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Abstract
Rust fungal pathogens of wheat (Triticum spp.) affect crop yields worldwide. The molecular

mechanisms underlying the virulence of these pathogens remain elusive, due to the limited

availability of suitable molecular genetic research tools. Notably, the inability to perform

high-throughput analyses of candidate virulence proteins (also known as effectors) impairs

progress. We previously established a pipeline for the fast-forward screens of rust fungal

candidate effectors in the model plant Nicotiana benthamiana. This pipeline involves select-

ing candidate effectors in silico and performing cell biology and protein-protein interaction

assays in planta to gain insight into the putative functions of candidate effectors. In this

study, we used this pipeline to identify and characterize sixteen candidate effectors from the

wheat yellow rust fungal pathogen Puccinia striiformis f sp tritici. Nine candidate effectors

targeted a specific plant subcellular compartment or protein complex, providing valuable

information on their putative functions in plant cells. One candidate effector, PST02549,

accumulated in processing bodies (P-bodies), protein complexes involved in mRNA decap-

ping, degradation, and storage. PST02549 also associates with the P-body-resident

ENHANCEROF mRNA DECAPPING PROTEIN 4 (EDC4) from N. benthamiana and
wheat. We propose that P-bodies are a novel plant cell compartment targeted by pathogen

effectors.

Introduction
Plant pathogens colonize hosts by deploying virulence proteins known as effectors that manip-
ulate plant cell structures and functions [1–2]. Once delivered into host tissues, effectors reside
in the extracellular space (apoplastic effectors) or translocate into the plant cells (cytoplasmic
effectors). Unravelling how effectors function in the host is key to understanding parasitism
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and to developing resistant plants [3]. Pathogen effectors are operationally plant proteins; they
function in plant tissues, they associate with plant molecules, and their phenotypic expression
in plants drives their evolution [4]. The field of effector biology has rapidly advanced in recent
years due in large part to the availability of host plants that are amenable to molecular genetics
and in which effectors can be heterologously expressed and studied [5]. However, due to the
limited availability of functional genetic resources for crop species, characterising the effectors
of crop pathogens remains challenging [6–7]. To study crop pathogen effectors, an alternative
approach is the use a surrogate experimental plant system, such as Nicotiana benthamiana [8].

Nicotiana benthamiana (Solanaceae) is a well-established experimental system to study pro-
teins in planta [9–10]. The agroinfiltration method allows transient expression of proteins in
leaf cells, and a wide range of assays is available for functional investigations. Thus, N.
benthamiana is extensively used in effector biology [11]. We recently used this plant to set up
an effectoromics pipeline aimed at determining the plant cell compartments and protein com-
plexes targeted by candidate effectors of rust fungi [8,12]. Such pipeline is a valuable tool for
the rapid screening of candidate effectors.

Rust fungi (Pucciniales) are notorious for being destructive crop pathogens [13]. The species
that infect wheat pose a constant threat to global food security [14]. These fungal pathogens
include the yellow rust fungus Puccinia striiformis f sp tritici [15–16]. To date, effectors have
not been functionally characterized for this species. However, genome and transcriptome anal-
yses have predicted hundreds of candidate effectors, most of which are secreted proteins of
unknown function [17–19]. Cantu and colleagues recently combined genome and in silico
analyses to prioritize candidate effectors for further functional analyses [20].

Processing bodies (P-bodies) are protein/RNA complexes that reside in the cytosol of
eukaryotic cells. They control the decapping, degradation, and storage of mRNA molecules
[21]. In plants, P-bodies and P-body-resident proteins have important roles in post-embryonic
development [22–23], salt stress tolerance [24], and immune responses [25]. In animals and
yeast, limited evidence suggests that pathogenic bacteria and viruses target P-bodies [26–27].
To date, no connection has been made between P-bodies and filamentous pathogens.

In this study, we investigated sixteen candidate effectors of the wheat yellow rust fungus P.
striiformis f sp tritici using the N. benthamiana effectoromics pipeline we previously developed
[8]. We discovered that nine candidate effectors accumulate in distinct plant cell compartments
and associate with specific protein complexes. Notably, the candidate effector PST02549 accu-
mulates in P-bodies and associates with the wheat enhancer of mRNA decapping protein 4.
Our findings point to P-bodies as a novel plant compartment targeted by pathogen effectors.
We also propose that N. benthamiana can be used as an experimental system to screen candi-
date effectors of pathogens of monocot plants.

Results

Selection of 16 candidate effectors from Puccinia striiformis f sp tritici
The predicted effector complement of P. striiformis f sp tritici consists of hundreds of secreted
proteins [20]. To select candidate effectors for functional investigations, we leveraged our
recently developed pipeline [8] to select eleven proteins, using transcript enrichment in puri-
fied haustoria as the principal criterion for selection. We also included five proteins previously
flagged as promising candidates [20] to obtain a final list of sixteen candidate effectors
(Table 1, Sheet A in S1 Table). These sixteen candidates are Pucciniales-specific, and only
seven show some sequence similarity to proteins of the wheat stem rust fungus Puccinia grami-
nis f sp tritici (Table 1). This finding suggests that most of these candidate effectors recently
emerged in the Pucciniaceae family.
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Candidate effector-fluorescent protein fusions accumulate in N.
benthamiana leaf cells
To test whether the mature form (i.e. without the signal peptide) of the candidate effectors
could be expressed in dicot cells, we generated candidate effector-green fluorescent protein
(GFP) fusions and expressed them in N. benthamiana by agroinfiltration. Live-cell imaging
and immunoblotting assays revealed that the sixteen fusion proteins accumulate in leaf cells at
detectable levels, with no obvious sign of aggregation or degradation (Fig 1, S1 Fig). Some
fusions showed a band signal at a lower molecular weight, in addition to the band signal at the
theoretical size (PST18220, PST03196, and PST12160), or a band signal at a higher molecular
weight than expected (PST02549 and PST05023), suggesting post-translational modifications
(S1 Fig). As the proteins effectively accumulated in leaf cells, we inferred that transient assays
in N. benthamiana are suitable for further in planta analyses.

Seven candidate effectors accumulate in specific plant cell
compartments
To identify the plant cell compartments in which the candidate effectors accumulate, we per-
formed live-cell imaging of cells expressing effector-GFP fusions. Seven out of the sixteen fusion
proteins displayed an informative distribution in leaf cells (Fig 1). The fluorescence signal from
PST02549-GFP and PST03196-GFP accumulated in small cytosolic bodies and chloroplasts,
respectively, as well as in the nucleus and the cytosol. The fluorescence signal from PST18220-GFP

Table 1. Puccinia striiformis f. sp. tritici candidate effectors analysed in this study.

protein ID a tribe b protein length c SP length c cys d gene expression be similar proteins f

PST05258 54 256 21 0 H Pgt (3)

PST15391 54 256 19 0 H5, I Pgt (3)

PST11721 219 250 24 1 H5, I Pgt (1)

PST18220 238 110 19 0 H5, I, TC -

PST18221 238 112 20 0 H1, I, TC -

PST15642 308 102 21 3 H5, I, TC -

PST18447 318 146 24 4 H5, I Pgt (1), Mlp (1), Hv (1)

PST02549 320 297 21 1 H5, I -

PST05023 351 281 21 1 H1, I10, TC Pgt (1)

PST12160 354 168 19 1 H5, I10 -

PST10977 403 171 26 13 H5, I Pgt (1)

PST03196 478 206 25 2 H5, I Pgt (1)

PST05302 593 160 20 0 H1, I, TC -

PST15964 678 128 18 0 H1, I -

PST08468 1176 206 20 0 H5, I -

PST05006 1217 201 22 3 H1, I -

a Protein IDs were adapted from [20] by removing the isolate ID for simplicity. Full-length protein IDs are indicated in Sheet A in S1 Table.
b Data mined from [20].
c Number of amino acids are indicated; SP: predicted signal peptide
d Number of cysteine residues in the mature form of the protein (i.e. without the signal peptide)
e H: transcripts were identified in isolated haustoria; H5: transcripts were in the top 5% of transcripts detected in isolated haustoria; H1: transcripts were in

the top 1% transcripts detected in isolated haustoria; I: transcripts were identified in wheat tissues during infection; I10: transcripts were in the top 10%

transcripts detected in wheat tissues during infection; TC: transcript accumulation was detected by RTq-PCR during a time-course infection of wheat.
f Pgt: Puccinia graminis f sp tritici; Mlp: Melampsora larici-populina; Hv: Hemileia vastatrix.

doi:10.1371/journal.pone.0149035.t001
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labelled both chloroplasts and nuclei, suggesting a dual targeting to the two organelles. The fluores-
cence signal from PST18447-GFP, PST11721-GFP, and PST15391-GFP specifically accumulated
in nuclei, and PST11721-GFP also labelled nuclear foci in some rare cases (S2 Fig). Finally, the
fluorescence signal from PST05023-GFP labelled endomembrane compartments. The fluorescence
signal from the remaining nine fusion proteins had a non-informative distribution in the nucleus
and the cytosol, similar to the distribution of a free GFP control [8].

To explain the specific accumulation patterns observed, we examined the candidate effec-
tors for subcellular targeting sequences. We focused on PST15391 and PST18447, because they
showed specific, robust accumulation in nuclei (Figs 1 and 2). Previous analysis failed to iden-
tify a nuclear-localisation signal (NLS) for PST15391 and PST18447 [20]. However, we noted
that both carry NLS-like stretches of amino acids enriched in positively charged residues at the
C-terminus and N-terminus of their mature forms, respectively. Truncations lacking the NLS-
like sequences were depleted from the nucleus and accumulated mainly in the cytosol, indicat-
ing that the NLS-like regions are necessary for specific nuclear accumulation. This set of exper-
iments suggests that P. striiformis f sp tritici effectors use targeting sequences to traffic within
plant cells.

Fig 1. Seven candidate effectors show specific accumulation patterns in leaf cells. Live-cell imaging of the 16 candidate effector-GFP fusion proteins
accumulating in distinct subcellular compartments of N. benthamiana leaf cells. Proteins were transiently expressed inN. benthamiana leaf cells by
agroinfiltration. Live-cell imaging was performed with a laser-scanning confocal microscope two days after infiltration. GFP and chlorophyll were excited at
488 nm. GFP (green) and chlorophyll (blue) fluorescence were collected at 505–525 nm and 680–700 nm, respectively. Images are single optical sections of
0.8 μm or a maximal projection of up to 47 optical sections (max. z-stack of 37.6 μm). Images displayed are overlays of the GFP signal, the chlorophyll signal,
and bright field. For A-G, specific cellular compartments in which the GFP signal accumulates are indicated. White arrowheads indicate GFP-labelled
cytosolic bodies (A), chloroplasts (B-C), nuclei (D-F), nuclear surrounding (G), or cytosolic fractions (H-P). Black arrowheads indicate GFP-labelled small
cytosolic bodies (A), a stromule (B), a nucleus (C), the plasmamembrane (G), or nuclei (H-P). In (P), the low level of accumulation of the fusion protein
imposed higher laser power and gain, which resulted in non-specific signal for the GFP channel being visible in chloroplasts and ostiole edges.

doi:10.1371/journal.pone.0149035.g001
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Six candidate effectors specifically and reliably associate with plant
proteins
To gain further insight into the putative functions of the candidate effectors, we next aimed to
identify the plant proteins they interact with in planta using anti-GFP coimmunoprecipitation/
liquid chromatography-tandem mass spectrometry (coIP/MS) [8]. Using this approach, we
identified 439 N. benthamiana proteins as potential interactors of the 16 candidate effectors

Fig 2. PST15391 and PST18447 carry functional nuclear-localisation signals. (A) Schematic representation of the protein primary structure of
PST15391 and PST18447. Yellow: predicted signal peptide for secretion; red: amino acid sequence necessary for nuclear accumulation; blue: positively
charged residues (net charge is indicated in parentheses). Numbers indicate amino acid positions. (B) Live-cell imaging of GFP-PST15391,
GFP-PST15391Δ9CT, GFP-PST18447, and GFP-PST18447Δ8NT inN. benthamiana leaf cells. The cellular compartments in which the GFP signal
accumulates are indicated. The left-hand side panel shows overlay images of bright field, chlorophyll, and GFP channels. The central panel shows GFP
channel images. The right-hand side panel shows fluorescence intensity plots of the GFP along the line from a to b depicted in corresponding central panel
images. Proteins were transiently expressed inN. benthamiana leaf cells by agroinfiltration. Live-cell imaging was performed with a laser-scanning confocal
microscope two days after infiltration. GFP and chlorophyll were excited at 488 nm. GFP (green) and chlorophyll (blue) fluorescence were collected at 505–
525 nm and 680–700 nm, respectively. Images are single optical sections of 0.8 μm or maximal projections of up to 3 optical sections (max. z-stack of
2.4 μm). White arrowheads: nuclei; black arrowheads: cytosol.

doi:10.1371/journal.pone.0149035.g002

A Rust Fungal Candidate Effector Accumulates in P-Bodies

PLOS ONE | DOI:10.1371/journal.pone.0149035 February 10, 2016 5 / 16



(Sheet B and C in S1 Table, S3 Fig). A candidate effector associated with an average of 98 pro-
teins, ranging from 20 to 236 (Fig 3). Conversely, a plant interactor associated with an average
of 3.5 candidate effectors, ranging from 1 to 16. Given the high complexity of the dataset, we
used a scoring method we previously developed [8] to discriminate reliable and specific inter-
actors (high score) from redundant and non-specific ones (low score). Scores ranged from
0.003 to 108, with an average value of 0.91 (Fig 3). Eighteen proteins had a score of� 3, and all
specifically coimmunoprecipitated with a single candidate effector (Fig 4). For instance, the
protein with the highest score (108) was an enhancer of mRNA decapping protein 4
(NbEDC4) that specifically and robustly immunoprecipitated with PST02549 (Sheet B in S1
Table).

Proteins were transiently expressed in N. benthamiana leaf cells by agroinfiltration. Total
proteins were isolated two days after infiltration. Plant protein complexes associated with the
candidate effector-GFP fusions were purified by anti-GFP coimmunoprecipitation, separated
with SDS-PAGE, and digested with trypsin. Trypsin-digested peptides were processed by

Fig 3. Candidate effectors associate with distinct plant protein complexes. (A) Number of N.
benthamiana proteins associating with each candidate effector. Candidate effectors are arranged from left to
right in descending order according to the number of interactors. (B) Number of candidate effectors
associating with each N. benthamiana protein. The 439 interactors are arranged from left to right in
descending order according to the number of associated candidate effectors. The X-axis legend indicates
(from right to left) the number of N. benthamiana proteins that associated with at least one (439), two (328),
three (204), five (99), and ten (31) candidate effectors. (C) For eachN. benthamiana protein identified, we
calculated a score following the formula "protein score = maximal peptide count/(redundancy)2”. Proteins are
arranged from left to right in descending order based on their score. Selected proteins are indicated on the
graph.

doi:10.1371/journal.pone.0149035.g003
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LC-MS/MS and collected peaks were used to search a database containing the predicted prote-
ome of N. benthamiana. After filtering out contaminants and proteins supported by a single
peptide, and clustering similar proteins, a total of 439 non-redundant protein interactors were
retained. The full dataset used to draw this figure is shown in Sheet B in S1 Table.

PST02549 associates with the wheat enhancer of mRNA decapping
protein 4 (TaEDC4) in P-bodies
Our coIP/MS assays showed that PST02549 specifically associated with NbEDC4. To evaluate
the biological significance of this association, we first identified and cloned the protein with the
highest amino acid sequence similarity to NbEDC4 in bread wheat (Triticum aestivum), and
named it TaEDC4. NbEDC4, TaEDC4, and Arabidopsis thaliana EDC4 (AtEDC4, also known
as VARICOSE or VCS) are of a similar length (1203 to 1349 amino acids) and exhibit a pair-
wise amino acid sequence identity of between 42 and 46% (S4 Fig). The amino acid sequence
identity between these proteins reaches 75% in the N-terminal WD40 domain (Fig 5). Next, we
expressed a TaEDC4-mCherry fusion in N. benthamiana leaf cells. Confocal microscopy
revealed that TaEDC4-mCherry accumulated in cytosolic foci in addition to the cytosol. Since

Fig 4. Nine candidate effectors have a specific subcellular localisation and/or a high-scoring plant protein interactor. The 16 candidate effectors
used in this study are shown in the middle column. Colours indicate specific subcellular localisation. The 16 plant proteins with the lowest scores (� 0.01;
termed 'usual suspects') and the 18 plant proteins with the highest scores (� 3; termed 'specific interactors') are shown on the left- and right-hand sides,
respectively. Black lines indicate the association between a candidate effector and a plant protein as detected by coIP/MS. For each N. benthamiana protein,
the most similar wheat protein was identified by protein sequence similarity searches against the predicted proteome of the bread wheat Triticum aestivum L.
using the BLASTp algorithm.

doi:10.1371/journal.pone.0149035.g004
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EDC4 is a component of P-bodies, we hypothesized that the foci we observed were P-bodies.
To test this hypothesis, we co-expressed TaEDC4-mCherry with YFP-VCSc, a marker of P-
bodies [22]. Confocal microscopy revealed perfectly overlapping signals in cytosolic foci, con-
firming that TaEDC4 accumulates in P-bodies in N. benthamiana leaf cells (Fig 5).

To determine whether PST02549 and TaEDC4 associate in planta, we co-expressed
PST02549-GFP and TaEDC4-mCherry fusion proteins in N. benthamiana leaf cells and per-
formed anti-GFP coimmunoprecipitation followed by immunoblotting or sodium dodecyl sul-
phate polyacrylamide gel electrophoresis/Coomassie Brilliant Blue (SDS-PAGE/CBB) staining.
Both the anti-mCherry immunoblot and the SDS-PAGE/CBB assays revealed a specific band
signal matching the predicted size of TaEDC4-mCherry in protein complexes immunoprecipi-
tated with PST02549-GFP, indicating a strong and robust association between the two proteins
(Fig 6). As negative controls, we used three GFP and three mCherry fusion proteins available
in the lab (see Materials and Methods for details); none of these control proteins associated
with either PST02549 or TaEDC4. Confocal microscopy revealed that the fluorescence signals
from PST02549-GFP and TaEDC4-mCherry perfectly overlapped in cytosolic foci, indicating
co-accumulation in P-bodies (Fig 7). Noteworthy, the intensity of PST02549-GFP and
TaEDC4-mCherry band signals in the input blots of Fig 6 was similar across all conditions,
indicating that co-expression of the two partners did not enhance their accumulation in leaf

Fig 5. TaEDC4 accumulates in P-bodies. (A) Schematic representation of the protein primary structure of
AtEDC4, NbEDC4, and TaEDC4. Numbers indicate amino acid positions. The percentage of pairwise amino
acid sequence identity is indicated to the right of the diagram. (B) Live-cell imaging of TaEDC4-mCherry and
YFP-VCSc inN. benthamiana leaf cells. Images show a single optical section of 0.8 μm. Proteins were
transiently expressed in N. benthamiana leaf cells by agroinfiltration. Live-cell imaging was performed with a
laser-scanning confocal microscope with a sequential scanning mode two days after infiltration. The YFP was
excited at 514 nm; mCherry and chlorophyll were excited at 561 nm. YFP (yellow), mCherry (red), and
chlorophyll (blue) fluorescence were collected at 525–550 nm, 580–620 nm, and 680–700 nm, respectively.
White arrowhead: nuclei; black arrowhead: P-bodies. The intensity plot in the top right corner shows YFP and
mCherry (RFP) relative fluorescence signal intensity along the white line connecting points a and b in the
overlay image.

doi:10.1371/journal.pone.0149035.g005

A Rust Fungal Candidate Effector Accumulates in P-Bodies

PLOS ONE | DOI:10.1371/journal.pone.0149035 February 10, 2016 8 / 16



cells. From this set of experiments, we conclude that PST02549 and TaEDC4 specifically and
robustly associate in P-bodies in N. benthamiana leaf cells.

Co-expression of PST02549 and TaEDC4 increases the size of
P-bodies
During confocal microscopy assays of N. benthamiana leaf cells co-expressing PST02549-GFP
and TaEDC4-mCherry, we noted that the P-bodies appeared larger than usual. To quantify
this phenomenon, we measured the diameter of P-bodies from confocal microscopy images.

Fig 6. PST02549 associates with TaEDC4 in planta. Anti-green fluorescent protein (GFP)
coimmunoprecipitation followed by immunoblot and sodium dodecyl sulphate-polyacrylamide gel
electrophoresis/Coomassie Brilliant Blue (SDS-PAGE/CBB) analyses. Proteins were transiently expressed in
N. benthamiana leaf cells by agroinfiltration. Total proteins were isolated two days after infiltration, and
immediately used for anti-GFP immunoprecipitation. Immunoprecipitated protein mixtures were separated
with SDS-PAGE. For direct protein visualization, the acrylamide gel was stained with CBB. For
immunoblotting, proteins were electrotransferred onto polyvinylidene fluoride (PVDF) membranes.
Immunodetection was performed with anti-GFP or anti-redu fluorescent protein (RFP) antibodies, and
immunoblots were revealed with a chemiluminescent imager. Ponceau S staining of the PVDFmembrane
was used as a loading and transfer control. Theoretical protein size is indicated in parentheses in kilodalton
(kDa) for each fusion protein. Numbers to the left of the blot and gel images indicate protein size in kDa. In the
immunoblot images, red asterisks indicate specific protein bands. In the gel image, asterisks indicate specific
protein bands (red: TaEDC4-mCherry; black: GFP fusions); the PageRuler ladder is shown to the left of the
image. IP: immunoprecipitation. In the IP-GFP/ α-RFP blot, note that the weak band signals observed on the
right side between 25 and 40 kDa are due to non-specific background detection of abundant GFP fusions by
the anti-RFP antibodies.

doi:10.1371/journal.pone.0149035.g006
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When PST02549-GFP was co-expressed with TaEDC4-mCherry or an untagged version of
TaEDC4, the average diameters of the P-bodies were 4.5 ± 3.5 μm and 4.9 ± 2.2 μm, respec-
tively (Fig 8, Sheet D in S1 Table). By contrast, when PST02549-GFP and TaEDC4-mCherry
were expressed independently and/or with other control proteins, the average diameter of a P-
body was 1.3 ± 0.6 μm. CoIP/MS assays confirmed the presence of the untagged TaEDC4, as
well as the presence of the endogenous NbEDC4, in complex with PST02549 (Sheet E in S1
Table). None of the negative controls we tested co-localised with PST02549-GFP or
TaEDC4-mCherry or triggered the formation of large P-bodies (Fig 8, Sheet D in S1 Table).
We conclude that co-expression of PST02549 and TaEDC4 specifically increases the size of P-
bodies.

Discussion
In this study, we found that PST02549 accumulates in plant cell P-bodies and associates with a
P-body-derived protein. This observation suggests that an effector that targets plant P-bodies
has evolved in P. striiformis f sp tritici. To our knowledge, a connection between filamentous
plant pathogens and P-bodies has not previously been established.

How would a pathogen benefit from manipulating host P-bodies? Some plant pathogen
effectors target components of the host RNA silencing machinery [28–30]. In A. thaliana, two
recent reports have connected P-bodies, or P-body-resident proteins, with plant immune
responses [25, 31]. Therefore, pathogen effectors may target P-bodies to manipulate RNA
metabolism and/or suppress immune responses. Interestingly, pathogenic bacteria and viruses
that infect mammals are known to alter the structure and function of host P-bodies [32–33].
Therefore, diverse parasites of eukaryotes have evolved to target host P-bodies. Further mecha-
nistic investigations of the pathogen effector/P-body interplay should reveal the biological sig-
nificance of this phenomenon.

We observed an increase in P-body size upon co-expression of PST02549 and TaEDC4. The
depletion or overexpression of P-body components is known to modify P-body integrity,
which can lead to an increase in size [34]. It is therefore possible that the increase in P-body
size observed in our study is due to over-accumulation of P-body-resident proteins such as
PST02549 or TaEDC4. However, we observed this phenomenon only when the two proteins

Fig 7. PST02549 and TaEDC4 co-accumulate in P-bodies. Live-cell imaging of PST02549-GFP and TaEDC4-mCherry inN. benthamiana leaf cells.
Images show a single optical section of 0.8 μm. The white asterisk indicates a pavement cell expressing only the TaEDC4-mCherry fusion, in which no large
P-body was detected. Proteins were transiently expressed in N. benthamiana leaf cells by agroinfiltration. Live-cell imaging was performed with a laser-
scanning confocal microscope with a sequential scanning mode two days after infiltration. GFP and the chlorophyll were excited at 488 nm; the mCherry was
excited at 561 nm. GFP (green), mCherry (red), and chlorophyll (blue) fluorescence were collected at 505–525 nm, 580–620 nm and 680–700 nm,
respectively. Black arrowheads indicate P-bodies. White arrowheads: nuclei.

doi:10.1371/journal.pone.0149035.g007

A Rust Fungal Candidate Effector Accumulates in P-Bodies

PLOS ONE | DOI:10.1371/journal.pone.0149035 February 10, 2016 10 / 16



co-accumulated, indicating that both are required to increase P-body size. The biological sig-
nificance of the association between PST02549 and TaEDC4 as well as the increase in P-body
size remain to be further investigated in wheat.

The pipeline we used in this study allowed us to identify nine candidate effectors that target
a given subcellular compartment and/or protein complex. We use this specific behaviour in
leaf cells as a rationale to hypothesize that these proteins are bona fide cytoplasmic effectors.
Thus, we flag them as high priority candidate effectors to further characterize in wheat. Note-
worthy, we recently obtained similar informative data for 40% of a set of candidate effectors
from another rust species, the poplar leaf rust fungusMelampsora larici-populina [8]. These
findings establish the proof-of-concept that N. benthamiana is a valuable heterologous system
for fast-forward effectoromic analysis of plant pathogens, regardless of their host plant.

Fig 8. Co-expression of PST02549 and TaEDC4 increases the size of P-bodies. (A) Categorical scatterplots showing the diameter of P-bodies labelled
by PST02549-GFP and/or TaEDC4-mCherry in leaf cells. Boxes depict the interquartile range and the median, vertical bars indicate the first and fourth
quartile range, and outlier data points are depicted in black. P-body diameters were measured from laser scanning confocal microscope images acquired
through two to eight independent agroinfiltration assays. The different colours correspond to independent observations (repeats). The following numbers of
P-bodies were scored: PST02549-GFP (n = 150); TaEDC4-mCherry (n = 20), PST02549-GFP/TaEDC4-mCherry (n = 303), PST02549-GFP/TaEDC4
(n = 96). For treatments 'PST02549-GFP' and 'TaEDC4-mCherry', the fusion proteins were expressed alone or with additional control fusion proteins (see
Sheet D in S1 Table for raw data). (B) Live-cell imaging of various GFP and mCherry fusion proteins inN. benthamiana leaf cells. Images present a single
optical section of 0.8 μm of a maximal projection of up to 6 optical sections (max. z-stack of 4.8 μm). Overlay images merge GFP, mCherry, chlorophyll, and
bright field signals. Note that for the PST02549-GFP/TaEDC4, TaEDC4 was untagged and the mCherry fluorescence signal was not recorded. Proteins were
transiently expressed in N. benthamiana leaf cells by agroinfiltration. Live-cell imaging was performed with a laser-scanning confocal microscope with a
sequential scanning mode two days after infiltration. GFP and the chlorophyll were excited at 488 nm; the mCherry was excited at 561 nm. GFP (green),
mCherry (red), and chlorophyll (blue) fluorescence were collected at 505–525 nm, 580–620 nm and 680–700 nm, respectively. Black arrowheads indicate P-
bodies. White arrowheads: nuclei. Note that the large protein aggregates formed by MLP124111-GFP do not show any TaEDC4-mCherry signal.

doi:10.1371/journal.pone.0149035.g008
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In this study and in [8], we performed an in planta protein-protein interaction screen in the
heterologous plantN. benthamiana. Such approach has advantages and disadvantages compared
with traditional methods used to perform protein-protein interaction screens, the most common
being yeast-two hybrid [35]. As a main advantage, our screen takes place in a leaf cell. Therefore,
the prey proteins are in their natural context, i.e. in complex with their partners in the relevant
cellular compartment. This argument holds true for the bait (i.e. the candidate effector), provided
that it is indeed a bona fide cytoplasmic effector. The principal disadvantage of our approach is
that it is prone to false negatives; we may miss interactors that are specific to the natural host spe-
cies, or that are too divergent inN. benthamiana to associate with the bait. Importantly, P. strii-
formis f sp tritici does not infect solanaceous plants, and therefore its effectors do not associate
with Solanaceous proteins in natura. Thus, follow up experiments are need to further validate
the lead candidate interactors. The associations obtained via the screen help to rapidly identify
interactors in the original host species, which are more likely to be biologically relevant.

The field of rust effector biology has progressed relatively slowly regarding the functional
characterisation of effectors despite the availability of pathogen genome sequences [6]. In addi-
tion to PST02549, our study identified candidate effectors that should be treated as high prior-
ity proteins for further investigations. Notably, PST08468 specifically associated with members
of the sucrose non-fermenting related protein kinases. These are key proteins that control the
interplay between stress response and growth [36]. Studying PST08468 may help better under-
stand how rust fungi manipulate this balance in their hosts.

We identified plant interactors of candidate effectors, some of which may represent bone fide
effector targets. Growing evidence suggests that during evolution domains from effector targets
have been incorporated into immune receptors such as nucleotide binding-leucine rich repeat
(NB-LRR, also referred to as NLR) proteins to become ‘sensor domains’ that mediate recognition
of specific effectors [37–39]. A recent genome-wide analysis predicted many NLR gene models in
which protein domains that differ from typical NLR domains have been incorporated (Sarris
et al., in review). Interestingly, six of the eighteen top scoring effector interactors identified in our
study carry a protein domain that is predicted to be integrated into a plant NLR, including the
WD40 protein domain of EDC4 (Sheet B in S1 Table). Therefore, our predicted host targets can
be a valuable source of new ‘baits’ for engineering NLR genes with sensor domains.

Materials and Methods

In silico analyses
Predicted protein sequences were retrieved from the following sources: P. striiformis f sp tritici
(http://yellowrust.com/) [20], N. benthamiana (http://solgenomics.net/) [10], and T. aestivum
(http://www.plantgdb.org/TaGDB/). Protein sequence analysis was performed with ClustalX
and Jalview programmes. Homology searches were performed with the BLAST+ programme.
For the selection of the eleven candidate effectors, we applied an in silico pipeline previously
developed [8]. We adapted it to fit the gene expression dataset we used [20]. Notably, we
retained only candidate effectors whose transcripts were enriched in purified haustoria (top 5%
category in [20]) compared to infected tissues. The set of candidate effectors selected via the
pipeline was manually analysed to remove redundant family members. PST05258 and
PST15391 from Tribe 54, as well as PST18220 and PST18221 from Tribe 238, were both
retained due to high levels of polymorphism [20].

Cloning procedures and plasmids
The open reading frame (ORF) encoding the mature form (i.e. without the signal peptide) of
P. striiformis f sp tritici small-secreted proteins or the full-length of T. aestivum EDC4
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(Traes_6DL_3FBA5B70E.1) were amplified by polymerase chain reaction (PCR) using cDNA
isolated from wheat leaves 14 days after inoculation with a virulent isolate of P. striiformis f sp
tritici (isolate PST-08/21) [20], or were obtained through gene synthesis (Genewiz, London,
UK), with codon optimization for plant expression and removal of internal BbsI and BsaI
restriction sites. Primers and synthetic genes were designed to be compatible with the suite of
Golden Gate vectors, as previously described [8] (Sheet A in S1 Table). Truncated versions of
PST15391 and PST18447 were obtained by PCR cloning. All PCR-generated DNA fragments
were verified by sequencing after cloning into level 0 Golden Gate vectors. Plasmids were mul-
tiplied and conserved in Escherichia coli (Subcloning Efficiency DH5α Competent Cells; Invi-
trogen, Carlsbad, California, USA) as previously described [8]. The fusion proteins built with
candidate effectors from the poplar rust fungusMelampsora larici-populina (MLP124111,
MLP123218, MLP123438 and MLP124202CT) were obtained in previous studies [8, 12] and
were used as negative controls in coIP and confocal microscopy assays.

Transient protein expression in N. benthamiana leaf cells
Agrobacterium tumefaciens electrocompetent strain GV3101 (pMP90) was used to deliver
T-DNA constructs in leaf cells of three- to four-week-old N. benthamiana plants, following the
agroinfiltration method previously described [8]. The leaves were collected two days after infil-
tration for further protein isolation or microscopy.

Live-cell imaging by laser-scanning confocal microscopy
Confocal microscopy was performed as previously reported [8] with a Leica DM6000B/TCS
SP5 laser-scanning confocal microscope (Leica Microsystems, Bucks, UK), using 10x (air) and
63x (water immersion) objectives. Each construct gave a similar localisation pattern in at least
three independent observations. Image analysis was performed using the Fiji plugin of Image J
2.0.0 (http://fiji.sc/Fiji). To quantify the diameter of P-bodies, the ‘measure’ tool of Fiji was
used to measure manually-drawn lines matching the apparent diameter of P-bodies in all the
single optical section confocal images acquired in the course of this project. Categorical scatter-
plots were generated with R, using the ggplot2 package and an in-house developed script (S1
Text).

Protein isolation and immunoblot analyses
Frozen leaves were ground to a powder using a mortar and pestle. Total proteins were extracted
as previously described [8]. Ten microliters of isolated protein was separated on a 15%
SDS-PAGE gel, and the protein content was estimated by Coomassie Brilliant Blue (CBB)
staining. Immunoblot analysis was performed as previously described [8], using GFP (B2):sc-
9996 HRP-conjugated antibody (Santa-Cruz Biotechnology), rat anti-RFP 5F8 antibody (Chro-
motek, Munich, Germany) and a HRP-conjugated anti-rat antibody.

Coimmunoprecipitation and LC-MS/MS analyses
Coimmunoprecipitation procedures were performed as reported previously [8], using
GFP_Trap_A beads (Chromotek, Munich, Germany). Various GFP andmCherry fusion proteins
[8,12] were used as negative controls in confocal microscopy and coIP assays. Some proteins
were specifically selected based on their ability to generate cytosolic aggregates (MLP124111),
their similarity in size and accumulation pattern to tested proteins (MLP124202ΔCT), or their
‘stickyness in coIP/MS assays’; i.e. ability to associate with a high number of proteins, (PST10977
and PST03196). Sample preparation, liquid chromatography / tandemmass spectrometry
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(LC-MS/MS) and data analyses were performed as described in [8], using a hybrid mass spec-
trometer LTQ-Orbitrap XL (ThermoFisher Scientific, Carlsbad, California, USA) and a nanoflow-
UHPLC system (NanoAcquityWaters Corp., Burnsville, Minnesota, USA). LC-MS/MS data were
processed and plant interactors were scored as previously described [8] (Sheet B in S1 Table).
Briefly, scores were calculated following the formula "protein score = maximal peptide count/
(redundancy)2”. The redundancy value was calculated by integrating the coIP/MS data from [8].

Supporting Information
S1 Fig. Immunoblots confirm the accumulation of the fusion proteins in N. benthamiana
leaf cells. Proteins were transiently expressed in N. benthamiana leaf cells by agroinfiltration.
Total proteins were extracted two days after infiltration by grinding leaves in liquid nitrogen
and immediately extracting, reducing and denaturing proteins from the leaf powder. Proteins
were separated on 15% SDS-PAGE gels and transferred onto a nitrocellulose membrane. Pri-
mary and secondary immune detection were performed with rabbit anti-GFP and goat anti-
rabbit antibodies, respectively. Images originating from the same membrane and processed at
the same time are grouped together. Blots were cropped to remove lanes previously published
elsewhere (Petre et al., 2015a). Secondary antibodies and PageRuler signals were detected
simultaneously using an infrared imager. The theoretical size of each fusion protein is indicated
in kDa in parentheses. White asterisks indicate specific protein bands.
(TIF)

S2 Fig. PST11721-GFP labels nuclei foci. Live-cell imaging of PST11721-GFP inN. benthami-
ana leaf cells. Proteins were transiently expressed in N. benthamiana leaf cells by agroinfiltra-
tion. Live-cell imaging was performed with a laser-scanning confocal microscope two days
after infiltration. The GFP was excited at 488 nm. GFP (green) fluorescence was collected at
505–550 nm. The image is a single optical section of 0.8 μm, showing an overlay of the GFP
and bright field channels. The black arrowheads indicate GFP-labelled nuclear foci.
(TIF)

S3 Fig. In planta coimmunoprecipitation efficiently purifies fusion proteins. Protein mix-
tures isolated by anti-GFP immunoprecipitation were reduced and denatured in a Laemmli
buffer. Proteins were separated with SDS-PAGE and stained with Coomassie Brilliant Blue.
Trypsin-digested peptides were processed by LC-MS/MS and collected peaks were used to
search a database containing the GFP sequence. The theoretical size of each fusion protein is
indicated in parentheses in kilodalton (kDa). The number of peptides identified by LC-MS/MS
and matching the GFP is indicated for each fusion protein between brackets. The size of the
PageRuler ladder bands is indicated in kDa. Images originating from the same gel are grouped
together. Black asterisks indicate detectable and specific protein bands.
(TIF)

S4 Fig. EDC4 is conserved in plants. Amino acid alignment of EDC4 of Arabidopsis thaliana
(AtEDC4, AT3G13300.2), Nicotiana benthamiana (NbEDC4, NbS00023257g0003.1), and Tri-
ticum aestivum (TaEDC4, Traes_6DL_3FBA5B70E.1). Alignment was performed with Clus-
talX. Amino acid residues are colored according to the ClustalX scheme.
(TIF)

S1 Table.
(XLSX)

S1 Text. R script to generate categorical scatterplots.
(TXT)
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