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Abstract

In certain parameter regimes, steady flow through flexible tubes is unstable to
self-excited oscillations. Whittaker et al. (2010, Proc. Roy. Soc. A 466) solved an
asymptotic model for the onset of self-excited oscillations in a long, thin-walled,
flexible tube clamped between two rigid tubes, with a large axial tension. This
work neglected effects such as wall inertia, axial bending, and in-plane shear
forces. Whittaker (2015, IMA J. Appl. Math.) reintroduced in-plane shearing
and found a shear-relaxation boundary layer at the tube ends.

In this thesis, wall inertia and axial bending are reintroduced into these
models. In Chapter 2, wall inertia terms are added to the governing equations
for the wall mechanics, and a new ‘tube law’ describing the wall motion is
derived. Combining this with a description of the fluid mechanics, the effect
of wall inertia on the oscillations is quantified. Wall inertia is found to be a
destabilising effect.

In Chapters 3-7, axial bending is reintroduced allowing ‘clamped” boundary
conditions to be satisfied at the tube ends. Three different regimes dependent
on the dimensionless length and wall thickness of the tube are found. Chapters
4-5 concentrate on the two regimes where the shear layer found by Whittaker
(2015) must be considered. An axial bending boundary layer that induces
higher-order corrections to the shear layer and bulk solution is found in these
regimes. In Chapters 6-7, a final regime is considered where the shear layer no
longer needs consideration, but a new model for the wall mechanics is needed.
Deriving and solving a linearised 2D model for bending a semi-infinite block
under tension, corresponding to a 2D cross-section of the tube wall, a new
transverse shear-relaxation layer is found. This boundary layer allows clamped
boundary conditions to be satisfied and induces higher-order corrections to the

bulk solution.
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Chapter 1

Introduction

1.1 Background

1.1.1 Applications

Fluid flow through elastic-walled tubes occurs in many biological systems. In
the human body, the cardiovascular, respiratory and digestive systems all use
flexible tubes to transport various fluids around the body. As such, the study
of flows in elastic tubes is important in understanding the different phenomena
that occur in these biological vessels.

In the cardiovascular system, the propagation of pulse waves in the arteries
is vital for transporting blood to organs and tissues within the body. This
is a well known and understood example, and one-dimensional models have
been formed (see McDonald, 1974; Lighthill, 1975; Pedley, 1980) which are able
to adequately explain many properties of the problem. The analysis of this
problem is helped by the fact that under normal conditions the arteries have
a positive transmural (internal minus external) pressure, which allows them
to retain a relatively stiff, inflated state. However many blood vessels, such
as the veins above the heart and outside the skull have a negative transmural
pressure, which causes the vessels to buckle and collapse non-axisymmetrically.
These vessels are much more flexible in their buckled state and small changes in
fluid pressure can cause large changes in the cross-sectional area. This leads to
strong interaction between the fluid and solid mechanics, which induces many
interesting phenomena such as flow limitation and self-excited oscillations.

The collapse of blood vessels and the subsequent effects can be used in
many situations. For example the collapse of blood vessels is believed to be

a part of auto-regulation of blood flow to many internal organs (Rodbard &
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Takacs, 1966; Rodbard, 1966). This auto-regulation is particularly significant
within vessels in subjects with long necks, such as in the giraffe jugular vein
studied by Pedley et al. (1996). Venous collapse is also used in exercise to
allow muscular compression of leg veins to pump blood against gravity to the
heart, and the external compression of veins in lower limbs is used to prevent
deep-vein thrombosis (Kamm, 1982; Olson et al., 1982). The collapse of vessels
can also have adverse consequences. For example, the dynamic flow-induced
collapse of blood vessels downstream of of atherosclerotic stenoses has been
proposed as a mechanism of plaque rupture by Binns & Ku (1989) and Ku
(1997). This plaque rupture can lead to serious effects such as heart attacks and

strokes.

A number of different kinds of flow-induced instabilities have been
observed within collapsed blood vessels. One example occurs in blood pressure
measurement, where the brachial artery is compressed by a cuff around the
upper arm. Initially, the pressure within the cuff is large enough to collapse
the brachial artery entirely, restricting the flow of blood through the artery.
The pressure in the cuff is then slowly decreased allowing pockets of blood to
pass through the collapsed segment of the artery, forcing the opposite walls
of the vessel to open and then close, and generating audible noises called
“Korotkoff sounds” (Bertram et al., 1989; Ur & Gordon, 1970). Other examples
include oscillations in the coronary blood vessels which were observed during
open-heart surgery (Tsuji ef al., 1978), and oscillations of the external jugular
vein, collapsed due to a low hydrostatic pressure, which give rise to cervical

venous hum (Danahy & Ronan, 1974).

In the respiratory system, the airways have a certain degree of flexibility
which again allows fluid-structure interaction and gives rise to yet more
phenomena. One example occurs during forced expiration. Here, contraction
of the expiratory muscles increases the pressure that drives air out of the
peripheral airways. However, if this driving pressure increases past a certain
level, the proximal airways start to collapse. The reduction of the cross-sectional
area of these airways then increases the fluid velocity, and the Bernoulli effect
reduces the internal fluid pressure leading to further airway collapse. This
results in flow limitation and ‘negative effort dependence’, where an increase
in expiratory effort beyond a particular level leads to reduction in expiratory

flow rate.

Self-excited oscillations also occur in the airways and are believed to cause
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a number of respiratory noises. It is thought that flutter instabilities are the
cause of respiratory wheezes during forced expiration (Gavriely et al., 1984,
1989), and controlled flow-induced vibrations of the vocal chords are used in
speech production and can be modelled as a collapsible tube system (Berke
et al., 1991). Additionally, bird song is generated using oscillations of a set of
membranes in the avian syrinx, and experimental and theoretical evidence has
been provided by Fee et al. (1998) pointing towards the primary mechanism of

these oscillations being a dynamic flow-structure interaction.

Snoring sounds in humans are also generated with flow induced
instabilities. Initially, the Bernoulli effect can induce collapse and closure
of the upper airway, characterized with a simple lumped-parameter model
by Gavriely & Jensen (1993). When in this collapsed state, flow-induced
instabilities of the pharyngeal wall can yield noise production. A distributed
collapsible-tube model of this process was developed by Aittokallio et al. (2001).
Along with the instabilities of the airway wall, flow-induced flutter of the soft
palate generates an independent form of noise production. This has been
modelled by Huang (1995) as a flexible cantilevered elastic plate that moves

as air flows past it.

Further examples of fluid flow through elastic-walled tubes can be found
in the digestive system. In micturition, the urethra behaves like a passive
collapsible tube and exhibits flow limitation effects (Griffiths, 1969, 1971). This
is different from the ureter and other deformable vessels in the digestive system
that transport fluids using peristalsis. A model for this process has been
developed by Carew & Pedley (1997). More examples of biological applications
can be found in the reviews by Heil & Jensen (2003) and Grotberg & Jensen
(2004).

Although many of the applications of flow through collapsible tubes are
biological, some industrial applications can also be found. One example
is the development of flexible micro-channels that can be utilized to ensure
satisfactory micro-mixing of confluent streams (Selverov & Stone, 2001; Yi et al.,
2002; Hsiung et al., 2007). More industrial applications include gas and oil
flow through steel submarine pipes and flexible tubes transporting fluids in

machinery.
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1.1.2 Experimental Studies

Experimental data of fluid flow through elastic-walled tubes is usually obtained
using a Starling Resistor (Knowlton & Starling, 1912), which is shown in Figure
1.1. This comprises an elastic tube which is clamped between two rigid tubes
and enclosed in a chamber with a fixed pressure. Fluid is driven through the
tubes, either by applying a controlled pressure difference between the ends of

the rigid tubes, or by using a volumetric pump to fix a specific flux at one end.

pext
P up 4-\_‘4—/- Py,
—» —
Elastic tube Rigid tube
Pressure chamber

Figure 1.1: The set-up of a Starling Resistor. An elastic tube is clamped between two
rigid tubes and is contained in a pressure chamber with fixed pressure pey;. Flow is
driven through the tube using a controlled pressure difference pup — pgn between the
two ends. Flow can also be driven through the tube by using a volumetric pump to
set a particular flux at either end. The pressure pext in the chamber can be modified to

control the degree of collapse of the elastic tube.

If the transmural pressure over the tube wall in the Starling
Resistor becomes sufficiently large and negative, the elastic tube buckles
non-axisymmetrically. Once the elastic tube reaches this buckled state, it
becomes highly compliant and small changes in the transmural pressure can
cause large changes in the tube shape and cross-sectional area. This leads
to phenomena such as flow limitation and self-excited oscillations, which
have been observed in many experimental studies of the Starling Resistor, for
example within the studies conducted by Conrad (1969).

The relationship between the transmural pressure and cross-sectional area,
also known as a "tube law’, has been investigated experimentally by Kececioglu
et al. (1981), and a sketch of their experimental measurement of the tube law,

along with the typical cross-sectional shapes of the tube wall may be viewed in
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Figure 1.2. From the figure, we see that at a high enough transmural pressure
the tube takes an almost circular shape, and the change in the cross-sectional
area is predominantly due to axisymmetric stretching. When the transmural
pressure is reduced to some negative value, the tube buckles into an elliptical
shape. Here, changes to the cross-sectional area are then predominantly due
to bending rather than stretching, allowing the tube to be more compliant than
in its circular state. Further reduction of the transmural pressure forces the
opposite sides of the tube wall to come into contact, first at a point, and then
along a line. In these states, the tube becomes less compliant as strong bending
forces now appear at the bulbous end of each lobe of the tube, resisting further

area reductions.

Ptm

O

>

Oo——0

Figure 1.2: A sketch of a typical experimental measurement of the tube law relating

the transmural pressure pyn to the cross-sectional area A of the tube, based on the
measurements taken by Kececioglu et al. (1981). Also shown are sketches of the typical
shapes of the cross-section as pim, varies.

Experiments by Bertram and coworkers (e.g. Bertram, 1986; Bertram et al.,
1990, 1991) have characterized the Starling Resistor system in the greatest
detail, and in particular, they have determined regions of parameter space
where the system produces spontaneous oscillations. These oscillations occur
in distinct frequency bands and are strongly dependent on the properties of
the rigid sections of the tube. Additionally, Ohba et al. (1997) developed flow

visualizations of self-excited oscillating flow through a Starling Resistor that
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show a single central jet downstream of the elastic tube, and experiments
conducted by Kounanis & Mathioulakis (1999) point towards the onset
of self-excited oscillations being associated with the symmetry of flow
downstream of the elastic tube breaking. Furthermore, in the case where
the tube is buckled into a two-lobed cross-section, flow visualizations have
been created by Bertram & Godbole (1997) displaying axially decaying twin
jets downstream of the collapsible tube with a region of reversed flow in
between. Other relevant early experimental studies can be found in the review
by Bertram (2003).

A great deal of recent experimental work has focused on the onset of
self-excited oscillations in the Starling Resistor in a specific parameter regime.
In this regime, large-amplitude, low-frequency oscillations, where the tube is
open for the majority of the period so the cross-sectional area remains near
its maximum value, are observed. These oscillations, also known as LU-type
oscillations were observed by Bertram et al. (1990) and experiments by Bertram
& Nugent (2005), Bertram & Tscherry (2006), Bertram (2008) and Truong &
Bertram (2009) have uncovered many features of these oscillations. Further
details of these experimental studies, and of others investigating the LU-type

oscillations, may be found in the review by Heil & Hazel (2011).

1.1.3 Development of a Tube Law

In order to derive models describing the wall mechanics of the elastic-walled
tube within the Starling Resistor, investigations have been carried out to
determine appropriate expressions for a tube law relating the transmural
pressure pim = Pint — Pext (Where pint, Pext represent the internal and external
pressure of the tube respectively) to the cross-sectional area A of the tube. The
simplest expressions proposed for the tube law are based on the assumption
that the cross-sectional area A at a given axial position is determined entirely
by the properties of the tube (usually taken to be axially uniform) and the
transmural pressure pyy at the same axial position. These expressions usually

have the following form
pm = P(A), (1.1)

where P is some function.

Many simple power law and polynomial models have been suggested for
P(A) based on fitting to numerical data such as that constructed by Shapiro
(1977) and Elad et al. (1987), as well as based on fitting to experimental data
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like that found by Kececioglu et al. (1981). However, these simple tube laws
that only give the transmural pressure as a function of the local area do not
take into account any axial forces arising between neighbouring cross sections
due to axial variation of the cross-sectional shape of the tube.

McClurken et al. (1981) first considered adding extra terms to the tube law
(1.1) to account for axial stretching and bending forces. They assumed that
these effects would contribute additively to P(A) so that

ptm = P(A) + Pr + P, (1.2)

where Pr, Pp represent the effects of axial stretching and bending respectively.
To determine the form of Py, McClurken ef al. modelled a cross-section of the
collapsed tube as two parallel lines joined by semi-circles at each end. In doing
so, they were then able to calculate the effect of axial tension on the straight
surfaces and this was related to an equivalent pressure change. This yielded
the relation

2
pp—_ K04 (13)
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where k is some constant, T is the axial tension, Ay is the cross-sectional area
of the tube in its undeformed state, and z is the axial coordinate. Similarly, an
expression was derived for Py that was proportional to 9*A/dz*.

Reyn (1987) later considered applying membrane theory to calculate the
effect of axial tension in inflated axisymmetric tubes. For small amplitude
deformations, the axial tension is determined to again have an additive effect
on the tube law as in (1.2), with Pr & Td?A/9z%. Reyn then assumed that this
form for Pr could still be applied to non-axisymmetrically buckled tubes.

The tube laws derived by both McClurken et al. (1981) and Reyn (1987) are
based on the tube taking idealised geometries. However, there is no guarantee
that these tube laws will hold in other regimes. More recently, Whittaker et al.
(2010d) were able to derive a tube law rationally from shell theory valid for
small-amplitude, long-wavelength deformations of a thin-walled elliptical tube.

Details of the derivation of this tube law are found later in §2.3.

1.1.4 One-Dimensional Models

Early elastic-walled-tube experiments (reviewed by Bertram, 2003) found a
vast array of different types of oscillations spanning over a large range of
frequencies. However, the mechanisms involved in developing self-excited

oscillations are still not fully understood. In order to gain a better
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understanding of these mechanisms, one-dimensional models were used in
early theoretical analyses.

These one-dimensional models use three quantities to describe the system:
the mass flux or flow rate of the fluid within the tube, the cross-sectional area
of the tube and the transmural pressure, all as functions of an axial coordinate.
Three partial differential equations are then used as governing equations for
the system. The equations themselves are derived from conservation of mass,
conservation of axial momentum and some tube law, and typically take the

following forms

dA  Jd(wA)
ot Y a4
ow ow\  9Ipm
P < TR ) = % b (1)
92A
pim = P(A) — T (1.6)

Here z is again the axial coordinate, t is time, A(z,t) is the cross-sectional
area of the tube, w(x,t) and pum(x,t) are the cross-sectionally averaged axial
velocity of the fluid and transmural pressure, p is the constant fluid density, T
is the axial tension applied to the tube wall, and P(A) is just some function. The
parameter F > 0 represents viscous dissipation, which can be either distributed
frictional losses or quasi-steady losses in a region of separated flow. If we have
distributed frictional losses, F takes the form F = F(w, A). However, Cancelli
& Pedley (1985) suggested that if we have quasi-steady losses in a region of
separated flow downstream of the collapsible tube, F should take the form
F = (x — 1)pwow/dz, where x = 1 upstream of the separation point, and
0 < x < 1 downstream of the separation point. Further terms representing
wall inertia, wall damping and bending stiffness can be added to the tube
law (1.6) and these terms can have an important effect in the stability of the
flow-structure interactions that occur.

Using equations (1.4)—(1.6), one-dimensional models have been able to
predict many of the phenomena found experimentally within the Starling
Resistor. By neglecting frictional effects in equations (1.4)—(1.6), Cancelli &
Pedley (1985) were able to predict choking, where the cross-sectional area
A — 0 1in a finite time. However, by including viscous dissipation in equation
(1.5), either through the F = (x — 1)pwodw/0z term suggested by Cancelli &
Pedley (1985) or by including a distributed frictional term as considered by

Hayashi et al. (1998), a rich variety of self-excited oscillations can be modelled.
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The inclusion of viscous dissipation effects and subsequent prediction of these
self-excited oscillations has been incorporated into many one-dimensional
models, such as the models by Cancelli & Pedley (1985), Jensen (1992),
Matsuzaki et al. (1994) and Hayashi et al. (1998). These oscillations are found
to occur in distinct frequency bands, as observed in experiments, and Jensen
(1990) found that this was because the oscillations occur as normal modes
of the system, with each having a discrete number of wavelengths along the
elastic-walled tube. Jensen (1992) also found that nonlinear mode interactions
yield complex dynamical behaviour similar to that seen experimentally.

These kinds of one-dimensional models are still widely used to model
networks of collapsible tubes (Bull et al., 2005; Fullana & Zaleski, 2009;
Venugopal et al., 2009), and are able to capture qualitative effects such as
the onset of self-excited oscillations that are observed in higher-dimensional
models, as demonstrated by Stewart et al. (2009). However, these
one-dimensional models are also prone to some disadvantages. Firstly,
although these models provide significant insights to the mechanisms occurring
within elastic-walled tubes, they fail to match quantitatively with experimental
results. Secondly, the form of the conservation of axial momentum equation
(1.5) and the tube law (1.6) are not derived rationally from higher-order
systems, and instead ad hoc closure assumptions are required to incorporate
different effects such as viscous dissipation and the form of the tube law.
Finally, this 1D framework is not guaranteed to capture all known modes of
instability within collapsible tube systems, such as Tollmien-Schlichting (TS)
waves or travelling-wave flutter (TWEF), both studied by Carpenter & Garrad
(1985, 1986).

1.1.5 Two-Dimensional Models

In the 1980s and 1990s, work focused on the development of two-dimensional
models of flow through elastic-walled tubes. Two classes of model are
generally used, with the first describing small-amplitude instabilities in
spatially uniform, unbounded elastic-walled channels. These models are based
on the Orr-Sommerfield equation, and by incorporating the effects of wall
inertia, damping, bending stiffness and tension, multiple modes of instability
are found. The three most commonly found modes are Tollmien-Schlichting
waves, travelling-wave flutter and static divergence, although other modes of

instability have also been found. For example, Davies & Carpenter (1997)
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found a strongly unstable interaction between TS and TWF modes, LaRose &
Grotberg (1997) discovered a long-wavelength instability of developing flow in
a collapsible channel, and Walsh (1995) identified a long-wave flutter mode that
occurs when there is significant coupling between transverse and longitudinal
wall strain. Additionally, another type of mode has been found that grows
using an energy transfer from the mean flow to the channel wall, developed
from Reynolds stresses within a critical layer. This group of instabilities is
reviewed in more detail by Shankar & Kumaran (1999) and Kumaran (2000,
2003).

The second class of two-dimensional model is based on the model system
constructed by Pedley (1992), which may be seen in Figure 1.3. This system
contains a two-dimensional channel, where one wall has a segment replaced
by a flexible membrane under longitudinal tension. Fluid is driven through
the channel by a fixed pressure drop between the two ends of the channel,

and the transmural pressure over the membrane determines the shape of the

membrane.
Flexible membrane
pext
pup pmt\/ Pdn
Rigid-walled Rigid-walled
section section

Figure 1.3: A sketch of the 2D channel introduced by Pedley (1992). A finite 2D
channel, with part of the upper wall replaced by a flexible membrane under tension,
has fluid driven through it from left to right using a controlled pressure difference
Pup — Pdn- The transmural pressure (internal pressure piy; minus external pressure

Pext) determines the shape of the membrane.

Much work using this model system has focused on regimes where
deflections of the flexible membrane are small compared to the channel width.
For example, by assuming the flow has a Reynolds number Re of Re > 1,
Guneratne (1999) found that when there is zero external pressure (pext = 0)
and the membrane tension T is reduced from an initially large value, a static

divergence instability gives rise to static eigenmodes. Guneratne also found
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that when pe # 0 and the tension T is lowered, the system passes through
regions of parameter space where single, multiple or no steady solutions
occur. Later on, Huang (2001) used numerical simulations of the linearized
Navier-Stokes equations to examine this system when the flexible membrane
has inertia, damping and relatively low tension, and the external pressure is
set to allow a uniform steady solution to exist. In doing so, it was seen that the
system can yield static divergence and flutter (dependent on membrane inertia)
instabilities that are affected by the upstream and downstream boundary
conditions.

Many Navier-Stokes simulations of steady laminar flows in Pedley’s 2D
channel have also been conducted (e.g. Rast, 1994; Luo & Pedley, 1995, 1996;
Shim & Kamm, 2002), and these have predicted properties such as steady
asymmetric membrane configurations, flow separation downstream of the
collapsible segment, and sometimes a long-wavelength standing wave in flow
downstream of the elastic region. Luo & Pedley (1996) demonstrated that these
steady flows can become unstable to self-excited oscillations when there is a
sufficiently high Reynolds number or a sufficiently low membrane tension.
They also found the surprising result that the dominant viscous dissipation
occurs in viscous boundary layers on the walls upstream of the flexible
membrane, as opposed to downstream of the membrane where propagating
waves known as “vorticity waves” occur. Later on, Luo & Pedley (1998) showed
that introducing wall inertia to the model destabilises a high-frequency flutter
mode, and Luo & Pedley (2000) discovered that the primary instability becomes
more stable when an upstream flux is prescribed rather than a pressure drop
across the channel. More examples and details about 2D models in both
unbounded and bounded channels may be seen in the reviews by Heil & Jensen
(2003), Grotberg & Jensen (2004) and Heil & Hazel (2011). Additionally, details
of other alternative instability mechanisms that can occur in bounded channels

may be seen in Stewart et al. (2009).

1.1.6 Three-Dimensional Models

Although there are no fully three-dimensional analytical models developed
that describe the Starling Resistor system, Heil and coworkers have been able
to use finite-element methods coupling non-linear Kirchhoff-Love shell theory
(allowing large deformations and small strains) to an internal 3D Navier-Stokes

flow to investigate this system further. By restricting attention to Stokes flows
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or lubrication theory, Heil & Pedley (1996) and Heil (1997) demonstrated how
non-axisymmetric buckling of the tube contributes to non-linear pressure-flow
relations that yield flow limitation via purely viscous mechanisms. The
Stokes-flow simulations carried out by Heil (1997) were also found to be in
excellent agreement with experimental data.

Hazel & Heil (2003) later extended these simulations to model 3D flows with
a Reynolds number of a few hundred, within non-uniformly buckled tubes.
In doing so, they simulated twin jets emerging from a 2-lobed throat, with
reversed flow in between. Further downstream, these jets were found to then
thicken and merge, and the properties exhibited by these jets were found to be
in agreement with experiments by Bertram & Godbole (1997).

The simulations discussed here all assume that the flow through the
Starling Resistor has fourfold symmetry. However, experiments by Kounanis
& Mathioulakis (1999) reveal a flow downstream of the constriction with
only twofold symmetry. It is as yet unclear whether this symmetry breaking

contributes to a further mechanism of instability in the Starling Resistor.

1.1.7 The Sloshing Mechanism

In this thesis a particular family of oscillations, generated by a simple instability
mechanism, is considered. This mechanism was first determined by Jensen
& Heil (2003) by studying the 2D system constructed by Pedley (1992), and
depicted in Figure 1.3, in a parameter regime where the tension in the wall is
large, using a combination of asymptotic analysis and numerical simulation.
Within this regime high-frequency oscillations, which are governed by a
dynamic balance between fluid inertia and large elastic restoring forces, are
formed. The oscillations of the wall periodically displace fluid from the flexible
region of the tube into the rigid regions, which results in axial sloshing flows
in the rigid parts of the tube. If the amplitude of these sloshing flows is greater
in the upstream rigid section than in the downstream rigid section, then there
will be a net influx of kinetic energy into the system. If this influx exceeds
additional losses, such as viscous dissipation (most of which is found in the
boundary layers near the tube walls) and work done by the pressure at the tube
ends, then the system can extract energy from the flow to drive any instabilities.
Jensen & Heil (2003) used asymptotic techniques to obtain predictions for the
frequency and growth rates of any arising instabilities. They also found their

predictions for the critical Reynolds number at which oscillations develop to be
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in good agreement with numerical simulations.

1.1.8 Sloshing Instability in Three-Dimensional Flow

Whittaker et al. (2010a,b) showed that the essential components of the sloshing
instability mechanism found by Jensen & Heil (2003) are still present in a
three-dimensional flow. However, for efficient extraction of energy from the
mean flow to occur, it is necessary that the tube performs oscillations about
a non-axisymmetric mean state!. This was shown by Heil & Waters (2008)
and Whittaker et al. (2010a). Hence, this instability is most likely to occur
when either a tube with an initially axisymmetric cross section has buckled
non-axisymmetrically or a tube’s undeformed cross section is not circular. This
is in agreement with experimental results showing that self-excited oscillations
most readily develop in tubes which are in a strongly buckled steady-state
configuration (Bertram, 2008).

In the first case, where an initially axisymmetric tube has buckled
non-axisymmetrically, Heil & Boyle (2010) confirmed the existence of
self-excited oscillations arising from the sloshing mechanism. This was
done by constructing numerical simulations of flows in initially axisymmetric
elastic-walled tubes, and more details of this investigation may be found in the
review by Heil & Hazel (2011).

The second case, where the tube has a non-circular undeformed cross
section, was investigated further by Whittaker et al. (2010c). Here, the fluid
behaviour in response to the wall motion (studied by Whittaker et al., 2010a)
and the wall behaviour in response to the fluid pressure (studied by Whittaker
et al., 2010d) were combined to derive a model for the 3D Starling Resistor
system. Asymptotic methods were then used to reduce the model to a single
1D ODE for the fluid pressure as a function of the axial coordinate. To
describe the wall behaviour, a ‘tube law” linking the transmural pressure with
the cross-sectional area of the tube was used. Unlike the tube laws used in
previous one-dimensional models discussed in §1.1.4, this tube law was derived
rationally from shell theory for an elliptical tube by Whittaker et al. (2010d). The
model that was formed by Whittaker et al. (2010c) is valid for long-wavelength,

IThis is because in a tube with circular cross section, the area changes induced by
small-amplitude deformations are only quadratic in the displacement amplitude. The sloshing
flows caused by the displacements are then an order of magnitude smaller, giving a much smaller

influx of kinetic energy.
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high-frequency, small-amplitude oscillations of a thin-walled, initially elliptical
elastic tube under large axial tension. The predictions made by the model for
the mode shapes, frequencies and growth rates of the oscillations, as well as the
critical Reynolds number at which oscillations arise, were found to be in good
agreement with direct numerical simulations. However, some effects such as
wall inertia, axial bending, and normal and in-plane shear forces have been
neglected to simplify the mathematics within the model.

Another drawback of the Whittaker et al. (2010c) model is the type of
boundary conditions satisfied at the ends of the elastic-walled tube in the
Starling Resistor. As the elastic-walled tube is clamped onto two rigid tubes,
canonical ‘clamped” boundary conditions, forcing the displacement and axial
gradient of the tube wall to be zero, should be applied at the tube ends.
However, in the model derived by Whittaker et al. (2010c), the axial-order
of the model is not high enough to satisfy these conditions and instead the
Dirichlet parts of the non-canonical ‘sliding” boundary conditions, which only
set the normal and azimuthal displacements to be zero at the tube ends, are
satisfied. Whittaker (2015) reintroduced in-plane shear forces to the Whittaker
et al. (2010c) model, and found a shear-relaxation boundary layer near the tube
ends. This shear layer allowed the Dirichlet parts of the ‘pinned” boundary
conditions, which fix the normal, azimuthal and axial displacements to be
zero, to be satisfied at the tube ends. However, the inclusion of these in-plane
shear forces did not raise the axial-order of the model enough for the clamped

boundary conditions to be satisfied.

1.2 Overview

In this thesis, the model by Whittaker et al. (2010c) is expanded to include the
effects of wall inertia, axial bending and normal shear forces. The impact that
these effects have on the self-excited oscillations generated by the Whittaker
et al. (2010c) model is then evaluated.

The original set-up used in the Whittaker et al. (2010c) model is depicted in
Figure 1.4. Here, we have a tube of length L, wall thickness d and circumference
2ma, with an initially elliptical cross section, comprised of an elastic-walled
tube clamped between two rigid-walled tubes. The elastic-walled tube has
incremental Young’s modulus E and Poisson’s ratio v, and is subject to an

axial tension force F. A fluid is then driven through the tube using a volume
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flux condition at the downstream end, and the elastic-walled tube is susceptible
to deformations from forces arising from the transmural pressure. Whittaker
et al. (2010c) combined separate models for the tube wall and the fluid flow
to form a one-dimensional ODE governing the oscillatory components of
the cross-sectional area variation, transmural pressure, and axial velocity of
the fluid. These oscillatory components are all written as functions of axial
position. The frequency of the oscillations appears as an eigenvalue within the
model, and countably many oscillatory modes, each with their own distinct
eigenfrequency, are found to exist. The growth rates and stability criteria of
these oscillations are found by considering the energy balance of the system. In
the Whittaker et al. (2010c) model, the parameters are set so that the tube is long
and thin walled, the applied axial tension force is large, the fluid has a similar
density to the tube wall, and the mean fluid flow has a high Reynolds number
whilst still being laminar. The resulting deformations are then considered to be
small in amplitude. This parameter regime can be applied to blood vessels in
the cardiovascular system with a large and negative transmural pressure, such

as the veins above the heart and outside the skull.

Figure 1.4: The set-up of the tube in the Whittaker ef al. (2010c) model. This tube is
comprised of an initially elliptical elastic-walled tube clamped between two rigid tubes,
and fluid flows from left to right, due to a volume flux condition at the downstream

end.

In Chapter 2, wall inertia is added to the model by Whittaker et al. (2010c).
This is done by reintroducing the wall inertia terms (neglected in the Whittaker
et al. (2010c) model) to the force-balance equations governing the mechanics of
the tube wall. Using the force-balance equations, a new ‘tube law’ (similar to
the tube law derived by Whittaker et al. (2010d)) which relates the transmural
pressure to the cross-sectional area of the tube is derived. Combining this
with the fluid mechanics of the problem, a combined system for the interaction

between the tube wall and the fluid is constructed. Solving this system,
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countably many oscillatory modes for the instabilities are found and their
frequencies are determined. The stability criterion and growth rates of the
modes of the oscillations are also determined and it is found that the inclusion
of wall inertia destabilises the system. Finally, asymptotic approximations
describing the properties of the oscillations are derived in the case of large

wall inertia.

In Chapters 3-7, we expand the Whittaker et al. (2010c) model to include the
effects of axial bending. Initially, the model derived by Whittaker et al. (2010c)
is unable to satisfy the canonical ‘clamped’ boundary conditions which should
be set at the ends of the elastic-walled tube. It is found that terms representing
axial bending are needed within the model in order for the clamped boundary
conditions to be satisfied. These terms are only significant at leading order near
the elastic-walled tube ends and as such, a boundary layer where axial bending

effects are significant is introduced.

In Chapter 3, an estimate for the width of this axial-bending boundary layer
is derived using a toy model. Using this estimate, the problem is found to split
into multiple cases dependent on the relative sizes of the estimate, the tube
wall thickness and the shear-relaxation boundary layers studied by Whittaker
(2015). The first case occurs when the estimate of the bending boundary-layer
width is larger than the tube wall thickness. In this scenario, it is found that
the shear-relaxation boundary layer (which is split into an inner and outer
layer) derived by Whittaker (2015) has a significant effect on the solution of
the model and must be considered. This case then splits into two regimes:
regime I,, where the bending layer is estimated to be smaller than both the
inner and outer shear-relaxation layers, and regime I;,, where the bending layer
is expected to be larger than the inner shear layer, but still smaller than the
outer shear layer. The final case, regime II, occurs when the estimate of the
bending boundary-layer width is smaller than the tube wall thickness. In this
regime, the shear-relaxation boundary layer no longer has a significant effect
on the solution of the model and does not need to be considered. However, a

different model is needed to describe the mechanics of the tube wall.

Chapter 4 concentrates on the first case, regime I,. Here the shear-relaxation
layer modelled by Whittaker (2015) must be considered, and in this regime it is
predicted by the toy model in Chapter 3 that the bending-layer width is larger
than the tube wall thickness but smaller than both the shear layers modelled by
Whittaker (2015). In this scenario, Kirchhoff-Love shell theory which is used to
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model the wall mechanics in the bulk of the tube in Chapter 2 can also be used
to model the wall mechanics here. It is also expected that the bending layer
is situated at the ends of the elastic-walled tube and matches onto modified
inner and outer shear-relaxation layers, which in turn match onto the bulk
layer. Solving the governing system within this bending layer, the bending-layer
width is found to be in agreement with the prediction from the toy model in
Chapter 3, and the leading-order deformations and area variation within the
bending layer are calculated. The corresponding corrections to the inner shear
layer are then calculated and the maximum order at which corrections apply to

outer shear layer and bulk layer are also evaluated.

In Chapter 5, regime I}, is considered. As in regime I,, the shear-relaxation
layer studied by Whittaker (2015) must be considered. The toy model in
Chapter 3 predicts in this case that the width of the bending layer is larger
than both the tube wall thickness and the inner shear layer, but smaller than
the outer shear layer. In this case, Kirchhoff-Love shell theory can once again
be used to model the wall mechanics. It is also found that the inner shear
layer is no longer needed in this scenario as its effects are incorporated into
the bending layer. As such, the bending layer is found to again be situated at
the ends of the elastic-walled tube. This bending layer then matches onto a
modified outer shear layer, which in turn matches onto the bulk layer. When
the model considered here is written in terms of the deformations of the tube
wall, a leading-order degeneracy is found. To solve this problem, the model
is instead written and solved in terms of the in-plane stresses of the tube wall,
up to second order. In solving this model, the bending layer is found to have a
different width to that predicted by the toy model in Chapter 3. This is because
azimuthal stretching mechanisms which cannot be captured by the toy model
contribute at leading order in this regime. However, the width of the bending
layer is still found to be in between the sizes of the inner and outer shear layers.
Using the expressions for the stresses, the deformations in the bending layer
are calculated up to first order and the area change within the bending layer
is numerically determined. The corrections to the outer shear layer are then
calculated, and the maximum order at which corrections apply to the bulk

layer is evaluated.

Chapter 6 considers the final case, regime II. Here, the shear-relaxation layer
studied by Whittaker (2015) no longer has a significant effect on the bulk layer

and does not need to be considered. The toy model in Chapter 3 predicts in
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this regime that the bending layer will be smaller than the tube wall thickness,
and thus Kirchhoff-Love shell theory can no longer be used to model the
bending layer. Instead, as azimuthal variation is expected to be slow on the
predicted scale of the bending layer, a linearised two-dimensional model of
bending a semi-infinite block under tension is considered. This semi-infinite
block corresponds to a two-dimensional cross-section of the tube wall in the
normal and axial directions. This model is then solved numerically, and
analytical techniques are also applied to determine asymptotic approximations
of the boundary-layer width, and far-field approximations of the normal and
axial deformations up to the amplitude of the deformations. It is found in
the case corresponding to regimes I, and I, that the boundary-layer width
derived from this model agrees with the estimate provided by the toy model
in Chapter 3. However, in the case corresponding to regime II, a boundary
layer with a much larger width than predicted is found. This boundary layer,
which is found to have a width larger than the block thickness, is determined
to be a new transverse shear-relaxation boundary layer. It is noted that this
shear layer is different from the shear layer studied by Whittaker (2015), which
arises from shear in the azimuthal direction. This 2D model is then used to
model a transverse shear layer at the ends of the elastic-walled tube, and the
corrections to the boundary conditions in the bulk layer due to this shear layer
are calculated.

In Chapter 7, the 2D model for bending a semi-infinite block under tension,
derived in Chapter 6, is considered further. Since the boundary layer found
in Chapter 6 for regime II has a width larger than the block thickness, it is
possible that Kirchhoff-Love shell theory (or another approximation applying
the property that the wall thickness is the smallest geometric parameter) could
be used to derive a one-dimensional model for the problem. Three different 1D
models are derived and evaluated in this chapter, and through this analysis,
more information about the wall mechanics within the new boundary layer is
determined. It is found that only one of these models can accurately capture
the behaviour of the deformations in the far-field, but even this model cannot
accurately capture the deformations near the clamped end of the block. We
find that this is due to a two-dimensional effect which is not incorporated into
the 1D models.

Finally, in Chapter 8 some concluding remarks and recommendations for

further work to be carried out on the models derived here are provided.



Chapter 2

The Effect of Wall Inertia on the
Instability of Flow Through an
Elastic-Walled Tube

2.1 Introduction

In this chapter, we will expand the model derived by Whittaker et al. (2010c)
to include the effects of wall inertia on the self-excited oscillations generated
within an elastic-walled tube with initially elliptical cross section. A description
of the mathematical set-up used by Whittaker et al. (2010c) is provided in §2.2.
In §2.3, we extend the work done by Whittaker et al. (2010d) to generate a
tube law which takes into account inertia of the tube wall and relates the
cross-sectional area of the tube to the transmural pressure. This tube law will
be acquired from shell theory for an elliptical tube. We will then combine this
tube law with the fluid mechanics investigated by Whittaker et al. (2010a,b) (and
provided in §2.4) to create the leading-order governing ODE’s for the system
in §2.5.

Once the governing ODE'’s are derived, we then solve them for both the
frequency of the oscillations and the oscillatory pressure field in §2.6. Using the
solutions for the frequencies of the oscillations and the oscillatory pressure, we
then calculate the corresponding axial velocity of the fluid and cross-sectional
area of the tube. Once this has been accomplished, we quantify the effect wall
inertia has on the frequency and mode shapes of the oscillations.

In §2.7, we investigate the time-averaged energy budget of the system and

use this to determine expressions for the growth rates of the oscillations, as

19
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well as expressions for the critical Reynolds numbers needed for each mode
to become unstable. Using these expressions, we will evaluate the effect of
wall inertia on the stability and growth rate of each mode and determine
which mode is the most unstable and has the highest growth rate for a given
wall inertia value. Finally in §2.8, we will investigate the case when we have
large wall inertia and calculate asymptotic solutions for the frequency of the
oscillations, the oscillatory pressure and the critical Reynolds number and

growth rate of the oscillations.

2.2 Mathematical Set-up

221 Problem Description

We adopt the same set-up as Whittaker ef al. (2010c) and depicted in Figure
2.1. A tube of length L and circumference 27ra with an initially elliptical axial
cross-section is considered. The tube is set so that the tube axis is aligned with
the z*-axis and the ellipticity of the tube is set by a parameter ¢y. Using this
parameter, the major and minor radii are given by ac cosh(cp) and acsinh(op),
where we have h(o0)
rtsech (o
c= m @.1)

and the complete elliptic integral of the second kind E(¢) is defined as

E(¢) = /0 (1= ¢2sin? 9)}do. (2.2)

The constant ¢ has been chosen to force the circumference to be 27ra. Using the
values of the major and minor radii, the cross-sectional area in the undeformed
state is calculated to be

, 7 tanh(0p)
4[E(sech(0p))]?

A} = ma*c? cosh(oy) sinh(0p) = a (2.3)

The tube is split into three regions: two rigid sections occupying 0 < z*/L <
z1 and zp < z*/L < 1, and an elastic-walled section within z1 < z*/L < z
which is clamped onto the rigid tubes at z* = z;L,z;L. The elastic-walled
region is susceptible to deformations from forces arising from the transmural
(internal minus external) pressure. It is assumed that the elastic wall behaves
linearly elastically over the range of deformations we consider here, and has

thickness d, mass per unit area m, Poisson’s ratio v and incremental Young’s
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[ w*dA* = Azu

Figure 2.1: The set-up used by Whittaker et al. (2010c). An initially elliptical
elastic-walled tube is clamped between two rigid tubes, and fluid flows from left to

right, due to a volume flux condition at the downstream end.

modulus E. Using these parameters, we define the extensional stiffness D and

the bending stiffness K of the tube wall as

Ed K— Ed®
1—v?’ C12(1 —v2)

(2.4)

An axial tension force F is applied at the ends of the elastic-walled tube, giving
rise to a uniform axial pre-stress of F/(27ad) in the undeformed configuration.

Within the tube, a fluid with density p and viscosity y is driven through the
tube using a steady axial volume flux with size AjlU/ at the downstream end
z* = L. The pressure is also fixed to be p* = py, at the upstream end z* = 0.
By prescribing the flow rate at the downstream end, we ensure that no kinetic
energy is lost there, which in turn, along with the fixed upstream pressure,
ensures that the instability mechanism is at its most potent. Outside the tube,
there is a constant external pressure pZ,;, which acts on the tube.

As in the Whittaker et al. (2010c) model, we will consider oscillations of the
fluid and tube wall with typical timescale T and amplitude b(t*) < a, where t*
is dimensional time. The key variables we will use to describe the system are
the fluid pressure p*, the axial velocity of the fluid w* and the cross-sectional
area A* of the tube. In the parameter regime we shall be considering, it is found
that the transverse velocity components do not appear at leading order.

By assuming that oscillations involve a balance between forces from the
azimuthal bending of the tube wall and axial fluid inertia, we can estimate a
timescale T by equating the inertial pressure scale pL2b/ (aT?) associated with
oscillations of the fluid with the pressure scale Kb/a* associated with azimuthal

bending. Doing so, we find

B pa3L2 %
T= (K> . (2.5)
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2.2.2 Dimensionless Groups and Parameter Regime

We now describe the dimensionless groups involved in this problem. We first

have the three geometric ratios

ol
a

% and  A(t") = , (2.6)
which correspond to the wall thickness, tube length and oscillation amplitude
respectively. We also have two groups related to the fluid mechanics. Here,

these are represented as the Womersley number a and the Strouhal number St,
defined by

M=

2 l
2_pe? _ (K _a _(_K Y
T (aezpﬂ) nd ST <pa3€2U2> ' 27

The Womersley number represents the relative importance of unsteady inertia
to viscous effects and the Strouhal number represents the relative importance
of unsteady to convective inertia. Using these, we can define the Reynolds
number Re as
Re = pUa _ “—2. (2.8)
U St
The final groups we define that are related to the tube wall are the

dimensionless axial force F and the dimensionless mass M defined by

4

I:#Eﬁ, M:%zﬂ. 2.9)

The dimensionless axial force F is the ratio of the restoring forces Fb/2rmaL?
from tension effects to the restoring forces Kb/ a* from azimuthal bending. The
dimensionless mass M is the ratio of wall inertia mb/T? forces to the azimuthal
bending Kb/a* forces or equivalently the forces paf? /T? due to the fluid inertia.
Here, we will consider a parameter regime where the tube wall is thin,
under a large axial tension and generates small-amplitude, high-frequency,

long-wavelength oscillations, so we have

A <1, a>1, (St>1, €31, 6<1, and F=0(1). (2.10)

2.2.3 Non-dimensionalization

We now non-dimensionalize the variables involved, starting by scaling

dimensional time t* with t* = Tt The transverse lengths are
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non-dimensionalized using the typical radial scale 4, and the axial length and

the cross-sectional area are non-dimensionalized as follows
¥ =1z, A}=d*Ay, A" =dA. (2.11)

It is assumed that the area A(z,t) varies harmonically in time with
dimensionless frequency w and amplitude A(t). The pressure drop in the fluid
and non-zero external pressure mean that the transmural pressure has a steady,
axially varying component which deforms the tube wall slightly. Oscillations
then occur about this deformed steady configuration. Hence, we can write

Az, t) = A+ @A(z) + A(t)Re(A(z)eh) + ..., (2.12)

where Aj is the cross-sectional area in the undeformed state, A(z) is the change
in area due to the steady component of the transmural pressure and A(z) is
the (potentially complex) axial mode shape of the change in area due to the
oscillations of the wall. The scaling for the steady area variation is chosen so
that the ratio Aa?(St between the steady and oscillatory area variations matches
with the ratio between the steady and oscillatory components of the pressure
found later in (2.13).

We decompose the pressure and axial velocity of the fluid into steady and

oscillatory components and non-dimensionalize as

. . LU _ L%b 5 iw
Pt — Pio = Vaz p+ %Re(p(z)e Nt (2.13)
w* = U + % Re(@(z)e™") +.... (2.14)

As in the expression (2.12) for the dimensionless area, overbars denote steady
components whereas tildes denote the complex axial mode shapes of the
oscillatory components. The pressure has been non-dimensionalized using
the viscous scale uLU /a? for the steady component and the inertial scale
pL?b/aT? = AK/a® for the oscillatory component. The velocity has been
non-dimensionalized using scales for the mean flow and wall motion. The
oscillatory components have the same frequencies as the wall motion and
as discussed in §2.4, the large aspect ratio of the system results in the
leading-order oscillatory pressure j and leading-order oscillatory axial velocity
W being uniform in the cross-section of the tube.

The steady external pressure is non-dimensionalized as

x " LU _
Pext = Pup = ‘u?pexb (2.15)
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Using this and the expression (2.13) for the fluid pressure p* — p,, we may

define the dimensional transmural pressure py,, as
Pim =P — Pext = (P" — Pap) — (Pext — Pap)

Lzb ~ iw
(P — Pext) + ZTz Re(p(z)e™") +.... (2.16)

The transmural pressure is then non-dimensionalized as

. AK
Ptm = 3 Ptm- (2.17)
Applying this to the expression (2.16) for pj;,,, we find the non-dimensional

transmural pressure py, is given by

1

e & = iwt
Pm = AocZESt(p Pext) + Re(f(z)e") + ... (2.18)

Finally, energy and energy fluxes are non-dimensionalized using
oU*a*L and oU3ad. (2.19)

These are based on the kinetic energy and kinetic energy fluxes in the steady

flow.

2.3 A Tube Law to Model the Wall Mechanics

We now proceed to derive a tube law relating the transmural pressure with the
cross-sectional area of the tube by following the procedure used by Whittaker
et al. (2010d). The main difference is that terms which relate to wall inertia are

also included in the derivation of the tube law.

2.3.1 Lagrangian Surface Coordinates, Deformation Notation and

Tensor Notation

We first introduce a new coordinate system that takes into account the
deformations arising in the tube wall. We parameterize the midplane of
the tube wall with dimensional Lagrangian coordinates (x!,x2), which are
measures of arc length in the azimuthal and axial directions respectively, in

the undeformed state!. We also introduce two dimensionless Lagrangian

INote that the superscripts denote coordinate directions and are not to be mistaken for

powers.
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surface coordinates, T € [0,27r) and z € [0,1]. These are related to (x!,x?)
by dx! = ah(t)dt and dx? = aldz, where

1
2

N—

1 1
h(t) = c(sinhz(ao) + sin? T)2 =c¢ (2 cosh 20y — 5 cos 2T>

We now introduce the dimensionless functions ¢(7,z,t) and #(7,z,t) to
represent the normal and tangential displacements of the wall, as well as the
dimensionless functions (,(z,t) and {(7,z,t) to represent the components of
the axial displacements due to an overall shift in the axial direction and a
deformation about this shift. Using these functions along with our coordinate
system, we can define the position of the wall midplane r in the deformed state

as follows,

h @z Oatn(n,2 08 + Alar (;g(r, 2, t)+52§’a(z,t)> 2.

(2.20)

Here, rp is the initial position of the surface element and the vectors A,

r=r1(7,2)+

t and Z are unit vectors in the normal, azimuthal and axial directions of
the undeformed tube, respectively. The components ¢, 1, ¢ and {, of the

deformation r are depicted in Figure 2.2.

Figure 2.2: The set-up of the undeformed, elliptical, elastic-walled tube, similar to that
used by Whittaker et al. (2010d). The midplane of the tube wall is parameterized by
the dimensionless coordinates (7,z), and the displacements of the wall are described

by the components &, 17, { + 62027, of the deformation r, given by (2.20).

With the definition of r, we can define the basis vectors in the deformed

state to be
or

~ oxe’

where the indices span over (1,2). We also define the unit normal to the tube

a, (2.21)

wall at each point to be

a3 = &, (2.22)
\al X az‘
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as well as the metric tensor

Ayg = Ay - ag, (2.23)
and the curvature tensor
da,
baﬁ — a3 ‘ w (224:)

2.3.2 Kirchhoff-Love Shell Equations and Constitutive Laws

The Kirchhoff-Love shell equations in covariant differential form (Fliigge, 1972;
Sendergaard, 2007) are now used as a starting point for the derivation of our

tube law. These are

N*Fbyg + VaQ* + 2 = mi®, (2.25)
VeNP* — b2Q7 + f* = mi", (2.26)
VeMP* — Q* + g% = if*™™. (2.27)

In these equations, N*, M*} and Q* represent in-plane stress, the in-plane
bending moment and the normal shear stress respectively, f* are tangential
body forces, f° is a normal body force, g* are body moments and V, is a
two-dimensional covariant derivative in the direction a,. We also have r* as the
component of r in the a, direction. Finally, ** denotes the angular acceleration
about an axis passing through the tube wall in the a, direction, and i is the
moment of inertia about the same axis. The angles 0** of rotation that the
tube wall takes about axes passing through the material in the a, direction are
depicted in Figure 2.3. Equations (2.25) and (2.26) represent equilibrium of
forces in the a3 and a, directions respectively, while equation (2.27) represents

the equilibrium of moments about the two axes in the plane of the tube wall.

The moment of inertia i for an element of the tube wall is that of a rod of
length d and mass m orientated to be normal to the shell surface. Hence, we

have

N S

i= Emd . (2.28)
We now use (2.27) to eliminate Q* from (2.25) and (2.26). Substituting in the
components of r* and assuming that any external forces come only from the

transmural pressure p;,,, so f* = ¢* = 0 and f3 = pj.,, we obtain the following
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Depiction of *! Depiction of §*2

Cross section of tube wall Cross section of tube wall
in normal and axial directions in normal and azimuthal directions
Initial position Position of tube wall Midplane of tube wall
_____ of tube wall after rotation T T after rotation

Figure 2.3: A depiction of the angles 8** of rotation that the tube wall takes about axes

passing through the material in the a, direction.

equations

VaVpMYP 4 N, %vamdzé*“

2
pin — = (A(?D ¢ 0, @29)

1 " m (A(t)a d*y
1 1 1 2 [

1 ..
2 2 2 2 fy*
VNP2 — bV MPY + b md?f

mA(t)al (1d%C  ,d%Z,
S (R

7 ap >+...:0. (2.31)

It is noted that we will also have terms dependent on A and A. However these
are assumed to be negligible due to the amplitude of the oscillations changing
on a longer time scale than the oscillations themselves.

We now introduce the in-plane strain and bending strain tensors which

characterize the deformation of the wall material

1 . - -
Yup = 5(Aup = Bap),  Kap = —bup + Bap + 237ep, (2.32)

where overbars denote the values of the quantities in the undeformed state.

Using linear constitutive laws (Fliigge, 1972, section 9.4), we can relate N ap



28 Chapter 2. Effect of Wall Inertia on Flow Through an Elastic-Walled Tube

and M*P to Yap and K,p by

N = 63602 4 D[(1— v}y + vyla?]
K {‘1;”) 2aPbT 1 aPTRT 4 g8BET _ ) (a¥0aPT 4 g7 aP)]

_H/[azxﬁb'yé + a’ﬁb“ﬁ _ a"‘ﬁa'ﬂsbm }KA(SI (233)
M = K[~ (1= v) (7" = b}9"F) —v(0"F — bya"P)7]

1
—1—5(1 —v) (k% + kP*) + va*Fi}), (2.34)

where 5]1: is the Kronecker delta. Equations (2.33) and (2.34) are found by
substituting the plane stress form of Hooke’s law into the definitions of N*f

and M*F, rewriting in terms of 1y, and x,p and neglecting higher-order 6 terms.

2.3.3 Scaling and Non-Dimensionalization

Our next step is to non-dimensionalize (2.29), (2.30) and (2.31) which will
allow us to determine which terms appear at leading order in the governing
equations. We proceed to use the scalings and non-dimensionalizations found
by Whittaker et al. (2010d) to simplify our equations.

First, we recall the scalings (2.9), (2.17) for the axial force F, mass per unit
area m and transmural pressure py;,,. Next, we scale the curvature tensor both

in the deformed and undeformed states. In the undeformed state, we scale as

Elelgm 0], (2.35)
al 0 o0

due to the only curvature in the undeformed state being the azimuthal
curvature, which has size O(1/4). Using this, we scale the curvature tensor

in the deformed state as

B o5, A1) | B(t,z) O™
A —ba+ah<T) oy 1% | (2.36)

Now, we scale the in-plane and bending strains starting with v,s, which

may be written as

Yap = B(t) (2:37)

O(6%,072) L(s(z) + O(82,£72))
ls(z) +0(%072) L& +o29e ... |
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where s(z) is the leading-order component of the shear strain which is

independent of 7. We scale x, as follows

AN | —iB+0(8% 672 JO(1)

Dtﬁ - 1 1 32 .
a 70(1) —Prse

(2.38)

The axial bending term found in xp; is found to be too small to contribute at
leading order on the axial scale considered here and will be neglected. However
we later reintroduce this axial bending term in Chapters 3-7 by considering
smaller axial scales where the bending term becomes significant at leading
order.

The in-plane stress N*/ is scaled as

Neb_ K00 A(H)K ~N(r,z) ESEZ) o | (239)
az | 0 (2F a> | 08(z2)+... E(1,2)
where
- a’D 12911 1 9¢ d¢,
N(T,Z) - A(t)K(’)/ll + V')/ZZ) = A(t)52 + 12v (526282 + dZ ) (24:0)
is the dimensionless hoop stress,
~ a’D - ) 1 o¢ dg,
X(t,z) = W(’Yzz +vy11) =vN+12(1 —v?) <52£28z + dz) (2.41)
is the dimensionless axial stress and
~ a’D 12(1 —v)s(z)
5(z) = AT = 5772 (2.42)

is the leading-order dimensionless shear stress. We also scale the bending

moment M*P as

ADK | 1B+0(82,072) O™

af
M a oy o)

(2.43)
We now evaluate the covariant derivatives that arise in (2.29), (2.30) and
(2.31). At leading order, these are

19 o 19 S

We must also evaluate one of the higher-order terms in the derivative of N*/
due to the large factor multiplying F in the definition (2.39) of N*f. The full

expression for the derivative of N*F is

ON®F
VaN* = S 4 TN+ THNY, (2.45)
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where the Christoffel symbol is given by Fﬁv = a*Pa, - a,,. As each component

of Fﬁv is O(A) at most, we only need to consider the terms involving N?2, which
is the only component of N*# that is non-O(A). Hence the relevant Christoffel
symbols are I'};, I'}, and T3,. Whittaker et al. (2010d) calculated these to be

1 9y, A(t) [62 0N 192 ,d%,

1 _ - e = N — - 2

217 40 9z + al |12 oz 02 972 +9 dz2 toe (246)
A(t) 02

b= Mg})lazz (2.47)
At (120 ,d%.

2 2

FZZ_ae<gzaZZ+‘5 ) e (2.48)

Finally, the angles 0** of rotation that the tube wall takes about axes passing

through the tube wall in the a, directions are scaled as

A
¥*1 _ =2
o -

o', 02 = A6 (2.49)
where the angles 6% are O(1). These scalings are determined by taking the

ratio of the size of the normal deformations to the length scales in the axial and

azimuthal directions.

2.3.4 Leading-Order Force-Balance Equations

Substituting the scalings (2.9), (2.17), (2.35)<(2.49) into the force-balance
equations (2.29)-(2.31), and retaining only leading-order terms in A, § and ¢~},

we find the following

LN a8 oy
h ot dz = h 072

-
éaaz <1/N+12(1—1/2)< ! a§+d§a>)+ﬂ(saN

+
Bo (p\ M.
E* <> + 717 =0, (2.51)

0229z ' dz

1 a2€ 251261 1 .. 25\
pos el vme(peret) =0 e

FF2—v) (

We note that the angular inertia terms have now vanished. This is because

during the scaling these terms have become O(6?).
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2.3.5 Curvature and Shear Components in terms of the Deformations,

and the Relationships Between the Deformations

Now, B, B and S are evaluated in terms of the dimensionless deformation
functions ¢, 17, { and {,. Whittaker et al. (2010d) found the relations to be

B _c2 sinh(209) . 2 9 872
203 p= c2sinh(209) 0T oz ) T
. 121-v)d /1 g

Whittaker ef al. (2010d) also found the following to hold at leading order

2
¢sinh(20p) + th —7sin(2t) =0, (2.54)

3 hd

Equation (2.54) is known as the inextensibility condition and can be used to
eliminate ¢ from our equations in favour of 77. We can also use (2.55) to rewrite

¢ in terms of 7.

2.3.6 Reducing the Governing Equations to a Single Equation for 7

The governing equations (2.50)—(2.52) are now reduced to a single equation to
be solved for 7. Eliminating the hoop stress N between (2.50) and (2.51) and

substituting in the expressions (2.53) gives

L(B) = pumCy h+h§227€<ﬂ>+f[<c +Crgs >32z§+822]

-M Kc + c,ﬂ) é+ ;7] (2.56)

where we have introduced the linear operators £ and R defined by

) =2 (L 2 (2.57)

p) = c2sinh 20y \ 973 292 " lgr T 0 B '
12(1—v) 1 27

R(y) = (5262 )2n /0 7 dt, (2.58)
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as well as the coefficients

3sin(27)
Ly =— 2.59
2 cosh(20y) — cos(271)’ 259)

~ (2cos?(27) + 8 cosh(20p) cos(27) — 9 — cosh?(20p))
Li=- (cosh(20p) — cos(271))? , (260)

_ 3sin(27)(cosh?(209) — 5 + 4 cosh(20p) cos(27))
Lo= (cosh(20p) — cos(27))3 ’ 261)

~ 3sin(271)
Cr = sinh(20p)’ (262)
~ 2sin(271)
Cn = sinh(20p)’ (263)
cosh(20p) — cos(27)
) = 2.64
Cn sinh(2079) 264)

We now use (2.54) and (2.53b) to eliminate ¢ and B from (2.56). Doing so,

we obtain

2 2
LK) ~ s R(1) = F s T01) + MI () = pen(5 0. (269)

Here we have introduced two more linear operators K and 7, which are given

-2 0 0?
Kin) = 2 sinh(20p) 9T <1 + arz) T (2.66)
T() = — (cosh(20p) — cos(27))? @ 3(cosh(20p) — cos(27)) sin(27) Iy
”= sinh?(209) o2 sinh?(20p) aT
. 12 .2 _ _ 2
+Zsmh (20p) + 3sin ('ZT)2 (cosh(20p) — cos(27)) . (2.67)
sinh”(20p)

It is noted that (2.65) is an equation to be solved for 5, forced by pim. By
examining (2.65), it is seen that the right-hand side is odd and 7r-periodic in 7.
Hence, the form of the operators on the left-hand side of (2.65) implies that 7
is also odd and m-periodic in 7. Using this property, we have that R (1) = 0.

2.3.7 Applying a Fourier Expansion of #

As the solution of (2.65) is symmetric, we find it convenient to express 77 as a
Fourier series. As 77 is odd in T, we only keep the sine terms. Hence, our series
is

n= i en(z,t) sin(2nT), (2.68)

n=1
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where e, (z, t) are the Fourier coefficients of 7. Substituting the expansion (2.68)

into (2.65), we obtain

) (=) 2
L(K(17)) = pm(z,t)Cph + F Zl Crm(T)e) (z,t) — M Zl CTm(T);zem(z,t),

(2.69)

where / is the differential with respect to z and Cry,(7) is defined by

Crm(T) = {sin(ZmT) {3 sin? 2T + 2 sinh? 20y

sinh? 209
+(4m* — 1)(cosh 20y — cos 27)?]

—6m(cosh 209 — cos 2T) cos(2mT) sin 2T}.

2.3.8 Decomposition of 7

As the first term on the right-hand side of (2.69) represents forcing of azimuthal
bending due to the transmural pressure, whereas the second and third terms
represent axial tension and wall inertia effects, 77 is now decomposed into parts
to better represent these different effects. We define two functions %) (1) and
n,g) (7) that satisfy

LEH™)) = Coh,
LK) = Cru.
Doing this, we can substitute £(/C(7"))) and £(IC(17,(,1T))) into equation (2.69).

As L and K are linear and the solution for 7 is unique (shown by Whittaker
et al., 2010d), we obtain the following equation for #

00 00 aZ
1(7,2) = pun(z, () + F X (Den(z ) = M X’ (7) gem(z, 1)
m= m=
(2.70)
We now define Fourier series for 7() and 17,(,1T) as
7P (1) = ) EP) sin(2nt),

3
I
—_

ED sin(2n7),

T3
=
I
e

3
Il
—

where E,(IP) and E,(nj;l) are the Fourier coefficients of 17(P ) and n,(nT) respectively.

Substituting these into equation (2.70) and equating coefficients, we get the

following set of equations for e,(z, t) in terms of E,(lp) and E,(,Z;l)

) [} 82
en(z,t) = pan(z, DES) + F Y ESleli(z,t) =M Y E,%)ﬁem (z,t). (271)

m=1 m=1
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2.3.9 The Tube Law

Now, we assume that the deformations in the tube wall that arise from the
transmural pressure pim(z,t) and the axial pre-stress F can be modelled by
the first Fourier mode of 7, ") and 17,51T). It has been shown by Whittaker
et al. (2010d) that the sizes of the higher-order Fourier coefficients are much
smaller than the sizes of the first-order Fourier coefficients, and because of this
our assumption is justified. Making this assumption, we can truncate equation

(2.71) after m = 1 giving us

(T) 9%e; (T) 9%e;
g2~ Min ga

Whittaker et al. (2010d) have also shown the following relation between

er(z,t) = E pum(z,t) + FE (2.72)

e1(z, t) and the cross-sectional area A(z, t)

Az, t) —Ag  6Aeq(z,t)
Ap 2 sinh? 20

(2.73)

By rearranging (2.73) to give ej(z,t) in terms of A(z,t) and substituting into
(2.72), the following equation for pim(z,t) is obtained

B ko F aZA(z, t) kzMiZ
AAy 072 AAg ot?

Pin(2,) = 20-(A(z,1) — Ao)

where ko and k; are given by

(A(z,t) — Ap), (2.74)

2 sinh? (20, 2 sinh?(200)E'
ko = (P() D) gy= ((P)(’) 1L (2.75)
6E! 6!

Equation (2.74) is our tube law relating the transmural pressure and
cross-sectional area of the tube. As this tube law is linear, we can decompose
it into steady and oscillatory components. Using (2.12), (2.18), and taking just
the oscillatory component of (2.74), we obtain
. ko ~ kQF d2A<Z) kzMwZ ~
= —A(z) - - A(z).
p(z) AO (Z) AO dz2 AO (Z)

(2.76)

2.4 Fluid Mechanics

We now turn our focus to the fluid mechanics of the system. As we are dealing
with an incompressible viscous fluid, the flow is governed by the Navier-Stokes
equations (Batchelor, 1967)

o <?)‘t7 +v- Vv) = —Vpi, +uV3v +f, (2.77)
V-v=0. (2.78)
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Here v is the total dimensional velocity of the fluid, and f represents any other
body forces. In our model, only the axial components of the velocity contribute
at leading order. Using a long-wavelength approximation and the property that
the oscillatory component of the axial velocity has a high frequency, Whittaker
et al. (2010c) showed that the oscillatory axial velocity has a plug flow profile
in the core, with passive Stokes layers near the tube wall. Whittaker et al.
(2010c) also determined that at leading order, the oscillatory axial velocity @
and oscillatory pressure j are uniform in the cross-section, which is common
in long-wavelength approximation theory. Hence, we have @ = @(z), p = p(z)
at leading order. Finally, Whittaker et al. (2010c) calculated the leading-order

oscillatory components of the continuity and axial momentum equations to be

do -

— 1 pr— .7
Ay o +iwA =0, (2.79)

.o dp

iwd® = 1 (2.80)

By eliminating @ in equations (2.79)—(2.80), the following relationship between
p and A is calculated
Ao d?p

2.5 Combined System for Fluid-Structure Interaction

2,51 Governing ODEs

Using the oscillatory component (2.76) of the tube law obtained from the wall
mechanics and the relation (2.81) derived from the fluid mechanics, we now
form the governing ODEs for each section of the tube. Eliminating A between
(2.76) and (2.81), we obtain
szjzj + (Mw?ky — ko)i’j —w?p =0. (2.82)

This is the governing ODE for flow inside the flexible region of the tube,
situated at z1 < z < 2».

To find a governing ODE for the flow inside the rigid sections of the tube,
0 <z <z and z; <z <1, we first of all apply the constraint

A=0,

as the cross-sectional area in the rigid parts of the tube is fixed. Using the

relation (2.81) between A and , the governing ODE in the rigid sections is
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found to be

=0 (2.83)

2.5.2 Boundary and Matching Conditions

By applying physical conditions, we determine the boundary conditions that
must be satisfied at the ends of the tube as well as the matching conditions at
the interfaces between the flexible and rigid sections of the tube. Atz = z1, 25,
we must have continuity of pressure and continuity of axial volume flux. As

the axial volume flux is proportional to @ and hence dj/dz, (see (2.80)) we have

di +
7]t = [d’;] =0, at z=zn (2.84)

At the points where the elastic wall is clamped onto the rigid parts of the tube,
we must have A = 0. Hence, using equation (2.81), we obtain the conditions

d?p

= 0, at z=2zy,2. (2.85)

In this model, we have fixed the total pressure at z = 0 as constant. As this
constraint is a steady condition, any oscillations in pressure must have zero

amplitude at the upstream end. Thus, we must have
p=0 at z=0. (2.86)

Finally, the axial volume flux has been fixed at z = 1. Because of this, the
amplitude of the mode shape @ of the oscillatory axial velocity must be zero at

z = 1. By using this in equation (2.80), we find the final boundary condition

dp _ _
FEl 0 at z=1. (2.87)

2.6 Solving the Governing ODEs for the Normal Modes

Solutions for the governing equations (2.82) in z; < z < zp and (2.83) in
0 <z < z1and zo < z < 1, subject to the boundary and matching conditions
(2.84)—(2.87), are now sought. We solve this system for the oscillatory pressure

p and the unknown frequency w of the oscillations.



2.6. Solving the Governing ODEs for the Normal Modes 37

2.6.1 Solution in the Rigid Sections of the Tube

In the rigid sections of the tube (0 < z < z; and z; < z < 1), we have the
governing equation (2.83)
&p
dz?

First, we solve this equation in the upstream rigid section of the tube 0 < z < z;.

=0.

Doing so, and applying the boundary condition (2.86) we find
pP=Gz in 0<z<z, (2.88)

where G is constant. We also use the boundary condition (2.87) to solve the
governing equation (2.83) in the downstream rigid part of the tube z, < z < 1.

Doing so, the following solution is obtained
p=H in z<z<]1, (2.89)

where H is some constant.

Using these solutions and the fact that § and dj/dz are continuous across
the interfaces between the rigid and flexible sections of the tube from (2.84), we
determine new boundary conditions for the flexible region of the tube. From
(2.88) we have

p = Gz, % =G, at z=z. (2.90)
Eliminating G within (2.90), we find
47
zld—Z—ﬁ:O at z =z. (2.91)
Using equation (2.89), we also find
dp
— = = 2. 2.92
4, —0 at z=2 (2.92)

2.6.2 General Solution in the Flexible Section of the Tube
To simplify the following mathematics and the boundary conditions, we
introduce a new variable Z defined as

Zy) — Z
Z =

o (2.93)

Rewriting the governing ODE (2.82) in terms of Z and rearranging, we obtain

d*p n (Mw?ka —ko)(z2 —21)* d*p  w?(z2—21)*
dz* ka dz2 k2f

§=0. (2.94)
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The boundary conditions (2.85), (2.91), (2.92) then become

d?p
1z =0 at Z2=01, (2.95)
Z1 dﬁ -
_ = Z=1 2.
zz—zle—Hg 0 at , (2.96)
dp _ _
iz = 0 at Z=0. (2.97)

The governing equation (2.94) is a fourth-order ODE with constant
coefficients. This is solved by looking for solutions of the form = ¢*? and
solving the resulting polynomial for A. It may be shown (see Appendix 2.A)
that the eigenfrequencies w are always real and non-zero. As the coefficient of
p in (2.94) is strictly negative, the polynomial for A always has one pair of real
solutions and one pair of imaginary solutions. We find the general solution of
(2.94) to be

p(Z) = AcoshgZ + BsinhgZ + CcoshZ + DsinhZ, (2.98)

where A, B, C and D are constants to be found, and gz, h? are defined as

g2 _ (ko — Mw2k2>(22 _Z1)2 (1 + \/1 =+ (4602]{2‘7> , (2.99)

Zsz ko — Mw2k2)2
ko — Mw?ky)(z2 — z1)? 4wk F
W = (ko 2 -1 14— 2.1
2k2./r + + (ko — Mw2k2)2 ! ( 00)

for kg > Mw?k, and

&= (ko — Mw?k) (z2 — z1)? (1 B \/1 I (4w2k2]—') ,  (2.101)

2](2./T ko — Mw2k2)2
2 (ko - szkz)(ZQ - 21)2 I 4w2k2}"
W= TN L\ o Mati ) @102

for kg < Mw?k,. These different definitions for ¢ and &, which depend on the
sign of kg — Mw?k,, are needed to ensure that g always corresponds to the real
solutions of A, while i always corresponds to the imaginary solutions of A. We

note for future reference that as w — o0, g = O(1) while h = O(w).

2.6.3 Determining the Eigenfrequencies of the Model

We now calculate the possible frequencies w that can occur in this model.
Applying the four boundary conditions (2.95)—(2.97), to (2.98), we find four

homogeneous equations. Writing these in matrix form, we obtain

Bb =0,
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where
5 gsinhg +coshg g?coshg 0 g° )
ar_ | momgcoshgtsinhg ¢*sinhg g 0 o_| B
—a=hsinh+cosh —h*cosh 0 —h? C
_Z_hcosh+sinh  —h?sinh h 0 b
221

and BT denotes the transpose of B. To obtain a non-trivial solution for the
constants in b, we must have that det B = 0. Calculating the determinant of B

and simplifying, it is found that

21 [Zgh(l — coshgcosh) + (g* — h?) sinh g sin h}

2 2
—(z0 — 71 sinh ¢ cosh + hcosh ¢gsinh| = 0. 2.103
g ;lh gsinhgcosh + hcoshgsinh (2.103)

This equation was first derived in the Whittaker et al. (2010c) model, but for
different definitions of ¢ and & that neglected wall inertia.

Normally we would proceed by substituting the definitions (2.99)-(2.102)
of g and h into (2.103), which yields an equation in a single unknown w.
However we instead use a different method which allows us to more easily see
the behaviour of (2.103) for certain values of h. First, we obtain an expression

for w in terms of ¢ and h by considering the product of (2.99) and (2.100)

. gzhzsz

=G (2.104)

We also take the difference between (2.99) and (2.100) to find another
relationship between ¢ and /. Using (2.104) to eliminate w in this relationship,
we obtain

1
ko(?z}zl)z +n2]?

MhZk,
1+ (z0—21)?

It is noted that using (2.101) and (2.102) instead of (2.99) and (2.100) in these

calculations yields the same results. We now use (2.105) to eliminate ¢ from

g = (2.105)

the eigenvalue equation (2.103), giving us an equation to be solved for a
single unknown /. Solving numerically using Maple, we find countably many
solutions for h. The relationship (2.105) is then used to recover g and finally
(2.104) is used to find the eigenfrequencies. We denote the nth eigenfrequency

as wy, with wy being the fundamental mode.
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We have seen that as w — 00, ¢ — O(1) and 1 — O(w). Hence, for large w

the eigenvalue equation (2.103) is approximately

(Zz — Z1>h2

—zyh*sinh(g) sin(h) — cosh(g) sin(h) = 0. (2.106)

By examining this, we expect to find solutions at i ~ n7, where n is an integer.
This approximation for the roots is used when calculating the numerical

solutions for the eigenfrequencies.

2.6.4 Comparing the Eigenfrequencies for Different values of M

We now determine the eigenfrequencies w, of the model for different axial
tensions F and different masses of the tube wall M. In Tables 2.1-2.3, these
eigenfrequencies have been calculated, with values z; = 0.1, z2 = 0.9 and
09 = 0.6 which set the tube geometry. Using the value for ¢y, we also derive
ko = 11.07487, ko = 1.70441 and Ag = 2.73060. These parameters have been
chosen to be the same as in the Whittaker et al. (2010c) model.

It is seen from the tables that the inclusion of a non-zero wall inertia
parameter M significantly reduces the values of the eigenfrequencies w, for
the higher-order modes, even when M is small. However for the fundamental
modes, the effect of wall inertia is only significant when M reaches 0.1. Finally,
it is noted that for larger values of M, the eigenfrequencies increase much more

slowly when the wave number is increased.

M w1 Wy w3 W4 Wws
0 6.108 19.06 33.80 50.86 70.67
0.001 6.091 18.60 31.61 44.81 57.98
0.01 5948 1555 21.62 2574 29.14
01 4912 7728 8563 9.274 10.03
1 2389 2639 2792 2985 3.210

Table 2.1: Eigenfrequencies for different values of M with 7 = 0.01, z; = 0.1, zp = 0.9
and oy = 0.6.
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M w1 wy w3 Wy Wws
0 6.991 25.73 5431 9437 1465
0.001 6970 25.08 50.68 8296 120.0
0.01 6.795 20.82 3441 4754 60.37
0.1 5545 1024 1364 17.23 20.87
1 2.638 3514 4481 5.565 6.694

Table 2.2: Eigenfrequencies for different values of M with 7 = 0.1, z; = 0.1, zo = 0.9
and oy = 0.6.

M w1 wy w3 Wy ws
0 11.80 59.41 1443 268.1 4314
0.001 11.76 57.88 134.6 2356 353.3
0.01 1145 4796 9130 1351 1778
0.1 9259 2363 3629 49.08 61.51
1 4360 8.148 1196 15.86 19.75

Table 2.3: Eigenfrequencies for different values of M with 7 =1, z; = 0.1, zo = 0.9
and oy = 0.6.

2.6.5 The Effect of Wall Inertia on f, @ and A

Using the values of the eigenfrequencies w,, we determine the corresponding
normal modes of the pressure 7, the axial velocity @, and the area A,. We first
find p, by substituting our eigenvalues into equation (2.98). Then substituting

» in equations (2.80) and (2.81) allows us to find the corresponding @, and

Ny ™

"
In Figure 2.4, the first five normal modes of 7, have been normalised with

the following conditions

1
/0 pnldz=1,  p,(0) >0, (2.107)

and plotted for different values of M. From the figure, we can see that there
is almost no observable change in the fundamental mode for any of the values
of M. However for higher-order modes, there are notable differences when M

reaches values of size 0.1 and 1. In these cases, rather than oscillating about
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Pn = 0, waves start shifting to larger values of i, as z increases along the axial
direction of the tube.

In Figure 2.5, the first five normal modes of i@, have been plotted using the
normalised modes of 7, from before. We see that there is very little difference
between the modes for M = 0,0.01. However, in the cases where M = 0.1
and M = 1, like the modes of the pressure f,, the higher-order modes oscillate
about a non-zero value of i@, as you move along the z-axis.

Finally, in Figure 2.6, the first five normal modes of A, have been plotted,
again using the normalised modes of f, calculated before. As before, it is
seen that there is not much difference between the modes when M = 0 and
M = 0.01. However, in the cases M = 0.1 and M = 1, it can be seen that
the fundamental mode A; tends towards being symmetric about z = 0.5. It is
also noted that unlike the modes for the pressure 7, and axial velocity @, the
higher-order modes for the area oscillate about A, = 0 as you move along the
z-direction, for all values of M.

It is noted that in all of the figures, there are differences in the amplitude
of the modes as M varies. However, as we are solving a linear problem, the
amplitudes are arbitrarily set by the normalisation condition (2.107). As such,

this variation in amplitude is not a significant result.
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Figure 2.4: Graphs of the first five normal modes of 7, for different values of M in

the case F = 1, z1 = 0.1, z; = 0.9 and 0y = 0.6. These have been normalised such

that fol |p,|?dz = 1 and #,(0) > 0. The red, green, yellow, blue and purple curves

correspond to the fundamental, second, third, fourth and fifth modes respectively.
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Figure 2.5: Graphs of the first five normal modes of i@, for different values of M in
the case 7 =1, z1 = 0.1, zz = 0.9 and 0p = 0.6. These have been calculated using
the normalised modes of i, plotted in Figure 2.4. The red, green, yellow, blue and
purple curves correspond to the fundamental, second, third, fourth and fifth modes

respectively.
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Figure 2.6: Graphs of the first five normal modes of A, for different values of M in

the case ' =1, z; = 0.1, zp = 0.9 and op = 0.6. These have been calculated using

the normalised modes of fi, plotted in Figure 2.4. The red, green, yellow, blue and

purple curves correspond to the fundamental, second, third, fourth and fifth modes

respectively.
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2.7 Stability Criterion and Growth Rate

We proceed to derive an expression for the growth rate of the oscillations,
as well as the critical mean flow rate at which oscillations first occur, using
the energy budget of the system. Whittaker et al. (2010c) found the following
relation using the energy budgets for the fluid and tube wall

d
B =

Here, [E; is the total dimensionless energy due to oscillations in the tube

—(K-8-D). (2.108)

wall and E 1 is the dimensionless oscillatory kinetic energy in the fluid, both
averaged over a period of the oscillations. We also have K as the mean flux of
kinetic energy through the ends of the tube, S as the mean rate of working by
pressure forces that arise at the tube ends due to oscillatory flow, and D as the
mean rate of dissipation by the oscillatory flow. The energies and fluxes have

been non-dimensionalized using the scalings (2.19).

2.7.1 Fluxes and Fluid Energy

Whittaker ef al. (2010a) and Whittaker et al. (2010c) showed that K, S, D and
E £ are given by

K= ZnEZSt2A2|w(O)|2, (2.109)
S = 1n€25t2A2\w 0)|?, (2.110)
303 A2 1
p_ ESEAT(w): / @(z)2dz, 2.111)
20
2q42 2
Ef= AS"LAOE/ @ (2)|2dz. 2.112)

These values are in terms of the fluid flow and so are unchanged in the presence
of wall inertia here. Using the relation (2.80) between @ and p, it is found that

the expressions (2.109)—(2.112) may be rewritten in terms of f as the following

K= inﬁzsﬂAz\ 70, (2.113)
S=1 n£25t2A2| "(0)[%, (2.114)
n£35t3A2 2w)z
D= 7 (z)|? :
s / 17 (2)2dz, 2.115)
2¢q42 2
= M / 17 (2)2dz. (2.116)

Hence, the only term in (2.108) that needs to be evaluated now is [E;.
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2.7.2 Oscillatory Energy in the Tube Wall

As a starting point for deriving an expression for I, we consider the following

expression for the rate of working in the tube wall due to pressure forces

dE; or
= F — -fndS. 2.117
dt* //FubeWall ptmat* n ( )

Here, E; is the total dimensional energy in the tube wall due to the dimensional

transmural pressure p;,,, dS is an element of the midplane of the tube wall, t*
is once again dimensional time, r is the position of the wall midplane in the
deformed state, as defined in (2.20), and # is a unit vector normal to the tube
wall. The expression (2.117) for the dimensional rate of working in the tube wall
dE;/dt* comes from integrating the product of the force from the transmural
pressure and the normal component of the velocity of the tube wall, over the
midplane of the tube wall.

Inserting the appropriate limits for the integration within (2.117) and noting

that p;,, is independent of 7, it is found that

* L 27
iﬁf = / Pim / ;;-ﬁah(r) drdz*. (2.118)
0 0

Whittaker et al. (2010d) found the following relation between the dimensional

area change A" — Aj in the tube wall and the deformation r — ry of the tube

wall 5
T
A* A% = / (r — 1) - Aah(t) dT + O(A2). (2.119)
0

By differentiating this relation with respect to t* (noting that A; and ry are
constants and thus vanish), neglecting terms quadratic and higher order in A,

and substituting into (2.118), we obtain

i = Pm 5 dz". (2.120)

dE; /L . 0A*

The expression (2.120) is now non-dimensionalized using the scalings (2.11)
for the axial length and cross-sectional area, (2.17) for the transmural pressure,
(2.19) for the energy and t* = Tt for time. Applying these scalings, the

following is calculated

ddis = ASP(? / ’ ptmaa‘? dz, (2.121)
21

where E; is the dimensionless energy in the tube wall due to the transmural
pressure. We note that dA/9dt = 0 in the rigid regions of the tube and thus we
only need to take the integral within (2.121) over the region z; < z < z».
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We now convert (2.121) into an expression solely in terms of the area A. This
is done by applying the tube law (2.74) which relates the transmural pressure
P to A. Substituting the tube law into (2.121), it can be shown that

dES_StZEZ J0A aZAaA 82A8A
dt — Ap /Z1 ko(A—Ao)5r —keF oy =r +theM=y—-dz. (2122)

By integrating the second term of (2.122) by parts, it can be shown that

PAA 0A AT 9A PA
/ FS 5 S dz [ sz] / .

2Fa- o2 dz, (2.123)

/ 0A 9%2A
- z 9t0z

where the boundary terms vanish as 0A/dt = 0 at z = z1,zo. Substituting this
into (2.122) and noting that

A 19 »  QAPA 19 (AN
(A=) 5r = 35 (A— A" azataz_za(az> :
PAA _ 19 (34}
o2 ot 209t \ ot ) ’
we obtain

dE, S22 /Zz d

dt ~ 2A¢ Ji ot 0z ot

2 2
ko(A Ao) + ko F <aA> + koM <8A> ] dz. (2.124)

Integrating this expression with respect to ¢, we find

S22
*T 240

. 2 2
/ “ko(A — Ag)? + ko F (%4) + koM <8A> dz+C, (2.125)
Z1 z at

where C is some constant dependent on the steady deformation of the tube
wall.

We now recall the expression (2.12) of the cross-sectional area A(z, t)

Az, t) = Ag + ———=—A(z) + A(t) Re(A(z)e™").

a20St

Substituting this into (2.125), we find the following expression for E; in terms

of the steady area change A and the oscillatory area change A

E, = S;ZZ / IZ ko [“22 S A+ARe (Ae""t>r A2 Mk, |Re (Ae W*)r

1 24, A o 2
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Using (2.126), it is possible to determine the mean energy E; in the tube
wall due to transmural pressure. This is done by taking an average of Es over

the timescale of a single oscillation as follows

2
w W
E; = (Es) = o /0 Edt. (2.127)

It can be shown that if a function A(z,t) has the form A(z,t) = A(z) +
Re(A(z)e'“t), then (A?) is calculated to be

_ 1, 5
(A% = A%+ §|A|2. (2.128)

By taking a time average of the expression (2.126) and applying the property
(2.128), E; is determined to be

St202 = 1 = A2 o A’Mw?ky | -2
E.= 54 / ko((xA + 24 )+2\A\
1 dA\? A2

the S (mtz (82) Y

Hence, [Es may be decomposed into components due to the steady and

24

0z

2
) dz + C. (2.129)

oscillatory area changes of the tube. Thus, the dimensionless energy E; in

the tube wall due to the oscillations is given by

2C4292  rz
]ES:AStf 2
4A0 Z1

512
(ko + Maw?ky) | A[* + ko F '%‘j dz. (2.130)

In order to combine this with the expressions (2.113)—=(2.116) for the other terms
in the energy budget equation (2.108), it is convenient to rewrite [E in terms of
p. This is done using the relation (2.81) between A and p and it can be shown
that

2q42 2z
E; = Ai;faﬁog / (ko + Ma?ko)p'" B + ko F P diz, (2.131)
21

where / denotes a derivative with respect to z and T denotes the complex

conjugate.

2.7.3 Simplification of [E; in (2.131)

It is possible to now use the expression (2.131) for E; in the energy budget
relation (2.108) to determine the growth rate and stability criterion of the
oscillations. However, it is found that (2.131) can be simplified further to form
a more convenient expression for E;. The details of this simplification are now

provided.
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Firstly, by integrating the second term of (2.131) by parts, it is calculated
that

/ sz ~///p/1/+ dZ — [kZFﬁ///p//+ / k ]_—p////p//‘r dZ (2.132)
z=z1

From (2.85), we know that 7" = 0 at z = z1,2, and thus the first term on the
right-hand side of (2.132) vanishes. Substituting this into (2.131) allows us to
obtain

- A2SPAP

zZ
s = / (ko + Mw?ky) p" " — ko " " dz. (2.133)

40t 7

We further simplify the expression (2.133) for [E; by considering the
governing ODE (2.82) in the elastic-walled region z; < z < z of the tube.
Rearranging (2.82), it can be shown that

—ko Fp" = (Mw?ky — ko) p" — w?p. (2.134)

As the integral in (2.133) is between z = z; and z = z, we may substitute
(2.134) into (2.133) to obtain

o N2St2Apl? = . -
T T 40?2 p 2.135
]Es 42 ./zl 2Mk 2p p pp dz. ( )
By integrating the second term of (2.135) by parts, it is found that
- AZSt2A0£ s y R
B == / 77+ 2Mka || dz— |pp] (2.136)

It is possible to evaluate the boundary term using the boundary conditions
(2.91), (2.92). Rearranging (2.91), it is found that p = z1p’ at z = z;. We also
have p’ = 0 at z = z; from (2.92). Applying these to the boundary term in
(2.136), it can be shown that

(2.137)

s Z=Zy 2

= [pr] L ==l
zZ=Z1 z=274
In §2.6, it was found that 7 behaves linearly in the region 0 < z < z;. As such,
we must have that 7’ takes a constant value in 0 < z < z;. Using this property,
it is seen that the right-hand side of (2.137) is equal to the integral of |p’ |2 over

the region 0 < z < z;. Thus, we have
. z=2> 21 2
_ [p,ﬁLIZI - /0 7| dz, (2.138)

and [E; may be written as

. A2St2 Ao l?

o= /Z NP+ 2Mk |7 dz + / 2 dz. (2.139)
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As the integrals in the expressions (2.113)—(2.116) for the other terms in the
energy budget relation (2.108) are over the entire length of the tube 0 < z < 1,
it is convenient to rewrite (2.139) in terms of an integral with the limits z = 0, 1.
From (2.89), it is seen that p is constant in the region z; < z < 1. As such, we
must have ' = 0 when z; < z < 1. It is also seen from (2.83) that in the rigid
parts of the tube 0 < z < z; and z» < z < 1, we have " = 0. Using these

properties, it is observed that

ZMk ~11 o 1 1712 . ! =112 o
2 |p ‘ dz= [ 2Mk |p"|" dz= | |p'|" dz=0.
Zy 22

Hence, rewriting (2.139), we obtain the following simplified expression for [E;

2¢42
E. = M / 17+ 2Mk, | de. (2.140)

2.74 Determining the Growth Rate and Stability Criterion

Now that we have calculated the dimensionless oscillatory energies in the wall
and fluid, we can use these along with (2.108) to find expressions for the growth
rate of the oscillations as well as the stability criterion. Using the expressions
(2.116), (2.140) for ]Ef, IEs in terms of f, we see that

202 4 02 1
E, +E; = ASt‘W/O 17')? + kaM|p"|?dz. (2.141)
Using the definitions (2.113)—(2.115) for K , & and D in terms of f, we find
A2SPRPr | (5t(2w): 1
K=8§-D=—">5— [|P'(0)|2 - (a)/o 7'(2)[Pdz| . (2142)

Substituting (2.141)—(2.142) into (2.108) and evaluating the differential on the

left-hand side, we obtain

1
| ox 2t [*1p(z) e

dt
/ 7(2) P+ kaMIp" (2) Ptz

A. (2.143)

Hence, the amplitude of the oscillations grows or decays exponentially and we
may write

A(t) = Age™,
where A is the initial amplitude of the oscillations, and the growth rate A is

given by

l
- )2 / 17 (2)|?dz
A= (2.144)

2A
0 / 712+ kaMp Pz
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When A = 0, neutrally stable oscillations are obtained. We define the critical
Reynolds number Re. to be the Reynolds number (defined by Re = a?/St) at
which A = 0. Using the expression (2.144) for the growth rate, we find

Re, = “4 2“”2 / 17 (2)2dz. (2.145)

Using this expression for Re., the growth rate A may be written as

7(Re — Rec)|p'(0)[*

A= .
2A0£a2/ 17 () + kM| (2) Pdz

(2.146)

By evaluating Re. and A numerically, we may plot both as functions of M.
Doing so, we find that the size of the critical Reynolds number for the first and
third modes are comparable, and the sizes for the second and fourth modes
are also comparable. In Figure 2.7, Re,. is plotted against M for the first four
eigenmodes of §. From the plots, we see there are significant differences in
the behaviour of the odd (n = 1,3,5...) and even (n = 2,4,6...) modes as M
increases. The main difference is that the critical Reynolds number Re. for a
given « and ¢ (which depend on the properties of the fluid and geometry of
the tube wall) decreases with increasing M for odd modes. Thus, odd modes
become more unstable for higher wall inertia. However, for even modes, Re,
increases rapidly for increasing M, implying even modes become more stable
for higher wall inertia. We also see that in the case 0 < M < 1 the mode with

the smallest Re. and therefore the most unstable, is the fundamental mode.

Re 8

j4e3

2 k

T T T T 1 T T T T 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
M M

Figure 2.7: The critical Reynolds number Re./{a against M, with z; = 0.1, zp = 0.9,
0p = 0.6, for mode numbers n = 1 (red), n = 2 (green), n = 3 (yellow) and n = 4 (blue).
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In Figure 2.8, we have plots of dA/dRe, again for the first four eigenmodes.
For all four modes, as M increases, the gradient of A for a given Aj, « and /¢
decreases. However this decrease is larger for even modes than for odd modes.
We also see that when 0 < M < 1, the fundamental mode is the mode that has
the highest growth rate by a significant margin. Finally, we note that for both

even modes, A — 0 very quickly as we increase M.

04-‘
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0.8
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ORe 0.6
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ORe
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0 0.2 0.4 0.6 0.8 1 0.6 0.8 1

M M

Figure 2.8: The gradient of the growth rate fa?dA/dRe against M, with z; = 0.1,
zp = 0.9, op = 0.6, for mode numbers n = 1 (red), n = 2 (green), n = 3 (yellow) and
n = 4 (blue).

2.8 Asymptotic Solution for M > 1

To better understand the behaviour of the different modes, we turn our
attention to finding asymptotic expansions for the eigenfrequencies w;, the
corresponding modes of the oscillatory pressure f,, the critical Reynolds
number Re, and the growth rate A, valid when € = 1/M < 1. In the governing
equation (2.82) for the flexible part of the tube, when M is large, we expect the
d*p/dz* and d2j/dz? terms to balance. Thus, we expect w, = O(M~2). We
also need p, = O(1) to satisfy the normalisation condition (2.107) which will

be imposed. Hence, we consider expansions of the form
wy =M1 (wWno + €wy1 + ...) Pn(z) = pno(z) + €pm (z) + ... (2.147)

where wno, Wy1, Pro(2z), pn1(z) are O(1), and n denotes the nth eigenmode. We
now find the leading and first-order approximations of w, and p, in each of

the section of the tube.
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In the flexible region of the tube z; < z < z;, the governing equation (in

terms of Z) is (2.94). Substituting in the expansions (2.147) gives

Wno + €wp1 + ...)%ky — kol(z2 — z1)?
(ri + eply + ) + (o eon ol o ZhlE Z2) e )

€(wno + ewnm + )% (22 — 21)*
_ e(wno nlka) (222" e ), (2.148)

where ' now denotes d/d Z.

2.8.1 Leading-Order Solution

At leading order in the elastic-walled region of the tube z; < z < z;, we obtain
the ODE
Puo + Aapio =0, (2149)
where 5 )
(wyoka — ko) (22 — z1)
ko F

We find that for non-trivial solutions, we must have )\% > 0. Thus, we find the

A3 = (2.150)

general solution to be
pnO(Z) = ApZ + By + Cy COS(/\()Z) + Dy Sin(/\()Z), (2.151)

where Ay, By, Cp and Dy are constants to be found. By applying the boundary
conditions (2.95)-(2.97), we find

A
pnO(Z) = DO [sm(/\OZ) + )\0(1 _ Z) + - OZ1Z
2 7 41

Ao = nrt. (2.153)

(1—(-1)"M]|, (@152

Here Dy is an arbitrary constant setting the amplitude of the modes.
Substituting (2.153) into (2.150) we find

1
7’127'[2./_" ko 2
o= (Gt i) R

In the upstream rigid region of the tube 0 < z < zj, the flow is governed by
(2.88). With this, the matching condition (2.84) and (2.152), we find

DoAg
) — 21

puo(z) = { (1— (—1)”)] z in 0<z<z. (2.155)

In the downstream rigid section of the tube z; < z < 1, flow is governed by
(2.89). Using this with the matching condition (2.84) and (2.152) gives

21
Z — 71

png(z) = DgAg [1 -+ (1 — (_1)71)] in z <z<l1. (2.156)



2.8. Asymptotic Solution for M > 1 55

Hence, the leading-order solution for p, is

(21— (1)) 2 0<z<z
pno(z) = Do {sin()\oﬁ) +Aos -+ Zg‘%}l (1— (_1)11)} 7n<z<z .
Dodo |1+ 725 (1 (=1)")] n<z<1
(2.157)

Finally to set the initial amplitude of the oscillations we apply the normalisation
condition (2.107). Doing so, we obtain

) — 21
Dy =

1

Ao (2114 (~1)71)2 4 3z — z1))
In the equation (2.157) for pno, each region has a term dependent on (—1)".
Because of this, the leading-order pressures behave differently for odd and
even modes. We note that in the upstream region 0 < z < z;, odd modes have
a linear rise in pressure whereas even modes have a value of zero. We also note
that in the downstream region z, < z < 1, the leading-order approximation
(2.157) has one fixed value for odd modes and another different fixed value for

even modes.

2.8.2 First-Order Solution

Our next step is to calculate the first-order approximations of w, and p,.
We start by considering the solution in the flexible region z; < z < z. By
evaluating (2.148) at O(e), we obtain the following ODE

" /\2 " a]io (22 B 21)4

Pl + AoPm = T g F P~ MPho, (2.158)
where o 2
2wyownka (22 — 21
A= 2.1
1 %3 (2.159)
The general solution of (2.158) is found to be
Pul (Z) =AZ+B1+C COS(AOZ) + D, Sin(A()Z)
+fiZcos(AZ) +g12° + i 22, (2.160)
where
Do (wip(z2 —z1)* 2
= — | T+ M|,
h 22\8( LF M
O Dow?(zo — z1)*
6A0ka F ’

_ Dowyy(z2 —21)* Z1 "
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and Aj, By, C; and D; are constants to be found. Applying the boundary
conditions (2.95)—(2.97), we obtain

B1:A1< il ((—1)”—1)—1>—g1<1+6+ 321 )

Zy — 21 )\% Z2 — 27

2 2
—hy (14 5+ 1),
AO 22 — 27

oh
G =%
0
Al +
Dl _1)\0]61/
A = =2 (6g1(—1)" +2h ((—1)"—1))—M (2.161)
"7 Dok ! ! AZko F '

Here, A; is still to be determined by the normalisation condition (2.107).
Substituting (2.161) into (2.159) allows us to find

o 1 {Zkz}“(6g1(—l)”+2h1((—1)"—1)) who(z2 —

21)2
= — . (2.162
2wn0k2 Do)\o (Zz — 21)2 /\% :| ( )

We now look at the asymptotic expansion in the rigid parts of the tubes. In
0 <z <z, we use (2.88) as well as the matching condition (2.84) and (2.160) to

find the first-order pressure p,; in the rigid upstream part of the tube to be

2
pm(z) = zi [Al +Bi+ fi(—-1)"+ g1+ <1 + M(—l)”)] in 0<z<z.
1 0
(2.163)
In z; <z <1, we apply the matching condition (2.84) and (2.160) to (2.89). This

gives the asymptotic solution for p,; in the downstream region as

2h
pu(z) = By + )71 in z<z<1. (2.164)
0

By combining (2.160), (2.163) and (2.164), we find the first-order solution for f,

as
z [Al F B+ fi(~1)" + g1+ (1 + %5(—1)")} 0<z<z
A1Z + By + Cycos(AgZ) + Dy sin(Ag Z)
pn1(z) = ,
+hHZ COS(A()Z) + g1Z3 + h122 z1<z< 2,
B1 + % V) <z< 1
(2.165)

where A; is still unknown. Finally, in order to satisfy the normalisation
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condition (2.107), A; is set as

22—21

o 20))en(t-o
g <1 _ %(_1)"> - hl} .

To test the accuracy of our leading and first-order approximations for wj

and f, we plot them against the semi-analytical solutions found earlier in
§2.6. In Figure 2.9, this has been done for the first four eigenfrequencies w;
of our model. It is seen from the figure that there is good agreement between
the asymptotic and semi-analytically calculated frequencies. We also see that
unusually, the asymptotic solution is better for the higher modes (particularly
at lower values of M). The reason for this stems from the second term in
the governing ODE (2.82) in the flexible part of the tube. This term depends
on Mw? and becomes the dominant term in the regime M > 1. However,
as our value for w increases, a lower value of M is needed for this term to
become dominant. Hence for the higher eigenfrequencies, a lower value of M is
required for dominance and the approximation approaches the semi-analytical
solution at smaller values of M.

In Figure 2.10, the semi-analytically obtained f,, and the approximation
(2.147) for p, up to leading and first-order have been plotted for the first four
modes, with M = 1. From this we observe that there is good agreement
between the approximations and the semi-analytical solution, particularly in

the case with the first-order approximation.

2.8.3 Asymptotic Approximation for Re,

Now that we have asymptotic approximations for the eigenfrequencies w;
and the modes p,(z) of the pressure up to leading order, we may use these
approximations to derive asymptotic approximations for the critical Reynolds
number Re; and the growth rate A, in the case of large M.

We begin with deriving an approximation for Re.. Substituting the
approximations (2.147) for wy, Pn(z) into the expression (2.145) for Re,, it is

found that the critical Reynolds number Re,, for the n'" mode is given by

wly/2ei (wWno + €wm + O(ez))%

Re., = .
(P1o(0) +e€p},1 (0) + €2p;,,(0) + 0(63))2

(2.166)
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Figure 2.9: The semi-analytical eigenfrequencies w; (red) calculated in §2.6, along
with the leading-order (green) M_%wno and first-order (yellow) M2 (wno + M~ twy)

asymptotic expansions as functions of M for the first four eigenfrequencies.

We note that in the current scenario, the normalisation condition (2.107) sets
the integral within (2.145) to have a value of 1. By examining the expression
(2.157) for pyo, it is seen that p;,(0) is zero for even modes and non-zero for
odd modes. As such, we obtain different asymptotic expansions for Re., when

n is odd and even.

When 7 is odd, we may rewrite (2.166) in the following way

NI

1
alv2eiwyy (1+e28 +0(e?))

Whno

() (1< o)

Ccn =

(2.167)
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Figure 2.10: The semi-analytical mode shapes of the pressure p, (red) calculated in
§2.6, along with the leading-order (green) p,o and first-order (yellow) f,o + M5,

asymptotic expansions when M = 1 for the first four eigenmodes.

It is possible to apply the Binomial Theorem to find

1
Wy )2 Wi 5
<1+€wn0 +0(e )) = 1+€2wn0 +O(e%), (2.168)
p,1(0) 2 >2 2ep,1(0) 2
1+¢€ +O(e =1———-—24+0(e). 2.169
< Pro(0) ) Po(0) () ( )

Substituting these into (2.167), the asymptotic approximation of Re., up to first

order for odd modes is found to be

1
ol Ze%wzo [1 . < W 2p,(0)

+0 €2:| forodd n. (2.170
s~ 0y ) +0€) (2170
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For even 1, p},,(0) = 0 and (2.166) can be written as so
. 1
M\@e*%wgo (1 +eon + O(ez)> ’

on = (dp%()))z (1 N 6% " O(€2>)2 : 2.171)

Again, by using the Binomial Theorem, it can be shown that

ef’;qz(o) &2 _ _ 2ep;(0) 2
<1+ Py ol )) 1-2he o), (2.172)

By substituting this and (2.168) into (2.171), the asymptotic expansion of Re,

-2

up to first order for even modes is shown to be

1

zxﬁﬂe*%wﬁo

Recn - —2 1
(dpnl(0)>

dz

We note that in order to determine the first-order approximation of Re., for

Wni ZP;Q(O)) 2 }
€ — +O(e for even n. (2.173
(5 p(0) ) T o) 2173)

even modes, an expression for p,»(z) would be needed. However, to determine
this expression, we would need to solve the governing system up to second
order. This would require a lot of working and as such is not attempted here.
Instead, we will evaluate the accuracy of just the leading-order approximation
of the critical Reynolds number for even modes.

Immediately, we see that the approximations (2.170), (2.173) for Re.,
have different behaviours for odd and even modes. The leading-order
approximation (2.170) for odd modes behaves as Re,, ~ e'/* = M~1/4
whereas for even modes, the leading-order approximation (2.173) behaves as
Reey ~ € 7/% = M7/%. From these behaviours, it can be deduced that as M
increases, Re., decreases for odd modes and increases for even modes, agreeing
with the behaviours found in the semi-analytical results in §2.7.4.

To further test the accuracy of the approximations (2.170), (2.173), we
plot them against the semi-analytical results of Re;,, found in §2.7.4. In
Figure 2.9, the leading and first-order approximations (2.170) of Re.,/¢a for
the fundamental and third modes, and the leading-order approximations
(2.173) of Rec, /Ll for the second and fourth modes have been plotted. Also
plotted are the semi-analytical solutions of Re., /¢« for the first four modes
as seen in Figure 2.7. We can see in Figure 2.9 that for all the different
modes, the leading-order approximations are giving good agreement with the
semi-analytical results for M > 1. We also see in the case of the odd modes, the
first-order approximations are giving good agreement with the semi-analytical

results, even for some values of M smaller than M = 1.
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Figure 2.11: The semi-analytical critical Reynolds number Re.,/fa (red) calculated
in §2.7.4 along with the leading-order (green) and first-order (yellow) asymptotic
approximations (2.170), (2.173) for Re.; as functions of M for the first four modes.
Here, z1 = 0.1,z = 0.9, 0p = 0.6 and F = 1.

2.8.4 Asymptotic Approximation for A

We now turn our attention to deriving an asymptotic approximation for the
growth rate A. Substituting the approximations (2.147) for wy, p, into (2.146),
it is seen that the growth rate A, for the n'h mode may be written as
2
An — 7T(R€ - ReCﬂ) (p;’l(i(o) + ep;ﬂ (0) + GZPZZ(O) + 0(63)) , (2.174)
2A0l2 [1 + /0 kae ™ (piio + €piy + O(eZ))2 dz

where again the normalisation condition (2.107) has been used to simplify

the expression. Again, due to the fact that p/;(0) = 0 for even modes and
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pio(0) # 0 for odd modes, we will obtain different expansions for A, for
odd and even modes. It is possible to include our asymptotic expansions for
Re., within this expression to obtain a full asymptotic expansion. However,
the full approximation will also depend on the size of the Reynolds number
Re of the flow. As such, it is more informative to determine the asymptotic
expansion of A, up to the value of Re — Re., and we will leave this factor in
our approximations.
When 7 is odd, (2.174) can be rewritten as

2
N 7(Re — Recn ) p!%(0) (1 + €p'”Eog + O<€2)) (2.175)

2
2A0002 |1 —|—k2€_1/ pis <1 +€Z”1 +O0(e )) dz]
n0

Again, we use the Binomial Theorem to evaluate terms in the numerator and

denominator of (2.175). It is initially found that

P:ﬂ(O) 2 >2 26?’:11(0) 2
1 O =14+ —2- 10 . 2.176
( T TOE)) =1y O (2176)

To evaluate the denominator of (2.175), we must first of all calculate the

asymptotic expansion of the integral within the denominator. It is found that

2
/p%(l—f—egnl—i—O( )) dz

n0

1
= / plsdz + / 2epiopim dz + O(€?). (2.177)
0

Using this, we may determine the following

y -
14 kpe ! / pis <1 —|—GZ"1 +O0(e )) dz]
n0

-1
— [14—]{26 (/ p“zdz+/ 2epiorm dz+O(62)>]

-1
c Zkz / ProPm dz +1

- +o(@)
k2 /O P dz k2 / P dz
2k2 / PPy dz +1

k / P//z k/ p//z

Substituting (2.176) and (2.178) into the expression (2.175) for A, for odd

+0(e?) | . (2.178)
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modes, it is seen that A, is determined to be
k 1 1 1 d
2 / 1
ert(Re — Rean)pio(0) | N ) ProPn1 dz +

An — 7 1
2A0m2k2/ P2 4z Pro(0) kz/o P2 dz

+0(€?) for odd n. (2.179)

When we have even n, p/,(0) = 0 and the expression (2.174) for A, may be

written as
/ 2
e27t(Re — Recy)p'2 (0) (1 +e2r + 0(62))
Ay = P9 - (2.180)
2A0la? |1+ koe™ 1/ pis <1 +eZ”1 +0O(e )) dz]
n0
As before, the Binomial Theorem is applied to find
2 !
P2(0) 2 > 2ep;,(0) 2
1+¢€ +O(e =14+ —""-~-4+0(e). (2.181)
(1+ e o AU

Substituting this and (2.178) into (2.180), the growth rate A, for even modes is

found to be

2%k / mopldz +1
eBN(Re_Recn)pfl( ) 1+e€ 2pn2( 2 p Op z

= 0 - 1
2A060¢2k2/ pisdz P kz/o pisdz

+0(€?) for even n. (2.182)

In order to determine the first-order approximation of A, for even modes (up
to the value of Re — Re.;,), we would need to determine p,»(z). As this would
require a lot of working this is not attempted here.

Again, we can immediately see that the approximations (2.179), (2.182)
for A, behave differently for odd and even modes. The leading-order
approximations of A, /(Re — Rec,) behave as A, /(Re — Re.,) ~ € = M~! and
Ay/(Re — Reey) ~ €3 = M2 for odd and even modes respectively. Hence, as

we increase M, the value of A, /(Re — Re.,) decreases for both odd and even
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modes, but the even modes are faster to decay. Again, this is in agreement with
the behaviours found in the semi-analytical results shown in §2.7.4.

We further test the accuracy of the approximations (2.179), (2.182) by
plotting the leading and first-order gradient of the growth rate fa?dA,/dRe
derived from the approximations along with the semi-analytical solution of
(a9, /ORe as seen in Figure 2.8. This has been done in Figure 2.12 for the first
four modes. We can see from the figure that there is good agreement between
the leading-order approximations and the semi-analytical results for all four
of the modes when M > 5. It is also seen that the first-order approximations

for the odd modes have good agreement with the semi-analytical results for
M > O(1).
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Figure 2.12: The semi-analytical gradient of the growth rate (a?dA,/dRe (red)
calculated in §2.7.4 along with the leading-order (green) and first-order (yellow)
asymptotic approximations (2.179), (2.182) for fa?dA, /dRe as functions of M for the
first four modes. Here, z1 = 0.1,z = 0.9, 0y = 0.6 and F = 1.
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2.9 Conclusions

In this chapter, we have introduced wall inertia to the Whittaker et al. (2010c)
model and quantified the effect it has on the frequency, mode shape and
growth rate of the oscillations, as well as the critical Reynolds number at which
oscillations occur.

The model developed here takes the form of the same differential equations
and boundary conditions found by Whittaker et al. (2010c) except for the
inclusion of a wall inertia term in the governing ODE (2.82) for the flexible part
of the tube. It is noted that this wall inertia term does not enter the governing
equation in the same way that the fluid inertia does, but instead combines
with the azimuthal bending term. The wall inertia term is proportional to
a dimensionless wall inertia parameter M which quantifies the amount of
wall inertia within the system. As in the Whittaker et al. (2010c) model,
the ordinary differential equations (2.82), (2.83) and boundary conditions
(2.85)—(2.87) govern the oscillatory component of the pressure j as a function
of the axial coordinate z.

Solving this model, we have found that increasing wall inertia yields a
decrease in the eigenfrequencies w;, particularly for higher modes. However,
the variation in w, with increasing M is found to be small for the fundamental
n = 1 mode in the case M < O(1), in comparison with higher modes. We
also find that the variation of the fundamental mode shapes for the oscillatory
pressure, axial velocity and area is small with increasing M (see figures 2.4,
2.5, 2.6). For higher-order modes, the mode shapes of the pressure j,(z) start
diverging away from p, = 0 as z increases, when M is increased (see figure
2.4).

By considering the energy budget of the system, we have been able to
predict that the normal mode oscillations grow or decay exponentially with
rate A defined by (2.146). Like the other parameters of the problem, A also
depends on the wall inertia parameter M. We have also defined the critical
mean-flow Reynolds number Re. at which oscillations first become unstable
(2.145). By calculating Re, semi-analytically, we have found that for odd modes
n = 1,3,..., Re. decreases for increasing M, and hence the modes become
more unstable. However, for even modes n = 2,4,..., Re, increases rapidly
with increasing M, resulting in the even modes becoming much more stable.
Calculating A semi-analytically, we have seen that the gradient dA/dRe of

the growth rates for all modes decreases for increasing M. However, 0A/dRe
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decays much more rapidly to zero for even modes than for odd modes.

Through our analysis, we have determined that for all values of M, the
fundamental mode is the fastest growing and most unstable mode. As it is an
odd mode, its stability decreases with increasing M. Hence, the inclusion of
wall inertia destabilises the oscillations within the system. This is in agreement
with Luo & Pedley (1998) who found that wall inertia was also destabilising in

a two-dimensional collapsible channel.

Using the model derived here, we quantify the effects of wall inertia on the
frequency w, critical Reynolds number Re. and gradient dA/dRe of the growth
rate for the fundamental mode, for a couple of physical examples. We first take
the example of the main pulmonary artery which carries deoxygenated blood
from the heart to the lungs. The typical dimensional values of the radial scale,
wall thickness and tube length (given by Pedley, 1980, p. 11) are found to be
a = lem, d = 0.03cm, and L = 3cm, respectively. It is also assumed that the
fluid and wall material is mostly comprised of water, yielding a density p of
p = 1gem~3. Using the values of d and p, the mass m = dp per unit area of
the tube wall is determined to be m = 0.03gcm 2. Using these values in the
expression (2.9b) for the wall inertia parameter M, we find M ~ 0.003 for flow
through the main pulmonary artery. Setting this value of M instead of M = 0
yields a 0.9% decrease in the frequency w of the fundamental mode, a 0.5%
decrease in the critical Reynolds number Re. of the fundamental mode, and a
1.8% decrease in the gradient dA/dRe of the growth rate for the fundamental

mode. Hence, in this example the effects of wall inertia are negligible.

Another physical example that can be considered is crude oil flowing
through a steel submarine pipe. Here we take the radial scale and wall
thickness to be 4 = 0.9m and d = 0.075m, based on values given by Gerwick
(2007). The density p,, of the steel comprising the tube wall is approximately
0w = 8000kgm 2 (see Haynes, 2012). The density p of the crude oil is assumed
to be similar to that of water, yielding a density of p = 1000kgm 2, and we
consider the scenario when we have a tube of length L = 5m. With the values
of d and py, we calculate the mass m = dp,, per unit area of the tube wall to
be m = 600kgm 2. Substituting these values into the definition (2.9b) of M
yields M ~ 0.02 for oil flow through a steel pipe. By changing the value of M
from M = 0 to M = 0.02, it is found that the frequency w of the fundamental
mode decreases by 5.7%, the critical Reynolds number Re. of the fundamental
mode decreases by 3.2%, and the gradient dA/dRe of the growth rate for the
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fundamental mode decreases by 10.8%. Therefore, the effects of wall inertia in
this example are more significant and cannot necessarily be neglected.

Finally, we have developed asymptotic approximations for w, p, Re. and A
for the different modes in the parameter regime M > 1, where wall inertia
dominates over fluid inertia. Using these approximations, we have seen that
even and odd modes behave very differently. Our leading-order approximation
(2.157) for the modes f, of the pressure predicts that in the upstream region
0 < z < z1, odd modes have a linear rise in the pressure mode shape, whereas
the even modes have no change in the pressure. This approximation also
predicts that all odd modes tend to one fixed value in the downstream region
zo < z < 1 and that the even modes all tend to a different fixed value (see
figure 2.10). It is seen that all of these approximations are in good agreement
with the previously found semi-analytical results, even for M = O(1).

We have seen both in the semi-analytical results and in the asymptotic
approximations that the odd and even modes of the oscillations behave very
differently when M >> 1. In this scenario, the primary balance in the governing
ODE (2.82) for the elastic-walled region of the tube is between the axial tension,
azimuthal bending and wall inertia terms. As the fluid inertia no longer has an
effect on the primary balance, the odd and even modes A, for the oscillatory
area become symmetric and antisymmetric respectively about z = 0.5 at leading
order. In this case, the even modes have little flux in the upstream rigid region
of the tube (as the fluid predominantly moves between the crests and troughs
of the oscillations in the elastic-walled region) whereas the odd modes have a
significant flux in the upstream region. As such, the energy input for the odd
modes takes a significant value and this energy may be used to destabilise
the system. For even modes however, the energy input is small and the
destabilising effect is only a weak first-order effect, meaning the even modes

are much more stable.
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2.A Proof That the Eigenfrequencies are Real

Here, we prove that the eigenfrequencies w of the oscillations take real values.
We start with the governing ODE (2.82) for 7 in the flexible region (z; < z < z)
of the tube

ko F " + (Mw?ky — ko) — w?p =0,

where ’ denotes a derivative with respect to z. Multiplying this equation by

i " where * represents the complex conjugate, the following is obtained
szﬁ////ﬁ/ﬂr (szkz _ k0)|l~7”‘2 _ wzﬁ/ﬂrﬁ =0.

The next step is to integrate between z; and z; with respect to z. Doing so,

using integration by parts when needed, we calculate
2
ko F ([ﬁ///ﬁ//q _ / | ~///’2 dZ) + (szkQ _ kO) / ’ ~//‘2 dz
Z1 z1 Z1

(WV} —/Zl ﬁ’!zdz> —0.

From the boundary condition (2.85), we know that 7" = 0 at z = z1,zp, which

implies [p" ﬁ”*}z = 0. Hence, the above equation now becomes

4 zZ
(szkz—kg)/2|]§//|2dz—k2.7:/2‘f7”/|2d2
Z1

21
Z;
—w? ([ﬁ”ﬁrz - / ’ |ﬁ’|2dz> —0. (2183
Z1 zZ1

We now look at the governing equation (2.83) in the upstream rigid part of

the tube. Taking the complex conjugate of (2.83), it can be seen that

ﬁ/,+ﬁ — 0,

for 0 < z < z;. We may integrate this expression by parts with respect to z,

between z = 0 and z = z;. Carrying this out, rearranging, then multiplying by

w?, we find
Z1 Z1
w? / 172 dz — w? [ﬁ’*;ﬂ = 0. (2.184)
0 0
Adding equations (2.183) and (2.184) together yields the following
Z
(Mw2k2—k0)/ ]”’\zdz—kz}"/ 5P dz— w? [ —|—w / |72 dz = 0.
Z1 4
1 (2.185)

Finally, we know that f = 0 at z = 0 from the boundary condition (2.86). We
also know from the boundary condition (2.92) that 5/ = 0 at z = z; and thus,
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z
;5’* = 0 at z = z,. Hence, [ﬁ’*ﬁ} 02 = 0 and vanishes from (2.185). Rearranging
(2.185), it can be shown that

k2f/2|]5”’]2dz+k0/
o Z1 z

Z 5 Z) >
PPz Mk [
1

22
"] dz
2 1

As the terms being integrated on the right-hand side are all square terms of
real values, the integrals must be positive. Also, as all the constants are real
and positive and the denominator is non-zero for non-trivial solutions, the

2

right-hand side is real and positive. Hence, w* is real and strictly positive,

and thus w is real and non-zero. UJ



Chapter 3

Introducing an Axial-Bending

Boundary Layer

3.1 Introduction

In this chapter we turn our attention to introducing the effects of axial bending
to the model considered by Whittaker et al. (2010c) and the model derived
in Chapter 2. By including axial bending in these models, it is possible to
satisfy stronger and more appropriate boundary conditions at the ends of the
elastic-walled tube being considered in the models.

Here, it is useful to consider three different conditions which may be
applied at the end of a shell. These are the canonical ‘clamped” and ‘pinned’
boundary conditions (Howell et al., 2009, p.156), and the non-canonical ‘sliding’
boundary conditions, all of which may be viewed in Figure 3.1. The clamped
boundary condition seen in Figure 3.1(a) fixes the position and the axial
gradient of the shell at a fixed axial coordinate. The pinned boundary condition
shown in Figure 3.1(b) again fixes the position of the shell at a fixed axial
coordinate. However instead of fixing the axial gradient, this condition sets zero
torque at the same axial coordinate. Finally, the sliding boundary condition
viewed in Figure 3.1(c) fixes the normal and transverse components of the
position of the shell, as well as sets zero axial stress perturbation and zero
torque, at a fixed axial coordinate. In a typical Starling resistor set-up, the
elastic-walled tube is clamped onto two rigid tubes. In order to reflect this,
clamped boundary conditions should be set at the interfaces between the
elastic-walled and rigid tubes.

In the model by Whittaker ef al. (2010d) and the model derived in Chapter 2,

70
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(a) Clamped Condition (b) Pinned Condition

T
\

(c) (Axial) Sliding Condition

Figure 3.1: A physical representation of the canonical ‘clamped’” and “pinned’ boundary

conditions and the non-canonical ‘sliding” conditions, applied to a shell.

a ‘tube law” modelling the wall mechanics and relating the transmural pressure
acting on the tube to the cross-sectional area of the tube at each axial position is
derived. In the derivation of this tube law, axial bending and in-plane shear
effects are neglected, reducing the axial order of the problem from 8 to 2.
This axial order is not high enough for the full clamped boundary conditions
to be satisfied. Instead it is only possible to set the normal and azimuthal
displacements to zero at the elastic-walled tube ends in these models. These
conditions represent the Dirichlet parts of the sliding conditions, with the axial
gradient and axial displacement not necessarily set to zero.

Whittaker (2015) takes a step towards being able to satisfy the full clamped
boundary conditions by reintroducing in-plane shear effects in the model
by Whittaker et al. (2010d). This allows the normal, azimuthal and axial
displacements to be set to zero at the interface between the flexible and rigid
tubes. This represents the Dirichlet parts of the pinned boundary conditions,
with the axial gradient not necessarily set to zero. The inclusion of these
in-plane shear effects only raises the axial order of the problem from 2 to 6,
and this axial order is still not high enough for the full clamped boundary
conditions to be satisfied.

In order to satisfy the clamped boundary conditions, the effects of axial
bending must be included in the model. The inclusion of these effects allows
the axial order of the problem to increase to 8, which is high enough for
the clamped boundary conditions to be satisfied. Due to the scaling of the

axial bending terms, it is found that these terms only have a significant effect
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on the leading-order solution in a small boundary layer near the ends of the
elastic-walled tube.

In this chapter, a brief discussion of problems with a singular limit, and
of boundary layers in general, is given in §3.2. We then proceed to define the
mathematical set-up of the elastic-walled tube and the parameter regime of the
problem in §3.3. In §3.4, the clamped boundary conditions are defined in terms
of the dimensionless deformations of the tube wall. These conditions are then
compared with the “sliding” conditions tested in the model by Whittaker et al.
(2010d), and the pinned boundary conditions tested in the model by Whittaker
(2015). In §3.5, we then provide an overview of the work by Whittaker (2015),
where a shear-relaxation boundary layer that includes the effects of in-plane
shearing is introduced.

A boundary layer that includes the effects of axial bending is then
considered in §3.6. Using a simplified model based on a set of nonlinear partial
differential equations known as the Foppl-von Karman equations (Landau
& Lifshitz, 1959), an estimate for the size of the bending boundary-layer
width is derived. With this estimate, it is found that the problem splits into
multiple regimes depending on how the size of the bending boundary layer
compares with the tube wall thickness and the sub-layers that comprise the
shear-relaxation layer studied by Whittaker (2015). In §3.7, a description of
these different regimes is given. Finally, in §3.8 we give an overview of how

each of the different regimes are modelled in Chapters 4-7.

3.2 Theory of Singular Limits and Boundary Layers

Before we begin introducing the effects of axial bending to the model derived
in Chapter 2, it is necessary to have a full understanding of problems that have
a singular limit and how boundary layers may be introduced in order to obtain
a solution for these problems. The concepts that are discussed here may also
be found in Hinch (1991).

3.2.1 Definition of a Singular Problem

We begin with stating what it means for a problem to be singular. To illustrate

this, the following algebraic equation is considered

ex?+x—1=0. (3.1)
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If we set € = 0, this equation only has one solution, x = 1. However, in the
case € # 0 there are two solutions to (3.1), even if ¢ < 1. This difference in
behaviour when € = 0 and in the limit € — 0 is what sets (3.1) as a singular

perturbation problem.

3.2.2 Singular Differential Equations

It is also possible to have singular differential equations. An example of this is
the differential equation
d*f df

which has different solutions in the cases € — 0 and € = 0. As this is a
second-order differential equation, we would need two boundary conditions as
well to form a solvable boundary-value problem. For example, we could have

the conditions
f(0)=0,  f(1)=1 (3.3)

If we naively take € = 0, it is not possible for a solution of (3.2) to satisfy both
of these boundary conditions. However if € — 0, we still have a second order
equation to be solved, meaning the two boundary conditions may be satisfied.
When € # 0, the exact solution of this system is dependent on € and is found

to be ] .
floy = BT e T2 (3.4)

1
1—ec

However, in general it is not always possible to obtain an exact analytical

solution of a system containing singular differential equations. It is therefore
convenient to be able to form analytical approximations of the solutions of

singular differential equations.

3.2.3 Introducing a Boundary Layer

For € < 1, the solution of (3.2) for most x is approximated well by the solution

of
df
dx

However near the x = 0 boundary, f is found to vary on a shorter length scale.

+1=0.

Because of this, the second-order derivative d?f/dx? becomes large and the
first term of (3.2) is no longer small. The region where this occurs is known as

a boundary layer.
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By rescaling the variable x, it is possible to determine the leading-order
equation satisfied by f within the boundary layer and find an approximation for
f. The approximate solutions for f within the boundary layer (inner solution)
and outside the boundary layer (outer solution) will have a similar form in
an intermediate region of x. By forcing these solutions to be the same in this
intermediate region, any remaining unknown constants may be determined.
This method is known as matching.

We now fully illustrate the method used to find an approximation to the
solution of singular boundary-value problems using the system (3.2)—-(3.3). In
order to determine an approximate solution for f when € < 1, we split the
domain of the solution into two regions; an outer region where x = O(1) and
a boundary layer where x = O(dg) < O(1). The boundary-layer width dp will
be chosen so that the leading-order governing equation in the boundary layer
includes the second-order derivative needed to allow the boundary condition

at x = 0 to be satisfied.

3.2.4 Approximation in the Outer Layer

To determine an approximation for f(x) in the outer region, we begin by taking

the following asymptotic expansion
f) ~ fO) +ef V() +EfP )+ (35)

Substituting this into (3.2) and equating powers of €, we find the leading-order

governing equation to be
d f(O)
dx

and the higher-order governing equations as

+1=0, (3.6)

2 £(n—1) (n)
d éxz + délfx =0, for n>1. (3.7)

Hence, the €f,, term only appears in the higher-order governing equations.
As the leading-order equation (3.6) is first-order in x, it can only satisfy one
boundary condition. We know that the behaviour of the solution changes for
small x so we may ignore the f(0) = 0 condition. Thus, we apply the condition
f(1) = 1 to the solutions of (3.6) and (3.7). Substituting the asymptotic
expansion (3.5) into f(1) = 1 and equating powers of € yields the following
conditions

fO1y=1,  fM1)=0 for n>1. (3.8)
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Solving the leading-order system (3.6), (3.8a), f(%)(x) is found to be
FO(x)=2—x (3.9)

Substituting this into the first-order governing equation (3.7) when n = 1,
it is found that the second-order derivative vanishes and we are left with
df/dx = 0. Solving this and applying the condition (3.8b), we obtain
f) = 0. We find that all the higher-order systems have the same governing
equations and boundary conditions. Hence, the higher-order solutions for f(")
are calculated to be

fM(x)=0 for n>1. (3.10)

Substituting (3.9), (3.10) into the asymptotic approximation (3.5), the full

asymptotic approximation for f in the outer layer is found to be

f(x) ~2—nx. (3.11)

3.2.5 Approximation in the Boundary Layer

We now determine an approximation for f(x) in the boundary layer. We begin
by introducing a new variable x5 = Jz'x, which is O(1) in the boundary
layer. We also determine the size of f in the boundary layer by examining
the behaviour of the outer solution (3.11) as x — 0. Taking the Taylor series of
(3.11) about x = 0, it is seen that the outer solution for f behaves like an O(1)
constant when x — 0. Hence, the magnitude of f(x) in the boundary layer is
O(1).
Substituting x = pxp into the governing equation (3.2), we obtain
2

%jxé; é(fé;ﬂzo. (3.12)
As f = O(1) in the boundary layer and dp < 1, the second term of (3.12) must
be larger than the third constant term and these cannot balance at leading order.
Hence, the only sensible dominant balance that may occur at leading order in
(3.12) is between the first and second terms. For these terms to balance, we

must set 63 = € and the governing equation (3.12) becomes

1d2f 1df
ng%JrEd—xBH_o. (3.13)

As in the outer region, we define another asymptotic expansion for f(x),

this time valid in the boundary layer

f(x) ~ gO(xp) + egM (xp) + €2¢@ (x5) + ... (3.14)
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By substituting this into (3.13), the leading-order governing equation is found

to be
ng(O) dg(o)

dx% de

=0. (3.15)

As this involves different terms to the leading-order equation (3.6) in the outer
region, we can see that there are different dominant mechanisms in each region
giving rise to different behaviours. The higher-order governing equations are
calculated to be
d2oM)  go»)
g~ 98

dzg(”) L dg(”)
dx% dXB

dx% de

+1=0,

=0 for n>1 (3.16)

As the boundary condition f(1) = 1 does not reside within this region, we
do not apply this condition to the solutions of (3.15) and (3.16). Substituting
the asymptotic expansion (3.14) into the condition f(0) = 0 gives the following
conditions on the g

g™ (0)=0 for n>0. (3.17)

As the leading-order system and the systems higher than first order have
the same governing equation and boundary conditions, the solutions for these
systems will take the same form. Solving (3.15) and (3.16b) subject to the
boundary conditions (3.17), it is calculated that

g (xp) = A,(1—e ) for n#1, (3.18)

where the A, are undetermined constants. Solving the first-order governing
equation (3.16a) subject to the boundary condition (3.17) when n = 1, g(l) is
found to be

gM(xp) = A1 +1—xp— (A +1)e 5, (3.19)

Substituting the expressions (3.18) and (3.19) for the g(”) into the asymptotic
approximation (3.14) for f in the boundary layer, we find the following

approximation valid in the boundary layer

flxg) ~ Y €"An(1—e™8) +e[A1+1— x5 — (A +1)e™™]. (3.20)
n>0

n#1
3.2.6 Matching the Outer and Boundary Layer Approximations

We see that the constants A, in (3.20) are still undetermined. This is because the
governing equation (3.13) in the boundary layer is second order, but we have

only applied the single boundary condition f(0) = 0. In order to determine the
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Ay, we must somehow apply the boundary condition f(1) = 1. This is done by
matching the solution in the boundary layer to the solution in the outer layer
(which satisfies f(1) = 1) over some intermediate region where x is small and
xp is large.
We first express both x and xp in terms of an intermediate variable ¢ as
follows
ey =F=¢€""p where 0<ua<1. (3.21)

It is seen that as € — 0 with { = O(1), we must have x — 0 and xp — oo.
Substituting this variable into the approximations (3.11), (3.20) for f in the outer

and boundary layers, the outer layer approximation may be rewritten as

f(§) ~2—€", (3.22)

and the boundary layer approximation becomes

f(G)~ ) €Ay —€e*T+e(Ar+1), (3.23)
n>0

n#l

where the exponential terms have become exponentially small within the
intermediate region ¢ = O(1). As these approximations must be the same
within the intermediate region, we may equate the expressions (3.22) and (3.23)

to determine the unknown constants A,. Doing so, we find
Ay =2, A = —1, A, =0 for n>2. (3.24)

Substituting these constants into the approximation (3.20) for f in the boundary

layer, it is calculated that
f(xp) ~2(1—e *®) —exp, (3.25)

within the boundary layer. We also have the approximation (3.11) for f in the

outer layer, given by

fx) ~2—nx.

3.2.7 Comparisons of the Exact Solution and the Asymptotic

Approximations

In Figure 3.2, the exact solution (3.4) of the system (3.2), (3.3) has been
plotted in the case ¢ = 0.1. Also plotted are the leading-order, O(1)
terms of the approximations (3.11), (3.25) of f(x) in the outer and boundary
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layers for ¢ = 0.1. From the figure, it is observed that the leading-order
asymptotic approximations are in good agreement with the exact solution in
their respective layers. Hence, the method applied here has allowed us to
approximate the behaviour of the exact solution, both in the outer layer and

in a boundary layer near the x = 0 boundary.

2 ~ /,_———"f T
T~ o — (@)
1.8 G i \
T~ - = 2(1—e)

Figure 3.2: The exact solution (3.4) of the boundary-value problem (3.2), (3.3) (solid
line). Also plotted are the leading-order terms of the approximations (3.11), (3.25) of
f(x) in the outer layer (dashed line) and boundary layer (dashed-dotted line). All the

plots have been taken in the case € = 0.1.

3.2.8 Applications to Adding the Effects of Axial Bending to the
Model in Chapter 2

Reverting back to our original problem of adding axial bending to the model
derived in Chapter 2, we find that in the governing equations the axial bending
terms are small enough not to contribute at leading order in the bulk of the
tube. However, these bending terms have the highest axial derivatives as well,
meaning it is possible to find an axial scale where the effects of axial bending
become significant. As we have a term which is smaller than the dominant

terms in the bulk of the tube but also has the highest derivatives, we find
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ourselves in a similar situation to the example problem (3.2). Hence, we may
apply the same method described here to analyse the effect axial bending has

on the model.

3.3 Mathematical Set-up for the Elastic-Walled Tube

We consider the following set-up depicted in Figure 3.3. This set-up was first
used by Whittaker (2015) and is similar to that used in Chapter 2. Here, we
have an initially elliptical elastic-walled tube with length L, circumference 27ta
and tube wall thickness d, where the ends of the tube are fixed onto rigid tubes
(as in the Starling Resistor set-up depicted in Figure 1.1). The ellipticity of the
tube is set by a parameter ¢y such that the dimensional major and minor radii
are given by accosh(op) and acsinh(op). As in Chapter 2, the dimensionless
parameter c is set to be
ce rtsech(0p)
2E(sech(0p))’

where E(¢) is the complete elliptic integral of the second kind, as defined in
(2.2). The tube wall has incremental Young’s modulus E, Poisson’s ratio v
and bending stiffness K. It is also assumed that the tube wall behaves linearly
elastically over the deformations that will be considered here. In its initial
configuration, the tube is subject to a uniform axial pre-stress due to an axial
tension F/(27mad). The tube will then be subject to deformations of amplitude
b(t) that are slowly varying in dimensionless time ¢, and are induced by an

applied transmural pressure p;,,.

Figure 3.3: The set-up of the undeformed, elliptical, elastic-walled tube as used by
Whittaker (2015).

The following dimensionless parameters, first used by Whittaker et al.
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(2010d), are now introduced

aF

=5 =0), A= b(at) <1 (326)

L
(=—->1, 5:ﬂ<<1/ F
a a

These correspond to the tube length, wall thickness, axial tension and
amplitude of the deformations respectively. In this parameter regime, we have
a long, thin-walled tube under large axial tension, subject to small-amplitude,
slowly varying deformations that are induced by the transmural pressure.

We use a similar coordinate system to that used in Chapter 2 to describe
the elastic tube wall. The midplane of the tube wall is parameterized
using dimensional Lagrangian coordinates (x!,x?), which measure arc length
in the azimuthal and axial directions respectively, in the undeformed
configuration. These are then converted into two dimensionless Lagrangian

surface coordinates T € [0,271), Z € [0, /] via the relations
xl = ah(7)T, x> =aZ, (3.27)
where for convenience, we have introduced the scale factor #(7) set to be
h(t) = c(sinh? oy + sin? T)%.

We note that Z is set so that the ends of the elastic-walled tube, which are
clamped onto rigid tubes, are found at Z = 0,¢. This coordinate is different
to the dimensionless axial coordinate z € [0,1] used in Chapter 2 and we may

relate the two using the following

ZZEZ_Zl

22 — 27 !
where z; < zp are the positions in the z-coordinate where the ends of the
elastic-walled tube are found.

Using the coordinates (7, Z), we define the position (7, Z) of the tube wall

in its undeformed state to be

ccoshop cosT
10(T,Z) =a| csinhopsint |- (3.28)
Z

Denoting the position of the tube wall as r, we write the deformation r — rg of

the tube wall from its undeformed state as

r—1)= A(é)” <h(1~r) [E(t, 2, )a+ (T, Z, )] + {(7, Z, t)i) , (3.29)
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where A, t and Z are unit vectors in the normal, azimuthal and axial directions
of the undeformed tube wall. The dimensionless functions (cf, 1, é ) represent
the deformations of the tube wall in the normal, azimuthal and axial directions
respectively. The representation (3.29) is the same representation of the
deformation used by Whittaker (2015), whose work we shall consider later on.

Comparing (3.29) with the expression (2.20) for r used in §2.3, it is seen that
the deformations (é,ﬁ,é ) are related to their counterparts (¢,7,{,,) used in
Chapter 2 via the following

A

E=vz, =1ty =7+ (3.30)
As &, 1, {, qare all O(1) when Z = O({) (see Chapter 2), we have

A

E=0(0), 7=0(), {=0(max(1,6%?)), when Z=0((). (3.31)

3.4 Types of Boundary Conditions at the Tube Ends

Now that we have an expression for the deformation of the tube wall, we
may proceed to evaluate the conditions we wish to set at the ends of the
elastic-walled tube.

To reflect the fact that the ends of the elastic-walled tube are joined to
rigid tubes, the canonical ‘clamped’ boundary conditions that fix the axial
gradient and normal, azimuthal and axial displacement of the tube wall should
be applied. In terms of the deformations (¢,7,{), the clamped boundary
conditions are .

é:ﬁ:ézggzo at Z=0,¢. (3.32)

A depiction of the clamped boundary condition may be seen in Figure 3.4.
In the model derived by Whittaker et al. (2010d) and in the model derived in
Chapter 2, it is not possible to satisfy these clamped boundary conditions. In
order to see why, we consider how the equations governing the wall mechanics
in each model are derived.

The starting point for modelling the wall mechanics in each of the previous
models is the Kirchhoff-Love shell equations (Fliigge, 1972; Sendergaard, 2007),
which have an axial order of 8. These equations are then reduced to a single
PDE in the azimuthal deformation j, using asymptotic methods based on the
regime described in (3.26). Details of this reduction may be found in §2.3. The
resulting PDE has the following form

32
fﬁﬁz(ﬁ) —Ls(7) = —pm(2), (3.33)
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where L, is an nth-order linear differential operator in 7, and pim is the
dimensionless transmural pressure. The normal ¢ and axial { displacements
have been eliminated from the equation using the asymptotic result that,
geometrically, the shear and azimuthal stretching in the tube wall is negligible.
These constraints allow & and £ to be written in terms of 7] at leading order.
As the asymptotic analysis neglects the terms that arise from axial bending
and in-plane shearing, both of which have higher-order derivatives in the axial
direction, the axial order of the system is reduced from 8 to 2. Since the axial
order of the system has been reduced, it is not possible for a solution of (3.33)
to satisfy the clamped boundary conditions (3.32). Indeed it is only possible to
set one quantity at each end of the tube. In the work by Whittaker et al. (2010d)

and in the model in Chapter 2, the chosen conditions are
7=0 at Z=0,/.

The fact that we have negligible azimuthal stretching also sets & = 0 at the
tube ends. Hence, the conditions on the deformations satisfied within the two
models are

A

E=f=0 at Z=0,L (3.34)

These form the Dirichlet parts of a non-standard condition termed ‘sliding’,
which also sets zero axial stress perturbation and zero torque at the tube ends.
It is noted that the solutions of the model by Whittaker et al. (2010d) and the
model in Chapter 2 do not satisfy these conditions on the stresses exactly, but
the solutions are closer to satisfying these conditions than the full clamped
conditions (3.32).

Physically, these sliding conditions ensure that the normal and azimuthal
displacements are set to be zero where the elastic-walled tube joins the rigid
tubes in the Starling resistor. However, unlike when the clamped boundary
conditions are satisfied, the axial displacements { (set by zero axial stress
perturbation) and the axial gradient of the tube 9¢/9Z (set by zero torque)
are not necessarily set to zero at the tube ends here.

A step towards satisfying the full clamped boundary conditions (3.32) is
taken by Whittaker (2015). In his work, the effects of in-plane shear are included
in a shear-relaxation boundary layer at the ends of the tube. The inclusion
of the in-plane shear terms raises the axial order of the system from 2 to 6,
which allows the following six boundary conditions on the deformations to be
satisfied

E=n=(=0 at Z=0,L (3.35)
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These form the Dirichlet parts of the canonical ‘pinned” boundary conditions,
which also set the ends of the tube to have zero torque. Again, this condition
on the torque is not satisfied exactly by the solution to the model derived
by Whittaker (2015). However, this solution models the pinned boundary

conditions more closely than the clamped boundary conditions (3.32).

A depiction of these pinned boundary conditions is seen in Figure 3.4.
From the figure, we see that with these conditions, there is no displacement
in the elastic-walled tube where it joins onto the rigid tube, which is an
improvement on the Dirichlet parts of the sliding conditions (3.34). However,
the elastic-walled tube joins the rigid tube at a non-zero axial gradient. This is
in opposition with the stronger clamped boundary condition which forces the
axial gradient as well as the displacements to be zero at the interfaces between

the elastic and rigid tubes.

Rigid Tube Elastic Tube Rigid Tube Elastic Tube

Pinned Boundary Condition Clamped Boundary Condition

Figure 3.4: The pinned and clamped boundary conditions to be satisfied at the

interfaces Z = 0, ¢ between the rigid and elastic regions of the tube.

In order to satisfy the condition on the axial gradient 0¢/0Z within the
clamped boundary conditions (3.32), we need another boundary layer where
the axial bending terms are reintroduced to the problem. The inclusion of
these bending terms returns the axial order of the problem to 8, which is high

enough for the full clamped boundary conditions to be satisfied.
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3.5 Consideration of the Shear-Relaxation Layer Found
by Whittaker (2015)

The shear-relaxation boundary layer studied by Whittaker (2015) must be taken
into account when attempting to satisfy the clamped boundary conditions
(3.32). It is therefore convenient to review the work done by Whittaker (2015).
An overview of this work is now provided.

In the study carried out by Whittaker (2015), the set-up described in §3.3 is
considered. As in the model derived by Whittaker et al. (2010d) and derived
in Chapter 2, the Kirchhoff-Love shell equations are used to model the wall
mechanics, albeit using the smaller axial scale x> = aZ as opposed to the scale

x2

= alz used in previous models.

By applying an asymptotic analysis based on the parameter regime (3.26),
appropriate governing equations are derived for the deformations (¢,#,() that
hold true in a boundary layer near the tube ends. The boundary-layer width
is chosen so that these governing equations now include terms that arise from
in-plane shearing at leading order. The addition of these terms gives rise to
a system that is now 6th-order in the axial direction. Hence, it is possible to
satisfy the six deformation conditions (3.35) (three at each end of the tube) that
form the Dirichlet parts of the pinned boundary conditions.

Within the governing equations, there are terms that are proportional to a
new dimensionless parameter F, related to the dimensionless axial tension F
by

- 5202

F = mjz) (3.36)
Whittaker (2015) found that the shear-relaxation layer only has a significant
effect on the boundary conditions of the interior solution when F < 1.

Taking the limit /' — 0, it is found that the boundary layer here splits
into two distinct sub-layers: an inner layer with thickness O(F'/2) and an
outer layer with thickness O(F~1/2). It is found that the in-plane stresses
have different orders of magnitude in each layer. Because of this, although
the deformations (&,7,() are the same magnitude in both the inner and outer
layers, certain combinations of them have different sizes in the two layers. This
results in some leading-order cancellations in the governing equations.

Solving the systems within the inner and outer shear layers, Whittaker
(2015) has determined the leading-order in-plane stresses and deformations

within the two layers. The Fourier coefficients of the first Fourier modes of
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these stresses and deformations in the limit of a circular cross-section may be
seen in Figures 3.5 and 3.6. From the figures, it is seen that the stresses and
displacements have different behaviours in a small region near Z = 0 compared
to the rest of the domain, displaying the presence of the two layers within the

shear-relaxation layer.

Azimuthal hoop stress

In-plane shear stress

Axial stress

Figure 3.5: Solutions for the Fourier coefficients of the first Fourier modes of the
in-plane stresses in the shear-relaxation layer, with 7 = 0.01, in the limit of a circular

cross-section.
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Figure 3.6: Solutions for the Fourier coefficients of the first Fourier modes of the
deformations in the shear-relaxation layer, with F = 0.01, in the limit of a circular

cross-section. The inset displays the behaviour near Z = 0 more clearly.
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Whittaker (2015) found that the inner shear layer allows the azimuthal hoop
stress to decay to its required value in the outer layer, while leaving the shear
and axial stresses approximately constant in Z. The outer shear layer then
allows the decay of the shear and axial stresses so that they match with the
stresses in the bulk solution as Z — co. The outer layer also enables the axial
deformation ¢ to grow to the value needed to match onto the bulk solution as
Z — .

The solutions of the deformations and stresses within the inner and outer
layers are considered later on when we introduce the new axial-bending

boundary layer which must interact with the shear-relaxation layer.

3.6 Finding an Estimate for the Bending Boundary-Layer
Width

We now consider a boundary layer at the ends of the elastic-walled tube with a
small enough axial scale that the axial-bending terms within the Kirchhoff-Love
shell equations appear at leading order. The inclusion of these axial-bending
terms will ensure that the governing equations in this bending boundary layer
have an axial order of 8, allowing the full clamped boundary conditions (3.32)
to be satisfied.

To determine how this bending layer and the shear-relaxation layer found by
Whittaker (2015) interact with each other, we must find an appropriate estimate
for the width of the bending layer. This width is denoted 6. The size of Jp must
then be compared with the size of the inner and outer shear-relaxation layers to
determine the arrangement of these boundary layers near the ends of the tube.

As a starting point for finding an estimate for dp, we consider a set
of nonlinear partial differential equations known as the Foppl-von Karmén
equations (Landau & Lifshitz, 1959). These equations are used to model the

large deflections of a flat, thin plate and are as follows

] ow
4 —ad— P =
KV:w daxﬁ (‘T“ﬁaxa) P, (3.37)
Wap _ 3.38
op = (3.38)

Here d and K are the thickness and bending stiffness of the plate, w is the
dimensional normal deflection of the plate, (x!, x*) are dimensional Lagrangian

coordinates parameterizing the midplane of the thin plate and 0,4 is the Cauchy
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stress tensor. (The indices &, can take the values of 1 or 2.) The term P
represents the dimensional, external, normal force on the plate.

It is noted that as we are studying a curved shell rather than a flat plate,
the Foppl-von Karman equations will not model the bending layer in the tube
exactly. However, for the axial-bending terms to appear at leading order within
the governing equations in the bending layer, we must have g < 1. As such,
the azimuthal variation will be slow in the bending layer and we should be
able to obtain the correct size of the bending boundary-layer width using this
theory.

Assuming no variation in the azimuthal x! direction, we may reduce the

Foppl-von Karmén equations (3.37), (3.38) to the following two-dimensional

problem
o*w 0 ow .
ar o (=2t ) =i .
Egjfj —0, (3.40)

where the dimensional transmural pressure pf;,, has been included as the only
external force.

We now nondimensionalize the terms within (3.39) and (3.40). Using the
expression (3.29) for the deformation of the tube wall, the normal deformation

w may be written as

Aa 4
0
Although & = O(¢) when Z = O(¥) from (3.31), the size of ¢ will decrease to

some magnitude of O(Ap) as we move into the bending layer, where Z = O(43).

w=(r—ry) -h= (3.41)

To determine the sizes of the terms in (3.39) and (3.40), we must determine
the size of ¢ in the bending layer. Whittaker et al. (2010d) found that as the
axial scale becomes small in the bulk solution, (f behaves linearly in the axial
direction. From this property, the ratio of the size of the deformation to the
axial scale must be the same in the bending layer and outer solution. Hence,
we have the relation Ag/Jdp = 1. Rearranging this, we find Ag = é3 which in

turn gives

&=0(dp), when Z=0(dp).

For convenience, we rewrite ¢ as

A

¢ = 0phip, (3.42)
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where ¢p is O(1) in the bending layer and the factor of /(7) has been included
to remove any azimuthal dependence from the reduced Foppl-von Kdrmén
equations (3.39), (3.40). Substituting this into (3.41), it is found that

Aas
‘2 Bp. (3.43)

w=(r—ry) -h=

The Lagrangian coordinate x? is non-dimensionalized as

x? = adpzg, (3.44)

where zg = O(1) in the bending boundary layer. As the dominant stress in the

axial direction of the tube is the axial pre-stress F/(2mad), we must have

F K F
— - 4
U2 = 5 rad ad ’ (345
where we have used the definition of F in (3.26). Finally, we

non-dimensionalize the transmural pressure p;,, using the same scaling (2.17)
used in §2.3, that is

. A(K
Ptm = (a3) Ptm, (3.46)

where we have the dimensionless transmural pressure py, = O(1).
Substituting (3.43)—(3.46) into the reduced Foppl-von Kirmén equations
(3.39), (3.40), it is seen that (3.40) is satisfied and, after cancelling a factor of

AK/a3, (3.39) yields \ )
(S%EZEA; - ;;J:aazg%f = Ptm. (3.47)
Here, the first term corresponds to axial bending and the second term is due
to axial tension. It is noted that the factor of ¢? in the axial tension term
comes from the non-dimensionalization of the axial tension and not from the
geometric properties of the tube.
As ¢p, zp and pym are all O(1) in the bending layer, and ¢ > 1, Jp < 1,
F = 0O(1), it is seen that the axial tension term in (3.47) is much larger than the
transmural pressure term. Hence, the pressure term cannot appear at leading
order and the only dominant balance in (3.47) can be between the axial bending

and axial tension terms. For these terms to balance, we must have

'y 27K\ 2
op = O(F 2071 :O<<(1P> ) (3.48)

where we have used (3.26c) to rewrite the value of dp in terms of the axial
tension force F. Hence, the bending boundary-layer width is dependent upon

the axial tension of the tube wall, but not on /.
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3.7 The Different Regimes

Using the estimate (3.48) for the width &z of the bending layer, it is found that
the problem is split into multiple cases depending on how the estimate of Jp
compares with the sizes of the tube wall thickness and the inner and outer

shear-relaxation layers studied by Whittaker (2015). These cases may be seen in

Figure 3.7.
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Figure 3.7: The different cases of the problem. These depend on how the estimate
of the dimensionless thickness of the axial-bending boundary layer ép ~ F~1/2¢~1
compares with the dimensionless wall thickness § and the two shear-layer thicknesses
6~1¢~1 and 6¢.

In the first case, regime I, we consider the scenario where the thickness 6 of
the tube wall is much smaller than the estimate 05 ~ F~1/2¢~1 of the thickness
of the bending layer. Thus, 6 < F 1/2/7! and as F = O(1), this implies
o¢ < 1. In this case, we should still be able to use the Kirchhoff-Love shell
equations to model the wall mechanics in the bending layer. This is because
in order for Kirchhoff-Love shell theory to hold, the thickness of the tube wall
must be the smallest geometric parameter. In this case, as the wall thickness is
expected to be smaller than the bending-layer width, this property holds. The
scenario 6/ < 1 corresponds to the limit 7 — 0 taken by Whittaker (2015)
in his work on introducing a shear-relaxation boundary layer to the problem.
In this case, the shear layer modelled by Whittaker (2015) is found to have a

significant effect on the solution and must be considered.
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As the shear-relaxation layer is split into an inner shear layer of width O(d/)
and an outer shear layer of width O(6-1¢~1), regime I is split into two sub-cases.
In the first sub-case, regime I,, the estimate of the width of the bending layer
is smaller than the width of the inner shear layer (6 < dp < 6¢). Hence, we
have § < ¢! « 6¢, which implies 0/ < 1 < 5¢2. In the second sub-case,
regime I, the estimate of the bending boundary-layer width is larger than the
inner shear-layer width (6 > 6/), and we have 6¢ < ¢~1. This in turn implies
0% < 1. We note that as g ~ £~! in the estimate (3.48), g < 6 1/~! and the
bending-layer width is still smaller than the outer shear-layer width.

In the second case, regime II, the estimate of the bending layer thickness is
much smaller than the tube wall thickness (dp < J). Applying the estimate
(3.48) and rearranging, it is found that in this case, 5¢ > 1. As this corresponds
to F > 1, the shear-relaxation layer is not expected to be significant here.
In this regime, it is expected that the Kirchhoff-Love shell equations can no
longer be used to describe the wall mechanics within the bending layer. This is
due to the fact that for the Kirchhoff-Love shell equations to accurately model
the wall mechanics, the thickness of the tube wall must be smaller than the
other geometric parameters of the wall. Here, the axial scale being considered
is smaller than the wall thickness, and this condition is violated. Hence, a

different model must be applied.

3.8 Overview of Chapters 4-7

In the next four chapters, we will concentrate on modelling the bending layer
in each of the regimes I, I, and II.

We first turn our attention to regime I, in Chapter 4. Here, the
Kirchhoff-Love shell equations are used to model the tube wall. By taking
the parameter regime (3.26) along with 6/ < 1 < /2, the leading-order
force-balance equations are derived. To enable a sensible dominant balance
in these equations, it is found that the bending boundary-layer width Jp must
be O(F~1/2¢~1). This is in agreement with the estimate (3.48). By solving
the leading-order force-balance equations, expressions for the leading-order
deformations and area change within the bending layer are found.

In Chapter 5, regime I, is considered. Again, the Kirchhoff-Love shell
equations are used to model the tube wall. The parameter regime (3.26) along

with §/2 < 1 is then taken to find the leading-order force-balance equations. It
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is found that in this regime, the inner-shear layer is not needed and the bending
layer is situated at the elastic-walled tube ends. The bending layer then matches
onto the outer shear layer. It is also found that the bending boundary-layer
width is d5 = O(61/?) in this regime. This is different to the estimate (3.48) and
the value found in regime I, in Chapter 4. The reason for this is because we now
have azimuthal and axial stretching terms appearing within the leading-order
normal force-balance equation. This is different from regime I,, where these
terms are small enough that they do not appear at leading order. This is also
different from the toy model in §3.6, where the reduced Foppl-von Kdrman
equations (3.39), (3.40) used to derive the estimate (3.48) do not capture the
effects of azimuthal and axial stretching. By performing an asymptotic analysis,
the leading-order deformations and their first-order corrections in the bending
layer are determined.

Finally, in Chapters 6 and 7 we consider regime II. As the Kirchhoff-Love
shell equations are no longer expected to be valid in this regime, we instead
use a two-dimensional linear elastic model to describe the wall mechanics. The
deformations that arise within this regime are then both numerically calculated
and approximated analytically. With this model, a bending layer with width
op = O(F~Y2¢71) is found in the case 6¢ < 1. This is in agreement with
the boundary layer found in regime I, in Chapter 4, and the estimate (3.48).
However, in the case 6/ > 1, we instead find a different boundary layer with
width dp = O(6%¢F2). This is larger than the estimate (3.48) and larger than
the tube wall thickness . Despite this, we find that Kirchhoff-Love shell
theory is still unable to model this boundary layer. This is due to the fact
that the particles normal to the midplane of the tube wall in the undeformed
configuration must stay normal to the midplane when the tube is deformed
for Kirchhoff-Love shell theory to be applicable. Within the boundary layer,
this is not the case and Kirchhoff-Love shell theory cannot accurately model
the boundary layer. It is found that this boundary layer is actually a transverse
shear-relaxation boundary layer, although not the same as the shear-relaxation
layer studied by Whittaker (2015).



Chapter 4

The Bending Boundary Layer in
Regime I, (00 < 1 < §0?)

4.1 Introduction

In this chapter, we consider the problem described in Chapter 3, where we
introduce an axial-bending boundary layer to the model of flow through
an elastic-walled tube derived in Chapter 2. This bending layer will allow
us to apply the canonical clamped boundary conditions at the ends of the
elastic-walled tube, where it is clamped onto two fixed rigid tubes.

Here, we consider regime I, where the dimensionless tube wall thickness §
and tube length ¢ are set so that 0/ < 1 < 502, In this case, a shear-relaxation
layer studied by Whittaker (2015) (details of which may be found in §3.5)
is found to have a significant effect on the solution in the bulk of the tube.
Therefore, this shear layer must be considered. It is noted that the shear layer
is split into two sub-layers: an inner layer of width O(é¢), and an outer layer of
width O(5—1¢1).

From the estimate for the width of the bending layer derived from the toy
model in §3.6, we expect the dimensionless bending boundary-layer width
0p to be larger than the dimensionless tube wall thickness 6. As such, the
Kirchhoff-Love shell equations (Fliigge, 1972; Sendergaard, 2007) may still be
used as a model for the wall mechanics. However, we also expect Jp to be
smaller than the widths of both the inner and outer shear-relaxation layers.
Hence in this regime, we expect the axial-bending boundary layer to be situated
at the ends of the elastic-walled tube. The bending layer then matches onto

the two shear-relaxation boundary layers, which in turn match onto the bulk

92
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solution in the main region of the tube. The arrangement of these boundary
layers along the dimensionless axial coordinate Z € [0, /] introduced in Chapter

3 and used in the work by Whittaker (2015), may be seen in Figure 4.1.

0 0(%) 0(60) 0510 o) Z

Rigid—flexible
region boundary

Tube wall
of thickness ——=>
0(9) Bendi .
ending Outer Bulk Region
boundary shear-relaxation
layer Inner layer
shear-relaxation
layer

Figure 4.1: The arrangement of the boundary layers in a cross section through the
centre point and along the length of the tube, in regime I, where 6/ < 1 < 6¢2. We
expect to have: § < 6p < 0l < 1< 6 M1 < L.

We later find that the deformations in the bending and shear-relaxation
boundary layers only depend on the properties of the tube wall, which are
uniform along the wall, and not on the properties of the fluid inside the tube.
As such, the boundary layers at the interfaces between the flexible and rigid
parts of the tube will behave the same at both the upstream and downstream
interface. Hence, we only need to calculate the deformations at one of these
interfaces. In this chapter, we will concentrate on modelling the bending layer
at the upstream end (Z = 0) of the elastic-walled tube.

This chapter is arranged as follows. In §4.2, the mathematical set-up of
the tube and its deformations is provided, and in §4.3, the behaviour of the
deformations within the inner shear-relaxation layer is considered. Estimates
for the sizes of the deformations in the bending layer are calculated in §4.4, and
the boundary and matching conditions for the deformations in the bending
layer are derived in §4.5. In §4.6, the tensors and constitutive laws needed in
the problem are provided, and in §4.7 the governing force-balance equations
are derived and the sizes of the terms within the force-balance equations are

calculated. In §4.8-8§4.10, the leading-order force-balance equations are found



94 Chapter 4. The Bending Boundary Layer in Regime I,

and the leading-order deformations within the bending layer are calculated.
The area change in the bending layer due to the leading-order normal
deformation is calculated in §4.11. Finally in §4.12 and §4.13, the corrections
to the deformations in the inner shear, outer shear and bulk layers, due to the

leading-order deformations in the bending layer, are determined.

4.2 Mathematical Set-up

We consider the set-up described in §3.3 and depicted in Figure 4.2. The full
details of the non-dimensionalization of this problem may be found in §3.3.

Here, we have an initially elliptical elastic-walled tube with dimensionless

a’d

\

Figure 4.2: The set-up of the undeformed, elliptical, elastic-walled tube, showing the

dimensionless coordinates and variables.

length £ > 1 and dimensionless wall thickness § < 1. This tube is
subject to a dimensionless uniform axial tension F = O(1) in its undeformed
configuration, and deformations of dimensionless amplitude A(t) < 1 are
induced by a dimensionless transmural pressure pu,. The amplitude A(t) is
assumed to be slowly varying in dimensionless time t. The tube wall has
dimensionless mass M per unit area, Poisson’s ratio v and bending stiffness
K, and we also introduce the parameter F given by
22
F= 12‘2 Res 5l (4.1)
This parameter appears in the model of the shear-relaxation layer derived by
Whittaker (2015), which is considered later on.
The midplane of the tube wall is parameterized with two dimensionless
Lagrangian surface coordinates T € [0,27), Z € [0,/], which represent arc

length in the azimuthal and axial directions respectively. These are related to
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their dimensional counterparts (x!,x?) by dx! = ah(t)dt, dx*> = adZ, where a

is the typical radial scale of the tube and the scale factor /(7) is defined as
h(t) = c(sinh? oy + sin? )%,

where 0y is a parameter setting the ellipticity of the tube, and c(0p) is a known
function dependent on the ellipticity of the tube.
Using these coordinates, the dimensional position 1y(7, Z) of the tube wall

in the undeformed configuration is defined to be

ccoshop cosT
10(7,Z) =a| csinhopsint | . (4.2)
Z

Denoting the position of the tube wall in its deformed configuration as r, the

deformation r — rg of the tube wall may be written as

A(é)” (1 (E(t,Z,)a+7(t, Z,0)F] +E(x, Zrtﬁ) )

e n(7)

This is the same representation of the deformation used by Whittaker (2015)
in his study of the shear-relaxation layer which must be considered in this
regime. The vectors fi, t and 2 are unit vectors in the normal, azimuthal and
axial directions of the undeformed tube wall, and the dimensionless functions
(c’f,ﬁ,é ) represent the normal, azimuthal and axial deformations of the tube

wall.

4.3 Consideration of the Inner Shear-Relaxation Layer by
Whittaker (2015)

As the bending boundary layer has a smaller width than the shear-relaxation
layer studied by Whittaker (2015), the bending layer must match onto a
modified shear-relaxation layer. In particular, it must match onto the inner
shear layer which is the smallest sub-layer within the shear-relaxation layer.
Hence, to determine the sizes of the deformations within the bending layer,
along with the matching conditions the deformations must satisfy as we exit
the bending layer, the behaviour of the inner shear layer must be considered.
When deriving a model of the shear-relaxation layer, Whittaker (2015) used
the scaled axial coordinate £ = F~2Z to describe the axial behaviour of the

deformations within the inner shear layer. Using this coordinate, Whittaker
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(2015) found asymptotic approximations for the deformations &, 7, { within the
inner shear layer. These approximations are denoted &, 7s, {s here and they
satisfy the Dirichlet parts (3.35) of the pinned boundary conditions defined in
§3.4. However, they do not satisfy the full clamped boundary conditions (3.32).
As such, the bending boundary layer we introduce will force a correction to the
approximations fs, s, CAS. This correction will only take effect at higher orders
in the asymptotic approximations, and thus we may still use the leading-order
approximations to estimate the sizes of the deformations within the bending
layer.

We consider the leading-order behaviour of the approximations &, s, {s as
found by Whittaker (2015) when £ — 0. Taking the Taylor series of é’s, s, és
about Z = 0 yields at leading order

- Fih(t)v )|z &
G~ 15 (1(_ V’ZB ; (4.4)
A Fio 1+v2+v)]2 2v(l+v)2
b i Lh { T)< 2 B(7)] )
2(14v) 1 3 (Yi(1) ,
R [h<r>|é<r>|2ar<h<r> )-wls} 9
b~ Te L BuOYi(2), 4o

when 2 — 0. Here, ’ denotes the differential with respect to 7. The 7t-periodic,
orthogonal functions Y, (7) are the eigenfunctions of the operator
EHYENIN)

and 2 are the corresponding distinct positive eigenvalues ordered such that
0 < 1 < pp < pz.... For finite 0y, these eigenfunctions and eigenvalues can
only be found numerically. Finally, the B, (t) are arbitrary O(1) functions of ¢
setting the amplitude of each eigenmode of the deformations and B(7) is the
dimensionless base-state azimuthal curvature, given as
_ c?sinh 20y

2n3

4.4 Estimating The Sizes of the Deformations in the

Bending Layer

Using the approximations (4.4)—(4.6) for the leading-order deformations in the

inner shear layer as £ — 0, it is possible to estimate the sizes of the deformations
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in the bending layer. Denoting the width of the bending layer as Jp, we have
that Z = O(Jp) in the bending layer, which implies £ = O(6F ~2). The precise
boundary-layer width 6z is undetermined at this point, but will be found later
in §4.8 when the normal force-balance equation is considered. Substituting the
size of Z into the approximations (4.4)—(4.6) and applying the definition (4.3) for

the total deformation r — ry, we find

(r—r1)) =0 (A”ZB) , (4.8)
(r—1) t=0 (A‘fﬁﬂ , (4.9)
(r—19)-2=0 <A‘;‘SB ﬁ%> , (4.10)

within the bending layer. Using this, we rewrite the representation (4.3) of the
total deformation as

A(t)bl(SB
14

r—TYy) =

1 . o -
<h(1’) [CB(T,ZB,IL)IAI—|—f7’]B(T,ZB,lL)t] —I—./—'.%éB(T,ZB,t)Z) ,
(4.11)
where §p(T,z8,t), n8(T,28,t), {B(T,2zB,t) are O(1) functions and we have

introduced the new axial coordinate
zp =057, (4.12)

which satisfies zg = O(1) in the bending layer. The scale factor /(7) has once

again been included for convenience.

4.5 Boundary and Matching Conditions

The boundary and matching conditions that should be applied in the bending
layer are now derived. By comparing the expressions (4.3) and (4.11) for r — 1y,
it is seen that

A

& = 655, j=opFns, & =065F1(s (4.13)

Hence, the approximations for the deformations in the bending and inner shear

layers must satisfy the matching conditions

&g~ 658, e~ 05 F ', Qp~ 65 F 38, as zp — oo, £ — 0.
(4.14)
When applying these matching conditions, it is convenient to express both

2 and zp in terms of an intermediate variable z; with size O(1) in a region
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between the bending and inner shear layers. We define z; as follows
_ . -1
(Fiop!) 2=z = (Fio5")" 2, where % <a<l (4.15)

It is noted that when z; = O(1), this also sets zg — oo and 2 — 0, as .7:"%51;1 > 1.
The condition 1/2 < & has been set so that the order of the terms within the
expressions for the bending layer deformations is retained as zp — .

Using (4.13), we also rewrite the full clamped boundary conditions (3.32),

seen in §3.4, in terms of ¢g, #p, {p and zp as follows

d
G =8 =gy =y =0 at z=0 (4.16)
ZB

4.6 Tensor Notation and Constitutive Laws

The various tensors that are needed to derive the governing force-balance
equations in the bending layer are now provided. We begin with defining the
basis vectors aj, ap, and the unit normal az to the tube wall in the deformed
state. These were first defined in equations (2.21), (2.22) in §2.3 and are given

as
or a; X ap

T P T farxal

(4.17)

where « spans over (1,2). Substituting the expressions (4.2), (4.11) for 1y, r into

(4.17) and neglecting terms of O(A?) and higher, it can be shown that

a; =i+ %53 ([—ggB(r) +Jf% ("hB)] t+ [J-“UBB( )+ 5 (%)] A

1308,
= ) (4.18)
.. A 9B | #97B, 190B
az_”z(h [azB “TazB]“T 925 > (4.19)
a3=ﬁ—£Ah<5B {J:“UBB( )+a(€h’3>}t+g§§ > (4.20)

With these it is possible to evaluate the metric tensor dqp, curvature tensor
byp and in-plane and bending strain tensors, y,s and ks, in the bending

boundary layer. These tensors are defined as

d
App = ay - B, b wp = a3 - a;ﬁ,

(4.21)
Yap = %(aaﬁ - ﬁaﬁ)r Kap = —baﬁ + bzxﬁ + 217“’)’(55.

The definitions (4.21) are the same as (2.23), (2.24) and (2.32), used in §2.3.
Substituting (4.18)—(4.20) into (4.21) and again neglecting terms of O(A?) and
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higher, we find
> 3 =1
A |2 [-eB+ 7% (B)] FRerai]
llzxﬁ—lla,B‘FEh Foms | 5 7100 L F L% ,  (4.22)
oz, TOBF 27 2hF2g?
750 a (19
by = g + A OB(B1+ B2) ]:B%%—g(%%) 123)
ap — ta 7, F) 2 2 ’ .
alh | B3+ (1) g
A | os|-eB+FL(B)] L[FRE+opFiYE]
Yap % 1 ]:% Iy f%aﬁ} h./—:'%aé ’ (4.24)
2 Jdzp T ZB
~l_
LoD é8(B1 — B2) 53}—238%_%(%3%) w2
ap — "o 9 a ~ =3 22 ’ .
o | - (b)) - TR AR

where 7,4 is the 2 x 2 identity matrix, E,w is defined as

- B 0
e
a 0 O
and B1, B, are given by

B = [ gBB+faa (”hB)}, By = aar (h [J—'n B+aT(§B)D. (4.26)

Using these tensors, the in-plane stresses N*f and in-plane bending
moments M* may be determined. Fliigge (1972) found the following linear
constitutive laws relating N, M*P to Aups baps Yaps Kap

K2 ]: 12
N = zSzéﬁ + 2—521([(1 — )" + vytaP)

+K {(12> 2aPBT 1 aPTHT 4 atBEY ) (a0 gBT 4 g7 aP)

+v[a®Pb7 + a7 — a"F a1, }KM, (4.27)
M = K[=(1 = ) (577" — b}y*) — v(b*® — blatF o
1
+§(1 —v) (k" 4+ kP*) + va*Pi}), (4.28)
where 5} is the Kronecker delta. Substituting the tensors (4.22)—(4.25) into the

constitutive laws (4.27)—(4.28), the leading-order components of N*B, M*F are

calculated to be

s K (000 ) AK 12Fivde S0 Fom N (129)
a2\ 0 a2F ) a2\ 0 )fg’;B 12F1%: R
B

1,,9%¢ 9 (19
M‘Xﬁ o AK _gv aZZB _(1_1/)8'[ (E%)
- 9 (10 1 92

i .. (4.30)
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The first term of (4.29) corresponds to the axial pre-stress applied to the tube
wall and the second term corresponds to stresses induced by the deformations

of the tube wall.

4.7 Force-Balance Equations

To model the mechanics of the tube wall, Kirchhoff-Love shell theory is used.
In §2.3, the governing force-balance equations (2.29)—(2.31) in the normal,
azimuthal and axial directions were derived from the Kirchhoff-Love shell
equations in covariant differential form (Fliigge, 1972; Sendergaard, 2007). In

terms of the deformations (g, #p, {p, the force-balance equations are

K&*M _ d?6*
VngﬁMaﬁ + Naﬁbalg - anﬁ
A(t)K A(H)K 2

+ A1) (/K35 M 4% . _y, (4.31)

B3 P T Ts () de

K&?M ,d?0*r  A(t)KogF M d?np

Bl _ 11 By 1 _ —_
VNPl =B VMPT = —mhl = B hmae T =0 (4.32)
K&2M ,,d20*r  A(H)KépFz  d*
B2 _ 12 By 2 . B B —
VNP — 0V gMPT 4 S b Moy =0, (433)

where the covariant derivatives V, at leading order are

10 1 0
Vi=——+40(4), Vo= 105 925

pr O(A), (4.34)

and 6" is the angle of rotation that the tube wall takes about an axis passing
through the material in the a, direction. By considering the size of the normal
deformation of the tube wall within the bending layer and the azimuthal and

axial length scales being used, we find the 6** may be scaled as follows

A A
01 = ?01, 02 = %02, (4.35)

where 6! and 62 are O(1) in the bending layer.
It is found that we must evaluate some of the higher-order terms in the
covariant derivatives of N*f due to the large pre-stress term. The full expression

for the covariant derivative of N*P is

up
VaN* = a;\; +T2%, N 4+ T8, N, (4.36)

where the Christoffel symbol ng is defined as Fﬁv = g*Pa, - a,,. Each

component of 1"51, is O(A) and as such we need only consider terms involving
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N?2, the only non-O(A) component of N*f. The Christoffel symbols needed are

I}, T}, and T%,, which are calculated to be

1 _ 2
I} = alhB 32, +0(A?), (4.37)
AF 9*np
1 _ 9B 2
ri = alogh 922 +0(A%), (4.38)
AF? 92Zp
2 =2 2
Th=" 5 922 +0(A%). (4.39)

Now we substitute (4.22)—(4.30) as well as (4.34)—(4.39) into the governing
force-balance equations (4.31)-(4.33). Doing so, it is possible to determine
the sizes of each of the terms in the force-balance equations and see what
terms contribute at leading order. The scalings of the terms within the
force-balance equations can be found in Tables 4.1-4.3. It is found that the terms
corresponding to angular acceleration, wall inertia and transmural pressure are
not large enough to contribute at leading order and thus are not included in
the tables. (In (4.31)~(4.33) these terms are at most O(AK/a%), which is strictly
smaller than some of the other terms in these equations when ép < 1.)

To solve the force-balance equations (4.31)-(4.33), we form asymptotic
approximations of the deformations ¢, #p and (p. By examining the
scalings of the terms within the force-balance equations, it is found that these

approximations should take the form

& =&Y +0(57102), (4.40)
s =1y +0(6702), (4.41)
s =0 + 0 1072). (4.42)

Here (;‘g)), 17;0) and §§30) are the leading-order terms of the asymptotic
approximations and the higher-order terms of the approximations are
O(671472) at most. We proceed to solve the leading-order force-balance
equations and determine expressions for the leading-order deformations (',‘](30),
0) 4nd 7@
fp and Gy

4.8 Normal Force-Balance Equation

From the scalings in Table 4.1, we find under the assumption Jp < 6/ < 1 that
the only terms that can contribute at leading order in the normal force-balance

equation are the terms from axial-bending, and pre-stress and axial curvature.
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Dominant contribution to normal

Mechanism Strain
force-balance equation
Azimuthal G V2V2M22Na3AzI§B (L]:— )
stretching 70 Ny B R0 F)
B
Shear
AF onFi 21, MK (F 5 FL
s Y21~ 7 (F,0F2 VoViM~ ~ F,ogF2
stretching Y12, Y21~ 7 (F, 05 F2) 2V1 3065 (F,08F2)
1
Axial A+l V2V2M22Na3AEI(§B %
stretching (et 1111, AK 67
N ~ - OB
a E(SB 62
Azimuthal
~B% (1 F 2, _AK a
bending K11 al (1,f) VQVZM 55 (1,?)
=1 =1
Torsion KlzNa%(l,fz(sB) V1V2M12, VzlenN,ﬁAgI;B (1,5}3./—'.2)
Ko~y (1, F) ViVaM'"?, Vo ViM? ~ 5 (1, F)
Axial
A 22 AK 1
bending 2 aty VaVaMT s, 5%
Pre-stress
and axial KQZNﬁ NZ2py~ a3A€I§B Fe?
curvature

Table 4.1: Scaling estimates for the dominant terms contributing to the normal
force-balance equation in regime I,. The mechanisms that contribute at leading order

are in bold.

(Since F < 1, the other effects are all strictly smaller than at least one of these

two terms.) These two terms must balance and thus we must have
op = F 2071, (4.43)

This is in agreement with the estimate (3.48) derived from the toy model in
§3.6. Using (4.43) and the asymptotic expansion (4.40), we find the normal
force-balance equation (4.31) becomes, at leading order

ot érg)) 2 (;I%O)

VoVoM?* + N?2by =0, =
2V2 + 22 E)z‘é az%

=0. (4.44)

The general solution for é‘g)) is therefore

£ = A(t, t)e® + B(t,t)e ™ + C(1, )25 + D(T, 1), (4.45)
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Dominant contribution to

Mechanism Strain . .
azimuthal force-balance equation
Azimuthal
~A% ViN1~ 2K 52572(1, F
stretching m ! @ 0p "1 7)
Shear L VoN#~ LK 572(F, 5Bf%)
tretchi Y12, 721~% (F, 0B F1) { 27 ”w Y
stretching b1 VoM 335 (F,0pF2)
Axial
A3 1, AK 5 15—
~2F2 V1N OgF2672
stretching 1277 1 ety
Azimuthal ViNU~BK 521 F
. KllN*(l }-) ' azfﬁ ( ~)
bending b ViM'~ 3005 63(1, F)
N VN1~ 2K 50(1, 65 F2
K12~7 ( -7:%5 ) W B< 131 )
, b1 VoM#~ 3/(5 (1,05F2)
Torsion VN2~ a, ]:_)
K1 N% (1/ f') { - a3£53 ~
Axial
A 11
bending Rl VMY~
Pre-stress
and axial F%QN% VaN?~ 355 S FFe?
curvature

Table 4.2: Scaling estimates for the dominant terms contributing to the azimuthal

force-balance equation in regime I,.

is in bold.

where A, B, C, D are arbitrary functions.

The mechanism that contributes at leading order

By examining the matching condition (4.14a) for {p as well as the

A

leading-order approximation (4.4) for & as £ — 0, it is seen that for the

matching condition to hold, Céo)
zg — oo. Hence, A(T,

(4.16), it is also determined that

C(t,t) = B(1,t),

D(t,t) =

—B(7,t).

cannot be exponentially growing in zp as

t) = 0. Applying the clamped boundary conditions

(4.46)

Substituting the values of A(t,t), C(7,t) and D(7,t) into the general solution

(4.45) yields

o)

= B(1,t)(e

B | zp — 1)

(4.47)
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Dominant contribution to

Mechani Strai
o o axial force-balance equation
Azimuthal )
~ A% VN2~ AK5-2(1 F
stretching Ty 2 5672 (L F)
Shear o o
o~ (F6FE) VINRAAKSA(F G F )
stretching
Axial ~ )
. ’Yzz*v%f% VN2~ 5 1F)s5-2

stretching
Torsi ko~d (1, Fiop)  VaN2~BK (1,65 F )
orsion o R

Ko1~5 (1, F) 1N2~ 8K (1, F)
Axial

A 22 AK 52
bending 2™ ats; VaN2~ K5
Pre-stress -
d axial r%l““a%(ll/]:) VN2~ AK2(1, F)

and axia 1 o

ngw% VaNZ2AK 51 7
curvature

Table 4.3: Scaling estimates for the dominant terms contributing to the axial
force-balance equation in regime I,. The mechanism that contributes at leading order
is in bold.

The function B(7t,t) is now set so that the matching condition (4.14a) is
satisfied. As zgp — oo, (’,‘g)) is approximated by
&0~ B(t,t)(z5 — 1). (4.48)

Substituting this and the leading-order approximation (4.4) for & as 2 — 0 into
(4.14a) and rewriting zp and Z in terms of the intermediate variable z; using
(4.15), it can be shown that

~1 1—a
B(t, 1) ((ﬁ%(s )Hzl - 1) o~ (7 512()1 _;(T)VZI i B, (t . (4.49)

Examining this relation, we see that the linear terms on both sides of the

expression have the same size. However, the constant term on the left-hand-side
is a factor of (F %(55 Dya=1 smaller than the other terms in the relation. As
such, this term will not affect the leading-order matching condition but will
instead force a correction to 65 at a higher order. The effect of this correction is

evaluated further in §4.12. As the correction does not apply at leading order,
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the leading-order term of the approximation & in the inner shear layer still
behaves linearly as z; — 0 and thus it still satisfies the Dirichlet parts (3.35) of
the pinned boundary conditions.

Rearranging (4.49) and neglecting the constant term on the left-hand-side,

it is calculated that

B(t,t) = h(T)l;z) i B (1) Yo (7). (4.50)
n=1

C12(1-12) &

Hence, we find the leading-order deformation ég)) in the bending layer to be

&y =~ ulzl(T—)Uvz) . Bu(DYu(r) (e +25—1). (4.51)

This is depicted in Figure 4.3 in §4.12.

4.9 Azimuthal Force-Balance Equation

Using 0p = F ~3¢-1 and the scalings in Table 4.2, we find the only
leading-order term within the azimuthal force-balance equation (4.32) to be
one of the shear stretching terms, which has size O(u3A€I§B 572F). Substituting the
asymptotic approximation (4.41) for 1 into (4.32), the leading-order azimuthal

force-balance equation is determined as

3217(0)
VoN# =0, = b =o. (4.52)
dzg
Thus, the general solution for 17}%0) is
1Y) = E(t,t)zp + F(,t), (4.53)

where E, F are arbitrary functions.

Applying the clamped boundary condition (4.16) to (4.53) gives
F(t,t) =0. (4.54)

Substituting (4.53) and the approximation (4.5) for /s as £ — 0 into the matching
condition (4.14b), and once again rewriting both zg and Z in terms of z; using
(4.15), we find

1 0 ) 20(1+v)z 1+v(2+v)]z2
E(T,t)z] ~ 12(17_1/2)”;1371@)% {Yn(T) < (B(T)|) 1| 2(]:_(%(531)1] 1>

2(1+v) 1 d
A [h<r>|B<r>|zar ( n(7)
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It is seen that there are terms linear in z; with the same size on both sides of
(4.55), allowing these terms to be matched. On the right-hand-side, there are
also terms quadratic in z; which are a factor of (F %551)*"‘ smaller than the
other terms in the relation. As such these terms will not play a part in the
leading-order matching and will instead match with the higher-order terms in
the asymptotic approximation (4.41) for 7. We see that there is no correction
at leading order to the approximation 7, in the inner shear layer, and thus
as z; — 0, the approximation of the leading-order term of 7 still contains
only linear and quadratic terms in z;. Hence, the leading-order term of 7 still
satisfies the Dirichlet parts (3.35) of the pinned boundary conditions.
Matching the linear terms in (4.55), it is found that

E(t0) = o Y Balt) o {21/(1';(1;))1‘@@)

e (52) ]}

which in turn gives the leading-order azimuthal deformation 17)(90) in the

N
—
—_
+

bending layer as

0) _ © 0 [2v(1+v)Y,(7)
W= e 505 e
204 18 (%)
o e (57) 6|} e

This is plotted in Figure 4.4 in §4.12.

4.10 Axial Force-Balance Equation

Finally, by looking at the scalings in Table 4.3, we find the leading-order axial
force-balance equation to be at O(%&glﬁ %(5*2) and contain only the axial
stretching term. Thus, by substituting in the asymptotic approximation (4.42)

for (g, the axial force-balance equation (4.33) becomes, at leading order

aZg(O)
VoN2 =0, = £ —o. (4.58)
0z%
Hence, the general solution for ¢ gJ) is found to be
70 = G(,t)zp + H(T, 1), (4.59)

where G, H are arbitrary functions.
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The clamped boundary condition (4.16) on (p is applied to (4.59) to obtain
H(t,t) =0. (4.60)

By substituting (4.59) and the approximation (4.6) for ls as 2 — 0 into the
matching condition (4.14c) for (g, and again using (4.15) to rewrite zp and Z in
terms of zj, it is shown that
z (o]
G(T,t)z) ~ é Y Bu(t)Yu (7). (4.61)
n=1
Since all the terms here are the same size and are linear, we see that there is no
correction at leading order to {s and the leading-order term of {; still behaves
linearly in z; as z; — 0. As such, é s still satisfies the Dirichlet parts (3.35) of the
pinned boundary conditions at leading order.
As all the terms within (4.61) are linear in z; and have the same size, we

may match these terms to obtain
1 o
-5 ; (4.62)
and hence the leading-order axial deformation é 5 in the bending layer is
1 [o0]
=15 Z:an(t)Yn(T)ZB. (4.63)
n=

This is depicted in Figure 4.5 in §4.12.

4.11 Leading-Order Area Change in the Bending Layer

With the expression (4.51) for the leading-order normal deformation 51(30) in the
bending layer, we can determine the leading-order area change in the bending
layer. Whittaker et al. (2010d) found the relation between the area change and

the overall deformation in the tube wall to be
(A(z, 1) — Ag)a® = f(r ~ 1) - fah(t)dt + O(A?), (4.64)
where A, Ay are the dimensionless cross-sectional areas of the tube in its
deformed and undeformed state respectively. Applying the deformation (4.11)
in the bending boundary layer to (4.64), we find the area change in the bending
boundary layer to be
A
02
L i gy 1) /Znh(r)Yn(T)dT
1202(1 — v2) 0

n=1

27
A(z,t) — Ay = FpdT + O(A?).

+0(6717?), (4.65)
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where we have substituted in the asymptotic expansion (4.40) for {p. To
evaluate the integral in (4.65), we use the property that the Y,(7) are
eigenfunctions of the operator £, with corresponding eigenvalues 2. Using

this property and the definition (4.7) of £, we find the following

h(T)Yo(T) = h:;) LY, (7)
1919 (1 da1aYa(r)
= Zachae (Mamar YH(T)> . (4.66)

Evaluating the integral in (4.65) gives
/Omh(r)Yn(T)dr 1 [18 < L 9 19%u(r) Yn(r)ﬂzn —0, @467
since Y, (7), h(t) and B(t) are all periodic over 27t. Hence
A(z,t) — Ag =05 1072), (4.68)

and there is no area change within the bending layer at leading order.

4.12 Corrections to the Inner Shear-Layer Solution

Now that we have found the leading-order deformations within the bending
layer, we can use this information to determine the corrections that are imposed
on the deformations &, 77 and { within the inner shear layer. To do so, we must
determine the solutions of the deformations in the inner shear layer without
applying the Dirichlet parts (3.35) of the pinned boundary conditions. We then

match these general solutions to the leading-order bending-layer deformations.

The general solutions of the deformations in the inner shear layer, up

to leading order, are derived in Appendix 4.A and shown in equations
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(4.100)—(4.102). These are found to be

v i By (1) Y (1) (1 - e*lB\f) — A(t,)e BE| £ O(F?),(4.69)

n=1

e

NI

=
—

2+ i VB, ()Y (1) + A(T, t)) e IBI2
n=1

= T B2hot \ h
—C(t,t)z| + B(r,t)} +O(F3), (4.70)
p_ F . , V2 —|B|z
C - 12(1 — 1/2) ng:l Bn(t)Yn(T) <Z + @e )
+|E|A(T,t)e_32+é(r,t)} +O(F?), 4.71)

where A, B and C are functions to be determined. In order for (4.69)-(4.71) to
match onto the leading-order deformations in the bending layer, the functions
A, B and € must be set so that

EropeY, s FgY, s Fil, s zp 00,25 0. (472)

These conditions are derived from the relations (4.13) between the deformations
in the bending and inner shear layers. For the matching conditions (4.72) to be

satisfied, we must have

A(t,t) = —vBF 255 i Bu(1)Ynu(T), (4.73)
n=1
B(t,t) =v(2+v) il Bn(t);T [ ’11;,1((:))’ ( \B(lf)y + ﬁ%(sBﬂ . (@74)
C(t,t) = —1v? <|B%17)\ + f%53> i B, ()Y, (7). (4.75)
n=1

Substituting (4.73)—(4.75) into (4.69)—(4.71), the corrected deformations in the
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inner shear layer, which we denote a, e and @A'C are found to be

= EhI—w ; Bu(H)Ya(7) [1— (1 BF 265) e 1P2] £ O(F%),  (476)
X Fioo 0 v o (Y, .
fle = 12(1—1?) Z Bn(t)g {2(11/:1_ ) [Bihar < PET)) - Yn:| z
v(24v 1Bl . =~ 1 2
+Y,(7) < (2|;_| ) (1 e~ 1Bl ) —|—vzz> <|B(1’r)] +F 25B> —2]}
) +O(F?), (4.77)
b= 1y P00 [2 2 (g + F ) (1)
+O(F?). (4.78)

By comparing the deformations (4.76)—(4.78) to the deformations originally
found in the inner shear layer by Whittaker (2015), it is seen that the
correction terms are all a factor of O(F26p) = O(F~1671472) smaller than
the leading-order terms within the expressions. Hence, these correction terms
do not alter the leading-order behaviour of the inner shear-layer deformations.
Instead, they alter the deformations at a higher order so that the inner
shear-layer deformations allow the bending-layer deformations to satisfy the
clamped boundary conditions (4.16). In particular, they allow the new
condition on the gradient of the normal deformation to be satisfied.

If the condition F = O(1) is relaxed so we can set F = O(6~1¢~2), resulting
in a lower tension, the correction terms will then appear at leading order.
However, by changing the value of F in this way, it is seen using the definitions
(4.1) and (4.43) of F and Jp that we then have 72 = O(62) and 03 = O(52).
Hence, the bending layer and inner shear layer now have the same width. As
the pre-stress contributes at leading order in the bulk layer, setting this value of
F could also alter the behaviour of the leading-order solution in the bulk layer.
Because of these effects, further investigation is needed to evaluate what occurs
in this scenario.

In Figures 4.3, 44 and 4.5, the first 1 = 1 modes of the leading-order
approximations ¢s, s and (s of the deformations &, 77 and { in the original
inner shear layer found by Whittaker (2015) have been plotted in the axial
direction. Also plotted are the approximations (53(:,(30), SpF 171(30) and 63 F2 g(BO)
of the deformations in the bending layer, and the corrected approximations
&, e and {. in the inner shear layer. These are given by (4.51)-(4.63) and
(4.76)—(4.78), respectively. It is seen that the bending-layer deformations and the
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gradient of ¢ are all zero at the clamped boundary Z = 0. It is also seen that the
correction to ¢ in the inner shear layer enforces a shift from the original value
found by Whittaker (2015), which decreases exponentially with increasing Z.
The correction to 77 in the inner shear layer is found to alter the gradient of the
deformation as well as give a shift comprised of an exponentially decaying and
constant part with increasing Z. Finally, the correction to { in the inner shear
layer is found to give a shift with an exponentially decaying and constant part

with increasing Z.

X 1()_4
Or—

|
w
(9]

T

/

I

0 0.005 0.01 0.015 0.02 0.025 0.03
Z

Figure 4.3: The first n = 1 modes of the approximations és, (5361(30) , and {fc, of cf in
the original inner shear layer studied by Whittaker (2015), in the bending layer, and
in the corrected inner shear layer, respectively. The approximations 536%0) and ¢, are
given by (4.51) and (4.76), and all the approximations are plotted in the case oy = 0.6,
4 =0.001, £ =100,v =049, F =1, T = 0 and B;(t) = 1, with Y;(7) normalised such
that Y1(0) = 1. In this case dg = 0.01.

In each of the deformations the new correction terms are a factor of
O(F~265) = O(5-3¢4) different from the largest of the other higher-order
terms in the expressions. It is unclear whether §3¢/~* < 1 or 673/~* > 1 and
as such, it is also unclear whether the new correction terms are larger or smaller

than the other higher-order terms within the expressions for the deformations.
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Figure 4.4: The first n = 1 modes of the approximations fjs, 65 F ;71(30), and 7, of 77 in

the original inner shear layer studied by Whittaker (2015), in the bending layer, and in
(0)

the corrected inner shear layer, respectively. The approximations dgF7  and 7. are
given by (4.57) and (4.77), and all the approximations are plotted in the case oy = 0.6,
6 =0.001, £ = 100, v = 049, F = 1, T = 2.6656 (where Y](7) is near its maximum
value) and Bj (f) = 1, with Y;(7) normalised such that Y1(0) = 1. In this case é5 = 0.01.

Hence, whether these new correction terms are more important than the other

higher-order terms depends on the values of § and /.

4.13 Corrections to the Outer Shear-Layer and Bulk-Layer

Solutions

We now consider the behaviour of the deformations (4.76)—(4.78) in the inner
shear layer as £ — oo. This will allow us to determine the effect that the
correction terms have on the deformations in the outer shear layer studied by
Whittaker (2015), and in the bulk layer modelled in Chapter 2.

In the expression (4.76) for &, the correction term behaves exponentially in
2. As such, this term will become exponentially small as Z — oo, and this

correction will have no effect on the normal deformation in the outer shear
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Figure 4.5: The first n = 1 modes of the approximations és, OpF %gg(’) , and CAC, of 5 in
the original inner shear layer studied by Whittaker (2015), in the bending layer, and in
(0)

the corrected inner shear layer, respectively. The approximations ép.F %g 5 and (. are
given by (4.63), and (4.78), and all the approximations are plotted in the case op = 0.6,
4 =0.001, £ =100,v =049, F =1, T = 0 and By(t) = 1, with Y;(7) normalised such
that Y1(0) = 1. In this case dg = 0.01.

layer, or in the bulk layer. From equation (4.64), it is seen that the area change of
the tube is dependent only on the normal deformation. Hence, as the correction
term in (4.76) does not alter the normal deformation in the outer shear or bulk
layers, it will also have no effect on the area change in these layers.

In the expression (4.77) for #j, there are correction terms that behave
exponentially, linearly and as a constant in Z. In the case Z — oo, the exponential
terms will become exponentially small. However, the linear and constant terms
will enforce a correction to the azimuthal deformation in the outer shear layer.
When Z — oo, the quadratic and leading-order linear terms in (4.77) will be
larger than the correction terms. As such the correction terms will enforce
corrections to the outer shear-layer deformation that appear at higher orders
than terms matching onto the quadratic and leading-order linear terms in the
inner shear layer. As these corrections are so small we do not compute them

here.
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Finally, in the expression (4.78) for {, we have correction terms that behave
exponentially and as a constant in 2. When Z — oo, again the exponential
term becomes exponentially small and the constant term enforces a correction
to axial deformation in the outer shear layer. The linear and leading-order
constant terms in (4.78) will still be larger than the correction terms when
Z — 0. Hence the corrections to the outer shear-layer deformation will appear
at higher orders than terms matching onto the linear and leading-order constant
terms in the inner shear layer. Again, as these corrections are so small they are
not computed here.

To determine the exact sizes of the corrections to 7 and { in the bulk
layer, the corrections in the outer shear layer would be needed. However, the
corrections in the outer shear layer are smaller than the leading-order terms,
and will behave linearly or as a constant in the axial direction for 77, and as a
constant in the axial direction for . Hence, as there are linear and constant
leading-order terms in 7 and  respectively, the correction terms will not be as
large as the leading-order terms as we leave the outer shear layer and enter the

bulk layer. Thus, the leading-order bulk-layer deformations will not be affected.

4.14 Conclusions

In this chapter, we have introduced a bending boundary layer to the model
derived in Chapter 2, in the regime I, where 6¢ < 1 < §¢>. This bending
layer has enabled the full clamped boundary conditions (4.16) to be satisfied
at the ends of the elastic-walled tube, and matches onto a modified version of
the shear-relaxation layer studied by Whittaker (2015). We have also evaluated
how this bending layer effects the solutions in the shear-relaxation layer as well
as how it effects the bulk solution modelled in Chapter 2.

Here, we have used the Kirchhoff-Love shell equations to model the wall
mechanics within the bending layer. Doing so, the leading-order force-balance
equations in the normal, azimuthal and axial directions were derived. By
examining the normal force-balance equation, we found that the only terms
that could balance at leading order are terms that arise from axial bending,
and pre-stress and axial curvature. In order for these terms to balance, we
found that the width ép of the bending layer must be dp = F ~20-1. This is
in agreement with the estimate (3.48) for the bending boundary-layer width
derived from the toy model in §3.6. The width of the bending layer is smaller
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than the width of the inner shear layer modelled by Whittaker (2015) and as
such, the bending layers are situated at the ends of the elastic-walled tube, and
match onto modified inner shear layers.

Solving the leading-order force-balance equations, we have determined the
leading-order normal, azimuthal and axial deformations within the bending
layer. We have also found that within the bending layer, the leading-order
normal deformation induces no change in the cross-sectional area of the tube
from its undeformed state.

Using the leading-order deformations within the bending layer, we have
determined the corrections to the deformations in the inner shear layer
originally found by Whittaker (2015). These corrections have been found to
be a factor of O(F 1671¢~2) smaller than the leading-order terms and thus
do not change the leading-order behaviour of the deformations. It is also
found that these correction terms may appear at either lower or higher orders
than the other higher-order terms in the expressions for the inner shear-layer
deformations, depending on the sizes of § and ¢. If the condition F = O(1) is
relaxed and we instead set F = O(6~1¢72), the corrections will be large enough
to contribute at leading order. However, this may change the behaviour of the
bulk solution and will also change the sizes of the bending and inner shear
layers so that they become the same size. As such, further investigation is
needed to determine what happens when F = O(5-1472).

Finally, we have also determined how the corrections in the inner shear-layer
deformations affect the outer shear layer modelled by Whittaker (2015), and
the bulk layer modelled in Chapter 2. We have seen that the correction in the
normal deformation decays exponentially as we exit the inner shear layer. As
such there will be no correction to the normal deformation or the cross-sectional
area change in either of the outer shear or bulk layers. We have also seen that
the corrections to the azimuthal and axial deformations in the inner shear layer
yield corrections to the corresponding outer shear-layer deformations at higher
orders than terms matching onto some of the leading-order terms in the inner
shear layer. The corrections to the azimuthal and axial deformations in the bulk
layer will also apply at higher orders.

It is seen that the bending layer found here is passive and does not
contribute to the leading-order deformations as zg — co. Instead, it simply
allows the axial gradient of the tube wall to decrease to zero as the clamped

boundary at zg = 0 is reached.
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4.A General Solutions for the Leading-Order Deformations

in the Inner Shear Layer

To determine the corrections the leading-order bending-layer deformations
impose on the inner shear-layer deformations, we must solve the system
governing the inner shear layer without imposing the Dirichlet parts (3.35) of

the pinned boundary conditions originally applied by Whittaker (2015).

4.A.1 Recasting the System in Terms of the Stresses

In order to find the deformations within the inner shear layer, Whittaker (2015)
first recast the problem in terms of the leading-order azimuthal hoop stress
N, the leading-order in-plane shear stress S and the leading-order axial stress
Y. This was to avoid leading-order degeneracies that appeared within the
governing system when written in terms of the deformations. In terms of the

deformations ¢, 7, ¢, and the axial coordinate 2 = F _%Z, these stresses are

defined as
N =12 (—Bhé + ;1zaar (Z) + ﬁ—%v?g) , (4.79)
5= 12(12}1‘ v) (yi’; + af) , (4.80)
5 =12 (ﬁ‘éggw(—i‘fjﬁi (Z))) (4.81)

By manipulating (4.79)—(4.81), the following expressions for the deformations

in terms of the stresses are found

s [FEE-N oo

¢= 12E1_52)>d2+12(1_V2)C(7,t), (4.82)
73 hS ol ~3 A

ﬁ:/ﬁ 6(1Ev)_a§> dz + F2B(7,1), (4.83)

s h({ N—vZ 10 (f

¢="3 (12(1—1/2)_;1% (h> / (4.84)

where B, C are functions that are later determined by matching to the
bending-layer deformations, and their corresponding scalings have been

included for convenience.
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4.A.2 Determining the Leading-Order Stresses

Once the governing system for the inner shear layer was recast in terms of N,
S and %, Whittaker (2015) determined solutions for the stresses by considering

asymptotic expansions of the following forms

N=FiN=F} (RO 4 FRO 1), (4.85)
§=6= (é(o) L FSM 4 ) ) (4.86)
E=FE=F (04 FE0 4. ), (4.87)

Using these approximations, the following leading-order governing equations

were derived in the inner shear layer

. 92N 025.(0)
—BZN(O) + W + (2 + V)W =0, (488)
925.(0)
5 =0 (4.89)
1050 9300
nor ez (4.90)

By matching the approximations (4.85)—(4.87) to the stresses in the outer shear
layer, which (at leading order) only depend on the properties of the bulk of
the tube and not on the properties of the inner shear layer, the following

leading-order matching conditions were found
NO —o0, 890 205 Y B(t)Yu(r), as £  (491)
n=1

The general solutions of the governing equations (4.88)—(4.90) are determined
to be

NO = A(t,t)e 1B 4+ a(t, t)elBE, (4.92)
SO = 3(t,t) + b(2,1), (4.93)
. 108(7,t)

(0) — _ = 7 A A
p! N ar C +¢é(t,t). (4.94)

Applying the matching conditions (4.91), it is found that
a(t,t) =5(7,t) =0, e=Y_ Bu(t)Yu(1).

In the inner shear layer, Whittaker (2015) found that S is odd in T. Using this

property, we must also have
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Hence, it is found that N(©, §©) and 39 are given by

A

NO = A(z,t)e” B2, §O =0,  £O =Y B,()Y,(7). (4.95)

4.A.3 Determining the First-Order Correction to S in the Inner Shear
Layer

As 0 = 0, it is found that the leading-order azimuthal displacement 7 is
dependent on the first-order correction term $() that arises in the asymptotic
expansion (4.86) for S. Hence, we must calculate $(!) to determine 7 at leading
order.

Using the approximations (4.85)-(4.87), Whittaker (2015) found the

following first-order governing equation in the inner shear layer

19N0© 58D 95(0)

nor T e T2tV

=0. (4.96)

By matching the approximation (4.86) for S to the approximation of S in the

outer shear layer, Whittaker (2015) found the following matching condition for
§O)

o t 1 9 [19Y, .
; [BZh == (h = ) - Yn(T)} , as £ — oo (4.97)

Substituting the values (4.95) of N©, $0 into (4.96) and integrating with

respect to Z, we find the general solution of S to be

gm_19 <A(f 2 BZ) +d(T,t). (4.98)

hot |B
By applying the matching condition (4.97), we obtain

. &BuH a1 2 [1dY,
SR Wi = [Bzhar (h ar) ‘YM]'

n=1

which in turn yields

4 10 [(A(T,t) g >
-2 |B|2
7= e ( L ) Lo

) 9 1 o0 /19Y,
? [har <h aT> ‘Y"“)} -
(4.99)

4.A.4 General Solutions of the Leading-Order Deformations

Now that we have the expressions (4.95) and (4.99) for KO, 50 $0) and

$(), we use these to derive the leading-order inner shear-layer deformations in
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the absence of the Dirichlet parts (3.35) of the pinned boundary conditions.
Substituting the asymptotic expansions (4.85)—(4.87) into the expressions
(4.82)—(4.84), the general leading-order deformations in the inner shear layer

are calculated to be

o T N B v () (1— e 1BE) Az, e BE | +O(FD), 4100
= a7 [2 (Y1) (1 - %) —A(x, 1) (F2),(4.100)
N ﬁ% a 2+1/ ad | |Z
T= - {ar ~|B2 (EVB”(OY"(THA(T't))e :
® B, (Y1), 2(1+v) & 1 9 (Y.(7) .
_ng:l > 2%+ m ;;Bn(t) [B%BT( p >—Yn}z
—C(1,t)2 +B(r,t)}+0(;f3), (4.101)
5 F & R T T
=i | 4 PO (”lB\e 'B>
+|"B|A(r,t)e—|32 + C(T,t)} +O(F2), (4.102)

where for convenience, we have rewritten A as

[ee]

A(t,t) = Y vBu(t)Yu(T) + A(T, 1),
n=1

hSY

nd
= 17A pu—
here A, B,

, B, C are arbitrary functions. In Whittaker (2015), the conditions

o

NptN

{ = 0 at 2 = 0 were applied to obtain the functions 4,B,C. But
¢

are determined by matching to the bending-layer deformations.



Chapter 5

The Bending Boundary Layer in
Regime I, (607 < 1)

5.1 Introduction

In this chapter, we consider another regime of the general problem described in
Chapter 3, where an axial-bending boundary layer is introduced to the model of
flow through an elastic-walled tube. This bending layer will allow the canonical
clamped boundary conditions to be satisfied at the ends of the elastic-walled
tube, where it is clamped onto two fixed rigid tubes.

Here, we focus on regime I;,, where the dimensionless tube wall thickness
0 < 1 and tube length ¢ > 1 are set so 002 < 1. In this regime, a
shear-relaxation layer studied by Whittaker (2015) (details of which may be
found in §3.5) is seen to have a significant effect on the bulk of the tube and
must be considered. This shear layer is comprised of two sub-layers: an inner
layer of width O(6¢), and an outer layer of width O(5-1¢71).

In §3.6, a toy model was derived which estimated the width Jp of the
bending boundary layer to be 5 = O(¢~!). Using this estimate, we expect
op to be larger than the tube wall thickness § 1> 51 > 6). As such, we
may use the Kirchhoff-Love shell equations (Fliigge, 1972; Sendergaard, 2007)
to model the wall mechanics. As ¢ >> 1, we also anticipate that g < 1. Finally,
we expect ép to be larger than the inner shear-layer width, and smaller than the
outer shear-layer width (6¢ < ¢~1 < §-1471).

As the bending layer is expected to be larger than the inner shear layer,
we will have one of two scenarios. In the first scenario an inner shear layer,

modified so that the full clamped boundary conditions are satisfied at the ends

120
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of the elastic-walled tube, is situated at the tube ends. This inner shear layer
then matches onto the bending layer which in turn matches onto the outer
shear layer. The outer shear layer then matches onto the solution in the bulk
layer. This scenario is unlikely as the inner shear layer would need terms
with additional axial derivatives to appear at leading order in the governing
equations so that the clamped boundary conditions may be satisfied.

In the second scenario, the inner shear layer is not needed and instead the
bending layer is situated at the ends of the elastic-walled tube. This bending
layer then matches onto the outer shear layer, which in turn matches onto the
bulk layer. When the governing equations are later examined at an axial scale
smaller than Jp in §5.5, it is found that no new mechanisms contribute to the
leading-order governing equations, and there are no boundary layers smaller
than the bending layer. Hence, it is the second scenario that arises within the
model. Figure 5.1 shows the arrangement of these boundary layers along the
dimensionless, axial coordinate Z € [0, ¢] introduced in Chapter 3 and used by

Whittaker (2015) to describe the inner and outer shear layers.

0 O(r) O  O1) O (671 1) o(0) Z

Rigid—flexible
region boundary

Tube wall
of thickness ——=
O(d) Bendi .
ending Outer Bulk Region
boundary shear-relaxation
layer layer

Figure 5.1: The arrangement of the boundary layers in a cross section through the
centre point and along the length of the tube, in regime I, where /> < 1. We expect
tohave < Ml < dp <1< o W1« o,

We later find that the deformations in the bending and outer shear layers
depend only on the uniform properties of the tube wall and not on the
properties of the fluid within the tube. Therefore, the boundary layers will

behave the same at the upstream and downstream ends of the elastic-walled
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tube. Hence, we need only determine the behaviour of the boundary layers at
one of these ends. In this chapter, we concentrate on modelling the bending
layer at the upstream (Z = 0) end of the tube.

We arrange this chapter as follows. In §5.2 and §5.3, the mathematical set-up
of the tube and its deformations, as well as the tensors and constitutive laws
needed in the problem, are provided. In §5.4, the behaviour of the tube wall in
the outer shear layer studied by Whittaker (2015) is reviewed. The force-balance
equations governing the tube wall in the bending layer are then derived in §5.5,
including all the terms that may contribute at leading order. The boundary and
matching conditions for the system are considered in §5.6.

Due to the behaviour of the leading-order deformations within the outer
shear layer, it is unclear what the matching conditions for the deformations in
the bending layer should be. To resolve this problem, the system is recast in
terms of the leading-order in-plane stresses acting on the tube in §5.7. The sizes
of the stresses within the bending layer, as well as the magnitude of the width
op of the bending layer, are calculated in §5.8, and the simpler case of the limit
of a circular cross-section is considered in §5.9. Asymptotic approximations for
the stresses in the bending layer are calculated up to second order in §5.10, and
the bending-layer deformations and area variation are determined in §5.11 and
§5.12, respectively. Finally, in §5.13 and §5.14, we determine the corrections
the leading-order bending-layer deformations enforce on the deformations and

area change in the outer shear and bulk layers.

5.2 Mathematical Set-up

We again consider the set-up described in §3.3 and §4.2, and depicted in Figure

5.2. We begin with an initially elliptical elastic-walled tube with dimensionless

K02
a3d

\

Figure 5.2: The set-up of the undeformed, elliptical, elastic-walled tube.
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length ¢/ > 1 and dimensionless wall thickness § < 1. In its undeformed
configuration, this tube is subject to a dimensionless uniform axial tension
F = O(1). Deformations of dimensionless amplitude A(t) < 1 are then
induced by a dimensionless transmural pressure py,. We assume that the
amplitude A(t) is slowly varying in dimensionless time t. The tube wall has
dimensionless mass M per unit area, Poisson’s ratio v and bending stiffness K.

We again introduce the parameter F given by

22
F= M <1 (5.1)
This parameter appears in the model of the shear-relaxation layer derived by
Whittaker (2015) considered later on.

We parameterize the midplane of the tube wall using two dimensionless
Lagrangian surface coordinates T € [0,27), Z € [0,/], which represent arc
length in the azimuthal and axial directions respectively. These are related to
their dimensional counterparts (x!, x?) by dx! = ah(t)dt, dx*> = adZ. Here, a

is the typical radial scale of the tube and /() is a scale factor defined as

Nj—

h(t) = c(sinh? oy + sin® 7)2, (5.2)

where 0y is a parameter that sets the ellipticity of the tube and c(0p) is defined
as
rtsech(op)

‘= 2E(sech(0p))’ 5:3)

where the complete elliptic integral of the second kind E(¢) is defined as
E(p) = /7(1 — ¢?sin? 9)2d0.
0
Using these coordinates, we define the position (7, Z) of the tube wall in

the undeformed configuration as

ccosh oy cos T
ro(7,Z) =a| csinhoysint |- (5.4)
Z

Denoting the position of the tube wall in its deformed configuration as r, the

deformation r — r( of the tube wall is written as

r—rg= A(é)a (h(l“r) [f(r, Z,Ha+7(t, Z,t)E] + (T, Z,t)i) ,  (5.5)

based on the expected sizes of the deformations at Z = O(1). This is the same

representation used by Whittaker (2015) when modelling the shear-relaxation
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layer. The vectors fi, t and 2 are unit vectors in the normal, azimuthal and
axial directions of the undeformed tube wall, and the dimensionless functions
((f,ﬁ,é ) represent the normal, azimuthal and axial deformations of the tube
wall.

Finally, we introduce a new axial coordinate
Zp = 5§1Z, (56)

where Jp is the width of the axial-bending boundary layer. As such, we have
that zg = O(1) within the bending layer. Here, we assume § < Jp allowing
Kirchhoff-Love shell theory to be used in deriving the governing equations
within the bending layer. In order for the axial-bending terms to appear at

leading order in the governing equations, we must also have Jp < 1.

5.3 Tensor Notation and Constitutive Laws

Using the deformation (5.5), it is now possible to calculate the tensors
associated with the tube wall that are needed in the governing force-balance
equations later on. These are slightly different to the tensors derived in §4.6 in
Regime I,. We begin with the basis vectors aj, ap, and the normal a3 to the tube

wall in the deformed configuration, defined as

or a; X ap

- - axa 5.7
ox® a3 la; x ap| (57)

Ay

where « spans over (1,2). Substituting the expressions (5.4)—(5.6) for 1y, r and

zp into (5.7) and neglecting terms of O(A?) and higher, we find

e AN _ o (& ol
a =t+ G—g‘B(r) +taz <Z>} t+ |7B(7) +a- (g) ﬁ+§2>
+0(A?), (5.8)
. A (1198 9| ., 2
ap z+@ (h [ZBn—f—aZBt +asz> +0(A%), (5.9)
a3 = — 21 ([ﬁB(T) + ai <g) t+ i;iz) +0(A?), (5.10)

where, as in previous chapters, B(7) is the dimensionless base-state azimuthal

curvature, given by
~ . c*sinh(20p)

53 (5.11)
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Using these, we evaluate the metric tensor a,p, curvature tensor b,g, and
in-plane and bending strain tensors, 7,5 and x,g, in the bending layer. As in

§2.3 and §4.6, these are defined as

_ da,
ba‘B = ajz- a;/j/ (5 12)

a,xﬁ = ay * aﬁ,
Yap = 5(Aup — Aup),  Kap = —Dap + Dap + 20575p.
Substituting (5.8)-(5.10) into (5.12) and again neglecting terms that are O(A?)

or higher, the following is calculated

_ A | 2|-C¢B+ 9 (1 197 + o
ﬂ(x‘B - ﬂaﬁ + 67’/[ |: 1 o aragh)} O BZZhB aé T + O(AZ), (513)
Op 0zp + o Op 0zp
1 [po 9 (10
bas = g + 2 Pt o LB+ 5 (+5))
ap = Yap T o L[BL’I_F@(;E)E)} | PE
OB Jzp dT \ hozp 5123 aZ%
+0(8%), (5.14)
*B ] o
A —B+E (1) 3ot
Teb = 0p | 1 (1o ' (at;) ( ’ fBag T> +0(8%), (5.15)
2 <gazB + 7’[) hgazB
B9 10 (10¢
A Pr— P2 BE-L2 (ETi) ,
6 ath 1 [a (1086, got s +0(A?). (5.16)
6g | ot \ hozp + 0zp (5123 BZ%

and B1, B2 are given by

B1=B [—§B+88T (Z)] B2 = aar (}1 [ﬁg-i-aa_r <g)]> . (517)

The in-plane stresses, N*?, and the in-plane bending moments, M*#, may

be determined from the following constitutive laws relating N*f and M*f to

LZ,X‘B, ba/g, ’)/Mg and leﬁ
K;F 12
5257 + WK[(l — V)9 + vyra®P)

1K {(1;") 2aPOBT & gPTHT 4 aOBEY ) (a0 gPT 4 g7 ab)

N = 54

+v[a®Pb + a7 — a"F a1} }K/\(s, (5.18)

M = K[~ (1 — v) (059" — b}y"P) — v (0™ — bYa"F ),
1
5 (1= ) (x4 )+ vaPi], G19)
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where 5; is the Kronecker delta. These constitutive laws were originally derived
by Fliigge (1972). By substituting the tensors (5.13)—(5.16) into (5.18), the

leading-order components of N* are determined as

K({0 0 AK (N S AK
ap — = Bl
N a2 < 0 P2F ) t 2520 ( § 3 > +0 <a25§€> ’ (5:20)
where the leading-order azimuthal hoop stress N is defined as
_ BE 10 (7 v ol
N =12 <_h+har <h> —l—%% , (5.21)
the leading-order in-plane shear stress S is
~ 6(1—v) (1097 o
5= h (53 0zp Tor ) (-22)

and the leading-order axial stress 3. is defined to be

- 1 o B 10 (7
The first term of (5.20) corresponds to the axial pre-stress applied to the tube
wall and the second term contains the leading-order stresses induced by the

deformations of the tube wall. Substituting the tensors (5.13)—(5.16) into (5.19),

we find the leading-order components of M*? to be

62
AK | 732 O AK
ap _ _ O™ 9zp . == 24
ot (P55 Yo (a) o
ZB

5.4 Consideration of the Outer Shear-Relaxation Layer by
Whittaker (2015)

In the current regime, the size of the bending layer is expected to be in between
the sizes of the two sub-layers comprising the shear-relaxation layer studied
by Whittaker (2015). That is the width ép of the bending layer is larger than
the width 2 of the inner shear layer, but smaller than the width F~1 of the
outer shear layer. It is later found that in this scenario the inner shear layer
is non-existent, and the bending layer is situated at the ends of the tube. The
bending layer then matches onto the outer shear layer. Because of this, the

outer shear layer must be considered so that the sizes of the deformations in
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the bending layer, and the matching conditions the bending-layer deformations

must satisfy, may be determined.

In deriving a model of the shear-relaxation layer, Whittaker (2015) rewrote
the problem to be in terms of the stresses N, S and ¥ rather than the
displacements &, 77 and . This was to avoid the leading-order cancellations that
occurred in the governing equations when written in terms of the deformations.
Solving the problem in terms of the stresses, Whittaker (2015) calculated
asymptotic approximations for the stresses N, S and ¥ in the outer shear layer.

Here, we shall denote these approximations as N;, Ss and .

These approximations only rely on matching to the solutions in the bulk
layer and not on matching to the inner shear layer. As such, when the inner
shear layer is replaced by the bending layer these approximations will still hold
true, and the bending layer will not force any leading-order corrections to the

stresses within the outer shear layer.

Using the approximations for the stresses, Whittaker (2015) determined
asymptotic approximations for the deformations ¢, 77 and { within the outer
shear layer. These approximations were determined using the Dirichlet parts
(3.35) of the pinned boundary conditions, defined in §3.4. Hence, as we are
now introducing the bending layer so the deformations satisfy the clamped
boundary conditions (3.32) (defined in §3.4) instead, the bending layer will
force corrections to the deformations in the outer shear layer. These corrections

will only take effect at higher orders in the approximations.

By examining the approximations of the deformations in the outer shear
layer, it is found that as Z — 0, the leading-order term in the approximation
for (f behaves quadratically in the axial direction. However as Z is decreased,
this term eventually becomes small enough that another, higher-order term
(that behaves as a constant as Z — 0) becomes the leading-order term in
the approximation. Because of this property, it is unclear what the size and
leading-order matching condition for the normal deformation & in the bending

layer should be.

To obtain a full set of matching conditions to be used in finding a solution
for the bending layer, we later rewrite the problem in terms of the stresses N,
Sand . As Z — 0, the leading-order terms of the asymptotic expansions N,
S, and % in the outer shear layer all behave as a constant in Z. Hence, even as
we decrease Z, the leading-order terms do not become smaller than any other

terms in the approximations, and it is these terms the bending-layer stresses
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must match on to at leading order. Taking the Taylor series of N;, S; and %
about # = 0, where the scaled axial coordinate z = F 27 is used by Whittaker
(2015) to describe the axial behaviour of the stresses and deformations in the

outer shear layer, we find as Z — 0

IS 3 (1Y, ) ; -

No~ 550 ;Bn(t)a—T (h = > (1— pnZ +0(22)) + O(F2), (5.25)

. F&But)o [ 1 a [1dY, . 2

Ss ~ ﬁn;l e [l§28T <h 8T> Yn(r)] (1— paz+0O(2%))
+O(F?), (5.26)

S~ F2 i Bu(£)Yu(T) (1 — 2 + O(£)) + O(F3). (5.27)
n=1

Here, the rr-periodic, orthogonal functions Y,(7) are the eigenfunctions of the

operator

1919 /1 910

and the p2 are the corresponding distinct positive eigenvalues ordered such
that 0 < 1 < pp < ps.... For finite 0y, these eigenfunctions and eigenvalues
can only be found numerically. Finally, the B, (t) are arbitrary O(1) functions

of t setting the amplitude of each eigenmode of the deformations.

Matching the stresses in the bending layer to the approximations
(5.25)-(5.27) will allow us to determine the full leading-order solutions of
the stresses in the bending layer. These solutions along with the clamped
boundary conditions (3.32) will in turn allow us to determine the leading-order
deformations in the bending layer. To find the corrections the leading-order
bending-layer deformations force on the outer shear-layer deformations, we
will need to match the bending-layer deformations to solutions of the
deformations in the outer shear layer which do not depend on the Dirichlet
parts (3.35) of the pinned boundary conditions. By removing these boundary
conditions from the relations derived by Whittaker (2015) that relate the stresses

and deformations in the outer shear layer, the most general solutions of the
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deformations in the outer shear layer are found to be

. F2 © B,(t) 9 (1Y, [1 s
=gt | e () [ 0+

M
o0 (10A(t,t)\ . o (B(t,t)
_8T<h PR )Z+8T< I )
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n=1 Hn Hn

+O(F?2), (5.30)
5 1 = Bu(t)Yy s N
©T i) {Zl (Ln a-en HA(W)} +0(F), (531)

where A and B are arbitrary functions to be determined by matching to
the bending-layer deformations. The corrections to the outer shear-layer
deformations due to the leading-order bending-layer deformations are
calculated in §5.13.

5.5 Force-Balance Equations

In order to model the mechanics of the tube wall in the bending layer, we use
Kirchhoff-Love shell theory. Previously in §2.3, the governing force-balance
equations (2.29)-(2.31) in the normal, azimuthal and axial directions were
derived from the Kirchhoff-Love shell equations in covariant differential form
(Fligge, 1972; Sendergaard, 2007). Rewriting these in terms of the deformations
5, il and é’, we find

K&*M _, d26*
VaVpM™ + N*byps — oz Ve ga
A(H)K AHK M d2¢
+ 113 ptm_ 1135 7}1(1_)@ —0, (532)
K&*M_,d%0*7  A(HK M d%7

VNP — bl v MPY + b} — =0, (533

1242 77 dt? a3l h(t) di?

K&’M ,d%0*7  A(t)K . d%C
VN biVpMPY + 1272 bs, ar ey M T 0. (5.34)
Here, the covariant derivatives V, at leading order are found to be
10 1 9
- A = —— A .
Vi P Oo(4), Va 105 925 +0(4), (5.35)

and 6** is the angle of rotation the tube wall takes about an axis passing through

the wall in the a, direction. By considering the size of the normal deformation
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in the bending layer, and the sizes of the azimuthal and axial length scales used

in the bending layer, we scale the 0** in the following way

A

o, 02 = é92, (5.36)

*1
0 14

~ opl

where 67, 62 take the same size as ¢ in the bending layer.
As the in-plane stress N*# contains a large pre-stress term, we must evaluate
some of the higher-order terms in the covariant derivative of N*f. The full

expression for V,N*f is given by

NP

af _
VN R

+ T8N 4 5 N, (5.37)

where the Christoffel symbol ng is given as ng = g*Pa, - a,,. As each
component of Fﬁv is O(A), we need only consider terms involving N?2, the
only non-O(A) component of N*f. The Christoffel symbols found to be needed

are I'};, I'}, and I'%,. These are determined to be

A 9B
1 _ op1 2
2 = aahB oz OB (5.38)
A
rl, = —1 4+ 0(A?), 5.39
A 0%
2, = ——2 4+ 0O(A?). 5.40

By substituting (5.13)-(5.24) and (5.35)<(5.40) into the governing
force-balance equations (5.32)—(5.34), it is possible to determine the sizes of
each of the terms within the force-balance equations, up to the unknown sizes
of the deformations &, i and (. The sizes of the terms in (5.32)—(5.34) are found
in Tables 5.1-5.3. As in §4.7, the terms corresponding to angular acceleration
and wall inertia are not large enough to contribute at leading order and are
not included in the tables. This is because these terms are either O(AKE/a%(),
O(AK# /a®l) or O(AK/a®l) at most, all of which are strictly smaller than some
of the other terms within the governing equations when dp < 1.

By examining the scalings of the terms within Tables 5.1-5.3, the terms
that contribute to the leading-order force-balance equations may be determined
up to the unknown sizes of the deformations & # and . In the normal
force-balance equation, the possible leading-order terms arise from azimuthal
and axial stretching, axial bending, pre-stress and axial curvature, and
transmural pressure. In the azimuthal and axial force-balance equations, the

possible terms that contribute at leading order come from azimuthal, shear
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and axial stretching. The force-balance equations including all terms that may

contribute at leading order, as well as some higher-order terms, are found to be

_ g B 19 (0), vl
0_1ZB< h+har(h)+5BazB)
02% F o2¢ 52194 62 . 52 2 )

LIS 0Tl gm0 (60,0
T ha2  sihas 0P ((%C(%W 53¢

B B 10 (7 11+v a (1 a7  d
0‘&( hﬂlaT(h))ﬂsB 2 azB<(sBazB+aT

25 2 B 2% 2 202 2
1 P PB(1+v)d <1ag>+o((s ; 8PP0

(5.41)

e —& -1, =—C), (542
2702 53 24 ot \hoz 55 ° 5%”55) (642

_ 1o ( BE 10 /7 1-vo (1197 o
0_”5Baz3< AT <h>>+ % ot <h <5Baz3+ar
1% ¢ B 3% (5252 . 027 5P )

9N 9 R AAN1. AN R O 7 7
202 Tatanan O\ Y T et

(5.43)

The higher-order terms have been included so that when we later carry out
an asymptotic analysis of the problem, we can determine the largest non-zero
higher-order terms that appear in the bending-layer deformations. These
leading-order governing equations are similar to those derived by Whittaker
(2015), but they are not entirely the same. It is first seen that the normal
force-balance equation (5.41) contains all the terms appearing in the normal
force-balance equation found by Whittaker (2015). However, (5.41) also contains
an extra axial-bending term (9*¢/9z%) and transmural pressure term. The
azimuthal force-balance equation (5.42) and the corresponding equation found
by Whittaker (2015) contain the same terms apart from the pre-stress term in
the equation by Whittaker (2015). This is replaced in (5.42) by the 92£/0z3
term which comes from the torsion mechanism. Finally, the axial force-balance
equation (5.43) and the corresponding equation derived by Whittaker (2015)
have the same terms apart from again the pre-stress term in the Whittaker
(2015) equation. In this case, the pre-stress term is replaced in (5.43) by the
9°¢/9z3 term which comes from axial bending.

By examining the governing equations (5.41)—(5.43) and the scalings of
the terms within Tables 5.1-5.3, it is seen that if we take an axial scale
Z = 0(6) < O(6p), we do not obtain any new terms that arise from different
mechanisms at leading order. Hence, as no new mechanisms contribute at
leading order for smaller axial scales, there are no boundary layers smaller than

the bending boundary layer in the current scenario. Thus, we do not obtain an
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inner shear-relaxation layer in the current case and we need only match the
bending layer onto the outer shear layer.

To determine precisely which of the terms in (5.41)-(5.43) contribute at
leading order, the sizes of ¢, 77 and { within the bending layer would need
to be determined. However, it is later found to be more convenient to recast the
problem in terms of the stresses N, Sand &, and compute their sizes instead to

determine the leading-order governing equations.
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Scaling estimates for the dominant terms contributing to the normal

Table 5.1

force-balance equation in regime I,. The mechanisms that may contribute at leading

order are in bold.
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Scaling estimates for the dominant terms contributing to the azimuthal

Table 5.2

force-balance equation in regime I,. The mechanisms that may contribute at leading

are in bold.
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Dominant contribution

Mechanism Strain to axial force-balance
equation
Azimuthal
~3 (0(8),0( VaN2ABK L (0(#),0(4
stretching T f( 9 (17)) 2 u3£5352( (¢) (’7))
Shear
~A (Lo P 12, ,8K1 (1 (A p
sretching 172~ (H01.00) VNt~ (S0, 00))
Axial
“Wolt4 2 AK 1~y (F
stretching 122 ”Bo(g) VaNT~ s 5%520(@
~B8 (LO(& 4 12, MK (1~ (2 p
Torsion 2™ <5BO(€)’O(€)> VAN =~ <6BO(€)rO(€)>
1~an- (0(6),0(1)  VaN2~A5L(0(&),0(9))
Axial
A O(& 2 MK 1k
bending *22~ 257 0(6) VaNZ~AKLO(é)

- R N 5 - -
PIZStreésl I~ (0(8),0(7)  VIN2~2K L (0(8),0(1))
and axia

2 A 4 22 AK P2~ F
curvature FZZN@O(@ VaN ngo(é)
Table 5.3: Scaling estimates for the dominant terms contributing to the axial

force-balance equation in regime I,. The mechanisms that may contribute at leading

are in bold.
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5.6 Boundary and Matching Conditions

Along with the governing force-balance equations (5.41)-(5.43), we also have
the clamped boundary conditions (3.32) as seen in Chapter 3. In terms of ¢, 7,

(, zp, these become

E==2=p=C(=0 at zz=0. (5.44)

The deformations in the bending layer must also match onto the
deformations (5.29)—(5.31) in the outer shear layer. However, as discussed in
§5.4 in the overview of the outer shear layer studied by Whittaker (2015), the
leading-order term in the approximation for the normal deformation & in the
outer shear layer does not stay at leading order for smaller axial scales. As such,

it is unclear what the matching condition for ¢ in the bending layer should be.

We may resolve this problem by re-casting the problem in terms of the
stresses N, S and . Approximations for these stresses in the outer shear
layer, denoted N;, S; and ¥ here, were derived by Whittaker (2015). The
leading-order terms within these approximations stay at leading order when
the axial scale is reduced, and as N;, S; and ¥s only depend on matching
to the bulk solution and not on matching to any smaller layers, these
approximations are also the most general they can be. Hence, we may obtain
clear matching conditions for the stresses in the bending layer using the Taylor
series (5.25)-(5.27) of N, Ss and ¥ as Z — 0.

5.7 Re-casting the Problem in Terms of the Stresses

We proceed to rewrite the bending boundary-layer system in terms of the
stresses N, S and ¥. The details of the change of variables from the
deformations 6, 7 and é to the stresses N, § and ¥ are shown in Appendix

5.A. There, we obtain the new governing equations (5.148)—(5.150), which are
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shown to be

O_Ng_ﬂl[_la4<N—ﬂ5 12 ¥ (aﬁy
B 6212B | 630z \ 1—1? ézharézB 2

ho
LT[ 13 (N-vE | 12 9 (13%
B 6% 9z 12 52h8’r hoz3

+6*pim + O (‘521\] i =S, 522> (5.45)
m 52 53 (5% 7
o 19N 195
h ot (SB aZB

pEVB [ 1 # (Nomy 1o (120\]],
24h ot |B (52 azB 112 63 ot \ h oz}

< < 52) ‘Wzs 52 ( £2> ) (5.46)
o’

& 2 _ 2 R 24
0:8£+5385 ) ( 1/2) 0 (15317>+

ozg  h ot 1262 az 1—12 52h 070zp \ h 973
+0 o —N, 8%¢%5, —2 (5.47)
8 g

where 9%7)/9z3% is defined in terms of the stresses as

Pi_o( 2 95 19 (SN
023 - 12 \6p(1 —v)ozg hot \ 1—12 ’
Also in Appendix 5.A, the clamped boundary conditions (5.44) are shown in

(5.151) to impose the following conditions on the stresses

N—-vX=0, at zp=0, (5.48)
oN 9% 2(1+wv)dzas
- =0. 4
. VBZB 7 e 0, at z3=0 (5.49)

Finally, the stresses in the bending layer must match onto the Taylor
series (5.25)(5.27) of the stresses N;, Ss, & in the outer shear layer, in some
intermediate region between the two layers. Hence, we must have the following

matching conditions for the stresses in the bending layer

N ~ N, S ~ N, Y~Y, as zp—0,%—0. (5.50)

When applying the matching conditions, it is convenient to rewrite both Z and
zp in terms of some intermediate variable z; which is O(1) in a region between

the outer shear and bending layers. We define z; as

® a—1
1~ Z=2z;= 1~ zg, Where 0<a <1. (5.51)
opF opF

NI—=
LS
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We note that as 53]:'% < 1, setting z; = O(1) also sets Z — 0 and zp — oo.
By substituting the approximations (5.25)(5.27) for N;, S; and £ as # — 0
into the matching conditions (5.50), and applying the expression (5.51) for the
intermediate variable zj, the matching conditions for the stresses in the bending

layer are calculated to be

n=1
O, (5.52)
. FEB(HA[1 9 [1dY, e
SNF?; MUn BT{BhaT (h aT>_Yn(T):| |:1—‘Lln (53?) Z1
~ 1\ 20 5

£~ FEY Bu(H)Ya(7) [1 — i (85F) 2140 <(5Bﬁ%)zaﬂ +0(F?), (554)

5.8 Determining the Sizes of the Stresses in the Bending

Layer

By examining the governing equations (5.45)—(5.47), the boundary conditions
(5.48)—(5.49), and the matching conditions (5.52)—(5.54), we may determine the
sizes of the stresses in the bending layer.

We first of all note that for the matching conditions (5.52)-(5.54) to be

satisfied, we must have in the bending layer

NIw
NI

N>O0O(F2), S>0(F), Z>0(F2). (5.55)

There must also be at least one equality in these relations to enable
non-homogeneous matching between the layers. We next see that for the

condition (5.48) to be satisfied, we need
O(X) = O(N). (5.56)

By examining the azimuthal force-balance equation (5.46) it is seen that the only
two terms that can appear at leading order are the 9N /97 and 9S/dzp terms in

the first line of (5.46). For these terms to balance, we must have

0(3) = 630(N). (5.57)
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Combining the inequality for ¥ in (5.55) with (5.56), it is seen that we must

have

N > O(F2) > O(F?).

Using this along with (5.57), we also find

NI—=

Un

> 0(6pF2) > O(F),

as we are under the assumption &g > F 2. As there must be one equality within
(5.55), we obtain

5 = O(F?), (5.58)

in the bending layer. Substituting this into (5.56) and (5.57), it is found that

Nl—
=

N=0(F?), S=0(sF?), (5.59)

within the bending layer.

By applying the sizes (5.58), (5.59) to the normal force-balance equation
(5.45), we see that the transmural pressure term is smaller than the first term
in (5.45) and thus cannot appear at leading order. It is then found that the only
terms that may appear at leading order are the N term and the axial-bending
term containing the fourth axial derivative of N — vX. To ensure that these
terms balance, we must have dp = 0(5%). With this new information, it
is found that the first of the pre-stress terms in (5.45) is larger than the
transmural pressure term. Hence, the pressure term contributes to the normal
force-balance equation at a higher order than the azimuthal hoop stress term,
the axial bending term, and the first pre-stress term.

Now that the sizes (5.58), (5.59) of the stresses N, S and % have been
determined, it is possible to determine the sizes of the terms within the
governing equations (5.45)—(5.47) and boundary conditions (5.48), (5.49). Using
this knowledge, it is then possible to calculate asymptotic approximations for

the solutions to the governing system (5.45)—(5.54).

5.9 Solution in the Limit of a Circular Cross-Section

(09 — )

To gain a quick idea of how the stresses and deformations behave within the

bending layer, we consider the limit oy — co, where the elliptical cross-section
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of the tube becomes circular. In this limit, we have from (5.2), (5.3) and (5.11)
that

c~2e %, h(t) =1, B— —1,
and Whittaker (2015) also found in this limit
Y, (T) — cos(2n7), pn — 2n(4n® + 1)%.

This greatly simplifies the system (5.45)—(5.54) and it is possible to determine
analytical leading-order expressions for the stresses N, S, &, and deformations
& 1, { by using Fourier expansions in 7.

The details of finding the leading-order solution in the limit 0y — oo are
found in Appendix 5.B. There, we set the bending boundary-layer width Jp to
be

Op =

7

(12(1 - v2))d

which is consistent with the O(¢ %) scaling identified in §5.8 for the full system
(5.45)—(5.54) with an elliptical cross-section. This has a different scaling from
the value (3.48) predicted by the toy model in §3.6, but we still have 6/ < dp <
61071, Therefore the size of the bending-layer width lies in between the sizes
of the inner and outer shear layers found by Whittaker (2015). The different
scaling arises because the toy model cannot capture the azimuthal and axial

stretching mechanisms which are found to contribute at leading order here.

By examining the solutions in the circular limit, it is seen that N, £ = O(F2)
and S = O(63F 1), which is in agreement with the sizes (5.58), (5.59) calculated
in §5.8. The sizes of the deformations within the bending layer are then
calculated to be & = O(Fz), = O(éﬁ]:"%) and { = O(6pF?) in the circular
limit, and the same sizes are expected in the elliptical case.

It is found in the circular limit that the leading-order N and S both decay
to zero as zg — oo in the bending layer. The leading-order ¥ instead remains
constant in the axial direction for all values of zg. Converting the leading-order
stresses into the deformations 6, 7, é, it is verified that the clamped boundary
conditions (5.44) are satisfied at leading order. It is also seen that as zg — oo,
the sizes of the deformations increase to different values, and &, 7} and { behave

as a constant, quadratically and linearly, respectively, in the axial direction.
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510 Asymptotic Analysis for F < 1, 6p < 1

We proceed to solve the system (5.45)-(5.54) by forming asymptotic expansions
for the stresses N, S and £. It is first convenient to rewrite these stresses in

terms of some new functions Np, Sg and Xp as follows

Ny, S=05F2Ss, S =Fix, (5.60)

NI—=

N=F

Comparing these expressions with the sizes (5.58), (5.59) of the stresses in the
bending layer, we see that Np, Sp and Xz must all be O(1) in the bending layer.
With these new representations and the fact that ép = O(¢ %) for a sensible
dominant balance in the normal force-balance equation, we may rewrite the

governing equations (5.45)—(5.47) as

= 6% 1 9* [(Np—vig Fh 52
0= N +5§1zBaz;§< 112 ) 5§Ba%< BV B)+O(5123>’(56)
1 dNp dSp 52
“not | oz ol 62
"= o +823+O<5%>’ (5.62)
Y 52 820?
0= 32 +O<5123' 5B>- (5.63)

The boundary conditions (5.48) and (5.49) may also be rewritten as

ONp %5 52(1+v)3Sp
e 928

N —vXp =0, and 325 —vazB p gy =0, at zp=0,
(5.64)
and the matching conditions (5.52)—(5.54) are rewritten as
F & 9 (19Y, Z1\ % -1\ 20
NBNﬁn;an(t)g <h 8T> |:1—]/ln ((SB.FZ) ZI+O<(5B]:2> >:|
+O(F?), (5.65)
Fr & But)d [ 1 9 (19Y, 21\ %
SBN@; ; 31—[32 T<haT>_Yn(T):| |:1—]/ln <(SB]:2) Z1

U ho
40 (((53]?%)2“)] 40 (?:) , (5.66)
S5~ Y Ba(t)Ya(7) {1 _— (5Bf“%)“zl +0 <(5B]?§)2“)} +O(F), (5.67)

as zg — oo. When the leading-order normal force-balance equation is

considered later on, it is found to be convenient to set g to be

op = (5.68)

(12(1 - 12))3
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This is the same value of /g used in the work on the circular limit oy — oo in
Appendix 5.B.
A solution for the system (5.61)-(5.67) is now found by considering the

following asymptotic expansions of N, Sp, and Xp

~ 1 ~ ~ 3
2 F F2 82
Ng=NO 4 Z2ND L ZN@ Lo L222) 5.69
B B + (SB B +5% B + 5% 5% ( )
Fray Foy o (F &
Sp=80 2 s L@ oL T 5.70
B B + 53 B +5% B + 5% (3% ( )
~ 1 ~ ~ 3
2 F F1 82
sp=x0 4y Loy L@ o L2 0 571
B B + 53 B +(5123 B + 5% 5§ ( )

Including an expansion in powers of F 2/6p within the approximations
(5.69)—(5.71) supplies terms that can balance the O(F/ 5%) terms in the normal
force-balance equation (5.61), as well as supplies a higher-order term that
can satisfy the matching condition (5.66) for Sp. It is noted that these
approximations will need expansions in other parameters as well to satisfy
all the higher-order governing equations and conditions within the system
(5.61)~(5.67). However, these parameters will be O(F 5/ 53) or O(62/63) at
most. As these size terms are smaller than the O(F/63) terms included in
the approximations (5.69)-(5.71) (as F 2/ 0 < 1and F > %), they will only
appear at third order at most and thus will not be considered.

Using the approximations (5.69)—(5.71), approximations for the stresses N,
S and £ in the bending layer may be easily found. These stresses may then
be substituted into the expressions (5.141)—(5.143) to determine approximations
for the deformations &, 7, { in the bending layer. It is later found that the largest
non-zero higher-order terms in the approximations of these deformations
involve some second-order terms from the approximations (5.69)-(5.71) of N3,
Sp and X, due to some of the first-order terms in (5.69)—(5.71) turning out to
be zero. Hence, in order to determine the largest non-zero higher-order terms
in the expressions for the deformations, we will consider the approximations

for N, Sp and Xp up to second order.

5.10.1 Leading-Order Solution

Substituting the asymptotic approximations (5.69)-(5.71) and the value (5.68)
of dp into the governing equations (5.61)—(5.63), the boundary conditions
(5.64), and the matching conditions (5.65)-(5.67), we obtain the following,
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leading-order governing equations at O(1)

0 45-(0)
_an@ 1 a4NB _ 9"Xp
O—BNB+4B(B% Vo | (5.72)
0 0

o1 aNY 35 573
hoot | ozp’ ‘
oz

0= (5.74)

the following leading-order boundary conditions

oN© o)
ngo) — 1/2530) =0, and B vB =0 at zzp=0, (5.75)
823 aZB

and the following leading-order matching conditions

Nl(;O) — 0’ S(BO) N 0, Z(BO) N Z Bn(t)Yn(T)l as zp — 0. (576)

The matching conditions on Nl(go) and S](SO) arise from the fact that these
functions, which are O(1) in the bending layer, are too large to match onto any
of the terms within the matching conditions (5.65), (5.66) for Np, Sg. Hence,
ngO) and S](BO) must decay to zero as zg — 0. On the other hand, Zg]) has the
same size as the leading-order constant term in the matching condition (5.67)
for X, and may match onto it.

Immediately, it is seen that the general solution of (5.74) is
¥ = Ay (1, 1), (5.77)

where A; is an arbitrary function of T and t. Substituting this into (5.72) gives
the following ODE for N 1(30)

(0)
a4NB +4BZN( ) _

=0, 5.78
= (5.78)

which has the general solution
N = [Az(rt)cos(|3|zz3)+A3(rtsm( B2z )}
As(t,t) cos (1B|bz5) + As(t, ) sin (|B|}z5)] €825, (5.79)
+ (1B1t=s) ( )]

where Aj,...,As are arbitrary functions of T and t. From the matching
conditions (5.76), it is clear that NI(SO) cannot be exponentially growing as

zp — co0. Hence, we must set

A4(T, t) = A5(T, t) =0. (580)
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Finally, substituting (5.79) and (5.80) into (5.73) gives a complicated but
solvable ODE for Sg)). Solving this ODE, we find

5

1 1
B = WA(T’ZB’ t)€_|B‘zzB + Aé(T, t), (581)

where Ag is an arbitrary function of T and ¢, and \A(7, zp, t) is given by
A(t,zp,t) = 2|B|? [(A2+A3) cos (|B|% ) + (A4 — Ab) sin (|B|%ZB)}
—|BI' (21Blz5 + |B|? ) [A2cos (|B|3zp) + Assin (1Bl*zs) |
n

1

+|B|2|B| [Azs1 ( |22 ) — Ascos (|B|zz3)} . (5.82)
where ' denotes a derivative with respect to 7.
We proceed to use the boundary and matching conditions (5.75), (5.76) to

find the full solutions of N 1(30), 51(30) and Zéo). Applying the matching conditions
(5.76) as zp — o0, it is found that

= i Ba(t)Yu(T),  As(T,t) =0. (5.83)

The boundary conditions (5.75) are then applied to find

(o]

Ax(T,t) = As(T,t) = Y vBu(t)Yu(T). (5.84)

n=1

Substituting (5.83) and (5.84) into the expressions (5.77), (56.79) and (5.81), we
find the full solutions for N lgo)’ Sg)) and Zg)) to be

- i VB (E) Yo (T) [cos (yBﬁzB) +sin (|B\%ZB)} eBl2zs, (5.85)

i : {21311//( )cos (|B|2zs ) — |BI"Y, () [cos (1BI3zs)

2h|B|2
+|B|2zp (Cos(!Bﬁ )—i—sin(]B]% ))}}67\3\%23/ (5.86)

0 = i B ()Y, (7). (5.87)
n=1

In Figure 5.3, the leading-order approximations F IN (0), SpF %S,(BO), F %Zg])
of N, §, £ in the bending layer, and the approximations N;, Ss and £, of N,
S, ¥ in the outer shear layer, found by Whittaker (2015), are plotted. It is seen
that the bending layer allows the stresses N and S to decay from their values
at Z = 0 to the smaller values needed in the outer shear layer, while keeping %

approximately constant in Z.
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Figure 5.3: The first n =

1 modes of the leading-order approximations F INY,

0.04 0.06 0.08 0.1

Z

(0)

SpF 2 51(30), F %Zg)) of N, §, £ in the bending layer. Also plotted are the approximations
N;, S5 and &5 of N, S, £ in the outer shear layer, found by Whittaker (2015). All
approximations are plotted in the case 0y = 0.6, § = 0.001, £ = 10, v = 0.49, F =1,
and Bj(t) = 1, with Yj(7) normalised such that Y;(0) = 1. In this case 5 ~ 0.026. To
maximise the amplitudes of the plots, we set T = 0 in the approximations for N and £

and T = 2.6656, where Y/ (7) is near its maximum value, in the approximations for S.
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5.10.2 First-Order Solution

We now consider the first-order solution of the system (5.61)-(5.67). By
substituting the approximations (5.69)—(5.71) for Ng, Sp, £p into the system
(5.61)—(5.67) we obtain the first-order system for the problem. The first-order

governing equations are at O(F 2/ dp) and are determined to be

_ 1 a4N(1) 842(1)
0=BNM + = [ =2 —vE ), 5.88
LAY ( 0z} v 0z} (5.88)
oN®D 5
0= LoNg |, 955" (5.89)
h ot Jzp
oz
0= 25’ (5.90)
the first-order boundary conditions are calculated as
oNW ox
NP —vzl =0, and B —vZZE —0 at zz=0, (5.91)

aZB aZB

and the first-order matching conditions are found to be

(1) M e Balt) o [ 1 0 (19Y,\ (1)
Ny’ =0, S’ =), o 97 | BT \I ot Y.(7)|, T’ =0,
(5.92)

as zg — 0. The matching condition on Nl(gl) arises from the fact that the

n=1

first-order N l(gl) term in the expansion (5.69) for Np is too large to match onto

any of the terms in the matching condition (5.65), and thus must decay to zero

as zg — o0. The first-order S](Bl) term in the expansion (5.70) for Sg has the same

size as the leading-order constant term in the matching condition (5.66), and so
Sg) must match onto this constant term. Finally, the size of the first-order Zg)
term in the expansion (5.71) for X is too small to match onto the leading-order
constant term in the matching condition (5.67), which has already been matched

(1)

with Z](BO). However, the size of this first-order X term is also too large for any
linear or higher-order terms in zp that may arise in Zg) to match with any of
the higher-order terms in (5.67). Hence, Zg) must tend to zero as zg — 0.

As the first-order governing equations (5.88)—(5.90) take the same form as
the leading-order governing equations (5.72)—(5.74), the general solutions for
Nl(_}l), Sg) and Zg) will be the same as the general solutions (5.77), (5.79), (5.81)
for N éo), Sg)) and Zg)). Applying the homogeneous boundary conditions (5.91)
and the matching conditions (5.92), the following first-order solutions are found

() _ 1) _ = But) 9 [ 1 0 (19Y,) (1) _
Ny’ =0, Sy’ =) w97 | B2hat \ i ot Ya(T)|, Xy’ =0. (5.93)

n=1
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5.10.3 Second-Order Solution

The second-order solution of the system (5.61)-(5.67) is now considered.
Substituting the approximations (5.69)-(5.71) for Ng, Sg, £ into (5.61)—(5.67),

we find the second-order governing equations at O(F/43) to be

_ a4 (2) 842(2) aZ (0) 822(0)
024§N§%+< Ny~ 025 | g (9Ns 925 ) (5.94)

0z 0z 0z2 022
19Ny asy
0=-—2L B_ (5.95)
h ot 823
oz
0= 925 (5.96)
the second-order boundary conditions as
(2) (2)
@ _ 5@ _ ONg' 9% _ _
Ng’' —v¥i;’ =0, and 325 v 25 0 at zp=0, (5.97)
and the second-order matching conditions to be
NP =0, s@ 50, =P 50, as zp— oo (5.98)

We have these matching conditions for the following reasons. Like the leading
and first-order terms in the expansion (5.69) for Np, the second-order Néz) term
is too large to match onto any of the terms in the matching condition (5.65) and
thus must decay to zero as zg — oo. The second-order 51(32) and Zg) terms in
the expansions (5.70), (5.71) for Sp and Xp are both too small to match with the
(already matched) leading-order constant terms in their respective matching
conditions (5.66) and (5.67). These second-order terms are also too big for any
of the linear or higher-order terms in zp that 51(32) and 21(32) may contain to match
onto any of the higher-order terms within (5.66) and (5.67). Hence, both Slgz)
and 21(32) must decay to zero as zp — .
Solving the governing equation (5.96) we see that the general solution of
Zg) must be
=2 = ¢ (1, 1), (5.99)

where C; is an arbitrary function of T and t. Applying the matching condition
(5.98) for Zg), it is seen that
Ci(t,t) =0, (5.100)

which implies
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Substituting (5.99) and the expressions (5.79), (5.77) for N (0), Z%O) into (5.94),
the following ODE for N Igz) is obtained
a4 1(3 )
oz 4

Nl—
Nl—=

ZB>] e"m%zg.
(5.101)

It is seen that the homogeneous version of this ODE has the same form as the

(2)

+ 482N = Y 83| BJvB,(1)Y,,(7) [sin (|B|

n=1

zB> — cos (!B[

governing ODE (5.78) for ngo)_ As such the complementary function of N
denoted NI(BZC)F here, will have the same form as the general solution (5.79) of

N 1(30) and we have

ng%:)F [Cz(‘f t) cos (!BI% ) + C3(t,t) sin (|B|223)}
[c4(r ) cos (|B|zzB) + Cs(T, 1) sin (\By% )} B2z (5.102)

where C,...,Cs are arbitrary functions of T and t. Applying the matching
condition (5.98) for N(Z), we see that the solution for Nl(;z) cannot be

exponentially growing as zp — oo and we must set

Ca(t,t) = Cs(1,t) = 0. (5.103)
To find the particular integral of N (2), denoted N g))l here, we try a solution of

the form
_ 1
Nl(ﬁ’)l = [B(T/t) sin (’B’%ZB) —C(7,t) cos (\B\%ZBH zge ™ 1BI228,

where B(7,t), C(7,t) are functions to be found. Substituting this into the ODE

(5.101) and equating coefficients, we find

B(t,t)=0, C(t,t)=) |_h|1 VB, (1) Y, (7),
n=1 2
which yields
00 =1
NG =-Y h’ VB, (£)Ya(T)zp cos (|B\%ZB) e~IBI2z8, (5.104)
n=1 2

Adding the complementary function (5.102) to the particular integral (5.104),
(2)

the general solution of Ny~ is found to be

1
+C3(7, t) sin |B|%zB) ]e—iBi“B. (5.105)
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Finally, we rearrange and integrate (5.95) to obtain the following expression
for Séz)

(2 /
@ _ [©1oNy (t,2)1) .,
s@ = /ZB L2 (5.106)

It is noted that the matching condition (5.98) for Sg) has been incorporated into
this expression.

We now use the boundary conditions (5.97) to derive the full solution of
ngz). Applying these boundary conditions to the general solution (5.105) of
N éZ) , it is found that

Gt =0, Glr=Y |g|an(t)Yn(T).
n=1

Substituting these into (5.105), the full solution of N 1(32) is found to be

sin(|B|2z5)
B

NI S

3 an(t)Yn(T)[ —chos(\B\%zB)] e 1Bl3zs, (5.107)
1

NI—
Nl

It is now possible to derive 51(32) by substituting the value for N,(32) into

(5.106). Doing so gives the following solution for 51(32)

5@ _ VBult)
B 5|2
4h|B|>

{sin(\B\%zB) [(z(hyn)'u;\% —5hyn\B\%|B\/) zp
+4(hY,)'|B| - 6hYn]B]’}
+ cos (yBy%zB) [ZhYn]B|\B\/z,23+ (3hynyéy%yBy’ —z(hyn)/|1§|%) zp
-1
+2(hY,)'|B| - 3hYnyB|’} }e—iBi“B, (5.108)

where once again, ' denotes a derivative with respect to 7.
Finally, we recall that
=2 = 0. (5.109)

511 Bending-Layer Deformations

Now that the asymptotic expansions (5.69)—(5.71) for N, Sp and X have been
calculated up to second order, we may use these to calculate approximations
for the deformations &, 7, £ in the bending layer, up to the largest non-zero
higher-order term. Substituting (5.69)—(5.71) into the expressions (5.60) allows
us to find N, S and £ in the bending layer. We may then substitute these stresses
into the expressions (5.141)—(5.143) for the deformations g 1, lintermsof N, §
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and . Doing so and noting that Nl(gl) = Zg) = Zg) = 0, the approximations of
the deformations including the largest non-zero higher-order terms are found
to be

T PR - Fi &
&= F1|E0 4 78" +0 ((Sg 5123)] : (5.110)
_ Fi F

A=0F 70 +2 250 40 (2)] , (5.111)
B 53

s s Fs Fi &

{=0opF2 |{O 4 5—2§(1) +0 ((53, 52)] , (5.112)
B B B

where the leading-order terms ¢(¥), #(0) and {() are given by

. h 0 0
£ — BB (Uz<3> ~ N >) ) (5.113)

70 = /ZB nSy (v,2,1)
0 6(1—v)
9 /Z' Zg))(r,z”,t) — VngO)(T,Z//,t)
ot Jo 12(1 —12)

dz") dz, (5.114)

dz, (5.115)

£0) _ / 2 59 (1,2, 1) =Ny (1,2, 1)
0

12(1 — v?)

and the higher-order terms &), #(1) and (V) are defined as

R h
1) _ (2)
gV = _mNB , (5.116)
z5 hs(V) 7,7t
77(1) = /O g(l(_v))dz/, (5117)
(2) ’
. 2 YN/ (7,2/,1)
g0 — /O mcl,z'. (5.118)

Applying the expressions (5.85)—(5.87), (5.93) and (5.107)—(5.109) for
ngO),...,Z,(BZ) to the approximations (5.110)-(5.112), the bending-layer
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deformations up to the largest non-zero higher-order term are found to be

+ - B
0% =1 12|B2(1—12) |B|2
2 Lo
0 f3 A 22‘5 ) (5.119)
(SB 5B
-~ 2 41 . Bn(t) 2 Yy, ! . _ 1
i 53}'2;124(1_ 2y (v°+2v) 5] sm(| \ZzB)

~ & By(t) o[ 1 9 (19, s
HBF; 6pn(1—v) 9T [Bzhar <h ar> _Y"(T)] zp+0 (fZ),
(5.120)
s ozl e Bu(H)Ya(1) V2 1 Bz
g—ég]:zngllz(l_vz) ZB+!B|% cos(|B|ZZB)e 1
Fi & hv2Bu(H)Ya (1) { iy iy
- 1— [(1—|B|2zg ) cos (|B|2z
3;24\3\%(1_1/2) [< 1Bl B) <| | B)
72 2
NPT RN S et
+ (24 1Bltza) sin (1BlEz) | }+o<5%, k
(5.121)

The sizes of these deformations are in agreement with the sizes of the
deformations (5.174)—(5.176) calculated in the limit of a circular cross-section
in Appendix 5.B. The leading-order terms of these expressions are depicted in
Figures 5.5, 5.6 and 5.7 in §5.13.

512 Leading-Order Area Change in the Bending Layer

Using the expression (5.119) for the normal deformation ¢ in the bending layer,
it is possible to determine the leading-order variation in the cross-sectional
area of the tube within the bending layer. We begin with the following relation

between the area change and deformation r — ry in the tube wall, found by
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Whittaker et al. (2010d)
m@&n—A@f:f@—mymmm+om%, (5.122)

where A, Ay are the dimensionless cross-sectional areas of the tube in its
deformed and undeformed state respectively. Applying the expression (5.5)

for r — rg, we find the leading-order area change in the bending layer is given

by

A 2w, 5
Alzs ) = A0 =5 [ ddr+0(82),

o AF3
) 12(1_1/2)6,1(745)+o ( 520 ) (5.123)

where

Colen) = [ 1 [1 — (cos (|Bl}2s) +sin (|Bl325) elgﬂ dr. (5124)

The function C,(zp) cannot be determined analytically and so instead
we find a numerical solution for the function. We begin by numerically
determining the eigenfunctions Y, (7) of the operator £ defined in (5.28). This
may be done in MATLAB using the “BVP4C” solver, documented in Kierzenka
& Shampine (2001). Once the eigenfunctions are calculated, it is then possible
to numerically evaluate the integral within (5.124) by applying the trapezium
rule with the “trapz” function in MATLAB.

In Figure 5.4, the numerical solution of C,(zp) for the first # = 1 mode has
been plotted in the case op = 0.6. In this case, the eigenfunction Y;(7) has been
normalised such that Y;(0) = 1. From the figure, we see that as zg — 0, the
value and axial gradient of C1(zp) both tend to zero as expected. We also see
thatas zg — 00, C1(zp) tends to some constant O(1) value. By examining (5.124)

and noting the exponential decay of the sinusoidal terms, we may deduce that

h

27 Yn
Cn(zp) —>/ —dt, as zp — oo.
0 B
In the case 0y = 0.6, it is found that for the normalisation Y;(0) =1,

C1(ZB) ~ 2399, as zZp — oo.

Finally, we note that there is a maximum in C;(zp) at zg ~ 4.5 which is slightly

larger than the value C;(zp) takes as zp — 0.
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10 12

Figure 5.4: The numerical solution of the first n = 1 mode of the function Cy,(zp)
defined in (5.124), in the case 0y = 0.6. Here we have normalised Y;(7) such that
Y1(0) = 1.

Examining the expression (5.123) for the area change along with the
behaviour of the functions C,(zp), it is seen that within the bending layer
Az, t) — Ag = O(AF2 /). Tt can also be shown that

A(ZB, t) —Ap —

00 27T
Y vBy(t) / hl_/" dr, as zp— . (5.125)
1 )Jo B

Hence, as we exit the bending layer the change in area tends to some O(AF /0 )

constant in zg.

5.13 Corrections to the Outer Shear-Layer Solution

Now that we have obtained the expressions (5.119)—(5.121) for the deformations
g ] and {in the bending layer, we determine what corrections the leading-order
terms of these expressions impose on the deformations in the outer shear layer.
To do this, we must match the general leading-order solutions (5.29)—(5.31) for
the deformations in the outer shear layer to the expressions (5.119)—(5.121) as

Z—0,zg — o0.
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Taking the Taylor series of (5.29)—(5.31) about Z = 0 and rewriting the axial
coordinate in terms of the intermediate variable z; defined in (5.51), we find the

asymptotic behaviour of the deformations in the outer shear layer as Z — 0 to

(5 ﬁ%) z1+o<(5 ﬁ%) )]

A F2 o d (1aY,) [1
¢~ 12B(1 —12) {_ L Balt)5 <h a~c> {2

o [10A , ~1\ % o (B -1
5t (h = t>>(53f2> it 5 (2 t)>}+0(m (5120
3 0 {

i~ e [ £ 0% [3 @2 2o ((24)")]
—aAa(:'ﬂ (5Bf%>azl + B(T,t)} +O(F2), (5.127)

¢ 12(11—1/2) {nian(t)Yn(r) [(5Bf%)“zz+o (((SBﬁ%)Z“)] + At t)}
+O(F). (5.128)

As zp — oo, the asymptotic behaviours of the deformations (5.119)—(5.121) are
found to be

12B(1 —v2) &
]:'2;]( -1\ ke ]:'1751{52 ~ 1\ ke
+0 (o (67%) ", = (678)" ), (5.129)
/
~ > Bn(t) ~_ 1., 1) 2 2 2 n ~1\ 4%
~ — Y, 2
Ui 11;124(1_]/2) { Y, (53 2) ZI+ 531/ |% (5Bf2> Z]

3—k
~1 ~ 1\ & 2 1\ ka
10 [ F2 (83 F2), opF2 ) (5.130)
< ( ) ok ( )
. & Bu(H)Ya(T) _i\® 1 12
C~ L - wFH) 2 287 1
n=1
F3 FH ke FT82 0 ik
+O<53’5§+k (6s72) " oL (8s72) ") (.131)

Here, the integer k is the highest power of z; that appears at higher orders in
the approximations. For (5.126)—(5.128) to match with (5.129)—(5.131), we must

have .
A(t,t) = %Z )‘}/( VBu(H)Ya(T), B(t,t) = 0. (5.132)
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We note that the quadratic and linear terms in the asymptotic behaviour
(5.126) for & in the outer shear layer match onto higher-order terms in the
approximation (5.129) for ¢ in the bending layer as zg — co. We also note
that the constant term in (5.129) matches with higher-order terms in (5.126).
Finally, the constant term in the approximation (5.130) for 7§ in the bending
layer as zp — oo matches with higher-order terms in the outer shear-layer
approximation (5.127) as Z — 0.

Substituting (5.132) into (5.29)—(5.31), the corrected deformations in the

outer shear layer are found to be

£~ pa ;B”(t){ij > Gzaai) [Vl (1=e) ‘7‘]
+5szaaT [;;T (T’%ﬂ? z} +O(F), (5.133)
f = 12(11_ ) nil Bn(t) 7;% aalzz [;ﬂ (1—e ) — z}
oo (TBT)) z} LO(FY), (5.134)
= g M [;ﬁ (1—e %) — g5 F> é% +O(F). (5.135)

Comparing these deformations with those originally found by Whittaker
(2015), we see that the correction terms are all a factor of O(65F2) = O(F253()
smaller than the leading-order terms, and the leading-order behaviour of the
deformations in the outer shear layer is not altered. However as ép > F %,
these correction terms are larger than the other higher-order terms within the
expressions and thus are more important than the other higher-order terms. In
& and #, the correction terms are linear in # and thus alter the axial gradient
of the normal and azimuthal deformations. In é, the correction term is instead
constant in Z and imposes a constant shift in the axial deformation.

By relaxing the condition 7 = O(1) and setting F = O(63¢72), the
correction terms become large enough to contribute at leading order. However,
substituting this value of F into the definition (5.1) of F, we instead find
F = 0(51). Ass < 1, we have F >> 1 in this scenario, and the shear
layer studied by Whittaker (2015) no longer has a significant effect on the bulk
solution and does not need to be considered. Hence, further investigation is
required to see what happens in this case.

In Figures 5.5, 5.6 and 5.7, the first n = 1 mode of the leading-order
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approximations for & 7 and { in the original outer shear layer studied by
Whittaker (2015), which we denote as cfs, s and és, are plotted in the axial
direction for fixed 7. Also plotted is the first # = 1 mode of the leading-order
approximations F 280, W %ﬁ(o), 6 F2{© for the deformations in the bending
layer, as found in (5.119)—(5.121), and the first mode of the corrected outer
shear-layer deformations (5.133)—(5.135), which we denote as é’c, . and é’c.
It is seen that the bending-layer deformations and axial gradient are all zero
at the clamped boundary Z = 0, and the clamped boundary conditions are
satisfied. The linear corrections to & and # and the constant shift to { in the
outer shear layer is also observed. Finally, it is noted that the correction to
the outer shear-layer & behaves differently from the far-field behaviour of the
approximation for ¢ in the bending layer. This is because the leading-order
terms in the bending layer match with higher-order terms in the outer shear
layer, with axially uniform behaviour in the intermediate region. Conversely
the leading-order terms in the outer shear layer match with the higher-order
terms in the bending boundary layer, with axially quadratic behaviour in the
intermediate region. Hence, the leading-order bending-layer & does not alter
the leading-order shear-layer ¢, and the correction seen in the shear layer is due

to terms that arise at higher-order in the bending layer.
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Figure 5.5: The first n = 1 modes of the approximations (’fs, F %5(0), and fc, of (f in

the original outer shear layer studied by Whittaker (2015), in the bending layer, and

in the corrected outer shear layer, respectively. The approximations %cf () and &, are

found in (5.119) and (5.133), and all the approximations are plotted in the case oy = 0.6,
5 =10.001,¢=10,v =049, F =1, T = 0 and B;(t) = 1, with Y;(t) normalised such

that Y1(0) = 1. In this case d5 = 0.026.
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0 0.02 0.04 0.06 0.08 0.1
Z

Figure 5.6: The first n = 1 modes of the approximations #s, (5%]? %ﬁ(o), and 7, of 7 in
the original outer shear layer studied by Whittaker (2015), in the bending layer, and in
the corrected outer shear layer, respectively. The approximations 63 F %ﬁm) and 7j, are
found in (5.120) and (5.134), and all the approximations are plotted in the case oy = 0.6,
6=0.001,¢=10,v =049, F =1, T = 2.6656 (where Y] (7) is near its maximum value)
and Bq(t) = 1, with Y;(7) normalised such that Y1(0) = 1. In this case 6z = 0.026.

With the expression (5.133) for £ in the outer shear layer, it is also possible
to determine the correction to the cross-sectional area change within the outer
shear layer. Substituting (5.133) into the expression (5.122), the area change
A(Z,t) — Ap in the outer shear layer is found to be

1

§ ©  AB,(t) ) F2 [1 s ] /2”1 (Y'>/
A(Z,t)— Ay = (1 — e M2y — —[2n) g
(%) = 4o ,1;125(1—#) ol P G Al A A S B
AF?

!
iy (1Y
. 111 n
+(5sz/0 B<h <|B|%)> dr +o< : ).(5.136)

As with the normal deformation ¢, the correction term is a factor of O(dz.F %)

/

smaller than the leading-order term so does not alter the leading-order
behaviour of the area variation. However, this term is larger than the other

higher-order terms, meaning the correction term is more important than the
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Figure 5.7: The first n = 1 modes of the approximations és, ogF %f (0), and éC, of é in
the original outer shear layer studied by Whittaker (2015), in the bending layer, and in
the corrected outer shear layer, respectively. The approximations ép.F %é ©) and . are
found in (5.121) and (5.135), and all the approximations are plotted in the case oy = 0.6,
5 =0.001, £ =10, v =049, F =1, T = 0 and By(t) = 1, with Y;(7) normalised such
that Y1(0) = 1. In this case g = 0.026.

other higher-order terms. This correction is linear in Z and thus gives a

correction to the axial gradient of the area change.

5.14 Corrections to the Bulk-Layer Solution

Now we determine what effect the bending layer has on the bulk solution by
considering the behaviour of the deformations (5.133)—(5.135) in the outer shear
layer as Z — oo. It is first convenient to express Z and Z in terms of some
intermediate variable z,. By considering the typical axial scales in the outer

shear layer and bulk solution, we define z,, as

NI

(wi"%)*ﬁ Z =2y = (eﬁ )1*'5 2, where 0<p< 1. (5.137)
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It is seen that when z,, = O(1), we must have Z — 0 and Z — oo due to the fact
that (72 = O(6/%) < 1.
As Z — oo the deformations (5.133)—(5.135) in the outer shear layer become

. 1 0 19 /13aY,\ [F 2 1 / .1\F
™~ 2BA ) ZB"(t){‘unar (h ar> [ i _ﬁ@ﬁ) Z’”]

) , (5.138)

(SB Za Yn(T)
=1 T 51
LF2 T\ |B|2
s & Bu(HYa(r) [ 1 1 12 F2 o 1\
L pa—n) | | o\ (F)) e

where we have rewritten Z in terms of the intermediate variable z,, using
(5.137), and the integer s is the highest power of z,, that appears at higher
orders within the deformations (5.133)—(5.135) in the outer shear layer.

In the approximations (5.138), (5.139) for g i as we exit the outer shear
layer, we see that the axially linear correction terms in the second lines of
the expressions are smaller than the leading-order axially linear terms in the
first lines of the expressions. As such the correction terms will affect the
bulk solution at a higher order than the leading-order linear terms. As the
axially constant terms are O(F~2) within (5.138), (5.139), they must match
onto terms that have the same size in the bulk layer. However, by noting that
Z=F 2 )Pz, in the bulk layer, we see that the linear correction terms, which
are O(F _%(535_1(67:" %)/5) in the intermediate region, must instead match onto
terms in the bulk solution that are O(F~263¢~1). As 63/~! < 1, the terms in
the bulk region that match onto the linear correction terms are smaller than the
terms that match onto the constant terms. Hence, the bending layer induces
corrections to & and 7} in the bulk solution that appear at higher orders than
terms matching onto the leading-order axially constant and linear terms in the
outer shear layer, seen in (5.133), (5.134). From (5.122) the cross-sectional area
variation is dependent only on the normal deformation ¢. Hence, the bending
layer also induces corrections to the area change in the bulk solution that appear

at higher orders than terms matching onto the leading-order axially constant
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and linear terms in the outer shear layer, seen in (5.136). As these corrections
are so small, they are not computed here.

In the approximation (5.140) for { as we exit the outer shear layer, there is a
leading-order constant term in z,, and a smaller correction term also constant
in z,,. Hence the correction term will not affect the leading-order solution in the
bulk layer, but instead induce a correction to the bulk solution at a higher order.
As determining the correction would require calculating a general solution of
{ in the bulk layer which does not depend on any boundary conditions at the

tube ends, we do not calculate the correction to { here.

5.15 Conclusions

In this chapter, we have introduced a bending boundary layer to the model
in Chapter 2, in regime I, where 6/> < 1, and the width 6 of this bending
layer lies in between the widths F 2, F1 of the inner and outer shear layers
found by Whittaker (2015). It is found that the inner shear layer is no longer
needed in this scenario. As such, the bending layer is situated at the ends of the
elastic-walled tube and matches onto the outer shear layer. In introducing this
bending layer, the full clamped boundary conditions (5.44) have been satisfied
at the ends of the elastic-walled tube. The effects this bending layer induces
on the outer shear layer studied by Whittaker (2015) and the bulk solution
modelled in Chapter 2 have also been evaluated.

As in Regime I, studied in Chapter 4, we have used Kirchhoff-Love
shell theory to model the wall mechanics in the bending layer. In doing
so, the force-balance equations in the normal, azimuthal and axial directions
were derived. It was initially unclear however what matching conditions
the deformations should have as we exit the bending layer. To resolve this
problem, the system was recast in terms of the in-plane stresses N, S and £. By
examining the resulting normal force-balance equation, it was found that the
only terms that contribute at leading order are terms that arise from azimuthal
and axial stretching mechanisms, and axial bending mechanisms. For these
terms to balance, we found that the width dp of the bending layer must be
63 = O(62). This does not agree with the estimate (3.48) for the bending-layer
width derived in the toy model in §3.6. This is due to the fact that the toy
model does not capture the effects of azimuthal and axial stretching, which are

found to contribute at leading order in this regime. Although Jp is different
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from the value predicted by the toy model, we still have F 1« dp < F2and
the bending-layer width is still larger than the inner shear layer, and smaller

than the outer shear layer, both modelled by Whittaker (2015).

To determine a solution for the system, asymptotic expansions of the
stresses N, S and ¥ within the bending layer were considered. These
approximations were solved up to second order and, using these stresses,
the normal, azimuthal and axial deformations within the bending layer were
derived up to the largest non-zero higher-order term. The normal deformation
was then used to derive an expression for the leading-order area change within
the bending layer. This area change was determined to be O(AF %6*1) in the
bending layer, and it was also found that as zg — oo, the area variation tends

to a constant in zg.

Using the leading-order deformations in the bending layer, the corrections
to the deformations in the outer shear layer have been determined. These
corrections have been found to be a factor of O(épF %) smaller than the
leading-order terms and as such do not alter the leading-order behaviour of
the deformations. However the correction terms are larger than the other
higher-order terms by a factor of O(F 2 Og 1) and so these corrections are more
important than the other higher-order terms. In the normal and azimuthal
deformations, é and 7, these corrections are linear in Z and so alter the axial
gradient of the deformations, whereas in the axial deformation { the correction
term is constant in Z and forces a constant shift in the axial direction. Using the
expression for (f, the correction to the area variation in the outer shear layer has
also been calculated. Like in é, the correction does not affect the leading-order
behaviour of the area variation. Instead the correction appears at a higher order
and alters the axial gradient of the area change at a lower order than any of the
other non-zero higher-order terms. If we relax the condition 7 = O(1) and
instead set F = O(673/~2), these correction terms become large enough to
contribute at leading order. However, this also sets F > 1, and in this case
the shear layer studied by Whittaker (2015) no longer has a significant effect on
the bulk solution and does not need to be considered. Further investigation is

required to see what happens in the case with F = O(673(72).

Finally, we have evaluated how the corrections to the deformation in the
outer shear layer affect the bulk layer modelled in Chapter 2. In the normal,
azimuthal and axial deformations 6, f, é’, as well as the cross-sectional area

variation A — Ay, the corrections in the outer shear layer enforce corrections to
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the corresponding variables in the bulk layer that appear at a higher order than
terms matching onto the leading-order terms in the outer shear layer.

It is seen here that the bending layer in this regime is passive and does
not contribute to the leading-order deformations in the outer and bulk layers.
However it allows the axial gradient of the tube wall to decrease to zero as the
clamped boundary at Z = 0 is reached. This bending layer also allows the
stresses N and S to decay from their respective O(F 2) and O(63F2) values at
Z = 0 to the O(F?) and O(F ) values needed in the outer shear layer, while
keeping ¥ approximately constant in Z. The decay of N and the conservation
of the size of ¥ was originally accomplished by the inner shear layer. However,
the value of S in the original inner shear layer was the same size as the
corresponding value in the outer shear layer. As such, the bending layer has
increased the size of this in-plane shear stress near the clamped boundary by a
factor of (53/]:"%.
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5.A Reformulation in Terms of Stress Variables

To determine a solvable system with a complete set of matching conditions,
valid within the bending boundary layer, we consider a change of variables
from the deformations ¢, 7 and , to the leading-order azimuthal hoop stress N,
the leading-order in-plane shear stress S, and the leading-order axial stress 2.
These stresses are defined in terms of the deformations ¢, 77 and ¢ in equations
(5.21)—(5.23). This reformulation follows closely the reformulation carried out
by Whittaker (2015).

Manipulating (5.21)—(5.23) and applying the clamped boundary conditions
(5.44) allows the following expressions for the displacements in terms of the

stresses to be found

{(t,zp,t) = /OZB 12(1551/2) (2(t,2,t) —vN(t, 2, 1)) (5.141)
(7,25, 1) = /OZB 55 (M?(i(j j) H _3(nz.h) ) az, (5.142)
. _ h(t) (vE(t,zB,t) — N(T,28,t) 1 9 [#(t,z5t)

étann =g (F R e (M) ) 619

With these expressions, we rewrite the terms within the force-balance
equations (5.41)—(5.43) in terms of the stresses. It is found that all the terms

in (5.41)—(5.43) may be rewritten using the following expressions and their

derivatives
aé . 53(2—1/N)
525 = 12(1=12) G149
25 2 & S — N
o _ ot (235_13 (ZVN>) (5.145)
0z4 12 \dp(1—v)ozp hot \ 1—12
BB 1 F (N-us
dz3  12B \ 6%0z3 \ 1—-12
10 2 S 10 ([X—vN
9 (f__ 2 9 19 (=TVN 14
+h8T <5B(1—v) Zp h8T<1—V2>>)/(5 0
BE 10 (7 N—-vE
_be 1o () _NZvs 147
n T hat (h) 20117 G147

Substituting these expressions and their derivatives into (5.41)—(5.43), we find
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the governing force-balance equations in terms of the stresses to be

2 4 s 3 2.4
S A L ET W )

6312B | 6% 0z4 \ 1—12 63h 01923 \ h oz}
BT R L EY A ENE A
B 6% 9z 62 ot \ h oz}
) P
+6 Eptm+o<52N 5 5,5%2>, (5.148)
s 10N 135
- h ot 53 aZB
_52(1+1/B8 1 02 ~—1/Z +1za 10*)
24k o1 52 az 62h ot \ h oz

i
o (L) (r)s) e

9% 6gdS & 33(”—1/2) 6*  9? (18217>

dzg | h Ot 1262023 \ 112 ) " 82h0tozs \h oz}
+0 re N, 62038, &2 (5.150)
OB OB

where 9%7j/9z3% is given in terms of the stresses by (5.145).

The clamped boundary conditions (5.44) are now converted into conditions
on the stresses. From the expressions (5.141) and (5.142) for the deformations
{ and 7, we see that when zp = 0, # = { = 0 automatically. Using (5.143),
it can then be shown that for the remaining clamped boundary conditions
(& =9&/9zp = 0 at zg = 0) to be satisfied, we must have

. ON 9% 2(1+v)0aS B
N - VZ — O, and % - V% - ?g — 0, at ZB — O (5.151)
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5.B Limit of a Circular Cross-Section (cy — 00)

Here, we determine the leading-order stresses and deformations in the bending
layer in the limit where the undeformed tube has a circular cross-section
as opposed to an elliptical cross-section. We first use Fourier series in the
azimuthal coordinate T to obtain solutions for stresses N, S, ¥, that satisfy
(5.45)—(5.54) at leading order. These stresses are then used to determine the

deformations ¢, 77 and { at leading order in the circular limit.

5.B.1 Governing Equations as (0y — c0)

As 0y — o0 and the undeformed cross-section of the tube becomes circular, we
have from (5.2), (5.3) and (5.11) that

cr~2e %, h(t) — 1, B — —1. (5.152)

Whittaker (2015) also found that as 0y — oo, the functions Y, () seen in the
matching conditions (5.52)—-(5.54) are given by

Y, (T) — cos(2nT). (5.153)

Substituting these approximations, as well as the sizes (5.58), (5.59) of N, S
and ¥ into the force-balance equations (5.45)—(5.47), we find the leading-order

force-balance equations as oy — o to be

N+5—2¥a—4(ﬂf—vi) =0 (5.154)
63 12(1 —12) 924 - ‘
ON 1 9S
E)»
52, =0 (5.156)

As seen in §5.8, we need g = O ((ﬁ) for the axial-bending term in (5.154) to
balance the first term in the equation. We set
V263

bp=——" (5.157)
(12(1—v2))*

NI

where the factor of /2 (12(1—v2))

following analysis.

has been included to simplify the
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5.B.2 Fourier Representation

We see that (5.154)—(5.156) have no explicit dependence on 7. We also note that
these equations are linear and so we expect to find solutions that are sinusoidal
in 7. Whittaker et al. (2010d) found that in the bulk layer, the deformations
g 1 and ¢ are periodic over 7, and 7 is odd in 7, whereas & and { are even
in T. So the deformations in the outer shear layer could match onto these
bulk layer deformations, Whittaker (2015) only considered outer shear layer
deformations with these same properties. Similarly, here we will only consider
deformations in the bending layer with these properties so that they may match
onto the deformations in the outer shear layer. By considering these properties
and the expressions (5.21)-(5.23) for the stresses N, S and X in terms of the
deformations, it is found that the stresses are also all periodic over 7, and § is
odd in T, whereas N and ¥ are even in 7. We therefore look for solutions of the
form

(o]

N =) a(zp) cos(2n7), Z (zg)sin(2nt), £ =) ya(zp)cos(2nT).
n=0 n=0 n=0

(5.158)

Substituting (5.158) into (5.154)—(5.156), we find that the different Fourier

modes decouple, and for each mode n we have

DCZH + 40‘11 - V,)/Z,/ - 0/ (5159)

_2nlxn —+ 7‘311 = 0, (5.160)
B

N 0, (5.161)

where ’ denotes a derivative with respect to zg. We also substitute (5.158) into
the boundary conditions (5.48), (5.49) to obtain the following, leading-order

conditions at zg = 0
ay—vy, =0 and &, —vy,=0 at zp=0. (5.162)

It is noted that in the condition (5.49), the 95/9T term is a factor of (5% smaller
than the other terms in the condition (due to the sizes (5.58), (5.59) of the
stresses), and has been neglected in the leading-order condition here.

Finally, we determine the leading-order matching conditions for «,, 8, and
Yn. By comparing the size (5.58) of £ in the bending layer to the size of
the leading-order term in the matching condition (5.54) for %, it is seen that

these sizes are the same and the matching condition (5.54) may be used here.
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Substituting the approximations (5.152), (5.153) and the Fourier series (5.158)

for £ into (5.54), we find the following leading-order condition for 7, as zg — oo
n~ FiBy(t) for n>1, (5.163)

where all the higher-order terms within (5.54) have been neglected here. We
note that when n = 0, we obtain the matching condition vy ~ 0 as zg — o.
It is found that this condition combined with the rest of the system sets
xy = Bo = Yo = 0. As such, we now only consider the scenario n > 1.

Unlike %, the sizes (5.59) of N and S are larger than the sizes of the
leading-order terms in their corresponding matching conditions (5.52) and
(5.53). As such, the leading-order N and S must tend to zero as zg — co.

Hence, we have the following leading-order matching conditions for «;,, B,

“n, an — 0 as ZB — Q. (5.164)

5.B.3 General Solution

We proceed to find the solution of the system (5.159)—(5.164), starting with the
general solutions of a,,(zg), Bn(zp) and v, (zp). First, by integrating (5.161), we
find

Tn = Cin, (5.165)

where Cj,, is a constant to be found. Substituting this into (5.159) gives the
following ODE for «,,

o+ da, =0, (5.166)
which has the general solution
ay = [Coy cos (zg) + Csy sin (zg)] e~ 8 + [Cay cos (zp) + Csy sin (zp)] €8, (5.167)

where C,,—Cs,, are constants to be found. Finally, by substituting (5.167) into
(5.160), an ODE for B, is obtained. Solving this ODE, the general solution of 8,

is found to be

Bn = Cen +ndp {[—(Czn + C3n) Ccos (ZB) + (Czn — an) sin (ZB)] e B
+ [(Can — Csy) cos (z) + (Cay + Csp) sin (zg)] e }, (5.168)

where Cg, is a constant to be found.
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5.B.4 Applying Boundary and Matching Conditions

We now apply the boundary conditions (5.162) and matching conditions (5.163),
(5.164) to the solutions (5.165), (5.167), (5.168) for v,, au, Bn. Applying the
matching conditions (5.163) and (5.164) to (5.165), (5.167) and (5.168) allows us
to find

Cin = F2By(t),  Cay = Csy = Con = 0. (5.169)

Substituting (5.165) and (5.167) into the clamped boundary conditions (5.162)
then yields

Can = Can = vF1B,(1). (5.170)

5.B.5 Full Solution of the Modes

We now substitute (5.169) and (5.170) into the expressions (5.165), (5.167) and
(5.168) for v, ay and B,. Doing so, we find the full, leading-order solutions of
X, Bn, Yn to be

ty(z5) = VF 2B, (t) [cos (zp) + sin (zp)] e, (5.171)
B, () cos (zg) e *2, (5.172)
Yu(zp) = F2By(t). (5.173)

The first n = 1 modes of these Fourier coefficients have been plotted in Figure
5.8, in the case 6 = 0.001, ¢ = 10, v = 0.49 and B, (t) = 1. From the figure, it is
seen that the leading-order coefficients a1 and B, which relate to the azimuthal
hoop stress N and in-plane shear stress S, both decay to zero as zg — oo. This
reduction in size is particularly apparent for a;. However, the leading-order
coefficient 1, which relates to the axial stress %, is seen to remain constant

within the bending layer.

Using (5.171)—(5.173), we may calculate and substitute the leading-order
stresses N, S, £ into the expressions (5.141)-(5.143) in Appendix 5.A to find

the leading-order values of the deformations &, # and { in the circular limit.
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Figure 5.8: The leading-order solutions (5.171)-(5.173) for the first n = 1 Fourier
coefficients w1, B1, y1 in the expansions (5.158) for the stresses N, §, £, in the case
0 = 0.001, £ = 10, v = 0.49. These coefficients have been normalised such that
Bi(t) = 1.

Doing so, the leading-order deformations are found to be

l

i vF2B,(t)cos(2nT)

¢ [(cos (zp) +sin (zp))e™** —1], (5.174)

12 1 (1—12)

2Fzin sin(2nt
Z 4 151—)1/2)(2 ){V<V+2> [(cos (z) —sin (zp)) e~ — 1]

n=1

22— 2 zB}, (5.175)

i g F2 B, () cos(2nT)

12( 1 —12) 25 + v? (cos (zp)e ™ —1)]. (5.176)

The axial behaviour of these leading-order deformations for the first n = 1
mode has been plotted in Figure 5.9, in the case § = 0.001, £ = 10, v = 0.49
and B,(t) = 1. In the plots, we have also set T = 0 in (f, é, and T = m/4in 7,
to ensure these deformations demonstrate their maximum amplitude in the
coordinate. From the figure, it is seen that all the leading-order deformations

and the leading-order axial gradient 9¢/9zp take the value of zero at zz = 0,
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and the full clamped boundary conditions (5.44) are satisfied at leading order.
As zp — oo, the sizes of all the deformations increase to different values. It
is also seen that 5, i and é behave as a constant, quadratically and linearly
respectively, in the axial direction when zp — co.

-4

x 10

I

-1.5¢ 1

722%

Figure 5.9: The leading-order axial behaviour of the solutions (5.174)—(5.176) for the
first n = 1 mode of the deformations (f, 7, é, in the case 6 = 0.001, ¢ = 10, v = 0.49.
These deformations have been normalised such that By (t) = 1, and we have set T = 0

iné {,and T = /4 in 7.



Chapter 6

The Boundary Layer in Regime II
(60> 1)

6.1 Introduction

In this chapter, another regime of the general problem described in Chapter
3, where a boundary layer is introduced to the model derived in Chapter 2
describing flow through an elastic-walled tube, is considered. This boundary
layer will allow the canonical clamped boundary conditions to be satisfied at
the ends of the elastic-walled tube, where it is clamped onto two fixed rigid
tubes.

The regime considered here is regime II, where the dimensionless tube wall
thickness 6 < 1 and tube length ¢ > 1 are set so that ¢/ > 1. Unlike in
regimes I, and I, considered in Chapters 4 and 5, the shear-relaxation layer
studied by Whittaker (2015) does not have a significant effect on the solution
in the bulk of the tube and does not need to be considered here. In the toy
model in §3.6, it was estimated that an axial-bending boundary layer would
have dimensionless width 5 = O(¢~!). Hence, in this regime it is expected that
0p < 6, and the boundary-layer width is smaller than the thickness of the tube
wall. As the tube wall thickness is no longer the smallest geometric parameter,
the Kirchhoff-Love shell equations (Fliigge, 1972; Sendergaard, 2007) can no
longer be used to model the mechanics of the tube wall and a new model must
be derived.

As it is expected that g < J, the transmural pressure will not have an
effect at leading-order in the boundary layer. This is because terms from other

mechanisms such as axial bending and pre-stress and axial curvature will grow

172
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to be larger than the transmural pressure in the boundary layer. Also, since the
axial scale adp is much smaller than the azimuthal scale a, we expect to be able
to neglect the effects of azimuthal variation when studying the boundary layer.
As such, it is possible that the wall mechanics can be modelled using a 2D
model in the normal and axial directions only. We consider modelling a cross
section of the tube wall in the normal and axial directions near the interfaces
between the elastic and rigid-walled tubes, as seen in Figure 6.1. In the
boundary layer, the tube wall must transition from being clamped horizontally
at the rigid wall, to being bent at an angle in order to match on to the bulk
solution. Since the wall is thin, it cannot sustain large transverse forces. The
large axial tension force F must therefore be aligned with the angle of the wall

in the far-field, as shown in Figure 6.1.

Axial tension
force

s

Clamped edge

=>

N>
>,

N\

Elastic tube wall

-

ey oB
Rigid tube wall

Figure 6.1: Two-dimensional cross section of the tube wall in the normal and axial

directions near the clamped edge.

This scenario is equivalent to a 2D semi-infinite block that is clamped along
its short edge and bent by applying a large axial tension. In this chapter, we
concentrate on deriving and solving a model for this scenario. As the original
tube wall is subject only to small amplitude deformations, the deformations
considered in this model will also be small, allowing us to linearise the problem.
However, this model must also include the effect of the large pre-stress, which
will add additional terms relating to rotations of the pre-stress as the block
deforms.

By deriving and solving this model, it is found that in the case 6/ < 1,
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we obtain an axial-bending boundary layer with the same size width as that
predicted by the toy model in §3.6. This magnitude of the bending layer is
also in agreement with the size of the bending layer in regime I, considered in
Chapter 4. However, in the regime we are considering here, ¢ > 1, a different
boundary layer with a much larger width is found. This boundary layer is
found to be a transverse shear-relaxation layer (different from the shear layer
modelled by Whittaker (2015)), instead of the expected bending layer.

This chapter is organised as follows. In §6.2, the mathematical set-up of
the semi-infinite block under tension is provided, along with its deformations,
necessary tensors, governing equation and boundary conditions. In §6.3, a
linearised constitutive law is derived for the Cauchy stress tensor ¢ of the
block, and in §6.4, the linearised governing equation and boundary conditions
for the problem are derived. §6.5 focuses on rewriting the governing system
in a form that can be solved numerically by the numerical finite-element
differential equation solver "FEniCS” (Dupont et al., 2003), and in §6.6 an
analytic solution in terms of normal modes is sought. Although progress has
been made in finding an analytic solution, it has not been possible to determine
the amplitudes of the modes explicitly. Even though these amplitudes have not
yet been found, it is possible that a modification of a method used by Shankar
(2003) could be used to determine these amplitudes.

In §6.7 approximations for the deformations in the far-field are derived, and
in §6.8 these approximations are compared with the numerical solutions of the
problem found using FEniCS. The effect that varying the axial tension imposed
on the block has on the deformations is evaluated in §6.9. This 2D model is then
applied to the elastic-walled tube in §6.10 and the corrections to the boundary
conditions on the bulk layer modelled in Chapter 2 are calculated. Finally, in
§6.11, a physical interpretation of the boundary layers that arise in the cases
00 < 1 and 6¢ > 1 is provided.

6.2 Mathematical Set-Up

6.2.1 Set-Up of the Semi-Infinite Block

A two-dimensional scenario as seen in Figure 6.2 is considered. Here we have
an almost incompressible, semi-infinite block of dimensional thickness d, and
we set dimensional Eulerian coordinates in the normal and semi-infinite (axial)

direction to be x; and x, respectively. These coordinates are encapsulated in
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the vector representation x = (x1,x2). The block initially occupies the region
x1 € [0,d], x2 € [0,00) and is subject to a large dimensional axial tension of size
F. For convenience, the coordinates have been set so that x; is aligned with
the far-field axial tension [, even after the block undergoes the deformations
considered here. Hence, the deformations are induced by changing the angle
of the clamped boundary at x, = 0 instead of changing the angle of IF. The

boundaries of the block are denoted 1, 72, 73 and 4, where

y1 isinitiallyat 0<x; <d, x =0,
v, isinitially at x; =0, 0 < x,
v3 isinitiallyat 0<x; <d, x — oo,

Y4 isinitially at x; =4, 0 < x,.

This block is set to have Lamé’s first parameter A and Lamé’s second parameter
p. From these, the incremental Young’s modulus E, Poisson’s ratio v and

bending stiffness K can be derived.

u= (0, tan(¢) <x1 - %))

Boundary v,

X1

c-n=0
Boundary 74

X2

Boundary 73
c-n— (0,F)

Boundary 7,
c-n=20

Figure 6.2: The set-up of the semi-infinite block subject to the deformation u and axial

tension [F.

In order to relate this semi-infinite block to the elastic-walled tube modelled
in Chapters 2-5, we set the axial tension F to have the same value as the

pre-stress in the elastic-walled tube. That is

F=—F, (6.1)
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where 4 is the typical radial scale of the tube, £ > 1 is the dimensionless length
of the tube, § = d/a < 1 is the dimensionless thickness of the tube wall, and
F = 0O(1) is the dimensionless axial tension of the tube.

A small amplitude deformation

Uy
u= ,
Uz

is induced on the block by clamping boundary < (initially at 0 < x; < d,
x; = 0) at an angle ¢ to the x;-axis. We have stress-free boundary conditions
on boundaries v, and <4 (initially at x; = 0,d, x, > 0) and no change to
the pre-stress F on boundary <3 (initially at 0 < x; < d, x; — o0). The
boundaries and their associated conditions may be seen in Figure 6.2. Owing
to the symmetry of the boundary conditions and the form of the linearised
elastic model which we derive in §6.3-§6.4, the component u; of u in the
x1-direction is found to be symmetric about x; = d/2, and the component
up of u in the xp-direction is found to be antisymmetric about x; = d/2. Since
the deformation is assumed to be small, we will later linearise the problem back
to the domain 0 < x1 < d, 0 < x».

6.2.2 Lagrangian Representation of the System

The corresponding Lagrangian coordinates of this system are denoted X =
(X1, X2), where X;, X, represent Lagrangian coordinates in the normal and
axial directions of the block respectively. Using this coordinate system, we

define the applied deformation on the block in the Lagrangian coordinate

UF}
U= ,
U

and U; is the component of the deformation in the X;-direction. Howell et al.

system as U, where

(2009) show that the Eulerian coordinates x may be expressed in terms of the

Lagrangian coordinates X as follows
O0x = 06X+ (6X-V)UX) +..., (6.2)

where, in two dimensions

d d
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6.2.3 Tensor Notation

The various tensors that are needed to derive a suitable model for this problem

are now defined. Firstly, the strain tensor £ is defined as

1 { du; au] 2 ouy ouy
== 2k 4
&i 2 (axj + 0X; + k; 0X; 0X; 64)
Next, we define the deformation gradient tensor G to be
axi
gz] - aile (65)

and let o be the Cauchy stress tensor of the block. Finally we introduce the
second Piola—-Kirchhoff stress tensor S of the block, which is related to the

Cauchy stress tensor ¢ by

S = det(G)G 1o (gT) - (6.6)
Rearranging (6.6), it is seen that
. gsgT
o= w, (67)

and we will later use this expression to derive an appropriate constitutive law

for o.

6.24 Governing Equation and Boundary Conditions

To model the mechanics within the block, we use the static version of Cauchy’s
momentum equation in absence of external forces (Howell et al., 2009, p. 10)
given by

V.oc=0. (6.8)

In terms of o, the boundary conditions may be written as follows

0 0
(anplang) = (2] =

c-n=0 on 7,74 (6.9)

where n is the outward unit normal to the block. We note that the factor of
—d/2 in the condition on boundary <; forces the shift in the x;-direction to be
antisymmetric about the centre of the block. It is also noted that as this system
is going to be converted into a linear problem, the choice of the (small) angle ¢

of clamping only alters the amplitude of the deformations.
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6.3 Constitutive Law for ¢

Before we can derive solutions for the system (6.8)—(6.9), we must determine a
constitutive law for ¢. In this constitutive law, we must include the pre-stress
F applied to the block and create a linear model for small deformations to
the pre-stressed state. The naive option of simply adding a pre-stress to the
constitutive law for an isotropic linearly elastic solid fails as this does not take
into account rotations in the tension as the material deforms. In particular
for an O(e) deformation, the interactions between the O(1) tension and O(e)
rotations of the material will be O(e) and should be included in a linear model.
However, these interactions would be omitted from a model derived in the

above way.

6.3.1 A Modified Saint Venant—Kirchhoff Model

Instead we consider using a different model applicable to hyperelastic
materials, where a material is deemed to be hyperelastic if its stress-strain
relationship is dependent on some strain energy density function which is
different for each material. The model in question is the nonlinear Saint
Venant-Kirchhoff model (Howell et al., 2009, p. 230) for hyperelastic materials,

which gives the second Piola—Kirchhoff stress tensor S as
S = ATr(&E) +2u€, (6.10)

where [ is the identity matrix.

In its current form, the Saint Venant-Kirchhoff model (6.10) does not include
the effects of the pre-stress IF. However, we may easily modify this model to
obtain an appropriate constitutive law for & that includes the effects of the

pre-stress in the following way

S = So+ ATe(E)] + 24, (6.11)

0 0
So = :

6.3.2 Approximations for G, G' and det(G) !

where

By examining the relationship (6.7), it can be seen that the constitutive law (6.11)

for S can be used to derive an appropriate constitutive law for o. However, it is
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observed that applicable expressions are also needed for G, GT and det(G) ! to

derive an expression for 0. Approximations for these terms are now derived.
Firstly, applying the relation (6.2) between the Eulerian coordinates x and

the Lagrangian coordinates X to the expression (6.5) for G;;, the following

approximation is obtained

- axi - 5x1- ~ E)Ui
9ij = oX;  6X; %+ oX;’

(6.12)

where Jj; is the Kronecker delta. Using this approximation, it is seen that G*

may be approximated by
Gy = dij + X, (6.13)
The determinant det(G) may be calculated by using the following definition

for the determinant of a 3 X 3 matrix in index notation
det(9) = €ixGnY9pnYs, (6.14)
where the permutation symbol €;j is given by

1 i,j,k=1,2,3 23,1 or 3,1,2
€x=4 —1 4,j,k=321 2,13 or 1,32 . (6.15)

0 otherwise

Substituting the approximation (6.12) of G into (6.14), noting that Gz3 = 1 and
Uiz = Gsi = 0 for i # 3 as we are considering a two-dimensional problem, we

find
ou; oy

~ 2
det(G) ~ 1+ e + e +0O(U%). (6.16)
Finally, taking the inverse of (6.16) and calculating the binomial expansion
yields
ou; Ju
B P e 2
det(G) " ~1 3% 9%, +O(U%). (6.17)

6.3.3 Linearising the Problem

Using the constitutive law (6.11) for S, along with the approximations (6.12),
(6.13), (6.17), for G, G' and det(G)~!, it is now possible to determine a
constitutive law for ¢. Before we do so, we simplify these expressions by
linearising for small |u| and |U|. This allows us to neglect any terms that
are quadratic or higher order in these deformations. As we have a small
displacement u compared to any other length scale, we also have that the

Eulerian and Lagrangian coordinates, x and X, are equal to lowest order in
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u. Hence, as we are only considering terms linear in the deformations, we may
replace X by x and d/9X; by d/9x; throughout our expressions. It is also the
case that the components u; of u in the x;-direction are equal to the components
U; of U in the X;-direction, at leading order in the deformations. Hence, we
may linearise the expressions (6.11)—(6.13), (6.17) for S, G, G and det(G) ! as

follows

S =8+ ATr(E)I + 2u€, (6.18)
ou;
Gij =~ 6ij + —, (6.19)
T 9y
T ou;
gij ~ dij+ I (6.20)
1
ou ou
det(G) '~ 1-— aTci - E)Tc;’ 6.21)

where £ is the linearised strain tensor

5 1 aui au]
&= 5 <8x]- + axi> . (6.22)

6.3.4 A Linearised Constitutive Law for ¢

We now substitute (6.18)—(6.22) into the expression (6.7) for ¢. Doing so, we

find the constitutive law for ¢ to be

oc=o0y+0y, (6.23)
where
0 0
0o = ) (6.24)
0 F
d d J d d
(M) s e (R
1 p—
J d o) d J
p(Barge) (S de)rands
0 duy
+F o : (6.25)

ouy  Jup __ Juy

8x2 axz - aJC1

We note that oy represents the constant pre-stress, whereas ¢y contains all the
terms linear in the deformations u;. We can see that the pre-stress IF makes
contributions to o7 as well as 0y. It is also noted that in the limit F — 0, the

usual constitutive law for a linearly elastic isotropic material is recovered.
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6.4 Linearising the Governing Equation and Boundary

Conditions

Now that we have a suitable constitutive law for ¢, we may evaluate and
linearise the governing equation (6.8) and boundary conditions (6.9) imposed
on the semi-infinite block. Substituting (6.23) into (6.8) and noting that op is a

constant tensor, the following governing equation is obtained
V.o =0. (6.26)

The boundary conditions (6.9) are now linearised back to the rectangular

boundaries %1, 72, ¥3 and ¥4 where

1 isat 0<x1 <d, x=0,
Y2 isat x1 =0, 0 < xy,

Y3 isat 0<x; <d, x— o0,

Y4 isat x1=d, 0 < x7.

Hence, in the following, the <; denote the non-linearised boundaries whereas
the quantities 4; with the overbars denote the corresponding linearised
boundaries.

Firstly, the boundary condition (6.9a) on 7; is linearised back to the
boundary 9, to give

0
tan(¢) (xl - %)

u= at x, =0. (6.27)

We now focus on linearising the more complicated conditions on the other
boundaries of the block.
6.4.1 Boundary Conditions on Boundaries 9, and 74

We recall the following stress-free conditions on boundaries 7, and 4
c-n=0 on 9,74, (6.28)

where n is the outward unit normal to the material. We must be careful with
how this normal is treated as it will take different values before and after the
problem has been linearised. In the linearised case, the normal ng to boundaries

¥2 and 4 will be (—1,0) and (1, 0) respectively. However, in the non-linearised
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case there will be a correction to the normal linear in the deformation u, as well
as higher-order corrections in u. Hence, we may decompose the normal n to

the non-linearised boundary as follows
n=np+n;+..., (6.29)

where ng is the unit normal to the boundary in the linearised case and n; is a
correction term linear in u.

To evaluate the components within (6.29), we first consider a unit vector t
that is tangential to boundary <>, as shown in Figure 6.3. We can see from
the figure that the ratio of the x; and x, components of t must be duy/9dx»,
evaluated at the appropriate point on the boundary. We then normalise t in the

following way to ensure that it is a unit vector

2\ ~ Ju
@) (%)
0x2 1

Nl

0 9y ouy |
:< )+<ax2)+o<“l>- (6.30)
1 0 02
Hence, we may decompose t as follows
t=to+t;+..., (6.31)

where
: ]
t = ’ t — *2 .
"7\ ! 0

As t and n are unit vectors that are perpendicular to each other, we rotate
t by 77/2 to obtain the unit normal n and thus its components. Doing so, the

components ng, n; of the unit normal to boundary 7, are found to be

-1 0
nyg = < > ’ n; = < ou > . (632)
0 2

Using a similar argument, the components ny, n; of the unit normal to

boundary <4 are calculated as

n0:<1>, n1:< (a)u ) (6.33)
0 ~om

With the expressions (6.29), (6.32), (6.33) of the normal and its components

on boundaries > and <4, we linearise the boundary conditions (6.28) back to
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n t Boundary v,

9
ni = (0,%2)

Figure 6.3: Components of the unit tangent vector t and unit outward normal n of

boundary 5.

the linearised boundaries 7, and 4. We first express ¢ - n in the following way

con=0p-(ng+ny)+o0y-(npg+ny)+... (6.34)

X 0p-Nn;+01-ng ONn Y2, Y4 (635)

Here we have used the fact that oy - ng = 0 for the values of ng in (6.32) and
(6.33), and 07 - n; contains only terms that are quadratic in the deformation u
and may be neglected. Substituting (6.35) into the boundary conditions (6.28)
along with the definitions (6.24), (6.32) and (6.33) for 0y and n; along each
boundary, the following linearised boundary conditions along boundaries %,

and %4 are found

0
01 -Nng = < Ay > at x1 = 0, (636)
~Fg4
0
0] -ng = ( oy ) at x1 =d. (6.37)
Foa

6.4.2 Boundary Condition on Boundary %3

On boundary 73, we have the following condition of no stress perturbation

0
0-n—><]F> as Xxp — oo, (6.38)
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where now n is a unit vector in the same direction as the axial tension IF, as
xo — oo. This vector can be decomposed as in (6.29), where ng is now the unit
vector in the same direction as F as x, — o in the linearised case, and n; is a
correction term linear in the deformation u. Using a similar argument to that

used to determine the components of the normal to boundaries > and 4, we

e [ O I (6.39)
0 — 1 ’ 1= 0 . .

Substituting the expression (6.24) for oy and (6.39) into (6.34), ¢ - n may be

find at boundary <3

rewritten as

c-nxoy-nyg+oy-nyg on 3, (6.40)
where 0p-n; = 0 and o7 - n; is again composed of terms quadratic in u
and is neglected. It is also found that op-ny = (0,F) on boundary vs.

Substituting (6.40) into the boundary condition (6.38) and rearranging, the

linearised boundary condition to be applied at 73 is calculated as

o1-nyg—0 as xp — 0. (6.41)

6.4.3 The Linearised Problem

Combining the governing equation (6.26) with the boundary conditions (6.27),
(6.36), (6.37) and (6.41), the full linearised problem is

V-our=0 for 0<x; <d, x>0, (6.42)
0
u e at x =0, (6.43)
tan(¢) (x1 — %)
0
01Ny = ( iy > at x1 = O, (6.44)
_]1:E
0
0] -ng = ( iy > at x1 =d, (6.45)
Fe
op-ng—0 as xp — oo. (6.46)

This system is depicted in Figure 6.4. We now proceed to solve this linearised

problem, both numerically and using analytical techniques.
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Boundary ¥4
(1 =4d)

ou
o] -ng = <O,]Fﬁ>

Boundary ¥; Boundary 73
(x2=0) V-0 =0 (x2 = o)
= _d op-ng — 0
u (O, tan(¢) (xl 2))
Boundary 7,

(x1=0)

o] -ng = <O, 7]];‘3%)

Figure 6.4: The linearised problem of a semi-infinite block being bent under axial
tension. The domain is given by A = {(x1,x2) : 0 < x; < d,0 < x,} and the total
boundary of the domain is given by 0A = ¥1 U ¥2 U ¥3 U 74.

6.5 Numerical Solution

Here, a numerical solution of the system (6.42)—(6.46) is determined using the
numerical finite-element differential equation solver “FEniCS” (Dupont et al.,
2003). As FEniCS can only solve problems within a finite domain, we must
restrict the range of x; to 0 < x2 < Xmax, Where xpmax is some fixed, finite
value. As long as a large enough value for xmax is chosen, along with a suitable
number of grid points, the numerical solution will still accurately simulate
the deformation. The numerical scheme used by FEniCS is the finite element
method, an overview of which is given by Iserles (1996).

For FEniCS to be able to apply the finite element method to a problem, the

problem must be written in variational form. That is
a(u,v) = L(v), (6.47)

where u is the unknown function to be found, known as a trial function, v is an
arbitrary function known as a test function, and a4, L are differential operators.
Hence, in order to use FEniCS to find a numerical solution for the system
(6.42)—(6.46), we must rewrite the system in variational form.

We begin by taking the dot product of the governing equation (6.42) with a
test function v, and integrating over the (linearised) area A of the block, given

by A= {(x1,x2) : 0 <x1; <d,0 < x5 < Xmax}. Doing so, we obtain

//A(V-al)-vdA:O. (6.48)

This may be rewritten as

//A V- (01-v) —0o1: (Vv)dA =0, (6.49)
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where the Frobenius inner product : of two tensors M, N is defined by
M:N =YY M;Nj, (6.50)
i

and the gradient Va of a vector a is given by

Va= Pige, (6.51)

aJCj

where e; is a unit vector in the x;-direction. Applying the divergence theorem
to the first term in (6.49), we find

}[BA((H ‘ng) -vds — //A o : (Vv)dA =0, (6.52)

where ny is the unit normal to the boundary of the linearised domain.

6.5.1 Evaluating the Integrals in (6.52)

The integrals in (6.52) are now evaluated. We start by evaluating the line
integral over the linearised boundaries %1, ¥2, 43 and ¥4 separately.

On 91, we have the boundary condition (6.43) for u. In the finite-element
formulation, the test function v must vanish on the segments of the boundary
where u is known. As such, we must have v = 0 along 1, and the line integral
along %1 vanishes from (6.52).

Along boundaries 9, and 94, we have the boundary conditions (6.44) and
(6.45). Using the values of 07 - ng within these conditions and noting that we
must take our integrals in the anticlockwise direction around the boundary 0 A

as in Figure 6.4, we find the line integrals along boundaries 9, and 4 become

. 8u1 . 0 8u1

/7 (01 -mp) -vds = [? —F (axzvz> ds, = /xmax F (axzvz>
. aul . 0 8u1

[? (01 -mp) -vds = /7 F <ax202> ds, = /xmax F <8xzvz>

where v1, v; are the components of the test function v in the x; and x,-directions

dxa, (6.53)

X1 =0

dx,,  (6.54)

X1 =d

respectively.
Finally, on boundary %3 we have the boundary condition ¢y - ng = 0. Hence,
the line integral along 93 vanishes. Combining the line integrals along each

boundary, the total line integral around the domain is determined to be

Xmax aul
fi;A(O'l'no)'VdS——/O F (axzvz

8u1
+ 87’02
X1:0 x2

> dx,.  (6.55)
X1 =d
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The surface integral within (6.52) is now evaluated. Using, the expression
(6.25) for oy, it is found that

. _[[ dur  ,ou
//Aal.(Vv)dA_//A T [(A+2y)ax1 +Aax2]

v 9 d 9
+( 2 UZ) [(y+]F)u1+yu2]
2

dxy = 0x1 ox 9x1
802 8u1 auZ

6.5.2 Rewriting the Problem in Terms of E and v

The expressions (6.55) and (6.56) can now be used to derive the variational
form of the problem. However, it is found to be convenient to first rewrite the
problem in terms of the Young’s modulus E, and Poisson’s ratio v of the block.

The parameters A and p can be rewritten in terms of E and v as follows

Ev E

A= , = — 6.57
A+rvad—2v)y ' 2010 (6:57)
It is also found to be convenient to rewrite axial tension [F as
EF
F = il (6.58)

2(1+v)(1—2v)’
where F is a dimensionless parameter, the size of which we determine later
on. The factor of [2(1+v)(1—2v)]"" has been included for mathematical
convenience in the following calculations. Rewriting (6.55) and (6.56) in terms

of these parameters yields

xmax L
}l{ (01 -mg) -vds = — / E7 %Uz i
A Jo 2(1+v)(1—-2v) \ ox;

+ —02

dXQ,
X1 =0 axz

x1:d

(6.59)
_ - 001 v Juy;  dup 1 Juy
//A‘Tl H(Vv)dA = //AE {8x1 [(1—}—1/)(1 — ) <8x1 * 8x2> * 1—|—1/8x1]

4 (%o 9 L (T L
aXQ 8x1 2(1 + 1/) BXQ 8x1

F duq

+ 2(1+v)(1 —ZV)BxJ
0Us v Juy;  Odup 1 Jup
+3362[(1+V)(1—2V) (a a) T+vox

+z<1+v;f<1 7 (e 5] 44

(6.60)
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Rewriting the problem in this way has two advantages. First of all, this
ensures that all terms within the components (6.59) and (6.60) of the governing
equation (6.52) have a single factor of the Young’s modulus E within them.
This factor of E can then later be eliminated from (6.52) leaving us with only
one parameter to set, the Poisson’s ratio v.

The second advantage of rewriting the problem is that we have a clear choice
of value for v. If the block was perfectly incompressible, a natural choice of the
Poisson’s ratio would be v = 0.5, corresponding to a perfectly incompressible
material. However, this value would form singularities within the numerical
solutions. We instead choose a Poisson’s ratio of v = 0.49 to correspond
to an almost incompressible material and avoid any singularities. This is a
common choice of Poisson’s Ratio used by other authors. When we later plot
the numerical and analytical solutions for the deformations in §6.8, we will set
v = 0.49.

It is noted that although F is dimensionless, it is not necessarily O(1).
To find the size of F, we recall the expression (6.1) for the dimensional axial

tension F, which is
ke
adé

where K is the bending stiffness of the block, F = O(1) is a scaled

F=—F,

dimensionless axial tension, a is the typical radial scale of the original tube
and 0 = d/a < 1, £ > 1 are the dimensionless wall thickness and length of
the original tube. Substituting the expression (6.58) for IF into (6.1), rearranging

and using the fact that the bending stiffness K may be rewritten in terms of E

and v as £
ey
we find
F= w (6.61)

6(1—v)
Hence as F = O(1), we have F = O(62¢?). In regime II considered here, we
have 6¢ > 1, which corresponds to the limit 7 — co. We can also consider
regime I in this model by taking the limit ' — 0, which corresponds to 6/ < 1.
We note that although F has the same scaling as the parameter F defined in
(3.36) and used to describe the axial tension in the study of regimes I, and I
in Chapters 4 and 5, F and F do not have the exact same value. It is found to

be mathematically convenient to write the following equations in terms of F,
rather than F or F.
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6.5.3 Variational Form of the Problem

By substituting (6.59) and (6.60) into (6.52), a numerically solvable equation
is obtained. To enable FEniCS to solve this equation, we rewrite it in the
variational form given in (6.47). Rewriting (6.52) in this form, dividing through
by the Young’s modulus E and multiplying by 2(1 + v)(1 — 2v) yields

001 oup  ou duy
v =], axl[ <8x1+8x2)+2(1 2”>ax1]

Jdu;  9Jvy Juy  duy _duy

avz 8u1 auz auZ
Tox2 {2 (a +ax2> Al me,
_ (dur Ouy
7 (50 )| aa
Y- (a”v ) ds+ [ F (a“lv ) ds (6.62)
T oxy AN '
L(v) = 0. (6.63)

This is the form of the problem needed for FEniCS to compute the solution.
This is because FEniCS uses a domain specified in the code to evaluate the
limits of the surface and line integrals, as well as the direction of the line
integral around dA. Including the limits of the integrals in the definition (6.62),

the analytical form of a(u, v) is found to be

Xmax (4 9y ou;  Oup ouy
/ /axl[ <ax1+axz>+21_ o

}
() oo () o2

oxy  0xq oxy  oxq dx
+S§Z [2 (gQJFgﬁ) +2(1-2v )872
B /.xmaxﬁ (E)ul o My ) dx,. (6.64)
0 oy | o Ox2 T[4

It is now possible to input the expressions (6.62), (6.63), along with the
boundary condition (6.27) at x, = 0 into FEniCS and calculate the numerical
solution to the system (6.42)—(6.46). This solution is shown in §6.8, where it is

compared with the analytical approximations for the solution derived in §6.6.
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6.6 Analytical Treatment

Analytical techniques are now used to determine a solution to the system
(6.42)—(6.46). As a starting point, we eliminate u, from the system, leaving

us with a governing system to be solved for the deformation u;.

6.6.1 Eliminating u, from the Governing Equation

We begin by eliminating u, from the governing equation (6.42). The two
components of (6.42) yield

82u1 82u2 = 82u1
%1, 9%, _ 0%y

where again the Lamé constants A, u have been rewritten in terms of the
Young’s modulus E and Poisson’s ratio v using (6.57), and the axial tension
IF has been rewritten in terms of F using (6.58). This has provided a factor of E
in each term in (6.42) allowing this parameter to be cancelled entirely from the
governing equations. For mathematical convenience, the governing equations
have also been multiplied by 2(1 + v)(1 — 2v).

Rearranging (6.65), we obtain

a2M2 azul = 82u1
axlaxz = — 2(1—1/)8796%“‘(1—21/4—;)873(% P (667)

and differentiating (6.66) with respect to x; and x; yields

a4u2 841/[1
0xjox,  dx39x3

4
T2 _ (6.68)

1-2 =
( v) 0x10x3

+(2(1—v)+ F)
To eliminate u; from (6.68), we may differentiate (6.67) twice with respect to
x1, and twice with respect to x», to obtain expressions for o*uy/ ax%axz and
*uy/ axlaxg in terms of u;. These expressions may then be substituted into

(6.68). This gives the following fourth-order governing PDE for u4

0_a4u1 20—v)+F  1-2v+F] 94y
ox} 2(1—v) 1—-2v | 9x29x3
(1 —v)+ F)(1 —2v+ F) o*uy
2(1=v)(1—2v) 0x3

(6.69)
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6.6.2 Eliminating 1, from the Boundary Conditions

We now determine conditions on u; from the prescribed boundary conditions
(6.43)-(6.46) shown in Figure 6.4. Some of these boundary conditions
will translate to traditional boundary conditions on u;. However, others
will become integral constraints on u; which must be satisfied so that a
corresponding solution for u exists. In order to convert the boundary
conditions into a suitable form, we must find an expression for u; in terms
of u; and see what constraints are necessary for u, to satisfy the boundary
conditions.

By integrating (6.67) with respect to x; and then x;, we obtain

0y = /;1 (/: [2(1 = v)a;;? +1-2w+ ﬁ)f)’c’ﬂ dxy + C(xl)) d} + K(x2),
(6.70)
where C(x1) and K(xp) are functions to be determined by the boundary
conditions of the problem. It is convenient to set these particular limits for
the integrals as they simplify the form of C(x;) as well as ensure that u; is
antisymmetric about x; = d/2. We note that as we have switched the limits in
the x, integral, the minus sign from (6.67) vanishes.
We begin by evaluating the boundary condition (6.46) as x, — oo. In
Appendix 6.A, the boundary conditions (6.43)—(6.46) have been used to show
that the condition (6.46) is equivalent to

Vui, Vi, -0 as xp — 0. (6.71)

The first of these conditions is a condition on u; which may be applied to
the problem immediately. The second of these conditions is a condition on u»
which must be applied to the expression (6.70) for u5, to find a corresponding
integral condition on u;. When x, — oo, (6.70) yields

X1
Ual ) ey = / C(x1) dxj + K(x2)] (6.72)

d JQ—)OO.
2

As up — constant as x; — oo from (6.71), we cannot have any x; dependence in
(6.72). Hence, we must have

C(x1) = 0. (6.73)

For (6.71) to be satisfied, we must also have

K — constant as xp — oo. (6.74)
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We now evaluate the boundary condition (6.43) at x, = 0. Straight away, we

have the boundary condition on 1,
up =0 at x=0. (6.75)

From (6.43), there is also the condition

= tan(¢) <x1 — Z) at x =0.

Applying this condition to the expression (6.70) for u5, it is found that

tan(¢) <x1—> / / [ (1—v 7+(1 —2v +]:>a } dxy dx} + K(0).
ax1 ox? x5
(6.76)
Differentiating (6.76) with respect to x; and evaluating the x; integral, we obtain

the following integral condition on u4

tan(¢) = (1 —2v + F) {aulrz_m—FZ(l—v) OQ@dx (6.77)
¢ 9x2 | ..o 0 0x? > '
Substituting (6.77) into (6.76), we find

K(0) = 0. (6.78)

Finally, we evaluate the stress-free conditions (6.44), (6.45) at x; = 0,d,
rewriting these conditions in terms of E, v and F. Evaluating the first

components of these conditions and multiplying by (1 +v)(1 —2v) gives

(1—1/)?;2—1— ‘;”2—0 at x; =0,d. (6.79)

Substituting the expression (6.70) for u into the conditions (6.79), we obtain

8u1 g 82u1 82u1 dK
121l P20 -2 (12 d 9% _ 0, 6.
a-v5a| 1//0 (1= 05 + (-2 ) S5 da v =0, (650)
ouq d 9%, %u dK
(1—1/)8761 x1:0—|—1/ ‘ 2(1—v)a+(1 —2v +.7-")a : dx; +v d——O. (6.81)

By subtracting (6.81) from (6.80) and rearranging, another integral condition on

U7 is determined

d 82u1 82
/0 ((1—1/)(1 2) 5~ 2v + F) axz) dx; = 0. 6.82)

If we instead add together (6.80) and (6.81) and integrate the resulting

expression with respect to x,, the following expression for K(x7) is found after
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rearranging
K(xp) = / 2[1/_1 (aulm,x;) o (31, %) )
b 2v dxy ri=d 0xq =0
0%uy(x1,x5)  1—2v+F 0%uy(x1, x5)
+/ Bxl + 2 9x%? dx
( X1, ) 1—21/4—; 82u1 (xl,x’z) ’
— 1— d dx,. (6.83

Here we have used the property (6.78) to set the limits of the x} integral.

The second components of the stress-free conditions (6.44), (6.45) are

duy  dup
—+ —= =0,d. .84
o + o =0 at x1 =0, (6.84)

As the boundaries of the block at x; = 0,d are parallel to the x;-direction, we

may differentiate (6.84) with respect to x,. Doing so, we obtain

azul 82u2

0x3  ox10x2

=0 at x; =0,d. (6.85)

Substituting the expression (6.67) for 9%uy/9x10x; into (6.85), the following

boundary condition for u; is found

82u1 = 82u1
21 —v)— —(2v—F)—5 =0 at =0,d. 6.86
(1-0)5g ~@r=F55 =0 at x (6.86)

The boundary and integral conditions on u; are thus (6.71a), (6.75), (6.77), (6.82)
and (6.86).
Substituting the expressions (6.73), (6.83) for the functions C(x;) and K(x2)

into (6.70), we find the full expression for u, in terms of u; to be

0
iy _/ / (1-v Mﬂl 2v+]—")Md Ldx, + K(x2),
ox/ ox%?

(6.87)
where K(x;) is defined by (6.83). As long as the integral conditions (6.77) and
(6.82) are satisfied, this u; along with the corresponding u; will automatically
satisfy all the boundary conditions (6.43)-(6.46). Hence, once a solution for u4

is calculated, we may use (6.87) to find u; as well.

6.6.3 Governing System for 1

Combining the governing equation (6.69) with the boundary conditions (6.71),
(6.75), (6.86) and integral conditions (6.77), (6.82), we obtain the following
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system to be solved for u;.

O_a4u1 21 —v)+F 1-2v+F] o'y

- oxd 2(1—v) 1—-2v | 9x29x3
_ V(1 — ) 94
a-v)+F)1 2v—i—]—")8u1, (6.88)
21 —v)(1—2v) 0x5
Vu; -0 as xp — oo, (6.89)
up=0 at x=0, (6.90)
82u1 — 82u1
2(1_1/)873@_(21/_}—)@:0 at x1=0,d, (6.91)
= 8141 xamreo g azul .
(1-2v+F) [axz] o +2(1-v) /0 Tx% dx; = tan(¢), (6.92)
d 821/[1 = a2u1
/0 <(1_V)(1_2v)8x%_v(1_2V+F)89c%> dx; = 0. (6.93)

We now proceed to solve the system (6.88)—(6.93). As the governing
equation (6.88) is fourth-order and linear with constant coefficients, we expect
solutions for u; to be exponential, trigonometric or up to cubic in x;, x2. As we
must have solutions that tend to a constant as x; — oo, due to the boundary

condition (6.89), we seek separable solutions of the forms

d
u = ﬁl <X1 — 2) tan((p) €_Qx2, (694)
where 7i; is an unknown function to be found, and
uy = Htan(¢), (6.95)

where H is a constant to be found. The real parameter (3 > 0 is the rate of
decay in the x,-direction and the function i; gives the behaviour in the normal
x1-direction. The factor of —d /2 will later allow symmetry conditions about the
midpoint of the block in the xq-direction to be applied. As the problem is linear,
the resulting deformations will be proportional to tan(¢). Using this property,
we have written explicitly this dependence on tan(¢) and thus removed all ¢
dependence from i, and the constant solution (6.95). It is noted that we do
not look for solutions that are proportional to exp(Qx,) or are linear or higher
order in x; or x; as these will not satisfy the boundary condition (6.89) as
xp — 0. It is noted that the full solution of u; will comprise a summation of
all the valid solutions that have the same form as either (6.94) or (6.95).
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6.6.4 General Solution for i

Substituting the expression (6.94) for u; into the governing equation (6.88), the
following ODE for 1, is derived

2(1—v)+F)(1-2v+F)
2(1—v)(1-2v)

2(1-v)+F  1-2v+F

0= NIl Q4A ,
" [ 2(1—v) 1—2v "

(6.96)

where ’ represents a derivative with respect to x1. As this is a fourth-order

} 020 +

linear ODE with constant coefficients, we seek solutions of the form

i (xl - i) =0, (6.97)

where A € C is to be determined. The factor of () is included in the exponential
to simplify the calculations that follow. Substituting (6.97) into (6.96), a

quadratic equation to be solved for A? is derived. Solving this quadratic, it

is determined that . )
20-v)+F 1-2v+F

A? =
20-v) 7~ 1-2v

(6.98)

As all the parameters within (6.98) are real and F > 0, v < 1/2, we find A% > 0
and thus A must be real. Taking the square root of (6.98) yields

21—v)+ F 1-2v+F
21-v) ’ 1-2v

(6.99)

Hence, for every value of (), we have four corresponding values of A, and we

find
. d d
U = A cos <QA1 <X1 — 2)) + B cos <QA2 <X1 — 2))
. d . d
+Csin [ QA | x1 — > + Dsin [ QA [ x1 — 5 , (6.100)

where Ay, A, are given by

21 —v)+ F w4 F

_ 101
20—v) ’ 2 1—2v (6.101)

and A, B,C, D are real constants to be found.
The expression (6.100) for i1; may be simplified further by using the fact that

the deformation in the x;-direction is symmetric about x; = d/2. This implies

C=D=0, (6.102)
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which, when applied to (6.100), yields

1 = Acos <QA1 (x1 — g)) + Bcos (QAz <x1 — i)) . (6.103)

Substituting (6.103) into the definition (6.94) of u;, the following solution for 1,

is obtained

U = {A cos <QA1 <x1 — g)) + B cos (QAZ <x1 — i))} tancpe_mz.

(6.104)

6.6.5 Determining the Decay Rate ()

The boundary condition (6.91) and integral condition (6.93) on u; are now used
to find the possible values of the decay rate (). Substituting u; into both of

these and rearranging gives the following relations to be satisfied

Al(1—v)A1 +va]sin (dﬂzAl> + B(1 —2v)Aysin <dQA2> =0, (6.105)
A(1—aA) cos <dQZA1> + B(1 4 A3) cos <d02A2> =0, (6.106)

where
a=(1-2v+F)A;'—2(1 —v)A;. (6.107)

It is noted that due to the symmetry of u;, the boundary condition (6.91) gives
the same condition (6.106) at x; = 0 and x; = d. The homogeneous conditions

(6.105), (6.106) may be written in matrix form like so

IR

a=[(1-v)A;+valsin <d02A1> ,
dQA2>

AN}

(]

where

b= (1-2v)A;sin <

¢=(1—aAq)cos <d(22A1> ,
d = (1+ A3)cos (d()2A2> .

For a non-trivial solution for the constants A, B to exist, we need the
determinant of the matrix in (6.108) to be zero. Setting this, we obtain the

following eigenvalue equation for ()

1 sin (szA1> Ccos <dQ2A2> — 1P sin <d02A2> Cos (szA1> =0, (6.109)
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where

1 = [(1—v)A1 +va](1+ A7),
P2 = (1—aAr)(1—2v)As.

Solving the eigenvalue equation (6.109) numerically using Maple, we find
countably many eigenvalues for the decay rate (). We denote the nth eigenvalue
of the decay rate as (), with ()y being the fundamental eigenvalue. As we
have countably many eigenvalues, there are countably many modes for the
deformations, each with their own distinct decay rate along the x;-direction.
Solutions of the first five eigenvalues (), for different values of the scaled
pre-stress F in the case d = 1, v = 0.49 are given in Table 6.1. The decay
rates (), of the first four modes of the deformations have also been plotted in
Figure 6.5. We see from the table and plots that in general, as the pre-stress
is increased, the decay rate of all the different modes decreases. The only
exception is the fundamental mode where, for small values of F, there is an

increase in )y when F is increased. We elaborate on this more in §6.9.

F 0o M (03 Q%) (ON 05
0.01 09343 2836 58.146 85.10 115.0 1419
0.1 09978 3939 8976 14.01 1694 18.02

1 04265 1317 2200 3.082 3971 4470
10  0.1399 0.4209 0.7017 09825 1263 1.544
100 0.04441 0.1333 0.2221 0.3110 0.3998 0.4887

Table 6.1: The eigenvalues ), of the decay rate in the x,-direction for different values
of F, whend =1, v = 0.49.

6.6.6 General Solutions for 11 and u,

As there are countably many modes for u; of the form (6.104), the general
solution of the deformation u; will be comprised of the summation of all of
these modes and the constant solution (6.95) given by u; = Htan¢. It is
noted that the constant solution (6.95) satisfies the boundary condition (6.91)

on x; = 0,d and the integral condition (6.93). Combining these solutions, the
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10-2 10! 100 o 10' 10? 103
=

Figure 6.5: The decay rates ), of the first four modes of the deformations uy, up,
against F,forv =0.49,d = 1. The red, blue, green and black curves correspond to the

fundamental, second, third and fourth modes respectively.

general solution of the deformation u; is found to be

up = (;An [cos (QnAl <x1 - g)) - —:cos (Qn/\2 (xl - g))] o~ 2

+H> tan ¢. (6.110)

!

The constants A, are the coefficients corresponding to the nth modes of the
deformation, and by relating the coefficients of the two cosine terms within the

expression (6.104) for the modes of u; using (6.108), we set

an = [(1 —v)A1 + valsin (dQ;A1> ,

by = (1 —2v)A;sin <dQ;A2> .

Substituting the expression (6.110) for u; into (6.87), the following general

solution for u, is derived

o £ i o (12

+%”A2 sin <QHA2 (xl - g))] e M2 (6.111)
n
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6.6.7 Applying the Remaining Conditions

The remaining conditions are now applied to the general solution (6.110) for u;.
These conditions are the boundary condition (6.90) at x, = 0 and the integral
condition (6.92) over x;.

Applying the boundary condition (6.90) to (6.110), we find the following

expression for H in terms of the coefficients A,

H= ;An [Z"Z cos (QnAz (xl — g)) — Cos (Qn/\l (xl - 621))] . (6.112)

This represents both a condition on the coefficients A,, since the
right-hand-side of (6.112) must be constant in x;, as well as an expression to
determine H. By differentiating (6.112) with respect to x1, and setting x; = d/2
within (6.112), the two conditions may be explicitly shown. Applying these

calculations, the following is obtained
0= i A,y [Agsin | QA [ x _ﬂ
= - nd In 181 ni\1 1 5

n=0
—ZlAz sin (QnAZ <X1 - d>>:| ’ (6113)

n

(e ﬁn
H = Al =——-1]. 6.114
~ () 114

The first of these relations (6.113) is a condition on the coefficients A,, while
(6.114) allows H to be found once the A, are known.
Substituting the general solution (6.110) for u; into the integral condition

(6.92), another condition on the coefficients A, is obtained

1= gAnQn {a/\l cos (Qn/\l <x1 — Z)) + g—:A% cos (QnAz <x1 — g))] .
(6.115)
At first, it appears that we do not have enough degrees of freedom to satisfy
the two Fourier like conditions (6.113), (6.115) on A,, since we have just a
single countable set of eigenvalues. However, by following the calculations
in Appendix 6.B, it is found that for large F the eigenvalue equation (6.109)
can be approximated by (6.206), that is

1 sin (szA1> cos <d02A2> ~ 0.

Hence, we actually get two coupled sets of solutions for the eigenvalues which

correspond to the zeroes of the sine and cosine functions respectively. Although
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the two sets are less apparent for F < O(1), we expect similar behaviour in this
case. Because of this, finding a solution may be possible.

A similar situation arises in finding the solution of the biharmonic equation
in a semi-infinite strip. This has been studied by Shankar (2003) and details
of his work may be found in Appendix 6.C. Shankar (2003) shows how it
is possible to decouple the governing biharmonic equation into two coupled
ODEs, and find a biorthogonality relation between the eigenfunctions that
arise. Using this biorthogonality relation, it is possible to find a solution that
satisfies two independent boundary conditions imposed on the short edge of
the strip. Thus far, we have been unable to find a similar decomposition and
biorthogonality relation for the system (6.42)—(6.46) considered here due to
the increased complexity of the governing equation and boundary conditions.
However, the same underlying principles hold and may allow a solution to be

found.

6.7 Far-field Approximation for x, — oo

Although a full analytic solution to the system (6.42)—(6.46) has not yet been
found, it is possible to determine an approximation for the deformation u away
from x; = 0, up to a multiplicative constant and constant shift. Near x, = 0,
all modes will be having an effect on the overall deformation. However as we
move away from x; = 0, the higher-order modes all decay more rapidly, so
the solution becomes dominated by the fundamental mode. Hence, away from
the x, = 0 boundary we may approximate the deformation using this mode.
Taking the fundamental modes of the expressions (6.110) and (6.111) for u; and
uy, we determine approximations for the components of the deformation up to
a constant Ag setting the amplitude of the deformation, and a constant shift H

in u;1. These approximations are given by

U= (Ao [cos (QOA1 <x1—Z>> —? cos (QoAz <x1—62l>>} e‘QOxH—H) tan ¢,
0

(6.116)

U= Ag [zx sin (QOA1 <x1—2>> +H%A2 sin (QOAZ <x1—§>>] tancpe*QOxZ,
0

(6.117)

where H is a constant dependent on all of the A, via the relation (6.114).
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6.8 Comparison of Analytical and Numerical Results

We now see how well the fundamental mode approximations (6.116), (6.117) of
the components 11, u; of the deformation agree with the numerical simulations
developed in §6.5, away from the clamped x; = 0 boundary. In order to
compare the numerical solutions and analytical approximations, we first define

ujy® and u3’ to be

[ee]

up® = 11 (X1, Xmax), uy = u2(X1, Xmax), (6.118)
in the numerical simulations, and
ui’ = Htan ¢, uy =0, (6.119)

in the analytical approximations. Using these definitions, u; — u{® and up — u%’
will tend to zero as x, — co in both the numerical simulations and analytical
approximations, and any constant shift in the deformations is removed. The
only parameter that then needs to be set is the amplitude Ag of the analytical
approximations. This constant may be set to best fit the amplitude of the
analytic approximations to the amplitude of the numerical solutions. In Figures
6.6 and 6.7, the numerical solutions and analytical approximations of u; — uf°
and up — u3’ have been plotted.

In Figure 6.6, uy — uy® and up — u3® have been plotted as functions of x;
for fixed values of x, and in Figure 6.7, u; — u{° and u» — u3’ have been
plotted as functions of x, for fixed values of x;. For both the analytical and
numerical results, we have set the width of the block as d = 1, the angle of
clamping to satisfy tan¢ = 1, the axial tension as F = 1 and the Poisson’s
ratio to be v = 0.49. In the numerical simulations, the mesh over the domain
in question is set to have 100 points in the xj-direction and 1000 points in
the xp-direction. It is also found that xmax = 20 is a large enough choice of
Xmax to simulate the deformations accurately for the chosen parameters. In the
analytical approximations, the amplitude Ag of the deformations is set to be
Ap = 0.08072 to fit the analytical approximations to the numerical simulations.

We see from Figure 6.6 that in the x;-direction, the numerical solutions and
analytical approximations are almost identical to each other, apart from some
slight deviation when x, = 2. This deviation is found near the midpoint of
the block for u; — uj® and near the stress-free boundaries for u, — u3’. Figure
6.7 again displays that the numerical results and analytical approximations

are in good agreement in the x,-direction, apart from in a small region near
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the clamped boundary x, = 0. The differences between the two solutions
near xp = 0 are expected due to the higher-order modes, that are neglected
in the analytical approximations, having a significant effect on the overall
solution for smaller values of x,. Hence, by setting the single parameter A
in the analytical approximations (6.116) and (6.117) for u; and u,, we have
excellent agreement between the numerical solutions developed in §6.5 and the
analytical approximations away from x, = 0, in both the x; and x,-directions.
This demonstrates that the analytical approximations accurately capture the

behaviour of the deformations.
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Figure 6.6: The numerical solutions for u; — u{® and up — u3’ across x; for fixed values
of xp, inthecased =1, F =1, v = 049, tan¢ = 1 (solid lines). Also shown are
the corresponding analytical approximations (6.116), (6.117) for u; — H tan ¢, up, with
Ay = 0.08072 (dashed lines).
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Figure 6.7: The numerical solutions for u; — u{® and up — u3” across x; for fixed values
of x;,inthecased =1, F =1, v = 049, tan¢ = 1 (solid lines). Also shown are
the corresponding analytical approximations (6.116), (6.117) for u; — H tan ¢, up, with
Ay = 0.08072 (dashed lines).
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6.9 The Effect of Varying Axial Tension on the

Deformations

We now evaluate the effect that varying the axial tension F has on the
deformations. In particular, we focus on how the boundary-layer width of
the deformations, and the value uj® that u; takes as x — oo, changes as we
vary F. The behaviour of the boundary-layer width is important as this will let
us know if we have an axial-bending layer with the width predicted in the toy
model in §3.6, or if we have a different boundary layer with a different width.
The value of u{° is also important as this determines what boundary conditions
should be applied to the bulk solution modelled in Chapter 2 at the ends of the
elastic-walled tube in the 3D case. As the limits 7 — 0 and F — oo correspond
to the regimes I (6¢/ < 1) and II (6¢ > 1), we can determine if the behaviour
of the boundary layer derived here matches with the behaviour of the bending
layers found in regime I, studied in Chapters 4 and 5. We can also find what the
behaviour of the boundary layer is in regime II, as well as how this boundary

layer affects the bulk layer.

6.9.1 Effect of Varying F on the Decay Rate and Boundary-Layer
Width

We begin by evaluating the effect that varying F has on the decay rate of
the deformations as x, — oo, and hence the boundary-layer width of the
deformations. As the fundamental mode has the smallest value of (), it is
this mode that has the slowest decay rate. Hence, it is this mode that we need
to examine to determine the overall boundary-layer width.

In Figure 6.5, it is observed that for large values of F, the fundamental
decay rate () is always decreasing as F increases. However when F is small,
it is seen that () increases with increasing F. In Appendix 6.B, asymptotic
approximations of () in the limits 7 — co and F — 0 have been calculated. It

is found that
V1 —2v -

Qg ~ —— F2 as F = oo, (6.120)

and

1
6(1 —1/) 2 1 _

These approximations are in agreement with the behaviour shown by the decay

rate () of the fundamental mode in Figure 6.5.
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Figure 6.8: The boundary-layer width g = 1/Q) of the fundamental mode against .,
for v = 049, d = 1 (red line). The asymptotic approximations (6.122), (6.123) of 55 in
the limits 7 — oo and F — 0 have also been plotted in green and blue respectively.

We define the boundary-layer width of the fundamental mode to be Jp =
1/0). Using the numerically found values of () calculated in §6.6 and shown
in Figure 6.5, ép is calculated and plotted against F in Figure 6.8. From the
figure, it is observed that for large tension values, the boundary-layer width
is increasing for increasing F. However for small enough F, the behaviour
of the fundamental mode changes, and the boundary-layer width decreases

with increasing F. Also plotted in Figure 6.8 are the following asymptotic

approximations
Gpe — 1 FY as Foroo (6.122)
P i ’ '
~ 1—2v \2 - 1 _
53 ~ <6(1—1/)> d; 2 as .F — 0, (6.123)

as calculated in Appendix 6.B. We see that there is excellent agreement between
the numerically found boundary-layer width and the analytic approximations
(6.122), (6.123) for the corresponding sizes of F.

We note that in the limits / — 0 and F — oo (which, by using the
expression (6.61) for F, correspond to 6/ < 1 and 6/ > 1 respectively), the
boundary-layer width Jp is larger than the thickness d of the semi-infinite block.
This property is also demonstrated by the estimate (3.48) of the boundary-layer
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width derived from the toy model in §3.6 when 6/ < 1, as well as by the
bending layer widths (4.43), (5.68) derived in regimes I, and I, where 6/ < 1,
in Chapters 4 and 5. However, when 6/ >> 1, the toy-model estimate (3.48)
of the boundary-layer width is smaller than the tube wall thickness, which is

different from how & actually behaves in the limit F — oo.

6.9.2 Effect of Varying F on u$’

We now evaluate the effect F has on the limiting value u{°, defined in
(6.118) and (6.119) for the numerical simulations and analytical approximations
respectively. We note that in both these cases, the value of u{® corresponds to
the limit limy, ,cu1. In Figure 6.9, the numerical value of u{°, given by (6.118),
has been plotted against F for two different sets of values for xmax, the largest
x> value in the numerical domain. This is to ensure that the solutions for these
two sets of xmax agree, and the choice of values for xmax is high enough for the
numerical simulations to model the deformations accurately. The first set of

values we choose for xmax, which we denote xmax1, are

(200 106 < F <10
20 107*< F<1 (6.124)
X = _ .
maxt 50 1< F <102
400 102< F <104
The second set of values chosen for xmax, which we denote xmax2, are
400 100 < F<10°*
40 1074<F<1
X = - 6.125
") 1000 1< F <10 (612
800 102 < F <10

We note that Xmax> = 2Xmax1- Finally, we have set v = 0.49, d = 1, tan(¢) = 1
for both cases of xmax.

It is seen in Figure 6.9 that there is excellent agreement between the plots
using the two sets of values (6.124) and (6.125) for xmax. As such, the plots are
accurately representing the values of u$°. For both small and large F, it is seen
that log(u{°) increases linearly with increasing log(F). It is later found that
these plots have a gradient of —1/2 in both cases, meaning that u{° is behaving
like F~2, for small and large F. It is also observed that between 1072 < F < 1,
there is a transitional region that joins the linearly behaving plots found in the

regions with smaller and larger F. Within this transitional region, the gradient
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Figure 6.9: The numerical value of u{°, defined in (6.118), against Fforv=049,d =1,
tan¢ = 1. The red line corresponds to setting Xmax = ¥max1, defined in (6.124), in the
numerical simulations, whereas the blue line corresponds to setting Xmax = Xmax2,
defined in (6.125).

of the curve is slowly varying. We now consider further how u$* behaves for

small and large F.

6.9.3 Fundamental-Mode Approximation for uj°

We first investigate a possible approximation for u$° in the limits 7 — 0 and
F — oo. In order for the conditions (6.113), (6.115) on A,, as well as the
relation (6.114) between the A, and the finite constant H to hold, the sum
of the coefficients A, must converge. It is then assumed that the coefficient
Ap of the fundamental mode is much larger than than coefficients A, of the
higher-order modes that comprise the deformations #; and u,. (This may or
may not be a good assumption.) Making this assumption, we may neglect the
higher-order coefficients A,. This simplifies the expressions (6.113)—(6.115) and
allows approximations for Ay and H to be formed. These approximations may
then be used to derive an approximation for uj” which can be tested against

numerical values of u$’.

Neglecting all the A, with n > 1 in the condition (6.115), rearranging, and
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setting x1 = d/2 yields the following approximation for Ag
- -1
Ag ~ Q! <ocA1 n Z°A§> ) (6.126)
0

where 4, by are defined as

QoA
2

> , Dby=(1-2v)Azsin <d020A2 ,

(6.127)
as before. It is also found that neglecting all the A, apart from Ay in (6.114)

7o = [(1 = v)Ay + va] sin (d

gives the following approximation for H
H~ Ag <_ — 1> . (6.128)
0

Substituting (6.126), (6.128) into the analytic definition (6.119) for u{°, we derive

the following approximation for uj°

a
. (i— )tan(p
u; = Htan¢ ~

. (6.129)
Qo (s + 2A3)

To determine how this approximation behaves in the limits 7 — oo and F — 0,
we use the asymptotic approximations (6.120) and (6.121) of the fundamental
decay rate Q) in the limits ' — co and F — 0, respectively. Substituting (6.120)
and (6.121) into (6.129) yields the approximations
2 71
N (‘5—0—1) dF? tan ¢ )

uy ~ 0 - as F — oo, (6.130)
(1 — 2v) (ocA1 + g—gAg)

SIS

and

] 2 2
(o) Y
uy® ~ 5| dF 2tan¢ as F —0. (6.131)

6(1—v) (acAl + g—gAg)

6.9.4 Behaviour of u{° for Small and Large F

The approximations (6.130), (6.131) are now tested against the numerical
simulations, starting with the approximation (6.131) as F — 0. In Figure
6.10, the numerical value of u{° has been plotted for small F, along with the
approximation (6.131) of u{°. From the figure, we see that there is excellent
agreement between the numerical solution and the approximation of u$’, up
until we exit the regime of small F at £ = O(1073). This indicates that
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Figure 6.10: The numerical solution for u{* for small 7 whenv = 0.49,d =1, tan¢ =1
(red line). Also plotted is the fundamental-mode approximation (6.131) of u$® (blue
line) and —0.082F 2 (black line).

simply taking the fundamental mode of the deformation yields an accurate
approximation for u$® when F is small.

Also plotted in Figure 6.10 is —0.082F 2. It is seen that both the numerical
simulation and analytical approximation have the same gradient as F “3. Itis
also noted that uy, and thus u{°, must contain a single dimensional parameter
d in order for the dimensional deformation to have the dimensions required.
This is in agreement with the approximation (6.131). Using this information, it

is concluded that
ufzo@ﬁ%>=o@f%ﬁﬂ as F 0, (6.132)

where we have used (6.61) to evaluate the size of F. As u® = H tan ¢, it is also
seen that
H=0(aF2) as F—o0. (6.133)

We now test the approximation (6.130) for u$° in the limit 7 — oco. In Figure
6.11, the numerical solution of uJ> as well as the approximation (6.130) has been

plotted for large F. It is seen from the figure that although the curves of the
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numerical solution and approximation of u{° have the same gradient, there is
a constant difference between the two. As such the numerical solution and
analytical approximation have the same power of F but a different coefficient.
This is likely to be due to using only the coefficient A of the fundamental mode
when deriving approximation (6.130) of u°. As all the other coefficients A, are
neglected, it is possible that a contributing term that has the same order as the
true value of uj* has been lost. This implies that although the fundamental
mode gives the correct qualitative behaviour for u$° as F — oo, there are other

modes that contribute to u3* which cannot be neglected.

—4

-10 T T T

10 10 10 10 10

Figure 6.11: The numerical solution for u$° for large F whenv = 0.49,d =1, tan¢ = 1
(red line). Also plotted is the fundamental-mode approximation (6.130) of u$> (blue
line) and —0.0385.F -3 (black line).

We have also plotted —0.0385F "% in Figure 6.11, and we see that the
numerical value of u$° has the same gradient as F ~2. As such, by again noting
that u{° must contain a single dimensional parameter d for the dimensions of

uj’ to be consistent, it is concluded that
u® =0 (d]:"’%) =0 (a}"’%ﬁ’l) as F — oo, (6.134)

where once again (6.61) has been applied to evaluate the size of F. Again, we
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use the fact that u{° = H tan ¢ to determine

H=0 (af*%zﬂ as F — . (6.135)

6.10 Applying the 2D Model to the Elastic-Walled Tube

The model for bending a semi-infinite block under tension is now used to
model a boundary layer at the ends of the elastic-walled tube considered in
Chapters 2 and 3, in the case 6/ > 1 which corresponds to having a large
axial tension F. By doing so, it is seen what corrections this boundary layer
imposes on the bulk solution modelled in Chapter 2. It is noted that contrary
to the original estimation of the boundary-layer width (3.48) derived in §3.6,
the boundary-layer width grows with increasing F instead of decreases with
increasing F. Because of this the boundary-layer width is larger than expected
and azimuthal variation in the tube wall may not necessarily be small in the
boundary layer. As such, it is possible the 2D model studied here may neglect
some significant effects arising from azimuthal variation, and it may not model
the tube wall correctly near the tube ends. However, it is still informative to
apply this model to the tube wall as it will give corrections to the bulk solution
which may be tested against numerical simulations of the tube to see if the 2D

model is accurately modelling the tube near the tube ends.

6.10.1 Summary of the Set-up of the Elastic-Walled Tube

Before we apply the 2D model to the elastic-walled tube, it is convenient to
review the set-up of the tube as described in §2.2.1 (also used by Whittaker et al.
(2010c)) and depicted in Figure 6.12. As the properties of the fluid within the
tube do not contribute to the boundary layer at leading order, or the correction
in the bulk layer, we do not describe the properties of the fluid here.

Here, an initially elliptical tube of length L, wall thickness 4 and
circumference 27ta is set so that the tube axis is aligned with the z*-axis. We
also set x* to be the dimensional coordinate normal to the undeformed tube
wall and perpendicular to z*. The point x* = 0 is set to be on the inner surface
of the tube wall. The ellipticity of the tube is set by a parameter oy, and the
tube is split into three regions: two rigid sections occupying 0 < z* < z%
and z* < z* < 1, and an elastic-walled section within z, < z* < z* which
is clamped onto the rigid tubes at z* = z%,z*. (It is noted that z and z*

correspond to z1L and z;L in Chapter 2.)
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Figure 6.12: The set-up of the tube used by Whittaker et al. (2010c). An initially
elliptical elastic-walled tube is clamped between two rigid tubes, and oscillates with

amplitude b(t).

The elastic-walled region is subject to both a steady deformation and
an oscillatory deformation of frequency w and amplitude b(t), where ¢t is
non-dimensional time. (Full details of the non-dimensionalization are found
in §2.2.3.) It is assumed that the elastic wall behaves linearly elastically over the
range of deformations considered here, and has Poisson’s ratio v, incremental
Young’s modulus E and bending stiffness K. An axial tension force F is applied
at the ends of the elastic-walled tube, yielding a uniform axial pre-stress of
F = F/(2mad) in the undeformed configuration.

The dimensional cross-sectional area of the tube in its deformed and
undeformed state is A* and Aj respectively, and r, rg are the dimensional
positions of the tube wall in the deformed and undeformed configuration. The
component of the dimensional deformation normal to the tube wall (in the
x*-direction) is then denoted ¢*.

The following dimensionless parameters are also introduced

£:§>>1, 5:§<<1, FeF o), ap =t

SRR <1, (6.136)

a
which correspond to the tube length, wall thickness, axial tension and
amplitude of the deformations respectively. In this parameter regime, we have
a long, thin-walled tube under large axial tension, subject to small-amplitude,
slowly varying deformations. Using the definition of F, the pre-stress IF may
be rewritten as K2

F = ﬁ]—— p
which matches with the pre-stress (6.1) applied to the semi-infinite block in the
2D model.

The dimensional axial coordinate z*, the axial coordinates z% of the clamped

ends of the elastic-walled tube, and cross-sectional areas A*, A in the
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deformed and undeformed states are non-dimensionalized with the following

scalings
z* = alz, zh =alzy, Ay = a? Ao, A* = a?A. (6.137)

As the tube wall is subject first to a steady deformation, and then oscillatory
deformations of dimensionless amplitude A(t) about the steady deformed
state, Whittaker et al. (2010c) decomposed the non-dimensional area variation

A — Ay in the following way

1

A(Z,t) - A() - m

A(z) + A(t) Re(A(z)e'"), (6.138)

where A, A are the non-dimensional components of the area change due to
the steady and oscillatory deformations respectively. Multiplying (6.138) by a?

gives the following dimensional expression for the area variation

a2

A*(Z*,t) - AS - m

A(z") + A(t)a* Re(A(z")e"). (6.139)

Finally, the midplane of the tube wall is parameterized with dimensional
Lagrangian coordinates (x!,x?), which are measures of arc length in the
azimuthal and axial directions respectively, in the undeformed state. These
are then converted into two dimensionless Lagrangian surface coordinates

T € [0,2m), z € [0, 1] using the relations
xl = ah(7)T, x? = alz, (6.140)

where the scale factor h(7) is defined as

SIS

h(t) = c(sinh? oy + sin® 7) 2,

and ¢(0p) is a known function of the ellipticity parameter 0y, defined in (2.1) in
§2.2.1.

6.10.2 Relating the Coordinate Systems and Deformations in the 2D
and 3D models

One important difference between the 2D model of the semi-infinite block,
and the 3D model of the elastic-walled tube, is that the coordinates (x1, x2)
and normal deformation u; used in the 2D model are not aligned with the
coordinates (x*,z*) and normal deformation ¢* used in the 3D model. Hence,

to apply the 2D model to the 3D model of the elastic-walled tube, relations
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must be found between these coordinate systems and deformations. It is noted
that as the 3D model is described in terms of the area variation, which only
depends on the normal deformation ¢*, we need only consider determining
a relation between ¢* and the deformations u;, uy in order to determine the
corrections to the bulk layer. The azimuthal and axial deformations in the 3D
model are therefore not considered here.

In the 2D model, the deformations 17 and 15, in the x; and x,-directions have
been defined in (6.110) and (6.111) in terms of the dimensional coordinates x;
and x,. These coordinates are oriented such that x; is in the direction of the
tension acting on the block (and so in the direction of the centre line of the
block at the exit of the boundary layer) and x; is perpendicular to x;. The
origin of this coordinate system is set to be at the bottom corner of the short
edge of the block in its undeformed configuration. In the 3D model in Chapter
2, z* is defined to be the dimensional coordinate aligned with the tube axis,
and x* is a dimensional coordinate both perpendicular to z* and normal to
the surface of the tube wall in its undeformed configuration. The dimensional
normal deformation ¢* is then set as the deformation in the x*-direction. In
Figure 6.13, we see how these sets of coordinates are oriented relative to a 2D
cross-section of the elastic tube wall near the clamped boundary z* = z* . The
components 11 and u, of the deformation u of the point O in the undeformed
2D block to a point P, as well as the component ¢* of the deformation r — rg
of the point Q in the undeformed tube wall to the point P are also displayed.
The components of O, P and Q are (x10, X20), (¥1p, X2p) and (x10, x2g) in the
(x1,x2) coordinate system, and (x¢),z5), (xp,zp) and (x(,z() in the (x*,z7)
coordinate system.

From the figure, it is observed that near the end of the tube wall situated at

*

z* = z%, the coordinates (x*, z* — z% ) are simply rotations of the coordinates
(x1, x2) by the small angle of clamping ¢, about the point x; = x* = d/2,
xp = z* —z% = 0, where the flexible tube joins the rigid tube. Conversely, if we
instead consider the end of the tube z* = z*, the coordinates (x*, z* — z* ) are
rotations of (x1, x2) by an angle ¢ about x; = x* = d/2, x, = z* —z" = 0.
It is noted that as the angle ¢ is dependent on the azimuthally varying,
time-dependent deformations acting on the tube, ¢ = ¢(7,t) is a function of

both 7 and t. Using this information, x* and z* may be written as the following

" d : d . dy .
v =|xa-; cos¢+xzsm(p+§, z" —zi =% | xpcos¢p — -y sing | .
(6.141)
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Figure 6.13: Orientation of the coordinates (x1, x2) and (x*, z* — z% ), as well as the
deformations uq, upy and ¢*, relative to a 2D cross-section of the tube wall, near the
rigid-flexible wall boundary at z* = z7 .

The sign of the rotation in the definition (6.141) of z* depends on which
clamped boundary we are rotating from. At z%, the flexible tube is in the
positive z*-direction so we must have a positive sign. Conversely, the flexible
tube is in the negative z*-direction from z* and so the rotation must have a

minus sign.

6.10.3 An Expression for ¢*

We now consider deriving an expression for the normal component ¢* of
the deformation of a point Q in the tube wall to some point P. To do so,
we introduce a point O in the undeformed 2D block equivalent to Q in the
undeformed tube wall. The point O then undergoes a deformation u to deform
to the point P. We first set the components of O in the (x3, x2) coordinate system
to be the general points x;0 = x1 and xy0 = x3. Hence, the coordinates of O in
the (x*,z* — z% ) system are given by the expressions (6.141). In order for Q to
be the point in the undeformed tube wall equivalent to the point O in the 2D

block, the components of Q in the (x*,z* — z% ) system are set to be

xXH = X1, zo — 2z = +x. (6.142)
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As the point P is a deformation of O by u, the coordinates of the deformed point
P in the (x1,x2) system are x1p = x1 + u1(x1,x2) and xop = X2 + un(x1, x2). By

applying the expressions (6.141), these coordinates are given in the (x*,z* —z%)

system by
. d : d
Xp=|x1+u — 5 cos ¢ + (x2 + up) sing + 5 (6.143)
Zp—zh ==+ [(xz + up) cos ¢ — <x1 +up — ;) singb] . (6.144)

The normal component ¢* of the deformation from Q to P is simply
¢ =xp—xp. (6.145)
Substituting the definitions (6.142) and (6.143) of xé and x} into (6.145) and
rearranging yields
* = (xl - g) (cos¢p — 1) + uq cos ¢ + (x2 + uy) sin¢g. (6.146)

This expression may be simplified further by rewriting x; in terms of z* — z..
Rearranging the expression (6.141) for z* gives
z¥ -z d\ sing
== — = . 6.147
2 cos ¢ + <x1 2> cos ¢ ( )
Substituting (6.147) into (6.146), we obtain

* = (xl - ;l> (cosgb -1+ sms;)> +ujcosp+upsing £ (zF —zi ) tan¢,

= <x1 - i) (120354)> +ujcos¢+uysing + (z* —zi)tang.  (6.148)

As the range of deformations considered here are assumed to be small, the
angle ¢ of clamping is also assumed to be small. With this assumption, we can

make the approximation
cos¢p ~ 1. (6.149)

Applying this to (6.148), we find
¢ =uy +upsing + (z" —z7 ) tan¢, (6.150)

and substituting the expressions (6.110) and (6.111) for u; and u into (6.150)

gives the full expression for ¢* in the boundary layer as

&* —HZ;)A q tan ¢ e~ 2 {Cos <Q A <x1—)> —g <Q Ay <x1_>>
+sin ¢ [wsin (QnAl <x1 — i)) -1-2—:/\23111 <Q Ay <x1 _ g))]}

+[H+£ (z" —z)| tan ¢. (6.151)
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In order to use the expression (6.151) for ¢* to match the boundary layers
to the bulk solution, we must determine the behaviour of ¢* as we exit the
boundary layers situated near z% and z* . This corresponds to the limit x, — co.
By examining the relation (6.141) between z* and x;, it is seen that as x, — oo,
z* — oo in the boundary layer near z%, and z* — —oco in the boundary layer
near z* . Hence, ¢* must be evaluated within the boundary layers near z; and
z* as z* — oo and as z* — —oo respectively. Using the expression (6.147) for

X7, we find
B z¢—z% B B g
exp(—Qux2) = exp ($Qn 059 > exp < 0O, <x1 2> tan 4)) ,  (6.152)

in the boundary layers near z* = z%. As z* — Z£co within the boundary layers

situated near z* = z%, (6.152) tends to zero. Hence as we exit the boundary
layers, ¢* behaves as
¢~ [H=(z"—z1)]|tan¢. (6.153)

6.10.4 Area Change at the Exit of the Boundary Layers

Now that the behaviour of ¢* as we exit the boundary layers has been
determined, we use this behaviour to see what corrections the boundary layers
impose on the bulk region of the tube modelled in Chapter 2. As the model for
the bulk region describes the tube in terms of the cross-sectional area variation
of the tube, as well as in terms of the pressure and axial velocity of the fluid
passing through the tube, it is convenient to determine the area change as we
exit the boundary layers so that the corrections to the area change in the bulk
solution can be determined.

As a starting point, we use the following relation found by Whittaker et al.
(2010d) between the cross-sectional area of the elastic-walled tube and the

deformation of the tube wall
A*(2*) — Ay = 7{(1'— ro) - fah(t)dt + O(A?), (6.154)

where fi is the outward, normal unit vector to the tube wall in its undeformed
state. As the normal component of r — rj is the normal deformation ¢*, (6.154)
is rewritten as -

A*(z) — Ay =a i Fh(t)dT 4+ O(A?). (6.155)

Substituting the expression (6.153) for ¢* at the exit of the boundary layers into

(6.155) gives

21
A*(z) — Ay ~ a/o [H=+ (z" —z%)]h(7) tan¢pdt as z" — +oo, (6.156)
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in the boundary layers near z* = z. The only parameter in (6.156) that
depends on the transverse variable 7, other than h(7), is the angle of clamping
¢, and any term that does not depend on ¢ or h(7) may be extracted from the

integral. Doing so, (6.156) is rewritten as
27
A*(2*) — A% ~alH+ (2 —z;)]/ h(t)tangdt as z* — +oo, (6.157)
0

in the boundary layers near z* = z%.

As the area change within the bulk region is decomposed into a steady
component and oscillatory component, it is convenient to decompose (6.157)
into steady and oscillatory components. This can be done by splitting the
gradient of clamping tan ¢ as follows

tan ¢ = % tan ¢s + A(t) Re(tan ¢oe™), (6.158)
where tan ¢ is the gradient of clamping after the steady deformation, and
tan ¢, is the mode shape of the oscillatory gradient of clamping about the
steady configuration. Substituting (6.158) into (6.157) yields

A(@)= A5 ~ ol 2] [ ) (g an gt A0 Reltan ™))

a?(St
(6.159)
as z* — oo within the boundary layers near z* = z%. Comparing the steady

and oscillatory components of (6.159) to the corresponding components in
(6.139), we find

_ :i: * % 27T
A~ H(‘Zazi) / h(T) tan ¢, dr, (6.160)
0
*k %k 27T
A~ Hi(zazi) / h(t) tan ¢, d1, (6.161)
0

as z* — =+oo in the boundary layers near z* = z7..

6.10.5 Matching the Boundary-Layer Area Change to the Bulk
Solution

To match the area change (6.159) as we exit the boundary layers to the area
change in the bulk solution, the limit of the area variation in the bulk solution
as z* — z% must first be determined. From the expression (6.139), the area
variation in the bulk layer has a steady component A and an oscillatory
component A to match onto the boundary layer. These components may
be considered separately and we focus first on matching the oscillatory area

variation A.
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Taking the Taylor series of the oscillatory area A about z* = z%, where the

clamped boundaries are located, gives

A (% A (% * * dA
Az) = A + (" - 22)

(zi)+... as z¥ —zl. (6.162)

By truncating (6.162) after the first-order term and substituting into the
oscillatory component (6.161) of the area change as we exit the boundary layers,
we obtain
H+ (zF—2z4) (%7 . dA
(‘Zazi) / h(T)tan gy dt ~ AZL) + (2 —22) S5 (1) (6163)
0
Equating the leading and first-order terms in z* — z% in (6.163) and rearranging

gives the following relations

21 »

/O h(r) tan gy dr = LA(z1), (6.164)
27 dA

| /0 h(r) tan g, d = a1 (1), (6.165)

Eliminating the integral from (6.164) and (6.165) yields the following conditions

on A .
dA
dz*

Following a similar method, the new conditions on the steady component

A(zi)TH

(z) = 0. (6.166)

A of the area variation in the bulk layer are found to be

Az F Hjﬁ (z1)=0. (6.167)

Hence the new conditions on A and A have the same form. As the original
conditions imposed by Whittaker et al. (2010c) on A and A also have the same
form as each other, the corrections to the original conditions will take the
same form in both the steady and oscillatory components. Thus, we need
only consider the corrections to one of these components. Here, we focus
on determining the corrections to the boundary conditions on the oscillatory

component.

6.10.6 Corrections to the Original Boundary Conditions in the Bulk
Layer

To see how the new conditions (6.166) on A are different from the
original boundary conditions, and see how large the correction term is,

we must non-dimensionalize (6.166). The axial coordinates z* and z are
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non-dimensionalized as in (6.137) and the only parameter left that needs
non-dimensionalizing is the dimensional constant H. It was found in §6.9.2
that for F — oo

H=0(aF b)), (6.168)
A sensible scaling for the dimensional constant H is therefore
H=""7, (6.169)
Fail

where H is an O(1) dimensionless constant. Using the scalings (6.137) and

(6.169) in (6.166), the new non-dimensional boundary condition on A in the
bulk solution is found to be

. 1 _dA

A ——H— =0. 6.170

(z+) F Fipl (z+) (6.170)

This condition may be rewritten in terms of the oscillatory transmural

pressure p(z) using the following relation

- Ao d?p
A=-———= 171
w? dz2’ (6171)
which was derived in §2.4. Applying (6.171) to (6.170) and rearranging gives
the following boundary conditions on
d?p 1 _d3p
a2 ) F o
The original boundary conditions at the clamped ends of the tube, given by
(2.85) in §2.5.2, were

(z+) = 0. (6.172)

le?;(zi) =0. (6.173)
The new boundary condition (6.172) has a correction term proportional to
d3p/dz®, which has size O(]:%E_z). As ¢ > 1, we have /2 < 1, and as
F = 0O(1), the new boundary condition (6.172) can only be applied at higher
orders within the bulk solution. Hence, there is no change to the original
boundary condition (6.173) at leading order, and we would need to calculate
the asymptotic solution of the bulk region up to O(£72) to evaluate the effects
of the correction term. However, if the condition F = O(1) is relaxed and we
allow F = O(¢~*) or smaller (corresponding to a smaller axial tension force),
the correction terms then become significant at leading order. However, as the
restoring forces due to pre-stress contribute at leading order in the bulk layer,
it is possible that reducing the size of the axial tension will alter the behaviour
in the bulk layer, as the axial tension will no longer contribute at leading order

there.
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6.11 Physical Interpretation

In the model for bending a semi-infinite block under tension, different
behaviours are witnessed for small F and large F. From (6.123) in §6.9.1, it
is seen that in the limit 7 — 0, the dimensional boundary-layer width dp has
magnitude O(dF —2 ). Using the expression (6.61) for F, and the dimensionless

parameter 6 = d/a, this can be rewritten as

5y =0 (fég) . (6.174)
By comparing this with the dimensionless bending-layer widths (3.48) from
the toy model in §3.6, and (4.43) in regime I, studied in Chapter 4 (which are
dimensionalized by simply multiplying by a), it is seen for small F that the
boundary layer here has the same size as the bending layers found in the toy
model and in regime I,, where 6/ < 1 < 502, Tt is also seen later that the axial
deformation u; is approximately a uniform shear across the width of the block
for small 7, meaning that any transverse shear stresses are negligible. Hence,
the deformation of the block must be due to bending effects and the boundary
layer modelled here must be an axial-bending boundary layer.

In the limit F — oo, it is seen from (6.122) in §6.9.1 that dp = O(d]:"%).
Again using (6.61) and § = d/a, this is rewritten as

5y =0 (a]—"%52€> . (6.175)

This behaviour is different to the behaviour in the limit 7 — 0, as well as the
behaviours displayed by the toy model in §3.6 and the bending layers modelled
in regime I, (¢ < 1 < &%) and regime I, (6/> < 1), in Chapters 4 and
5 respectively. Hence, the boundary layer for large F is due to a different
mechanism.

To see what this new mechanism is, the behaviour of 1, is examined for
both small and large F values. In Figure 6.14, the numerical solution for u; in
the x;-direction has been plotted for 7 = 1074, and F = 10. This has been
done for x, = 0,1 and x, = 755 where n = 1,2,3,4, in the case d = 1, v = 0.49,
tan(¢) = 1. From the figure, it is seen for small F that in the x;-direction, there
is little deviation in u» from a uniform shear over the width of the block, for all
values of x,. However, in the case with large F, for all values of x, apart from
at the clamped boundary x, = 0, u, appears to be behaving sinusoidally across

x1, and there is a much larger deviation from uniform shear.
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Figure 6.14: The numerical solution of u; in the x;-direction for small F (F = 107%)
and large F (F = 10), in the case d = 1, v = 0.49, tan(¢) = 1, for fixed values of x,.
The black and red lines correspond to x; = 0,1 and the blue, green, pink and cyan

lines correspond to x; = 75%, forn=1,2,3,4.
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To obtain more information about the deviation from uniform shear for

small and large F, the following normalisation of u; is employed

(n) _ M 2 _ é 6.176

"2 Mz(d, XQ) d M 2)° ( ' )
In this normalisation, the deformation u; is divided by u3(d, x2) to ensure that
the deformation has the same amplitude at the stress-free boundaries x; = 0,4,
for all values of x. A uniform shear of the same amplitude is then subtracted
so the resulting function shows the normalised deviation from a uniform shear.

In Figure 6.15, the numerical solution for ué")

in the x-direction is displayed
in the case F = 10 (large F), d = 1, v = 0.49 and tan(¢) = 1, for x, = 0,1
and x; = 755 where n = 1,2,3,4. It is observed from the figure that as
the value of x, is increased, ué”) deviates away from the uniform shear set
at the clamped boundary x, = 0, and tends towards a self-similar form of
sinusoidal shape. This self-similar form corresponds to the fundamental mode
of the deformation. It is found for small 7 (F = 10~*%) that ugn) is almost
indistinguishable from uén) = 0 on the scale used in Figure 6.15, and thus the
normalised deviation from uniform shear is negligible.

Finally, the decay of this shear as x; is increased is evaluated. This is done by
observing the following three quantities. The first quantity is ux(d, x»), which
corresponds to the amplitude of the deformation u; at the stress-free boundary
x1 = d. The second quantity is duy/dx; at x; = d/2, which is the gradient
of the deformation in the x;-direction at the midpoint of the block, where the

gradient is at its highest. The final quantity is

d
duy (4 N (52) () 2 (6.177)
de; \2°7%) up(d, x) d’ ’

which corresponds to the gradient of the normalised deviation from uniform
shear, in the xj-direction at the midpoint of the block. It is noted that the
calculation of this consists of the ratio of the previous two quantities, uy(d, x2)
and du,/dx; at x; = d/2, with a constant subtracted.

In Figure 6.16, these three quantities have been plotted for F = 10 (large
F),d =1, v =049 and tan(¢) = 1. From the figure, it is seen that u, and
dup/dxq, at x; = d and x; = d/2 respectively, both decay to zero as x; is
increased. Hence, the amplitude of the deformation and its gradient in the
x1-direction are both decaying for increasing x,. It is also seen that dué") /dxq

at the midpoint of the block tends to a constant as x, — co. Hence, the gradient
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Figure 6.15: The numerical solution of ué") in the x;-direction for F = 10 (large F),
in the case d = 1, v = 049, tan(¢) = 1, for fixed values of x,. The black and red
lines correspond to x, = 0,1 and the blue, green, pink and cyan lines correspond to
xp =755, forn = 1,2,3,4.

of the normalised deviation from uniform shear tends to a constant, and the
deformation u; is indeed tending to a self-similar form.

Overall, it is seen that for small F, the boundary layer that occurs is a
bending layer. In this bending layer, the deformation u, is indistinguishable
from a uniform shear across the width of the block that decays as x, — co.
However when F is large, u; varies sinusoidally about a uniform shear across
the width of the block. These deviations from uniform shear arise so that the
stress-free conditions on the top and bottom boundaries of the block are still
satisfied. The variations tend towards a self-similar solution as x, — oo and
the boundary layer then allows for the decay of this self-similar solution in the
axial direction. Hence, the boundary layer is allowing u, to deviate away from
uniform shear across the width of the block, and thus we have a transverse
shear-relaxation layer. It is noted that this boundary layer is different from
the shear-relaxation boundary layer studied by Whittaker (2015), which deals

with shear in the azimuthal direction of the elastic-walled tube. The difference
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Figure 6.16: The numerical solutions of u; (black line) at x; = d, duy/dx; (red line) at
x1 =d/2,and dué”) /dx; (blue line) at x; = d/2, in the xp-direction, for F = 10 (large
F),d=1,v =049 and tan(¢) = 1.

between the boundary layers for small and large F is depicted in Figure 6.17.

6.12 Conclusions

In this chapter, we have considered deriving a model to describe the behaviour
near the clamped ends of the elastic-walled tube modelled in Chapter 2, in
regime II where §¢ > 1. In this regime, it was originally predicted by the
toy model in §3.6 that a bending layer of dimensionless width ép < § would
reside at the tube ends. As such, it was originally expected that the boundary
layer would be smaller than the thickness of the block, and Kirchhoff-Love
shell theory (Fliigge, 1972; Sendergaard, 2007) could not be used to model
the mechanics of the tube wall. Instead, a linearised 2D model describing
the mechanics of a semi-infinite block being bent under tension has been
derived. It was initially expected that this would be a good representation
of a cross-section of the tube wall in the normal and axial directions, as there
would be slow azimuthal variation within a boundary layer of width dp < 4.

However, in this 2D model, a larger transverse shear-relaxation layer has been
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Small F

Large F
7

Figure 6.17: Sketch of the different shapes of u; for small and large F. For small F, u,

is indistinguishable form a uniform shear. For large F, u; first evolves into a sinusoidal

deviation from uniform shear, which then decays as xp — oo.

found when 6/ > 1. The properties of this shear layer have been evaluated,
and although this layer is of a size that azimuthal variation may be important,
the 2D model has been applied to the elastic-walled tube and corrections to the
boundary conditions of the bulk layer have been calculated. These corrections
can be tested against numerical simulations in future work.

In the 2D model, Cauchy’s momentum equation in absence of external
forces (Howell et al., 2009) is used as a governing equation for the wall
mechanics, and a modified Saint Venant—Kirchhoff model (Howell et al., 2009,
p- 230) is used to derive an appropriate constitutive law for the Cauchy stress
tensor ¢. This linearised 2D model has been solved numerically using the
numerical finite-element differential equation solver "FEniCS” (Dupont et al.,
2003), and analytical techniques have also been applied to the model. With
these analytical techniques, approximations for the normal deformation u; and
axial deformation u,, away from the clamped boundary x, = 0, have been
derived and these have been shown to be in agreement with the numerical
solutions. A full analytical solution satisfying the clamped boundary conditions
(6.43) at x = 0 has not yet been derived. However, it is possible that a similar
technique to that used by Shankar (2003) to solve the biharmonic equation in
a semi-infinite strip, detailed in Appendix 6.C, could be used to obtain the full
solution.

It has been found that the deformations u; and u, are composed of a

series of modes, each of which decay exponentially in the axial direction with
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their own unique decay rate. It was determined that for all values of the
scaled pre-stress F = O(62(2F), the decay rates of the higher-order modes
all decrease with increasing F. However, the decay rate () of the fundamental
mode, is found to have different behaviours for small and large F. By forming
asymptotic approximations of () for small and large F, it was found that in
the limit £ — 0, Q) behaves as Qg ~ d~'F2, and in the limit £ — oo, the
asymptotic behaviour of Q) is given by Qg ~ d~1F -1,

Using the approximations for )y, the dimensional boundary-layer width 55
was determined to behave as 35 ~ dF 2 as F — 0, and o5 ~ dFz as F — oo.
Using the expression (6.61) and noting that d can be written as d = ad, the

asymptotic behaviours of 3 may be rewritten as

0p ~ O(al™'F2) as 60— 0, (6.178)
3p ~ O(ad*4F1) as 60— oo. (6.179)

The behaviour (6.178) for §¢ — 0 is the same as the behaviours (3.48) and (4.43)
of the widths of the bending layers in the toy model in §3.6 and the bending
layer in regime I, (6/ < 1 < §¢?). This behaviour is also different from the
behaviour (5.68) of the bending layer in regime I, (§¢*> < 1). This is because
azimuthal effects that are neglected in this model are found to contribute at
leading-order in regime I,,. However, the behaviour (6.179) of op as 60 — o
does not match with the behaviour of any of the previous boundary layers
considered.

It has also been found that as x, — 0, u; tends to some constant u7° whereas
iy — 0. It is determined that for both small and large F, u = O(dF~2) and
the asymptotic behaviour of u{°> does not differ between the cases with small
and large F.

This 2D model has been used to determine corrections to the boundary
conditions imposed on the bulk layer of the elastic-walled tube modelled in
Chapter 2. It is found that when F = O(1), the corrections are a factor of
£72 smaller than the leading-order boundary condition. Hence, the correction
term does not affect the leading-order bulk layer solution, but does affect the
solution at O(¢ *2) and higher. Hence, to determine the effects of this correction,
an asymptotic solution of the bulk layer would need to be calculated up to
O(£72). To increase the size of these corrections so that they have an effect at
leading order in the bulk of the tube, it was seen that the condition F = O(1)
must be replaced with 7 = O(¢~*), corresponding to a smaller axial tension

force. Introducing this parameter regime may however change the behaviour
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of the bulk solution. It is noted that as there is a possibility that azimuthal
variation, neglected in the 2D model, could have a leading-order effect at the
scale of the boundary layer, these corrections may not be accurate. To determine
the validity of these corrections, the corrected solution could be tested against
numerical simulations, or the sizes of the neglected azimuthal effects could be
evaluated to see if they contribute at leading order on the axial scale of the
boundary layer. Even if this 2D model does not yield valid corrections to the
bulk layer of the elastic-walled tube, this model can still be applied to more
general problems of clamped shells under tension.

Finally, by examining the behaviour of u, for both small and large F, the
dominant mechanism within this boundary layer has been found. For small F,
there is very little difference between u, and a uniform shear across the width
of the block. However for large F, the deviation of u, from a uniform shear
is much larger and tends towards a decaying self-similar solution as x; — co.
Hence, the boundary layer in the case ¢ >> 1 allows deviation away from
uniform shear across the block, and we have a transverse shear-relaxation layer.
This shear layer is different from that modelled by Whittaker (2015).
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6.A Deriving the Boundary Condition (6.71) as x, — o

Here, the governing equation (6.42) and boundary conditions (6.44)—(6.46) are
used to prove that in the current problem the original boundary condition
(6.46), which states

0
01-<1>—>0 as Xy — 0o, (6.180)
is equivalent to the condition (6.71) used in §6.6, which is
Vui, Vi, -0 as xp — oo. (6.181)

We note that if Vuq, Vuy — 0 as x; — oo, then from the definition (6.25) of oy
we must have 07 — 0 as x — oo, and this implies the condition (6.180). Now
we consider proving that (6.180) implies (6.181).

We start with the governing equation (6.42) which is valid in all areas of the

block
d 1 d 0
com (o () ()0

In §6.6, it was shown that the deformation u; can be eliminated from the
components of (6.42), leaving a homogeneous, fourth-order PDE with constant
coefficients to be solved for u;. Similarly, it can be shown that eliminating
uy from the components of (6.42) yields a homogeneous, fourth-order PDE
with constant coefficients to be solved for u;. For u; and u; to satisfy their
corresponding governing PDEs, they must have either sinusoidal or exponential
behaviour in the x; and x,-directions, or be cubic or lower order in x1, x,. With

this information, the condition (6.180) then implies

0
i <(71 ) < )) —0 as xp — oo. (6.183)
0x2 1

Applying (6.183) to (6.182), it is found that

— | o1 — 0 as xp — oo,
dx1 0

1
01 - ( ) ~ A(xy) as xp; — oo, (6.184)

and hence

0
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where A is a function of x;. To determine A, we use the stress-free boundary
conditions (6.44), (6.45), which state

1 0
(% ( > = < iy ) at x; = O,d. (6185)
0 F5n

As A is independent of x1, applying (6.185) to (6.184) yields

0
A == u . (6.186)
( IFTX; x1=0 )

(It is noted that due to the symmetry of the boundary conditions (6.43)—(6.46)

and the form of the governing equation (6.42), u; is symmetric about x; = d/2,

and hence duy /9dx; is also symmetric about x; = d/2. Because of this the value
of duy/dx; is the same at x; = 0,d, and both the conditions within (6.185) give
the value (6.186) for A(xz).)

Using the definition (6.186) of A along with the conditions (6.180) and
(6.184), it is determined that

0 0
o~ ( Fou 0 ) , as Xy — oo. (6.187)

axz

X1:0
Substituting the definition (6.25) of o7 into (6.187), each of the components of

(6.187) give a condition to be satisfied as x, — co. These conditions are

Bul auz

(A+2V)BTC1 +/\a—x2 —0 as xy; — oo, (6.188)
(/\—]F)32+(/\+2y+1[3)32—>0 as Xy — 0o, (6.189)
(#+1F)32+Vg;lj —0 as x; = o, (6.190)
(n+ IF)?)Z; + Mg;lj — sz o S Xy — 0. (6.191)

As the conditions (6.188) and (6.189) are homogeneous conditions involving
the terms duq/9dx; and duy/dxy, these may be combined and written in matrix

form. Doing so gives

A2 A iy
<)\—EI§ /\+2y+]F>‘<gz;>—>0 as xp — oo, (6.192)

xp

Taking the determinant of the matrix within (6.192), we obtain

A+ 2 A

=A+2u)A+2u+F)—-AA—-TF
¥ s | OO AG-T)

=2(A+u)(FF +2u).
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In the current scenario, the Lamé parameters satisfy yu,A + p > 0. Hence, as
long as the axial tension is set such that IF > 0, corresponding to a stretching

force rather than a compression force, we have

A+ 2u A

= 2(A+ p) (F +2p) # 0.
A—F A+2u+F (A +B)E+20) £

Thus, for (6.192) to be satisfied, it follows that

32, gzi —0 as xp — oo. (6.193)

We now proceed to apply a similar method to the conditions (6.190), (6.191)
to obtain similar constraints on du1 /dx, and duy /dx1. We first use the condition
(6.193) on duy /9x; to rewrite the term on the right-hand-side of (6.191) in a way
that it can be combined with the terms on the left-hand-side. Using the fact that
dui/dx; — 0 as xp — oo, and that u; has sinusoidal or exponential behaviour,

or is cubic or lower order in x1, x7, this implies

i%%Oax—)w:i%%Oax%w
dxy \ 9x; 5 ! dx1 \ 9xp 5 '

From this, we see that there is negligible variation in du; /dx; in the x;-direction
as xp, — 0. Hence, we must have

8u1 8u1
— ~ — . 194
axz x1=0 ax2 as X = (6 )

Substituting (6.194) into the condition (6.191) and rearranging yields

0 0
Va% n ;%j —0 as x, — oo, (6.195)

This can be combined with the condition (6.190) and rewritten in matrix form

to give
F Juy
(VJF ”).<QXZ>—>0 as  xp — oo. (6.196)

Uz
K K .

We take the determinant of the matrix in (6.196) to find

F
‘ w+F p ‘ JF 0,

H H

provided yu,F # 0. Hence, for (6.196) to be satisfied, we must have

au1 8u2
aixz, T}C'l — 0 as Xp —» OQ. (6.197)



6.A. Deriving the Boundary Condition (6.71) as xo — oo 233

Combining (6.193) and (6.197), it is seen that

aui
— —0 as xp — oo,
aX]'

for all ,j. Thus
Vui,Viu, -0 as xp; — oo,

holds true. O
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6.B Asymptotic Analysis of the Fundamental Decay Rate
O for F>1and F <« 1

Here, we formulate asymptotic approximations for the decay rate )y of the
fundamental modes of the deformations uj, uy for both large and small axial
pre-stress F. We begin by considering the eigenvalue problem (6.109) to be
solved for ()

1 sin (dQZA1> Ccos <dQZA2> — 1P sin <dQZA2) Cos (dQZA1> =0, (6.198)

where

1= [(1—v)A; +va](1+ A) Py = (1—aA)(1—2v)Ay, (6.199)

21 —v)+ F  1-2v+ F
20—v) ' 2T 1-2v ' (6:200)
a=(1-2v+F)A;'—2(1 —v)A;. (6.201)

By substituting the expression (6.200a) for A; into (6.201), it is found that « may
be rewritten as
2(1-v
o= — 2(1(_1/)_2]:_ (6.202)
To evaluate (6.198) for different sizes of F, we must consider the behaviour of
the parameters A1, A, &, 1 and ¢, as F varies.
When F — oo, we find the following approximations for the parameters

(6.199)~(6.201)

Fi F1 _
AN~ ——, Ny ~ , a~—4/2(1-v)F 2, (6.203)
V2(1—v) 1—-2v
\/1—1/]:-% _1
~ ~2y1—=2vF2. 6.204
ne sy R (6.204)

From (6.204), it is seen that in the case of large F, ¥, = O(F %) and ¢, = O(F 2 ).
Hence, {1 > ¢». However, in the limit F — 0, we instead have the following

approximations

A~1,  A~1, a~=1, g ~21=2v), gy ~2(1—2v).
(6.205)
We see from (6.205) that Ay ~ A; and ¢; ~ ¢ when F is small. Using
the approximations (6.203)-(6.205), we now evaluate the eigenvalue equation
(6.198) in the limits 7 — oo and F — 0.
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6.B.1 Decay Rate O)) as F — oo

In the limit 7 — oo, we have 11 > 1. Hence, the first term in (6.198) is the

dominant term, and we may approximate the eigenvalues of () using

dQA dQA
m sin< . 1>Cos( 5 2) ~ 0. (6.206)
The roots of (6.206) occur when
dQZAl ~nm, and dngz ~ <n + ;) TT, (6.207)

where n is a positive integer. Rearranging the expressions within (6.207), we

find ( 1)
2n7m 2(n+53)m
i, i,

To determine the fundamental decay rate ()y, we must determine what the

(6.208)

smallest, non-trivial solution of (2 is. By inspection, we see that the smallest

solution will be either

27 T
QO ~ rm, or QO ~ r/\z (6.209)

To determine which of these is smaller, we examine the behaviour of 2/A;
and 1/A; for large F. Using the expressions (6.200) for Aq, Ay, it is seen that
2A;/ A is given by

> 2, (6.210)

28 _, 1+F(1—2v)1
A 1+ F(2—-2v)1
for F > 0, v < 1/2. The inequality within (6.210) holds as (1 —2v)~! >
(2 —2v)~!, which implies that the square root in (6.210) is greater than 1. From
this inequality, it is deduced that

2 21
2.2 211
A AT A, (6.211)

Hence, applying this inequality to (6.209), it is seen that the decay rate ()y of

the fundamental mode for large F must be

T
O~ —. 212
0~ IA, (6.212)

Substituting the approximation (6.203b) for A, when F — oo into (6.212), we
find ()9 may be approximated by

V1 —2v -

Qg ~ —— Fi as F— oo (6.213)
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Finally, by defining the boundary-layer width of the fundamental mode as
5p = 1/Qy, the boundary-layer width is approximated by

Fi as F — oo (6.214)

In §6.9, the expression (6.214) is plotted in Figure 6.8 along with the numerically
found boundary-layer width. It is observed that there is excellent agreement

between the two solutions for large F.

6.B.2 Decay Rate )y as F — 0

In the limit F — 0, we have that ¢y ~ 1, and thus both terms within the
eigenvalue equation (6.198) contribute at leading order. We also have that
A1 ~ A; for small F. As a starting point for evaluating the eigenvalue equation
(6.198), we take the Taylor series of the expressions (6.199), (6.200) for Ay, Ay,
1, P2 about F = 0. Doing so, we find

1 - 1

A =1+ 4(1_V)]:— 32<V_1)2ﬁ2+0(ﬁ3), (6.215)
Ay =1+ 20 12”?— 8(2V1_ 1)272 +O(F?%), (6.216)
pr=2-4dv+ 23(1__25) F+ o (‘i :Z;E 14121/)2?2 +O(F), (6217)
=24+ F— mﬁ%ouﬁ‘). (6.218)

We also find it convenient to rewrite the eigenvalue equation (6.198) as

@ sin <d§(A1 - Az)) LYy ¢2 sin ( 20(/\1 + A2)> =0, (6219

where we have used the identities

dQ dQA dQA dQA dQA
sin <2(A1j:A2)> =sin< 5 1>c0s< 5 2>j:cos< 5 1)sin( 5 2).

The following asymptotic expansions are now considered

A+ A =a® 1 aWF +a@F2 4 O(F?), (6.220)
A1 =Ny = B0+ pOF + g F? + O(F?), (6.221)
1+ = 7O W F 4 @D F2 4 O(F?), (6.222)
1 — ¢ =00 + W F + 6B F2 + O(F9), (6.223)

where a(®, a1 . 52 are O(1) constants that are determined from the Taylor

series (6.215)—(6.218) of A1, Az, 1 and ¢, about F = 0. Using these Taylor
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series, it is immediately observed that B(*) = 60 = 0. We also calculate the

following coefficients

1 3 —4v

MUY at) = 01— 2) (6.224)
pl = 41— 1/)1(1 —2v)’ Y = 32(1 —31/)_2?;— 2v)2’ (6:225)
20 — 401 — 20), 2,1 — 2?1__45), (6.226)
S — 2(11—1/)’ 52) = 16(71__13)“288_”221/)_ (6.227)

Finally, we assume that the decay rate () behaves like an unknown power

of F at leading order as F — 0, and set
Q=0F" (6.228)

where n is real and ) = O(1) as F — 0. Substituting the asymptotic
expansions (6.220)—(6.223) and the expression (6.228) into the eigenvalue

equation (6.219), we obtain

0=

YO+ F 4P F2+0(F) (dﬂf'”
sm

2 2

SV F+5OF+O(F) (d()ﬁn

(/3(1)]?“+ﬁ<2)f'2+0(ﬁ3))>

+

; (a(°>+a(1>ﬁ+u¢(2)ﬁ2+0(ﬁ3))) .

(6.229)

This problem is now split into three separate cases; n < 0, n =0 and n > 0.

Case whenn <0

When n < 0, the leading-order component of (6.229) becomes

ﬂ sin <d(),8(1).7:"”+1> =0. (6.230)
2 2
For (6.230) to be satisfied, we need
dﬂﬁ“z)f”“ — (6.231)
where k is an integer. For this to be the case, we must have n = —1 and
a2t k=123,.... (6.232)

dﬁ(l)'
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Hence, by applying the expression (6.225a) for 1) to (6.232) and substituting
into (6.228), the following leading-order approximations for the eigenvalues ()

are calculated
Q~8km(l—v)(1—-2v)d'F 1 for k=1,23,... as F—0. (6.233)

This yields countably many solutions, all of which are decreasing with
increasing F.

In Figure 6.18, the approximations (6.233) for k = 1,2, and 3 are plotted
for small F, in the case v = 049, d = 1. Also plotted are the numerically
determined solutions )3, (), and )3 of the eigenvalue equation (6.198) for
the first, second and third modes, as seen in Figure 6.5 in §6.6. It is seen
that the approximations and numerical solutions are in strong agreement for
F < 1. We note that the small-amplitude, high-frequency variations seen in
the numerical solutions for larger values of F are part of the solution rather
than any numerical deficiency. These high-frequency variations arise from the
second term in the rewritten eigenvalue equation (6.219), which is found to be

negligible at leading order in the limit 7 — 0.

1000
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107 5104 1@3 5.10° 102
7
Figure 6.18: The asymptotic approximations (6.233) of Q) in the limit 7 — 0, for
v =049, d = 1 (dashed lines). The approximations when k = 1,2 and 3 are plotted in
red, blue and black, respectively. Also shown are the numerically determined solutions
)1 (red solid line), Q) (blue solid line) and ()3 (black solid line), of the eigenvalue

equation (6.198) for the first, second and third modes, as seen in Figure 6.5.
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Case whenn =0

In the case n = 0, (6.229) becomes

0) 4 ) F 4 ~(2) F2 F3 0
P i F+ F+O(]—“)Sin(dﬂ

2 2
SWF + 5@ F2 4+ O(F°) <d()<
s

* 2

(6.234)

Taking the Taylor series of
dQ) _ _
in — (g (2) F2
sin ( 5 (/3 F+ BYF ))

about F = 0 and substituting into (6.234), the leading-order eigenvalue
problem at O(F) is determined to be

©g1) _ ) 0) _
P12 in (d"‘ Q) —0. (6.235)

4 2 2

Substituting in the expressions (6.224)—(6.227) for the constants a0, ,8(1), 7(0)

and 61 into (6.235) and rearranging, we obtain
sin(dQ)) = dQ. (6.236)

The only (real) solution of (6.236) is the trivial solution ) = 0. However, as
F — 0,0 =0(1),and so Q) = 0 cannot be a valid solution. Thus, there are no

non-trivial solutions that arise from this scenario.

Case whenn >0

In the final case n > 0, we take the Taylor series of both sine functions within
(6.229) to obtain

3
——sM <zx(0)> Fomtl (6.237)
Using (6.224)—(6.227), we note that

500 4 00 —
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Hence, there is no O(F"*!) term in (6.237) and we must examine the next
order to find the leading-order equation. To find non-trivial solutions for ),
we need the O(F"*2) and O(F®'*1) terms to have the same size, allowing
them to balance at leading order. To enable this, we set n = 1/2. At leading
order, found to be at O(F 2 ), (6.237) then becomes after rearranging

_ = 3
? (6900 1 58D 47O 4 1M = 150 <dQ(x<o>> . (6238)

Substituting the constants (6.224)—(6.227) into (6.238) and rearranging, we

obtain .
- 6(1—v) \2

and hence, substituting (6.239) into (6.228) yields the following leading-order

approximation for

1
6(1 — 1/) 2 _1 -

Unlike the solutions (6.233) for () found for the case when n < 0, the solution
(6.240) increases with increasing F. This solution is also the smallest possible
value of ) in the case F — 0 and so must be the approximation for the decay
rate (g of the fundamental mode. As such, it is this mode that has the largest
boundary-layer width d5 = 1/0. Hence, we find the boundary-layer width of
the deformations in the limit 7 — 0 to be approximated by

1

~ 1—-2v \2 -
53”(6(1—1/)) ad

The approximation (6.241) for the boundary-layer width has been plotted in

as F — 0. (6.241)

NI=

Figure 6.8 in §6.9, along with the numerically found boundary-layer width. It

is seen that there is excellent agreement between the two solutions for small F.
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6.C Finding the Solution of the Biharmonic Equation

Here we give a summary of the work of Shankar (2003), which looks at the

problem of solving the biharmonic equation
V4 (x,y) =0, (6.242)

in the semi-infinite strip x € (—1/2,+1/2), y € (—00,0). This problem has the

prescribed boundary conditions
¥(x,0) =p(x), V2¥(x,0) = q(x), (6.243)

along the short edge y = 0, where p(x), g(x) are known functions, and
p(x) satisfies the compatibility conditions p(£1/2) = p'(£1/2) = 0, where
" denotes a derivative with respect to x. The following homogeneous boundary

conditions are also prescribed

¥ 1
¥Y=0 and i 0 at «x= ii' (6.244)
Y—0 as y— —oco. (6.245)

To simplify the problem, it is assumed that p(x), g(x) and ¥(x,y) are all
symmetric in x. However, the method applied here can also be applied to
the case of general p(x), g(x) and ¥(x,y).

To solve the linear system (6.242)—(6.245), separable solutions of the form

Y(x,y) = ¢(x)e, (6.246)

are sought, where x is a complex scalar. In order for this type of solution to

satisfy the boundary condition (6.245) as y — —oo, it is assumed that Re(x) > 0.

6.C.1 Solution for ¢(x)

Substituting (6.246) into (6.242) and (6.244), the following fourth—order ODE

governing ¢(x) is found

d4 d?
d—x‘f + 2K2d—x‘f +x*p =0, (6.247)

as well as the following homogeneous boundary conditions

_ do _ _ 1
$(x) =0 and Fide 0 at x= j:E. (6.248)
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Solving the governing ODE (6.247) and using the fact that ¢(x) is assumed

to be symmetric about x = 0, the following general solution for ¢(x) is derived
¢(x) = Axsin(xx) + B cos(kx), (6.249)

where A, B are constants to be found.
Substituting (6.249) into the boundary conditions (6.248) and rewriting in

matrix form yields

(b =) (1)

It is noted that by rearranging the first component of (6.250), the constant B
may be rewritten in terms of A as follows

B = —g tan (g) . (6.251)

For non-trivial solutions for A and B to exist, the determinant of the matrix
within (6.250) must be zero. By setting this, the following eigenvalue equation
for x is derived

sin(k) = —x. (6.252)

This has countably many solutions for ¥ which we label as x;,, where n > 0.
As we have countably many solutions for x, we also have countably many

modes ¢, (x) given by

Pn(x) = Ay <x sin(x,x) — %tan (2—") cos(Knx)> , (6.253)

where the coefficients A, are to be determined using the boundary conditions
(6.243) at y = 0. The solution of ¢(x) is comprised of the sum of the modes

$n(x) as follows
P(x) =Y Pu(x). (6.254)
n=0

We then substitute (6.254) into (6.246) to obtain the following for ¥ (x, y)
Y(x,y) =Y pu(x)e?. (6.255)
n=0

6.C.2 A Biorthogonality Relation Between the Eigenfunctions ¢, (x)

In order for ¥(x,y) to be fully determined, the coefficients A, must be

determined. Shankar (2003) achieves this using a biorthogonal relation between
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the eigenfunctions ¢, (x). The derivation of this biorthogonal relation is now
provided.

The first step in deriving the biorthogonal relation is to decompose the
governing ODE (6.247) for ¢(x) (also satisfied by each of the modes ¢,(x))
into a pair of coupled, second-order ODEs. Replacing x and ¢(x) by the nth
eigenvalue «, and nth mode ¢,(x) in (6.247), it is seen that (6.247) may be

factorized as follows
d2
(d tx ) o — 0. (6.256)

Using this factorization, we see that it is convenient to introduce a new function
Uy (x) defined as

d2
Uy (x) = d;g” 2 by (6.257)
Substituting (6.257) into (6.256) yields
2,
C(li (6.258)

Hence, the original governing ODE (6.247) has been decomposed into the
coupled pair of equations (6.257) and (6.258). Rearranging and rewriting these
in matrix form gives

LU, = «2U,, (6.259)

——dzz 1 $n(x)
dx =
L= ( 0 dd;z ), U, ( () ) . (6.260)

We now define the dual space vectors V,, and the dual space inner product

Vv, = ( Kn(x) ) , (6.261)

vp(x)

where

of two vectors. We first set

where x,(x), v,(x) are arbitrary functions of x, and the v,(x) are chosen to
satisfy the same homogeneous boundary conditions (6.248) as ¢, (x) along the

long edges at x = £1/2. The dual space inner product of U, and V,, is defined
by
1/2
U Vi) = [ () ()0 ()l (6.262)
Taking the inner product of LU, and V,, yields
> d? d?u
(LU, V,) = / ] (un(x) - dfzn) Xn(x) — W;vn(x) dx,

= / % —pu(x +un( ) <Xn(x) — Cj;;") dx, (6.263)
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where we have used integration by parts to move the derivatives from the
functions ¢, (x), u,(x) to the functions x,(x), v, (x). We have also used the fact
that ¢, (x) and v, (x) both satisfy the homogeneous boundary conditions (6.248)
at x = +1/2 to eliminate the boundary terms that arise through integration by
parts. The expression (6.263) may be rewritten using an adjoint operator L* in

the following way

(LU, V,) =(U,,L*V,,) YU, V,, (6.264)
where
_d&
LY = ( dx? ¢ > . (6.265)
L —5=

We now set V,, to be an eigenvector of L* such that
L*V, = 2V, (6.266)

where 1, are the corresponding eigenvalues of V,. It is seen that the
components of (6.266) have the same form as the components of the relation
LU, = x2U,, only with v,(x), xx(x) and 1, taking the place of ¢, (x), u,(x)
and «,, respectively. Hence, the eigenvectors V,, of L*, and their corresponding

eigenvectors 1, must be

V, = , Iy = Ky, (6.267)
Pn(x)

and we have from (6.266)
L*V, = k2V,. (6.268)

Using the relations (6.259), (6.264) and (6.268), the following is found

(LU,, Vu) = (k3U,, V) = 2(U,,, V)
= (U, L*V,) = (Up, k2 V) = €2,(U,,, V). (6.269)

Hence, we have x2(U,, V,,) = x2,(U,, V), which implies
(1% — 13,) (U, Vi) = 0. (6.270)

Hence if x,, # x,, then (U,, V,,) = 0 and (6.270) is the biorthogonality relation
needed to derive the unknown constants A, in the expression (6.253) for the
modes ¢y (x).
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6.C.3 Determining the Constants A,

Using the biorthogonality relation (6.270) between the eigenfunctions ¢, (x),
it is now possible to apply the boundary conditions (6.243) at y = 0 and
determine the unknown constants A,,.

Substituting the representation (6.255) for ¥(x,y) into the boundary

conditions (6.243), we obtain

=) ¢u(x), Z d "4 K (x Z n (x (6.271)
n=0

where we have used (6.257) to rewrite the second condition in terms of the
functions u,(x). We recall that the general solution (6.253) for the ¢, (x) is

. 1 Kn
Pn(x) = Ay <x sin(x,x) — 5 tan ( > ) cos(Knx)> ,
and substituting (6.253) into (6.257), we find
U (x) = 2A,%, cos(kyX). (6.272)

The conditions (6.271) may be rewritten in the following form

( p(x) ) - i U, 6.273)
n=0

q(x)
where we have set Ul = (¢,,(x), uy(x)).
We now set VI, = (uy(x), ¢ (x)) and take the inner product of (6.273) with

V.. Doing so yields
<( Px) ) ,vm> = YUy, Vi) (6274)
q(x) n=0

Using the biorthogonality relation (6.270), it is seen that all the modes on
the right-hand-side of (6.274) vanish apart from the mode n = m. With the
definition (6.262), the inner product of U,, and V,, can be directly calculated to
be

(U, Vi) = —2A2, cos? (%’”) , (6.275)
where the eigenvalue equation (6.252) has been used to simplify this expression.

It is also calculated that

(R0 1 G1) E PAas s WY )
g(x) )’ q(x) m (xsin(Kux) — 1 tan (%) cos(kux))
= Ay /2 <x sin( Kmx)—%tan (Kz ) cos(Kmx)>
+ 2p(x) K cos(Kpx) dx. (6.276)
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Substituting (6.275) and (6.276) into (6.274) and rearranging, the following

expression for the constants A, is obtained

1 1
A, = _M /1 2p(x) Ky cos(fpx)
: 1 Kin
+q(x) (x sm(Kmx)—E tan (7> cos(Kmx)> dx. (6.277)

It is noted that (6.277) is different from the expression for A, derived by
Shankar (2003) by a factor of 4x,. However, (6.277) is consistent with the
computed values of A,, presented in the work of Shankar (2003), leading us
to believe that the expression (6.277) for A,, is correct. Using this expression,
the modes ¢, (x) can be fully calculated using (6.253). Provided that the set of
eigenfunctions ¢, is complete, these eigenfunctions along with the expression
(6.255) give the complete analytical solution of ¥(x,y). For more details on
the completeness of the set of biharmonic eigenfunctions, also known as the

Papkovich-Fadle eigenfunctions, see Gregory (1980).

6.C.4 Application to the Semi-Infinite Block Under Tension

The work of Shankar (2003) summarised here gives an idea of how it may
be possible to find the full analytical solution for the problem of bending a
semi-infinite block under tension. Unfortunately, as the governing equation
(6.88) and boundary and integral conditions (6.89)-(6.93) for the normal
deformation u#; are more complicated than the system considered by Shankar
(2003), a biorthogonality relation allowing us to determine the constants A,
in the expressions (6.110), (6.111) for the deformations u1, u, has not yet been
found. However, if such a relation is found, it would allow a complete analytical

solution to the problem to be determined.



Chapter 7

A One-Dimensional Model for
Bending a Semi-Infinite Block

Under Tension

7.1 Introduction

In this chapter, we examine the possibility of using a 1D model to describe
a semi-infinite block being bent under tension, which is modelled in 2D in
Chapter 6. By considering different methods of deriving a 1D model for this
problem, more details of the underlying mechanisms occurring within the
boundary layers found in the model in Chapter 6 are revealed.

In §3.6, a toy model was derived that modelled an axial-bending boundary
layer near the ends of the elastic-walled tube modelled in Chapter 2. This
model predicted that the dimensionless bending boundary-layer width ép has
magnitude o5 = O(F ~2¢71), where F = O(1) and ¢ > 1 are dimensionless
parameters representing the axial tension and tube length. The problem of
adding an axial-bending boundary layer to the model in Chapter 2 was then
split into two regimes depending on the sizes of the length of the tube ¢ and
the dimensionless tube wall thickness § < 1. In the first of these regimes,
regime I, the case where 6 and /¢ are set such that 6/ < 1 is considered.
Using the estimate from the toy model, it was predicted that g > ¢ and the
bending layer would be larger than the tube wall thickness. This implied that
the Kirchhoff-Love shell equations (Fliigge, 1972; Sendergaard, 2007) used to
model the wall mechanics in the bulk of the tube in Chapter 2 could still be
applied to the bending layer. This regime was studied in Chapters 4 and 5. In

247
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the second of these regimes, regime II, we considered the scenario where § and
¢ are set to satisfy 6/ > 1. In this case, the toy model estimates that /p < § and
the bending layer is smaller than the tube wall thickness. As it was predicted
that § was no longer the smallest geometric parameter, Kirchhoff-Love shell

theory could not be used in this regime to model the expected bending layer.

Instead of using Kirchhoff-Love shell theory to model the tube wall
in regime II, we returned to first principles and derived a 2D model for
a semi-infinite block being bent under tension in Chapter 6. This block
represented a two-dimensional cross-section of the tube wall in the normal and
axial directions, near the ends of the elastic-walled tube where it is clamped
onto fixed rigid tubes. In solving this model, it was found that in the case
0¢ > 1, the dimensional boundary-layer width 5 had size dp = O(dol),
where d is the width of the block. Hence, it was seen that d5 > d and the
boundary-layer width is larger than the width of the block. It was found that
this boundary layer is in fact a transverse shear-relaxation layer as opposed to

an axial-bending layer.

As 6 > d, it is possible that Kirchhoff-Love shell theory, or some other
approximation applying the fact that d is small compared to the other geometric
parameters, can be used to derive a 1D model for this shear layer. This
possibility is investigated in this chapter by deriving and testing three different
one-dimensional models against the 2D model derived in Chapter 6. In doing

so, more information about the mechanics within the shear layer is obtained.

This chapter is arranged as follows. In §7.2, a recap of the mathematical
set-up of the linearised model of bending a semi-infinite block under tension, as
derived in §6.4, is provided. In §7.3, the possibility of deriving an appropriate
1D model for the linearised problem using Kirchhoff-Love shell theory is
investigated. It is found that an accurate 1D model cannot be derived using
this theory as one of the assumptions made in Kirchhoff-Love shell theory
is violated. In §7.4, a 1D model is derived by averaging the components
of Cauchy’s momentum equation, the governing equation for the linearised
system in §6.4. This model yields exponentially decaying deformations as the
axial coordinate x, — co. The decay rates of these deformations have the same
qualitative behaviour as the decay rate of the fundamental mode found in the
2D model, but there is still a discrepancy between these decay rates. The final
1D model considered here is derived in §7.5, which is formed using the system

(6.88)—(6.93) governing the semi-infinite block with the axial deformation u,
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eliminated. This model produces deformations consisting of exponentially
decaying modes, and the decay rate of the slowest decaying of these modes
matches the decay rate of the fundamental mode in the 2D model. However,
there are still large discrepancies between the deformations from the 1D and
2D models. Finally, to explain these discrepancies, the behaviour of the normal
deformation u; near the clamped boundary of the block is evaluated in §7.6.
Here a 2D compression effect not incorporated into the 1D models is found

near the clamped boundary.

7.2 Mathematical Set-Up

We recall the linearised model derived in §6.4 and depicted in Figure 7.1. Full
details of the original set-up can be found in §6.2. Here, we have an almost
incompressible semi-infinite block of dimensional thickness d. Dimensional
Eulerian coordinates in the normal and semi-infinite (axial) direction have been
set to be x1 and x; respectively. The block is set to occupy the region x; € [0, 4],
x2 € [0,00), and has incremental Young’s modulus E and Poisson’s ratio v.
The block is subject to a scaled dimensionless axial tension F. It is noted
that 7 = O(6%¢?), where 6 < 1 and ¢ > 1 are the dimensionless tube wall
thickness and tube length in the model of the elastic-walled tube in Chapter 2.

In the original set-up before the linearisation, a small amplitude deformation

is induced on the block by clamping the boundary at x, = 0 at an angle ¢ to
the xj-axis. Here, u; and u, are the components of the deformation in the x;

and x,-directions respectively.

(x1=d)
(1—1/)3%4—1/'3%:0, g%-i-g% =0
2u %u =\ %1y
(x2=0) 2(1_V)W§+axla§2+(1_zv+F)W§_0 (x — o)
u= (0 tan(¢p) (x7 — ¢ o o _ Vuy, Vi, =0
(0 tan(9) (x1 - 1)) (1-20) 2% + 204 (21 -v) + F) Tt =

Figure 7.1: The linearised problem of a semi-infinite block being bent under axial

tension. The domain is given by A = {(x1,x2) : 0 < x3 <d,0 < xp}.
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The linearised governing system is given by (6.42)—(6.46). It can be shown
that this system may be rewritten in the following way
%y 0%y o*u

2(1 —v) ==L 1-2v+ AL =0 ¥ d
( U>ax%+8x18xz+( v—i—}")ax% 0 for 0<x;<d, x>0,

(7.1)

82u2 82u1
(1—=2v) ox? + 0x10x7

2
d Uy
2
x5

+ (21 -v)+F) =0 for 0<x <d, x>0,

(7.2)
d
up =0, and uy = tan(¢) <x1 — 2) at x, =0, (7.3)
duq duy -
(1—1/)873(1—1‘ ai_xz —0 at x1 —O,d, (74)
duy  dup

T = 7.
axz + axl 0 at X1 0, d, ( 5)
Vu,Vu, -0 as xp, — oo. (7.6)

It is noted that (6.46) was found to be equivalent to (7.6) in Appendix 6.A. Due
to the form of the governing equations (7.1) and (7.2), and the symmetry of
the boundary conditions (7.3)—(7.6), it is found that u; and u, are symmetric
and antisymmetric about x; = d/2, respectively. Finally, it is noted that as this
system is linear, the angle of clamping ¢ only alters the overall amplitude of

the deformations.

7.3 Application of Kirchhoff-Love Shell Theory

We now consider deriving an appropriate 1D model for the problem of bending
a semi-infinite block under tension using Kirchhoff-Love shell theory.

In §6.9.1, it was found that the boundary-layer width d5 of the deformations
is larger than the thickness d of the block in both the regimes 7 — 0 and
F — oo. As such, the thickness of the block is smaller than any of the
other geometric properties of the block, which is necessary for the use of
Kirchhoff-Love shell theory. Because this condition is met, it initially appears
that Kirchhoff-Love shell theory may be applied to the current problem when
the axial tension is both small and large. (This is contrary to the prediction of
the toy model in §3.6, which estimated that for large tension the boundary-layer
width would be too small for Kirchhoff-Love shell theory to be applicable.)

Using Kirchhoff-Love shell theory, a 1D model can be derived for bending a

semi-infinite block under tension. This is done by first using the Kirchhoff-Love
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shell equations (Fliigge, 1972; Sendergaard, 2007) to derive axial force-balance,
normal force-balance and moment-balance equations, averaged over the width
of the block. Usually, these equations are derived using a Cauchy stress tensor
o with a constitutive law for an isotropic linearly elastic solid. However, a
different constitutive law must be used here that incorporates the pre-stress
and its interactions with the rotations of the material (see §6.3). As such,
in the 1D model the linearised constitutive law (6.23) for ¢, derived using a
modified Saint Venant-Kirchhoff model (Howell et al., 2009, p. 230) in §6.3, is
applied instead of the constitutive law for an isotropic linearly elastic solid. In
doing so, the effects of the pre-stress are included in the modified force and
moment-balance equations.

A pair of truncated Taylor series about x; = d/2 are then used to
approximate the deformations u; and u>. By substituting these truncated series
into the modified force and moment-balance equations, as well as into the
linearised boundary conditions (7.3)—(7.6) of the linearised system (7.1)—(7.6)
governing the block, a new one-dimensional governing system is formed.

Solving this new system, deformations that decay exponentially in the axial
direction are found. However, the boundary-layer width of these deformations
is found to behave vastly differently to the boundary-layer width found in the
2D model in Chapter 6, for large values of F. As this 1D model does not
produce deformations that accurately display the behaviour shown in the 2D
model, the details of the 1D model are omitted here.

This discrepancy in the boundary-layer widths occurs because in the case
F — o0 (8¢ > 1), another of the assumptions needed in Kirchhoff-Love shell
theory is violated. The full set of assumptions are listed by Sendergaard (2007),
and one of the necessary assumptions is that the normal to the centre line of the
material is preserved after a deformation. That is, the linearised strain tensor

of the material ¢;;, defined by
v 2 ax] axl- !

en =0,

must satisfy

where the x;-direction is normal to the shell. Hence, we must have

dun __dup
oxs  0xq’

for Kirchhoff-Love shell theory to hold.

(7.7)
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In Figure 7.2, duy /dx; and —duy/dx1 have been plotted against x1, at a fixed

x, within the boundary layer, for small and large F. In the plot with small F
(F = 107%), it is seen that although the two curves behave slightly differently,
the difference in the amplitudes of the curves is very small, and both are well
approximated by being uniform in x;. Hence, we have

o o

X7 ox1’
and the assumption of preservation of normals holds. Thus, the Kirchhoff-Love
shell equations can accurately model the mechanics within the boundary layer
for small F. In the plot with large 7 (¥ = 10%) however, there is a large
difference between the values of du1/0dx, and —duy/9dxy. As such

o O

E)xz ox 1 !
and the assumption of preservation of normals is violated. Because of this,
Kirchhoff-Love shell theory cannot be used to model the mechanics within the

boundary layer for large F.
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Figure 7.2: The numerical solutions for du;/9x; (solid lines) and —duy/dx; (dashed
lines) across x1 for x, = 5, in the case of small F (F = 10~*) and large F (F = 10?).
Here, d = 1, v = 0.49, tan(¢) = 1 and xmax = 100. The boundary-layer widths 53 in
the cases of small and large F are calculated to be dg ~ 8.1 and 3 ~ 22.5 respectively.
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74 A 1D Model Derived from the Averaged Cauchy’s

Momentum Equation

Another potential 1D model that is considered is one that is derived from the
components (6.65), (6.66) of Cauchy’s momentum equation. The full details
of the derivation of the model and its solution are found in Appendix 7.A.
In summary, a pair of governing equations that are only dependent on the
x2 coordinate are derived by averaging the normal force-balance equation
(6.65) as well as the moment-balance equation (derived by multiplying the
axial-force balance equation (6.66) by x1 — d/2) over the width of the block.
Taylor series of u; and u; are then taken about x; = d/2. These series
are truncated after the first non-zero terms and then substituted into the
averaged normal force-balance and moment-balance equations, yielding a pair
of coupled ODEs in terms of two variables. Boundary conditions are then
obtained by substituting the truncated series into the boundary conditions
(7.3)—(7.6) of the linearised system (7.1)—(7.6) governing the block.

Solving this model, it is found that #; and u; are approximated by

(1—-2v)tan¢ “Av
M At A (e 1> ’ 79
Uy ~ (xl — Z) tan ¢ e~z (7.9)

Hence, both 11 and u; decay exponentially to a constant, with decay rate

1 <( 12(1—2v)F (7.10)

A=y 1—m+ﬂ@u—w+ﬁ)’

as x, — oo. Denoting the boundary-layer width from this 1D model as
dcm = 1/A, it is found that

(-t P)A-v)+F)\?
Son = d ( 207 ) . (7.11)

This is plotted against F in Figure 7.3, along with the boundary-layer width 5
from the 2D model, as seen in Figure 6.8. In both plots, d = 1 and v = 0.49.
It is seen that although dcm has the same gradient (and thus the same power
of F) as 63 in the limits F — 0 and F — oo, there is a constant difference
between the two widths in both of these limits. This difference is particularly
large for small values of F. As the decay rate A and boundary-layer width

Scm are not matching with the fundamental decay rate )y and boundary-layer
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width ép from the 2D model, the 1D model in Appendix 7.A is not accurately
representing the deformations, even if it is displaying the right qualitative

behaviour for the boundary-layer width.

20

1,

1074 10-3 10°2 10°! 10° 10! 10
F

Figure 7.3: The boundary-layer width 5cpy = A~! given by (7.11), obtained from the
1D model in Appendix 7.A, against F ford =1, v = 0.49 (blue line). The solution
of the boundary-layer width Jp obtained from the 2D model, as seen in Figure 6.8, is

plotted in red.

One cause of the differences between the 1D model in Appendix 7.A and
the 2D model is the use of the truncated Taylor series to approximate the
deformations u; and u;. As these Taylor series are truncated, information
from the higher-order terms, which can significantly contribute to the overall
solution, is lost. In particular, in the 1D model derived here, the deformations
uq and u, are assumed to be constant and linear respectively in the x;-direction.
However in the 2D model, u; and u; behave as trigonometric functions over
the width of the block. This behaviour can be clearly seen in Figure 6.6. In
order to better model this behaviour, higher-order terms are needed in the
truncated Taylor series for u; and u;. Hence, one way to improve on the model
in Appendix 7.A is to derive a 1D model that incorporates more terms from the

Taylor series of 17 and ;. Such a model is derived in §7.5.
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7.5 Deriving a 1D Model from the System (6.88)-(6.93)

A new one-dimensional model for u; is now derived from the governing system
(6.88)—(6.93). By using this system instead of the system (7.1)-(7.6) written
in terms of u; and uy, it is possible to derive a system with three non-trivial
governing equations instead of the two found in the 1D model in §7.4. Using
this extra governing equation, three terms from a Taylor series of u; are
incorporated into this model, as opposed to just the pair of leading-order terms
in the Taylor series of u; and u, that were incorporated into the model in §7.4.
As the model considered here incorporates more terms from the Taylor series,
the deformations found in this 1D model are found to match the deformations
in the 2D model better than either of the previous 1D models considered.
The system (6.88)—(6.93) once again is

O_a4u1 21-v)+F 1-2v+F] o'y

- oxd 2(1—v) 1—-2v | ox29x3

(1 —v)+ F)(1 —2v+ F)o*uy 7.12)
2(1—v)(1-2v) ox5’ '
Vu; —0 as x; — oo, (713)
up=0 at x=0, (7.14)
82141 = 82u1
2(1 — —2v=—F)—= = = 7.1

(1—-v) 92 (2v—F) 52 0 at x; =04, (7.15)

_ au1 Yareo ® 82u1 .
(1 —2v + f) l:ax2:| o + 2(1 — V) A T% dxz = tan((P), (716)

d 82u1 = 62u1

/0 ((1—1/)(1—21/)83(%—1/(1—21/+.7-")ax%) dx; = 0. (7.17)

To derive a 1D model from this system, a Taylor series for 11 about x; = d/2 is
again considered. This series will instead be truncated after the third non-zero
term, as opposed to truncating after the first non-zero terms in the Taylor series
for u1 and u; in the 1D model in §7.4. Truncating the Taylor series for u; at this
higher order allows constant, quadratic and quartic variation in u; across the
width of the block to be incorporated into the model. This is different from the
model in §7.4 that instead incorporates only constant behaviour in #; and linear
behaviour in u; across the width of the block. Although it is possible to include
even more higher-order terms from the Taylor series of u; within the model,

it is found that only the first three terms of the Taylor series appear at leading
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order in d and x1 — d/2 in the governing equations. Hence, the higher-order
governing equations in the system are needed to find the higher-order terms in
the Taylor series. As such, to derive the simplest complete governing system,

only the first three terms of the Taylor series for 1 are considered.

7.5.1 Governing Equations, Boundary and Integral Conditions

As a starting point for deriving a one-dimensional model from the system

(7.12)—(7.17), the following Taylor series for u; about x; = d/2 is considered

d\? d\*
U = ugo)(xz) + (x1 — 2> u?)(xz) + <x1 — 2) u§4)(x2) +..., (7.18)

where we set ugl) = ugs) = .-+ = 0 so that u; is symmetric about x; =

d/2, as required by the symmetry of the system (see §6.2). To obtain the
governing equations for the one-dimensional model, (7.18) is substituted into
the governing equation (7.12), the boundary condition (7.15) at x; = 0,d and

the integral condition (7.17) in the xq-direction. Doing so yields

2 2d4”§0) 2 2 d? §2) (4)
0= AlAsz% +2(A] + A3) ax + 24u,
A 2d4M§2) 2 2 d2”§4)
+ <X1 — 2> <A1A2 dx% + 12(A1 + AZ) x% t+...
A\ a4y d\°
+ <X1 — 2> (A%A%x‘; +...]+0 <x1 - 2> ;o (7.19)
324, @ o @u-F) d2ul? (4)
0=—(v—F) dxlg +4(1 =)y +d* | - dxlg +6(1—v)uy
L[ (2v — F) d2u§4) . +O(d®) (7.20)
16 dx% o .. 7 :
324 5
0=4d (—v(l —2v+F) dx% +2(1—v)(1 - 2v)u )>

Lo vt F) d2ul?
12 dx?

+(1-v)(1- 2u)u§4)>

v(l—2v+ F d2u'?
+d° <—( %0 )dxlg +... | +0(d), (7.21)

where Ay and A; are given by

20 -v)+ F _1-2v+ F
A= 20—v) ’ AZ_\/ 1—2v '
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as in (6.101), and the dots represent the ugé) and higher-order terms from

the Taylor series (7.18) of u;. Substituting the Taylor series (7.18) into the
remaining conditions (7.13), (7.14) and (7.16) of the system (7.12)—(7.17) yields

the following conditions

3
Z(xl—d>u§2)+4<x1—g) u§4)+---—>0 as xp — oo, (7.22)

2
du'” d\2 dul? d\* dul¥
dx + <X1 — 2) ax + <X1 — 2) ax 4+.--—=0 as xp — o0, (7.23)
0 d\* () d\*
uy’ + X1_§ u;’ + X1_§ uy ' +---=0 at xx=0, (7.24)
(0) Xp—>00 o
tang = (1 —2v+ F) d;x ] —i—4(1—11)/ ()dx2
2 X2

2 Xp— 00 o
+<x1—g> [(1—21/4—.7: dul ] + 24( 1—1/)/ u§4)dx2]
0

d Xp— 00

] b

=0
G

+0 <<x1 - 2) ) , (7.25)

(6)

where once again the dots represent the u; ' and higher-order terms from the

Taylor series (7.18) of u;.

It is seen that substituting the Taylor series (7.18) into the system
(7.12)—(7.17) gives a set of three coupled governing equations for the functions
ugo)(xz),ugz)(xz),u?)(xz),... comprising the Taylor series, as well as some
boundary and integral conditions for these functions. As we only have three
governing equations, the leading-order equations in 4 and x; — d/2 can only
be fully solved for three of the functions within the Taylor series. As such,
the Taylor series is truncated after the u§4) term to obtain the following

approximation for u;

d\> d\*
Uy ~ ugo)(xz) + <x1 - 2) u§2>(x2) + (xl - 2) u§4)(x2), (7.26)

and the system (7.19)—(7.25) must be converted into a system to be solved for

u§0), u§2) and u§4).

First, the governing equations (7.19)—(7.21) are converted into a set of three

(4)

coupled ODE:s for u§0)’ ugz) and u; . This is achieved by neglecting the terms of
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O((x1 —d/2)?), O(d*) and O(d®) in (7.19), (7.20) and (7.21) respectively. Doing
(6)

so, we neglect all the u; ’ and higher-order terms from the Taylor series (7.18)

that appear within (7.19)—(7.21) at these sizes. Neglecting these terms yields the

following coupled ODEs
d4u(0) d2u(2)
_ A2A29 2 2 1 (4)
0=A2A i +2(A3 4+ A2) e 2 (7.27)
2,,(0) =\ g2,
_ - 47 @, pf_ @v=F)duy (4)
0=—(2v—F) a2 +4(1—v)u” +d (— 1 a2 +6(1—v)uy’ |,
(7.28)
g2, )
0= —v(1—2v+F)— 5 +2(1-v)(1 - 2v)ul?
2
v(1—2v+ F) d2ul? (@)
+d* | - L+ (1—-v) A -2v)uy" |, (7.29)
( 12 dx} !

where (7.21) has been divided by a factor of d to give (7.29).

Next, the boundary conditions (7.22)—(7.24) are converted to conditions
on ugo), ugz) and u§4). By neglecting terms involving u§6),u§8),... within

(7.22)—(7.24), and equating the coefficients of (x; —d/2)", it is found that

dul” o)
ax Juy 7, uy . — 0 as xp — oo, (7.30)

ul”(0) = ul?(0) = ul(0) = 0. (7.31)
It is also found from (7.23) that

dugz) du§4)
dJC2 ! dXQ

—0 as xp — oo. (7.32)

However, it is later found that the governing equations (7.27)—(7.29) of this
system can be reduced to a homogeneous, sixth-order ODE with constant

coefficients for ugo). This form of ODE has exponential, sinusoidal, linear and

constant solutions, and it is also later found that the functions ugz) and u§4) have
these behaviours as well. As such, any solution of (7.27)—(7.29) that satisfies the
conditions (7.30) also satisfies the conditions (7.32). Hence, the conditions (7.32)
are superfluous.

Finally, two suitable integral conditions are obtained from (7.25) by equating
the coefficients of (x; — d/2)° and (x; — d/2)?, and neglecting terms of

O((x1 — d/2)*) as the functions u§6),u§8),... appear at this order. The two
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integral conditions are found to be

_du(o) 9 Xp—0 o
tang = (1-2v+F) [ +4(1—v) / u®dx,,  (7.33)
| 9X2 | 2r=0 0
_du(z) 9 Xp—©0 o
0=(1-2v+F) |EO 1 24(1—v) / ude,.  (7.38)
dx; 0 0
L 1 x=

It is later found that the boundary and integral conditions (7.30)—(7.34)
impose nine constraints on a system with only eight degrees of freedom. Hence,
one of these constraints will have to be dropped to enable a solution for the
system (7.27)—(7.34) to be found. This is considered further in §7.5.5, but for
the time being we will only apply the conditions (7.30) to ensure the arising
deformations decay as x, — oo.

7.5.2 Eliminating ugz) and u§4) from the Governing Equations

To solve the system (7.27)—(7.34), ugz)(xz) and u§4)(x2) are first eliminated

from the governing equations (7.27)—(7.29) to form a single ODE for u§0) (x2).

Rearranging (7.27) gives
@ _ M3 (A3 4 A dPuy?

= . 7.
1 24 dad 12 da 739

Substituting (7.35) into (7.28) and (7.29) and rearranging yields the following

Aul? = Bu?, (7.36)
cul® = Dul?, (7.37)

where the operators A, B, C and D are defined as

d? _ d?
A=4(1-v) - [2v — F +2(1 —v)(A] + A3)] P (7.38)
_ d? 42 5. o dd
B=(2v— f)d—x% + (1 V)AlAzd—x%, (7.39)
> _ d?
C=21-v)(1-2v)— = [v(1 —2v+ F) + (1 —v)(1 — 2v)(A] + A3)] —,
12 dx3
(7.40)
_ d2 2 ) 2 d4
D :1/(1—21/—|—]:)d7x%+ﬁ(1—1/)(1—21/)A1A2d—x%. (7.41)

We now eliminate ugz) from (7.36) and (7.37). To do so, we apply the operator

C to (7.36), as well as apply the operator A to (7.37). The difference between
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these expressions then gives
(BC — AD) u\” = 0. (7.42)

Substituting the definitions (7.38)—(7.41) for the operators A, 3, C and D into

(7.42) and rearranging, the following ODE for ugo) is obtained

déugo) Md4u50) Ndzugo)
dx§ a2 dxj a4 dx3

=0, (7.43)

where M and N are set to be

64 (1—2v)2+ F(1—2v)(2—v)+ F2 (3 —v))
FA-v)+F)1-2v+F) ’
384(1—v)(1—2v)
AI-v)+F)(1-2v+F)

M (7.44)

N

(7.45)

It is noted that as the Poisson’s ratio v must satisfy —1 < v < 1/2, and F >0,
we have M, N > 0.

7.5.3 General Solution for ugo)

The general solution of (7.43) is calculated to be

ug()) (x2) = Ale%xz + Aje” T2 4 A3€%x2 + Age” T2+ Asxp + As,  (7.46)

where

. <Mi\/M2—4N> ’ (747)

2
and Ay, ..., Ag are constants to be found. Without loss of generality, we take
Re(r+) > 0. To determine the behaviour of the modes, we must find whether
r4+ and r_ are real or complex.

We first determine whether 2 and 72 are real or complex. Using the
definitions (7.44) and (7.45) of M and N, the discriminant M? — 4N found
within the definition (7.47) for r4 is calculated to be

- _ 64
Wi = maa—n s Fra -2+ 77
+8F3(1 —2v) (4v* — 25v + 19) + 16F(1 — 2v)?(v* — 18v + 20)

[.7:"4(41/ —5)2

F128F(1—2v)3(2 — v) + 64(1 — 21/)4} . (7.48)

As F > 0and —1 < v < 1/2, all the coefficients of the powers of F in (7.48), as

well as the fraction multiplying the power series of F within (7.48), are positive
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and we have M? — 4N > 0. Hence, from the definition (7.47), it is seen that
1 € R

Now we determine whether r, and r_ are real or complex. As M,N > 0
and M2 —4N > 0 for F > 0and —1 < v < 1/2, we must have

M > /M2 — 4N,

which in turn yields
M+ M?—4N > 0.

Hence, we have r+ € R for F > 0, —1 < v < 1/2, and the modes in the general
solution (7.46) are exponentially growing and decaying, with no oscillatory
behaviour.

As r4 and r_ are both real and positive, it is seen that for (7.46) to satisfy
the boundary condition (7.30), the exponentially growing modes must be

eliminated and we must set

Al = A3y = As = 0. (7.49)

Substituting (7.49) into (7.46), we obtain the following expression for ugo)

(0) e o

ulo (x2) = Age™ @72 4 Age” T2 4 A, (7.50)

(2) (4)

7.5.4 General Solutions for uq and Uy

Using the expression (7.50) for ugo)(xz), it is possible to obtain the general

solutions for ugz)(xz) and u§4)(x2). Substituting (7.50) into (7.36) and

rearranging, the following ODE for ugz) is obtained

d2u§2) C% ) 1

— — -Hx )
el e <A2C+e X4 A,C e ) , (7.51)
where
2((1-2v)(2— F(1- 2
Co = ( ( V)(].—l;.)l/+ ( V))> , Ci=4(1-v)2, (7.52)
and
Ce=4Q2u—F)ri + (1 —v)AIAS. (7.53)

It is noted that as F > 0 and —1 < v < 1/2, we have Cy,C; > 0. The general

solution of (7.51) is calculated to be

C

G Y 1 r r_
u§2)(x2) = Bledclo 2 4 Boe T 4 7 <A2K+e*7+x2 + A4K_e’7x2> ,  (7.54)
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where
Cs

K= —5—
- Cory

(7.55)

and Bj, B, are constants to be found. For (7.54) to satisfy the condition (7.30) as
(2)

Xy — 09, Uy
have B; = 0 and the first term of (7.54) vanishes.

cannot be exponentially growing. Hence as Cp, C; > 0, we must

Finally, using the expressions (7.50) and (7.54) for ugo) and uiz), an

expression for u§4) is derived. Substituting (7.50) and (7.54) into (7.35) gives

(4)

for u,
ALy o A4l_ _r By(A24+AXCE _a
ul (x2) = 214+e e 2‘4 o B 112d2C(2)2> Lo~ @™, (7.56)
where Y a4
1 AZAZr
Li:—u(mﬁwgmg§+1;i). (7.57)

7.5.5 Finding the Full Solution of the 1D Model

Now that expressions for u§0) (x2), ugz) (x2) and u§4) (x2) have been derived, the
next step is to apply the remaining boundary and integral conditions (7.31),
(7.33) and (7.34), in order to obtain values for the four unknown constants A,
Ay, Ag and By. It is first noted that (7.31), (7.33) and (7.34) give five different
conditions. As we only have 4 unknown constants to be found within the 1D
model, there are not enough degrees of freedom to satisfy all the conditions.
As such, one of these conditions must be neglected to ensure the degrees of
freedom and conditions imposed in the model are consistent. In the following,
we neglect the condition u§4) (0) = 0 so there is an equal number of boundary
conditions at x, = 0 and integral conditions across the length of the block. It
is found that neglecting the condition u§4)(0) = 0, as opposed to neglecting
the other conditions, yields the solution that closest resembles the results from
the 2D model. However, we will see in §7.5.7 that there are still significant

discrepancies between the two results.

) (2)

Applying the conditions (7.31) for ugo and u;” at x = 0 to the expressions

(7.50) and (7.54) for ugo) and ugz) gives the following relations after rearranging

Ag = —(Ar+ Ay), (7.58)
1
By = — 35 (4K, + AGK_). (7.59)

Substituting (7.50), (7.54) and the expression (7.59) for B, into the first integral
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condition (7.33) and rearranging yields

dtang  Asx+

Ay = ,
X— X—

(7.60)

where the .+ are defined as

Xxe=(1—2v+F)re +4(1—v)Kse <1 - CO) . (7.61)
r+ G

Finally, the expressions (7.54) and (7.56) for ugz) and u%‘g, and the expressions

(7.59) and (7.60) for B, and Ay, are substituted into the second integral condition

(7.34) to yield the following expression for A, after rearranging

A, = _Mﬁ (7.62)

xX- x2

L. (AP +A)CK-
(= 12C() ’

=1-2v+F) |Ky lre —=— | + — —7_
x2 = ( ) [ +<+ Co Y- Co

L+ X+L_ (A% + A%)Cl K_X+
24(1 — — = K, ———]|. (7.64
e (S (7.64)

0
(7.63)

Substituting the solutions (7.50), (7.54) and (7.56) for ugo) , u%z) and u§4) into
the truncated Taylor series (7.26), the 1D-model approximation for u; is found
to be

Uy = Aze_%XZ + 1446_%352 + Asg
(xl—) [B iy L <A2K+e’%"2 i A4K_erdx2>]

2 2\ 2
+< 1_2> (A2L+ B A4L767%x2 B (AT +A )C1 -1 )/

4 4 1242C2
(7.65)

where Ay, A4, A¢ and B, are given by (7.58)—(7.60) and (7.62).

7.5.6 Comparing the Decay Rates in the 1D and 2D models

We now compare the deformations obtained from this 1D model to the
deformations obtained from the 2D model, starting with the decay rates of

the modes. In the 2D model we obtain countably many modes, whereas in the
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1D model we have three modes with three distinct decay rates. In Figure 7.4,
the decay rate () of the fundamental mode found from the 2D model, as seen
in Figure 6.5, is plotted against F. Also plotted are the following decay rates
from the 1D model: r; and r_ as defined in (7.47), and C;/Cy where Cy, C;
are defined in (7.52). It is seen from the figure that there is good agreement
between ), r— and C;/C in the limit F — oco. The decay rate r_ is still in
strong agreement with () in the limit 7 — 0, and it is only in the transitional
region between the two limits where there is a slight difference between r_ and
Q. However, in the limit 7 — 0, the value of C;/Cy diverges away from the
values of r_ and () to a larger constant value. Finally, it is seen that the decay
rate 71 is much larger than any of the other decay rates for all values of F > 0.

From this, it is concluded that the decay rate of the fundamental (and
slowest decaying) mode is being captured by the 1D model, either using one
mode in the case of small F, or two modes for large F. As it is the fundamental
mode that determines the boundary-layer width, we also conclude that the 1D

model is accurately representing the boundary-layer width.

1.6

1.4+

Figure 7.4: The solution of the fundamental decay rate ()yp from the 2D model (red
line) against F, as seen in Figure 6.5. Also plotted are the following decay rates from
the 1D model: 74 and r_ as defined in (7.47) and C;/Cy (where Cy, C; are defined in
(7.52)), in black, blue and green respectively.

In Figure 7.5, the decay rates ();, (), and Q)3 of the first, second and third
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modes from the 2D model, as well as the decay rate 7. from the 1D model, have
been plotted against F. It is observed that the decay rate r has a higher value
than the decay rates from the 2D model in the limit F — co. However as F — 0,
r+ becomes smaller than the decay rates from the 2D model. As such, r does
not appear to be reflecting any of the decay rates found in the 2D model. This is
likely due to only incorporating the first three terms of the Taylor series (7.18)
for u; within the 1D model, whereas in reality the higher-order terms of the
Taylor series play a part in capturing the decay rates of the higher-order modes.
We note that the variations seen in (), (2, and ()3 are part of the solution and
not down to some numerical deficiency. Further details of these variations can

be found in Appendix 6.B.

500

100
50

1073 1072 107! = 10° 10! 10

|_ Q Q—

r+|

Figure 7.5: The solutions of the decay rates (21, ()p and ()3 of the first, second and
third modes from the 2D model (blue, green and black lines respectively) against ., as
seen in Figure 6.5. Also plotted is the decay rate r from the 1D model as defined in
(7.47) (red line).

7.5.7 Comparing the Deformations in the 1D and 2D models

We now compare the deformations numerically obtained from the 2D model
and those obtained from the 1D model, for different values of F. In Figure 7.6,
the numerical solution of u; from the 2D model and the analytic solution of u4
from the 1D model have been plotted in the x; and x;-directions, for d = 1,
v =049, tan(¢) = 1 and F = 0.001. In the plot in the x;-direction, the 2D and
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1D model solutions of the normalised function u; — u1(0, x2) have been plotted
at the values x, = 2,4,6. This normalisation has been chosen as it forces the
deformations from the 2D and 1D models to have a value of 0 when x; = 0,
allowing for easier comparison between the two solutions in the x;-direction.
It is seen that in the xj-direction, the deformation u; is behaving the same in
both the 2D and 1D models, but the amplitude of the deformation is slightly
larger in the 1D model. In the plot in the x;-direction, the values of u; from
the 2D and 1D models have been plotted at x; = 0.5. As in the x;-direction, we
find that the deformation u; behaves the same in the 2D and 1D models in the

xp-direction, but again with a larger amplitude in the 1D model.

In Figure 7.7, we have again plotted the numerical solution of #; from the
2D model and the analytic solution of u; from the 1D model along the x;
and xp-directions, only now with 7 = 1 along with d = 1, tan(¢) = 1 and
v = 0.49. The plot in the x;-direction again has values of the normalised
function u; — u1(0, x2) from the 2D and 1D models, at the points x; = 2,4.
From this plot, it is observed that the two models behave differently for small
values of x,, with the 1D model giving a positive normalised deformation and
the 2D model giving a negative normalised deformation. As we increase the
value of x; however, the deformations behave in a similar way again. Unlike
the case with F = 0.001 depicted in Figure 7.6, the amplitude of the normalised
deformation is larger in the 2D model than in the 1D model. The plot in the
xp-direction displays the value of u; in both models, at x; = 0.5. It is seen from
this plot that although both models are yielding a deformation decaying to a
constant as xo — oo, the amplitude of the deformation in the 1D model is much

larger than that of the deformation in the 2D model.

Finally, in Figures 7.8 and 7.9, the numerical and analytical solutions of
uy from the 2D and 1D models respectively have been plotted in the x; and
xp-directions, for 7 = 1000, d = 1, tan(¢) = 1 and v = 0.49. In Figure 7.8,
once again the values of the normalised function 17 — 11(0,x2) from the 2D
and 1D models have been plotted in the x;-direction, but this time at the points
x2 = 20,40,60. We observe from this figure that the normalised deformation
behaves differently in both models, with the solution from the 1D model being
positive and the solution from the 2D model being negative. We also note
that the amplitude of the normalised deformation is much larger in the 1D
model. In Figure 7.9, again the plot in the x,-direction shows the values of

uy in both models, at x; = 0.5. This figure shows that the deformations have
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similar behaviour in both the 2D and 1D models in the x,-direction, although
the amplitude is much larger in the 1D model.

Overall, we see that for small F, although the 1D model does not match
the 2D model exactly, it does display similar behaviour and the amplitude of
the deformations has the right order of magnitude. However, for larger values
of F, we start getting discrepancies between the two models for the behaviour
of u; in the x;-direction. We also find that the amplitudes of the deformations
become much larger in the 1D model than in the 2D model. To determine why
we are getting such large differences between the two models, we first see if it is
possible to arbitrarily set the constants A, A4, A¢ and By, found in the solution
(7.65) for u; in the 1D model, so that the 1D model matches the behaviour of
the 2D model away from the clamped boundary x, = 0.
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7.5.8 Matching the 1D Model to the 2D Model

In §7.5.7, it is seen that there are large discrepancies between the numerical
solutions for the deformations of the 2D model and the analytical solutions for
the deformations of the 1D model. In order to see why these discrepancies
arise, it is first seen how well the 1D-model solution matches the 2D-model
solution when the constants A, A4, Ag and B; in the general solution (7.65) for
uy are chosen to provide a better fit. If these constants can be set so that the 2D
and 1D model give similar solutions away from the clamped boundary x, = 0,
then it can be concluded that some effect near the boundary, not captured
by the 1D model, is giving rise to the large difference in the amplitudes of
the deformations in the two models. Otherwise, the discrepancy will be due
to an incorrect assumption made in the derivation of the governing system
(7.27)~(7.34) for the 1D model, such as the truncation of the Taylor series (7.18)

of uy.

Procedure for Setting A,-B,

To choose the constants A, A4, A¢ and B, that appear in the solution (7.65) for
uy in the 1D model, the following procedure is used. First of all, the constant
term Ap that determines the value that u; decays to as x, — oo is set to be
Ag = u1(d/2, Xmax); the numerical value of 17 at x; = d/2, X = Xmayx, in the 2D
model.

The next constant that is determined is A4, which is the coefficient of the
slowest decaying mode within the solution (7.65) for u; in the 1D model.
This is done by considering log(u1(d/2,x2) — Ag) from the 1D model and
log(u1(d/2,x2) — u1(d/2, Xmax)) from the 2D model. Substituting (7.65) into

the first expression yields
log(11(d/2,x2) — Ag) = log ((Ase™ % + Age™ 7)), (7.66)

and the constant Ag, as well as the terms involving the constant B, which
are only found at O((x; — d/2)?), vanish. As such, only the two exponentially
decaying modes with decay rates r, and r_ remain. It was determined in §7.5.6
that »_ < r; and so the mode with the decay rate r_ is the slowest decaying
and fundamental mode. Hence, away from x; = 0, u; is dominated by this

mode and (7.66) is approximated by

log(u1(d/2, x2) — Ag) ~ log (A4e’%x2) = log(A4) — %xz as xp — oo.
(7.67)
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Therefore, away from x; = 0, the function (7.67) gives linear behaviour with
a constant shift log(As). The constant A4 can then be chosen to best shift
log(u1(d/2,x2) — Ag) from the 1D model so that it matches log(u1(d/2,x2) —
u1(d/2, Xmax)) from the 2D model, away from x = 0.

Once Ay is set, A, can then be chosen to alter the behaviour of u7(0.5, x7)
near x; = 0 (as it alters the amplitude of the quickest decaying mode in the 1D
model). This is chosen so that in the 1D model, u1(0.5,0) = 0.

The final constant to be set is B, and this is done by looking at logarithmic
plots of 0%u;/9x7 at x; = d/2 in the 1D and 2D models. Substituting the
expression (7.65) for u; in the 1D model into %u,/ ax% gives at x; = d/2

o

2
axl X1=%

2B i % (A2K+e’r7+"2 n A41<_e*%’@> ) (7.68)
and we are left with three exponentially decaying modes with decay rates r,
r_ and C;/Co. It was found in §7.5.6 that for small F, C;/Cy > r_ and so the
mode with decay rate C;/Cp decays faster than the fundamental mode with
decay rate r_. Hence, in this case, B, is chosen so that the value of %uq/ ax%
at x; = d/2 in the 1D model best fits the corresponding 2D-model value near
xo = 0. For large F however, it was found in §7.5.6 that C;/Cy ~ r_, and
thus the modes with these two decay rates both contribute to the fundamental
mode of the deformation u; in the 1D model. Hence, by taking the logarithm

of (7.68), we find the following approximation as x, — o

821/[1 2A4K_ r—
log | —- ~ log [(232 + ) edx2] as Xp — 0o,
( o xl—z> +

2A4K) . r—

7 —X as xp —oo. (7.69)

~ log <2B2 + 7

Again, away from x, = 0, the function (7.69) behaves linearly and the constant
B, gives a constant shift in the function. Thus for large values of F, B, is chosen
to shift the value of the function (7.69) from the 1D model so that it matches

with the corresponding value from the 2D model away from x, = 0.

Comparing the New 1D-Model Deformation with the 2D Model

By following this procedure, the constants A,—B; have been chosen to match the
solution for the deformation u; in the 1D model to its 2D-model counterpart,
in the cases F = 0.001,1,1000, with d = 1, tan(¢) = 1 and v = 049. In

Figures 7.10-7.12, we see how the analytical solution for #; in 1D model now
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compares to the 2D-model solution. In each of these figures, Figure A has plots
of u1 — u1(0, x2) from the 1D and 2D models, along the x;-direction for different
values of x;. Figure B has plots of 11 (0, x2) from both models in the x,-direction,
and Figure C contains plots of u1(d/2,xp) — Ag and uy(d/2,x2) — u1(d/2, Xmax)
from the 1D and 2D models respectively, in the x,-direction with a logarithmic

scale on the vertical axis.

From Figure 7.10, it is observed that in the case with small F (F = 0.001),
the solution from the 1D model now matches the numerical solution well in
both the x; and x;-directions, apart from in a very small region near x, = 0. It
is also seen in Figure 7.10C that the gradient of the curves from the 1D and 2D
models is the same apart from at a region near x, = 20, where the numerical
scheme is forcing the solution from the 2D model to decay to zero at xp = Xmax
rather than as x, — co. As such, we find that the solutions from the 1D and
2D models are exhibiting the same behaviour for small 7. Hence, it is only
the conditions (7.31)—(7.34) forcing the choice of constants A>—B; within the
expression (7.65) for u; that are causing inaccuracies between the 1D and 2D
models. As the inaccuracies are reasonably small for small F, it is possible
that this issue can be resolved by simply including more terms from the Taylor

series (7.18) of u; within the model and determining these extra terms.

In Figures 7.11 and 7.12, the behaviour of the solution from the 1D model is
compared to the behaviour of the 2D model for large F (F = 1,1000). Figures
7.11A and 7.12A show that although the amplitudes of the deformations from
the 1D and 2D models do not match exactly in the x;-direction, the overall
behaviour is similar and the amplitudes are much better than those derived
from the conditions (7.31)—(7.34). This is particularly evident for larger values

of x».

In Figures 7.11B and 7.12B, similar results are seen in the x;-direction. Again
the amplitudes of the deformations from the two models are not matching

exactly, but the overall behaviour is similar apart from in a region near x, = 0.

Finally, in Figures 7.11C and 7.12C, it is seen that the gradients of the curves
from the 1D and 2D models are not quite equal, meaning that the decay rates
of the deformations are not the same. However the gradients are similar apart
from near x; = 0 (Where higher-order modes are having an effect), and near
X2 = Xmax (Where the numerical scheme is forcing the solution from the 2D
model to decay to zero at x = Xmax rather than as x, — o0). As such, we

conclude that for large F, the 1D model has the correct behaviour to emulate
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the 2D model away from x; = 0, and the conditions (7.31)—(7.34) are forcing the
constants A>—By to take significantly incorrect values in the 1D model.

We have found that the discrepancies between the expression (7.65) for uy
in the 1D model and the deformation in the 2D model are very large for large
values of F. We have also found that it does not seem to be possible to set the
constants A>—-B, so that the behaviour near the x, = 0 boundary is accurately
represented at the same time as the behaviour away from x, = 0. Hence, there
may be an effect near the x, = 0 boundary in the 2D model that is particularly
significant for large F, which is not captured by the 1D model. To see if this is
the case, the behaviour of #; near x, = 0 in the 2D model is evaluated for both
small and large F in §7.6.
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7.6 Behaviour of 1, for Small x,

In §7.5, a one-dimensional model was derived for the problem of bending a
semi-infinite block under tension. It was found that although this 1D model
was able to accurately emulate the fundamental decay rate of the deformations
found in the 2D model derived in §6.4, the amplitudes of the deformations
themselves differed between the two models, particularly for large values of
the axial tension F. It was also found that, even when arbitrarily setting
the coefficients of the modes found in the 1D model, it was not possible to
accurately model the behaviour of the normal deformation #; near x = 0 and
away from x; = 0 at the same time, in the case of large F. As such, it is possible
that an effect in the 2D model near the clamped boundary is not captured by
the 1D model. This possibility is now evaluated.

In Figure 7.13, the numerical solution of u; in the 2D model has been plotted
for small tension (F = 0.001) and large tension (F = 1), in the x;-direction at
x2 = 0.02. Hence, we are evaluating u; near the clamped boundary x; = 0.
From the figure, it is observed that for 7 = 0.001, the value of u; is always
negative. However, in the case F = 1, it is seen that the value of u; rises to
a positive value near the stress free boundaries, for small x;. The reason for
this is that as the axial tension bends the block, one side of the block near the
clamped boundary compresses whereas the opposing side expands. For small
values of F, this 2D compression effect is negligible as the block smoothly
bends over a relatively long distance. However for large values of F, the block
bends over a much shorter distance, meaning that this 2D compression effect
has a significant effect on the deformations. It is not possible for the 1D model
in §7.5 to capture this 2D effect and as such, the conditions (7.31)—(7.34) in the
1D model do not set the correct amplitudes for the deformation. However,
the 1D model does still capture the correct behaviour of the deformation away
from the clamped boundary x, = 0 when we choose appropriate values for the

constants Ay—B.

7.7 Conclusions

In this chapter, we have considered three possible methods for deriving an
appropriate 1D model for the linearised system (6.42)-(6.46) modelling a
semi-infinite block being bent under tension. The accuracy of each of these

models has been evaluated.
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Figure 7.13: The numerical solution for u#; in the 2D model along the x;-direction, at
xp = 0.02, for the tensions 7 = 0.001 and F = 1,and d = 1, tan(¢) = 1, v = 0.49.

The first 1D model that was considered was one derived from
Kirchhoff-Love shell theory. It was found in §6.9 that in the limit 7 — oo,
corresponding to the regime §¢ > 1, the boundary-layer width 55 has size
b = O(dF %) > O(d). Hence, the boundary-layer width is larger than the
width of the block, and it initially appears that Kirchhoff-Love shell theory can
be used to model the problem. A model has been derived from Kirchhoff-Love
shell theory, but the boundary-layer width derived from this model behaves
vastly differently from the boundary-layer width calculated in the 2D model,
for large values of F. The reason for this was found to be due to the violation
of one of the assumptions made in Kirchhoff-Love shell theory within the
boundary layer. The assumption violated was the preservation of the normal to
the centre line of the material after a deformation, which is due to the fact that
the boundary layer in question is a transverse shear-relaxation layer for large
values of F.

The second 1D model to be considered was a model derived by averaging
the components of Cauchy’s momentum equation over the width of the block.

This model approximated the deformations #; and u, using the leading-order
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terms from the Taylor series of the deformations about the midpoint x; = d/2
of the block. This model yielded exponentially decaying deformations in the
axial direction, with a decay rate that has the same qualitative behaviour as the
fundamental decay rate from the 2D model. There was however still a constant
difference between the decay rates, for both small and large F. This difference
was particularly large for small F. The reason for this large discrepancy is

likely due to the truncation of the Taylor series used to approximate #; and u5.

The final 1D model to be considered was one derived from the system
(6.88)—(6.93), where uy has been eliminated from the governing system. In
this model, the deformation u; is approximated with the first three non-zero
terms of the Taylor series of u; about the midpoint x; = d/2 of the block.
The inclusion of these extra terms, corresponding to a constant, quadratic
and quartic variation in u; in the xj-direction, improves the accuracy of
this 1D model compared to the model derived from averaging Cauchy’s
momentum equation, which only accounts for constant behaviour of u; and

linear behaviour of u5 in the x;-direction.

Three exponentially decaying modes are found within this final 1D model,
all with their own distinct decay rates. The first and smallest decay rate
r_ obtained from this model was found to be in good agreement with the
fundamental decay rate from the 2D model. The second decay rate C;/Cp was
also found to imitate the fundamental decay rate for large F, but diverge to a
larger value for small F. This implies that only one mode from the 1D model is
involved in simulating the fundamental mode in the 2D model for small values
of F, but for larger values of F, two modes from the 1D model combine to
simulate the fundamental mode. The final decay rate r, from the 1D model
is much larger than the other decay rates r_ and C;/Cy, for all values of F.
It is found that r, does not accurately model any of the decay rates of the
modes obtained in the 2D model. The reason for this is most likely down to
higher-order terms from the Taylor series of u;, which are neglected in this
model, being needed to accurately simulate the higher-order modes in the 2D

model.

By fully solving this model and applying conditions at x, = 0, an
approximation for the deformation u; has been derived. For small F, there
is a small discrepancy in the amplitude of the deformations in the 1D and the
2D model, but the overall behaviour is similar. However, as F is increased, the

amplitude of the 1D-model deformation becomes much larger than that of the
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2D-model deformation. The direction of the deformation in the xj-direction
also differs between the two models for smaller values of x,. By arbitrarily
choosing the constants that appear in the general solution of u; instead of
applying the boundary conditions at x, = 0 to find them, it was found that
it is possible for this 1D model to obtain much better agreement with the 2D
model away from x; = 0. This implies that the 1D model is capturing the
necessary mechanisms in the far-field away from x, = 0, but it is not able to
model the deformations well near x, = 0.

Finally, the behaviour of u; for small values of x; has been evaluated to
determine why the final 1D model cannot accurately simulate the deformations
near x; = 0. It was found that for small values of F, the deformation always has
the same sign, and the block is always being deformed in the same direction.
Conversely, for large F, it was seen that near the stress-free boundaries x; = 0, d
close to the clamped boundary x; = 0, the value of u; has a different sign from
the value of 11 in the bulk of the block around x; = d/2. Hence, the block is
deforming in a different direction at the edges of the block compared to the
centre of the block. This is due to a 2D compression effect which arises from
one side of the block expanding and the other contracting near x, = 0, as the
block is bent. This compression effect is much more significant for larger values
of F as the block bends over a much shorter distance compared to the case with
small F. It is not possible for the final 1D model to capture this 2D effect, and
as such, this explains the discrepancies between the final 1D model and the 2D
model, which are particularly large for large values of F.

It is possible that the 1D models considered here may be improved upon
further by using modes motivated by the transition to, and decay of, the
self-similar solution observed in §6.11, instead of the Taylor series of the
deformations. These modes are not independent of x; and so would add new
effects that the current models have not included. It is also possible that by
using these modes based on the self-similar solutions, a new model could be
derived to describe the behaviour of the block close to the clamped edge of the

block. Further investigation is needed to evaluate these possibilities.
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7.A  Deriving a 1D Model from the Averaged Cauchy’s
Momentum Equation
Here, we derive a 1D model for the problem of bending a semi-infinite block

under tension. This model is derived from the components (7.1), (7.2) of the

linearised Cauchy’s momentum equation (6.42), which are

%y 9%uy _ 0%u;
2(1 —v)—= 1-2 Fl—= =0 f 0< <d, >0,
(1=v) ox? +8x18x2+( v )Bx% or V=n=ans
(7.70)
2 2 2
(1—2v)aﬂ+ﬂ+(2(1—v)+ﬁ)auz:0 for 0<x;<d, x;>0.

0x?  Jx10x2 9x3

(7.71)

The components of the linearised boundary conditions (7.3)-(7.6), given by

up =0, and up = tan(¢) (xl — g) at x, =0, (7.72)
8u1 auz _ .

(1 — U)TJQ + VTXZ =0 at X1 = O, d, (773)
Juyp  dupy B

% + 87361 =0 at x =0, d, (7.74)

Vui,Viu, -0 as xp; — oo, (7.75)

are later applied to this model.

7.A.1 Averaged Force-Balance and Moment-Balance Equations

To create an appropriate 1D model, we need to average the force-balance
equations and moment-balance equation over the width of the block. These
averaged equations are now derived. First, it is convenient to rewrite (7.70) and

(7.71) in the following way

82u1 82u2 azuz = azu1

2 [(1 —v) 52 + Vaxlaxz} +(1— Zl/)ax1ax2 +(1-2v+ f)a—x% =0, (7.76)
82u2 82u1 82u1 = azuz

(1—2v) ( 52 + 8x18x2> 2vaxlax2 + 21 —v)+ f)a—x% =0. (7.77)

This will later allow us to apply the boundary conditions (7.73) and (7.74) at
the stress-free boundaries of the block. By integrating (7.76) and (7.77) over the

width of the block and dividing by d, we find the averaged normal force-balance
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and axial force-balance equations to be

2 [(1_V)Em1+vau2rl_d+(1—2v)< iy >+(1—2v+]:")<azul> =0,

d 0x1 0x2 | ¢ o 0x10x2 0x3
(7.78)

1—2v [u;  oup]™™ 9%, _. /3%uy
d [3362+a?ﬁ]xl_o+zv<axlax2>+(2(1_V)+f)<ax%>:O’
(7.79)

where
1 4
(A) = = / Adx
d Jo
is the average of a function A over the width of the block. Applying the

boundary conditions (7.73) and (7.74) for u; and u; at x; = 0,d, it is found
that the first terms of (7.78) and (7.79) vanish, leaving

82u2 = 821/!1
821/[1 = 821/[2

We later find when applying the symmetry and antisymmetry properties of
the deformations that (7.81) becomes a trivial equation. In order for the axial
force-balance equation (7.77) to be captured in the 1D model, we convert (7.77)
into a moment-balance equation, and average over the width of the block. This
is done by multiplying (7.77) by x; — d/2, integrating the resulting equation
over the width of the block, and dividing by d. This yields the following

d 82u2 82u1 d 82111
0={1-2) <<x1 B 2) < ox? + 8x18x2>> 2 < <x1 - 2> 8x18x2>

+ 21 -v)+F) <<x1 - g) 82”2> . (7.82)

2
x5

This expression may be simplified further by evaluating the first averaged term.

Using integration by parts, we find
A (Puz | Pun N\ (AN (w9
! 2 ax% axlaxz N d ! 2 aXQ 8x1 x1=0
Juy;  dup
(o)

_1fom  ow]™T Jom ow\
2 [0x  Oxg oxy  dxq

X1 =0
(7.83)
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Using the boundary condition (7.74), it is seen that the boundary term within

(7.83) vanishes, leaving

d\ [o%uy 9%uq Juy | dup
((n-3) (ax; o)) = (et ae) 78

Substituting (7.84) into (7.82) yields the following averaged moment-balance

equation
d\ %y _ d\ 9%u,
0= 2v<(x1 — 2> ax1ax2> +21-v)+F) <<x1 - 2) —ax% >
au1 auz

7.A.2 Deriving the 1D Model

Using the force-balance equations (7.80), (7.81) and the moment-balance
equation (7.85), a 1D model is now derived. We first recall that 1 is symmetric

and u; is antisymmetric about x; = d/2 (see §6.2). As such, we have that

9%y n %uy
X102 0x3’

are antisymmetric about x; = d/2, and thus

9% 01y
<ax1ax2 > =0 and <ax%> =0. (786)

Substituting (7.86) into the axial force-balance equation (7.81) yields a trivial

equation which cannot be used in deriving a 1D model. Contrariwise, the

terms

9%u, 9%y oup  dup . o d %14 and o d 9%u,
xdxy’  9x2’ oxy’ dxi 7' 2) dmdx '2) a2’

are all symmetric about x; = d/2, and thus averaging these terms over the
width of the block yields non-zero values. Hence, all the terms within the
normal force-balance equation (7.80) and the moment-balance equation (7.85)

are non-zero, and these equations may be used to derive a 1D model.
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It is convenient to rewrite (7.80) and (7.85) in the following way

(1 —21/)8<

axz

auz 2

ox1 (u1) =0,

(7.87)

_. d
2

2"aax2 <<x1 - ”21> ?)Zi> + (20 —v) +Ji“):;% <<x1 - Z) u2>

—(1—2v) <aax2 (1) + <g;‘j>> —0.
(7.88)

Doing so, the equations (7.87), (7.88) are now written in terms of four averaged
variables instead of the six variables found in (7.80), (7.85). We now rewrite
(7.87) and (7.88) as a pair of coupled ODEs governing two variables that are
only dependent on x,. To achieve this, we consider the following Taylor series

for uy and u, about x; =d/2

g\ 2
U = u§0)(x2) + <x1 — 2> u§2)(x2) +..., (7.89)
d d\°>
Uy = <X1 — 2) ugl)(xg) + <x1 — 2) u§3)(x2) + ..., (7.90)
where ugl),uf’),- -+ = 0 and ugo),uéz),- -~ = 0, so that u; and u, are

symmetric and antisymmetric about x; = d/2, respectively. To obtain only
(0)

two xz-dependent variables from these series, we truncate (7.89) after 1, ’, and
(7.90) after uél) to yield

d
Uy ~ ugo)(xz), Uy ~ <x1 - 2) ugl)(xz). (7.91)

Using these approximations, we determine the averaged terms within (7.87)
and (7.88) to be

0 duy 1 d\ ou;
= (G2 =, ((n-3)5) =0

2 2
(=)o) = ( (- 3) )t

Substituting (7.92) into (7.87) and (7.88) yields the following pair of coupled
ODEs in terms of u§0) and ugl)
(1) 42 0)

(
_ 2 _ i
(1-20) g2 +(1-2w+F) 0 0, (7.93)

_ d2 d2u(1) du(o)
Q1-v)+F) g~ 1-2) T;z +ulV ) =o. (7.94)
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We also substitute the truncated Taylor series (7.91) into the remaining

boundary conditions (7.72) and (7.75), at x, = 0 and x, — oo respectively,

to obtain
dul®
u® =0 at x =0, ML L0 as xp— oo, (7.95)
de
ugl) =tan¢ at x =0, ugl) —0 as xp — oo. (7.96)

7.A.3 Solution of the System (7.93)-(7.96)

To solve the system (7.93)-(7.96), ugl) (x2) is first eliminated from the governing
equations (7.93) and (7.94). Differentiating (7.94) with respect to x, yields the

following

s (1) 2,,(0) (1)
(2(1 —v) + F)d? du, d?u; du,
—(1- —(1- =0. 7.97
15 a (1-2v) a2 (1—-2v) ax 0 (7.97)
Rearranging (7.93), and differentiating (7.93) with respect to x; twice, gives the
relations

duV _ 1-2v+F azu” 7.98)

dv, 1-2v  dxZ’ '
dcu) _ 1-2u+F atu” 7.99)

dxy 1-2v  dxf '

Substituting (7.98) and (7.99) into (7.97), we obtain the following ODE for
i’ (x2)

d4u§0) _2d2u§0)
— =0, 7.100
ad a2 (7.100)

where
1 12(1—2v)F 2

A=- = = . 7.101
d<(1—2v—|—f)(2(1—v)—l—]—")) ( )

The ODE (7.100) has the general solution
ugo) (x2) = Ae™2 4 Be ™™ 4 Cxy 4+ D, (7.102)

where A, B, C, D are constants to be found. Applying the boundary conditions
(7.95) to (7.102) yields
A=C=0, D=-B, (7.103)

and substituting the constants (7.103) into (7.102), it is found that

% (x,) = B (e*Mz - 1) . (7.104)
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Substituting the expression (7.104) into (7.98) and integrating, it is calculated
that

(1-2v+ Jf)[\Be,M2 +E
1-2v

where E is a constant to be found. The boundary conditions (7.96) can then be

applied to (7.105) to find

sV (xy) = (7.105)

(1—2v)tan¢

B:———,
(1-2v+ F)A

E=0. (7.106)

Applying (7.106) to the expressions (7.104) and (7.105), ugo) and ugl) are

determined to be

0y d=2v)tang ¢« x,
02 = T PR (e 1), (7.107)
ulD (x) = tangp e, (7.108)

and thus, by substituting (7.107) and (7.108) into the truncated Taylor series
(7.91), u1 and u, are found to be approximated by

(1-2v)tan¢ 7y,
M~ s PIA (e 1) ) (7.109)

Uy ~ <x1 — Z) tan ¢ e~ (7.110)



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, the effects of wall inertia and axial bending have been added
to the model by Whittaker et al. (2010c) which describes instabilities in flow
through an elastic-walled tube. The changes to the instabilities and stability
criteria due to the addition of wall inertia and axial bending have been
evaluated.

We first added wall inertia to the Whittaker et al. (2010c) model in Chapter
2. In forming the new model, it was found that the wall inertia term does not
enter the governing equation in the same way the fluid inertia does, but instead
combines with the azimuthal bending term. In this new model we found that,
as in the Whittaker et al. (2010c) model, countably many oscillatory modes exist,
each with its own distinct eigenfrequency. These modes are distinguished by
having different numbers of spatial oscillations in the axial direction. As the
amount of wall inertia increases, it is found that the eigenfrequencies of all the
modes decrease, but this decrease is more rapid for higher-order modes than
for lower-order modes. We have discovered that the axial mode shapes of the
higher-order modes for the pressure and axial velocity start spatially oscillating
about a non-zero value, when wall inertia is increased to a non-zero value. We
have also found that the axial mode shapes of the area change tend towards
being symmetric about the axial midpoint of the tube, as the wall inertia is
increased. The properties of the axial mode shapes are witnessed in Figures
24-2.6.

By examining the stability criterion and growth rates of the different modes,

it was seen that odd modes (including the fundamental mode) become more
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unstable for increasing wall inertia, whereas the even modes become more
stable for increasing wall inertia. The reason for this is because as wall inertia
is increased, it dominates over the fluid inertia terms and the leading-order
balance is found to be between axial tension, azimuthal bending and wall
inertia. As the fluid inertia no longer contributes at leading-order, the odd
and even modes for the oscillatory area variation become symmetric and
antisymmetric respectively in the axial direction about the midpoint of the tube.
As such, the even modes have little flux within the upstream rigid region of the
tube as the fluid predominantly moves between the crests and troughs of the
oscillations in the elastic-walled tube. Because of this, the energy influx into
the system is small, and as there is not as much energy available to drive the
instabilities, the modes are much more stable. For the odd modes however,
there is a larger flux in the upstream rigid region resulting in a greater influx
of energy into the system. Because of this increase in available energy to drive

the instabilities, the odd modes are more unstable.

It is also seen that the growth rates of all the modes decrease with increasing
wall inertia, but the growth rates of the even modes decrease much faster. It
is shown that the fundamental mode is always the most unstable and has the
highest growth rate. As this mode also becomes more unstable with increasing

wall inertia, it is found that wall inertia is a destabilising effect on the system.

Finally, the size of the effect wall inertia has on the frequency, critical
Reynolds number (the Reynolds number at which the growth rate of a mode is
zero), and the growth rate (differentiated with respect to the Reynolds number)
of the fundamental mode has been quantified for a couple of physical examples.
In the case of blood flow through the main pulmonary artery, it was found
that the wall inertia parameter M takes the value M ~ 0.003. Using this
value of M instead of M = 0 yielded a 0.9% decrease in the frequency of
the fundamental mode, a 0.5% decrease in the critical Reynolds number of the
fundamental mode, and a 1.8% decrease in the gradient of the growth rate
for the fundamental mode. Hence in this case, the effects of wall inertia are
negligible. The example of crude oil flowing through a steel submarine pipe
was also considered. Here, we instead have M ~ 0.02, which yields a 5.7%
decrease in the frequency of the fundamental mode, a 3.2% decrease in the
critical Reynolds number of the fundamental mode, and a 10.8% decrease in
the gradient of the growth rate for the fundamental mode. Thus, the effects of

wall inertia are more significant here and cannot necessarily be neglected.
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The problem of expanding the Whittaker et al. (2010c) model so that
the canonical clamped boundary conditions are satisfied at the ends of the
elastic-walled tube was then considered in Chapters 3-7. In the original
Whittaker et al. (2010c) model, only the normal and azimuthal displacements
of the tube wall were fixed to be zero at the tube ends. Whittaker (2015)
extended this model further to allow the Dirichlet parts of the pinned boundary
conditions, which fix the normal, azimuthal and axial displacements to be zero,
to be satisfied at the tube ends. This was done by introducing a shear-relaxation
boundary layer near the ends of the tube. Whittaker (2015) found that this
shear layer splits into an inner and outer shear-relaxation layer, and that the
shear layer only has a significant effect on the bulk solution when 6/ < 1,
where § < 1, £ > 1 are dimensionless parameters representing the tube wall

thickness and tube length respectively.

In this thesis, it was determined that an axial-bending boundary layer must
be introduced to raise the axial order of the system enough for the full clamped
boundary conditions to be satisfied. In Chapter 3, a toy model was constructed
from the Foppl-von Kdrmén equations (Landau & Lifshitz, 1959), and using
this model the bending-layer width &3 was predicted to be 65 = O(F~2471),
where F = O(1) is a dimensionless parameter representing the axial tension
acting on the tube wall. With this estimate, it was found in Chapter 3 that this

problem splits into three different regimes.

In the first of these regimes, regime I,, we have 6/ < 1 < 502, In this
case, the shear-relaxation layer studied by Whittaker (2015) has a significant
effect on the bulk solution, and so must be considered. Using the predictions
of the toy model in Chapter 3, the bending layer was expected to be larger than
the tube wall thickness J, but smaller than the inner and outer shear layers.
In the second regime, regime Ip,, 6> < 1 and again the shear layer found by
Whittaker (2015) must be considered. In this case, the toy model predicted
that the bending layer would be larger than the tube wall thickness and inner
shear layer, but smaller than the outer shear layer. In both regimes I, and I,
Kirchhoff-Love shell theory could be used to model the wall mechanics. In the
final regime, regime II, the case where 6/ > 1 was considered. In this case, the
shear layer studied by Whittaker (2015) no longer has a significant effect on the
bulk solution and does not need to be considered. The toy model predicts that
the bending layer would be smaller than the tube wall thickness in this regime,

and as such Kirchhoff-Love shell theory can no longer be used to model the
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wall mechanics.

In Chapter 4, regime I, where 6/ < 1 < 6(*> was considered. Here a
bending layer with width ép = F ~24~! was found, which is in agreement
with the prediction from the toy model. Hence, this bending layer is larger
than the tube wall thickness, and smaller than both the inner and outer shear
layers. As such, the bending layer was found to be situated at the ends of
the elastic-walled tube and matches onto a modified inner shear layer. The
dominant balance within the bending layer was found to be between axial

bending and pre-stress and axial curvature.

The leading-order deformations within this bending layer have been
calculated, and it was found that there was no change in the cross-sectional
area at leading order within this layer. The corrections to the inner shear-layer
deformations were also calculated and were found to be O(F ~16-1/~2) smaller
than the leading-order terms. These corrections may appear at lower or higher
orders than the other higher-order terms in the approximations for the inner
shear-layer deformations, depending on sizes of § and ¢. If the condition
F = 0O(1) is relaxed and we instead have F = O(6-1/~2) yielding a smaller
tension, this will allow the correction terms to contribute at leading order.
However, this may also alter the behaviour of the bulk solution, and will change
the widths of the bending and inner shear layers so that they become the same
size. As such, further investigation is needed to see what happens in this
case. Returning to the case where 7 = O(1), it was calculated that there
would be no corrections to the normal deformation or area change in the outer
shear and bulk layers due to the leading-order deformations in the bending
layer. It was also seen that the leading-order bending-layer deformations induce
higher-order corrections to the azimuthal and axial deformations in the outer

shear and bulk layers.

Overall, the bending layer in regime I, is found to be passive and not
contribute to the leading-order displacements or area change in the other layers.
Instead, it simply allows the axial gradient to decrease to zero as the clamped
end of the tube is reached. Hence, the effects of this bending layer on the shear
layers and bulk solution may be safely neglected in the case 6/ < 1 < 6/2,
0 < 1,¢>1,F = 0(1). This is consistent with numerical results published
by Whittaker (2015), which are calculated in regime I,.

Chapter 5 concentrates on regime I, where 6/> < 1. In this regime, a

bending layer of width dp = O((S%) was found, and the dominant balance
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within this bending layer was determined to be between axial bending,
azimuthal stretching and axial stretching. This width is different from the one
predicted by the toy model in Chapter 3 because of the effects of azimuthal
stretching, which are not included in the toy model. However, this width is still
in between the widths of the inner and outer shear layers. It was determined
that the inner shear layer is no longer present. Instead there is a bending layer
situated at the ends of the elastic-walled tube which matches onto a modified
outer shear layer. Asymptotic approximations for the in-plane stresses within
the bending layer have been calculated up to second order, and using these,
approximations for the bending-layer deformations have been calculated up to
the largest non-zero higher-order term. It is also found that the area variation
in the bending layer is O(AF 2071, where A(t) is the dimensionless, slowly
varying amplitude of the oscillation, and F = O(F§2(?) is a scaled axial
tension. This area variation tends to a constant multiple of A(t) as we exit

the bending layer.

The leading-order bending-layer deformations in regime I, then induce
corrections to the outer shear-layer deformations that are found to be a factor
of O(F ) %E) smaller than leading-order terms. These corrections were also
determined to be larger than the other higher-order terms in the expressions for
the deformations. The corrections to the normal and azimuthal deformations
in the outer shear layer were found to be linear in the axial coordinate,
affecting their axial gradient, and the correction to the outer shear-layer axial
deformation was found to be constant in the axial coordinate, yielding a
constant shift. Also calculated was the correction to the area change in the
outer shear layer, which was found to be smaller than the leading-order terms
but larger than the other higher-order terms. This correction was seen to behave
linearly in the axial direction, affecting the axial gradient of the area change.
If the condition F = O(1) is relaxed and we instead have F = O(63(72),
resulting in a larger tension, the correction terms will contribute at leading
order. However, this will also set F > 1, and in this scenario the shear layer
found by Whittaker (2015) does not have a significant effect on the bulk solution
and does not need to be considered. Hence, further investigation is needed
to determine what happens for this scenario. Returning to the case where
F = 0O(1), it was found that the bending layer enforces corrections to the

bulk-layer deformations and area variation that apply at higher orders.

Overall, the bending layer in regime I, is found to be passive and not
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contribute to the leading-order displacements or area change in the larger
layers. Instead it allows the axial gradient to decrease to zero at the clamped
boundary, and allows for the decay of the leading-order in-plane azimuthal
hoop stress N and shear stress S from their values at the clamped boundary
to the smaller values needed in the outer shear layer. The bending layer also
keeps the leading-order in-plane axial stress £ approximately constant in the
axial direction. As such, the effects of this bending layer on the outer shear
layer and bulk solution may be safely neglected in the case 6/ < 1, § < 1,
(>1, F =0(1).

The final regime, regime II where 6/ >> 1, is studied in Chapters 6 and
7. In Chapter 6, a new model was derived to describe the wall mechanics
as the toy model in Chapter 3 predicted that the bending layer would be too
small for Kirchhoff-Love shell theory to be valid. This model is a linearised
two-dimensional model describing bending a semi-infinite block under tension.
The block in question corresponds to a 2D cross-section of the tube wall in
the normal and axial directions. This model is based on the assumption that
azimuthal variation is slow on the scale of the bending layer predicted by the
toy model. Numerical solutions for this model have been constructed, and
by applying analytical techniques, it was found that the deformations of the
block are composed of countably many modes that decay exponentially in the
axial direction, each with their own distinct decay rate. Analytical far-field
approximations for the deformations have been developed and are found to be
in agreement with the numerical solutions. A full analytical solution to this
model has not yet been found, but it was seen that it may be possible to apply
a method similar to that used by Shankar (2003) to determine the coefficients

of the modes of the deformations.

In this 2D model, different behaviours were found in the cases 6¢ < 1 and
0¢ > 1. In the case §¢ < 1, corresponding to regimes I, and I, a bending layer
with dimensionless width 65 = O(F~2¢71) is found, which is in agreement
with the bending layers found in the toy model and in regime I,. However
when 6/ > 1, corresponding to regime II, a new boundary layer is found
with dimensionless width dp = O(F 1524 ), suggesting that a different dominant
mechanism is occurring within this boundary layer. In both cases however, the
dimensional normal deformation u; is found to behave as u; = O(aF *%6*1)
(where a is the typical radial scale of the elastic-walled tube) as we exit the

boundary layer.



296 Chapter 8. Conclusions and Future Work

Applying this 2D model to the elastic walled tube in regime II, where
o0¢ > 1, it was found that the corrections to the boundary conditions in the
bulk layer are a factor of O(F —30 ~2) smaller than the leading-order conditions.
It is noted that these corrections may not be accurate as the boundary layer is
larger than originally expected in this regime, and azimuthal variation which
is neglected by the 2D model may be significant on this scale. Further work is
required to check the validity of these corrections, but even if these corrections
are incorrect, this model is still applicable to more general problems of clamped
shells under tension. Providing these corrections are accurate, then by relaxing
the condition 7 = O(1) and instead setting 7 = O({~*) corresponding to a
smaller axial tension, the correction terms become large enough to contribute
at leading order. However, applying this change may alter the behaviour of the
solution in the bulk layer. As such, further work is needed to analyse what
happens for this smaller tension. It is seen that in the case ¢ > 1, § < 1,
¢ > 1, F = O(1), the correction terms are small enough that the effects of
the bending layer can be safely neglected in the bulk layer. The fact that these
corrections may be neglected is consistent with numerical simulations run by
Whittaker et al. (2010d).

By examining the new boundary layer that occurs in the 2D model for
o¢ > 1, it was found that the axial deformations of the block deviate away from
a uniform shear across the width of the block and tend towards a sinusoidal
self-similar solution as the axial coordinate is increased. As such, this new
boundary layer was found to be a transverse shear-relaxation layer. This shear
layer is different from the one modelled by Whittaker (2015), which arises due

to azimuthal shear.

Finally in Chapter 7, the 2D model in Chapter 6 is considered further
and the possibility of using a one-dimensional model to describe bending
a semi-infinite block under tension is investigated. Here, three possible
one-dimensional models are considered. The first model is one derived from
Kirchhoff-Love shell theory. It is found that although the shear-layer width
in regime II is larger than the block thickness, indicating that Kirchhoff-Love
shell theory is applicable, applying this theory yields a model which does not
give the right behaviour for the boundary-layer width when 6¢ > 1. This is
because another assumption made in Kirchhoff-Love shell theory, which is the
preservation of the normal to the centre line of the block after a deformation,

is violated in the shear layer that appears in this regime. The second model



8.1. Conclusions 297

considered is one derived by averaging the components of the governing
Cauchy’s momentum equation over the width of the block. Although this
model is able to yield the right qualitative behaviour for the boundary-layer
width, there are still quantitative discrepancies between the boundary-layer
width from this model and the boundary-layer width from the 2D model,
particularly for 6/ < 1.

The final model considered in Chapter 7 is one derived by solving the
2D governing system (6.88)—(6.93) for the block written solely in terms of the
normal deformation u;, using a truncated Taylor series to approximate u;.
This model yields three exponentially decaying modes for the deformation,
each with their own distinct decay rate. The smallest of these decay rates,
corresponding to the slowest decaying mode, is found to be in good agreement
with the fundamental decay rate in the 2D model. The next smallest decay rate
also agrees with the fundamental decay rate in the 2D model for 6/ > 1, but
diverges away from the fundamental decay rate for 6/ < 1. This implies that
for 6¢ < 1, only one of the modes in the 1D model contributes in modelling
the fundamental mode, whereas for 6¢ > 1, two of the modes in the 1D model
contribute in describing the fundamental mode. The largest of these decay
rates, corresponding to the quickest decaying mode, does not appear to model
any of the modes found in the 2D model. This is likely due to more terms from
the Taylor series of 11 being needed to capture the behaviour of the higher-order

modes in the 2D model.

It is found that this model is able to capture the behaviour of the
deformations away from the clamped edge of the block using arbitrary
conditions set at the clamped edge. However, the behaviour near the clamped
edge cannot be modelled accurately at the same time, and the discrepancies in
the behaviour of the 1D and 2D models near the clamped edge are particularly
large for ¢ > 1. This was found to be due to a 2D compression effect
that occurs near the clamped boundary which cannot be captured by the 1D
model. As this compression effect is particularly significant for 6¢ > 1, the
discrepancies between the solutions in the 1D and 2D models are distinctly

large in this case.

It is possible that these models can be improved upon further by using
modes motivated by the self-similar solution found in Chapter 6 to approximate
the deformations instead of using truncated Taylor series. It may also be

possible to use these modes to derive a new model for the behaviour of the
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block near the clamped boundary. Further investigation is needed to examine

these possibilities.

The boundary layers needed for the clamped boundary conditions to be
satisfied in regimes I,, I;, and II are summarised in table 8.1. We have
determined that in the case 6 < 1, £ > 1, F = O(1), the boundary layers
introduced to satisfy the clamped boundary conditions in each of the regimes
do not apply any leading-order effects to the larger boundary layers in their
respective regimes, or the bulk solution. As such, the effects of the bending
layer can safely be neglected in these larger boundary layers and in the bulk
solution. We have also seen that by relaxing the condition 7 = O(1) and
instead setting 7 = O(6~'¢~2) in regime I,, F = O(6-3/~2) in regime I;,, and
F = O(f~*) in regime II, the effects of the axial-bending and transverse-shear
layers on the larger layers become significant at leading order. In setting these
tensions, the properties of the inner and outer shear layers and the bulk layer
also change. As such, further study is required to determine what effects the
axial-bending and transverse-shear layers have on the larger layers when we

have different values of F.

Regime I I, II
4,¢ Bounds 00 <1 < 602 02 <« 1 ol > 1
Physical Mechanism ) )
Axial Axial Transverse
of Inner Boundary ) .
Bending Bending Shear-Relaxation
Layer
Width of Inner 1 1 1
O(F~ 2471 O(62) O(F25%0)
Boundary Layer
Type of Outer Inner Shear
Outer Shear None
Boundary Layers Outer Shear
Width of Outer O(Fz5¢
(1 ) O(;i%éilgil) —
Boundary Layers O(F 2611

Table 8.1: Summary of the boundary layers needed to satisfy the full clamped

boundary conditions in regimes I,, I, and II.
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8.2 Recommendations for Future Work

Some recommendations for future work to be carried out on the models
developed here are now suggested. Firstly, numerical simulations of flow
through an elastic-walled tube can be run to test the accuracy of the analytical
results determined in Chapter 2, where the effects of wall inertia are evaluated.
In particular, the frequency, axial mode shape, growth rate and stability
criterion of the fundamental mode may be checked against the numerical
simulations. This work is ongoing in collaboration with Matthias Heil of the
University of Manchester.

Numerical simulations of the elastic-walled tube can also be used to check
the effects induced by introducing a bending layer in the case 6/ < 1,
0 <1, ¢>1, F = O(1). Using these simulations, the bending layer and
the corrections to the inner and outer shear layers can be tested against the
numerical simulations of the elastic-walled tube near the clamped ends. These
numerical simulations can be carried out by combining Kirchhoff-Love shell
theory with the use of the object-oriented multi-physics finite-element library,
oomph-1ib, developed by Heil & Hazel (2006). Such numerical simulations
were used by Whittaker et al. (2010d) to evaluate the validity of their tube law.

In the case 6/ > 1, § < 1, £ > 1, F = 0O(1), it is possible that
azimuthally dependent effects could be significant on the scale of the transverse
shear-relaxation layer found in Chapter 6. To evaluate this possibility, the
scalings of the azimuthally dependent effects neglected in the derivation of
the 2D model in Chapter 6 can be determined to see if they appear at leading
order on the axial scale of the boundary layer. If these effects do not appear
at leading order, then the 2D model in Chapter 6 will be applicable to the 3D
elastic-walled tube, and the shear layer will exist in the 3D case. Numerical
simulations can then be used to test the properties of this shear layer and
determine the validity of the corrections to the bulk solution predicted by
the 2D model. These simulations will have to be constructed in a different
way to the simulations described for the case ¢ < 1, as it was witnessed in
§7.3 that Kirchhoff-Love shell theory cannot accurately model the transverse
shear-relaxation layer. One possible way of constructing these simulations is to
combine oomph-1ib with a modified Saint Venant-Kirchhoff model similar to
that used in deriving the 2D model in Chapter 6.

It has been seen that when F = O(1) in each of the regimes of introducing a

boundary layer to satisfy the clamped boundary conditions, the effects of each
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of the new boundary layers are not significant at leading order in the other
layers. However, if we vary F, it is possible that these effects will become
significant at leading order. Varying F to force these effects to be significant
may also change various properties of the problem, such as the behaviour of the
bulk layer, and the sizes and behaviours of the inner and outer shear-relaxation
layers studied by Whittaker (2015). As such, further study is required to see
if it is possible to vary F so that the bending layers in regimes I, and I;,, and
the transverse shear layer in regime II, yield corrections at leading order to the
other layers. This can be investigated by setting F to be the predicted values
at which the bending layers and transverse shear layer affect the leading-order
behaviour in the other layers in their respective regimes, and then resolving the

governing systems in each layer.

To further extend the models derived here, non-linear effects in the tube
wall can be considered. This can be done by keeping the assumption that wall
displacements are small, but instead of neglecting terms which are quadratic
and higher-order in the deformations, some of these non-linear terms are
retained. The resulting governing equations can then be solved by forming
a perturbation solution for the deformations. In extending the model in this
way, the sizes of the non-linear effects can be evaluated and possible regimes

where these effects may become significant can be found.

Another effect that can be considered is larger amplitude oscillations. This
can be included in the models considered here by removing the assumption that
the wall displacements are small compared to the tube diameter. In doing so,
the dimensionless parameter A(t) representing the dimensionless amplitude of
the instabilities will now be O(1), and terms that are quadratic and higher-order
in the deformations will be significant at leading order. Due to the increased
complexity of the governing system, it may be that a solution can only be found
numerically. This situation corresponds to the case where the amplitude of
the instabilities in the models considered here have grown large enough to be

comparable to the tube radius.

Finally, axially varying tube properties such as wall thickness and stiffness
may also be incorporated into the model by setting these properties to be
known functions of the axial coordinate z. By doing so, it is possible to evaluate
what happens if there is a sudden jump in these properties between two regions
of the flexible tube, which may correspond to, for example, a flexible tube

comprised of two regions made of different materials. In this case, different
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governing systems will need to be derived in each region using similar methods
to those applied in the current models, and the solutions of the two regions will

have to match at the interface between the two regions.
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