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Abstract 
Campylobacter jejuni is the leading cause of bacterial foodborne poisoning in the developed 

world. The impact of infection is mainly economic, however the disease can lead to severe 

post infection complications, such as Guillain–Barré syndrome. Despite the fastidious nature 

of C. jejuni, it is able to survive food chain transit. One survival mechanism proposed to aid 

in C. jejuni food chain survival is its formation of, or incorporation into, biofilms. 

Biofilms are defined as a surface attached microbial population, surrounded by a self-

produced extracellular matrix. Previous work has shown that biofilm formation by C. jejuni is 

increased in food chain relevant conditions, but C. jejuni biofilms have received little 

attention compared to other foodborne pathogens. The work presented here investigated 

how biofilms may enable C. jejuni survival within the food chain. In order to achieve this aim, 

investigation was carried out into three complementary areas. 

Initial investigations showed that supplementation of medium with chicken juice increased C. 

jejuni biofilm formation, due to the chicken juice conditioning the surface and allowing easier 

attachment of C. jejuni. In order to distinguish between the biofilm population and surface 

attached particulates, a novel method of staining C. jejuni biofilms, using a metabolic 

formazan dye, was developed and optimised. As biofilm formation by C. jejuni is relatively 

poorly understood, a broad investigation was performed to increase understanding of C. 

jejuni biofilm formation and structure. Finally, the role of extracellular DNA within the 

extracellular matrix was investigated.  

The results presented here suggest that C. jejuni is able to utilise biofilm formation as a food 

chain survival mechanism. However biofilm persistence can be limited by enzymatic 

treatment of the biofilm and thorough cleaning of surfaces, limiting the potential for surface 

contamination.  
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 Bacterial biofilms 1.1

1.1.1 Definition of a biofilm 

Biofilms are surface-, or self-attached bacterial colonies surrounded by, and embedded in, 

an extracellular matrix (ECM). This ECM is comprised of proteins, polysaccharides, nucleic 

acids and phospholipids (Hall-Stoodley et al., 2004). A graphical representation of a biofilm 

is shown in Figure 1-1. Biofilms have a highly organised structure, and can be found on a 

variety of biological and non-biological surfaces (Jayaraman, 2008), or free floating pellicles. 

They can be composed of a single bacterial species, although in environmental conditions it 

is more typical to see multiple species of bacteria within the biofilm (Abee et al., 2011).   

 

Figure 1-1 Graphical representation of attached and free floating biofilms 

Representation of simple multispecies biofilms showing the architecture of the biofilm and its 

surrounding ECM.  Biofilms are often found as either attached, free floating colonies (left of image) or 

attached colonies (right of image). Due to the density of many biofilms, a diffusion gradient of gases, 

nutrients and other components such as antimicrobials is frequently present, with concentrations 

decreasing from the outer to lower levels.  

Several fungal species, such as Aspergillus sp. and Candidia albicans, have also been 

shown to be able to form de novo biofilms, and integrate into existing biofilms (Liu et al., 

2014). Viruses, in particular bacteriophages, have also been found within biofilms, utilising 

the dense bacterial populations to assist in their spread (Chan and Abedon, 2015). Cells 

within the biofilm often have an altered metabolism with many entering a quiescent state 

(Williamson et al., 2012). This allows the cells not only to survive on the limited nutrients 

found in their immediate locality (Zhang et al., 2013), but also increases resistance to 

antimicrobials (Sawasdidoln et al., 2010), since many antimicrobials only act on actively 

growing cells. A diffusion gradient is also present within the biofilm, with the lower layers of 

the biofilm being less rich in metabolites and, in aerobic conditions, oxygen (Stewart, 2003). 
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The study of biofilms is a relatively new field of microbiology, developing over the last 30 

years. It is now recognised that the majority of bacteria form biofilms in natural 

environments, rather than growing in the free swimming (planktonic) form, which is often 

used for maintenance of bacteria in laboratory conditions (Svensson et al., 2009, 

Sutherland, 2001). The term „biofilm‟ has now become synonymous with all surface attached 

microbial growth. However, it should be noted that the term „biofilm‟ is not always an 

accurate description of attached populations. In many situations, attached populations do 

not progress from an initial attachment phase to the complex, ECM producing biofilm (Otter 

et al., 2015). These „attached but not biofilm‟ populations are no less detrimental to human 

health, or surface fouling, particularly if formed on medically (Otter et al., 2015) or food 

relevant surfaces (Herald and Zottola, 1988), however the term biofilm should still be used 

with caution in these cases. This is because their lack of structure distinguishes them from 

true biofilms. In these situations the term „biotransfer potential‟ has been suggested, as it 

can be used to describe any microorganisms associated with a surface with the potential to 

cause contamination (Hood and Zottola, 1995). „Biofouling‟ can also be used to describe 

both attachment and biofilm formation in areas where biofilm formation is considered a 

contamination, examples of which include ships hulls (Hunsucker et al., 2014), medical 

devices (Costerton et al., 1999) and food industry surfaces (Srey et al., 2013). 

1.1.1.1 Milestones within the study of biofilms  

Although oral biofilms were described by van Leeuwenhoek in the late seventeenth century 

(Hannig et al., 2010), it was not until the late 1970s that detailed investigation of biofilms was 

carried out. It is widely recognised that the pioneer of the biofilm field was Bill Costerton, 

initially describing biofilm communities within streams and rivers, but later carrying out 

research into biofilm formation in medical systems (Lappin-Scott et al., 2014). Biofilms 

rapidly became recognised as the way in which the majority of bacteria survive, and over the 

last 30 years research into biofilm growth and formation has increased dramatically (Figure 

1-2). 
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Figure 1-2 The study of biofilms has increased significantly over a 30 year period 

Citation report for a Web of Science search for the term „biofilm‟ within a journal article title.  Graphs 

show the number of research papers published (A) and the number of citations within research articles 

(B) over a 30 year period (1984 to 2014). The Y axis indicates years in both graphs and the X axis 

indicated the numbers of papers published with this search term within the title. 

1.1.1.2 Organisms of relevance 

Two model organisms quickly emerged within the biofilm field: Pseudomonas aeruginosa, a 

Gram negative aerobe of interest due to its role in opportunistic human infections (Klausen 

et al., 2003b), and Staphylococcus epidermidis, a Gram positive bacteria able to cause 

nosocomial infections (Otto, 2014). These two model bacterium are of medical relevance, 

have well defined molecular protocols, are relatively easy to maintain in vitro and manipulate 

genetically, as well as being able to form biofilms in both static and flowing conditions. To 

date, many investigators have concentrated their studies on these two bacterial species, 

although within the last decade the study of other biofilm-forming human pathogens 

including Listeria monocytogenes, Staphylococcus aureus, Burkholderia cepacia, Vibrio 

cholerae and Escherichia coli has also increased. 

http://en.wikipedia.org/wiki/Vibrio_cholerae
http://en.wikipedia.org/wiki/Vibrio_cholerae
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1.1.1.3 Extracellular matrix 

Biofilms are very complicated structures, requiring coordinated behavior from the bacteria 

within the structure in order to maintain the biofilms architecture and ECM (Stoodley et al., 

2002). Since many biofilms are comprised of multiple species this organisation can be highly 

complex and is still relatively poorly understood. Advances in staining and imaging 

techniques have allowed investigators to gain an insight into the composition of the ECM 

and the architecture of the biofilm. It has long been known that the ECM contains 

polysaccharides, however work in 2002 by Whitchurch et al. (2002) indicated that 

extracellular DNA (eDNA) is also a component of the ECM in P. aeruginosa. During early 

stages of biofilm formation the degradation of this eDNA led to dispersal of the biofilm 

(Whitchurch et al., 2002). Since the publication of this seminal work, other studies have 

shown that eDNA plays a very important role in biofilm formation, structure and maintenance 

of the biofilms of other species (the role of eDNA in Campylobacter jejuni biofilms is 

discussed in more detail in 6 and 7).  

1.1.1.4 Communication within the biofilm community 

Quorum sensing (QS) is a well-recognised system of bacterial 'communication', allowing 

bacteria of the same species to sense population density and alter their gene expression in 

response (Miller and Bassler, 2001). The organisation of bacteria within the biofilm was 

proposed to require a form of sensing and communication due to its complexity. Most QS 

systems described are utilised for intra-species communication, producing unique molecules 

which are only recognised by other members of their species. Large multi-species biofilm 

communities require a global communication system which can be recognised by many 

different species. A system described by Bassler et al. (1994) utilises Autoinducer 2 (AI-2). 

Which is both produced and detected by multiple bacterial species. AI-2 is a by-product of 

the S-Adenosyl methionine cycle, and produced by the protein LuxS (Peixoto et al., 2014). It 

was first identified due to its ability to coordinate bioluminescence in the marine bacterium 

Vibrio harveyi. More recently investigators have focused on how AI-2 is able to be utilised by 

biofilm communities. Addition of exogenous AI-2, or inactivation of luxS has been shown to 

affect biofilm formation by E. coli (Niu et al., 2013), L. monocytogenes (Challan Belval et al., 

2006) and Salmonella typhimurium (Miller et al., 2004). More recently investigators have 

attempted to utilise the AI-2 system to manipulate biofilm communities (discussed in Section 

1.1.6.1). It should however be noted that although many bacterial species are able to 

produce AI-2 as part of their metabolism, its use as a QS molecule may be more limited, 

since not all bacterial species contain a homologue of the AI-2 receptor LuxR (Rezzonico 

and Duffy, 2008). Although it is possible that other, unknown, detection systems are utilised, 

investigators have proceeded more cautiously when investigating the effect of AI-2, its 

quenchers, or inactivation of the LuxS protein on biofilm formation. C. jejuni is one example 

of a bacterium which contains LuxS, and is able to produce AI-2 (Elvers and Park, 2002), but 

to date no receptor has been found and the alterations in phenotype following inactivation of 

the luxS gene cannot wholly be attributed to QS, since deletion also leads to metabolic 

alterations (Holmes et al., 2009, Adler et al., 2014). 

1.1.1.5  Experimental models of biofilm formation 

To date, many biofilm studies have been carried out using single species models. However, 

in environmental niches such as the mouth, food processing plants and water systems, 

multispecies, or even multi-kingdom, biofilms are the dominant microbial lifestyle (Jahid and 

Ha, 2014). Until recently, it was necessary to focus investigation on single species biofilms, 

since the complexity of multispecies models confounded effective data analysis and 

interpretation. Recent advances in omics technologies (including metagenomics, 
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transcriptomics, metabolomics and proteomics) and analytical software has allowed biofilms 

of increasing complexity to be analysed. Mathematical modelling has also allowed 

multispecies behaviour to be better predicted, allowing bench scientists to more effectively 

design multispecies biofilm experiments. These advances have allowed investigation of 

more complex biofilm communities, of which one well studied model system is the oral 

biofilm community. Oral communities can be comprised of up to 700 different species, both 

commensal and pathogenic (Zijnge et al., 2010). Dominant members of the oral community 

are from the Bacilli, Gammaproteobacteria, Clostridia and Bacteroidies families (Belda-Ferre 

et al., 2012), although the exact species composition and ratio is variable depending on the 

individual host. Recent metabolic analysis of multispecies oral biofilms by Frias-Lopez and 

Duran-Pinedo (2012) indicated that the presence of dental pathogens such as 

Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans lead to altered 

expression of ABC transporters and chaperones in oral mixed species commensal bacteria 

communities. Work such as this would not be possible without the foundation of single 

species analysis, or the recent advances in technology and data analysis software. 

As well as increasing the complexity of biofilm models, it has also now become possible to 

analyse single cell interactions within the biofilm. Connell et al. (2013) have developed a 

method of trapping single cells within a permeable gel 'cage'. This allows the cell to receive 

and deliver soluble signals but not directly interact with other bacterial cells. Since cells 

within the biofilm are often immobilised within the ECM this work closely models the 

interactions possible within the biofilm. Examples such as these show that the field of biofilm 

study is both rapidly expanding and evolving, allowing more refined analysis of the complex 

cell-cell interactions to be performed. 

1.1.2 Biofilm formation and dispersal 

The biofilm is formed in four stages; initial attachment, microcolony formation, maturation, 

and cell shedding or dispersal. Full maturation of the biofilm can take several weeks, 

however initial attachment of bacteria to a surface may be complete within a few seconds 

(Monroe, 2007). The mature biofilms' shape is characterised by the species it contains, the 

turbidity and flow of the surrounding liquid, and the composition if the ECM (Pamp et al., 

2009). Figure 1-3 shows a typical example of biofilm initiation and maturation. 
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Figure 1-3 Diagrammatic representation of the four stages of biofilm formation. 

Diagrammatic representation of the development of a simple multispecies biofilm.  At stage 1 single 

cells become attached to the surface and begin to divide, forming micro-colonies (stage 2).  

Additionally, planktonic bacteria are able to integrate into the biofilm, further increasing its biomass.  As 

the biofilm matures (stage 3) it develops a complex architecture and ECM is produced, providing 

structural support for the cells within the biofilm.  Cells can be shed from the biofilm (stage 4), either 

actively or passively, moving back into the planktonic phase, potentially attaching in other areas or 

joining other, pre-existing biofilms. 

1.1.2.1 Initial surface attachment 

Biofilm formation is initiated when cells flowing across the surface are able to attach to the 

surface. Many abiotic surfaces are naturally repellent to bacteria since they have hydrophilic 

properties, similar to that of the bacterial cells themselves (Chmielewski and Frank, 2003). 

Initial attachments are weak, and as such attachment is likely to be temporary. This 

temporary attachment process will occur on multiple occasions before a firm attachment can 

be established. Firm attachment to the surface can be achieved by the secretion of ECM, 

effectively used as a type of 'glue' by many bacterial species during initial attachment. The 

flagella and fimbriae are also useful tools during initial attachment (Utada et al., 2014), 

allowing cells to move towards the surface, overcome fluid flow and surface repellence, as 

well as assisting in forming both temporary and permanent surface attachments. 

1.1.2.2 Microcolony formation 

Once the bacterial cells have become permanently attached to a surface they are able to 

initiate biofilm formation itself.  Initially cells attached to the surface begin to divide, forming 

microcolonies (Sriramulu et al., 2005). In addition planktonic cells are able to integrate into 

the microcolonies, increasing their size. As the microcolonies increase in size they begin to 

form organised structures and produce ECM (Wilkins et al., 2014). One function of the ECM 

is to form a mechanical support for the cells (Abee et al., 2011). It is secreted by the bacteria 

with in the biofilm and is typically comprised of polysaccharides, proteins, lipids and nucleic 
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acids (Abee et al., 2011), although specific composition and ratios of components is species 

and environment dependent. The majority of the mass of the ECM is water, and of the 

remaining components, proteins typically constitute the greatest fraction, comprising 

approximately 75% of the dry ECM (Sutherland, 2001). Polysaccharides, long molecules 

which are linear or branched (Mouw et al., 2014), are also a major component of the ECM, 

these are. Polysaccharides are very diverse, even within species, for example P. aeruginosa 

produces at least three distinct polysaccharides all of which contribute to biofilm 

development (Flemming and Wingender, 2010). The ECM accounts for up to 90% of the 

biofilm biomass (Yonezawa et al., 2011) and it is integral to the biofilms structure, providing 

a scaffold for the cells, maintaining the biofilms architecture and trapping nutrients, enzymes 

and allowing efficient cell to cell communication to take place (Flemming and Wingender, 

2010). ECM composition affects the porosity, density, water content, charge, sorption 

properties, hydrophobicity, and mechanical stability of the biofilm (Flemming et al., 2007). 

Further to its function as an organic scaffold the ECM also provides protection to bacteria 

from external dangers such as phages, antimicrobial solutions and mechanical removal 

(Hunter, 2008).   

1.1.2.3 Biofilm maturation 

Mature biofilms are able to form a variety of shapes, the best described of which is the 

formation of „mushroom-like‟ structures. These are typically formed within systems with liquid 

movement (Klausen et al., 2003a). This shape, with a wide, flattened upper section and 

narrower „stalk‟ (Figure 1-4), allows the cells to remain fixed in a static position, while fluid is 

able to move through the biofilm, providing a source of fresh nutrients and removing waste 

products (Singh et al., 2006). Liquid flow may also allow „streamer‟ formation. Streamers are 

sections of the biofilm which form long fronds able to move in the current. These streamers 

are able to rapidly clog pipelines in liquid systems (Drescher et al., 2013), or blood vessels in 

systemic in vivo infections (Kim et al., 2014). 

 

Figure 1-4 Image of 'mushroom like' biofilm structures 

Confocal laser scanning microscope image fromKlausen et al. (2003a) showing P. aeruginosa biofilms 

formed under flow conditions and displaying the mushroom like architecture. The scale bar indicates 

20 µm. 

To date, much of the work on biofilm structure has been carried out in flow cell systems, 

allowing liquid movement, and effective nutrient flow. It should however be noted that 

biofilms formed under static conditions form different shapes to those in flowing systems. 
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Biofilms formed on agar, or as pellicles in static liquid systems, often form large circular 

colonies with wrinkles (Figure 1-5). These biofilm types are particularly well studied in 

Bacillus subtilis (Trejo et al., 2013) and Pseudomonas sp. (Spiers et al., 2003) but can be 

formed by many different bacterial species including C. jejuni (Joshua et al., 2006). 

 

Figure 1-5 B. subtilis biofilms formed in static conditions displaying a wrinkled pellicle 

morphology. 

Image of B. subtilis strains NCIB 3610 (A) and DV1 (B) biofilms formed following ∼67 h of incubation at 

23°C. The images show pellicles floating at the surface and displaying a wrinkled morphology typical of 

biofilms formed following static incubation.  Image taken from Trejo et al. (2013).  

1.1.2.4 Biofilm dispersal 

The final stage of biofilm formation is the dispersal stage. Here cells are either passively 

shed, or actively dispersed from mature biofilms. The exact mechanism of dispersal is 

dependent on the species within the biofilm. Shedding can occur for various reasons, 

including mechanical abrasion (Verkaik et al., 2010), shearing by fluid flow (Ymele-Leki and 

Ross, 2007), or grazing by predators (Monnappa et al., 2014). In contrast, dispersal occurs 

when the bacteria within the biofilm respond to self-produced or environmental signals and 

initiate degradation of the ECM allowing their release from the biofilm. Dispersal has been 

reported in S. aureus (Mann et al., 2009), P. aeruginosa (Howlin et al., 2011), Haemophilus 

influenzae (Cho et al., 2014) and V. cholerae (Warner et al., 2014). Active dispersal is 

controlled by small molecules such as AI-2 (Abee et al., 2011), nitric oxide (Howlin et al., 

2011) or environmental cues (Sawyer and Hermanowicz, 1998, Hunt et al., 2004, Jager et 

al., 2005). Cells within the biofilm are able to respond to such stimuli, producing enzymes 

such as DNase (Mann et al., 2009) or dispersin B (Ramasubbu et al., 2005) which degrade 

the ECM and release them from the biofilm. The dispersal stage of biofilm formation is 

arguably the most important life stage as it allows colonisation and contamination of new 

areas or, where biofilms form in vivo, the development of systemic infections. 
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1.1.3 Biofilms in environmental settings 

Study of many environmental biofilm systems has been confounded by their complexity and 

lack of ability to cultivate many of the species within the communities (Davey and O'Toole, 

2000). Recent advances in 'omics technologies have allowed better analysis of these 

complex communities. Well described environmental communities include: drinking water 

biofilms (Wingender and Flemming, 2011), the hot spring systems in Yellowstone park 

(Bowen De Leon et al., 2013) and bacterial communities found in acidic mine drainage water 

(Yelton et al., 2013). It should be noted that many pathogenic bacteria able to form biofilms 

are opportunistic pathogens, typically found in environmental communities.  Examples 

include P. aeruginosa, a widespread bacterium found in soil (Gans et al., 2005) and 

waterways (Rusin et al., 1997), and V. cholerae, which forms biofilms on chitinous insect 

exoskeletons (Lutz et al., 2013). Environmental biofilms are also integral to procedures such 

as waste water treatment (Sutherland, 2001, Hunter, 2008), making their study and 

maintenance of great important to human health. 

1.1.4 The role of biofilms in microbial pathogenesis 

The biofilms of pathogenic bacteria are of great interest, as biofilm formation naturally 

confers a resistance phenotype (Jolivet-Gougeon and Bonnaure-Mallet, 2014). The ECM, 

although not the main source of antimicrobial resistance (Patel, 2005), also contributes to 

increased resistance phenotypes. It is able to decrease antimicrobial penetration and in 

some cases inactivate antimicrobials (Billings et al., 2013). Genetic material can be 

effectively exchanged within biofilms due to the close proximity of the bacteria, exposure of 

cells to sub-lethal doses of antimicrobials and their uptake of DNA directly from the ECM. 

These factors contribute to the spread of resistance phenotypes throughout the biofilm 

population (Madsen et al., 2012).  

Biofilms also provide a reservoir, which pathogenic bacteria are able to utilise, moving from 

the biofilm to colonise new areas. Bacteria are also able to integrate into the biofilm 

community during periods of antimicrobial treatment, utilising the biofilms protective 

environment. Many important human pathogens are able to form biofilms. Three important 

areas of medical biofilm investigation will be reviewed in Sections 1.1.4.1 to 1.1.4.3: biofilm 

formation on implants, the contribution of biofilms to cystic fibrosis infections and wound 

infection biofilms. 

1.1.4.1 Biofilm formation on implants 

As surgical procedures increase in complexity, patients often require immobilisation and 

support of vital functions for extended periods of time (Bunker, 2001). In these instances 

patients are also at higher risk of infection and two well recognised biofilm infection 

reservoirs include ventilators (Browne et al., 2014) and catheters (Iacovelli et al., 2014). 

These not only are able to introduce bacteria into the body of potentially immuno-

suppressed patients, but also provide bacteria within the body with a surface on which they 

are able to attach and form a biofilm, therefore evading antimicrobial treatment and attack by 

the hosts immune system. 

Implant biofilms are frequently found to contain only a single species, typically an 

opportunistic pathogen. Ventilator associated pneumonia (VAP) is a significant risk for 

patients undergoing mechanical ventilation. VAP occurs in up to 30% of patients (Chastre 

and Fagon, 2002), with an increasing incidence as the time ventilation is required is 

increased. Contraction of VAP increases patient morbidity and mortality and incurs a 

significant treatment cost as patients require longer hospitalisation and antibiotic treatment 

(Chastre and Fagon, 2002). VAP can be caused by various bacterial species, including P. 
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aeruginosa, S. aureus and Klebsiella pneumonia. A link has been identified between 

patients‟ oral health and VAP, and a recent study has shown that better oral hygiene and 

monitoring of patients undergoing mechanical ventilation significantly reduced the incidence 

of VAP (Rello et al., 2010). This suggests colonisation of the ventilation tubing occurs via an 

oral route, with pathogenic bacteria utilising the oral biofilm prior to VAP infection. 

Catheter-associated urinary tract infections (CAUTIs) are the most common hospital 

acquired (nosocomial) infection (Jacobsen et al., 2008), and biofilm involvement in CAUTIs 

leads to infection recurrence and complications in treatment of infection. E. coli, a member of 

the healthy urinary tract flora, is a frequent cause of urinary tract infections (Vollmerhausen 

et al., 2014), accounting for up to 80% of urinary tract infections (Stamm and Hooton, 1993). 

E. coli‟s ability to form biofilms is a significant contributor to its persistence and pathogenicity 

(Bielecki et al., 2014). 

1.1.4.2 Biofilm formation in the Cystic Fibrosis lung 

Cystic fibrosis (CF) biofilms have received significant attention over the last two decades 

due to their role in increasing patient mortality (Ciofu et al., 2013) and the involvement of the 

model biofilm organism P. aeruginosa in CF pathology (Hoiby et al., 2010b). CF patients 

produce thick, viscous mucus, which in their lungs is easily colonised by airborne bacterial 

and fungal species (Kreda et al., 2012). Infections are usually life-long and contribute 

significantly to morbidity and mortality. Many CF pathogens are opportunistic, able to cause 

infection in only susceptible, immuno-compromised individuals (Mahenthiralingam et al., 

2008, Gomez and Prince, 2007). Pathogenic, biofilm forming bacteria such as P. 

aeruginosa, S, aureus, B. cepacia, H. influenzae, Stenotrophomonas maltophilia and 

Mycobacterium absessus are frequently isolated from patient sputum samples (Coutinho et 

al., 2013). 

Research into CF pathogens is focused on two areas: treatments for the dispersal and killing 

of biofilm cells within the lungs, or discovery of the molecular mechanisms of pathogenesis 

and resistance. Some of the novel treatments developed will be discussed in more detail in 

Section 1.1.6, however a review of the extensive field of pathogenesis and resistance 

mechanism investigation is outside the scope of this work. Key research within the field is 

highlighted in reviews by Joo and Otto (2012) and Ciofu et al. (2014). 

1.1.4.3 Biofilm formation in wounds 

The formation of biofilms in wounds leads to chronic and persistent infections which can 

often only be cleared by debridement of the infection site (Cowan et al., 2013). Up to 90% of 

chronic wound infections contain biofilms (Attinger and Wolcott, 2012) and biofilm 

involvement has significant cost implications, recently estimated at $20 billion each year in 

the USA (Cowan et al., 2013). Although biofilm-associated wound infections have the 

potential to develop in any wound, they are frequently encountered in diabetic patients, 

following the development of ulcers on the feet and lower legs. Diabetic patients account for 

80% of all non-traumatic lower extremities amputation around the world (Berlanga-Acosta et 

al., 2014), and biofilm associated infections negatively impact treatment outcomes (Zubair et 

al., 2012). Although infections are typically multispecies in nature (Dalton et al., 2011), they 

are often dominated by Gram positive bacteria such as Staphylococcus sp. (James et al., 

2008). 

Treatment of the wound infections focuses around debridement, draining, and packing with 

antimicrobial materials. Specialized dressings containing honey or antimicrobial metals such 

as silver are frequently used (discussed in more detail in Sections 1.1.6.2 and 1.1.6.4 
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respectively). Debridement can be mechanical, although more recently insect larvae have 

been used with great success (Menon, 2012). Laval treatment, particularly using the 

maggots of the blow fly, is successful since it utilises four synergistic factors: the action of 

the maggots feeding stimulates wound drainage, the maggots destroy necrotic tissue and 

encourage formation of granulation tissue, and finally, the secretions of the maggots are 

antimicrobial, reducing the potential for further infection (Jaklic et al., 2008, Cazander et al., 

2013). Studies have shown that maggot treatment was effective in over 80% of patients, and 

bacteria such as group G and C Streptococcus, Klebsiella sp., Serratia marcescens, S. 

aureus and P. aeruginosa were susceptible to the antibiotic properties of the maggot 

secretions (Jaklic et al., 2008). 

1.1.5 Biofilm formation within the food chain 

Biofilms are frequently detected in many different areas of poultry processing plants, from 

conveyor belts (Lindsay et al., 1996) and stainless steel surfaces (Sanders et al., 2008) to 

floor sealant (Blackman and Frank, 1996). Biofilms have also been detected in many areas 

of the home (Marshall et al., 2012), including the kitchen sink (Furuhata et al., 2010). The 

proximity of biofilms to areas of food preparation and human habitation contributes to the 

risk of food pathogen consumption. Although it should be acknowledged that many of the 

bacterial species found within these biofilms will not impact on human health, there is a 

possibility that these biofilms will contain species able to cause human infection. Foodborne 

pathogens such as C. jejuni, E. coli, Salmonella sp. and L. monocytogenes have all been 

shown to be capable of either forming biofilms or integrating into existing biofilms.  C. jejuni 

biofilm formation will be discussed in more detail in Section 1.6. Sections 1.1.5.1 to 1.1.5.3 

discuss biofilm formation by three other common foodborne, biofilm forming bacterial 

pathogens. 

1.1.5.1 Biofilm formation by E. coli 

Infection by foodborne E. coli has a higher hospitalisation rate than Salmonella sp. or 

Campylobacter sp. infection (Lim et al., 2010) due to the severity of the illness and the ability 

of some E. coli strains to produce shiga toxin, which is associated with the development of 

hemolytic uremic syndrome (HUS) and renal failure (Belongia et al., 2003). Shiga toxin 

producing strains such as those of serotype O157 and O104 have been responsible for 

several outbreaks, the most recent of which was in Germany in 2011. This outbreak, 

attributed to contamination of bean sprouts with bovine faeces, had a total of 3043 confirmed 

cases, of which 877 developed HUS and 48 patients died (Rubino et al., 2011). 

The biofilm forming potential of E. coli is well recognised, and its ability to form biofilms 

during urinary tract infection has already been discussed in Section 1.1.4.1. In relation to 

food chain persistence, E. coli has been shown to form biofilms on glass, polystyrene and 

stainless steel at various temperatures, although some strain specificity can be observed 

(Nesse et al., 2014). Strains of E. coli O157:H7 has been shown to produce thick biofilms in 

response to environmental stresses such as nutrient limitation (Sharma et al., 2005), acidic 

and alkaline conditions, high temperatures and high hydrostatic pressure treatments 

(Alvarez-Ordonez et al., 2013). 

1.1.5.2 Biofilm formation by Salmonella sp. 

There were 1.6 million confirmed cases of Salmonella infection in the EU between 1999 and 

2008, the majority of which were attributed to consumption of undercooked or contaminated 

food stuffs (Le Hello et al., 2011). Two serotypes, Typhimurium and Enteritidis, are most 

commonly associated with disease in humans, although other serotypes are reported to 

cause disease in both poultry and humans (Barrow, 2000). 
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Biofilm formation is recognised as a survival mechanism of Salmonella sp., with biofilm 

forming strains more able to survive desiccation (Iibuchi et al., 2010), low nutrient conditions 

also promote increased biofilm formation (Stepanovic et al., 2004). It is known that 

Salmonella sp. are able to form single species biofilms on various abiotic surfaces including 

plastic (Stepanovic et al., 2004), stainless steel (Giaouris et al., 2013), and food stuffs such 

as cantaloupe melon rinds (Annous et al., 2005). They also have the ability to integrate into 

preformed biofilms in bathrooms (Barker and Bloomfield, 2000) as well as forming biofilms 

on chitinous surfaces (Brandl et al., 2011). The Salmonella ECM is particularly rich in 

cellulose (Giaouris et al., 2013), and strains unable to form cellulose show reduced surface 

attachment and biofilm formation (Brandl et al., 2011). 

1.1.5.3 Biofilm formation by L. monocytogenes 

L. monocytogenes is typically only infectious to those with a suppressed immune-function, 

such as the elderly, very young, pregnant or immuno-compromised patients (Ouyang et al., 

2012). Infection is particularly severe and frequently progresses from a gastrointestinal 

pathology to systemic infection, causing meningitis, septicaemia, central nervous system 

infections and abortion in pregnant women (Gandhi and Chikindas, 2007). L. 

monocytogenes is particularly difficult to eradicate from foodstuffs as it is extremely tolerant 

to low temperatures, desiccation, and pH fluctuations. The bacterium is able to grow at 

temperatures as low as 0°C, and pH levels between 4.6 and 9.5 (Carpentier and Cerf, 

2011), as well as surviving in desiccating conditions for up to 91 days (Hansen and Vogel, 

2011). These characteristics allow L. monocytogenes to persist within the food chain for an 

extended period of time, with some food processing plants showing survival of specific 

strains for years (Szlavik et al., 2012, Pan et al., 2010). 

As with many other pathogens, the ability of L. monocytogenes to form biofilms shows strain 

specificity (Harmsen et al., 2010). Single species L. monocytogenes biofilms form a thin, 

homogenous layer in static conditions, and ball-shaped microcolonies when subjected to 

flow conditions. These attached colonies should be considered as true biofilms, rather than 

„attached populations‟, since they are shown to produce an ECM which contains eDNA (da 

Silva and De Martinis, 2013, Nguyen and Burrows, 2014, Harmsen et al., 2010). Biofilm 

formation also appears to be linked to low nutrient, high salt conditions (Pan et al., 2010), 

and L. monocytogenes is able to attach to stainless steel (Nguyen and Burrows, 2014), 

glass, plastic, and conveyor belts (Midelet and Carpentier, 2002). Biofilm formation has been 

shown to contribute to L. monocytogenes cross contamination, with biofilms providing a 

source of viable cells (Hansen and Vogel, 2011) which when detached, are able to 

contaminate ready-to-eat foods or other processing areas (Pan et al., 2010).   

1.1.6 Biofilm treatment and inhibition 

Most currently available antibiotics are only tested on planktonic bacterial cultures, and 

minimum inhibitory concentrations obtained from these experiments are used to inform 

clinical treatments (Keays et al., 2009). Biofilms are widely acknowledged to be up to 1000 

times more resistant to antimicrobial treatments than their planktonic counterparts (Olson et 

al., 2002). This, combined with the lack of novel antibiotics in the drug development pipeline 

(Clarke, 2003, Morel and Mossialos, 2010), has decreased the options for inactivation and 

removal of biofilms by traditional, antibiotic treatment. 

Recently, the problem of antimicrobial resistances has become an increasing part of the 

public consciousness (Murphy, 2013), and there has been a move towards novel antibiotic 

discovery and development. Reform of regulatory guidelines has now been undertaken in 

the USA, allowing safety trials to be completed more easily (Gupta and Nayak, 2014). 
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However, products developed as part of this drive will not be available for many years. 

Additionally antibiotics may still show decreased activity against biofilm infections compared 

to planktonic cells, and bacteria still have the potential to become resistant to new antibiotic 

treatments, as they have done with existing antibiotics. This problem has led to the 

investigation of novel biofilm treatment strategies, aimed at dispersal of the biofilm or 

inhibition of biofilm initiation (Brooks and Brooks, 2014). Although cells in biofilms are more 

resistant to antimicrobials than planktonic cells, once cells are released from the biofilm they 

frequently revert back to their previous levels of susceptibility (Kaplan, 2010). In Sections 

1.1.6.1 to 1.1.6.5 some of these novel approaches will be discussed in more detail. 

1.1.6.1 Biofilm dispersal 

Quorum sensing (discussed briefly in Section 1.1.1.4) has been shown to be responsible for 

several coordinated biofilm community behaviours, so its reduction or inhibition is a 

promising target. Treatments involve adding „quorum quenching‟ molecules into the system 

and allowing them to either competitively bind the QS receptors on the cells, or inactivate the 

QS molecules themselves. The biofilms‟ response to the addition of quorum quenching 

molecules depends on the exact QS system targeted. The small molecule cis-2-decenoic 

acid is able to inhibit de novo biofilm formation by P. aeruginosa, and promote biofilm 

dispersal (Davies and Marques, 2009). Similarly, N-acyl homo-serine lactone molecules, in 

conjunction with nutritional and environmental cues, were found to regulate biofilm formation 

and dispersal (Rice et al., 2005). 

Enzymatic treatment of biofilms has also received attention. Since many different biofilm 

forming species have been shown to contain eDNA within their ECM, several treatments 

utilising DNase enzymes have been used with some success. Impregnation of the 

biomaterial polymethylmethacrylate with DNase I decreased adherence of P. aeruginosa 

and S. aureus, without a detrimental effect on adhesion and proliferation of human cells 

(Swartjes et al., 2013). Human recombinant DNase dornase alpha (brand name 

Pulmozyme
®
) is used in the management of cystic fibrosis (Konstan and Ratjen, 2012), and 

it has also been shown to be a useful treatment for biofilms isolated from children with 

recurrent acute otitis media (Thornton et al., 2013). DNase I treatment has also been shown 

to reduce established Bordetella bronchiseptica and Bordetella pertussis biofilms from the 

mouse respiratory tract (Conover et al., 2011). In vitro treatment of Non-typeable H. 

influenzae biofilms with DNase I also allowed increased bacterial killing by β defensins 

(Jones et al., 2013), highlighting that even in biofilms where DNase I treatment does not 

have a direct biofilm reducing effect it can still be a useful addition to a treatment regimen. 

Although DNase has received a great deal of attention and has proven to be effective in a 

wide range of treatments, other enzymes have also recently been tested for their 

effectiveness in biofilm dispersal. Proteinase K has been shown to be able to degrade L. 

monocytogenes biofilms, both alone and in conjunction with DNase I treatment (Nguyen and 

Burrows, 2014). 

1.1.6.2 Novel compound discovery 

Several foodstuffs contain antimicrobial compounds, and recently there has been significant 

interest in the use of substances such as honey, garlic and essential oils in biofilm 

treatments. These treatments are of particular interest to the food industry as some, 

potentially antimicrobial, ingredients are already in use as flavourings or marinades, and as 

such are well accepted by the public. „Antimicrobial marinades‟ using combinations of honey, 

mustard, pomegranate, red wine, lemon juice, vinegar and soy sauce have been shown to 

reduce C. jejuni numbers on chicken meat (Birk et al., 2010). Recent work by Hernández-

Ochoa et al. (2011) has also shown that the essential oils of clove and cumin showed 
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antimicrobial activity against E. coli, L. monocytogenes, Salmonella enterica, C. jejuni, S. 

aureus and Bacillus cereus. 

Honey, in particular manuka honey, is recognised as an effective method of treating medical 

biofilms, although to date there has been little study of its potential applications within the 

food chain. Honey impregnated dressings have been shown to decrease healing time for 

burn wounds (Moore et al., 2001) and it has also been shown to have antimicrobial activity 

against P. aeruginosa, and methicillin resistant strains of S. aureus (Lu et al., 2014). When 

used in combination with antibiotic treatments honey has been shown to increase antibiotic 

killing (Jenkins and Cooper, 2012, Campeau and Patel, 2014). This, in combination with its 

relatively low cost of production, has made honey an attractive novel antimicrobial treatment 

for biofilm infections. 

1.1.6.3 Phage therapy 

'Phage therapy' is defined as the use of lytic bacteriophages (hereafter referred to as 

„phages‟) to eliminate bacteria (Donlan, 2009). Following the first descriptions of phages in 

the late 19
th
 century (Sulakvelidze et al., 2001), they have been used to treat bacterial 

infections, particularly before antibiotic treatments were widely available (Sulakvelidze et al., 

2001). Recently, due to increased recognition of the problem of antibiotic resistance, and the 

recognition of the role of biofilms in chronic infections there has been a renewal in interest in 

the use of phage in bacterial infection management. Phage therapy has been shown to be 

effective in vitro against several biofilm forming pathogens including S. aureus (Drilling et al., 

2014), P. aeruginosa (Fu et al., 2010) and C. jejuni (Siringan et al., 2011). 

Although promising results have been reported, particularly against biofilms, phage therapy 

has two disadvantages: firstly phages show a high degree of species and isolate specificity 

and secondly bacteria are able to develop resistance. To address specificity concerns, 

careful consideration is required when selecting phages for use in treatment. Several 

researchers have highlighted the need for potential bacteriophage therapeutics to be tested 

against many different bacterial isolates, in order to ensure efficacy in the clinic (Drilling et 

al., 2014, Chhibber et al., 2014, Melo et al., 2014). Novel rapid diagnostic techniques, such 

as those described in the review by Afshari et al. (2012), allow rapid identification of the 

bacteria causing infections meaning informed choices can be quickly made about phage 

selection and appropriate treatment regimes. 

Resistance of bacteria to phages is more often encountered in in vitro systems than in vivo. 

A study by Carvalho et al. (2010) showed that bacterial populations did not recover following 

phage treatment of chickens experimentally infected with Campylobacter jejuni and C. coli. 

Despite studies such as this one, the development of resistance is still of concern to 

investigators and regulatory bodies and so has been addressed by several investigators. In 

order to combat the issue of resistance, bacteriophage „cocktails‟ have been developed, 

which contain a mixture of different bacteriophages or bacteriophage and antibiotic 

combinations. Combinations of tobramycin and the bacteriophages T4 or PB1 were shown 

to effectively treat E. coli and P. aeruginosa biofilms respectively. Combination treatment 

displayed less resistance than single antibiotic or bacteriophage treatments either to phages 

or antibiotics (Coulter et al., 2014). 

1.1.6.4 Nanoparticle technology 

Nanoparticles are defined as particles which are less than 100 nm in diameter (Lu et al., 

2012b). They have previously been used for many different applications including drug 

delivery (Manzoor et al., 2012) and stabilisation of emulsions in food (for a review see 
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Dickinson (2012)). The antimicrobial properties of silver, zinc oxide and gold nanoparticles 

are well described (for reviews see Wei et al. (2014), Shi et al. (2014) and Shah et al. (2014) 

respectively) and their incorporation into surgical wares and food packaging is a promising 

area of biofilm infection control. The success of nanoparticles in treating and preventing 

biofilm infections is in part due to their ability to penetrate the biofilm, which many currently 

available antimicrobial therapies are not able to achieve (Melo et al., 2013). Covering 

catheter surfaces with silver nanoparticles has been shown to inhibit growth and biofilm 

formation of several medically relevant bacteria, including E. coli, S. aureus and P. 

aeruginosa (Roe et al., 2008). 

Nanoparticle technology is also a promising area of biofilm control within food industries, 

although currently there is still debate about the safety of nanoparticle consumption 

(Schilling et al., 2010, Chen et al., 2014) and consumer acceptance (Frewer et al., 2014). 

Two significant areas of research have emerged within food manufacture: the use of 

nanotechnology to detect alterations in food quality or pathogen presence, and incorporation 

of nanoparticles into packaging to extend shelf life. Quantum dots, nanoparticles 1 to 10 nm 

in radius, which contain fluorescently labelled antibodies, have been used to detect E. coli, 

and Salmonella sp. in minced beef (Wang et al., 2012). Nanoclay, which is comprised of  

mineral silicate nanoparticles, is frequently used in food packaging due to its ability to reduce 

gas permeability of packaging materials, increasing shelf life and inhibiting growth of aerobic 

food spoilage bacteria (Silvestre et al., 2011) 

1.1.6.5 Development of reduced-biofilm surfaces 

The topography and hydrophobic properties of surfaces is also an important consideration 

for limiting bacterial attachment. Within the food industry materials were historically selected 

due to their durability, strength and chemical stability (Chmielewski and Frank, 2003, Singh 

et al., 2011), rather than their antimicrobial or anti-attachment properties. When selecting 

materials, consideration of surface topography and, where required, surface coating is very 

important since these factors are able to influence bacterial attachment to a significant 

extent. 

Stainless steel is a widely used material which can be polished to give a smooth finish with 

little variation in surface micro-topography. It would be expected that a decrease in surface 

micro-topography would reduce the ability of bacteria to attach to a surface, and indeed this 

has been reported by several investigators (Agle, 2007, Jullien et al., 2003). Conversely, 

other investigators have shown that managed surface roughening is able to decrease 

bacterial attachment, since it reduces the available surface area which bacteria are able to 

attach to, meaning that attachments are not as strong as would be found on smooth 

surfaces. Coating of surfaces with polyurethane urea films, containing micro-pillars, 

significantly reduced that attachment of S. aureus and S. epidermis in low fluid flow 

conditions (Xu and Siedlecki, 2012). Singh et al. (2011) also reported that nano-texturing of 

titanium oxide surfaces decreased E. coli attachment, as the texture allowed a greater 

absorption of protein to the surface, suppressing E.coli attachment.  

Surfaces can also be coated with anti-biofilm materials, which either decrease the potential 

for initial attachment or have antimicrobial properties. An example of the former is 

polyethylene glycol (PEG) which when used as a surface coating is able to reduce bacterial 

attachment (Kingshott et al., 2003). Slippery Liquid-Infused Porous Surfaces (SLIPS) have 

also been shown to have very promising anti-biofilm activity. Results shown that they are 

able to inhibit >95% of attachment by P. aeruginosa, S. aureus and E. coli, making SLIPS 

even more effective in reducing bacterial attachment than PEG coated surfaces (Epstein et 
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al., 2012). Although materials such as these are useful tools for decreasing bacterial 

adhesion, they are not antimicrobial (Banerjee et al., 2011), so any bacteria which are able 

to attach to the surface will persist. To combat this, surface coverings, which also have 

antimicrobial properties are an appealing alternative. Antifouling paints have been used to 

minimise marine biofouling for many years, although their inclusion of heavy metals and 

other toxic materials has made them unsuitable for use in food and medical applications 

(Stowe et al., 2011). Recently, novel antimicrobial coatings have been investigated, which 

have less toxicity but retain antimicrobial activity. Coatings containing chitosan, a material 

derived from chitin, have been shown to have antimicrobial activity against S. epidermidis, S. 

aureus, K. pneumoniae, P. aeruginosa and the biofilm forming fungal pathogen Candida 

albicans (Carlson et al., 2008). Terpenes, isolated from sea sponges, have also shown 

promising anti-biofilm activity (Stowe et al., 2011). 

The choice of surface is particularly important within food processing plants, where biofilm 

formation is hypothesised to allow bacterial persistence for extended periods of time. L. 

monocytogenes in particular is able to persist within the food chain for several years 

(Ferreira et al., 2014). These „persistent strains‟ are shown to have increased ability to 

attach to stainless steel and show some resistance to antimicrobial treatments such as 

quaternary ammonium compounds (Lunden et al., 2002). Biofilm formation is also 

hypothesised to assist in C. jejuni food chain persistence, and this will be discussed in more 

detail in the following sections.   

 The genus Campylobacter  1.2

The genus Campylobacter is a Gram-negative member of the ε subdivision of the 

Proteobacteria (Young et al., 2007). This class is poorly characterised compared to species 

such as E. coli, since many species within the genera are still unculturable in the laboratory. 

The class is split into two orders; Nautiliales and Campylobacterales (Campbell et al., 2006). 

The division of the class is shown in Figure 1-6. 
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Figure 1-6 Circular phylogram of the ε Proteobacteria class 

Image shows the diverse nature of the bacteria within the ε Proteobacteria class.  Species colonies 

many different niches, from colonisation of animals and humans (i.e. Campylobacter and Helicobacter) 

to existing as part of the microflora of undersea vents (i.e. Sulfurvum). Image from Campbell et al. 

(2006). 

RNA analysis of deep sea hydrothermal vent communities indicates that up to 90% of the 

total rRNA in a habitat belongs to ε Proteobacteria class. The majority of ε Proteobacteria in 

the vent communities are chemolithoautotrophs, able to oxidise hydrogen and sulphur 

compounds as well as reducing compounds containing oxygen, nitrate and sulphur 

(Nakagawa et al., 2007). 

Of the two ε Proteobacteria orders, it is the order Campylobacterales which are of particular 

interest to medicine, since this class contains Helicobacter, Campylobacter, and Arcobacter 

species (Young et al., 2007). All these species have the potential to be pathogenic, however 

Helicobacter sp. and Campylobacter sp. are the most prevalent infectious members of the 

class. Helicobacter pylori has a particularly high prevalence in humans, being found in 

approximately 50% of the global population (Suerbaum and Achtman, 2004). Colonisation 

with H. pylori can lead to development of gastric ulcers and cancer (Nakagawa et al., 2007). 

Infection with thermotolerant Campylobacter sp., most commonly C. jejuni or C. coli, leads to 

the development of a serious but self-limiting gastroenteritis (Kapperud et al., 1992). Again, 

prevalence is high within human populations, and these two species are the most common 

global cause of intestinal infection (Moore et al., 2005). 
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The genus Campylobacter currently includes 18 species and 6 subspecies (Young et al., 

2007). Morphologically, Campylobacter sp. are slim, between 1.5 and 6µm long (Ketley, 

1997), with a single unsheathed polar flagella at either one or both ends of the bacterium 

(Balaban and Hendrixson, 2011), the flagella makes the bacterium highly motile, with rapid, 

darting or spinning motions (Shigematsu et al., 1998). Many Campylobacter sp., including C. 

jejuni and C. coli are not only thermophillic, requiring temperatures above 35°C for growth, 

but are also capnophilic (Gaynor et al., 2005). Campylobacter sp. also lack homologues of 

many well-known toxins, adhesins, invasins, protein secretion systems and pathogenicity 

islands found in other foodborne pathogens such as  E. coli and Salmonella sp. (Bereswill 

and Kist, 2003). Early investigation into Campylobacter sp. focused on veterinary medicine, 

since C. fetus is responsible for spontaneous abortion in domestic ungulates (Solomon and 

Hoover, 1999), and it was not until the 1970s that Campylobacter sp. were also recognised 

as human pathogens (Skirrow, 1977). 

1.2.1 Campylobacter sp. as human pathogens 

C. jejuni, C. coli, C. upsaliensis, C. lari, C. concisus, C. fetus subsp fetus, C. jejuni subsp 

doylei, C. hyintestinalis and the related Arcobacter butzleri are all recognised as human 

pathogens  (Butzler, 2004). Hereafter the term „Campylobacter sp.‟ will be used to describe 

these pathogenic, thermophillic members of the genus (excluding A. butzleri). Of these 

species C. jejuni and C. coli are the most prevalent human pathogens, accounting for 95% 

of Campylobacter sp. infections. Within the genus, hippurate hydrolysis is able to distinguish 

C. jejuni from other members of the group (Butzler, 2004), and the two subspecies of C. 

jejuni (subsp jejuni and doylei) are separated on the basis of nitrate reduction and 

cephalothin susceptibility (Snelling et al., 2005). 

Campylobacter sp. colonises the gut causing either an asymptomatic or symptomatic 

infection. Invasion of the intestinal mucosa leads to changes such as superficial ulceration 

and neutrophil infiltration of the epithelium leading to the production of bloody diarrhoea (due 

to the destruction of epithelial cells) (Cogan et al., 2007). C. jejuni has a preference for 

colonizing the distal ileum and colon, residing in the mucosal layer and disrupting the 

epithelial barrier, causing the development of an immune response. 

1.2.1.1 Symptoms of infection 

Acute infection is characterised as having diarrhoea preceded by a febrile period with 

malaise, myalgia, abdominal pain and a fever of approximately 40°C (Butzler, 2004). 

Vomiting is rare and diarrhoea typically resolves within 2-3 days, although abdominal pain 

and other symptoms may persist for longer (Butzler, 2004, de Zoete et al., 2007). Following 

resolution of symptoms, individuals can excrete Campylobacter sp. for up to seven weeks 

(Ekdahl and Andersson, 2004). Generally Campylobacter sp. infection has a good 

prognosis, typically being self-limiting (de Zoete et al., 2007), and rarely requires 

antimicrobial therapy (Allos, 2001), although in immunocompromised or acutely ill patients 

antibiotic treatment may be considered (Altekruse et al., 1999). 

1.2.1.2  Post infection consequences 

Due to the typically self-limiting nature of Campylobacter sp.  infection, illness cause by C. 

jejuni only accounts for 5% of estimated food related deaths and 17% of foodborne infection 

hospitalisations within the EU (Dasti et al., 2010). Severe post infection consequences can 

occur though. It has been reported that 5 to 30% of patients who suffer from an episode of 

acute infectious gastroenteritis then report chronic irritable bowel syndrome, termed post-

infection irritable bowel syndrome (IBS), following clearance of the pathogen (Schwille-

Kiuntke et al., 2011). Although post infection IBS can be developed following several other 
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diseases, it has been linked to C. jejuni infection (Marshall et al., 2006). Risk factors for the 

development of IBS following C. jejuni infection include increased disease severity with the 

presence of abdominal cramps, increased duration of diarrhoea and a weight loss of less 

than 10 lb. Gender and age were also risk factors, with young girls being the most at risk of 

developing IBS (Marshall et al., 2006). 

The most severe sequele in terms of disability and risk of fatality is Guillain Barré Syndrome 

(GBS). This is an acute autoimmune disease caused by the molecular mimicry of 

ganglioside epitopes within the nervous system by the C. jejuni lipooligosaccaride (Dasti et 

al., 2010). The syndrome is characterised by acute symmetrical, descending and 

progressive paralysis and areflexia (Nyati and Nyati, 2013).  Paralysis can range in severity 

from muscle weakness to complete paralysis of muscles. Although patients with GBS 

usually recover, recovery is protracted and may require extensive medical support and 

rehabilitation (Hoffmann et al., 2012). 

1.2.1.3 The economic burden of infection 

In the developed world the main burden of Campylobacter sp. infection is economic, as 

infected individuals are often not able to attend work or school during the symptomatic 

phase of the infection. In the European Union, infection costs approximately €500 per 

illness, with an annual cost burden of approximately €300 million (Ingmer, 2011). In the 

United States the cost of illness is estimated at $1.2 billion annually (Batz et al., 2012). 

In the UK, despite repeated government drives to reduce Campylobacter sp. little reduction 

can be seen in numbers of the bacterium in either chicken flocks, or in retail-ready packaged 

chicken products (Robyn et al., 2015). This is in direct contrast to other foodborne 

pathogens previously prevalent in the UK, such as S. enterica. S. enterica was responsible 

for a large UK outbreak in the 1980s, but numbers of the bacterium within the food chain 

have significantly decreased following the implementation of increased biosecurity measures 

and vaccination of egg laying flocks (Cogan and Humphrey, 2003). 

Within the last decade C. jejuni „epidemics‟ have been recorded in New Zealand (Sears et 

al., 2011), Iceland (Tustin et al., 2011), Norway (Hofshagen and Kruse, 2003) and the 

Netherlands (Bouwknegt et al., 2004). To date the most effective, and consumer acceptable, 

method of reducing Campylobacter sp. numbers on carcasses is freezing before sale 

(Georgsson et al., 2006, Sandberg et al., 2005, Harrison et al., 2013). This solution, 

although effective, has a significant impact on the poultry industry since fresh chicken meat 

commands much higher prices than that of frozen meat. Because of this, alternative control 

solutions are still being sought to reduce Campylobacter sp. numbers throughout the whole 

food chain. 

  Campylobacter sp.  infection routes and potential reservoirs  1.3

Campylobacter sp. have been isolated from many different animals and environmental 

sources. Figure 1-7 shows some of the most common infection sources for humans. These, 

and other important reservoirs are described in Sections 1.3.1 and 1.3.2. 
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Figure 1-7 Potential Campylobacter sp. infection routes 

Graphical representation of the proposed major Campylobacter sp. infection routes from the 

environment to man. Infection is hypothesised to occur primarily due to the consumption of 

contaminated poultry, or cross contamination of other foodstuffs from raw poultry meat. However other 

infection routes are also known, such as contact with contaminated environmental sources (e.g. open 

water bathing) or by contact/consumption of other animals. Image taken from DASTI et al 2010 

1.3.1 Environmental sources of Campylobacter sp.  

1.3.1.1 Wild bird populations 

Wild bird populations are often found to contain various Campylobacter sp., particularly C. 

lari (Ryu et al., 2014). Although direct contact with these animals is not considered to be a 

major infection route, faecal contamination by wild bird populations is possible. In 2008, a C. 

jejuni outbreak in Alaska was traced back to wild bird faecal contamination of raw peas 

(Kwan et al., 2014). Wild bird populations also potentially are able to contaminate water 

sources and migratory bird populations contribute to infection spread, providing an important 

reservoir for Campylobacter sp. (Ryu et al., 2014).  

1.3.1.2 Water sources 

Campylobacter sp. infection rates are highly seasonal in temperate climates, with 

approximately double the number of infections in summer compared to winter (Butzler, 

2004), and the peak incidence rate occurring between May and October (Schlundt et al., 

2004). This peak also correlates with the times when the public are more likely to be 

outdoors, potentially bringing them into contact with environmentally based infection 

sources. Contaminated water sources, either environmental or potable, have previously 

been identified as responsible for Campylobacter sp. outbreaks. In the US, water was 

identified as the second most common source of Campylobacter sp. outbreaks, accounting 

for 9% of outbreak sources (Taylor et al., 2013). Although this is still low compared to the 

number of cases attributed to consumption of contaminated foodstuffs (86% in the above 

study), it is still a significant source of infections. 

Campylobacter sp. contamination of environmental water sources has been well 

documented, particularly in areas close to livestock or where groundwater containing effluent 

is likely to wash into the water source. Campylobacter sp. have been shown to be present in 
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both the water and sediment of UK rivers (Obiri-Danso et al., 2001). In countries where 

outdoor bathing is popular, such as Finland, C. jejuni outbreaks from water sources are 

relatively common, accounting for 19% of all waterborne outbreaks (Revez et al., 2014). 

Interestingly, several studies have observed an inverse seasonal peak, in which 

Campylobacter sp. numbers drop in the summer as the water temperature rises (Obiri-

Danso et al., 2001, Hokajarvi et al., 2013, Brennhovd et al., 1992). This suggests that 

bathing or contact with contaminated environmental water sources may not wholly account 

for the seasonal peak observed in human cases. 

1.3.2 Domestic sources of infection 

Many domesticated animals are a reservoir for various thermophillic Campylobacter sp.. 

Pets such as dogs (Mughini Gras et al., 2013), cats (Acke et al., 2011) and even reptiles 

(Giacomelli and Piccirillo, 2014) have been found to be colonised with Campylobacter sp. 

Houseflies are known vectors for many diseases, for example shigellosis, typhoid fever, and 

E coli infection (Ekdahl et al., 2005). Domestic flies have also been shown to carry 

Campylobacter sp. (Nichols, 2005), and their presence within domestic environments could 

lead to spread of Campylobacter sp. infection or transmission to humans. Although humans 

frequently come into contact with these animals, they are not the main infection source in 

humans, this being the consumption of contaminated, poorly cooked meats or other 

contaminated foodstuffs. 

The majority of domestic food animals (for example cows, pigs and poultry such as ducks, 

chickens and turkeys) carry Campylobacter. sp. and shed it in high numbers in their faeces 

(Ogden et al., 2009). Use of this faeces on crops can in turn lead to contamination of water 

sources (as described in Section 1.3.1.2) or contamination of crops such as fruit and 

vegetables (Chai et al., 2009). The vast majority of human Campylobacter sp. cases are 

attributed to the consumption of contaminated meat. Poultry meat is by far the most common 

source of infection, however unpasteurised (raw) milk has been identified to be an important 

source of C. jejuni outbreaks (Evans et al., 1996, Taylor et al., 2013, Bianchini et al., 2014). 

Since poultry, particularly chicken meat, is such an important source of Campylobacter sp. 

infection the rest of this chapter will focus on chicken and its slaughter process. 

1.3.2.1 Poultry 

Campylobacter sp. are part of the normal flora in the poultry gut, forming densely packed 

parcels of cells within luminal crypts, attached to the mucus rather than the epithelium 

(Beery et al., 1988). Human C jejuni infection is frequently associated with poultry (Quinones 

et al., 2007) and in the Netherlands 20-40% of laboratory confirmed cases are attributed to 

the consumption of undercooked poultry (Jore et al., 2010). 

C. jejuni colonises the chicken gut, with the highest bacterial numbers seen in the large 

intestine, caecum and cloaca. Once individuals within a flock are infected, spread of 

infection though the flock is rapid and extensive (Corry and Atabay, 2001), with C. jejuni 

levels of between 10
5
 and 10

9
 CFU/g faeces (Hanning et al., 2008). Flock infection rates 

vary depending on season (Kovats et al., 2005) and sampling method (Jorgensen et al., 

2002). In Ireland, 80% of flocks are reported to be infected (Anon, 2011) and a recent study 

by the FSA showed that 70% of fresh, commercially available, whole chickens in UK 

supermarkets were Campylobacter sp.  positive (Anon, 2014). 

C. jejuni is often thought of as a commensal of the chicken gut, with infected chickens 

usually showing no visible sign of infection (Shanker et al., 1990). However, a link between 

C. jejuni and vibrionic hepatitis has been described (Corry and Atabay, 2001). Vibrionic 
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hepatitis causes liver necrosis and a drop in egg production (Jennings et al., 2011). Recent 

work by Humphrey et al. (2014) has also shown that C. jejuni infection can lead to 

pathological changes within commercial broiler chicken breeds, although the pathology 

varies depending on the breed of bird.  

 Campylobacter sp.  transmission throughout the food chain 1.4

Unlike bacterial species such as L. monocytogenes, it is not the ability of Campylobacter sp. 

to grow outside the host, but its ability to survive which makes it a successful human 

pathogen (Balamurugan et al., 2011). It is still debated which areas of the food chain 

Campylobacter sp. are able to contaminate most effectively. In Sections 1.4.1 to 1.4.2 

potential routes of C. jejuni infection and cross contamination will be discussed.  

1.4.1 Spread of Campylobacter sp.  within flocks prior to slaughter 

C. jejuni penetration of the egg has only been demonstrated at very low levels so, unlike in 

Salmonella sp., vertical transmission of C. jejuni is not considered a likely route of poultry 

contamination. In a study of 257 eggs challenged with C. jejuni, 63% of the eggs showed 

evidence of infection, although all chicks were C. jejuni free (Shanker et al., 1986). 

Some farms show continual infection of flocks by one C. jejuni serotype, indicating that 

contamination likely occurs from a source within the farm. This effect may be exacerbated if 

the farm maintains a rolling flock policy, containing several flocks at different stages of 

development (Berndtson et al., 1996). Transmission of C. jejuni throughout flocks appears to 

have a horizontal origin, although the exact mechanism has yet to be established. Several 

hypothesis of how infection spreads within flocks have been suggested and risk assessment 

models have shown that the source of infection is likely multi-factorial (Newell and Fearnley, 

2003). Flies may play a role in transmission of Campylobacter sp.  between flocks of 

chickens (Nichols, 2005). Studies have shown that flies found near broiler houses show 

contamination with C. jejuni however other risk factors such as food and litter, water, other 

animals, house cleaning and disinfection, ventilation, contamination via human activities 

and, finally, poultry management process have also been considered as possible routes of 

transmission (Newell and Fearnley, 2003). 

1.4.1.1 Environmental sources of contamination 

Farms rearing broiler chickens are open systems in which, despite stringent hygiene 

measures, microbiological carriage is frequently observed. C. jejuni may come into contact 

with chicken through various interactions with humans and other animals. Food, water, 

human, animal and insect contacts have all been suggested as potential Campylobacter sp. 

transmission sources. To date no single source of environmental contamination has been 

discovered and it is likely that due to the ubiquitous nature of Campylobacter sp., multiple 

factors are responsible for the transmission from the environment to flocks. 

Animal feeds are not considered to be a major source of C. jejuni persistence and 

contamination. Most chicken feeds are dried, and since C. jejuni is very susceptible to 

desiccation (Fernandez et al., 1985), it is unable to survive for prolonged periods within 

desiccated foods. Survival of C .jejuni in water systems is much more likely (Buswell et al., 

1998). Untreated drinking water has been found to be a significant source of infection both in 

animals and humans, with flocks using untreated water more likely to be Campylobacter sp. 

positive (Kapperud et al., 1993). Treatment of water with lactic acid leads to a significant 

reduction in numbers of both Salmonella sp. and Campylobacter sp. (Byrd et al., 2001). In 

their risk assessment study, Kapperud et al. (1993) found that the treatment of flock drinking 
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water was the factor which would have the biggest impact on C. jejuni prevention within 

flocks. 

Flies are recognised as a vector for several diseases (Ekdahl et al., 2005) and several 

investigators have hypothesised that they, along with other pests such as rats, may also play 

a role in the transmission of C. jejuni between flocks (Kapperud et al., 1993). Flies have 

been found to be able to transmit C. jejuni to chickens in experimental models (Hald et al., 

2004), however it is still unclear if they are able to do this effectively within farm settings. 

Only a small percentage of flies (8.2%) captured during a transmission study tested positive 

for C. jejuni (Hald et al., 2004) and contradictory research has shown that although flies are 

frequently captured within broiler houses, C. jejuni could only be isolated from flies following 

infection of the flock (Berndtson et al., 1996). The presence of rats on a broiler farm was 

linked to increased risk of Campylobacter sp. infection of flocks, although the increase was 

not statistically significant (Kapperud et al., 1993). This perhaps suggests that pests such as 

flies and rats have a synergistic relationship with the broilers, potentially contributing to C. 

jejuni transmission between houses, but unlikely to be the primary source of infection 

(Meerburg et al., 2006). 

Finally, the implementation of biosecurity and adherence to protocols is essential for the 

rearing of Campylobacter-free flocks. Several studies have highlighted the need for all staff 

on broiler farms to strictly follow biosecurity routines, since poor adherence can rapidly lead 

to contamination of the flocks (Berndtson et al., 1996, Wassenaar, 2011, Evans and Sayers, 

2000). It is interesting to note that although the public perceive organic and free range 

broilers to be „healthier and more ethically reared‟ (Harper and Makatouni, 2002) due to their 

extended growth time and the encouragement of natural behaviours (Allen et al., 2008), 

strict biosecurity measures are much more difficult to maintain in these flocks (Huneau-

Salaun et al., 2007). Several studies have shown that this rearing method has led to 

increased prevalence of C. jejuni, although bacterial load per bird appears not to be 

increased (Cui et al., 2005, Rosenquist et al., 2013). 

1.4.2 Campylobacter sp. within processing plants 

As controlling C. jejuni infection on the farm is complex and difficult to achieve, it has been 

suggested that there should be a greater focus on prevention of cross contamination at the 

processing plant, or decontamination of carcasses following processing (Corry and Atabay, 

2001). Plant automation has increased the number of birds a plant is able to process, which 

in turn has increased the potential for contamination (Arnold and Silvers, 2000). Plants 

typically deal with 12,000 birds per hour and run continually, stopping only to clean and 

disinfect machinery. Poultry are eviscerated without opening the carcass and skin is typically 

not removed. Feathers are loosened by submerging carcasses in warm water, the 

temperature of which is usually between 50°C and 60°C. Plucking machines have rubbery 

fingers attached to rotating disks, and plucking is aided by spraying water on to the carcass 

while the feathers are removed. The most important contamination control step is the wash 

before chilling. The carcass should be thoroughly washed inside and out at this point, as 

microbial contamination of meat is typically a surface phenomenon (Corry and Atabay, 

2001). 

Many studies on Campylobacter sp. within processing plants have now been completed and 

cross contamination of C. jejuni negative flocks is frequently found (Allen et al., 2007). A 

recent systematic review identified 1,716 papers when using the search terms 

„Campylobacter‟, „chicken‟ and „processing‟ (Guerin et al., 2010). Results from many of the 

papers appear contradictory, and total concentrations of Campylobacter sp. vary greatly 
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between studies. In part this variation is due to the different enumeration and isolation 

techniques used (Bai et al., 2014) or sampling sites chosen (Baré et al., 2013, Luber and 

Bartelt, 2007). Other factors effecting Campylobacter sp. cell numbers include slaughter 

processing methods, prevalence within the flocks before slaughter (Guerin et al., 2010) and 

season that the sampling took place (Jore et al., 2010, Kovats et al., 2005, Meldrum et al., 

2005). Although studies show great variability, some conclusions are able to be drawn. It 

has been noted by several researchers that Campylobacter sp. numbers typically reduce 

following the scalding and chilling stages of processing (Rosenquist et al., 2006, Duffy et al., 

2014, Guerin et al., 2010). There was also a trend of increased Campylobacter sp. 

prevalence following the defeathering process (Guerin et al., 2010), which occurs directly 

after scalding. A study of E. coli, Campylobacter sp. and Coliforms showed that the scalding 

process reduced the bacterial load on the production line from an initial mean value of 4.7 

log CFU/ml of rinse fluid to 1.8 log CFU/ml rinse fluid at the post scald stage, increasing 

back to 3.7 log
10

 CFU/ml rinse fluid following plucking (Berrang and Dickens, 2000). The 

primary cause of this increase is an escape of gut contents when carcasses passed through 

the defeathering machine (Berrang et al., 2011). 

Carcass chilling, one of the final stages of processing, can be carried out in two ways: air or, 

in the USA, water cooling (Demirok et al., 2013). Both methods provided a reduction in 

Campylobacter sp. numbers (Rosenquist et al., 2006), although the water tanks used during 

water cooling represent a major cross contamination risk (Guerin et al., 2010). The use of 

water treatments such as chlorine or gamma radiation has been shown to be effective in 

reducing bacterial contamination of the chill water (Corry and Atabay, 2001), however there 

is low consumer acceptance of these interventions (MacRitchie et al., 2014) and they are 

currently not used within the EU. 

Following processing, carcasses are typically either refrigerated or frozen before sale. 

Freezing has been shown to reduce Campylobacter sp.  numbers significantly (Wassenaar, 

2011). This effect is so consistent that freezing of Campylobacter sp.  contaminated poultry 

has become one of the main infection reduction strategies in countries such as Iceland 

(Tustin et al., 2011). Chilling, compared to freezing, allows greater Campylobacter sp. 

survival, although an overall reduction is still observed during storage. Chicken breast 

inoculated with C. jejuni and stored at 4°C showed a 1-2 log decline in CFU over 17 days 

(Blankenship and Craven, 1982).  
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Figure 1-8 Flow diagram of slaughter process indicating potential contamination and C. jejuni 

release points 

The diagram shows the main points of the poultry slaughter process. A brief description of the 

temperature the processing stage is carried out at, it‟s potential to increase/decrease or spread C. 

jejuni, and the net increase or decrease in C. jejuni numbers is shown. The colour of the boxes 

indicates the temperature the carcasses are at during the stage, with red being hottest, yellow 

indicating a mid-point, and blue being the coolest temperature in the process.  

1.4.2.1 Cross contamination within the processing plant 

During processing there are several points where cross contamination may occur.  Several 

researchers have suggested that cross contamination is possible within processing factories, 

and food chain persistence is well recognised in other bacterial foodborne pathogens such 

as L. monocytogenes (discussed in Section 1.1.5.3). A study by Berghaus et al. (2013) 

showed that 63.6% of flocks leaving farms during their study tested positive for 

Campylobacter sp.. Following processing 87.3% were positive, suggesting cross 

contamination occurred during this study. Allen et al. (2007) typed Campylobacter sp. strains 

isolated from chickens prior to slaughter and throughout the processing plant. They 

observed that the strains found on carcasses did not correlate closely with the strains found 

in the caeca prior to slaughter, again highlighting the potential for cross contamination and 

Campylobacter sp. persistence within the food chain. During this study Campylobacter sp. 

were isolated from aerosols, particles and droplets throughout the processing plant, although 

not in chilled storage areas, hinting at a possible cross contamination method (Allen et al., 

2007). 

In contrast, a study by (Elvers et al., 2011) found that the strains identified on the birds 

entering the processing plant, remained predominant throughout the processing procedure. 

This was also observed by Kudirkiene et al. (2011), who found that one genotype was 

predominant from farm to end of slaughter. Although these studies suggest that 

Campylobacter sp. strains are not able to persist for extended periods within processing 

plants, there is still the potential for short term persistence. An assessment of the transfer of 

Campylobacter sp. from positive to negative flocks was carried out by processing 

Campylobacter sp. negative flocks directly after positive flocks had been slaughtered. 

Several strains were isolated from previously negative flocks, and results showed that the 

isolates were of the same type as those found in the positive flocks (Elvers et al., 2011). 

Taken together these studies highlight that Campylobacter sp. are able to persist within food 

processing plants and contaminate other carcasses and the environment. 
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 C. jejuni food chain survival mechanisms 1.5

Although C. jejuni is frequently described as been poorly adapted to survival in the food 

chain, its high isolation rate from poultry products suggests that in fact it is able to 

successfully survive in: low temperatures, atmospheric oxygen levels and impoverished 

medium. Although C. jejuni does indeed lack many of the canonical survival mechanisms 

found in pathogens such as Salmonella sp. and E. coli (Parkhill et al., 2000), it does contain 

other stress response mechanisms which allow it to survive in sub-optimal conditions. Those 

mechanisms with relevance to the food chain are described in more detail in Sections 1.5.1 

to 1.5.3. 

1.5.1 Oxidative stress 

C. jejuni is widely recognised as a obligate microaerophile (Chan et al., 2001, Stead and 

Park, 2000), which makes it distinct from other pathogens such as E. coli, L. monocytogenes 

and Salmonella sp. (Handley et al., 2014). Despite this, C. jejuni is able to tolerate aerobic 

conditions during transmission to humans, invasion and attack by host immune cells such as 

macrophages (van Vliet et al., 2002). To date no dedicated aero-tolerance system, has been 

identified in C. jejuni (Dasti et al., 2010), although proteins involved in oxidative stress have 

been identified. The C. jejuni genome contains only one a superoxide dismutase (SOD) 

(Purdy and Park, 1994), which catalyses the formation of oxygen and hydrogen peroxide 

from superoxide (van Vliet et al., 2002). Alkyl hydroperoxidase reductase (AhpC) is also 

present and its deletion leads to increased sensitivity to aerobic conditions (Baillon et al., 

1999). Also of interest is the hydrogen peroxide reductase Tpx.  Tpx expression in C. jejuni 

has been shown to be increased in biofilms and its deletion leads to reduced growth when 

exposed to atmospheric conditions (Atack et al., 2008). 

Oxygen tolerance is also reported to be medium-specific, with the addition of different 

tryptones leading to growth at O2 concentrations of up to 21% (Hodge and Krieg, 1994). In 

vitro growth has been reported at between 15 and 21% O2, particularly where medium is 

supplemented with antioxidants, for example SOD, catalase, sodium dithionite or histidine 

(Kaakoush et al., 2007), or where CO2 concentrations are increased from 5% to 10% 

(Reuter et al., 2010). Increasing cell density also appears to provide oxidative stress 

protection with cells at a concentration of 10
7
 CFU ml

-1
 observed to grow in aerobic 

conditions (19% O2/10% CO2) (Kaakoush et al., 2007). This was confirmed in a second 

study in which no significant difference in growth was observed in C. jejuni following 5 and 

15 hours exposure to aerobic conditions, although clinical isolates did have reduced invasion 

ability following the five hour exposure (Mihaljevic et al., 2007). It should be noted though, 

that some strains did not show comparable growth in aerobic conditions and microaerobic 

conditions, survival was also reduced (Chynoweth et al., 1998). 

Temperature also appears to affect the C. jejuni response to oxidative stress. C. jejuni 

suspensions exposed to oxidative conditions and 4°C had a much greater survival rate than 

those incubated at 25 or 42°C (1 log and 5 log reductions respectively). Following seven 

days of exposure to atmospheric oxygen concentrations no viable cells remained in cultures 

incubated at 25 or 37°C, where as those incubated at 4°C maintained a concentration of 

approximately 1 x 10
7
 (Garenaux et al., 2008). 

1.5.2 Osmotic shock 

Water is used throughout the poultry slaughter process and so Campylobacter sp. either 

transiting, or persisting within the food chain, must be able to mount a response to 

alterations in osmotic potential. Early work showed that C. jejuni was much less resistant to 
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osmotic shock than E. coli. A concentration of 2% NaCl in Muller Hinton medium is lethal to 

C. jejuni, whereas E. coli is able to tolerate concentrations of up to 30 % (Doyle and Roman, 

1982). Osmotic stress led to alterations in C. jejuni cell morphology, with cells becoming 

elongated following exposure to 1.5 % NaCl, showing reduced or absence of (dependent on 

the concentration of NaCl) logarithmic growth (Cameron et al., 2012). Two genes have been 

associated with the C. jejuni osmotic shock response in strain 81-176: cjj0263 and cjj1025. 

Both are predicted to be mechanosensitive channels, the function of which is to open in 

response to alterations in osmotic potential, allowing fluid to flow in and out of the cells and 

thereby prevent cell lysis. Deletion of cjj0263 led to a severely defective hyperosmotic 

response, however the cjj1025 deletion mutant responded in a similar manner to the WT, 

suggesting this gene, despite being predicted to be involved in the osmotic shock response, 

is not essential for osmotic shock response (Kakuda et al., 2012). C. jejuni biofilm formation 

has also been shown to be affected by osmotic conditions. In a study by Reeser et al. (2007) 

the addition of osmolytes such as NaCl, glucose and sucrose decreased biofilm formation. 

1.5.3 Survival during temperature fluctuations 

C. jejuni requires a temperature range of 34 to 44°C for optimal growth (Blaser et al., 1979). 

Outside this temperature range the bacterium becomes stressed and must respond in order 

to protect itself. C. jejuni transcribes 24 proteins in response to heat shock, and mutants 

deficient in proteins such as GroESL, DnaJ and Lon protease have reduced growth at 46°C 

and were unable to be isolated from chickens following experimental infection. This indicates 

that heat shock proteins may also have a role in invasion.  The RacRS system also has a 

role in differential expression of proteins at 37°C and 42°C (Dasti et al., 2010). There is a 

very rapid drop in C. jejuni growth at 31°C. It was previously speculated that this was due to 

the lack of RNA chaperone CspA, which in E. coli is designated as a cold shock protein 

(Goldstein et al., 1990). Although C. jejuni growth is inhibited below 30°C, ATP production, 

chemotaxis and catalase production are still observed, indicating metabolic functions are 

maintained, although growth is halted (Hazeleger et al., 1998). 

An important cold shock response is the ability to alter outer membrane composition, 

maintaining homoviscositiy during temperature fluctuations. In a study investigating the 

effects of various heat treatments on C. jejuni and E. coli it was found that the lack of cold 

shock response in C. jejuni conferred a survival advantage when compared to E coli. Pre-

exposure of bacteria to 6°C significantly affected heat tolerance of C. jejuni NCTC 11168, 

leading to prolonged survival upon rapid temperature increase to 52°C (Hughes et al., 2010). 

The opposite was true of E. coli, which alters its membrane composition in response to cold 

shock, decreasing dodecanoic, triecanoic, tetradecanoic, pentadecanoic, hexadecanoic and 

heptadecanioc acids, and increasing in cis-vaccenic and palmitoleic acid.  These changes 

increased membrane fluidity at 6°C. The lack of adaption means that C. jejuni membranes 

become less fluid following exposure to low temperatures, preventing membrane leakage 

when temperatures rapidly increase, for example during the cooking process (Hughes et al., 

2009). 

 C. jejuni biofilm formation 1.6

Although the volume of information about biofilm formation by foodborne pathogens still lags 

behind that of bacteria causing life threatening wound or respiratory infections, it has now 

started to increase. The investigation of C. jejuni biofilm formation highlights this recent 

trend. Although investigation of C. jejuni biofilms is still in its early stages, a trend in 

increased awareness and study can be observed (Figure 1-9). A search of Web of Science 
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for research articles containing the word „Campylobacter‟ within their title and the keyword 

„biofilm‟ as a topic produced a total of 118 papers, including review articles. 

 

Figure 1-9 Investigation of Campylobacter sp.  biofilms follows the same trend as that observed 

for the field of biofilm research. 

Using the key words „Campylobacter‟ (within the papers title) and „Biofilm‟ (within the topic), a total of 

118 papers are found.  Graphical representation of publications (A) and citations (B) by year shows a 

similar trend to that observed in the general field of biofilm study, although slightly delayed and with 

fewer numbers of papers. For both graphs the Y axis indicates years and x axis indicates the number 

of publications with the search terms in their title. 

A review of the literature related to Campylobacter sp. biofilm formation allows some 

interesting conclusions to be drawn. It should be noted that biofilm formation has become 

part of the standard phenotypic testing which mutant strains undergo, along with 

measurement of growth, autoagglutination, swarming, and morphological variation 

compared to wild type strains. The addition of biofilm formation to the standard battery of 

phenotypic tests has contributed to the increase in papers published which discuss C. jejuni 

biofilm formation, however in the following Sections only papers with a significant focus on  

biofilm formation will be discussed. At the time of writing, approximately 90 original research 

articles on the subject of Campylobacter sp. biofilms are available on the Web of Science 
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website. Papers focusing primarily on biofilm formation can typically be divided into three 

areas of research: identification of biofilm forming capacity, investigation of factors involved 

in biofilm formation or identification of genes influencing biofilm formation. 

Early C. jejuni biofilm studies focused on the identification of biofilm forming species and 

strains and the factors responsible for biofilm formation. A wide range of factors have been 

investigated including temperature (Dykes et al., 2003), interaction with other species 

(Trachoo et al., 2002), atmosphere (Reuter et al., 2010), nutritional or osmotic stress 

(Reeser et al., 2007) and surface type (Kalmokoff et al., 2006). More recently, the focus of 

research has moved to genes involved in biofilm formation. Researchers commonly focus on 

C. jejuni biofilm formation, rather than other Campylobacter sp., and two C. jejuni strains are 

overrepresented in the literature: NCTC 11168 and 81-176. This is to be expected, since C. 

jejuni is the most commonly isolated pathogenic Campylobacter sp. (Dasti et al., 2010), and 

so of particular relevance to investigators. The two most commonly used C. jejuni strains, 

NCTC 11168 (Parkhill et al., 2000) and 81-176 (Hofreuter et al., 2006) are well 

characterised, with well-established genetic manipulation protocols (van Vliet et al., 1998). 

1.6.1 The biofilm forming ability of Campylobacter sp. 

Campylobacter sp. are now widely recognised to be able to form biofilms (Wyss, 1995, 

Joshua et al., 2006, Gunther and Chen, 2009, Hanning and Slavik, 2009), although much 

variation in biofilm forming ability is present both between and within species (Sulaeman et 

al., 2010, Revez et al., 2011, Kudirkiene et al., 2012). Several studies have shown that 

Campylobacter sp. are also able to form biofilms in the presence of other bacterial species. 

This is of great importance to food chain relevant research, since within processing plants, 

biofilms are typically comprised of several species. Species used in the mixed biofilm 

experiments included P. aeruginosa (Trachoo and Frank, 2002, Teh et al., 2010), 

Enterococcus sp. (Trachoo and Brooks, 2005), and mixed species biofilms from various 

environmental or food processing sources (Sanders et al., 2007, Sanders et al., 2008, Maal-

Bared et al., 2012, Hanning et al., 2008). Generally, biofilm formation with other bacterial 

species increases C. jejuni survival, however this increase is affected by the species present 

and, potentially, the environmental conditions the biofilm is exposed to. 

1.6.2 The environmental factors influencing Campylobacter sp. biofilm formation  

Although the majority of the biofilm formation assays have been carried out using plastic 

microtitre plates, glass slides, or test tubes, other materials, many of which are food chain 

relevant, have also been shown to support C. jejuni biofilms. Abiotic surfaces such as 

stainless steel (Trachoo and Brooks, 2005, Kalmokoff et al., 2006, Sanders et al., 2007, 

Gunther and Chen, 2009, Duffy and Dykes, 2009), poultry house drinking water systems 

(Zimmer et al., 2003, Hanning et al., 2008), river rock, slate, wood or sediment (Maal-Bared 

et al., 2012), PVC (Reeser et al., 2007), Polyethylene terephatalate (PET) (Tatchou-Nyamsi-

Konig et al., 2008), nitrocellulose and glass fibre (Kalmokoff et al., 2006) have all been 

shown to support Campylobacter sp. attachment and biofilm growth.  Interestingly, intestinal 

tissue (Haddock et al., 2010) was also shown to allow biofilm formation, suggesting a 

possible mode of persistence within chickens. 

Other environmental factors have been shown to either increase biofilm formation or 

increase C. jejuni survival within biofilms. As reported for planktonic cells (Section 1.5.3), 

lower temperatures, such as those found during chilled storage, appear to prolong cell 

viability within biofilms. A study by Buswell et al. (1998) showed that C. jejuni survival within 

biofilms was enhanced at temperatures of 4°C or 10°C, compared to biofilms incubated at 

22°C or 37°C. This study also showed that atmospheric conditions effected survival, with 
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aerobic conditions leading to increased survival in low temperatures. Reuter et al. (2010) 

expanded this work, showing that biofilm formation was more rapid in aerobic conditions and 

mature biofilms were able to shed viable cells into the planktonic phase regardless of 

atmospheric conditions. An increase in surface attachment in aerobic conditions was also 

noted by Sulaeman et al. (2012) in their study looking at C. jejuni membrane changes 

following oxidative shock and acclimatisation. Taken together these studies strongly suggest 

that biofilm formation is able to impact on the food chain survival and persistence of C. 

jejuni. 

Integration of C. jejuni into mixed species biofilms has also been investigated. C. jejuni can 

be found in natural biofilms within waterways (Maal-Bared et al., 2012), and on biofilms 

formed within poultry house drinking water nipples. Interestingly C. jejuni could only be 

detected in these biofilms following colonisation of the flock, indicating that the water supply 

was not responsible for the initial flock colonisation in this instance (Zimmer et al., 2003). 

The presence of bacterial species such as Enterococcus and Staphylococcus simulans 

appear to increase C. jejuni biofilm formation (Sanders et al., 2007, Teh et al., 2010), 

whereas several studies have reported that the presence of P. aeruginosa leads to either 

decreased C. jejuni biofilm formation (Teh et al., 2010) or reduced C. jejuni viability within 

the biofilm (Trachoo et al., 2002). 

1.6.3 The genetic basis of Campylobacter sp. biofilm formation 

There is genomic and phenotypic instability within Campylobacter sp. both due to the 

frequent DNA rearrangement, transfer, presence of phase variable genes (de Zoete et al., 

2007) and hyper-variable regions (Parkhill et al., 2000), all of which lead to pathogenic 

diversity between strains (Hofreuter et al., 2006). Campylobacter sp. have small, 

approximately 1.6 to 2 mega base long (Taylor et al., 1992), A and T rich genomes, with a 

GC ratio of approximately 30% (Parkhill et al., 2000). The genome is densely packed, with 

94% of the C. jejuni NCTC 11168 genome coding functional regions. Organisation of the 

genome into functionally related operons and clusters is not common within C. jejuni. 

The quantity of C. jejuni biofilm formation reported between studies is very varied, even 

where the same strain is used. This variation is likely in part to the different growth 

conditions, biofilm formation methods, mediums and attachment surfaces used. However 

despite this variation, several conclusions can be drawn from the current body of literature. 

Genes involved in motility, stress response, polysaccharide production, or the release of 

extracellular material have all been shown to affect biofilm formation. Each of these areas 

will be discussed in more detail in Sections 1.6.3.1 to 1.6.3.4. 

1.6.3.1 The role of motility in biofilm formation 

The factor with the greatest impact on C. jejuni biofilm formation appears to be cell motility. 

Mutations affecting flagella construction or chemotaxis are consistently reported to reduce 

biofilm formation. Several investigators have reported that deletion of genes involved in 

flagella biosynthesis led to delayed and/or reduced biofilm formation (Reuter et al., 2010, 

Moe et al., 2010, Svensson et al., 2014, Joshua et al., 2006). Although inactivation of 

several other genes, including the global repressor CsrA (Fields and Thompson, 2012), a 

peptidoglycan DL-carboxypeptidase named Pgp2 (Frirdich et al., 2014), or the formate 

dehydrogenase subunit fdhA (Kassem et al., 2012) have been shown to reduce biofilm 

formation. In each case, motility was also affected by the inactivation. This makes it hard to 

determine if it is the deletion of the gene that is the 'primary' cause of the biofilm reduction, 

or a secondary symptom of the reduction in motility. In contrast to this observation Revez et 
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al. (2011) reported a lack of correlation between the ability of isolates to swarm, a frequently 

used measure of motility, and their ability to form biofilms. 

Defects in chemotaxis systems also appear to effect biofilm formation. Deletion of the group 

A chemoreceptor tlp3 was reported to decrease biofilm formation (Rahman et al., 2014), and 

chemotaxis has been shown to be upregulated in biofilms (Kalmokoff et al., 2006). 

Chemotaxis appears to be a promising area of research but is not as widely studied as 

motility. Further investigation is required before firm conclusions can be drawn about the role 

of chemotaxis in C. jejuni biofilm formation. 

1.6.3.2 The role of the stress response in biofilm formation 

Proteomic analysis of C. jejuni biofilms has indicated that many genes are differentially 

expressed in biofilms compared to planktonic lifestyles. Gene groups highly upregulated 

include those involved in iron metabolism, oxidative defence, energy metabolism and 

membrane modification (Sampathkumar et al., 2006). 

Global regulators of stress responses, such as spoT, csrA, and marA have been linked to 

biofilm regulation. A C. jejuni 81-176 spoT deletion mutant was shown to have increased 

biofilm formation, producing thick mushroom like biofilms (McLennan et al., 2008). Deletion 

of the global regulator csrA, which in E. coli is involved in stationary phase regulation, has 

been shown to decrease C. jejuni 81-176 biofilm formation, motility and sensitivity to 

oxidative stress (Fields and Thompson, 2008). The deletion of marA from C. jejuni strain 

11168H had the same effect (Gundogdu et al., 2011). Deletion of enzymes involved in the 

creation of poly-P, a molecule involved in several stress responses, has also been shown to 

affect biofilm formation, and biofilms formed by ppk1 and ppk2 deletion mutants (both 

involved in poly-P production) have been shown to have increased biofilm formation 

compared to WT strains (Candon et al., 2007, Gangaiah et al., 2010). 

Two-dimensional gel electrophoresis has shown that there is an upregulation of oxidative 

stress proteins in C. jejuni biofilms (Kalmokoff et al., 2006) it is unsurprising that deletion of 

genes involved in oxidative stress led to alterations in biofilm formation. Deletion of ahpC 

(alkyl hydroperoxidase reductase) and katA (catalase) increased C. jejuni NCTC 11168 

biofilm formation. In the ahpC mutant, WT biofilm quantities could be restored by addition of 

antioxidants to the medium, or deletion of the oxidative stress regulator perR, allowing de-

regulated ahpC transcription. Similarly, overexpression of ahpC decreased biofilm formation 

compared to WT (Oh and Jeon, 2014). These results again highlight the importance of 

biofilm formation as an oxidative stress response. 

1.6.3.3 The role of polysaccharide production in biofilm formation 

Polysaccharide production is an important aspect of biofilm maturation in many bacteria, 

since polysaccharides are a common component of the ECM. P. aeruginosa contains three 

polysaccharides within its ECM: alginate, Pel and Psl (Franklin et al., 2011), homologues of 

which cannot be found in C. jejuni. Instead, the production of alternative polysaccharides 

has been investigated. C. jejuni is able to produce at least three polysaccharides, all of 

which appear to be growth phase dependent to some extent (Corcoran and Moran, 2007). 

The role these polysaccharides, and the proteins involved in their production, have on 

biofilm formation has previously been investigated. Calcofluor white (CFW) is used 

extensively to study polysaccharides since it is able to bind to β1-3 and β1-4 carbohydrate 

linkages (McLennan et al., 2008). Deletion of genes involved in lipooligosaccharide 

production, such as galT, cskIII and waaF has also been shown to increase biofilm formation 

and CFW reactivity (Naito et al., 2010). Similarly, deletion of cj1324, part of the C. jejuni 
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NCTC 11168 O-linked flagellin glycosylation island, led to decreased biofilm formation with 

no loss of motility (Howard et al., 2009). The two peptidoglycan DL-carboxypeptiase 

enzymes, pgp1 and pgp2, also appear to effect biofilm formation, and their deletion led to a 

reduced biofilm mass and CFW binding (Frirdich et al., 2014). It should be noted however 

that deletion of these two genes also led to altered bacterial shape and reduced motility 

(Frirdich et al., 2012, Frirdich et al., 2014), which may have contributed to the biofilm 

phenotype observed. Alterations to the major outer membrane protein (MOMP) also 

increase biofilm formation, although in this mutant motility was increased (Mahdavi et al., 

2014), suggesting that here an alteration in motility may not have contributed to the 

alterations observed in biofilm phenotype. 

1.6.3.4 The role of ECM and signaling molecules in biofilm formation 

SEM analysis of C. jejuni biofilms has shown the presence of fibre-like ECM products 

(Kalmokoff et al., 2006, Lu et al., 2012b, Moe et al., 2010) but to date few studies into the 

composition of the ECM have been carried out. A recent study by (Svensson et al., 2014) 

showed that eDNA was present within biofilms, and planktonic suspensions from 24 hour old 

cultures of C. jejuni strain 81-176. The presence of eDNA in supernatant coincided with the 

presence of cytosolic proteins, leading authors to suggest that eDNA release was via cell 

lysis rather than active secretion. Biofilm formation was significantly reduced following 

DNase I treatment, and the supplementation of biofilm cultures with additional genomic DNA 

led to an increase in biofilm quantity (Svensson et al., 2014). 

Signalling molecules such as AI-2 have been shown to coordinate biofilm behaviour in 

several bacterial species (see Section 1.1.1.1 and 1.1.6.1 for details). C. jejuni does contain 

a luxS homologue and is able to produce AI-2, leading several investigators to study the role 

of QS in C. jejuni biofilm formation. Deletion of the luxS gene decreased biofilm formation 

(Reeser et al., 2007). Interestingly, one study has shown that biofilm formation by luxS 

deletion mutants may be returned to WT levels by supplementation of medium with cell free 

supernatant containing AI-2 (Reeser et al., 2007). Caution should however be used when 

assessing the role of AI-2 in C. jejuni biofilm formation since AI-2 receptors have still not 

been identified in C. jejuni (Golz et al., 2012). Since LuxS is involved in metabolic activity it is 

possible that any phenotypic changes observed within luxS deletion mutants are a result not 

of defective signaling but increased stress on the bacterium due to alterations in its 

metabolism (Adler et al., 2014). A study of five Campylobacter sp. by Tazumi et al. (2011) 

showed that luxS genes, although widely distributed in Campylobacter sp., were not always 

present in biofilm forming species such as C. lari (Tazumi et al., 2011). 

Other QS molecules have also been assessed for their effect on C. jejuni biofilm formation. 

Treatment of C. jejuni strains 81-176 and cj11 with the homoserine lactone 3OH-C4-HSL led 

to decreased biofilm formation, although surface attachment could still be observed, 

suggesting that this molecule inhibited biofilm maturation (Moorhead and Griffiths, 2011). 

One study has also shown that whole citrus extracts, which contain quorum quenching 

molecules, are able to decrease C. jejuni biofilm formation, motility and AI-2 production 

(Castillo et al., 2014), although it is unclear if the observed effects were due solely to the 

quorum quenching molecules, or other factors such as lowered pH. These studies highlight 

that further investigation is required before C. jejuni can be conclusively said to use QS 

molecules to coordinate its biofilm behaviour. 

1.6.4 Treatment of Campylobacter sp. containing biofilms 

C. jejuni biofilm eradication or inactivation studies have been carried out using several 

antimicrobials as well as nanoparticles and bacteriophage treatment. It is reported that many 



Helen Louise Brown  Introduction 

 

Page 54 of 294 

 

bacterial species show increased antimicrobial resistance within biofilms (Fux et al., 2005). 

This is also observed in C. jejuni, although C. jejuni biofilms appear to still be able to be 

killed by recommended antimicrobial concentrations. Trisodium phosphate was shown to be 

effective against biofilms of C. jejuni, E. coli, L. monocytogenes and S. typhimurium (Somers 

et al., 1994). Diallyl-sulphide has also shown to be effective against C. jejuni biofilms since it 

is able to penetrate into the biofilm more effectively than ciprofloxacin and erythromycin (Lu 

et al., 2012a). An alternative to antibiotic inactivation of biofilms is the use of nanoparticle 

treatment (discussed in Section 1.1.6.4). Zinc oxide nanoparticles have been shown to be 

effective against C. jejuni strains F38011 and NCTC 11168 in both their planktonic and 

biofilm forms (Lu et al., 2012b). 

C. jejuni biofilms have also been shown to be susceptible to treatment with CP8 and CP30 

lytic bacteriophages. A significant reduction in the volume of mature C. jejuni NCTC 11168 

and PT14 biofilms was observed following a two hour treatment with bacteriophage, 

although biofilm mass did increase slightly after treatment. Microscopy of treated biofilms 

showed disruption to the biofilm and the development of coccoid cells. Although some 

resistance to bacteriophage treatment was observed, resistance was specific to strain NCTC 

11168 (Siringan et al., 2011). This study suggests that bacteriophage treatment of C. jejuni 

biofilms could provide a promising alternative to conventional antimicrobial treatments. 

 Conclusions 1.7

Campylobacter sp. is very different from other foodborne zoonotic pathogens such as E. coli 

and Salmonella making the study of Campylobacter sp. essential (Bereswill and Kist, 2003), 

since conclusions cannot be drawn about C. jejuni survival and transmission using data 

obtained from investigation of other bacterial pathogens. The importance of Campylobacter 

sp. specific investigation has been highlighted within the poultry industry, where containment 

measures implemented to reduce the spread of Salmonella have been unsuccessful in 

controlling the spread of Campylobacter sp. (Newell and Fearnley, 2003). 

Since in vitro growth of Campylobacter sp. was made possible in the 1970s there has been 

an exponential growth in knowledge about Campylobacter sp. but there are still many 

questions about the bacteria‟s survival within the food chain. Consideration of food chain 

conditions must be considered during experimental design to ensure that studies are able to 

be used to inform novel Campylobacter sp. control measures. 

Biofilm formation by Campylobacter sp. is able to increase persistence in sub-optimal 

environments (Lehtola et al., 2006). Biofilm formation has also been shown to increase in 

aerobic (Reuter et al., 2010) and low temperature conditions (Buswell et al., 1998). This, in 

combination with C. jejuni‟s ability to integrate into mixed species food chain biofilms 

(Hanning et al., 2008) or form single species biofilms on materials such as stainless steel 

indicates that biofilm growth modes are likely to contribute significantly to C. jejuni food chain 

persistence, and potentially food chain transmission. 
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 Aims and objectives of this project 1.8

Although biofilm formation by C. jejuni is now a well-recognised phenomenon, formation 

within the food chain environment is less well studied. A recent review by Teh et al. (2014) 

has suggested that de novo biofilm formation may not in fact be an important food chain 

survival mechanism for C. jejuni. The authors speculate that C. jejuni more likely integrates 

in to existing multispecies biofilms, or forms simple monolayer attachments, which do not 

progress to true biofilm formation.  

The aim of this project was to investigate how biofilm formation by C. jejuni is able to 

contribute to its survival and transmission within the food chain. This is a complex and broad 

subject area, and so three objectives covering complementary areas were developed. The 

objectives are described in Sections 1.8.1 to 1.8.3. 

1.8.1 Objective 1: Development of food chain relevant models of C. jejuni biofilm 

formation 

In order to effectively study both attachment and/or biofilm formation within food chain 

relevant conditions, the use of food chain relevant models and suitable imaging techniques 

is required. In this work, incubation in aerobic conditions was combined with the use of food 

chain relevant surfaces and substrates to develop a greater understanding of C. jejuni 

biofilm formation within the food chain. 

1.8.2 Objective 2: Understand how C. jejuni biofilms are formed 

There is still little understanding of C. jejuni biofilm structure and the environmental factors 

which contribute to biofilm formation. Here, the biofilms‟ structure has been examined using 

SEM, fluorescent and light microscopy.  Environmental factors such as temperature, cell 

density and surface type have all been investigated to gain a better understanding of how C. 

jejuni biofilm formation is initiated and progresses. 

1.8.3 Objective 3: Understand the role of eDNA within the C. jejuni biofilm 

Extracellular DNA has been highlighted as an important ECM component for many bacterial 

species, but to date investigations of C. jejuni biofilms has focused primarily on 

polysaccharide production. Since eDNA has been shown to be an integral ECM component 

of species such as P. aeruginosa, V. cholera and S. aureus, and is a promising target for 

biofilm eradication treatments, its role within the C. jejuni biofilms was further investigated. 
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 General Techniques 2.1

2.1.1 Sterilisation and washing 

All solutions, lab consumables and glassware required for aseptic assays were sterilised by 

autoclaving at 69Kpa for 20 minutes or sterile-filtering of solutions using a 0.22 µM Minisart 

filter (Satorius). All microbiological work was carried out following standard IFR SOPs and in 

a class II Microbiological safety cabinet (Walker BSW 5726). 
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 Medium, buffers and solutions 2.2

2.2.1 Standard growth mediums 

All recipes below (2.2.1.1 to 2.2.1.5) were sterilised using an autoclave. For plates 1.5% 

agar (set plates) or 0.4% agar (swarm plates) was added to the mixture before autoclaving. 

All antibiotics, dyes and X-gal were added as required following autoclaving. Ultrapure water 

(Millipore) was used unless otherwise stated. 

2.2.1.1 Blood medium 

15 g Proteose peptone 

2.5 g liver digest 

1 % yeast extract 

5 g NaCl 

5% horse blood 

1000 ml water 

2.2.1.2 Brucella medium 

10 g BactoTM Pancreatic digest of casin 

10 g BactoTM Peptic digest of animal tissue 

1 g Dextrose 

5 g Yeast extract 

5 g NaCl 

0.1 g Sodium bisulphide 

1000 ml water 

2.2.1.3 DNase agar 

DNase agar was purchased from Oxoid and prepared following manufacturer‟s instructions 

with the addition of 0.005% v/v Toludine Blue (Sigma). 

2.2.1.4 Luria Broth (LB) medium 

10 g BactoTM tryptone 

5 g BactoTM yeast extract 

10 g NaCl 

1000 ml water 

2.2.1.5 Skirrow medium 

15 g Proteose peptone 

2.5 g liver digest 

5 g yeast extract 

5 g NaCl 

1000ml water 

After autoclaving and cooling, Campylobacter selective supplement (Vancomycin 0.1 mg/ml 

Trimethoprim 50 µg/ml and Polymyxin B2 500 IU/ml) was added. 

2.2.2 Buffers and solutions 

2.2.2.1 Antibody Dilution Buffer 

1% BSA in Natt buffer (Section 2.2.4) 

2.2.2.2 Blocking Buffer 

5% BSA in Natt buffer (Section 2.2.4) 
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2.2.2.3 Bromo-chloro-indolyl-galactopyranoside (X-gal) 

X-gal stock solution was diluted to a 20 mg/ml stock solution in dimethyl formamide and 

stored in the dark at -20°C until use. A final concentration of 20 µg/ml was used in medium. 

2.2.2.4 Campylobacter competent cell buffer 

270 mM Sucrose 

15 % v/v glycerol 

H2O 

Before use the solution was filter sterilised and aliquotted into 10 ml single use volumes. 

2.2.2.5 Chicken serum 

Chicken serum (Sigma) was thawed at 2 – 8°C, sterile filtered and aliquotted into 10 ml 

volumes. The stock was then frozen at -20°C until required. 

2.2.2.6 Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

IPTG was dissolved in H2O to a stock concentration of 100 mM, filter sterilised and stored at 

-20°C in single use aliquots until use. For induction, the stock solution was diluted to 1 mM 

v/v within the cell suspension. 

2.2.2.6.1 Meat juices 

Frozen whole chickens, turkey, duck, goose, chicken portions or pork portions were 

purchased from UK supermarkets. The meat was thawed overnight at room temperature 

(RT), and the exudate was collected, pooled (where several birds were defrosted at once), 

centrifuged to remove debris and sterilised by using a 0.2 µm sterile polyethersulfone (PES) 

syringe filter (Millipore). Juices were aliquotted in to 10 ml volumes and stored at -20°C until 

use. Juice was diluted v/v in Brucella medium unless stated otherwise. 

2.2.2.6.2 Assessment of chicken juice batch equivalency 

On each occasion that chicken juice was prepared it was assessed to ensure it gave a 

standard experimental effect before experimental use. Each new pool was used to 

supplement Brucella medium (5% v/v) and a standard C. jejuni NCTC 11168 growth curve 

(Section 2.3.4), performed. The OD600 values of the cell suspensions were compared to the 

new batch to cells grown in Brucella medium only or Brucella medium supplemented with an 

existing batch of chicken juice to ensure equivalency (coefficient of variance falling within 

25%). 

2.2.2.6.3 Proteinase K treatment of chicken juice 

Chicken juice aliquots were incubated with Proteinase K (Sigma) following the 

manufacturers instructions. Incubations were carried out for one hour at 37°C before use in 

biofilm assays. 

2.2.2.6.4 Pre-incubation of chicken juice 

The required volume of chicken juice was placed in a 37°C incubator overnight to allow 

particulate formation within the chicken juice. Following incubation the juice was centrifuged 

at 3220 xg for 30 minutes to pellet any particulates formed, the resulting supernatant was 

then used to supplement medium for use in assays. 

2.2.3 Methylation Buffer 

20 mM Tris Acetate 

50 mM Potassium Acetate 

5 mM EDTA 

1 mM Dithiothreitol 
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Protease inhibitor cocktail tablet (Sigma) 

Water 

2.2.4 Natt Buffer 

20 mM Tris base 

150 mM NaCl 

0.5 ml Tween 20 

1000 ml Ultrapure water 

Adjust pH to 7.4 before use 

2.2.4.1 Phosphate buffered saline (PBS) 

1 mM Phosphate buffer 

0.27 mM KCl 

13.7 mM NaCl 

Water 

all contained in pre-made PBS tablets purchased from Sigma and diluted following 

manufacturers guidelines. The solution was adjusted to pH 7.4 before sterilisation. 

2.2.4.2 Skimmed milk powder solutions 

A 5% (w/v) skimmed milk powder solution was prepared by mixing commercially available 

skimmed milk powder (Co-operative instant dried skimmed milk powder, UK) into Brucella 

medium and dissolved completely before filtering. 

2.2.4.3 Sterile spent medium 

Bacterial cultures were grown overnight as described in Section 2.3.4. Following overnight 

growth, cell suspensions were centrifuged at 3000 xg for 30 minutes and the supernatant 

removed and retained. Supernatant was sterile filtered using a 0.22 µM PES filter (Millipore) 

and stored at -20°C until use. 

2.2.4.4 Super optimised broth with catabolite repression (SOC) 

2% Tryptone 

0.5% yeast extract 

8.56 mM NaCl 

2.5 mM KCl 

10 mM MgCl2 

10 mM MgSO4 

20 mM glucose 

H2O 

Adjust to pH 7.0 

2.2.4.5 TBE buffer 

890 mM Tris 

7 mM Boric acid 

20 mM EDTA 

H2O 

2.2.4.6 Transfer Buffer 

25 mM Tris base 

190 mM Glycine 

5% w/v SDS 

20% v/v Methanol 

in Ultrapure water 
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2.2.4.7 0.5x Tris buffer 

10x concentrate Tris-borate-EDTA buffer (Sigma) 

Diluted to a 0.5% stock in H2O 

2.2.4.8 10mM Tris HCL Buffer (pH 7.4) 

10mM Trizma hydrochloride base 

H2O 

Adjust solution to pH 7.4 before use. 

2.2.4.9 2,3,5-Triphenyl-tetrazolium chloride  (TTC) 

A 1% w/v stock solution of TTC was prepared in demineralised H2O and sterile filtered 

before use. The stock solution was further diluted for use in assay as described in Section 

2.9.3. TTC stock solutions were stored in the dark at 5°C between uses. 

2.2.5 Fractionation of solutions using spin-columns 

Spin-columns allowing collection of suspensions containing ≥ 5, 10, 50 and 100 kDa sized 

particulates (Millipore) were used following manufacturers guidelines. Once collected the 

suspensions were stored at -20°C until use. 

2.2.6 Antibiotic concentration and preparation 

Antibiotic 
Dilution 

reagent 

Usual stock 

concentration 

Final 

concentration 

for E. coli 

Final 

concentration 

for C. jejuni 

Ampicillin H2O 100 mg/ml 100 µl/ml - 

Carbenicillin H2O 100 mg/ml 100 µl/ml - 

Chloramphenicol 96% ethanol 30 mg/ml 30 µl/ml 10 µl/ml 

Kanamycin H2O 30 mg/ml 30 µl/ml 50 µl/ml 

Streptomycin H2O 64 mg/ml NA 64 µl/ml 

Table 2-1 Antibiotics used and standard concentrations for medium 

 Routine bacterial cell maintenance 2.3

2.3.1 Preparation of Campylobacter sp. stocks 

All bacterial isolates were routinely cultured from glycerol stocks. To prepare glycerol stock 

cultures, either from an Campylobacter Research group master cell bank or from stocks 

provided by the ATCC, cells were thawed onto Skirrow agar and grown overnight in 

microaerobic conditions at 37°C. Following overnight incubation the lawn was resuspended 

in Brucella medium containing 10% sterile glycerol stock. Single use aliquots were prepared 

and stored at -80°C. 

2.3.2 Preparation of E.coli stocks 

All bacterial suspensions were routinely cultured from glycerol stocks. Frozen cell 

suspensions, either from an Campylobacter Research group master cell bank or cell lines 

provided by manufacturers, were thawed onto LB agar and grown overnight in aerobic 

conditions at 37°C. Following overnight incubation the lawn was suspended using LB 

medium containing 10% sterile glycerol stock. Single use aliquots were prepared and stored 

at -80°C until required. 
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2.3.3 Bacterial strains used 

Name Description 
Reference/ 

supplier 

C. jejuni 

NCTC 11168 Wild type human isolate 
(Parkhill et 

al., 2000) 

NCTC 11168 

GFP  
11168 cj0046::GFP+

porA
Cat

R
 This work 

NCTC 

11168 ΔflaAB 
NCTC 11168 (Δcj1338, Δcj1339c) ::kan

R (Reuter et 

al., 2010) 

81116 Wild type human isolate 
(Pearson et 

al., 2007) 

81-176 Wild type human isolate 
(Hofreuter et 

al., 2006) 

RM1221 Wild type chicken isolate 
(Fouts et al., 

2005b) 

RM1221 

Δcje1441 
RM1221 Δcje1441::cat

R 
This Work 

C. coli 15-537360 Wild type human isolate 
(Pearson et 

al., 2013) 

E. coli 

Top 10 

F
- 
mcrA Δ(mrr-hsdRMS-mcrBC) 

80lacZΔM15 ΔlacΧ74 recA1 araD139 

Δ(ara-leu) 7697 galU galK rpsL (Str
R
) 

endA1 nupG λ- 

Invitrogen 

NEB5α 

fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 

Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 

hsdR17 

New England 

Biolabs 

C41 (DE3) F –ompT hsdSB (rB- mB-) gal dcm (DE3) Lucigen 

C41 (DE3) 

pLysS 

F –ompT hsdSB (rB- mB-) gal dcm (DE3) 

pLysS (CmR) 
Lucigen 

C43 (DE3) F –ompT hsdSB (rB- mB-) gal dcm (DE3) Lucigen 

C43 (DE3) 

pLysS 

F –ompT hsdSB (rB- mB-) gal dcm (DE3) 

pLysS (CmR) 
Lucigen 

BL21 DE3 F– ompT hsdSB(rB– mB–) gal dcm (DE3) Novagen 

Table 2-2 List of bacterial strains used, indicating their name, genotype and source 

2.3.4 Campylobacter sp. routine maintenance 
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C. jejuni and C. coli strains were routinely cultured in a MACS-MG-1000 controlled 

atmosphere cabinet (Don Whitley Scientific) under microaerobic conditions (85% N2, 5% O2, 

and 10% CO2) at 37°C. 

2.3.4.1 Revival of frozen Campylobacter sp. suspensions 

Glycerol stocks were freshly thawed for use in all assays. Thawed cell suspensions were 

spread onto Skirrow agar to create a lawn and incubated as described in Section 2.3.4 

overnight (approximately 30 hours). 

2.3.4.2 Preparation of Campylobacter sp. suspensions for use in assays 

Two ml of Brucella medium was added to Skirrow plates with a Campylobacter sp.  lawn and 

the cell lawn suspended using a sterile plastic loop. The resulting suspension was diluted 

100x in fresh Brucella medium (typically 150 µl of cell suspension into a T25 flask (Corning) 

containing 15 ml of Brucella medium), before further microaerobic incubation at 37°C for 

approximately 16 hours. This cell suspension was routinely used, following further dilution, in 

both growth (Section 2.6.1) and biofilm (Section 2.8) assays. 

2.3.5 Revival of frozen E. coli suspensions 

E. coli from glycerol stocks was grown overnight on LB agar plates in aerobic conditions at 

37°C. One colony was transferred from the plate into 5 ml LB broth and further incubated 

overnight with 200 rpm shaking at 37°C, in aerobic conditions.   
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 Bacterial viability assessment 2.4

2.4.1 Assessment of cell viability by culture 

To determine the number of viable cells, a method based on the Miles-Misra method (Miles 

et al., 1938) was used (referred to hereafter as minimum probable number (MPN)). Briefly, a 

sample of the planktonic cell suspension (typically 10 µl from a 1 ml suspension) was serially 

tenfold diluted eight times in phosphate buffered saline (PBS, pH 7.5) in a sterile 96 well 

plate. This gave a range of dilutions between 10 x 10
-1 

and 10 x 10
-8

, and 5 µl of each 

dilution was spotted onto Brucella agar plates and incubated at 37°C for 48h (hereafter 

referred to as the „spot plate‟). After 2 days of growth, CFU ml
-1

 was calculated by observing 

the growth of colonies on the agar plates. Where two or more colonies were present for each 

dilution cell growth was recorded. If all tests were positive (i.e. two or more colonies for each 

of the eight tenfold dilutions) a value of 10 x 10
-8 

was recorded, as no end point could be 

accurately determined. Due to the small volumes of liquid used in this method, absolute 

viable cell concentrations could not be determined and the limit of detection is high, with a C. 

jejuni NCTC 11168 suspension diluted to OD600 = 0.05 showing growth to approximately 10 

x 10
-7

.   

This method of calculating cell viability was used to complement biofilm and growth 

experiments. As a minimum during biofilm assays spot plates were prepared from cell 

suspensions at the start and end of static incubations. Where TTC, rather than crystal violet 

or Congo red, was used for biofilm visualisation, an additional spot plate was prepared at the 

end of the secondary (TTC) incubation. For monitoring of cell viability during growth 

experiments, spot plates were prepared at each time point where optical density was 

measured. Where additional cell viability was undertaken the exact time points or samples 

assessed are described within the body of the thesis. 

2.4.2 Use of TTC as indicator of bacterial growth 

Cultures were grown as described in Section 2.3.1 and diluted in Brucella medium 

supplemented with 0.05% TTC, to reach a starting OD600 of between 0.001 and 1.5, and 

incubated at 37°C in microaerobic conditions for 30 minutes. For analysis of 48 hour growth, 

cultures were diluted to an OD600 of 0.05 in 0.05% TTC Brucella medium and incubated for 

48 hours in microaerobic conditions at 37°C with shaking at 220 rpm. 

Formazan crystals, produced following the reduction of TTC by metabolically active cells, 

were dissolved by removing a 1 ml aliquot of the culture and adding an equal volume of 20% 

acetone/80% ethanol before incubating at RT for 30 minutes to allow the formazan crystals 

to dissolve. The OD600 of the aliquot was recorded before whole cells and debris were 

pelleted by centrifugation (16,000 x g, 10 minutes at RT). The supernatant was then 

carefully removed and the A500 measured. 

For assessment of C. jejuni MPN using TTC containing plates, Brucella agar plates 

supplemented with 0.05% TTC were prepared and stored at 5 °C in the dark until use. A 

sterile cotton wool bud was used to swab cultures and then streaked onto the plate. Plates 

were incubated at 37 °C for 48 hours in microaerobic conditions to allow TTC conversion by 

metabolically active cells. Cultures were considered to be metabolically active if any 

formazan crystals, indicating TTC conversion, were present following incubation. 
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 Creation of C. jejuni mutant strains 2.5

2.5.1 Genomic DNA extraction from bacterial cultures 

C. jejuni cells were grown as previously described in Section 2.3.1 before centrifugation at 

4500 xg for 10 minutes. Following centrifugation the supernatant was removed from the 

pellet and cell pellets were stored at -20°C, to improve cell lysis. Cell pellets were thawed on 

ice and DNA extracted using the QIAGEN DNeasy Blood and Tissue Kit. Following 

resuspension of the pellet in 180 µl buffer ATL, 20 µl proteinase K (600mAU/ml) and 5 µl of 

RNase (20 mg/ml), genomic DNA was purified following the manufacturers instructions. The 

final elution was carried out with 100 µl buffer AE. Following the first elution the eluate was 

used for a second elution step to ensure the highest possible yield of DNA. 

2.5.2 Primers used throughout the study 

Name Primer use Sequence (5’ to 3’) 

CJE0256fwd_B

spHI 

Preparation of 

pHB001, pHB004 

plasmids 

GGAGAATTCATGAAAAAAATAATAAGCG 

CJE0256rev_Bs

pHI 

Preparation of 

pHB001, pHB004 

plasmids 

GCTAAAGTTTGTCATGAATTGAGTAATGC 

CJE1441fwd_B

spHI 

Preparation of 

pHB002, pHB005 

plasmids 

GGTATGAAACTCATGAAAAAACTTATAATC 

CJE1441rev_Bs

pHI 

Preparation of 

pHB002, pHB005 

plasmids 

CCATTTTTACTCATGATTAATTAAAAATTGTC 

CJE1440fwd_N

coI 

Preparation of 

pHB003, pHB006 

plasmids 

GGTTATATCCATGGAAAATTATTATG 

CJE1441rev_N

coI 

Preparation of 

pHB003, pHB006 

plasmids 

CCATTTTTACTCCATGGTAATTAAAAATTGTC 

Dns_fwd_NdeI Preparation of pHB007 

plasmid 

GGAGAACATATGAAAAAAATAATAAGC 

dns_rev_BamHI Preparation of pHB007 

plasmid 

GCTAAAGGATCCAAAGAATTACAGTAATGC 

566_fwd_NdeI Preparation of pHB008 

plasmid 

GCAACAAGTTAAACCATATGAAAAAACTC 

566_rev_BamHI Preparation of pHB008 

plasmid 

CAAAGATTAATAAAATGGATCCAAAAAGCACC 
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Name Primer use Sequence (5’ to 3’) 

1441_fwd_NdeI Preparation of pHB009 

plasmid 

GGTATGAAACATATGAAAAAACTTATAATC 

1441_rev_BAm

HI 

Preparation of pHB009 

plasmid 

GCAAAAGCTAGAGTGG 

dnsKO_FDEco

RI 

Preparation of 

pHB010a plasmid 

GGAAGATGTGAGCTTATTGGGCGTGAATTCAGAGC 

dnsKO_RVPstI Preparation of 

pHB010a plasmid 

GGGCTACAAAAAAGCAACTGCAGATGATACAAGC 

dnsKO_2_fwd Preparation of 

pHB010b plasmid 

ATAGGATCCAACAATACCCTATGGATGAG 

dnsKO_2_rev Preparation of 

pHB010b plasmid 

ATAGGATCCCAATAAAAATCATACCAGTAAGAG 

1441KO_FDEc

oRI 

Preparation of 

pHB012a plasmid 

GCATTGAAAGAATTCTATGAGTTAAAAAAGG 

1441KO_RVPst

I 

Preparation of 

pHB012a plasmid 

GCTTTTTAACGCTGCAGTTGATAGGTTGT 

1441KO_2_fwd Preparation of 

pHB012b plasmid 

ATAGGATCCGTTACCAAGTGCCTAATCAC 

1441KO_2_rev Preparation of 

pHB012b plasmid 

ATAGGATCCGGTTTGTATTGTGTATAATC 

Dnsreadin_fwd pHB001, pHB004, 

pHB007 confirmation 

CGTTTTAATACTTGCTTTAAGCTTATTAAATGC 

Dnsreadin_rev   pHB001, pHB004, 

pHB007 confirmation 

GCTCTAATTCTTTTTTCTTTCTCATCC 

Cje0566readin_

fw 

pHB008 confirmation CCACTCTAGCTTTTGCTGACTATACG 

Cje566readin_r

ev 

pHB008 confirmation GGTACTTGGTAACATTCTTTAAAATTCTCACC 

Cje1441 

readin_fwd  

pHB009 confirmation GGCGAACAAATCAAAAAACGCCCACG 

Cje1441readin_

rev 

pHB009 confirmation CCTTTTAAAATCTTAGTGTAAGAGCTTGG 

Kan_pr_readout pHB007, pHB008, 

pHB009 confirmation  

GCGATATCTTCTATATAAGCGTACCG 
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Name Primer use Sequence (5’ to 3’) 

Kan_readout pHB007, pHB008, 

pHB009 confirmation 

CGGGGAAGAACAGTATGTCGAGC 

T7 promoter pHB007, pHB008, 

pHB009 confirmation   

TAATACGACTCACTATAGG 

T7 terminator pHB007, pHB008, 

pHB009 confirmation   

CCCGTTTAGAGGCCCCAAGG 

Dnsreadin_rev pHB007 confirmation GCTCTAATTCTTTTTTCTTTCTCATCC 

Cje0566readin_

rv 

pHB008 confirmation GGTACTTGGTAACATTCTTTAAAATTCTCACC 

1441readin_fwd pHB009 confirmation GGCGAACAAATCAAAAAACGCCCACG 

1441readin_rev pHB009 confirmation CCTTTTAAAATCTTAGTGTAAGAGCTTGG 

M13 read in pHB010a, pHB011a, 

pHB012a, pHB010b, 

pHB011b, pHB012b 

confirmation  

CGCCAGGGTTTTCCCAGTCACGAC 

M13 read out pHB010a, pHB011a, 

pHB012a, pHB010b, 

pHB011b, pHB012b 

confirmation 

TCACACAGGAAACAGCTATGAC 

1441_fwd_schk

2 

Confirmation of 

pHB012b insertion into 

RM1221 

GGAAAATTATTATGAATTAG 

1441_rev_schk

2 

Confirmation of 

pHB012b insertion into 

RM1221 

GCCAATAGCAAAAAATGAAC 

cat fwd readin  Confirmation of 

pCporAGFP
+
 

insertion into 

NCTC 11168 

 Confirmation of 

pHB012b insertion 

into RM1221 

GGACACGAAAAGAGTATTTCGACC 
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Name Primer use Sequence (5’ to 3’) 

cat rev readin  Confirmation of 

pCporAGFP 

insertion into 

NCTC 11168 

 Confirmation of 

pHB012b insertion 

into RM1221 

GCATGATGCACTTGAATCGATAAGG 

GFP fwdreadin Confirmation of 

pCporAGFP insertion 

into NCTC 11168 

GGAGAAGAACTTTTCACTGGAGTTG 

GFP revreadin Confirmation of 

pCporAGFP insertion 

into NCTC 11168 

GCAGTTACAAACTCAAGAAGGACC 

0046Fcheck3 Confirmation of 

pCporAGFP
+
 insertion 

GCAGAGCACTTGATTTTAGTGTGTGC 

0046Rcheck2 Confirmation of 

pCporAGFP
+ 

insertion 

GCAAAAATCATCCTAAAAGATCC 

Cje1441 

readin_fwd  

pHB006 confirmation GGCGAACAAATCAAAAAACGCCCACG 

Table 2-3 List of primers used within this study. 

The table shows the primers name, sequence and for what purpose it was used. 

2.5.3 Polymerase Chain Reaction (PCR) 

PCR reactions were performed using a Multigene OptiMax Therma Cycler (Labnet 

international). Unless otherwise stated reactions were carried out using the methods stated 

in Table 2-4.  
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PCR type Reagents used Protocol 

Hotstart 

Premixed solution of 

buffer and Taq 

polymerase, used 

routinely to confirm DNA 

recombination events  

25 µl Hotstart master mix (QIAGEN) 

2.5 µl of each primer (at a 

concentration of 10µM) 

1 µl of DNA template (10x dilution) 

RNase free water to a final volume of 

50 µl 

Initial: 98°C for 15 min 

Cycles (30x): 98°C 30 sec, 50°C 

30 sec, 72°C (60 sec per 

kilobase) 

Final extension: 72°C for 10 min 

Phusion 

High fidelity polymerase 

used for cloning, and 

routine production of 

PCR fragments of ≥ 2kb 

10 µl HF buffer (NEB) 

0.5 µl dNTPS (at a concentration of 

50mM) 

0.5 µl Phusion (NEB) 

5 µl of each primer (at a concentration 

of 10µM) 

1 µl of DNA template (10x dilution) 

RNase free water to a final volume of 

50 µl 

Initial: 98°C for 1 min 

Cycles (30x): 98°C 30 sec, 50°C 

30 sec, 72°C (30 sec per 

kilobase) 

Final extension: 72°C for 10 min 

Colony PCR 25 µl Hotstart master mix (QIAGEN) 

2.5 µl of each primer (at a 

concentration of 10µM) 

1 µl of bacterial cell suspension 

RNase free water to a final volume of 

50 µl 

Initial: 98°C for 15 min 

Cycles (30x): 98°C 30 sec, 50°C 

30 sec, 72°C (60 sec per 

kilobase) 

Final extension: 72°C for 10 min 

Table 2-4 PCR reaction names and details 

2.5.4 Agarose Gel Electrophoresis 

Unless otherwise stated, 0.9% Agarose gels were prepared using Agarose powder (Sigma) 

and 0.5x Tris buffer. The solution was heated in order to fully dissolve, before allowing to 

cool and pouring into a mould. The gels were allowed to set before storage in deionised 

water at 2-8 °C until use. Prior to loading, samples were mixed with a volume of 6x gel 

loading dye (NEB). Electrophoresis took place at voltages of between 50 and 150 V 

(typically 100 V) for between 15 and 60 minutes (typically 30 minutes). Variations in voltage 

and time were required for better band separation and visibility. Following electrophoresis, 

gels were incubated at RT in deionised water containing ethidium bromide before 

visualisation under UV light. 

2.5.5 Gel extraction and purification of PCR products/digested fragments  

For purification of PCR fragments the QIAGEN QiaQuick PCR purification kit was used as 

recommended by the manufacturer. The final elution of the PCR product was in 30 µl of 

buffer EB.  Purified products were either used immediately or stored at -20°C until required. 
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DNA fragments were separated on a 0.9% agarose gel before the desired band was excised 

from the gel using a scalpel. The mass of the fragment was calculated to identify the correct 

fragment. The QIAGEN QiaQuick gel extraction kit was used as recommended by the 

manufacturer. The final elution of the DNA fragment was in 30 µl of buffer EB. Purified DNA 

were either used immediately or stored at -20 °C until required. 

2.5.6 Digestion by restriction enzymes 

Restriction digests were carried out using manufacturer‟s guidelines and recommended 

buffers. Unless otherwise stated the following quantities were used: 

Reagent Quantity (µl) 

Enzyme 1 

10 x Buffer 5 

10 x BSA (if required) 5 

10 x DTT (if required) 5 

Sample 30 

H2O To a final volume of 50 

Table 2-5 Representative restriction enzyme digest protocol 

All incubations (unless otherwise stated) were carried out in a 37°C water bath for a 

minimum of 60 minutes. A list of restriction enzymes used throughout this study is give 

below: 

Restriction enzyme 

name 

Use Buffer used Manufacturer 

BamHI Preparation of 

pHB007, pHB008 and 

pHB009 

Digestion of inverse 

PCR of pHB010a – 

012a 

NEB 3 + BSA/ 

React 3 

NEB/ 

Invitrogen 

BspHI  Digestion of 

cje1441 PCR 

fragment for 

insertion into 

pCfdxA plasmids 

 Confirmation of 

insertion of 

pHB007-9 into 

pET28α plasmid 

NEB 4 NEB 

EcoRI Digestion of pNEB193 Buffer H Promega 
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Restriction enzyme 

name 

Use Buffer used Manufacturer 

plasmids 

Esp3I Digestion of pCfdxA 

and pCmetK plasmids 

Tango Buffer + 

DTT 

Thermo  

HindIII Digestion of pHB002, 

pHB003, pHB010a 

and pHB012a to 

confirm correct insert 

orientation within 

plasmid 

NEB 2 NEB 

NcoI Digestion of cje1440 – 

1441 PCR fragments 

for insertion into 

pCfdxA plasmids 

NEB 3 NEB 

NdeI Preparation of 

pHB007, pHB008 and 

pHB009 

NEB 4 NEB 

PstI Digestion of pNEB193 

plasmids 

Buffer H Promega 

SspI Confirmation of 

correct insert 

orientation within 

pHB002 

Confirmation of 

insertion of pHB007-9 

into pET28α 

React6/NEB 2 Invitrogen/NEB 

Table 2-6 List of restriction enzymes used in this study. 

2.5.7 Dephosphorylation of digested plasmid fragments 

Dephosphorylation of plasmid fragments was carried out using Antarctic Dephosphatase 

(NEB) following manufacturers guidelines. Following incubation, the Antarctic Phosphatase 

was inactivated by heating to 65°C for 10 minutes followed by DNA purification carried out 

as described in Section 2.5.4. 

2.5.8 Plasmid Ligation 

All routine ligations were carried out using T4 DNA ligase (NEB) in the following reaction: 
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Reagent Quantity (µl) 

T4 Ligase 1 

T4 Ligase buffer 2 

Digested plasmid 2.5 

Purified DNA insert 

Calculated based on 

size and concentration 

Water To a total of 20 µl 

Table 2-7 Representative ligation protocol 

Following preparation, the reaction was incubated for 30 minutes on ice, 30 minutes in a 

waterbath at RT before a final incubation of 30 minutes on ice. The ligation product was 

either used directly in a transformation reaction or stored at -20°C until required. 

2.5.9 Methylation of Plasmids 

Plasmid methylation was carried out as described in (Donahue et al., 2000). C. jejuni 

RM1221 cell suspensions grown as described in Section 2.3.4.1 and centrifuged to form a 

cell pellet, the pellet was resuspended in methylation buffer, aliquotted into 500 µl volumes 

and the cells lysed by sonication (Soniprep 150 MSE; Sanyo), using 3 x 30 second pulses 

on ice. Following sonication, the suspensions were centrifuged at 15000 xg for 15 minutes, 

supernatant was retained, and stored at -20°C in single use aliquots. Plasmid methylation 

was carried out using the following reaction: 

Reagent Quantity (µl) 

Plasmid 57 

Cell free methylation 

extract 43 

SAM (100 µM/ml) 0.7 

Table 2-8 Representative methylation protocol 

The reaction was incubated for 60 min in a 37°C water bath. Following incubation the 

plasmid was extracted using the QIAGEN PCR clean-up kit (Section 2.5.4). 

2.5.10 Transformation procedures 

2.5.10.1 Routine electroporation of C. jejuni 

Lawns from overnight growth on agar plates (Section 2.3.4.1) were resuspended and 

centrifuged at 20000 xg for 5 min to pellet cells. Supernatant was removed and the cells 

were resuspended in 1 ml of cold CTB, this washing process was repeated twice with cells 

being resuspended in 500 µl CTB following the final centrifugation. Cell suspensions were 

aliquotted in to 100 µl aliquots, mixed with 2 µl of plasmid and placed in chilled 

electroporation cuvettes (Cell Projects). Electroporation was carried out using the following 

parameters: 2.5kV, 200 Ω load resistance and 25 µF capacitance. Following electroporation, 

250 µl of fresh Brucella medium was added to the cuvettes and the whole suspension plated 

on to blood agar plates and incubated microaerobically at 37°C for a minimum of 5 hours. 
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Following this incubation the lawn was resuspended and 100 µl of cells plated onto selective 

agar and incubated for a further 48 to 72 hours to allow growth of colonies. 

2.5.10.2 Electroporation of C. jejuni RM1221 cells 

Lawns from overnight growth on agar plates (Section 2.3.4.1) were resuspended and 

pelleted by centrifugation at 4°C, 20000 xg for 5 min. Supernatant was removed and the 

cells were resuspended in 1 ml of ice cold CTB containing 10 mM EDTA. Resuspended 

pellets were incubated on ice before progressing to the second wash step. The washing 

process was repeated twice more, with cells being resuspended in 500 µl CTB (not 

containing EDTA) following the final centrifugation step. 

Cell suspensions were aliquotted in to 100 µl aliquots, mixed with 2 µl of plasmid and placed 

in ice cold electroporation cuvettes (Cell Projects). Electroporation was carried out using the 

following parameters: 2.5kV, 200 Ω load resistance and 25 µF capacitance. Following 

electroporation, 250 µl of fresh Brucella medium was added to the cuvettes and the whole 

suspension plated on to blood agar plates and incubated microaerobically at 37°C for a 

minimum of 5 hours. Following this incubation the lawn was resuspended and 100 µl of cells 

plated onto selective agar and incubated for a further 48 to 72 hours to allow growth of 

colonies. 

2.5.10.3 Chemical transformation of E. coli cells 

E.coli Top 10 (Invitrogen) suspensions were removed from -80°C storage and thawed on 

ice. A volume of 2 µl of plasmid was added to the cell suspensions and gently mixed. The 

suspensions were incubated on ice for 30 min, transferred to a water bath at 42°C for 30 sec 

and then replaced on ice for 2 min. Following the incubation stages, 250 µl of SOC medium 

was added to each tube of cell suspension and the tubes were incubated at 37°C for one 

hour with shaking. Suspensions were then plated on to selective medium and incubated at 

37°C for approximately 15-24 hours to allow colony growth. For E. coli Overexpress
TM

 C41 

and C43 cells (Lucigen) the above method was followed with the exception that 950 µl of 

SOC medium was added. 

To continue the growth of transformants, colonies were picked from selective agar plates 

using sterile tooth picks and added to 5 ml LB with appropriate antibiotics. The suspensions 

were then grown in aerobic conditions at 37°C, overnight, with shaking before harvesting 

and further manipulation as required. 

2.5.10.4 Plasmids created during this study 

Table 2-9 shows a list of all plasmids created during this study. The plasmids pCfdxA, 

pCmetK, pET28α and pNEB193 were used as backbones for all the listed plasmids. Plasmid 

maps of all plasmids, including the „backbone plasmids‟ can be found in Section 10.2. 
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Plasmid Name Construction 

pHB001 pCfdxA with cje0256 insert 

pHB002 pCfdxA with cje1441 insert 

pHB003 pCfdxA with cje1440-1441 insert 

pHB004 pCmetK with cje0256 insert 

pHB005 pCmetK with cje1441 insert 

pHB006 pCmetK with cje1440-1441 insert 

pHB007 pET28α with cje0256 insert 

pHB008 pET28α with cje0566 insert 

pHB009 pET28α with cje1441 insert 

pHB010a pNEB193 with cje0256 insert 

pHB010b pNEB193 with Kanamycin resistance inserted into cje0256 

pHB012a pNEB193 with cje1441 insert 

pHB012b pNEB193 with Chloramphenicol resistance inserted into 

cje1441 

pCporAGFP
+ 

pCporA with GFP
+
 insert 

pCMark09 Plasmid containing Kanamycin resistance cassette 

pCASO040 pET28α with cj1388 insert 

Table 2-9 Details of the plasmids created, or used, in this study 

2.5.11 Plasmid extraction from E.coli 

E.coli strains containing the desired plasmid were grown overnight in LB broth containing 

selection supplements at 37 °C, 200 rpm shaking, and in aerobic conditions. Following 

overnight growth the culture was centrifuged to pellet cells and the plasmid extracted using 

the QIAGEN Miniprep kit and following manufacturers guidelines. The plasmid was eluted in 

30 µl of buffer EB. 

2.5.12 Sequencing of C. jejuni and E. coli fragments 

Purified plasmids and PCR products were sequenced offsite by Eurofins Genomics. The 

sequences were assembled using BioEdit and compared to expected in silico sequences 

constructed in pDRAW (Acaclone) or Artemis (Carver et al., 2005). 

2.5.13 Creation of a C. jejuni strain expressing a green fluorescent protein 

To make a strain of C. jejuni NCTC 11168 that constitutively expressed GFP protein, cells 

were transformed with the plasmid pCporAGFP
+
 (a gift from Duncan Gaskin, IFR) using 

standard protocols (van Vliet et al., 1998). Plasmid pCporAGFP
+ 

contains  GFP
+
 from 

pWM1007 (Miller et al., 2000) under control of the C. jejuni porA promoter and a 

chloramphenicol resistance cassette, flanked by the 5‟ and 3‟ sequences of the cj0046 
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pseudogene (Reuter and van Vliet, 2013). Insertion of the plasmid into the cj0046 

pseudogene was confirmed using the primers indicated in Table 2-3. 

2.5.14 Creation of E. coli expressing DNase containing pET28α constructs 

Fragments containing the dns, cje0566 and cje1441 genes were amplified from the C. jejuni 

RM1221 genome using the primers indicated in Table 2-3. The fragments and plasmid 

pET28α were cut as described in Table 2-6 and ligated to form pHB007, pHB008 and 

pHB009. Following confirmation that the plasmids contained the correct genetic sequences, 

they were transformed into E. coli BL21 (DE3) or C41/C43 cells as described in Section 

2.5.10.3. 

2.5.15 Creation of the C. jejuni RM1221 Δcje1441 mutant 

A C. jejuni RM1221 cje1441 deletion mutant (Δcje1441) was created by insertional 

inactivation of the cje1441 gene using a chloramphenicol resistance cassette. The cje1441 

gene and flanking regions were PCR amplified using the primers indicated in Table 2-3 and 

cloned into the pNEB193 plasmid (NEB) to form pHB012a. Subsequently the cje1441 gene 

was excised and replaced with the cat cassette from pAV35 (van Vliet et al., 1998) by 

inverse PCR using primers indicated in Table 2-3 to form pHB012b. The plasmid sequence 

was confirmed to be correct and plasmids were inserted into strain RM1221 as described in 

Section 2.5.10.2.  
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 Strain Characterisation Assays  2.6

In order to assess the comparability of Campylobacter strains, or mutants with their WT 

parent strain, several phenotype tests were carried out. Since this was a study of C. jejuni 

biofilm formation, tests focused on factors which could affect capacity to form biofilms, such 

as growth rate, eDNA release, and the ability to swarm or autoagglutinate. This information, 

combined with data on biofilm forming ability, allowed conclusions to be made about what 

effect, if any, deletion of genes or genetic variability between strains had on biofilm 

formation. 

2.6.1 Autoagglutination 

The ability of cells to aggregate was tested by growing cells as described in Section 2.3.4 

before measuring the optical density at 600 nm and diluting to an OD600 of 0.5. Two ml of 

culture was added to a cuvette and incubated at RT in aerobic conditions for 24 hours. An 

OD600 reading was taken at the start and end of the incubation. All test samples were 

compared to NCTC 11168 WT and its ΔflaAB mutant, which is deficient in its ability to 

autoagglutinate. 

2.6.2 Degradation of extracellular DNA by C. jejuni RM1221 

Degradation of exogenous DNA was investigated using three separate experimental 

approaches: assessment of a) DNase activity using DNA containing agar plates, b) C. jejuni 

RM1221 eDNA degradation during growth and c) the ability of C. jejuni RM1221 to degrade 

DNA over a three hour time period. 

2.6.2.1 Measurement of DNase activity using DNase plates 

The DNase activity of C. jejuni strain RM1221, its Δcje1441 mutant, and E. coli expressing 

the RM1221 eDNase genes via the pET28α expression system, was assessed by spotting 

cell suspension on to DNase plates (Oxoid) containing 0.005% v/v Toludine Blue. E. coli 

suspensions were spotted directly on to the agar plates with no further manipulation, 

whereas C. jejuni suspensions were typically condensed to approximately 10x their original 

volume prior to spotting. Plates were incubated at 37°C in appropriate atmospheric 

conditions for 24 (E. coli) or 48 (RM1221) hours to allow development of a halo around the 

cell spots (indicating degradation). Plates were imaged using a GS800 Calibrated 

Densitometer (BioRad). 

2.6.2.2 Measurement of genomic DNA degradation by C. jejuni RM1221 

Degradation of DNA by C. jejuni strains NCTC 11168, RM1221 and the RM1221 Δcje1441 

mutant was also assessed. C. jejuni RM1221 cells were allowed to form a lawn on Skirrow 

plates. The cells were removed from the plate and suspended in 2 ml Brucella medium 

before pelleting and washing twice in sterile PBS. Following washing the cell concentration 

was measured and the culture diluted to an OD600 of 0.5 in sterile PBS. Fifty µl of cell 

suspension was added to approximately 2 µg of genomic C. jejuni NCTC 11168 DNA, and 

incubated at 37°C in a water bath for up to three hours. At 30 minute intervals, an aliquot 

was taken, the cells pelleted and the supernatant removed and frozen at -20°C until 

analysis. Following thawing, samples were visualised using agarose gel electrophoresis 

(described in Section 2.5.4). 

2.6.3 Measuring extracellular DNA in cell supernatants 

Shaking cell suspensions were grown as described in Section 2.6.1. At two hour intervals 

(for the first ten hours), 24 and 48 hours, a 1 ml volume of cell suspension was removed, 

pelleted and the supernatant added to an equal volume of phenol: chloroform: isoamyl 



Helen Louise Brown  Materials and Methods 

 

Page 78 of 294 

 

alcohol (in a ratio of 25:24:1 respectively) (Sigma). The mixture was vortexed and 

centrifuged at 20,000 × g, for 15 min at 4°C. The top fraction of the centrifuged liquid 

(approx. 500 µl) was removed and mixed with 50 µl sodium acetate (Invitrogen) and 1380 µl 

chilled absolute ethanol (Sigma) before centrifugation at 20,000 × g, for 30 min at 4°C. 

Supernatant was removed and 200 µl of 70% ethanol (sigma) was added before 

centrifugation at 20,000 × g, for 30 min at 4°C. Following removal of the supernatant the 

DNA was air dried and resuspended in 50 µl buffer EB (QIAGEN). DNA was stored at -20°C 

until use.  DNA quantification was carried out by measuring the absorbance at 260 nm using 

the NanoDrop (Thermo Scientific), following manufactures guidelines. 

2.6.4 Measurement of GFP expression 

Levels of GFP expression in E. coli NEB5α cells containing pCporAGFP
+
 was assessed in 

cultures grown overnight in aerobic conditions at 37 °C. Cultures were centrifuged at 3000 x 

g for 30 minutes, the supernatant removed, and the cell pellets resuspended in sterile 1 ml 

PBS. Fluorescence analysis was performed using the FluoStar OPTIMA plate reader 

(excitation 485 nm, emission 520 nm). OD600 measurements of the suspension were also 

obtained in order to calculate relative fluorescence. 

2.6.5 Growth 

C. jejuni was cultured as described in Section 2.3.4 before measuring the OD600 and diluting 

to a OD600 of 0.05 in Brucella medium. Suspensions were then cultured at 37°C, 220 rpm 

shaking, in microaerobic conditions for 48 hours. Unless stated a OD600 reading was taken 

every 2 hours for the first 8 hours and then at 24 and 48 hours. MPN was also assessed at 

these time points (described in Section 2.4.1). Test strains or mediums were compared to 

NCTC 11168 WT and Brucella medium respectively. For cell growth in chicken juice 

containing medium, TTC staining was carried out as described in Section 2.4.2. 

2.6.5.1 Growth measurement by Omega microplate reader 

For comparison of C. jejuni RM1221 Δcje1441 to WT strain, the FLUOstar Omega 

microplate reader (BMG Labtech) was used. A 200 µl volume of cell suspension, diluted to 

an OD600 of 0.05, was added in triplicate to the wells of a flat bottomed, clear 96 well plate 

(Sigma) before sealing with a FluidX adhesive pre-pierced polyolefin film to maintain sterility. 

Plates were incubated in the Omega machine for a 24 hour period with microaerobic 

conditions, 37°C, and 400 rpm shaking. OD600 measurements were taken every 60 minutes 

throughout the experiments time course. 

2.6.6 Swarming Motility 

The ability of cells to swarm was tested by placing cells on 0.4% Brucella agar, 

supplemented with 0.05% TTC. C. jejuni was cultured as described in Section 2.3.4 before 

measuring the optical density at 600 nm and diluting to an OD600 of 0.5. A 5 µl aliquot of 

diluted cell suspension was placed below the surface of the agar plate and incubated at 37 

°C, microaerobic conditions for 48 hours. Images were photographed following incubation 

and the size of swarming halos calculated in cm
2
 using Image J (RSB). All test samples 

were compared to C. jejuni NCTC 11168 WT and its ΔflaAB mutant, which is non-motile 

(Reuter et al., 2010). 
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 Protein expression and purification 2.7

2.7.1 Induction of protein expression 

Plasmids (pHB007, pHB008, pHB009 and pET28α) were introduced into the E.coli strains as 

described in Section 2.5.10.3. Induction of E. coli C41/C43 and BL21 (DE3) cells was carried 

out following manufacturers guidelines. Briefly plasmid containing cells were thawed on LB 

agar containing selective antibiotics and incubated at 37°C for 15 - 24 hours. A colony was 

picked from the plate using a sterile tooth pick and added to 5 ml of LB containing 30 µg/ml 

kanamycin and 0.2% (v/v) glucose and incubated at 37°C in shaking aerobic conditions 

overnight. Following overnight growth, 50 ml of fresh LB containing 0.2 % (v/v) glucose and 

30 µg/ml kanamycin was inoculated with 0.5 ml of overnight suspension and incubated at 

37°C in shaking, aerobic conditions until a OD600 of above 0.8 (or 0.5 for the E. coli BL21 

(DE3) background) was achieved. A final concentration of 1 mM IPTG was added to initiate 

induction of the target protein from the T7 promoter, and cell suspensions were further 

incubated for up to 6 hours. Cell concentration and MPN was monitored throughout. 

Following termination of the IPTG incubation, cell suspensions were centrifuged and the 

pellet and supernatant retained for further analysis. 

2.7.2 Measurement of protein concentration by Bradford assay 

Bradford reagent (BioRad) was allowed to equilibrate to RT and diluted 1:5 in water before 

use. Samples were also diluted in water as required, unless otherwise stated, the dilutions 

used shown below: 

Dilution (name) Volume of sample (µl) Volume of water (µl) 

1:10 (A) 100 900 

1:100 (B) 100 of A 900 

1:1000              100 of B 900 

Table 2-10 Sample dilution for Bradford analysis 

 A standard curve using known concentrations of BSA was also prepared as shown:  



Helen Louise Brown  Materials and Methods 

 

Page 80 of 294 

 

Concentration (mg/ml) Volume of sample (µl) Volume of water (µl) 

10 100 0 

9 90 10 

8 80 20 

7 70 30 

6 60 40 

5 50 50 

4 40 60 

3 30 70 

2 20 80 

1 (A) 200 1800 

0.75 75 (A) 25 

0.5 50 (A) 50 

0.25 25 (A) 75 

0.1 10 (A) 90 

0 0 100 

Table 2-11 Standard curve dilution for Bradford analysis. (A) represents a 1:10 dilution of the 

BSA stock (as shown in Table 2-10)  

A 5 µl sample of either standard or sample was added to 995 µl of diluted Bradford reagent 

and incubated for 10 minutes before measuring the absorbance of the sample at 595 nm. 

Values from the known BSA concentrations were used to construct a standard curve, from 

which the unknown concentrations of the samples could be calculated. 

2.7.3 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS PAGE) 

analysis 

Samples were resuspended in 10 mM Tris HCL pH 7.4 and then supplemented with 4x 

NuPAGE LDS sample buffer (Invitrogen), and β mercaptoethanol (2.5 % final volume) before 

vortexing and boiling for 5 minutes. Samples were loaded onto 4-20 % RunBlue SDS 

precast gels (Expedeon) with 1 x NuPAGE MOPS running buffer (Invitrogen). Benchmark 

pre-stained molecular weight marker (Novex) was included on the gels as a size marker. 

Gels were run for 90 minutes at 135 V before overnight staining with Instant Blue stain 

(Expedeon). Gels were scanned using a GS800 Calibrated Densitometer (BioRad). 

2.7.4 Western Blotting 

SDS PAGE analysis was carried out as described in Section 2.7.3. Following gel 

electroporation, instead of staining the gel with Instant Blue it was transferred from the SDS 

PAGE gel to a nitrocellulose membrane using a X cell sure lock tank (Life Technologies), set 

up according to the manufactures instructions and filled with transfer buffer at 100V for 60 
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min. Following transfer, the membrane was rinsed with natt buffer before addition of blocking 

buffer and incubation on a shaking platform for 60 min at 4°C. A 1000x dilution of the anti-

His antibody (GE Healthcare) was prepared using antibody dilution buffer. The membrane 

and antibody solution were carefully placed in a sealed plastic bag, ensuring that no air 

bubbles were present before incubation on a rocking platform for 60 min at RT. Following 

incubation, the membrane was rinsed with natt buffer and Goat-anti-mouse HRP conjugate 

antibody (diluted 10000 x in antibody dilution buffer) was added for 60 min at RT. The 

secondary antibody was removed and the membrane washed 6 times for 60 sec in natt 

buffer. His containing samples were visualised using the Supersignal West Pico Rabbit IgG 

detection kit (Pierce) following manufacturers guidelines and imaged using FluorChem E 

(Protein Simple).  
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 Biofilm assays 2.8

Various methods were used for the formation of biofilms during this investigation, a brief 

overview of which are presented in Figure 2-1. Detailed descriptions of the methods are 

given in Sections 2.8.1 to 2.8.11. 
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2.8.1 Biofilm formation in borosilicate test tubes 

Cell cultures were grown as described in Section 2.3.4 and typically adjusted to an OD600 of 

0.05 (alternative dilutions are stated as required in the following chapters). Unless otherwise 

stated, 1 ml of this solution was added to a sterile borosilicate glass test tube (Corning) 

containing a cotton wool stopper. Tubes were incubated without shaking for the required 

time period (approximately 48 hours unless otherwise stated) at 37
o
C in either microaerobic 

or atmospheric air conditions. Following incubation, biofilms were stained, photographed and 

cell MPN of the planktonic fraction was assessed. 

This method was adapted to allow growth of biofilms in a 100ml volume of Brucella medium. 

Medium bottles containing 100 ml of sterile Brucella medium were inoculated with C. jejuni 

to a final OD600 of 0.05. Bottles were incubated with loosened lids to allow air exchange. 

Each week bottles were photographed and MPN determined using TTC containing agar 

(Section 2.4.2). 

2.8.2 Growth of biofilms in 24 well plates 

Cell cultures were grown as described in Section 2.3.4 and adjusted to an OD600 of 0.05 in 

fresh Brucella medium. A 1.5 ml volume of this solution was added to a sterile polystyrene 

24 well plate (Corning). Plates were incubated with lid and without shaking for approximately 

48 hours at 37
o
C in either microaerobic or atmospheric air conditions. Following incubation, 

biofilms were stained as required, photographed and MPN assessed. 

2.8.3 Growth of biofilms on stainless steel coupons 

Cell cultures were grown as described in Section 2.3.4 and adjusted to an OD600 of 0.05. 

Sterile stainless steel coupons (Stainless steel type 1.4301 according to EN 10088-1, with a 

Type 2B finish according to EN 10088-2) were placed in a six-well polystyrene tissue culture 

plate (Corning) and incubated statically with 4 ml of cell suspension in either Brucella 

medium, Brucella medium containing 5-90 % chicken juice, or 100% chicken juice. Following 

incubation, biofilms were stained as required, photographed and MPN assessed. 

2.8.4 Growth of biofilms of glass slides 

For biofilm formation on glass slides, 20 ml of cell suspension at a concentration of OD600 

0.05 was added to a 50 ml falcon tube (Corning) containing a sterile twin frost borosilicate 

glass microscope slide (VWR) and incubated statically at 37°C for 48 hours in either aerobic 

or microaerobic conditions. Following incubation the slide was gently washed in sterile water 

and fixed either by incubation at RT in 4% formalin for 15 minutes before drying (for 

fluorescent microscopy) or by drying at 60°C for 30 minutes (where the light microscopy was 

and crystal violet staining was performed). Slides were stored at 4°C (for fluorescent 

microscopy) or RT (for light microscopy analysis), in the dark until use. 

2.8.5 Growth of biofilms on cover slips 

Cell cultures were grown as described in Section 2.3.4 and adjusted to an OD600 of 0.05. 

One ml of this solution was added to a sterile borosilicate glass test tube (Corning) 

containing a cotton wool stopper, in which a sterile Thermanox coverslip (Agar Scientific, 

Stansted, UK) had been placed. Tubes were incubated for approximately 48 hours at 37
o
C 

in either microaerobic or atmospheric air conditions. Following incubation the cover slip was 

removed and prepared for SEM imaging as described in Section 2.9.8.2. 

2.8.6 Pre-coating of abiotic surfaces 

Chicken juice was diluted to the desired concentration in Brucella medium, or used without 

dilution, and added to borosilicate test tubes (1 ml total volume added) or six well plates 
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containing a sterile stainless steel coupon (4 ml total volume added). Tubes/plates were 

incubated overnight at 37°C in aerobic conditions to allow pre-coating. The medium was 

subsequently removed and surfaces were washed with an equal volume of PBS (1 ml for 

test tubes, 4 ml for six-well plates with stainless steel coupons), and immediately used in 

biofilm assays. 

2.8.7 Proteinase K treatment of biofilms 

Following dilution of the cell suspension and addition to borosilicate test tubes as described 

in Section 2.8.1, 20 µl of proteinase K (>600 U/ml concentration, supplied by QIAGEN) was 

added to each tube prior to the 48 hour incubation. For assays requiring heat inactivated 

enzyme, the required volume of proteinase K was heated to 95°C for 10 minutes and 

allowed to cool before use. 

2.8.8 DNase I treatment of biofilms 

Following dilution of the cell suspension and addition to borosilicate test tubes or six well 

plates containing stainless steel coupons, 4 µl of DNase I (1 U/ml concentration, supplied by 

Thermo Scientific) and 4 µl of DNase I buffer (Thermo Scientific), or 16 µl of each where six 

well plates were used, was added to each biofilm tube prior to the 48 hour incubation. For 

assays requiring heat inactivated enzyme, the required volume of DNase I was heated to 

95°C for 10 minutes before use. Several alterations to this method are listed below: 

2.8.8.1 Addition of DNase at various biofilm maturity stages 

In order to assess the impact of DNase I addition to biofilms at various stages of maturation, 

biofilms were prepared as described in Section 2.8.1. Following 0, 12, 24, 36 or 48 hours of 

static incubation, 4 µl of DNase I (1 U/ml concentration, supplied by Thermo Scientific) and 4 

µl of DNase I buffer (Thermo Scientific) were added to each biofilm tube. Following a total of 

48 hours static incubation, test tubes were stained as required, photographed and MPN 

assessed. 

2.8.8.2 DNase addition prior to staining 

Biofilms were prepared as described in Section 2.8.1. Following the static 48 hours 

incubation 4 µl of DNase I (1 U/ml concentration, supplied by Thermo Scientific) and 4 µl of 

DNase I buffer (Thermo Scientific) were added to each biofilm tube and the test tubes 

replaced at 37°C. Tubes were removed, stained and MPN assessed following a 5, 15, 30, 

45, 60 or 120 min incubation with the DNase I. This allowed the rapidity of the biofilm 

degradation to be assessed. 

2.8.8.3 DNase I enzyme dilution 

In order to determine the volume of DNase I required to degrade a C. jejuni NCTC 11168 

biofilm, biofilms were prepared as described in Section 2.8.1. To each test tube 4 µl of 

DNase I buffer (Thermo Scientific) was added and then DNase I at concentrations of 5, 2.5, 

1.25, 0.63, 0.31, 0.16, 0.08, 0.04, 0.02, 0.01 and 0 U/ml was also added to the test tubes. 

Once DNase I was added the test tubes were replaced at 37°C. Following a total of 48 hours 

static incubation test tubes were stained, photographed and MPN assessed. 

2.8.9 Restriction enzyme treatment of biofilms 

In order to establish the cut pattern of C. jejuni NCTC 11168 and 81116 gDNA, a 1 µl 

volume of restriction enzyme (BamHI, BlpI, HaeIII, HindIII, MseI or RsaI, all supplied by 

NEB), DNase I (Fermentas), or RNase (QIAGEN) was added to a mixture containing 5 µl of 

C. jejuni NCTC 11168 or 81116 gDNA, prepared using a QIAGEN DNeasy Blood and Tissue 

kit following manufactures guidelines, 1 µl of 10x enzyme buffer (if required), 1 µl of BSA (if 
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required) and molecular grade water to a final volume of 10 µl. Table 2-12 indicates which 

buffers were required for each enzyme: 

Enzyme Recognition site Buffer(s) required 

BamHI G
▼

GATC
▲

C 

C
▼

CTAG
▲

G 

NEBuffer 3 + BSA 

BlpI GC
▼

TNA
▲

GC
 

CG
▼

ANT
▲

CG 

NEBuffer 4  

HaeIII GG
▼

CC 

CC
▲

GG 

NEBuffer 4  

HindIII A
▼

AGCT
▲

T 

T
▼

TCGA
▲

A 

NEBuffer 2 

MseI TT
▼

AA 

AA
▲

TT 

NEBuffer 4 + BSA 

RsaI GT
▼

AC 

CA
▲

TG 

NEBuffer 4 

DNase I NA DNase I buffer 

(Fermentas) 

RNase NA NA 

Table 2-12 Restriction sites of enzymes used throughout the project. Arrows indicate enzyme 

cut sites (Code N = any base). 

Biofilms were prepared as described in Section 2.8.1 and incubated statically at 37°C in 

aerobic conditions for approximately 48 hours. A 4 µl volume of restriction enzyme and 4 µl 

of its respective buffer(s) (Table 2-12) were added to the test tubes at either the start of the 

48 hours incubation or for the final hour of the 48 hours incubation. Following the 48 hours 

static incubation test tubes were stained as required, photographed and MPN assessed. 

In order to assess the activity of the enzymes against genomic DNA, samples were 

incubated for 60 minutes in a 37°C water bath to allow digestion of the gDNA before 

visualisation of the degradation products by gel electrophoresis.  

2.8.10 Assessment of genetic transfer within the biofilm 

Genomic DNA (gDNA) was extracted from the 11168 GFP
+
 mutant using the QIAGEN 

DNeasy kit following manufacturers guidelines. DNA concentration was calculated following 

the final elution. Purified DNA was stored at -20°C until use. The standard 48 hour static 

biofilm incubation was carried out as described in Section 2.8.1. In addition a total of 2 µg 

gDNA was added to test tubes in duplicate either prior to the start of biofilm incubation, or 

following 24 hours of static incubation. Following a total of 48 hours of incubation one test 

tube of each condition was stained using crystal violet and the second tube washed and the 

biofilm population released using a sterile cotton bud. Both the initial supernatant and 

scraped biofilm populations were retained for MPN assessment. MPN in both populations 

was assessed using both Brucella agar and Brucella agar containing 10 µl/ml 

chloramphenicol (for assessment of antibiotic resistance cassette transfer from the 11168 

GFP gDNA to either the planktonic or biofilm cell populations). 

2.8.11 Biofilm co-culture method 

Biofilm formation was initiated as described in Section 2.8.1 and a primary incubation of 24 

hours carried out at 37°C. Following 24 hours of static incubation, a second 1 ml volume of 

either fresh cell suspension (diluted to a OD600 of 0.05), fresh sterile medium or cell-free 

spent medium was added to the test tube and a further (secondary) incubation carried out in 



Helen Louise Brown  Materials and Methods 

 

Page 87 of 294 

 

the same conditions as the primary incubation. Following completion of the secondary 

incubation MPN was assessed and the test tubes crystal violet stained as described in 

Section 2.9.2.  
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 Biofilm staining methods 2.9

 

Figure 2-2 Graphical representation of the basic assay methods for TTC, Congo red and crystal 

violet staining. 

TTC, Congo red and crystal violet were the three most commonly used assay techniques during this 

project. For TTC staining: cell suspensions were incubated statically for (typically) 48 hours to allow 

biofilm formation. Medium and planktonic cells were removed before addition of fresh, TTC containing 

medium and further incubation in microaerobic conditions for (typically) 72 hours to allow staining to 

develop.  For Congo red staining: cell suspensions supplemented with Congo red dye were incubated 

statically for (typically) 48 hours to allow biofilm formation. Cell suspension was removed and the 

biofilms (including bound Congo red) were allowed to dry. For crystal violet staining: cell suspensions 

were incubated statically for (typically) 48 hours to allow biofilm formation. Following incubation, cell 

suspension was removed and the biofilms fixed before addition of crystal violet dye. Excess dye was 

removed and the stained biofilms allowed to dry.  Once dried all biofilms could be imaged, and further 

analysis carried out. 

2.9.1 Congo Red staining 

A 0.1% v/v concentration of Congo Red was added to Brucella medium, Brucella medium 

supplemented with 5% v/v chicken juice or 100% chicken juice with or without C. jejuni, 

before static incubation at 37°C for 48 hours. At the end of the incubation period, the 

medium was removed from the tube before washing with 1 ml of PBS and drying at 37°C.  

2.9.2 Crystal violet staining of biofilm cultures 

Cell suspensions were removed from the test tubes, MPN assessed as described in Section 

2.4.1, and the tubes were subsequently washed once with de-mineralized water and dried at 

60°C for 30 minutes. One ml of 1% w/v crystal violet solution in de-mineralized water was 

added and tubes were further incubated on a rocker at RT for 30 minutes. After incubation 

the non-bound dye was removed from the tubes by thorough washing with demineralized 

water followed by drying at 37°C. 
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2.9.2.1 Crystal violet staining of slides 

Following drying at 60°C for 30 minutes, slides were placed on a horizontally on a surface 

and 1 ml of 1% crystal violet was added to each slide and distributed over the slides surface. 

Slides were incubated, without movement, for approximately 10 minutes before excess 

crystal violet was removed by washing with demineralised water followed by drying at 37°C. 

2.9.3 TTC staining of biofilm cultures 

TTC staining was performed as described with minor adaptations during the method 

optimization process (Sections 2.9.3.1 to 2.9.3.5). Following the 48 hour incubation the cell 

suspension was removed, MPN assessed as described in Section 2.4.1, and tubes were 

washed twice by adding 1 ml of sterile PBS to gently rinse the attached biofilm, and remove 

unbound cells. A 1% TTC stock solution was diluted in fresh Brucella medium to a final 

concentration of 0.05% and 1.2 ml added to each tube before incubating at 37°C in 

microaerobic conditions for 72 hours. Following incubation MPN was assessed and the 

remaining Brucella medium/TTC solution was then removed and the tubes air dried. 

2.9.3.1 Standard TTC staining method during optimisation process 

Following the 48 hour static biofilm incubation, cell suspension was removed and tubes were 

washed twice by adding 0.6 ml of sterile PBS and swirled gently. TTC stock solution (1%) 

was diluted in fresh Brucella medium to a final concentration of 0.1% w/v), before incubating 

at 37°C in microaerobic conditions for 24 hours. Following incubation the TTC solution was 

removed and the tubes air dried. 

2.9.3.2 Assessment of TTC conversion in aerobic and microaerobic conditions 

The extent of TTC conversion from the initial clear solution to red formazan crystals by C. 

jejuni biofilms was assessed in both aerobic and microaerobic conditions. This was carried 

out by performing the secondary (TTC incubation) described in Section 2.9.3.1 at 37°C in 

both aerobic and microaerobic atmospheric conditions. 

2.9.3.3 Optimisation of TTC washing process 

During assay optimization process the following biofilm washing procedures were tested: 

 Removal of cell suspension and no further washing before addition of TTC 

containing Brucella medium 

 Removal of cell suspension, one 0.5 ml gentle wash with sterile PBS before addition 

of TTC containing Brucella medium 

 Removal of cell suspension, two 0.5 ml gentle washes with sterile PBS before 

addition of TTC containing Brucella medium 

 Removal of cell suspension, one 1 ml gentle wash with sterile PBS before addition 

of TTC containing Brucella medium 

 Removal of cell suspension, two 1 ml gentle washes with sterile PBS before addition 

of TTC containing Brucella medium 

2.9.3.4 Optimisation of TTC concentration 

Several TTC concentrations were tested during the TTC staining optimisation process. A 1% 

stock solution was diluted in fresh sterile Brucella medium to concentrations of 0.01%, 

0.02%, 0.05%, 0.1% and 0.5% v/v before addition to biofilm containing test tubes. 

2.9.3.5 Optimisation of secondary TTC incubation 

Multiple secondary TTC incubation times were assessed during the TTC staining 

optimisation process. Following addition of the 0.1% TTC solution to the biofilm cultures, 
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incubations of 6, 12, 24, 48 and 72 hours were carried out at 37°C in microaerobic 

conditions. 

2.9.4 Quantification of dyes using spectrophotometer 

Biofilms formed in tubes, plates or on stainless steel coupons were routinely photographed 

on a black or white background using a FinePix S4200 14 megapixel digital camera (Fugi). 

To quantify bound Congo red, crystal violet and TTC, dyes were dissolved by adding 20% 

acetone/80% ethanol to borosilicate test tubes or tissue culture plates and incubating on a 

rocking platform for 15 minutes at RT. The absorbance levels of dissolved dye were 

measured at a wavelength of A500 (Congo red and TTC) or A590 (crystal violet) using a 

Biomate 5 spectrophotometer (Thermo). 

2.9.5 DAPI staining of C. jejuni NCTC 11168 GFP biofilms 

Biofilms grown on glass slides were allowed to equilibrate to RT in the dark, before staining 

with 4‟,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) using manufacturers guidelines 

(Invitrogen). Prior to addition of a coverslip, Slowfade Gold antifade reagent (Invitrogen) was 

added to the slide as recommended by the manufacturer. Slides were imaged using a Zeiss 

200M fluorescent and light microscope with Axiovision software. 

2.9.6 Visualisation of extracellular DNA 

Following incubation to allow biofilm formation in both aerobic and microaerobic conditions, 

the supernatant was removed and the tubes were rinsed once with sterile PBS to remove 

loosely attached bacterial populations. After rinsing and removal of the rinse suspension, a 

second 1ml volume of sterile PBS was added to each test tube and a sterile cotton wool 

swab was used to gently remove the biofilm from the walls of the test tube. An aliquot of this 

supernatant was retained for further analysis. DNase I (Fermentas) and RNase (Sigma) 

treatments were carried out following manufactures guidelines and incubated at 37°C in a 

water bath for 1 hour. Aliquots were mixed with gel loading buffer (NEB) and added to a 

0.9% agarose gel and run at 100 V for 45 minutes in 0.5% TBE buffer. 

2.9.7 Microscopy methods 

2.9.8 Light microscopy 

To observe cell motility and shape, 10 l of culture was added to a microscope slide and 

covered with a coverslip. Cells were observed using an Eclipse 50i microscope using the 

x100 lens (x1000 including ocular lens). Images were captured using a Coolpix 4500 digital 

camera (Nikon). 

Observation of biofilms was carried out following growth of the biofilm as described in 

Section 2.8.4. Slides were dried at 60°C for 30 minutes and followed by staining with crystal 

violet (Section 2.9.2). Imaging was carried out using an Eclipse 50i microscope using the 

x20, x40 or x100 lens (x200, x400 or x1000 including ocular lens). Images were captured 

using a Coolpix 4500 digital camera (Nikon). 

2.9.8.1 Ryu Stain 

C. jejuni were grown as described in Section 2.6.1 for approximately 4 hours, to allow cells 

to reach sufficient numbers for optimal imaging density. Flagella were visualised using the 

Ryu stain described by (Kodaka et al., 1982). Briefly, a solution of 5% phenol, 2 g tannic acid 

and 10 µl saturated aluminium potassium sulphate was mixed in a 1:10 ratio with 6 g crystal 

violet in 50 ml ethanol. Microscopy slides were prepared with the cell cultures of interest, 

and 5 µl of Ryu stain was added to the corner of the cover slip and allowed to move under 
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the cover slip by capillary action. Imaging was at 1000 x magnification using an Eclipse 50i 

microscope and photographed using a Nikon Coolpix E4500 camera. 

2.9.8.2 Electron Microscopy 

Sterile thermanox coverslips (Agar Scientific, Stansted, UK) were placed vertically into a 

borosilicate glass test tube and incubated statically at 37°C in both aerobic and microaerobic 

conditions to allow biofilm formation to occur. Following the primary biofilm incubation the 

slides were removed, washed once with sterile PBS and fixed with 2.5 % glutaraldehyde in 

0.1 M PIPES buffer (pH 7.4) for 1 hour. The fixative was then replaced with 3 changes of 

0.1M PIPES buffer. The cells, supported by the cover slips, were then dehydrated in a series 

of ethanol solutions (30, 40, 50, 60, 70, 80, 90, and 3 × 100%) for at least 20 minutes in 

each. Samples were critical point dried in a Polaron E3000 critical point drier using liquid 

carbon dioxide as the transition fluid. The cover slips were then mounted with the cell layer 

facing upwards on aluminium SEM stubs using sticky tabs. The samples were coated with 

gold in an Agar high resolution sputter-coater apparatus. Scanning electron microscopy was 

carried out by Louise Salt and Kathryn Cross (NRP bioimaging group) using a Zeiss Supra 

55 VP FEG SEM, operating at 3kV.  
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 Data analysis 2.10

The mean, standard deviation, standard error of mean (SE), and coefficient of variance 

(%CV) was routinely calculated for all experimental data. This was used to assess both 

inter-assay (biological replicates) and intra-assay (technical replicates) variability. Typically 

five biological replicates of each assay were completed. The N value for each assay is 

indicated in the figure legends.  

2.10.1 Statistical analysis 

Statistical analysis was carried out using GraphPad Prism software (GraphPad software). 

Significance was assessed by calculating Students‟ t-test, Tukey, and Bonferroni post-test 

probabilities. A P value below 0.05 was considered significant. Linear regression was used 

in the cell density measurements presented in Section 3.2.5. 

2.10.2 Dot plot analysis 

The cje0556 and cje1441 genes were compared using the dotpath software, available on the 

EMBOSS website (http://emboss.bioinformatics.nl accessed 18 December 2014) and 

following the software instructions. 

http://emboss.bioinformatics.nl/
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3 Development of a novel staining method for assessment 

of C. jejuni biofilm formation in the presence of organic 

materials. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the paper: Brown H L, van Vliet A H M, Betts R P, Reuter M (2013) 

Tetrazolium reduction allows assessment of biofilm formation by Campylobacter jejuni in a 

food matrix model. Journal of Applied Microbiology, 115, p1212-21 
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 Introduction 3.1

Levels of biofilm formation are usually assessed by dye-based staining techniques, which 

broadly fall into two categories: non-specific dyes and dyes targeting specific molecules 

within the biofilm, such as fluorescent dyes, which can be visualised using confocal laser 

scanning microscopy (Lawrence and Neu, 1999). Such specific dyes are useful for detailed 

and dynamic imaging of biofilms (Baird et al., 2012), but are costly and have labour-intensive 

and time consuming methodologies, making them an inappropriate tool when rapid 

visualisation of biofilms is required. Conversely non-specific dyes, although rapid, may 

overestimate the quantity of viable biofilm cells present, due to their non-specific binding of 

the matrix or surface components. 

The most commonly used method to detect and quantify biofilms is staining with crystal 

violet (Chavant et al., 2007). This dye is non-specific, as it binds to all surface molecules of a 

negative charge, which can be found on either the bacteria or ECM (Extremina et al., 2011, 

Pan et al., 2010). Although crystal violet is frequently used to detect and quantify biofilm 

formation, some authors have criticized crystal violet for its relatively high inter-assay 

variability, particularly when compared to other imaging methods (Li et al., 2003). 

Tetrazolium salts are the basis of several redox sensitive dyes, and have been used 

previously to study cell growth and biofilm formation in various bacterial models (Tengerdy et 

al., 1967, Schaule et al., 1993), but not with C. jejuni biofilms. In this chapter it is 

demonstrated that crystal violet gives high levels of non-specific (false-positive) staining in 

the presence of organic food matrices. As an alternative to crystal violet the reduction of the 

metabolic stain TTC to insoluble, red crystals of 1,3,5-triphenylformazan (TFP) (Bakor and 

Fahselt, 2005, Berends et al., 2010) was tested, before optimisation for use with C. jejuni 

biofilms.  
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 Results 3.2

3.2.1 Crystal violet is able to non-specifically stain chicken juice 

Crystal violet staining is a frequently used method for detection and quantification of 

biofilm formation, and has been used previously with C. jejuni biofilms (Joshua et 

al., 2006, Reeser et al., 2007, Reuter et al., 2010). However, initial experiments with 

crystal violet, chicken juice (for details of the chicken juice method see 2.2.2.6.1 and 

4) and skimmed milk showed high levels of non-specific, false-positive staining 

(Figure 3-1). Tubes incubated with chicken juice but no C. jejuni cells gave high 

levels of staining, visualized as both a diffuse stain below the air/liquid interface and 

a strongly stained ring at the air-liquid interface (Figure 3-1b). This staining is 

independent of the presence or absence of C. jejuni. Similar results were obtained 

when replacing the chicken juice with skimmed milk solution (Figure 3-1c), another 

food-relevant matrix that has previously been used (Chmielewski and Frank, 2003).  

 

Figure 3-1 Representative images of CV stained chicken juice and skimmed milk 

Images show crystal violet staining of test tubes incubated for 48 hours with Brucella medium only (A), 

5% chicken juice (B) or 5% skimmed milk (C). No C. jejuni is added to these test tubes so staining 

shown reflects the ability of crystal violet to non-specifically the attached particulates. 

This non-specific staining necessitated the development of an alternative method for 

measuring biofilm levels of C. jejuni. As shown in Figure 3-2, to allow TTC staining the 

standard biofilm assay was modified. In both the crystal violet and TTC methods, C. jejuni 

NCTC 11168 biofilms were cultivated using static culture (primary culture). In addition the 

TTC method required replacement of primary culture growth medium with fresh, TTC-

supplemented media (secondary culture). 
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Figure 3-2 Diagrammatic representation of the staining assay methodologies showing 

incubation length and assay steps. 

The workflow of both the TTC and crystal violet assays are shown to highlight both the methodological 

and time-span differences between the two methods. 

During the secondary incubation, viable cells within the attached population were able to 

reduce the TTC, because the addition of the fresh medium allowed metabolic activity to 

increase, leading to conversion of TTC and the formation of a visible red formazan ring. 

Supplementation of the medium used during the primary incubation with TTC led to a diffuse 

red dye, which could not be collected and quantified, hence a secondary incubation step 

was added to the biofilm method, allowing quantification of the biofilm only. For the 

secondary incubation, only Brucella medium was tested as the C. jejuni cultures were known 

to be metabolically active and form biofilms within this medium. Since this medium is also 

widely used by this group and other groups working in the field, the results could be 

compared more easily to existing studies. The formazan crystals could be quantified by 

dissolving the bound dye and measuring absorbance at a wavelength of 500 nm (Figure 

3-3). This formazan conversion allowed distinction between bacterial populations and 

attached organic material, a distinction which could not be achieved by use of non-specific 

dyes such as crystal violet (Figure 3-3). 
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Figure 3-3 TTC does not non-specifically stain 5% chicken juice 

Representative images of test tubes which have been incubated for 48 hours to allow biofilm formation 

before staining with either crystal violet (first and third columns) or TTC (second or last columns). The 

upper panel highlights that TTC is unable to convert to red formazan crystals without the presence of 

viable C. jejuni, whereas crystal violet confound biofilm quantification by staining both attached cellular 

populations and chicken juice (* denotes the approximate level of the meniscus following a 48 hour 

incubation). Chicken juice was selected for use here since BSA, another protein rich commonly used 

medium supplement, inhibited biofilm formation by C. jejuni NCTC 11168 as so could not be used in 

experiments where C. jejuni biofilm formation was required.  

3.2.2 The reduction of TTC by C. jejuni is more effective under microaerobic 

conditions 

It has been previously demonstrated that C. jejuni biofilm formation during incubation in 

aerobic conditions is increased compared to microaerobic conditions (Reuter et al., 2010). In 

order to ensure that the new TTC staining method was useful in both aerobic and 

microaerobic conditions, TTC conversion by aerobic C. jejuni biofilms grown without chicken 

juice was investigated and staining compared to crystal violet-stained biofilms. As can be 

seen in Figure 3-4 levels of TTC staining were significantly lower when compared to crystal 

violet, following secondary incubation in air. This suggests that TTC conversion by 

aerobically incubated C. jejuni does not correlate to the total level of biofilm, as determined 

by crystal violet staining. 
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Figure 3-4 TTC staining required microaerobic incubation after biofilm formation 

Comparison of TTC and crystal violet (CV) staining of C. jejuni biofilms incubated in microaerobic and 

aerobic conditions for biofilm formation and staining. White bars represent crystal violet staining 

(measured as A590), black bars represent TTC staining (measured as A500). The first two columns show 

the results of biofilm formation and staining in microaerobic conditions, columns 3 and 4 show results 

from both biofilm formation and staining in aerobic conditions, and columns 5 and 6 show results of 

biofilm formation in aerobic conditions but staining in microaerobic conditions. Error bars show the SE 

from three biological replicates, asterisks denote a statistically significant difference between crystal 

violet and TTC staining (P <0.01, Students‟ T-test). N = 5 

This difference was not observed in cultures where primary incubation in air was followed by 

secondary incubation in microaerobic conditions. Hence, all secondary incubations were 

performed in microaerobic conditions. This allowed optimum respiration and metabolism of 

the C. jejuni cells during the secondary incubation, while also maintaining the inhospitable 

environment which favours biofilm growth in the primary incubation. 

3.2.3 Secondary incubation of biofilms does not lead to significant increases in 

biofilm biomass. 

A lengthy secondary incubation was required to allow substantial TTC conversion by the 

attached NCTC 11168 population. There was a concern that this second incubation would 

allow significant further biofilm modification and so the impact of the secondary incubation 

on levels of biofilm was assessed. Biofilms were allowed to form in aerobic or microaerobic 

conditions during the primary incubation, before washing and addition of Brucella medium 

(without TTC) and the commencement of a secondary incubation in microaerobic conditions. 

Test tubes were removed following 24, 48 or 72 hours of secondary incubation and crystal 

violet stained to allow biofilm quantification. As can be seen in Figure 3-5, there is no 

statistically significant additional biofilm formation following the secondary incubation, 

although biomass does increase over the 72 hour additional incubation period. 
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Figure 3-5 Additional growth during the secondary incubation is not significant. 

Biofilm biomass was measured following a 24 hour (black bars), 48 hour (light grey bars) or 72 hour 

(dark grey bars) secondary microaerobic incubation of C. jejuni biofilms in Brucella medium and 

compared to a standard 48 hour primary incubation (white bars).  Although a trend of increasing biofilm 

biomass was observed as time progressed, the difference was not statistically significant following 

ANOVA analysis. Bars show mean levels of crystal violet staining (N=5) and error bars show SE. 

 This suggests that a secondary incubation of up to 72 hours allows biofilm formation to be 

assessed without confounding results by allowing additional significant biofilm biomass 

increases. It was interesting to note that following 24 hours of secondary incubation the 

biofilm level was slightly reduced compared to biofilms which had undergone on further 

incubation. This could be due to minor mechanical disruption of the biofilm which may occur 

during the washing steps or addition of the secondary incubation medium. 

3.2.4 Optimization of a TTC staining protocol to reduce assay variability 

In order to optimize the TTC assay for use with C. jejuni and ensure that variability was 

minimised, several methodological variables of assay reproducibility were explored: rigor of 

the biofilm washing, TTC concentration, C. jejuni cell concentration, and finally TTC 

incubation time. 

To investigate the effect of the washing procedure on quantification of biofilm formation and 

its impact on cell loss in the TTC assay, the following washing procedures were compared: 

no washing, wash once with 0.5 ml PBS, wash twice with 0.5 ml PBS, wash once with 1 ml 

of PBS, or wash twice with 1 ml PBS.  None of the washing methods resulted in a 

statistically significant difference in the A500 values obtained (Figure 3-6) suggesting that the 

washing procedure would not impact the final levels of biofilm staining. The coefficient of 

variance (%CV) was subsequently calculated and analysed to show the levels of 

reproducibility between replicates. Results were more reproducible (i.e. lower % CV) using 

two washes with 1 ml of PBS. Therefore, on all subsequent assays, tubes were washed 

twice with 1 ml sterile PBS. 
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Figure 3-6 Biofilm formation is not significantly affected by alterations in the washing 

regimen. 

Biofilm biomass was quantified by measuring A500 values following TTC staining for five different 

washing procedures. The washes tested were: no wash before staining (blank bars), one wash with 

0.5 ml of sterile PBS (mid grey bars), two washes with 0.5 ml of sterile PBS (white bars), one wash 

with 1 ml of sterile PBS (mid grey striped bars) and two washes with 1 ml of sterile PBS (white 

striped bars). Both aerobic and microaerobic conditions are shown. (Error bars indicate SE, N = 5). 

Tetrazolium dyes have previously been reported to be toxic to bacteria at high 

concentrations, both reducing the viability of bacterial populations and suppressing 

metabolic activity (Ullrich et al., 1996). Although this property has allowed TTC to be used as 

part of selective mediums (Weinberg, 1953), toxicity would be counter-productive in this 

assay. To address this potential problem a range of TTC concentrations were tested to 

assess optimal staining, while not affecting viability of C. jejuni during the incubation. 

Although there was a trend towards less TTC reduction at higher concentrations, there was 

no statistically significant difference between any of the TTC concentrations tested (from 

0.01% to 0.5%), demonstrating that TTC reduction occurred at all tested concentrations 

(Figure 3-7a). However, MPN was drastically reduced at concentrations ≥0.1% TTC (Figure 

3-7b). To avoid artifacts resulting from such cytotoxicity, all future assays were performed 

with TTC at a final concentration of 0.05%. 
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Figure 3-7 Optimization of the TTC staining assay. 

Sections A, C and D show graphs with mean A500 values of TTC staining from optimization 

experiments (A) assaying the effect on biofilm biomass of different TTC concentrations; (C) initial C. 

jejuni NCTC 11168 inoculum concentrations; and (D) incubation time after addition of fresh TTC-

supplemented medium. Each bar in the charts shows the average of three biological replicates, and 

error bars show SE (N = 5). Asterisks denote statistical significance: * = P<0.05, *** = P <0.001 

(Students‟ T-test). Panel B shows a representative image of a C. jejuni MPN assessment, following 48 

hours incubation with a range of TTC concentrations (I: 0.01%, II: 0.05%, III: 0.10%, IV: 0.20% and V: 

0.50%). The picture shows (from left to right) a tenfold dilution series of cell suspension, with 5 μl 

spotted per dilution, and the plate was incubated in microaerobic conditions at 37°C for 48 hour to 

allow cell growth. Following the 48 hour incubation no viable cells were observed in the planktonic 

phase of static cultures were concentrations of 0.01% TTC or higher were used. 

To test if the total number of cells used to inoculate the static cultures influenced the final 

levels of TTC staining, overnight C. jejuni cultures were diluted to initial OD600 of 0.01, 0.02, 

0.05 and 0.1 prior to innoculation. When assessing biofilm formation using the TTC method, 

no significant difference in TTC staining was seen over this range of inocula (Figure 3-7c), 

and thus set to a standard inoculum of OD600 = 0.05. Following the addition of fresh TTC-

supplemented medium, various secondary incubation times, ranging from 6-72 hours, were 

compared in order to establish the optimal secondary incubation period. Although no 

significant increase in biofilm biomass was observed (Figure 3-5), staining was significantly 

increased 48 hours after the addition of TTC, with little further increase from 48 to 72 hours 

(Figure 3-7d). As such all further incubation were carried out for a minimum of 48 and a 

maximum of 72 hours. 

3.2.5 TTC reduction in medium cultures correlates with OD600 

A high level of precipitation and aggregation in shaking cultures supplemented with chicken 

juice was observed (Figure 3-8). This hampered accurate tracking of growth both by 

measurement of OD600 values, or when performing serial dilutions and plating suspensions 
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for colony counting. 

 

Figure 3-8 Representative images of chicken juice particulates. 

Images were taken with Nikon Coolpix camera, without magnification, following four hours of shaking 

incubation in a T25 tissue culture flask at 37°C in microaerobic conditions. The left image (A) shows a 

sterile Brucella only medium and the right image (B) shows sterile Brucella medium supplemented with 

5% chicken juice. Although the solution in A appears clear, large aggregates can be seen in B, 

indicating that inclusion of chicken juice into solutions leads to the production of particulates. In both 

flasks no bacterial growth was observable following 48 hrs. of incubation, indicating that the 

particulates were not caused by the interaction of the chicken juice with bacteria. 
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as TTC conversion is dependent on metabolic activity, it is hypothesized that it can be used 

as an alternative to OD600 measurement in medium supplemented with food matrices (for 

example chicken juice). In order to test this, a range of pre-set bacterial concentrations in 

Brucella medium were supplemented with TTC, and both the OD600 and A500 were 

determined following incubation (Figure 3-9). 

 

Figure 3-9 TTC staining can be used as alternative for OD600 measurements to monitor growth 

of C. jejuni, at OD600 values below 0.8 

Graph showing comparison of absorbance values of the specific cells concentrations supplemented, 

as measured by OD600 (black circles), and stained with TTC ((white squares).  Cells were diluted to a 

known OD600 value, and TTC was added and samples were incubated for 30 minutes. An equal 

volume of solvent was added and samples were centrifuged before measurement of absorbance or 

optical density. The supernatants were removed and the OD600 and A500 values measured. The Y axis 

indicates the expected optical density/absorbance of the diluted samples and the X axis plots the 

actual value obtained by measuring the optical density/absorbance. Error bars show the standard 

deviation from 5 biological replicates. 

At an OD600 ≤ 0.8, TTC conversion (as measured by A500) showed a linear correlation with 

the OD600 (Figure 3-9). The gradients of A500 and measured OD600 values did not significantly 

differ (P = 0.377). Above OD600 = 0.8, OD600 and A500 measurements did not correlate, with 

A500 values beginning to plateau. This could be due to maximal conversion of the dye, or 

poor recovery of the dissolved dye due to the high cell concentration. Thus, for tracking 

bacterial growth at  OD600 = 0 to 0.8, TTC supplementation can be used where OD600 

measurement is not possible, due to interfering components present in food matrices.  
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 Discussion 3.3

In this chapter it is shown that TTC staining of C. jejuni biofilms is a suitable alternative to 

crystal violet dye, giving similar levels of sensitivity and assay reproducibility. TTC also has 

the advantage of allowing metabolic activity detection and visualization of biofilms in 

matrices relevant to the food chain, such as chicken juice. It was previously shown that 

viable cells could be recovered from an aerobically grown biofilm (Reuter et al., 2010). This 

optimized TTC staining methodology also demonstrates that viable cells contribute to the 

adhered population of aerobically incubated biofilms. 

Crystal violet is commonly used in biofilm studies, however various authors have suggested 

that information gained from crystal violet staining alone may be misleading due to its non-

specific staining (Pan et al., 2010, Skogman et al., 2012). Other techniques, such as cell 

enumeration, must be carried out alongside crystal violet staining, leading to increased study 

cost and time. Crystal violet is also not suitable for use in combination with high protein 

content matrices, or where non-specific binding to components in the growth matrix is 

expected. Calcofluor white has also been reported to stain C. jejuni biofilms (McLennan et 

al., 2008), however as this is another carbohydrate component stain, we anticipate similar 

issues in food matrix models. High levels of background are also expected with the protein 

stain Coomassie blue (Austin et al., 1998, Rogan et al., 2004). 

The TTC method described in this chapter allows rapid, non-toxic and low cost quantification 

of metabolically active attached C. jejuni cells. TTC has been used to detect cell viability in a 

wide range of tissues (Steponkus and Lanphear, 1967, Adegboyega et al., 1997). A number 

of studies have reported the use of TTC in identification and distinction of Campylobacter 

species (Skirrow and Benjamin, 1980, Luechtefeld and Wang, 1982). TTC has been used to 

assess the levels of biofilm formation and growth of Staphylococcus aureus and E. coli 

(Skogman et al., 2012, Tengerdy et al., 1967), but a review of the literature shows that TTC 

has not been used to assess C. jejuni biofilm formation, in either monoculture or in a food 

matrix model. 

As TTC is a metabolic dye, growth conditions should be optimised when using the TTC 

stain. In this chapter, sub-optimal growth or stressful conditions (such aerobic incubation) led 

to inefficient reduction of TTC dye. Rapid loss of signal due to starvation conditions has also 

been observed for 5-cyano-2,3-ditoyl tetrazolium chloride-detection of Pseudomonas putida 

in a drinking water system (Schaule et al., 1993) and during assessment of antibiotic activity 

against Streptomyces venezuelae (Brooks et al., 2012). This suggests that conventional 

staining and microscopy still have a role to play in measuring biofilm formation in sub-

optimal conditions. 

TTC has also been suggested as a tool for allowing rapid enumeration of Campylobacter 

colonies in selective medium (Line, 2001). Here concentrations of 0.1, 0.5, 1, 2 and 5 mg ml
-

1
 were tested, and results were consistent with those of the previous authors  (Butzler and 

Skirrow, 1979, Line, 2001, Skirrow and Benjamin, 1980, Veron and Chatelain, 1973), 

showing normal growth of C. jejuni at TTC concentrations of 0.2 and 0.4 mg/ml, but very 

weak growth at 1 mg/ml, and no growth observed above this concentration. 

During this investigation it was noticed that the speed of TTC conversion was dependent on 

the conditions the C. jejuni was subjected to. For example, it is possible to measure the 

growth of C. jejuni in shaking cultures following a 30 minute treatment with TTC, however at 

least a 24 hour incubation must be performed with biofilm cultures in order to achieve the 
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same levels of staining. Many investigators have shown that bacteria in biofilms have 

reduced metabolic activity, due to gradients of nutrients and oxygen within the biofilm itself 

(Fux et al., 2005, Hoiby et al., 2010a), leading to differential conversion of TTC. 

It is advisable to further optimize the TTC methodology presented here for specific 

applications other than C. jejuni static biofilm formation. This has previously been reported 

by (Klancnik et al., 2010), who found that C. jejuni and C. coli did not respond to the TTC 

staining protocol used for Bacillus cereus, S. aureus and Salmonella infantis. It is hoped 

however that this work will be able to provide a basis for optimisation of TTC with other 

biofilm forming species and different applications of C. jejuni biofilm study. 

In conclusion, the method presented in this chapter offers a new low-cost technique suitable 

for use in biofilm analysis, allowing rapid and simple imaging of metabolically active cells. 

This method is able to specifically stain adhered and metabolically active C. jejuni. 

Moreover, the use of TTC conversion to monitor growth in matrices that do not allow 

measurement of OD600 values is also demonstrated. Use of TTC is especially relevant in 

investigations where matrices are used that are likely to lead to high levels of non-specific 

staining by traditional dyes. 
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4 Chicken juice enhances surface attachment and biofilm 

formation of Campylobacter jejuni 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the paper: Brown H L, Reuter M, Salt L J, Cross K L, Betts R P, 

van Vliet A H M (2014) Chicken juice enhances surface attachment and biofilm formation of 

Campylobacter jejuni. Applied Environmental Microbiology, 80, 22, 7053 – 7060 

 SEM images by K Cross and L Salt (NRP bioimaging group) 
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 Introduction 4.1

Insufficient or ineffective removal of organic material is a serious problem in food processing 

areas. Spilled foodstuffs or run-off from carcass eviscerations contain a complex blend of 

carbohydrates, proteins, lipids and sugars (Chmielewski and Frank, 2007), providing an 

ideal solution in which bacteria can thrive and survive. A build-up of these organic materials 

on a surface is hereafter referred to as a conditioning layer. Conditioning layers assist 

bacterial attachment to surfaces by altering the surface physio-chemical properties, and 

attracting the bacteria to the surface due to the increased nutrient availability (Hwang et al., 

2012, Dat et al., 2010). One well studied example of a conditioning layer is the oral pellicle, 

which assists attachment of bacterial species such as Streptococcus mutans to the tooth 

surface and contributes to subsequent periodontal disease (Di Giulio et al., 2013). Surface 

conditioning layers have also been shown to be important for the initial attachment of food-

borne pathogens, for example L. monocytogenes survival rates increase when biological soil 

is present on stainless steel surfaces (Van Houdt and Michiels, 2010), and milk proteins are 

able to increase attachment of E. coli, L. monocytogenes and S. aureus to stainless steel 

(Barnes et al., 1999). 

To date, most studies on C. jejuni biofilms have been performed in laboratory conditions, 

which do not mimic the conditions encountered in the processing environment. It is important 

to ensure that studies are designed to allow accurate interpretation and extrapolation of 

laboratory obtained results to the food industry (Balamurugan et al., 2011). Various 

experimental systems have been used to mimic the conditions encountered by C. jejuni in 

the food chain. These models typically include the use of cooked or raw meat (Yoon et al., 

2004), modelling relevant packaging conditions (Balamurugan et al., 2011), or use materials 

relevant to the food chain such as stainless steel (Sanders et al., 2008). One such model 

system is the “chicken juice” model (Birk et al., 2004). This model is based on the collection 

of exudate from defrosted, commercially obtained chicken carcasses, followed by 

supplementation or replacement of standard laboratory medium with this sterile filtered 

liquid. Supplementation of Brucella medium with chicken juice resulted in increased survival 

of planktonic cells of C. jejuni following both chilled and frozen storage (Birk et al., 2004, Birk 

et al., 2006). 

In this chapter the effect of chicken juice on attachment of C. jejuni and C. coli to surfaces 

and their subsequent biofilm formation was investigated. It is shown that in the presence of 

chicken juice, C. jejuni biofilm formation is increased, and that this increase in biofilm levels 

is not simply due to increased cell numbers within the suspensions, but to an increase in 

attachment to abiotic surfaces.  It is also shown that this increase in attachment is due to the 

ability of chicken juice to condition abiotic surfaces relevant to food processing 

environments. 
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 Results 4.2

4.2.1 C. jejuni biofilm increases in the presence of chicken juice 

Meat and meat exudates have been previously reported to allow for an increase in survival 

of C. jejuni (Balamurugan et al., 2011, Birk et al., 2004, Birk et al., 2006). To assess whether 

meat exudates affect C. jejuni biofilm formation, biofilm levels of static C. jejuni NCTC 11168 

were measured using cultures supplemented with meat exudates recovered from defrosted 

chicken (chicken juice), turkey, duck and goose carcasses as well as pork steaks. As dyes 

such as crystal violet and Congo red aspecifically bind to meat exudate components (Figure 

3-1), we measured biofilm formation via conversion of TTC (Brown et al., 2013). 

Supplementation of Brucella medium with chicken juice resulted in an increase in biofilm 

formation compared to Brucella medium alone, in both microaerobic and aerobic conditions 

(Figure 4-1). 

 

Figure 4-1 Biofilm formation of C. jejuni NCTC 11168 is increased in the presence of chicken 

juice. 

Static incubation of C. jejuni in Brucella medium supplemented with chicken juice results in increased 

biofilm formation, as shown using the TTC biofilm assay. Error bars show SE (N = 5) and significance 

was measured using Bonferroni post-tests following ANOVA analysis (** = P<0.01, *** = P<0.001). 

4.2.2 Other meat exudates are also able to alter the biofilm forming properties of 

C. jejuni NCTC 11168 

Although the most important transmission route of C. jejuni to humans is via chicken meat 

(Batz et al., 2012), other meats are still considered to be a risk. In order to assess the 

universality of the findings in Section 4.2.1, juices prepared from chicken carcasses were 

purchased from several different UK supermarkets, other poultry animals such as duck, 

goose and turkey, as well as pork steaks were all tested for their ability to affect C. jejuni 

NCTC 11168 biofilm formation. 
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Figure 4-2 C. jejuni NCTC 11168 biofilm formation is affected by various meat juices. 

Frozen chicken, turkey and goose carcasses, and frozen pork steaks were obtained from major UK 

supermarkets and defrosted to obtain the juice solution.  Chicken serum was obtained from a scientific 

suppler. All juices were used to supplement C. jejuni NCTC 11168 biofilm assays (5% v/v in Brucella 

medium). Error bars show SE (N = 5) and significance was measured using Bonferroni post-test (* = 

P<0.05, *** = P<0.001) by comparing to the non-supplemented, „Brucella medium only‟ sample.  

Chicken juice #1 to #3 indicates chicken juice prepared from frozen whole chickens purchased at three 

different UK supermarket chains. 

As can be seen in Figure 4-2, supplementation of Brucella medium with chicken and pork 

juice leads to increased biofilm formation. This is particularly obvious in microaerobic 

conditions, where all three batches of chicken juice showed significantly increased biofilm 

formation compared to biofilms formed in un-supplemented Brucella medium. It is interesting 

to note that juice prepared from frozen chicken and goose carcasses do not show such 

significant increases in biofilm formation and chicken serum greatly reduces biofilm 

formation. 

These differences could be in part due to differences in protein concentration (Figure 4-3). 

Although all the solutions did contain a high level of protein the exact composition differed 

and could contribute to alterations in particulate formation and aggregation, which in turn 

may affect surface conditioning. 
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Figure 4-3 SDS PAGE analysis of juice used in this study 

A representative SDS-PGE gel image of the juices used within this study to show varying protein 

profiles and quantity of protein. Chicken juice #1 to #3 represent the whole chicken bought from three 

different national supermarkets, annotated in the same manner as in Figure 4-2. 

4.2.3 Biofilm formation is increased in several isolates 

In order to ensure that the effect observed in the glass test tubes was present on other 

abiotic surfaces and not specific to C. jejuni strain NCTC 11168, the previous assay was 

repeated using polystyrene plates as well as borosilicate test tubes, and the number of C. 

jejuni and C. coli isolates used was also increased. Three other C. jejuni isolates (81116, 81-

176 and RM1221) and one C. coli isolate (15-537360) were selected as they were from both 

clinical and environmental sources and well characterised both within this study (Figure 4-4) 

and by other groups (Pearson et al., 2007, Pearson et al., 2013, Parkhill et al., 2000, Fouts 

et al., 2005b, Hofreuter et al., 2006). 
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Figure 4-4 Swarming, autoagglutination and growth comparison for all C. jejuni and C. coli 

strains used 

Comparison of C. jejuni strains NCTC 11168 (yellow), 11168 ΔflaAB (cream), 81-176 (green), 81116 

(red), RM1221 (blue) and the C. coli strain 15-537360 (purple) growth (A), swarming (B) and ability to 

autoagglutinate (C) under standard conditions (for A and B: 37 ºC in microaerobic conditions and for 

C room temperature in aerobic conditions) in Brucella medium. Error bars show SE (N = 5) and 

significance was measured using Bonferroni post-test (** = P<0.01, **** = P<0.0001). 
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As was noted by Joshua et al. (2006), Campylobacter shows strain specificity in its ability to 

form biofilms. This was also noted following phenotypic analysis of the strains selected for 

use in this study (Figure 4-4). These differences in biofilm formation could be linked to the 

altered growth, motility and autoagglutination phenotypes of the strains assessed. For the 

purposes for this study, strains NCTC 11168 and 81116 are classed as good biofilm 

formers, and the other three strains tested, RM1221, 81-176 and C. coli 15-537630, are 

considered to form negligible amounts of biofilm. All the tested strains showed a significant 

increase in biofilm formation when Brucella medium was supplemented with 5% chicken 

juice. This increase occurred in borosilicate test tubes and 24-wells polystyrene wells, in 

both atmospheric conditions (Figure 4-5). The chicken juice-dependent increase in biofilm 

formation was particularly clear in C. jejuni RM1221 and C. coli 15-537360, as these strains 

showed very low levels of biofilm formation in Brucella medium alone (Figure 4-5 blue and 

purple bars respectively). 

 

Figure 4-5 Static incubation of four strains of C. jejuni and one strain of C. coli in the presence 

of chicken juice leads to increased attachment and TTC staining. 

Graphs A and C show data for biofilms incubated in atmospheric conditions and B and D show data 

from a comparable treatment in microaerobic conditions. Materials tested are (A, B) borosilicate glass 

and (C, D), Polystyrene. There was an increase in TTC conversion when Brucella medium was 

supplemented or replaced by chicken juice. Figure shows quantity of biofilm formation measured by 

TTC conversion.  Error bars show SE (N = 5) and significance was measured using Bonferroni post-

test (* = P<0.05, ** = P<0.01, *** = P<0.001). 

4.2.4 Chicken juice is also able to support C. jejuni growth 

Chicken juice is a complex medium and although the exact composition is unknown 

Bradford and SDS-PAGE analysis has indicated a high protein content (Figure 4-6), and 

phase separation of the thawed samples also suggests lipids are present within the solution. 
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Figure 4-6 SDS-PAGE gel of 5% and 100% chicken juice samples 

SDS-PAGE gel showing high protein content of both 5% chicken juice in Brucella medium and chicken 

juice alone  

Figure 4-1 showed that replacement of medium by 100% chicken juice gave the highest 

level of biofilm formation. This difference was not due to differences in viability, as cultures 

incubated in Brucella medium and medium supplemented with 5% and in 100% chicken 

juice all had similar MPN values (Figure 4-7). It was however possible that the growth rate of 

the cell cultures may lead to increased biofilm initiation and more rapid biofilm maturation.  
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Figure 4-7 MPN of C. jejuni NCTC 11168 planktonic cells is not effected by chicken juice 

concentration 

Representative image of spot plate following 48 hour static incubation in aerobic conditions to allow 

biofilm formation. Following incubation the planktonic phase was sampled as described in Section 

2.4.1 before imaging and assessing the effect, if any, the chicken juice supplementation of Brucella 

medium had on viability. 

To differentiate between growth and biofilm formation, growth of C. jejuni NCTC 11168 was 

assessed in Brucella medium, Brucella medium supplemented with 5% chicken juice and 

100% chicken juice. There was no significant difference between growth in Brucella medium 

and medium supplemented with 5% chicken juice over a 24 hour period as measured by 

TTC conversion (Figure 4-8), unfortunately this data could not be confirmed by viable cell 

counting due to the confounding effect of chicken juice particulates in the cell suspension. 

This suggests that the increase in biofilm formation in a 5% chicken juice solution is solely 

due to increased attachment of Campylobacter to the abiotic surface. In 100% chicken juice, 

the mean A500 value of the 24 hour sample was significantly higher than the Brucella 

medium control, suggesting that the increased biofilm formation present in 100% chicken 

juice could in part be due to enhanced growth of the C. jejuni. These results also show that 

chicken juice supports C. jejuni growth. 

 
Figure 4-8 Growth of C. jejuni NCTC 11168 in the presence of chicken juice 
100% chicken juice (purple bars) results in statistically significantly increased growth of C. jejuni only 

after 24 hours. The growth was measured by assessing the conversion of TTC to red formazan 

crystals by metabolically active bacterial cells in the shaking suspension. Growth in medium 

supplemented with 5% chicken juice (blue bars) is not significantly different from un-supplemented 

Brucella medium (white bars). Error bars show SE (N = 5) and significance was measured using 

Bonferroni post-test following ANOVA analysis (** = P<0.01). 
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4.2.5 Chicken juice batches allowed uniform growth 

As the chicken juice used throughout this study was prepared from several different frozen 

chicken carcasses on nine separate occasions it was important to ensure that the different 

batches of chicken juice gave a uniform response in assays. In order to assess this 

uniformity, C. jejuni NCTC 11168 growth was assessed using medium supplemented with 

each new batch of chicken juice (5% v/v). Growth in the new batch was then compared to 

previous batches to ensure inter-batch reproducibility. Each qualification experiment also 

included a C. jejuni NCTC 11168 culture grown in Brucella medium only, to ensure that the 

cells were growing as expected. 

All batches of chicken juice showed similarity to each other and had a similar level of 

variability to the Brucella medium only control samples (Figure 4-9). This indicates that the 

chicken juice from each batch has a uniform mechanism of action, although its exact 

composition, which was not investigated, may have varied between batches. 

 

Figure 4-9 Assessment of variability within chicken juice batches 

C. jejuni NCTC 11168 growth in Brucella medium only (A) and Brucella medium 

supplemented with 5% chicken juice (B) was assessed when each new chicken juice batch 

was prepared. The figure shows compiled data from all batch testing assays. The mid-line of 

each box and whisker plot indicates the mean values while the outer bars indicate one 

standard deviation from the mean (N = 5). 

Although C. jejuni growth is not an ideal measure of chicken juice activity, it was used for 

comparison purposes as it could be easily measured for each batch of chicken juice used. 
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This was particularly important as earlier batches of chicken juice were not used in biofilm 

assays, meaning no data on their influence of biofilm culture was gathered, but had been 

included in preliminary growth experiments. Growth experiments also allowed some 

indication of the particulate/aggregation formation within each batch of chicken juice to be 

assessed. This was important as particulate formation plays an important role in both 

surface conditioning and increased biofilm formation. 

4.2.6 Campylobacter jejuni preferentially attaches to chicken juice particulates 

Since biofilm formation was increased by chicken juice the ability of chicken juice to bind to a 

abiotic surface was assessed. Brucella medium with and without 5% chicken juice, or 100% 

chicken juice were incubated in static cultures under the standard assay conditions (as 

Section 2.8.1, but without C. jejuni cells within the Brucella medium). Following incubation 

tubes were stained with TTC, crystal violet or Congo red and none specific binding assessed 

(Figure 4-10). 

 
Figure 4-10 Non-specific staining of chicken juice components by Crystal violet and Congo red 

in the absence of bacteria. 

Representative images of chicken juice stained test tubes following static incubation. Upper panel: 

crystal violet staining of glass tubes incubated with Brucella medium only, Brucella medium 

supplemented with 5% chicken juice, or 100% (undiluted) chicken juice. Central panel: Congo red 

staining of glass tubes incubated with Brucella medium only, Brucella medium supplemented with 5% 

chicken juice, or 100% chicken juice. Bottom panel: TTC-staining of glass tubes incubated with 

Brucella medium only, Brucella medium supplemented with 5% chicken juice, or 100% chicken juice. 

There was a significant increase in crystal violet and Congo red staining in the presence of 

chicken juice, while staining with TTC (measuring bacterial respiration) was negative, 

demonstrating that components of chicken juice bind to the abiotic surface but remain 

sterile. The non-specific binding observed was similar to that seen when skimmed milk 

containing mediums were stained with crystal violet (Figure 3-1). As the formation of 

precipitates (particulates) was also observed, as shown in Figure 3-8, it is hypothesised that 
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chicken juice components may form a conditioning layer on the abiotic surface facilitating 

bacterial attachment. 

In order to further investigate this phenomenon SEM was used. C. jejuni NCTC 11168 

biofilms obtained following incubation in Brucella medium, Brucella medium supplemented 

with 5% chicken juice or 100% chicken juice, were investigated using SEM (Figure 4-11). In 

the presence of chicken juice, C. jejuni cells preferentially bind to the particulates rather than 

directly to the abiotic surface (Figure 4-11b and c). This is especially apparent in the 5% 

chicken juice image (Figure 4-11b) where only the chicken juice particulates, but not the 

abiotic surface, are bound by C. jejuni cells. Figure 4-11c also visually supports the 

observations in Figure 4-8 that the total number of cells within the biofilm is increased in 

100% chicken juice. Hence chicken juice provides a highly adhesive environment supporting 

subsequent formation of a C. jejuni biofilm.  
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Figure 4-11 Chicken juice facilitates binding of C. jejuni NCTC 11168 via modification of abiotic 

surfaces 

Representative SEM images of C. jejuni biofilms supplemented with 0% (A), 5% (B) or 100% (C) 

chicken juice on cover slips. In chicken juice containing samples, the C. jejuni can be seen to adhere to 

the juice particulates rather than the abiotic surface. A large chicken juice particulate can be seen 

adhered to the slide surface in (B), with C. jejuni attached to it in preference to the slide surface. In (C) 

particulates are densely packed and so cover the field of view. Scale bar = 10µm. Larger version of the 

images can be found in Appendix 3. 
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4.2.7 Pre-conditioning surfaces with chicken juice increases biofilm formation  

All previous experiments within this chapter were performed with simultaneous addition of C. 

jejuni and chicken juice, followed by static incubation to allow biofilm formation. Since SEM 

images appeared to show preferential attachment of the C. jejuni to chicken juice 

aggregates it was hypothesised that attachment of these aggregates to a surface, rather 

than the presence of the chicken juice per se, was the main factor contributing to increased 

biofilm formation. 

An experiment was therefore designed in which borosilicate test tubes were incubated 

overnight with Brucella medium supplemented with chicken juice. This solution was then 

removed and the tube rinsed to remove non-adhered aggregates before addition of cell 

suspension. The experimental set-up allowed assessment of the biofilm increasing potential 

of only attached chicken juice particulates. A range of chicken juice concentrations were 

tested during the pre-coating stage, from Brucella medium with 10-90% chicken juice and 

with 100% chicken juice. Subsequent addition of C. jejuni NCTC 11168 resulted in an 

increase in levels of biofilm formation (Figure 4-12) with all concentrations of chicken juice 

when compared to the Brucella medium, in both aerobic and microaerobic conditions. 

 

Figure 4-12 Pre-coating of test tubes with chicken juice increases biofilm formation by C. jejuni 

NCTC 11168. 

Tubes were pre-coated with a range of chicken juice concentrations before being used in the standard 

TTC biofilm assay under both aerobic (A) and microaerobic (B) conditions, using unsupplemented 

Brucella medium. Error bars show SE (N = 5) and significance was measured using Bonferroni post-

test following ANOVA analysis (* = P<0.05, ** = P<0.01). 
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4.2.8 The conditioning layer alters as the concentration of chicken juice within 

solution increases 

In order to assess if the chicken juice was shed from the conditioning layer, providing a 

supplemental nutrient source for the C. jejuni cells, the experimental procedure was 

repeated with sterile Brucella medium used instead of C. jejuni cultures. At each step of the 

procedure the protein content of the supernatant was tested by both SDS PAGE analysis 

and quantification by Bradford reagent. The experimental set up is described in Table 4-1. 

Day Action Bradford Assay SDS-PAGE 

1 

1 ml cultures of Brucella medium containing 0, 

5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100% 

chicken juice cultures  placed in test tubes and 

incubated aerobically at 37°C overnight 

performed for all 

concentrations 

performed for 0, 5, 

100% concentrations 

2 

Overnight cultures removed, tubes washed 

with 1 ml of sterile PBS before addition of 1 ml 

fresh Brucella medium. Tubes incubated 

aerobically for 48 hours at 37°C 

performed for all 

concentrations 

(overnight samples 

and washing) 

performed for 0, 5, 

100% concentrations 

(overnight samples 

and washing) 

4 

48 hour cultures removed, tubes washed twice 

with 1 ml of sterile PBS before addition of 1.2 

ml fresh Brucella medium. Tubes incubated 

aerobically for 72 hours at 37°C 

performed for all 

concentrations (48 

hour samples and 

washings) 

performed for 0, 5, 

100% concentrations 

(48 hour samples and 

washings) 

7 

72 hour cultures removed.  Following removal 

tubes were either flooded with 1ml of Bradford 

reagent (to assess residual material in the 

tube), or 1 ml of sterile PBS added and the 

tube scraped. 

performed for all 

concentrations (72 

hour samples and 

tubes flooded) 

performed for 0, 5, 

100% concentrations 

(72 hour samples and 

tube scrape) 

Table 4-1 Experimental workflow for the assessment of protein concentration within 

borosilicate glass test tubes pre-conditioned with sterile chicken juice. 

Assessment of the protein concentration by SDS PAGE showed that samples containing 5% 

chicken juice displayed very little shedding from the conditioning layer following the first 

overnight incubation. However, when the test tubes were scraped on Day 7 some protein 

remained. This suggests that at low concentrations of chicken juice, a firm attachment to the 

abiotic surface occurs which can only be reversed by mechanical debridement. In 100% 

juice samples a more loose attachment with the surface was observed in which chicken juice 

protein could be detected in both incubation suspensions and washing solutions (Figure 

4-13). 
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This observation was also confirmed by measuring protein concentration with Bradford 

reagent. Figure 4-14 shows a representative image of borosilicate test tubes following the 

final day 7, 72 hour incubation. It was observed that all the test tubes containing chicken 

juice (labeled 5 to 100 in Figure 4-14) contain an attached, protein rich, conditioning layer on 

their inner surfaces. It is however interesting to note that protein is only present in the 

solution of tubes which have concentrations of over 20% v/v chicken juice in Brucella 

medium. This suggests that at concentrations below 20%, the chicken juice has formed a 

tightly attached, protein rich, layer on the surface of the test tubes which is unable to be 

dislodged by washing or addition of new medium. At concentrations of 20% v/v juice and 

higher the chicken juice appears to be more loosely attached to the surface, allowing 

particulates to be released into the supernatant. 

 

Figure 4-14 Representative image of pre-conditioned tubes containing Bradford reagent. 

Image shows borosilicate test tubes following completion of the conditioning assay methodology (with 

sterile Brucella medium used instead of C. jejuni cultures). Bradford reagent was poured directly into 

the test tubes before removal of the suspension from the tube into a cuvette. Cuvettes contain the 

solution removed from the test tube below it. 

4.2.9 Conditioning is also effective on stainless steel coupons 

Stainless steel is a commonly used material within the food chain, and so is an important 

surface for bacterial attachment, biofilm formation and subsequent bacterial survival within 

processing plants. Sterile stainless steel coupons were incubated statically with C. jejuni 

NCTC 11168 cultures to allow biofilm formation. The cultures were either supplemented with 

5% chicken juice at the start of the static incubation, or the stainless steel coupons were 

incubated with a 5% chicken juice solution prior to addition of the cell suspension (pre-

conditioning). 

In both aerobic and microaerobic conditions, supplementation of Brucella medium with 

chicken juice and pre-conditioning of the stainless steel coupons lead to increased biofilm 

formation when compared to Brucella medium alone (Figure 4-15). Since chicken juice and 

similar liquids are potentially present throughout the poultry processing plant this data 
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suggests that C. jejuni may be able to more easily form biofilms on soiled stainless steel 

surfaces than has been previously reported. 

 

Figure 4-15 Chicken juice increases C. jejuni biofilm formation on stainless steel surfaces. 
Biofilm formation on stainless steel coupons was measured by TTC conversion following either 

conditioning of the coupons with chicken juice (Pre-incubated) or by direct supplementation of the cell 

suspension medium with chicken juice (no pre-incubation).  The experimental method was carried out 

in both aerobic (A) and microaerobic (B) conditions. Error bars show SE (N = 5) and significance was 

measured using Bonferroni post-test (* = P<0.05, *** = P<0.001). 

4.2.10 Chicken juice increases biofilm formation by aflaggelated C. jejuni 

Flagella are known to contribute to attachment and biofilm formation in several bacterial 

pathogens (Lemon et al., 2007, O'Toole and Kolter, 1998), and previous work in C. jejuni 

has shown that an aflaggelated C. jejuni ΔflaAB mutant produces significantly less biofilm 

than the wild-type NCTC 11168 strain (Reuter et al., 2010, Kalmokoff et al., 2006). 

Incubation with chicken juice or pre-coating of tubes with chicken juice both resulted in a 

significant increase of biofilm formation with the C. jejuni ΔflaAB mutant when compared to 

incubation in Brucella medium alone (Fig. 5). In the presence of chicken juice, biofilm levels 

were similar to that of wild-type C. jejuni NCTC 11168 (Fig. 5), showing that chicken juice 

can complement the lack of flagella and support biofilm formation by aflaggelated strains. 

This also suggests that the effect of chicken juice is mediated through facilitating 

attachment, either to the abiotic surface, or chicken juice aggregates, and not via 

chemotactic motility. 
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Figure 4-16 Chicken juice increases the ability of C. jejuni NCTC 11168 ΔflaAB mutants to form 

biofilms in static culture 

Static suspensions of C. jejuni ΔflaAB mutants were incubated for 48 hours, to allow biofilm formation 

in various medium types, before TTC staining. Bar chart from left to right shows: C. jejuni ΔflaAB 

mutants in Brucella medium (with no pre-treating of the test tubes), C. jejuni ΔflaAB mutants in 100% 

chicken juice (with no pre-treating of the test tubes), C. jejuni ΔflaAB mutants in Brucella medium (with 

a 24 hour Brucella medium pre-treating of the test tubes), C. jejuni ΔflaAB mutants in Brucella medium 

(with a 24 hour 100% chicken juice pre-treating of the test tubes) and a C. jejuni NCTC 11168 wild type 

(WT) culture (with no pre-treating of the test tubes). Error bars show SE (N = 5) and images above the 

bar chart are representative of the TTC staining observed for each condition. Significance was 

measured using Bonferroni post-test following ANOVA analysis (** = P<0.01). 

4.2.11 Pre-incubation of chicken juice to allow particulate formation reduces its 

ability to condition abiotic surfaces  

Incubation of chicken juice at 37°C leads to the formation of large aggregates which can 

both confound measurement of growth (Section 3.2.5) and lead to conditioning of abiotic 

surfaces, as shown in this chapter. It was hypothesised that this aggregate formation was 

key to the surface conditioning effect. In order to test this hypothesis, assays were 

conducted in which chicken juice particulates were allowed to form prior to static incubation 



Helen Louise Brown                               Surface conditioning and biofilm formation 

 

Page 125 of 294 

 

with C. jejuni cells. Chicken juice was incubated for 24 hours at 37°C to allow particulate 

formation to occur. The juice was then centrifuged to pellet the aggregates and the 

supernatant used to supplement Brucella medium in static biofilm assays. 

As can be seen in Figure 4-7 removal of the aggregates prior to static incubation leads to a 

significant reduction in biofilm formation. Pre-incubation of chicken juice not only negates its 

ability to increase biofilm formation but actually leads to a decrease in biofilm formation 

compared to that seen in Brucella medium alone. 

 

Figure 4-17 Pre-incubation of chicken juice reduces its conditioning ability. 

Biofilm formation, measured by conversion of TTC to formazan crystals, is significantly reduced in 

biofilm cultures supplemented with pre-incubated chicken juice (incubated for 24 hours at 37 ºC before 

use in assay) compared to biofilm formation in Brucella medium alone, or biofilm formation in cultures 

supplemented with 5% fresh chicken juice. Error bars show SE (N = 5) and significance was measured 

using Bonferroni post-test (** = P<0.01). 

Secondly, chicken juice was filtered through 5, 10, 50 and 100 kDa filters to produce a 

solution deficient in some of the content the original juice contained. These „juice fractions‟ 

were then used to supplement static biofilm cultures (5% v/v) and the subsequent biofilm 

formation was measured by TTC conversion. As can be seen in Figure 4-18 fractionation of 

the chicken juice lead to a reduced ability to increase biofilm formation, with fractionated 

juice showing no significant difference in biofilm formation compared to the Brucella medium 

only control. This effect could be reversed by re-combining the liquid retained above the 

membrane (too large to move through the membrane) with the fractionated juice, suggesting 

that the entire contents of the juice is required for increased biofilm formation. 
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Figure 4-18 Size fractionation of chicken juice inhibits its effect on biofilm formation 

Chicken juice was filtered through membranes with pore sizes of between 5 and 100 kDa and the flow 

through used to supplement biofilm cultures. Filtered chicken juice no longer exhibits an ability to 

increase biofilm formation. Graph shows data from aerobic biofilms only. Error bars show SE (N = 5) 

and significance was measured using Bonferroni post-test (* = P<0.05), all statistical analysis was 

calculated by comparison to biofilms formed in Brucella medium only (control). 

4.2.12 Proteinase K treatment decreases conditioning ability. 

In this chapter it has been shown that chicken and other meat juices have a high protein 

content, which may be contributing to the conditioning effect that they have on surfaces. In 

order to address this question, chicken juice was treated with 30 mAU/ml of Proteinase K for 

three hours prior to its use in biofilm assays. Treatment of chicken juice with Proteinase K 

led to decreased biofilm formation. This decrease was not due to alteration of the chicken 

juice composition during the three hour incubation as a treatment control showed minimal 

difference to freshly defrosted chicken juice (Figure 4-19). 
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Figure 4-19 Treatment of chicken juice with Proteinase K decreases biofilm formation 

C. jejuni biofilm formation in Brucella medium supplemented with untreated chicken juice, chicken juice 

treated with proteinase K or chicken juice undergoing a proteinase K treatment control (chicken juice 

with PBS added in place of Proteinase K) was measured. Figure shows data from aerobic conditions 

only. Error bars show SE (N = 5) and significance was measured using Bonferroni post-test (*** = 

P<0.001). During statistical analysis, all data was compared to the biofilm formed in Brucella medium 

only (control). 

Effective inactivation of Proteinase K is by heat inactivation at 65°C for 10 minutes. This 

could not be achieved for Proteinase K which had been added to the chicken juice as the 

heat inactivation led to the creation of large aggregates within the juice, which in turn 

affected its conditioning ability (Figure 4-17). This meant that once treated, the chicken juice 

was added to the biofilm containing a small volume of active Proteinase K (approximately 

1.5 mAU total within the cell suspension). This proteinase K may also effect the ability of C. 

jejuni to form biofilms by directly interacting with the bacterial cells and any ECM produced 

by them, therefore confounding measurement of the effect of protein reduction in chicken 

juice on biofilm formation. 

It should however be noted that the difference between biofilms grown in chicken juice 

treated with proteinase K and those grown in Brucella medium only were not statistically 

different. Figure 4-5 also shows that C. jejuni strain RM1221 also shows significant levels of 

biofilm formation in cultures supplemented with 5% chicken juice. This increase is despite its 

production of three predicted extracellular DNase proteins, which significantly inhibit its 

ability to form biofilms in un-supplemented Brucella medium (see 7 for further details of C. 

jejuni DNase genes). This suggests that the action of enzymes on the extracellular matrix 

may be reduced in chicken juice due to the conditioning of the surface and the integration of 

the C. jejuni cells into this conditioning layer, leaving the ECM less exposed. This is further 

addressed in Section 6.2.5. 
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 Discussion 4.3

The potential role of meat exudates on C. jejuni biofilm formation was investigated in this 

chapter, and it was shown that chicken juice is able to enhance biofilm formation when 

compared to Brucella medium. In an industrial food setting, this means that the presence of 

meat exudates can aggravate the problem of contamination by food-borne pathogens such 

as C. jejuni. Within the food chain, biofouling is an important area of study as it contributes to 

increased biofilm formation, loss of heat transfer efficiency and reduced liquid flow in pipes 

(Agle, 2007). Meat exudates may play a significant role in enhancing survival of C. jejuni by 

increasing surface adhesion and by supplying a scaffold containing nutrients and materials 

on which the bacteria are able to form a biofilm. 

The food chain is very complex and dynamic, containing various bacterial contamination 

sources, and a variety of environmental conditions and nutrient sources (Habimana et al., 

2010). In vitro laboratory studies allow for a reductionist approach, controlling variables to 

assess the effect of specific conditions, material or genes on biofilm formation, however a 

middle ground must be found in which experimental set-up allows control but reflects the 

food chains complexity. The chicken juice system (Birk et al., 2004) is one method of 

experimenting with food-chain relevance in a laboratory setting. Chicken juice more 

accurately reflects the conditions in the food chain, but is easy to manipulate and 

reproducible. 

This work also adds to the body of evidence that several food relevant compounds are able 

to form conditioning layers, by their ability to increase biofilm formation in various food 

relevant bacteria. Bacterial soil increases L. monocytogenes survival on surfaces (Van 

Houdt and Michiels, 2010), while milk residues and chicken fillet suspension increase 

survival of planktonic S. enteritidis and C. jejuni on stainless steel (Kusumaningrum et al., 

2003) and whey protein and casein are important for Cronobacter biofilm formation (Healy et 

al., 2010). Although many animal macromolecules have been reported to be able to form a 

conditioning film, they are not always able to enhance biofilm formation. Bovine serum 

albumin reduces biofilm formation in S. aureus (Xu et al., 2008) and B. cepacia (Hwang et 

al., 2012) and skimmed milk and milk albumin inhibit biofilm formation by Cronobacter 

(Barnes et al., 1999). 

The results in this chapter suggest that as the concentration of chicken juice increases the 

method of attachment to the surface alters. A two layer model is proposed (Figure 4-20) in 

which chicken juice is able to both firmly attached to the abiotic surface itself, but also form a 

second, more loosely attached, conditioning film on top of the firmly attached film. At low 

concentrations of chicken juice, only the firmly attached layer is present (Figure 4-20a). This 

layer covers the whole surface in contact with the chicken juice solution. C. jejuni is able to 

utilise this conditioning layer to more easily attach to the surface, increasing biofilm 

formation. As the concentration of chicken juice increases ≥20% v/v, the surface binding 

sites are saturated and a second, more loosely attached, layer is formed on top of the firmly 

attached layer (Figure 4-20b). This layer is not able to form a firm attachment to the surface, 

as binding sites on the surface have reached saturation. This second layer also contributes 

to biofilm formation by C. jejuni but due to its looser association with the surface it is able to 

become dislodged from the surface and move into the liquid phase. Here it is able to not 

only provide a source of contamination, since C. jejuni is likely to still be attached to the 

detached particulates, but can also provide an additional food source for the planktonic 

bacteria, contributing to their increased growth. 
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Figure 4-20 Diagrammatic representation of chicken juice attached to a surface and its impact 

on C. jejuni biofilm formation. 

Chicken juice is able to form two layers on an abiotic surface. This first layer (A) is firmly attached to 

the surface and cannot be easily removed. C. jejuni is able to attach to the chicken juice on the surface 

more easily than the surface itself and so preferentially forms biofilms in areas where the chicken juice 

covers the surface. The second layer (B) is more loosely attached and can be shed into the 

supernatant both releasing cells from the biofilm and providing an additional food source for planktonic 

cells. 

The exact composition of the chicken juice has not yet been investigated, but chicken juice 

fractions of <100 kDa, <50 kDa, <30 kDa, <10 kDa and <3 kDa did not individually increase 

biofilm formation, nor did juice which had been pre-incubated to allow particulate formation, 

or that treated with Proteinase K. This suggests that the conditioning layer produced by the 

chicken juice is not just comprised of a single monomeric protein or metabolite, but instead 

conditioning is a complex, multicomponent effect and further investigation is needed to 

identify the exact components of the chicken juice that contribute to surface conditioning and 

biofilm formation. It is also well reported that factors such as surface roughness and 

hydrophobicity also affect bacterial attachment and biofilm formation (Teughels et al., 2006). 

Hydrophilic surfaces, such as stainless steel and glass, increase the time required for 

bacterial attachment and biofilm formation (Agle, 2007). Surface microstructure is also 

capable of affecting protein absorption, as shown in a study by (Singh et al., 2011), again 

leading to variability in surface conditioning and subsequent biofilm formation.  

It should also be noted that although the chicken juice was filtered to ensure its sterility 

before use, the pore size of the filter would have allowed the passage of phages. It is has 

previously been reported that C. jejuni bacteriophages are found within the chicken ceca 

(Atterbury et al., 2005) and on carcasses (Atterbury et al., 2003), so their presence in 

chicken juice should also be assumed. No loss in C. jejuni viability was observed, with 

growth of C. jejuni NCTC 11168 cultures in chicken juice showing similar or higher A500 

values compared to Brucella Medium only. This suggest that the lytic activity of C. jejuni 

specific lytic phages was minimal in the data presented here, but further investigation should 

be carried out to assess the quantity and effect of C. jejuni bacteriophages in chicken juice.  
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We have demonstrated that biofilm formation in C. jejuni NCTC 11168 ΔflaAB mutants is 

also enhanced following pre-conditioning of test tubes with chicken juice (Figure 4-16). 

These mutants are aflaggelated and hence non-motile, so unable to migrate towards food 

sources. This means that any increase in their attachment, or subsequent biofilm formation, 

must be due to alteration of the glass surface properties by the conditioning layer from the 

chicken juice, rather than due to increased chemotactic or energy taxis-directed motility 

towards a food source. The flagellum is known to be important in biofilm formation of many 

food chain relevant bacteria. Examples include L. monocytogenes, where over the first four 

hours of biofilm formation, aflagellate mutants have a tenfold lower level of attachment to 

stainless steel coupons (Vatanyoopaisarn et al., 2000). The majority of biofilm studies 

assessing the importance of flagella in biofilm formation are performed without the presence 

of conditioning surfaces; however it is proposed that future studies may wish to consider the 

effect of conditioning layers on biofilm formation and bacterial attachment. 

In conclusion, although the notion of conditioning layers within the food chain is not novel, 

investigation of the literature shows that this is the first study measuring the effects of 

chicken juice on C. jejuni and C. coli biofilm formation, as well as investigating the capacity 

of chicken juice to condition food-chain relevant abiotic surfaces. Chicken juice allows 

increased attachment of C. jejuni as it attaches to the surface of the test tubes, providing a 

conditioned surface for the bacteria to adhere to. This conditioning surface is still present 

following a simple washing procedure and able to increase biofilm formation if the 

subsequent incubation with bacteria lacks chicken juice in the medium. Chicken juice also 

provides a suitable laboratory model for the study of C. jejuni biofilm formation in the food 

chain; allowing investigators to more closely mimic the food chain conditions that lead to C. 

jejuni spread and cross contamination of carcasses. Furthermore, identification of the 

chicken juice components involved in surface conditioning and bacterial attachment may 

give the opportunity for targeted intervention and prevention strategies to reduce 

transmission of C. jejuni and C. coli through the food chain. 
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5 Development of Campylobacter jejuni NCTC 11168 

biofilms in food chain relevant conditions  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SEM images were produced by K Cross and L Salt, NRP Bioimaging group.  
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 Introduction 5.1

Within the last ten years there has been a shift the focus of C. jejuni biofilm studies. The 

majority of investigations now focus on the genetic factors responsible for biofilm formation, 

rather than how the environment is able to contribute to the initiation of biofilm formation by 

C. jejuni. Investigation of environmental factors in C. jejuni biofilm formation to date has 

been by no means exhaustive, and environmental factors contributing to biofilm formation 

are of particular interest to those attempting to control biofilm formation within the food chain 

(Speranza et al., 2011). Previous studies have shown that C. jejuni biofilm formation is 

increased in aerobic conditions (Reuter et al., 2010), low temperatures (Buswell et al., 1998, 

Dykes et al., 2003), and under nutritional stress (Reeser et al., 2007). Biofilm initiation and 

shedding have also been neglected, although they remain important areas of study since 

biofilm initiation allows establishment of populations in previously uncontaminated areas 

(Brooks and Flint, 2008) and shedding from biofilms may contribute to contamination of food 

and other processing plant areas (Chmielewski and Frank, 2003). 

Biofilm initiation, maturation and shedding has been investigated in this chapter, with 

particular reference to the contribution of environmental factors such as nutrient and aerobic 

stress which are encountered by C. jejuni within the food chain. C. jejuni strain NCTC 11168 

was selected since it is a well characterised strain (Parkhill et al., 2000, Hong et al., 2014, 

Revez et al., 2012, Chaudhuri et al., 2011) which has previously been shown to exhibit 

biofilm formation in food chain relevant conditions (Reuter et al., 2010, Gunther and Chen, 

2009, Hanning and Slavik, 2009, Howard et al., 2009, Siringan et al., 2011). Here it is shown 

that a minimum number of bacterial cells are required to initiate biofilm formation in aerobic 

conditions. Aerobic conditions also led to accelerated biofilm formation and biofilm lifestyle 

was shown to contribute to an extension of time that cells were metabolically active. Finally, 

shedding of viable cells from the biofilm was also observed following washing, indicating that 

biofilms are a source of bacteria which are potentially able to contaminate and persist within 

the food chain. 
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 Results  5.2

5.2.1 Biofilm formation is effected by variations in initial cell density. 

Although the number of C. jejuni is known to be high within the avian caecum (Bai et al., 

2014), numbers throughout the processing plant and on carcasses are generally reported to 

be much lower, and C. jejuni numbers vary throughout the processing plant (Baré et al., 

2013). It is therefore important to establish what cell density is required for the initiation of C. 

jejuni biofilm formation. C. jejuni NCTC 11168 was diluted to OD600 values between 0.001 

and 1 and incubated statically for 48 hours in both aerobic and microaerobic conditions. All 

of the cell dilutions were prepared following centrifugation of overnight C. jejuni cultures and 

resuspension in fresh Brucella medium. This additional step was performed in order to 

minimise the influence that nutrient starvation may play in establishment of biofilm (due to 

increased volumes of spent medium within the cell cultures as the cell numbers increased). 

 

Figure 5-1 Initiation of biofilm formation in aerobic conditions is not observed at OD600 

concentrations below 0.01. 

Overnight cultures of C. jejuni NCTC 11168 were diluted to OD600 concentrations of between 0.001 and 

1 before static incubation for 48 hours in either aerobic (A) or microaerobic (B) conditions. To allow 

quantification of biofilm biomass the biofilms were stained with crystal violet following incubation. 

Although in microaerobic conditions levels of crystal violet staining (assessed by measuring 

absorbance at 590 nm) were relatively static at all concentrations, a sharp increase in staining was 

observed in aerobic conditions at OD600 concentrations of between 0.01 and 0.05. Error bars show SE 

(N = 5). 

In aerobic conditions, statistically significant biofilm formation was not observed at OD600 

values below 0.01 (Figure 5-1a), and no visible crystal violet staining of test tubes could be 
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observed below this concentration either (Figure 5-2). A statistically significant increase in 

staining was observed between aerobic and microaerobic cultures (P = ≤0.05) at OD600 

values of between 0.01 and 0.05. In microaerobic conditions, although staining could clearly 

be seen at the air liquid interface of the test tubes at all concentrations (Figure 5-2), this did 

not translate to a statistically significant increase in crystal violet staining compared to a 

microaerobic Brucella medium only control (Figure 5-1b). 

 

Figure 5-2 Biofilm formation is present at all C. jejuni concentrations in microaerobic 

conditions 

Representative images of duplicate borosilicate test tubes stained with crystal violet following a 48 

hour static incubation in either aerobic (top two panels) or microaerobic (middle two panels) conditions 

with varying concentration of initial C. jejuni suspension (digits above the duplicate tubes indicate the 

OD600 value of the cell suspension at the start of the static incubation). Crystal violet staining suggests 

biofilm has formed at the air liquid interface in all microaerobic tubes, regardless of concentration. 

Tubes incubated in aerobic conditions only appear to have biofilm formation where initial 

concentrations of between OD600 0.025 and 0.1 were used.  

Biofilm biomass in aerobic conditions remained relatively constant at OD600 concentrations of 

between 0.01 and 0.05, although at higher concentrations (above OD600 0.75) a decrease in 

levels of biofilm staining was observed. This decreased biofilm biomass at higher 

concentrations was not due to a decline in MPN since assessment of the planktonic phase 

of the static cultures showed comparable MPN values to those found at concentrations 

which did allow increased biofilm formation (Figure 5-3). At OD600 concentrations of less than 

0.01 cell viability did appear to influence biofilm formation, since few viable cells could be 

found following 48 hours static incubation in aerobic conditions.
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Figure 5-3 Viability of planktonic fraction following 48 hours of static incubation. 

Overnight cultures of C. jejuni NCTC 11168 were diluted to OD600 concentrations of between 0.001 and 1 

and incubated statically for 48 hours before the MPN assessment of the planktonic cell suspension was 

assessed. MPN in both aerobic (green bars) and microaerobic (blue bars) conditions is displayed. Error 

bars show SE (N =5). 

In microaerobic conditions a different trend in biofilm biomass was observed, with viable 

cells detected even at low concentrations and some biofilm, indicated by crystal violet 

staining at the air-liquid interface, apparent at all concentrations in microaerobic conditions 

(Figure 5-2). Taken together these results suggest that, although biofilm formation is 

ubiquitous in microaerobic conditions, a minimum cell density is required for survival in 

aerobic atmospheres. Once this concentration is reached, biofilm formation is initiated and 

enhanced compared to its microaerobic counterpart. Whereas in microaerobic conditions, 

although more cells are able to survive and attach to the surface, even where low numbers 

of C. jejuni are present, biomass is not as high as that found in aerobic conditions. This 

difference in biomass is potentially due to increased production of ECM by C. jejuni in 

aerobic conditions. 

5.2.2 Oxygen concentration effects the structure of mature C. jejuni NCTC 11168 

biofilms 

SEM analysis was undertaken on mature (48 hour) biofilms grown on sterile plastic 

coverslips within borosilicate glass test tubes. Image analysis showed that in microaerobic 

conditions C. jejuni was able to attach to the surface, producing a single layer attachment. 

There was little evidence of ECM production, and micro-colony formation is also reduced 

(Figure 5-4a, b and c). In contrast, static incubation in aerobic conditions led to significant 

production of ECM, with microcolonies frequently observed (Figure 5-4d, e and f). Aerobic 

images appear to show micro-colonies growing in a „honey-comb‟ grid-like structure, and it is 

hypothesised that as the micro-colonies mature and increase this grid closes up to form the 

single layer of biofilm observed in Figure 5-4d. 
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Spatial arrangement of cells, rather than the cell density, appears to be the major difference 

between aerobic and microaerobic conditions. Cells within aerobic cultures associate closely 

with each other, forming micro-colonies which contain „string-like‟ particulates hypothesised 

to be ECM. In contrast the cells attached to surfaces incubated in microaerobic conditions 

are more sparsely spread across the abiotic surface, binding directly to it and showing little 

or no micro-colony formation. The images show in Figure 5-4 indicate that C. jejuni is able to 

attach to abiotic surfaces in microaerobic conditions, however it is still unclear from these 

images if microaerobic conditions allow a progression beyond this initial attachment stage to 

biofilm formation when incubated with Brucella medium at 37°C.   
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It should however be noted that although SEM shows little evidence of biofilm formation in 

microaerobic conditions using Brucella medium only, supplementation of the static cultures 

with chicken juice (Figure 5-5a) or the presence of particulates on the abiotic surface (Figure 

5-5b), allows biofilm formation to occur in a similar fashion to that seen in aerobic cultures. 

The observed increase is likely due to the altered surface conditions allowing easier 

attachment of C. jejuni, increasing the speed of microcolony formation and ECM production. 

 

Figure 5-5 Representative images of biofilm formation in microaerobic conditions on enhanced 

surfaces. 

Representative SEM images of biofilm formation by C. jejuni NCTC 11168 in chicken juice (A) or in the 

proximity of debris on the abiotic surface in Brucella medium static cultures (B). All static incubations 

were carried out at 37°C in microaerobic conditions. Biofilms were formed on plastic cover slips 

inserted vertically into a borosilicate test tube. In contrast to other microaerobic static cultures, here 

cells appear to be spatially organised and ECM can be observed. Enlarged images can be found in 

Appendix 3. 

5.2.3 Quantification of biofilms indicates that its biomass does not increase in a 

linear fashion. 

It is currently unknown if, following their formation, C. jejuni biofilms continually increase in 

mass over their lifespan or reach a state of equilibrium, where the amount of new biofilm 

created is equal to the volume of biomass lost via shedding and dispersal processes. 

Staining of the biofilm over an extended time course was carried out to assess this question. 

C. jejuni NCTC 11168 was incubated statically for 24, 48, 72 or 96 hours, to allow biofilm 

formation, before quantification of biomass by crystal violet staining (Figure 5-6). 
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Figure 5-6 Biofilm quantity increases over a 96 hour period. 

Quantification of biofilm formation by crystal violet staining suggests that in both aerobic and 

microaerobic conditions the biofilm biomass reaches a peak at 72 hours, after which a decline in 

biofilm biomass occurs. The control sample, included to show basal staining levels, contained sterile 

Brucella medium incubated for 96 hours. Error bars show SE (N = 5). 

Following 24 hours of incubation there is no statistically significant difference in crystal violet 

quantification between a Brucella medium only control (control) and the 24 hour biofilm, 

although a thin band of staining can clearly be seen at the air liquid interface of tubes 

incubated in both aerobic and microaerobic conditions (Figure 5-7). These results indicate 

that biofilm is present at the air-liquid interface at 24 hours, but is not able to be determined 

by measurement of crystal violet stain density alone. This inability to measure the 24 hour 

samples is likely due to the high background staining level of crystal violet. 

 

Figure 5-7 Biofilm formation can be observed at all time-points tested in both aerobic and 

microaerobic conditions. 

Representative examples of crystal violet stained, biofilm containing borosilicate test tubes after either 

24, 48, 72 or 96 hours of static incubation at 37 ºC in either aerobic (A) or microaerobic (B) conditions. 

Crystal violet staining, indicating biofilm formation, can be observed at all time points and in all 

conditions, although staining is less apparent in the 24 hour samples than those of later time points. 

Biofilm formation is greatly increased at 48 hours (P = <0.01 in aerobic conditions and P = 

<0.05 in microaerobic conditions) when compared to the Brucella medium control. Crystal 

violet staining of the biofilm peaked at 72 hours in both aerobic and microaerobic samples, 
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before reducing slightly at 96 hours. In aerobic conditions this decrease also correlated with 

a decrease in MPN (Figure 5-8), which could in part contribute to the lack of additional 

biofilm formation from 72 hours onwards. 

 

Figure 5-8 Quantification of MPN in biofilm suspensions indicates cell viability in aerobic 

conditions decreases after 72 hours 

C. jejuni NCTC 11168 cultures were incubated statically for 24, 48, 72 and 96 hours at 37 ºC in either 

aerobic (pale purple) or microaerobic (dark purple) conditions. At 24 hour intervals the viability of the 

culture was assessed by sampling the planktonic fraction. Although MPN in microaerobic cultures 

remains relatively constant, it decreases rapidly between 72 and 96 hours in biofilm cultures incubated 

aerobically, and no viable cells can be detected following a 96 hour incubation in aerobic conditions. 

Error bars show SE (N = 5). 

5.2.4 C. jejuni biofilm formation progresses more rapidly in aerobic conditions 

It has previously been reported that C. jejuni NCTC 11168 biofilm formation, measured by 

crystal violet staining of biofilms, is increased in aerobic conditions (Reuter et al., 2010). The 

same has also been observed here, where biofilms are cultured for 48 hours or less. As 

discussed in Section 3.2.1, crystal violet is a non-specific stain, able to stain cells, ECM and 

components of the medium. This means that information about alterations in cell densities or 

ECM production cannot be determined by crystal violet staining alone. In order to better 

define the observed increase in biofilm formation, static cultures were incubated for set times 

and investigated using light microscopy, alongside quantification of MPN within the 

planktonic phase. 

In aerobic conditions biofilm formation appears to progress rapidly over the first 48 hours 

(Figure 5-9). Following 12 hours of incubation in aerobic conditions, both single cell 

attachments and progression to microcolony development can be observed (Figure 5-9 top 

right hand image). Cells and microcolonies show some spatial organisation, with 

microcolonies appearing to be elongated along the „north-south axis‟. In the images shown 

in Figure 5-9 and Figure 5-12, this axis corresponds to the air/liquid interface, with the air 

being on the right hand side of the image and the liquid on the left. Slides incubated in 
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microaerobic conditions show little evidence of cellular attachment to the glass surface until 

24 hours (Figure 5-9 middle left hand image), at which point they show a very similar 

structure to aerobic biofilms at the 12 hour time point, containing attached single cells and 

small microcolonies. 

 

Figure 5-9 C. jejuni biofilm formation progresses more rapidly in aerobic conditions 

Representative images of C. jejuni NCTC 11168 biofilms at the air/liquid interface following 12 (top 

row), 24 (middle row) or 48 (bottom row) hours of static incubation at 37°C in either microaerobic (left 

hand column) or aerobic (right hand column) conditions.  All slides were dried and crystal violet stained 

before imaging. Images show a progression through the stages of biofilm maturation for both 

atmospheric conditions, although this progression appears to be accelerated where biofilms are 

cultured in aerobic conditions. Scale bar represents 100 µm. Enlarged images can be found in 

Appendix 3 
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At 24 hours (Figure 5-9 middle right image), large microcolonies are clearly visible in aerobic 

conditions, showing significant expansion and amalgamation compared to the 12 hour 

image. Although the immature biofilm is visible by light microscopy at 24 hours, it is not 

visible to the naked eye, even following crystal violet staining (Figure 5-10). 

 

Figure 5-10 Biofilm formation is not visible by eye until static incubation has occurred for 48 

hours or more. 

Representative images of borosilicate glass slides following static incubation with C. jejuni NCTC 

11168 cultures for between 12 and 96 hours in either aerobic (top panel) or microaerobic (bottom 

panel) conditions. No staining is visible to the naked eye on either the slides incubated for 12 or 24 

hours (in either atmospheric condition), however crystal violet staining is clearly visible following a 48 

or more hour incubation, indicating an increased biofilm biomass. 

In aerobic conditions ECM can clearly be seen at 24 hours, appearing above the centre of 

the microcolonies rather than surrounding them. This positioning increases the density of the 

microcolony, rather than their diameter (Figure 5-11). 



Helen Louise Brown                                                             The C. jejuni biofilm 

 

 

Page 143 of 294 

 

 

Figure 5-11 Image of 24 hour old C. jejuni NCTC 11168 microcolonies formed in aerobic 

conditions. 

Representative image of a semi-mature (24 hour) biofilm formed on a sterile glass slide and incubated 

at 37°C in aerobic conditions. The image has been manipulated using IrfanView software to allow 

better visualisation of the microcolonies and positioning of the ECM within the microcolonies. The 

original image (inset) was converted to a negative grey scale version of the original. Enlarged version 

of the images can be found in Appendix 3. The images shows not only C. jejuni cells attached to the 

surface of the slide, but also appears to show ECM build-up, particularly on top of microcolonies. 

Although Figure 5-6 clearly shows that biofilm formation is increased in aerobic conditions at 

24 and 48 hours compared to microaerobic incubations, it is unclear from crystal violet 

staining of biofilm containing test tubes if this increase is due to additional ECM production, 
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attachment of bacteria or a combination of the two. The images in Figure 5-9 suggest that 

the increase observed is due to a combination of increased single cell attachment, 

microcolony formation, and ECM production in aerobic conditions. In addition, the biofilms 

appear much more structurally defined, with microcolonies forming and maturing in a narrow 

area. Microcolonies appear to increase in density (observable by their increased retention of 

the crystal violet stain and deeper colour) both due to expansion of the cellular population, 

and the production of ECM (Figure 5-9 and Figure 5-11). These observations complement 

those presented in Section 5.2.2, providing additional information about the production and 

placement of ECM. Information about the ECM could not be discerned from SEM images 

alone since the preparation of samples for SEM imaging leads to their dehydration, 

deforming the ECM. 

At later time points, 48 hours onwards, biofilm formation in aerobic and microaerobic 

conditions is much more similar, with both conditions producing thick, mature biofilms at the 

air liquid interface (Figure 5-12). At 96 hours the biofilm had become so thick that its imaging 

by light microscopy was confounded, and distinguishing individual features of the biofilm 

became difficult in all areas except the edges of the air-liquid interface. Biofilm formation in 

microaerobic conditions progressed quickly between 48 and 72 hours, with a rapid 

expansion of microcolonies and large amounts of ECM produced (Figure 5-12 top and 

middle left images). 
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Figure 5-12 Biofilm formation is comparable in aerobic and microaerobic conditions following a 

72 hour static incubation 

Representative images of C. jejuni NCTC 11168 biofilms at the air/liquid interface following 48 (top 

row), 72 (middle row) or 96 (bottom row) hours of static incubation at 37°C in either microaerobic (left 

hand column) or aerobic (right hand column) conditions.  All slides were crystal violet stained before 

imaging. Although there appear to be significant differences in biofilm maturity at 48 hours (with much 

smaller microcolonies where biofilms were incubated microaerobically), these differences are largely 

gone by 72 hours, and biofilms in both aerobic and microaerobic conditions appear comparable. Scale 

bar shows 100 µm. Enlarged images can be found in Appendix 3 

In both aerobic and microaerobic conditions, biofilm formation appears limited to the air 

liquid interface (Figure 5-13). Although attached single cells and small microcolonies can be 

observed below the air liquid interface there appears to be no further maturation of these 

microcolonies, and the air liquid interface is the only area of the slide which contains a 

structured, ECM containing, biofilm. 
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Figure 5-13 Minimal attachment of C. jejuni is seen above or below the air liquid interface 

Representative cross-section of the C. jejuni air-liquid interface and area below the liquid shows 

preferential C. jejuni attachment and biofilms formation at the air-liquid interface. The Air-liquid 

interface cross section was compiled using Microsoft ICE software and following the manufacturers 

instructions. An enlarged image of the „below air liquid‟ interface image can be found in Appendix 3. 

It has previously been reported by Reuter et al. (2010) that biofilm formation is enhanced in 

aerobic conditions over a 48 hour period, when compared to incubation in microaerobic 

conditions. Additional statistical analysis of Figure 5-6 suggests that aerobic biofilms mature 

much more quickly than microaerobic ones. Whereas the greatest increase in biomass is 

between 24 and 48 hours in aerobic biofilms (P = ≤0.001), the greatest increase in 

microaerobic biofilms is 24 hours later, between 48 and 72 hours (P = ≤0.0001). All other 
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time point pairs show no statistically significant increase in biomass. Taken together the 

results from Sections 5.2.2 to 5.2.4 suggest that, over a 96 hour period, biofilm formation is 

accelerated in aerobic conditions, rather than enhanced. 

5.2.5 Biofilm formation increases survival in microaerobic conditions 

Biofilm formation is reported to enhance the survival of many bacterial species due to their 

ability to enter a „semi-hibernating‟ state while residing within the biofilm. One example of 

this is found in P. aeruginosa biofilms, where transcriptomics has shown that in the upper 

layers of the biofilm cells are actively dividing, but in deeper biofilm layers transcription of 

hibernation factors is increased (Williamson et al., 2012). Biofilm formation has been shown 

to increase C. jejuni viability, although extended survival appears to be closely linked to 

temperature and nutritional conditions (Buswell et al., 1998). 

Previous work measuring C. jejuni survival within biofilms has focused on the cultivation of 

cells rather than direct measurement of their viability. Many bacteria are able to enter a 

„viable but not cultivable‟ state‟ (VBNC). VBNC cells are not able to be cultured, but other 

viability assessment methods, such as live/dead staining, show that they are metabolically 

active (Trevors, 2011). C. jejuni has previously been reported to be able to enter a VBNC 

state (Rollins and Colwell, 1986) in which despite cells being unculturable, invasion of CACO 

2 cells and expression virulence factors is still possible (Chaisowwong et al., 2012). Recent 

work has also shown that C. jejuni biofilm cultures lose the ability to form colonies on 

Brucella agar (referred to as „culturability‟ hereafter) more rapidly than cells in planktonic 

culture, although viability testing (using live/dead staining techniques) indicated that both 

planktonic and biofilm cultures remained viable for at least 60 days (Magajna and Schraft, 

2015). 

In order to assess metabolic activity rather than culturability, TTC was added to Brucella 

agar to give a final TTC concentration of 0.05% v/v. As described in 3, TTC is converted 

from a colourless solution to red formazan crystals by metabolically active cells. This allows 

viability of the biofilm cultures to be easily assessed over a longer period of time than could 

be measured by cell culture alone. Sterile glass bottles were filled with 100 ml of fresh sterile 

Brucella medium, containing C. jejuni NCTC 11168 diluted to an optical density of OD600 

0.05. These were incubated, with loosened lids to allow air exchange, at either 5°C, RT 

(approx. 18°C), 37°C or at 42°C. All incubations were in aerobic conditions and compared to 

a positive control incubated at 37°C in microaerobic conditions. Bottles were inspected 

weekly to determine alterations, if any, in the pellicle. In addition a sterile cotton wool swab 

was placed into the bottle each week, and used to inoculate a TTC containing Brucella agar 

plate. The plates were incubated at 37°C in microaerobic conditions for 48 hours to allow 

TTC conversion by viable cells. 
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Figure 5-14 C. jejuni viability in biofilms is significantly increased at temperatures of 37°C and 

above. 

Viability of C. jejuni NCTC 11168 was measured in static (A) and shaking (B) cultures over an 

extended time period and in various temperatures. Each week a swab of cells was removed from the 

static cultures and streaked onto a TTC containing Brucella agar plate, before incubation at 37 ºC in 

microaerobic conditions for 72 hours. Cells were considered to be viable if conversion of TTC occurred 

(measured by the formation of red formazan crystals on the surface of the agar plates) and plates were 

scored as „viable‟ or „not viable‟ each week. Those samples incubated in aerobic conditions showed a 

prolonged period of viability compared to their aerobic counterparts. Similarly, an elevation in 

temperature to 37 ºC or higher also conferred an increase in survival. Bars indicate the last week 

cultures provided a „viable‟ sample. Error bars show SE (N = 3) and significance was measured using 

Bonferroni post-test following ANOVA analysis (** = P≤0.01). 

Viable C. jejuni NCTC 11168 cells could not be detected following a two week static 

incubation at either RT (18°C) or 5°C  (Figure 5-14a). Although, as reported by previous 

researchers (Buswell et al., 1998), a temperature of 5°C appeared to extend survival slightly 

compared to RT, this increase was not statistically significant (P = 0.2856). Attempts to 

extend survival of static cultures incubated at 5 and 18°C by incubating them at 37°C in 

aerobic conditions for either one or two weeks before transferring to the lower temperature 

were unsuccessful. Once the cultures were placed in the lower temperatures, recovery of 
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viable cells was limited to one or two weeks (Figure 5-13). Although survival is low 

compared to biofilms formed at 37°C or 42°C, this period of viability is significant within the 

food chain, and indicates that C. jejuni may be able to persist for extended periods, even 

when exposed to low temperatures and atmospheric oxygen levels. 

 

Figure 5-15 Pre-incubation of biofilms at 37°C does not improve C. jejuni survival at low 

temperatures 

Viability of C. jejuni NCTC 11168 was measured in static cultures over an extended time period and in 

various temperatures. Static cultures were incubated at 37 ºC for either one or two weeks before 

transferring to 5 or 25 ºC to continue the incubation. After the cultures were transferred top lower 

temperatures a swab of cells was removed from the static cultures weekly and streaked onto a TTC 

containing Brucella agar plate, before incubation at 37 ºC in microaerobic conditions for 72 hours. Cells 

were considered to be viable if conversion of TTC occurred (measured by the formation of red 

formazan crystals on the surface of the agar plates) and plates were scored as „viable‟ or „not viable‟ 

each week. Allowing biofilms to become established at 37 ºC prior to their storage at a lower 

temperature did not increased survival beyond two weeks. Error bars show SE (N = 3) and significance 

was measured using Bonferroni post-test following ANOVA analysis (** = P≤0.01). 

Increased survival was observed in aerobic conditions at 37 and 42°C, although this was not 

statistically different to survival at 5 or 18°C, nor was survival of cells within a biofilm 

statistically increased compared to shaking cultures when incubated at 37°C in aerobic 

conditions (Figure 5-14b). However, in microaerobic conditions biofilm formation conferred a 

statistically significant increase in survival compared to other tested temperatures (P = 

≤0.01) or shaking incubation (P = ≤0.05). 

5.2.6 Shedding from the biofilm 

Arguably, the most important stage of the biofilms lifecycle is the final „dispersal‟ step, in 

which bacterial cells are released from the biofilm, either actively or passively. Shedding 

could have particular impact within the food chain, where the release of pathogenic bacteria 

from biofilms may contribute to contamination of surfaces and foodstuffs (Chmielewski and 

Frank, 2003). 
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In order to assess the quantity of cells within the biofilm and supernatant, C. jejuni NCTC 

11168 biofilms were allowed to form at 37°C in both aerobic and microaerobic conditions for 

48 hours. Following incubation, the cells were gently removed from the surface with a cotton 

wool swab and re-suspended in sterile PBS before the optical density at a wavelength of 

600 nm was measured.  

 

Figure 5-16 The OD600 value of static cultures is significantly increased in aerobic conditions 

OD600 values of both supernatant removed following static incubation and biofilms removed from the 

surface and resuspended in sterile PBS were measured following 48 hours of static incubation at 37 ºC 

in either aerobic (yellow bars) or microaerobic (blue bars) conditions. Although a statistically significant 

difference could be observed in the density of the supernatant cultures, this was not replicated in the 

resuspended attached populations. Error bars show SE (N = 3) and significance was measured using 

Bonferroni post-test following ANOVA analysis (** = P≤0.01). 

Measurement of the OD600 values of supernatant and resuspended biofilms showed that 

although the OD600 values of the biofilm cultures remained similar in both aerobic and 

microaerobic cultures, a significant increase in OD600 value was observed in the supernatant 

of aerobic cultures compared to their microaerobic counterparts. Since the presence of ECM 

components may confound measurement of cell concentration by OD600, as was observed 

when measuring OD600 values of cell cultures grown in chicken juice containing medium 

(Section 3.2.5), cell viability assessment was also carried out. 

Quantification of MPN within both the biofilm and planktonic phase suggests that there is 

little difference between MPN in either aerobic or microaerobic biofilms and planktonic 

cultures (Figure 5-17). Within the biofilm this trend is also observable in the images 

presented in Figure 5-4, where similar cell numbers can be observed in both aerobic and 

microaerobic conditions (Figure 5-4a, b, d and e). 
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Figure 5-17 Representative image of MPN assessment from biofilms and static culture 

supernatant in variable O2 conditions 

Biofilms were allowed to form in both aerobic and microaerobic conditions for 48 hours before MPN of 

viable bacteria in both the supernatant and biofilm were assessed. Dilutions (1:10) were performed 

eight times and then placed on Brucella medium to allow growth of viable cells. 

Following analysis of MPN in biofilm and planktonic phases the potential for cell release from 

the biofilm was assessed. Shedding of cells from mature (48 hour), C. jejuni NCTC 11168 

biofilms was assessed by gentle washing of the biofilm, multiple times, using sterile PBS. 

Following each wash the PBS was recovered and MPN determined. Crystal violet staining 

was also carried out to assess the impact, if any, repeated washing had on the total biomass 

of the biofilm. A large reduction in biomass was observed following the first PBS wash 

(Figure 5-18a). This reduction is likely due to the removal of any loosely attached cells, and 

debris from the abiotic surface. No further reduction in crystal violet staining was observed 

as the wash cycles progressed, suggesting that the biofilm population is firmly attached to 

the surface, and cannot be dislodged by rinsing with PBS. 
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Figure 5-18 Release of cells from the biofilm rapidly decreases following washing 

C. jejuni NCTC 11168 biofilms formed at 37 ºC in either aerobic (blue) or microaerobic (orange) 

conditions were washed up to 10 times before crystal violet staining of the test tubes to quantify biofilm 

biomass (A). Following each rinse with PBS the washing solution was retained and MPN assessed (B). 

Both biofilm biomass and the number of cells „shed‟ from the biofilm decreases rapidly between the 

first and second wash, after which biomass remains relatively stable. Cell shedding continues to 

decrease gradually from two to seven washes, after which the number of cells shed form the biofilm 

stabilises, but does not reach zero. Error bars show SE (N= 5).    

Although the overall biomass of the biofilm remained unaltered as washing progressed, 

culturable cells were detected in the PBS solution following each of the ten washes (Figure 

5-18a). Although the number of colony forming units decreased as the washing progressed, 

during the course of the experiment it did not reach zero. Although these results appear 

contrasting, it should be recognised that crystal violet is able to stain both the ECM and cells 

within the biofilm so it is possible that although the majority of the ECM remain attached to 

the surface during washing; individual cells, both from the biofilm or attached to the abiotic 

surface singly and in small microcolonies (as were observed in Figure 5-13), may become 

dislodged and move into the planktonic phase. 
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 Discussion 5.3

In this chapter the progression of biofilm formation by C. jejuni NCTC 11168 has been 

described, with particular reference to the establishment and survival of the biofilm 

population. Data presented here that shows the formation and maturation of biofilms in 

aerobic and microaerobic conditions progresses at a different rate, with structural differences 

observed at key time points in the maturation process. In contrast, once the biofilms in both 

conditions reach maturity they become very similar, containing comparable amounts of cells, 

analogous structures and shedding similar levels of cells. 

To date little analysis of the structure of C. jejuni NCTC 11168 single species biofilms has 

been carried out, particularly during the early stages of their maturation. Although individual 

elements of this research, such as the use of SEM analysis (Kalmokoff et al., 2006), aerobic 

conditions (Reuter et al., 2010) and assessment of biofilm survival (Hanning et al., 2008), 

have previously been utilised by other researchers, this is the first attempt to combine 

several biofilm measurement techniques to assess aspects of the whole C. jejuni biofilm 

lifecycle. 

It has previously been reported by Reuter et al. (2010) that biofilm formation is enhanced in 

aerobic conditions over a 48 hour period, although not at 72 hours. The results presented in 

this chapter confirm this finding and in addition add data about biofilm formation at 12, and 

96 hours. Alterations of biofilm structure and composition due to atmospheric condition have 

also been reported in other biofilm forming biofilm species. A recent study by Asai et al. 

(2015) indicated that the ECM composition of S. aureus and S. epidermis biofilms was 

altered in aerobic and microaerobic conditions and alterations in oxygen conditions were 

also found to effect biomass of several different Salmonella sp. (Stepanovic et al., 2004). 

Independent of any effect aerobic conditions have on biofilm formation, the results in Figure 

5-1 also indicate that a minimum number of cells are required for C. jejuni NCTC 11168 

biofilm initiation. In aerobic conditions a higher cell death rate, due to oxidative stress, is 

likely and so the initial cell concentration must be higher to cross the threshold required for 

biofilm formation. In microaerobic conditions less cell death would be expected and so this 

threshold will be achieved by addition of a lower number of bacteria in the initial culture. This 

may explain why, although biofilm formation was accelerated in aerobic conditions, it could 

not be observed where cell densities of less than OD600 0.01 were found in the initial cell 

culture. 

Analysis of slides following a 12 hour static incubation indicated that cellular attachment took 

place prior to the production of extracellular matrix, with ECM production being found only 

where microcolony formation was also present. The evidence presented here does not allow 

firm conclusions to be drawn about if ECM production directly precedes microcolony 

formation, allowing progression from single cells attachments to microcolonies, or if ECM 

production is a response to microcolony formation, being secreted only once microcolonies 

have been established. Previously work using bacteria isolated from waterways (Allison and 

Sutherland, 1987) suggested that the production of ECM leads to microcolony formation. 

This was concluded since the bacterial species not able to produce a mucoid ECM, were 

also not able to form microcolonies. Both the light and SEM images presented in Figure 5-4 

and Figure 5-9 appear to shown that surface attached single cells are not associated with 

ECM, but further analysis is required before this can be confirmed beyond doubt. 

Once ECM is present within microcolonies, biofilms rapidly progress from separated 

microcolonies to become dense, mature biofilms in both aerobic and microaerobic 



Helen Louise Brown                                                             The C. jejuni biofilm 

 

 

Page 154 of 294 

 

conditions. This emphasises the importance of the ECM and its role in C. jejuni biofilm 

formation. In aerobic conditions, small quantities of ECM can be observed to associate with 

microcolonies containing several cells following only 12 hours of incubation. The action of 

the ECM during the early stages of biofilms formation is likely to be multifactorial: providing 

the expanding microcolonies with structural support (Flemming and Wingender, 2010), 

limiting oxygen and nutrient diffusion (Stewart, 2003) and providing protection to the cells 

within the structure (Nadell et al., 2015). Analysis of mixed species oral biofilm has shown 

that the ECM allows „environmental pockets‟ to be formed within the biofilm. These pockets 

contain very specific environments, differing from the overall environmental conditions. This 

division of the biofilm allows greater survival of species where sub-optimal conditions are 

encountered (Xiao et al., 2012). The production of ECM can also be directly linked to 

exposure to stress. B. subtilis cells encountering low nutrient environments not only increase 

their production of ECM, but alter the shape of the microcolonies, moving towards a thinner 

wider shape than those not grown under nutrient limiting conditions (Wenbo et al., 2014). 

This structural alteration, assisted by the secretion of ECM, maximises the surface area of 

the microcolony, allowing more efficient nutrient acquisition. In C. jejuni biofilms the opposite 

appears to occur, with the microcolonies observed in aerobic conditions denser than their 

microaerobic counterparts. It is possible that this denser microcolony shape allows 

microaerobic conditions to predominate in the deeper layers of the biofilm, assisting cell 

survival. 

The observed increases in C. jejuni NCTC 11168 biofilm formation at earlier stages in 

aerobic conditions led to speculation that biofilm formation was an adaptive response of C. 

jejuni, following exposure to high oxygen environments. This hypothesis is supported by the 

observation in Section 5.2.6 that C. jejuni biofilms in aerobic and microaerobic conditions 

contain similar levels of viable cells, and that C. jejuni cells are no longer viable following a 

48 hour static aerobic incubation if no biofilm is formed (Section 5.2.1). It is likely that the 

observed increase in biofilm biomass in aerobic conditions is due to both increased cellular 

attachment and early production of ECM by aerobic biofilms. Previous work has also shown 

that inactivation of genes encoding AhpC, a protein involved in the oxidative stress 

response, increased biofilm formation (Oh and Jeon, 2014). Proteomic analysis has also 

shown that aerobic conditions increase the expression of membrane proteins involved in 

adhesion and biofilm formation (Sulaeman et al., 2012). 

As described in Section 1.1.2.4, shedding from biofilms can either be due to active or 

passive processes. To date no C. jejuni shedding/dispersed method has been discovered. 

Previous work by Reuter et al. (2010) has shown that C. jejuni NCTC 11168 biofilms are 

able to release viable cells both during a single wash of the biofilm and following a 24 hours 

of incubation in fresh medium. The results presented in Section 5.2.6 have extended this 

work, indicating that although repeated washing of the biofilm leads to continued shedding of 

cells, a population of cells remained attached to the surface. This suggests that a proportion 

of the C. jejuni biofilm forms tight attachments to the abiotic surface, which cannot be 

overcome by the mild shearing forces generated during the washing stages. Although this 

phenomenon has not been reported previously in C. jejuni, it has been observed in 

Pseudomonas fluorescens biofilms where washing with a citrate buffer detergent removed 

less than 1% of the cell population from a mature biofilm (Simoes et al., 2008b). Similarly, 

strong attachment of E. coli to abiotic and biotic surfaces could not be reversed by repeated 

washing (Silagyi et al., 2009). 

In conclusion the formation of biofilms by C. jejuni NCTC 11168 is accelerated by incubation 

in aerobic conditions, however successful establishment of the biofilm is only possible at 
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initial optical densities of between OD600 0.01 and 0.5. Although cellular attachment and 

biofilm maturation progresses more slowly in microaerobic conditions, the biofilm lifestyle is 

able to confer a significant increase in cell viability over time. Release of C. jejuni from 

mature biofilms is possible in both aerobic and microaerobic conditions. This, in combination 

with the acceleration of biofilm formation in aerobic conditions, and the ability of C. jejuni 

cells within biofilms to remain viable for several weeks all indicate that biofilm formation is 

not only a form of stress response to oxidative shock, but may contribute to the spread and 

persistence of C. jejuni within the food chain. 
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6 Removal of extracellular DNA from the of the 

Campylobacter jejuni biofilm leads to biofilm disruption 
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H M (2015) Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to 

DNase I treatment. Frontiers in Microbiology. 6, article 699  
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 Introduction  6.1

The ECM is an essential component of bacterial biofilms, and accounts for more than 90% 

of the dry mass of a biofilm (Flemming and Wingender, 2010). It allows cells to remain 

hydrated and metabolically active by trapping nutrients and liquid in close proximity to the 

bacterial populations. It also assists in inactivation of antimicrobials (Billings et al., 2013, 

Mulcahy et al., 2008), leading to increased bacterial persistence. ECM is also structurally 

important, maintaining the shape of the biofilm and ensuring the biofilms cohesion 

(Sutherland, 2001). Extracellular DNA (eDNA) appears to have a structural role in the 

biofilms of many different species, including P. aeruginosa (Chiang et al., 2013), S. aureus 

(Mann et al., 2009), L. monocytogenes (Harmsen et al., 2010) and E. coli (Zhao et al., 

2013). 

The structure and composition of the C. jejuni biofilm ECM is still relatively unknown. It has 

previously been shown that eDNA is present within the ECM of C. jejuni biofilms (Svensson 

et al., 2009) and that eDNA appears to have a role in biofilm maturation (Svensson et al., 

2014). Since C. jejuni shows optimal viability in a microaerobic environment, the majority of 

investigations to date have been carried out in microaerobic conditions (approximately 5% 

O2 and 10% CO2). Within the food chain C. jejuni encounters aerobic conditions for 

extended periods of time, and to date little investigation of biofilm formation in aerobic 

conditions has been undertaken. A literature review shows that no investigation of eDNA in 

aerobic conditions has yet been carried out. 

This chapter presents evidence that eDNA is present in biofilms of C. jejuni strains NCTC 

11168 and 81116, when they are formed in aerobic conditions and or on food chain relevant 

materials. Degradation of this eDNA by DNase I can lead to a rapid loss of biofilm structure, 

releasing cells into the planktonic phase. Treatment of surfaces with DNase I also inhibits 

further biofilm formation. C. jejuni eDNA is also able to contribute to genetic transformation, 

allowing increased antimicrobial resistance within populations. This work suggests that C. 

jejuni biofilms within the food chain would respond to DNase I treatment, providing another 

potential treatment option to reduce C. jejuni food chain persistence. 
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 Results 6.2

6.2.1 Extracellular DNA is present within the C. jejuni biofilm during both aerobic 

and microaerobic incubation 

In order to confirm that eDNA was present in the biofilm, biofilms were grown for 48 hours in 

aerobic conditions. Following incubation, biofilms were removed from the surface by 

swabbing with a sterile cotton wool bud, and the MPN of both the planktonic and biofilm 

cultures was assessed. Samples were analysed by gel electrophoresis in order to visualise 

any eDNA present. Figure 6-1 shows agarose gels of NCTC 11168 and 81116 biofilms 

incubated for 48 hours, with eDNA present in both the planktonic and biofilm suspensions 

incubated in either aerobic and microaerobic conditions. It should however be noted that this 

method of DNA detection allows visualisation on only the soluble present within the biofilms. 

It is possible that other cross-linked molecules are also present, but not detected by this 

method. 

 

Figure 6-1 Extracellular DNA is present in both aerobic and microaerobic conditions following 

static incubation 

A 48 hour static incubation of C. jejuni NCTC 11168 and 81116 was performed to allow biofilm 

formation. Following incubation, the supernatant and biofilm were recovered and eDNA presence or 

absence confirmed by gel electrophoresis. No distinction could be made between DNA quantities in 

either the biofilm or supernatant samples when the atmospheric conditions were compared, suggesting 

that eDNA is present in the biofilm ECM in both aerobic and microaerobic conditions. A distinction 

could however be made between the quantity of eDNA found in the supernatant samples of C. jejuni 

NCTC 11168 and 81116. 

When the gel is observed there is no distinguishable difference between the eDNA bands 

produced by surface attached C. jejuni NCTC 11168 and 81116, although when the columns 

containing planktonic samples are observed the NCTC 11168 band appears fainter than 

81116 in both atmospheric conditions. It is therefore hypothesised that slightly less genetic 

material is present within the supernatant of the NCTC 11168 planktonic phase than its 
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81116 counterpart. The atmospheric condition appears not to affect eDNA release, although, 

as previously reported (Reuter et al., 2010), total biofilm mass in aerobic conditions did 

increase during the 48 hour incubation (Figure 6-2). 

 

6-2 Biofilm biomass is increased in aerobic conditions for both C. jejuni strains NCTC 11168 

and 81116 

Quantification of biofilm biomass by crystal violet staining indicates that following a 48 hour static 

incubation C. jejuni strains NCTC 11168 and 81116 produce comparable quantities of biofilm to each 

other in both aerobic and microaerobic conditions. However there is a significant increase in the 

biofilm biomass for both strains when static incubation takes place in aerobic conditions. Error bars 

show SE (N = 5) and significance was measured using Bonferroni post-test following ANOVA analysis 

(** = P<0.01). 

In order to confirm the observation of eDNA within the biofilm, C. jejuni NCTC 11168 

expressing GFP
+
 was allowed to form biofilms on glass slides and counter stained with 

DAPI, allowing eDNA visualisation. Imaging (Figure 6-3) showed a diffuse blue stain 

surrounding GFP
+
 expressing colonies. 
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Figure 6-3 Extracellular DNA is present in the biofilms of C. jejuni NCTC 11168 biofilms. 
Representative fluorescent microscopy images of GFP

+
 expressing NCTC 11168 biofilms counter 

stained with DAPI. The three images all show the same field of vision, with the top panel showing the 

GFP expressing cells only, the middle panel showing DNA stained with DAPI and the bottom panel 

showing the two images combined. A diffuse blue dye can be seen around the GFP expressing cells 

suggesting that there is a large quantity of eDNA present within the mature biofilm. Enlarged versions 

of these images can be found in Appendix 3. 



Helen Louise Brown                                           DNase I treatment of the biofilm 

 

 

 

Page 161 of 294 

 

Since the GFP
+
 expressing mutant of strain NCTC 11168 showed no observable differences 

in growth or biofilm formation (Figure 6-4) it can be assumed that eDNA is also present 

within the NCTC 11168 parent strain. 

 

Figure 6-4 A GFP
+
 expressing mutant of C. jejuni NCTC 11168 shows similar growth and biofilm 

formation characteristics to the wild type strain.  

A comparison of growth (A) and biofilm forming ability (B) of C. jejuni NCTC 11168 and its GFP
+
 

expressing mutant showed that there were no statistically significant differences in either growth or 

biofilm formation between the parent and mutant strains. Error bars show SE (N = 5).  

The eDNA appears to be present throughout the colonies, showing no preference for 

localisation to particular areas of the biofilm as has been observed in P. aeruginosa biofilms 

(Gloag et al., 2013). It should however be noted that no three dimensional analysis of the 

NCTC 11168 biofilm has been undertaken as part of this study and so although these 

preliminary investigations of biofilm structure and eDNA distribution appear to show no 

localisation a more detailed investigation, not within the remit of this work, is required in 

order to support this observation.  
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6.2.2 Treatment of the biofilm with exogenous DNase I leads to rapid and 

irreversible biofilm disruption 

We next tested the possibility that degradation of eDNA in biofilms would lead to biofilm 

disintegration. Previous work in P. aeruginosa biofilms has shown that eDNA is important in 

early stages of biofilm formation, however DNase I treatment has less impact on biofilm 

structure as the biofilm matures (Whitchurch et al., 2002). In order to assess if this was also 

the case in C. jejuni NCTC 11168 biofilms, DNase I was added at 12 hour intervals over the 

total 48 hour aerobic incubation period. The C. jejuni biofilm was degraded following addition 

of 4 U/ml DNase I regardless of the biofilms maturity, indicating that eDNA is an important 

ECM component throughout the entire C. jejuni biofilm life cycle (Figure 6-5). 

 

Figure 6-5 DNase I is able to degrade C. jejuni NCTC 11168 biofilms regardless of their maturity 

DNase I was added at intervals to aerobically incubated NCTC 11168 cultures over a 48 hour static 

incubation and biofilm degradation assessed by crystal violet staining (A). At all time points a 

statistically significant reduction in biofilm biomass was observed, with DNase I treated samples being 

indistinguishable from a Brucella medium only control. Error bars show SE (N= 5), significance was 

measured using Bonferroni post-test following ANOVA analysis (** = P<0.01). 

The rapidity of biofilm degradation was next assessed by treating mature (48 hour) biofilms 

with DNase I and then staining at intervals over a two hour period. Following only a five 

minute incubation with DNase I the majority of the biofilm was removed from the glass 

surface and showed no statistical difference in A590 value to a test tube containing only 

Brucella medium (Figure 6-6). No further degradation occurred at later time points, 

suggesting that a five minute treatment is able to achieve maximal biofilm degradation. 
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Figure 6-6 DNase I degradation of mature C. jejuni NCTC 11168 biofilms occurs with a 5 minute 

incubation 

Following a 48 hour static incubation to allow biofilm formation, DNase I was added to biofilms for 

between 5 and 120 minutes before biofilm degradation was assessed. After a 5 minute incubation of 

the biofilm with DNase I there was a statistically significant decrease in biofilm biomass compared to 

an untreated control (yellow bar). No statistically significant further decrease in biofilm biomass, or 

regrowth of the biofilm was seen during a further two hour treatment. Error bars show SE (N = 5), 

significance was measured using Bonferroni post-test following ANOVA analysis (***=P<0.001). 

Finally, the concentration of DNase I required to degrade the biofilm was also investigated. 

DNase I was diluted to concentrations, ranging from 5 to 0.01 U/ml, and added to biofilm 

cultures before incubating statically for 48 hours (Figure 4-8). 
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Figure 6-7 Concentrations of DNase I as low as 0.01 U/ml are able to achieve biofilm 

degradation 

The concentration of DNase I required for biofilm reduction was assessed by adding various 

concentrations of DNase I to biofilm cultures before incubating statically for 48 hours and assessing 

biofilm biomass by crystal violet staining. The graph shows aerobic data only since it is industrially 

relevant, microaerobic data was comparable to the aerobic data shown. All DNase I concentrations 

tested were able to prevent measurable C. jejuni NCTC 11168 attachment and biofilm formation, with 

all treated samples being indistinguishable statistically from the Brucella only control (black and white 

checked bar). Error bars show SE (N = 5), significance was measured using Bonferroni post-test 

following ANOVA analysis (** = P<0.01, ***=P<0.001). 

All the tested concentrations significantly reduced the level of C. jejuni NCTC 11168 biofilm. 

As previously there was no statistically significant difference between DNase I treated test 

tubes and the negative control tube containing Brucella medium only. It is interesting to note 

that DNase I treatment had little impact on MPN, simply degrading the biofilm and releasing 

the attached cells in to suspension (Figure 6-7). 
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Figure 6-8 MPN of the C. jejuni NCTC 11168 planktonic phase is not effected by DNase I 

treatment. 

Representative image (N = 5) of a spot plate containing serial 1:10 dilutions (highest dilution on the left 

of the image and lowest dilutions on the right) of C. jejuni NCTC 11168 cells incubated statically for 48 

hours in aerobic conditions. The labels on the left of the image denote at what time during the 

incubation DNase I was added to the culture. There is little difference in MPN between those cultures 

incubated with DNase I (top four lines) and those without DNase I (bottom four lines), suggesting that 

although DNase I is able to effect the biofilm biomass, it does not significantly impact MPN. Control 

samples were as follows: DNase buffer only = biofilm suspension containing 4 µl of manufacturers 

DNase buffer, No treatment = biofilm suspension not containing any buffers or enzyme but physically 

handled in the same manner as the treatment samples, Incubation control = sample was incubated 

continuously throughout the experiment, rather than being removed for incubation for manipulations.  

Since biofilms formed in both aerobic and microaerobic conditions showed the same pattern 

of disruption (Figure 6-8), it is suggested that the effects observed were not a response to 

atmospheric condition, but rather DNase I treatment. DNase I which had been heat 

inactivated (by heating to 95 °C for 10 min) lost the ability to inhibit the formation of C. jejuni 

NCTC 11168 biofilms (Figure 6-9).  
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Figure 6-9 Heat inactivation of DNase I inhibits its ability to degrade C. jejuni biofilms 

Biofilm formation by C. jejuni NCTC 11168 cultures treated with either DNase I (pale yellow bars), Heat 

treated DNase I (orange bars) or cultures with no DNase I added (yellow bars) were compared. DNase 

I enzyme which had been heated to 95 °C for 10 min was unable to statistically significantly inhibit C. 

jejuni NCTC 11168 biofilm formation during a 48 hour static incubation at 37°C, unlike its un-treated 

counterpart. Graph shows a representative replicate (with three internal, technical replicates). Error 

bars show SE of the three internal replicates. 

1.1.1 Treatment of the biofilm with exogenous DNase I leads to irreversible biofilm 

disruption 

DNase I treatment is able to both degrade pre-existing biofilms, and inhibit biofilm formation 

when added at the start of static incubations. Next, it was investigated whether DNase I 

treatment of abiotic surfaces can inhibit de novo biofilm formation. C. jejuni NCTC 11168 

and 81116 cultures were incubated statically for 48 hours in borosilicate test tubes to allow 

biofilm formation. Following this primary incubation the biofilms were treated with 4 U/ml of 

DNase I for 15 min. Supernatant was then removed and the test tube washed twice to 

remove any residual cell suspension or DNase I. The following solutions were then added to 

the test tubes: either fresh Brucella medium or fresh C. jejuni NCTC 11168 cell suspension. 

The tubes were then incubated for a further 48 hours before crystal violet staining, to assess 

if any de novo biofilm formation had occurred following DNase I treatment. There appeared 

to be neither regrowth of DNase I treated biofilm or fresh biofilm formation (Figure 6-10). 

This suggests that DNase I treatment is not only a rapid method of degrading existing C. 

jejuni NCTC 11168 biofilms, but also provided a lasting impairment to biofilm re-growth. The 

same trend was observed for C. jejuni 81116 biofilms, although statistical significance was 

not reached in this instance. As in the previous experiments, microaerobic biofilms 

responded in a similar manner, showing no further biofilm formation following treatment. 
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Figure 6-10 Treatment of abiotic, biofilm supporting, surfaces with DNase I leads to inhibition of 

biofilm regrowth. 

Mature (48 hour) C. jejuni NCTC 11168 (yellow and spotted bars) and 81116 (red and striped bars) 

biofilms were allowed to form in sterile borosilicate glass test tubes before a 15 minute treatment with 4 

U/ml DNase I. Following treatment the tubes were washed with PBS and then either fresh Brucella 

medium (hatched bars) or fresh NCTC 11168 suspension (striped or spotted bars) was added to the 

tubes. DNase I treated tubes showed no further biofilm growth. Error bars show SE (N = 5), 

significance was measured using Bonferroni post-test following ANOVA analysis (* = P<0.05, 

***=P<0.001). 

6.2.3 Restriction enzymes also have the ability to degrade C. jejuni NCTC 11168 

biofilms 

Earlier results showed that the eDNA found within the C. jejuni NCTC 11168 and 81116 

biofilms is of a high molecular weight (Figure 6-1), and so it was speculated that high 

molecular weight genetic material, rather than simply the presence of any genetic material, 

was required for biofilm formation. Restriction enzymes are able to cut DNA at specific 

sequences. Depending on the rarity of the recognition sequences within the genome, DNA 

fragments of various lengths can be prepared. In order to assess the impact different sized 

DNA fragments may have on C. jejuni biofilm structure six restriction enzymes with different 

cutting profiles were selected. A variety of restriction enzymes with different recognition site 

frequencies were selected in order to give a variety of DNA degradation patterns (Figure 

6-11). The recognition sites for the chosen enzymes can be found in Table 2-12. 
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Figure 6-11 Cut patterns of the selected restriction enzymes on genomic C. jejuni DNA 

Representative images of C. jejuni NCTC 11168 and 81116 purified genomic DNA following digestion 

for 60 minutes at 37 °C with the restriction enzymes BamHI, BlpI, HaeIII, HindIII, MseI and RsaI, 

RNase and DNase I. 

C. jejuni NCTC 11168 showed a significant reduction in biofilm formation for all six restriction 

enzymes tested, with little variation between treated enzymes and a Brucella only control 

(Figure 6-12). Although the same trend was shown within the 81116 biofilms, statistical 

significance was not reached except in the case of DNase I treatment. This may be 

explained by the slightly different cutting patterns of the enzymes on the 81116 DNA, 

producing fragments of a higher molecular weight than those found following NCTC 11168 

digest. 
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Figure 6-12 Restriction enzyme treatment of C. jejuni biofilms also reduces biofilm formation. 

C. jejuni NCTC 11168 (yellow) and 81116 (red) were incubated statically for 48 hours at 37°C in 

aerobic conditions to allow biofilm formation. Prior to incubation either one restriction enzyme, RNase 

or DNase I were added to the tubes. Enzyme treatment of C. jejuni NCTC 11168 biofilms led to a 

significant reduction in biofilm formation (P = ≤0.01 for DNase I and restriction enzymes and P = ≤0.05 

for RNase treatment). Although the reduction in C. jejuni 81116 biofilms did not reach statistical 

significance for any treatment, with the exception of DNase I treatment (P = ≤0.05), a clear trend of 

biofilm reduction could be observed. All error bars show SE (N = 5). 

6.2.4 DNase I treatment is effective on food chain relevant surfaces  

Since C. jejuni is a foodborne pathogen, frequently present throughout the food chain 

(Wassenaar, 2011), its ability to survive on food relevant surfaces such as stainless steel, 

rubber and plastics (Thormar and Hilmarsson, 2010, Somers et al., 1994), or on soiled 

surfaces (Brown et al., 2014, De Cesare et al., 2003) is important. 

C. jejuni NCTC 11168 biofilms formed on sterile stainless steel coupons showed a 

significant reduction following DNase I treatment (Figure 6-13). The coupons showed no 

observable biofilm formation following static aerobic incubation in the presence of DNase I, 

however significant levels of biofilm formation were observed when DNase I was not 

present. 
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Figure 6-13 DNase I treatment is effective on biofilms formed on stainless steel surfaces. 

The ability of DNase I to inhibit biofilm formation of C. jejuni NCTC 11168 on sterile, stainless steel 

coupons was assessed. Stainless steel coupons were incubated statically at 37°C in aerobic 

conditions with C. jejuni NCTC 11168. Following a 48 hour incubation biofilm biomass was assessed 

by crystal violet staining. A statistically significant difference in biofilm biomass can be observed 

between DNase I treated (pale yellow bars) and untreated (yellow bars) cultures, with treated cultures 

showing no statistically significant difference to the Brucella medium only control (hatched bars). Error 

bars show SE (N = 3) and significance was measured using Bonferroni post-tests following ANOVA 

analysis (***=P<0.001). 

6.2.5 C. jejuni biofilms formed in heavily soiled areas are also susceptible to 

DNase I treatment 

In order to mimic environments in which soiling occurs, C. jejuni NCTC 11168 cultures were 

allowed to form biofilms in Brucella medium containing 5% v/v chicken juice. Chicken juice is 

a complex, undefined meat exudate obtained from frozen chickens, and is known have a 

high protein and lipid content (for further details of the chicken juice model see 4). It has also 

previously been shown to increase biofilm formation in several C. jejuni strains due to its 

ability to condition abiotic surfaces (Brown et al., 2014). These properties make it a suitable 

model to replicate soiled and conditioned surfaces, such as might be encountered within the 

food chain (Birk et al., 2004). DNase I treatment of biofilms formed in the presence of 5% v/v 

chicken juice did show a significant (P = ≤0.01) reduction compared to untreated biofilms 

(Figure 6-14), but some biofilm was still detectable. This suggests that on conditioned 

surfaces DNase I treatment, although significantly decreasing biofilm formation, does not 

degrade the biofilm to the same extent as observed in culture medium only. As described in 

4, chicken juice forms a conditioning layer on abiotic surfaces, into which C. jejuni integrates 

during the biofilm formation. This conditioning layer may inhibit penetration of the DNase I 

enzymes, leaving some cells attached to the surface.  
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Figure 6-14 DNase I treatment is effective in the presence of surface conditioning 

The ability of DNase I to inhibit biofilm formation by C. jejuni NCTC 11168 in the presence of chicken 

juice, mimicking heavy surface soiling, was assessed. Although there was a slight increase in biofilm 

formation in when cultures were incubated with chicken juice and DNase I (pale orange bars) 

compared to untreated cultures incubated in Brucella medium only (yellow bars), this was not 

statistically significant. As expected, a significant increase was observed when Brucella medium was 

supplemented with 5% chicken juice (orange bars). When chicken juice supplemented biofilms with 

and without DNase I treatment were compared there was a statistically significant reduction in biofilm 

biomass in DNase I treated cultures. Error bars show SE (N = 5), significance was measured using 

Bonferroni post-test following ANOVA analysis (** = P<0.01). 

6.2.6 Natural transformation is able to occur within the C. jejuni biofilm 

Given the presence and structural importance of the eDNA it was hypothesised that 

supplementation of biofilm cultures with additional DNA may further increase biofilm 

formation. This was tested by the addition of 2 µg of C. jejuni NCTC 11168 GFP
+
 gDNA at 

either the start of the biofilm incubation, or following 24 hours of incubation. Addition of 

gDNA did not lead to significant changes to the levels of crystal violet staining (Figure 6-15). 

This indicates that although eDNA is essential for biofilm formation and structural stability, in 

contrast to previous research in this field using C. jejuni 81-176 biofilms (Svensson et al., 

2014, Svensson et al., 2009), the DNA produced by the C. jejuni NCTC 11168 and 81116 is 

adequate for biofilm formation to occur. Further DNA addition does not lead to increased 

biofilm formation. 
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Figure 6-15 Addition of DNA to C. jejuni NCTC 11168 and 81116 biofilm cultures does not 

increase biofilm biomass. 

C. jejuni NCTC 11168 and 81116 biofilms were supplemented with 2 µg gDNA isolated from C. jejuni 

NCTC 11168 GFP
+
 and incubated statically for 48 hours at 37 °C in aerobic conditions, before 

quantification of the biofilm biomass by crystal violet staining. There was no statistically significant 

difference in crystal violet staining between unsupplemented NCTC 11168 (yellow bar), 81116 (red 

bar) and NCTC 11168 GFP
+
 (blue bar) cultures. Neither was a statistically significant difference 

observed when NCTC 11168 cultures were supplemented with gDNA at either the start for the static 

incubation (pale yellow bars) or after 24 hours of static incubation (dark yellow bar). In contrast a 

significant reduction in biofilm biomass was observed when 81116 cultures were supplemented 

following 24 hours of incubation (dark red bar), but not when gDNA was added immediately before 

static incubation commenced (light red bar). Error bars show SE (N = 5) and significance was 

calculated using Bonferroni post-test following ANOVA analysis (* = P<0.05). 

Although it was observed that gDNA was not able to increase biofilm formation, in its 

presence genetic exchange occurred in cells of both the planktonic and biofilm phase 

(Figure 6-16). C. jejuni NCTC 11168 GFP
+
 contains a cassette expressing both a GFP

+
 

gene and a chloramphenicol resistance gene (cat). At the end of a 48 hours static incubation 

to allow biofilm maturation, the cell suspension was removed from the test tube and plated 

onto both Brucella agar and Brucella agar containing 10 µg/ml chloramphenicol. Any 

bacteria containing the cat gene from NCTC 11168 gDNA within its chromosome would be 

able to form colonies on antibiotic containing plates. This method was also repeated with 

bacteria released from biofilms using a sterile cotton wool swab. Enumeration and 

comparison of colonies on both agar types allowed calculation of the proportion of bacteria 

which had become chloramphenicol resistant. No resistance was observed in cultures not 

containing C. jejuni NCTC 11168 GFP
+
 gDNA, suggesting that neither planktonic or biofilm 
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cultures of strains NCTC 11168 or 81116 are naturally resistant to 10 µg/ml 

chloramphenicol, even following biofilm growth.  

Where gDNA had been added to the suspensions at the start of the static incubation, some 

resistance was observed in both planktonic (Figure 6-16a) and biofilm (Figure 6-16b) 

cultures. In cultures where gDNA had been added at a later (24 hour) time point, less 

resistance was apparent. There appeared to be no resistance of 81116 biofilms to 10 µg/ml 

chloramphenicol following 24 hours of contact with the gDNA within the medium, although 

low numbers of resistant cells were present within the planktonic phase. These results 

suggest that C. jejuni NCTC 11168 and 81116 are able to utilise eDNA as a source of new 

genetic elements, incorporating eDNA found within biofilms and planktonic phase into the 

genomes via natural transformation. 
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Figure 6-16 Natural transformation can be observed in C. jejuni NCTC 11168 and 81116 during 

static biofilm incubation 

MPN assessment of planktonic (A) and biofilm (B) phase cultures showed that cultures supplemented 

with C. jejuni NCTC 11168 GFP
+
 gDNA were able to incorporate the cat gene into their genome and 

proliferate on Brucella agar containing 10 µg/ml chloramphenicol. Dark purple bars indicate the 

number of cell present on spot plates containing Brucella agar only (no antibiotic was added to these 

plates), light purple bars indicate the number of cells present when cultures were incubated on Brucella 

agar supplemented with 10 µg/ml chloramphenicol. Error bars show SE (N = 5). 
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 Discussion 6.3

The importance of eDNA in bacterial biofilms is now well recognised (Svensson et al., 2014, 

Whitchurch et al., 2002), and has attracted attention as a target for enzymatic or chemical 

treatment for disinfection purposes. DNase I is effective in interfering with the biofilms of the 

foodborne pathogens L. monocytogenes (Harmsen et al., 2010) and of E. coli (Zhao et al., 

2013), but also mixed species biofilms. Biofilms found in activated sludge flocs form close 

interactions with the DNA occurring from cell lysis (Dominiak et al., 2011), affecting 

microcolony formation within the biofilm. Similarly, mixed biofilms containing S. epidermidis 

and C. albicans are also affected by DNase treatment (Pammi et al., 2013), suggesting that 

DNase is able to modify both mixed species and mixed kingdom biofilms. Addition of 

exogenous DNase is effective in reducing biofilms of pathogenic bacteria, such Neisseria 

gonorrhoeae (Zweig et al., 2014), Garderella vaginalis (Hymes et al., 2013) and L. 

monocytogenes (Nguyen et al., 2014). 

C. jejuni strain 81116 appear to be less susceptible to DNase I treatment than its counterpart 

NCTC 11168. It is important to note that not all bacterial species show reduction of biofilm 

formation following treatment with DNases. When the opportunistic pathogen B. 

cenocepacia was exposed to DNase, it produced significantly denser biofilms (Novotny et 

al., 2013). H. pylori biofilms also remain unaffected following treatment with DNase I 

(Grande et al., 2011). The presence of eDNA on a surface inhibits biofilm formation by S. 

enterica serovars Typhimurium and Typhi (Wang et al., 2014). These examples show that 

DNase treatment may not be effective in the case of all biofilms. However many naturally 

occurring biofilms, such as are found in processing plants, are comprised of multiple species 

and so DNase treatment should still be considered an effective mechanism of at least 

partially degrading biofilms and possibly allowing better penetration of antimicrobials. 

Recently, research on food chain biofouling has benefited from a focus on not only 

antimicrobial treatment but methods of biofilm dispersal and prevention. Examples of biofilm 

control methods (reviewed in Section 1.1.6) include use of quorum sensing molecules (Kalia, 

2013), nanoparticles (Chorianopoulos et al., 2011), bacteriophage treatments (Siringan et 

al., 2011), use of food additives to reduce bacterial attachment (Furukawa et al., 2010), and 

the development of antifouling surfaces (Carlson et al., 2008). It has also been shown that 

combination treatment including various enzymatic treatments, surfactants and chelating 

agents may provide a suitable alternative to the chemical treatments currently in use for 

biofilm removal within food processing areas (Lequette et al., 2010). The use of DNase I is 

an example of one such enzymatic treatment. 

Previous research in P. aeruginosa biofilms has shown that eDNA can not only provide 

structural stability at early stages of biofilm formation (Whitchurch et al., 2002) but is also 

found to be localised to specific areas of the biofilm as it matures (Ma et al., 2009), again 

suggesting a structural role. Gloag et al. (2013) show that eDNA is also integral to P. 

aeruginosa biofilm organisation and expansion, with DNase I treatment of developing 

biofilms leading to significant decreases in biofilm expansion. The results presented here 

show that eDNA is an important component of the C. jejuni ECM at all stages of maturation. 

This is in contrast to species such as P. aeruginosa, which become less susceptible to 

DNase I treatment as the biofilm matures (Whitchurch et al., 2002). Some outer membrane 

and flagella proteins have been identified as been important in C. jejuni biofilm formation but 
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to date there has been little investigation of the ECM components themselves, or their 

genes. Genes such as pel and psl, the two major P. aeruginosa ECM polysaccharide genes 

(Colvin et al., 2012), are not present within the C. jejuni genomes, although the presence of 

a polysaccharide containing beta1-3 and/or beta 1-4 linkages, and reactive to calcofluor 

white, has previously been identified in C. jejuni biofilm (McLennan et al., 2008). It is 

possible that eDNA has greater importance in C. jejuni biofilms because it lacks many of the 

extracellular matrix genes found in other biofilm forming species. It would be of interest to 

extend this study by investigating how the eDNA interacts with other ECM components and 

the bacteria within the biofilm. It would also be interesting to understand what proportion of 

the ECM is comprised of eDNA, and if this proportion alters of the lifespan of the C. jejuni 

biofilm. 

For naturally transformable species such as C. jejuni, the eDNA is a useful source of genetic 

material for incorporation in the genome. Genetic material can be transferred within the 

biofilm either by direct cell to cell transmission or uptake of exogenous DNA. Conjugation 

within biofilms is a well reported phenomenon, with examples reported in mixed species oral 

biofilm models (Hannan et al., 2010), drinking water systems (Lisle and Rose, 1995) and 

within bacterial populations colonizing the nasopharynx (Marks et al., 2012). Recent work 

has shown that C. jejuni strains NCTC 11168 and 81-176 in microaerobic cultures are able 

to transfer genetic material between bacterial cells both within biofilms and planktonic 

suspension (Bae et al., 2014, Svensson et al., 2014). The results presented here show that 

C. jejuni is also able to utilise the eDNA itself to obtain new genetic elements. 

The eDNA within C. jejuni NCTC 11168 and 81116 biofilms is not only present in both 

aerobic and microaerobic conditions, but appears to be of structural importance. It is 

interesting to note that only high molecular weight DNA appears to provide structural support 

to the C. jejuni biofilm. Further analysis of the spatial positioning of the eDNA within the 

biofilm could indicate why the fragment size is of importance. It would also be interesting to 

investigate of other sources of eDNA, such as salmon sperm or DNA obtained from other 

bacterial species, is also incorporated into the C. jejuni biofilm and contributes to its 

structural integrity. 

Treatment of biofilms with DNase I provided a rapid and lasting degradative effect, and could 

be successfully used on food chain relevant surfaces such as stainless steel, and in 

environments containing heavy soiling. Another problem frequently encountered within food 

processing environments is the presence of food product debris. This presence of this debris 

on surfaces can lead to surface conditioning and increased bacterial attachment. The 

attachment of L. monocytogenes to stainless steel surfaces is enhanced by surface pre-

conditioning with fish and meat emulsions (Gram et al., 2007), and surface conditioning by 

chicken juice has been shown to enhance C. jejuni biofilm formation (Brown et al., 2014). 

Surface conditioning can also decrease the effectiveness of chemical cleaning products, 

leading to reduced killing or biofilm removal (Gram et al., 2007). In heavily soiled 

environments broad spectrum enzymatic treatments may provide a useful and effective 

addition to current cleaning regimes as they are able to degrade not only biofilm ECM, but 

potentially the conditioning layer. Our results show that DNase I treatment is able to 

significantly reduce C. jejuni biofilms formed on surfaces conditioned with chicken juice, 

suggesting that DNase I treatment could provide a useful addition to current treatment 

regimens. 

https://www.google.co.uk/search?q=calcofluor+white&spell=1&sa=X&ei=U-yyVO6BNcSt7AbPjYDwAQ&ved=0CBwQvwUoAA
https://www.google.co.uk/search?q=calcofluor+white&spell=1&sa=X&ei=U-yyVO6BNcSt7AbPjYDwAQ&ved=0CBwQvwUoAA
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It should be noted that DNase I treatment had no effect on MPN, only biofilm dispersal. This 

is as expected since DNase I is only in contact with the DNA of the ECM, reducing the 

structural integrity of the colonies forming the biofilm but not able to cause a loss of viability 

in bacterial cells with intact membranes. The implication of this finding is that although the 

DNase I treatment provides a rapid and effective method of biofilm dispersal, it would best 

be used in combination with antimicrobial treatments, ensuring effective biofilm removal and 

bacterial inactivation. 

In conclusion, eDNA is an essential component of the C. jejuni biofilm and its removal leads 

to rapid biofilm disintegration. Treatment of abiotic surfaces with DNase I leads to both rapid 

and long lasting biofilm removal, releasing the cells into planktonic phase, potentially 

allowing more efficient antimicrobial treatment. DNase I treatment is effective on food chain 

relevant surfaces and could provide a useful addition to current food chain cleaning regimes. 
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7 C. jejuni strain RM1221 contains three extracellular 

DNases which modify its biofilm forming ability and 

degrade C. jejuni biofilms 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the paper: Brown H L, Reuter M, Hanman K, Betts R P, van Vliet A 

H M (2014) Prevention of biofilm formation and removal of existing biofilms by extracellular 

DNases of Campylobacter jejuni, PLoS One. 10(3): e0121680. 
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 Introduction 7.1

As shown in 6, and in previous work by other researchers (Svensson et al., 2009, Svensson 

et al., 2014), eDNA is present within the C. jejuni biofilm. This eDNA can be degraded by 

treatment of the biofilm with DNase I, leading to a release of the cells from abiotic surfaces, 

and inhibiting reattachment. It has also been reported that some bacteria are able to secrete 

their own DNase enzymes into the extracellular environment (hereafter these enzymes are 

referred to as eDNase). These eDNase proteins have diverse functions, reflecting the 

diversity of the bacterial species they have been found within. Examples of eDNase 

functions include immune evasion by S. aureus (Berends et al., 2010), biofilm modification 

by P. aeruginosa and S. aureus (Beenken et al., 2012, Seper et al., 2011), scavenging of 

carbon and phosphate sources by E. coli and P. aeruginosa (Finkel and Kolter, 2001, 

Mulcahy et al., 2010), efficient bacterial predation of prey bacterium by Bdellovibrio 

bacteriovorus (Lambert and Sockett, 2013), and inhibition of natural transformation within C. 

jejuni (Gaasbeek et al., 2010, Gaasbeek et al., 2009). 

The species C. jejuni contains several mobile genetic elements, such as prophages, 

plasmids and insertion elements, all of which contribute to the diversity shown within the 

species (Dingle et al., 2001). Most C. jejuni isolates are naturally competent, and readily 

take up DNA from the environment. One of the consequences of this is that C. jejuni shows 

a high level of genetic diversity (Parker et al., 2006, Clark et al., 2014). C. jejuni strain 

RM1221 contains four insertion elements named Campylobacter jejuni Insertion Element 

(CJIE) 1 to 4 (Fouts et al., 2005a, Parker et al., 2006). Three of these, CJIE1, CJIE2 and 

CJIE4, each contain a gene encoding a DNase protein (dns, cje0556 and cje1441 

respectively). These encoded proteins are predicted to be extracellular due to the presence 

of signal peptide cleavage sites (Gaasbeek et al., 2010). The genes have previously 

received attention as their expression prevents natural competence within strain RM1221 

(Gaasbeek et al., 2010, Gaasbeek et al., 2009). The genes are widely distributed within C. 

jejuni and appear either individually or in combination within the genomes of many strains 

(Figure 7-1). 
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Figure 7-1 Distribution of eDNase genes across C. jejuni sequences. 

Diagram from Brown et al. (2015) showing the distribution of eDNase genes within C. jejuni strains. 

The Venn diagram shows the distribution of the eDNase genes dns (cje0256), cje0566 and cje1441 in 

the genome sequences of 1621 eDNase gene-positive C. jejuni strains. The Venn diagram is encircled 

by the RM1221 chromosome showing open reading frames (blue), CJIE1-4 insertion elements (red), 

and the position of the three eDNase genes (black). Finally, the bottom part shows an amino acid 

sequence alignment of the Dns, CJE0566 and CJE1441 proteins, with the signal sequence and Pfam 

domains indicated. Signal sequences were predicted using PSORTb version 3.0.2. 

The impact of eDNase expression on C. jejuni biofilm formation has not previously been 

investigated. In this chapter, phenotypic and genetic data demonstrates that eDNase activity 

by C. jejuni RM1221 not only inhibits biofilm formation by the strain RM1221, but can also 

effect biofilm formation in C. jejuni isolates lacking eDNase genes. Isolation of DNase 

proteins from strains such as RM1221 could provide a cheap and relatively easily obtainable 

source of DNase for use within novel biofilm eradication treatments.  
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 Results 7.2

7.2.1 C. jejuni strain RM1221 is unable to form a biofilm during static incubation 

In Section 4.2.3 (Figure 4-5) it was observed that C. jejuni strain RM1221 was unable to 

form a biofilm in Brucella medium alone. To confirm the previous observations a comparison 

of biofilm formation by C. jejuni strains NCTC 11168, 81116 and RM1221 was performed, 

using crystal violet staining of borosilicate glass test tubes. A clear difference between the 

levels of biofilm formation in strains NCTC 11168 and 81116 was observed compared to 

strain RM1221, with the latter showing very little difference to the negative control (Brucella 

medium only) (Figure 7-2a). 

Swarming (Figure 7-2b) of RM1221 was significantly (P = <0.001) reduced compared to 

NCTC 11168. Motility has previously been shown to be important in C. jejuni biofilm 

formation (Reuter et al., 2010, Svensson et al., 2014). Microscopic observation of overnight 

RM1221 cultures indicated that strain RM1221 is able to swim in a comparable manner to 

NCTC 11168, and was significantly more motile than an 11168 ΔflaAB mutant. This 

indicates that although swarming was reduced, strain RM1221 was still able to swim in a 

comparable manner to NCTC 11168. Autoagglutination (Figure 7-2c) was also measured 

and compared to NCTC 11168 WT and the NCTC 11168 ΔflaAB mutant. Analysis showed 

that autoagglutination of RM1221 was not statistically different to the biofilm-forming NCTC 

11168 strain. Taken together these results suggest that the lack of biofilm formation in 

RM1221 is not due to deficiencies in either motility or autoagglutination. 
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Figure 7-2 Strain RM1221s inability to form a mono-species biofilm cannot be attributed to 

either swarming or autoagglutination (AAG) deficiency. 
Biofilm formation (A) of RM1221 (light grey bars) was measured by crystal violet staining and 

compared to NCTC 11168 (white bars) and a test tube containing only Brucella medium (black bar).  

Swarming ability (B) was calculated by measuring halo area on soft agar after 48 hours incubation in 

microaerobic conditions. Autoagglutination assessment (C) was carried out by observing the reduction 

in OD600 measurement over a 24 hour period. Both B and C show data for 11168 (white bars), RM1221 

(light grey bars) and 11168 ΔflaAB (dark grey bars). Error bars show SE (N = 5) and significance was 

measured using Bonferroni post-test (** = P<0.01, *** = P<0.001) following ANOVA analysis. Panel D 

shows representative images of crystal violet stained test tubes following a 48 hours static incubation 

of 11168 and RM1221 cultures. 
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7.2.2 Microscopy indicates that C. jejuni RM1221 cannot effectively attach to 

abiotic surfaces 

Crystal violet staining has a high background level due to its non-specific nature. This means 

that low levels of cell attachment to abiotic surfaces cannot be distinguished using this 

technique. In order to address this issue and discover whether RM1221 is able to attach at 

low levels to abiotic surfaces, RM1221 and NCTC 11168 cultures were incubated statically 

for 48 hours in vessels containing sterile glass slides. Following static incubation the glass 

slides were stained with crystal violet to allow visualisation and light microscopic analysis. 

Images showed that although RM1221 cells displayed some initial attachment to the slide, 

there was no progression towards the development of microcolonies or mature biofilm 

formation (Figure 7-3a). This was in contrast to strain NCTC 11168 which showed mature 

biofilm formation following 48 hours of static incubation (Figure 7-3b). Assessment of MPN 

showed comparable values between strains RM1221, NCTC 11168 and 81116 following 

static culture for 48 hours (Figure 7-3c). This suggests that RM1221 is able to survive for 

extended periods in both aerobic and microaerobic static cultures but, unlike strains NCTC 

11168 or 81116, is unable to attach to the glass surface in sufficient quantities to allow 

biofilm initiation. 
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Figure 7-3 C. jejuni strain RM1221 is unable to form microcolonies or biofilms 
Panels A and B show representative images of the air/liquid interface of a glass slide following 48 

hours of static incubation at 37°C in aerobic conditions. Panel A shows a slide incubated with RM1221 

cells and panel B shows a slide incubated with NCTC 11168 (right side of image is above the air liquid 

interface). The highlighted area in panel A shows attached RM1221 cells, although no progression to 

microcolony or mature biofilm formation was observed. Panel C shows a MPN assessment of strains 

81116, NCTC 11168 and RM1221 following a 48 hour static incubation at 37°C in aerobic conditions. 

Scale bar indicates 100 µm and enlarged versions of the microscopy images can be found in Appendix 

3. 
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7.2.3 Cell suspensions of C. jejuni RM1221 are able to degrade exogenous, 

genomic DNA 

The DNase genes of C. jejuni strain RM1221 have previously been shown to have DNA 

degrading activity when expressed individually in C. jejuni C019168 (Gaasbeek et al., 2010). 

In order to confirm that the DNase proteins were also active in strain RM1221, cells from 

overnight shaking cultures were concentrated and spotted on to DNase agar plates before 

further incubation, allowing degradation of the DNA within the plates and subsequently halo 

production (Figure 7-4). 

 

Figure 7-4 C. jejuni strain RM1221 is able to degrade exogenous DNA 

Representative image of DNase agar plate (Oxoid) incubated with RM1221 cell cultures or a sterile 

H2O negative control. 15 ml RM1221 cell suspensions were concentrated to a final volume of 2 ml (left 

halo) and 5 ml (right halo) and incubated for 48 hours to allow potential expression of eDNase proteins. 

DNase I was used as a positive control (top halo) and sterile water as a negative control (labelled H2O 

at bottom of plate). 

The presence of a halo surrounding the cell culture spots confirmed that RM1221 does 

express active DNase proteins, albeit at a low level. A positive control of 1 µl of DNase I in 

final volume of 10 µl water containing 1 x DNase I buffer was used to confirm that DNA 

present within the plates could be degraded in microaerobic conditions at 37°C (conditions 

which were chosen to allow optimal RM1221 viability and potential DNase protein 

expression). Detection of DNase activity in the cell free supernatant of RM1221 cultures was 

not possible. This is potentially due to the attachment of the DNase proteins to the RM1221 

cells, or due to their low level of expression. Since 15 ml overnight cultures had to be 

concentrated to a 2 ml volume before spotting on to the agar in order to allow a easily 
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observable halo it is hypothesised that any expression of the proteins in supernatant could 

be too dilute to measure in a system with low sensitivity. 

To further investigate the DNA-specific activity of the C. jejuni RM1221 eDNases, 2 µg of 

genomic DNA from C. jejuni strain NCTC 11168 was combined with washed RM1221 cells, 

and incubated at 37°C to allow digestion of the gDNA by the RM1221 DNases. A time-

dependent degradation of C. jejuni genomic DNA was observed (Figure 7-5) by RM1221 

cultures, however no DNA degradation was observed when C. jejuni strain NCTC 11168 

was added to genomic DNA. This suggests that the DNase activity displayed by RM1221 is 

not found in a biofilm forming strain such as NCTC 11168. 

 

Figure 7-5 C. jejuni RM1221 is able to degrade NCTC 11168 genomic DNA over a three hour time 

period. 

The ability of NCTC 11168 and RM1221 to degrade NCTC 11168 genomic DNA was assessed by 

incubation of cell suspensions (in log phase of growth) with genomic DNA at 37°C for three hours. The 

numbers at the top of the images indicate the incubation time (in minutes) and a 1KB ladder is included 

for size comparison. C. jejuni NCTC 11168 culture (left-hand image) is unable to degrade the genomic 

DNA, with a band of genomic DNA of >10 kb remaining for the duration of the assay, while incubation 

with RM1221 (right-hand image) results in degradation of genomic DNA, indicated by the „smearing‟ of 

the DNA as the time course progresses. 

7.2.4 eDNA cannot be detected in C. jejuni RM1221 cell suspensions 

Since eDNA from C. jejuni strain NCTC 11168 is able to be degraded by RM1221 cell 

suspensions, it was hypothesised that RM1221 supernatants may be able to degrade their 

own eDNA. In order to assess this possibility, the supernatant from shaking NCTC 11168, 

81116 and RM1221 cultures were collected and sterile filtered. They were treated for one 

hour with DNase I or RNase before gel electrophoresis to allow visualisation of the DNA. 

This allowed not only genetic material within the supernatant to be detected, but also 

information to be gathered on its composition, with respect to DNA and RNA content, and 

degradation status. Genetic material was detected in NCTC 11168 and 81116 supernatants, 

but not RM1221 supernatant (Figure 7-6). In both NCTC 11168 and 81116 RNase treatment 
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had not visible effect on the genetic material, whereas DNase I treatment led to loss of 

bands. 

 

Figure 7-6 eDNA cannot be detected in RM1221 suspensions. 

Representative images of gel electrophoresis of C. jejuni NCTC 11168, 81116 and RM1221 

supernatants following overnight shaking growth. The image indicates that although NCTC 11168 and 

81116 cultures contained genetic material, which could be degraded by DNase I but not RNase, no 

genetic material could be detected in RM1221 cultures, even prior to enzymatic treatment. Gels were 

run at 100V for 40 minutes, the ladder shown in the first lane is a NEB 1kb ladder. 

In order to better gauge the time period over which this degradation took place shaking cell 

suspensions were cultured at 37°C in microaerobic conditions for 48 hours. At regular 

intervals cell concentrations (Figure 7-7a) and eDNA concentrations (Figure 7-7b) were 

measured. Throughout the 48 hour time course cell concentration of all three C. jejuni 

strains increased as expected. With regards to eDNA concentration all strains showed high 

levels of variability in eDNA concentrations over the first ten hours of growth, and an overall 

decrease in eDNA concentration throughout the 48 hour time course (Figure 7-7b). This 

trend was particularly clear within RM1221 cultures, where from six hours onwards a 

statistically significant reduction was seen, when RM1221 eDNA concentrations were 

compared to both NCTC 11168 (P = ≤0.05) and 81116 (P = ≤0.01) eDNA concentrations.  



Helen Louise Brown                                          Extracellular DNase expression 

 

 

 

Page 188 of 294 

 

 

Figure 7-7 eDNA concentrations rapidly decrease in RM1221 cell suspensions. 

Cell concentration (A), measured by optical density, and eDNA concentration (B), measured by Nano 

drop following isolation from supernatant of shaking microaerobic C. jejuni NCTC 11168 (blue 

bars/lines), 81116 (red bars/lines) and RM1221 (green bars/lines) cultures, were measured over a 48 

hour period. For all strains the concentration of eDNA decreased over the 48 hour time period. This 

decrease was particularly apparent within RM1221 samples, which showed a statistically significant 

reduction (P = ≤0.05) from the six hour measurement onwards. This reduction was not related to cell 

growth, which continued to increase as expected over the time course.  Error bars show SE (N = 3) 

and statistical analysis was carried out using Student T Test. 
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Taken together, the results from 7.2.3 and 7.2.4 suggest that RM1221 does express active 

eDNase proteins, which are likely to be responsible for the degradation of DNA within 

RM1221 cultures. It was shown in 6 that eDNA is not only a component of the C. jejuni ECM, 

but its degradation by DNase I leads to biofilm disintegration. It is suggested that RM1221s 

eDNase genes are responsible for its lack adhesion to abiotic surfaces, and its inability to 

form biofilms. 

7.2.5 Genetic manipulation of RM1221 eDNase genes is confounded by the strains 

DNase activity 

In the C. jejuni NCTC 11168 background, genes can routinely be insertional inactivation and 

complementation to better understand their function. Inactivation of the three eDNase genes 

in RM1221 was therefore attempted by insertion of an antibiotic resistance cassette into 

each of the genes. Although manipulation of all three genes was tried, only cje1441 was 

successfully inactivated. The cje0566 gene was particularly hard to work with as its similarity 

to cje1441 meant that attempts to amplify cje0566 led to amplification of fragments from both 

the cje0566 and cje1441 genes (Figure 7-8). 

 

Figure 7-8 Dot plot comparison of cje0566 and cje1441 including the surrounding 500 base pair 

sequences. 

A dot plot comparison of the sequences of the RM1221 genes cje0566 and cje1441 and the 

surrounding genomic sequence (500 bp. either side of the genes). Analysis showed that the two genes 

are almost identical in their genetic code and have very similar flanking regions. This similarity 

increases the complexity of primer design and in part may explain the difficulties experienced in the 

cloning of these genes. 
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This similarity confounded efforts to insert a fragment containing the cje0566 gene into the 

pNEB193 plasmid. Creation of the dns inactivation plasmid (pHB010) was more successful, 

with a dns containing fragment been successfully inserted into the pNEB193 plasmid and 

inactivated by insertion of the kan cassette (for plasmid map see Section 10.2). Although this 

plasmid was confirmed to contain the correct genetic code by sequencing, despite multiple 

attempts to insert the plasmid into RM1221, a successful transformation was never 

achieved. This result confirms the proposed role of dns in preventing natural competence 

(Gaasbeek et al., 2010, Gaasbeek et al., 2009). 

Although successful inactivation of the cje1441 gene was achieved, its complementation 

was not possible. Constructs expressing the RM1221 eDNase genes from a constitutive C. 

jejuni promoter invariably accrued spontaneous promoter mutations (Figure 7-9), meaning it 

was not able to be transcribed. 

 

Figure 7-9 Constructs expressing cje1441 from a constitutive promotor accumulate 

spontaneous point mutations in the promotor region. 

Alignment of sequenced plasmid fragments was carried out using BioEdit software and compared to 

the cje1441 sequence obtained from Artemis.  This image is a representative example of three 

plasmid sequences (in this case from pHB002 – see Section 10.2 for plasmid map) in comparison to 

the RM1221 gene sequence.  The lack of consensus in the gene flanking regions can be clearly 

observed, however the gene itself shows a high degree of preservation. Plasmid DNA isolated from 

three different colonies from the ligation transformation (colony 7, 8 and 13) all contained 

spontaneous but different point mutations in the promotor region, most likely resulting in no 

transcription of the open reading frame, suggesting that expression of the active gene is detrimental 

to the viability of the plasmid encoding E. coli cells. 

This accumulation of spontaneous mutations was observed in plasmids pHB001 to pHB006. 

These plasmids were designed for insertion of dns and cje1441 into the cj0046 pseudo-gene 

region of C. jejuni NCTC 11168 or RM1221 as part of the complementation strategy. The 

genes were under control of either an fdxA (pHB001 to pHB003) or metK (pHB004 to 

pHB006) promoter (hereafter referred to as fdxA
pr

 and metK
pr

. Since it has previously been 

reported that E. coli is able to recognise C. jejuni promoters, such as metK
pr

 (Wosten et al., 

1998), it hypothesised that translation of the eDNase genes by E. coli was lethal, with only 

E. coli containing non-translational DNase genes being able to grow following 

transformation. Transformation of E. coli Top 10 cells with the pCporAGFP
+
 plasmid led to 

expression of GFP (Figure 7-10), confirming that E.coli is able to transcribe and translate 

genes under control of C. jejuni promotors. 
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Figure 7-10 E. coli Top 10 cells are able to express proteins from a C. jejuni promoter. 

E. coli Top 10 was transformed with pCporAGFP
+ 

(expressing GFP
+
 under control of the C. jejuni porA 

promoter) and pC46 (a plasmid analogous to pCporAGFP
+
 but lacking the porA promoter and GFP

+
 

gene). Following 24 hours of growth on LB plates the cells were resuspended, adjusted to an OD600 of 

4.5 and their fluorescence measured. The high florescence readings obtained for the pCporAGFP
+
 

suspension confirms that E. coli is able to translate proteins expressed from C. jejuni promoters. 

7.2.6 Transformation of C. jejuni RM1221 

The major difference between C. jejuni strains NCTC 11168, 81116, and their counterpart C. 

jejuni strain RM1221 is the presence of the CJIE1-4 insertion elements, which have 

previously been reported to inhibit natural transformation (Bleumink-Pluym et al., 2013, 

Gaasbeek et al., 2010, Gaasbeek et al., 2009). It is hypothesised that the three DNase 

genes contained within these insertion elements also limit the ability to genetically 

manipulate RM1221 in vitro. In order to successfully manipulate RM1221, modifications to 

the standard transformation protocol were required, to inhibit DNase activity. To achieve this 

inhibition two methods of EDTA supplementation of bacterial suspensions were compared. 

Growth of RM1221 in EDTA supplemented Brucella medium and supplementation of CTB 

medium with EDTA were compared with respect to their ability to reduce DNase activity and 

maintain a high level of cell viability. The toxicity of EDTA towards both planktonic bacteria 

and biofilms is well reported (Al-Bakri et al., 2009) and so the effect of six EDTA 

concentrations, ranging from 1mM to 10mM was assessed (Figure 7-11). 

Initially RM1221 growth in EDTA supplemented overnight cultures was considered as a 

potential solution, it was thought that this would allow a relatively high cell density to be 

achieved while also allowing the EDTA to act on eDNases produced at various stages of 

growth (since it is currently unknown if RM1221 eDNase expression is linked to a particular 

Plasmid expressed in E. coli 
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growth phase). Incubation of RM1221 cultures with all concentrations of EDTA lead to 

significant inhibition of growth, and as the concentration of EDTA increased above 1 mM, the 

viability of the cultures dropped below the MPN limit of detection and viable cells could be 

recovered (Figure 7-11). 

 

Figure 7-11 MPN assessment of C. jejuni RM1221 following exposure to EDTA containing 

medium. 

Representative images of MPN assessment following either an overnight (two left-hand panels) or one 

hour (two right-hand panels) incubation of C. jejuni RM1221 cultures with several EDTA concentrations 

(the concentrations used are listed in white at the top of the images). While overnight incubation with 

EDTA led to a loss of viability in all EDTA containing medias, a one hour incubation showed good 

recovery of viable cells. 

Since overnight growth of RM1221 in the presence of EDTA lead to cell death a second 

method of EDTA supplementation was trialed. Here CTB was supplemented with the same 

EDTA concentrations used for overnight growth. C. jejuni RM1221 cells from a Skirrow plate 

were resuspended within this buffer and incubated for one hour on ice. This method not only 

more closely reflects the current laboratory transformation protocol (Section 2.5.10.1), but 

limits the exposure time to EDTA, potentially increasing viability. It was also hoped that 

incubation of the cells on ice would naturally reduce enzymatic activity, as RM1221 shows 

DNase activity at 37°C (Section 7.2.3). Following one hour incubation both cell viability (by 

MPN estimation) and DNase activity were assessed. MPN was unaffected in all EDTA 

concentrations, being comparable to that of the no EDTA control (Figure 7-11). This 

suggests that both the presence of EDTA and ice incubation do not measurably affect MPN. 

DNase plates were used to assess the DNase activity of RM1221 following the treatments. A 
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concentration of 10 mM EDTA led to decreased DNase activity (Figure 7-12), and so was 

chosen for use in the RM1221 transformation protocol. 

 

Figure 7-12 Incubation of RM1221 cells with EDTA leads to DNase activity inhibition 

Representative image of DNase agar plates containing RM1221 cell suspensions (red circles/cross) 

following one hour incubation on ice with EDTA containing medium (concentration of EDTA is given 

above the halo/cross). Water (yellow cross) and C. jejuni NCTC 11168 (green cross) were used as 

positive controls. DNase I (white halo) was added as a positive control. 

This new protocol (one hour incubation of RM1221 culture from a Skirrow plate, on ice with 

10 mM EDTA supplemented CTB medium), along with methylation of the plasmids (Section 

2.5.9) to reduce potential restriction enzyme activity, was trialed for the insertion of pHB012b 

(cje1441 insertionally inactivated with cat) in to RM1221. Following transformation, as 

described in Section 2.5.14, cultures were incubated on selective agar plates for 72 hours to 

allow growth of transformants. Analysis of the agar plates (Figure 7-13) shows that large 

numbers of cells are present on unsupplemented plates, again confirming that incubation of 

cells in 10 mM EDTA containing CTB did not adversely affect RM1221 MPN (Figure 7-13a 

and c). Agar plates containing chloramphenicol only showed multiple colony growth when 

cells had been transformed with pHB012b, suggesting that some colonies had taken up the 

suicide vector following electroporation (Figure 7-13b and d). 



Helen Louise Brown                                          Extracellular DNase expression 

 

 

 

Page 194 of 294 

 

 

Figure 7-13 Images of agar plates following outgrowth of RM1221 pHB012b transformants 

Representative images of Brucella (A and C) and Brucella Cm
10

 (B and D) agar plate following 

outgrowth of electroporated RM1221 cultures transformed with either pHB012b (A and B) or sterile 

H2O (C and D). Both Brucella only plates show high levels of growth, indicating good survival of the 

cell cultures following the transformation procedure. Several resistant colonies can be seen on B but 

only one on D suggesting that the pHB012b plasmid has been taken up by some of the RM1221 cells, 

conferring chloramphenicol resistance, however electroporation in water has only resulted in the 

production of one chloramphenicol resistant colony. This indicates that the method has an acceptable 

rate of false positive results. 

PCR amplification was used to confirmation that cat had successfully been inserted into 

cje1441. Primers were chosen which would allow amplification of both cat and the cje1441 

flanks, confirming that the whole construct had successfully been inserted into the RM1221 

genome (Figure 7-14). 
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Figure 7-14 Diagram of pHB012b inactivation construct  

Diagrammatic representation of the interrupted cje1441 sequence contained within the pHB012b 

plasmid (for a full plasmid map of pHB012b see Section 10.2). The arrows indicate both the primer 

attachment sites and the direction of the read.  Primers were designed to produce a fragment including 

both the cat gene and cje1441 flanking region. This primer selection gave confidence that the cat gene 

had been inserted into cje1441 and disrupted its production successfully.  

Taken together these results suggest that the modified transformation protocol is able to be 

used successfully to insert a suicide vector into RM1221 cells. Eight colonies from the initial 

overnight growth plate (Figure 7-13b) were selected for further analysis. Genomic DNA was 

extracted from each colony and fragments generated using the primers shown above 

(Figure 7-14). Gel electrophoresis confirmed that in one of the colonies tested both 

fragments were present. This colony was renamed RM1221 Δcje1441 and used for all 

further analysis. 

7.2.7 Disruption of cje1441 restores robust biofilm formation and abolishes 

degradation of existing biofilms. 

Phenotypic assessment of the RM1221 Δcje1441 mutant showed that growth and the ability 

to swarm and autoagglutinate were unaffected by inactivation of cje1441 (Figure 7-15). 
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Figure 7-15 RM1221 Δcje1441 and its parent strain show no significant difference in swarming, 

autoagglutination or growth. 

Strains NCTC 11168 (white), its non-motile ΔflaAB mutant (dark grey), RM1221 (black bars) and the 

Δcje1441 mutant (light grey) were compared for their ability to swarm (A) and autoagglutinate (B). In 

both tests no statistical difference was observed between Δcje1441 and the wild-type. Panel C shows 

growth over a 24 hour period for Δcje1441 (light grey triangles), RM1221 wild-type (black circles) and 

NCTC 11168 (white squares). Error bars show SE (N = 5) and significance was measured using 

Bonferroni post-test (*** = P<0.001, **** = P<0.0001) following ANOVA analysis.  
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Motility was also unaffected although cell morphology did appear altered, producing cells 

which were straighter in appearance than their WT counterparts and also slightly larger 

(Figure 7-16). Morphologically the RM1221 Δcje1441 mutant is more similar in appearance 

to C. jejuni NCTC 11168 than its parent strain. 

 

Figure 7-16 Ryu stained C. jejuni NCTC 11168, RM1221, and RM1221 Δcje1441 

Representative microscopic images (1000x magnification) of C. jejuni NCTC 11168 (top panel), 

RM1221 (middle panel) and RM1221 Δcje1441 (bottom panel) showing alterations in morphology 

between RM1221 WT and mutant strains. The RM1221 WT has a spiral morphology, whereas the 

Δcje1441mutant is non-spiral, like the NCTC 11168 WT. Ryu stain indicates that all strains have 

retained their flagella, and the mutant flagella appears to be of a similar length to both the NCTC 

11168 and RM1221 strains. 
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Assessment of the ability to degrade DNA was undertaken in both DNase plates and in a 

sterile PBS solution containing 2 µg of NCTC 11168 gDNA. Analysis showed that 

inactivation of cje1441 led to the loss of the eDNase activity that RM1221 displays. 

 

Figure 7-17 C. jejuni RM1221 is able to degrade exogenous DNA in both static and shaking 

suspensions. 
The ability of RM1221 Δcje1441 mutant (A) and the RM1221 WT (B) to degrade NCTC 11168 genomic 

DNA was assessed by incubation of cell suspensions with genomic DNA at 37°C for three hours. 

Unlike the RM1221 WT strain, the Δcje1441 mutant was unable to degrade the genomic DNA, with a 

band of genomic DNA of >10 kb remaining for the duration of the assay. Numbers at the top of the 

images indicate the length of time (minutes) the incubation was carried out for and a NEB 1KB ladder 

has been included for size comparison. 

Inactivation of the cje1441 gene also resulted in a significant increase in biofilm formation, to 

levels similar to strain NCTC 11168 (Figure 7-18a). Biofilms formed by the Δcje1441 mutant 

were also sensitive to DNase I treatment (Figure 7-18b), once again highlighting the 

importance of eDNA as a component of the ECM. 
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Figure 7-18 Inactivation of the cje1441 eDNase gene restores biofilm formation by C. jejuni 

strain RM1221 
(A) shows biofilm formation of NCTC 11168 (white bars), Δcje1441 (dark grey bars), RM1221 (light 

grey bars) and a Brucella medium only control (black bars). The Δcje1441 mutant shows similar levels 

of biofilm formation to NCTC 11168 and a significant increase in biofilm formation compared to the 

parent strain. (B) shows that the biofilm produced by the Δcje1441 mutant is susceptible to degradation 

by DNase I (white bar) and leads to levels of staining indistinguishable from the Brucella medium only 

control (black bars). Error bars show SE (N = 5) and significance was measured using Bonferroni post-

test (* = P<0.05 ** = P<0.01). 

7.2.8 Overexpression of RM1221 eDNase genes in E. coli 

Since genetic manipulation of the RM1221 genome, or insertion of the eDNase genes into 

NCTC 11168, proved very difficult, it was decided that further investigation of the DNase 

genes should be carried out following their expression and purification in E. coli. In order to 

reduce the problems described in Section 7.2.5, the pET28α expression system was used. 

This system allows tighter regulation of protein expression, as expression is suppressed in 

E.coli BL21 DE3 cells due to the presence of a T7 promotor which drives expression of the 
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heterologous protein. This promotor allows expression of the protein of interest to be 

controlled by addition of IPTG into the growth medium. It should however be noted that 

although expression is controlled and very much reduced in pET28α plasmids compared to 

the pC46 system used previously, it is not completely repressed, and some „leaky‟ 

expression is to be expected. The pET28α system also allows a terminal six histidine tag 

(his-tag) to be added to the proteins, allowing easier purification using metal affinity columns. 

The three eDNase genes from RM1221 were inserted separately into the pET28α plasmid 

(plasmids containing N terminal his-tagged dns, cje0566 and cje1441 were called pHB007, 

008 and 009 respectively). Correct insertion of the gene was confirmed by PCR amplification 

of the region between the T7 promoter and terminator, giving a fragment of approximately 

850 bp. in length, when the gene had been ligated correctly. All PCR fragments of plasmids 

showing a band of the correct size were sequenced to ensure their accuracy before use. 

 

Figure 7-19 Selection of E. coli colonies containing pET28α for sequencing was performed 

using colony PCR 

Colony PCR of the T7 promoter region was performed on E. coli colonies following overnight growth on 

selective agar plates. All pET28α plasmids without the insert gave a fragment of approximately 350 bp. 

(A), whereas the eDNase containing the correct regions gave a fraction of approximately 850 bp. (B) 

allowing distinction between colonies with and without the eDNase insert. The figure (C) shows an 

agarose gel with pHB008 (cje0566) colonies, however both pHB007 and pHB009 produced fragments 

of the correct size. 

Following confirmation of the plasmids, E. coli BL21 (DE3) cells were transformed with 

pHB007, pHB008, pHB009 or pET28α. Cells were grown aerobically, shaking, at 37°C for 

120 minutes in LB containing 2% glucose and 30 µg/ml Kanamycin. After 120 minutes of 

incubation 1 mM IPTG was added to induce expression of the DNase proteins contained 

within the plasmids. Cell growth was monitored throughout (Figure 7-20). Cells containing 

pHB007 and pHB008 showed very little growth throughout the whole time course, and 



Helen Louise Brown                                          Extracellular DNase expression 

 

 

 

Page 201 of 294 

 

following IPTG addition the cell concentration of pHB009 containing cells also declined. 

Growth was unaffected in pET28α expressing cells, suggesting that the reduced viability 

observed within the other cells lines was not due to the presence of the pET28α plasmid, but 

rather the inclusion of the DNase genes within the plasmid. 

 

Figure 7-20 IPTG induction of E. coli BL21 (DE3) cell containing eDNase plasmids leads to 

severely retards growth 

Representative example of growth curves of E. coli BL21 (DE3) cells containing either a plasmid 

expressing one of the eDNase genes (pHB007 to pHB009 expressing genes dns, cje0566 and cje1441 

respectively) or plasmid with no insert (pET28α). Following addition of IPTG at 120 minutes (indicated 

by the arrow), OD600 values of pHB007 to pHB009 is consistently found to be lower than that of the 

cells containing pET28α. 

In order to increase cell viability during IPTG induction, cells were incubated at either 30°C 

or 15°C. It was hoped that this reduction in temperature would lead to reduced metabolism, 

protein expression and, potentially, reduced DNase activity. SDS-PAGE and Western blot 

analysis showed no visible DNase protein expression following the reduced temperature 

incubations. A pET28α plasmid expressing cj1388 (referred to as pCASO040) was used as 

a positive control and did show IPTG inducible expression (Figure 7-21). Although cj1388 

currently has no function assigned, it has previously been expressed using BL21 (DE3) 

cells, so is known to be non-toxic when over-expressed in E. coli (Reuter et al., 2015). 
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Figure 7-21 Western blot analysis of E. coli BL21 (DE3) cells shows no visible DNase 

expression following IPTG induction. 

E. coli BL21 (DE3) cells containing either a plasmid expressing a non-toxic protein (pCASO040), or the 

eDNase expressing plasmids (pHB007 to 009) were incubated in either the presence or absence of 

IPTG at 37 °C, with 200 rpm shaking, for four hours before collection of cell pellets and western blot 

analysis. A representative image of a blot is shown and the labelling above the image indicates the 

sample run in each lane. Samples were probed using an anti-His antibody. Although a band appears in 

the positive control (pCASO040 +IPTG) there are no other bands on the gel.  This indicates that the E. 

coli BL21 (DE3) cell line is not a suitable system for the expression of the RM1221 eDNase proteins, 

although expression of other C. jejuni proteins, such as that contained in pCASO040, is possible in this 

system. 

In order increase expression of the DNase proteins, the pET28α plasmids were inserted into 

alternative E. coli strains. The E. coli C41 and C43 cell lines are derived from BL21 (DE3) 

but contain additional, un-characterised, mutations. These strains have previously been 

shown to have greater resistance to toxic recombinant proteins (Dumon-Seignovert et al., 

2004), although a literature review shows that expression of DNase proteins has not 

previously been reported. 

The manufacturers protocols were used for both transformation and IPTG induction. 

Antibiotic selection was used to confirm insertion of the plasmid before growth. Growth was 

monitored throughout the course of the induction procedure, in order to assess if there was a 

reduction in cell viability following IPTG induction. For initial toxicity assessment only 

pHB007 and pHB009 were used and compared to cells transformed with pET28α or 

pCASO040. Growth curves for induced and un-induced cells were compared (Figure 7-22) 

and showed that IPTG induction did lead to reduced growth for approximately 100 minutes 

following IPTG addition, although cell concentrations did recover at later time points and 

were comparable to un-induced cells at the end of the time course. 
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Figure 7-22 E.coli C41 and C43 cells have greater viability than E. coli BL21 (DE3) following 

IPTG induction 

E.coli C41 and C43 cells transformed with pHB007 (blue), pHB009 (green) or pET28 (red) were grown 

for 180 minutes before addition of IPTG to allow expression of eDNase proteins (arrow indicated the 

point of IPTG addition).  In order to assess the expansion of the population OD600 readings were taken 

at regular intervals. As a comparison, BL21 (DE3) cells containing the positive control pCASO040 

plasmid were also grown and induced with IPTG (purple). Graphs show that even following induction 

with IPTG (right hand column) cells expressing the eDNase containing genes were still able to 

proliferate. Each graph shows the growth course of a single experimental replicate. 

As well as assessing growth, the E. coli C41 and C43 cells transformed with the three test 

plasmids (pHB007, pHB009, pET28α and pCASO040) were also spotted onto DNase plates 

in order to assess DNA degradation activity (Figure 7-23). Following IPTG induction, halos 

were present around cells containing both pHB007 and pHB009, but not in the pET28α or 

BL21 (DE3) cells containing pCASO040. This suggests that active DNase is expressed in 

detectable quantities by both C41 and C43 cells. It was also noted that C41 cells also 

showed un-regulated expression of pHB009 since a small halo was also observed 

surrounding the un-induced C41 pHB009 colony. 
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Figure 7-23 DNase activity is observed following IPTG induction of E. coli C41 and C43 cells. 

Representative images of DNase plates spotted with E. coli C41 and C43 cultures containing either a 

pET28α plasmid with no insert (red dotted line), pHB007 (blue dotted line), pHB009 (green dotted line) 

or pCASO040 (purple dotted line). Cells were incubated in the presence or absence of IPTG at 37 °C 

with 200 rpm shaking before 5 µl was spotted onto the plates and incubated statically at 37 °C for a 

further 24 hours to allow halo development. As a positive control, 5 µl of DNase I was added to the 

plates ((white dotted line) and 5 µl of sterile water was included as a negative control (yellow dotted 

line). Halos can be observed surrounding the IPTG induced pHB007 (C43 cells only) and pHB009 

cultures and around the positive controls but not around the other cultures.   

Microscopic analysis of the C41 and C43 cells also appeared to show C43 cells were better 

suited to expression of the eDNase genes (Figure 7-24). E. coli C41 cells containing the 
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pHB009 plasmid appeared elongated prior to IPTG addition, suggesting an increased level 

of stress. They also had a reduced cell density compared to their C43 counterparts. 

Following IPTG induction the elongated phenotype of pHB009 containing C41 cells became 

more noticeable. E. coli C43 had a constant morphology regardless of the plasmid they 

contained or their induction with IPTG.   
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Although DNase activity could be observed in both E.coli C41 and C43 cells, protein 

expression was also confirmed using SDS-PAGE and western blotting (Figure 7-25). No 

DNase expression could be observed on SDS-PAGE gels, although the presence of Cj1388 

was observed. Western blot analysis did show that DNase expression was detectable within 

C43 cells, but no detectable DNase expression was observed in C41 cells. Taken together 

these results suggest that C43 cells are more suitable for the expression of DNase than 

either BL21 (DE3) or C41 cells. All further induction was carried out using C43 cells only. 

 

Figure 7-25 Expression of DNase proteins can be confirmed by SDS-PAGE and Western Blot 

analysis. 

SDS-PAGE (A) and Western blot (B) analysis was carried out following IPTG induction of E. coli C41 

and C43 cells. Expression of cj1388 was confirmed by both SDS-PAGE and Western blot (blue arrow 

indicates the level on the gel of the cj1388 band). DNase expression (size indicated by green arrow) 

was not observable by SDS-PAGE, however faint bands of the correct size were observed in C43 cells 

following Western blot analysis. 
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Since all the cell lysates showed DNase activity following IPTG induction it was thought that 

they might also impact C. jejuni NCTC 11168 biofilms. Cell lysates from IPTG induced C43 

cells containing pHB007, pHB008, pHB009 or pET28α were added to semi-mature C. jejuni 

NCTC 11168 biofilms using the co-culture method described in Section 2.8.11. All E. coli 

C43 cell lysates were able to degrade the C. jejuni NCTC 11168 biofilm, including those 

from cells not expressing the DNase proteins. This highlights that the degradative effect of 

DNase was not solely responsible for biofilm degradation in this experimental system. The 

presence of LB medium or its additives did not impact biofilm formation, since addition of 

1ml of fresh LB medium with glucose, kanamycin or IPTG did not impact biofilm formation. 

This indicates that other components of the E. coli lysates are able to degrade C. jejuni 

biofilms, again highlighting the multi-factorial nature of biofilm formation and maintenance. 

 

Figure 7-26 Addition of E.coli lysates to preformed C. jejuni NCTC 11168 biofilms degrades 

biofilm regardless of plasmid content 

C. jejuni NCTC 11168 biofilms were allowed to form for 24 hours in static conditions at 37 °C in either 

aerobic or microaerobic conditions before addition  of a second volume of sterile cell supernatant from 

either E. coli C43 cells expressing the eDNase proteins. In order to insure that the medium that the E. 

coli was grown in would affect biofilm formation samples of medium both with and without IPTG were 

also used assessed, along with a negative control sample of E. coli C43 cells containing the empty 

pET28 α plasmid. The addition of E. coli supernatant, regardless of the contents of its pET28 α plasmid 

led to a decrease in biofilm formation, suggesting that further optimisation is required before this 

assays can be used to determine if the pET28 α expressed plasmids are able to have an effect on C. 

jejuni biofilm formation. Error bars show SE (N = 3). 
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7.2.9 C. jejuni RM1221 is able to degrade pre-existing biofilms of other C. jejuni 

strains 

Since expression and purification of RM1221 eDNases was technically challenging and 

required extensive optimisation, an alternative method of investigating RM1221 DNase 

activity against C. jejuni biofilms was sought. C. jejuni NCTC 11168 and 81116 biofilms were 

allowed to form for 24h, before incubation for a further 24 hours with fresh Brucella medium 

containing either biofilm forming strains (NCTC 11168 or 81116), or strain RM1221 (A 

schematic of the assay method is provided in Figure 2-1). Addition of fresh, un-

supplemented Brucella medium provided a negative control. Results showed that 

replacement with either fresh medium, 81116, or NCTC 11168 cell suspensions had two 

consequences: biofilm formation at the first air-surface interface was enhanced, and a new 

biofilm formed at the newly formed, second, air-surface interface (Figure 7-27). Biofilm levels 

were significantly reduced in tubes containing C. jejuni RM1221 cells in the secondary 

culture, suggesting that not only is RM1221 a poor biofilm forming strain, but the presence of 

viable C. jejuni RM1221 can degrade a pre-existing C. jejuni biofilm.  
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Figure 7-27 Co-incubation of preformed biofilms with RM1221 leads to biofilm degradation. 
Biofilms of NCTC 11168 (A and D) and 81116 (B) were allowed to form in static aerobic conditions for 

24 hours before a further 24 hour treatment with RM1221 cell culture (A and B), or the cell free spent 

medium of RM1221 (D). Graphs A, B and D show mean A590 values of each treatment. Error bars 

show SE (N =5) and images are representative of the CV staining observed throughout the 

experiments. Significance was measured using Tukey tests following ANOVA analysis (*** = P<0.001, 

** = P<0.01). 

Although previous work in this Section has shown that the DNase proteins are likely to be 

displayed extracellularly it is still not known if the eDNase proteins are attached to the cell 

surface or able to freely diffuse throughout the supernatant. To assess this, cell-free spent 

medium was prepared from C. jejuni RM1221 cultures grown overnight in microaerobic 

conditions at 37C. Cell-free C. jejuni strain RM1221 supernatant was added to a 24 hour 

biofilm of C. jejuni NCTC 11168, resulting in degradation of the biofilm to levels comparable 

to the Brucella medium only control (Figure 7-27d). The same effect was not observed when 

cell-free supernatant from a C. jejuni NCTC 11168 culture was used to repeat the method 

(Figure 7-27d labelled „11168 + 11168 S‟). This indicated that any factors disrupting biofilm 



Helen Louise Brown                                          Extracellular DNase expression 

 

 

 

Page 211 of 294 

 

formation are produced solely by C. jejuni RM1221 and that the factors disrupting biofilm 

formation are soluble in spent medium. 

Finally, use of the RM1221 Δcje1441 mutant in the co-culture assay showed that not only 

was Δcje1441 unable to degrade existing biofilms but it was able to be degraded by RM1221 

when used as a primary culture (Figure 7-28). This strongly suggests that it is RM1221s 

ability to degrade eDNA which is solely responsible for its biofilm degrading capacity and 

biofilm formation deficiency.  
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Figure 7-28 C. jejuni RM1221 Δcje1441 is unable to degrade preformed biofilms 

The ability of RM1221 Δcje1441 to degrade the preformed biofilms of NCTC 11168 was assessed (A). 

When Δcje1441 was added to NCTC 11168 cultures (light blue bars) no significant difference in biofilm 

formation was observed compared to NCTC 11168 with Brucella medium added (yellow checked bar) 

or NCTC 11168 with more NCTC 11168 added (yellow bar)/. This is in contrast to the addition of 

RM1221 (dark blue bar), which led to a statistically significant reduction in biofilm staining. Similarly 

RM1221 Δcje1441 biofilms could only be degraded by the RM1221 WT (B). RM1221 Δcje1441 biofilms 

were allowed to form for 24 hours before addition of NCTC 11168 (yellow bar), a second volume of 

RM1221 Δcje1441 (light blue bar), Brucella medium (light blue checked bar) or RM1221 WT (dark blue 

bar). A statistically significant decrease in biofilm biomass was only observed in RM1221 WT 

containing cultures. Error bars show SE (N = 5), significance was measured using T-Tests (**** = 

P<0.0001, ** = P<0.01, * = P<0.05). 
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7.2.10 The C. jejuni RM1221 eDNase proteins are small, heat stable molecules. 

It has been reported by other investigators that several of the secreted DNase proteins 

found in other bacterial species, including C. jejuni, are heat stable and small (Erickson and 

Deibel, 1973, Ruiz et al., 2000, Lior and Patel, 1987). In order to elucidate more information 

about the eDNase proteins expressed by RM1221, its supernatant, shown to be able to 

degrade NCTC 11168 and 81116 biofilms (Section 7.2.9), was subjected to heat treatment 

and size fractionation. It was hypothesised that these treatments would be able to inactivate, 

or remove, the DNases within the supernatants, which in turn would lead to reduced anti-

biofilm activity. 

In order to separate the supernatant into solutions containing molecules of specific size 

fractions, RM1221 supernatant was filtered through 5, 10, 50 and 100 kDa filters and the 

flow through retained for use in assays. This produced a medium deficient in some of the 

content the original solution. 'In addition, heat treatment of the sterile RM1221 cell 

supernatant was performed by heating small aliquots of supernatant to 95°C for 10 minutes 

prior to use in the co-culture assay. This treatment has been shown to deactivate DNase I 

(Figure 6-9), and so was considered to be a suitable method of deactivation for other non-

heat stable DNase enzymes. 

 

Figure 7-29 Size fractionation or heat inactivation of the supernatant has no effect on 

degradation activity. 

Size fractionated (lilac and purple bars) or heat treated (pink bars) RM1221 culture supernatant was 

added to primary NCTC 11168 cultures in the co-culture assay and their ability to degrade biofilms 

assessed by crystal violet staining following a further 24 hour static incubation at 37 °C in either 

aerobic or microaerobic conditions. All fractions and heat treated supernatants were able to reduce 

biofilm biomass compared to cultures where only Brucella medium was added (black and white 

checked bars). This reduction was statistically significant for all fractions and heat treated samples in 

aerobic conditions, and for selected size fractions and the heat treated sample where the incubation 

took place in microaerobic conditions. Error bars show SE (N = 5), significance was measured using 

Bonferroni post-test following ANOVA analysis (* = P<0.05 *** = P<0.001). The arrow indicates the 

data used for comparison during statistical analysis. 
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Neither the heat inactivation of size fractionation treatments gave a significant difference in 

activity when compared to untreated RM1221 supernatant (Figure 7-29). In size fractionated 

samples there was a trend towards decreased activity as contents of the suspension 

reduced in size, however this did not reach statistical significance when compared to 

untreated RM1221 cell supernatants. It should be noted however that in microaerobic 

conditions both the 5 and 10 kDa fraction were also not significantly reduced compared to 

the „Brucella added‟ sample, again highlighting their reduced capacity to effectively degrade 

preformed biofilms. Heat treatment did not appear to have an effect on activity, suggesting 

that the DNase protein(s) responsible for the biofilm degrading activity are relatively heat 

stable. 
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 Discussion 7.3

In Figure 4-5 it was shown that there is variation between different strains of C. jejuni in their 

ability to form a biofilm. It has also been shown that in strains which form biofilms, such as 

C. jejuni NCTC 11168 and 81116, eDNA is not only present within the biofilm but appears to 

have a role in biofilm structural stability. In this chapter it was shown that the presence of 

three eDNase genes within the strain RM1221 are not only responsible for its inability to 

form de novo biofilms, but also its capacity to degrade biofilms of other C. jejuni strains. This 

work highlights how naturally-occurring eDNase activity may be able to weaken or destroy 

natural biofilms, e.g. in food processing environments. 

In C. jejuni RM1221 the eDNase activity, and lack of natural competence, has so far 

precluded robust genetic manipulation (other than conjugation via tri-parental mating (Miller 

et al., 2000), and the successful inactivation of cje1441 is, to our knowledge, the first 

reported manipulation of strain RM1221 chromosome. The eDNase genes pose technical 

problems for genetic manipulation and cloning, as their intracellular expression can lead to 

cytoplasmic DNase activity and cell death, thus hampering cloning and expression in E. coli. 

This has also been reported for eDNase proteins of other bacteria, such as the eDNase 

proteins from the predatory bacterium Bdellovibrio bacteriovorus, where expression was 

found to be lethal in E. coli (Lambert and Sockett, 2013). Similarly, expression of active 

DNase I by E. coli could only be achieved by the use of the very tightly controlled expression 

plasmid pDOC55 (Worrall and Connolly, 1990). Such plasmids are not available for C. jejuni, 

and hence genetic manipulation of the eDNase genes in C. jejuni is technically challenging. 

It is interesting to note that (John et al., 2011) reported that the presence of hydrogen gas 

during microaerobic incubation led to decreased expression of genes associated with natural 

transformation inhibition. The microaerobic gas mixture used throughout this work did not 

contain any hydrogen, which may have further contributed to the poor transformation 

efficiency of RM1221. 

It would be of interest to further investigate how C. jejuni RM1221 overcomes the toxicity of 

the DNase genes. The genes cje0566 and cje1441 are closely surrounded both several 

other genes, which may function as chaperone proteins, inactivating the DNase protein until 

it is exported. Future work may include expression of cje0566 and cje1441 with their 

neighbours and assessment of cell toxicity or DNase activity. The gene dns do not appear to 

be associated with any other genes, and so its association with neighbouring chaperone 

proteins is less likely. It is possible that dns associates with other proteins, not in close 

proximity to dns on the genome, during its translation, folding and export. It is also possible 

that the genes are transported to the surface in a non-active formation, therefore reducing 

their activity within RM1221 cells. 

Many species which form biofilms are also able to produce and export extracellular DNase 

proteins, and eDNase proteins appear to have multiple functions. Although the biological 

function of the eDNase activity in C. jejuni is yet to be elucidated, it is possible that it protects 

isolates with the insertion element against allelic exchange containing insertion element-

negative flanking sequences, as this incurs the risk of losing the insertion element, which 

offer some evolutionary advantage. The P. aeruginosa eDNase PA3909 is involved in DNA 

degradation, using DNA as a nutrient source, and its expression is induced in phosphate 
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limiting conditions (Mulcahy et al., 2010), whereas in Shewanella oneidensis, expression of 

the nucleases ExeM and ExeS is strongly induced if DNA is the sole nutrient source, and 

deletion of the ExeM gene leads to a significantly reduced growth rate (Godeke et al., 2011). 

Finally, the eDNase genes of Staphylococcus aureus are involved in immune evasion, and 

their expression during host infection aids the escape of S. aureus from the DNA „nets‟ 

which are secreted by neutrophils (Berends et al., 2010). In the case of C. jejuni (Gaasbeek 

et al., 2010, Gaasbeek et al., 2009), and other bacteria such as Vibrio cholerae (Focareta 

and Manning, 1991), the eDNase proteins restrict natural transformation. 

Although not the case in C. jejuni RM1221, many bacteria which produce eDNase enzymes 

are still able to form biofilms, appearing to utilise the enzymes in order to modify their biofilm 

structures. Two well-studied examples of eDNase-positive bacterial species that can form 

biofilms are V. cholerae (Seper et al., 2011) and S. aureus (Kiedrowski et al., 2011). Since 

the eDNase genes of RM1221 are classified as non-specific DNA/RNA endonucleases, they 

are not expected to have stringent specificity regarding the source, methylation or sequence 

of the DNA targeted for digestion. Indeed this was confirmed by absence of eDNA in 

RM1221 cultures (Figure 7-6 and Figure 7-5 respectively) alongside the ability of RM1221 

cultures to degrade purified NCTC 11168 gDNA and the ability of the RM1221 eDNase 

enzymes to produce halos on DNA agar plates (Figure 7-4).  

It is possible that it is the lack of controlled expression of the three eDNase proteins in 

RM1221 which leads to its ability to degrade DNA and inhibit biofilm formation. To date no 

analysis of transcription levels or the growth phase(s) transcription takes place in has been 

carried out. Reverse transcriptase PCR (RT-PCR) could be used to rapidly answer these 

questions. It is also interesting to note that both C. jejuni NCTC 11168 and 81116 contain 

genes similar to cje1441, and it is possible that their effective regulation allows these two 

strains to form biofilms while RM1221 cannot.  

It is also important to note that some C. jejuni strains and their prophages are able to enter a 

'carrier life cycle state' in which the majority of a population maintains a stable prophage 

element, while a small subset of the population produce lytic phages (Siringan et al., 2014). 

C. jejuni strains R14 and R20 both contained prophage elements similar to those found in 

strain RM1221, and were both able to produce infectious Mu like phage particles (Scott et 

al., 2007). Since phage treatment has previously been reported to reduce biofilm formation 

by C. jejuni (Siringan et al., 2011) it is possible that phage particles such as these also 

contribute to the reduction of biofilms by strain RM1221, and it would be of interest for future 

investigations to consider this possibility.  

 DNase enzymes are becoming increasingly common in the treatment of some biofilm 

infections and chronic conditions such as cystic fibrosis, but DNase production is costly. 

Although this is not considered problematic within the medical industry, high production 

costs severely limit potential DNase use in the food chain. Within the food industry, the use 

of naturally produced bacterial eDNases could be a suitable alternative to DNase I use. 

Bacteria such as Aeromonas sp. produce several secreted DNase enzymes (Pemberton et 

al., 1997) and in species such as Streptococcus agalactiae, some of these eDNase proteins 

are heat stable (Derre-Bobillot et al., 2013) as was found in RM1221. Many DNase-positive 

bacteria have low complexity growth requirements and do not have the ethical or legal 

issues surrounding their growth, which may preclude or limit the use of DNase obtained from 
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animals, or recombinant products from genetically modified organisms. The cell-free extracts 

of C. jejuni RM1221 retain their DNase activity, and are able to degrade C. jejuni biofilms 

even after a ten minute heat treatment (Figure 7-29). This suggests that the eDNase 

enzymes of RM1221 are relatively heat stable and could potentially be a source of easily 

obtainable DNase proteins for use during food chain cleaning. Although their use in such 

applications requires further consideration and investigation to ensure that any supernatant 

derived products are safe for food chain use. 

In conclusion, eDNase activity inhibits biofilm formation by C. jejuni RM1221, and this 

eDNase activity can be utilised to degrade biofilms formed by other C. jejuni strains, using 

either live RM1221 cells or cell-free supernatant. Since DNase treatment has been proved to 

be so effective against both bacterial and fungal biofilms, extraction of eDNase enzymes 

from C. jejuni strains such as RM1221 could, in future, provide a cost effective alternative 

source of DNase enzymes, and assist in improving food safety by prevention of biofilm-

assisted transmission of foodborne pathogens such as C. jejuni. 
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8 General Discussion  



Helen Louise Brown                                                           General Discussion 

 

 

 

Page 219 of 294 

 

The aim of this work was to gain a better understanding of how biofilm formation might 

contribute to the survival of C. jejuni within the food chain. In order to achieve this aim, 

investigation was carried out in three complementary areas: the development of food chain 

relevant models, further investigation into the four stages of biofilm formation, and study of 

the role that eDNA may play in maintaining the structure of C. jejuni biofilms, and eDNase 

enzymes in their degradation. 

As part of this work, a novel C. jejuni biofilm staining technique was developed, allowing 

visualisation of metabolically active C. jejuni biofilms in protein and lipid rich medium (3). The 

development of this staining method allowed biofilms formed in the presence of chicken juice 

to be studied. Following this development, C. jejuni biofilm formation in the presence of 

chicken juice was studied (4). Results showed that the juice was able to condition abiotic 

surfaces such as glass and stainless steel, increasing C. jejuni attachment and subsequent 

biofilm formation. The observed increase was due to the ability of chicken juice to alter the 

physic-chemical properties of the surface. This allowed C. jejuni to form attachments to the 

surface more easily, as indicated by the increased biofilm formation of the aflagellate C. 

jejuni NCTC 11168 ΔflaAB mutant. 

Analysis of the biofilm as it matured indicated that in aerobic conditions biofilm formation is 

accelerated. Microaerobic biofilm formation could also be accelerated by the presence of 

particulates or conditioning layers on the abiotic surface. Biofilm formation also allowed C. 

jejuni cells to significantly increase the time they were metabolically active in microaerobic 

conditions, while also allowing survival for up to two weeks in temperatures below 20 °C (5). 

Finally, eDNA was isolated from both planktonic and biofilm cultures and shown to be an 

essential component of the C. jejuni ECM. The degradation of eDNA, for example by DNase 

I enzymes, was identified as a potential biofilm removal tool suitable for use in the food chain 

(6). It was also discovered that a C. jejuni strain expressing extracellular DNase proteins, C. 

jejuni RM1221, was unable to form biofilm. RM1221 cultures and cell free supernatants were 

also shown to be able to degrade C. jejuni biofilms. The production of eDNase enzymes by 

bacteria could provide a cost effective source of biofilm degrading enzymes for use within 

the food chain (7). 

Several important questions still remain unanswered with respect to C. jejuni biofilm 

formation. Firstly, although both eDNA and polysaccharide have been identified within the 

ECM of the C. jejuni biofilm, to date there has been little investigation of how the ECM is 

released into the extracellular milieu. Previous work by Svensson et al. (2014) indicated that 

eDNA release was due to cell lysis. This could be explored further by inhibiting or promoting 

cells lysis and measuring the effect this may have on biofilm formation. Cell lysis inhibition in 

S. aureus biofilms has previously been achieved by the use of polyanethole sulfonate (Mann 

et al., 2009). Polyanethole sulfonate is typically included as a medium component during 

clinical isolation of bacteria from whole blood, since it is able to inhibit complement-mediated 

bacterial killing (Palarasah et al., 2010). It is also able to inhibit the activity of bacterial 

autolysins (Wecke et al., 1986), leading to reduced cell lysis within bacterial populations. In 

addition, the C. jejuni flagella apparatus has been shown to be essential for the secretion of 

proteins such as virulence factors, and inactivation of key proteins within the apparatus lead 

to decreased secretion of Campylobacter invasion antigens (Konkel et al., 2004). If ECM 

factors are also secreted, inactivation of the flagella is also likely to impair their release, 
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although due consideration should also be given to how flagella protein manipulation may 

impact C. jejuni motility and, by extension, motility related biofilm reduction. By using 

techniques such as these, in combination with stains such as DAPI, calcofluor white and 

Congo red, it would be possible to investigate ECM release in more detail. 

It is also important to consider what factors other than aerobic stress, may contribute to 

biofilm formation. The work presented here has focused on the impact of aerobic conditions 

on biofilm formation, but many other stresses are encountered during C. jejuni transit though 

the food chain. Nutrient deficiency, osmotic stress and temperature fluctuations are all 

encountered within poultry processing plants. Although some study has previously been 

carried out on how each of these affect C. jejuni biofilm formation (Buswell et al., 1998, 

Dykes et al., 2003, Reeser et al., 2007, Tatchou-Nyamsi-Konig et al., 2008, Hanning and 

Slavik, 2009, Duffy and Dykes, 2009), there has been little investigation of how a 

combination of factors may impact on C. jejuni biofilm formation or survival within biofilms. 

High throughput testing, allowing analysis of multiple conditions, and techniques such as 

transcriptomics, metabolomics and proteomics are becoming increasingly accessible to 

researchers in the biofilm field and will be useful to better understand how the C. jejuni 

biofilm is able to respond to the food chain environment. To date only two studies into C. 

jejuni biofilms have used 'omics technologies extensively (Kalmokoff et al., 2006, 

Sampathkumar et al., 2006), and the scope of these studies did not include food chain 

relevant conditions. Several studies in other bacterial species have shown that combination 

of „omics technologies can provide useful information about the dynamics of biofilm 

populations in environmentally relevant conditions (Beale et al., 2013). Increasingly this 

technology is also being applied to multispecies biofilms, which C. jejuni is known to 

populate (Sanders et al., 2007, Zimmer et al., 2003, Balamurugan et al., 2011). 

One limitation of this study is the reliance on measurement of bacterial growth and 

concentration of cell cultures by assessment of OD600 values and MPN.  It was previously 

shown by Wright et al. (2009) that there was a poor correlation between OD600 values and 

viable cell numbers once the bacterial population had entered stationary phase. This was 

due to the high volume of cell debris and non-viable cells at later time points, which 

contribute to light scattering when measuring optical density. This effect can also be 

compounded by the alterations in cell morphology which are observed when C. jejuni cells 

encounter stress conditions (Hwang et al., 2011, Oh et al., 2015) or progress beyond log 

phase growth (Thomas et al., 1999). Throughout this study optical density measurement 

were used to both measure growth of planktonic populations and the bacterial concentration 

(to allow accurate dilution of the C. jejuni cultures before beginning static culture to allow 

biofilm formation).  Wright et al. (2009) do state that in activity growing (log phase) cultures, 

such as those used to prepare the biofilm cultures, OD600 can be used to predict the viable 

population of cultures. This was also shown in Section 3.2.5, where good correlation was 

observed between TTC conversion and OD600 value, up to a value of OD600 0.8. However 

where OD600 was used for measurement of populations in stationary and decline phases 

populations were overestimated. In order to correctly estimate viable cells in biofilms, where 

the bacterial population is not growing logarithmically, or in stationary phase populations 

total viable cell (TVC) counts should be used alongside other measures. Although 

throughout this study a method of estimating MPN was used, it should not be considered to 

be comparable to TVC counting since it had a high limit of detection and could not be used 
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to estimate populations with more than 8 log of growth. Alternative TVC calculation methods, 

such as whole plate counts or Miles-Misra, should be considered instead of the currently 

used technique, since they offer a better resolution than the currently used MPN technique.   

It would be of interest to better understand how C. jejuni is able to interact with other food 

chain relevant biofilms in mixed species populations. C jejuni is a obligate microaerophile 

(Stern and Meinersmann, 1989), but is able to transit the food chain, an environment where 

aerobic conditions predominate. Biofilms have been show to contain 'micro-environments' 

where bacterial species are able to find environmental conditions more suited to their 

metabolic needs (Hidalgo et al., 2009). Inter-species collaboration within biofilms has been 

shown to enhance the function of the bacteria within the biofilm, increasing their resistance 

to stresses such as antimicrobial treatment (Burmolle et al., 2014). Previous research has 

shown that C. jejuni surface attachment is enhanced by the presence of species such as P. 

aeruginosa (Trachoo et al., 2002) and Enterobacter sp. (Sanders et al., 2007), and C. jejuni 

survival at low temperatures is directly influenced by the other species within the biofilm 

(Hanning et al., 2008). C. jejuni survival in aerobic conditions is also enhanced by the 

presence of the protozoan Acanthamoeba castellanii. The increase in C. jejuni survival was 

attributed to the consumption of oxygen by A. catellanii, producing atmospheric conditions 

more suited to C. jejuni survival (Bui et al., 2012). These studies provide an interesting 

insight into how C. jejuni biofilm formation is affected by the presence of other bacterial 

species. Further research, particularly into how C. jejuni senses and communicates with 

other species in the biofilm, is still required though. 

How C. jejuni cells are released from the biofilm is of particular interest when considering the 

impact of biofilm formation on the transit of C. jejuni within the food chain. Passive release 

and biofilm turnover could be studied using flow cell models to simulate the shear forces 

encountered within pipes and areas of high liquid flow, such as scald tanks. Active dispersal 

will be more challenging to study and potentially require the identification of C. jejuni 

signaling systems and secretion of enzymes for ECM degradation. 

A recent review by Teh et al. (2014) hypothesized that C. jejuni was more likely to form 

simple attachments to surfaces, or integrate into pre-existing biofilms, than form de novo 

biofilms within the food chain. The work presented here demonstrates that complex, 

structured C. jejuni biofilms do form on plastic, glass and stainless steel surfaces in aerobic 

conditions. It is also shown that biofilms are more likely to form in heavily soiled areas. The 

presence of eDNA, reported to be a component of the ECM in many bacteria (Seper et al., 

2011, Allesen-Holm et al., 2006, Whitchurch et al., 2002, Gloag et al., 2013, Bockelmann et 

al., 2006, Pammi et al., 2013, Nguyen and Burrows, 2014, Hymes et al., 2013, Zhao et al., 

2013) including C. jejuni (Svensson et al., 2014), suggests that true biofilms, rather than 

non-biofilm attached populations, are being formed by C. jejuni in food chain relevant 

conditions. 

Although the results presented in this work appear to contradict the conclusions made by 

Teh et al. (2014), their conclusions should not be entirely discounted. It is well established 

that the majority of biofilms in environments, including the food chain, are comprised of 

multiple bacterial species (Jahid and Ha, 2014). These multispecies biofilms allow 

„partnerships‟ to develop between genetically diverse species of bacteria, benefiting both 

species. These interactions are termed „co-aggregation‟ (for reviews see Rickard et al. 
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(2003) and Katharios-Lanwermeyer et al. (2014)), and although initially described in oral 

biofilms they have been discovered in other biofilm communities, including those present 

within food chains and drinking water communities (Palmer et al., 2007, Vornhagen et al., 

2013, Simoes et al., 2008a, Sasahara and Zottola, 1993). C. jejuni has also been shown to 

benefit from co-aggregation, with C. jejuni showing increased biofilm formation and heat 

resistance in the presence of Enterococcus faecium biofilms (Trachoo and Brooks, 2005), 

and increased survival at 32°C in the presence of mixed species food chain biofilms 

(Hanning et al., 2008). Other foodborne pathogens, such as L. monocytogenes, also utilise 

co-aggregation as part of their food chain survival mechanisms. L. monocytogenes biofilm 

formation on stainless steel increases significantly in the presence of Pseudomonas fragi. 

This increase was attributed to the production of large volumes of ECM by P. fragi, allowing 

L. monocytogenes to attach to the ECM, rather than directly to the surface and therefore 

overcome the surfaces repellent physio-chemical properties (Sasahara and Zottola, 1993). 

It is therefore entirely possible that C. jejuni, as Teh et al. (2014) suggests, does integrate 

into existing, multi species, biofilms throughout the food chain. This is the mode of existence 

favoured by the majority of food chain related bacterial species and so it would be unwise to 

assume that C. jejuni would be any different. It is easy to assume that because C. jejuni 

typically lives in mixed species communities it is a poor biofilm former; however the results 

presented here suggest that this is not the case. Following 48 hours of incubation in aerobic 

conditions C. jejuni is able to form dense, structured biofilms which allow survival of viable C. 

jejuni for several weeks at temperatures between 5 and 42°C. These biofilms are able to 

form on stainless steel, a food chain relevant material, and are increased by the presence of 

chicken exudates, a material ubiquitous within the poultry processing plant. Viable C. jejuni 

cells are shed from these mature biofilms, while a permanent population is maintained at the 

original site, allowing continual contamination of other areas of the food chain. 

In conclusion, the results presented within this work suggest that although C. jejuni may take 

advantage of preformed biofilms in the majority of cases, it is able to establish a biofilm in 

areas without prior biofilm populations. In aerobic conditions structured, biofilms are 

identifiable within 24 hours and in areas of heavy soiling, where surfaces may be 

conditioned, this maturation may be further accelerated. Although these biofilms appear to 

have little resistance to enzymatic treatments, constant vigilance is required to ensure that 

C. jejuni biofilm populations are not able to establish themselves and contribute to 

contamination of food stuffs. 

http://europepmc.org/abstract/AGR/IND20370611/?whatizit_url_Species=http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=296&lvl=0
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10 Appendices 

 List of outcomes 10.1
Below are four tables detailing the outcomes of this PhD project: 

Peer reviewed papers 

Date Details Type 

June  

2015 

Brown H L, Reuter M, Hanman K, Betts R P, van Vliet A H M 

(2015) Campylobacter jejuni biofilms contain extracellular 

DNA and are sensitive to DNase I treatment. Frontiers in 

Microbiology. 6, article 699  

Paper 

June  

2015 

Reuter M, Periago P M, Mulholland F, Brown
 
H L, van Vliet

 
A 

H M (2015) A PAS Domain-Containing Regulator Controls 

Flagella-Flagella Interactions in Campylobacter jejuni. 

Frontiers in Microbiology. 6, article 770 

Paper 

January 

2015 

Brown H L, Reuter M, Hanman K, Betts R P, van Vliet A H M 

(2015) Prevention of biofilm formation and removal of 

existing biofilms by extracellular DNases of Campylobacter 

jejuni. PLoS One. 10(3): e0121680. 

Paper 

November 

2014 

Brown H L, Reuter M, Salt L J, Cross K L, Betts R P, van 

Vliet A H M (2014) Chicken juice enhances surface 

attachment and biofilm formation of Campylobacter jejuni. 

Applied Environmental Microbiology, 80, (22) 7053 - 7060 

Paper 

December 

2013 

Marlow V L, MacLean T, Brown H L, Kiley T B, Stanley-Wall 

N R (2013) Blast-a-biofilm: a hands on activity for school 

children and members of the public. Journal of Microbiology 

and Biology Education, 14, p252-4  

Paper 

July 2013 Brown H L, van Vliet A H M, Betts R P, Reuter M (2015) 

Tetrazolium reduction allows quantification of biofilm 

formation by Campylobacter jejuni in a food matrix model. 

Journal of Applied Microbiology, 115, (5), 1212-21 

Paper 

Table 10-1 List of PhD outcomes (peer reviewed papers) 

Technical reports 

Date Details Type 

July 2014 Brown H L, Walshaw J, Barker G C, van Vliet A H M (2014) 

Confidential literature review on the use of 'omics 

technologies in biofilm study 

Technical 

Report 

Table 10-2 List of PhD outcomes (technical reports) 

Oral presentations 
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Date Details Type 

March  

2015 

Brown H L, Reuter M, Hanman K, Betts R P, van Vliet A H M 

(2015) DNA is an essential component of the Campylobacter 

jejuni biofilm extracellular matrix. SGM Annual Conference, 

Birmingham 

Accepted oral 

Presentation 

December 

2014 

Brown H L, Reuter M, Hanman K, Betts R P, van Vliet A H M 

(2014) Prevention of biofilm formation by extracellular 

DNases of Campylobacter jejuni. Norwich Students 

Microbiology Symposium, Norwich 

Accepted oral 

Presentation 

September 

2014 

Brown H L, Reuter M, Hanman K, Betts R P, van Vliet A H M 

(2014) Prevention of biofilm formation by extracellular 

DNases of Campylobacter jejuni. CampyUK Conference, 

Liverpool 

Accepted oral 

Presentation 

September 

2014 

Brown H L, Reuter M, Betts R P, van Vliet A H M (2014) 

Surface conditioning allows efficient attachment of 

Campylobacter jejuni biofilms to abiotic surfaces. SGM 

Young Microbiologist Award Nomination, London 

Invited oral 

presentation 

March 2014 Brown H L, Reuter M, Hanman K, Betts R P, van Vliet A H M 

(2014) DNA is an essential component of the Campylobacter 

jejuni biofilm extracellular matrix. SGM Annual Conference, 

Liverpool 

Accepted oral 

Presentation 

September 

2013 

Brown H L (2013) A rough guide to outreach. SGM autumn 

conference, Brighton 

Invited oral 

Presentation 

May 2013 Brown H L, Reuter M, Betts R P, van Vliet A H M (2013) The 

role of extracellular DNA in biofilm formation by 

Campylobacter jejuni. IFR student showcase, Norwich 

Accepted oral 

Presentation 

May 2012 Brown H L (2012) Kitchen Nightmares: the dark side of 

dinner. Night at the museum event, Sainsbury Centre, 

Norwich 

Accepted oral 

Presentation 

Table 10-3 List of PhD outcomes (oral presentations) 

Poster presentations 

Date Details Type 

September 

2014 

Brown H L, Reuter M, Betts R P, van Vliet A H M (2014) 

DNA is an essential component of the Campylobacter jejuni 

biofilm extracellular matrix. CampyUK Conference, Liverpool 

Poster 

Presentation 

June 2014 Brown H L, Reuter M, Betts R P, van Vliet A H M (2014) 

DNA is an essential component of the Campylobacter jejuni 

biofilm extracellular matrix. IFR Student showcase, Norwich   

Poster 

Presentation 
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Poster presentations 

Date Details Type 

May 2014 Brown H L, Reuter M, Betts R P, van Vliet A H M (2014) 

Surface conditioning allows efficient attachment of 

Campylobacter jejuni biofilms to abiotic surfaces. Biofilm 6, 

Vienna 

Poster 

Presentation 

May 2014 Brown H L, Reuter M, Betts R P, van Vliet A H M (2014) 

DNA is an essential component of the Campylobacter jejuni 

biofilm extracellular matrix. Biofilm 6, Vienna 

Poster 

Presentation 

March 2014 Brown H L, Reuter M, Betts R P, van Vliet A H M (2014) 

Surface conditioning allows efficient attachment of 

Campylobacter jejuni biofilms to abiotic surfaces. SGM 

Annual Conference, Liverpool 

Poster 

Presentation 

September 

2013 

Brown H L, Reuter M, Betts R P, van Vliet A H M (2013) 

Chicken juice is an essential component of the 

Campylobacter jejuni extracellular matrix. CHRO, Aberdeen 

Poster 

Presentation 

September 

2013 

Brown H L, Reuter M, Betts R P, van Vliet A H M (2013) 

DNA is an essential component of the Campylobacter jejuni 

biofilm extracellular matrix. CHRO, Aberdeen 

Poster 

Presentation 

September 

2013 

Brown H L, Reuter M, Betts R P, van Vliet A H M (2013) Use 

of a tetrazolium dye for monitoring growth, viability and 

biofilm formation of Campylobacter jejuni in food matrices. 

CHRO, Aberdeen 

Poster 

Presentation 

September 

2013 

Brown H L, Reuter M, Betts R P, van Vliet A H M (2013) 

Chicken juice is an essential component of the 

Campylobacter jejuni extracellular matrix. SGM autumn 

conference, Brighton 

Poster 

Presentation 

September 

2013 

Brown H L, Reuter M, Betts R P, van Vliet A H M (2013) 

DNA is an essential component of the Campylobacter jejuni 

biofilm extracellular matrix. SGM autumn conference, 

Brighton 

Poster 

Presentation 

May 2013  Brown H L, Reuter M, Betts R P, van Vliet A H M (2013) The 

role of biofilms in persistence and transmission of 

Campylobacter jejuni in the food chain. IFR student 

showcase, Norwich 

Poster 

Presentation 

March 2013 Brown H L, Reuter M, Betts R P, van Vliet A H M (2013) 

Chicken juice contributes to increased growth and biofilm 

formation of Campylobacter jejuni. SGM Spring conference, 

Dublin 

Poster 

Presentation 
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Poster presentations 

Date Details Type 

January 

2013 

Brown H L, Reuter M, Betts R P, van Vliet A H M (2013) 

Chicken juice contributes to increased growth and biofilm 

formation of Campylobacter jejuni. CampyUK, London 

Poster 

Presentation 

September 

2012 

Brown H L, Reuter M, Betts R P, van Vliet A H M (2012) 

Biofilms assist in the survival of Campylobacter jejuni in 

food-chain relevant conditions. International Biodeterioration 

and Biodegradation Society Conference, Winchester 

Poster 

Presentation 

June 2012 Brown H L, Reuter M, Betts R P, van Vliet A H M (2012) 

Biofilms assist in the survival of Campylobacter jejuni in 

food-chain relevant conditions. IFR student showcase, 

Norwich 

Poster 

Presentation 

July 2011 Brown H L, Reuter M, Betts R P, van Vliet A H M (2011) 
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 Plasmid maps  10.2

 

Figure 10-1 Plasmid map of pCfdxA 

 

Figure 10-2 Plasmid map of pCmetK 



Helen Louise Brown                                                   Appendix 2 (plasmid maps) 

 

Page 258 of 294 

 

 

Figure 10-3 Plasmid map of pET28α 

 

Figure 10-4 Plasmid map of pNEB193 
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Figure 10-5 Plasmid map of pCASO040 

 

Figure 10-6 Plasmid map of pCporAGFP+ 
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Figure 10-7 Plasmid map of pHB001 

 

Figure 10-8 Plasmid map of pHB002 
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Figure 10-9 plasmid map of pHB003 

 

Figure 10-10 Plasmid map of pHB004 (correct orientation) 
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Figure 10-11 Plasmid map of pHB005 

 

Figure 10-12 Plasmid map of pHB006 
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Figure 10-13 Plasmid map of pHB007 

 

Figure 10-14 Plasmid map of pHB008 
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Figure 10-15 Plasmid map of pHB009 

 

Figure 10-16 Plasmid map of pHB010a 
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Figure 10-17 plasmid map of pHB010b 

 

Figure 10-18 Plasmid map of pHB012a 
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Figure 10-19 Plasmid map of pHB012  
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Figure 10-20 Enlarged 0% chicken juice image (original in Figure 4-11) 
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Figure 10-21 Enlarged 5% chicken juice image (original in Figure 4-11)  
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Figure 10-22 Enlarged 100% chicken juice image (original in Figure 4-11) 
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Figure 10-23 Enlarged microaerobic biofilm image (original in Figure 5-4a)  
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Figure 10-24 Enlarged microaerobic biofilm image (original in Figure 5-4b)  
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Figure 10-25 Enlarged microaerobic biofilm image (original in Figure 5-4c)  
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Figure 10-26 Enlarged microaerobic biofilm image (original in Figure 5-4d)  
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Figure 10-27 Enlarged microaerobic biofilm image (original in Figure 5-4e)  
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Figure 10-28 Enlarged microaerobic biofilm image (original in Figure 5-4f)  
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Figure 10-29 Enlarged microaerobic biofilm image (original in Figure 5-5a)  
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Figure 10-30 Enlarged microaerobic biofilm image (original in Figure 5-5b)  
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Figure 10-31 Enlarged microaerobic 12 hour biofilm image (original in Figure 5-9) 
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Figure 10-32 Enlarged aerobic 12 hour biofilm image (original in Figure 5-9) 
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Figure 10-33 Enlarged microaerobic 24 hour biofilm image (original in Figure 5-9) 
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Figure 10-34 Enlarged aerobic 24 hour biofilm image (original in Figure 5-9) 
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Figure 10-35 Enlarged microaerobic 48 hour biofilm image (original in Figure 5-9 and Figure 

5-12) 
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Figure 10-36 Enlarged microaerobic 48 hour biofilm image (original in Figure 5-9 and Figure 

5-12) 
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Figure 10-37 Enlarged aerobic 24 hour biofilm image in negative (original in Figure 5-11) 
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Figure 10-38 Enlarged microaerobic 72 hour biofilm image (original in Figure 5-12) 
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Figure 10-39 Enlarged aerobic 72 hour biofilm image (original in Figure 5-12) 
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Figure 10-40 Enlarged microaerobic 96 hour biofilm image (original in Figure 5-12) 



Helen Louise Brown                                                   Appendix 3 (microscopy images) 

 

Page 288 of 294 

 

 

Figure 10-41 Enlarged aerobic 96 hour biofilm image (original in Figure 5-12) 
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Figure 10-42 Enlarged image of below the air-liquid interface in a 72 hour aerobic biofilm 

(original in Figure 5-13) 
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Figure 10-43 Enlarged aerobic 48 hour biofilm of GFP expressing C. jejuni NCTC 11168 image 

(original in Figure 6-3) 
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Figure 10-44 Enlarged aerobic 48 hour biofilm of GFP expressing C. jejuni NCTC 11168. Image 

counterstained with DAPI (original in Figure 6-3) 
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Figure 10-45 Enlarged aerobic 48 hour biofilm of GFP expressing C. jejuni NCTC 11168 

counterstained with DAPI to visualise eDNA (original in Figure 6-3) 
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Figure 10-46 Enlarged image of surface attached C. jejuni RM1221 cells (Originally in Figure 

7-3) 
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Figure 10-47 Enlarged image of surface attached C. jejuni NCTC 11168 cells (Originally in 

Figure 7-3) 

 


