

Migratory diversity predicts population declines in birds

Journal:	Ecology Letters
Manuscript ID	ELE-00934-2015.R1
Manuscript Type:	Letters
Date Submitted by the Author:	n/a
Complete List of Authors:	Gilroy, James; University of East Anglia, School of Environmental Science Gill, Jennifer; University of East Anglia, School of Biological Sciences Butchart, Stuart; Birdlife International, Jones, Victoria; Birdlife International, Franco, Aldina; University of East Anglia, Environmental Sciences
Key Words:	Migratory strategy, partial migration, population trends, climate change, behavioural plasticity, European birds, Afrotropical migrants

1	Migratory diversity predicts population declines in birds
2	James J. Gilroy ^{a*} , Jennifer A. Gill ^b , Stuart H. M. Butchart ^c , Victoria R. Jones ^c & Aldina
3	M. A. Franco ^a
4	^a School of Environmental Science, University of East Anglia, Norwich Research Park,
5	Norwich NR4 7TJ, UK
6	^b School of Biological Science, University of East Anglia, Norwich Research Park, Norwich
7	NR4 7TJ, UK
8	^c BirdLife International, Wellbrook Court, Cambridge CB30NA, UK
9	Running title: Migratory diversity and population trends
10	Keywords: Migratory strategy, partial migration, population trends, climate change,
11	behavioural plasticity, European birds, Afrotropical migrants
12	Type of article: Letter
13	Abstract words: 152; Main text words: 4235; References: 51; Figures: 5; Tables: 1; Boxes: 0
14	*Correspondence to: James J. Gilroy, School of Environmental Science, University of East
15	Anglia, Norwich Research Park, Norwich NR4 7TJ, UK, Tel: +44 (0)1603 59 2543 Fax: +44
16	(0)1603 591327
17	Author contributions: JJG, JAG & AMAF conceived the study, SHMB & VRJ provided data,
18	JJG performed the analyses and wrote the first draft, all authors contributed significantly to
19	revisions.
20	
21	
22	
	1

23 Abstract

Declines in migratory species are a pressing concern worldwide, but the mechanisms underpinning these declines are not fully understood. We hypothesised that species with greater within-population variability in migratory movements and destinations, here termed 'migratory diversity', might be more resilient to environmental change. To test this, we related map-based metrics of migratory diversity to recent population trends for 340 European breeding birds. Species that occupy larger non-breeding ranges relative to breeding. a characteristic we term 'migratory dispersion', were less likely to be declining than those with more restricted non-breeding ranges. Species with partial migration strategies (i.e. overlapping breeding and non-breeding ranges) were also less likely to be declining than full migrants or full residents, an effect that was independent of migration distance. Recent rates of advancement in Europe-wide spring arrival date were greater for partial migrants than full migrants, suggesting that migratory diversity may also help facilitate species responses to climate change.

Ecology Letters

39 Introduction

A wide range of migratory birds, mammals, fish and invertebrates have shown population declines in recent decades (Wilcove & Wikelski 2008), with causes linked to climate change (Both et al. 2006; Møller et al. 2008) and habitat loss (Robbins et al. 1989; Sanderson et al. 2006; Berger et al. 2008) among other factors. Migrants can experience 'multiple jeopardy' owing to their reliance on different sites across the annual cycle, potentially increasing their risk of exposure to spatially-heterogeneous threats (Wilcove & Wikelski 2008; Vickery et al. 2014). Importantly, declines have not been uniform across migratory species (Sanderson et al. 2006; Thaxter et al. 2010; Vickery et al. 2014), implying that some traits associated with migration might confer particular sensitivity to environmental change. Identifying these traits could help us determine which species are at greatest risk of continuing decline.

Some lines of evidence suggest that the magnitude of migratory movements made by species can influence their vulnerability to environmental change (Wilcove & Wikelski 2008). Among birds, for example, long-distance migrants have shown steeper declines than residents and short-distance migrants (Sanderson et al. 2006; Morrison et al. 2013). However, such simple classifications of migration distance obscure a complex spectrum of within-species variation in migratory movements. Often, for example, populations comprise a mixture of individuals that migrate longer and shorter distances, or vary significantly in migration direction (Chapman et al. 2011a; Vardanis et al. 2011). This diversity of migratory movement determines the spatial distribution of the population during the non-breeding season, which in turn has important implications for population dynamics (Sutherland & Dolman 1994, Runge et al. 2014).

By expressing a diverse range of migratory movements, some populations are able to
spread widely across many sites during the non-breeding period (Fig. 1A). In others,

2
3
1
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
20
24
25
26
27
28
20
20
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
11
44
45
46
47
48
49
50
50
51
52
53
54
55
56
50
57
58
59
60

84

1

63	migratory movements cause populations to converge within smaller non-breeding areas (Fig.
64	1B). We hypothesize that this characteristic, which we term 'migratory dispersion', could
65	play an important role in determining the resilience of populations to environmental change.
66	In a simple network model of a migratory population (Appendix S1), networks with low
67	migratory dispersion show greater declines following non-breeding habitat loss than those
68	with high dispersion (Fig 2A-D). Indeed, these models predict that migratory dispersion can
69	have a greater influence on population resilience than the allied phenomenon of 'migratory
70	connectivity' (Fig. S1), which relates to the intermixing of individuals from different
71	breeding sites within non-breeding sites (Webster et al. 2002). Despite considerable interest
72	in the implications of migratory connectivity (e.g. Taylor & Norris 2010; Betini et al. 2015),
73	the importance of migratory dispersion has received little attention.
74	In some species, the expression of migratory behaviour itself varies between
75	individuals, such that populations contain both residents and migrants (Lundberg 1988).
76	Such 'partial migration' has been observed widely across both marine and terrestrial biomes,
77	and in a wide range of taxonomic groups (including invertebrates, fish, birds and mammals;
78	Chapman et al. 2011b). However, it is unclear whether this component of migratory diversity
79	also influences of the resilience of populations to environmental change (Chapman et al.
80	2011b). Network models again suggest that partially migratory populations may be more
81	resilient to changes such as habitat loss than fully migratory populations, if those changes
82	occur in non-breeding sites (Fig. 2C).
83	Here, we examine the link between migratory diversity and population resilience

85 improvements in individual tracking technology, we still lack the capacity to quantify

using data on recent trends for 340 European breeding bird species. Despite rapid

86 between-individual variation in migratory movements for the majority of these species. We

87 can, however, draw inferences about their migratory diversity using map-based metrics of

Ecology Letters

3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
24
20
26
27
28
29
30
31
32
33
31
25
30
30
37
38
39
40
41
42
43
44
45
46
40
47
48
49
50
51
52
53
54
55
56
50
57
58
59
60

seasonal change in species distributions. We use these to test whether migratory dispersion (measured as the relative difference in size between breeding and non-breeding ranges) and partial migration strategies (measured as partial overlap between breeding and non-breeding ranges) influence the probability that species have declined over recent decades, controlling for other species traits and climatic niche characteristics.

93 We also hypothesize that migratory diversity might be linked to changes in mean 94 spring arrival date of migratory species. Previous work has shown that advances in mean 95 spring arrival date are closely correlated with recent population trends in some European 96 migratory birds, with declines being more severe among species that have failed to advance 97 their mean arrival dates (Møller et al. 2008). A link between arrival advancement and 98 migratory diversity could arise if species with diverse migratory strategies also show greater 99 variation in the timing of movement (López-López et al. 2014). To examine this, we assess 100 the correlation between migratory diversity metrics with interspecific variation in the 101 advancement of mean spring arrival, and assess whether arrival advancement and migratory 102 diversity play complementary roles in explaining species population trends. These analyses 103 help us pinpoint species traits associated with resilience to anthropogenic change, with potential utility in assessments of species vulnerability. 104

105 Methods

106 *Population trend and distribution data*

- 107 We used data compiled from country-specific monitoring programs for two periods: a 1990–
- 108 2000 census compiled in *Birds in Europe* (BirdLife International 2004) and a 2001-2012
- 109 census compiled in the *European Red List of Birds* (BirdLife International 2015). For each
- 110 census period, we used the trend estimates to class each species as either declining, stable,
- 111 increasing or fluctuating in population size across Europe.

To quantify the breeding and non-breeding ranges of each species, we used current distribution maps (BirdLife International and NatureServe 2014) constrained to Eurasia west of 52°E for breeding and Africa and Eurasia west of 52°E for non-breeding (excluding areas occupied only during passage). In subsequent analyses, we excluded any species whose European breeding populations migrate primarily to areas outside the study area (e.g. in Asia), as well as those with non-breeding populations in Europe or Africa that originate from outside the study area (Table S1). We also excluded fully-pelagic species, and species that breed extensively within sub-Saharan Africa, leaving 340 species for analysis (Table S1).

- *Metrics of migratory diversity*
- We used two metrics to describe migratory diversity (Fig. 1). To measure migratory
- dispersion (i.e. the extent to which species inhabit larger or smaller areas in the non-breedingseason, relative to breeding range size), we calculated the following index:

$$Dispersion = \frac{\log_{10} (A_{nonbreeding}) - log_{10} (A_{breeding})}{\log_{10} (A_{breeding})}$$

where $A_{nonbreeding}$ and $A_{breeding}$ are the sizes of the two seasonal ranges, log-transformed to attain normality. The denominator controls for the expected positive relationship between breeding range size and diversity in migratory movements. To quantify partial migration, we classified each species according to migratory strategy ('full resident', 'partial migrant' or 'full migrant') using season-specific range maps. Although partial migration has been defined in many ways (see Chapman et al. 2011b), it usually refers the co-occurrence of migratory and non-migratory phenotypes within a population. Given the paucity of information on individual-level phenotypic variation across species, we classified migratory strategy simply according to the presence of overlap between breeding and non-breeding ranges: full migrants have zero overlap, residents have complete overlap, and partial migrants have

Ecology Letters

3 4	134	overlap greater than zero and less than one. As such, both our partial migrant and resident
5 6	135	classes could include some species with 'stepping stone' or 'chain' migration patterns that
7 8	136	might result in seasonal range overlap despite a lack of fully resident phenotypes (Nilsson et
9 10	137	al. 2008). Of the 340 species considered, we classified 49.7 % as partial migrants, 33.8% as
11 12 13	138	full migrants and 16.5% as full residents.
14 15 16	139	Other predictors of population trends
17 18	140	We also hypothesized that species occupying a broader range of climatic conditions may be
20	141	more resilient to environmental variability, and hence anthropogenic impacts. We modelled
21 22 23	142	the breadth of species' climatic niches during breeding and non-breeding periods, and
24 25	143	measuring between-season niche conservatism, using methods adapted from Broennimann et
26 27	144	al. (2012). First, we converted species range polygons into point grids using a 0.25°
28 29	145	resolution. We then selected eight biologically-meaningful climate variables from the bioclim
30 31 32	146	database (see Table S2; Hijmans et al. 2005) to develop multivariate PCA axes characterising
33 34	147	climate variation across each species' seasonal range (breeding=April-July, non-
35 36	148	breeding=Nov-Feb) during the whole survey period (1990-2012). Axes were constrained
37 38	149	within the seasonal maxima and minima of each variable, and calibrated on the full
39 40	150	environmental space (Broennimann et al. 2012). We calculated an index of climate niche
41 42 42	151	breadth by summing niche occupancy scores (z values) on the first two PCA axes across both
43 44 45	152	seasons. We then used a PCA-env algorithm to evaluate the degree of overlap in occupied
46 47	153	niches along the PCA axes between species' breeding and non-breeding ranges, providing an
48 49 50	154	index of climate niche similarity (conservatism) between seasons (Broennimann et al. 2012).
51 52	155	To account for other variables that might influence population trends, we also
53 54	156	quantified habitat specialism and feeding guild for each species, as well as breeding and non-
55 56 57 58	157	breeding range size and mean latitude (constrained to the study area), and body mass. For

158	habitat specialism, we used 'level 1' habitat classes in the IUCN Habitats Classification
159	Scheme (BirdLife International 2014). For simplicity, we used only classes listed as
160	important in the breeding season, and pooled habitat subcategories into a 6-level factor:
161	"forest", "shrubland", "farmland", "rocky/tundra", "wetland" and "general", the latter
162	including species with multiple level 1 associations. We classified feeding guilds from
163	species accounts in Handbook of the Birds of the World Alive (www.hbw.com) using a 5-
164	level factor ("omnivore", "carnivore", "insectivore", "granivore", "herbivore"). Body mass is
165	included as it is a reliable proxy for a range of correlated life history characteristics
166	(Blummerstein & Møller 2008; Gregory et al. 2009). We calculated mean migration distance
167	for each species as the great circle distance between the centroids of breeding and non-
168	breeding ranges. All mapping and analyses were carried out in R using packages 'sp', 'raster'
169	and 'FNN' (R Development Core Team 2008).

171 Statistical analysis

We modelled between-species differences in population trends using Generalized Linear Mixed Models (GLMMs) with a family-level random effect to control for potential phylogenetic non-independence of trends. To examine how our predictor variables influence the probability of species decline across the whole survey period (1990-2012), we used a binomial response variable where 'successes' were the number of census periods in which a species was in decline, and 'failures' the number in which it was stable or increasing (excluding from consideration any periods where trends were unknown or fluctuating). We also repeated the analysis for each census period individually, again using a binomial response (1 = declining, 0 = stable or increasing), excluding species for which trends were unknown or fluctuating.

Ecology Letters

2			
3			
4			
5			
с Р			
0			
1			
8			
9			
1	0		
1	1		
1	י כ		
1	2		
1	3		
1	4		
1	5		
1	6		
1	7		
1	, 0		
1	0		
1	9		
2	0		
2	1		
2	2		
2	3		
າ ກ	1		
~	4 7		
2	5		
2	6		
2	7		
2	8		
2	ą		
2 2	ñ		
ა ი	2		
3	1		
3	2		
3	3		
3	4		
3	5		
2 2	e e		
5	2		
3	1		
3	8		
3	9		
4	0		
4	1		
т Л	່ວ		
4	~		
4	3		
4	4		
4	5		
4	6		
Δ	7		
т Л	، و		
4	0		
4	9		
5	0		
5	1		
5	2		
5	3		
5	<i>∧</i>		
г	+		
5	5		
5	6		
5	7		
5	8		
5	q		
-	J		

60

182	We centred and standardized all predictor variables to ensure commonality of scales
183	(Schielzeth 2010). For variable pairs that were correlated after standardization (Pearson
184	R>0.5 or < -0.5), we included whichever was deemed likely to have a more biologically
185	meaningful link to the response variable (see Table S3; Burnham & Anderson 2002).
186	Substituting these excluded variables had little influence on the results (Table S4). Because
187	migratory strategy and migration distance are partially confounded (all residents have
188	distance 0), we used a binary dummy variable to differentiate partial migrants from other
189	species (i.e. 1=partial migrant, 0= fully migrant or resident). This allowed us to evaluate
190	whether partial migration explains variation in population trends above that explained by
191	migration distance alone.
192	We used an information-theoretic approach to account for model selection uncertainty
102	and evaluate predictor affect sizes (Burnham and Anderson 2002) We compared all possible

and evaluate predictor effect sizes (Burnham and Anderson 2002). We compared all possible 193 model combinations, ranking each model by its Akaike weight (AIC_w) and using summed 194 weights (ΣAIC_w) as an index of relative importance for each term (Burnhan & Anderson 195 196 2002). To estimate the effect size of each parameter, we used model averaging across a 197 confidence set containing all top-ranked models summing to 0.95 AIC_w. We used the 'zeroes' method for effect averaging (Grueber et al. 2011) which provides robust between-predictor 198 199 comparisons. We inferred strong support for an effect whenever 95% confidence intervals for model-averaged effects excluded zero (Grueber et al. 2011). To assess overall model 200 explanatory power, we calculated conditional and marginal R² values for the global model 201 202 using methods described in Nakagawa & Schielzeth (2013).

For a subset of migratory species, we tested for relationships between the two migratory diversity metrics and advances in spring migration timing using univariate linear regressions. We obtained data on trends in mean Europe-wide spring arrival date from a published dataset for 89 European bird species (Møller et al. 2008, trends 1960-2006). We

also repeated the full multi-model comparison for predictors of population trends within this

208 89 species subset, including the mean trend in arrival date as an additional predictor variable.

209 This allowed us to compare the relative contributions of migratory diversity metrics and

210 arrival date trend towards explaining variation in population trends.

Results

212 Effects of migratory diversity on bird declines

Of the 340 species considered, 42% had positive migratory dispersion scores, 41% had negative scores and 16% were fully resident (i.e. dispersion = 0). Model selection identified migratory dispersion as an important predictor of decline probability (Tables 1 & S5), with higher dispersion being associated with lower probability of decline (Fig. 3). This effect was consistent across both early and late census periods (Tables 1, S6 & S7). Partial migration was also identified as an important predictor of decline probability (Table 1 & S5), with partial migrants being less likely to decline on average than both full migrants and full residents over the whole study period, and in particular over the early census period (Fig. 4, Table S6). Both partial migration and migratory dispersion were consistently selected ahead of migration distance as predictors of declines (Tables 1, S5-7), indicating that they explain considerable variation in decline probabilities over and above that explained by between-species differences in migration distance. Although partial migrants tended to have shorter mean migration distances than full migrants (mean $\sim 2,050 \text{ km} \pm 1,790 \text{ s.d.}$ versus $\sim 4,700 \text{ km}$ $\pm 2,010$), the partial migrant group contained many long-distance migrants (Fig. 5), with almost half of sub-Saharan migrants (45.7%) being classified as partial migrants. For the subset of 86 species with available data on trends in mean spring arrival date,

230 previous findings (Møller et al. 2008). Partial migrants tended to show greater advancement

arrival trends were strongly associated with favourable population trends (Table 1), echoing

Ecology Letters

in mean spring arrival date than full migrants (F = 13.96, P<0.001; Fig. S2). The effect of partial migration on decline probability became negligible when spring arrival trends were included in the model (Table 1), suggesting that the link between partial migration and population declines might be mediated by interspecific variation in spring arrival trends. Migratory dispersion, by contrast, was not correlated with trends in spring arrival (Fig. S3), and remained a strongly supported predictor of decline likelihood in this subset analysis (Table 1), suggesting that the effect of dispersion acts independently of trends in spring arrival timing.

239 Other predictors of population trends

Habitat specialism was an important predictor of population trends in all analyses, with all specialist classes showing higher probabilities of decline than habitat generalists (Table 1), with farmland specialists being particularly prone to decline (Table 1). Across the whole study period, and in particular 1990-2000, there was strong support for an effect of body mass on decline probability, with lighter species having higher decline probabilities (Table 1). Little support was found for effects of guild, breeding latitude, climate niche overlap or climate niche breadth in the full analyses (Table 1). Breeding latitude and niche breadth did, however, receive some support in the subset analysis including data on spring arrival trends, with decline probability tending to increase among species breeding at higher latitudes, and species with higher winter climate niche breadth (Table 1).

The global model for the whole survey period explained 23.2% of variation in probability of decline between species, of which 22.7% was attributable to fixed effects (Table S8). Levels of variance explained were somewhat higher for models fitted to 1990-2000 trend data alone (33.4%, Table S8) and somewhat lower for 2001-2012 trend data (18.8%, Table S8).

255	
256	Discussion
257	Our results demonstrate that migratory diversity is an important predictor of recent
258	population declines in migratory species. Species whose migratory movements allow them to
259	occupy larger areas in the non-breeding season, relative to their breeding ranges, were less
260	likely to decline than those whose populations are channelled into more restricted non-
261	breeding ranges. Partially migratory populations were also less likely to decline than either
262	full migrants or full residents. These patterns held true across both short and long-distance
263	migrants, indicating that migratory distance per se does not necessarily confer heightened
264	vulnerability to anthropogenic change. Rather, species with lower diversity in migratory
265	movements and destinations may be more vulnerable than those with more diverse ranges
266	and strategies. These interspecific differences help explain why some long-distance migrants
267	have maintained favourable population trends while others have severely declined (Vickery
268	et al. 2014).
269	Various mechanisms could drive the relationship between migratory diversity and the
270	probability of population decline. One possibility, as implied by migratory network models
271	(Fig. 2), is that diversity confers increased population-scale resilience to area-specific threats
272	in the non-breeding range (e.g. habitat degradation and hunting pressure). Our findings are in
273	broad accordance with model predictions that species with higher migratory dispersion may
274	increase population resilience (Fig. 2A-D), and that partially migratory species may be more
275	resilient than full migrants (Fig. 2E & F) if negative impacts primarily occur in the non-
276	breeding range (Chapman et al. 2011b). Our results suggest that the dynamics of migratory
277	populations are indeed sensitive to the number, size and distribution of occupied non-
278	breeding sites, relative to the breeding range. While previous works have considered the

Ecology Letters

279	consequences of spatial 'bottlenecks' arising as populations pass along migration corridors
280	(e.g. Weber et al. 1999; Berger et al. 2008; Sawyer et al. 2009), little attention has been paid
281	to the potential importance of equivalent 'bottlenecking' across non-breeding ranges. Our
282	results suggest that this plays an important role in determining population vulnerability to
283	environmental change.
284	Our findings also support the hypothesis that migratory diversity influences the
285	capacity of species to respond to climate-driven shifts in resource phenology, as partial
286	migrants showed greater rates of advancement in mean spring arrival date than full migrants
287	(Fig. S2). In turn, these advances in arrival date are strongly linked to positive population
288	trends (Møller et al. 2008). The relationship between partial migration and arrival
289	advancement could arise if partial migrants, as well as expressing between-individual
290	variation in migratory behaviour itself, also express greater variability in the timing of
291	migratory movements than full migrants. Such variation could facilitate shifts in migration
292	timing at the population scale, if early-arriving individuals are more likely to encounter
293	successful breeding conditions, and the resulting offspring also migrate earlier (Gill et al.
294	2014). Moreover, resident individuals within partially migratory populations are predisposed
295	to match the timing of breeding with shifting resource abundance peaks (Chapman et al.
296	2011b). The same is true for fully-resident species, although interestingly our models suggest
297	that full residents have higher decline probabilities on average than partial migrants (Fig. 4).
298	This result implies that migration does not necessarily increase the vulnerability of species to
299	environmental change relative to full residence, if a flexible range of migratory strategies is
300	expressed.

The mechanisms that underpin the expression of different migratory strategies across populations remain poorly understood. In birds, a large component of migratory behaviour is genetically determined (Biebach 1983; Pulido & Widmer 2005), implying that diversity

а

Ζ	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
30	
37	
38	
39	
40	
41	
42	
43	
40	
44	
45	
46	
47	
48	
49	
50	
51	
50	
52	
53	
54	
55	
56	
57	
58	
50	
60	
nu	

1

304	might be tightly linked to the presence of heterogeneity in migratory gene expression across a
305	population (Biebach 1983; Kaitala 1993; Piersma 2011), which in turn may be influenced by
306	environmental or social cues. Within-individual plasticity in migratory behaviour can be
307	considerable, particularly in partial migrants where migratory behaviour may change within
308	an individual's lifetime (Nilsson et al. 2006; Olsson et al. 2006; Brodersen et al. 2008). It is
309	notable that partial migration is an extremely widespread strategy in European birds
310	(Chapman et al. 2011b), being found in 80% of the 55 avian families included in our study
311	(compared with full migration, found in 42% of families). In most cases, the degree of
312	population-scale migratory diversity expressed by a species is likely to depend on a complex
313	interplay between genetic heterogeneity and individual responses to social cues and local
314	environmental conditions. The relative strength of genetic versus social/environmental
315	determination may have important consequences for population resilience to environmental
316	change, as plasticity in response to external cues may facilitate more rapid population-scale
317	change (Marra et al. 2005).

318 Migratory diversity, whether arising through within-individual plasticity or between-319 individual heterogeneity, might also increase the likelihood that new non-breeding areas are 320 colonized via the establishment of new migratory routes. Such colonisations are likely to be 321 important in determining the long-term persistence of migratory populations under changing 322 climates (La Sorte & Thompson 2007). Moreover, the colonization of new non-breeding sites 323 could drive dynamic changes in migratory dispersion over time, with consequent implications 324 for population dynamics. Species with greater capacity to spread to new non-breeding sites 325 may therefore be more resilient to a range of environmental stressors, including both climate 326 change and habitat loss. Dynamic shifts in the non-breeding ranges of migratory species have been demonstrated in a variety of taxa (see Robinson et al. 2009 for a review), but the 327 behavioural mechanisms by which these shifts occur remain poorly understood. 328

Ecology Letters

Caveats

The effect of partial migration on decline probability was predominantly evident in the early census period, and partial migration was a weak predictor of declines in the late census period (Table 1). It is unclear why the positive effect of partial migration might have declined over time, but it appears to be associated with improving trends among full migrants in the second survey period, rather than an increase in the number of partial migrants declining. Over half of fully migratory species were in decline in 1990-2000 (50.4%), but this fell to 35.7% in 2000-2012, whereas the proportion of declining partial migrants remained fairly stable (33.1% in 1990-2000 versus 30.8% in 2000-2012). The factors driving this improvement in fortunes for fully migratory species are unclear, although this pattern could reflect the success of recent conservation interventions (Sanderson et al. 2015), given that migratory species are emphasized under Annex 1 of the EU Birds Directive (European Union 2009).

An important caveat associated with our results is that we use coarse species distribution maps that, although reflective of best current knowledge of range extents, do not capture fine-scale occupancy or abundance patterns within species' breeding, passage and non-breeding ranges (Rondinini et al. 2006). Our analyses do not account for the precise routes and staging areas used by populations during passage, as these are incompletely mapped for most species (Runge et al. 2014). As noted above, migratory populations can be highly vulnerable to threats occurring within migratory corridors or stop-over sites, if a high proportion of individuals pass through the same key areas (Weber et al. 1999; Berger et al. 2008). Such passage bottlenecks are perhaps most likely among species with low migratory dispersion, as well as those that migrate in large groups (e.g. waterbirds, many large mammals). Detailed mapping of the migration routes of declining migratory populations therefore remains an important conservation priority (Runge et al. 2014).

2	
3	
4	
5	
e e	
-	
1	
8	
9	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
~~	
23	
24	
25	
26	
20	
27	
28	
29	
20	
30	
31	
32	
33	
21	
34	
35	
36	
37	
20	
30	
39	
40	
41	
10	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
50	
51	
52	
53	
50	
54	
55	
56	
57	
59	
50	
59	

1

354	By taking a single trend value for each species, our analyses assume that trends within
355	a given time window are constant across the whole European range. In fact, evidence
356	suggests that population trends of migratory species can be highly heterogeneous in space
357	(Villard & Maurer 1996; Morrison et al. 2013). Future analyses accounting for this
358	heterogeneity, perhaps by using country-level rather than region-wide trend data, may offer
359	more nuanced insights into relationships between migratory behaviour and population
360	vulnerability. In particular, it may be possible to examine whether within-range population
361	trend heterogeneity correlates with spatial heterogeneity in migratory behaviour (e.g. by
362	comparing resident and migratory populations in partial migrant species). For the purposes of
363	this study, we assume that mean Europe-wide trend estimates provide a robust, if coarse,
364	index of interspecific variation in vulnerability to recent environmental change.

365 *Conclusions*

The power of map-based metrics of migratory diversity to explain population trends 366 suggests that they could be useful in evaluating species vulnerability to future anthropogenic 367 368 threats. Because our metrics use only coarse distributional data, they can be easily generated using current estimates of species' seasonal distributions. Such metrics may be particularly 369 useful in regions where estimates of population trends are lacking, such that more detailed 370 371 assessments of species vulnerability are precluded. Migratory diversity metrics can provide 372 conservation-relevant information for almost any species where reasonably accurate distributional data are available, even if those data are of low resolution. 373

Understanding how migratory diversity contributes to species vulnerability might also help in the design and implementation of species-specific conservation management plans. Species with low migratory dispersion, for example, might be expected to benefit from a focus on conservation actions within the non-breeding distribution, such as the increased

Ecology Letters

protection or restoration of habitats in key areas (Runge et al. 2015). The potential efficacy of such actions for species with low migratory dispersion is exemplified by the positive population trends of a handful of species (e.g. the pink-footed goose Anser brachyrhynchus and barnacle goose *Branta leucopsis*) that have highly restricted non-breeding ranges, and yet have maintained favourable population trends thanks to pro-active conservation measures (MacMillan et al. 2004). It is important to note, however, that management should always be informed by detailed examinations of the likely demographic drivers of population declines, and where in the annual cycle these drivers are likely to operate. By incorporating migratory diversity into future network-based analyses of migratory populations, it may be possible to come to an improved understanding of these complex seasonal drivers.

388 Acknowledgements

We thank the many thousands of individuals and organisations who contribute to BirdLife's Red List assessments and distribution maps, upon which these analyses are based, as well as Andy Symes and Hannah Wheatley who manage these data. We also thank Ricardo Correia, Ian Burfield and three anonymous referees for helpful comments. This work was supported by NERC, grant NE/K006312/1.

References

Berger, J., Young, J.K. & Berger, K.M. (2008) Protecting migration corridors: Challenges and optimism for Mongolian saiga. *PLoS Biol.*, 6, e165.

- 2. Betini, G. S., Fitzpatrick, M. J. & Norris, D. R. (2015). Experimental evidence for the effect of habitat loss on the dynamics of migratory networks. *Ecol. Lett.*, 18, 526-534.
- 3. Biebach, H. (1983). Genetic determination of partial migration in the European robin
 (*Erithacus rubecula*). Auk, 3, 601-606.

3	402	4. BirdLife International (2014) <i>IUCN Red List for birds</i> . Available at:
4 5 6	403	http://www.birdlife.org. Last accessed 30 May 2015.
7 8	404	5. BirdLife International (2015) European Red List of Birds. Available at:
9 10	405	http://www.birdlife.org/datazone/info/euroredlist. Last accessed 30 May 2015
11 12	406	6. BirdLife International and NatureServe (2014) Bird species distribution maps of the
13 14	407	world. Version 4.0. Available at: <u>http://www.birdlife.org/datazone/info/spcdownload</u> .
15 16 17	408	Last accessed 30 May 2015.
18 19	409	7. Blummerstein & Møller 2008
20 21	410	8. Both, C., Bouwhuis, S., Lessells, C. M., & Visser, M. E. (2006). Climate change and
22 23	411	population declines in a long-distance migratory bird. Nature, 441, 81-83.
24 25	412	9. Brodersen, J., Nilsson, P. A., Hansson, L. A., Skov, C., & Brönmark, C. (2008).
20 27 28	413	Condition-dependent individual decision-making determines cyprinid partial
29 30	414	migration. <i>Ecology</i> , 89, 1195-1200.
31 32	415	10. Broennimann, O., et al. (2012). Measuring ecological niche overlap from occurrence
33 34	416	and spatial environmental data. Glob. Ecol. Biogeog., 21, 481-497.
35 36 37	417	11. Burnham, K.P. & Anderson, D.R. (2002) Model selection and multi-model inference:
38 39	418	a practical information-theoretic approach. Springer, New York.
40 41	419	12. Chapman, B.B., et al. (2011a). To boldly go: individual differences in boldness
42 43	420	influence migratory tendency. Ecol. Lett., 14, 871-876.
44 45	421	13. Chapman, B.B., Brönmark, C., Nilsson, J.Å., & Hansson, L.A. (2011b). The ecology
46 47 48	422	and evolution of partial migration. Oikos, 120, 1764-1775.
49 50	423	14. European Union. (2009) Directive 2009/147/EC of the European parliament and of
51 52	424	the council. http://eur-lex.europa.eu/legal-
53 54	425	content/EN/TXT/PDF/?uri=CELEX:32009L0147&from=EN (visited Nov. 1, 2015).
55 56		
57 58		
59		

Ecology Letters

2 3	426	15. Gill, J.A. et al. (2014) Why is timing of bird migration advancing when individuals
4 5 6	427	are not? Proc. Royal Soc. B, 281, 20132161
7 8	428	16. Gregory, R.D., et al. (2009). An indicator of the impact of climatic change on
9 10	429	European bird populations. PloS one, 4, e4678.
11 12	430	17. Grueber, C.E., Nakagawa, S., Laws, R.J., & Jamieson, I. G. (2011). Multimodel
13 14 15	431	inference in ecology and evolution: challenges and solutions. J. Evol. Biol., 24, 699-
16 17	432	711.
18 19	433	18. Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones & A. Jarvis, (2005). Very high
20 21	434	resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25,
22 23	435	1965-1978.
24 25 26	436	19. Kaitala, A., Kaitala, V., & Lundberg, P. (1993). A theory of partial migration. Am.
27 28	437	Nat., 142, 59-81.
29 30	438	20. La Sorte, F. A. L., & Thompson, F. R. T. III (2007). Poleward shifts in winter ranges
31 32	439	of North American birds. <i>Ecology</i> , 88, 1803-1812.
33 34 35	440	21. López-López, P., García Ripollés, C., & Urios Moliner, V. (2014). Individual
36 37	441	repeatability in timing and spatial flexibility of migration routes of trans-Saharan
38 39	442	migratory raptors. Curr. Zool., 60, 642-652.
40 41	443	22. Lundberg, P. (1988). The evolution of partial migration in birds. Trends Ecol. Evol.,
42 43	444	3, 172-175.
44 45 46	445	23. MacMillan, D., Hanley, N., & Daw, M. (2004). Costs and benefits of wild goose
47 48	446	conservation in Scotland. Biol. Conserv., 119, 475-485.
49 50	447	24. Marra, P.P., Francis, C.M., Mulhivill, R.S. & Moore, F.R. (2005). The influence of
51 52	448	climate on the timing and rate of spring bird migration. Oecologia, 142, 307-315.
53 54 55		
56 57		
58		

3 ⊿	449	25. Morrison, C.A., Robinson, R.A., Clark, J.A., Risely, K., & Gill, J.A. (2013). Recent
5	450	population declines in Afro-Palaearctic migratory birds: the influence of breeding and
7 8	451	non-breeding seasons. Divers. Distrib., 19, 1051-1058.
9 10	452	26. Møller, A.P., Rubolini, D., & Lehikoinen, E. (2008). Populations of migratory bird
11 12	453	species that did not show a phenological response to climate change are declining.
13 14	454	Proc. Nat. Acad. Sci., 105, 16195-16200.
15 16	455	27. Nakagawa, S. & Schielzeth, H. (2013). A general and simple method for obtaining R^2
17 18	456	from generalized linear mixed-effects models. <i>Methods Ecol Evol</i> 4 133-142
19 20	450	28 Nilsson A I K Lindström Å Jonzán N. Nilsson S G & Karlsson I. (2006) The
21 22	457	28. Misson, A.L.K., Eliustoni, A., Jonzen, N., Misson, S.O. & Karisson, E. (2000). The
23 24	458	effect of climate change on partial migration—the blue tit paradox. Glob. Change
25 26	459	<i>Biol.</i> , 12, 2014–2022.
27 28	460	29. Nilsson, A.L.K., Alerstam, T., & Nilsson, J. Å. (2008). Diffuse, short and slow
29 30	461	migration among blue tits. J. Ornith., 149, 365-373.
31 32	462	30. Olsson, I. C., Greenberg, L.A., Bergman, E., & Wysujack, K. (2006).
33 34	463	Environmentally induced migration: the importance of food. <i>Ecol. Lett.</i> , 9, 645-651.
35 36		
37	464	31. Piersma, T. (2011). Flyway evolution is too fast to be explained by the modern
38 39	465	synthesis: proposals for an 'extended' evolutionary research agenda. J. Ornith., 152,
40 41	466	151-159
42 43	467	22 Dulida E & Widman M (2005) Analong distance migrants constrained in their
44	407	52. Fundo, F. & Widmer, M. (2005). Are long-distance inigrants constrained in them
45 46	468	evolutionary response to environmental change? Causes of variation in the timing
47 48	469	autumn migration in a blackcap (Sylvia atricapilla) and two garden warbler (Sylvia
49 50	470	borin) populations. Ann. N. York Acad. Sci., 1046. 228-241.
51 52	471	33. R Development Core Team (2008). R: A language and environment for statistical
53 54 55	472	computing. R Foundation for Statistical Computing. Available at: <u>http://www.R-</u>
56 57	473	project.org. Last accessed 30 May 2015.
58		
59 60		20

1		
2 3 4	474	34. Robbins, C. S., Sauer, J. R., Greenberg, R. S., & Droege, S. (1989). Population
5	475	declines in North American birds that migrate to the Neotropics. Proc. Nat. Acad.
7 8	476	Sci., 86, 7658-7662.
9 10	477	35. Robinson, R.A., et al. (2009). Travelling through a warming world: climate change
11 12	478	and migratory species. Endang. Species Res., 7, 87-99.
13 14 15	479	36. Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H., & Possingham, H. P. (2006).
16 17	480	Tradeoffs of different types of species occurrence data for use in systematic
18 19	481	conservation planning. Ecol Lett., 9, 1136-1145.
20 21	482	37. Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G., & Fuller, R. A. (2014).
22 23	483	Conserving mobile species. Frontiers Evol. Envir., 12, 395-402.
24 25 26	484	38. Runge, C. A., Watson, J. E. M., Butchart, S. H. M., Hanson, J. O., Possingham, H. P.
27 28	485	& Fuller, R. A. (in press) Protected area coverage and migratory birds. Science,
29 30	486	39. Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J., & Van Bommel, F. P.
31 32	487	(2006). Long-term population declines in Afro-Palearctic migrant birds. Biol.
33 34 25	488	Conserv., 131, 93-105.
36 37	489	40. Sanderson, F.J., Pople, R.G., Ieronymidou, C., Burfield, I.J., Gregory, R.D., Willis,
38 39	490	S.G., Howard, C., Stephens, P.D., Beresford, A.E. & Donald, P.F. (2015). Assessing
40 41	491	the Performance of EU Nature Legislation in Protecting Target Bird Species in an Era
42 43	492	of Climate Change. Conserv. Lett.
44 45 46	493	41. Sawyer, H., Kauffman, M. J., Nielson, R. M., & Horne, J. S. (2009). Identifying and
40 47 48	494	prioritizing ungulate migration routes for landscape-level conservation. Ecol.
49 50	495	Applications, 19, 2016-2025.
51 52	496	42. Schielzeth, H. (2010) Simple means to improve the interpretability of regression
53 54	497	coefficients. Methods Ecol. Evol., 1, 103-113.
55 56 57		
58		
59 60		21

3	498	43. Sutherland, W. J., & Dolman, P. M. (1994). Combining behaviour and population
5	499	dynamics with applications for predicting consequences of habitat loss Proc. Royal
7 8	500	Soc. B, 255, 133-138.
9 10	501	44. Taylor, C.M. & Norris, D.R. (2010). Population dynamics in migratory networks.
11 12	502	<i>Theor. Ecol.</i> , 3, 65–73.
13 14 15	503	45. Thaxter, C.B., Joys, A.C., Gregory, R.D., Baillie, S.R., & Noble, D.G. (2010).
16 17	504	Hypotheses to explain patterns of population change among breeding bird species in
18 19	505	England. Biol. Conserv., 143, 2006-2019.
20 21	506	46. Vardanis, Y., Klaassen, R. H., Strandberg, R., & Alerstam, T. (2011). Individuality in
22 23 24	507	bird migration: routes and timing. Biol. Lett., rsbl20101180.
25 26	508	47. Vickery, J.A., Ewing, S.R., Smith, K.W., Pain, D.J., Bairlein, F., Škorpilová, J., &
27 28	509	Gregory, R.D. (2014). The decline of Afro-Palaearctic migrants and an assessment of
29 30	510	potential causes. Ibis, 156, 1-22.
31 32 22	511	48. Villard, M.A., & Maurer, B.A. (1996). Geostatistics as a tool for examining
33 34 35	512	hypothesized declines in migratory songbirds. <i>Ecology</i> , 77, 59-68.
36 37	513	49. Weber, T. P., Houston, A. I., & Ens, B. J. (1999). Consequences of habitat loss at
38 39	514	migratory stopover sites: a theoretical investigation. J. Avian Biol., 30, 416-426.
40 41	515	50. Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S., & Holmes, R. T. (2002). Links
42 43 44	516	between worlds: unraveling migratory connectivity. Trends Ecol. Evol., 17, 76-83.
45 46	517	51. Wilcove, D.S. & Wikelski, M. (2008) Going, going, gone: Is animal migration
47 48	518	disappearing? PLoS Biol., 6, e188
49 50 51 52	519	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 15	
40	
40 17	
47 ∕12	
40 40	
50	
51	
52	
53	
54	
55	
56	
57	
58	

520 Supplementary material

- 521 Additional Supporting Information may be downloaded via the online version of this article
- 522 at Wiley Online Library (<u>www.ecologyletters.com</u>).

Table 1 Performance of candidate variables in explaining the probability of population decline. Effect sizes reflect model-averaged parameter estimates $\hat{\beta}$ and bootstrap 95% confidence intervals Results are shown for model selection applied to the full dataset (340 species) across the whole study period (1990-2012), plus each census period individually. We also re-ran the analysis for a subset of 89 species with data on trends in mean Europe-wide spring arrival date. Model averaged parameter estimates with confidence intervals that do not overlap zero are shown in bold.

	1990-2012		Early period 1990-2000		Late period 2001-2012		Spring arrival dataset (n = 89) 1990-2012	
Variable:	$\widehat{\boldsymbol{\beta}}$ (LCI, UCI)	ΣΑΙϹϲ	$\widehat{oldsymbol{eta}}$ (LCI, UCI)	ΣΑΙϹϲ	$\widehat{oldsymbol{eta}}$ (LCI, UCI)	ΣΑΙϹϲ	$\widehat{oldsymbol{eta}}$ (LCI, UCI)	ΣΑΙϹϲ
Partial migration	-0.53 (-0.96, -0.11)	0.98	-1.11 (-1.74, -0.47)	1.00	0.04 (-0.45, 0.46)	0.21	-0.01 (-1.27, 1.26)	0.22
Migratory dispersion	-0.27 (-0.49, -0.05)	0.95	-0.27 (-0.67, -0.04)	0.90	-0.20 (-0.45, -0.03)	0.83	-0.65 (-1.26, -0.05)	0.84
Migration distance	0.22 (-0.04, 0.48)	0.61	0.22 (0.02, 0.76)	0.81	0.07 (-0.21, 0.34)	0.24	0.24 (-0.65, 0.58)	0.22
Climate niche overlap	0.10 (-0.13, 0.33)	0.32	0.10 (-0.16, 0.51)	0.36	0.04 (-0.19, 0.26)	0.22	-0.03 (-0.66, 0.59)	0.20
Climate niche breadth	0.21 (-0.01, 0.42)	0.72	0.21 (-0.02, 0.60)	0.68	0.14 (-0.10, 0.37)	0.31	0.66 (0.12, 1.19)	0.87
Mean breeding latitude	-0.11 (-0.35, 0.12)	0.33	-0.11 (-0.67, 0.03)	0.66	0.20 (-0.03, 0.45)	0.47	0.66 (0.04, 1.27)	0.65
Body mass	-0.33 (-0.61, -0.06)	0.96	-0.33 (-1.03, -0.02)	0.95	-0.21 (-0.49, 0.07)	0.45	-0.98 (-2.82, 0.86)	0.63
Habitat *:		1.00		0.97		1.00		1.00
Farmland	2.17 (1.28, 3.07)	-	2.17 (0.73, 3.26)	-	2.35 (1.30, 3.41)	-	6.13 (3.03, 9.23)	-
Forest	0.59 (-0.30, 0.48)	-	0.59 (-0.99, 1.50)		0.84 (-0.21, 1.89)	-	2.09 (-0.46, 4.65)	-
Shrubland	1.20 (0.25, 2.16)	-	1.20 (-0.68, 2.10)	-	1.55 (0.44, 2.67)	-	1.62 (-1.07, 4.31)	-
Rocky	1.03 (0.04, 2.02)	-	1.03 (-0.93, 1.84)	-	1.62 (0.46, 2.78)	-	2.60 (-0.26, 5.40)	-
Wetland	1.24 (0.37, 2.13)	-	1.24 (-0.22, 2.25)	-	1.65 (0.60, 2.69)	-	2.93 (0.49, 5.37)	-
Guild *:		0.06		0.01		0.34		0.02
Omnivore	0.56 (-0.12, 1.25)	-	0.03 (-0.81, 1.09)	-	0.93 (-0.17, 1.69)	-	-1.34 (-3.77, 1.10)	-
Insectivore	0.07 (-0.62, 0.75)	-	0.05 (-1.19, 0.71)	-	0.36 (-0.35, 1.07)	-	-0.21 (-2.50, 2.07)	-
Granivore	0.48 (-0.38, 1.34)	-	0.01 (-1.24, 1.16)	-	1.05 (-0.16, 1.94)	-	0.04 (-2.73, 2.80)	-
Herbivore	0.15 (-0.90, 1.20)	-	0.05 (-1.18, 1.86)	-	-0.16 (-1.29, 0.98)	-	1.45 (-1.50, 4.40)	-
Spring arrival trend	n/a	n/a	n/a	n/a	n/a	n/a	0.78 (0.14, 1.43)	0.86

528 *For categorical variables, parameter estimates are given relative to a reference category ('general' for habitat, 'carnivore' for guild

Ecology Letters

Figure 1 Examples of within-species migratory diversity. Partial migrants (A & B) are migratory species that occur in some parts of their range all year; full migrants (C & D), by contrast, vacate their breeding ranges entirely during the non-breeding period. Migratory dispersion reflects the extent to which species occupy larger or smaller non-breeding ranges relative to the breeding period. Examples show species with relatively low (A & C) and high (B & D) levels of dispersion.

Figure 2 Hypothetical population networks with varying migratory diversity. Networks consist of 'nodes' (squares) representing equally-sized areas occupied in the breeding (green) or non-breeding season (blue), connected by 'edges' reflecting migration routes (lines, width indicates number of individuals using each route). Numbers show the model-derived equilibrium population sizes at each node in each scenario (details given in Appendix S1). Populations with low migratory dispersion (A) show marked declines following an 80% loss of habitat at one non-breeding node (B, grey=impacted node). For an equivalent population with higher migratory dispersion (C), the same level of habitat loss has a markedly lower impact (D). For a partially migratory population, where a proportion of individuals at one breeding node are resident (E, purple = partially migratory node), the impact is further reduced (F).

Figure 3 Population trends in relation to migratory dispersion. Lines show the modelaveraged slope and bootstrap 95% confidence intervals from a model set predicting the declines over the whole study period (1990-2012). Bars show the proportion of species that were stable or increasing (blue lower bars) or declining (orange, inverted upper bars) in relation to migratory dispersion (binned data). Tick marks above and below bars show the locations of individual data points on the x axis (lower = stable or increasing species, upper = declining species).

Figure 4 Population trends in relation to migratory strategy. Points and error bars show mean model-averaged predictions and bootstrap 95% confidence intervals for each strategy, from models explaining the probability of decline across the whole survey period, and to census period individually. Bars show the proportion of species in each class that were stable or increasing (blue, lower bars) or declining (orange, inverted upper bars) in any given survey period.

Figure 5 European bird declines in relation to migration strategies. Lines show great circle routes linking breeding and non-breeding range centroids for all non-pelagic migratory species, color-coded according to population trend (orange = decreasing in one or more survey period, blue = stable or increasing in both survey periods). Species are classed as either partial migrants (A) or full migrants (B) from the presence or absence of seasonal range overlap. Histograms show the frequency distribution of mean migration distance for partial (C) and full migrants (D); numbers above bars show the proportion of species in decline within each distance bin.

Page 29 of 31

Ecology Letters

Page 30 of 31

