,col="black",at=2)

mtext("NULL",side=1,line=10,col="black",at=8)

}

}

}

}
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# Example with manually read input of binary data with odd ratio as the

efect measure

# Source(F:bootstraptest)

# xT<-c(12,9,18,16,45)

# nT<-c(41,50,36,40,59)

# xC<-c(15,7,23,42,34)

# nC<-c(44,39,51,61,77)

# Bootstraptest(xT,nT,xC,nC,type.E="OR",level,u0,ty,type.tau,

title="Bootstrap based tes",

# stat=T)

# Example with manually read input of continuous data with standardized

mean difference

# as the efect measure

# Source(F:SMA)

# xT<-c(0.133,0.125,0.087,0.094,0.109,0.062)

# vT<-c(0.025,0.001,0.009,0.098,0.102,0.003)

# nT<-c(41,50,36,40,59,45)

# xC<-c(0.072,0.067,0.100,0.057,0.059,0.107)

# vC<-c(0.053,0.018,0.010,0.068,0.089,0.011)

# nC<-c(44,39,51,61,77)

# Bootstraptest(xT,vT,nT,xC,vC,nC,type.E="OR",level,u0,ty,type.tau,

# title="Bootstrap based test",stat=T)
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8.2 R programs for calculations in Chapter 6

8.2.1 Program for unconditional and conditional probability presented

in Figure 6.6

## DESCRIPTION

################

## This program calculates the unconditional and conditional probabilities (Figure 6.1) as a

function of the true theta of theta0 conducting the second trial for the power

calculation rule discussed in Section 6.1.2.5.

#########################################################################################

## USAGE

## F2(theta,a,b,n.1,sigma.1,alpha,beta)

## ARGUREMENT

## theta A vector specifying the values of theta, the effect parameter.

## sigma.1 Within-study variance of study 1.

## alpha Value of Type I error.

## beta Value of Type II error.

## n.1 Sample size of study 1.

## a A positive integer specifying a lower bound for sample size of study 2.

## b A positive interger specifying an upper bound for sample size of study 2.

##################################################################################################################

## PROGRAM

F2<-function(theta,a,b,n.1,sigma.1,alpha,beta){

a.0<-qnorm(alpha/2, lower.tail=FALSE)

b.0<-qnorm(1-beta,lower.tail=TRUE)

c2<-(a.0+b.0)^2

par(mfrow=c(2,1))

pr=function(theta,a,b,n.1,c2,sigma.1)

205



{

ell=(a+n.1)*theta^2*(n.1-1)/(c2*sigma.1);

u=(b+n.1)*theta^2*(n.1-1)/(c2*sigma.1);

pchisq(u,n.1-1)-pchisq(ell,n.1-1)

}

pr.2=function(th,a,b,n.1,c2,sigma.1,theta)

{

pr(th,a,b,n.1,c2,sigma.1)*dnorm(th,theta,sqrt(sigma.1/n.1));

}

Pr=NULL;

for(th in theta)

{

Pr=c(Pr,pr(th,a,b,n.1,c2,sigma.1));

}

Pr.1=NULL;

for(theta.1 in theta)

{

Pr.1=c(Pr.1,integrate(pr.2,lower=-5,upper=5,a=a,b=b,n.1=n.1,c2=c2,sigma.1=sigma.1,

+theta.1)$value);

}

plot(theta,Pr,type="l",ylab="Probability",main="Conditional",xlab=expression(theta));

plot(theta,Pr.1,type="l",ylab="Probability",main="unconditional",xlab=expression(theta));

}

8.2.2 Program for % bias presented in Figure 6.7

##DESCRIPTION

###########################

## This program simulate the percentage bias of the unconditional probability power rule

when d=1 or for Figure 3

##################################################################################################################

## USAGE

## F3(n.sim,mu,a,b,n.1,sigma.1,delta,alpha,beta)

## ARGUREMENT
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## n.sim A positive integer specifying the number of simulations to be carried out.

## mu A vector specifying the values of the effect parameter.

## sigma.1 Within-study variance of study 1.

## a A positive integer specifying a lower bound for sample size of study 2.

## b A positive interger specifying an upper bound for sample size of study 2.

## n.1 Sample size of study 1.

## delta Real number specifying the size of the effect

## alpha Value of Type I error.

## beta Value of Type II error.

F3<-function(n.sim,mu,a,b,n.1,sigma.1,delta,alpha,beta){

a.0<-qnorm(alpha/2, lower.tail=FALSE)

b.0<-qnorm(1-beta,lower.tail=TRUE)

c2<-(a.0+b.0)^2

sim.f <- function(theta.0,n.1,n.sim,sigma.1,a,b,delta=0 )

{

X <- matrix(rnorm(n.1*n.sim,theta.0,sqrt(sigma.1)),nrow=n.sim);

theta.1.hat <- apply(X,1,mean);

sigma.1.hat <- apply(X,1,var);

mean(theta.1.hat);

w.1 <- n.1/sigma.1.hat;

n.2 <- (c2/(theta.1.hat+delta)^2-w.1)*sigma.1.hat;

t.1 <- (a<=n.2)&(n.2<=b);

n.t <- sum(t.1);

if(n.t>0)

{

Y <- matrix(rnorm(b*n.t,theta.0,sqrt(sigma.1)),nrow=n.t);

theta.2.hat <- apply(Y,1,mean);

sigma.2.hat <- apply(Y,1,var);

th <- rep(0,n.sim);
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aa <- as.numeric(t.1);

w.2 <- b/sigma.2.hat;

theta.c.1 <- (theta.1.hat[t.1]*w.1[t.1]+theta.2.hat*w.2)/(w.1[t.1]+w.2)

th[t.1] <- theta.c.1;

theta.c <- theta.1.hat*(1-aa)+th

u.m <- 100*(mean(theta.c,na.rm=T)-theta.0)/theta.0;

c.m <- 100*(mean(theta.c[t.1],na.rm=T)-theta.0)/theta.0;

c.m.0 <- 100*(mean(theta.c[!t.1],na.rm=T)-theta.0)/theta.0;

pp <- sum(t.1)/length(t.1);

}else{u.m <- NA;c.m <- NA;c.m.0 <- NA;pp <- NA}

list(u.m=u.m,c.m=c.m,c.m.0=c.m.0,pp=pp);

}

#########################

####w.10 <- n.1/sigma.1;

######################

B <- NULL;

B.C.1 <- NULL;

B.C.0 <- NULL;

PP <- NULL;

for(k in 1:length(mu))

{

s.out <- sim.f(mu[k],n.1,n.sim,sigma.1,a,b);

B <- c(B,s.out$u.m);

B.C.1 <- c(B.C.1,s.out$c.m);

B.C.0 <- c(B.C.0,s.out$c.m.0);
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PP <- c(PP,s.out$pp)

}

matplot(mu,cbind(B,B.C.1,B.C.0),type="b",xlab="theta",ylab="% bias",pch=c("*","+","#"),

cex=1,col=c(1,1,1));legend(0.9,70,legend=c("Unconditional","Y=1","Y=0")

,col=c(1,1,1),pch=c("*","+","#"))#lty=c(1,2,3))

matplot(mu,cbind(B,B.C.1,B.C.0),type="l",xlab=expression(theta),ylab="% bias",lwd=2,

lty=c(1,3,4));legend(0.9,50,legend=c("Unconditional","Y=1","Y=0")

,col=c(1,2,3),lty=c(1,3,4),lwd=2);#,pch=c("*","+","#"))#lty=c(1,2,3))

abline(h=0.00, lty=1, lwd=2,col="lightgrey")

##################################################

theta.0 <- 0.3;

h <- (sqrt(c2/w.10)-delta-theta.0)/(sqrt(sigma.1/n.1));

ph <- dnorm(h);

PH <- pnorm(h);

mu.0 <- theta.0+sqrt(1/w.10)*ph/(1-PH);

mu.1 <- theta.0-sqrt(1/w.10)*ph/PH;

c(mu.0,mu.1)

c(mean(theta.1.hat[!t.1]),mean(theta.1.hat[t.1]))

}

8.2.3 Program for simulations for sequential design bias in Section

6.2.1 and Figure 6.8

## DESCRIPTION

###############

## This program works in conjunction with R package logfit. It calculates and plots

the percentage bias of the simulations discussed in Section 3

#################################################################################################

## USAGE
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F4(n.sim,theta.0,d.all,n.1,sigma.1,sigma.2,delta,alpha,beta)

## ARGUREMENT

## n.sim A positive integer specifying the number of simulations to be carried out.

## theta.o The null value of the effect parameter.

d.all A vector of real numbers specifying the values of d used in the simulations.

## n.1 Sample size of study 1.

## sigma.1 Within-study variance of study 1.

## sigma.2 True value of within-study variance of study 2.

## delta Real number specifying the size of the effect

## alpha Value of Type I error.

## beta Value of Type II error.

##############################

F4<-function(n.sim,theta.0,d.all,n.1,sigma.1,sigma.2,delta,alpha,beta){

a.0<-qnorm(alpha/2, lower.tail=FALSE)

b.0<-qnorm(1-beta,lower.tail=TRUE)

c2<-(a.0+b.0)^2

w.10 <- n.1/sigma.1;

S.1 <- matrix(rnorm(n.sim*n.1,theta.0,sqrt(sigma.1)),ncol=n.1);

theta.1.hat <- apply(S.1,1,mean);

sigma.1.hat <- apply(S.1,1,var);

w.1 <- n.1/sigma.1.hat;

c(theta.0,mean(theta.1.hat))

M <- NULL;

P <- NULL;

for ( d in d.all)

{
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################################

##Study 2

###############################

sigma.g <- d^2*sigma.2;

n.2 <- (c2/(theta.1.hat+delta)^2-w.1)*sigma.g;###first simulations

# n.2 <- (c2/(theta.1.hat+delta)^2-w.1)*sigma.1.hat;

# n.2 <- (c2/(theta.0)^2-w.1)*sigma.2;

# n.2 <- (c2/(theta.0)^2-w.1)**sigma.1.hat

# n.2 <- rep(n.2,n.sim)

n.2 <- ceiling(n.2);

n.2 <- pmax(n.2,5);

n.2 <- pmin(n.2,1000)

theta.2.hat <- NULL;

sigma.2.hat <- NULL;

for(k in 1:n.sim)

{

S.2 <- rnorm(n.2[k],theta.0,sqrt(sigma.2))

theta.2.hat <- c(theta.2.hat,mean(S.2))

sigma.2.hat <- c(sigma.2.hat,var(S.2))

}

#################################

##combined estimator and bias

#################################

w.2 <- n.2/sigma.2.hat

theta.c <- (w.1*theta.1.hat+w.2*theta.2.hat)/(w.1+w.2);

perc.bias <- (mean(theta.c)/theta.0-1)*100

P <- c(P,perc.bias);

M <- c(M,mean(theta.c));

}

###################################
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## plot(d.all,M,type="l");

## plot(d.all,P,xlab="d",ylab="% bias",type="l");

library(locfit);

L.P <- locfit(P~lp(d.all,nn=0.15))

plot(L.P,get.data=T,xlab="d",ylab="% bias");

h <- (sqrt(c2/w.10)-delta-theta.0)/sqrt(sigma.1);

t.1 <- dnorm(h)/(1-pnorm(h))

theta.0.t <- theta.0+t.1*sqrt(sigma.1/n.1)

B=data.frame("c2/theta^2-n.1"=c2/theta.0^2-n.1,h=h,t.1=t.1)

B

}

8.2.4 Program for the simulations of unconditional and conditional

means in Section 6.1.2.3

## DESCRIPTION

##############

## This program simulates the unconditional and conditional means of the combined effect

at stages 2 and 3 discussed in Section 2.

######################################################################################

## USAGE

## T(nsim,theta,theta0,sigma.1,t,n.1,tau,r).

## ARGUREMENTS

##############

## nsim A positive number specifying the number of simulations.

## theta The TRUE value of the effect parameter.

## theta0 The target value of the effect parameter.
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## sigma.1 Within-study variance of study 1

## t A positive integer specifying the power-index of the power-law model.

## n.1 The sample size of study 1

## tau Between-study variance.

## r r is a real number to determine

##################################################################################################################################################################################################################################################

## PROGRAM

T<-function(nsim,theta,theta0,sigma.1,t,n.1,tau,r){

# This statistic generates the effect size for study 1

theta1<-rnorm(nsim,theta,sqrt(sigma.1/n.1+tau))

# This statistic calculates the probability of conducting the second trial for power model

p11<-(theta1/theta0)^t

p11<-p11*(1-(p11>1))

p11<-p11*(1-(p11<0))

# This statistic calculates the probability of conducting the second trial for extreme value

model

x<-theta1

GA<-exp(-exp((x-theta0)/sqrt(sigma.1/N+tau)))

GB<-exp(-exp((r*theta0-theta0)/sqrt(sigma.1/N+tau)))

GA[which(x<r*theta0)]<-0

p12<-GA/GB

# This statistic calculates the probability of conducting the second trial for probit model

x<-theta1

alpha<-0

beta<-1

G1<-1-pnorm((x-theta0)/sqrt(sigma.1/N+tau))

G2<-1-pnorm((r*theta0-theta0)/sqrt(sigma.1/N+tau))

G1[which(x<r*theta0)]<-0

p13<-G1/G2

# If Y1i=1 for i=1, 2, 3, the second trial is conducted otherwise it is not conducted.
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Y11<-rbinom(nsim,1, p11)

Y12<-rbinom(nsim,1, p12)

Y13<-rbinom(nsim,1, p13)

theta21<-Y11*rnorm(nsim,theta,sqrt(sigma.1/n.1+tau))

theta22<-Y12*rnorm(nsim,theta,sqrt(sigma.1/n.1+tau))

theta23<-Y13*rnorm(nsim,theta,sqrt(sigma.1/n.1+tau))

theta21cum<-(theta1+theta21)/(1+Y11)

theta22cum<-(theta1+theta22)/(1+Y12)

theta23cum<-(theta1+theta23)/(1+Y13)

theta21cond<-(theta1+theta21)*Y11/2

theta22cond<-(theta1+theta22)*Y12/2

theta23cond<-(theta1+theta23)*Y13/2

# This statistic calculates the probability of conducting the second trial for power model

p21<-(theta21cond/theta0)^t

p21<-p21*(1-(p21>1))

p21<-p21*(1-(p21<0))

# This statistic calculates the probability of conducting the second trial for

extreme value model

x<-theta22cond

GGA<-exp(-exp((x-theta0)/sqrt(sigma.1/N+tau)))

GGB<-exp(-exp((r*theta0-theta0)/sqrt(sigma.1/N+tau)))

GGA[which(x<r*theta0)]<-0

p22<-GGA/GGB

# This statistic calculates the probability of conducting the second trial for probit model

x<-theta23cond

alpha<-0

beta<-1
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GG1<-1-pnorm((x-theta0)/sqrt(sigma.1/N+tau))

GG2<-1-pnorm((r*theta0-theta0)/sqrt(sigma.1/N+tau))

GG1[which(x<r*theta0)]<-0

p23<-GG1/GG2

Y21<-rbinom(nsim,1, p21)

Y22<-rbinom(nsim,1, p22)

Y23<-rbinom(nsim,1, p23)

theta31<-Y11*Y21*rnorm(nsim,theta,sqrt(sigma.1/n.1+tau))

theta32<-Y12*Y22*rnorm(nsim,theta,sqrt(sigma.1/n.1+tau))

theta33<-Y13*Y23*rnorm(nsim,theta,sqrt(sigma.1/n.1+tau))

theta31cum<-(theta1+theta21+theta31)/(1+Y11+Y11*Y21)

theta32cum<-(theta1+theta22+theta32)/(1+Y12+Y12*Y22)

theta33cum<-(theta1+theta23+theta33)/(1+Y13+Y13*Y23)

theta31cond<-(theta1+theta21+theta31)*Y11*Y21/3

theta32cond<-(theta1+theta22+theta32)*Y12*Y22/3

theta33cond<-(theta1+theta23+theta33)*Y13*Y23/3

# These statististics calculates the unconditional expected value of the combined effect

at the second trial

e21<-round(mean(theta21cum),digits=4) # based on power-law model

e22<-round(mean(theta22cum),digits=4) # based on extreme value model

e23<-round(mean(theta23cum),digits=4) # based on probit model

# These statististics calculate the conditional expected value of the combined effect

at the second trial

E21<-round(sum(theta21cond)/sum(Y11),digits=4) # based on power-law model

E22<-round(sum(theta22cond)/sum(Y12),digits=4) # based on extreme value model

E23<-round(sum(theta23cond)/sum(Y13),digits=4) #based on probit model

d21<-sum(Y11) # based on power-law model

d22<-sum(Y12) # based on extreme value model

d23<-sum(Y13) # based on probit model
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# These statististics calculate the unconditional expected value of the combined effect

at the third trial

e31<-round(mean(theta31cum),digits=4) # based on power-law model

e32<-round(mean(theta32cum),digits=4) # based on extreme value model

e33<-round(mean(theta33cum),digits=4) # based on probit model

# These statististics calculate the conditional expected value of the combined effect

at the third trial

E31<-round(sum(theta31cond)/sum(Y11*Y21),digits=4) # based on power-law model

E32<-round(sum(theta32cond)/sum(Y12*Y22),digits=4) # based on extreme value model

E33<-round(sum(theta33cond)/sum(Y13*Y23),digits=4) # based on probit model

d31<-sum(Y11*Y21) # based on power-law model

d32<-sum(Y12*Y22) # based on extreme value model

d33<-sum(Y13*Y23) # based on probit model

B<-data.frame(stage=c(2,2,2,3,3,3),model.Type=c("power-law","extreme value","probit",

"power-law","extreme value","probit"),uncond.means=c(e21,e22,e23,e31,e32,e33),

cond.means=c(E21,E22,E23,E31,E32,E32),No.sudies.use=

c(d21,d22,d23,d31,d32,d33))

B

}

8.3 Data and results of calculations in Chapter 5
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