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Abstract

The advent of high-throughput RNA sequencing (RNA-seq) methods
have made it possible to sequence transcriptomes for the cell-wide
identification of small non-coding RNAs (sRNAs) and to assess their
regulation using differential expression analysis by comparing two or
more different conditions. During an analysis of a typical set of sRNA
sequencing (sRNA-seq) libraries, a large variety of tools and methods
are used on the dataset in order to understand the data’s quality, con-
tent, and to summarise the knowledge gained from the entire analysis.
Many of the tools available to do this were created for mRNA sequenc-
ing (mRNA-seq) datasets. In this thesis, we present and implement
a processing pipeline that can be used to assess the quality and the
differential expression of sRNA-seq datasets over two or more differ-
ent conditions. We then utilise aspects of this pipeline in various
sRNA-seq experiments. Firstly, we combine our pipeline with current
tools for miRNA identification to assess the regulation of miRNAs
during larval caste differentiation in a novel genome; the European
bumblebee (Bombus terrestris). Secondly, we explore the differential
expression during cell stress of all classes of sRNAs using two cell lines
in humans. We also find that a specific protein, Ro60, is required for
the expression of mRNA-derived sRNAs during stress, similar to the
way in which sRNAs derived from Y RNAs are regulated. Finally,
we utilise our understanding of sRNA mapping patterns, alongside
current tools for miRNA identification, to search for functional miR-
NAs and other sRNAs in the novel genomes of two diatoms. The
lack of canonical miRNA predictions in this study has repercussions
for the evolutionary theory behind miRNAs. The implementation of
our pipeline for sRNA-seq data provides an interactive and quality
controlled workflow that can be used to process a dataset from raw
sequences to the results of several differential expression experiments
for all identified sRNA classes within a sequenced transcriptome.
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Chapter 1

Introduction

An organism’s cellular processes are based upon the flow of biological information

from its genes to its products. This information is encoded and exchanged by a

number of different biopolymers in a set of processes termed the Central Dogma

of molecular biology (figure 1.1). Deoxyribonucleic acid (DNA) is responsible for

storing the information within an organism’s genome. The information is utilised

by first transcribing it to ribonucleic acid (RNA), where it becomes functional

within an organism’s transcriptome. From here, the information can be translated

to protein, an organism’s fundamental building blocks, from messenger RNA

(mRNA). However, a gene may also be transcribed to other classes of RNA, called

non-coding RNAs (ncRNAs) [Eddy, 2001], that use their encoded information

to both process and regulate the flow of information from the genome to the

proteome. The regulation of genetic expression allows genes to have a more

complex relationship with their products.

In particular, small non-coding RNAs (sRNAs) have been found to regulate

the expression of mRNA through a process known as RNA interference (RNAi)

[Mello and Conte, 2004]. With the continued use of next generation sequencing,

and in particular RNA sequencing (RNA-seq) technologies, research on sRNAs

has broadened in several directions. There is now a heavy focus on projects that

sequence whole sRNA transcriptomes with the aim to expand the known sRNAs

family as well as our knowledge of the kind of organisms that utilise these sRNAs.

This has lead to a further expanded understanding of a wide range of other

ncRNAs that can be processed to produce sRNAs under certain circumstances

[Tuck and Tollervey, 2011]. In Chapter 2 we review the biology of sRNAs. This

includes briefings on the sRNA classes that use the RNAi pathway and also the

more recent insights into the extended group of non-RNAi sRNAs.

Although the use of RNA-seq for mRNA experiments is very common, sRNAs
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Figure 1.1: The Central Dogma of molecular biology [Crick, 1970] states that
information can be exchanged between DNA, RNA, and proteins in a number of
different ways. Three general transfers are known to occur in all organisms. A
further three special transfers occur under special circumstances or in only certain
classes of life (e.g. reverse transcription in viruses).

can also be studied by using a variation of this sequencing method (sRNA-seq). To

process sRNA-seq data, it is common to utilise tools that were originally created

for use on mRNA-seq data. These include quality check tools such as FASTQC

[Andrews, 2010], and normalisation and differential expression packages such as

edgeR [Robinson et al., 2010] and DESeq2 [Love et al., 2014]. FastQC can be used

to aid the quality control of any data in a FASTQC format, whereas edgeR and

DESeq2 focus on the analysis of preprocessed RNAseq experiments. However,

sRNA sequencing (sRNA-seq) data is different to the data found from mRNA

sequencing (mRNA-seq) and, as we find in this thesis, it is extremely beneficial

to take the particular characteristics of sRNAs into account when preprocessing

and calculating differential expression in sRNA experiments. Chapter 3 reviews

the computational methods and tools for the preprocessing, manipulation, and

analysis of sRNA-seq datasets.

With the advent of next generation sequencing in the early 2000s, the amount

of data that can be retrieved for an experiment has been dramatically increas-

ing owing to the reduction in costs per nucleotide [Stein, 2010]. Although more
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in-depth data strengthens the results and conclusions of biological experiments,

the rate of increase has now eclipsed that of Moore’s Law, which describes the

rate at which computer processing power has been increasing since the 1960s.

This has repercussions for the ease in which researchers can complete their ex-

periments, often requiring the use of efficient tools, specialised data processing

centres, or cloud computing [Stein, 2010]. In Chapter 4 we describe a sRNA-seq

processing pipeline that we developed over the course of this thesis that contains

novel approaches to the quality checking, normalisation, and differential expres-

sion of sRNA-seq data. We also provide a comparison of stages of this pipeline to

those of other widely used tools, and detail our own final implementation of this

tool, aimed at both bioinformaticians and biologists for use on their own personal

computers. Dr. Matthew Stocks of the University of East Anglia (UEA) imple-

mented the workflow and much of the interfaces for our tool. In addition, some

of the ideas and concepts for the pipeline were provided by Dr. Irina Mohorianu

(UEA) with further input by the author. The author’s contributions included

all data analysis, comparisons to other approaches, and the implementation of

specific methods and visualisations into the software.

In Chapter 5 we describe an analysis of sRNA-seq data from a novel organ-

ism, the European bumblebee (Bombus terrestris), to identify new and conserved

miRNAs and understand the regulation of these miRNAs during larval caste de-

velopment. Dr. David Collins (UEA) undertook the biological experiments and

sample preparations described in this chapter.

In Chapter 6 we utilise two sRNA-seq datasets to understand the regulation

of mammalian sRNA transcriptomes during cell stress. Biological experiments

and sample preparations were carried out by Dr. Adam Hall (University of Le-

icester) and Dr. Carly Turnbull (UEA) with follow up northern blot validations

by Martina Billmeier and Prince Panicker.

In Chapter 7 we carry out an investigation on sRNA transcriptomes of two

diatom species, which are members of the eukaryotic supergroup Chromalveolata,

in which sRNAs have been less studied [Cerutti and Casas-Mollano, 2006]. We

use mapping characteristics of single sRNA-seq libraries for both organisms to

identify and predict the presence of various types of sRNAs in these two organ-

isms. RNA sample preparations and northern blot validations were carried out by

Dr. Sara-Lopez Gomollon (CSIC) and Dr. Tina Rathjen. Growth experiments

were conducted by Dr. Thomas Mock.

The bioinformatics work undertaken in Chapters 5, 6, and 7 was carried out

by the author in consultation with Prof. Vincent Moulton (UEA), Prof. Tamas
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Dalmay (UEA), and Dr. Irina Mohorianu (UEA).

Finally, Chapter 8 discusses the work completed in this thesis as a whole, and

suggests proposals for future work.
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Chapter 2

The biology of small RNAs

2.1 Summary

This chapter details the biological background surrounding sRNA research. This

is primarily split into two fields of research: that of sRNAs known to be involved

in the RNAi pathway, and secondly the more recent identification of an extended

group of sRNAs derived from other non-coding RNAs.

2.2 The discovery of RNA interference

The discovery of the RNAi pathway was the result of an attempt to develop a

new gene knockdown technique that could be used to downregulate genes. Fire

et al. [1991] had previously shown that injecting antisense RNA into the worm

Caenorhabditis elegans inhibited the expression of complimentary mRNA. How-

ever, Guo and Kemphues [1995] later found that gene expression was inhibited

by both antisense and sense RNA, which they used as a control. Fire et al. [1998]

went on to show that, in addition to this surprising result, double stranded RNA

(dsRNA) was able to suppress gene expression at a higher level than the use of

sense or antisense RNA alone. In fact, the silencing effect had only ever been

caused by small amounts of dsRNA within purified assays of the single-stranded

RNA.

The studies in C. elegans defined the new silencing mechanism as RNA in-

terference. Instead of the oringal hypothesis that antisense RNA was able to

compliment mRNA and block translation on its own, dsRNA was involved in a

more complex and efficient silencing pathway that is catalytic at its core. Studies

in plants had previously uncovered a very similar phenomenon under the name

of post-transcriptional gene silencing (PTGS) [Jorgensen et al., 1996; Que and
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Jorgensen, 1998]. A third eukaryotic lineage, fungi, have also been shown to con-

tain a similar mechanism [Fulci and Macino, 2007; Nicolas et al., 2010], which has

been termed “quelling”. These biological pathways all contain related proteins

that are involved in a regulatory mechanism shared by many lineages, suggesting

an origin in the eukaryotic ancestor [Mello and Conte, 2004].

2.2.1 The canonical RNAi pathway

Generally, RNAi describes a pathway that is triggered by a number of differ-

ent forms of dsRNA. The dsRNA is processed by RNase-III-type endonucleases.

These are a family of proteins that include Dicer and Drosha (see section 2.2.2).

These endonucleases cleave the long dsRNAs into much smaller RNAs of a specific

length at specific points along the RNA. The small RNAs produced by Dicer-like

proteins are referred to as the mature sequence and the transcript from which

it is cut from is its precursor. One strand of the dsRNA is then incorporated

into a protein complex called the RNAi silencing complex (RISC), along with

the Argonaute (AGO) protein. AGO serves to recruit the short strand of RNA,

which itself is able to guide RISC to a mRNA target. Once bound, the RISC

prevents the mRNA from being translated.

Whilst this pathway is common to all sRNAs, the specific details differ be-

tween both the class of sRNA being processed and the organism that produces

them [Carthew and Sontheimer, 2009]. The following sections summarise the

protein machinery involved in sRNA processing and the different classes of RNA

that are processed by them.

2.2.2 RNA interference machinery

Dicer

Dicer-like proteins are members of the RNase III family, a group of proteins

that catalyse the cleavage of double-stranded RNA [Carthew and Sontheimer,

2009]. Table 2.1 lists the domains found in a typical Dicer in the order that they

commonly appear along the protein (N terminus to C terminus).

The PAZ domain, shared with Argonaute proteins, binds RNA duplex ends,

utilising the characteristic short overhangs of the dsRNA. Two RNase III domains

perform the actual excision of the sRNA from its precursor. The sRNA’s length

is dictated by the distance between the PAZ domain and the protein’s processing

centre [MacRae et al., 2007]. Different categories of sRNAs are processed by
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different variants of Dicer (usually termed Dicer-like) but most are cut into lengths

ranging from 21 to 24 nucleotides [Meister and Tuschl, 2004].

Dicer domains are conserved across many eukaryotic lineages even if their

domain structure and organisation is subject to variation [Cerutti and Casas-

Mollano, 2006]. The greatest variability is the absence of the dsRBD and PAZ

domain. Giardia intestinalis contains a Dicer composed of the PAZ and RNase

III domains only and has been shown to function and process 25-27nt sRNAs

[MacRae et al., 2006]. Other species, such as T. brucei, encode only RNaseIII

domains [Shi et al., 2006]. Therefore the only domain that is continuous across

RNAi-functional organisms are the two RNase III domains [Cerutti and Casas-

Mollano, 2006].

Argonaute

Once the mature dsRNA has been excised from its precursor, one of its strands

is incorporated into an RNAi Silencing Complex (RISC) that includes the Arg-

onaute protein. The other strand, in most cases, is no longer needed and is

degraded. The Argonaute’s choice of strand is dependent on the stability of the

5’ ends [Khvorova et al., 2003; Schwarz et al., 2003]. A helicase enzyme is respon-

sible for unwinding the duplex and will do so from the easier, or less stable, end.

Another function of the 5’ end is determining the type of Argonaute that the

sRNA binds to [Kim, 2008]. The large array of Arabidopsis Argonautes select

their sRNAs depending on their bias towards a particular base at the most 5’

position. Many studies have also found that sRNAs hold a particular preference

towards pyrimidine bases, particularly uridine [Aravin et al., 2006, 2003; Chen

et al., 2005], and this has become a prominent feature for the presence of sRNAs

in sequencing analysis.

The dual PAZ - PIWI domain structure of Argonaute is well-conserved amongst

eukaryotic lineages [Cerutti and Casas-Mollano, 2006]. One exception is the

highly divergent Giardia intestinalis, which contains a divergent PIWI domain.

Table 2.1: Common domains within the DICER group of RNase III proteins

Domain Function

DEX D/H Missing in some; varying function

DUF 283 Might bind to Dicer cofactors

PAZ RNA duplex binding; measurement of mature sRNA. Missing in some

Platform Present in some; unknown function

RNase III x2 Cleavage of dsRNA

dsRBD Binds other end of dicer. Numbers between 0 - 2



CHAPTER 2 8

2.3 The evolution of RNA interference

This section describes what is currently understood about the many different

mechanisms, functions, and pathways of RNA interference, and how they relate

to the eukaryotic lineages that use them.

Although sRNAs involved in silencing pathways are produced at highly spe-

cific lengths, the size range varies between different organisms and even different

silencing pathways within the same organism. Baulcombe [2004] describe plant

siRNAs as between 21 to 26 nucleotides in length and micro-RNAs (miRNAs) as

having a slightly narrower range of 21 to 24 nucleotides. A broader range of 19 to

28 nucleotides is described by Kim [2005] for all siRNAs and 18 to 24 nucleotides

for miRNAs.

Classification of sRNAs is predominantly defined by the differences in bio-

genesis, since all sRNAs mediate silencing through the same mechanisms [Kim,

2005]. RNAi has emerged as a gene regulatory mechanism that is evolutionary

conserved between eukaryote lineages but with a large number of class-specific,

and even species-specific, variations [Meister and Tuschl, 2004].

Since there is conservation of certain RNAi pathways over many different lin-

eages, it is likely that the last common ancestor of eukaryotes had a working

set of RNAi machinery and pathways. However, as shown by a few unicellu-

lar eukaryotes, RNAi is also not essential for eukaryotic organisms [Cerutti and

Casas-Mollano, 2006]. A handful of organisms analysed so far show no signs of

an RNAi pathway as we know it. RNAi machinery are absent from some small

genomes such as those of Saccharomyces cerevisiae, the excavates Trypanosoma

cruzi and Leishmania major, the Archaeplastida Cyanidioschyzon merolae, and

the malaria-causing Plasmodium falciparum [Cerutti and Casas-Mollano, 2006].

Although these organisms are all single-celled, other similar organisms have been

shown to utilise a familiar RNAi pathway, particularly Chlamydomonas reinhart-

dii [Molnr et al., 2007]. It is not clear whether RNAi is linked with the advent of

multicellularity or more simply a product of genome complexity [Casas-Mollano

et al., 2008].

The following sections detail the important classes of sRNAs that have been

identified so far and that appear in the majority of organisms, suggesting an

ancient origin.
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2.3.1 Small interfering RNAs

Small interfering RNAs (siRNAs) were originally discovered in plants, where

they were involved in post-transcriptional gene silencing and predominantly in

response to viral infection. The early discoveries suggested sRNAs originally

evolved in eukaryotes to defend against invading viruses [Baulcombe, 2004]. An

origin in the ancient eukaryotic ancestor is likely due to the presence of some kind

of related RNA silencing mechanism in plants, animals, and fungi.

siRNAs have also been found that are derived from repetitive elements, partic-

ularly transposons. These are stretches of DNA that often encode the machinery

necessary to replicate themselves across the genome. To control these “genome

parasites”, many organisms utilise the silencing activity of sRNAs [Malone and

Hannon, 2009], such as piwi-interacting small RNAs (piRNAs). These sRNAs are

24-31nt in length and are found in animal gametes where they associate with the

piwi protein [Brennecke et al., 2007] to guide the silencing of transposons [Malone

and Hannon, 2009]. Although other sRNAs outside of gametes have been found

to be derived from transposable elements in plants and animals, the evidence

suggests that these have a limited abundance [Ghildiyal and Zamore, 2009].

2.3.2 Micro-RNAs

Micro-RNAs (miRNAs) were originally discovered as RNAs between 21 to 26

nucleotides in length that derive from a precursor hairpin structure transcribed

from an organism’s own genes [Baulcombe, 2004]. Although some types of siRNAs

are endogenous to the organism, the primary distinction between the two classes

are that siRNAs are processed from a length of dsRNA, whilst the miRNA’s

precursor is always a hairpin structure [Kim, 2005].

The miRNA pathways have diverged most notably between plant and animal

lineages. This variation is apparent even in the final mechanisms of action of the

silencing effector complex that catalyses the silencing of targets.

In animals, the processing of miRNA from dsRNA is achieved by two RNA-

III-type endonucleases called Drosha and Dicer [Kim, 2005]. The processing is

dependent on the transcribed RNA folding into a stem-loop structure, termed the

primary miRNA (pri-miRNA) [Carthew and Sontheimer, 2009] (see figure 2.1 for

an example). In the nucleus, Drosha, as part of the microprocessor complex

[Carthew and Sontheimer, 2009], cuts out the precursor stem-loop (pre-miRNA)

from specific positions on the transcript so that a 2-nucleotide long 3’ overhang is

left at the end of the hairpin secondary structure [Meister and Tuschl, 2004]. The
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Figure 2.1: Differences between the two miRNA biogenesis pathways in plants
and animals.

pre-miRNA is exported from the nucleus where a Dicer excises a short double-

stranded RNA with 3’ 2-nucleotide overhangs. One of these strands is incorpo-

rated into the effector complex as the mature miRNA. The other is degraded.

The maturation of plant miRNA is simpler. The pri-miRNA transcript is

processed in the nucleus into the miRNA duplexes by Dicer alone [Baulcombe,

2004], usually DCL1 in Arabidopsis [Carthew and Sontheimer, 2009]. Drosha

has only been identified within metazoan organisms, and so is thought to be

a diverged form of the animal dicer protein [Cerutti and Casas-Mollano, 2006].

Other differences in plant and animal miRNAs include the length of pre-miRNA,

which is more variable in plants at 100 to 900 nt. In animals the pre-miRNA is

usually restricted to below 100 nt in length [Cuperus et al., 2011].

Since miRNAs have only been identified so far in two of the six eukaryotic

supergroups, and the biogenesis of the miRNAs differ between these supergroups,

miRNAs are expected to have evolved independently in these lineages and were

not present in the last common eukaryotic ancestor [Cerutti and Casas-Mollano,

2006].
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2.4 The extended small RNA pathway

The several classes of sRNAs summarised above are well-defined in the litera-

ture. The biogenesis of these sRNAs are longer precursor RNA transcripts whose

sole purpose is to generate sRNAs to regulate gene expression. However, it is

becoming apparent that both novel classes and current classes of sRNAs are de-

rived from transcripts that have other primary purposes, representing a layering

of information on the genome [Tuck and Tollervey, 2011]. The following section

details the current literature on new and novel sRNAs that are thought to be

associated with at least parts of the RNAi pathway.

2.4.1 Small RNAs derived from other RNA transcripts

As our understanding of genomes progresses, its complexity is becoming increas-

ingly realised. Genes were initially seen as having a one-to-one relationship with

the transcripts and proteins that they code for. However, this understanding is

becoming increasingly challenged on every level - from transcription to epigenet-

ics. For example, the introns in genes may be spliced out in varying combinations,

resulting in different proteins after translation [Matlin et al., 2005].

Non-coding RNA is now beginning to reveal alternative functions where the

original transcript is further processed, leaving behind stable fragments of spe-

cific length that are likely functional [Tuck and Tollervey, 2011]. Non-coding

RNAs that show this activity include transfer RNA (tRNAs) [Cole et al., 2009;

Haussecker et al., 2010; Lee et al., 2009], messenger RNA (mRNA), and small

nucleolar RNAs (snoRNAs).

tRNA-derived small RNAs (tsRNAs)

Several studies in human and mouse organisms [Cole et al., 2009; Haussecker

et al., 2010; Lee et al., 2009] have identified distinct classes of sRNAs that all

derive from tRNAs, termed tRNA-derived sRNAs (tsRNAs). These classes, sum-

marised in table 2.2 are generally defined by where the sRNA derives from the

tRNA. Lee et al. [2009] defines three classes: tRF-3 fragments from matching ex-

actly to the 3’ end, tRF-5 fragments mapping exactly to the 5’ end of the tRNA,

and tRF-1 fragments that map to the 3’ end of the pre-tRNA sequence. tRF-3

fragments are found with the CCA motif that is post-transcriptionally appended

to the 3’ end of tRNAs, confirming that tRF-3 fragments are at least processed

from mature tRNAs. Haussecker et al. [2010] categorizes their findings into type
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Table 2.2: The classifications of various tRNA-derived RNAs

Category lengths tRNA Position Cleavage mechanism
tRF-5 (type I) 18-22 5’ end of tRNA Dicer
tRF-3 (type I) 18-22 3’ end of tRNA Dicer
tRF-1 (type II) 17-25 3’ end of pre-tRNA RNA-Z
tRNA halves 30-35 Either end Stress-activated nucleases

I fragments (from the 3’ end of the pre-tRNA) and type II (from either end of

the mature tRNA). Both findings show fundamentally similar products.

tsRNAs are usually found as 13-22nt RNAs [Tuck and Tollervey, 2011]. tRF-

3 and tRF-5 tsRNAs are generally not found in high abundance from the same

tRNA, suggesting a functional model similar to the selection of single-stranded

miRNA from its duplexes by Argonaute.

A final type of tRNA-derived sequences are tRNA halves, which are produced

when the organism is under stress [Thompson and Parker, 2009]. As the name

suggests, these fragments are produced by cleavage at the anticodon loop. The

cleavage is caused by stress-activated nucleases: RNY1 in Saccharomyces cere-

visiae (yeast), part of the RNAse T2 family, and angiogenin in mammals, part of

the RNAse A family. tRNA halves have been shown to inhibit translation activity

in eukaryotes [Zhang et al., 2009]. The function of tsRNAs is more unclear, but

there is evidence to suggest that they compete with other sRNAs for Argonaute

proteins [Haussecker et al., 2010].

Y RNAs

Y RNAs are ncRNAs that that vary in length between 84 and 113nt with a sec-

ondary structure similar to that of a precursor miRNA [Nicolas et al., 2012]. Al-

though their sequence conservation is very low, the Y RNA’s secondary structure

is conserved across different genes [Chen and Wolin, 2004]. Y RNAs are tran-

scribed from their respective genes by RNA polymerase III and go on to form

the Ro-Ribonucleoprotein (roRNP) complex with two proteins: La and Ro60.

Functionally, Y RNAs have been shown to promote chromsomal DNA replication

[Christov et al., 2006]. However this function is independent from forming the

roRNP complex. Little is known about the function of the Ro-RNP complex it-

self, however, much like that of tRNA halves, the RNA component of the complex

is specifically cleaved into small RNAs that are between 22-36nt in length when

the cell is under stress [Rutjes et al., 1999]. Although this pathway appears to be

highly similar to miRNA biogenesis, it has since been shown that Y5 RNAs at

least are not dependent on Dicer and are not involved with the canonical RNAi
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pathway [Nicolas et al., 2012].

2.5 Discussion

We have provided an overview of sRNA biology and a brief understanding of the

variety of classes and functions that exist for silencing gene expression using other

short RNA molecules. Such diversity of sRNAs, and the variation within classes

across organisms, is a challenge for bioinformatic analysis of the sRNA content

of genomes. Many methods and tools have been proposed and used for sRNA

discovery and functional annotation of genomes. These are described in detail in

the next chapter.
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Chapter 3

Preprocessing and analysis

sRNA-seq data

3.1 Summary

There are a large variety of ways to process and analyse sRNA data. However,

the majority of these methods share similarities along one common pipeline. First

raw FASTQ files are processed by removing adapter sequences, filtering reads that

are unsuitable for analysis, and converting the clean set of reads to a more useful

non-redundant format. Secondly, a variety of quality checks may be performed on

the data to assess its fitness for further analysis, whether certain samples should

be removed, or even if any samples are of appropriate quality. Based on these

quality checks, normalisation techniques can be applied to the sequence counts in

order to make the expression estimates comparable across samples. The sequences

are then annotated using various external sources or prediction programs. Lastly

a differential expression analysis may be performed to understand the various

changes within the transcriptome that was sequenced across samples.

What follows is a detailed description of the characteristics of sRNA sequenc-

ing, the type of sequencing data that we are specifically interested in, and a review

of the methods used at each stage in this generic pipeline. The review is restricted

to Illumina sequencing data, a platform that has proved extremely popular for

sRNA sequencing due to its ability to record sequences at a high resolution of

abundance (termed “sequencing depth”).
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3.2 sRNA data sources

Datasets for bioinformatic analysis on sRNAs can be derived using a number

of molecular biology techniques. These techniques aim to quantify a population

snapshot of sRNAs within an organism’s transcriptome. Widely used techniques

include microarray analysis and RNA sequencing (RNA-seq) [Mortazavi et al.,

2008]. Although microarray analysis was the preferred method of quantifying

RNA transcriptomes up to 2008, it suffers from technical limitations that prevent

it from accurately quantifying RNAs with lower expression estimates [Casneuf

et al., 2007], and has recently been eclipsed by the capabilities of RNA-seq using

high throughput sequencing (HTS) platforms.

Each HTS platform is most useful for specific applications, in part due to the

trade-offs between sequence coverage (the number of reads a sequencing run can

produce) and individual read length (table 3.1). sRNA analysis is specifically in-

terested in transcriptomic sequences that are no more than 30 to 40 nucleotides in

length. Due to the low read length requirements, Illumina sequencing is generally

desired because this will give the most coverage.

The depth of a sequencing run is extremely important [Tarazona et al., 2011],

and there is a balance to be struck between good coverage and restricting potential

sources for noise such as loci with low well-represented with higher depth.

Table 3.1: A summary of the capabilities of current high-throughput sequencing
technologies.

Platform Reads per run Read length
Pacific Biosciences 50,000 per cell Up to 15,000 bp
Ion Torrent sequencing 400 bp up to 90 million
454 1 Million 700 bp
Illumina G2 Up to 6 billion 50-300 bp

Downsides to HTS platforms include recently assessed inaccuracies in the

reported abundances of sequences, particularly for Illumina [Hafner et al., 2011;

Jayaprakash et al., 2011; Sorefan et al., 2012; Sun et al., 2011]. This is caused

by particular sequences forming highly stable structures with the adapters that

are ligated to the sequences during the sequencing process. The more stable

sequences are more likely to be sequenced and end up being over-represented in

relation to their actual expression in the transcriptome. Several modifications to

the sequencing preparations have been proposed to mitigate this bias, including

‘HD adapters’ [Sorefan et al., 2012] that contain a randomized subsequence that

alters the structure’s stability. Nevertheless there is a trade-off between efficiency
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Figure 3.1: An example of a northern blot used to validate and quantify a specific
mature miRNA transcript within four different treatments of the bumblebee B.
terrestris.

of computational methods and the reliability of such methods.

Because of this decreased reliability, validation of bioinformatic results by

other, usually low-throughput, means is neccessary. One such method is north-

ern blot analysis, which is frequently used to validate RNA-seq and microarray

experiments [Koscianska et al., 2011; Taniguchi et al., 2001]. The northern blot

technique involves separating purified RNA using electrophoresis and then hy-

bridizing it to the complementary strand of the sequence of interest on a mem-

brane. A blot indicates the abundance of the sequence of interest in the form

of dark bands on the membrane that vary in intensity, and the band’s position

indicates their length. An example blot is shown in figure 3.1. Due to their

comparitively lower throughput, northern blots are best suited as a method to

independently validate expression profiles of a handful of sequences found through

computational analysis [Koscianska et al., 2011].

3.2.1 Replicates and experiments

There are two types of replicates. Technical replicates are carried out to adjust for

differences in sequencing runs, whereas biological replicates adjust for differences

in biological samples. When sequencing using Illumina machines, the technical

replicates show a negligible difference and so are generally not needed [Marioni

et al., 2008].

Biological replicates, however, are important in sequencing experiments be-

cause they represent independent experiments using the same treatment or condi-

tions. This type of replicate can increase the statistical signficance of an analysis

[McCormick et al., 2011]. Many differential expression techniques now require

that there is more than one replicate and this requirement is becoming more

achievable as sequencing costs fall [McCormick et al., 2011].
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3.3 Preprocessing and quality checking of RNA

expression data

In this section we describe the main stages commonly used in sRNA-seq projects.

This starts with the initial input of FASTQ files provided by the sequencer and

ends with a summary of the annotation and differential expression of sRNAs

within the experiment.

3.3.1 Adapter removal

For Illumina data, sRNA sequences are usually presented for analysis in FASTQ

files with the 5’ adapter removed but with the trailing 3’ adapter still attached.

Finding and removing this adapter is crucial to processing an accurate sRNA

sequence that will map back to the reference genome. This is commonly done

by simply matching the first 6-8nt of the 3’ adapter, trimming the adapter away,

and returning the rest of the sequence for later processing. Sequences for which

no adapter can be found are often simply discarded, since there is not enough

information to discern the end of the sRNA sequence correctly.

If HD adapters are used (see section 3.2), the additional randomized nu-

cleotides can be removed by trimming the final set of sequences by 4 nucleotides

on either end.

3.3.2 Sequence filtering

After adapter removal, other undesirable characteristics of sequenced data can

be filtered out in order to find a clean enough set of reads to map to the genome.

Characteristics to filter on include:

• Base calling errors If any unknown bases (usually denoted as an ’N’

nucleotide) are found in the processed sequences, it is recommended that

the sequence is discarded to reduce ambiguity as long as sequencing depth

is sufficient [McCormick et al., 2011].

• Sequence length Since the majority of sequences of interest are around

19-25nt long, it is generally recommended that sequences less than 18nt

long should be discarded due to the higher chances of these mapping to

erroneous places on the reference sequence [McCormick et al., 2011]. A

maximum length threshold is often also imposed but this is dependent on

whether longer ncRNAs are of interest.
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3.3.3 Genome and annotation alignment

The preprocessed set of sequences are commonly annotated, first by aligning reads

to the reference genome, if any, and secondly by using other annotation databases

to further classify sequences as deriving from particular annotations.

There are many different alignment tools available, a review of which was con-

ducted by [Fonseca et al., 2012]. For sRNAseq data, commonly used alignment

tools include PatMaN [Prüfer et al., 2008], Bowtie [Langmead et al., 2009], and

MicroRazerS [Emde et al., 2010]. These tools generally work efficiently to align

reads but the speed and specificity can be affected by the addition of mismatches,

gaps, and repetitive alignments. Due to the sRNA’s small lengths, mismatches

and gaps are not usually used for alignment because further ambiguity can greatly

increase the chances of an incorrect alignment [McCormick et al., 2011]. Repeti-

tive alignments, however, can be computationally expensive to process. Bowtie,

however, allows the user to specify that only the first match of each read is re-

turned, preventing the additional run time cost of mapping any further reads.

This is useful for knowing if a read is genome-matching or not, but will obscure

potentially important alignments of the read elsewhere on the genome. PatMaN,

on the other hand, has no such parameter and may take a long time to map all

repetitive sequences if there are a lot of them. A further issue is how to deal

with repetitive sequences. Solutions range from discarding sequences that map

more than once or a certain predefined threshold to more sophisticated “prob-

ability mapping” techniques, where it is assumed that reads are more likely to

be derived from the loci that contain the most unique reads [McCormick et al.,

2011].

Aside from reference genomes, a number of other sequences corresponding to

annotations such as genes and ncRNAs may be used to assign reads to particular

annotations. This is done either by aligning the reads to a further set of sequences

or by finding overlapping alignments between reads and annotations aligned to

a common reference, which can be accomplished using a tool such as BEDtools

[Quinlan and Hall, 2010] or a suite of packages for Bioconductor: IRanges, Ge-

nomicRanges, and GenomicFeatures [Lawrence et al., 2013]. Annotating reads at

this stage can aid in the quality assessment of the mapped libraries.

3.3.4 Quality measures and tools for RNA-seq data

Although RNA-seq is a very quick and convenient method of analysing RNA

expression levels, it can often be prone to biases and errors that make a quality-
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checking step an essential part of any analysis once the initial data has been

retrieved from the sequencing machine. Quality of RNA-seq data can be affected

by many different processes during both the preparation of samples in the lab

and actual sequencing.

For very small multicellular organisms such as insects, extraction of enough

RNA to use for RNA-seq is difficult due to contamination of surrounding organs,

and the need to pool samples from multiple organisms together. This introduces

various biases caused by contamination and variation of RNA expression across

individuals, which can cause incomparable samples in the worst case [Amaral

et al., 2014]. Systematic biases, such as ligation biases [Hansen et al., 2010;

Sorefan et al., 2012], can also artificially affect the depth and resolution of gene

expressions across an experiment.

Many standalone tools exist for assessing the initial quality of RNA-seq datasets.

FASTQ files derived from the output of Illumina sequencers contain a line that

encodes Phred quality scores [Ewing and Green, 1998]. The quality scores indi-

cate the confidence of the nucleotide found in the same position of the sequence

and can be read and used by assessment tools such as FASTQC [Andrews, 2010].

After preprocessing the dataset for low-quality base calls, errors, and other

nucleotide-level biases, the sequence-level expression of datasets can be compared

between libraries. Examining the correlation of abundances between libraries is

often an effective way of examining the consistency of samples. Amaral et al.

[2014] effectively used this method to reveal samples that were heavily effected

by biases in Drosophila RNA-seq libraries.

3.4 Methods of normalisation

The goal of normalisation is to minimize the variability in sequence abundances

between samples that arises from technical accuracy of the sequencing method

and other noise in the data. The simplest type of variation is a systematic scaling

of all counts with respect to another sequencing run.

Many methods and types of normalisation exist for all types of data from

microarray to RNA-seq. There is no one method that suits all situations, and each

method tends to have its own advantages and disadvantages. These methods can

be conveniently split up into several categories that describe how they work. The

following is a brief description of some of the most commonly used normalisation

methods used and reviewed for RNA-seq datasets.
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3.4.1 Scaling methods

Scaling normalisation adjusts the counts of all sequences by a global factor for

each sample. Its main assumption is that sRNA expression is proportional to

total library size, and the main differences that need to be normalised is the

scaling of each sample distribution [Smyth et al., 2003].

Total count

A simple form of scaling by library size is to divide each sequence count by the

sum of all counts in the library. We can find the normalised value of an expression

value xgk of sequence g in library k (and where G is the total number of sequences

in the experiment) by calculating [Robinson and Oshlack, 2010]

N(xgk) =
xgk∑G
g=1 xgk

× C. (3.1)

Here, the normalised value is multiplied by a constant C, which is an upscaling

constant relative to the magnitude of sRNA data to prevent the counts from

being very small fractions. Generally, this can be set to the mean of all library

sizes.

This makes sense under the assumption that libraries are often sequenced at

varying depths, causing all reads to be sequenced more by a set factor compared

to another library. However, in practice, other biases between libraries, especially

the biological differences, cause the relationship between two library distributions

to be non-linear.

One particular issue arises when a group of reads are only highly expressed

in some of the samples being normalised. If there are a large number of novel

sequences present in one sample, scaling by a statistic based on the total count will

result in under-represented sequences in the sample with extra reads [Robinson

and Oshlack, 2010]. This is often the case when comparing across samples from

an experiment in which Dicer or Argonaute has been knocked-out, where a whole

group of sRNAs may not be expressed in the knock-out sample.

When used in mRNA-seq data, this method may also include a factor to weight

the counts by gene length to account for biases in the number of sequences that

longer genes can acquire [Mortazavi et al., 2008]. For sRNA-seq data, single

reads are generally not aggregated into much longer genes and so this additional

weighting is not needed.
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Percentile count

Due to the nature of RNA-seq datasets, using the total count for each library

as a linear normalisation factor tends to reflect the expression of just a few high

count genes. In their analysis of mRNA data, Bullard et al. [2010] noted that

5% of genes made up 50% of the total counts. This effectively scales the libraries

towards the differences of these highly abundant sequences between samples.

One strategy to prevent such a bias is to use sum of counts that are at or

under a percentile of the count distribution in one library. By normalising by

total counts up to the median quartile, the assumption is that the scaling factor

will capture the population of gene counts that should be a more steady state.

In practice, the median is generally found to be very low due to the nature of the

distribution and the upper quartile is used instead [Bullard et al., 2010].

Trimmed mean of means

Trimmed mean of means (TMM) is a scaling normalisation method by Robinson

and Oshlack [2010] that aims to improve on total count normalisation by applying

a correction factor to library sizes used to normalise the samples. The method

requires a reference sample to be chosen. Then, a correction factor is obtained

from the weighted mean of the log ratios between sequence abundances in each

observed sample and the reference sample after excluding differentially expressed

genes. The filtering step ensures that the factors obtained are based on the core

set of genes that are not differentially expressed and so should be generally equal

between the two samples.

Robinson and Oshlack [2010] recommend to use scaling factors found by TMM

as factors within the statistical tests for differential expression rather than mod-

ifying the original count data. This has the advantage of preserving the original

nature of the data as counts, which certain statistical tests such as Fischer’s exact,

binomial, Poisson and χ2 tests rely on [Zhou et al., 2013].

An extension to this type of normalisation is TMM-baySeq-TMM (TbT)

[Kadota et al., 2012]. This uses TMM in a 3-step process where an empirical

Bayesian method, baySeq [Hardcastle and Kelly, 2010], is also used to deter-

mine differentially expressed genes after an initial normalisation. Differentially

expressed genes are then removed before a final normalisation to make sure that

only non-differentially expressed genes are being normalised.

TMM is implemented in the edgeR package [Robinson et al., 2010] by using

the function calcNormFactors().
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DESeq normalisation

DESeq is a method used to find differentially expressed sequences that focusses on

the assumption that the majority of the population of genes are not differentially

expressed [Anders and Huber, 2010]. The method uses size factors Fj for each

library j to adjust its counts so that they are comparable. The size factors

are obtained by finding the the ratio between each gene count in a library and

the same gene in a pseudoreference sample, which in turn is found by taking the

geometric mean across samples for each gene. The size factor for a library, termed

Fk here for K number of libraries, is then the median of the resulting ratios:

Fk = median(
xgk

(
∏K

v=1 sv)
1/K

). (3.2)

If most genes are not differentially expressed, this statistic should be iden-

tifying a median from a series of fold changes that are mostly not differentially

expressed, leaving a normalised fold change that represents the amount of scaling

needed for each library.

DESeq normalisation is available in the R packages DESeq [Anders and Huber,

2010] and DESeq2 [Love et al., 2014] by using the function estimateSizeFactors().

Spike-in sequences

Spike-in normalisation relies on the accuracy of spiking samples at the wet lab

stage with a synthesized RNA that does not normally appear in the evaluated

RNA samples. When added to each sample at the same concentration, the abun-

dance of each sequence in the resulting RNA-seq data can be assessed and used as

a scaling factor for the rest of the libraries. The assumption is that all other RNA

quantities are scaled in the same way that the synthetic RNA is. The efficacy of

such a method was assessed in Fahlgren et al. [2009]. A significant disadvantage,

however, is the need to plan, prepare and add the spike-in sequences during the

biological preparation of the samples.

3.4.2 Quantile normalisation

Quantile normalisation is a method used in microarray data to make the distri-

butions of the probe intensities the same across samples [Irizarry et al., 2003].

It assumes that the overall distributions of gene probe intensities remains the

same across samples and that differentially expressed genes are simply found at

a different rank in compared samples, displacing the expression of other genes.
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To normalise by quantile normalisation, sequences in each library are sepa-

rately ordered from the most abundant to the least abundant. Then, each se-

quence in each library is assigned a summary - usually the mean - of the counts

of all sequences at the same rank in all compared libraries.

The method has been adopted for RNA-seq data. [Bullard et al., 2010] used

a variant of quantile normalisation in their assessment of normalisation proce-

dures for mRNA-seq data. In this variant, normalised counts for each sorted row

are calculated from the median rather than the mean, and the final counts are

rounded to integer values to preserve the nature of the count data.

Because quantile normalisation was originally developed for probe intensity

data, it can cause some unwanted effects on count data. Firstly, a gene may

end up with a normalised expression value in a sample where it was never found

originally. Secondly, ties are much more likely to occur in count data and must

be dealt with correctly so that sequences that were found at the same rank in a

sample do not end up with varying expression levels after normalisation.

3.4.3 Evaluation of normalisations on sRNA-seq data

Although there have been a large number of review papers detailing differences

in known normalisation techniques for RNA-seq datasets, only a handful of these

have focussed on normalisation strategies for sRNA-seq datasets specifically [Dil-

lies et al., 2013; Garmire and Subramaniam, 2012; McCormick et al., 2011]. It

is always important to evaluate the results of normalisation methods during the

analysis of specific datasets, and these reviews indicate potential ways to do this.

Garmire and Subramaniam [2012] used mean square error (MSE) and Kolmogorov-

Smirnov (K-S) statistics as data-driven measures to assess differences between 7

normalisation methods, including TMM, quantile, and scaling. They noted that

both these statistics measured differences in the distribution of abundances be-

tween samples, and as such would generally favour quantile normalisation, which

also aims to equalise the abundance distributions. To this end, they included

correlations against QPCR runs as a different dimension of measurement. They

found quantile normalisation to be superior to the other methods for small num-

bers of unique sRNAs. TMM behaved “abnormally”, although this was criticised

by Zhou et al. [2013] as being attributable to an issue with implementing the

method.

A second area of criticism was targeted at the application of K-S and MSE

statistics between different conditions. This gives no consideration to true dif-

ferential expression between samples, which would adversely affect the statistics
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[Zhou et al., 2013]. A more suitable metric is the coefficient of variation between

replicates, which is used in Dillies et al. [2013] on miRNA-seq datasets to assess 7

normalisations including total count, upper quartile, median, DESeq, and quan-

tile. They found that TMM and DESeq performed equally the best, with little

or no difference between their use on mRNA-seq data or miRNA-seq data. Con-

versely, Quantile normalisation was found to particularly increase intra-replicate

variance in miRNA-seq data, which should be avoided.

Other metrics for evaluating normalisation methods include comparisons of

the normalisation outcome to a different type of expression data, such as qRT-

PCR or QPCR used in Anders and Huber [2010]; Bullard et al. [2010]; Garmire

and Subramaniam [2012]; Sun and Zhu [2012]; and Rapaport et al. [2013]. The

largest barrier to using this method is that it requires a second, usually costly,

experiment to be carried out and analysed on the same samples using different

equipment. This may be fine when the goal is solely to evaluate general properties

of normalisation methods on RNA-seq datasets, but is not feasible to evaluate

normalisation results during specific experiments.

Importantly, all reviews cited here attempt to assess normalisation methods

on either miRNA-seq data or mRNA-seq data, but there are no known analyses

of how these methods perform on a total sRNA-seq dataset. If these methods

perform differently between miRNA-seq data and mRNA-seq data, where the

number of unique sequences differ somewhat, then they are likely to differ again

when using sRNA-seq datasets (see Chapter 4). In addition, Bullard et al. [2010]

note that the biggest difference between the methods they tested was the ability to

handle low counts and zero-count data; a property that sRNA-seq datasets have

much more of due to its increased sequenced diversity and sparsity of counts.

Simulated datasets were used in Kadota et al. [2012]; Reeb and Steibel [2013];

Robinson and Oshlack [2010]; and Dillies et al. [2013]. This method of evaluating

normalisations provides a way of identifying the sensitivity and specificity of each

method without the need for further biological intervention. However, the nature

of simulated data means that they are likely to only show that a normalisation

can work under ideal circumstances.

3.5 Methods for assessing differential expression

The past half of the decade has seen a sharp increase in the number of different

tools and packages that can be used to fully analyse an Illumina RNA-seq dataset

from beginning to end. Many of these packages maintain a heavy focus on RNA-



CHAPTER 3 25

seq data, assuming that sRNA-seq data is then a simplified special case. This

section aims to review some of these tools in terms of their ability to analyse

specifically sRNA-seq datasets, taking care to highlight their differences.

The use of the R statistical package [Ihaka and Gentleman, 1996] with Biocon-

ductor [Gentleman et al., 2004] remains a popular choice for analysing RNA-seq

data. The packages available to use include EdgeR [Robinson and Smyth, 2007],

and DESeq/DESeq2 [Anders and Huber, 2010; Love et al., 2014]. Both of these

packages start by modelling the distribution of count data as a negative binomial

distribution with a mean µ to variance v relationship of v = µ + αµ2. α, in this

instance, is a dispersion factor that can be used to model the overdispersion that

RNA-seq datasets contain [Rapaport et al., 2013]. The way this is done differs

between edgeR and DESeq, but both tools effectively seek to share information

on the dispersion of the data between genes to account for the likely low numbers

of replicate samples. edgeR first estimates a common dispersion for genes that

is related to the mean of replicate counts. It then employs an empirical Bayes

strategy that squeezes per-gene dispersions towards these common dispersions.

DESeq, on the other hand, uses the direct relationship between the variance and

the mean given above, but computed along with a library size factor found by

DESeq’s normalisation method (see section 3.4). Both tools then use these dis-

persions in an exact test to find significantly differentially expressed genes. The

general effect is that the noise found at low abundances tends to push the disper-

sion estimates up in genes with lower counts, resulting in a smaller proportion of

genes being called differentially expressed at low abundances. DEseq2 seeks to

further improve on the ranking of differentially expressed genes by fold changes.

It does so by first finding a dispersion estimate for each gene using a maximum

liklihood estimation (MLE) approach on the gene’s replicate abundances [Love

et al., 2014]. GLM regression is then used to fit a curve that regresses the es-

timators on to the normalised abundances. The curve provides new dispersion

estimates that are dependent on the average count, and the per-gene estimates

are then shrunk towards these fitted values using an empirical Bayes approach.

Because the dispersion estimates now depend on the average abundance, disper-

sions for low count genes are likely to be higher, which will reduce the resulting

fold changes. However, Seyednasrollah et al. [2015] found that these changes ap-

peared to increase the number of incorrect differentially expressed gene calls (false

positives) along with the number of total genes found significantly differentially

expressed, rather than further controlling for them. In addition, it remains to be

seen how well any of these tools work on full sRNA-seq datasets.
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3.6 Computational tools and methods for dis-

covering sRNAs

The use of high-throughput sequencing approaches has aided the increase in the

number of sRNAs and the quantity of sRNA data available for analysis. In

reaction to these discoveries, the number and quality of methods and tools ded-

icated to identifying sRNAs and their functions has also increased. This section

is dedicated to a summary of the approaches used to identify sRNAs from high-

throughput sequencing data and a more in-depth comparison of tools that are

important to this project.

3.6.1 A summary of approaches for sRNA discovery

Computational identification of sRNAs generally relies on a set of characteristics

that sRNAs exhibit within RNA-seq datasets. What follows is a summary of

characteristics that are commonly analysed in order to pick out the most inter-

esting loci from a sRNA-seq dataset. Many of these characteristics are inherited

from characteristics that all RNAs exhibit within datasets and can be used to

annotate many other types of RNAs, both coding and non-coding, as well.

Size class distributions. Because classes of sRNAs are generally of specific

lengths, highly expressed sRNAs will contribute their size to the overall size class

distribution of a dataset. Simply viewing the overall distribution of a dataset can

give an estimate of the type of sRNA populations that are expressed within it,

and this is often the first type of analysis that is carried out. In addition to this,

size class distributions for localised regions of a genome can be a good indicator

of sRNAs that have a lower expression.

Mapping characteristics. sRNAs typically produce “stacked” or “blocky”

patterns when mapped to a genome, which distinguish themselves from longer

RNA degradation [Cole et al., 2009; Langenberger et al., 2010] (figure 3.2). The

patterns of the blocks will vary in length and proximity depending on the type

of sRNA that produces them. For example, miRNAs have a characteristic dual

block pattern of two 21-23nt blocks where one block (the mature sequence) is

typically more expressed than the other block and tasiRNAs will produce phased

blocks that are adjacent to each other.

Read Count Complexity is related to the mapping patterns, where the

complexity of read counts is the non-redundant count divided by the redundant

count for a population of sRNAs [Xu et al., 2014]. A read population that is rich

in sRNAs usually has a lower complexity when compared to a population that is
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Figure 3.2: A schematic visualising mapping patterns of sequenced reads that are
characteristic of mRNA degradation products, an example of noise, (left) and a
hypothetical sRNA loci (right).

rich in degradation products.

Differential expression of reads between multiple samples provide a strong

indicator that sRNAs exist that are expressed under certain conditions. The

analysis of datasets produced under differing biological conditions is a robust

method of identifying specialised sRNAs and their functions. This is discussed in

much greater detail in the previous section, 3.3.

sRNAs such as miRNAs are produced from genomic loci that can fold into

tight localised secondary structures once transcribed. The use of secondary

structure prediction tools such as RNAfold [Hofacker, 2003] and Mfold [Zuker,

2003] can provide additional evidence for sRNA loci. Sequences are folded using

a dynamic programming algorithm [Eddy, 2004] that efficiently computes the

energy required to base pair combinations of nucleotides in the sequence. The

candidate structure is the structure with the minimum free energy (MfE) out of

all possible combinations. This is the secondary structure of the sequence that is

most stable within the cell. Because these programs only consider the sequence

as determining the structure, the influence of external factors on the secondary

structure can not be ruled out, and often the most likely structure is one with

a suboptimal free energy [Gardner and Giegerich, 2004]. miRNAs are identified

this way in particular since their precursor hairpins are distinctive from other

RNA secondary structures across organisms [Loong and Mishra, 2007]. However,

the precision can be improved by the use of multiple alignments, using the idea

that bases that pair together are more likely to be conserved [Washietl et al.,

2005]. Lastly, significance of the MfE of a particular secondary structure can be

computed by determining its Z-score when comparing it to the MfE of random

sequences of the same length that conserve the di-nucleotide frequency of the
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original [Clote et al., 2005].

Sequence homology. Identifying known sRNAs within sRNA libraries is

commonly accomplished by matching the short reads with sRNAs that have al-

ready been identified in the target, or related, organisms that are stored in a

public database such as miRBase [Griffiths-Jones et al., 2006].

Source transcript. A sRNAs precursor transcript can be derived from a

multitude of other coding and non-coding RNAs, as described previously. Suc-

cessfully identifying the precursor can help to categorise the sRNA.

Sequence Motifs. A number of classes of RNAs show a clear bias towards

particular subsequences. For example, miRNAs tend to have an affinity for a U

nucleotide at the 5’ end of their sequences, and piRNAs tend to have both a U at

their 5’ end and the complimentary nucleotide at the 10th position [Malone and

Hannon, 2009]. Sequence motifs are commonly visualised using graphics such as

sequence logos [Schneider and Stephens, 1990]. The frequency of a nucleotide at

each position in a set of alignments is represented by the height of a nucleotide’s

letter, where the total height of the stack of nucleotides at each position usually

indicates the information entropy of that position. Tall nucleotides can indicate

a consensus at that position. An alternative to this plot can be found in Berry

et al. [2006]. Instead of information content, the y axis represents the log relative

frequency of a nucleotide with respect to the background frequency, for which the

background GC content is adjustable. In chapter 6 these graphs are referred to

as “Berry Logos”.

Table 3.2: A summary of tools developed to identify and characterise sRNAs
from sRNA transcriptome data

Tool Description References
RNAz Prediction of ncRNA sec-

ondary structures
Washietl et al. [2005]

miRCat miRNA prediction Moxon et al. [2008]; Stocks et al. [2012]
miRDeep miRNA prediction Friedlnder et al. [2012]
MIReNA miRNA prediction Mathelier and Carbone [2010]
MapMi miRNA homolog identifi-

cation
Guerra-Assuno and Enright [2010]

BlockBuster ncRNA loci detection Langenberger et al. [2009]
DeepBlockAlign Pattern similarity of

ncRNA loci
Langenberger et al. [2012]

NiBLS sRNA loci identification MacLean et al. [2010]
SiLoCo sRNA loci identification Moxon et al. [2008]
CoLIde sRNA loci identification Mohorianu [2012]
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3.6.2 Methods for the identification of sRNA-producing

loci

As HTS technologies have improved to allow more sensitive and deeper coverage of

transcriptome data-sets, our understanding of the pathways of RNA regulations

has broadened. Functional sRNAs can be found deriving from many different

areas of the genome, including other RNA transcripts [Tuck and Tollervey, 2011].

These sRNAs can be identified by the patterns that the sequenced data makes

when mapped to the genome - the sRNAs are usually of a specific length and

spliced from precursor transcripts at the same sites. To assist in the identification

of novel sRNAs, tools have been developed that do not require any other prior

knowledge of the characteristics of particular sRNAs. These “general” ncRNA

discovery tools allow researchers to hone in on loci of interest and focus on highly

expressed sequences that may have new functions.

The clustering of sRNAs can be applied on two levels: clustering of individual

reads into sRNAs, and the clustering of sRNAs into sRNA loci.

Local clustering

A defining characteristic of sRNA reads is their specific length and position when

compared to varying lengths and positions of degradation. This is an artefact

of the specific processing that sRNAs undergo during their biogenesis. Simple

metrics, such as the ratio between the number of reads mapped to a loci and the

length of the loci used by Cole et al. [2009], indicate that processing patterns

can differ significantly between types of ncRNA. However, sRNA loci often con-

tain a large amount of alternative reads that show a different processing pattern

but with lower expressions. The sum of these expressions are often important in

determining the overall expression of a particular sRNA loci and it may be mis-

leading to use, for example, the abundance level of the most expressed read. It

is therefore advantageous to group highly overlapping reads as derived from one

particular sRNA. This problem is non-trivial, but several tools exist, described

in later sections, that alleviate the issue.

sRNA loci generation

The second level of clustering is premised by the observation that sRNAs are usu-

ally found in clusters of similarly functioning sRNAs on the genome. An example

of this is the mature and star arms of a miRNA, where both arms may contain

sRNAs that are expressed at high levels. Clustering reads on this level can help
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reveal sRNA hotspots on the genome that require further examination. However,

clustering loci inherits the issue of when to stop clustering. Overclustering can

cause the loci to become too fragmented, whereas the opposite approach can lead

to clusters that are too large and meaningless to the analysis.

The following sections summarise tools that attempt to identify sRNAs and

other ncRNAs by identification of ncRNA loci.

SiLoco

SiLoco [Moxon et al., 2008] defines sRNA loci by grouping reads that are closer

than a maximum allowed gap when aligned to the genome. Statistics, such as

the normalised abundance of these loci, weighted by the individual read’s repet-

itiveness, are then calculated and presented in a table.

Blockbuster - identification of ncRNA blocks

Blockbuster [Langenberger et al., 2009] groups a set of mapped genomic reads

into first blocks and then clusters of blocks based on the amount of similarity in

their mapped loci. Reads are modelled as Gaussian densities using their start and

stop positions and a standard deviation that is weighted by a tunable parameter.

ncRNA loci are composed of reads that are not separated by more than 39nt. An

iterative greedy algorithm is then used to group blocks starting with the location

of the highest density peak in a locus. The block’s expression is then the sum of

the grouped Gaussian peaks, allowing the expression of a particular locale on the

genome to be composed of the individual read expressions.

The blocks are converted to smoothed curves with areas that equal the num-

ber of reads in the block. The height of the peak is then a value affected by both

the expression level of the reads in the block and its “coherence”. Higher peaks

therefore represent highly expressed reads that have more specific processing pat-

terns, allowing them to be computationally categorised apart from degradation

blocks.

In addition to simplifying loci identification, Langenberger et al. [2010] use

BlockBuster to attempt to classify ncRNA based on the block patterns that

their sRNAs leave on the genome. BlockBuster’s output is used to quantify

characteristics such as the number of blocks in a sRNA cluster, the length of

a block, the block overlap, and the block height in order to train a random

forest model with some success. The idea shows that there is a great deal of

difference between the expression patterns of ncRNAs such as miRNAs, tRNAs,

and snoRNAs.
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NiBLS

NiBLS [MacLean et al., 2010] groups reads into sRNA loci by finding reads

grouped by close proximity that together give a threshold clustering coefficient.

The set of reads is first modelled as vertices on a graph G where edges connect

two reads if they are on the same chromosome and the difference between the

start of one and the end of another is less than a parameter M . A loci is then

created if the clustering coefficient γ is larger than a second parameter C. This

effectively models how ‘spread out’ a group of reads are. Stacked reads indicative

of sRNAs will produce a higher clustering coefficient than less overlapping reads

which are more indicative of degradation products.

CoLide

CoLide [Mohorianu et al., 2013] defines its sRNA loci based on the similarity in

variation in the differential expression and sizes of neighbouring reads. The algo-

rithm defines each sRNA as being upregulated, downregulated or not regulated

using an offset fold change analysis on confidence intervals created over replicate

expression levels. Reads are then merged into a loci if they are close enough to

each other and their expression patterns are the same.

3.6.3 miRNA identification tools

miRNAs have been a prime candidate for the use of automatic identification

tools because they can be relatively well defined in terms of their structure and

expression pattern on the genome. This is in contrast to other sRNAs, such as

piRNAs, that do not fold and can be harder to pick out above the noise. This

section compares and describes tools that take different approaches to identifying

miRNAs.

MapMi [Guerra-Assuno and Enright, 2010] focuses on validating the conser-

vation of known miRNAs in novel genomes. It achieves this by aligning mature

miRNA sequences to the supplied genome and then re-assessing the secondary

structure of potential precursors by extending and folding the resulting align-

ments and assigning a score based on the alignment quality and precursor struc-

ture. Results are then filtered by a predefined score threshold and output back

to the user.

Both miRCat [Stocks et al., 2012] and miRDeep2 [Friedlnder et al., 2012]

attempt to predict new miRNAs using the genome mapping patterns and abun-

dance levels of sRNA-seq data. miRCat first clusters sRNA reads using a prox-
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imity based on a maximum gap proximity method. Clusters that pass a set of

characteristics, such as minimum number of reads and non-overlapping reads, are

folded with flanking regions and base pairing is assessed against a set of base-

pairing rules. The minimum free energy of the structure is also calculated and

checked against a randomly shuffled version of the sequence to obtain a p-value.

Clusters that pass all rules are written to file as potential miRNAs.

miRDeep2 attempts to compare a set of aligned reads to the model of Dicer

processing. Generally speaking, this model defines a miRNA as distinct “read

stacks” in close proximity that can indicate the presence of the abundant mature

sequence, the less abundant star sequence, and a left-over loop region that can

be viewed as background degradation on the precursor transcript. In this way,

the aim is similar to how algorithms such as BlockBuster attempt to identify

ncRNAs. miRDeep2 selects miRNA loci by searching for highly abundant 20-

24nt reads. Potential precursors are selected using these reads as guides. A

Bayesian algorithm is used to score the final list of possible miRNAs indicating

how likely they are to be a true miRNA based on prior known miRNAs. Prior

probabilities are estimated from animal data, making miRDeep best suited for

datasets within this lineage.

An important part of miRNA prediction programs is their application to a

wide range of organisms. This is made particularly difficult by the stark differ-

ences of miRNAs found in animals versus plants. As a result, prediction tools

are often developed with the characteristics of miRNAs from one lineage to start

with. To extend the use of miRCat to animal lineages, a second set of parameters

were estimated based on the characteristics of animal miRNAs. In the case of

miRDeep, Yang and Li [2011] extended the miRDeep algorithm in a new tool,

miRDeep-P, which altered some parameters, for example the size of the excised

potential precursors, and also re-estimated prior probabilities for the scoring al-

gorithm. miRCat has sets of alternative default parameters for both animal and

plant organisms 3.3. This shows the amount of dependency that these methods

have on previously identified miRNAs, and identification of miRNAs within unre-

lated species is still a challenge when there are no miRNAs to calibrate the tools

with.

3.7 Conclusions

We have presented and discussed the main methods for analysing sRNA-seq

datasets for each stage of an analysis. Such methods have been adapted from
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Table 3.3: A comparison of miRCat parameters for plant and animal data. The
main differences are in the size of the hairpin, where plant hairpins are known to
be significantly longer on average.

Parameter Plant Animal Description
extend 100 40 nucleotides either side of

mature to make fold
min hairpin len 60 55 minimum length of final

hairpin
max unpaired 50 60 maximum percentage un-

paired nucleotides in hair-
pin

min paired 17 17 minimum number of paired
bases of mature

max gaps 3 3 maximum number of con-
secutive unpaired bases in
mature

max genome hits 16 10 maximum number of hits
that a read can have to be
considered

min hits 2 2
min length 20 21 minimum length of mature

miRNA
max length 23 23 maximum length of mature

miRNA
max overlap percentage 80 80

those used on the related mRNA-seq datasets. However, it is clear that sRNA-

seq data contains its own unique chatacteristics and properties, such as distinct

size classes and and a sparser count matrix, that should not be overlooked when

adapting these methods, especially when assessing the data’s quality and nor-

malising for systematic biases. In the next chapter, we extend the methods

used in each stage of a standard differential expression pipeline (preprocessing,

quality checking, normalisation, and differential expression) to further take into

account these unique properties. In doing so, we create a sRNA-specific process-

ing pipeline, with an emphasis on quality checking and correct normalisation, to

be used in subsequent chapters.
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Chapter 4

An interactive pipeline for the

analysis of high-throughput small

RNA sequence data

This chapter is adapted from Beckers M, Mohorianu I, Stocks M, Applegate A,

Dalmay T, Moulton V, “An interactive pipeline for quality checking, normalisa-

tion, and differential expression analysis of high-throughput small RNA sequence

data”, in preparation.

4.1 Summary

There currently exists a myriad of tools and software pipelines available to pro-

cess, analyse and test the differential expression of RNA-seq datasets. However,

few of these are properly tailored towards sRNA-seq datasets. In addition, the

increase in sequencing depth and decrease in cost per sequencing run has pro-

duced larger datasets that are more memory intensive to run, usually requiring

specialist hardware such as dedicated servers.

In this chapter, we present a processing pipeline that includes steps for quality

checking, normalisation, and differential expression that are all correctly tailored

towards the analysis of sRNA-seq datasets. The pipeline was developed over the

course of completing several sRNA-seq differential expression experiments, the

results of which are presented in later chapters. As such, this chapter serves as a

detailed explanation of methods that will be used later on in this thesis.

We also describe an implementation of this pipeline, as part of the software

package “The UEA sRNA Workbench”, that was designed to utilise hard drive re-

sources more than RAM resources so that it can be used to process large datasets
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on non-specialist personal computing devices.

4.2 Background

The sequencing of sRNA technologies such as Illumina follows a similar protocol

to that of mRNA-seq (see chapter 3). Numerous tools have been developed to

handle large mRNA-seq datasets, many of which can also be used for sRNA-seq

data, especially at the preprocessing step. These tools are commonly presented

as a pipeline of subsequent operations on the data. First, sequenced reads are

presented in FASTQ-formatted files. The 3’ adapters are trimmed by match-

ing the first 7-8nt of the adapter sequence using tools such as FASTX [Gordon

and Hannon, 2010], or cutadapt [Martin, 2011]. The trimmed reads are then

mapped to a reference genome and corresponding annotations using one of a va-

riety of mapping tools [Fonseca et al., 2012]. The mapped sequences are subject

to normalisation of their abundances across the samples and, finally, differen-

tially expressed reads are identified using one of several differential expression

approaches [Rapaport et al., 2013; Seyednasrollah et al., 2015].

An extremely important aspect to all steps of a differential expression pipeline

is assessing the quality of the processed data in order to maintain the accuracy

and efficacy of downstream bioinformatics analyses [Watson, 2014]. However, at

many stages of the pipeline, the quality assessments are often overlooked, leading

to potentially misleading results. For RNA-seq data, quality checking tends to

focus on two aspects: (1) the quality and composition of sequences from the raw

FASTQ files and (2) the quality of the comparison between libraries based on the

processed sequence abundances.

Bioinformatics methods developed for differential expression analysis of RNA-

seq data have thus far largely focused on analysing mRNA datasets. However, the

difference in the way in which mRNA-seq and sRNA-seq datasets are processed

after alignment causes a difference in the properties of the resulting datasets. For

sequence data output by Illumina machines, the final expression values of mR-

NAs are found by summing together all reads that map to a particular mRNA

because these are much longer than the resulting reads produced by the sequenc-

ing machines [Mortazavi et al., 2008]. sRNAs, however, are shorter than the reads

produced, which are simply tabulated in to unique reads with an associated abun-

dance in order to represent each sRNA. As a result, sRNA datasets contain many

more unique entries than mRNA datasets but the mean and median of the ex-

pression levels are within the range of the dataset’s noise (figure 4.1 (a)) and the
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resulting count matrix is more sparse. The differing properties of the two types

of data can have repercussions when attempting to use established mRNA-seq

methods on sRNA-seq data, especially when attempting to fit a standard distri-

bution. For sRNA-seq data, quality checks should also additionally focus on the

specific characteristics of sRNAs, but these are often overlooked. For example, in

a review of sRNA sequencing experiments [McCormick et al., 2011], the quality

control discussion was limited to handling the quality of base calls and assessing

size distribution graphs.

Differences in the two datasets can be mitigated by extracting only the known

sRNAs of interest - usually miRNAs - out of a sRNA-seq dataset. We have termed

this type of dataset as “miRNA-seq” and it is commonly done where the interest

is solely on the abundance of known miRNAs (see Camps et al. [2014] for an

example of such an analysis). This reduces the diversity of the data points and

brings the count distribution more in line with mRNA-seq data (figure 4.1 (a)

and (b)). However, this limits the analysis to a single class of known sRNAs. A

more informative analysis can be done on the entirety of the transcriptome and

may also incorporate further prediction tools to identify new types of sRNAs.

A further issue that becomes more apparent in sRNA-seq data is the signifi-

cance of low abundance fold changes when assessing the differential expression of

sequences. In RNA-seq data, low transcript abundance appears to be correlated

with a lack of preference to aligning to genes rather than intergenic regions Ram-

skld et al. [2009], suggesting a detectable background level of noise. In sRNA-seq

data, this background level is likely where the vast majority of transcripts are ex-

pressed, resulting in the vast majority of large fold changes found at the level of

background abundance. Differential expression tools such as DESeq2 [Love et al.,

2014] and edgeR [Robinson et al., 2010] deal with this issue by estimating the rel-

ative dispersion of sequences and incorporating this into later statistical tests for

differential expression significance. An alternative more stringent solution is to

apply an offset directly to fold change estimations that directly downweights fold

changes from abdundance levels that are near the level of the offset [Mohorianu

et al., 2011].

In addition to the technical aspects of differential expression analysis on sRNA

data, the logistics of tying together multiple tools into one analysis can make

processing RNA-seq data more complicated. A common solution is therefore to

group tools into a software pipeline to allow the end user to more easily run a

complete analysis. After the setup is complete, the likely lengthy procedure can

be executed and left to run without the need for much further input from the
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Figure 4.1: The statistical differences between preprocessed mRNA-seq, miRNA-
seq, and sRNA-seq datasets. (a) Parallel coordinates for several statistical sum-
maries of datasets from the same experiment (b) Rarefaction curves indicating
the number of unique sequences found when the data is resampled to certain
depths.
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user. Currently there are several mRNA-seq tools available that can be configured

to handle to some extent the various stages of a sRNA differential expression

pipeline (see table 4.1). However, none of these cover the entire analysis of a

sRNA dataset.

In this chapter, we present a processing pipeline specifically for the analysis

of sRNA-seq datasets. The pipeline includes novel approaches to quality check-

ing, normalisation, and differential expression analysis for use on a set of complete

transcriptome samples derived from a sRNA-seq dataset. Rather than annotating

and extracting just the known miRNAs and other sRNAs to analyse, processing

the complete dataset has the advantage of identifying further novel differentially

expressed sRNAs when combined with current sRNA sequence prediction pro-

grams.
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Table 4.1: A summary of current RNA-seq and sRNA-seq packages and tools available. Most columns indicate whether a certain
feature is available (Y) or not (N).
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Normalisation DE Reference

DEseq R package RNA-seq N N N - - - - N N Y DEseq2 Y Love et al. [2014]
EdgeR R package RNA-seq N N N - - - - N N Y multiple Y Robinson et al. [2010]
baySeq R package RNA-seq N N N - - - - N N N quantile Y Hardcastle and Kelly [2010]
RSEQtools Software mRNA-seq N N N - - - - N Y N RPKM Y Habegger et al. [2011]
DARIO Web ncRNA-seq N N N - - - - Y Y N - N Fasold et al. [2011]
Cyber-T Web RNA-seq N N N - - - - N N N VSN Y Kayala and Baldi [2012]
ncPRO-Seq Software sRNA-seq Y Y N - - - - Y Y N - N Chen et al. [2012]
shortran Software sRNA-seq N N Y Y Y N N Y Y Y total count Y Gupta et al. [2012]
RobiNA Software RNA-seq Y Y Y Y N N N N N Y RPKM multiple Lohse et al. [2012]
omiRas Web miRNA-seq Y N Y Y Y N N Y Y N DESeq DESeq Mller et al. [2013]
Kraken Software RNA-seq Y Y Y Y N Y N Y Y Y - N Davis et al. [2013]
TCC R package RNA-seq N N N - - - - N Y N DEGES/TbT multiple Sun et al. [2013]
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4.3 Datasets

This section summarises the datasets used to illustrate our methods.

RNA-seq data from Vidal et al. [2013] is used to examine the differences be-

tween mRNA-seq and sRNA-seq data in plants. The data is from the organism

Arabidopsis thaliana and consists of two conditions each with two replicates for

both poly-A enriched mRNA and isolated sRNA fractions. The data was origi-

nally used to identify nitrate-responsive miRNAs and genes.

We used several datasets to demonstrate the uses of our pipeline. These were

selected from the GEO database [Barrett et al., 2013] based on the criteria that

only data with at least two replicates are used and the replicates are checked to

ensure they were of a high enough quality to be used in a differential expression

analysis in order to properly demonstrate the whole pipeline. We selected one

good quality dataset from each of the plant and animal kingdoms.

The first, termed the “H” dataset, is an experiment on the effects of hy-

poxic conditions (in which cells are deprived of oxygen) on human MCF7 cells

[Camps et al., 2014]. The experiment is split into a time series of four conditions:

Normoxia (N00), Hypoxia at 16 hours (H16), Hypoxia at 32 hours (H32), and

Hypoxia at 48 hours (H48). Each condition is replicated twice.

The second dataset, termed the “F” dataset, is an experiment in Arabidopsis

thaliana to investigate the ability of the plant to avoid inappropriate silencing

of its own coding genes by the silencing pathway used in defence of viral genes

[Zhang et al., 2015]. In these experiments, three different mutants were sequenced

that contained combinations of knocked out genes: rdr6-11 (rdr); ein5-1, ski2-3

(es); ein5-1, ski2-3, rdr6-11 (esr). A wild type (col0 ) was also sequenced. Each

treatment was repeated three times, each with two technical replicates.

4.4 Methods and Results

In this section we describe the stages of the analysis pipeline, outlined in the

schematic shown in figure 4.2, together with results found using our demonstra-

tion data. We also provide a comparison of the resulting differential expression

analysis to two other differential expression tools.

4.4.1 Quality checking

The main quality check (QC) steps are undertaken after the reads have been

tabulated, mapped to a reference genome, and annotated with other annotation
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Figure 4.2: Schematic of the sRNA analysis pipeline.
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sources. The quality checks assess the overall library similarities as well as devi-

ations between sizes of sRNAs in individual libraries.

Total library statistics

First, we assess the total library size (redundant count) and the number of unique

sequences (non-redundant count) for each library. These values should be similar

across libraries. The percentage of both redundant and non-redundant counts

that mapped out of the total counts can indicate whether large numbers of se-

quences or highly abundant sequences were missed from the alignment. This can

be due to contamination from other species or an incomplete reference sequence.

An additional informative statistic is the count complexity of libraries and size

classes. This is derived by dividing the non-redundant count by the redundant

count. Complexity values that are close to 1 indicate a highly diverse set of

low abundant sequences whereas lower complexity values are caused by a more

homogeneous set of highly abundant sequences.

Quantitative assessment of the similarity between any two libraries is compli-

cated by the dominance of low abundance sequences that appear in all libraries.

Instead, we assess the similarity of libraries by considering the overlap between

sets of the most abundant sequences because it is at the higher levels of abun-

dance that discrepancies in sequence rankings are most important. The overlap

is calculated using the Jaccard index, where for two sets of sequences X and Y

we compute:

JXY =
X
⋂
Y

X
⋃
Y

(4.1)

This returns an index between 0 (no shared sequences) and 1 (all sequences

are shared by both libraries). The Jaccard index is usually computed for all com-

binations of libraries and presented as a symmetrical matrix of indices. We expect

to find that comparisons between replicates have a much higher Jaccard index

than comparisons between samples from different conditions. However, all in-

dices should be suitably high to maintain proper comparability between samples.

The selection of a threshold for the number of ranked sequences to be compared

can affect the resolution between library comparisons. This is illustrated by a

Jaccard series for the H data shown in figure 4.3. However, most choices that

only compare a small proportion of the dataset can produce an informative set

of statistics.
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Figure 4.3: For all combinations of libraries in the H dataset, a series of Jaccard
indices was calculated for varying magnitudes of sequence sets. These are plotted
from the smallest to the largest sets with colour indicating the type of comparison:
“replicate” is a comparison between two sample replicates of the same condition
and “condition” is a comparison between samples in two different conditions.
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Size class distributions

Importantly for sRNA datasets, we also check the redundant, non-redundant,

mapping percentage, and count complexity statistics for each sequence size class

to identify important characteristics of each size class, or those that contain po-

tential issues. We assess these statistics as a series of size class distribution plots

shown in figure 4.4. The H dataset contains a peak in the redundant count dis-

tribution at 22-23nt where the count complexity is also very low. This indicates

the presence of a few highly abundant sRNAs at these lengths. In contrast, the

size class distribution of the F dataset indicates high numbers of unique 25nt

sRNAs. If other annotations are used, this may also indicate the type of feature

that certain discrepancies arise from. The differences between the H and F size

class distributions are typical of the differences between the sRNA populations

of plant and animal organisms [Mohorianu et al., 2012].

The size class distributions also reveal potential issues with both datasets,

where the distribution of certain samples or conditions deviate from the rest at

particular size classes. In the H data, one replicate of the H32 condition contains

more unique reads than the other samples for sizes lower than 22nt, and there is

a markedly higher complexity for an H16 replicate across the lower and higher

range of size classes. In the F data, the mapped proportions reveal that much of

the size classes for 22nt and 23nt could not be aligned to the reference genome.

The es mutant is likely infected with viral siRNAs, which can be typical of plant

sRNA-seq libraries. However, this type of contamination is unlikely to affect

further analysis because these reads are not considered during normalisation of

mapped expression levels and do not seem to impact the count of the mapped

size classes in es.

Replication comparability

The replication quality is checked by comparing replicates of each condition using

MA plots, log scatter plots, Jaccard indices, and log fold change distributions by

size classes.

MA plots and scatter plots are good visual indicators of the similarity of counts

across the spectrum of abundance levels. Whilst it is easy to see strong correla-

tions and deviations using the scatter plot, the MA plot directly displays log fold

changes (M values) between replicates against their log average abundances (A

values). This is important to ensure that the log fold changes of replicates are

generally as close to 0 as possible.

The MA plots in figure 4.5 (a) show that the most dispersed fold changes are
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Figure 4.4: Size class distribution for all statistics produced for both demonstra-
tion datasets during the initial quality check stage. The type of statistic for each
distribution is indicated by its y axis label.
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those found between the replicates of H16. This appears to be a problem with

the first replicate of H16, which results in lower jaccard indices against all other

libraries (figure 4.6 (a)). In comparison to the H dataset, the MA plots between

replicates of the F dataset show a very narrow distribution of M values (figure

4.5 (b)). These indicate good quality, comparable replicates, which is confirmed

by the Jaccard index that rarely dips below 0.9 similarity (figure 4.6 (b)).

To assess the deviations between replicates of individual size classes, log fold

changes are assessed for each size class using boxplots (figure 4.7). Both the range

of the distributions and the deviations of fold changes from being symmetrically

distributed around 0 can suggest issues that may affect further analysis. An al-

ternative statistic is to assess within-group variance by calculating the coefficient

of variance over all replicates for a condition [Dillies et al., 2013]. In the case of

two replicates, the coefficient of variance is less informative than the fold change.

Since sample sizes remain quite small for RNAseq studies, we opted to primarily

use fold changes. However, the coefficient of variance would be a more efficient

comparison with increasing number of replicates because it prevents combinato-

rial issues.

Replicate fold changes in the H dataset reveal a consistent deviating distri-

bution of fold changes for the largest two size classes in all conditions except the

control (N00) (figure 4.7 (a)). In comparison, the fold change distributions for

replicate combinations of the F data have a tendency to deviate from 0 by the

same amount. The latter discrepancy is less problematic and usually corrected

by normalisation.

Post-quality filter

The QC stage has two main purposes. Firstly, it allows us to understand the

broad nature of our datasets. For example, the various size class distributions

revealed the main size classes in both datasets (22-23nt in H and 24nt in F).

Secondly, we are able to act on the identified causes of low quality within the

data, usually by excluding outlying replicates, whole samples, size classes, and

individual reads. In the worst case, this may show that the data is not viable for

further analysis and certain samples should be re-created or re-sequenced.

The MA plots and Jaccard index for the H data showed that the H16 condition

was composed of replicates with poor comparability. Since there are only two

replicates per treatment, the H16 treatment was removed from further analysis.

The F dataset also shows fold change distribution deviations between replicates,

but these are similar for all size classes and can probably be compensated for by
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Figure 4.5: MA plots comparing combinations of replicates for both demonstra-
tion datasets.

Figure 4.6: Jaccard index matrices for all library pairs of demonstration datasets.
For the H data, 10,000 sequences were used for the index calculation. The F data
calculation used 1,000 sequences.
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using a scaling normalisation method.

The fold change distributions of size classes between replicates indicated high

levels of deviation for the two longest size classes. Because we were less interested

in these size classes (26nt and 27nt), we were able to remove these particular

reads from further analysis to allow more accurate normalisation and differential

expression analysis on the remaining size classes.

4.4.2 Normalisation

After the sRNA libraries have been assessed for quality, the expression levels are

normalised across all libraries before differential expression between treatments

can be calculated. Because there appears to be no single normalisation method

that works best for all sRNA datasets [Dillies et al., 2013; Garmire and Subra-

maniam, 2012; Zhou et al., 2013], we incorporated several existing methods into

our pipeline implementation and introduced a post-normalisation quality check

step to select a normalisation method with the best outcome. The normalisation

methods we used were Total Count (TC), Upper Quartile (UQ), Trimmed Mean

of Means (TMM), DESeq, and Quantile normalisation modified for count data.

These normalisations are reviewed in Chapter 3.

We also conducted a sampling based normalisation called Bootstrap normal-

isation. This is an adapted version of the Li and Tibshirani method [Li et al.,

2012], where sampling with replacement is proposed. When two technical repli-

cates are sequenced to different depths, the replicate with the larger library size

may be normalised to the lower size by scaling all abundances down by the correct

factor. However, figure 4.8 shows that it can not be assumed that all abundances

require the same scaling factor, even between technical replicates sequenced at

different depths. To alleviate this issue, the larger replicate may be resampled

down towards the lower replicate using sampling-without-replacement on redun-

dant sequences. This is implemented in our pipeline as a fifth normalisation

method.

4.4.3 Post-normalisation quality check

Normalisations are evaluated for effectiveness in reducing unwanted variation in

two ways: assessment of variation in count distribution over all samples, and the

ability to minimize offset differences between the replicates for each size class.

Count distributions are shown as a boxplot of log abundances for each sam-

ple. Figures 4.9 (a) and 4.10 (a) show these count distributions for all available
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Figure 4.7: An example of log fold change assessment between replicates split by
size classes.
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Figure 4.8: Demonstration of scaling between two technical replicates that have
been sequenced under differing multiplexed conditions. M3 has been multiplexed
with three other samples and M12 has been multiplexed with 12 other samples,
leaving a four-fold difference between the two replicates. The y axis indicates the
scaling factor required for each read to make the counts equal.

normalisations using the H dataset and F dataset respectively. Because the dis-

tribution of log abundances in sRNA-seq data are skewed heavily towards 0 (see

figure 4.1 (a)), boxplots that depict the full distribution are indiscernible from

one another. Instead, we visualise the abundance distributions of a subset of the

most expressed sequences. These are found by summing the abundances of each

sequence across all samples and taking the top N sequences, where N can be al-

tered to view a variety of different abundance distribution windows. The graphic

indicates the closeness of the distributions over all samples and will generally

favour quantile normalisation.

To assess the differences between replicates, we calculate fold change distri-

butions by size class between replicate pairs. Appropriate normalisations must

minimize the interquartile range of all distributions whilst centering each distri-

bution on the zero line. The assumption is that replicates should contain the

minimal amount of variation between abundance levels and any normalisation

that can lower this variation should be better than a normalisation that increases

this variation.

Figure 4.9 (b) shows, for each size class, the comparability of abundances

between replicates from H32 using fold-changes. These fold-changes should be

minimised and centered on zero. Whilst the TMM, DESeq, and quantile methods
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all appear to help centre the distributions of all size classes, the total count,

bootstrap, and upper quartile methods do not improve on the distributions found

by using the raw counts. This suggests that using TMM, DESeq, or quantile as the

chosen normalisation for this analysis would be the best decision. However, this

result is not the same for comparing normalisations on other datasets. The results

of applying each normalisation method on the F dataset show that fold change

distributions between replicates 2 and 3 of sample esr are correctly centered by all

normalisations except TMM and DESeq, which appear to overcorrect their scaling

by a larger difference than there was originally from the fold change distributions

(figure 4.10 (b)). In this instance, quantile normalisation could be chosen because

it also adjusts the abundance distributions to be equal. Dillies et al. [2013] found

that quantile normalisation led to a significant increase in intra-group variation,

but this is not seen in the assessment of quantile normalisation adapted for RNA-

seq data when used on either datasets used here.

4.4.4 Calculating the differential expression of sRNA reads

In the following sections, we describe our method of calculating the log fold

changes of sequences in such a way that they may be ranked without the in-

troduction of uninteresting noisy candidates by low count sequences. We have

termed this the Log Offset Fold Change method (LOFC).

The method first employs the conservative use of confidence intervals (CI)

built on the distribution of a sequence’s replicated abundance levels. For each

sequence in each condition a CI was calculated using either Chebyshev’s intervals

[Singh et al., 2006] or the minimum and maximum abundance levels if only two

replicates are used. For a selected comparison between a reference and observed

condition, we then calculate both a direction of regulation and a magnitude as

described below.

For each sequence, a directional descriptor from the set {up (U), down (D),

straight (S)} is chosen in a similar way to the method applied in Lopez-Gomollon

et al. [2012]. S is used if the CIs overlap, otherwise U indicates that the observed

CI is higher than the reference, and D indicates the opposite result.

The magnitude of a sequence between conditions is considered on proximate

extrema of the reference and observed CIs. This is calculated using the log offset

fold change on the extrema of confidence intervals, selected depending on the

direction of differential expression. For a confidence interval CI belonging to a

read i which has an upper limit CImax and lower limit CImin, and comparing two
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Figure 4.9: Graphics to aid the post-normalisation quality check step for the H
dataset. (a) Abundance distribution of the top 20,000 abundance levels found
by ranking sequences by their total abundance across libraries. (b) log2 fold
change distributions for each size class between the two replicates of condition
H32. Any fold change calculated from abundance levels below 20 were excluded.
The normalisations listed a;along the x axis are unormalised (raw), total count
(tc), bootstrap (btsp), trimmed mean of means (tmm), modified quantile nor-
malisations (qnorm2), and DEseq normalisation (deseq).
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Figure 4.10: Graphics to aid the post-normalisation quality check step for the F
dataset. (a) Abundance distribution of the top 20,000 abundance levels found
by ranking sequences by their total abundance across libraries. (b) log2 fold
change distributions for each size class for condition esr replicate 2 vs replicate 3.
Any fold change calculated from abundance levels below 20 were excluded. The
normalisations listed a;along the x axis are unormalised (raw), total count (tc),
bootstrap (btsp), trimmed mean of means (tmm), modified quantile normalisa-
tions (qnorm2), and DEseq normalisation (deseq).
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conditions j to j′, the LOFC is computed using the formula

LOFCi,j→j′

log
(

CImax,j′+o

CImin,j+o

)
, if U

log
(

CImin,j′+o

CImax,j+o

)
, if D,

(4.2)

where O is a set value termed the offset. The offset approach, initially described

in Mohorianu et al. [2011], helps reduce the number of false positives from low

abundance sequences and allow fold change values to be directly used when as-

sessing the relative significance of differentially expressed sequences.

To determine an appropriate offset for a dataset, we estimate the abundance

level where the majority of noise-related reads lie. We define strand bias as

SB = |0.5− p|+ |0.5− n| (4.3)

where p and n are the number of unique positive strand and negative strand reads

respectively in a window. We found that low abundance loci tend to have a high

strand bias and loci within the noise to signal range have no preferred strand bias.

Based on this observation, we assigned sRNAs to windows of a set length along

the reference genome and the total abundance and strand bias was calculated for

each window. For all abundance levels A, the distribution of N strand biases was

compared to a random uniform distribution using the Kullback-Leibler divergence

[Mohorianu et al., 2011]

KLA =
N∑
i=1

log2 (Pi)

(
log2 (Pi)

log2 (Q)

)
, (4.4)

where Pi is the proportion of strand biases that took the value i and Q is the

uniform distribution 1/N .

We define the signal to noise threshold (the offset) as the value for which the

global minimum of KL divergences is reached. Abundance levels lower than this

threshold tend to have a higher divergence from a uniform strand bias due to a low

number of incident reads, and abundance levels that are higher than the threshold

have an increasing divergence measure due to biologically relevant reads. The

minimum is found after calculating smoothed values from the distribution using

Loess smoothing [Cleveland and Devlin, 1988]. This is done to prevent local

minimums from biasing the more general trend across differing abundance levels

(see figure 4.11 (a)).

We assessed the dependence of this offset on the number of strand bias bins,
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Figure 4.11: Derivation of the offset for a sample using the Kullback-Leibler (KL)
divergence. (a) The result of calculating the KL divergence measure on strand
bias bins for each level of abundance given on the x-axis. The length of window
used was 4,000nt. The grey line indicates unsmoothed KL divergence values
and the blue line is divergence values smoothed by Loess (span=0.3). The offset
abundance level is identified by the minimum of smoothed divergence values as 42.
(b) and (c) The results of calculating the offset in this way for varying window
lengths. The grey line is the offset found at the minimum of the unsmoothed
divergence curve and the blue line is the offset found at the minimum of the
smoothed divergence curve. (b) is run on the N00 1 of the H dataset and (c) is
on wt1 of the F dataset.



CHAPTER 4 56

alignment window length, and the type of organism the data is sequenced from.

In the H dataset, representing animal data, the number of strand bias bins heavily

affected the resulting offset up to 100 bins, at which point no further difference

can be seen on the KL curve (data not shown). The offset was also affected by

alignment window length and can vary erratically when using the raw measures.

The smoothed values, however, return a more consistent offset across differing

window lengths. For the H dataset, the curve is generally less well defined at

window lengths under 2,500nt, which returns an offset biased towards the lower

end of abundance levels. However, longer windows than 2,500nt produce a stable

offset when using the smoothed curve values (figure 4.11 (b) and A.1). In our

plant dataset (F dataset), the smoothed minimum was similarly variable below

a length of 2,500nt, but was able to stabilise thereafter for most of the samples.

The rdr samples, however, contained a brief notable increase in the offset between

around 1,250nt and 3,750nt (figures A.2, A.3). We therefore selected a window

length of 4,000nt for deriving a suitable offset.

4.4.5 Comparison of the LOFC method to other tools

To assess the usefulness of our pipeline for identifying important differentially

expressed sequences, we compared our method with two highly cited methods for

differential expression: DESeq2 [Love et al., 2014] and edgeR [Robinson et al.,

2010]. Both methods assume the data fits a standard binomial model and add

dispersion estimators to account for deviations from this model. The LOFC

method, however, does not assume the data fits any particular model, but only

that fold changes are more important with increasing log-average abundance.

Additionally, we more stringently filter for the requirement that the confidence

distribution of replicate counts for a sequence is suitably different between the

two samples to warrant calculation of differential expression.

Both DESeq2 and edgeR use adjustable P -values to indicate a threshold of

significant differential expression, which is normally set at P = 0.05. Additionally,

these tools also allow the user to set a log2 fold change (LFC) threshold as part of

the significance test, allowing sequences to be chosen that are significantly greater

than a set fold change. We set a LFC of 1 for the significance tests in DESeq2

and edgeR, and use a LOFC of 1 for extracting selected differentially expressed

sequences from our LOFC method. An LFC of 1 was selected based on empirical

evidence that a sequence with a log2 fold change of 1 can be detectable on a

northern blot or via qPCR [Morey et al., 2006].

We compared the three different differential expression approaches in several
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different ways. To understand the differences between the significance cutoffs

in each approach, we plotted the LOFC of sequences grouped by the tools in

which they were found to be significant and analysed the overlaps of the resulting

sets of significant calls. Figure 4.12 shows this comparison for the H dataset.

Any sequences that were marked as Straight were not included in the plot, and

none of these sequences were found to be significantly differentially expressed by

the other two methods. However, a further 13 sequences in N00 vs H32 and 18

sequences in H32 vs H48 were above an absolute LOFC of 1 but were not called

significant by DESeq2 or edgeR. Many of these sequences showed a high LFC

under both tools but did not pass the tests for significance, despite several of the

confidence intervals showing an appreciative proximate distance from each other

(figure 4.13). A second important difference is demonstrated by the numerous

sequences that are called significant by one or both tools whilst having an absolute

LOFC of below 1. These sequences tend to have non-overlapping confidence

intervals but their low average abundance means that they may pollute the fold

change ranking with high but ultimately inconsequential fold changes. Both

edgeR and DESeq2 rank their significant sequences by LFC values found using

the mean of all replicates. A comparison of these values against the LOFC values

is shown by figure 4.14. Low abundance values that have otherwise high LFC

values are pushed towards 0 LOFC by using offsets. Whilst many of the affected

values are sequences found differentially expressed by edgeR (shown in blue in

the figure), DESeq2 appears to be able to better reject the low abundance LFC

values that also have a low LOFC. However, this appears to be at the expense of

missing some sequences that are just above 1 LOFC at an increased log average

abundance. edgeR, on the other hand, is more comparable with LOFC at higher

log average abundances but is far more sensitive at lower log average abundances.

4.4.6 Software

We now describe our implementation of the pipeline detailed in the previous

sections.

Workflows

The pipeline is built into the UEA small RNA Workbench package [Stocks et al.,

2012] but in contrast to the original multi document style of the workbench, it

is presented to the user as a workflow diagram linking each distinct part of the

pipeline together (See Figure 4.15). The workflow diagram consists of multiple
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Figure 4.12: (left) MA plot of LOFC values against the average log abundance
with sequences found significantly expressed by other tools highlight as described
in the legend. (right) A Venn diagram depicting the amount of overlap between
sequences called significantly differentially expressed in edgeR, DESeq2, and se-
quences greater than an absolute LOFC of 1 in the LOFC method.
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Figure 4.13: Normalised abundance levels and confidence intervals of the five
most differentially expressed sequences under an LOFC analysis that are not
called significant by other tools.

Figure 4.14: LOFC values plotted against LFC values for both comparisons in
H dataset. Significance of LFC values are shown in colour depending on which
tool found them significant. The LFC values were taken from DESeq2 and were
calculated from average abundances over replicates.
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Figure 4.15: An example of the UI workflow diagram presented to the user in the
Workbench implementation of our pipeline

user configurable nodes that represent the various stages in the analysis and the

user can click on each part of the workflow to individually configure that area.

The workflow is designed to be easy to use by both biologists and bioinformati-

cians, foregoing the need for many separate programs that require interlinked

inputs/outputs.

Initially, the sequencing data can be processed from raw FASTQ formatted

files by using an updated version of the adapter removal tool previously described

in [Stocks et al., 2012]. The tool also provides the ability to process samples

produced using the HD protocol described in [Sorefan et al., 2012]. However, this

is currently not part of the differential expression pipeline and is instead currently

available in the workbench as a separate standalone tool.

The first stage in setting up a differential expression workflow using our

pipeline is to organise the data by creating a sample hierarchy that describes

the original wet lab experiment. This is visualised as a tree structure where leaf

nodes represent biological replicates and the parents of these nodes represent the

samples. An example of a sample hierarchy is given in Figure 4.16. Users build

the hierarchy by inputting their FASTA formatted samples into a setup wizard.

They can then provide a reference genome, also in FASTA format, and an op-

tional GFF file of annotations corresponding to the genome build that will be

used for the annotation stage.

The tool currently accepts one or more GFF files for further annotation of

genome-mapped sequences. The user is able to filter the features found in the

GFF file down to only those of interest. Reads are then annotated by searching

for overlaps between the features in the GFF file and the aligned sequence for

each reference sequence. By sorting both annotation alignment set and the read

alignment set, the search for overlaps between these two sets can be computed

efficiently by advancing to the next alignment in one set if we have exceeded
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Figure 4.16: An example of the hierarchical visualisation used to depict the user’s
experimental setup as the input to our pipeline.

the position of its end coordinate in the other set. Alignments are also cached

and re-checked only up to just before the start coordinate of the alignment being

checked against. This ensures that the minimum number of checks are made

between sets to find all possible overlaps.

The quality check stages are implemented as a report that pauses the workflow

analysis and presents to the user the graphs described in section 4.4.1. These are

implemented using D3.js; a data visualisation library for JavaScript [Bostock

et al., 2011]. The user is able to dynamically configure the annotation classes

and normalisation methods that are displayed for most of these graphs. Some

examples of quality checking graphs produced in these reports are shown in figure

4.17. After assessing the quality of the data, the user may make adjustments to

the set of samples, size classes, or select the normalisation method to be used

before continuing. Finally, prior to beginning the differential expression stage of

the analysis, the user can review the offset values and select the desired smoothing

value for the KL divergence curve.

Implementation

The quality check, normalisation, and differential expression steps are computa-

tionally intensive and pose significant demands on both processor and memory.

Our aim is to facilitate its use by users with access to a wide range of comput-
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Figure 4.17: Examples of some of the plots produced as output during the first
quality check step of the UEA sRNA Workbench: (a) Fold change boxplots be-
tween two replicates for raw data (b) abundance boxplots for raw data (c) a
Jaccard matrix heatmap of the top 1,000 sequences between all libraries (d)
MA plots comparing replicates in each condition (e) positional frequencies of
nucleotides split by size class. The graphs were produced using a subset of the
Hypoxia dataset.
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ing hardware including standard desktop equipment. Moreover, the UEA sRNA

Workbench has been designed using a virtual machine, Java, which comes with

the caveat of having a fixed amount of RAM that it can call upon during runtime

but allows multiple operating systems to be supported. To this end, an embed-

ded database model was employed to assist in organising the large amounts of

data structures required to conduct the analysis. We opted to use the H2 SQL

database [Mueller, 2006] because of its speed when initially importing large ta-

bles and sequential operations. The use of the database allows greater control to

be placed over the amount of memory that is required by the workbench during

the analysis. In addition, large portions of data can be stored on disk and read

into the pipeline using structured queries, then systematically handed back to the

disk. The change from the RAM-only standard model to one that also employs

disk can have negative effects on the runtime for any computational procedure.

However, it also means that a larger number of datasets can be processed on

lower specification hardware such as a desktop computer.

To address the increase in running time, certain strategies for caching and

loading of data are employed during a run. The amount of data that can be

cached for use in the analysis is finely tuned depending on how much RAM the

virtual machine has available at any one point in time. Theoretically, the more

RAM that is made available to the system, the faster the analysis will complete.

A server version is also available that uses no disk caching and utilizes RAM only

for maximum performance, which is similar to the way in which other RNA-seq

software packages are run.

4.5 Discussion

In this chapter, we have described an analysis pipeline for the annotation and

differential expression of sRNA-seq data that takes into account the unique char-

acteristics of sRNA-seq datasets. This was implemented into a user friendly

interactive workflow within the UEA sRNA Workbench.

4.5.1 Acting on thorough quality checks can improve down-

stream analysis

We propose to extend the usual quality checks made on RNA-seq data to further

take into account the discrepancies of individual size classes between replicates

and treatments. The information gained from the quality checks can be used



CHAPTER 4 64

to filter from further analysis any low quality or outlying replicates, reads, size

classes, or even whole conditions if this is not detrimental to the experiment’s

power. Interestingly, the removal of data has more of an effect on the outcome

of DESeq2 and edgeR tools than the LOFC method due to the calculation of

global dispersion estimates that incorporate the information from all libraries

when comparing any two conditions. For example, leaving the H16 condition from

the H dataset in the experiment has no effect on the two comparisons that LOFC

was calculated on, but will produce larger dispersion estimates and different alpha

values in the statistical tests run by DESeq2 and edgeR. It is therefore crucially

important that the appropriate quality checks are made and acted on before

providing data to these differential expression tools.

4.5.2 Normalisation quality checks are useful for selecting

the most appropriate method

Due to the wide variety of normalisation methods, and the lack of consensus

on a method that works for all sRNA data, we advocate testing several different

methods and using a variety of normalisation measures to identify a normalisation

that maintains a high degree of similarity for abundance distributions across all

libraries and a low degree of difference between replicates. The inconsistency of

normalisation results is demonstrated here by the ability of TMM and DESeq

to minimize differences between some replicates in the H dataset but can not

prevent deviations between replicate pairs in the esr treatment of the F dataset.

We also introduce a sampling normalisation method, Bootstrapping, intended

to reduce some of the linear scaling issues that total count introduces. In our

demonstration data, bootstrapping appears to perform no better than total count

data. Part of the difficulty in properly assessing the effects of normalisation lies

in the need to select demonstration datasets with enough replicates that are both

comparable enough yet have enough issues to resolve the differences between

normalisations when correctly measured. While these datasets are not able to

show the differences between total count and bootstrapping, others may reveal

some important differences. Additionally, if the quality or consistency of libraries

are too low, they may be unsalvageable by any normalisation, save for assessing

each annotation class individually. This is a scenario that is tackled in chapter 6

of this thesis.
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4.5.3 Offset fold change is a reasonable alternative to dis-

persion estimates

Whereas DESeq2 and edgeR utilise a dispersion estimator coupled with a variety

of tests for significance, we find that the use of an offset to downweight low-

abundance fold changes coupled with a test for overlapping confidence intervals

is enough to equate the effect of the dispersion estimators. The chief differences

appear to be that, depending on the offset chosen, low log average abundance

reads are likely to be more penalised in the LOFC method whilst reads with

a higher log average abundance are more likely to be higher up the rank of

differentially expressed reads.

To identify a suitable offset, we assessed the low end of the abundance dis-

tribution of sRNA loci for their divergence from a uniform strand bias. For

each library, the offset was chosen to be around the maximum abundance level

that favoured the most uniform strand bias. Although this produces an offset

that is non-arbitrary, it introduces further parameter considerations such as the

size of the loci and the span that is used to smoothen the resulting divergence

estimates. The span is easily tuned by the use of an interface and slider in our

resulting software. However, consideration of a suitable loci length is difficult due

to fluctuation in divergence minimums for small loci, which necessitates trying a

variety of loci lengths to identify those that are more stable. This is a computa-

tionally expensive operation, and further work is needed to understand exactly

why small changes in loci can produce large changes in the resulting divergence

minimum.

4.6 Conclusions

With the introduction of this sRNA processing pipeline, we hope to provide new

methods and approaches to ensure that sRNA datasets are properly assessed

for their quality and correct normalisation before differential expression analysis

takes place. By implementing this into a software package that is simple to use

and with low computer memory requirements, we also hope to make these new

methods for quality checking and detetecting differential expressed sequences as

convenient to use as possible wihout the need for a high performance computing

environment.
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Chapter 5

Identification of miRNAs

involved in caste differentiation

of bumblebees

This chapter is adapted from Collins DH, Beckers M, Mohorianu I, Moulton V,

Dalmay T, Bourke AFG, “A MicroRNA Associated With Caste Determination in

a Bumblebee is Expressed from a Mirtron Within a Homologue of Vitellogenin”,

in preparation.

The miRNAs identified in this chapter have been published as part of “The

Bumblebee Genome Consortium, The genomes of two key bumblebee species with

primitive eusocial organization, Genome Biology, 16:76, 2015”.

5.1 Summary

In this chapter, we focus on the use of sRNA-seq datasets for the identification

of novel and conserved miRNAs in a novel genome model. To this end, we

analyse an experiment on the regulation of miRNAs during caste differentiation

of the bumblebee Bombus terrestris, and use data mining strategies outlined in

the previous chapter to understand the miRNA population in this novel genome

model.

5.2 Background

Many animals have the ability to conform to one of several different phenotypes

throughout the stages of its life. This ability is termed “Phenotypic Plasticity”

[Pfennig et al., 2010; West-Eberhard, 1989], and is a highly interesting topic of
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study for genetics. Extreme cases of phenotypic plasticity occur in many eusocial

insects, where larvae develop into specific castes that contribute different skill

sets to the colony in an altruistic manner. In this case, the larvae are totipotent,

meaning they have the ability to develop into more than one phenotype, before

developing into a fixed phenotype where the cells are specialised to perform par-

ticular tasks. Such an event is termed Caste Differentiation. The evolutionary

causes of phenotypic plasticity in social insects are mostly understood [Bourke,

2011]. However, the mechanisms behind Caste Differentiation are less clear [Smith

et al., 2008].

Bombus terrestris is a species of eusocial bee in which the individuals of a

hive specialise to reproducers (the Queen caste) and non-reproducers (the worker

caste) [Goulson, 2003], which differ in both reproductive capability and morphol-

ogy. Just after hatching, the larvae are totipotent and able to develop into either

of the two castes, losing their totipotency through a series of endogenous changes.

This chain of events is thought to be triggered by a pheromone produced by the

Queen within 3-5 days of egg hatching [Cnaani et al., 2000]. To date, two studies

have identified a number of genes found differentially expressed between castes in

B. terrestris [Colgan et al., 2011; Pereboom et al., 2005]. These studies concluded

that the regulation of gene expression was highly important during development

of fixed castes and that these genes were not necessarily the same as those found

in A. melifera, the closely related eusocial honeybee. In addition, miRNAs have

a key role in the development of plastic traits in other insects, such as the devel-

opment of wings in pea aphids in response to the population size [Legeai et al.,

2010], however no such RNAi research has been conducted on the development

of castes in any species of bee to date.

The aim of this study is to use sRNA-seq data to first identify conserved and

novel miRNAs in an organism where no miRNAs have yet been identified. We

will use the recently assembled genome of B. terrestris together with miRNA in-

formation from related species and miRNA prediction tools to assess the presence

of miRNAs in the bumble bee. Secondly, we will assess the differential expression

of miRNAs and related ncRNAs from larval stage to adult stage bees develop-

ing into both the queen and worker castes. We will also compare larval and

adult stages for further differential expression, expecting the adult stage to have

increased differential expression due to their loss of totipotency.



CHAPTER 5 68

5.3 Methods

5.3.1 Biological methods

This experiment used 40 Bombus terrestris colonies after raising them for 28-93

days, depending on when the first males eclosed. Seven colonies were excluded

from the experiment due to either the loss of the queen or contamination of

worker bees. From the remaining 33 colonies, we retained the queen in 13 of

them to allow them to generate worker-destined larvae (queenright), and removed

the queen in 20 colonies to generate queen-destined larvae (queenless). In the

queenright colonies, we removed up to half of the 1st or 2nd instar larvae (1-3

days old) every 2-3 days until approximately 10-14 days after first worker eclosion.

In the queenless colonies, we removed up to half of the 1st or 2nd instar larvae

every 2-3 days for 6 days after the queen was removed. In both queenright and

queenless colonies, we allowed all unsampled larvae to develop to the 4th (final)

instar, which is beyond the point in larval development when caste fate has been

irreversibly determined. We then sampled approximately half of the 4th instar

larvae from both sets of colonies. All 1st and 2nd instar larvae where treated as

“early instar” and 4th instar larvae were called “late instar”.

The sampled larvae were used to determine the colonies that produced the

highest proportion of expected castes. Four colonies were selected for sampling

each instar and caste type, creating 16 samples of 4 conditions with 4 replicates

each. The conditions are Early Worker (EW), Late Worker (LW), Early Queen

(EQ), and Late Queen (LQ).

We used total RNA extracted from the queen- and worker-destined larvae to

construct 16 cDNA libraries. To make the cDNA libraries, we first enriched the

total RNA for small RNAs (sRNA) (i.e. enriching the fraction of total RNA

that was less than 200 bp in length) using a mirVana miRNA isolation kit (Am-

bion, Foster City, California, USA) according to the manufacturer’s instructions.

We then prepared the libraries using the TruSeq small RNA library preparation

kit v.1.5 (Epicentre Technologies, Madison, Wisconsin, USA) with HD modifi-

cations to the 3’ adapter to reduce sequencing bias [Sorefan et al., 2012]. To

ligate the adapters to the sRNA sequences, we followed the protocol provided

with the TruSeq 1.5 library preparation kit with some modifications. Following

preparation of the cDNA, we amplified each library with a unique index sequence

using Illumina index primers (1-16) before using PCR. We separated the PCR

products on an 8% polyacrylamide gel, to identify the 21-23mer miRNA band

on the gel, and cut out the gel section that contained it. Finally, we packed
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the 16 prepared cDNA libraries in dry ice and sent them for miRNA-seq on the

Illumina HiSeq2000 platform, which was conducted by BaseClear B.V, Leiden,

The Netherlands.

5.3.2 Bioinformatic analysis

Preprocessing

We removed 3’ adapters from sequences by matching the first 8 nucleotides of the

adapter sequence and trimming the 3’ end of each sequence from 4 nucleotides

upstream of the adapter start coordinate to take in to account the multiplexed

nucleotides of the HD adapter. Any sequence that did not contain an adapter

was excluded from the rest of the analysis.

We then filtered the trimmed sequences by keeping only those with read sizes

between 16nt and 30nt and that also contained at least 3 different nucleotides.

The filtered set of sequences were then mapped to the Bombus terrestris genome

Version 1.0 using PatMaN [Prüfer et al., 2008] with no mismatches or gaps.

We subjected the mapped sequences to several quality checks to ensure that

the libraries were comparable. Bootstrap normalisation (chapter 4) and quantile

normalisation (chapter 3) were both attempted on the data. We chose to keep

the Bootstrap normalised data because it minimized the coefficient of variation

between replicates whilst adequately also minimizing the difference between the

count distributions at the top end of abundances over all samples.

miRNA gene prediction

Because the B. terrestris genome was not yet released, miRNA annotations were

not available and had to be predicted for a novel genome. We used a combi-

nation of two different prediction programs, miRCat [Stocks et al., 2012] and

miRDeep2 [Friedlnder et al., 2012], as well as miRNA alignments from related

species and other animals to identify the broadest possible population of both new

and conserved miRNAs. We used MapMi [Guerra-Assuno and Enright, 2010] to

find potential miRNA precursor sites based on mature miRNA sequences from

miRBase that were conserved in other species of the Hexapoda sub-phylum.

miRCat and miRDeep2 were both executed on all available samples after they

had been mapped to the genome. miRDeep2 was run using default settings and

miRCat was run using the default animal parameters.

We used a custom script, supplied online at https://github.com/mattlbeck/

collins_et_al_MCDB, to first merge all runs for the two prediction tools into one

https://github.com/mattlbeck/collins_et_al_MCDB
https://github.com/mattlbeck/collins_et_al_MCDB
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set of miRNAs, each containing a set of “predictions” that could differ between

samples. Different miRNAs in this sense were defined by their exact location.

These miRNAs were assigned an “arm” (either 3’ or 5’) based on the side of the

precursor they were mostly on and were grouped into distinct miRNA precursor

entries. Precursors were then labelled as having been identified by a subset of

the three tools. miRNA names were based on their miRBase ID if MapMi had

predicted them, and were assigned a unique ID otherwise.

To allow the most number of reads derived from miRNAs to be annotated,

the reads were aligned to the resulting set of miRNA precursors.

Differential Expression

To calculate differential expression of normalised reads, we used the methods

outlined in chapter 4. Briefly, replicates for each sample were converted to confi-

dence intervals and the magnitude of differential expression for each read between

two treatments was found using the Log-offset fold change method based on the

proximity of confidence intervals. If the confidence intervals overlapped, the se-

quence was not regarded as differentially expressed and eventually filtered from

the final set of results. The offset used was found using the methods described

previously for each library and the median offset of all involved replicates was

used for each comparison. This allowed us to rank sequences without concern for

low-abundance reads disturbing the ranking.

To find important differentially expressed reads, we used a LOFC cut-off of

1, meaning that read counts needed to have either doubled or halved after ac-

counting for the effects of the offset. This left us with a manageable set of reads

to investigate further.

Summarisation of differentially expressed sRNAs

Our method of differential expression allows us to robustly rank and group indi-

vidual reads by their differential expression between different conditions. How-

ever, assessing differential expression of individual reads presents two problems.

Firstly, several reads may derive from the same location of the genome or are

simply slight nucleotide variants of one another. This can complicate the final

list of differentially expressed reads, since the same sRNA can have various levels

of differential expression. Secondly, validation by northern blot does not discrim-

inate single read variants because its intensity is based on the sum intensity of

all reads that match the probe.
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To mitigate both of these issues, we grouped differentially expressed reads

into single, merged sRNAs if they overlapped each other. A second round of

differential expression analysis was conducted on counts derived from the sum

of reads pertaining to each merged sRNA. We validated several differentially

expressed miRNAs using northern blots.

5.4 Results

5.4.1 Quality check results

The general characteristics of each library was assessed using mapping quality

scores and the distribution of various abundance statistics over the different size

classes. These are shown in figure 5.1. The size class distribution of redun-

dant counts reveals a peak at 22nt that corresponds to the presence of abundant

miRNA reads for most of the samples. However, some of the replicates for LW

and LQ conditions have a much lower 22nt peak in relation to the other size

classes, which may indicate a problem with these replicates or a true downregula-

tion of many miRNA sequences. The size class with the lowest count complexity

is 23nt, especially for the EW condition. This does not coincide with the 22nt

peak, which suggests there are also important, but less abundant, sRNA classes

at the 23nt size class.

Although the number of mapped sequences vary between 2,000,000 and 6,000,000

(figure 5.1 (a)), the proportions of sequences mapping to certain annotations re-

main similar.

We used the Jaccard index to assess the similarity of composition of the top

10,000 sequences between libraries (figure 5.3). This provides an indication of how

related or comparable one library is to another. The Jaccard index is described

further in chapter 4. Because replicates are generally more alike to one another

than libraries from different experiments, we expected the index between blocks

of replicates (along the diagonal in figure 5) to be closer to 1 than away from the

diagonal. This is the case for all treatments except LW samples, which appear

to have a lower similarity between its top sequences. The replicate LW3 had a

particularly poor similarity index for its top sequences compared to any other

library, which agrees with the MAplot comparisons of the LW replicates seen in

figure 5.2 (a).

The results of the quality check were used to remove samples and size classes

that showed poor comparability. We removed replicates LW4 and LQ1 as well

as reads with lengths above 27nt in order to help the assessment of accurate
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Figure 5.1: Characteristics of the sRNA-seq libraries. (a) Proportion of redun-
dant reads that mapped to the genome (unannotated) and to tRNA and miRNA
annotations. (b) Redundant counts and (c) count complexities of reads over size
classes. Complexity is defined as the number of non-redundant reads divided by
redundant reads. Both (b) and (c) only show replicates that were not removed
at the quality checking step.

differential expression for the other size classes, which importantly includes the

miRNA class.

5.4.2 miRNA identification

A total of 2,048 miRNA precursors were identified using a combination of the

three tools. Figure 5.4 (a) shows the distribution of predictions when shared

between the various tools. miRCat, using the default animal settings, predicted

numerous miRNAs that were not found by the other tools. MapMi also identi-

fied 429 miRNA precursors not found by the two prediction tools but conserved

in miRBase. However, the precursor lengths of these MapMi-only predictions

suggest that these are not identified by the other animal-specific tools because

their precursors far exceed the length assumed for an animal miRNA by both

prediction tools. The miRDeep only precursors are predominantly very small,

suggesting a tendency for miRDeep to find shorter precursors than are usually

found in both miRBase or identified by miRCat. The precursors that multiple

tools identify have precursors that are within the range of 60nt and 80nt.
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Figure 5.2: Replicate comparisons for the Late Worker treatment. (a) shows
alpha-blended MA plots that indicate a skewed log2 fold change distribution
between replicates 2 and 3 and a highly dispersed distribution between replicates
1 and 4. (b) separates the distribution in to individual size classes, revealing the
that the source of the issues are mostly from the largest size classes.
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Figure 5.3: A symmetrical table showing Jaccard similarity indices for all library
pairs between the top 500 sequences for each library. The similarity is measured
by the Jaccard index where an index of 100 indicates that the two libraries share
the same top sequences and an index of 0 indicates that none of the top sequences
are shared between libraries.
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Figure 5.4: A summary of miRNA predictions. a) indicates the number of pre-
dicted precursors that were found by miRCat, miRDeep or conserved from miR-
Base using MapMi and the number of predictions shared by the results of these
tools. b) shows the distribution of precursor sizes found by each tool or combi-
nations of the tools. The x axis indicates which tools a particular distribution is
for using the abbreviations MC (miRCat), MD (miRDeep), MM (MapMi), and
“All” indicating that all tools identified these precursors.

5.4.3 Differential expression

After calculating LOFC values for all reads, any reads that were expressed by

more than absolute 1 LOFC were summarised and evaluated to identify interest-

ing sRNAs. Throughout the remainder of these results we call sRNAs expressed

by more than absolute 1 LOFC as “differentially expressed”.

The use of four different treatment comparisons allowed us to categorise differ-

entially expressed reads based on their expression patterns over several variables.

We looked at the correlation of related comparisons using the LOFC of all reads

(figure 5.5 (a)). This showed a stronger correlation (Pearson coefficient of 0.56)

between EW/LW and EQ/LQ comparisons compared to the correlation between

EW/EQ and LW/LQ, which was not significant (Pearson coefficient of -0.05).

Part of the reason for this difference is the difference in the number and am-

plitude of differentially expressed reads when going from a Worker sample to a

Queen sample. However, several miRNAs are notably differentially expressed,

both upregulated and downregulated, between the castes in the Late develop-

mental stage.

A total of 47 miRNAs were differentially expressed in at least one compari-

son. 4 tRNA/rRNA reads and 11 other ncRNAs were also differentially expressed

above a threshold of absolute 1 LOFC. The remaining 258 sRNAs were unanno-
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tated. These reads corresponded to 26 upregulated sRNAs 42 downregulated

sRNAs, which included 9 distinct downregulated sRNAs and two distinct upreg-

ulated sRNAs.

5.4.4 Identification of differentially expressed miRNAs

Ten differentially expressed sRNAs corresponded to miRNA annotations. All sR-

NAs were differentially expressed in at least one of the development comparisons.

Five of these miRNAs were validated as being differentially expressed for these

comparisons.

Out of the ten differentially expressed miRNAs, two miRNAs were also differ-

entially expressed between Late Worker and Late Queen. These miRNAs corre-

sponded to both arms of the miR-6001 precursor (figure 5.6 (a)), and have little to

no abundance during Early stages but increase in abundance significantly more in

Late Queen than Late Worker. Validation by northern blot confirms this pattern

of differential expression (figure 5.6 (b)).

miR-6001 is a miRNA previously only identified in honeybees [Chen et al.,

2010]. The precursor sequence is found within the fourth intron of predicted

a predicted vitellogenin-6-like protein coding gene (protein accession number

XP003400264.1). which is also conserved between bumblebees and honeybees.

5.5 Discussion

Although the evolutionary causes of eusociality in insects is generally understood

[Bourke, 2011], the mechanisms used by larvae to develop towards specific roles

or castes within a colony have been found to vary significantly, even between

species of eusocial bee [Cardinal and Danforth, 2011]. In addition, the specific

regulatory pathways behind caste determination is unclear [Smith et al., 2008].

In this sRNA-seq analysis we assessed libraries taken from an experiment on

the regulation of miRNAs when larval and young adult Bumblebees undergo

caste differentiation. The main aim was to identify conserved and new miRNAs

that are involved in pathways for the development of these organisms into their

distinct castes. However, since the reference genome was new and in a draft stage

with very little annotation, a secondary aim was to identify as many miRNAs as

possible that were either conserved from related species or otherwise unique to

this organism. This was achieved through three different miRNA prediction tools.

The resulting sets of miRNAs found by these tools suggested a disparity between

the types of miRNAs found by each tool, especially when analysing the length
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Figure 5.5: Cross plots of offset fold change results. The plots show the amount
of LOFC between -1 and 1 in a 2D space created by plotting related comparisons
against each other. (a) shows results in the space of Early conditions compared
against Late conditions and (b) shows results in the space of Worker conditions
compared to Queen conditions. The LOFC values are based on proximity com-
parisons, and any overlapping confidence intervals were assigned an LOFC of 0
for the purposes of visualisation. Note that miRNAs (in red) are plotted on top
of all other annotation classes.
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Figure 5.6: Differential expression and validation of both arms of miR-6001 over
all four condition. (a) shows the total expression of reads associated with each
arm of the miRNA, including confidence intervals. The results of a northern
blot validating each arm are shown in (b). (c) is a presence plot of the miRNA
precursor, indicating the total number of reads that cover each nucleotide for each
condition.
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of the precursor sequences. Conserved miRNAs tended towards having a longer

precursor, and future work may involve tuning the parameter set of miRCat or

miRDeep to take into account the ability for B. terrestris to have miRNAs with

a longer precursor than assumed by the default parameter sets.

The large number of different treatments and replicates in this study facili-

tated the flexibility of the analysis. We were able to fully utilise the quality check

stages outlined in chapter 4 after preprocessing and genome alignment of sRNA

sequences to identify any replicates that were anomalous and decide on the best

normalisation and library comparison strategy.

Based on a differential expression analysis that took into account all pos-

sible changes between conditions of the experiment, we found that differential

expression of reads tended to be highly correlated between Workers and Queens

throughout their developmental stages. When looking at differential expression

between the castes, however, fewer reads were differentially expressed and the

findings were not shared between development stages. Only the two arms of

miR-6001 were significantly differentially expressed between Late development

stages of Workers and Queens. The northern blot validations also showed only

this miRNA as differentially expressed between castes, a finding which also val-
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idates our differential expression methodology. Genome scanning revealed that

the precursor sequence of mir-6001 could be found within the fourth intron of the

predicted gene coding for a vitellogenin-6-like protein. Such miRNAs that derive

from the introns of other genes have been termed mirtrons, and have mostly been

found in mammals such as Drosophola melanogaster and Caenorhabditis elegans

[Jan et al., 2011; Ruby et al., 2007]. The trans-regulatory functions of mirtrons

do not differ from those of regular (non-mirtron) miRNAs; both are incorporated

into the RNA-induced silencing complex (RISC) and target mRNA transcripts

for silencing in the same way, but it is unclear whether their different modes of

biogenesis have any cis-regulatory consequences related to their host gene [West-

holm and Lai, 2011]. One interesting possibility is that the miRNA might be

regulated by the upstream regulatory sequences of the host protein-coding gene

itself. Therefore, the miRNA and the host gene would be co-expressed and affect

the same pathways or phenotypes, in this case larval caste determination. Such a

process has special relevance in the case of miR-6001 because it suggests a novel

link between miRNA regulation of caste determination and vitellogenin. Vitel-

logenins are an important class of nutritive proteins induced by juvenile hormone

and linked to reproduction in numerous insects [Sappington and S. Raikhel, 1998]

and a storage protein in Hymenoptera including ants [Wheeler and Buck, 1995].

Storage proteins play key roles in insects that undergo metamorphosis, since they

accumulate in late-instar larvae and are used in the rapid synthesis of amino acids

prior to metamorphosis [Hunt et al., 2003]. This suggests that vitellogenin is a

candidate for a caste-associated gene in eusocial Hymenoptera and that further

investigations should focus on the potential link between the miR-6001 duplex

expression and vitellogenin.
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Chapter 6

Differential expression of small

non-coding RNAs under cell

stress

6.1 Summary

In the last chapter, we utilised our pipeline in conjunction with miRNA prediction

tools in order to identify functions of conserved and new miRNAs in a novel

organism. In that study, the ability to analyse a complete sRNA transcriptome

allowed us to identify and calculate the differential expression of novel miRNAs.

Here, we use the full transcriptome to understand the changes in expression of

sRNAs that are derived from a large diversity of other ncRNAs during cell stress

in organisms with a more robust set of annotations. Additionally, this new study

highlights the technical challenges that can be faced when assessing datasets that

represent highly divergent conditions with high rates of differential expression.

6.2 Background

As well as miRNAs, siRNAs, and piRNAs, sRNA sequences have been found

to be produced from longer ncRNAs that have other primary functions. Such

ncRNAs include Y RNAs [Hall et al., 2013], reviewed in chapter 2. Y RNAs are

known to produce Y RNA-derived sRNA (YsRNA) sequences that are 22-32nt

long following stress stimuli on cells and in the presence of two auto-immune

proteins Ro60 and La. A similar response happens with tRNAs, where they are

cleaved into smaller RNA fragments following cell stress in the presence of certain

endonucleases [Thompson and Parker, 2009]. Cells respond to stress through
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large changes in gene and RNA expression [Holcik and Sonenberg, 2005] and it is

possible that other functional sRNAs may be produced and expressed as a result.

In this chapter, we analyse two sRNA sequencing experiments on the differen-

tial expression of sRNAs when mammalian cells are placed under stress using the

immunostimulant Poly(I:C). This chemical stimulates a viral infection in cells; an

environment where they undergo cellular stress and begin the process of apopto-

sis (cell death). The first experiment includes a mouse Ro60-/- mutant in order

identify other sRNAs that are potentially dependent on Ro60 for expression.

The second experiment, sequenced using HD adapters, attempts to understand

the changes in sRNA transcriptome expression under cell stress of two human

cell lines.

6.3 Materials

The first cell stress experiment was conducted on mouse cells with and without

a Ro60 knockout background. Wild-type and Ro60-/- mouse embryonic stem

(mES) cell lines were grown at 37◦C in a 5% CO2 humidified incubator.

Cells from both cell lines were exposed to Poly(I:C) treatment, creating four

different conditions: wildtype (wt), Ro60 mutant (ro60 ), wildtype with Poly(I:C)

treatment (wt pic), and Ro60 knockdown with Poly(I:C) treatment (ro60 pic).

Libraries were then pooled and sequenced using the HiSeq 2000 system (Illumina)

with a 50 cycle read length. The sequencing was done using two different lanes

for each experiment and three biological replicates. The dataset resulting from

this experiment will be referred to as the Ro60 dataset.

The second experiment was conducted on two human cell lines: MCF7 and

SW1353. Both conditions were alternatively treated with Poly(I:C), creating

four conditions, a wild-type and poly(I:C) condition for each cell line, where

each condition was biologically replicated three times. The library preparation

protocol was identical to the previous study. For sequencing, the HD adapters

were used. This dataset will be referred to as the cell line dataset.

6.4 Methods

6.4.1 Preprocessing and alignment

All libraries were trimmed for adapters by matching the first 8 nucleotides of

the adapter sequence perfectly, where sequences with HD adapters were addi-
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tionally trimmed by four nucleotides before the start and after the end of the

adapter trimmed sequence. The processed reads were then aligned to their refer-

ence genomes (mouse genome GRCm38 available at http://Dec2015.archive.

ensembl.org/Mus_musculus/Info/Annotation and human genome GRCh37 avail-

able at http://grch37.ensembl.org/index.html) using PaTMaN [Prüfer et al.,

2008] with no mismatches or gaps.

We assessed the quality of mapped reads using quality checking methods de-

tailed in chapter 4, including the use of MA plots and size class fold changes to

assess within-condition replicate similarity.

Differential expression was carried out similar to the methods in Chapter 4

with a fixed offset of 20.

6.4.2 Annotation

To ensure we were able to annotate as many reads as possible, annotations were

downloaded for the mouse and human genomes from several different databases.

tRNA sequences were downloaded from tRNAdb [Jhling et al., 2009]. These were

post-transcriptionally modified by removing any introns in the tRNAs, given by

tRNAdb, and appending the CCA motif to the 3’ ends of all sequences. Rfam11

[Burge et al., 2012] and the mature sequences from miRBase [Griffiths-Jones et al.,

2006] were retrieved in FASTA format and all genome matching sRNA reads were

subsequently re-mapped to these annotations using PaTMaN.

We also downloaded coding gene annotations sets for both human and mouse

genomes in GFF format. This format was used in order to identify the specific

feature that sRNAs may be mapping to within the gene models. To do this,

we used BEDtools [Quinlan and Hall, 2010] to find overlaps between our set of

mapped sRNAs and the set of gene models. We then categorised the matches

as having derived from coding sequences (CDS), untranslated regions (UTR), or

introns if the overlap was only found against the gene feature itself.

Coordinates for the two mouse Y RNAs Rny1 and Rny3 were taken from the

MGI website by querying the two Y RNA identifiers. Any reads that mapped to

these regions using PaTMaN were identified as Y RNAs.

6.4.3 Normalisation and differential expression

After assessing the results of total count normalisation and quantile normali-

sation, we proceeded with quantile normalisation for all datasets. To correctly

normalise the cell line data, we separated the sequences by both the annotation

http://Dec2015.archive.ensembl.org/Mus_musculus/Info/Annotation
http://Dec2015.archive.ensembl.org/Mus_musculus/Info/Annotation
http://grch37.ensembl.org/index.html
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Figure 6.1: Log fold change distributions between the two remaining replicates
for all conditions. The distributions are shown for each individual size class.

group and one of the two condition variables, depending on the comparison being

investigated. Differential expression for all datasets was then calculated using the

LOFC method (Chapter 4) with an offset of 20 for all samples. We applied LOFC

to all comparisons between conditions that involved a change in only one of the

condition variables e.g. cell line, Poly(I:C) treatment, or mutant phenotype.

6.5 Results

6.5.1 Quality checking and normalisation

To check the consistency of replicates in the Ro60 dataset, we visually assessed

the within-sample fold changes using MA plots and the distribution of log offset

fold changes for each size class. This showed large deviations from 0 fold-change

for size classes less than 25nt. In order to allow accurate assessment of the larger

size classes, where the ncRNAs of interest such as the Y RNAs are likely to be, we

removed the lower deviating size classes (24nt or less) from the remaining analysis

as well as the least similar replicate from each condition. This allowed quantile

normalisation approach to normalise the remaining expression levels more accu-

rately (figure 6.1).

In contrast to the Ro60 datasets, the replicates of the cell line dataset showed

a close agreement to one another for all conditions. However, acceptable nor-

malisation of these libraries was prevented by a high disagreement of expression

levels between both cell line conditions and stress phenotypes. To further un-



CHAPTER 6 84

derstand this variation, we separated the libraries into their annotation sets as

shown in figures 6.2 and 6.3. These show the distribution of LOFC values using

the un-normalised data and reveal that the ncRNA annotations showed distinct

differential expression distributions. For example, rRNAs were a highly numer-

ous and upregulated class of ncRNA found in both cell lines whereas miRNAs

appeared to be consistently downregulated but with a much smaller inter-quartile

range for their distribution of fold changes. The pattern of fold changes found in

the miRNA MA plot (figure 6.3) was particularly interesting because it is highly

similar to the cone-shaped pattern produced in correctly normalised MA plots by

non-differentially expressed sequences. We reasoned that, because so many rRNA

sequences in the Poly(I:C) libraries are upregulated compared to the untreated

libraries, they have taken up much of the sequencing “real estate” from the truly

non-differentially expressed miRNAs. This suggested that a path to correctly

normalise and identify truly differentially expressed miRNAs between untreated

and Poly(I:C) conditions would be to separate these sequences from the rest of

the library and normalise them on their own. This was attempted with both total

count and quantile normalisation, selecting quantile as the method that produced

the most centered fold change pattern of the miRNAs on 0 LFC.

6.5.2 YsRNAs are produced under stress only in the pres-

ence of Ro60

As YsRNA biogenesis is known to be dependent on Ro60, sequences derived

from mY1 and mY3 RNAs were first assessed as a positive control to see if

the data set could reliably be used to find other Ro60 dependent sRNAs. A

presence plot was generated for both Y RNAs which plots the appearance of

each nucleotide in all sequencing reads against its position in the genome (Figure

6.4). For the Y RNA gene Rny1, this plot shows a clear upregulation of YsRNAs

at the 3’ end of the gene between control and poly(I:C) treated wildtype cells,

and further expression of a YsRNA at the 5’ end in wildtype cells. The Ro60-

/- samples, however, show very little or no expression of any reads along the

length of the gene. The expression of Rny3 sRNAs is much lower and more

variable with no convincing upregulation. Earlier Northern blot data showed

that Rny3 and its YsRNA expression is generally much lower compared to the

other Y RNAs and does not seem to be representative of YsRNA biogenesis.

However, the mY1 presence plot did correlate with Northern blot analysis from

Ro60 knockout experiments confirming that YsRNAs are dependent on Ro60.

This in turn demonstrated that the sequencing data set could reliably be used to
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Figure 6.2: Boxplots showing the distribution of LOFC values on the unnor-
malised cell line data for all assessed differential expression comparisons.
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(a) miRNA (b) rRNA

(c) snoRNA (d) tRNA

treatment M_U M_P

Figure 6.3: MA plots and size class distributions for selected individual annota-
tion categories comparing untreated to Poly(I:C) conditions in the MCF7 dataset.
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Figure 6.4: Presence plots for the coverage of (a) Rny1 and (b) Rny3 genes in
the Ro60 dataset. Presence is calculated by summing the normalised expression
levels of all reads that cover each nucleotide.

find other potential Ro60-dependent sRNAs.

6.5.3 Various ncRNAs are highly differentially expressed

under stress

Calculating LOFC values for ncRNAs between the wild-type conditions indicates

that there exists many ncRNAs that are differentially expressed in both directions

(figure 6.5 (a)). This is very different to the distribution of LOFC values between

the Ro60-/- conditions, which contains much less differential expression, leaving

a large number of sequences that are only differentially expressed between the

wild-type conditions. This indicates that many ncRNA derived sRNAs are only

produced with the assistance of the Ro60 protein, although some ncRNAs are

still found to be differentially expressed without it.

Sequences can be grouped into particular expression patterns according to

how they were regulated in both comparisons between the unstressed and stressed

conditions. These are denoted as {wt,ro60} using (U)p, (D)own, and (S)traight
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(a) (b)

Figure 6.5: Differential expression of annotated ncRNAs under stress. (a) Cross
plot of the LOFC values of wt vs wt pic against ro60 vs ro60 pic for all sequences
that were regulated in at least one of the comparisons. (b) In the three largest
expression patterns, the percentage of sequences that belong to each annotation
group.

symbols, where wt indicates the unstressed to stressed comparison in the wild

type cells and ro60 indicates the unstressed to stressed comparisons in the Ro60-

/- mutant. Figure 6.5 (b) shows a large difference in the proportion of sequences

belonging to each annotation when split up by these expression patterns. The

largest difference between the expression patterns is that exon-derived reads make

up around 50% of the sequences upregulated in wildtype but unregulated in

Ro60-/- (US). In contrast, only 7% of reads are derived from exons in DS and no

exon-derived reads appear in the DD expression pattern.

6.5.4 miRNA regulation is more variable between cell lines

than during cell stress

To most accurately assess any miRNAs that may be highly differentially expressed

between untreated and Poly(I:C) treated conditions, we separated the dataset

into libraries by cell line and normalised only the miRNA matching reads so

that the majority of highly abundant miRNAs were found at 0 LOFC. This was

achieved using quantile normalisation. We used the same approach to assess

miRNA expression between cell lines for both unstressed and Poly(I:C) treated

conditions, but in this case the normalisation appeared to have little effect because
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the dispersion of fold changes was already very high. The final MA plots, after

calculating differential expression using the LOFC method, are shown in figure

6.6. When comparing untreated to Poly(I:C) treated samples, we identified 23

miRNAs that were regulated above absolute 1 LOFC in at least one of the two

comparisons, 6 of which were regulated as such in both conditions (table 6.1).

Many more miRNAs were differentially expressed above absolute 1 LOFC when

comparing cell lines in either treatment (31% for untreated and 24% for treated)

than when comparing untreated to Poly(I:C) for either cell lines (about 1% for

both cell lines). However, the high levels of differential expression that were

apparent when comparing cell lines made these comparisons difficult to normalise.

Table 6.1: Mature miRNA LOFC levels between untreated and Poly(I:C) condi-
tions for sequences found above absolute 1 LOFC in either MCF7 or SW1353. If
a sequence was only found above this level in one cell line, the expression level is
shown for the other cell line but it is designated as being (S)traight regulated.

miRNA MCF7 SW1353 Pattern
miR-1246 3.02 2.79 UU
miR-1260b -3.76 -2.29 DD
miR-1268a -1.06 -0.46 DS
miR-1268b -1.03 -0.48 DS
miR-145-3p -0.80 -1.80 SD
miR-149-3p -1.42 -0.78 DS
miR-181b 1.13 0.88 US
miR-181b-5p 1.35 1.08 UU
miR-221-5p -0.76 -1.25 SD
miR-222-5p -0.12 -1.84 SD
miR-23a-5p -1.19 -2.18 DD
miR-23b-5p -1.25 -2.77 DD
miR-2478 1.10 1.17 UU
miR-27b-5p -1.03 -0.75 DS
miR-29b-1-5p -0.41 -2.20 SD
miR-29b-5p -0.39 -2.21 SD
miR-3184-3p -1.13 -0.55 DS
miR-365-5p -1.00 -0.60 DS
miR-371-5p 0.29 1.01 SU
miR-423-5p -1.16 -0.54 DS
miR-423a -1.13 -0.55 DS
miR-4286 -1.53 -0.48 DS
miR-4485 -0.16 3.42 SU
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(a)

(b)

Figure 6.6: LOFC analysis of normalised miRNAs comparing treatments Un-
stressed to Stressed in MCF7 datasets (M), Unstressed to Stressed in SW1353
(SW) datasets, MCF7 to SW1353 cell lines in Unstressed datasets (U) and MCF7
to SW1353 cell lines in Poly(I:C) treated datasets (P). Colours indicate miRNAs
that do not have overlapping confidence intervals and have a proximate LOFC
above and below 1.
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6.5.5 Differentially expressed mRNA fragments reveal a

notable splice site motif

Owing to the drastically different annotation proportions assigned to gene fea-

tures from USD expressed sRNAs, we further investigated the location, mapping

characteristics, and sequence motifs of the gene-derived sRNAs found in this ex-

pression pattern group. After further grouping the reads in to sRNAs made up of

closely neighbouring and overlapping differentially expressed reads, we further in-

corporated any remaining non-differentially expressed reads and recalculated the

LOFC of these sRNAs. In doing so, we selected 24% of the sRNAs created that

still maintained the desired expression pattern after combining the read expres-

sion levels, and selected 32 of the sRNAs for further examination that showed an

overall differential expression of greater than 1 LOFC for each comparison. The

median length of these sRNAs was 35nt. Each was almost always composed of a

single length of closely overlapping sRNAs, distinctive of sRNA processing from

a larger transcript. These mapping patterns are shown in the presence plots of

figure 6.7. Each sRNA also has a distinctive slope in expression at the 5’ end

made by the production of variable length sRNAs, and a sharp drop in expres-

sion at the 3’ end where all sRNAs end at the same location. This is similar to

the mapping characteristics that many miRNAs have, where the conserved end

of the mature miRNA is more stable than the other end. After examining the

sequences, we also noticed a common motif to many of the sRNAs at the pro-

cessed 5’ end, where there exists a span of three to four T nucleotides. This can

be clearly seen in logo plots when the sequences are aligned based on the largest

increase in expression between two nucleotides at the 5’ end of the presence plots

(figure 6.8).

6.6 Discussion

In light of the increasing understanding of the expanded sRNA transcriptome, we

carried out several experiments to understand the regulation of sRNAs, including

those derived from ncRNAs with other functions, when cells are placed under

stress. The first experiment, a study into the importance of the Ro60 protein

in sRNA biogenesis, revealed a diverse set of sRNAs which rely on the interac-

tion with Ro60 to be expressed. Interestingly these included a large number of

30nt sequences derived from within exons, which are predominantly found with

a repeating T motif at their 5’ end, suggesting a sequence recognition mode of

splicing as part of their biogenesis. Interestingly, the La protein, which forms the
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Figure 6.8: “Berry logos” showing sequence motifs for sequences that were aligned
based on the most likely splice site location (at position 0) of gene-derived sRNAs.
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roRNP complex with Ro60 and Y RNAs, primarily binds to poly(U) recognition

sites on RNA molecules [Gottlieb and Steitz, 1989; Rinke and Steitz, 1982; Wolin

and Cedervall, 2002]. Future experiments may be carried out to ascertain why

such sRNAs are recruited by the roRNP complex in the same fashion as Y RNAs.

One possible function is that, when cells undergo stress, Ro60 might be recruited

to sRNAs which arise due to aberrant splicing errors because they may resemble

misfolded RNAs which Ro60 has been shown to regulate [O’Brien and Wolin,

1994]. Alternatively, because these exon-derived sRNAs are essentially mRNA

fragments and could therefore be remnants of transcript splicing, Ro60 might

enter the nucleus following stress and modulate splicing of a subset of genes.

The second study, sequenced at a higher depth using the more accurate HD

adapters, revealed a large amount of differential expression when two human

cell lines are placed under cellular stress. This also demonstrated a potential

difficulty when attempting to accurately analyse the differential expression of a

sample where few high abundance read counts are not differentially expressed. In

such a scenario, there is no baseline with which to normalise the samples to and it

may not be possible to identify sequences with true differential expression versus

differential expression as a result of losing sequencing space to a large population

of differentially expressed sequences. The low variance of fold change that miR-

NAs showed at high log average abundance did however suggest that the majority

of highly abundant miRNAs were not differentially expressed between unstressed

and Poly(I:C) treated cells in either cell line. Whilst we did identify some miR-

NAs with a lower abundance that were differentially expressed as a result of this

analysis, wet lab experiments to validate these miRNAs have yet to be finalised.

Future studies between conditions with very different transcriptomes should in-

clude a quality check stage to determine an accurate zero baseline, potentially

using sequences that are known to be not differentially expressed between condi-

tions, or otherwise artificially spiking the data.
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Chapter 7

Identification of small RNAs in

microalagae

This chapter is adapted from Lopez-Gomollon S, Beckers M, Rathjen T, Moxon

S, Maumus F, Mohorianu I, Moulton V, Dalmay T, Mock T “Global discovery

and characterization of small non-coding RNAs in marine microalgae”, BMC

Genomics, 15:697, 2014.

7.1 Summary

The aim of this study is to identify sRNAs within the transcriptomes of two di-

atom species by methodical analysis of sRNA high-throughput sequencing datasets.

Very little is known about sRNAs in these species, so this study was a data min-

ing exercise that identified patterns within the sRNA libraries and attempted to

explain these patterns.

7.2 Background

Diatoms are unicellular, photosynthetic phytoplankton that are dominant within

both freshwater and seawater ecosystems where they form the basis of many food

webs [Armbrust et al., 2004]. They are currently classified within the Chroma-

lveolata supergroup of eukaryotes as a group of heterokonts. Model diatoms in-

clude Phaeodactylum tricornutum, Thalassiosira pseudonana, and Fragilariopsis

pseudonana.

The evolutionary ancestor of chromalveolates is thought to have formed from a

secondary endosymbiotic event between a photosynthetic eukaryote, the ancestor

of land-plants, and a heterotrophic eukaryote. As a result, members of this lineage
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contain plastids surrounded by four membranes [Falciatore and Bowler, 2002], as

opposed to three in Plantae, and possess a mosaic genome consisting of genes that

are othologous to both animal and plant lineages. Furthermore, approximately

5% of the genome of the diatom P. tricornutum consists of genes that have

orthologs in bacteria, suggesting that diatoms take part in substantial horizontal

gene transfer with bacteria. This ‘soup’ of different genes has resulted in its fast

divergence from other eukaryotic lineages, namely the Archeaplastida (plants,

green algae, and red algae) and the Opisthokonta (animals and fungi) [Armbrust

et al., 2004].

There is also evidence of fast divergence between the heterokonts themselves

that is faster than within plant, animal, or fungi lineages. Bowler et al. [2008]

found that the pennate diatom P. tricornutum shared just 57% of its genes with

T. pseudonana, a centric diatom. This relatedness is similar to the degree of

divergence between fish and mammals, which started around 550 million years

ago.

7.2.1 Current sRNA research in micro-algae

The rate of evolution of diatoms and other unicellular chromalveolates opens up

an interesting question. sRNAs have been identified in most major eukaryotic

lineages, but how conserved might the silencing mechanism be, if it is at all

present, in a rapidly diverging lineage such as those of diatoms? Studies within the

relatively newly sequenced genomes of several diatoms are beginning to uncover

evidence for a possible silencing mechanism. However, the extreme differences

between diatoms and other organisms present a challenge to sRNA sequencing

technology, since methods used on plants or animals are not guaranteed to work

with the genomes of micro-algae.

RNAi machinery in algae

Searches for homologs of key RNAi proteins in some chromoveolates have shown

that there are highly divergent Dicer and Argonaute proteins within these organ-

isms. These are summarised in table 7.1 Some were so divergent that they could

not be assigned with confidence [Cerutti et al., 2011]. RdRP proteins were also

present but had a very limited distribution amongst algae.

An analysis of the conservation of RNAi machinery in all eukaryotes by Cerutti

and Casas-Mollano [2006] included the T. pseudonana genome in its draft stage.

A homolog of Argonaute was identified, but no homologs of Dicer or RdRP were
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Table 7.1: A summary of identified homologues to components from the RNAi
pathway in the diatoms T. pseudonana and P. tricornutum.
1Norden-Krichmar et al. [2011], 2Riso et al. [2009]

T. pseudonana P. tricornutum

Dicer-like

PAZ, RNaseIII, RNaseIII 1 dsRBD, RNaseIIIa, RNaseIIIb 2

DEAD, Hel-C, PAZ, DSRM 1

RNaseIIIa, RNaseIIIb 2

Argo-Piwi PAZ, PIWI 1,2 PAZ, PIWI 1,2

RdRP RdRP 1,2 RdRP 2

found. Argonaute or Piwi proteins were the most conserved elements of the RNAi

pathway in eukaryotes, with presence noted in every eukaryote that has shown

RNAi abilities.

Norden-Krichmar et al. [2011] identified several proteins that contained Dicer

domains but no protein that had a complete set of Dicer domains. However,

one homolog contained a PAZ and two RNaseIII domains, similar to the func-

tional Dicer of Giardia intestinalis. No evidence of Drosha was found, which has

only been identified in mammalian lineages. One Argonaute homolog was identi-

fied containing both PAZ and PIWI domains [Cerutti and Casas-Mollano, 2006;

Cerutti et al., 2011; Riso et al., 2009], but no protein was found that included all

domains from plant Argonaute homologs.

Evidence for RNAi machinery thus remains allusive in diatom genomes. Whilst

RNAi proteins have been identified that function despite the lack of certain do-

mains, it is also true that these proteins are used for other functions in the cell.

Small RNA identification in algae

There have been very few studies on sRNAs within algae to date. Three of these

studies have been on diatoms P. tricornutum and T. pseudonana and the rest

on other algae, both highly related and less related to diatoms (see table 7.2).

No sRNA analysis has been completed on F. cylindrus or the coccolithophore

Emiliania huxleyi.
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Table 7.2: Summary of the six papers that identified putative miRNAs in diatoms and related species.

Paper Species Sequences identified
Mature
Lengths

Hairpin
Lengths

Comments

Lu and Liu [2010]
P. tricornutum;
T. pseudonana

6 novel hairpin candidates (5 in
PT, 1 in TP)

20-21 45-57
No conservation between diatoms. Pre-
cursor sequences radically different to
homologs of mature miRNAs

Norden-Krichmar et al.
[2011]

T. pseudonana 29 novel hairpins 18-24 70-132
dataset enriched at 28-32nt. No con-
servation with miRBase

Huang et al. [2011] P. tricornutum 13 novel hairpins 18-25 101-260
dataset normalized enrichment around
22nt

Cock et al. [2010] E. siliculosus 26 novel hairpins 21-23 78-152
Targets recently evolved leucine-rich
domains involved in regulating multi-
cellualrity

Liang et al. [2010] P. yezoensis
15 homolog miRNAs with high
read counts, 1 novel hairpin

21-22 66-251 novel miRNA not conserved

Molnr et al. [2007] C. reinhardtii
21 novel hairpins, 47 longer
hairpins

18-24
less than

150;
150-729

Long hairpins generated phased sRNAs
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Lu and Liu [2010] attempted computational prediction of miRNAs based on

EST sequences from P. tricornutum and T. pseudonana. miRNA homologs in

plants were identified within the ESTs and 6 novel miRNA candidates were iden-

tified based on their ability to fold into hairpin structures; 5 in P. tricornutum

and one in T. pseudonana. There was no conservation of mature miRNAs be-

tween diatoms. In addition, although the mature sequences were highly conserved

with other miRNAs in the family, the precursors of the candidates were radically

different. It was suggested that, since the RNAi machinery in diatoms are poorly

conserved, there may be a large difference in miRNAs of diatoms too.

Norden-Krichmar et al. [2011] used two sequencing technologies in order to

compare and contrast the usefulness of both SOLiD deep-sequencing and the

more accurate 454 sequencing analyses. The 454 dataset showed an unusual en-

richment of 28-32nt unique reads. The SOLiD dataset had a flatter frequency

with a bias at either end of the size class spectrum. miRNAs were only predicted

for a characteristic size range of 18-24nt, and the 29 candidates found originated

exclusively from the SOLiD library. The predicted precursors varied in length

around 100nt and all candidates lacked conservation with other miRNAs in miR-

Base. The more highly represented miRNAs were not detected in controlled

northern blot experiments.

Huang et al. [2011] used Illumina sequencing to identify sRNAs in P. tricor-

nutum under both Nitrogen limiting and silicon limiting conditions with a third

control dataset. In contrast to Norden-Krichmar et al. [2011], the unique size

class distribution of reads was enriched at around 22nt. However, the entire dis-

tribution represents a bell curve, which may have been due to the distribution

of reads across the portion of gel that was cut from the size fractioning analy-

sis. Thirteen novel miRNAs were predicted from all datasets using Mfold [Zuker,

2003] with mean precursor lengths at 235nt, none of which were conserved in

other organisms. When two of the candidates were analysed by northern blot,

only longer precursors were detected, suggesting the reads may be part of a longer

degraded transcript.

Norden-Krichmar et al. [2011] also assessed the affinity of sRNA reads to trans-

posable element regions. 2% of the T. pseudonana genome contained repeats, and

as many as 15% of the sRNA reads mapped to them, suggesting a possible silenc-

ing pathway for transposable elements. The sRNA reads also tended to cluster

along the genome, creating possible sRNA hotspots. The majority of other sRNA

reads were produced from just a few hot-spots.
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Small RNAs in related algae

Perhaps the closest related model organism to diatoms is the brown alga Ectocar-

pus siliculosus. The brown algae split from the diatom lineage relatively recently

and evolved multicellularity, including related genes and pathways, independently.

Cock et al. [2010] analysed a fully sequenced genome of the model organism and

computationally identified ncRNAs, including snoRNAs and sRNAs. Twenty-six

sRNA sequences were found to match the required parameters for miRNAs, but

none of these candidates were experimentally validated. The sequences preferred

to target leucine-rich repeat domains of recently evolved genes, suggesting that

the miRNA candidates may have evolved to regulate processes involved with

multicellularity. In addition, other sequenced sRNA reads were found to signifi-

cantly map to transposons, suggesting silencing pathways targeted at controlling

transposable element activity.

miRNAs have also been predicted for a second multicellular seaweed; the red

algae Porphyra yezoensis [Liang et al., 2010]. In this study, a sRNA library

was prepared using Illumina in an attempt to identify young, lesser expressed

miRNAs as well as possible mature miRNAs. 33,324 miRNA orthologs were

identified, 15 of which had relatively high read counts. Comparisons between

other species showed 16 miRNAs that were conserved between P. yezoensis and

C. reinhardtii. Novel miRNAs were also computationally predicted using available

EST data. Reads that were not identified as other ncRNAs were used to predict

hairpin structures with minimum free energies (MFE) from -86.2 to -22. Only

one miRNA had a MFE level below -25. These predicted miRNAs had mature

sequences that were 21 or 22nt. They were not conserved with any other species.

No experimental validation was attempted on any of the candidate miRNAs.

Chlamydomonas reinhardtii is a green algae that is much less related to the

diatom lineage. A complex set of miRNAs and small RNAs, including phased

siRNAs, were identified in C. reinhardtii [Molnr et al., 2007]. Unlike E. siliculo-

sus, C. reinhardtii is single-celled, which contradicts the idea that miRNAs are

mostly required for regulating multicellular processes [Casas-Mollano et al., 2008].

21 miRNAs were found that could form a stable precursor loop. The miRNAs

were similar to higher plants and animals. 47 other longer miRNAs were found

that gave rise to phased siRNAs, which was proposed to represent young miRNAs

in the process of evolving. None of the miRNAs found were conserved between C.

reinhardtii and plants. In 8 of the examples tested, the expression of the mature

miRNA candidate could be validated by northern blots. C. reinhardtii so far

represents the only unicellular organism that uses miRNAs to regulate pathways.
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Table 7.3: Genome and gene data sources for the species used in this analysis.

Species Version URL
T. pseudonana v3.0 http://genome.jgi-psf.org/Thaps3/

F. cylindrus CCMP 1102 v1.0 http://genome.jgi-psf.org/Fracy1/

E. huxleyi 1516 v1.0 http://genome.jgi-psf.org/Emihu1/

7.3 Methods

7.3.1 Library preparation and preprocessing

Total RNA was extracted from T. pseudonana, F. cylindrus and E. huxleyi cul-

tures and sequenced using Illumina Genome Analyzer II at TGAC (Norwich,

UK).

The libraries were received as FASTQ files containing reads of 50nt including

the 5’ adapters. These adapters were trimmed from the resulting sequences by

matching the first 6 nucleotides of the 5’ adapter exactly. Sequences where no

adapter was found were discarded. This left a redundant set of sequences for

each library with lengths between 16 and 44 nucleotides inclusive. We mapped

the remaining sequences using PatMaN [Prüfer et al., 2008] with no mismatches

to their respective genomes for T. pseudonana v3.0, and F. cylindrus CCMP 1102

v1.0. The 1217 strain of E. huxleyi was mapped to the current draft assembly of

the 1516 strain v1.0. The data sources are given in table 7.3.

Search for miRNAs

To identify possible miRNAs within the sRNA libraries, we ran both miRCat

[Stocks et al., 2012] and miRDeep2 [Friedlnder et al., 2012] on the mapped reads.

Since diatoms are highly unrelated to the plant and animal lineages that have been

most studied for miRNAs, we ran miRCat once with default plant parameters

and a second time with the default animal parameters. The default parameters

were also used for miRDeep. The resulting predictions were collated and manually

curated. Mature sequences with an abundance of less than 100 were considered to

be unreliable predictions due to their low level of expression, which is unlikely to

show up upon validation. We assessed the remaining sequences by their expression

pattern on the genome and folded structure.

miRNAs identified by [Norden-Krichmar et al., 2011] in T. pseudonana were

also checked against the T. pseudonana library to identify similarities between

these experiments.

http://genome.jgi-psf.org/Thaps3/
http://genome.jgi-psf.org/Fracy1/
http://genome.jgi-psf.org/Emihu1/
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Search for locally significant expression patterns

It is possible to identify small RNAs based on their characteristic mapping pat-

terns. Functionally related sRNAs tend to aggregate in clusters at genomic loci

and it is often possible to cluster mapped sRNAs based on this feature (see chap-

ter 3 section 3.6.2). Molnr et al. [2007] successfully utilised a proximity algorithm

for clustering their dataset, however the depth of their libraries was far less. A

similar approach with our data was found to produce significantly longer loci that

may not be meaningful. For this analysis, a different approach was used, based

on locally significant size class distributions on a sliding window.

To identify loci that contain locally significant expression patterns, reads were

binned into 300nt windows across each genome. For each region, a chi-squared

statistic was calculated, comparing the size class distribution, between 16 and 40

nucleotides in length, of a region against a uniform distribution. Regions were

filtered if they contained less than 100 reads or if the chi-squared statistic was

not significant (P ¡ 0.05). The remaining windows were combined if they were

adjacent.

Analysis of sequences derived from other sources

To characterise the remaining sequences, an annotation pipeline was created that

mapped sequences to different reference databases and combined the results, la-

belling each sRNA as derived from a particular annotation (figure 7.1).

tRNAscan-SE [Lowe and Eddy, 1997] was used with default parameters to

find putative tRNAs across all three genomes. Because any reads derived from

these tRNAs would reflect post-transcriptional modifications, we removed intron

sequences from the predicted tRNAs and a ‘CCA’ motif was appended to the 3’

end. We then mapped reads to the mature tRNA sequences using PatMaN with

no mismatches.

sRNAs were also aligned to coding gene transcripts. Those that overlapped

with annotation provided by JGI (see table 7.3) and labelled as derived from

either the intron or exon.

sRNAs that did not map to tRNAs or genes were aligned to the Rfam database

using BLAST [Altschul et al., 1990] in order to identify possible homologous

ncRNA transcripts that were unannotated on diatom genomes. These included

snoRNAs and rRNAs. To maximise the likelihood of identifying homologs based

on extremely short queries, the word size was set to 7 and hits with an e-value

of at most 10 were considered. Hits were accepted that had an identity of more

than 80% along the full length of the read.
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Figure 7.1: Schematic summarising the workflow used to annotate sequences
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Table 7.4: The proportion of reads that could be mapped to the respective
genomes for the three species.

T. pseudonana F. cylindrus E. huxleyi
Redundant Unique Redundant Unique Redundant Unique

Total
Adapter trimmed 63419714 5437751 40025978 1943536 83409723 577666
After Mapping 39755382 1473924 29006623 442026 12471322 80953
Mapped 62.7% 27.1% 72.5% 22.7% 14.9% 14.0%

Reads were classified as derived from at most one feature. Using this method,

we ranked features in order of importance: tRNAs >repetitive elements >exons

>introns >homologous ncRNAs.

7.4 Results

7.4.1 Library preprocessing

Table 7.4 gives the number of reads that could be processed from each library.

Approximately two thirds of the reads could be mapped back to their respec-

tive genomes for T. pseudonana and F. cylindrus. However, when looking at

unique reads this mapping percentage was much lower, suggesting that many

low-abundance reads could not be mapped. Because very few E. huxleyi reads

could be mapped to the 1516 strain’s genome, the analysis of this library was not

completed.

In all three libraries, sequences mapping to specific regions of the genome were

removed from further analysis because their abundance totalled a large proportion

of the genome, suggesting that these reads were subject to sequencing bias and

did not represent real abundances.

After accounting for sequencing bias in each library, the length distributions

we obtained are shown in figure 7.2. Canonical miRNAs in plants and animals

are 21-23nt long and length distributions from such organisms will reflect this

as peaks at these size classes. However, the distributions for both diatoms do

not show any such peak. Other size classes are enriched, however. In particular,

these include size classes around 27-30nt in both diatoms as well as some of the

smaller size classes: 16nt and 19nt in T. pseudonana, and 16nt and 18nt in F.

cylindrus. These enrichments may indicate other classes of sRNAs that are stable

within the transcriptome and thus may have a function.
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Figure 7.2: sRNA Length Distributions of all three microalgae species after map-
ping and filtering highly abundant regions that otherwise obscure the remainder of
the distribution. Bars indicate redundant counts and lines indicate non-redundant
counts.
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Figure 7.3: Venn Diagrams depicting the overlap of predictions between miRNA
prediction tools for a) T. pseudonana and b) F. cylindrus.
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7.4.2 miRNA predictions

In total, the three miRNA prediction runs produced 46 predictions for T. pseudo-

nana and 177 predictions for F. cylindrus. The two miRCat runs agreed sub-

stantially on their predictions, whereas miRDeep2 never agreed with miRCat’s

predictions (figure 7.3). Most predictions were based on low mature read counts

of between 1 and 20. Using a cutoff threshold of 100 read counts, we kept 7

sequences in F. cylindrus, and 1 sequence in T. pseudonana for further inves-

tigation (table D.1, and figure 7.4). Two of the sequences, Fc3 and Fc4, were

validated by northern blots.

Out of the 29 miRNAs predicted by Norden-Krichmar et al. [2011], one

miRNA, named ‘921 306 230 F3!AR2 G31013 21nts x451’ and found 524 times

in their library, mapped to sRNAs in our library. There was no sRNA that

matched this sequence’s size exactly. However, the sequence does map to two

of the tRNAs predicted by tRNAscan-SE; a duplicated tRNAHisGTG. The se-

quence mapped to the middle of the tRNA, where low read counts are found in

our libraries. In addition, most of the predictions were aligned to other locations

on the genome and overlapped other features such as tRNAs, rRNAs, and repet-

itive elements. These additional alignments are listed in table D.1 and further

illustrates how predicted miRNAs can be mistaken for other types of ncRNA. The

findings prompted us to focus on other sources of sRNAs in our diatom libraries.

7.4.3 Analysis of other potential sRNAs

Figure 7.5 summarises the proportions of sRNAs that map to particular genomic

features. The complexity of each feature is also shown and varies between as

little as 0.05 in tRNAs to 0.72 in exons. High complexity for exon sequences is

expected, since these are most likely degradation products with low abundance.

The low complexity in tRNAs is interesting and suggests that sequences derived

from tRNAs are highly abundant and stable within the transcriptome. Further-

more, the tRNAs account for 40.1% of F. cylindrus sequences and 11.9% of T.

pseudonana sequences.

The length distributions in figure 7.6 show different size class enrichments for

different features. In T. pseudonana, the 26-30 peak is derived from exons and

repetitive elements. Intriguingly, the reads derived from repetitive elements are

almost exclusively made of these size classes. tRNAs appear to be composed

of mostly 16nt reads, with an enrichment at 18-19nt as well. The picture is

very different in F. cylindrus, with tRNA-derived reads now accounting for the
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Figure 7.4: The mapping patterns, secondary structure, and northern blot vali-
dations of two predicted miRNAs. Mapping patterns are shown by representing
each read as a red line along the reference genome (the x axis)
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Figure 7.5: Proportional bar charts for T.pseudonana and F. cylindrus showing
the proportion of features that all sRNAs map to. These features include exons,
introns, tRNAs, Repetitive elements, and intergenic regions (where no features
could be found that overlap the read). The y-axis indicates the complexity of
each feature class, which is defined as the non-redundant count divided by the
redundant count.

enrichment at 28-30nt. Sequences derived from repetitive elements and tRNAs

were investigated further.

sRNAs derived from tRNAs

Previously identified tsRNAs have been found to map almost exclusively to either

end of tRNAs [Lee et al., 2009]. As shown in figure 7.8, reads that map to either

end of the tRNA account for the majority of the size class enrichments, whereas

internal reads generally do not have an enriched size class. In T. pseudonana, 3’

matching reads are generally 22nt long, whereas 5’ matching reads are 16nt long.

In F. cylindrus, 5’ matching reads tend to be 30nt long, whereas 3’ matching
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Figure 7.6: Length Distributions for T.pseudonana and F. cylindrus, showing the
proportion of small RNA sizes that make up each feature class.
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Figure 7.7: Analysis of total tRNA read abundances between the two diatoms.
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reads are similar to T. pseudonana - around 22nt.

78 sequences are shared between tRNAs in T. pseudonana and F. cylindrus

that have at most 3 mismatches between sequences. Of these 78, one sequence,

separated by two mismatches, showed a consistently high read count between the

two diatoms (47,000 and 74,507 read counts respectively), and is shown in the

top half of figure 7.9. This maps to the AspGTC tRNA in both organisms and

indicates a consistent expression across organisms, suggesting a possible conserved

function for the tsRNA. Furthermore, a comparison of the total abundances of

each tRNA type between the two diatoms reveals a strong correlation (figure 7.7).

A clear distinction is made in the literature between tRNA-halves, which are

produced by angiogenin in plants and animals as a result of cell stress [Thompson

and Parker, 2009], and smaller tsRNAs, generally around 18-24nt that are thought

to be produced by Dicer-like proteins [Cole et al., 2009]. The results for these

diatom libraries indicate that F. cylindrus appears to have more tRNA-halves
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derived from the 5’ end of its tRNAs, whereas T. pseudonana is producing more

smaller tsRNAs from both ends. Northern blots were also able to confirm that

the longer tRNA-halves were upregulated under stress of T. pseudonana (figure

7.9).

Small RNAs derived from repetitive elements

A larger proportion of sequences derive from repetitive elements in T. pseudo-

nana, where a specificity in the size classes is also apparent at 28-30nt (Figure

7.6). Further analysis showed that the repeat-derived sRNAs are the only class

to have a bias for a specific nucleotide, in this case U, at their five prime end

(figure 7.11). Nucleotide biases at the five prime end have previously been shown

to be associated with Argonaute selection of sRNAs in both plants and animals

[Kim, 2008]. In particular, transposon-acting piRNAs in animals show a bias for

Uridine [Malone and Hannon, 2009]. F. cylindrus shows no particular size class

specificity for the sequences that map to repetitive elements and there is also no

5’ bias.

7.5 Discussion

The low relatedness of diatoms to other organisms that have been well studied

for sRNAs meant that this study focused on the identification of sRNAs without

the aid of comparative genomics. The use of data from two different species

facilitated comparisons across the diatom clade.

The presence of sequencing bias in the Illumina datasets mean that we are less

confident that sequences with a high read count also have a high rate of expression

within the transcriptome. However, subsequent validation of both tRNA-derived

sRNAs and miRNA-like sequences show that at least some of these abundances

represent functional expression.

This study helps to shed light onto the possible populations of sRNAs within

diatoms. We identified very few sRNAs that could be characterised as miRNAs,

which suggests that diatoms have either lost this pathway through subsequent

evolution or that their ancestors never evolved a miRNA pathway similar to

that found in plants and animals. Instead, data from T. pseudonana indicates

the presence of a pathway that functions to regulate transposable elements, and

both diatoms contain tRNA-derived sequences that are similar in characteristics

to previously identified tsRNAs [Thompson and Parker, 2009], and thus may

have similar proposed functions such as repressing translation in the cell. The
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Figure 7.8: Length Distributions for T.pseudonana and F. cylindrus tRNA-
derived reads grouped by the positions on the tRNAs that the reads map to.
Reads that aligned precisely to 5’ or 3’ ends of the tRNAs were grouped as such,
otherwise the read was classified as “internal”.
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(a) T. pseudonana
(b) F. cylindrus

Figure 7.9: Examples of identified tsRNAs in T. pseudonana and F.cylindrus.
The top-left plot is a map of all reads aligned to the tRNA. Black bars beneath
the mapped reads indicate where the loop regions are on the tRNA. The tRNA
secondary structures (top-right) show the positioning of the top most abundant
read in red. Northern blots using probes from the most abundant sequence are
shown in the bottom right. For T. pseudonana, blots were also done showing
upregulation of 30nt+ sequences (tRNA-halves) under stress of the organism.
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(a) T. pseudonana (b) F. cylindrus

Figure 7.10: Further examples of identified tsRNAs in T. pseudonana and
F.cylindrus. See the caption in figure 7.9 for figure details.
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Figure 7.11: 5’-most base distribution across size classes in T. pseudonana repet-
itive elements.

similarities between the relative tsRNA abundances of each tRNA type between

the two diatoms suggests also provides further evidence of a shared function for

these tsRNAs between the two diatoms.

Importantly, many of the sequences would have been missed if post-transcriptional

modifications for the tRNA sequences had been overlooked. This underlines a

potential source of lost sRNA data, where sRNAs are derived from transcripts

that are modified after translation, causing the sRNAs to be discarded because

they do not map to the genome. Many other sRNA transcripts undergo post-

transcriptional modifications, which likely affect the results of sRNA sequencing

projects [Ebhardt et al., 2009; Findei et al., 2011; Kim et al., 2010].

Future work into these datasets may help to understand the nature of the

miRNA-like sequences that have been identified. Advances in the genome assem-

bly of the 1217 E. huxleyi strain will also allow analysis on a third microalgae

dataset, strengthening the comparative analysis.
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Chapter 8

Conclusions and future work

8.1 Summary

In the previous chapters we have described and utilised a processing pipeline

that we have specifically tailored towards sRNA-seq differential expression exper-

iments. The pipeline relies on the use of at least two replicates on each condition

to closely assess the quality of the data and consequently to find interesting differ-

entially expressed sequences by filtering and penalising noisy expression levels and

subsequent fold changes. In chapter 4 we demonstrated the use of this pipeline

as it is implemented in the UEA sRNA Workbench using an animal and a plant

sRNA-seq dataset. We then compared the results of differential expression using

our LOFC approach to two other currently available methods.

In Chapters 5 and 6 we used our pipeline to process and analyse several

interesting experiments. In Chapter 5 we identified novel and closely conserved

miRNAs in the European bumblebee and used these annotations to identify an

important miRNA for the caste differentiation of bumblebee larvae. In Chapter 6

we focussed on a wider set of ncRNA and cDNA annotations to understand their

regulatory changes when human and mouse cell lines are placed under stress.

We discovered that many RNA classes are highly differentially expressed when

cells are placed under stress but that miRNAs are the least regulated of all RNA

classes that we looked at. We also identified particular RNA classes, such as exon-

derived RNAs, that are only processed under stress with the help of the Ro60

protein that is already known to associate with the stress regulated YRNAs.

Finally, in Chapter 7 we conducted a search for sRNAs in two novel diatom

genomes. In this case, in the absense of comparable conditions, we relied on map-

ping patterns of our reads to identify sRNA locus. Whilst a search for miRNAs

appeared to be inconclusive, we did discover that tRNA-derived sRNAs appear
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to be highly abundant in both organisms, and that these are also upregulated

under stress of these cells. A futher class, associated with repetetive elements,

appeared to be less size specific but contained a preference for T at their 5’ end.

We concluded that diatoms did contain some forms of sRNAs, but that these

may well not be like the miRNAs found in plant and animal linneages, although

they tend to be routinely mistaken for such classes.

8.2 Future work

8.2.1 Integrating sRNA loci aggregation strategies

A large limitation to our pipeline is the absense of any loci aggregation. When

sRNAs are aggregated into sRNA loci, the small variations of each sRNA can

be grouped to represent a single expression level. This makes the interpretation

of differentially expressed sRNA results easier because there can be fewer or no

alternative differential expression values for each annotation.

However, the solution for sRNA loci aggregation is not clearly defined; it is

often difficult to tell what the borders of sRNA loci should be. In addition, the

change in the depth and amount of RNA-seq data has caused some current ap-

proaches to finding loci to lose their relevancy. Whereas tools such as SegmentSeq

[Hardcastle et al., 2012] and SiLoco [Moxon et al., 2008] have a tendency to create

loci that are too large, grouping many different sRNAs together, other tools such

as NiBLs [MacLean et al., 2010] are slow to use on large datasets with multiple

replicates [Mohorianu et al., 2013].

In chapters 5 and 6 we experimented with a simple method of aggregating

closely overlapping reads into sRNAs that used highly differentially expressed

reads as the starting reads to group other overlapping reads to. The final dif-

ferential expression values were then based on a recalculation of the differential

expression of the summed abundances for each sRNA. Unfortunately this has the

tendency to miss out sRNA loci that may only be differentially expressed when

the aggregated value is taken into account.

Recently, a tool called CoLIde was inclduded as a standalone tool in the UEA

sRNA Workbench [Mohorianu et al., 2013]. This finds loci based on the similarity

of differential expression over neighbouring sRNAs. The approach for differential

expression analysis is similar to that of the LOFC method described here, and

in the future this could be integrated into the pipeline to provide information on

potential sRNA loci rather than single sequences.



CHAPTER 8 118

8.2.2 Integration of sRNA prediction tools

In this thesis we have focussed primarily on the differential expression of se-

quences. However, in Chapter 5 we also combined the results of two miRNA

prediction programs to enhance our set of annotations with novel miRNA pre-

dictions. This worked well, but required a great deal of processing power to

utilise both miRCat and miRDeep to run on each sample, since they were only

used for single sample analysis. Prediction tools like these could be a great asset

to an annotation and differential expression pipeline such as the one we imple-

mented. However, changes will be required to make them run more efficiently

over multi-sample datasets, with rules such as the ones that we used in Chapter

5 to summarise findings over multiple samples.

8.2.3 Normalisation of highly differentially expressed datasets

needs work

The accurate differential expression analysis of sRNA-seq datasets requires that

the two compared conditions are normalised to eliminate variations that were

not originally caused by the biological experiments. Such added variations in-

clude the difference in sequencing depth, outlying reads caused by a variety of

technical biases, and the requirement for sequences to share sequencing space

with the rest of the sequences in the sample. These issues are particularly diffi-

cult to equate in experiments with large amounts of differential expression, such

as the cell line dataset in chapter 6. TMM normalisation is able to estimate

more accurate normalisation factors by identifying outliers that are using up the

sequencing space and causing opposite differential expression for true unregu-

lated sequences [Robinson and Oshlack, 2010]. However, it often does not go

far enough. In Chapter 6 we resorted to seperately normalising the miRNAs,

which clearly appeared to be artificially downregulated by a loss of sequencing

space. However, the increased variation of other sRNA classes meant that it was

not possible to isolate biases due to differences in depth from biases due to the

sharing of sequencing space with highly differentially expressed sequences. Many

normalisations work on the assumption that most sequences in a sample are truly

not differentially expressed [Maza et al., 2013]. When this is not the case, it can

be impossible to approximate the differences in sequencing depth between two

or more samples. Other types of normalisation include uses of synthetic spike-in

sequences, the expression of which can be measured to estimate differences in

depth. However, these still don’t address all biases - mainly the downregulation
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caused by an upregulation of a large and abundant group of sequences [Locati

et al., 2015].

8.2.4 Improvements to the detection of noisy expression

levels

In Chapter 4 we employed an offset approach to downweight low abundance

fold changes which are highly likely to be uninteresting due to the expression

levels being within the range of noise. Since the noise range was likely to differ

between experiments and even samples, we proposed a method of estimating the

limit of likely noisy expression levels by finding the abundance at which sRNA

reads may be biased to one strand. In practice, however, the abundance limit

is affected by the choice of sRNA loci, which, as described in previous future

work sections, can be hard to properly define. Our simple method of splitting

the genome into windows of a certain length produced stable abundance limits at

fairly high window lengths but these were longer than sRNA loci are likely to be.

This is due to the artifical nature by which true sRNA loci are split up by fixed

length windows. Other more complicated loci detection methods, while using

more processing power and runtime, could be used to more accurately estimate

strand biases of particular loci. In addition, other characteristics of sRNA loci

may better predict noisy loci, such as the size class distribution of the aligned

reads.

8.3 Conclusions

The ever-decreasing costs for sequencing sRNA libraries means that the field of

bioinformatics must find ways of dealing with larger datasets, the benefits of which

can be truly maximised by using the most appropriate tools for the job. In this

thesis we have described a variety of approaches to checking the quality of large

datasets with several replicates, many of which focus on the specifc characteristics

of sRNAs, such as the importance of their size class seperation. Our approach to

implementing a pipeline through to differential expression analysis also offers an

alternative way to process large datasets that is more hard drive intensive and

thus easier to run on standard machines.

We have also explored the versatility of this pipeline by incorporating the

results of sRNA differential expression analyses in several different experiments

in order to both initially discover new sRNAs and also further identify their
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functions. Importantly, the use of completely analysing the whole sRNA-seq

dataset has facilitated the discovery of knowledge for many different known and

novel sRNA classes. We hope that the methods and tools introduced here enable

researchers to better understand and produce higher quality results from their

sRNA-seq datasets.



121

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990).
Basic local alignment search tool. Journal of Molecular Biology, 215(3):403–
410. 102

Amaral, A. J., Brito, F. F., Chobanyan, T., Yoshikawa, S., Yokokura, T.,
Van Vactor, D., and Gama-Carvalho, M. (2014). Quality assessment and con-
trol of tissue specific RNA-seq libraries of Drosophila transgenic RNAi models.
Frontiers in Genetics, 5. 19

Anders, S. and Huber, W. (2010). Differential expression analysis for sequence
count data. Genome Biology, 11(10):R106. 22, 24, 25

Andrews, S. (2010). FASTQC: A quality control tool for high throughput se-
quence data. 2, 19

Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino,
N., Morris, P., Brownstein, M. J., Kuramochi-Miyagawa, S., Nakano, T., Chien,
M., Russo, J. J., Ju, J., Sheridan, R., Sander, C., Zavolan, M., and Tuschl, T.
(2006). A novel class of small RNAs bind to MILI protein in mouse testes.
Nature, 442(7099):203–207. 7

Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder,
B., Gaasterland, T., Meyer, J., and Tuschl, T. (2003). The Small RNA Profile
during Drosophila melanogaster Development. Developmental Cell, 5(2):337–
350. 7

Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam,
N. H., Zhou, S., Allen, A. E., Apt, K. E., and Bechner, M. (2004). The genome
of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism.
Science, 306(5693):79–86. 95, 96

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky,
M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A.,
Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., and Soboleva, A.
(2013). NCBI GEO: archive for functional genomics data setsupdate. Nucleic
Acids Research, 41(D1):D991–D995. 40

Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006):356–363. 8,
9, 10



REFERENCES 122

Berry, C., Hannenhalli, S., Leipzig, J., and Bushman, F. D. (2006). Selection
of Target Sites for Mobile DNA Integration in the Human Genome. PLoS
Computational Biology, 2(11). 28

Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3: Data-Driven Documents.
IEEE Transactions on Visualization and Computer Graphics, 17(12):2301–
2309. 61

Bourke, A. F. G. (2011). Principles of Social Evolution. OUP Oxford. 67, 76

Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Ma-
heswari, U., Martens, C., Maumus, F., Otillar, R. P., Rayko, E., Salamov, A.,
Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T.,
Valentin, K., Verret, F., Berges, J. A., Brownlee, C., Cadoret, J.-P., Chiovitti,
A., Choi, C. J., Coesel, S., Martino, A. D., Detter, J. C., Durkin, C., Falciatore,
A., Fournet, J., Haruta, M., Huysman, M. J. J., Jenkins, B. D., Jiroutova, K.,
Jorgensen, R. E., Joubert, Y., Kaplan, A., Krger, N., Kroth, P. G., Roche,
J. L., Lindquist, E., Lommer, M., MartinJzquel, V., Lopez, P. J., Lucas, S.,
Mangogna, M., McGinnis, K., Medlin, L. K., Montsant, A., Secq, M.-P. O.,
Napoli, C., Obornik, M., Parker, M. S., Petit, J.-L., Porcel, B. M., Poulsen,
N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Shapiro, H.,
Siaut, M., Stanley, M., Sussman, M. R., Taylor, A. R., Vardi, A., Dassow, P. v.,
Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J.,
Armbrust, E. V., Green, B. R., Peer, Y. V. d., and Grigoriev, I. V. (2008). The
Phaeodactylum genome reveals the evolutionary history of diatom genomes.
Nature, 456(7219):239–244. 96

Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam,
R., and Hannon, G. J. (2007). Discrete Small RNA-Generating Loci as Master
Regulators of Transposon Activity in Drosophila. Cell, 128(6):1089–1103. 9

Bullard, J. H., Purdom, E., Hansen, K. D., and Dudoit, S. (2010). Evaluation of
statistical methods for normalization and differential expression in mRNA-Seq
experiments. BMC Bioinformatics, 11(1):94. 21, 23, 24

Burge, S. W., Daub, J., Eberhardt, R., Tate, J., Barquist, L., Nawrocki, E. P.,
Eddy, S. R., Gardner, P. P., and Bateman, A. (2012). Rfam 11.0: 10 years of
RNA families. Nucleic Acids Research. 82

Camps, C., Saini, H. K., Mole, D. R., Choudhry, H., Reczko, M., Guerra-
Assuncao, J. A., Tian, Y.-M., Buffa, F. M., Harris, A. L., Hatzigeorgiou, A. G.,
Enright, A. J., and Ragoussis, J. (2014). Integrated analysis of microRNA and
mRNA expression and association with HIF binding reveals the complexity of
microRNA expression regulation under hypoxia. Molecular Cancer, 13:28. 36,
40

Cardinal, S. and Danforth, B. N. (2011). The Antiquity and Evolutionary History
of Social Behavior in Bees. PLoS ONE, 6(6):e21086. 76



REFERENCES 123

Carthew, R. W. and Sontheimer, E. J. (2009). Origins and Mechanisms of miR-
NAs and siRNAs. Cell, 136(4):642–655. 6, 9, 10

Casas-Mollano, J. A., Rohr, J., Kim, E.-J., Balassa, E., Dijk, K. v., and Cerutti,
H. (2008). Diversification of the Core RNA Interference Machinery in Chlamy-
domonas reinhardtii and the Role of DCL1 in Transposon Silencing. Genetics,
179(1):69–81. 8, 100

Casneuf, T., Peer, Y. V. d., and Huber, W. (2007). In situ analysis of cross-
hybridisation on microarrays and the inference of expression correlation. BMC
Bioinformatics, 8(1):461. 15

Cerutti, H. and Casas-Mollano, J. A. (2006). On the origin and functions of
RNA-mediated silencing: from protists to man. Current genetics, 50(2):81–99.
3, 7, 8, 10, 96, 97

Cerutti, H., Ma, X., Msanne, J., and Repas, T. (2011). RNA-mediated silencing
in algae: biological roles and tools for analysis of gene function. Eukaryotic
cell, 10(9):1164–1172. 96, 97

Chen, C.-J., Servant, N., Toedling, J., Sarazin, A., Marchais, A., Duvernois-
Berthet, E., Cognat, V., Colot, V., Voinnet, O., Heard, E., Ciaudo, C., and
Barillot, E. (2012). ncPRO-seq: a tool for annotation and profiling of ncRNAs
in sRNA-seq data. Bioinformatics, 28(23):3147–3149. 39

Chen, P. Y., Manninga, H., Slanchev, K., Chien, M., Russo, J. J., Ju, J., Sheridan,
R., John, B., Marks, D. S., Gaidatzis, D., Sander, C., Zavolan, M., and Tuschl,
T. (2005). The developmental miRNA profiles of zebrafish as determined by
small RNA cloning. Genes & Development, 19(11):1288–1293. 7

Chen, X. and Wolin, S. L. (2004). The Ro 60 kDa autoantigen: insights into
cellular function and role in autoimmunity. Journal of molecular medicine,
82(4):232–239. 12

Chen, X., Yu, X., Cai, Y., Zheng, H., Yu, D., Liu, G., Zhou, Q., Hu, S., and Hu,
F. (2010). Next-generation small RNA sequencing for microRNAs profiling in
the honey bee Apis mellifera. Insect Molecular Biology, 19(6):799–805. 76

Christov, C. P., Gardiner, T. J., Szts, D., and Krude, T. (2006). Functional Re-
quirement of Noncoding Y RNAs for Human Chromosomal DNA Replication.
Molecular and Cellular Biology, 26(18):6993–7004. 12

Cleveland, W. S. and Devlin, S. J. (1988). Locally Weighted Regression: An
Approach to Regression Analysis by Local Fitting. Journal of the American
Statistical Association, 83(403):596–610. 54

Clote, P., Ferr, F., Kranakis, E., and Krizanc, D. (2005). Structural RNA has
lower folding energy than random RNA of the same dinucleotide frequency.
RNA, 11(5):578–591. 28



REFERENCES 124

Cnaani, J., Robinson, G. E., and Hefetz, A. (2000). The critical period for caste
determination in Bombus terrestris and its juvenile hormone correlates. Journal
of Comparative Physiology A, 186(11):1089–1094. 67

Cock, J. M., Sterck, L., Rouz, P., Scornet, D., Allen, A. E., Amoutzias, G.,
Anthouard, V., Artiguenave, F., Aury, J.-M., and Badger, J. H. (2010). The
Ectocarpus genome and the independent evolution of multicellularity in brown
algae. Nature, 465(7298):617–621. 98, 100

Cole, C., Sobala, A., Lu, C., Thatcher, S. R., Bowman, A., Brown, J. W. S.,
Green, P. J., Barton, G. J., and Hutvagner, G. (2009). Filtering of deep se-
quencing data reveals the existence of abundant Dicer-dependent small RNAs
derived from tRNAs. Rna, 15(12):2147–2160. 11, 26, 29, 110

Colgan, T. J., Carolan, J. C., Bridgett, S. J., Sumner, S., Blaxter, M. L.,
and Brown, M. J. (2011). Polyphenism in social insects: insights from a
transcriptome-wide analysis of gene expression in the life stages of the key
pollinator, Bombus terrestris. BMC Genomics, 12(1):623. 67

Crick, F. (1970). Central dogma of molecular biology. Nature, 227(5258):561–563.
viii, 2

Cuperus, J. T., Fahlgren, N., and Carrington, J. C. (2011). Evolution and func-
tional diversification of MIRNA genes. The Plant Cell Online, 23(2):431–442.
10

Davis, M. P. A., van Dongen, S., Abreu-Goodger, C., Bartonicek, N., and Enright,
A. J. (2013). Kraken: A set of tools for quality control and analysis of high-
throughput sequence data. Methods, 63(1):41–49. 39

Dillies, M.-A., Rau, A., Aubert, J., Hennequet-Antier, C., Jeanmougin, M., Ser-
vant, N., Keime, C., Marot, G., Castel, D., Estelle, J., Guernec, G., Jagla,
B., Jouneau, L., Lalo, D., Gall, C. L., Schaffer, B., Crom, S. L., Guedj, M.,
and Jaffrzic, F. (2013). A comprehensive evaluation of normalization meth-
ods for Illumina high-throughput RNA sequencing data analysis. Briefings in
Bioinformatics, 14(6):671–683. 23, 24, 46, 48, 51

Ebhardt, H. A., Tsang, H. H., Dai, D. C., Liu, Y., Bostan, B., and Fahlman, R. P.
(2009). Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-
transcriptional RNA modifications. Nucleic Acids Research, 37(8):2461–2470.
115

Eddy, S. R. (2001). Non-coding RNA genes and the modern RNA world. Nature
Reviews Genetics, 2(12):919–929. 1

Eddy, S. R. (2004). What is dynamic programming? Nature Biotechnology,
22(7):909–910. 27

Emde, A.-K., Grunert, M., Weese, D., Reinert, K., and Sperling, S. R. (2010).
MicroRazerS: rapid alignment of small RNA reads. Bioinformatics, 26(1):123–
124. 18



REFERENCES 125

Ewing, B. and Green, P. (1998). Base-Calling of Automated Sequencer Traces
Using Phred. II. Error Probabilities. Genome Research, 8(3):186–194. 19

Fahlgren, N., Sullivan, C. M., Kasschau, K. D., Chapman, E. J., Cumbie, J. S.,
Montgomery, T. A., Gilbert, S. D., Dasenko, M., Backman, T. W., and Givan,
S. A. (2009). Computational and analytical framework for small RNA profiling
by high-throughput sequencing. Rna, 15(5):992–1002. 22

Falciatore, A. and Bowler, C. (2002). Revealing the molecular secrets of marine
diatoms. Annual review of plant biology, 53(1):109–130. 96

Fasold, M., Langenberger, D., Binder, H., Stadler, P. F., and Hoffmann, S. (2011).
DARIO: a ncRNA detection and analysis tool for next-generation sequencing
experiments. Nucleic Acids Research, 39(suppl):W112–W117. 39

Findei, S., Langenberger, D., Stadler, P. F., and Hoffmann, S. (2011). Traces
of post-transcriptional RNA modifications in deep sequencing data. Biological
Chemistry, 392(4). 115

Fire, A., Albertson, D., Harrison, S. W., and Moerman, D. G. (1991). Production
of antisense RNA leads to effective and specific inhibition of gene expression in
C. elegans muscle. Development, 113(2):503–514. 5

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello,
C. C. (1998). Potent and specific genetic interference by double-stranded RNA
in Caenorhabditis elegans. nature, 391(6669):806–811. 5

Fonseca, N. A., Rung, J., Brazma, A., and Marioni, J. C. (2012). Tools for
mapping high-throughput sequencing data. Bioinformatics, 28(24):3169–3177.
18, 35

Friedlnder, M. R., Mackowiak, S. D., Li, N., Chen, W., and Rajewsky, N. (2012).
miRDeep2 accurately identifies known and hundreds of novel microRNA genes
in seven animal clades. Nucleic Acids Research, 40(1):37–52. 28, 31, 69, 101

Fulci, V. and Macino, G. (2007). Quelling: post-transcriptional gene silencing
guided by small RNAs in Neurospora crassa. Current Opinion in Microbiology,
10(2):199–203. 6

Gardner, P. P. and Giegerich, R. (2004). A comprehensive comparison of com-
parative RNA structure prediction approaches. BMC Bioinformatics, 5(1):140.
27

Garmire, L. X. and Subramaniam, S. (2012). Evaluation of normalization meth-
ods in mammalian microRNA-Seq data. RNA, 18(6):1279–1288. 23, 24, 48

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit,
S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber,
W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J.,
Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J. Y., and Zhang, J.



REFERENCES 126

(2004). Bioconductor: open software development for computational biology
and bioinformatics. Genome Biology, 5(10):R80. 25

Ghildiyal, M. and Zamore, P. D. (2009). Small silencing RNAs: an expanding
universe. Nature Reviews Genetics, 10(2):94–108. 9

Gordon, A. and Hannon, G. (2010). FASTX-Toolkit. 35

Gottlieb, E. and Steitz, J. A. (1989). Function of the mammalian La protein:
evidence for its action in transcription termination by RNA polymerase III.
The EMBO Journal, 8(3):851–861. 94

Goulson, D. (2003). Bumblebees: Their Behaviour and Ecology. Oxford University
Press. 67

Griffiths-Jones, S., Grocock, R. J., Dongen, S. v., Bateman, A., and Enright,
A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature.
Nucleic Acids Research, 34(suppl 1):D140–D144. 28, 82

Guerra-Assuno, J. A. and Enright, A. J. (2010). MapMi: automated mapping of
microRNA loci. BMC Bioinformatics, 11(1):133. 28, 31, 69

Guo, S. and Kemphues, K. J. (1995). par-1, a gene required for establishing po-
larity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asym-
metrically distributed. Cell, 81(4):611–620. 5

Gupta, V., Markmann, K., Pedersen, C. N. S., Stougaard, J., and Andersen, S. U.
(2012). shortran: a pipeline for small RNA-seq data analysis. Bioinformatics,
28(20):2698–2700. 39

Habegger, L., Sboner, A., Gianoulis, T. A., Rozowsky, J., Agarwal, A., Snyder,
M., and Gerstein, M. (2011). RSEQtools: a modular framework to analyze
RNA-Seq data using compact, anonymized data summaries. Bioinformatics,
27(2):281–283. 39

Hafner, M., Renwick, N., Brown, M., Mihailovi, A., Holoch, D., Lin, C., Pena, J.
T. G., Nusbaum, J. D., Morozov, P., Ludwig, J., Ojo, T., Luo, S., Schroth, G.,
and Tuschl, T. (2011). RNA-ligase-dependent biases in miRNA representation
in deep-sequenced small RNA cDNA libraries. RNA, 17(9):1697–1712. 15

Hall, A. E., Turnbull, C., and Dalmay, T. (2013). Y RNAs: recent developments.
BioMolecular Concepts, NA(NA):NA. 80

Hansen, K. D., Brenner, S. E., and Dudoit, S. (2010). Biases in Illumina transcrip-
tome sequencing caused by random hexamer priming. Nucleic Acids Research,
38(12):e131–e131. 19

Hardcastle, T. J. and Kelly, K. A. (2010). baySeq: Empirical Bayesian methods
for identifying differential expression in sequence count data. BMC Bioinfor-
matics, 11(1):422. 21, 39



REFERENCES 127

Hardcastle, T. J., Kelly, K. A., and Baulcombe, D. C. (2012). Identifying small
interfering RNA loci from high-throughput sequencing data. Bioinformatics,
28(4):457–463. 117

Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A. Z., and Kay,
M. A. (2010). Human tRNA-derived small RNAs in the global regulation of
RNA silencing. Rna, 16(4):673–695. 11, 12

Hofacker, I. L. (2003). Vienna RNA secondary structure server. Nucleic Acids
Research, 31(13):3429–3431. 27

Holcik, M. and Sonenberg, N. (2005). Translational control in stress and apop-
tosis. Nature Reviews Molecular Cell Biology, 6(4):318–327. 81

Huang, A., He, L., and Wang, G. (2011). Identification and characterization of
microRNAs from Phaeodactylum tricornutum by high-throughput sequencing
and bioinformatics analysis. BMC genomics, 12(1):337. 98, 99

Hunt, J. H., Buck, N. A., and Wheeler, D. E. (2003). Storage proteins in vespid
wasps: characterization, developmental pattern, and occurrence in adults.
Journal of Insect Physiology, 49(8):785–794. 79

Ihaka, R. and Gentleman, R. (1996). R: A Language for Data Analysis and
Graphics. Journal of Computational and Graphical Statistics, 5(3):299–314. 25

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J.,
Scherf, U., and Speed, T. P. (2003). Exploration, normalization, and summaries
of high density oligonucleotide array probe level data. Biostatistics (Oxford,
England), 4(2):249–264. 22

Jan, C. H., Friedman, R. C., Ruby, J. G., and Bartel, D. P. (2011). Forma-
tion, Regulation and Evolution of Caenorhabditis elegans 3UTRs. Nature,
469(7328):97–101. 79

Jayaprakash, A. D., Jabado, O., Brown, B. D., and Sachidanandam, R. (2011).
Identification and remediation of biases in the activity of RNA ligases in small-
RNA deep sequencing. Nucleic Acids Research, 39(21):e141–e141. 15

Jhling, F., Mrl, M., Hartmann, R. K., Sprinzl, M., Stadler, P. F., and Ptz,
J. (2009). tRNAdb 2009: compilation of tRNA sequences and tRNA genes.
Nucleic Acids Research, 37(suppl 1):D159–D162. 82

Jorgensen, R. A., Cluster, P. D., English, J., Que, Q., and Napoli, C. A. (1996).
Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of
sense vs. antisense constructs and single-copy vs. complex T-DNA sequences.
Plant Molecular Biology, 31(5):957–973. 5

Kadota, K., Nishiyama, T., and Shimizu, K. (2012). A normalization strategy
for comparing tag count data. Algorithms for Molecular Biology, 7(1):5. 21, 24



REFERENCES 128

Kayala, M. A. and Baldi, P. (2012). Cyber-T web server: differential analysis of
high-throughput data. Nucleic Acids Research, 40(W1):W553–W559. 39

Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003). Functional siRNAs and
miRNAs exhibit strand bias. Cell, 115(2):209–216. 7

Kim, V. N. (2005). Small RNAs: classification, biogenesis, and function. Mol
Cells, 19(1):1–15. 8, 9

Kim, V. N. (2008). Sorting out small RNAs. Cell, 133(1):25–26. 7, 111

Kim, Y.-K., Heo, I., and Kim, V. N. (2010). Modifications of small RNAs and
their associated proteins. Cell, 143(5):703–709. 115

Koscianska, E., Starega-Roslan, J., Sznajder, L. J., Olejniczak, M., Galka-
Marciniak, P., and Krzyzosiak, W. J. (2011). Northern blotting analysis of
microRNAs, their precursors and RNA interference triggers. BMC Molecular
Biology, 12:14. 16

Langenberger, D., Bermudez-Santana, C., Hertel, J., Hoffmann, S., Khaitovich,
P., and Stadler, P. F. (2009). Evidence for human microRNA-offset RNAs in
small RNA sequencing data. Bioinformatics, 25(18):2298–2301. 28, 30

Langenberger, D., Bermudez-Santana, C. I., Stadler, P. F., and Hoffmann, S.
(2010). Identification and classification of small RNAs in transcriptome se-
quence data. In Pac Symp Biocomput, volume 15, pages 80–87. 26, 30

Langenberger, D., Pundhir, S., Ekstrm, C. T., Stadler, P. F., Hoffmann, S., and
Gorodkin, J. (2012). deepBlockAlign: a tool for aligning RNA-seq profiles of
read block patterns. Bioinformatics, 28(1):17–24. 28

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biology, 10(3):R25. 18

Lawrence, M., Huber, W., Pags, H., Aboyoun, P., Carlson, M., Gentleman, R.,
Morgan, M. T., and Carey, V. J. (2013). Software for Computing and Anno-
tating Genomic Ranges. PLoS Comput Biol, 9(8):e1003118. 18

Lee, Y. S., Shibata, Y., Malhotra, A., and Dutta, A. (2009). A novel class of
small RNAs: tRNA-derived RNA fragments (tRFs). Genes & development,
23(22):2639–2649. 11, 108

Legeai, F., Rizk, G., Walsh, T., Edwards, O., Gordon, K., Lavenier, D., Leterme,
N., Mreau, A., Nicolas, J., Tagu, D., and Jaubert-Possamai, S. (2010). Bioin-
formatic prediction, deep sequencing of microRNAs and expression analysis
during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum. BMC
Genomics, 11(1):281. 67



REFERENCES 129

Li, J., Witten, D. M., Johnstone, I. M., and Tibshirani, R. (2012). Normal-
ization, testing, and false discovery rate estimation for RNA-sequencing data.
Biostatistics, 13(3):523–538. 48

Liang, C., Zhang, X., Zou, J., Xu, D., Su, F., and Ye, N. (2010). Identifica-
tion of miRNA from Porphyra yezoensis by high-throughput sequencing and
bioinformatics analysis. PLoS One, 5(5):e10698. 98, 100

Locati, M. D., Terpstra, I., deLeeuw, W. C., Kuzak, M., Rauwerda, H., Ensink,
W. A., vanLeeuwen, S., Nehrdich, U., Spaink, H. P., Jonker, M. J., Breit, T. M.,
and Dekker, R. J. (2015). Improving small RNA-seq by using a synthetic spike-
in set for size-range quality control together with a set for data normalization.
Nucleic Acids Research, page gkv303. 119

Lohse, M., Bolger, A. M., Nagel, A., Fernie, A. R., Lunn, J. E., Stitt, M., and Us-
adel, B. (2012). RobiNA: a user-friendly, integrated software solution for RNA-
Seq-based transcriptomics. Nucleic Acids Research, 40(W1):W622–W627. 39

Loong, S. N. K. and Mishra, S. K. (2007). Unique folding of precursor microR-
NAs: Quantitative evidence and implications for de novo identification. Rna,
13(2):170–187. 27

Lopez-Gomollon, S., Beckers, M., Rathjen, T., Moxon, S., Maumus, F., Moho-
rianu, I., Moulton, V., Dalmay, T., and Mock, T. (2014). Global discovery
and characterization of small non-coding RNAs in marine microalgae. BMC
Genomics, 15(1):697.

Lopez-Gomollon, S., Mohorianu, I., Szittya, G., Moulton, V., and Dalmay, T.
(2012). Diverse correlation patterns between microRNAs and their targets dur-
ing tomato fruit development indicates different modes of microRNA actions.
Planta, 236(6):1875–1887. 51

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biology,
15(12):550. 2, 22, 25, 36, 39, 56

Lowe, T. M. and Eddy, S. R. (1997). tRNAscan-SE: A Program for Improved De-
tection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Research,
25(5):0955–964. 102

Lu, Y. Z. and Liu, J. (2010). In silico identification of MicroRNAs and their
targets in diatoms. African Journal of Microbiology Research, 4(13):1433–1439.
98, 99

MacLean, D., Moulton, V., and Studholme, D. J. (2010). Finding sRNA gener-
ative locales from high-throughput sequencing data with NiBLS. BMC bioin-
formatics, 11(1):93. 28, 31, 117

MacRae, I. J., Zhou, K., and Doudna, J. A. (2007). Structural determinants
of RNA recognition and cleavage by Dicer. Nature Structural & Molecular
Biology, 14(10):934–940. 6



REFERENCES 130

MacRae, I. J., Zhou, K., Li, F., Repic, A., Brooks, A. N., Cande, W. Z., Adams,
P. D., and Doudna, J. A. (2006). Structural Basis for Double-Stranded RNA
Processing by Dicer. Science, 311(5758):195–198. 7

Malone, C. D. and Hannon, G. J. (2009). Small RNAs as guardians of the genome.
Cell, 136(4):656–668. 9, 28, 111

Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., and Gilad, Y. (2008).
RNA-seq: An assessment of technical reproducibility and comparison with gene
expression arrays. Genome Research, 18(9):1509–1517. 16

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet.journal, 17(1):pp. 10–12. 35

Mathelier, A. and Carbone, A. (2010). MIReNA: finding microRNAs with high
accuracy and no learning at genome scale and from deep sequencing data.
Bioinformatics, 26(18):2226–2234. 28

Matlin, A. J., Clark, F., and Smith, C. W. J. (2005). Understanding alternative
splicing: towards a cellular code. Nature Reviews. Molecular Cell Biology,
6(5):386–398. 11

Maza, E., Frasse, P., Senin, P., Bouzayen, M., and Zouine, M. (2013). Com-
parison of normalization methods for differential gene expression analysis in
RNA-Seq experiments: A matter of relative size of studied transcriptomes.
Communicative & Integrative Biology, 6(6):e25849. 118

McCormick, K. P., Willmann, M. R., and Meyers, B. C. (2011). Experimental de-
sign, preprocessing, normalization and differential expression analysis of small
RNA sequencing experiments. Silence, 2(1):2. 16, 17, 18, 23, 36

Meister, G. and Tuschl, T. (2004). Mechanisms of gene silencing by double-
stranded RNA. Nature, 431(7006):343–349. 7, 8, 9

Mello, C. C. and Conte, D. (2004). Revealing the world of RNA interference.
Nature, 431(7006):338–342. 1, 6

Mller, S., Rycak, L., Winter, P., Kahl, G., Koch, I., and Rotter, B. (2013).
omiRas: a Web server for differential expression analysis of miRNAs derived
from small RNA-Seq data. Bioinformatics, 29(20):2651–2652. 39

Mohorianu, I. (2012). Deciphering the regulatory mechanisms of small RNAs in
plants. PhD thesis, University of East Anglia, Norwich. 28

Mohorianu, I., Lopez-Gomollon, S., Schwach, F., Dalmay, T., and Moulton, V.
(2012). FiRePatFinding Regulatory Patterns between sRNAs and Genes. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(3):273–
284. 44



REFERENCES 131

Mohorianu, I., Schwach, F., Jing, R., Lopez-Gomollon, S., Moxon, S., Szittya,
G., Sorefan, K., Moulton, V., and Dalmay, T. (2011). Profiling of short RNAs
during fleshy fruit development reveals stage-specific sRNAome expression pat-
terns. The Plant Journal, 67(2):232–246. 36, 54

Mohorianu, I., Stocks, M. B., Wood, J., Dalmay, T., and Moulton, V. (2013).
CoLIde: A bioinformatics tool for CO-expression based small RNA L oci Ide
ntification using high-throughput sequencing data. RNA Biology, 10(7):1221–
1230. 31, 117

Molnr, A., Schwach, F., Studholme, D. J., Thuenemann, E. C., and Baulcombe,
D. C. (2007). miRNAs control gene expression in the single-cell alga Chlamy-
domonas reinhardtii. Nature, 447(7148):1126–1129. 8, 98, 100, 102

Morey, J. S., Ryan, J. C., and Dolah, F. M. V. (2006). Microarray validation:
factors influencing correlation between oligonucleotide microarrays and real-
time PCR. Biological Procedures Online, 8(1):175–193. 56

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008).
Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature
methods, 5(7):621–628. 15, 20, 35

Moxon, S., Schwach, F., Dalmay, T., MacLean, D., Studholme, D. J., and Moul-
ton, V. (2008). A toolkit for analysing large-scale plant small RNA datasets.
Bioinformatics, 24(19):2252–2253. 28, 30, 117

Mueller, T. (2006). H2 Database Engine. http://www.h2database.com/html/

main.html. [Online; accessed 2016-01-28]. 63

Nicolas, F. E., Hall, A. E., Csorba, T., Turnbull, C., and Dalmay, T. (2012).
Biogenesis of Y RNA-derived small RNAs is independent of the microRNA
pathway. FEBS Letters, 586(8):1226–1230. 12, 13

Nicolas, F. E., Moxon, S., Haro, J. P. d., Calo, S., Grigoriev, I. V., Torres-
Martnez, S., Moulton, V., Ruiz-Vzquez, R. M., and Dalmay, T. (2010). En-
dogenous short RNAs generated by Dicer 2 and RNA-dependent RNA poly-
merase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic
Acids Research, 38(16):5535–5541. 6

Norden-Krichmar, T. M., Allen, A. E., Gaasterland, T., and Hildebrand, M.
(2011). Characterization of the Small RNA Transcriptome of the Diatom,
Thalassiosira pseudonana. PLoS One, 6(8):e22870. xv, 97, 98, 99, 101, 106

O’Brien, C. A. and Wolin, S. L. (1994). A possible role for the 60-kD Ro au-
toantigen in a discard pathway for defective 5s rRNA precursors. Genes &
Development, 8(23):2891–2903. 94

Pereboom, J. J. M., Jordan, W. C., Sumner, S., Hammond, R. L., and Bourke, A.
F. G. (2005). Differential gene expression in queenworker caste determination in
bumble-bees. Proceedings of the Royal Society of London B: Biological Sciences,
272(1568):1145–1152. 67

http://www.h2database.com/html/main.html
http://www.h2database.com/html/main.html


REFERENCES 132

Pfennig, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlichting,
C. D., and Moczek, A. P. (2010). Phenotypic plasticity’s impacts on diversifi-
cation and speciation. Trends in Ecology & Evolution, 25(8):459–467. 66
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Figure A.1: H (Human) data: The effect of varying the alignment window length
when derving an offset based on the Kullback-Leibler divergence on strand bias.
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Figure A.2: F (Arabidopsis) data conditions col0 and es: The effect of varying the
alignment window length when derving an offset based on the Kullback-Leibler
divergence on strand bias.
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Figure A.3: F (Arabidopsis) data conditions esr and rdr: The effect of varying the
alignment window length when derving an offset based on the Kullback-Leibler
divergence on strand bias.
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Appendix C

Additional annotation

information

Table C.1: Number of sequences belonging to each annotation type split by a
sequence’s expression pattern for the ro60 experiment

type DD DS SD SS SU UD US
SRP 0 0 1 0 0 0 0
UTR 0 1 2 55 0 0 17
YRNA 0 0 0 5 0 0 3
exon 0 25 12 648 0 0 289
intron 1 27 17 330 0 1 78
lincRNA 1 15 9 126 0 0 21
miRNA 4 18 9 52 0 0 4
misc 0 0 0 7 0 0 0
rRNA 5 55 32 383 0 0 20
snRNA 0 6 2 35 0 0 3
snoRNA 7 98 32 396 0 1 43
tRNA 1 23 14 227 1 2 82
unannotated 2 32 23 268 0 1 24
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Appendix D

Predicted miRNAs in diatoms
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