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Abstract

In certain parameter regimes, steady flow through flexible tubes is unstable to

self-excited oscillations. Whittaker et al. (2010, Proc. Roy. Soc. A 466) solved an

asymptotic model for the onset of self-excited oscillations in a long, thin-walled,

flexible tube clamped between two rigid tubes, with a large axial tension. This

work neglected effects such as wall inertia, axial bending, and in-plane shear

forces. Whittaker (2015, IMA J. Appl. Math.) reintroduced in-plane shearing

and found a shear-relaxation boundary layer at the tube ends.

In this thesis, wall inertia and axial bending are reintroduced into these

models. In Chapter 2, wall inertia terms are added to the governing equations

for the wall mechanics, and a new ‘tube law’ describing the wall motion is

derived. Combining this with a description of the fluid mechanics, the effect

of wall inertia on the oscillations is quantified. Wall inertia is found to be a

destabilising effect.

In Chapters 3–7, axial bending is reintroduced allowing ‘clamped’ boundary

conditions to be satisfied at the tube ends. Three different regimes dependent

on the dimensionless length and wall thickness of the tube are found. Chapters

4–5 concentrate on the two regimes where the shear layer found by Whittaker

(2015) must be considered. An axial bending boundary layer that induces

higher-order corrections to the shear layer and bulk solution is found in these

regimes. In Chapters 6–7, a final regime is considered where the shear layer no

longer needs consideration, but a new model for the wall mechanics is needed.

Deriving and solving a linearised 2D model for bending a semi-infinite block

under tension, corresponding to a 2D cross-section of the tube wall, a new

transverse shear-relaxation layer is found. This boundary layer allows clamped

boundary conditions to be satisfied and induces higher-order corrections to the

bulk solution.
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2.7 Stability Criterion and Growth Rate . . . . . . . . . . . . . . . . . 46

2.7.1 Fluxes and Fluid Energy . . . . . . . . . . . . . . . . . . . . 46

2.7.2 Oscillatory Energy in the Tube Wall . . . . . . . . . . . . . 47
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Chapter 1

Introduction

1.1 Background

1.1.1 Applications

Fluid flow through elastic-walled tubes occurs in many biological systems. In

the human body, the cardiovascular, respiratory and digestive systems all use

flexible tubes to transport various fluids around the body. As such, the study

of flows in elastic tubes is important in understanding the different phenomena

that occur in these biological vessels.

In the cardiovascular system, the propagation of pulse waves in the arteries

is vital for transporting blood to organs and tissues within the body. This

is a well known and understood example, and one-dimensional models have

been formed (see McDonald, 1974; Lighthill, 1975; Pedley, 1980) which are able

to adequately explain many properties of the problem. The analysis of this

problem is helped by the fact that under normal conditions the arteries have

a positive transmural (internal minus external) pressure, which allows them

to retain a relatively stiff, inflated state. However many blood vessels, such

as the veins above the heart and outside the skull have a negative transmural

pressure, which causes the vessels to buckle and collapse non-axisymmetrically.

These vessels are much more flexible in their buckled state and small changes in

fluid pressure can cause large changes in the cross-sectional area. This leads to

strong interaction between the fluid and solid mechanics, which induces many

interesting phenomena such as flow limitation and self-excited oscillations.

The collapse of blood vessels and the subsequent effects can be used in

many situations. For example the collapse of blood vessels is believed to be

a part of auto-regulation of blood flow to many internal organs (Rodbard &

1
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Takacs, 1966; Rodbard, 1966). This auto-regulation is particularly significant

within vessels in subjects with long necks, such as in the giraffe jugular vein

studied by Pedley et al. (1996). Venous collapse is also used in exercise to

allow muscular compression of leg veins to pump blood against gravity to the

heart, and the external compression of veins in lower limbs is used to prevent

deep-vein thrombosis (Kamm, 1982; Olson et al., 1982). The collapse of vessels

can also have adverse consequences. For example, the dynamic flow-induced

collapse of blood vessels downstream of of atherosclerotic stenoses has been

proposed as a mechanism of plaque rupture by Binns & Ku (1989) and Ku

(1997). This plaque rupture can lead to serious effects such as heart attacks and

strokes.

A number of different kinds of flow-induced instabilities have been

observed within collapsed blood vessels. One example occurs in blood pressure

measurement, where the brachial artery is compressed by a cuff around the

upper arm. Initially, the pressure within the cuff is large enough to collapse

the brachial artery entirely, restricting the flow of blood through the artery.

The pressure in the cuff is then slowly decreased allowing pockets of blood to

pass through the collapsed segment of the artery, forcing the opposite walls

of the vessel to open and then close, and generating audible noises called

“Korotkoff sounds” (Bertram et al., 1989; Ur & Gordon, 1970). Other examples

include oscillations in the coronary blood vessels which were observed during

open-heart surgery (Tsuji et al., 1978), and oscillations of the external jugular

vein, collapsed due to a low hydrostatic pressure, which give rise to cervical

venous hum (Danahy & Ronan, 1974).

In the respiratory system, the airways have a certain degree of flexibility

which again allows fluid-structure interaction and gives rise to yet more

phenomena. One example occurs during forced expiration. Here, contraction

of the expiratory muscles increases the pressure that drives air out of the

peripheral airways. However, if this driving pressure increases past a certain

level, the proximal airways start to collapse. The reduction of the cross-sectional

area of these airways then increases the fluid velocity, and the Bernoulli effect

reduces the internal fluid pressure leading to further airway collapse. This

results in flow limitation and ‘negative effort dependence’, where an increase

in expiratory effort beyond a particular level leads to reduction in expiratory

flow rate.

Self-excited oscillations also occur in the airways and are believed to cause
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a number of respiratory noises. It is thought that flutter instabilities are the

cause of respiratory wheezes during forced expiration (Gavriely et al., 1984,

1989), and controlled flow-induced vibrations of the vocal chords are used in

speech production and can be modelled as a collapsible tube system (Berke

et al., 1991). Additionally, bird song is generated using oscillations of a set of

membranes in the avian syrinx, and experimental and theoretical evidence has

been provided by Fee et al. (1998) pointing towards the primary mechanism of

these oscillations being a dynamic flow-structure interaction.

Snoring sounds in humans are also generated with flow induced

instabilities. Initially, the Bernoulli effect can induce collapse and closure

of the upper airway, characterized with a simple lumped-parameter model

by Gavriely & Jensen (1993). When in this collapsed state, flow-induced

instabilities of the pharyngeal wall can yield noise production. A distributed

collapsible-tube model of this process was developed by Aittokallio et al. (2001).

Along with the instabilities of the airway wall, flow-induced flutter of the soft

palate generates an independent form of noise production. This has been

modelled by Huang (1995) as a flexible cantilevered elastic plate that moves

as air flows past it.

Further examples of fluid flow through elastic-walled tubes can be found

in the digestive system. In micturition, the urethra behaves like a passive

collapsible tube and exhibits flow limitation effects (Griffiths, 1969, 1971). This

is different from the ureter and other deformable vessels in the digestive system

that transport fluids using peristalsis. A model for this process has been

developed by Carew & Pedley (1997). More examples of biological applications

can be found in the reviews by Heil & Jensen (2003) and Grotberg & Jensen

(2004).

Although many of the applications of flow through collapsible tubes are

biological, some industrial applications can also be found. One example

is the development of flexible micro-channels that can be utilized to ensure

satisfactory micro-mixing of confluent streams (Selverov & Stone, 2001; Yi et al.,

2002; Hsiung et al., 2007). More industrial applications include gas and oil

flow through steel submarine pipes and flexible tubes transporting fluids in

machinery.
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1.1.2 Experimental Studies

Experimental data of fluid flow through elastic-walled tubes is usually obtained

using a Starling Resistor (Knowlton & Starling, 1912), which is shown in Figure

1.1. This comprises an elastic tube which is clamped between two rigid tubes

and enclosed in a chamber with a fixed pressure. Fluid is driven through the

tubes, either by applying a controlled pressure difference between the ends of

the rigid tubes, or by using a volumetric pump to fix a specific flux at one end.

Figure 1.1: The set-up of a Starling Resistor. An elastic tube is clamped between two

rigid tubes and is contained in a pressure chamber with fixed pressure pext. Flow is

driven through the tube using a controlled pressure difference pup − pdn between the

two ends. Flow can also be driven through the tube by using a volumetric pump to

set a particular flux at either end. The pressure pext in the chamber can be modified to

control the degree of collapse of the elastic tube.

If the transmural pressure over the tube wall in the Starling

Resistor becomes sufficiently large and negative, the elastic tube buckles

non-axisymmetrically. Once the elastic tube reaches this buckled state, it

becomes highly compliant and small changes in the transmural pressure can

cause large changes in the tube shape and cross-sectional area. This leads

to phenomena such as flow limitation and self-excited oscillations, which

have been observed in many experimental studies of the Starling Resistor, for

example within the studies conducted by Conrad (1969).

The relationship between the transmural pressure and cross-sectional area,

also known as a ’tube law‘, has been investigated experimentally by Kececioglu

et al. (1981), and a sketch of their experimental measurement of the tube law,

along with the typical cross-sectional shapes of the tube wall may be viewed in
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Figure 1.2. From the figure, we see that at a high enough transmural pressure

the tube takes an almost circular shape, and the change in the cross-sectional

area is predominantly due to axisymmetric stretching. When the transmural

pressure is reduced to some negative value, the tube buckles into an elliptical

shape. Here, changes to the cross-sectional area are then predominantly due

to bending rather than stretching, allowing the tube to be more compliant than

in its circular state. Further reduction of the transmural pressure forces the

opposite sides of the tube wall to come into contact, first at a point, and then

along a line. In these states, the tube becomes less compliant as strong bending

forces now appear at the bulbous end of each lobe of the tube, resisting further

area reductions.

Figure 1.2: A sketch of a typical experimental measurement of the tube law relating

the transmural pressure ptm to the cross-sectional area A of the tube, based on the

measurements taken by Kececioglu et al. (1981). Also shown are sketches of the typical

shapes of the cross-section as ptm varies.

Experiments by Bertram and coworkers (e.g. Bertram, 1986; Bertram et al.,

1990, 1991) have characterized the Starling Resistor system in the greatest

detail, and in particular, they have determined regions of parameter space

where the system produces spontaneous oscillations. These oscillations occur

in distinct frequency bands and are strongly dependent on the properties of

the rigid sections of the tube. Additionally, Ohba et al. (1997) developed flow

visualizations of self-excited oscillating flow through a Starling Resistor that
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show a single central jet downstream of the elastic tube, and experiments

conducted by Kounanis & Mathioulakis (1999) point towards the onset

of self-excited oscillations being associated with the symmetry of flow

downstream of the elastic tube breaking. Furthermore, in the case where

the tube is buckled into a two-lobed cross-section, flow visualizations have

been created by Bertram & Godbole (1997) displaying axially decaying twin

jets downstream of the collapsible tube with a region of reversed flow in

between. Other relevant early experimental studies can be found in the review

by Bertram (2003).

A great deal of recent experimental work has focused on the onset of

self-excited oscillations in the Starling Resistor in a specific parameter regime.

In this regime, large-amplitude, low-frequency oscillations, where the tube is

open for the majority of the period so the cross-sectional area remains near

its maximum value, are observed. These oscillations, also known as LU-type

oscillations were observed by Bertram et al. (1990) and experiments by Bertram

& Nugent (2005), Bertram & Tscherry (2006), Bertram (2008) and Truong &

Bertram (2009) have uncovered many features of these oscillations. Further

details of these experimental studies, and of others investigating the LU-type

oscillations, may be found in the review by Heil & Hazel (2011).

1.1.3 Development of a Tube Law

In order to derive models describing the wall mechanics of the elastic-walled

tube within the Starling Resistor, investigations have been carried out to

determine appropriate expressions for a tube law relating the transmural

pressure ptm = pint − pext (where pint, pext represent the internal and external

pressure of the tube respectively) to the cross-sectional area A of the tube. The

simplest expressions proposed for the tube law are based on the assumption

that the cross-sectional area A at a given axial position is determined entirely

by the properties of the tube (usually taken to be axially uniform) and the

transmural pressure ptm at the same axial position. These expressions usually

have the following form

ptm = P(A), (1.1)

where P is some function.

Many simple power law and polynomial models have been suggested for

P(A) based on fitting to numerical data such as that constructed by Shapiro

(1977) and Elad et al. (1987), as well as based on fitting to experimental data
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like that found by Kececioglu et al. (1981). However, these simple tube laws

that only give the transmural pressure as a function of the local area do not

take into account any axial forces arising between neighbouring cross sections

due to axial variation of the cross-sectional shape of the tube.

McClurken et al. (1981) first considered adding extra terms to the tube law

(1.1) to account for axial stretching and bending forces. They assumed that

these effects would contribute additively to P(A) so that

ptm = P(A) + PT + PB, (1.2)

where PT, PB represent the effects of axial stretching and bending respectively.

To determine the form of PT, McClurken et al. modelled a cross-section of the

collapsed tube as two parallel lines joined by semi-circles at each end. In doing

so, they were then able to calculate the effect of axial tension on the straight

surfaces and this was related to an equivalent pressure change. This yielded

the relation

PT =
kT

(A0 − A)
1
2

∂2A
∂z2 , (1.3)

where k is some constant, T is the axial tension, A0 is the cross-sectional area

of the tube in its undeformed state, and z is the axial coordinate. Similarly, an

expression was derived for PB that was proportional to ∂4A/∂z4.

Reyn (1987) later considered applying membrane theory to calculate the

effect of axial tension in inflated axisymmetric tubes. For small amplitude

deformations, the axial tension is determined to again have an additive effect

on the tube law as in (1.2), with PT ∝ T∂2A/∂z2. Reyn then assumed that this

form for PT could still be applied to non-axisymmetrically buckled tubes.

The tube laws derived by both McClurken et al. (1981) and Reyn (1987) are

based on the tube taking idealised geometries. However, there is no guarantee

that these tube laws will hold in other regimes. More recently, Whittaker et al.

(2010d) were able to derive a tube law rationally from shell theory valid for

small-amplitude, long-wavelength deformations of a thin-walled elliptical tube.

Details of the derivation of this tube law are found later in §2.3.

1.1.4 One-Dimensional Models

Early elastic-walled-tube experiments (reviewed by Bertram, 2003) found a

vast array of different types of oscillations spanning over a large range of

frequencies. However, the mechanisms involved in developing self-excited

oscillations are still not fully understood. In order to gain a better
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understanding of these mechanisms, one-dimensional models were used in

early theoretical analyses.

These one-dimensional models use three quantities to describe the system:

the mass flux or flow rate of the fluid within the tube, the cross-sectional area

of the tube and the transmural pressure, all as functions of an axial coordinate.

Three partial differential equations are then used as governing equations for

the system. The equations themselves are derived from conservation of mass,

conservation of axial momentum and some tube law, and typically take the

following forms

∂A
∂t

+
∂(wA)

∂z
= 0, (1.4)

ρ

(
∂w
∂t

+ w
∂w
∂z

)
= −∂ptm

∂z
− F, (1.5)

ptm = P(A)− T
∂2A
∂z2 . (1.6)

Here z is again the axial coordinate, t is time, A(z, t) is the cross-sectional

area of the tube, w(x, t) and ptm(x, t) are the cross-sectionally averaged axial

velocity of the fluid and transmural pressure, ρ is the constant fluid density, T

is the axial tension applied to the tube wall, and P(A) is just some function. The

parameter F ≥ 0 represents viscous dissipation, which can be either distributed

frictional losses or quasi-steady losses in a region of separated flow. If we have

distributed frictional losses, F takes the form F = F(w, A). However, Cancelli

& Pedley (1985) suggested that if we have quasi-steady losses in a region of

separated flow downstream of the collapsible tube, F should take the form

F = (χ − 1)ρw ∂w/∂z, where χ = 1 upstream of the separation point, and

0 < χ < 1 downstream of the separation point. Further terms representing

wall inertia, wall damping and bending stiffness can be added to the tube

law (1.6) and these terms can have an important effect in the stability of the

flow-structure interactions that occur.

Using equations (1.4)–(1.6), one-dimensional models have been able to

predict many of the phenomena found experimentally within the Starling

Resistor. By neglecting frictional effects in equations (1.4)–(1.6), Cancelli &

Pedley (1985) were able to predict choking, where the cross-sectional area

A → 0 in a finite time. However, by including viscous dissipation in equation

(1.5), either through the F = (χ − 1)ρw ∂w/∂z term suggested by Cancelli &

Pedley (1985) or by including a distributed frictional term as considered by

Hayashi et al. (1998), a rich variety of self-excited oscillations can be modelled.
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The inclusion of viscous dissipation effects and subsequent prediction of these

self-excited oscillations has been incorporated into many one-dimensional

models, such as the models by Cancelli & Pedley (1985), Jensen (1992),

Matsuzaki et al. (1994) and Hayashi et al. (1998). These oscillations are found

to occur in distinct frequency bands, as observed in experiments, and Jensen

(1990) found that this was because the oscillations occur as normal modes

of the system, with each having a discrete number of wavelengths along the

elastic-walled tube. Jensen (1992) also found that nonlinear mode interactions

yield complex dynamical behaviour similar to that seen experimentally.

These kinds of one-dimensional models are still widely used to model

networks of collapsible tubes (Bull et al., 2005; Fullana & Zaleski, 2009;

Venugopal et al., 2009), and are able to capture qualitative effects such as

the onset of self-excited oscillations that are observed in higher-dimensional

models, as demonstrated by Stewart et al. (2009). However, these

one-dimensional models are also prone to some disadvantages. Firstly,

although these models provide significant insights to the mechanisms occurring

within elastic-walled tubes, they fail to match quantitatively with experimental

results. Secondly, the form of the conservation of axial momentum equation

(1.5) and the tube law (1.6) are not derived rationally from higher-order

systems, and instead ad hoc closure assumptions are required to incorporate

different effects such as viscous dissipation and the form of the tube law.

Finally, this 1D framework is not guaranteed to capture all known modes of

instability within collapsible tube systems, such as Tollmien-Schlichting (TS)

waves or travelling-wave flutter (TWF), both studied by Carpenter & Garrad

(1985, 1986).

1.1.5 Two-Dimensional Models

In the 1980s and 1990s, work focused on the development of two-dimensional

models of flow through elastic-walled tubes. Two classes of model are

generally used, with the first describing small-amplitude instabilities in

spatially uniform, unbounded elastic-walled channels. These models are based

on the Orr–Sommerfield equation, and by incorporating the effects of wall

inertia, damping, bending stiffness and tension, multiple modes of instability

are found. The three most commonly found modes are Tollmien-Schlichting

waves, travelling-wave flutter and static divergence, although other modes of

instability have also been found. For example, Davies & Carpenter (1997)
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found a strongly unstable interaction between TS and TWF modes, LaRose &

Grotberg (1997) discovered a long-wavelength instability of developing flow in

a collapsible channel, and Walsh (1995) identified a long-wave flutter mode that

occurs when there is significant coupling between transverse and longitudinal

wall strain. Additionally, another type of mode has been found that grows

using an energy transfer from the mean flow to the channel wall, developed

from Reynolds stresses within a critical layer. This group of instabilities is

reviewed in more detail by Shankar & Kumaran (1999) and Kumaran (2000,

2003).

The second class of two-dimensional model is based on the model system

constructed by Pedley (1992), which may be seen in Figure 1.3. This system

contains a two-dimensional channel, where one wall has a segment replaced

by a flexible membrane under longitudinal tension. Fluid is driven through

the channel by a fixed pressure drop between the two ends of the channel,

and the transmural pressure over the membrane determines the shape of the

membrane.

Figure 1.3: A sketch of the 2D channel introduced by Pedley (1992). A finite 2D

channel, with part of the upper wall replaced by a flexible membrane under tension,

has fluid driven through it from left to right using a controlled pressure difference

pup − pdn. The transmural pressure (internal pressure pint minus external pressure

pext) determines the shape of the membrane.

Much work using this model system has focused on regimes where

deflections of the flexible membrane are small compared to the channel width.

For example, by assuming the flow has a Reynolds number Re of Re � 1,

Guneratne (1999) found that when there is zero external pressure (pext = 0)

and the membrane tension T is reduced from an initially large value, a static

divergence instability gives rise to static eigenmodes. Guneratne also found
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that when pext 6= 0 and the tension T is lowered, the system passes through

regions of parameter space where single, multiple or no steady solutions

occur. Later on, Huang (2001) used numerical simulations of the linearized

Navier–Stokes equations to examine this system when the flexible membrane

has inertia, damping and relatively low tension, and the external pressure is

set to allow a uniform steady solution to exist. In doing so, it was seen that the

system can yield static divergence and flutter (dependent on membrane inertia)

instabilities that are affected by the upstream and downstream boundary

conditions.

Many Navier–Stokes simulations of steady laminar flows in Pedley’s 2D

channel have also been conducted (e.g. Rast, 1994; Luo & Pedley, 1995, 1996;

Shim & Kamm, 2002), and these have predicted properties such as steady

asymmetric membrane configurations, flow separation downstream of the

collapsible segment, and sometimes a long-wavelength standing wave in flow

downstream of the elastic region. Luo & Pedley (1996) demonstrated that these

steady flows can become unstable to self-excited oscillations when there is a

sufficiently high Reynolds number or a sufficiently low membrane tension.

They also found the surprising result that the dominant viscous dissipation

occurs in viscous boundary layers on the walls upstream of the flexible

membrane, as opposed to downstream of the membrane where propagating

waves known as ”vorticity waves“ occur. Later on, Luo & Pedley (1998) showed

that introducing wall inertia to the model destabilises a high-frequency flutter

mode, and Luo & Pedley (2000) discovered that the primary instability becomes

more stable when an upstream flux is prescribed rather than a pressure drop

across the channel. More examples and details about 2D models in both

unbounded and bounded channels may be seen in the reviews by Heil & Jensen

(2003), Grotberg & Jensen (2004) and Heil & Hazel (2011). Additionally, details

of other alternative instability mechanisms that can occur in bounded channels

may be seen in Stewart et al. (2009).

1.1.6 Three-Dimensional Models

Although there are no fully three-dimensional analytical models developed

that describe the Starling Resistor system, Heil and coworkers have been able

to use finite-element methods coupling non-linear Kirchhoff–Love shell theory

(allowing large deformations and small strains) to an internal 3D Navier–Stokes

flow to investigate this system further. By restricting attention to Stokes flows
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or lubrication theory, Heil & Pedley (1996) and Heil (1997) demonstrated how

non-axisymmetric buckling of the tube contributes to non-linear pressure-flow

relations that yield flow limitation via purely viscous mechanisms. The

Stokes-flow simulations carried out by Heil (1997) were also found to be in

excellent agreement with experimental data.

Hazel & Heil (2003) later extended these simulations to model 3D flows with

a Reynolds number of a few hundred, within non-uniformly buckled tubes.

In doing so, they simulated twin jets emerging from a 2-lobed throat, with

reversed flow in between. Further downstream, these jets were found to then

thicken and merge, and the properties exhibited by these jets were found to be

in agreement with experiments by Bertram & Godbole (1997).

The simulations discussed here all assume that the flow through the

Starling Resistor has fourfold symmetry. However, experiments by Kounanis

& Mathioulakis (1999) reveal a flow downstream of the constriction with

only twofold symmetry. It is as yet unclear whether this symmetry breaking

contributes to a further mechanism of instability in the Starling Resistor.

1.1.7 The Sloshing Mechanism

In this thesis a particular family of oscillations, generated by a simple instability

mechanism, is considered. This mechanism was first determined by Jensen

& Heil (2003) by studying the 2D system constructed by Pedley (1992), and

depicted in Figure 1.3, in a parameter regime where the tension in the wall is

large, using a combination of asymptotic analysis and numerical simulation.

Within this regime high-frequency oscillations, which are governed by a

dynamic balance between fluid inertia and large elastic restoring forces, are

formed. The oscillations of the wall periodically displace fluid from the flexible

region of the tube into the rigid regions, which results in axial sloshing flows

in the rigid parts of the tube. If the amplitude of these sloshing flows is greater

in the upstream rigid section than in the downstream rigid section, then there

will be a net influx of kinetic energy into the system. If this influx exceeds

additional losses, such as viscous dissipation (most of which is found in the

boundary layers near the tube walls) and work done by the pressure at the tube

ends, then the system can extract energy from the flow to drive any instabilities.

Jensen & Heil (2003) used asymptotic techniques to obtain predictions for the

frequency and growth rates of any arising instabilities. They also found their

predictions for the critical Reynolds number at which oscillations develop to be
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in good agreement with numerical simulations.

1.1.8 Sloshing Instability in Three-Dimensional Flow

Whittaker et al. (2010a,b) showed that the essential components of the sloshing

instability mechanism found by Jensen & Heil (2003) are still present in a

three-dimensional flow. However, for efficient extraction of energy from the

mean flow to occur, it is necessary that the tube performs oscillations about

a non-axisymmetric mean state1. This was shown by Heil & Waters (2008)

and Whittaker et al. (2010a). Hence, this instability is most likely to occur

when either a tube with an initially axisymmetric cross section has buckled

non-axisymmetrically or a tube’s undeformed cross section is not circular. This

is in agreement with experimental results showing that self-excited oscillations

most readily develop in tubes which are in a strongly buckled steady-state

configuration (Bertram, 2008).

In the first case, where an initially axisymmetric tube has buckled

non-axisymmetrically, Heil & Boyle (2010) confirmed the existence of

self-excited oscillations arising from the sloshing mechanism. This was

done by constructing numerical simulations of flows in initially axisymmetric

elastic-walled tubes, and more details of this investigation may be found in the

review by Heil & Hazel (2011).

The second case, where the tube has a non-circular undeformed cross

section, was investigated further by Whittaker et al. (2010c). Here, the fluid

behaviour in response to the wall motion (studied by Whittaker et al., 2010a)

and the wall behaviour in response to the fluid pressure (studied by Whittaker

et al., 2010d) were combined to derive a model for the 3D Starling Resistor

system. Asymptotic methods were then used to reduce the model to a single

1D ODE for the fluid pressure as a function of the axial coordinate. To

describe the wall behaviour, a ‘tube law’ linking the transmural pressure with

the cross-sectional area of the tube was used. Unlike the tube laws used in

previous one-dimensional models discussed in §1.1.4, this tube law was derived

rationally from shell theory for an elliptical tube by Whittaker et al. (2010d). The

model that was formed by Whittaker et al. (2010c) is valid for long-wavelength,

1This is because in a tube with circular cross section, the area changes induced by

small-amplitude deformations are only quadratic in the displacement amplitude. The sloshing

flows caused by the displacements are then an order of magnitude smaller, giving a much smaller

influx of kinetic energy.
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high-frequency, small-amplitude oscillations of a thin-walled, initially elliptical

elastic tube under large axial tension. The predictions made by the model for

the mode shapes, frequencies and growth rates of the oscillations, as well as the

critical Reynolds number at which oscillations arise, were found to be in good

agreement with direct numerical simulations. However, some effects such as

wall inertia, axial bending, and normal and in-plane shear forces have been

neglected to simplify the mathematics within the model.

Another drawback of the Whittaker et al. (2010c) model is the type of

boundary conditions satisfied at the ends of the elastic-walled tube in the

Starling Resistor. As the elastic-walled tube is clamped onto two rigid tubes,

canonical ‘clamped’ boundary conditions, forcing the displacement and axial

gradient of the tube wall to be zero, should be applied at the tube ends.

However, in the model derived by Whittaker et al. (2010c), the axial-order

of the model is not high enough to satisfy these conditions and instead the

Dirichlet parts of the non-canonical ‘sliding’ boundary conditions, which only

set the normal and azimuthal displacements to be zero at the tube ends, are

satisfied. Whittaker (2015) reintroduced in-plane shear forces to the Whittaker

et al. (2010c) model, and found a shear-relaxation boundary layer near the tube

ends. This shear layer allowed the Dirichlet parts of the ‘pinned’ boundary

conditions, which fix the normal, azimuthal and axial displacements to be

zero, to be satisfied at the tube ends. However, the inclusion of these in-plane

shear forces did not raise the axial-order of the model enough for the clamped

boundary conditions to be satisfied.

1.2 Overview

In this thesis, the model by Whittaker et al. (2010c) is expanded to include the

effects of wall inertia, axial bending and normal shear forces. The impact that

these effects have on the self-excited oscillations generated by the Whittaker

et al. (2010c) model is then evaluated.

The original set-up used in the Whittaker et al. (2010c) model is depicted in

Figure 1.4. Here, we have a tube of length L, wall thickness d and circumference

2πa, with an initially elliptical cross section, comprised of an elastic-walled

tube clamped between two rigid-walled tubes. The elastic-walled tube has

incremental Young’s modulus E and Poisson’s ratio ν, and is subject to an

axial tension force F. A fluid is then driven through the tube using a volume
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flux condition at the downstream end, and the elastic-walled tube is susceptible

to deformations from forces arising from the transmural pressure. Whittaker

et al. (2010c) combined separate models for the tube wall and the fluid flow

to form a one-dimensional ODE governing the oscillatory components of

the cross-sectional area variation, transmural pressure, and axial velocity of

the fluid. These oscillatory components are all written as functions of axial

position. The frequency of the oscillations appears as an eigenvalue within the

model, and countably many oscillatory modes, each with their own distinct

eigenfrequency, are found to exist. The growth rates and stability criteria of

these oscillations are found by considering the energy balance of the system. In

the Whittaker et al. (2010c) model, the parameters are set so that the tube is long

and thin walled, the applied axial tension force is large, the fluid has a similar

density to the tube wall, and the mean fluid flow has a high Reynolds number

whilst still being laminar. The resulting deformations are then considered to be

small in amplitude. This parameter regime can be applied to blood vessels in

the cardiovascular system with a large and negative transmural pressure, such

as the veins above the heart and outside the skull.

2πa

d

Flow

L F

Clamped
E, ν

F

Figure 1.4: The set-up of the tube in the Whittaker et al. (2010c) model. This tube is

comprised of an initially elliptical elastic-walled tube clamped between two rigid tubes,

and fluid flows from left to right, due to a volume flux condition at the downstream

end.

In Chapter 2, wall inertia is added to the model by Whittaker et al. (2010c).

This is done by reintroducing the wall inertia terms (neglected in the Whittaker

et al. (2010c) model) to the force-balance equations governing the mechanics of

the tube wall. Using the force-balance equations, a new ‘tube law’ (similar to

the tube law derived by Whittaker et al. (2010d)) which relates the transmural

pressure to the cross-sectional area of the tube is derived. Combining this

with the fluid mechanics of the problem, a combined system for the interaction

between the tube wall and the fluid is constructed. Solving this system,
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countably many oscillatory modes for the instabilities are found and their

frequencies are determined. The stability criterion and growth rates of the

modes of the oscillations are also determined and it is found that the inclusion

of wall inertia destabilises the system. Finally, asymptotic approximations

describing the properties of the oscillations are derived in the case of large

wall inertia.

In Chapters 3–7, we expand the Whittaker et al. (2010c) model to include the

effects of axial bending. Initially, the model derived by Whittaker et al. (2010c)

is unable to satisfy the canonical ‘clamped’ boundary conditions which should

be set at the ends of the elastic-walled tube. It is found that terms representing

axial bending are needed within the model in order for the clamped boundary

conditions to be satisfied. These terms are only significant at leading order near

the elastic-walled tube ends and as such, a boundary layer where axial bending

effects are significant is introduced.

In Chapter 3, an estimate for the width of this axial-bending boundary layer

is derived using a toy model. Using this estimate, the problem is found to split

into multiple cases dependent on the relative sizes of the estimate, the tube

wall thickness and the shear-relaxation boundary layers studied by Whittaker

(2015). The first case occurs when the estimate of the bending boundary-layer

width is larger than the tube wall thickness. In this scenario, it is found that

the shear-relaxation boundary layer (which is split into an inner and outer

layer) derived by Whittaker (2015) has a significant effect on the solution of

the model and must be considered. This case then splits into two regimes:

regime Ia, where the bending layer is estimated to be smaller than both the

inner and outer shear-relaxation layers, and regime Ib, where the bending layer

is expected to be larger than the inner shear layer, but still smaller than the

outer shear layer. The final case, regime II, occurs when the estimate of the

bending boundary-layer width is smaller than the tube wall thickness. In this

regime, the shear-relaxation boundary layer no longer has a significant effect

on the solution of the model and does not need to be considered. However, a

different model is needed to describe the mechanics of the tube wall.

Chapter 4 concentrates on the first case, regime Ia. Here the shear-relaxation

layer modelled by Whittaker (2015) must be considered, and in this regime it is

predicted by the toy model in Chapter 3 that the bending-layer width is larger

than the tube wall thickness but smaller than both the shear layers modelled by

Whittaker (2015). In this scenario, Kirchhoff–Love shell theory which is used to
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model the wall mechanics in the bulk of the tube in Chapter 2 can also be used

to model the wall mechanics here. It is also expected that the bending layer

is situated at the ends of the elastic-walled tube and matches onto modified

inner and outer shear-relaxation layers, which in turn match onto the bulk

layer. Solving the governing system within this bending layer, the bending-layer

width is found to be in agreement with the prediction from the toy model in

Chapter 3, and the leading-order deformations and area variation within the

bending layer are calculated. The corresponding corrections to the inner shear

layer are then calculated and the maximum order at which corrections apply to

outer shear layer and bulk layer are also evaluated.

In Chapter 5, regime Ib is considered. As in regime Ia, the shear-relaxation

layer studied by Whittaker (2015) must be considered. The toy model in

Chapter 3 predicts in this case that the width of the bending layer is larger

than both the tube wall thickness and the inner shear layer, but smaller than

the outer shear layer. In this case, Kirchhoff–Love shell theory can once again

be used to model the wall mechanics. It is also found that the inner shear

layer is no longer needed in this scenario as its effects are incorporated into

the bending layer. As such, the bending layer is found to again be situated at

the ends of the elastic-walled tube. This bending layer then matches onto a

modified outer shear layer, which in turn matches onto the bulk layer. When

the model considered here is written in terms of the deformations of the tube

wall, a leading-order degeneracy is found. To solve this problem, the model

is instead written and solved in terms of the in-plane stresses of the tube wall,

up to second order. In solving this model, the bending layer is found to have a

different width to that predicted by the toy model in Chapter 3. This is because

azimuthal stretching mechanisms which cannot be captured by the toy model

contribute at leading order in this regime. However, the width of the bending

layer is still found to be in between the sizes of the inner and outer shear layers.

Using the expressions for the stresses, the deformations in the bending layer

are calculated up to first order and the area change within the bending layer

is numerically determined. The corrections to the outer shear layer are then

calculated, and the maximum order at which corrections apply to the bulk

layer is evaluated.

Chapter 6 considers the final case, regime II. Here, the shear-relaxation layer

studied by Whittaker (2015) no longer has a significant effect on the bulk layer

and does not need to be considered. The toy model in Chapter 3 predicts in
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this regime that the bending layer will be smaller than the tube wall thickness,

and thus Kirchhoff–Love shell theory can no longer be used to model the

bending layer. Instead, as azimuthal variation is expected to be slow on the

predicted scale of the bending layer, a linearised two-dimensional model of

bending a semi-infinite block under tension is considered. This semi-infinite

block corresponds to a two-dimensional cross-section of the tube wall in the

normal and axial directions. This model is then solved numerically, and

analytical techniques are also applied to determine asymptotic approximations

of the boundary-layer width, and far-field approximations of the normal and

axial deformations up to the amplitude of the deformations. It is found in

the case corresponding to regimes Ia and Ib that the boundary-layer width

derived from this model agrees with the estimate provided by the toy model

in Chapter 3. However, in the case corresponding to regime II, a boundary

layer with a much larger width than predicted is found. This boundary layer,

which is found to have a width larger than the block thickness, is determined

to be a new transverse shear-relaxation boundary layer. It is noted that this

shear layer is different from the shear layer studied by Whittaker (2015), which

arises from shear in the azimuthal direction. This 2D model is then used to

model a transverse shear layer at the ends of the elastic-walled tube, and the

corrections to the boundary conditions in the bulk layer due to this shear layer

are calculated.

In Chapter 7, the 2D model for bending a semi-infinite block under tension,

derived in Chapter 6, is considered further. Since the boundary layer found

in Chapter 6 for regime II has a width larger than the block thickness, it is

possible that Kirchhoff–Love shell theory (or another approximation applying

the property that the wall thickness is the smallest geometric parameter) could

be used to derive a one-dimensional model for the problem. Three different 1D

models are derived and evaluated in this chapter, and through this analysis,

more information about the wall mechanics within the new boundary layer is

determined. It is found that only one of these models can accurately capture

the behaviour of the deformations in the far-field, but even this model cannot

accurately capture the deformations near the clamped end of the block. We

find that this is due to a two-dimensional effect which is not incorporated into

the 1D models.

Finally, in Chapter 8 some concluding remarks and recommendations for

further work to be carried out on the models derived here are provided.



Chapter 2

The Effect of Wall Inertia on the

Instability of Flow Through an

Elastic-Walled Tube

2.1 Introduction

In this chapter, we will expand the model derived by Whittaker et al. (2010c)

to include the effects of wall inertia on the self-excited oscillations generated

within an elastic-walled tube with initially elliptical cross section. A description

of the mathematical set-up used by Whittaker et al. (2010c) is provided in §2.2.

In §2.3, we extend the work done by Whittaker et al. (2010d) to generate a

tube law which takes into account inertia of the tube wall and relates the

cross-sectional area of the tube to the transmural pressure. This tube law will

be acquired from shell theory for an elliptical tube. We will then combine this

tube law with the fluid mechanics investigated by Whittaker et al. (2010a,b) (and

provided in §2.4) to create the leading-order governing ODE’s for the system

in §2.5.

Once the governing ODE’s are derived, we then solve them for both the

frequency of the oscillations and the oscillatory pressure field in §2.6. Using the

solutions for the frequencies of the oscillations and the oscillatory pressure, we

then calculate the corresponding axial velocity of the fluid and cross-sectional

area of the tube. Once this has been accomplished, we quantify the effect wall

inertia has on the frequency and mode shapes of the oscillations.

In §2.7, we investigate the time-averaged energy budget of the system and

use this to determine expressions for the growth rates of the oscillations, as

19
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well as expressions for the critical Reynolds numbers needed for each mode

to become unstable. Using these expressions, we will evaluate the effect of

wall inertia on the stability and growth rate of each mode and determine

which mode is the most unstable and has the highest growth rate for a given

wall inertia value. Finally in §2.8, we will investigate the case when we have

large wall inertia and calculate asymptotic solutions for the frequency of the

oscillations, the oscillatory pressure and the critical Reynolds number and

growth rate of the oscillations.

2.2 Mathematical Set-up

2.2.1 Problem Description

We adopt the same set-up as Whittaker et al. (2010c) and depicted in Figure

2.1. A tube of length L and circumference 2πa with an initially elliptical axial

cross-section is considered. The tube is set so that the tube axis is aligned with

the z∗-axis and the ellipticity of the tube is set by a parameter σ0. Using this

parameter, the major and minor radii are given by ac cosh(σ0) and ac sinh(σ0),

where we have

c =
πsech(σ0)

2E(sech(σ0))
, (2.1)

and the complete elliptic integral of the second kind E(φ) is defined as

E(φ) =
∫ π

2

0
(1− φ2 sin2 ϑ)

1
2 dϑ. (2.2)

The constant c has been chosen to force the circumference to be 2πa. Using the

values of the major and minor radii, the cross-sectional area in the undeformed

state is calculated to be

A∗0 = πa2c2 cosh(σ0) sinh(σ0) = a2 π3 tanh(σ0)

4[E(sech(σ0))]2
. (2.3)

The tube is split into three regions: two rigid sections occupying 0 < z∗/L <

z1 and z2 < z∗/L < 1, and an elastic-walled section within z1 < z∗/L < z2

which is clamped onto the rigid tubes at z∗ = z1L, z2L. The elastic-walled

region is susceptible to deformations from forces arising from the transmural

(internal minus external) pressure. It is assumed that the elastic wall behaves

linearly elastically over the range of deformations we consider here, and has

thickness d, mass per unit area m, Poisson’s ratio ν and incremental Young’s
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z∗ = 0
z∗ = z1L

z∗ = z2L z∗ = L

U 2πa

z∗

d

p∗ = p∗up

∫∫
w∗dA∗ = A∗0U

Figure 2.1: The set-up used by Whittaker et al. (2010c). An initially elliptical

elastic-walled tube is clamped between two rigid tubes, and fluid flows from left to

right, due to a volume flux condition at the downstream end.

modulus E. Using these parameters, we define the extensional stiffness D and

the bending stiffness K of the tube wall as

D =
Ed

1− ν2 , K =
Ed3

12(1− ν2)
. (2.4)

An axial tension force F is applied at the ends of the elastic-walled tube, giving

rise to a uniform axial pre-stress of F/(2πad) in the undeformed configuration.

Within the tube, a fluid with density ρ and viscosity µ is driven through the

tube using a steady axial volume flux with size A∗0U at the downstream end

z∗ = L. The pressure is also fixed to be p∗ = p∗up at the upstream end z∗ = 0.

By prescribing the flow rate at the downstream end, we ensure that no kinetic

energy is lost there, which in turn, along with the fixed upstream pressure,

ensures that the instability mechanism is at its most potent. Outside the tube,

there is a constant external pressure p∗ext, which acts on the tube.

As in the Whittaker et al. (2010c) model, we will consider oscillations of the

fluid and tube wall with typical timescale T and amplitude b(t∗)� a, where t∗

is dimensional time. The key variables we will use to describe the system are

the fluid pressure p∗, the axial velocity of the fluid w∗ and the cross-sectional

area A∗ of the tube. In the parameter regime we shall be considering, it is found

that the transverse velocity components do not appear at leading order.

By assuming that oscillations involve a balance between forces from the

azimuthal bending of the tube wall and axial fluid inertia, we can estimate a

timescale T by equating the inertial pressure scale ρL2b/(aT2) associated with

oscillations of the fluid with the pressure scale Kb/a4 associated with azimuthal

bending. Doing so, we find

T =

(
ρa3L2

K

) 1
2

. (2.5)
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2.2.2 Dimensionless Groups and Parameter Regime

We now describe the dimensionless groups involved in this problem. We first

have the three geometric ratios

δ =
d
a

, ` =
L
a

and ∆(t∗) =
b(t∗)

a
, (2.6)

which correspond to the wall thickness, tube length and oscillation amplitude

respectively. We also have two groups related to the fluid mechanics. Here,

these are represented as the Womersley number α and the Strouhal number St,

defined by

α2 =
ρa2

µT
=

(
ρK

a`2µ2

) 1
2

and St =
a
UT

=

(
K

ρa3`2U 2

) 1
2

. (2.7)

The Womersley number represents the relative importance of unsteady inertia

to viscous effects and the Strouhal number represents the relative importance

of unsteady to convective inertia. Using these, we can define the Reynolds

number Re as

Re =
ρU a

µ
=

α2

St
. (2.8)

The final groups we define that are related to the tube wall are the

dimensionless axial force F and the dimensionless mass M defined by

F =
aF

2πK`2 , M =
ma4

KT2 ≡
m

ρa`2 . (2.9)

The dimensionless axial force F is the ratio of the restoring forces Fb/2πaL2

from tension effects to the restoring forces Kb/a4 from azimuthal bending. The

dimensionless mass M is the ratio of wall inertia mb/T2 forces to the azimuthal

bending Kb/a4 forces or equivalently the forces ρa`2/T2 due to the fluid inertia.

Here, we will consider a parameter regime where the tube wall is thin,

under a large axial tension and generates small-amplitude, high-frequency,

long-wavelength oscillations, so we have

∆(t)� 1, α� 1, `St� 1, `� 1, δ� 1, and F = O(1). (2.10)

2.2.3 Non-dimensionalization

We now non-dimensionalize the variables involved, starting by scaling

dimensional time t∗ with t∗ = Tt. The transverse lengths are
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non-dimensionalized using the typical radial scale a, and the axial length and

the cross-sectional area are non-dimensionalized as follows

z∗ = Lz, A∗0 = a2A0, A∗ = a2A. (2.11)

It is assumed that the area A(z, t) varies harmonically in time with

dimensionless frequency ω and amplitude ∆(t). The pressure drop in the fluid

and non-zero external pressure mean that the transmural pressure has a steady,

axially varying component which deforms the tube wall slightly. Oscillations

then occur about this deformed steady configuration. Hence, we can write

A(z, t) = A0 +
1

α2`St
Ā(z) + ∆(t)Re(Ã(z)eiωt) + . . . , (2.12)

where A0 is the cross-sectional area in the undeformed state, Ā(z) is the change

in area due to the steady component of the transmural pressure and Ã(z) is

the (potentially complex) axial mode shape of the change in area due to the

oscillations of the wall. The scaling for the steady area variation is chosen so

that the ratio ∆α2`St between the steady and oscillatory area variations matches

with the ratio between the steady and oscillatory components of the pressure

found later in (2.13).

We decompose the pressure and axial velocity of the fluid into steady and

oscillatory components and non-dimensionalize as

p∗ − p∗up =
µLU

a2 p̄ +
ρL2b
aT2 Re( p̃(z)eiωt) + . . . , (2.13)

w∗ = U w̄ +
Lb
aT

Re(w̃(z)eiωt) + . . . . (2.14)

As in the expression (2.12) for the dimensionless area, overbars denote steady

components whereas tildes denote the complex axial mode shapes of the

oscillatory components. The pressure has been non-dimensionalized using

the viscous scale µLU/a2 for the steady component and the inertial scale

ρL2b/aT2 ≡ ∆K/a3 for the oscillatory component. The velocity has been

non-dimensionalized using scales for the mean flow and wall motion. The

oscillatory components have the same frequencies as the wall motion and

as discussed in §2.4, the large aspect ratio of the system results in the

leading-order oscillatory pressure p̃ and leading-order oscillatory axial velocity

w̃ being uniform in the cross-section of the tube.

The steady external pressure is non-dimensionalized as

p∗ext − p∗up =
µLU

a2 p̄ext. (2.15)
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Using this and the expression (2.13) for the fluid pressure p∗ − p∗up, we may

define the dimensional transmural pressure p∗tm as

p∗tm = p∗ − p∗ext = (p∗ − p∗up)− (p∗ext − p∗up)

=
µLU

a2 ( p̄− p̄ext) +
ρL2b
aT2 Re( p̃(z)eiωt) + . . . . (2.16)

The transmural pressure is then non-dimensionalized as

p∗tm =
∆K
a3 ptm. (2.17)

Applying this to the expression (2.16) for p∗tm, we find the non-dimensional

transmural pressure ptm is given by

ptm =
1

∆α2`St
( p̄− p̄ext) + Re( p̃(z)eiωt) + . . . . (2.18)

Finally, energy and energy fluxes are non-dimensionalized using

ρU 2a2L and ρU 3a3. (2.19)

These are based on the kinetic energy and kinetic energy fluxes in the steady

flow.

2.3 A Tube Law to Model the Wall Mechanics

We now proceed to derive a tube law relating the transmural pressure with the

cross-sectional area of the tube by following the procedure used by Whittaker

et al. (2010d). The main difference is that terms which relate to wall inertia are

also included in the derivation of the tube law.

2.3.1 Lagrangian Surface Coordinates, Deformation Notation and
Tensor Notation

We first introduce a new coordinate system that takes into account the

deformations arising in the tube wall. We parameterize the midplane of

the tube wall with dimensional Lagrangian coordinates (x1, x2), which are

measures of arc length in the azimuthal and axial directions respectively, in

the undeformed state1. We also introduce two dimensionless Lagrangian

1Note that the superscripts denote coordinate directions and are not to be mistaken for

powers.
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surface coordinates, τ ∈ [0, 2π) and z ∈ [0, 1]. These are related to (x1, x2)

by dx1 = ah(τ)dτ and dx2 = a`dz, where

h(τ) = c(sinh2(σ0) + sin2 τ)
1
2 = c

(
1
2

cosh 2σ0 −
1
2

cos 2τ

) 1
2

.

We now introduce the dimensionless functions ξ(τ, z, t) and η(τ, z, t) to

represent the normal and tangential displacements of the wall, as well as the

dimensionless functions ζa(z, t) and ζ(τ, z, t) to represent the components of

the axial displacements due to an overall shift in the axial direction and a

deformation about this shift. Using these functions along with our coordinate

system, we can define the position of the wall midplane r in the deformed state

as follows,

r = r0(τ, z) +
∆(t)a
h(τ)

(
ξ(τ, z, t)n̂+η(τ, z, t)t̂

)
+ ∆(t)a`

(
1
`2 ζ(τ, z, t)+δ2ζa(z, t)

)
ẑ.

(2.20)

Here, r0 is the initial position of the surface element and the vectors n̂,

t̂ and ẑ are unit vectors in the normal, azimuthal and axial directions of

the undeformed tube, respectively. The components ξ, η, ζ and ζa of the

deformation r are depicted in Figure 2.2.

Figure 2.2: The set-up of the undeformed, elliptical, elastic-walled tube, similar to that

used by Whittaker et al. (2010d). The midplane of the tube wall is parameterized by

the dimensionless coordinates (τ, z), and the displacements of the wall are described

by the components ξ, η, ζ + δ2`2ζa of the deformation r, given by (2.20).

With the definition of r, we can define the basis vectors in the deformed

state to be

aα =
∂r

∂xα
, (2.21)

where the indices span over (1, 2). We also define the unit normal to the tube

wall at each point to be

a3 =
a1 × a2

|a1 × a2|
, (2.22)
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as well as the metric tensor

aαβ = aα · aβ, (2.23)

and the curvature tensor

bαβ = a3 ·
∂aα

∂xβ
. (2.24)

2.3.2 Kirchhoff–Love Shell Equations and Constitutive Laws

The Kirchhoff–Love shell equations in covariant differential form (Flügge, 1972;

Søndergaard, 2007) are now used as a starting point for the derivation of our

tube law. These are

Nαβbαβ +∇αQα + f 3 = mr̈3, (2.25)

∇βNβα − bα
γQγ + f α = mr̈α, (2.26)

∇β Mβα −Qα + gα = iθ̈∗α. (2.27)

In these equations, Nαβ, Mαβ and Qα represent in-plane stress, the in-plane

bending moment and the normal shear stress respectively, f α are tangential

body forces, f 3 is a normal body force, gα are body moments and ∇α is a

two-dimensional covariant derivative in the direction aα. We also have rα as the

component of r in the aα direction. Finally, θ̈∗α denotes the angular acceleration

about an axis passing through the tube wall in the aα direction, and i is the

moment of inertia about the same axis. The angles θ∗α of rotation that the

tube wall takes about axes passing through the material in the aα direction are

depicted in Figure 2.3. Equations (2.25) and (2.26) represent equilibrium of

forces in the a3 and aα directions respectively, while equation (2.27) represents

the equilibrium of moments about the two axes in the plane of the tube wall.

The moment of inertia i for an element of the tube wall is that of a rod of

length d and mass m orientated to be normal to the shell surface. Hence, we

have

i =
1
12

md2. (2.28)

We now use (2.27) to eliminate Qα from (2.25) and (2.26). Substituting in the

components of rα and assuming that any external forces come only from the

transmural pressure p∗tm, so f α = gα = 0 and f 3 = p∗tm, we obtain the following
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Figure 2.3: A depiction of the angles θ∗α of rotation that the tube wall takes about axes

passing through the material in the aα direction.

equations

∇α∇β Mαβ + Nαβbαβ −
1

12
∇αmd2θ̈∗α

+p∗tm −
m
T2

(
∆(t)a
h(τ)

)
d2ξ

dt2 + . . . = 0, (2.29)

∇βNβ1 − b1
γ∇β Mβγ +

1
12

b1
γmd2θ̈∗γ − m

T2

(
∆(t)a
h(τ)

)
d2η

dt2 + . . . = 0, (2.30)

∇βNβ2 − b2
γ∇β Mβγ +

1
12

b2
γmd2θ̈∗γ

−m∆(t)a`
T2

(
1
`2

d2ζ

dt2 + δ2 d2ζa

dt2

)
+ . . . = 0. (2.31)

It is noted that we will also have terms dependent on ∆̇ and ∆̈. However these

are assumed to be negligible due to the amplitude of the oscillations changing

on a longer time scale than the oscillations themselves.

We now introduce the in-plane strain and bending strain tensors which

characterize the deformation of the wall material

γαβ =
1
2
(aαβ − āαβ), καβ = −bαβ + b̄αβ + 2b̄δ

αγδβ, (2.32)

where overbars denote the values of the quantities in the undeformed state.

Using linear constitutive laws (Flügge, 1972, section 9.4), we can relate Nαβ
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and Mαβ to γαβ and καβ by

Nαβ = δα
2 δ

β
2

F
2πa

+ D[(1− ν)γαβ + νγλ
λaαβ]

+K
{
(1− ν)

2
[2aβδbαγ + aβγbαγ + aαδbβγ − bλ

λ(aαδaβγ + aαγaβδ)]

+ν[aαβbγδ + aγδbαβ − aαβaγδbλ
λ]

}
κλδ, (2.33)

Mαβ = K[−(1− ν)(bα
γγγβ − bλ

λγαβ)− ν(bαβ − bλ
λaαβ)γ

µ
µ

+
1
2
(1− ν)(καβ + κβα) + νaαβκλ

λ ], (2.34)

where δi
j is the Kronecker delta. Equations (2.33) and (2.34) are found by

substituting the plane stress form of Hooke’s law into the definitions of Nαβ

and Mαβ, rewriting in terms of γαβ and καβ and neglecting higher-order δ terms.

2.3.3 Scaling and Non-Dimensionalization

Our next step is to non-dimensionalize (2.29), (2.30) and (2.31) which will

allow us to determine which terms appear at leading order in the governing

equations. We proceed to use the scalings and non-dimensionalizations found

by Whittaker et al. (2010d) to simplify our equations.

First, we recall the scalings (2.9), (2.17) for the axial force F, mass per unit

area m and transmural pressure p∗tm. Next, we scale the curvature tensor both

in the deformed and undeformed states. In the undeformed state, we scale as

b̄β
α =

1
a

[
B̄(τ) 0

0 0

]
, (2.35)

due to the only curvature in the undeformed state being the azimuthal

curvature, which has size O(1/a). Using this, we scale the curvature tensor

in the deformed state as

bβ
α = b̄β

α +
∆(t)
ah(τ)

[
β(τ, z) O(`−1)

O(`−1) 1
`2

∂2ξ
∂z2

]
. (2.36)

Now, we scale the in-plane and bending strains starting with γαβ, which

may be written as

γαβ = ∆(t)

[
O(δ2, `−2) 1

` (s(z) + O(δ2, `−2))
1
` (s(z) + O(δ2, `−2)) 1

`2
∂ζ
∂z + δ2 dζa

dz + . . .

]
, (2.37)
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where s(z) is the leading-order component of the shear strain which is

independent of τ. We scale καβ as follows

καβ =
∆(t)

a

[
− 1

h β + O(δ2, `−2) 1
`O(1)

1
`O(1) − 1

`2h
∂2ξ
∂z2

]
. (2.38)

The axial bending term found in κ22 is found to be too small to contribute at

leading order on the axial scale considered here and will be neglected. However

we later reintroduce this axial bending term in Chapters 3–7 by considering

smaller axial scales where the bending term becomes significant at leading

order.

The in-plane stress Nαβ is scaled as

Nαβ =
K
a2

[
0 0

0 `2F

]
+

∆(t)K
a2

[
Ñ(τ, z) `S̃(z) + . . .

`S̃(z) + . . . Σ̃(τ, z)

]
, (2.39)

where

Ñ(τ, z) =
a2D

∆(t)K
(γ11 + νγ22) =

12γ11

∆(t)δ2 + 12ν

(
1

δ2`2
∂ζ

∂z
+

dζa

dz

)
(2.40)

is the dimensionless hoop stress,

Σ̃(τ, z) =
a2D

∆(t)K
(γ22 + νγ11) = νÑ + 12(1− ν2)

(
1

δ2`2
∂ζ

∂z
+

dζa

dz

)
(2.41)

is the dimensionless axial stress and

S̃(z) =
a2D

∆(t)K
γ12 =

12(1− ν)s(z)
δ2`2 (2.42)

is the leading-order dimensionless shear stress. We also scale the bending

moment Mαβ as

Mαβ = −∆(t)K
a

[
1
h β + O(δ2, `−2) O(`−1)

O(`−1) O(`−2)

]
. (2.43)

We now evaluate the covariant derivatives that arise in (2.29), (2.30) and

(2.31). At leading order, these are

∇1 =
1
ah

∂

∂τ
+ O(`−1), ∇2 =

1
a`

∂

∂z
+ O(`−2). (2.44)

We must also evaluate one of the higher-order terms in the derivative of Nαβ

due to the large factor multiplying F in the definition (2.39) of Nαβ. The full

expression for the derivative of Nαβ is

∇αNαβ =
∂Nαβ

∂xα
+ Γα

γαNγβ + Γβ
γαNαγ, (2.45)
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where the Christoffel symbol is given by Γβ
µν ≡ aαβaα · aµ,ν. As each component

of Γβ
µν is O(∆) at most, we only need to consider the terms involving N22, which

is the only component of Nαβ that is non-O(∆). Hence the relevant Christoffel

symbols are Γ1
21, Γ1

22 and Γ2
22. Whittaker et al. (2010d) calculated these to be

Γ1
21 =

1
a`

∂γ11

∂z
+ · · · = ∆(t)

a`

[
δ2

12
∂Ñ
∂z
− ν

(
1
`2

∂2ζ

∂z2 + δ2 d2ζa

dz2

)]
+ . . . , (2.46)

Γ1
22 =

∆(t)
a`2h

∂2η

∂z2 + . . . , (2.47)

Γ2
22 =

∆(t)
a`

(
1
`2

∂2ζ

∂z2 + δ2 d2ζa

dz2

)
+ . . . . (2.48)

Finally, the angles θ∗α of rotation that the tube wall takes about axes passing

through the tube wall in the aα directions are scaled as

θ∗1 =
∆
`

θ1, θ∗2 = ∆θ2, (2.49)

where the angles θα are O(1). These scalings are determined by taking the

ratio of the size of the normal deformations to the length scales in the axial and

azimuthal directions.

2.3.4 Leading-Order Force-Balance Equations

Substituting the scalings (2.9), (2.17), (2.35)–(2.49) into the force-balance

equations (2.29)–(2.31), and retaining only leading-order terms in ∆, δ and `−1,

we find the following

B̄Ñ +
F
h

∂2ξ

∂z2 −
1
h

∂

∂τ

(
1
h

∂

∂τ

(
β

h

))
+ ptm +

M
h

ξ̈ = 0, (2.50)

1
h

∂Ñ
∂τ

+ h
dS̃
dz

+
F
h

∂2η

∂z2 +
B̄
h

∂

∂τ

(
β

h

)
+

M
h

η̈ = 0, (2.51)

1
`

∂

∂z

(
νÑ + 12(1− ν2)

(
1

δ2`2
∂ζ

∂z
+

dζa

dz

))
+F` δ2

12
∂Ñ
∂z

+F`(2− ν)

(
1
`2

∂2ζ

∂z2 + δ2 d2ζa

dz2

)
+ M`

(
1
`2 ζ̈ + δ2ζ̈a

)
= 0. (2.52)

We note that the angular inertia terms have now vanished. This is because

during the scaling these terms have become O(δ2).
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2.3.5 Curvature and Shear Components in terms of the Deformations,
and the Relationships Between the Deformations

Now, B̄, β and S̃ are evaluated in terms of the dimensionless deformation

functions ξ, η, ζ and ζa. Whittaker et al. (2010d) found the relations to be

B̄ = − c2 sinh(2σ0)

2h3 , β = − 2
c2 sinh(2σ0)

∂

∂τ

(
1 +

∂2

∂τ2

)
η,

S̃ =
12(1− ν)

δ2`2
d
dz

(
1

2π

∫ 2π

0
ηdτ

)
. (2.53)

Whittaker et al. (2010d) also found the following to hold at leading order

ξ sinh(2σ0) +
2h2

c2
∂η

∂τ
− η sin(2τ) = 0, (2.54)

∂η

∂z
+

∂ζ

∂τ
=

h
2π

d
dz

∫ 2π

0
ηdτ. (2.55)

Equation (2.54) is known as the inextensibility condition and can be used to

eliminate ξ from our equations in favour of η. We can also use (2.55) to rewrite

ζ in terms of η.

2.3.6 Reducing the Governing Equations to a Single Equation for η

The governing equations (2.50)–(2.52) are now reduced to a single equation to

be solved for η. Eliminating the hoop stress Ñ between (2.50) and (2.51) and

substituting in the expressions (2.53) gives

L(β) = ptmCph + h
d2

dz2R(η) +F
[(

Cn + Cn′
∂

∂τ

)
∂2ξ

∂z2 +
∂2η

∂z2

]
−M

[(
Cn + Cn′

∂

∂τ

)
ξ̈ + η̈

]
, (2.56)

where we have introduced the linear operators L and R defined by

L(β) =
2

c2 sinh 2σ0

(
∂3

∂τ3 + L2
∂2

∂τ2 + L1
∂

∂τ
+ L0

)
β, (2.57)

R(η) = 12(1− ν)

δ2`2
1

2π

∫ 2π

0
η dτ, (2.58)
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as well as the coefficients

L2 = − 3 sin(2τ)

cosh(2σ0)− cos(2τ)
, (2.59)

L1 = − (2 cos2(2τ) + 8 cosh(2σ0) cos(2τ)− 9− cosh2(2σ0))

(cosh(2σ0)− cos(2τ))2 , (2.60)

L0 =
3 sin(2τ)(cosh2(2σ0)− 5 + 4 cosh(2σ0) cos(2τ))

(cosh(2σ0)− cos(2τ))3 , (2.61)

Cp =
3 sin(2τ)

sinh(2σ0)
, (2.62)

Cn =
2 sin(2τ)

sinh(2σ0)
, (2.63)

Cn′ =
cosh(2σ0)− cos(2τ)

sinh(2σ0)
. (2.64)

We now use (2.54) and (2.53b) to eliminate ξ and β from (2.56). Doing so,

we obtain

L(K(η))− h
∂2

∂z2R(η)−F
∂2

∂z2J (η) + MJ (η̈) = ptm(z, t)Cph. (2.65)

Here we have introduced two more linear operators K and J , which are given

by

K(η) = −2
c2 sinh(2σ0)

∂

∂τ

(
1 +

∂2

∂τ2

)
η, (2.66)

J (η) = − (cosh(2σ0)− cos(2τ))2

sinh2(2σ0)

∂2η

∂τ2 −
3(cosh(2σ0)− cos(2τ)) sin(2τ)

sinh2(2σ0)

∂η

∂τ

+
2 sinh2(2σ0) + 3 sin2(2τ)− (cosh(2σ0)− cos(2τ))2

sinh2(2σ0)
η. (2.67)

It is noted that (2.65) is an equation to be solved for η, forced by ptm. By

examining (2.65), it is seen that the right-hand side is odd and π-periodic in τ.

Hence, the form of the operators on the left-hand side of (2.65) implies that η

is also odd and π-periodic in τ. Using this property, we have that R(η) = 0.

2.3.7 Applying a Fourier Expansion of η

As the solution of (2.65) is symmetric, we find it convenient to express η as a

Fourier series. As η is odd in τ, we only keep the sine terms. Hence, our series

is

η =
∞

∑
n=1

en(z, t) sin(2nτ), (2.68)
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where en(z, t) are the Fourier coefficients of η. Substituting the expansion (2.68)

into (2.65), we obtain

L(K(η)) = ptm(z, t)Cph +F
∞

∑
m=1

CTm(τ)e′′m(z, t)−M
∞

∑
m=1

CTm(τ)
∂2

∂t2 em(z, t),

(2.69)

where ′ is the differential with respect to z and CTm(τ) is defined by

CTm(τ) =
1

sinh2 2σ0

{
sin(2mτ)

[
3 sin2 2τ + 2 sinh2 2σ0

+(4m2 − 1)(cosh 2σ0 − cos 2τ)2]
−6m(cosh 2σ0 − cos 2τ) cos(2mτ) sin 2τ

}
.

2.3.8 Decomposition of η

As the first term on the right-hand side of (2.69) represents forcing of azimuthal

bending due to the transmural pressure, whereas the second and third terms

represent axial tension and wall inertia effects, η is now decomposed into parts

to better represent these different effects. We define two functions η(P)(τ) and

η
(T)
m (τ) that satisfy

L(K(η(P))) = CPh,

L(K(η(T)
m )) = CTm.

Doing this, we can substitute L(K(η(P))) and L(K(η(T)
m )) into equation (2.69).

As L and K are linear and the solution for η is unique (shown by Whittaker

et al., 2010d), we obtain the following equation for η

η(τ, z) = ptm(z, t)η(P)(τ) +F
∞

∑
m=1

η
(T)
m (τ)e′′m(z, t)−M

∞

∑
m=1

η
(T)
m (τ)

∂2

∂t2 em(z, t).

(2.70)

We now define Fourier series for η(P) and η
(T)
m as

η(P)(τ) =
∞

∑
n=1

E(P)
n sin(2nτ),

η
(T)
m (τ) =

∞

∑
n=1

E(T)
mn sin(2nτ),

where E(P)
n and E(T)

mn are the Fourier coefficients of η(P) and η
(T)
m respectively.

Substituting these into equation (2.70) and equating coefficients, we get the

following set of equations for en(z, t) in terms of E(P)
n and E(T)

mn

en(z, t) = ptm(z, t)E(P)
n +F

∞

∑
m=1

E(T)
mn e′′m(z, t)−M

∞

∑
m=1

E(T)
mn

∂2

∂t2 em(z, t). (2.71)
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2.3.9 The Tube Law

Now, we assume that the deformations in the tube wall that arise from the

transmural pressure ptm(z, t) and the axial pre-stress F can be modelled by

the first Fourier mode of η, η(P) and η
(T)
m . It has been shown by Whittaker

et al. (2010d) that the sizes of the higher-order Fourier coefficients are much

smaller than the sizes of the first-order Fourier coefficients, and because of this

our assumption is justified. Making this assumption, we can truncate equation

(2.71) after m = 1 giving us

e1(z, t) = E(P)
1 ptm(z, t) +FE(T)

11
∂2e1

∂z2 −ME(T)
11

∂2e1

∂t2 . (2.72)

Whittaker et al. (2010d) have also shown the following relation between

e1(z, t) and the cross-sectional area A(z, t)

A(z, t)− A0

A0
=

6∆e1(z, t)
c2 sinh2 2σ0

, (2.73)

By rearranging (2.73) to give e1(z, t) in terms of A(z, t) and substituting into

(2.72), the following equation for ptm(z, t) is obtained

ptm(z, t) =
k0

∆A0
(A(z, t)− A0)−

k2F
∆A0

∂2A(z, t)
∂z2 +

k2M
∆A0

∂2

∂t2 (A(z, t)− A0), (2.74)

where k0 and k2 are given by

k0 =
c2 sinh2(2σ0)

6E(P)
1

, k2 =
c2 sinh2(2σ0)E(T)

11

6E(P)
1

. (2.75)

Equation (2.74) is our tube law relating the transmural pressure and

cross-sectional area of the tube. As this tube law is linear, we can decompose

it into steady and oscillatory components. Using (2.12), (2.18), and taking just

the oscillatory component of (2.74), we obtain

p̃(z) =
k0

A0
Ã(z)− k2F

A0

d2Ã(z)
dz2 − k2Mω2

A0
Ã(z). (2.76)

2.4 Fluid Mechanics

We now turn our focus to the fluid mechanics of the system. As we are dealing

with an incompressible viscous fluid, the flow is governed by the Navier-Stokes

equations (Batchelor, 1967)

ρ

(
∂v
∂t

+ v · ∇v
)
= −∇p∗tm + µ∇2v + f, (2.77)

∇ · v = 0. (2.78)
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Here v is the total dimensional velocity of the fluid, and f represents any other

body forces. In our model, only the axial components of the velocity contribute

at leading order. Using a long-wavelength approximation and the property that

the oscillatory component of the axial velocity has a high frequency, Whittaker

et al. (2010c) showed that the oscillatory axial velocity has a plug flow profile

in the core, with passive Stokes layers near the tube wall. Whittaker et al.

(2010c) also determined that at leading order, the oscillatory axial velocity w̃

and oscillatory pressure p̃ are uniform in the cross-section, which is common

in long-wavelength approximation theory. Hence, we have w̃ = w̃(z), p̃ = p̃(z)

at leading order. Finally, Whittaker et al. (2010c) calculated the leading-order

oscillatory components of the continuity and axial momentum equations to be

A0
dw̃
dz

+ iωÃ = 0, (2.79)

iωw̃ = −dp̃
dz

. (2.80)

By eliminating w̃ in equations (2.79)–(2.80), the following relationship between

p̃ and Ã is calculated

Ã = −A0

ω2
d2 p̃
dz2 . (2.81)

2.5 Combined System for Fluid-Structure Interaction

2.5.1 Governing ODEs

Using the oscillatory component (2.76) of the tube law obtained from the wall

mechanics and the relation (2.81) derived from the fluid mechanics, we now

form the governing ODEs for each section of the tube. Eliminating Ã between

(2.76) and (2.81), we obtain

k2F
d4 p̃
dz4 + (Mω2k2 − k0)

d2 p̃
dz2 −ω2 p̃ = 0. (2.82)

This is the governing ODE for flow inside the flexible region of the tube,

situated at z1 < z < z2.

To find a governing ODE for the flow inside the rigid sections of the tube,

0 < z < z1 and z2 < z < 1, we first of all apply the constraint

Ã = 0,

as the cross-sectional area in the rigid parts of the tube is fixed. Using the

relation (2.81) between Ã and p̃, the governing ODE in the rigid sections is
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found to be
d2 p̃
dz2 = 0. (2.83)

2.5.2 Boundary and Matching Conditions

By applying physical conditions, we determine the boundary conditions that

must be satisfied at the ends of the tube as well as the matching conditions at

the interfaces between the flexible and rigid sections of the tube. At z = z1, z2,

we must have continuity of pressure and continuity of axial volume flux. As

the axial volume flux is proportional to w̃ and hence dp̃/dz, (see (2.80)) we have

[ p̃]+− =

[
dp̃
dz

]+
−
= 0, at z = z1, z2. (2.84)

At the points where the elastic wall is clamped onto the rigid parts of the tube,

we must have Ã = 0. Hence, using equation (2.81), we obtain the conditions

d2 p̃
dz2 = 0, at z = z1, z2. (2.85)

In this model, we have fixed the total pressure at z = 0 as constant. As this

constraint is a steady condition, any oscillations in pressure must have zero

amplitude at the upstream end. Thus, we must have

p̃ = 0 at z = 0. (2.86)

Finally, the axial volume flux has been fixed at z = 1. Because of this, the

amplitude of the mode shape w̃ of the oscillatory axial velocity must be zero at

z = 1. By using this in equation (2.80), we find the final boundary condition

dp̃
dz

= 0 at z = 1. (2.87)

2.6 Solving the Governing ODEs for the Normal Modes

Solutions for the governing equations (2.82) in z1 < z < z2 and (2.83) in

0 < z < z1 and z2 < z < 1, subject to the boundary and matching conditions

(2.84)–(2.87), are now sought. We solve this system for the oscillatory pressure

p̃ and the unknown frequency ω of the oscillations.
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2.6.1 Solution in the Rigid Sections of the Tube

In the rigid sections of the tube (0 < z < z1 and z2 < z < 1), we have the

governing equation (2.83)
d2 p̃
dz2 = 0.

First, we solve this equation in the upstream rigid section of the tube 0 < z < z1.

Doing so, and applying the boundary condition (2.86) we find

p̃ = Gz in 0 < z < z1, (2.88)

where G is constant. We also use the boundary condition (2.87) to solve the

governing equation (2.83) in the downstream rigid part of the tube z2 < z < 1.

Doing so, the following solution is obtained

p̃ = H in z2 < z < 1, (2.89)

where H is some constant.

Using these solutions and the fact that p̃ and dp̃/dz are continuous across

the interfaces between the rigid and flexible sections of the tube from (2.84), we

determine new boundary conditions for the flexible region of the tube. From

(2.88) we have

p̃ = Gz1,
dp̃
dz

= G, at z = z1. (2.90)

Eliminating G within (2.90), we find

z1
dp̃
dz
− p̃ = 0 at z = z1. (2.91)

Using equation (2.89), we also find

dp̃
dz

= 0 at z = z2. (2.92)

2.6.2 General Solution in the Flexible Section of the Tube

To simplify the following mathematics and the boundary conditions, we

introduce a new variable Z defined as

Z =
z2 − z
z2 − z1

. (2.93)

Rewriting the governing ODE (2.82) in terms of Z and rearranging, we obtain

d4 p̃
dZ4 +

(Mω2k2 − k0)(z2 − z1)
2

k2F
d2 p̃
dZ2 −

ω2(z2 − z1)
4

k2F
p̃ = 0. (2.94)
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The boundary conditions (2.85), (2.91), (2.92) then become

d2 p̃
dZ2 = 0 at Z = 0, 1, (2.95)

z1

z2 − z1

dp̃
dZ + p̃ = 0 at Z = 1, (2.96)

dp̃
dZ = 0 at Z = 0. (2.97)

The governing equation (2.94) is a fourth-order ODE with constant

coefficients. This is solved by looking for solutions of the form p̃ = eλZ and

solving the resulting polynomial for λ. It may be shown (see Appendix 2.A)

that the eigenfrequencies ω are always real and non-zero. As the coefficient of

p̃ in (2.94) is strictly negative, the polynomial for λ always has one pair of real

solutions and one pair of imaginary solutions. We find the general solution of

(2.94) to be

p̃(Z) = A cosh gZ + B sinh gZ + C cos hZ + D sin hZ , (2.98)

where A, B, C and D are constants to be found, and g2, h2 are defined as

g2 =
(k0 −Mω2k2)(z2 − z1)

2

2k2F

(
1 +

√
1 +

4ω2k2F
(k0 −Mω2k2)2

)
, (2.99)

h2 =
(k0 −Mω2k2)(z2 − z1)

2

2k2F

(
−1 +

√
1 +

4ω2k2F
(k0 −Mω2k2)2

)
, (2.100)

for k0 > Mω2k2 and

g2 =
(k0 −Mω2k2)(z2 − z1)

2

2k2F

(
1−

√
1 +

4ω2k2F
(k0 −Mω2k2)2

)
, (2.101)

h2 =
(k0 −Mω2k2)(z2 − z1)

2

2k2F

(
−1−

√
1 +

4ω2k2F
(k0 −Mω2k2)2

)
, (2.102)

for k0 < Mω2k2. These different definitions for g and h, which depend on the

sign of k0 −Mω2k2, are needed to ensure that g always corresponds to the real

solutions of λ, while h always corresponds to the imaginary solutions of λ. We

note for future reference that as ω → ∞, g = O(1) while h = O(ω).

2.6.3 Determining the Eigenfrequencies of the Model

We now calculate the possible frequencies ω that can occur in this model.

Applying the four boundary conditions (2.95)–(2.97), to (2.98), we find four

homogeneous equations. Writing these in matrix form, we obtain

B̃b = 0,
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where

B̃T =



z1
z2−z1

g sinh g + cosh g g2 cosh g 0 g2

z1
z2−z1

g cosh g + sinh g g2 sinh g g 0

− z1
z2−z1

h sin h + cos h −h2 cos h 0 −h2

z1
z2−z1

h cos h + sin h −h2 sin h h 0


, b =


A

B

C

D

 ,

and B̃T denotes the transpose of B̃. To obtain a non-trivial solution for the

constants in b, we must have that det B̃ = 0. Calculating the determinant of B̃

and simplifying, it is found that

z1

[
2gh(1− cosh g cos h) + (g2 − h2) sinh g sin h

]
−(z2 − z1)

g2 + h2

gh

[
g sinh g cos h + h cosh g sin h

]
= 0. (2.103)

This equation was first derived in the Whittaker et al. (2010c) model, but for

different definitions of g and h that neglected wall inertia.

Normally we would proceed by substituting the definitions (2.99)–(2.102)

of g and h into (2.103), which yields an equation in a single unknown ω.

However we instead use a different method which allows us to more easily see

the behaviour of (2.103) for certain values of h. First, we obtain an expression

for ω in terms of g and h by considering the product of (2.99) and (2.100)

ω2 =
g2h2k2F
(z2 − z1)4 . (2.104)

We also take the difference between (2.99) and (2.100) to find another

relationship between g and h. Using (2.104) to eliminate ω in this relationship,

we obtain

g =

 k0(z2−z1)
2

k2F + h2

1 + Mh2k2
(z2−z1)2

 1
2

. (2.105)

It is noted that using (2.101) and (2.102) instead of (2.99) and (2.100) in these

calculations yields the same results. We now use (2.105) to eliminate g from

the eigenvalue equation (2.103), giving us an equation to be solved for a

single unknown h. Solving numerically using Maple, we find countably many

solutions for h. The relationship (2.105) is then used to recover g and finally

(2.104) is used to find the eigenfrequencies. We denote the nth eigenfrequency

as ωn, with ω1 being the fundamental mode.
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We have seen that as ω → ∞, g → O(1) and h → O(ω). Hence, for large ω

the eigenvalue equation (2.103) is approximately

−z1h2 sinh(g) sin(h)− (z2 − z1)h2

g
cosh(g) sin(h) = 0. (2.106)

By examining this, we expect to find solutions at h ' nπ, where n is an integer.

This approximation for the roots is used when calculating the numerical

solutions for the eigenfrequencies.

2.6.4 Comparing the Eigenfrequencies for Different values of M

We now determine the eigenfrequencies ωn of the model for different axial

tensions F and different masses of the tube wall M. In Tables 2.1–2.3, these

eigenfrequencies have been calculated, with values z1 = 0.1, z2 = 0.9 and

σ0 = 0.6 which set the tube geometry. Using the value for σ0, we also derive

k0 = 11.07487, k2 = 1.70441 and A0 = 2.73060. These parameters have been

chosen to be the same as in the Whittaker et al. (2010c) model.

It is seen from the tables that the inclusion of a non-zero wall inertia

parameter M significantly reduces the values of the eigenfrequencies ωn for

the higher-order modes, even when M is small. However for the fundamental

modes, the effect of wall inertia is only significant when M reaches 0.1. Finally,

it is noted that for larger values of M, the eigenfrequencies increase much more

slowly when the wave number is increased.

M ω1 ω2 ω3 ω4 ω5

0 6.108 19.06 33.80 50.86 70.67

0.001 6.091 18.60 31.61 44.81 57.98

0.01 5.948 15.55 21.62 25.74 29.14

0.1 4.912 7.728 8.563 9.274 10.03

1 2.389 2.639 2.792 2.985 3.210

Table 2.1: Eigenfrequencies for different values of M with F = 0.01, z1 = 0.1, z2 = 0.9

and σ0 = 0.6.
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M ω1 ω2 ω3 ω4 ω5

0 6.991 25.73 54.31 94.37 146.5

0.001 6.970 25.08 50.68 82.96 120.0

0.01 6.795 20.82 34.41 47.54 60.37

0.1 5.545 10.24 13.64 17.23 20.87

1 2.638 3.514 4.481 5.565 6.694

Table 2.2: Eigenfrequencies for different values of M with F = 0.1, z1 = 0.1, z2 = 0.9

and σ0 = 0.6.

M ω1 ω2 ω3 ω4 ω5

0 11.80 59.41 144.3 268.1 431.4

0.001 11.76 57.88 134.6 235.6 353.3

0.01 11.45 47.96 91.30 135.1 177.8

0.1 9.259 23.63 36.29 49.08 61.51

1 4.360 8.148 11.96 15.86 19.75

Table 2.3: Eigenfrequencies for different values of M with F = 1, z1 = 0.1, z2 = 0.9

and σ0 = 0.6.

2.6.5 The Effect of Wall Inertia on p̃, w̃ and Ã

Using the values of the eigenfrequencies ωn, we determine the corresponding

normal modes of the pressure p̃n, the axial velocity w̃n and the area Ãn. We first

find p̃n by substituting our eigenvalues into equation (2.98). Then substituting

p̃n in equations (2.80) and (2.81) allows us to find the corresponding w̃n and

Ãn.

In Figure 2.4, the first five normal modes of p̃n have been normalised with

the following conditions

∫ 1

0
| p̃′n|2dz = 1, p̃′n(0) > 0, (2.107)

and plotted for different values of M. From the figure, we can see that there

is almost no observable change in the fundamental mode for any of the values

of M. However for higher-order modes, there are notable differences when M

reaches values of size 0.1 and 1. In these cases, rather than oscillating about
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p̃n = 0, waves start shifting to larger values of p̃n as z increases along the axial

direction of the tube.

In Figure 2.5, the first five normal modes of iw̃n have been plotted using the

normalised modes of p̃n from before. We see that there is very little difference

between the modes for M = 0, 0.01. However, in the cases where M = 0.1

and M = 1, like the modes of the pressure p̃n, the higher-order modes oscillate

about a non-zero value of iw̃n as you move along the z-axis.

Finally, in Figure 2.6, the first five normal modes of Ãn have been plotted,

again using the normalised modes of p̃n calculated before. As before, it is

seen that there is not much difference between the modes when M = 0 and

M = 0.01. However, in the cases M = 0.1 and M = 1, it can be seen that

the fundamental mode Ã1 tends towards being symmetric about z = 0.5. It is

also noted that unlike the modes for the pressure p̃n and axial velocity w̃n, the

higher-order modes for the area oscillate about Ãn = 0 as you move along the

z-direction, for all values of M.

It is noted that in all of the figures, there are differences in the amplitude

of the modes as M varies. However, as we are solving a linear problem, the

amplitudes are arbitrarily set by the normalisation condition (2.107). As such,

this variation in amplitude is not a significant result.
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Figure 2.4: Graphs of the first five normal modes of p̃n, for different values of M in

the case F = 1, z1 = 0.1, z2 = 0.9 and σ0 = 0.6. These have been normalised such

that
∫ 1

0 | p̃
′
n|2dz = 1 and p̃′n(0) > 0. The red, green, yellow, blue and purple curves

correspond to the fundamental, second, third, fourth and fifth modes respectively.
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Figure 2.5: Graphs of the first five normal modes of iw̃n, for different values of M in

the case F = 1, z1 = 0.1, z2 = 0.9 and σ0 = 0.6. These have been calculated using

the normalised modes of p̃n plotted in Figure 2.4. The red, green, yellow, blue and

purple curves correspond to the fundamental, second, third, fourth and fifth modes

respectively.
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Figure 2.6: Graphs of the first five normal modes of Ãn, for different values of M in

the case F = 1, z1 = 0.1, z2 = 0.9 and σ0 = 0.6. These have been calculated using

the normalised modes of p̃n plotted in Figure 2.4. The red, green, yellow, blue and

purple curves correspond to the fundamental, second, third, fourth and fifth modes

respectively.
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2.7 Stability Criterion and Growth Rate

We proceed to derive an expression for the growth rate of the oscillations,

as well as the critical mean flow rate at which oscillations first occur, using

the energy budget of the system. Whittaker et al. (2010c) found the following

relation using the energy budgets for the fluid and tube wall

d
dt

(Ẽs + Ẽ f ) =
1
`St

(K− S −D). (2.108)

Here, Ẽs is the total dimensionless energy due to oscillations in the tube

wall and Ẽ f is the dimensionless oscillatory kinetic energy in the fluid, both

averaged over a period of the oscillations. We also have K as the mean flux of

kinetic energy through the ends of the tube, S as the mean rate of working by

pressure forces that arise at the tube ends due to oscillatory flow, and D as the

mean rate of dissipation by the oscillatory flow. The energies and fluxes have

been non-dimensionalized using the scalings (2.19).

2.7.1 Fluxes and Fluid Energy

Whittaker et al. (2010a) and Whittaker et al. (2010c) showed that K, S , D and

Ẽ f are given by

K =
3
4

π`2St2∆2|w̃(0)|2, (2.109)

S =
1
4

π`2St2∆2|w̃(0)|2, (2.110)

D =
π`3St3∆2(2ω)

1
2

2α

∫ 1

0
|w̃(z)|2dz, (2.111)

Ẽ f =
∆2St2A0`2

4

∫ 1

0
|w̃(z)|2dz. (2.112)

These values are in terms of the fluid flow and so are unchanged in the presence

of wall inertia here. Using the relation (2.80) between w̃ and p̃, it is found that

the expressions (2.109)–(2.112) may be rewritten in terms of p̃ as the following

K =
3

4ω2 π`2St2∆2| p̃′(0)|2, (2.113)

S =
1

4ω2 π`2St2∆2| p̃′(0)|2, (2.114)

D =
π`3St3∆2(2ω)

1
2

2αω2

∫ 1

0
| p̃′(z)|2dz, (2.115)

Ẽ f =
∆2St2A0`2

4ω2

∫ 1

0
| p̃′(z)|2dz. (2.116)

Hence, the only term in (2.108) that needs to be evaluated now is Ẽs.
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2.7.2 Oscillatory Energy in the Tube Wall

As a starting point for deriving an expression for Ẽs, we consider the following

expression for the rate of working in the tube wall due to pressure forces

dE∗s
dt∗

=
∫∫

TubeWall
p∗tm

∂r
∂t∗
· n̂ dS. (2.117)

Here, E∗s is the total dimensional energy in the tube wall due to the dimensional

transmural pressure p∗tm, dS is an element of the midplane of the tube wall, t∗

is once again dimensional time, r is the position of the wall midplane in the

deformed state, as defined in (2.20), and n̂ is a unit vector normal to the tube

wall. The expression (2.117) for the dimensional rate of working in the tube wall

dE∗s /dt∗ comes from integrating the product of the force from the transmural

pressure and the normal component of the velocity of the tube wall, over the

midplane of the tube wall.

Inserting the appropriate limits for the integration within (2.117) and noting

that p∗tm is independent of τ, it is found that

dE∗s
dt∗

=
∫ L

0
p∗tm

∫ 2π

0

∂r
∂t∗
· n̂ ah(τ)dτ dz∗. (2.118)

Whittaker et al. (2010d) found the following relation between the dimensional

area change A∗ − A∗0 in the tube wall and the deformation r − r0 of the tube

wall

A∗ − A∗0 =
∫ 2π

0
(r− r0) · n̂ ah(τ)dτ + O(∆2). (2.119)

By differentiating this relation with respect to t∗ (noting that A∗0 and r0 are

constants and thus vanish), neglecting terms quadratic and higher order in ∆,

and substituting into (2.118), we obtain

dE∗s
dt∗

=
∫ L

0
p∗tm

∂A∗

∂t∗
dz∗. (2.120)

The expression (2.120) is now non-dimensionalized using the scalings (2.11)

for the axial length and cross-sectional area, (2.17) for the transmural pressure,

(2.19) for the energy and t∗ = Tt for time. Applying these scalings, the

following is calculated

dEs

dt
= ∆St2`2

∫ z2

z1

ptm
∂A
∂t

dz, (2.121)

where Es is the dimensionless energy in the tube wall due to the transmural

pressure. We note that ∂A/∂t = 0 in the rigid regions of the tube and thus we

only need to take the integral within (2.121) over the region z1 < z < z2.
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We now convert (2.121) into an expression solely in terms of the area A. This

is done by applying the tube law (2.74) which relates the transmural pressure

ptm to A. Substituting the tube law into (2.121), it can be shown that

dEs

dt
=

St2`2

A0

∫ z2

z1

k0(A− A0)
∂A
∂t
− k2F

∂2A
∂z2

∂A
∂t

+ k2M
∂2A
∂t2

∂A
∂t

dz. (2.122)

By integrating the second term of (2.122) by parts, it can be shown that

−
∫ z2

z1

k2F
∂2A
∂z2

∂A
∂t

dz =

[
−k2F

∂A
∂z

∂A
∂t

]z=z2

z=z1

+
∫ z2

z1

k2F
∂A
∂z

∂2A
∂t∂z

dz,

=
∫ z2

z1

k2F
∂A
∂z

∂2A
∂t∂z

dz, (2.123)

where the boundary terms vanish as ∂A/∂t = 0 at z = z1, z2. Substituting this

into (2.122) and noting that

(A− A0)
∂A
∂t

=
1
2

∂

∂t
(A− A0)

2,
∂A
∂z

∂2A
∂t∂z

=
1
2

∂

∂t

(
∂A
∂z

)2

,

∂2A
∂t2

∂A
∂t

=
1
2

∂

∂t

(
∂A
∂t

)2

,

we obtain

dEs

dt
=

St2`2

2A0

∫ z2

z1

∂

∂t

[
k0(A− A0)

2 + k2F
(

∂A
∂z

)2

+ k2M
(

∂A
∂t

)2
]

dz. (2.124)

Integrating this expression with respect to t, we find

Es =
St2`2

2A0

∫ z2

z1

k0(A− A0)
2 + k2F

(
∂A
∂z

)2

+ k2M
(

∂A
∂t

)2

dz + C, (2.125)

where C is some constant dependent on the steady deformation of the tube

wall.

We now recall the expression (2.12) of the cross-sectional area A(z, t)

A(z, t) = A0 +
1

α2`St
Ā(z) + ∆(t)Re(Ã(z)eiωt).

Substituting this into (2.125), we find the following expression for Es in terms

of the steady area change Ā and the oscillatory area change Ã

Es =
St2`2

2A0

∫ z2

z1

k0

[
1

α2`St
Ā + ∆ Re

(
Ãeiωt

)]2

− ∆2Mω2k2

[
Re
(

Ãeiωt
)]2

+ k2F
[

1
α2`St

∂Ā
∂z

+ ∆ Re
(

∂Ã
∂z

eiωt
)]2

dz + C. (2.126)
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Using (2.126), it is possible to determine the mean energy Es in the tube

wall due to transmural pressure. This is done by taking an average of Es over

the timescale of a single oscillation as follows

Es = 〈Es〉 =
ω

2π

∫ 2π
ω

0
Es dt. (2.127)

It can be shown that if a function A(z, t) has the form A(z, t) = Ā(z) +

Re(Ã(z)eiωt), then 〈A2〉 is calculated to be

〈A2〉 = Ā2 +
1
2
|Ã|2. (2.128)

By taking a time average of the expression (2.126) and applying the property

(2.128), Es is determined to be

Es =
St2`2

2A0

∫ z2

z1

k0

(
1

α4`2St2 Ā2 +
∆2

2

∣∣Ã∣∣2)+
∆2Mω2k2

2

∣∣Ã∣∣2
+k2F

(
1

α4`2St2

(
∂Ā
∂z

)2

+
∆2

2

∣∣∣∣∂Ã
∂z

∣∣∣∣2
)

dz + C. (2.129)

Hence, Es may be decomposed into components due to the steady and

oscillatory area changes of the tube. Thus, the dimensionless energy Ẽs in

the tube wall due to the oscillations is given by

Ẽs =
∆2St2`2

4A0

∫ z2

z1

(k0 + Mω2k2)
∣∣Ã∣∣2 + k2F

∣∣∣∣∂Ã
∂z

∣∣∣∣2 dz. (2.130)

In order to combine this with the expressions (2.113)–(2.116) for the other terms

in the energy budget equation (2.108), it is convenient to rewrite Ẽs in terms of

p̃. This is done using the relation (2.81) between Ã and p̃ and it can be shown

that

Ẽs =
∆2St2A0`2

4ω4

∫ z2

z1

(k0 + Mω2k2) p̃′′ p̃′′† + k2F p̃′′′ p̃′′′† dz, (2.131)

where ′ denotes a derivative with respect to z and † denotes the complex

conjugate.

2.7.3 Simplification of Ẽs in (2.131)

It is possible to now use the expression (2.131) for Ẽs in the energy budget

relation (2.108) to determine the growth rate and stability criterion of the

oscillations. However, it is found that (2.131) can be simplified further to form

a more convenient expression for Ẽs. The details of this simplification are now

provided.
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Firstly, by integrating the second term of (2.131) by parts, it is calculated

that ∫ z2

z1

k2F p̃′′′ p̃′′′† dz =
[
k2F p̃′′′ p̃′′†

]z=z2

z=z1
−
∫ z2

z1

k2F p̃′′′′ p̃′′† dz. (2.132)

From (2.85), we know that p̃′′ = 0 at z = z1, z2 and thus the first term on the

right-hand side of (2.132) vanishes. Substituting this into (2.131) allows us to

obtain

Ẽs =
∆2St2A0`2

4ω4

∫ z2

z1

(k0 + Mω2k2) p̃′′ p̃′′† − k2F p̃′′′′ p̃′′† dz. (2.133)

We further simplify the expression (2.133) for Ẽs by considering the

governing ODE (2.82) in the elastic-walled region z1 < z < z2 of the tube.

Rearranging (2.82), it can be shown that

−k2F p̃′′′′ = (Mω2k2 − k0) p̃′′ −ω2 p̃. (2.134)

As the integral in (2.133) is between z = z1 and z = z2, we may substitute

(2.134) into (2.133) to obtain

Ẽs =
∆2St2A0`2

4ω2

∫ z2

z1

2Mk2 p̃′′ p̃′′† − p̃ p̃′′† dz. (2.135)

By integrating the second term of (2.135) by parts, it is found that

Ẽs =
∆2St2A0`2

4ω2

∫ z2

z1

∣∣ p̃′∣∣2 + 2Mk2
∣∣ p̃′′∣∣2 dz−

[
p̃ p̃′†

]z=z2

z=z1
. (2.136)

It is possible to evaluate the boundary term using the boundary conditions

(2.91), (2.92). Rearranging (2.91), it is found that p̃ = z1 p̃′ at z = z1. We also

have p̃′ = 0 at z = z2 from (2.92). Applying these to the boundary term in

(2.136), it can be shown that

−
[

p̃ p̃′†
]z=z2

z=z1
= z1

∣∣ p̃′∣∣2 ∣∣∣∣
z=z1

. (2.137)

In §2.6, it was found that p̃ behaves linearly in the region 0 < z < z1. As such,

we must have that p̃′ takes a constant value in 0 < z < z1. Using this property,

it is seen that the right-hand side of (2.137) is equal to the integral of | p̃′|2 over

the region 0 < z < z1. Thus, we have

−
[

p̃ p̃′†
]z=z2

z=z1
=
∫ z1

0

∣∣ p̃′∣∣2 dz, (2.138)

and Ẽs may be written as

Ẽs =
∆2St2A0`2

4ω2

∫ z2

z1

∣∣ p̃′∣∣2 + 2Mk2
∣∣ p̃′′∣∣2 dz +

∫ z1

0

∣∣ p̃′∣∣2 dz. (2.139)
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As the integrals in the expressions (2.113)–(2.116) for the other terms in the

energy budget relation (2.108) are over the entire length of the tube 0 < z < 1,

it is convenient to rewrite (2.139) in terms of an integral with the limits z = 0, 1.

From (2.89), it is seen that p̃ is constant in the region z2 < z < 1. As such, we

must have p̃′ = 0 when z2 < z < 1. It is also seen from (2.83) that in the rigid

parts of the tube 0 < z < z1 and z2 < z < 1, we have p̃′′ = 0. Using these

properties, it is observed that∫ z1

0
2Mk2

∣∣ p̃′′∣∣2 dz =
∫ 1

z2

2Mk2
∣∣ p̃′′∣∣2 dz =

∫ 1

z2

∣∣ p̃′∣∣2 dz = 0.

Hence, rewriting (2.139), we obtain the following simplified expression for Ẽs

Ẽs =
∆2St2A0`2

4ω2

∫ 1

0

∣∣ p̃′∣∣2 + 2Mk2
∣∣ p̃′′∣∣2 dz. (2.140)

2.7.4 Determining the Growth Rate and Stability Criterion

Now that we have calculated the dimensionless oscillatory energies in the wall

and fluid, we can use these along with (2.108) to find expressions for the growth

rate of the oscillations as well as the stability criterion. Using the expressions

(2.116), (2.140) for Ẽ f , Ẽs in terms of p̃, we see that

Ẽs + Ẽ f =
∆2St2A0`2

2ω2

∫ 1

0
| p̃′|2 + k2M| p̃′′|2dz. (2.141)

Using the definitions (2.113)–(2.115) for K , S and D in terms of p̃, we find

K− S −D =
∆2St2`2π

2ω2

[
| p̃′(0)|2 − `St(2ω)

1
2

α

∫ 1

0
| p̃′(z)|2dz

]
. (2.142)

Substituting (2.141)–(2.142) into (2.108) and evaluating the differential on the

left-hand side, we obtain

d∆
dt

=

 π

2A0


| p̃′(0)|2
`St −

(2ω)
1
2

α

∫ 1

0
| p̃′(z)|2dz∫ 1

0
| p̃′(z)|2 + k2M| p̃′′(z)|2dz


∆. (2.143)

Hence, the amplitude of the oscillations grows or decays exponentially and we

may write

∆(t) = ∆0eΛt,

where ∆0 is the initial amplitude of the oscillations, and the growth rate Λ is

given by

Λ =
π

2A0


| p̃′(0)|2
`St −

(2ω)
1
2

α

∫ 1

0
| p̃′(z)|2dz∫ 1

0
| p̃′|2 + k2M| p̃′′|2dz

 . (2.144)
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When Λ = 0, neutrally stable oscillations are obtained. We define the critical

Reynolds number Rec to be the Reynolds number (defined by Re = α2/St) at

which Λ = 0. Using the expression (2.144) for the growth rate, we find

Rec =
α`(2ω)

1
2

| p̃′(0)|2
∫ 1

0
| p̃′(z)|2dz. (2.145)

Using this expression for Rec, the growth rate Λ may be written as

Λ =
π(Re− Rec)| p̃′(0)|2

2A0`α2
∫ 1

0
| p̃′(z)|2 + k2M| p̃′′(z)|2dz

. (2.146)

By evaluating Rec and Λ numerically, we may plot both as functions of M.

Doing so, we find that the size of the critical Reynolds number for the first and

third modes are comparable, and the sizes for the second and fourth modes

are also comparable. In Figure 2.7, Rec is plotted against M for the first four

eigenmodes of p̃. From the plots, we see there are significant differences in

the behaviour of the odd (n = 1, 3, 5...) and even (n = 2, 4, 6...) modes as M

increases. The main difference is that the critical Reynolds number Rec for a

given α and ` (which depend on the properties of the fluid and geometry of

the tube wall) decreases with increasing M for odd modes. Thus, odd modes

become more unstable for higher wall inertia. However, for even modes, Rec

increases rapidly for increasing M, implying even modes become more stable

for higher wall inertia. We also see that in the case 0 ≤ M ≤ 1 the mode with

the smallest Rec and therefore the most unstable, is the fundamental mode.

Figure 2.7: The critical Reynolds number Rec/`α against M, with z1 = 0.1, z2 = 0.9,

σ0 = 0.6, for mode numbers n = 1 (red), n = 2 (green), n = 3 (yellow) and n = 4 (blue).
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In Figure 2.8, we have plots of ∂Λ/∂Re, again for the first four eigenmodes.

For all four modes, as M increases, the gradient of Λ for a given A0, α and `

decreases. However this decrease is larger for even modes than for odd modes.

We also see that when 0 ≤ M ≤ 1, the fundamental mode is the mode that has

the highest growth rate by a significant margin. Finally, we note that for both

even modes, Λ→ 0 very quickly as we increase M.

Figure 2.8: The gradient of the growth rate `α2∂Λ/∂Re against M, with z1 = 0.1,

z2 = 0.9, σ0 = 0.6, for mode numbers n = 1 (red), n = 2 (green), n = 3 (yellow) and

n = 4 (blue).

2.8 Asymptotic Solution for M� 1

To better understand the behaviour of the different modes, we turn our

attention to finding asymptotic expansions for the eigenfrequencies ωn, the

corresponding modes of the oscillatory pressure p̃n, the critical Reynolds

number Rec and the growth rate Λ, valid when ε = 1/M� 1. In the governing

equation (2.82) for the flexible part of the tube, when M is large, we expect the

d4 p̃/dz4 and d2 p̃/dz2 terms to balance. Thus, we expect ωn = O(M−
1
2 ). We

also need p̃n = O(1) to satisfy the normalisation condition (2.107) which will

be imposed. Hence, we consider expansions of the form

ωn = M−
1
2 (ωn0 + εωn1 + ...) p̃n(z) = pn0(z) + εpn1(z) + ... (2.147)

where ωn0, ωn1, pn0(z), pn1(z) are O(1), and n denotes the nth eigenmode. We

now find the leading and first-order approximations of ωn and p̃n in each of

the section of the tube.
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In the flexible region of the tube z1 ≤ z ≤ z2, the governing equation (in

terms of Z) is (2.94). Substituting in the expansions (2.147) gives

(p′′′′n0 + εp′′′′n1 + ...) +
[(ωn0 + εωn1 + ...)2k2 − k0](z2 − z1)

2

k2F
(p′′n0 + εp′′n1 + ...)

=
ε(ωn0 + εωn1 + ...)2(z2 − z1)

4

k2F
(pn0 + εpn1 + ...), (2.148)

where ′ now denotes d/dZ .

2.8.1 Leading-Order Solution

At leading order in the elastic-walled region of the tube z1 ≤ z ≤ z2, we obtain

the ODE

p′′′′n0 + λ2
0 p′′n0 = 0, (2.149)

where

λ2
0 =

(ω2
n0k2 − k0)(z2 − z1)

2

k2F
. (2.150)

We find that for non-trivial solutions, we must have λ2
0 > 0. Thus, we find the

general solution to be

pn0(Z) = A0Z + B0 + C0 cos(λ0Z) + D0 sin(λ0Z), (2.151)

where A0, B0, C0 and D0 are constants to be found. By applying the boundary

conditions (2.95)–(2.97), we find

pn0(Z) = D0

[
sin(λ0Z) + λ0(1−Z) +

λ0z1

z2 − z1
(1− (−1)n)

]
, (2.152)

λ0 = nπ. (2.153)

Here D0 is an arbitrary constant setting the amplitude of the modes.

Substituting (2.153) into (2.150) we find

ωn0 =

(
n2π2F

(z2 − z1)2 +
k0

k2

) 1
2

. (2.154)

In the upstream rigid region of the tube 0 ≤ z ≤ z1, the flow is governed by

(2.88). With this, the matching condition (2.84) and (2.152), we find

pn0(z) =
[

D0λ0

z2 − z1
(1− (−1)n)

]
z in 0 ≤ z ≤ z1. (2.155)

In the downstream rigid section of the tube z2 ≤ z ≤ 1, flow is governed by

(2.89). Using this with the matching condition (2.84) and (2.152) gives

pn0(z) = D0λ0

[
1 +

z1

z2 − z1
(1− (−1)n)

]
in z2 ≤ z ≤ 1. (2.156)
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Hence, the leading-order solution for p̃n is

pn0(z) =



[
D0λ0
z2−z1

(1− (−1)n)
]

z 0 ≤ z ≤ z1

D0

[
sin(λ0

z2−z
z2−z1

) + λ0
z−z1
z2−z1

+ λ0z1
z2−z1

(1− (−1)n)
]

z1 ≤ z ≤ z2

D0λ0

[
1 + z1

z2−z1
(1− (−1)n)

]
z2 ≤ z ≤ 1

.

(2.157)

Finally to set the initial amplitude of the oscillations we apply the normalisation

condition (2.107). Doing so, we obtain

D0 =
z2 − z1

λ0
(
z1(1 + (−1)n+1)2 + 3

2 (z2 − z1)
) 1

2
.

In the equation (2.157) for pn0, each region has a term dependent on (−1)n.

Because of this, the leading-order pressures behave differently for odd and

even modes. We note that in the upstream region 0 ≤ z ≤ z1, odd modes have

a linear rise in pressure whereas even modes have a value of zero. We also note

that in the downstream region z2 ≤ z ≤ 1, the leading-order approximation

(2.157) has one fixed value for odd modes and another different fixed value for

even modes.

2.8.2 First-Order Solution

Our next step is to calculate the first-order approximations of ωn and p̃n.

We start by considering the solution in the flexible region z1 ≤ z ≤ z2. By

evaluating (2.148) at O(ε), we obtain the following ODE

p′′′′n1 + λ2
0 p′′n1 =

ω2
n0(z2 − z1)

4

k2F
pn0 − λ1 p′′n0, (2.158)

where

λ1 =
2ωn0ωn1k2(z2 − z1)

2

k2F
. (2.159)

The general solution of (2.158) is found to be

pn1(Z) = A1Z + B1 + C1 cos(λ0Z) + D1 sin(λ0Z)

+ f1Z cos(λ0Z) + g1Z3 + h1Z2, (2.160)

where

f1 =
D0

2λ3
0

(
ω2

n0(z2 − z1)
4

k2F
+ λ2

0λ1

)
,

g1 = −D0ω2
n0(z2 − z1)

4

6λ0k2F
,

h1 =
D0ω2

n0(z2 − z1)
4

2λ0k2F

(
1 +

z1

z2 − z1
(1− (−1)n)

)
,
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and A1, B1, C1 and D1 are constants to be found. Applying the boundary

conditions (2.95)–(2.97), we obtain

B1 = A1

(
z1

z2 − z1
((−1)n − 1)− 1

)
− g1

(
1 +

6
λ2

0
+

3z1

z2 − z1

)
−h1

(
1 +

2
λ2

0
+

2z1

z2 − z1

)
,

C1 =
2h1

λ2
0

,

D1 = −A1 + f1

λ0
,

λ1 =
2

D0λ0
(6g1(−1)n + 2h1((−1)n − 1))−

ω2
n0(z2 − z1)

4

λ2
0k2F

. (2.161)

Here, A1 is still to be determined by the normalisation condition (2.107).

Substituting (2.161) into (2.159) allows us to find

ωn1 =
1

2ωn0k2

[
2k2F (6g1(−1)n + 2h1((−1)n − 1))

D0λ0(z2 − z1)2 − ω2
n0(z2 − z1)

2

λ2
0

]
. (2.162)

We now look at the asymptotic expansion in the rigid parts of the tubes. In

0 ≤ z ≤ z1, we use (2.88) as well as the matching condition (2.84) and (2.160) to

find the first-order pressure pn1 in the rigid upstream part of the tube to be

pn1(z) =
z
z1

[
A1 + B1 + f1(−1)n + g1 + h1

(
1 +

2
λ2

0
(−1)n

)]
in 0 ≤ z ≤ z1.

(2.163)

In z2 ≤ z ≤ 1, we apply the matching condition (2.84) and (2.160) to (2.89). This

gives the asymptotic solution for pn1 in the downstream region as

pn1(z) = B1 +
2h1

λ2
0

in z2 ≤ z ≤ 1. (2.164)

By combining (2.160), (2.163) and (2.164), we find the first-order solution for p̃n

as

pn1(z) =



z
z1

[
A1 + B1 + f1(−1)n + g1 + h1

(
1 + 2

λ2
0
(−1)n

)]
0 ≤ z ≤ z1

A1Z + B1 + C1 cos(λ0Z) + D1 sin(λ0Z)

+ f1Z cos(λ0Z) + g1Z3 + h1Z2 z1 ≤ z ≤ z2

B1 +
2h1
λ2

0
z2 ≤ z ≤ 1

,

(2.165)

where A1 is still unknown. Finally, in order to satisfy the normalisation
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condition (2.107), A1 is set as

A1 =
1

3
2 +

z1
z2−z1

(1− (−1)n)2

[
(1− (−1)n)

(
f1(−1)n − g1

(
6

λ2
0
+

3z1

z2 − z1

)
−h1

(
2

λ2
0
(1− (−1)n) +

2z1

z2 − z1

))
+ f1

(
1
4
− (−1)n

)
−g1

(
1− 6

λ2
0
(−1)n

)
− h1

]
.

To test the accuracy of our leading and first-order approximations for ωn

and p̃n we plot them against the semi-analytical solutions found earlier in

§2.6. In Figure 2.9, this has been done for the first four eigenfrequencies ωn

of our model. It is seen from the figure that there is good agreement between

the asymptotic and semi-analytically calculated frequencies. We also see that

unusually, the asymptotic solution is better for the higher modes (particularly

at lower values of M). The reason for this stems from the second term in

the governing ODE (2.82) in the flexible part of the tube. This term depends

on Mω2 and becomes the dominant term in the regime M � 1. However,

as our value for ω increases, a lower value of M is needed for this term to

become dominant. Hence for the higher eigenfrequencies, a lower value of M is

required for dominance and the approximation approaches the semi-analytical

solution at smaller values of M.

In Figure 2.10, the semi-analytically obtained p̃n, and the approximation

(2.147) for p̃n up to leading and first-order have been plotted for the first four

modes, with M = 1. From this we observe that there is good agreement

between the approximations and the semi-analytical solution, particularly in

the case with the first-order approximation.

2.8.3 Asymptotic Approximation for Rec

Now that we have asymptotic approximations for the eigenfrequencies ωn

and the modes p̃n(z) of the pressure up to leading order, we may use these

approximations to derive asymptotic approximations for the critical Reynolds

number Rec and the growth rate Λ, in the case of large M.

We begin with deriving an approximation for Rec. Substituting the

approximations (2.147) for ωn, p̃n(z) into the expression (2.145) for Rec, it is

found that the critical Reynolds number Recn for the nth mode is given by

Recn =
α`
√

2ε
1
4
(
ωn0 + εωn1 + O(ε2)

) 1
2(

p′n0(0) + εp′n1(0) + ε2 p′n2(0) + O(ε3)
)2 . (2.166)
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Figure 2.9: The semi-analytical eigenfrequencies ωn (red) calculated in §2.6, along

with the leading-order (green) M−
1
2 ωn0 and first-order (yellow) M−

1
2 (ωn0 + M−1ωn1)

asymptotic expansions as functions of M for the first four eigenfrequencies.

We note that in the current scenario, the normalisation condition (2.107) sets

the integral within (2.145) to have a value of 1. By examining the expression

(2.157) for pn0, it is seen that p′n0(0) is zero for even modes and non-zero for

odd modes. As such, we obtain different asymptotic expansions for Recn when

n is odd and even.

When n is odd, we may rewrite (2.166) in the following way

Recn =
α`
√

2ε
1
4 ω

1
2
n0

(
1 + ε ωn1

ωn0
+ O(ε2)

) 1
2(

dpn0(0)
dz

)2 (
1 + ε

p′n1(0)
p′n0(0)

+ O(ε2)
)2 . (2.167)
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Figure 2.10: The semi-analytical mode shapes of the pressure p̃n (red) calculated in

§2.6, along with the leading-order (green) p̃n0 and first-order (yellow) p̃n0 + M−1 p̃n1

asymptotic expansions when M = 1 for the first four eigenmodes.

It is possible to apply the Binomial Theorem to find

(
1 + ε

ωn1

ωn0
+ O(ε2)

) 1
2

= 1 + ε
ωn1

2ωn0
+ O(ε2), (2.168)(

1 + ε
p′n1(0)
p′n0(0)

+ O(ε2)

)−2

= 1− 2εp′n1(0)
p′n0(0)

+ O(ε2). (2.169)

Substituting these into (2.167), the asymptotic approximation of Recn up to first

order for odd modes is found to be

Recn =
α`
√

2ε
1
4 ω

1
2
n0(

dpn0(0)
dz

)2

[
1 + ε

(
ωn1

2ωn0
− 2p′n1(0)

p′n0(0)

)
+ O(ε2)

]
for odd n. (2.170)
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For even n, p′n0(0) = 0 and (2.166) can be written as so

Recn =
α`
√

2ε−
7
4 ω

1
2
n0

(
1 + ε ωn1

ωn0
+ O(ε2)

) 1
2(

dpn1(0)
dz

)2 (
1 + ε

p′n2(0)
p′n1(0)

+ O(ε2)
)2 . (2.171)

Again, by using the Binomial Theorem, it can be shown that(
1 + ε

p′n2(0)
p′n1(0)

+ O(ε2)

)−2

= 1− 2εp′n2(0)
p′n1(0)

+ O(ε2). (2.172)

By substituting this and (2.168) into (2.171), the asymptotic expansion of Recn

up to first order for even modes is shown to be

Recn =
α`
√

2ε−
7
4 ω

1
2
n0(

dpn1(0)
dz

)2

[
1 + ε

(
ωn1

2ωn0
− 2p′n2(0)

p′n1(0)

)
+ O(ε2)

]
for even n. (2.173)

We note that in order to determine the first-order approximation of Recn for

even modes, an expression for pn2(z) would be needed. However, to determine

this expression, we would need to solve the governing system up to second

order. This would require a lot of working and as such is not attempted here.

Instead, we will evaluate the accuracy of just the leading-order approximation

of the critical Reynolds number for even modes.

Immediately, we see that the approximations (2.170), (2.173) for Recn

have different behaviours for odd and even modes. The leading-order

approximation (2.170) for odd modes behaves as Recn ∼ ε1/4 = M−1/4

whereas for even modes, the leading-order approximation (2.173) behaves as

Recn ∼ ε−7/4 = M7/4. From these behaviours, it can be deduced that as M

increases, Recn decreases for odd modes and increases for even modes, agreeing

with the behaviours found in the semi-analytical results in §2.7.4.

To further test the accuracy of the approximations (2.170), (2.173), we

plot them against the semi-analytical results of Recn found in §2.7.4. In

Figure 2.9, the leading and first-order approximations (2.170) of Recn/`α for

the fundamental and third modes, and the leading-order approximations

(2.173) of Recn/`α for the second and fourth modes have been plotted. Also

plotted are the semi-analytical solutions of Recn/`α for the first four modes

as seen in Figure 2.7. We can see in Figure 2.9 that for all the different

modes, the leading-order approximations are giving good agreement with the

semi-analytical results for M > 1. We also see in the case of the odd modes, the

first-order approximations are giving good agreement with the semi-analytical

results, even for some values of M smaller than M = 1.
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Figure 2.11: The semi-analytical critical Reynolds number Recn/`α (red) calculated

in §2.7.4 along with the leading-order (green) and first-order (yellow) asymptotic

approximations (2.170), (2.173) for Recn as functions of M for the first four modes.

Here, z1 = 0.1, z2 = 0.9, σ0 = 0.6 and F = 1.

2.8.4 Asymptotic Approximation for Λ

We now turn our attention to deriving an asymptotic approximation for the

growth rate Λ. Substituting the approximations (2.147) for ωn, p̃n into (2.146),

it is seen that the growth rate Λn for the nth mode may be written as

Λn =
π(Re− Recn)

(
p′n0(0) + εp′n1(0) + ε2 p′n2(0) + O(ε3)

)2

2A0`α2

[
1 +

∫ 1

0
k2ε−1 (p′′n0 + εp′′n1 + O(ε2)

)2
dz
] , (2.174)

where again the normalisation condition (2.107) has been used to simplify

the expression. Again, due to the fact that p′n0(0) = 0 for even modes and
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p′n0(0) 6= 0 for odd modes, we will obtain different expansions for Λn for

odd and even modes. It is possible to include our asymptotic expansions for

Recn within this expression to obtain a full asymptotic expansion. However,

the full approximation will also depend on the size of the Reynolds number

Re of the flow. As such, it is more informative to determine the asymptotic

expansion of Λn up to the value of Re− Recn and we will leave this factor in

our approximations.

When n is odd, (2.174) can be rewritten as

Λn =
π(Re− Recn)p′2n0(0)

(
1 + ε

p′n1(0)
p′n0(0)

+ O(ε2)
)2

2A0`α2

[
1 + k2ε−1

∫ 1

0
p′′2n0

(
1 + ε

p′′n1
p′′n0

+ O(ε2)

)2

dz

] . (2.175)

Again, we use the Binomial Theorem to evaluate terms in the numerator and

denominator of (2.175). It is initially found that(
1 + ε

p′n1(0)
p′n0(0)

+ O(ε2)

)2

= 1 +
2εp′n1(0)

p′n0(0)
+ O(ε2). (2.176)

To evaluate the denominator of (2.175), we must first of all calculate the

asymptotic expansion of the integral within the denominator. It is found that

∫ 1

0
p′′2n0

(
1 + ε

p′′n1
p′′n0

+ O(ε2)

)2

dz

=
∫ 1

0
p′′2n0 dz +

∫ 1

0
2εp′′n0 p′′n1 dz + O(ε2). (2.177)

Using this, we may determine the following[
1 + k2ε−1

∫ 1

0
p′′2n0

(
1 + ε

p′′n1
p′′n0

+ O(ε2)

)2

dz

]−1

=

[
1 + k2ε−1

(∫ 1

0
p′′2n0 dz +

∫ 1

0
2εp′′n0 p′′n1 dz + O(ε2)

)]−1

=
ε

k2

∫ 1

0
p′′2n0 dz

1 + ε
2k2

∫ 1

0
p′′n0 p′′n1 dz + 1

k2

∫ 1

0
p′′2n0 dz

+ O(ε2)


−1

=
ε

k2

∫ 1

0
p′′2n0 dz

1− ε
2k2

∫ 1

0
p′′n0 p′′n1 dz + 1

k2

∫ 1

0
p′′2n0 dz

+ O(ε2)

 . (2.178)

Substituting (2.176) and (2.178) into the expression (2.175) for Λn for odd
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modes, it is seen that Λn is determined to be

Λn =
επ(Re− Recn)p′2n0(0)

2A0`α2k2

∫ 1

0
p′′2n0 dz

[
1 + ε

2p′n1(0)
p′n0(0)

−
2k2

∫ 1

0
p′′n0 p′′n1 dz + 1

k2

∫ 1

0
p′′2n0 dz



+O(ε2)

]
for odd n. (2.179)

When we have even n, p′n0(0) = 0 and the expression (2.174) for Λn may be

written as

Λn =
ε2π(Re− Recn)p′2n1(0)

(
1 + ε

p′n2(0)
p′n1(0)

+ O(ε2)
)2

2A0`α2

[
1 + k2ε−1

∫ 1

0
p′′2n0

(
1 + ε

p′′n1
p′′n0

+ O(ε2)

)2

dz

] . (2.180)

As before, the Binomial Theorem is applied to find(
1 + ε

p′n2(0)
p′n1(0)

+ O(ε2)

)2

= 1 +
2εp′n2(0)

p′n1(0)
+ O(ε2). (2.181)

Substituting this and (2.178) into (2.180), the growth rate Λn for even modes is

found to be

Λn =
ε3π(Re− Recn)p′2n1(0)

2A0`α2k2

∫ 1

0
p′′2n0 dz

[
1 + ε

2p′n2(0)
p′n1(0)

−
2k2

∫ 1

0
p′′n0 p′′n1 dz + 1

k2

∫ 1

0
p′′2n0 dz



+O(ε2)

]
for even n. (2.182)

In order to determine the first-order approximation of Λn for even modes (up

to the value of Re− Recn), we would need to determine pn2(z). As this would

require a lot of working this is not attempted here.

Again, we can immediately see that the approximations (2.179), (2.182)

for Λn behave differently for odd and even modes. The leading-order

approximations of Λn/(Re− Recn) behave as Λn/(Re− Recn) ∼ ε = M−1 and

Λn/(Re− Recn) ∼ ε3 = M−3 for odd and even modes respectively. Hence, as

we increase M, the value of Λn/(Re− Recn) decreases for both odd and even
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modes, but the even modes are faster to decay. Again, this is in agreement with

the behaviours found in the semi-analytical results shown in §2.7.4.

We further test the accuracy of the approximations (2.179), (2.182) by

plotting the leading and first-order gradient of the growth rate `α2∂Λn/∂Re

derived from the approximations along with the semi-analytical solution of

`α2∂Λn/∂Re as seen in Figure 2.8. This has been done in Figure 2.12 for the first

four modes. We can see from the figure that there is good agreement between

the leading-order approximations and the semi-analytical results for all four

of the modes when M > 5. It is also seen that the first-order approximations

for the odd modes have good agreement with the semi-analytical results for

M ≥ O(1).

Figure 2.12: The semi-analytical gradient of the growth rate `α2∂Λn/∂Re (red)

calculated in §2.7.4 along with the leading-order (green) and first-order (yellow)

asymptotic approximations (2.179), (2.182) for `α2∂Λn/∂Re as functions of M for the

first four modes. Here, z1 = 0.1, z2 = 0.9, σ0 = 0.6 and F = 1.
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2.9 Conclusions

In this chapter, we have introduced wall inertia to the Whittaker et al. (2010c)

model and quantified the effect it has on the frequency, mode shape and

growth rate of the oscillations, as well as the critical Reynolds number at which

oscillations occur.

The model developed here takes the form of the same differential equations

and boundary conditions found by Whittaker et al. (2010c) except for the

inclusion of a wall inertia term in the governing ODE (2.82) for the flexible part

of the tube. It is noted that this wall inertia term does not enter the governing

equation in the same way that the fluid inertia does, but instead combines

with the azimuthal bending term. The wall inertia term is proportional to

a dimensionless wall inertia parameter M which quantifies the amount of

wall inertia within the system. As in the Whittaker et al. (2010c) model,

the ordinary differential equations (2.82), (2.83) and boundary conditions

(2.85)–(2.87) govern the oscillatory component of the pressure p̃ as a function

of the axial coordinate z.

Solving this model, we have found that increasing wall inertia yields a

decrease in the eigenfrequencies ωn, particularly for higher modes. However,

the variation in ωn with increasing M is found to be small for the fundamental

n = 1 mode in the case M ≤ O(1), in comparison with higher modes. We

also find that the variation of the fundamental mode shapes for the oscillatory

pressure, axial velocity and area is small with increasing M (see figures 2.4,

2.5, 2.6). For higher-order modes, the mode shapes of the pressure p̃n(z) start

diverging away from p̃n = 0 as z increases, when M is increased (see figure

2.4).

By considering the energy budget of the system, we have been able to

predict that the normal mode oscillations grow or decay exponentially with

rate Λ defined by (2.146). Like the other parameters of the problem, Λ also

depends on the wall inertia parameter M. We have also defined the critical

mean-flow Reynolds number Rec at which oscillations first become unstable

(2.145). By calculating Rec semi-analytically, we have found that for odd modes

n = 1, 3, . . . , Rec decreases for increasing M, and hence the modes become

more unstable. However, for even modes n = 2, 4, . . . , Rec increases rapidly

with increasing M, resulting in the even modes becoming much more stable.

Calculating Λ semi-analytically, we have seen that the gradient ∂Λ/∂Re of

the growth rates for all modes decreases for increasing M. However, ∂Λ/∂Re
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decays much more rapidly to zero for even modes than for odd modes.

Through our analysis, we have determined that for all values of M, the

fundamental mode is the fastest growing and most unstable mode. As it is an

odd mode, its stability decreases with increasing M. Hence, the inclusion of

wall inertia destabilises the oscillations within the system. This is in agreement

with Luo & Pedley (1998) who found that wall inertia was also destabilising in

a two-dimensional collapsible channel.

Using the model derived here, we quantify the effects of wall inertia on the

frequency ω, critical Reynolds number Rec and gradient ∂Λ/∂Re of the growth

rate for the fundamental mode, for a couple of physical examples. We first take

the example of the main pulmonary artery which carries deoxygenated blood

from the heart to the lungs. The typical dimensional values of the radial scale,

wall thickness and tube length (given by Pedley, 1980, p. 11) are found to be

a = 1cm, d = 0.03cm, and L = 3cm, respectively. It is also assumed that the

fluid and wall material is mostly comprised of water, yielding a density ρ of

ρ = 1gcm−3. Using the values of d and ρ, the mass m = dρ per unit area of

the tube wall is determined to be m = 0.03gcm−2. Using these values in the

expression (2.9b) for the wall inertia parameter M, we find M ≈ 0.003 for flow

through the main pulmonary artery. Setting this value of M instead of M = 0

yields a 0.9% decrease in the frequency ω of the fundamental mode, a 0.5%

decrease in the critical Reynolds number Rec of the fundamental mode, and a

1.8% decrease in the gradient ∂Λ/∂Re of the growth rate for the fundamental

mode. Hence, in this example the effects of wall inertia are negligible.

Another physical example that can be considered is crude oil flowing

through a steel submarine pipe. Here we take the radial scale and wall

thickness to be a = 0.9m and d = 0.075m, based on values given by Gerwick

(2007). The density ρw of the steel comprising the tube wall is approximately

ρw = 8000kgm−2 (see Haynes, 2012). The density ρ of the crude oil is assumed

to be similar to that of water, yielding a density of ρ = 1000kgm−2, and we

consider the scenario when we have a tube of length L = 5m. With the values

of d and ρw, we calculate the mass m = dρw per unit area of the tube wall to

be m = 600kgm−2. Substituting these values into the definition (2.9b) of M

yields M ≈ 0.02 for oil flow through a steel pipe. By changing the value of M

from M = 0 to M = 0.02, it is found that the frequency ω of the fundamental

mode decreases by 5.7%, the critical Reynolds number Rec of the fundamental

mode decreases by 3.2%, and the gradient ∂Λ/∂Re of the growth rate for the
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fundamental mode decreases by 10.8%. Therefore, the effects of wall inertia in

this example are more significant and cannot necessarily be neglected.

Finally, we have developed asymptotic approximations for ω, p̃, Rec and Λ

for the different modes in the parameter regime M � 1, where wall inertia

dominates over fluid inertia. Using these approximations, we have seen that

even and odd modes behave very differently. Our leading-order approximation

(2.157) for the modes p̃n of the pressure predicts that in the upstream region

0 ≤ z ≤ z1, odd modes have a linear rise in the pressure mode shape, whereas

the even modes have no change in the pressure. This approximation also

predicts that all odd modes tend to one fixed value in the downstream region

z2 ≤ z ≤ 1 and that the even modes all tend to a different fixed value (see

figure 2.10). It is seen that all of these approximations are in good agreement

with the previously found semi-analytical results, even for M = O(1).

We have seen both in the semi-analytical results and in the asymptotic

approximations that the odd and even modes of the oscillations behave very

differently when M� 1. In this scenario, the primary balance in the governing

ODE (2.82) for the elastic-walled region of the tube is between the axial tension,

azimuthal bending and wall inertia terms. As the fluid inertia no longer has an

effect on the primary balance, the odd and even modes Ãn for the oscillatory

area become symmetric and antisymmetric respectively about z = 0.5 at leading

order. In this case, the even modes have little flux in the upstream rigid region

of the tube (as the fluid predominantly moves between the crests and troughs

of the oscillations in the elastic-walled region) whereas the odd modes have a

significant flux in the upstream region. As such, the energy input for the odd

modes takes a significant value and this energy may be used to destabilise

the system. For even modes however, the energy input is small and the

destabilising effect is only a weak first-order effect, meaning the even modes

are much more stable.
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2.A Proof That the Eigenfrequencies are Real

Here, we prove that the eigenfrequencies ω of the oscillations take real values.

We start with the governing ODE (2.82) for p̃ in the flexible region (z1 < z < z2)

of the tube

k2F p̃′′′′ + (Mω2k2 − k0) p̃′′ −ω2 p̃ = 0,

where ′ denotes a derivative with respect to z. Multiplying this equation by

p̃′′†, where † represents the complex conjugate, the following is obtained

k2F p̃′′′′ p̃′′† + (Mω2k2 − k0)| p̃′′|2 −ω2 p̃′′† p̃ = 0.

The next step is to integrate between z1 and z2 with respect to z. Doing so,

using integration by parts when needed, we calculate

k2F
([

p̃′′′ p̃′′†
]z2

z1

−
∫ z2

z1

| p̃′′′|2 dz
)
+ (Mω2k2 − k0)

∫ z2

z1

| p̃′′|2 dz

−ω2
([

p̃′† p̃
]z2

z1

−
∫ z2

z1

| p̃′|2 dz
)
= 0.

From the boundary condition (2.85), we know that p̃′′ = 0 at z = z1, z2, which

implies
[
p̃′′′ p̃′′†

]z2

z1
= 0. Hence, the above equation now becomes

(Mω2k2 − k0)
∫ z2

z1

| p̃′′|2 dz− k2F
∫ z2

z1

| p̃′′′|2 dz

−ω2
([

p̃′† p̃
]z2

z1

−
∫ z2

z1

| p̃′|2 dz
)
= 0. (2.183)

We now look at the governing equation (2.83) in the upstream rigid part of

the tube. Taking the complex conjugate of (2.83), it can be seen that

p̃′′† p̃ = 0,

for 0 < z < z1. We may integrate this expression by parts with respect to z,

between z = 0 and z = z1. Carrying this out, rearranging, then multiplying by

ω2, we find

ω2
∫ z1

0
| p̃′|2 dz−ω2

[
p̃′† p̃

]z1

0
= 0. (2.184)

Adding equations (2.183) and (2.184) together yields the following

(Mω2k2− k0)
∫ z2

z1

| p̃′′|2 dz− k2F
∫ z2

z1

| p̃′′′|2 dz−ω2
[

p̃′† p̃
]z2

0
+ω2

∫ z2

0
| p̃′|2 dz = 0.

(2.185)

Finally, we know that p̃ = 0 at z = 0 from the boundary condition (2.86). We

also know from the boundary condition (2.92) that p̃′ = 0 at z = z2 and thus,
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p̃′† = 0 at z = z2. Hence,
[

p̃′† p̃
]z2

0
= 0 and vanishes from (2.185). Rearranging

(2.185), it can be shown that

ω2 =

k2F
∫ z2

z1

| p̃′′′|2 dz + k0

∫ z2

z1

| p̃′′|2 dz∫ z2

0
| p̃′|2 dz + Mk2

∫ z2

z1

| p̃′′|2 dz
.

As the terms being integrated on the right-hand side are all square terms of

real values, the integrals must be positive. Also, as all the constants are real

and positive and the denominator is non-zero for non-trivial solutions, the

right-hand side is real and positive. Hence, ω2 is real and strictly positive,

and thus ω is real and non-zero. �



Chapter 3

Introducing an Axial-Bending

Boundary Layer

3.1 Introduction

In this chapter we turn our attention to introducing the effects of axial bending

to the model considered by Whittaker et al. (2010c) and the model derived

in Chapter 2. By including axial bending in these models, it is possible to

satisfy stronger and more appropriate boundary conditions at the ends of the

elastic-walled tube being considered in the models.

Here, it is useful to consider three different conditions which may be

applied at the end of a shell. These are the canonical ‘clamped’ and ‘pinned’

boundary conditions (Howell et al., 2009, p.156), and the non-canonical ‘sliding’

boundary conditions, all of which may be viewed in Figure 3.1. The clamped

boundary condition seen in Figure 3.1(a) fixes the position and the axial

gradient of the shell at a fixed axial coordinate. The pinned boundary condition

shown in Figure 3.1(b) again fixes the position of the shell at a fixed axial

coordinate. However instead of fixing the axial gradient, this condition sets zero

torque at the same axial coordinate. Finally, the sliding boundary condition

viewed in Figure 3.1(c) fixes the normal and transverse components of the

position of the shell, as well as sets zero axial stress perturbation and zero

torque, at a fixed axial coordinate. In a typical Starling resistor set-up, the

elastic-walled tube is clamped onto two rigid tubes. In order to reflect this,

clamped boundary conditions should be set at the interfaces between the

elastic-walled and rigid tubes.

In the model by Whittaker et al. (2010d) and the model derived in Chapter 2,

70
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Figure 3.1: A physical representation of the canonical ‘clamped’ and ‘pinned’ boundary

conditions and the non-canonical ‘sliding’ conditions, applied to a shell.

a ‘tube law’ modelling the wall mechanics and relating the transmural pressure

acting on the tube to the cross-sectional area of the tube at each axial position is

derived. In the derivation of this tube law, axial bending and in-plane shear

effects are neglected, reducing the axial order of the problem from 8 to 2.

This axial order is not high enough for the full clamped boundary conditions

to be satisfied. Instead it is only possible to set the normal and azimuthal

displacements to zero at the elastic-walled tube ends in these models. These

conditions represent the Dirichlet parts of the sliding conditions, with the axial

gradient and axial displacement not necessarily set to zero.

Whittaker (2015) takes a step towards being able to satisfy the full clamped

boundary conditions by reintroducing in-plane shear effects in the model

by Whittaker et al. (2010d). This allows the normal, azimuthal and axial

displacements to be set to zero at the interface between the flexible and rigid

tubes. This represents the Dirichlet parts of the pinned boundary conditions,

with the axial gradient not necessarily set to zero. The inclusion of these

in-plane shear effects only raises the axial order of the problem from 2 to 6,

and this axial order is still not high enough for the full clamped boundary

conditions to be satisfied.

In order to satisfy the clamped boundary conditions, the effects of axial

bending must be included in the model. The inclusion of these effects allows

the axial order of the problem to increase to 8, which is high enough for

the clamped boundary conditions to be satisfied. Due to the scaling of the

axial bending terms, it is found that these terms only have a significant effect
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on the leading-order solution in a small boundary layer near the ends of the

elastic-walled tube.

In this chapter, a brief discussion of problems with a singular limit, and

of boundary layers in general, is given in §3.2. We then proceed to define the

mathematical set-up of the elastic-walled tube and the parameter regime of the

problem in §3.3. In §3.4, the clamped boundary conditions are defined in terms

of the dimensionless deformations of the tube wall. These conditions are then

compared with the ‘sliding’ conditions tested in the model by Whittaker et al.

(2010d), and the pinned boundary conditions tested in the model by Whittaker

(2015). In §3.5, we then provide an overview of the work by Whittaker (2015),

where a shear-relaxation boundary layer that includes the effects of in-plane

shearing is introduced.

A boundary layer that includes the effects of axial bending is then

considered in §3.6. Using a simplified model based on a set of nonlinear partial

differential equations known as the Föppl–von Kármán equations (Landau

& Lifshitz, 1959), an estimate for the size of the bending boundary-layer

width is derived. With this estimate, it is found that the problem splits into

multiple regimes depending on how the size of the bending boundary layer

compares with the tube wall thickness and the sub-layers that comprise the

shear-relaxation layer studied by Whittaker (2015). In §3.7, a description of

these different regimes is given. Finally, in §3.8 we give an overview of how

each of the different regimes are modelled in Chapters 4–7.

3.2 Theory of Singular Limits and Boundary Layers

Before we begin introducing the effects of axial bending to the model derived

in Chapter 2, it is necessary to have a full understanding of problems that have

a singular limit and how boundary layers may be introduced in order to obtain

a solution for these problems. The concepts that are discussed here may also

be found in Hinch (1991).

3.2.1 Definition of a Singular Problem

We begin with stating what it means for a problem to be singular. To illustrate

this, the following algebraic equation is considered

εx2 + x− 1 = 0. (3.1)
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If we set ε = 0, this equation only has one solution, x = 1. However, in the

case ε 6= 0 there are two solutions to (3.1), even if ε � 1. This difference in

behaviour when ε = 0 and in the limit ε → 0 is what sets (3.1) as a singular

perturbation problem.

3.2.2 Singular Differential Equations

It is also possible to have singular differential equations. An example of this is

the differential equation

ε
d2 f
dx2 +

d f
dx

+ 1 = 0, (3.2)

which has different solutions in the cases ε → 0 and ε = 0. As this is a

second-order differential equation, we would need two boundary conditions as

well to form a solvable boundary-value problem. For example, we could have

the conditions

f (0) = 0, f (1) = 1. (3.3)

If we naively take ε = 0, it is not possible for a solution of (3.2) to satisfy both

of these boundary conditions. However if ε → 0, we still have a second order

equation to be solved, meaning the two boundary conditions may be satisfied.

When ε 6= 0, the exact solution of this system is dependent on ε and is found

to be

f (x) =
(x− 2)e

1
ε − x + 2e

1−x
ε

1− e
1
ε

. (3.4)

However, in general it is not always possible to obtain an exact analytical

solution of a system containing singular differential equations. It is therefore

convenient to be able to form analytical approximations of the solutions of

singular differential equations.

3.2.3 Introducing a Boundary Layer

For ε� 1, the solution of (3.2) for most x is approximated well by the solution

of
d f
dx

+ 1 = 0.

However near the x = 0 boundary, f is found to vary on a shorter length scale.

Because of this, the second-order derivative d2 f /dx2 becomes large and the

first term of (3.2) is no longer small. The region where this occurs is known as

a boundary layer.
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By rescaling the variable x, it is possible to determine the leading-order

equation satisfied by f within the boundary layer and find an approximation for

f . The approximate solutions for f within the boundary layer (inner solution)

and outside the boundary layer (outer solution) will have a similar form in

an intermediate region of x. By forcing these solutions to be the same in this

intermediate region, any remaining unknown constants may be determined.

This method is known as matching.

We now fully illustrate the method used to find an approximation to the

solution of singular boundary-value problems using the system (3.2)–(3.3). In

order to determine an approximate solution for f when ε � 1, we split the

domain of the solution into two regions; an outer region where x = O(1) and

a boundary layer where x = O(δB) � O(1). The boundary-layer width δB will

be chosen so that the leading-order governing equation in the boundary layer

includes the second-order derivative needed to allow the boundary condition

at x = 0 to be satisfied.

3.2.4 Approximation in the Outer Layer

To determine an approximation for f (x) in the outer region, we begin by taking

the following asymptotic expansion

f (x) ∼ f (0)(x) + ε f (1)(x) + ε2 f (2)(x) + . . . . (3.5)

Substituting this into (3.2) and equating powers of ε, we find the leading-order

governing equation to be
d f (0)

dx
+ 1 = 0, (3.6)

and the higher-order governing equations as

d2 f (n−1)

dx2 +
d f (n)

dx
= 0, for n ≥ 1. (3.7)

Hence, the ε fxx term only appears in the higher-order governing equations.

As the leading-order equation (3.6) is first-order in x, it can only satisfy one

boundary condition. We know that the behaviour of the solution changes for

small x so we may ignore the f (0) = 0 condition. Thus, we apply the condition

f (1) = 1 to the solutions of (3.6) and (3.7). Substituting the asymptotic

expansion (3.5) into f (1) = 1 and equating powers of ε yields the following

conditions

f (0)(1) = 1, f (n)(1) = 0 for n ≥ 1. (3.8)
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Solving the leading-order system (3.6), (3.8a), f (0)(x) is found to be

f (0)(x) = 2− x. (3.9)

Substituting this into the first-order governing equation (3.7) when n = 1,

it is found that the second-order derivative vanishes and we are left with

d f (1)/dx = 0. Solving this and applying the condition (3.8b), we obtain

f (1) = 0. We find that all the higher-order systems have the same governing

equations and boundary conditions. Hence, the higher-order solutions for f (n)

are calculated to be

f (n)(x) = 0 for n ≥ 1. (3.10)

Substituting (3.9), (3.10) into the asymptotic approximation (3.5), the full

asymptotic approximation for f in the outer layer is found to be

f (x) ∼ 2− x. (3.11)

3.2.5 Approximation in the Boundary Layer

We now determine an approximation for f (x) in the boundary layer. We begin

by introducing a new variable xB = δ−1
B x, which is O(1) in the boundary

layer. We also determine the size of f in the boundary layer by examining

the behaviour of the outer solution (3.11) as x → 0. Taking the Taylor series of

(3.11) about x = 0, it is seen that the outer solution for f behaves like an O(1)

constant when x → 0. Hence, the magnitude of f (x) in the boundary layer is

O(1).

Substituting x = δBxB into the governing equation (3.2), we obtain

ε

δ2
B

d2 f
dx2

B
+

1
δB

d f
dxB

+ 1 = 0. (3.12)

As f = O(1) in the boundary layer and δB � 1, the second term of (3.12) must

be larger than the third constant term and these cannot balance at leading order.

Hence, the only sensible dominant balance that may occur at leading order in

(3.12) is between the first and second terms. For these terms to balance, we

must set δB = ε and the governing equation (3.12) becomes

1
ε

d2 f
dx2

B
+

1
ε

d f
dxB

+ 1 = 0. (3.13)

As in the outer region, we define another asymptotic expansion for f (x),

this time valid in the boundary layer

f (x) ∼ g(0)(xB) + εg(1)(xB) + ε2g(2)(xB) + . . . . (3.14)
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By substituting this into (3.13), the leading-order governing equation is found

to be
d2g(0)

dx2
B

+
dg(0)

dxB
= 0. (3.15)

As this involves different terms to the leading-order equation (3.6) in the outer

region, we can see that there are different dominant mechanisms in each region

giving rise to different behaviours. The higher-order governing equations are

calculated to be

d2g(1)

dx2
B

+
dg(1)

dxB
+ 1 = 0,

d2g(n)

dx2
B

+
dg(n)

dxB
= 0 for n > 1. (3.16)

As the boundary condition f (1) = 1 does not reside within this region, we

do not apply this condition to the solutions of (3.15) and (3.16). Substituting

the asymptotic expansion (3.14) into the condition f (0) = 0 gives the following

conditions on the g(n)

g(n)(0) = 0 for n ≥ 0. (3.17)

As the leading-order system and the systems higher than first order have

the same governing equation and boundary conditions, the solutions for these

systems will take the same form. Solving (3.15) and (3.16b) subject to the

boundary conditions (3.17), it is calculated that

g(n)(xB) = An(1− e−xB) for n 6= 1, (3.18)

where the An are undetermined constants. Solving the first-order governing

equation (3.16a) subject to the boundary condition (3.17) when n = 1, g(1) is

found to be

g(1)(xB) = A1 + 1− xB − (A1 + 1)e−xB . (3.19)

Substituting the expressions (3.18) and (3.19) for the g(n) into the asymptotic

approximation (3.14) for f in the boundary layer, we find the following

approximation valid in the boundary layer

f (xB) ∼ ∑
n≥0
n 6=1

εn An(1− e−xB) + ε
[
A1 + 1− xB − (A1 + 1)e−xB

]
. (3.20)

3.2.6 Matching the Outer and Boundary Layer Approximations

We see that the constants An in (3.20) are still undetermined. This is because the

governing equation (3.13) in the boundary layer is second order, but we have

only applied the single boundary condition f (0) = 0. In order to determine the
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An, we must somehow apply the boundary condition f (1) = 1. This is done by

matching the solution in the boundary layer to the solution in the outer layer

(which satisfies f (1) = 1) over some intermediate region where x is small and

xB is large.

We first express both x and xB in terms of an intermediate variable ξ as

follows

ε−αx = ξ = ε1−αxB where 0 < α < 1. (3.21)

It is seen that as ε → 0 with ξ = O(1), we must have x → 0 and xB → ∞.

Substituting this variable into the approximations (3.11), (3.20) for f in the outer

and boundary layers, the outer layer approximation may be rewritten as

f (ξ) ∼ 2− εαξ, (3.22)

and the boundary layer approximation becomes

f (ξ) ∼ ∑
n≥0
n 6=1

εn An − εαξ + ε(A1 + 1), (3.23)

where the exponential terms have become exponentially small within the

intermediate region ξ = O(1). As these approximations must be the same

within the intermediate region, we may equate the expressions (3.22) and (3.23)

to determine the unknown constants An. Doing so, we find

A0 = 2, A1 = −1, An = 0 for n ≥ 2. (3.24)

Substituting these constants into the approximation (3.20) for f in the boundary

layer, it is calculated that

f (xB) ∼ 2(1− e−xB)− εxB, (3.25)

within the boundary layer. We also have the approximation (3.11) for f in the

outer layer, given by

f (x) ∼ 2− x.

3.2.7 Comparisons of the Exact Solution and the Asymptotic
Approximations

In Figure 3.2, the exact solution (3.4) of the system (3.2), (3.3) has been

plotted in the case ε = 0.1. Also plotted are the leading-order, O(1)

terms of the approximations (3.11), (3.25) of f (x) in the outer and boundary
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layers for ε = 0.1. From the figure, it is observed that the leading-order

asymptotic approximations are in good agreement with the exact solution in

their respective layers. Hence, the method applied here has allowed us to

approximate the behaviour of the exact solution, both in the outer layer and

in a boundary layer near the x = 0 boundary.
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Figure 3.2: The exact solution (3.4) of the boundary-value problem (3.2), (3.3) (solid

line). Also plotted are the leading-order terms of the approximations (3.11), (3.25) of

f (x) in the outer layer (dashed line) and boundary layer (dashed-dotted line). All the

plots have been taken in the case ε = 0.1.

3.2.8 Applications to Adding the Effects of Axial Bending to the
Model in Chapter 2

Reverting back to our original problem of adding axial bending to the model

derived in Chapter 2, we find that in the governing equations the axial bending

terms are small enough not to contribute at leading order in the bulk of the

tube. However, these bending terms have the highest axial derivatives as well,

meaning it is possible to find an axial scale where the effects of axial bending

become significant. As we have a term which is smaller than the dominant

terms in the bulk of the tube but also has the highest derivatives, we find
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ourselves in a similar situation to the example problem (3.2). Hence, we may

apply the same method described here to analyse the effect axial bending has

on the model.

3.3 Mathematical Set-up for the Elastic-Walled Tube

We consider the following set-up depicted in Figure 3.3. This set-up was first

used by Whittaker (2015) and is similar to that used in Chapter 2. Here, we

have an initially elliptical elastic-walled tube with length L, circumference 2πa

and tube wall thickness d, where the ends of the tube are fixed onto rigid tubes

(as in the Starling Resistor set-up depicted in Figure 1.1). The ellipticity of the

tube is set by a parameter σ0 such that the dimensional major and minor radii

are given by ac cosh(σ0) and ac sinh(σ0). As in Chapter 2, the dimensionless

parameter c is set to be

c =
πsech(σ0)

2E(sech(σ0))
,

where E(φ) is the complete elliptic integral of the second kind, as defined in

(2.2). The tube wall has incremental Young’s modulus E, Poisson’s ratio ν

and bending stiffness K. It is also assumed that the tube wall behaves linearly

elastically over the deformations that will be considered here. In its initial

configuration, the tube is subject to a uniform axial pre-stress due to an axial

tension F/(2πad). The tube will then be subject to deformations of amplitude

b(t) that are slowly varying in dimensionless time t, and are induced by an

applied transmural pressure p∗tm.

Figure 3.3: The set-up of the undeformed, elliptical, elastic-walled tube as used by

Whittaker (2015).

The following dimensionless parameters, first used by Whittaker et al.
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(2010d), are now introduced

` =
L
a
� 1, δ =

d
a
� 1, F =

aF
2πK`2 = O(1), ∆(t) =

b(t)
a
� 1. (3.26)

These correspond to the tube length, wall thickness, axial tension and

amplitude of the deformations respectively. In this parameter regime, we have

a long, thin-walled tube under large axial tension, subject to small-amplitude,

slowly varying deformations that are induced by the transmural pressure.

We use a similar coordinate system to that used in Chapter 2 to describe

the elastic tube wall. The midplane of the tube wall is parameterized

using dimensional Lagrangian coordinates (x1, x2), which measure arc length

in the azimuthal and axial directions respectively, in the undeformed

configuration. These are then converted into two dimensionless Lagrangian

surface coordinates τ ∈ [0, 2π), Z ∈ [0, `] via the relations

x1 = ah(τ)τ, x2 = aZ, (3.27)

where for convenience, we have introduced the scale factor h(τ) set to be

h(τ) = c(sinh2 σ0 + sin2 τ)
1
2 .

We note that Z is set so that the ends of the elastic-walled tube, which are

clamped onto rigid tubes, are found at Z = 0, `. This coordinate is different

to the dimensionless axial coordinate z ∈ [0, 1] used in Chapter 2 and we may

relate the two using the following

Z = `
z− z1

z2 − z1
,

where z1 < z2 are the positions in the z-coordinate where the ends of the

elastic-walled tube are found.

Using the coordinates (τ, Z), we define the position r0(τ, Z) of the tube wall

in its undeformed state to be

r0(τ, Z) = a


c cosh σ0 cos τ

c sinh σ0 sin τ

Z

 . (3.28)

Denoting the position of the tube wall as r, we write the deformation r− r0 of

the tube wall from its undeformed state as

r− r0 =
∆(t)a
`

(
1

h(τ)
[
ξ̂(τ, Z, t)n̂ + η̂(τ, Z, t)t̂

]
+ ζ̂(τ, Z, t)ẑ

)
, (3.29)
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where n̂, t̂ and ẑ are unit vectors in the normal, azimuthal and axial directions

of the undeformed tube wall. The dimensionless functions (ξ̂, η̂, ζ̂) represent

the deformations of the tube wall in the normal, azimuthal and axial directions

respectively. The representation (3.29) is the same representation of the

deformation used by Whittaker (2015), whose work we shall consider later on.

Comparing (3.29) with the expression (2.20) for r used in §2.3, it is seen that

the deformations (ξ̂, η̂, ζ̂) are related to their counterparts (ξ, η, ζ, ζa) used in

Chapter 2 via the following

ξ̂ = `ξ, η̂ = `η, ζ̂ = ζ + δ2`2ζa. (3.30)

As ξ, η, ζ, ζa are all O(1) when Z = O(`) (see Chapter 2), we have

ξ̂ = O(`), η̂ = O(`), ζ̂ = O
(
max(1, δ2`2)

)
, when Z = O(`). (3.31)

3.4 Types of Boundary Conditions at the Tube Ends

Now that we have an expression for the deformation of the tube wall, we

may proceed to evaluate the conditions we wish to set at the ends of the

elastic-walled tube.

To reflect the fact that the ends of the elastic-walled tube are joined to

rigid tubes, the canonical ‘clamped’ boundary conditions that fix the axial

gradient and normal, azimuthal and axial displacement of the tube wall should

be applied. In terms of the deformations (ξ̂, η̂, ζ̂), the clamped boundary

conditions are

ξ̂ = η̂ = ζ̂ =
∂ξ̂

∂Z
= 0 at Z = 0, `. (3.32)

A depiction of the clamped boundary condition may be seen in Figure 3.4.

In the model derived by Whittaker et al. (2010d) and in the model derived in

Chapter 2, it is not possible to satisfy these clamped boundary conditions. In

order to see why, we consider how the equations governing the wall mechanics

in each model are derived.

The starting point for modelling the wall mechanics in each of the previous

models is the Kirchhoff–Love shell equations (Flügge, 1972; Søndergaard, 2007),

which have an axial order of 8. These equations are then reduced to a single

PDE in the azimuthal deformation η̂, using asymptotic methods based on the

regime described in (3.26). Details of this reduction may be found in §2.3. The

resulting PDE has the following form

F ∂2

∂Z2L2(η̂)−L6(η̂) = −ptm(Z), (3.33)
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where Ln is an nth-order linear differential operator in τ, and ptm is the

dimensionless transmural pressure. The normal ξ̂ and axial ζ̂ displacements

have been eliminated from the equation using the asymptotic result that,

geometrically, the shear and azimuthal stretching in the tube wall is negligible.

These constraints allow ξ̂ and ζ̂ to be written in terms of η̂ at leading order.

As the asymptotic analysis neglects the terms that arise from axial bending

and in-plane shearing, both of which have higher-order derivatives in the axial

direction, the axial order of the system is reduced from 8 to 2. Since the axial

order of the system has been reduced, it is not possible for a solution of (3.33)

to satisfy the clamped boundary conditions (3.32). Indeed it is only possible to

set one quantity at each end of the tube. In the work by Whittaker et al. (2010d)

and in the model in Chapter 2, the chosen conditions are

η̂ = 0 at Z = 0, `.

The fact that we have negligible azimuthal stretching also sets ξ̂ = 0 at the

tube ends. Hence, the conditions on the deformations satisfied within the two

models are

ξ̂ = η̂ = 0 at Z = 0, `. (3.34)

These form the Dirichlet parts of a non-standard condition termed ‘sliding’,

which also sets zero axial stress perturbation and zero torque at the tube ends.

It is noted that the solutions of the model by Whittaker et al. (2010d) and the

model in Chapter 2 do not satisfy these conditions on the stresses exactly, but

the solutions are closer to satisfying these conditions than the full clamped

conditions (3.32).

Physically, these sliding conditions ensure that the normal and azimuthal

displacements are set to be zero where the elastic-walled tube joins the rigid

tubes in the Starling resistor. However, unlike when the clamped boundary

conditions are satisfied, the axial displacements ζ̂ (set by zero axial stress

perturbation) and the axial gradient of the tube ∂ξ̂/∂Z (set by zero torque)

are not necessarily set to zero at the tube ends here.

A step towards satisfying the full clamped boundary conditions (3.32) is

taken by Whittaker (2015). In his work, the effects of in-plane shear are included

in a shear-relaxation boundary layer at the ends of the tube. The inclusion

of the in-plane shear terms raises the axial order of the system from 2 to 6,

which allows the following six boundary conditions on the deformations to be

satisfied

ξ̂ = η̂ = ζ̂ = 0 at Z = 0, `. (3.35)
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These form the Dirichlet parts of the canonical ‘pinned’ boundary conditions,

which also set the ends of the tube to have zero torque. Again, this condition

on the torque is not satisfied exactly by the solution to the model derived

by Whittaker (2015). However, this solution models the pinned boundary

conditions more closely than the clamped boundary conditions (3.32).

A depiction of these pinned boundary conditions is seen in Figure 3.4.

From the figure, we see that with these conditions, there is no displacement

in the elastic-walled tube where it joins onto the rigid tube, which is an

improvement on the Dirichlet parts of the sliding conditions (3.34). However,

the elastic-walled tube joins the rigid tube at a non-zero axial gradient. This is

in opposition with the stronger clamped boundary condition which forces the

axial gradient as well as the displacements to be zero at the interfaces between

the elastic and rigid tubes.

Figure 3.4: The pinned and clamped boundary conditions to be satisfied at the

interfaces Z = 0, ` between the rigid and elastic regions of the tube.

In order to satisfy the condition on the axial gradient ∂ξ̂/∂Z within the

clamped boundary conditions (3.32), we need another boundary layer where

the axial bending terms are reintroduced to the problem. The inclusion of

these bending terms returns the axial order of the problem to 8, which is high

enough for the full clamped boundary conditions to be satisfied.
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3.5 Consideration of the Shear-Relaxation Layer Found

by Whittaker (2015)

The shear-relaxation boundary layer studied by Whittaker (2015) must be taken

into account when attempting to satisfy the clamped boundary conditions

(3.32). It is therefore convenient to review the work done by Whittaker (2015).

An overview of this work is now provided.

In the study carried out by Whittaker (2015), the set-up described in §3.3 is

considered. As in the model derived by Whittaker et al. (2010d) and derived

in Chapter 2, the Kirchhoff–Love shell equations are used to model the wall

mechanics, albeit using the smaller axial scale x2 = aZ as opposed to the scale

x2 = a`z used in previous models.

By applying an asymptotic analysis based on the parameter regime (3.26),

appropriate governing equations are derived for the deformations (ξ̂, η̂, ζ̂) that

hold true in a boundary layer near the tube ends. The boundary-layer width

is chosen so that these governing equations now include terms that arise from

in-plane shearing at leading order. The addition of these terms gives rise to

a system that is now 6th-order in the axial direction. Hence, it is possible to

satisfy the six deformation conditions (3.35) (three at each end of the tube) that

form the Dirichlet parts of the pinned boundary conditions.

Within the governing equations, there are terms that are proportional to a

new dimensionless parameter F̃ , related to the dimensionless axial tension F
by

F̃ =
δ2`2F

12(1− ν2)
. (3.36)

Whittaker (2015) found that the shear-relaxation layer only has a significant

effect on the boundary conditions of the interior solution when F̃ � 1.

Taking the limit F̃ → 0, it is found that the boundary layer here splits

into two distinct sub-layers: an inner layer with thickness O(F̃ 1/2) and an

outer layer with thickness O(F̃−1/2). It is found that the in-plane stresses

have different orders of magnitude in each layer. Because of this, although

the deformations (ξ̂, η̂, ζ̂) are the same magnitude in both the inner and outer

layers, certain combinations of them have different sizes in the two layers. This

results in some leading-order cancellations in the governing equations.

Solving the systems within the inner and outer shear layers, Whittaker

(2015) has determined the leading-order in-plane stresses and deformations

within the two layers. The Fourier coefficients of the first Fourier modes of
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these stresses and deformations in the limit of a circular cross-section may be

seen in Figures 3.5 and 3.6. From the figures, it is seen that the stresses and

displacements have different behaviours in a small region near Z = 0 compared

to the rest of the domain, displaying the presence of the two layers within the

shear-relaxation layer.
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Figure 3.5: Solutions for the Fourier coefficients of the first Fourier modes of the

in-plane stresses in the shear-relaxation layer, with F̃ = 0.01, in the limit of a circular

cross-section.
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Figure 3.6: Solutions for the Fourier coefficients of the first Fourier modes of the

deformations in the shear-relaxation layer, with F̃ = 0.01, in the limit of a circular

cross-section. The inset displays the behaviour near Z = 0 more clearly.
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Whittaker (2015) found that the inner shear layer allows the azimuthal hoop

stress to decay to its required value in the outer layer, while leaving the shear

and axial stresses approximately constant in Z. The outer shear layer then

allows the decay of the shear and axial stresses so that they match with the

stresses in the bulk solution as Z → ∞. The outer layer also enables the axial

deformation ζ̂ to grow to the value needed to match onto the bulk solution as

Z → ∞.

The solutions of the deformations and stresses within the inner and outer

layers are considered later on when we introduce the new axial-bending

boundary layer which must interact with the shear-relaxation layer.

3.6 Finding an Estimate for the Bending Boundary-Layer

Width

We now consider a boundary layer at the ends of the elastic-walled tube with a

small enough axial scale that the axial-bending terms within the Kirchhoff–Love

shell equations appear at leading order. The inclusion of these axial-bending

terms will ensure that the governing equations in this bending boundary layer

have an axial order of 8, allowing the full clamped boundary conditions (3.32)

to be satisfied.

To determine how this bending layer and the shear-relaxation layer found by

Whittaker (2015) interact with each other, we must find an appropriate estimate

for the width of the bending layer. This width is denoted δB. The size of δB must

then be compared with the size of the inner and outer shear-relaxation layers to

determine the arrangement of these boundary layers near the ends of the tube.

As a starting point for finding an estimate for δB, we consider a set

of nonlinear partial differential equations known as the Föppl–von Kármán

equations (Landau & Lifshitz, 1959). These equations are used to model the

large deflections of a flat, thin plate and are as follows

K∇4w− d
∂

∂xβ

(
σαβ

∂w
∂xα

)
= P, (3.37)

∂σαβ

∂xβ
= 0. (3.38)

Here d and K are the thickness and bending stiffness of the plate, w is the

dimensional normal deflection of the plate, (x1, x2) are dimensional Lagrangian

coordinates parameterizing the midplane of the thin plate and σαβ is the Cauchy
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stress tensor. (The indices α, β can take the values of 1 or 2.) The term P

represents the dimensional, external, normal force on the plate.

It is noted that as we are studying a curved shell rather than a flat plate,

the Föppl–von Kármán equations will not model the bending layer in the tube

exactly. However, for the axial-bending terms to appear at leading order within

the governing equations in the bending layer, we must have δB � 1. As such,

the azimuthal variation will be slow in the bending layer and we should be

able to obtain the correct size of the bending boundary-layer width using this

theory.

Assuming no variation in the azimuthal x1 direction, we may reduce the

Föppl–von Kármán equations (3.37), (3.38) to the following two-dimensional

problem

K
∂4w

∂ (x2)4 − d
∂

∂x2

(
σ22

∂w
∂x2

)
= p∗tm, (3.39)

∂σ22

∂x2 = 0, (3.40)

where the dimensional transmural pressure p∗tm has been included as the only

external force.

We now nondimensionalize the terms within (3.39) and (3.40). Using the

expression (3.29) for the deformation of the tube wall, the normal deformation

w may be written as

w = (r− r0) · n̂ =
∆a
`h

ξ̂. (3.41)

Although ξ̂ = O(`) when Z = O(`) from (3.31), the size of ξ̂ will decrease to

some magnitude of O(∆B) as we move into the bending layer, where Z = O(δB).

To determine the sizes of the terms in (3.39) and (3.40), we must determine

the size of ξ̂ in the bending layer. Whittaker et al. (2010d) found that as the

axial scale becomes small in the bulk solution, ξ̂ behaves linearly in the axial

direction. From this property, the ratio of the size of the deformation to the

axial scale must be the same in the bending layer and outer solution. Hence,

we have the relation ∆B/δB = 1. Rearranging this, we find ∆B = δB which in

turn gives

ξ̂ = O(δB), when Z = O(δB).

For convenience, we rewrite ξ̂ as

ξ̂ = δBhξB, (3.42)



88 Chapter 3. Introducing an Axial-Bending Boundary Layer

where ξB is O(1) in the bending layer and the factor of h(τ) has been included

to remove any azimuthal dependence from the reduced Föppl–von Kármán

equations (3.39), (3.40). Substituting this into (3.41), it is found that

w = (r− r0) · n̂ =
∆aδB

`
ξB. (3.43)

The Lagrangian coordinate x2 is non-dimensionalized as

x2 = aδBzB, (3.44)

where zB = O(1) in the bending boundary layer. As the dominant stress in the

axial direction of the tube is the axial pre-stress F/(2πad), we must have

σ22 =
F

2πad
=

K`2F
a2d

, (3.45)

where we have used the definition of F in (3.26). Finally, we

non-dimensionalize the transmural pressure p∗tm using the same scaling (2.17)

used in §2.3, that is

p∗tm =
∆(t)K

a3 ptm, (3.46)

where we have the dimensionless transmural pressure ptm = O(1).

Substituting (3.43)–(3.46) into the reduced Föppl–von Kármán equations

(3.39), (3.40), it is seen that (3.40) is satisfied and, after cancelling a factor of

∆K/a3, (3.39) yields
1

δ3
B`

∂4ξB

∂z4
B
− `

δB
F ∂2ξB

∂z2
B

= ptm. (3.47)

Here, the first term corresponds to axial bending and the second term is due

to axial tension. It is noted that the factor of `2 in the axial tension term

comes from the non-dimensionalization of the axial tension and not from the

geometric properties of the tube.

As ξB, zB and ptm are all O(1) in the bending layer, and ` � 1, δB � 1,

F = O(1), it is seen that the axial tension term in (3.47) is much larger than the

transmural pressure term. Hence, the pressure term cannot appear at leading

order and the only dominant balance in (3.47) can be between the axial bending

and axial tension terms. For these terms to balance, we must have

δB = O(F− 1
2 `−1) = O

((
2πK
aF

) 1
2
)

, (3.48)

where we have used (3.26c) to rewrite the value of δB in terms of the axial

tension force F. Hence, the bending boundary-layer width is dependent upon

the axial tension of the tube wall, but not on `.
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3.7 The Different Regimes

Using the estimate (3.48) for the width δB of the bending layer, it is found that

the problem is split into multiple cases depending on how the estimate of δB

compares with the sizes of the tube wall thickness and the inner and outer

shear-relaxation layers studied by Whittaker (2015). These cases may be seen in

Figure 3.7.
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Figure 3.7: The different cases of the problem. These depend on how the estimate

of the dimensionless thickness of the axial-bending boundary layer δB ∼ F−1/2`−1

compares with the dimensionless wall thickness δ and the two shear-layer thicknesses

δ−1`−1 and δ`.

In the first case, regime I, we consider the scenario where the thickness δ of

the tube wall is much smaller than the estimate δB ∼ F−1/2`−1 of the thickness

of the bending layer. Thus, δ � F−1/2`−1 and as F = O(1), this implies

δ` � 1. In this case, we should still be able to use the Kirchhoff–Love shell

equations to model the wall mechanics in the bending layer. This is because

in order for Kirchhoff–Love shell theory to hold, the thickness of the tube wall

must be the smallest geometric parameter. In this case, as the wall thickness is

expected to be smaller than the bending-layer width, this property holds. The

scenario δ` � 1 corresponds to the limit F̃ → 0 taken by Whittaker (2015)

in his work on introducing a shear-relaxation boundary layer to the problem.

In this case, the shear layer modelled by Whittaker (2015) is found to have a

significant effect on the solution and must be considered.
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As the shear-relaxation layer is split into an inner shear layer of width O(δ`)

and an outer shear layer of width O(δ−1`−1), regime I is split into two sub-cases.

In the first sub-case, regime Ia, the estimate of the width of the bending layer

is smaller than the width of the inner shear layer (δ � δB � δ`). Hence, we

have δ � `−1 � δ`, which implies δ` � 1 � δ`2. In the second sub-case,

regime Ib, the estimate of the bending boundary-layer width is larger than the

inner shear-layer width (δB � δ`), and we have δ`� `−1. This in turn implies

δ`2 � 1. We note that as δB ∼ `−1 in the estimate (3.48), δB � δ−1`−1 and the

bending-layer width is still smaller than the outer shear-layer width.

In the second case, regime II, the estimate of the bending layer thickness is

much smaller than the tube wall thickness (δB � δ). Applying the estimate

(3.48) and rearranging, it is found that in this case, δ`� 1. As this corresponds

to F̃ � 1, the shear-relaxation layer is not expected to be significant here.

In this regime, it is expected that the Kirchhoff–Love shell equations can no

longer be used to describe the wall mechanics within the bending layer. This is

due to the fact that for the Kirchhoff–Love shell equations to accurately model

the wall mechanics, the thickness of the tube wall must be smaller than the

other geometric parameters of the wall. Here, the axial scale being considered

is smaller than the wall thickness, and this condition is violated. Hence, a

different model must be applied.

3.8 Overview of Chapters 4–7

In the next four chapters, we will concentrate on modelling the bending layer

in each of the regimes Ia, Ib and II.

We first turn our attention to regime Ia in Chapter 4. Here, the

Kirchhoff–Love shell equations are used to model the tube wall. By taking

the parameter regime (3.26) along with δ` � 1 � δ`2, the leading-order

force-balance equations are derived. To enable a sensible dominant balance

in these equations, it is found that the bending boundary-layer width δB must

be O(F−1/2`−1). This is in agreement with the estimate (3.48). By solving

the leading-order force-balance equations, expressions for the leading-order

deformations and area change within the bending layer are found.

In Chapter 5, regime Ib is considered. Again, the Kirchhoff–Love shell

equations are used to model the tube wall. The parameter regime (3.26) along

with δ`2 � 1 is then taken to find the leading-order force-balance equations. It
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is found that in this regime, the inner-shear layer is not needed and the bending

layer is situated at the elastic-walled tube ends. The bending layer then matches

onto the outer shear layer. It is also found that the bending boundary-layer

width is δB = O(δ1/2) in this regime. This is different to the estimate (3.48) and

the value found in regime Ia in Chapter 4. The reason for this is because we now

have azimuthal and axial stretching terms appearing within the leading-order

normal force-balance equation. This is different from regime Ia, where these

terms are small enough that they do not appear at leading order. This is also

different from the toy model in §3.6, where the reduced Föppl–von Kármán

equations (3.39), (3.40) used to derive the estimate (3.48) do not capture the

effects of azimuthal and axial stretching. By performing an asymptotic analysis,

the leading-order deformations and their first-order corrections in the bending

layer are determined.

Finally, in Chapters 6 and 7 we consider regime II. As the Kirchhoff–Love

shell equations are no longer expected to be valid in this regime, we instead

use a two-dimensional linear elastic model to describe the wall mechanics. The

deformations that arise within this regime are then both numerically calculated

and approximated analytically. With this model, a bending layer with width

δB = O(F−1/2`−1) is found in the case δ` � 1. This is in agreement with

the boundary layer found in regime Ia in Chapter 4, and the estimate (3.48).

However, in the case δ` � 1, we instead find a different boundary layer with

width δB = O(δ2`F 1
2 ). This is larger than the estimate (3.48) and larger than

the tube wall thickness δ. Despite this, we find that Kirchhoff–Love shell

theory is still unable to model this boundary layer. This is due to the fact

that the particles normal to the midplane of the tube wall in the undeformed

configuration must stay normal to the midplane when the tube is deformed

for Kirchhoff–Love shell theory to be applicable. Within the boundary layer,

this is not the case and Kirchhoff–Love shell theory cannot accurately model

the boundary layer. It is found that this boundary layer is actually a transverse

shear-relaxation boundary layer, although not the same as the shear-relaxation

layer studied by Whittaker (2015).



Chapter 4

The Bending Boundary Layer in

Regime Ia (δ`� 1� δ`2)

4.1 Introduction

In this chapter, we consider the problem described in Chapter 3, where we

introduce an axial-bending boundary layer to the model of flow through

an elastic-walled tube derived in Chapter 2. This bending layer will allow

us to apply the canonical clamped boundary conditions at the ends of the

elastic-walled tube, where it is clamped onto two fixed rigid tubes.

Here, we consider regime Ia where the dimensionless tube wall thickness δ

and tube length ` are set so that δ` � 1 � δ`2. In this case, a shear-relaxation

layer studied by Whittaker (2015) (details of which may be found in §3.5)

is found to have a significant effect on the solution in the bulk of the tube.

Therefore, this shear layer must be considered. It is noted that the shear layer

is split into two sub-layers: an inner layer of width O(δ`), and an outer layer of

width O(δ−1`−1).

From the estimate for the width of the bending layer derived from the toy

model in §3.6, we expect the dimensionless bending boundary-layer width

δB to be larger than the dimensionless tube wall thickness δ. As such, the

Kirchhoff–Love shell equations (Flügge, 1972; Søndergaard, 2007) may still be

used as a model for the wall mechanics. However, we also expect δB to be

smaller than the widths of both the inner and outer shear-relaxation layers.

Hence in this regime, we expect the axial-bending boundary layer to be situated

at the ends of the elastic-walled tube. The bending layer then matches onto

the two shear-relaxation boundary layers, which in turn match onto the bulk

92
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solution in the main region of the tube. The arrangement of these boundary

layers along the dimensionless axial coordinate Z ∈ [0, `] introduced in Chapter

3 and used in the work by Whittaker (2015), may be seen in Figure 4.1.

Rigid–flexible
region boundary

Bending
boundary

layer Inner
shear–relaxation

layer

Outer
shear–relaxation

layer

Bulk Region

Tube wall
of thickness

O(δ)

0 O(δB) O(δ`) O
(
δ−1`−1) O(`) Z

Figure 4.1: The arrangement of the boundary layers in a cross section through the

centre point and along the length of the tube, in regime Ia where δ` � 1 � δ`2. We

expect to have: δ� δB � δ`� 1� δ−1`−1 � `.

We later find that the deformations in the bending and shear-relaxation

boundary layers only depend on the properties of the tube wall, which are

uniform along the wall, and not on the properties of the fluid inside the tube.

As such, the boundary layers at the interfaces between the flexible and rigid

parts of the tube will behave the same at both the upstream and downstream

interface. Hence, we only need to calculate the deformations at one of these

interfaces. In this chapter, we will concentrate on modelling the bending layer

at the upstream end (Z = 0) of the elastic-walled tube.

This chapter is arranged as follows. In §4.2, the mathematical set-up of

the tube and its deformations is provided, and in §4.3, the behaviour of the

deformations within the inner shear-relaxation layer is considered. Estimates

for the sizes of the deformations in the bending layer are calculated in §4.4, and

the boundary and matching conditions for the deformations in the bending

layer are derived in §4.5. In §4.6, the tensors and constitutive laws needed in

the problem are provided, and in §4.7 the governing force-balance equations

are derived and the sizes of the terms within the force-balance equations are

calculated. In §4.8–§4.10, the leading-order force-balance equations are found
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and the leading-order deformations within the bending layer are calculated.

The area change in the bending layer due to the leading-order normal

deformation is calculated in §4.11. Finally in §4.12 and §4.13, the corrections

to the deformations in the inner shear, outer shear and bulk layers, due to the

leading-order deformations in the bending layer, are determined.

4.2 Mathematical Set-up

We consider the set-up described in §3.3 and depicted in Figure 4.2. The full

details of the non-dimensionalization of this problem may be found in §3.3.

Here, we have an initially elliptical elastic-walled tube with dimensionless

Figure 4.2: The set-up of the undeformed, elliptical, elastic-walled tube, showing the

dimensionless coordinates and variables.

length ` � 1 and dimensionless wall thickness δ � 1. This tube is

subject to a dimensionless uniform axial tension F = O(1) in its undeformed

configuration, and deformations of dimensionless amplitude ∆(t) � 1 are

induced by a dimensionless transmural pressure ptm. The amplitude ∆(t) is

assumed to be slowly varying in dimensionless time t. The tube wall has

dimensionless mass M per unit area, Poisson’s ratio ν and bending stiffness

K, and we also introduce the parameter F̃ given by

F̃ =
δ2`2F

12(1− ν2)
� 1. (4.1)

This parameter appears in the model of the shear-relaxation layer derived by

Whittaker (2015), which is considered later on.

The midplane of the tube wall is parameterized with two dimensionless

Lagrangian surface coordinates τ ∈ [0, 2π), Z ∈ [0, `], which represent arc

length in the azimuthal and axial directions respectively. These are related to
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their dimensional counterparts (x1, x2) by dx1 = ah(τ)dτ, dx2 = adZ, where a

is the typical radial scale of the tube and the scale factor h(τ) is defined as

h(τ) = c(sinh2 σ0 + sin2 τ)
1
2 ,

where σ0 is a parameter setting the ellipticity of the tube, and c(σ0) is a known

function dependent on the ellipticity of the tube.

Using these coordinates, the dimensional position r0(τ, Z) of the tube wall

in the undeformed configuration is defined to be

r0(τ, Z) = a


c cosh σ0 cos τ

c sinh σ0 sin τ

Z

 . (4.2)

Denoting the position of the tube wall in its deformed configuration as r, the

deformation r− r0 of the tube wall may be written as

r− r0 =
∆(t)a
`

(
1

h(τ)
[
ξ̂(τ, Z, t)n̂ + η̂(τ, Z, t)t̂

]
+ ζ̂(τ, Z, t)ẑ

)
. (4.3)

This is the same representation of the deformation used by Whittaker (2015)

in his study of the shear-relaxation layer which must be considered in this

regime. The vectors n̂, t̂ and ẑ are unit vectors in the normal, azimuthal and

axial directions of the undeformed tube wall, and the dimensionless functions

(ξ̂, η̂, ζ̂) represent the normal, azimuthal and axial deformations of the tube

wall.

4.3 Consideration of the Inner Shear-Relaxation Layer by

Whittaker (2015)

As the bending boundary layer has a smaller width than the shear-relaxation

layer studied by Whittaker (2015), the bending layer must match onto a

modified shear-relaxation layer. In particular, it must match onto the inner

shear layer which is the smallest sub-layer within the shear-relaxation layer.

Hence, to determine the sizes of the deformations within the bending layer,

along with the matching conditions the deformations must satisfy as we exit

the bending layer, the behaviour of the inner shear layer must be considered.

When deriving a model of the shear-relaxation layer, Whittaker (2015) used

the scaled axial coordinate ẑ = F̃− 1
2 Z to describe the axial behaviour of the

deformations within the inner shear layer. Using this coordinate, Whittaker
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(2015) found asymptotic approximations for the deformations ξ̂, η̂, ζ̂ within the

inner shear layer. These approximations are denoted ξ̂s, η̂s, ζ̂s here and they

satisfy the Dirichlet parts (3.35) of the pinned boundary conditions defined in

§3.4. However, they do not satisfy the full clamped boundary conditions (3.32).

As such, the bending boundary layer we introduce will force a correction to the

approximations ξ̂s, η̂s, ζ̂s. This correction will only take effect at higher orders

in the asymptotic approximations, and thus we may still use the leading-order

approximations to estimate the sizes of the deformations within the bending

layer.

We consider the leading-order behaviour of the approximations ξ̂s, η̂s, ζ̂s as

found by Whittaker (2015) when ẑ → 0. Taking the Taylor series of ξ̂s, η̂s, ζ̂s

about ẑ = 0 yields at leading order

ξ̂s ∼
F̃ 1

2 h(τ)ν|B̄(τ)|ẑ
12(1− ν2)B̄(τ)

∞

∑
n=1

Bn(t)Yn(τ), (4.4)

η̂s ∼ −
F̃ 3

2

12(1− ν2)

∞

∑
n=1

Bn(t)
∂

∂τ

{
Yn(τ)

(
[1 + ν(2 + ν)]ẑ2

2
− 2ν(1 + ν)ẑ
|B̄(τ)|

)
−2(1 + ν)

µn

[
1

h(τ)|B̄(τ)|2
∂

∂τ

(
Y′n(τ)
h(τ)

)
−Yn(τ)

]
ẑ
}

, (4.5)

ζ̂s ∼
F̃ ẑ
12

∞

∑
n=1

Bn(t)Yn(τ), (4.6)

when ẑ → 0. Here, ′ denotes the differential with respect to τ. The π-periodic,

orthogonal functions Yn(τ) are the eigenfunctions of the operator

L ≡ 1
h

∂

∂τ

1
h

∂

∂τ

(
1

B̄2h
∂

∂τ

1
h

∂

∂τ
− 1
)

, (4.7)

and µ2
n are the corresponding distinct positive eigenvalues ordered such that

0 < µ1 < µ2 < µ3 . . . . For finite σ0, these eigenfunctions and eigenvalues can

only be found numerically. Finally, the Bn(t) are arbitrary O(1) functions of t

setting the amplitude of each eigenmode of the deformations and B̄(τ) is the

dimensionless base-state azimuthal curvature, given as

B̄(τ) = − c2 sinh 2σ0

2h3 .

4.4 Estimating The Sizes of the Deformations in the

Bending Layer

Using the approximations (4.4)–(4.6) for the leading-order deformations in the

inner shear layer as ẑ→ 0, it is possible to estimate the sizes of the deformations
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in the bending layer. Denoting the width of the bending layer as δB, we have

that Z = O(δB) in the bending layer, which implies ẑ = O(δBF̃−
1
2 ). The precise

boundary-layer width δB is undetermined at this point, but will be found later

in §4.8 when the normal force-balance equation is considered. Substituting the

size of ẑ into the approximations (4.4)–(4.6) and applying the definition (4.3) for

the total deformation r− r0, we find

(r− r0) · n̂ = O
(

∆aδB

`

)
, (4.8)

(r− r0) · t̂ = O
(

∆aδB

`
F̃
)

, (4.9)

(r− r0) · ẑ = O
(

∆aδB

`
F̃ 1

2

)
, (4.10)

within the bending layer. Using this, we rewrite the representation (4.3) of the

total deformation as

r− r0 =
∆(t)aδB

`

(
1

h(τ)
[
ξB(τ, zB, t)n̂ + F̃ηB(τ, zB, t)t̂

]
+ F̃ 1

2 ζB(τ, zB, t)ẑ
)

,

(4.11)

where ξB(τ, zB, t), ηB(τ, zB, t), ζB(τ, zB, t) are O(1) functions and we have

introduced the new axial coordinate

zB = δ−1
B Z, (4.12)

which satisfies zB = O(1) in the bending layer. The scale factor h(τ) has once

again been included for convenience.

4.5 Boundary and Matching Conditions

The boundary and matching conditions that should be applied in the bending

layer are now derived. By comparing the expressions (4.3) and (4.11) for r− r0,

it is seen that

ξ̂ = δBξB, η̂ = δBF̃ηB, ζ̂ = δBF̃
1
2 ζB. (4.13)

Hence, the approximations for the deformations in the bending and inner shear

layers must satisfy the matching conditions

ξB ∼ δ−1
B ξ̂s, ηB ∼ δ−1

B F̃
−1η̂s, ζB ∼ δ−1

B F̃
− 1

2 ζ̂s, as zB → ∞, ẑ→ 0.

(4.14)

When applying these matching conditions, it is convenient to express both

ẑ and zB in terms of an intermediate variable zI with size O(1) in a region
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between the bending and inner shear layers. We define zI as follows(
F̃ 1

2 δ−1
B

)α
ẑ = zI =

(
F̃ 1

2 δ−1
B

)α−1
zB, where

1
2
< α < 1. (4.15)

It is noted that when zI = O(1), this also sets zB → ∞ and ẑ→ 0, as F̃ 1
2 δ−1

B � 1.

The condition 1/2 < α has been set so that the order of the terms within the

expressions for the bending layer deformations is retained as zB → ∞.

Using (4.13), we also rewrite the full clamped boundary conditions (3.32),

seen in §3.4, in terms of ξB, ηB, ζB and zB as follows

ξB =
∂ξB

∂zB
= ηB = ζB = 0 at zB = 0. (4.16)

4.6 Tensor Notation and Constitutive Laws

The various tensors that are needed to derive the governing force-balance

equations in the bending layer are now provided. We begin with defining the

basis vectors a1, a2, and the unit normal a3 to the tube wall in the deformed

state. These were first defined in equations (2.21), (2.22) in §2.3 and are given

as

aα =
∂r

∂xα
, a3 =

a1 × a2

|a1 × a2|
, (4.17)

where α spans over (1, 2). Substituting the expressions (4.2), (4.11) for r0, r into

(4.17) and neglecting terms of O(∆2) and higher, it can be shown that

a1 = t̂ +
∆
`h

δB

([
−ξBB̄(τ) + F̃ ∂

∂τ

(ηB

h

)]
t̂ +
[
F̃ηBB̄(τ) +

∂

∂τ

(
ξB

h

)]
n̂

+F̃ 1
2

∂ζB

∂τ
ẑ
)

, (4.18)

a2 = ẑ +
∆
`

(
1
h

[
∂ξB

∂zB
n̂ + F̃ ∂ηB

∂zB
t̂
]
+ F̃ 1

2
∂ζB

∂zB
ẑ
)

, (4.19)

a3 = n̂− ∆
`h

(
δB

[
F̃ηBB̄(τ) +

∂

∂τ

(
ξB

h

)]
t̂ +

∂ξB

∂zB
ẑ
)

. (4.20)

With these it is possible to evaluate the metric tensor aαβ, curvature tensor

bαβ and in-plane and bending strain tensors, γαβ and καβ, in the bending

boundary layer. These tensors are defined as

aαβ = aα · aβ, bαβ = a3 · ∂aα

∂xβ ,

γαβ = 1
2 (aαβ − āαβ), καβ = −bαβ + b̄αβ + 2b̄δ

αγδβ.
(4.21)

The definitions (4.21) are the same as (2.23), (2.24) and (2.32), used in §2.3.

Substituting (4.18)–(4.20) into (4.21) and again neglecting terms of O(∆2) and
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higher, we find

aαβ = āαβ +
∆
`h

 2δB

[
−ξBB̄ + F̃ ∂

∂τ

( ηB
h

)]
F̃ ∂ηB

∂zB
+ δBF̃

1
2

∂ζB
∂τ

F̃ ∂ηB
∂zB

+ δBF̃
1
2

∂ζB
∂τ 2hF̃ 1

2
∂ζB
∂zB

 , (4.22)

bαβ = b̄αβ +
∆

a`h

 δB(β1 + β2) F̃ B̄ ∂ηB
∂zB

+ ∂
∂τ

(
1
h

∂ξB
∂zB

)
F̃ B̄ ∂ηB

∂zB
+ ∂

∂τ

(
1
h

∂ξB
∂z

)
1
δB

∂2ξB
∂z2

 , (4.23)

γαβ =
∆
`h

 δB

[
−ξBB̄ + F̃ ∂

∂τ

( ηB
h

)] 1
2

[
F̃ ∂ηB

∂zB
+ δBF̃

1
2

∂ζB
∂τ

]
1
2

[
F̃ ∂ηB

∂zB
+ δBF̃

1
2

∂ζB
∂τ

]
hF̃ 1

2
∂ζB
∂zB

 , (4.24)

καβ =
∆

a`h

 δB(β1 − β2) δBF̃
1
2 B̄ ∂ζB

∂τ −
∂

∂τ

(
1
h

∂ξB
∂zB

)
− ∂

∂τ

(
1
h

∂ξB
∂zB

)
− F̃ B̄ ∂ηB

∂zB
− 1

δB

∂2ξB
∂z2

B

 , (4.25)

where āαβ is the 2× 2 identity matrix, b̄αβ is defined as

b̄β
α =

1
a

[
B̄(τ) 0

0 0

]
,

and β1, β2 are given by

β1 = B̄
[
−ξBB̄ + F̃ ∂

∂τ

(ηB

h

)]
, β2 =

∂

∂τ

(
1
h

[
F̃ηBB̄ +

∂

∂τ

(
ξB

h

)])
. (4.26)

Using these tensors, the in-plane stresses Nαβ and in-plane bending

moments Mαβ may be determined. Flügge (1972) found the following linear

constitutive laws relating Nαβ, Mαβ to aαβ, bαβ, γαβ, καβ

Nαβ = δα
2 δ

β
2

K`2F
a2 +

12
a2δ2 K[(1− ν)γαβ + νγλ

λaαβ]

+K
{
(1− ν)

2
[2aβδbαγ + aβγbαγ + aαδbβγ − bλ

λ(aαδaβγ + aαγaβδ)]

+ν[aαβbγδ + aγδbαβ − aαβaγδbλ
λ]

}
κλδ, (4.27)

Mαβ = K[−(1− ν)(bα
γγγβ − bλ

λγαβ)− ν(bαβ − bλ
λaαβ)γ

µ
µ

+
1
2
(1− ν)(καβ + κβα) + νaαβκλ

λ ], (4.28)

where δi
j is the Kronecker delta. Substituting the tensors (4.22)–(4.25) into the

constitutive laws (4.27)–(4.28), the leading-order components of Nαβ, Mαβ are

calculated to be

Nαβ =
K
a2

(
0 0

0 `2F

)
+

∆K
a2δ2`

(
12F̃ 1

2 ν ∂ζB
∂zB

6(1−ν)
h F̃ ∂ηB

∂zB
6(1−ν)

h F̃ ∂ηB
∂zB

12F̃ 1
2

∂ζB
∂zB

)
+ . . . , (4.29)

Mαβ =
∆K
a`h

 − 1
δB

ν ∂2ξB
∂z2

B
−(1− ν) ∂

∂τ

(
1
h

∂ξB
∂zB

)
−(1− ν) ∂

∂τ

(
1
h

∂ξB
∂zB

)
− 1

δB

∂2ξB
∂z2

B

+ . . . . (4.30)
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The first term of (4.29) corresponds to the axial pre-stress applied to the tube

wall and the second term corresponds to stresses induced by the deformations

of the tube wall.

4.7 Force-Balance Equations

To model the mechanics of the tube wall, Kirchhoff–Love shell theory is used.

In §2.3, the governing force-balance equations (2.29)–(2.31) in the normal,

azimuthal and axial directions were derived from the Kirchhoff–Love shell

equations in covariant differential form (Flügge, 1972; Søndergaard, 2007). In

terms of the deformations ξB, ηB, ζB, the force-balance equations are

∇α∇β Mαβ + Nαβbαβ −
Kδ2M
12a2 ∇α

d2θ∗α

dt2

+
∆(t)K

a3 ptm −
∆(t)K

a3
δB

`

M
h(τ)

d2ξB

dt2 + . . . = 0, (4.31)

∇βNβ1 − b1
γ∇β Mβγ +

Kδ2M
12a2 b1

γ

d2θ∗γ

dt2 −
∆(t)K

a3
δBF̃
`

M
h(τ)

d2ηB

dt2 + . . . = 0, (4.32)

∇βNβ2 − b2
γ∇β Mβγ +

Kδ2M
12a2 b2

γ

d2θ∗γ

dt2 −
∆(t)K

a3
δBF̃

1
2

`
M

d2ζB

dt2 + . . . = 0, (4.33)

where the covariant derivatives ∇α at leading order are

∇1 =
1
ah

∂

∂τ
+ O(∆), ∇2 =

1
aδB

∂

∂zB
+ O(∆), (4.34)

and θ∗α is the angle of rotation that the tube wall takes about an axis passing

through the material in the aα direction. By considering the size of the normal

deformation of the tube wall within the bending layer and the azimuthal and

axial length scales being used, we find the θ∗α may be scaled as follows

θ∗1 =
∆
`

θ1, θ∗2 =
∆δB

`
θ2, (4.35)

where θ1 and θ2 are O(1) in the bending layer.

It is found that we must evaluate some of the higher-order terms in the

covariant derivatives of Nαβ due to the large pre-stress term. The full expression

for the covariant derivative of Nαβ is

∇αNαβ =
∂Nαβ

∂xα
+ Γα

γαNγβ + Γβ
γαNαγ, (4.36)

where the Christoffel symbol Γβ
µν is defined as Γβ

µν ≡ aαβaα · aµ,ν. Each

component of Γβ
µν is O(∆) and as such we need only consider terms involving



4.8. Normal Force-Balance Equation 101

N22, the only non-O(∆) component of Nαβ. The Christoffel symbols needed are

Γ1
21, Γ1

22 and Γ2
22, which are calculated to be

Γ1
21 =

∆
a`hB̄

∂β1

∂zB
+ O(∆2), (4.37)

Γ1
22 =

∆F̃
a`δBh

∂2ηB

∂z2
B

+ O(∆2), (4.38)

Γ2
22 =

∆F̃ 1
2

a`δB

∂2ζB

∂z2
B
+ O(∆2). (4.39)

Now we substitute (4.22)–(4.30) as well as (4.34)–(4.39) into the governing

force-balance equations (4.31)–(4.33). Doing so, it is possible to determine

the sizes of each of the terms in the force-balance equations and see what

terms contribute at leading order. The scalings of the terms within the

force-balance equations can be found in Tables 4.1–4.3. It is found that the terms

corresponding to angular acceleration, wall inertia and transmural pressure are

not large enough to contribute at leading order and thus are not included in

the tables. (In (4.31)–(4.33) these terms are at most O(∆K/a3), which is strictly

smaller than some of the other terms in these equations when δB � 1.)

To solve the force-balance equations (4.31)–(4.33), we form asymptotic

approximations of the deformations ξB, ηB and ζB. By examining the

scalings of the terms within the force-balance equations, it is found that these

approximations should take the form

ξB = ξ
(0)
B + O(δ−1`−2), (4.40)

ηB = η
(0)
B + O(δ−1`−2), (4.41)

ζB = ζ
(0)
B + O(δ−1`−2). (4.42)

Here ξ
(0)
B , η

(0)
B and ζ

(0)
B are the leading-order terms of the asymptotic

approximations and the higher-order terms of the approximations are

O(δ−1`−2) at most. We proceed to solve the leading-order force-balance

equations and determine expressions for the leading-order deformations ξ
(0)
B ,

η
(0)
B and ζ

(0)
B .

4.8 Normal Force-Balance Equation

From the scalings in Table 4.1, we find under the assumption δB � δ`� 1 that

the only terms that can contribute at leading order in the normal force-balance

equation are the terms from axial-bending, and pre-stress and axial curvature.
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Mechanism Strain
Dominant contribution to normal

force-balance equation

Azimuthal

stretching
γ11∼∆δB

`

{
∇2∇2M22∼ ∆K

a3`δB
(1, F̃ )

N11b11∼ ∆K
a3`δB

δ2
B

δ2 (1, F̃ )

Shear

stretching
γ12, γ21∼∆

` (F̃ , δBF̃
1
2 ) ∇2∇1M21∼ ∆K

a3`δB
(F̃ , δBF̃

1
2 )

Axial

stretching
γ22∼∆

` F̃
1
2

{
∇2∇2M22∼ ∆K

a3`δB

F̃
1
2

δB

N11b11∼ ∆K
a3`δB

δBF̃
1
2

δ2

Azimuthal

bending
κ11∼∆δB

a` (1, F̃ ) ∇2∇2M22∼ ∆K
a3`δB

(1, F̃ )

Torsion
κ12∼ ∆

a` (1, F̃ 1
2 δB) ∇1∇2M12,∇2∇1M21∼ ∆K

a3`δB
(1, δBF̃

1
2 )

κ21∼ ∆
a` (1, F̃ ) ∇1∇2M12,∇2∇1M21∼ ∆K

a3`δB
(1, F̃ )

Axial

bending
κ22∼ ∆

a`δB
∇2∇2M22∼ ∆K

a3`δB

1
δ2

B

Pre-stress

and axial

curvature

κ22∼ ∆
a`δB

N22b22∼ ∆K
a3`δB
F`2

Table 4.1: Scaling estimates for the dominant terms contributing to the normal

force-balance equation in regime Ia. The mechanisms that contribute at leading order

are in bold.

(Since F̃ � 1, the other effects are all strictly smaller than at least one of these

two terms.) These two terms must balance and thus we must have

δB = F− 1
2 `−1. (4.43)

This is in agreement with the estimate (3.48) derived from the toy model in

§3.6. Using (4.43) and the asymptotic expansion (4.40), we find the normal

force-balance equation (4.31) becomes, at leading order

∇2∇2M22 + N22b22 = 0, ⇒
∂4ξ

(0)
B

∂z4
B
−

∂2ξ
(0)
B

∂z2
B

= 0. (4.44)

The general solution for ξ
(0)
B is therefore

ξ
(0)
B = A(τ, t)ezB + B(τ, t)e−zB + C(τ, t)zB + D(τ, t), (4.45)
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Mechanism Strain
Dominant contribution to

azimuthal force-balance equation

Azimuthal

stretching
γ11∼∆δB

` ∇1N11∼ ∆K
a3`δB

δ2
Bδ−2(1, F̃ )

Shear

stretching
γ12, γ21∼∆

` (F̃ , δBF̃
1
2 )

{
∇2N21∼ ∆K

a3`δB
δ−2(F̃ , δBF̃

1
2 )

b11∇2M21∼ ∆K
a3`δB

(F̃ , δBF̃
1
2 )

Axial

stretching
γ22∼∆

` F̃
1
2 ∇1N11∼ ∆K

a3`δB
δBF̃

1
2 δ−2

Azimuthal

bending
κ11∼∆δB

a` (1, F̃ )

{
∇1N11∼ ∆K

a3`δB
δ2

B(1, F̃ )
b11∇1M11∼ ∆K

a3`δB
δ2

B(1, F̃ )

Torsion

κ12∼ ∆
a` (1, F̃ 1

2 δB)

{
∇1N11∼ ∆K

a3`δB
δB(1, δBF̃

1
2 )

b11∇2M21∼ ∆K
a3`δB

(1, δBF̃
1
2 )

κ21∼ ∆
a` (1, F̃ )

{
∇2N21∼ ∆K

a3`δB
(1, F̃ )

b11∇2M21∼ ∆K
a3`δB

(1, F̃ )
Axial

bending
κ22∼ ∆

a`δB
b11∇1M11∼ ∆K

a3`δB

Pre-stress

and axial

curvature

Γ1
22∼ ∆F̃

a`δB
∇2N21∼ ∆K

a3`δB
F̃F`2

Table 4.2: Scaling estimates for the dominant terms contributing to the azimuthal

force-balance equation in regime Ia. The mechanism that contributes at leading order

is in bold.

where A, B, C, D are arbitrary functions.

By examining the matching condition (4.14a) for ξB as well as the

leading-order approximation (4.4) for ξ̂s as ẑ → 0, it is seen that for the

matching condition to hold, ξ
(0)
B cannot be exponentially growing in zB as

zB → ∞. Hence, A(τ, t) = 0. Applying the clamped boundary conditions

(4.16), it is also determined that

C(τ, t) = B(τ, t), D(τ, t) = −B(τ, t). (4.46)

Substituting the values of A(τ, t), C(τ, t) and D(τ, t) into the general solution

(4.45) yields

ξ
(0)
B = B(τ, t)(e−zB + zB − 1). (4.47)
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Mechanism Strain
Dominant contribution to

axial force-balance equation

Azimuthal

stretching
γ11∼∆δB

` ∇2N22∼∆K
a3`

δ−2(1, F̃ )

Shear

stretching
γ12, γ21∼∆

` (F̃ , δBF̃
1
2 ) ∇1N12∼∆K

a3`
δ−2(F̃ , δBF̃

1
2 )

Axial

stretching
γ22∼∆

` F̃
1
2 ∇2N22∼∆K

a3`
δ−1

B F̃
1
2 δ−2

Torsion
κ12∼ ∆

a` (1, F̃ 1
2 δB) ∇1N12∼∆K

a3`
(1, δBF̃

1
2 )

κ21∼ ∆
a` (1, F̃ ) ∇1N12∼∆K

a3`
(1, F̃ )

Axial

bending
κ22∼ ∆

a`δB
∇2N22∼∆K

a3`
δ−2

B

Pre-stress

and axial

curvature

Γ1
21∼ ∆

a` (1, F̃ ) ∇1N12∼∆K
a3`

`2(1, F̃ )

Γ2
22∼∆F̃

1
2

a`δB
∇2N22∼∆K

a3`
δ−1

B F̃
1
2F`2

Table 4.3: Scaling estimates for the dominant terms contributing to the axial

force-balance equation in regime Ia. The mechanism that contributes at leading order

is in bold.

The function B(τ, t) is now set so that the matching condition (4.14a) is

satisfied. As zB → ∞, ξ
(0)
B is approximated by

ξ
(0)
B ∼ B(τ, t)(zB − 1). (4.48)

Substituting this and the leading-order approximation (4.4) for ξ̂s as ẑ→ 0 into

(4.14a) and rewriting zB and ẑ in terms of the intermediate variable zI using

(4.15), it can be shown that

B(τ, t)
((
F̃ 1

2 δ−1
B

)1−α
zI − 1

)
∼ −

(
F̃ 1

2 δ−1
B

)1−α
h(τ)νzI

12(1− ν2)

∞

∑
n=1

Bn(t)Yn(τ). (4.49)

Examining this relation, we see that the linear terms on both sides of the

expression have the same size. However, the constant term on the left-hand-side

is a factor of (F̃ 1
2 δ−1

B )α−1 smaller than the other terms in the relation. As

such, this term will not affect the leading-order matching condition but will

instead force a correction to ξ̂s at a higher order. The effect of this correction is

evaluated further in §4.12. As the correction does not apply at leading order,
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the leading-order term of the approximation ξ̂s in the inner shear layer still

behaves linearly as zI → 0 and thus it still satisfies the Dirichlet parts (3.35) of

the pinned boundary conditions.

Rearranging (4.49) and neglecting the constant term on the left-hand-side,

it is calculated that

B(τ, t) = − h(τ)ν
12(1− ν2)

∞

∑
n=1

Bn(t)Yn(τ). (4.50)

Hence, we find the leading-order deformation ξ
(0)
B in the bending layer to be

ξ
(0)
B = − h(τ)ν

12(1− ν2)

∞

∑
n=1

Bn(t)Yn(τ)(e−zB + zB − 1). (4.51)

This is depicted in Figure 4.3 in §4.12.

4.9 Azimuthal Force-Balance Equation

Using δB = F− 1
2 `−1 and the scalings in Table 4.2, we find the only

leading-order term within the azimuthal force-balance equation (4.32) to be

one of the shear stretching terms, which has size O( ∆K
a3`δB

δ−2F̃ ). Substituting the

asymptotic approximation (4.41) for ηB into (4.32), the leading-order azimuthal

force-balance equation is determined as

∇2N21 = 0, ⇒
∂2η

(0)
B

∂z2
B

= 0. (4.52)

Thus, the general solution for η
(0)
B is

η
(0)
B = E(τ, t)zB + F(τ, t), (4.53)

where E, F are arbitrary functions.

Applying the clamped boundary condition (4.16) to (4.53) gives

F(τ, t) = 0. (4.54)

Substituting (4.53) and the approximation (4.5) for η̂s as ẑ→ 0 into the matching

condition (4.14b), and once again rewriting both zB and ẑ in terms of zI using

(4.15), we find

E(τ, t)zI ∼
1

12(1− ν2)

∞

∑
n=1

Bn(t)
∂

∂τ

{
Yn(τ)

(
2ν(1 + ν)zI

|B̄(τ)| − [1 + ν(2 + ν)]z2
I

2(F̃ 1
2 δ−1

B )α

)

+
2(1 + ν)

µn

[
1

h(τ)|B̄(τ)|2
∂

∂τ

(
Y′n(τ)
h(τ)

)
−Yn(τ)

]
zI

}
. (4.55)
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It is seen that there are terms linear in zI with the same size on both sides of

(4.55), allowing these terms to be matched. On the right-hand-side, there are

also terms quadratic in zI which are a factor of (F̃ 1
2 δ−1

B )−α smaller than the

other terms in the relation. As such these terms will not play a part in the

leading-order matching and will instead match with the higher-order terms in

the asymptotic approximation (4.41) for ηB. We see that there is no correction

at leading order to the approximation η̂s in the inner shear layer, and thus

as zI → 0, the approximation of the leading-order term of η̂s still contains

only linear and quadratic terms in zI . Hence, the leading-order term of η̂s still

satisfies the Dirichlet parts (3.35) of the pinned boundary conditions.

Matching the linear terms in (4.55), it is found that

E(τ, t) =
1

12(1− ν2)

∞

∑
n=1

Bn(t)
∂

∂τ

{
2ν(1 + ν)Yn(τ)

|B̄(τ)|

+
2(1 + ν)

µn

[
1

h(τ)|B̄(τ)|2
∂

∂τ

(
Y′n(τ)

h

)
−Yn(τ)

]}
, (4.56)

which in turn gives the leading-order azimuthal deformation η
(0)
B in the

bending layer as

η
(0)
B =

zB

12(1− ν2)

∞

∑
n=1

Bn(t)
∂

∂τ

{
2ν(1 + ν)Yn(τ)

|B̄(τ)|

+
2(1 + ν)

µn

[
1

h(τ)|B̄(τ)|2
∂

∂τ

(
Y′n(τ)

h

)
−Yn(τ)

]}
. (4.57)

This is plotted in Figure 4.4 in §4.12.

4.10 Axial Force-Balance Equation

Finally, by looking at the scalings in Table 4.3, we find the leading-order axial

force-balance equation to be at O(∆K
a3`

δ−1
B F̃

1
2 δ−2) and contain only the axial

stretching term. Thus, by substituting in the asymptotic approximation (4.42)

for ζB, the axial force-balance equation (4.33) becomes, at leading order

∇2N22 = 0, ⇒
∂2ζ

(0)
B

∂z2
B

= 0. (4.58)

Hence, the general solution for ζ
(0)
B is found to be

ζ
(0)
B = G(τ, t)zB + H(τ, t), (4.59)

where G, H are arbitrary functions.
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The clamped boundary condition (4.16) on ζB is applied to (4.59) to obtain

H(τ, t) = 0. (4.60)

By substituting (4.59) and the approximation (4.6) for ζ̂s as ẑ → 0 into the

matching condition (4.14c) for ζB, and again using (4.15) to rewrite zB and ẑ in

terms of zI , it is shown that

G(τ, t)zI ∼
zI

12

∞

∑
n=1

Bn(t)Yn(τ). (4.61)

Since all the terms here are the same size and are linear, we see that there is no

correction at leading order to ζ̂s and the leading-order term of ζ̂s still behaves

linearly in zI as zI → 0. As such, ζ̂s still satisfies the Dirichlet parts (3.35) of the

pinned boundary conditions at leading order.

As all the terms within (4.61) are linear in zI and have the same size, we

may match these terms to obtain

G(τ, t) =
1
12

∞

∑
n=1

Bn(t)Yn(τ), (4.62)

and hence the leading-order axial deformation ζ
(0)
B in the bending layer is

ζ
(0)
B =

1
12

∞

∑
n=1

Bn(t)Yn(τ)zB. (4.63)

This is depicted in Figure 4.5 in §4.12.

4.11 Leading-Order Area Change in the Bending Layer

With the expression (4.51) for the leading-order normal deformation ξ
(0)
B in the

bending layer, we can determine the leading-order area change in the bending

layer. Whittaker et al. (2010d) found the relation between the area change and

the overall deformation in the tube wall to be

(A(z, t)− A0) a2 =
∮
(r− r0) · n̂ ah(τ)dτ + O(∆2), (4.64)

where A, A0 are the dimensionless cross-sectional areas of the tube in its

deformed and undeformed state respectively. Applying the deformation (4.11)

in the bending boundary layer to (4.64), we find the area change in the bending

boundary layer to be

A(z, t)− A0 =
∆
`2

∫ 2π

0
ξBdτ + O(∆2).

∼ − ∆ν

12`2(1− ν2)

∞

∑
n=1

Bn(e−zB + zB − 1)
∫ 2π

0
h(τ)Yn(τ)dτ

+O(δ−1`−2), (4.65)
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where we have substituted in the asymptotic expansion (4.40) for ξB. To

evaluate the integral in (4.65), we use the property that the Yn(τ) are

eigenfunctions of the operator L, with corresponding eigenvalues µ2
n. Using

this property and the definition (4.7) of L, we find the following

h(τ)Yn(τ) =
h(τ)
µ2

n
LYn(τ)

=
1

µ2
n

∂

∂τ

1
h

∂

∂τ

(
1

B̄2h
∂

∂τ

1
h

∂Yn(τ)

∂τ
−Yn(τ)

)
. (4.66)

Evaluating the integral in (4.65) gives

∫ 2π

0
h(τ)Yn(τ)dτ =

1
µ2

n

[
1
h

∂

∂τ

(
1

B̄2h
∂

∂τ

1
h

∂Yn(τ)

∂τ
−Yn(τ)

)]2π

0
= 0, (4.67)

since Yn(τ), h(τ) and B̄(τ) are all periodic over 2π. Hence

A(z, t)− A0 = O(δ−1`−2), (4.68)

and there is no area change within the bending layer at leading order.

4.12 Corrections to the Inner Shear-Layer Solution

Now that we have found the leading-order deformations within the bending

layer, we can use this information to determine the corrections that are imposed

on the deformations ξ̂, η̂ and ζ̂ within the inner shear layer. To do so, we must

determine the solutions of the deformations in the inner shear layer without

applying the Dirichlet parts (3.35) of the pinned boundary conditions. We then

match these general solutions to the leading-order bending-layer deformations.

The general solutions of the deformations in the inner shear layer, up

to leading order, are derived in Appendix 4.A and shown in equations
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(4.100)–(4.102). These are found to be

ξ̂ =
F̃ 1

2 h
12B̄(1− ν2)

[
ν

∞

∑
n=1

Bn(t)Yn(τ)
(

1− e−|B̄|ẑ
)
− Â(τ, t)e−|B̄|ẑ

]
+ O(F̃ 3

2 ), (4.69)

η̂ =
F̃ 3

2

12(1− ν2)

{
∂

∂τ

[
−2 + ν

|B̄|2

(
∞

∑
n=1

νBn(t)Yn(τ) + Â(τ, t)

)
e−|B̄|ẑ

−
∞

∑
n=1

Bn(t)Y′n(τ)
2

ẑ2 +
2(1 + ν)

µn

∞

∑
n=1

Bn(t)
[

1
B̄2h

∂

∂τ

(
Y′n(τ)

h

)
−Yn

]
ẑ

−Ĉ(τ, t)ẑ

]
+ B̂(τ, t)

}
+ O(F̃ 5

2 ), (4.70)

ζ̂ =
F̃

12(1− ν2)

[
∞

∑
n=1

Bn(t)Yn(τ)

(
ẑ +

ν2

|B̄| e
−|B̄|ẑ

)
+

ν

|B̄| Â(τ, t)e−|B̄|ẑ + Ĉ(τ, t)
]
+ O(F̃ 2), (4.71)

where Â, B̂ and Ĉ are functions to be determined. In order for (4.69)–(4.71) to

match onto the leading-order deformations in the bending layer, the functions

Â, B̂ and Ĉ must be set so that

ξ̂ ∼ δBξ
(0)
B , η̂ ∼ δBF̃η

(0)
B , ζ̂ ∼ δBF̃

1
2 ζ

(0)
B , as zB → ∞, ẑ→ 0. (4.72)

These conditions are derived from the relations (4.13) between the deformations

in the bending and inner shear layers. For the matching conditions (4.72) to be

satisfied, we must have

Â(τ, t) = −νB̄F̃− 1
2 δB

∞

∑
n=1

Bn(t)Yn(τ), (4.73)

B̂(τ, t) = ν(2 + ν)
∞

∑
n=1

Bn(t)
∂

∂τ

[
Yn(τ)

|B̄(τ)|

(
1

|B̄(τ)| + F̃
− 1

2 δB

)]
, (4.74)

Ĉ(τ, t) = −ν2
(

1
|B̄(τ)| + F̃

− 1
2 δB

) ∞

∑
n=1

Bn(t)Yn(τ). (4.75)

Substituting (4.73)–(4.75) into (4.69)–(4.71), the corrected deformations in the
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inner shear layer, which we denote ξ̂c, η̂c and ζ̂c are found to be

ξ̂c =
F̃ 1

2 hν

12B̄(1− ν2)

∞

∑
n=1

Bn(t)Yn(τ)
[
1−

(
1− B̄F̃− 1

2 δB

)
e−|B̄|ẑ

]
+ O(F̃ 3

2 ), (4.76)

η̂c =
F̃ 3

2

12(1− ν2)

∞

∑
n=1

Bn(t)
∂

∂τ

{
2(1 + ν)

µn

[
1

B̄2h
∂

∂τ

(
Y′n(τ)

h

)
−Yn

]
ẑ

+Yn(τ)

[(
ν(2 + ν)

|B̄|

(
1− e−|B̄|ẑ

)
+ ν2ẑ

)(
1

|B̄(τ)| + F̃
− 1

2 δB

)
− ẑ2

2

]}
+O(F̃ 5

2 ), (4.77)

ζ̂c =
F̃

12(1− ν2)

∞

∑
n=1

Bn(t)Yn(τ)

[
ẑ− ν2

(
1

|B̄(τ)| + F̃
− 1

2 δB

)(
1− e−|B̄|ẑ

)]
+O(F̃ 2). (4.78)

By comparing the deformations (4.76)–(4.78) to the deformations originally

found in the inner shear layer by Whittaker (2015), it is seen that the

correction terms are all a factor of O(F̃− 1
2 δB) = O(F−1δ−1`−2) smaller than

the leading-order terms within the expressions. Hence, these correction terms

do not alter the leading-order behaviour of the inner shear-layer deformations.

Instead, they alter the deformations at a higher order so that the inner

shear-layer deformations allow the bending-layer deformations to satisfy the

clamped boundary conditions (4.16). In particular, they allow the new

condition on the gradient of the normal deformation to be satisfied.

If the condition F = O(1) is relaxed so we can set F = O(δ−1`−2), resulting

in a lower tension, the correction terms will then appear at leading order.

However, by changing the value of F in this way, it is seen using the definitions

(4.1) and (4.43) of F̃ and δB that we then have F̃ 1
2 = O(δ

1
2 ) and δB = O(δ

1
2 ).

Hence, the bending layer and inner shear layer now have the same width. As

the pre-stress contributes at leading order in the bulk layer, setting this value of

F could also alter the behaviour of the leading-order solution in the bulk layer.

Because of these effects, further investigation is needed to evaluate what occurs

in this scenario.

In Figures 4.3, 4.4 and 4.5, the first n = 1 modes of the leading-order

approximations ξ̂s, η̂s and ζ̂s of the deformations ξ̂, η̂ and ζ̂ in the original

inner shear layer found by Whittaker (2015) have been plotted in the axial

direction. Also plotted are the approximations δBξ
(0)
B , δBF̃ η̂

(0)
B and δBF̃

1
2 ζ

(0)
B

of the deformations in the bending layer, and the corrected approximations

ξ̂c, η̂c and ζ̂c in the inner shear layer. These are given by (4.51)–(4.63) and

(4.76)–(4.78), respectively. It is seen that the bending-layer deformations and the
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gradient of ξ̂ are all zero at the clamped boundary Z = 0. It is also seen that the

correction to ξ̂ in the inner shear layer enforces a shift from the original value

found by Whittaker (2015), which decreases exponentially with increasing Z.

The correction to η̂ in the inner shear layer is found to alter the gradient of the

deformation as well as give a shift comprised of an exponentially decaying and

constant part with increasing Z. Finally, the correction to ζ̂ in the inner shear

layer is found to give a shift with an exponentially decaying and constant part

with increasing Z.
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Figure 4.3: The first n = 1 modes of the approximations ξ̂s, δBξ
(0)
B , and ξ̂c, of ξ̂ in

the original inner shear layer studied by Whittaker (2015), in the bending layer, and

in the corrected inner shear layer, respectively. The approximations δBξ
(0)
B and ξ̂c are

given by (4.51) and (4.76), and all the approximations are plotted in the case σ0 = 0.6,

δ = 0.001, ` = 100, ν = 0.49, F = 1, τ = 0 and B1(t) = 1, with Y1(τ) normalised such

that Y1(0) = 1. In this case δB = 0.01.

In each of the deformations the new correction terms are a factor of

O(F̃− 3
2 δB) = O(δ−3`−4) different from the largest of the other higher-order

terms in the expressions. It is unclear whether δ−3`−4 � 1 or δ−3`−4 � 1 and

as such, it is also unclear whether the new correction terms are larger or smaller

than the other higher-order terms within the expressions for the deformations.
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Figure 4.4: The first n = 1 modes of the approximations η̂s, δBF̃η
(0)
B , and η̂c, of η̂ in

the original inner shear layer studied by Whittaker (2015), in the bending layer, and in

the corrected inner shear layer, respectively. The approximations δBF̃η
(0)
B and η̂c are

given by (4.57) and (4.77), and all the approximations are plotted in the case σ0 = 0.6,

δ = 0.001, ` = 100, ν = 0.49, F = 1, τ = 2.6656 (where Y′1(τ) is near its maximum

value) and B1(t) = 1, with Y1(τ) normalised such that Y1(0) = 1. In this case δB = 0.01.

Hence, whether these new correction terms are more important than the other

higher-order terms depends on the values of δ and `.

4.13 Corrections to the Outer Shear-Layer and Bulk-Layer

Solutions

We now consider the behaviour of the deformations (4.76)–(4.78) in the inner

shear layer as ẑ → ∞. This will allow us to determine the effect that the

correction terms have on the deformations in the outer shear layer studied by

Whittaker (2015), and in the bulk layer modelled in Chapter 2.

In the expression (4.76) for ξ̂, the correction term behaves exponentially in

ẑ. As such, this term will become exponentially small as ẑ → ∞, and this

correction will have no effect on the normal deformation in the outer shear
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Figure 4.5: The first n = 1 modes of the approximations ζ̂s, δBF̃
1
2 ζ

(0)
B , and ζ̂c, of ζ̂ in

the original inner shear layer studied by Whittaker (2015), in the bending layer, and in

the corrected inner shear layer, respectively. The approximations δBF̃
1
2 ζ

(0)
B and ζ̂c are

given by (4.63), and (4.78), and all the approximations are plotted in the case σ0 = 0.6,

δ = 0.001, ` = 100, ν = 0.49, F = 1, τ = 0 and B1(t) = 1, with Y1(τ) normalised such

that Y1(0) = 1. In this case δB = 0.01.

layer, or in the bulk layer. From equation (4.64), it is seen that the area change of

the tube is dependent only on the normal deformation. Hence, as the correction

term in (4.76) does not alter the normal deformation in the outer shear or bulk

layers, it will also have no effect on the area change in these layers.

In the expression (4.77) for η̂, there are correction terms that behave

exponentially, linearly and as a constant in ẑ. In the case ẑ→ ∞, the exponential

terms will become exponentially small. However, the linear and constant terms

will enforce a correction to the azimuthal deformation in the outer shear layer.

When ẑ → ∞, the quadratic and leading-order linear terms in (4.77) will be

larger than the correction terms. As such the correction terms will enforce

corrections to the outer shear-layer deformation that appear at higher orders

than terms matching onto the quadratic and leading-order linear terms in the

inner shear layer. As these corrections are so small we do not compute them

here.



114 Chapter 4. The Bending Boundary Layer in Regime Ia

Finally, in the expression (4.78) for ζ̂, we have correction terms that behave

exponentially and as a constant in ẑ. When ẑ → ∞, again the exponential

term becomes exponentially small and the constant term enforces a correction

to axial deformation in the outer shear layer. The linear and leading-order

constant terms in (4.78) will still be larger than the correction terms when

ẑ→ ∞. Hence the corrections to the outer shear-layer deformation will appear

at higher orders than terms matching onto the linear and leading-order constant

terms in the inner shear layer. Again, as these corrections are so small they are

not computed here.

To determine the exact sizes of the corrections to η̂ and ζ̂ in the bulk

layer, the corrections in the outer shear layer would be needed. However, the

corrections in the outer shear layer are smaller than the leading-order terms,

and will behave linearly or as a constant in the axial direction for η̂, and as a

constant in the axial direction for ζ̂. Hence, as there are linear and constant

leading-order terms in η̂ and ζ̂ respectively, the correction terms will not be as

large as the leading-order terms as we leave the outer shear layer and enter the

bulk layer. Thus, the leading-order bulk-layer deformations will not be affected.

4.14 Conclusions

In this chapter, we have introduced a bending boundary layer to the model

derived in Chapter 2, in the regime Ia where δ` � 1 � δ`2. This bending

layer has enabled the full clamped boundary conditions (4.16) to be satisfied

at the ends of the elastic-walled tube, and matches onto a modified version of

the shear-relaxation layer studied by Whittaker (2015). We have also evaluated

how this bending layer effects the solutions in the shear-relaxation layer as well

as how it effects the bulk solution modelled in Chapter 2.

Here, we have used the Kirchhoff–Love shell equations to model the wall

mechanics within the bending layer. Doing so, the leading-order force-balance

equations in the normal, azimuthal and axial directions were derived. By

examining the normal force-balance equation, we found that the only terms

that could balance at leading order are terms that arise from axial bending,

and pre-stress and axial curvature. In order for these terms to balance, we

found that the width δB of the bending layer must be δB = F− 1
2 `−1. This is

in agreement with the estimate (3.48) for the bending boundary-layer width

derived from the toy model in §3.6. The width of the bending layer is smaller
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than the width of the inner shear layer modelled by Whittaker (2015) and as

such, the bending layers are situated at the ends of the elastic-walled tube, and

match onto modified inner shear layers.

Solving the leading-order force-balance equations, we have determined the

leading-order normal, azimuthal and axial deformations within the bending

layer. We have also found that within the bending layer, the leading-order

normal deformation induces no change in the cross-sectional area of the tube

from its undeformed state.

Using the leading-order deformations within the bending layer, we have

determined the corrections to the deformations in the inner shear layer

originally found by Whittaker (2015). These corrections have been found to

be a factor of O(F−1δ−1`−2) smaller than the leading-order terms and thus

do not change the leading-order behaviour of the deformations. It is also

found that these correction terms may appear at either lower or higher orders

than the other higher-order terms in the expressions for the inner shear-layer

deformations, depending on the sizes of δ and `. If the condition F = O(1) is

relaxed and we instead set F = O(δ−1`−2), the corrections will be large enough

to contribute at leading order. However, this may change the behaviour of the

bulk solution and will also change the sizes of the bending and inner shear

layers so that they become the same size. As such, further investigation is

needed to determine what happens when F = O(δ−1`−2).

Finally, we have also determined how the corrections in the inner shear-layer

deformations affect the outer shear layer modelled by Whittaker (2015), and

the bulk layer modelled in Chapter 2. We have seen that the correction in the

normal deformation decays exponentially as we exit the inner shear layer. As

such there will be no correction to the normal deformation or the cross-sectional

area change in either of the outer shear or bulk layers. We have also seen that

the corrections to the azimuthal and axial deformations in the inner shear layer

yield corrections to the corresponding outer shear-layer deformations at higher

orders than terms matching onto some of the leading-order terms in the inner

shear layer. The corrections to the azimuthal and axial deformations in the bulk

layer will also apply at higher orders.

It is seen that the bending layer found here is passive and does not

contribute to the leading-order deformations as zB → ∞. Instead, it simply

allows the axial gradient of the tube wall to decrease to zero as the clamped

boundary at zB = 0 is reached.



116 Chapter 4. The Bending Boundary Layer in Regime Ia

4.A General Solutions for the Leading-Order Deformations

in the Inner Shear Layer

To determine the corrections the leading-order bending-layer deformations

impose on the inner shear-layer deformations, we must solve the system

governing the inner shear layer without imposing the Dirichlet parts (3.35) of

the pinned boundary conditions originally applied by Whittaker (2015).

4.A.1 Recasting the System in Terms of the Stresses

In order to find the deformations within the inner shear layer, Whittaker (2015)

first recast the problem in terms of the leading-order azimuthal hoop stress

Ñ, the leading-order in-plane shear stress S̃ and the leading-order axial stress

Σ̃. This was to avoid leading-order degeneracies that appeared within the

governing system when written in terms of the deformations. In terms of the

deformations ξ̂, η̂, ζ̂, and the axial coordinate ẑ = F̃− 1
2 Z, these stresses are

defined as

Ñ = 12

(
− B̄ξ̂

h
+

1
h

∂

∂τ

(
η̂

h

)
+ F̃− 1

2 ν
∂ζ̂

∂ẑ

)
, (4.79)

S̃ =
12(1− ν)

2h

(
F̃− 1

2
∂η̂

∂ẑ
+

∂ζ̂

∂τ

)
, (4.80)

Σ̃ = 12

(
F̃− 1

2
∂ζ̂

∂ẑ
+ ν

(
− B̄ξ̂

h
+

1
h

∂

∂τ

(
η̂

h

)))
. (4.81)

By manipulating (4.79)–(4.81), the following expressions for the deformations

in terms of the stresses are found

ζ̂ =
∫ F̃ 1

2
(
Σ̃− νÑ

)
12(1− ν2)

dẑ +
F̃

12(1− ν2)
Ĉ(τ, t), (4.82)

η̂ =
∫
F̃ 1

2

(
hS̃

6(1− ν)
− ∂ζ̂

∂τ

)
dẑ + F̃ 3

2 B̂(τ, t), (4.83)

ξ̂ = − h
B̄

(
Ñ − νΣ

12(1− ν2)
− 1

h
∂

∂τ

(
η̂

h

))
, (4.84)

where B̂, Ĉ are functions that are later determined by matching to the

bending-layer deformations, and their corresponding scalings have been

included for convenience.



4.A. General Solutions for the Deformations in the Inner Shear Layer 117

4.A.2 Determining the Leading-Order Stresses

Once the governing system for the inner shear layer was recast in terms of Ñ,

S̃ and Σ̃, Whittaker (2015) determined solutions for the stresses by considering

asymptotic expansions of the following forms

Ñ = F̃ 1
2 N̂ = F̃ 1

2

(
N̂(0) + F̃ N̂(1) + . . .

)
, (4.85)

S̃ = Ŝ =
(

Ŝ(0) + F̃ Ŝ(1) + . . .
)

, (4.86)

Σ̃ = F̃ 1
2 Σ̂ = F̃ 1

2

(
Σ̂(0) + F̃ Σ̂(1) + . . .

)
. (4.87)

Using these approximations, the following leading-order governing equations

were derived in the inner shear layer

−B̄2N̂(0) +
∂2N̂(0)

∂ẑ2 + (2 + ν)
∂2Σ̂(0)

∂ẑ2 = 0, (4.88)

∂2Σ̂(0)

∂ẑ2 = 0, (4.89)

1
h

∂Ŝ(0)

∂τ
+

∂Σ̂(0)

∂ẑ
= 0. (4.90)

By matching the approximations (4.85)–(4.87) to the stresses in the outer shear

layer, which (at leading order) only depend on the properties of the bulk of

the tube and not on the properties of the inner shear layer, the following

leading-order matching conditions were found

N̂(0) → 0, Ŝ(0) → 0, Σ̂(0) →
∞

∑
n=1

Bn(t)Yn(τ), as ẑ→ ∞. (4.91)

The general solutions of the governing equations (4.88)–(4.90) are determined

to be

N̂(0) = Ă(τ, t)e−|B̄|ẑ + â(τ, t)e|B̄|ẑ, (4.92)

Ŝ(0) = ŝ(τ, t) + b̂(ẑ, t), (4.93)

Σ̂(0) = −1
h

∂ŝ(τ, t)
∂τ

ẑ + ĉ(τ, t). (4.94)

Applying the matching conditions (4.91), it is found that

â(τ, t) = ŝ(τ, t) = 0, ĉ =
∞

∑
n=1

Bn(t)Yn(τ).

In the inner shear layer, Whittaker (2015) found that S̃ is odd in τ. Using this

property, we must also have

b̂(ẑ, t) = 0.
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Hence, it is found that N̂(0), Ŝ(0), and Σ̂(0) are given by

N̂(0) = Ă(τ, t)e−|B̄|ẑ, Ŝ(0) = 0, Σ̂(0) =
∞

∑
n=1

Bn(t)Yn(τ). (4.95)

4.A.3 Determining the First-Order Correction to S̃ in the Inner Shear
Layer

As Ŝ(0) = 0, it is found that the leading-order azimuthal displacement η̂ is

dependent on the first-order correction term Ŝ(1) that arises in the asymptotic

expansion (4.86) for S̃. Hence, we must calculate Ŝ(1) to determine η̂ at leading

order.

Using the approximations (4.85)–(4.87), Whittaker (2015) found the

following first-order governing equation in the inner shear layer

1
h

∂N̂(0)

∂τ
+

∂Ŝ(1)

∂ẑ
+ 2(1 + ν)

∂Ŝ(0)

∂ẑ
= 0. (4.96)

By matching the approximation (4.86) for S̃ to the approximation of S̃ in the

outer shear layer, Whittaker (2015) found the following matching condition for

Ŝ(1)

Ŝ(1) →
∞

∑
n=1

Bn(t)
µnh

∂

∂τ

[
1

B̄2h
∂

∂τ

(
1
h

∂Yn

∂τ

)
−Yn(τ)

]
, as ẑ→ ∞. (4.97)

Substituting the values (4.95) of N̂(0), Ŝ(0) into (4.96) and integrating with

respect to ẑ, we find the general solution of Ŝ(1) to be

Ŝ(1) =
1
h

∂

∂τ

(
Ă(τ, t)
|B̄| e−|B̄|ẑ

)
+ d̂(τ, t). (4.98)

By applying the matching condition (4.97), we obtain

d̂(τ, t) =
∞

∑
n=1

Bn(t)
µnh

∂

∂τ

[
1

B̄2h
∂

∂τ

(
1
h

∂Yn

∂τ

)
−Yn(τ)

]
,

which in turn yields

Ŝ(1) =
1
h

∂

∂τ

(
Ă(τ, t)
|B̄| e−|B̄|ẑ

)
+

∞

∑
n=1

Bn(t)
µnh

∂

∂τ

[
1

B̄2h
∂

∂τ

(
1
h

∂Yn

∂τ

)
−Yn(τ)

]
.

(4.99)

4.A.4 General Solutions of the Leading-Order Deformations

Now that we have the expressions (4.95) and (4.99) for N̂(0), Ŝ(0), Σ̂(0) and

Ŝ(1), we use these to derive the leading-order inner shear-layer deformations in
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the absence of the Dirichlet parts (3.35) of the pinned boundary conditions.

Substituting the asymptotic expansions (4.85)–(4.87) into the expressions

(4.82)–(4.84), the general leading-order deformations in the inner shear layer

are calculated to be

ξ̂ =
F̃ 1

2 h
12B̄(1− ν2)

[
ν

∞

∑
n=1

Bn(t)Yn(τ)
(

1− e−|B̄|ẑ
)
−Â(τ, t)e−|B̄|ẑ

]
+O(F̃ 3

2 ), (4.100)

η̂ =
F̃ 3

2

12(1− ν2)

{
∂

∂τ

[
−2 + ν

|B̄|2

(
∞

∑
n=1

νBn(t)Yn(τ) + Â(τ, t)

)
e−|B̄|ẑ

−
∞

∑
n=1

Bn(t)Y′n(τ)
2

ẑ2 +
2(1 + ν)

µn

∞

∑
n=1

Bn(t)
[

1
B̄2h

∂

∂τ

(
Y′n(τ)

h

)
−Yn

]
ẑ

−Ĉ(τ, t)ẑ

]
+ B̂(τ, t)

}
+ O(F̃ 5

2 ), (4.101)

ζ̂ =
F̃

12(1− ν2)

[
∞

∑
n=1

Bn(t)Yn(τ)

(
ẑ +

ν2

|B̄| e
−|B̄|ẑ

)
+

ν

|B̄| Â(τ, t)e−|B̄|ẑ + Ĉ(τ, t)
]
+ O(F̃ 2), (4.102)

where for convenience, we have rewritten Ă as

Ă(τ, t) =
∞

∑
n=1

νBn(t)Yn(τ) + Â(τ, t),

and Â, B̂, Ĉ are arbitrary functions. In Whittaker (2015), the conditions

ξ̂ = η̂ = ζ̂ = 0 at ẑ = 0 were applied to obtain the functions Â, B̂, Ĉ. But

here Â, B̂, Ĉ are determined by matching to the bending-layer deformations.



Chapter 5

The Bending Boundary Layer in

Regime Ib (δ`2� 1)

5.1 Introduction

In this chapter, we consider another regime of the general problem described in

Chapter 3, where an axial-bending boundary layer is introduced to the model of

flow through an elastic-walled tube. This bending layer will allow the canonical

clamped boundary conditions to be satisfied at the ends of the elastic-walled

tube, where it is clamped onto two fixed rigid tubes.

Here, we focus on regime Ib, where the dimensionless tube wall thickness

δ � 1 and tube length ` � 1 are set so δ`2 � 1. In this regime, a

shear-relaxation layer studied by Whittaker (2015) (details of which may be

found in §3.5) is seen to have a significant effect on the bulk of the tube and

must be considered. This shear layer is comprised of two sub-layers: an inner

layer of width O(δ`), and an outer layer of width O(δ−1`−1).

In §3.6, a toy model was derived which estimated the width δB of the

bending boundary layer to be δB = O(`−1). Using this estimate, we expect

δB to be larger than the tube wall thickness δ (`−1 � δ
1
2 � δ). As such, we

may use the Kirchhoff–Love shell equations (Flügge, 1972; Søndergaard, 2007)

to model the wall mechanics. As `� 1, we also anticipate that δB � 1. Finally,

we expect δB to be larger than the inner shear-layer width, and smaller than the

outer shear-layer width (δ`� `−1 � δ−1`−1).

As the bending layer is expected to be larger than the inner shear layer,

we will have one of two scenarios. In the first scenario an inner shear layer,

modified so that the full clamped boundary conditions are satisfied at the ends

120
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of the elastic-walled tube, is situated at the tube ends. This inner shear layer

then matches onto the bending layer which in turn matches onto the outer

shear layer. The outer shear layer then matches onto the solution in the bulk

layer. This scenario is unlikely as the inner shear layer would need terms

with additional axial derivatives to appear at leading order in the governing

equations so that the clamped boundary conditions may be satisfied.

In the second scenario, the inner shear layer is not needed and instead the

bending layer is situated at the ends of the elastic-walled tube. This bending

layer then matches onto the outer shear layer, which in turn matches onto the

bulk layer. When the governing equations are later examined at an axial scale

smaller than δB in §5.5, it is found that no new mechanisms contribute to the

leading-order governing equations, and there are no boundary layers smaller

than the bending layer. Hence, it is the second scenario that arises within the

model. Figure 5.1 shows the arrangement of these boundary layers along the

dimensionless, axial coordinate Z ∈ [0, `] introduced in Chapter 3 and used by

Whittaker (2015) to describe the inner and outer shear layers.

Rigid–flexible
region boundary

Bending
boundary

layer

O(1)

Outer
shear–relaxation

layer

Bulk Region

Tube wall
of thickness

O(δ)

0 O(δB)O(δ`) O
(
δ−1`−1) O(`) Z

Figure 5.1: The arrangement of the boundary layers in a cross section through the

centre point and along the length of the tube, in regime Ib where δ`2 � 1. We expect

to have δ� δ`� δB � 1� δ−1`−1 � `.

We later find that the deformations in the bending and outer shear layers

depend only on the uniform properties of the tube wall and not on the

properties of the fluid within the tube. Therefore, the boundary layers will

behave the same at the upstream and downstream ends of the elastic-walled
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tube. Hence, we need only determine the behaviour of the boundary layers at

one of these ends. In this chapter, we concentrate on modelling the bending

layer at the upstream (Z = 0) end of the tube.

We arrange this chapter as follows. In §5.2 and §5.3, the mathematical set-up

of the tube and its deformations, as well as the tensors and constitutive laws

needed in the problem, are provided. In §5.4, the behaviour of the tube wall in

the outer shear layer studied by Whittaker (2015) is reviewed. The force-balance

equations governing the tube wall in the bending layer are then derived in §5.5,

including all the terms that may contribute at leading order. The boundary and

matching conditions for the system are considered in §5.6.

Due to the behaviour of the leading-order deformations within the outer

shear layer, it is unclear what the matching conditions for the deformations in

the bending layer should be. To resolve this problem, the system is recast in

terms of the leading-order in-plane stresses acting on the tube in §5.7. The sizes

of the stresses within the bending layer, as well as the magnitude of the width

δB of the bending layer, are calculated in §5.8, and the simpler case of the limit

of a circular cross-section is considered in §5.9. Asymptotic approximations for

the stresses in the bending layer are calculated up to second order in §5.10, and

the bending-layer deformations and area variation are determined in §5.11 and

§5.12, respectively. Finally, in §5.13 and §5.14, we determine the corrections

the leading-order bending-layer deformations enforce on the deformations and

area change in the outer shear and bulk layers.

5.2 Mathematical Set-up

We again consider the set-up described in §3.3 and §4.2, and depicted in Figure

5.2. We begin with an initially elliptical elastic-walled tube with dimensionless

Figure 5.2: The set-up of the undeformed, elliptical, elastic-walled tube.
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length ` � 1 and dimensionless wall thickness δ � 1. In its undeformed

configuration, this tube is subject to a dimensionless uniform axial tension

F = O(1). Deformations of dimensionless amplitude ∆(t) � 1 are then

induced by a dimensionless transmural pressure ptm. We assume that the

amplitude ∆(t) is slowly varying in dimensionless time t. The tube wall has

dimensionless mass M per unit area, Poisson’s ratio ν and bending stiffness K.

We again introduce the parameter F̃ given by

F̃ =
δ2`2F

12(1− ν2)
� 1. (5.1)

This parameter appears in the model of the shear-relaxation layer derived by

Whittaker (2015) considered later on.

We parameterize the midplane of the tube wall using two dimensionless

Lagrangian surface coordinates τ ∈ [0, 2π), Z ∈ [0, `], which represent arc

length in the azimuthal and axial directions respectively. These are related to

their dimensional counterparts (x1, x2) by dx1 = ah(τ)dτ, dx2 = adZ. Here, a

is the typical radial scale of the tube and h(τ) is a scale factor defined as

h(τ) = c(sinh2 σ0 + sin2 τ)
1
2 , (5.2)

where σ0 is a parameter that sets the ellipticity of the tube and c(σ0) is defined

as

c =
πsech(σ0)

2E(sech(σ0))
, (5.3)

where the complete elliptic integral of the second kind E(φ) is defined as

E(φ) =
∫ π

2

0
(1− φ2 sin2 ϑ)

1
2 dϑ.

Using these coordinates, we define the position r0(τ, Z) of the tube wall in

the undeformed configuration as

r0(τ, Z) = a


c cosh σ0 cos τ

c sinh σ0 sin τ

Z

 . (5.4)

Denoting the position of the tube wall in its deformed configuration as r, the

deformation r− r0 of the tube wall is written as

r− r0 =
∆(t)a
`

(
1

h(τ)
[
ξ̂(τ, Z, t)n̂ + η̂(τ, Z, t)t̂

]
+ ζ̂(τ, Z, t)ẑ

)
, (5.5)

based on the expected sizes of the deformations at Z = O(1). This is the same

representation used by Whittaker (2015) when modelling the shear-relaxation
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layer. The vectors n̂, t̂ and ẑ are unit vectors in the normal, azimuthal and

axial directions of the undeformed tube wall, and the dimensionless functions

(ξ̂, η̂, ζ̂) represent the normal, azimuthal and axial deformations of the tube

wall.

Finally, we introduce a new axial coordinate

zB = δ−1
B Z, (5.6)

where δB is the width of the axial-bending boundary layer. As such, we have

that zB = O(1) within the bending layer. Here, we assume δ � δB allowing

Kirchhoff–Love shell theory to be used in deriving the governing equations

within the bending layer. In order for the axial-bending terms to appear at

leading order in the governing equations, we must also have δB � 1.

5.3 Tensor Notation and Constitutive Laws

Using the deformation (5.5), it is now possible to calculate the tensors

associated with the tube wall that are needed in the governing force-balance

equations later on. These are slightly different to the tensors derived in §4.6 in

Regime Ia. We begin with the basis vectors a1, a2, and the normal a3 to the tube

wall in the deformed configuration, defined as

aα =
∂r

∂xα
, a3 =

a1 × a2

|a1 × a2|
, (5.7)

where α spans over (1, 2). Substituting the expressions (5.4)–(5.6) for r0, r and

zB into (5.7) and neglecting terms of O(∆2) and higher, we find

a1 = t̂ +
∆
`h

([
−ξ̂ B̄(τ) +

∂

∂τ

(
η̂

h

)]
t̂ +

[
η̂B̄(τ) +

∂

∂τ

(
ξ̂

h

)]
n̂ +

∂ζ̂

∂τ
ẑ

)
+O(∆2), (5.8)

a2 = ẑ +
∆
`δB

(
1
h

[
∂ξ̂

∂zB
n̂ +

∂η̂

∂zB
t̂

]
+

∂ζ̂

∂zB
ẑ

)
+ O(∆2), (5.9)

a3 = n̂− ∆
`h

([
η̂B̄(τ) +

∂

∂τ

(
ξ̂

h

)]
t̂ +

1
δB

∂ξ̂

∂zB
ẑ

)
+ O(∆2), (5.10)

where, as in previous chapters, B̄(τ) is the dimensionless base-state azimuthal

curvature, given by

B̄(τ) = − c2 sinh(2σ0)

2h3 . (5.11)
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Using these, we evaluate the metric tensor aαβ, curvature tensor bαβ, and

in-plane and bending strain tensors, γαβ and καβ, in the bending layer. As in

§2.3 and §4.6, these are defined as

aαβ = aα · aβ, bαβ = a3 · ∂aα

∂xβ ,

γαβ = 1
2 (aαβ − āαβ), καβ = −bαβ + b̄αβ + 2b̄δ

αγδβ.
(5.12)

Substituting (5.8)–(5.10) into (5.12) and again neglecting terms that are O(∆2)

or higher, the following is calculated

aαβ = āαβ +
∆
`h

 2
[
−ξ̂ B̄ + ∂

∂τ

(
η̂
h

)]
1
δB

∂η̂
∂zB

+ ∂ζ̂
∂τ

1
δB

∂η̂
∂zB

+ ∂ζ̂
∂τ

2h
δB

∂ζ̂
∂zB

+ O(∆2), (5.13)

bαβ = b̄αβ +
∆

a`h

 β1 + β2
1
δB

[
B̄ ∂η̂

∂zB
+ ∂

∂τ

(
1
h

∂ξ̂
∂zB

)]
1
δB

[
B̄ ∂η̂

∂zB
+ ∂

∂τ

(
1
h

∂ξ̂
∂zB

)]
1
δ2

B

∂2 ξ̂
∂z2

B


+O(∆2), (5.14)

γαβ =
∆
`h

 −ξ̂ B̄ + ∂
∂τ

(
η̂
h

)
1
2

(
1
δB

∂η̂
∂zB

+ ∂ζ̂
∂τ

)
1
2

(
1
δB

∂η̂
∂zB

+ ∂ζ̂
∂τ

)
h 1

δB

∂ζ̂
∂zB

+ O(∆2), (5.15)

καβ =
∆

a`h

 β1 − β2 B̄ ∂ζ̂
∂τ −

1
δB

∂
∂τ

(
1
h

∂ξ̂
∂zB

)
− 1

δB

[
∂

∂τ

(
1
h

∂ξ̂
∂zB

)
+ B̄ ∂η̂

∂zB

]
− 1

δ2
B

∂2 ξ̂
∂z2

B

+ O(∆2). (5.16)

Here āαβ is the 2× 2 identity matrix, b̄αβ is defined as

b̄β
α =

1
a

[
B̄(τ) 0

0 0

]
,

and β1, β2 are given by

β1 = B̄
[
−ξ̂ B̄ +

∂

∂τ

(
η̂

h

)]
, β2 =

∂

∂τ

(
1
h

[
η̂B̄ +

∂

∂τ

(
ξ̂

h

)])
. (5.17)

The in-plane stresses, Nαβ, and the in-plane bending moments, Mαβ, may

be determined from the following constitutive laws relating Nαβ and Mαβ to

aαβ, bαβ, γαβ and καβ

Nαβ = δα
2 δ

β
2

K`2F
a2 +

12
a2δ2 K[(1− ν)γαβ + νγλ

λaαβ]

+K
{
(1− ν)

2
[2aβδbαγ + aβγbαγ + aαδbβγ − bλ

λ(aαδaβγ + aαγaβδ)]

+ν[aαβbγδ + aγδbαβ − aαβaγδbλ
λ]

}
κλδ, (5.18)

Mαβ = K[−(1− ν)(bα
γγγβ − bλ

λγαβ)− ν(bαβ − bλ
λaαβ)γ

µ
µ

+
1
2
(1− ν)(καβ + κβα) + νaαβκλ

λ ], (5.19)
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where δi
j is the Kronecker delta. These constitutive laws were originally derived

by Flügge (1972). By substituting the tensors (5.13)–(5.16) into (5.18), the

leading-order components of Nαβ are determined as

Nαβ =
K
a2

(
0 0

0 `2F

)
+

∆K
a2δ2`

(
Ñ S̃

S̃ Σ̃

)
+ O

(
∆K

a2δ2
B`

)
, (5.20)

where the leading-order azimuthal hoop stress Ñ is defined as

Ñ = 12

(
− B̄ξ̂

h
+

1
h

∂

∂τ

(
η̂

h

)
+

ν

δB

∂ζ̂

∂zB

)
, (5.21)

the leading-order in-plane shear stress S̃ is

S̃ =
6(1− ν)

h

(
1
δB

∂η̂

∂zB
+

∂ζ̂

∂τ

)
, (5.22)

and the leading-order axial stress Σ̃ is defined to be

Σ̃ = 12

(
1
δB

∂ζ̂

∂zB
+ ν

(
− B̄ξ̂

h
+

1
h

∂

∂τ

(
η̂

h

)))
. (5.23)

The first term of (5.20) corresponds to the axial pre-stress applied to the tube

wall and the second term contains the leading-order stresses induced by the

deformations of the tube wall. Substituting the tensors (5.13)–(5.16) into (5.19),

we find the leading-order components of Mαβ to be

Mαβ = − ∆K
aδ2

B`

 ν
h

∂2 ξ̂
∂z2

B
0

0 1
h

∂2 ξ̂
∂z2

B

+ O
(

∆K
aδB`

)
. (5.24)

5.4 Consideration of the Outer Shear-Relaxation Layer by

Whittaker (2015)

In the current regime, the size of the bending layer is expected to be in between

the sizes of the two sub-layers comprising the shear-relaxation layer studied

by Whittaker (2015). That is the width δB of the bending layer is larger than

the width F̃ 1
2 of the inner shear layer, but smaller than the width F̃− 1

2 of the

outer shear layer. It is later found that in this scenario the inner shear layer

is non-existent, and the bending layer is situated at the ends of the tube. The

bending layer then matches onto the outer shear layer. Because of this, the

outer shear layer must be considered so that the sizes of the deformations in
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the bending layer, and the matching conditions the bending-layer deformations

must satisfy, may be determined.

In deriving a model of the shear-relaxation layer, Whittaker (2015) rewrote

the problem to be in terms of the stresses Ñ, S̃ and Σ̃ rather than the

displacements ξ̂, η̂ and ζ̂. This was to avoid the leading-order cancellations that

occurred in the governing equations when written in terms of the deformations.

Solving the problem in terms of the stresses, Whittaker (2015) calculated

asymptotic approximations for the stresses Ñ, S̃ and Σ̃ in the outer shear layer.

Here, we shall denote these approximations as Ñs, S̃s and Σ̃s.

These approximations only rely on matching to the solutions in the bulk

layer and not on matching to the inner shear layer. As such, when the inner

shear layer is replaced by the bending layer these approximations will still hold

true, and the bending layer will not force any leading-order corrections to the

stresses within the outer shear layer.

Using the approximations for the stresses, Whittaker (2015) determined

asymptotic approximations for the deformations ξ̂, η̂ and ζ̂ within the outer

shear layer. These approximations were determined using the Dirichlet parts

(3.35) of the pinned boundary conditions, defined in §3.4. Hence, as we are

now introducing the bending layer so the deformations satisfy the clamped

boundary conditions (3.32) (defined in §3.4) instead, the bending layer will

force corrections to the deformations in the outer shear layer. These corrections

will only take effect at higher orders in the approximations.

By examining the approximations of the deformations in the outer shear

layer, it is found that as Z → 0, the leading-order term in the approximation

for ξ̂ behaves quadratically in the axial direction. However as Z is decreased,

this term eventually becomes small enough that another, higher-order term

(that behaves as a constant as Z → 0) becomes the leading-order term in

the approximation. Because of this property, it is unclear what the size and

leading-order matching condition for the normal deformation ξ̂ in the bending

layer should be.

To obtain a full set of matching conditions to be used in finding a solution

for the bending layer, we later rewrite the problem in terms of the stresses Ñ,

S̃ and Σ̃. As Z → 0, the leading-order terms of the asymptotic expansions Ñs,

S̃s and Σ̃s in the outer shear layer all behave as a constant in Z. Hence, even as

we decrease Z, the leading-order terms do not become smaller than any other

terms in the approximations, and it is these terms the bending-layer stresses
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must match on to at leading order. Taking the Taylor series of Ñs, S̃s and Σ̃s

about z̆ = 0, where the scaled axial coordinate z̆ = F̃ 1
2 Z is used by Whittaker

(2015) to describe the axial behaviour of the stresses and deformations in the

outer shear layer, we find as z̆→ 0

Ñs ∼
F̃ 3

2

B̄2h

∞

∑
n=1

Bn(t)
∂

∂τ

(
1
h

∂Yn

∂τ

) (
1− µn z̆ + O(z̆2)

)
+ O(F̃ 5

2 ), (5.25)

S̃s ∼
F̃
h

∞

∑
n=1

Bn(t)
µn

∂

∂τ

[
1

B̄2h
∂

∂τ

(
1
h

∂Yn

∂τ

)
−Yn(τ)

] (
1− µn z̆ + O(z̆2)

)
+O(F̃ 2), (5.26)

Σ̃s ∼ F̃
1
2

∞

∑
n=1

Bn(t)Yn(τ)
(
1− µn z̆ + O(z̆2)

)
+ O(F̃ 3

2 ). (5.27)

Here, the π-periodic, orthogonal functions Yn(τ) are the eigenfunctions of the

operator

L ≡ 1
h

∂

∂τ

1
h

∂

∂τ

(
1

B̄2h
∂

∂τ

1
h

∂

∂τ
− 1
)

, (5.28)

and the µ2
n are the corresponding distinct positive eigenvalues ordered such

that 0 < µ1 < µ2 < µ3 . . . . For finite σ0, these eigenfunctions and eigenvalues

can only be found numerically. Finally, the Bn(t) are arbitrary O(1) functions

of t setting the amplitude of each eigenmode of the deformations.

Matching the stresses in the bending layer to the approximations

(5.25)–(5.27) will allow us to determine the full leading-order solutions of

the stresses in the bending layer. These solutions along with the clamped

boundary conditions (3.32) will in turn allow us to determine the leading-order

deformations in the bending layer. To find the corrections the leading-order

bending-layer deformations force on the outer shear-layer deformations, we

will need to match the bending-layer deformations to solutions of the

deformations in the outer shear layer which do not depend on the Dirichlet

parts (3.35) of the pinned boundary conditions. By removing these boundary

conditions from the relations derived by Whittaker (2015) that relate the stresses

and deformations in the outer shear layer, the most general solutions of the
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deformations in the outer shear layer are found to be

ξ̂ =
F̃− 1

2

12B̄(1− ν2)

{
∞

∑
n=1

Bn(t)
µn

∂

∂τ

(
1
h

∂Yn

∂τ

) [
1

µn

(
1− e−µn z̆)− z̆

]

− ∂

∂τ

(
1
h

∂Ă(τ, t)
∂τ

)
z̆ +

∂

∂τ

(
B̆(τ, t)

h

)}
+ O(F̃ 1

2 ), (5.29)

η̂ =
F̃− 1

2

12(1− ν2)

{
∞

∑
n=1

Bn(t)
µn

∂Yn

∂τ

[
1

µn

(
1− e−µn z̆)− z̆

]
− ∂Ă(τ, t)

∂τ
z̆ + B̆(τ, t)

}
+O(F̃ 1

2 ), (5.30)

ζ̂ =
1

12(1− ν2)

{
∞

∑
n=1

Bn(t)Yn(τ)

µn

(
1− e−µn z̆)+ Ă(τ, t)

}
+ O(F̃ ), (5.31)

where Ă and B̆ are arbitrary functions to be determined by matching to

the bending-layer deformations. The corrections to the outer shear-layer

deformations due to the leading-order bending-layer deformations are

calculated in §5.13.

5.5 Force-Balance Equations

In order to model the mechanics of the tube wall in the bending layer, we use

Kirchhoff–Love shell theory. Previously in §2.3, the governing force-balance

equations (2.29)–(2.31) in the normal, azimuthal and axial directions were

derived from the Kirchhoff–Love shell equations in covariant differential form

(Flügge, 1972; Søndergaard, 2007). Rewriting these in terms of the deformations

ξ̂, η̂ and ζ̂, we find

∇α∇β Mαβ + Nαβbαβ −
Kδ2M
12a2 ∇α

d2θ∗α

dt2

+
∆(t)K

a3 ptm −
∆(t)K

a3`

M
h(τ)

d2ξ̂

dt2 = 0, (5.32)

∇βNβ1 − b1
γ∇β Mβγ +

Kδ2M
12a2 b1

γ

d2θ∗γ

dt2 −
∆(t)K

a3`

M
h(τ)

d2η̂

dt2 = 0, (5.33)

∇βNβ2 − b2
γ∇β Mβγ +

Kδ2M
12a2 b2

γ

d2θ∗γ

dt2 −
∆(t)K

a3`
M

d2ζ̂

dt2 = 0. (5.34)

Here, the covariant derivatives ∇α at leading order are found to be

∇1 =
1
ah

∂

∂τ
+ O(∆), ∇2 =

1
aδB

∂

∂zB
+ O(∆), (5.35)

and θ∗α is the angle of rotation the tube wall takes about an axis passing through

the wall in the aα direction. By considering the size of the normal deformation
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in the bending layer, and the sizes of the azimuthal and axial length scales used

in the bending layer, we scale the θ∗α in the following way

θ∗1 =
∆

δB`
θ1, θ∗2 =

∆
`

θ2, (5.36)

where θ1, θ2 take the same size as ξ̂ in the bending layer.

As the in-plane stress Nαβ contains a large pre-stress term, we must evaluate

some of the higher-order terms in the covariant derivative of Nαβ. The full

expression for ∇αNαβ is given by

∇αNαβ =
∂Nαβ

∂xα
+ Γα

γαNγβ + Γβ
γαNαγ, (5.37)

where the Christoffel symbol Γβ
µν is given as Γβ

µν ≡ aαβaα · aµ,ν. As each

component of Γβ
µν is O(∆), we need only consider terms involving N22, the

only non-O(∆) component of Nαβ. The Christoffel symbols found to be needed

are Γ1
21, Γ1

22 and Γ2
22. These are determined to be

Γ1
21 =

∆
a`δBhB̄

∂β1

∂zB
+ O(∆2), (5.38)

Γ1
22 =

∆
a`δ2

Bh
∂2η̂

∂z2
B
+ O(∆2), (5.39)

Γ2
22 =

∆
a`δ2

B

∂2ζ̂

∂z2
B
+ O(∆2). (5.40)

By substituting (5.13)–(5.24) and (5.35)–(5.40) into the governing

force-balance equations (5.32)–(5.34), it is possible to determine the sizes of

each of the terms within the force-balance equations, up to the unknown sizes

of the deformations ξ̂, η̂ and ζ̂. The sizes of the terms in (5.32)–(5.34) are found

in Tables 5.1–5.3. As in §4.7, the terms corresponding to angular acceleration

and wall inertia are not large enough to contribute at leading order and are

not included in the tables. This is because these terms are either O(∆Kξ̂/a3`),

O(∆Kη̂/a3`) or O(∆Kζ̂/a3`) at most, all of which are strictly smaller than some

of the other terms within the governing equations when δB � 1.

By examining the scalings of the terms within Tables 5.1–5.3, the terms

that contribute to the leading-order force-balance equations may be determined

up to the unknown sizes of the deformations ξ̂, η̂ and ζ̂. In the normal

force-balance equation, the possible leading-order terms arise from azimuthal

and axial stretching, axial bending, pre-stress and axial curvature, and

transmural pressure. In the azimuthal and axial force-balance equations, the

possible terms that contribute at leading order come from azimuthal, shear
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and axial stretching. The force-balance equations including all terms that may

contribute at leading order, as well as some higher-order terms, are found to be

0 = 12B̄

(
− B̄ξ̂

h
+

1
h

∂

∂τ

(
η̂

h

)
+

ν

δB

∂ζ̂

∂zB

)

+
δ2`2

δ2
B

F
h

∂2ξ̂

∂z2
B
− δ2

δ4
B

1
h

∂4ξ̂

∂z4
B
+ δ2`ptm + O

(
δ2

δ2
B

ξ̂,
δ2

δ2
B

η̂,
δ2

δ3
B

ζ̂

)
, (5.41)

0 =
∂

∂τ

(
− B̄ξ̂

h
+

1
h

∂

∂τ

(
η̂

h

))
+

1
δB

1 + ν

2
∂

∂zB

(
1
δB

∂η̂

∂zB
+

∂ζ̂

∂τ

)

− 1
δ2

B
ν

∂2η̂

∂z2
B
− δ2

δ2
B

B̄(1 + ν)

24
∂

∂τ

(
1
h

∂2ξ̂

∂z2
B

)
+ O

(
δ2

δB
ξ̂,

δ2`2

δ2
B

η̂,
δ2

δB
ζ̂

)
, (5.42)

0 = ν
1
δB

∂

∂zB

(
− B̄ξ̂

h
+

1
h

∂

∂τ

(
η̂

h

))
+

1− ν

2h
∂

∂τ

(
1
h

(
1
δB

∂η̂

∂zB
+

∂ζ̂

∂τ

))

+
1
δ2

B

∂2ζ̂

∂z2
B
+

δ2

δ3
B

B̄
12h

∂3ξ̂

∂z3
B
+ O

(
δ2`2

δB
ξ̂,

δ2`2

δB
η̂,

δ2`2

δ2
B

ζ̂

)
. (5.43)

The higher-order terms have been included so that when we later carry out

an asymptotic analysis of the problem, we can determine the largest non-zero

higher-order terms that appear in the bending-layer deformations. These

leading-order governing equations are similar to those derived by Whittaker

(2015), but they are not entirely the same. It is first seen that the normal

force-balance equation (5.41) contains all the terms appearing in the normal

force-balance equation found by Whittaker (2015). However, (5.41) also contains

an extra axial-bending term (∂4ξ̂/∂z4
B) and transmural pressure term. The

azimuthal force-balance equation (5.42) and the corresponding equation found

by Whittaker (2015) contain the same terms apart from the pre-stress term in

the equation by Whittaker (2015). This is replaced in (5.42) by the ∂2ξ̂/∂z2
B

term which comes from the torsion mechanism. Finally, the axial force-balance

equation (5.43) and the corresponding equation derived by Whittaker (2015)

have the same terms apart from again the pre-stress term in the Whittaker

(2015) equation. In this case, the pre-stress term is replaced in (5.43) by the

∂3ξ̂/∂z3
B term which comes from axial bending.

By examining the governing equations (5.41)–(5.43) and the scalings of

the terms within Tables 5.1–5.3, it is seen that if we take an axial scale

Z = O(δ̃) ≤ O(δB), we do not obtain any new terms that arise from different

mechanisms at leading order. Hence, as no new mechanisms contribute at

leading order for smaller axial scales, there are no boundary layers smaller than

the bending boundary layer in the current scenario. Thus, we do not obtain an
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inner shear-relaxation layer in the current case and we need only match the

bending layer onto the outer shear layer.

To determine precisely which of the terms in (5.41)–(5.43) contribute at

leading order, the sizes of ξ̂, η̂ and ζ̂ within the bending layer would need

to be determined. However, it is later found to be more convenient to recast the

problem in terms of the stresses Ñ, S̃ and Σ̃, and compute their sizes instead to

determine the leading-order governing equations.
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Table 5.1: Scaling estimates for the dominant terms contributing to the normal

force-balance equation in regime Ib. The mechanisms that may contribute at leading

order are in bold.
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Table 5.2: Scaling estimates for the dominant terms contributing to the azimuthal

force-balance equation in regime Ib. The mechanisms that may contribute at leading

are in bold.
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Mechanism Strain

Dominant contribution

to axial force-balance

equation
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Table 5.3: Scaling estimates for the dominant terms contributing to the axial

force-balance equation in regime Ib. The mechanisms that may contribute at leading

are in bold.
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5.6 Boundary and Matching Conditions

Along with the governing force-balance equations (5.41)–(5.43), we also have

the clamped boundary conditions (3.32) as seen in Chapter 3. In terms of ξ̂, η̂,

ζ̂, zB, these become

ξ̂ =
∂ξ̂

∂zB
= η̂ = ζ̂ = 0 at zB = 0. (5.44)

The deformations in the bending layer must also match onto the

deformations (5.29)–(5.31) in the outer shear layer. However, as discussed in

§5.4 in the overview of the outer shear layer studied by Whittaker (2015), the

leading-order term in the approximation for the normal deformation ξ̂ in the

outer shear layer does not stay at leading order for smaller axial scales. As such,

it is unclear what the matching condition for ξ̂ in the bending layer should be.

We may resolve this problem by re-casting the problem in terms of the

stresses Ñ, S̃ and Σ̃. Approximations for these stresses in the outer shear

layer, denoted Ñs, S̃s and Σ̃s here, were derived by Whittaker (2015). The

leading-order terms within these approximations stay at leading order when

the axial scale is reduced, and as Ñs, S̃s and Σ̃s only depend on matching

to the bulk solution and not on matching to any smaller layers, these

approximations are also the most general they can be. Hence, we may obtain

clear matching conditions for the stresses in the bending layer using the Taylor

series (5.25)–(5.27) of Ñs, S̃s and Σ̃s as z̆→ 0.

5.7 Re-casting the Problem in Terms of the Stresses

We proceed to rewrite the bending boundary-layer system in terms of the

stresses Ñ, S̃ and Σ̃. The details of the change of variables from the

deformations ξ̂, η̂ and ζ̂ to the stresses Ñ, S̃ and Σ̃ are shown in Appendix

5.A. There, we obtain the new governing equations (5.148)–(5.150), which are
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shown to be
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Ñ,
δ2`2

δB
S̃, δ2

(
1
δB

, `2
)

Σ̃
)

, (5.46)
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δB
Ñ, δ2`2S̃,

δ2`2

δB
Σ̃
)

, (5.47)

where ∂2η̂/∂z2
B is defined in terms of the stresses as

∂2η̂

∂z2
B
=

δ2
Bh
12

(
2

δB(1− ν)

∂S̃
∂zB
− 1

h
∂

∂τ

(
Σ̃− νÑ
1− ν2

))
.

Also in Appendix 5.A, the clamped boundary conditions (5.44) are shown in

(5.151) to impose the following conditions on the stresses

Ñ − νΣ̃ = 0, at zB = 0, (5.48)
∂Ñ
∂zB
− ν

∂Σ̃
∂zB
− 2(1 + ν)δB

h
∂S̃
∂τ

= 0, at zB = 0. (5.49)

Finally, the stresses in the bending layer must match onto the Taylor

series (5.25)–(5.27) of the stresses Ñs, S̃s, Σ̃s in the outer shear layer, in some

intermediate region between the two layers. Hence, we must have the following

matching conditions for the stresses in the bending layer

Ñ ∼ Ñs, S̃ ∼ Ñs, Σ̃ ∼ Σ̃s, as zB → ∞, z̆→ 0. (5.50)

When applying the matching conditions, it is convenient to rewrite both z̆ and

zB in terms of some intermediate variable zI which is O(1) in a region between

the outer shear and bending layers. We define zI as(
1

δBF̃
1
2

)α

z̆ = zI =

(
1

δBF̃
1
2

)α−1

zB, where 0 < α < 1. (5.51)
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We note that as δBF̃
1
2 � 1, setting zI = O(1) also sets z̆ → 0 and zB → ∞.

By substituting the approximations (5.25)–(5.27) for Ñs, S̃s and Σ̃s as z̆ → 0

into the matching conditions (5.50), and applying the expression (5.51) for the

intermediate variable zI , the matching conditions for the stresses in the bending

layer are calculated to be

Ñ ∼ F̃
3
2

B̄2h

∞

∑
n=1

Bn(t)
∂

∂τ

(
1
h

∂Yn

∂τ

) [
1− µn

(
δBF̃

1
2

)α
zI + O

((
δBF̃

1
2

)2α
)]

+O(F̃ 5
2 ), (5.52)

S̃ ∼ F̃
h

∞

∑
n=1

Bn(t)
µn

∂

∂τ

[
1

B̄2h
∂

∂τ

(
1
h

∂Yn

∂τ

)
−Yn(τ)

] [
1− µn

(
δBF̃

1
2

)α
zI

+O
((

δBF̃
1
2

)2α
)]

+ O(F̃ 2), (5.53)

Σ̃ ∼ F̃ 1
2

∞

∑
n=1

Bn(t)Yn(τ)

[
1− µn

(
δBF̃

1
2

)α
zI + O

((
δBF̃

1
2

)2α
)]

+ O(F̃ 3
2 ), (5.54)

as zB → ∞.

5.8 Determining the Sizes of the Stresses in the Bending

Layer

By examining the governing equations (5.45)–(5.47), the boundary conditions

(5.48)–(5.49), and the matching conditions (5.52)–(5.54), we may determine the

sizes of the stresses in the bending layer.

We first of all note that for the matching conditions (5.52)–(5.54) to be

satisfied, we must have in the bending layer

Ñ ≥ O(F̃ 3
2 ), S̃ ≥ O(F̃ ), Σ̃ ≥ O(F̃ 1

2 ). (5.55)

There must also be at least one equality in these relations to enable

non-homogeneous matching between the layers. We next see that for the

condition (5.48) to be satisfied, we need

O(Σ̃) = O(Ñ). (5.56)

By examining the azimuthal force-balance equation (5.46) it is seen that the only

two terms that can appear at leading order are the ∂Ñ/∂τ and ∂S̃/∂zB terms in

the first line of (5.46). For these terms to balance, we must have

O(S̃) = δBO(Ñ). (5.57)
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Combining the inequality for Σ̃ in (5.55) with (5.56), it is seen that we must

have

Ñ ≥ O(F̃ 1
2 )� O(F̃ 3

2 ).

Using this along with (5.57), we also find

S̃ ≥ O(δBF̃
1
2 )� O(F̃ ),

as we are under the assumption δB � F̃
1
2 . As there must be one equality within

(5.55), we obtain

Σ̃ = O(F̃ 1
2 ), (5.58)

in the bending layer. Substituting this into (5.56) and (5.57), it is found that

Ñ = O(F̃ 1
2 ), S̃ = O(δBF̃

1
2 ), (5.59)

within the bending layer.

By applying the sizes (5.58), (5.59) to the normal force-balance equation

(5.45), we see that the transmural pressure term is smaller than the first term

in (5.45) and thus cannot appear at leading order. It is then found that the only

terms that may appear at leading order are the Ñ term and the axial-bending

term containing the fourth axial derivative of Ñ − νΣ̃. To ensure that these

terms balance, we must have δB = O(δ
1
2 ). With this new information, it

is found that the first of the pre-stress terms in (5.45) is larger than the

transmural pressure term. Hence, the pressure term contributes to the normal

force-balance equation at a higher order than the azimuthal hoop stress term,

the axial bending term, and the first pre-stress term.

Now that the sizes (5.58), (5.59) of the stresses Ñ, S̃ and Σ̃ have been

determined, it is possible to determine the sizes of the terms within the

governing equations (5.45)–(5.47) and boundary conditions (5.48), (5.49). Using

this knowledge, it is then possible to calculate asymptotic approximations for

the solutions to the governing system (5.45)–(5.54).

5.9 Solution in the Limit of a Circular Cross-Section

(σ0 → ∞)

To gain a quick idea of how the stresses and deformations behave within the

bending layer, we consider the limit σ0 → ∞, where the elliptical cross-section
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of the tube becomes circular. In this limit, we have from (5.2), (5.3) and (5.11)

that

c ∼ 2e−σ0 , h(τ)→ 1, B̄→ −1,

and Whittaker (2015) also found in this limit

Yn(τ)→ cos(2nτ), µn → 2n(4n2 + 1)
1
2 .

This greatly simplifies the system (5.45)–(5.54) and it is possible to determine

analytical leading-order expressions for the stresses Ñ, S̃, Σ̃, and deformations

ξ̂, η̂, ζ̂ by using Fourier expansions in τ.

The details of finding the leading-order solution in the limit σ0 → ∞ are

found in Appendix 5.B. There, we set the bending boundary-layer width δB to

be

δB =

√
2δ

1
2

(12 (1− ν2))
1
4

,

which is consistent with the O(δ
1
2 ) scaling identified in §5.8 for the full system

(5.45)–(5.54) with an elliptical cross-section. This has a different scaling from

the value (3.48) predicted by the toy model in §3.6, but we still have δ`� δB �
δ−1`−1. Therefore the size of the bending-layer width lies in between the sizes

of the inner and outer shear layers found by Whittaker (2015). The different

scaling arises because the toy model cannot capture the azimuthal and axial

stretching mechanisms which are found to contribute at leading order here.

By examining the solutions in the circular limit, it is seen that Ñ, Σ̃ = O(F̃ 1
2 )

and S̃ = O(δBF̃
1
2 ), which is in agreement with the sizes (5.58), (5.59) calculated

in §5.8. The sizes of the deformations within the bending layer are then

calculated to be ξ̂ = O(F̃ 1
2 ), η̂ = O(δ2

BF̃
1
2 ) and ζ̂ = O(δBF̃

1
2 ) in the circular

limit, and the same sizes are expected in the elliptical case.

It is found in the circular limit that the leading-order Ñ and S̃ both decay

to zero as zB → ∞ in the bending layer. The leading-order Σ̃ instead remains

constant in the axial direction for all values of zB. Converting the leading-order

stresses into the deformations ξ̂, η̂, ζ̂, it is verified that the clamped boundary

conditions (5.44) are satisfied at leading order. It is also seen that as zB → ∞,

the sizes of the deformations increase to different values, and ξ̂, η̂ and ζ̂ behave

as a constant, quadratically and linearly, respectively, in the axial direction.
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5.10 Asymptotic Analysis for F̃ � 1, δB � 1

We proceed to solve the system (5.45)–(5.54) by forming asymptotic expansions

for the stresses Ñ, S̃ and Σ̃. It is first convenient to rewrite these stresses in

terms of some new functions NB, SB and ΣB as follows

Ñ = F̃ 1
2 NB, S̃ = δBF̃

1
2 SB, Σ̃ = F̃ 1

2 ΣB. (5.60)

Comparing these expressions with the sizes (5.58), (5.59) of the stresses in the

bending layer, we see that NB, SB and ΣB must all be O(1) in the bending layer.

With these new representations and the fact that δB = O(δ
1
2 ) for a sensible

dominant balance in the normal force-balance equation, we may rewrite the

governing equations (5.45)–(5.47) as

0 = NBB̄ +
δ2

δ4
B

1
12B̄

∂4

∂z4
B

(
NB − νΣB

1− ν2

)
− F̃

δ2
B

h
B̄

∂2

∂z2
B
(NB − νΣB) + O

(
δ2

δ2
B

)
, (5.61)

0 =
1
h

∂NB

∂τ
+

∂SB

∂zB
+ O

(
δ2

δ2
B

)
, (5.62)

0 =
∂ΣB

∂zB
+ O

(
δ2

δ2
B

,
δ2`2

δB

)
. (5.63)

The boundary conditions (5.48) and (5.49) may also be rewritten as

NB − νΣB = 0, and
∂NB

∂zB
− ν

∂ΣB

∂zB
− δ2

B
2(1 + ν)

h
∂SB

∂τ
= 0, at zB = 0,

(5.64)

and the matching conditions (5.52)–(5.54) are rewritten as

NB ∼
F̃

B̄2h

∞

∑
n=1

Bn(t)
∂

∂τ

(
1
h

∂Yn

∂τ

) [
1− µn

(
δBF̃

1
2

)α
zI + O

((
δBF̃

1
2

)2α
)]

+O(F̃ 2), (5.65)

SB ∼
F̃ 1

2

δBh

∞

∑
n=1

Bn(t)
µn

∂

∂τ

[
1

B̄2h
∂

∂τ

(
1
h

∂Yn

∂τ

)
−Yn(τ)

] [
1− µn

(
δBF̃

1
2

)α
zI

+O
((

δBF̃
1
2

)2α
)]

+ O

(
F̃ 3

2

δB

)
, (5.66)

ΣB ∼
∞

∑
n=1

Bn(t)Yn(τ)

[
1− µn

(
δBF̃

1
2

)α
zI + O

((
δBF̃

1
2

)2α
)]

+ O(F̃ ), (5.67)

as zB → ∞. When the leading-order normal force-balance equation is

considered later on, it is found to be convenient to set δB to be

δB =

√
2δ

1
2

(12(1− ν2))
1
4

. (5.68)
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This is the same value of δB used in the work on the circular limit σ0 → ∞ in

Appendix 5.B.

A solution for the system (5.61)–(5.67) is now found by considering the

following asymptotic expansions of NB, SB, and ΣB

NB = N(0)
B +

F̃ 1
2

δB
N(1)

B +
F̃
δ2

B
N(2)

B + O

(
F̃ 3

2

δ3
B

,
δ2

δ2
B

)
, (5.69)

SB = S(0)
B +

F̃ 1
2

δB
S(1)

B +
F̃
δ2

B
S(2)

B + O

(
F̃ 3

2

δ3
B

,
δ2

δ2
B

)
, (5.70)

ΣB = Σ(0)
B +

F̃ 1
2

δB
Σ(1)

B +
F̃
δ2

B
Σ(2)

B + O

(
F̃ 3

2

δ3
B

,
δ2

δ2
B

)
. (5.71)

Including an expansion in powers of F̃ 1
2 /δB within the approximations

(5.69)–(5.71) supplies terms that can balance the O(F̃/δ2
B) terms in the normal

force-balance equation (5.61), as well as supplies a higher-order term that

can satisfy the matching condition (5.66) for SB. It is noted that these

approximations will need expansions in other parameters as well to satisfy

all the higher-order governing equations and conditions within the system

(5.61)–(5.67). However, these parameters will be O(F̃ 3
2 /δ3

B) or O(δ2/δ2
B) at

most. As these size terms are smaller than the O(F̃/δ2
B) terms included in

the approximations (5.69)–(5.71) (as F̃ 1
2 /δB � 1 and F̃ � δ2), they will only

appear at third order at most and thus will not be considered.

Using the approximations (5.69)–(5.71), approximations for the stresses Ñ,

S̃ and Σ̃ in the bending layer may be easily found. These stresses may then

be substituted into the expressions (5.141)–(5.143) to determine approximations

for the deformations ξ̂, η̂, ζ̂ in the bending layer. It is later found that the largest

non-zero higher-order terms in the approximations of these deformations

involve some second-order terms from the approximations (5.69)–(5.71) of NB,

SB and ΣB, due to some of the first-order terms in (5.69)–(5.71) turning out to

be zero. Hence, in order to determine the largest non-zero higher-order terms

in the expressions for the deformations, we will consider the approximations

for NB, SB and ΣB up to second order.

5.10.1 Leading-Order Solution

Substituting the asymptotic approximations (5.69)–(5.71) and the value (5.68)

of δB into the governing equations (5.61)–(5.63), the boundary conditions

(5.64), and the matching conditions (5.65)–(5.67), we obtain the following,
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leading-order governing equations at O(1)

0 = B̄N(0)
B +

1
4B̄

(
∂4N(0)

B

∂z4
B
− ν

∂4Σ(0)
B

∂z4
B

)
, (5.72)

0 =
1
h

∂N(0)
B

∂τ
+

∂S(0)
B

∂zB
, (5.73)

0 =
∂Σ(0)

B
∂zB

, (5.74)

the following leading-order boundary conditions

N(0)
B − νΣ(0)

B = 0, and
∂N(0)

B
∂zB

− ν
∂Σ(0)

B
∂zB

= 0 at zB = 0, (5.75)

and the following leading-order matching conditions

N(0)
B → 0, S(0)

B → 0, Σ(0)
B →

∞

∑
n=1

Bn(t)Yn(τ), as zB → ∞. (5.76)

The matching conditions on N(0)
B and S(0)

B arise from the fact that these

functions, which are O(1) in the bending layer, are too large to match onto any

of the terms within the matching conditions (5.65), (5.66) for NB, SB. Hence,

N(0)
B and S(0)

B must decay to zero as zB → ∞. On the other hand, Σ(0)
B has the

same size as the leading-order constant term in the matching condition (5.67)

for ΣB, and may match onto it.

Immediately, it is seen that the general solution of (5.74) is

Σ(0)
B = A1(τ, t), (5.77)

where A1 is an arbitrary function of τ and t. Substituting this into (5.72) gives

the following ODE for N(0)
B

∂4N(0)
B

∂z4
B

+ 4B̄2N(0)
B = 0, (5.78)

which has the general solution

N(0)
B =

[
A2(τ, t) cos

(
|B̄| 12 zB

)
+ A3(τ, t) sin

(
|B̄| 12 zB

)]
e−|B̄|

1
2 zB

+
[

A4(τ, t) cos
(
|B̄| 12 zB

)
+ A5(τ, t) sin

(
|B̄| 12 zB

)]
e|B̄|

1
2 zB , (5.79)

where A2, . . . , A5 are arbitrary functions of τ and t. From the matching

conditions (5.76), it is clear that N(0)
B cannot be exponentially growing as

zB → ∞. Hence, we must set

A4(τ, t) = A5(τ, t) = 0. (5.80)
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Finally, substituting (5.79) and (5.80) into (5.73) gives a complicated but

solvable ODE for S(0)
B . Solving this ODE, we find

S(0)
B =

1
4hB̄2A(τ, zB, t)e−|B̄|

1
2 zB + A6(τ, t), (5.81)

where A6 is an arbitrary function of τ and t, and A(τ, zB, t) is given by

A(τ, zB, t) = 2|B̄| 32
[(

A′2 + A′3
)

cos
(
|B̄| 12 zB

)
+
(

A′3 − A′2
)

sin
(
|B̄| 12 zB

)]
−|B̄|′

(
2|B̄|zB + |B̄| 12

) [
A2 cos

(
|B̄| 12 zB

)
+ A3 sin

(
|B̄| 12 zB

)]
+|B̄| 12 |B̄|′

[
A2 sin

(
|B̄| 12 zB

)
− A3 cos

(
|B̄| 12 zB

)]
, (5.82)

where ′ denotes a derivative with respect to τ.

We proceed to use the boundary and matching conditions (5.75), (5.76) to

find the full solutions of N(0)
B , S(0)

B and Σ(0)
B . Applying the matching conditions

(5.76) as zB → ∞, it is found that

A1(τ, t) =
∞

∑
n=1

Bn(t)Yn(τ), A6(τ, t) = 0. (5.83)

The boundary conditions (5.75) are then applied to find

A2(τ, t) = A3(τ, t) =
∞

∑
n=1

νBn(t)Yn(τ). (5.84)

Substituting (5.83) and (5.84) into the expressions (5.77), (5.79) and (5.81), we

find the full solutions for N(0)
B , S(0)

B and Σ(0)
B to be

N(0)
B =

∞

∑
n=1

νBn(t)Yn(τ)
[
cos

(
|B̄| 12 zB

)
+ sin

(
|B̄| 12 zB

)]
e−|B̄|

1
2 zB , (5.85)

S(0)
B =

∞

∑
n=1

νBn(t)

2h|B̄| 32

{
2|B̄|Y′n(τ) cos

(
|B̄| 12 zB

)
− |B̄|′Yn(τ)

[
cos

(
|B̄| 12 zB

)
+|B̄| 12 zB

(
cos

(
|B̄| 12 zB

)
+ sin

(
|B̄| 12 zB

))]}
e−|B̄|

1
2 zB , (5.86)

Σ(0)
B =

∞

∑
n=1

Bn(t)Yn(τ). (5.87)

In Figure 5.3, the leading-order approximations F̃ 1
2 N(0)

B , δBF̃
1
2 S(0)

B , F̃ 1
2 Σ(0)

B

of Ñ, S̃, Σ̃ in the bending layer, and the approximations Ñs, S̃s and Σ̃s of Ñ,

S̃, Σ̃ in the outer shear layer, found by Whittaker (2015), are plotted. It is seen

that the bending layer allows the stresses Ñ and S̃ to decay from their values

at Z = 0 to the smaller values needed in the outer shear layer, while keeping Σ̃

approximately constant in Z.
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Figure 5.3: The first n = 1 modes of the leading-order approximations F̃ 1
2 N(0)

B ,

δBF̃
1
2 S(0)

B , F̃ 1
2 Σ(0)

B of Ñ, S̃, Σ̃ in the bending layer. Also plotted are the approximations

Ñs, S̃s and Σ̃s of Ñ, S̃, Σ̃ in the outer shear layer, found by Whittaker (2015). All

approximations are plotted in the case σ0 = 0.6, δ = 0.001, ` = 10, ν = 0.49, F = 1,

and B1(t) = 1, with Y1(τ) normalised such that Y1(0) = 1. In this case δB ≈ 0.026. To

maximise the amplitudes of the plots, we set τ = 0 in the approximations for Ñ and Σ̃

and τ = 2.6656, where Y′1(τ) is near its maximum value, in the approximations for S̃.
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5.10.2 First-Order Solution

We now consider the first-order solution of the system (5.61)–(5.67). By

substituting the approximations (5.69)–(5.71) for NB, SB, ΣB into the system

(5.61)–(5.67) we obtain the first-order system for the problem. The first-order

governing equations are at O(F̃ 1
2 /δB) and are determined to be

0 = B̄N(1)
B +

1
4B̄

(
∂4N(1)

B

∂z4
B
− ν

∂4Σ(1)
B

∂z4
B

)
, (5.88)

0 =
1
h

∂N(1)
B

∂τ
+

∂S(1)
B

∂zB
, (5.89)

0 =
∂Σ(1)

B
∂zB

, (5.90)

the first-order boundary conditions are calculated as

N(1)
B − νΣ(1)

B = 0, and
∂N(1)

B
∂zB

− ν
∂Σ(1)

B
∂zB

= 0 at zB = 0, (5.91)

and the first-order matching conditions are found to be

N(1)
B → 0, S(1)

B →
∞

∑
n=1

Bn(t)
µnh

∂

∂τ

[
1

B̄2h
∂

∂τ

(
1
h

∂Yn

∂τ

)
−Yn(τ)

]
, Σ(1)

B → 0,

(5.92)

as zB → ∞. The matching condition on N(1)
B arises from the fact that the

first-order N(1)
B term in the expansion (5.69) for NB is too large to match onto

any of the terms in the matching condition (5.65), and thus must decay to zero

as zB → ∞. The first-order S(1)
B term in the expansion (5.70) for SB has the same

size as the leading-order constant term in the matching condition (5.66), and so

S(1)
B must match onto this constant term. Finally, the size of the first-order Σ(1)

B

term in the expansion (5.71) for ΣB is too small to match onto the leading-order

constant term in the matching condition (5.67), which has already been matched

with Σ(0)
B . However, the size of this first-order Σ(1)

B term is also too large for any

linear or higher-order terms in zB that may arise in Σ(1)
B to match with any of

the higher-order terms in (5.67). Hence, Σ(1)
B must tend to zero as zB → ∞.

As the first-order governing equations (5.88)–(5.90) take the same form as

the leading-order governing equations (5.72)–(5.74), the general solutions for

N(1)
B , S(1)

B and Σ(1)
B will be the same as the general solutions (5.77), (5.79), (5.81)

for N(0)
B , S(0)

B and Σ(0)
B . Applying the homogeneous boundary conditions (5.91)

and the matching conditions (5.92), the following first-order solutions are found

N(1)
B = 0, S(1)

B =
∞

∑
n=1

Bn(t)
µnh

∂

∂τ

[
1

B̄2h
∂

∂τ

(
1
h

∂Yn

∂τ

)
−Yn(τ)

]
, Σ(1)

B = 0. (5.93)
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5.10.3 Second-Order Solution

The second-order solution of the system (5.61)–(5.67) is now considered.

Substituting the approximations (5.69)–(5.71) for NB, SB, ΣB into (5.61)–(5.67),

we find the second-order governing equations at O(F̃/δ2
B) to be

0 = 4B̄2N(2)
B +

(
∂4N(2)

B

∂z4
B
− ν

∂4Σ(2)
B

∂z4
B

)
− 4h

(
∂2N(0)

B
∂z2

B
− ν

∂2Σ(0)
B

∂z2
B

)
, (5.94)

0 =
1
h

∂N(2)
B

∂τ
+

∂S(2)
B

∂zB
, (5.95)

0 =
∂Σ(2)

B
∂zB

, (5.96)

the second-order boundary conditions as

N(2)
B − νΣ(2)

B = 0, and
∂N(2)

B
∂zB

− ν
∂Σ(2)

B
∂zB

= 0 at zB = 0, (5.97)

and the second-order matching conditions to be

N(2)
B → 0, S(2)

B → 0, Σ(2)
B → 0, as zB → ∞. (5.98)

We have these matching conditions for the following reasons. Like the leading

and first-order terms in the expansion (5.69) for NB, the second-order N(2)
B term

is too large to match onto any of the terms in the matching condition (5.65) and

thus must decay to zero as zB → ∞. The second-order S(2)
B and Σ(2)

B terms in

the expansions (5.70), (5.71) for SB and ΣB are both too small to match with the

(already matched) leading-order constant terms in their respective matching

conditions (5.66) and (5.67). These second-order terms are also too big for any

of the linear or higher-order terms in zB that S(2)
B and Σ(2)

B may contain to match

onto any of the higher-order terms within (5.66) and (5.67). Hence, both S(2)
B

and Σ(2)
B must decay to zero as zB → ∞.

Solving the governing equation (5.96) we see that the general solution of

Σ(2)
B must be

Σ(2)
B = C1(τ, t), (5.99)

where C1 is an arbitrary function of τ and t. Applying the matching condition

(5.98) for Σ(2)
B , it is seen that

C1(τ, t) = 0, (5.100)

which implies

Σ(2)
B = 0.
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Substituting (5.99) and the expressions (5.79), (5.77) for N(0)
B , Σ(0)

B into (5.94),

the following ODE for N(2)
B is obtained

∂4N(2)
B

∂z4
B

+ 4B̄2N(2)
B =

∞

∑
n=1

8h|B̄|νBn(t)Yn(τ)
[
sin
(
|B̄| 12 zB

)
− cos

(
|B̄| 12 zB

)]
e−|B̄|

1
2 zB .

(5.101)

It is seen that the homogeneous version of this ODE has the same form as the

governing ODE (5.78) for N(0)
B . As such the complementary function of N(2)

B ,

denoted N(2)
BCF here, will have the same form as the general solution (5.79) of

N(0)
B and we have

N(2)
BCF =

[
C2(τ, t) cos

(
|B̄| 12 zB

)
+ C3(τ, t) sin

(
|B̄| 12 zB

)]
e−|B̄|

1
2 zB

+
[
C4(τ, t) cos

(
|B̄| 12 zB

)
+ C5(τ, t) sin

(
|B̄| 12 zB

)]
e|B̄|

1
2 zB , (5.102)

where C2, . . . , C5 are arbitrary functions of τ and t. Applying the matching

condition (5.98) for N(2)
B , we see that the solution for N(2)

B cannot be

exponentially growing as zB → ∞ and we must set

C4(τ, t) = C5(τ, t) = 0. (5.103)

To find the particular integral of N(2)
B , denoted N(2)

BPI here, we try a solution of

the form

N(2)
BPI =

[
B(τ, t) sin

(
|B̄| 12 zB

)
− C(τ, t) cos

(
|B̄| 12 zB

)]
zBe−|B̄|

1
2 zB ,

where B(τ, t), C(τ, t) are functions to be found. Substituting this into the ODE

(5.101) and equating coefficients, we find

B(τ, t) = 0, C(τ, t) =
∞

∑
n=1

h

|B̄| 12
νBn(t)Yn(τ),

which yields

N(2)
BPI = −

∞

∑
n=1

h

|B̄| 12
νBn(t)Yn(τ)zB cos

(
|B̄| 12 zB

)
e−|B̄|

1
2 zB . (5.104)

Adding the complementary function (5.102) to the particular integral (5.104),

the general solution of N(2)
B is found to be

N(2)
B =

[(
C2(τ, t)−

∞

∑
n=1

h

|B̄| 12
νBn(t)Yn(τ)zB

)
cos

(
|B̄| 12 zB

)
+C3(τ, t) sin

(
|B̄| 12 zB

) ]
e−|B̄|

1
2 zB . (5.105)
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Finally, we rearrange and integrate (5.95) to obtain the following expression

for S(2)
B

S(2)
B =

∫ ∞

zB

1
h

∂N(2)
B (τ, z′, t)

∂τ
dz′. (5.106)

It is noted that the matching condition (5.98) for S(2)
B has been incorporated into

this expression.

We now use the boundary conditions (5.97) to derive the full solution of

N(2)
B . Applying these boundary conditions to the general solution (5.105) of

N(2)
B , it is found that

C2(τ, t) = 0, C3(τ, t) =
∞

∑
n=1

h
|B̄|νBn(t)Yn(τ).

Substituting these into (5.105), the full solution of N(2)
B is found to be

N(2)
B =

∞

∑
n=1

h

|B̄| 12
νBn(t)Yn(τ)

[
sin(|B̄| 12 zB)

|B̄| 12
− zB cos(|B̄| 12 zB)

]
e−|B̄|

1
2 zB . (5.107)

It is now possible to derive S(2)
B by substituting the value for N(2)

B into

(5.106). Doing so gives the following solution for S(2)
B

S(2)
B =

νBn(t)

4h|B̄| 52

{
sin
(
|B̄| 12 zB

) [(
2(hYn)

′|B̄| 32 − 5hYn|B̄|
1
2 |B̄|′

)
zB

+4(hYn)
′|B̄| − 6hYn|B̄|′

]
+ cos

(
|B̄| 12 zB

) [
2hYn|B̄||B̄|′z2

B +
(

3hYn|B̄|
1
2 |B̄|′ − 2(hYn)

′|B̄| 32
)

zB

+2(hYn)
′|B̄| − 3hYn|B̄|′

]}
e−|B̄|

1
2 zB , (5.108)

where once again, ′ denotes a derivative with respect to τ.

Finally, we recall that

Σ(2)
B = 0. (5.109)

5.11 Bending-Layer Deformations

Now that the asymptotic expansions (5.69)–(5.71) for NB, SB and ΣB have been

calculated up to second order, we may use these to calculate approximations

for the deformations ξ̂, η̂, ζ̂ in the bending layer, up to the largest non-zero

higher-order term. Substituting (5.69)–(5.71) into the expressions (5.60) allows

us to find Ñ, S̃ and Σ̃ in the bending layer. We may then substitute these stresses

into the expressions (5.141)–(5.143) for the deformations ξ̂, η̂, ζ̂ in terms of Ñ, S̃



150 Chapter 5. The Bending Boundary Layer in Regime Ib

and Σ̃. Doing so and noting that N(1)
B = Σ(1)

B = Σ(2)
B = 0, the approximations of

the deformations including the largest non-zero higher-order terms are found

to be

ξ̂ = F̃ 1
2

[
ξ̂(0) +

F̃
δ2

B
ξ̂(1) + O

(
F̃ 3

2

δ3
B

,
δ2

δ2
B

)]
, (5.110)

η̂ = δ2
BF̃

1
2

[
η̂(0) +

F̃ 1
2

δB
η̂(1) + O

(
F̃
δ2

B

)]
, (5.111)

ζ̂ = δBF̃
1
2

[
ζ̂(0) +

F̃
δ2

B
ζ̂(1) + O

(
F̃ 3

2

δ3
B

,
δ2

δ2
B

)]
, (5.112)

where the leading-order terms ξ̂(0), η̂(0) and ζ̂(0) are given by

ξ̂(0) =
h

12B̄(1− ν2)

(
νΣ(0)

B − N(0)
B

)
, (5.113)

η̂(0) =
∫ zB

0

(
hS(0)

B (τ, z′, t)
6(1− ν)

− ∂

∂τ

∫ z′

0

Σ(0)
B (τ, z′′, t)− νN(0)

B (τ, z′′, t)
12(1− ν2)

dz′′
)

dz′, (5.114)

ζ̂(0) =
∫ zB

0

Σ(0)
B (τ, z′, t)− νN(0)

B (τ, z′, t)
12(1− ν2)

dz′, (5.115)

and the higher-order terms ξ̂(1), η̂(1) and ζ̂(1) are defined as

ξ̂(1) = − h
12B̄(1− ν2)

N(2)
B , (5.116)

η̂(1) =
∫ zB

0

hS(1)
B (τ, z′, t)
6(1− ν)

dz′, (5.117)

ζ̂(1) = −
∫ zB

0

νN(2)
B (τ, z′, t)

12(1− ν2)
dz′. (5.118)

Applying the expressions (5.85)–(5.87), (5.93) and (5.107)–(5.109) for

N(0)
B , . . . , Σ(2)

B to the approximations (5.110)–(5.112), the bending-layer
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deformations up to the largest non-zero higher-order term are found to be

ξ̂ = F̃ 1
2

∞

∑
n=1

hνBn(t)Yn(τ)

12B̄(1− ν2)

[
1−

(
cos

(
|B̄| 12 zB

)
+ sin

(
|B̄| 12 zB

))
e−|B̄|

1
2 zB

]

+
F̃ 3

2

δ2
B

∞

∑
n=1

h2νBn(t)Yn(τ)

12|B̄| 32 (1− ν2)

sin
(
|B̄| 12 zB

)
|B̄| 12

− zB cos
(
|B̄| 12 zB

) e−|B̄|
1
2 zB

+ O

(
F̃ 2

δ3
B

,
F̃ 1

2 δ2

δ2
B

)
, (5.119)

η̂ = δ2
BF̃

1
2

∞

∑
n=1

Bn(t)
24(1− ν2)

{
(ν2 + 2ν)

[(
Yn

|B̄|

)′
sin
(
|B̄| 12 zB

)
+

(
Yn

|B̄| 32
|B̄|′zB −

(
Yn

|B̄|

)′)
cos

(
|B̄| 12 zB

)]
e−|B̄|

1
2 zB

−Y′nz2
B + 2

(
Yn

|B̄| 12

)′
ν2zB + (ν2 + 2ν)

(
Yn

|B̄|

)′}

+ δBF̃
∞

∑
n=1

Bn(t)
6µn(1− ν)

∂

∂τ

[
1

B̄2h
∂

∂τ

(
1
h

∂Yn

∂τ

)
−Yn(τ)

]
zB + O

(
F̃ 3

2

)
,

(5.120)

ζ̂ = δBF̃
1
2

∞

∑
n=1

Bn(t)Yn(τ)

12(1− ν2)

[
zB +

ν2

|B̄| 12

(
cos

(
|B̄| 12 zB

)
e−|B̄|

1
2 zB − 1

)]

− F̃
3
2

δB

∞

∑
n=1

hν2Bn(t)Yn(τ)

24|B̄| 32 (1− ν2)

{
1−

[(
1− |B̄| 12 zB

)
cos

(
|B̄| 12 zB

)
+
(

2 + |B̄| 12 zB

)
sin
(
|B̄| 12 zB

)]
e−|B̄|

1
2 zB

}
+ O

(
F̃ 2

δ2
B

,
F̃ 1

2 δ2

δB

)
.

(5.121)

The sizes of these deformations are in agreement with the sizes of the

deformations (5.174)–(5.176) calculated in the limit of a circular cross-section

in Appendix 5.B. The leading-order terms of these expressions are depicted in

Figures 5.5, 5.6 and 5.7 in §5.13.

5.12 Leading-Order Area Change in the Bending Layer

Using the expression (5.119) for the normal deformation ξ̂ in the bending layer,

it is possible to determine the leading-order variation in the cross-sectional

area of the tube within the bending layer. We begin with the following relation

between the area change and deformation r − r0 in the tube wall, found by
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Whittaker et al. (2010d)

(A(zB, t)− A0) a2 =
∮
(r− r0) · n̂ ah dτ + O(∆2), (5.122)

where A, A0 are the dimensionless cross-sectional areas of the tube in its

deformed and undeformed state respectively. Applying the expression (5.5)

for r− r0, we find the leading-order area change in the bending layer is given

by

A(zB, t)− A0 =
∆
`

∫ 2π

0
ξ̂ dτ + O(∆2),

=
∆F̃ 1

2

`

∞

∑
n=1

νBn(t)
12(1− ν2)

Cn(zB) + O

(
∆F̃ 3

2

δ2
B`

)
, (5.123)

where

Cn(zB) =
∫ 2π

0

hYn

B̄

[
1−

(
cos

(
|B̄| 12 zB

)
+ sin

(
|B̄| 12 zB

))
e−|B̄|

1
2 zB

]
dτ. (5.124)

The function Cn(zB) cannot be determined analytically and so instead

we find a numerical solution for the function. We begin by numerically

determining the eigenfunctions Yn(τ) of the operator L defined in (5.28). This

may be done in MATLAB using the “BVP4C” solver, documented in Kierzenka

& Shampine (2001). Once the eigenfunctions are calculated, it is then possible

to numerically evaluate the integral within (5.124) by applying the trapezium

rule with the “trapz” function in MATLAB.

In Figure 5.4, the numerical solution of Cn(zB) for the first n = 1 mode has

been plotted in the case σ0 = 0.6. In this case, the eigenfunction Y1(τ) has been

normalised such that Y1(0) = 1. From the figure, we see that as zB → 0, the

value and axial gradient of C1(zB) both tend to zero as expected. We also see

that as zB → ∞, C1(zB) tends to some constant O(1) value. By examining (5.124)

and noting the exponential decay of the sinusoidal terms, we may deduce that

Cn(zB)→
∫ 2π

0

hYn

B̄
dτ, as zB → ∞.

In the case σ0 = 0.6, it is found that for the normalisation Y1(0) = 1,

C1(zB) ∼ 2.399, as zB → ∞.

Finally, we note that there is a maximum in C1(zB) at zB ∼ 4.5 which is slightly

larger than the value C1(zB) takes as zB → ∞.
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Figure 5.4: The numerical solution of the first n = 1 mode of the function Cn(zB)

defined in (5.124), in the case σ0 = 0.6. Here we have normalised Y1(τ) such that

Y1(0) = 1.

Examining the expression (5.123) for the area change along with the

behaviour of the functions Cn(zB), it is seen that within the bending layer

A(zB, t)− A0 = O(∆F̃ 1
2 /`). It can also be shown that

A(zB, t)− A0 →
∆F̃ 1

2

`

∞

∑
n=1

νBn(t)
12(1− ν2)

∫ 2π

0

hYn

B̄
dτ, as zB → ∞. (5.125)

Hence, as we exit the bending layer the change in area tends to some O(∆F̃ 1
2 /`)

constant in zB.

5.13 Corrections to the Outer Shear-Layer Solution

Now that we have obtained the expressions (5.119)–(5.121) for the deformations

ξ̂, η̂ and ζ̂ in the bending layer, we determine what corrections the leading-order

terms of these expressions impose on the deformations in the outer shear layer.

To do this, we must match the general leading-order solutions (5.29)–(5.31) for

the deformations in the outer shear layer to the expressions (5.119)–(5.121) as

z̆→ 0, zB → ∞.
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Taking the Taylor series of (5.29)–(5.31) about z̆ = 0 and rewriting the axial

coordinate in terms of the intermediate variable zI defined in (5.51), we find the

asymptotic behaviour of the deformations in the outer shear layer as z̆ → 0 to

be

ξ̂ ∼ F̃− 1
2

12B̄(1− ν2)

{
−

∞

∑
n=1

Bn(t)
∂

∂τ

(
1
h

∂Yn

∂τ

) [
1
2

(
δBF̃

1
2

)2α
z2

I + O
((

δBF̃
1
2

)3α
)]

− ∂

∂τ

(
1
h

∂Ă(τ, t)
∂τ

)(
δBF̃

1
2

)α
zI +

∂

∂τ

(
B̆(τ, t)

h

)}
+ O(F̃ 1

2 ), (5.126)

η̂ ∼ F̃− 1
2

12(1− ν2)

{
−

∞

∑
n=1

Bn(t)
∂Yn

∂τ

[
1
2

(
δBF̃

1
2

)2α
z2

I + O
((

δBF̃
1
2

)3α
)]

−∂Ă(τ, t)
∂τ

(
δBF̃

1
2

)α
zI + B̆(τ, t)

}
+ O(F̃ 1

2 ), (5.127)

ζ̂ ∼ 1
12(1− ν2)

{
∞

∑
n=1

Bn(t)Yn(τ)

[(
δBF̃

1
2

)α
zI + O

((
δBF̃

1
2

)2α
)]

+ Ă(τ, t)

}
+O(F̃ ). (5.128)

As zB → ∞, the asymptotic behaviours of the deformations (5.119)–(5.121) are

found to be

ξ̂ ∼ F̃ 1
2

12B̄(1− ν2)

∞

∑
n=1

hνBn(t)Yn(τ)

+O

(
F̃ 2−k

2

δ3+k
B

(
δBF̃

1
2

)kα
,
F̃ 1−k

2 δ2

δ2+k
B

(
δBF̃

1
2

)kα
)

, (5.129)

η̂ ∼
∞

∑
n=1

Bn(t)
24(1− ν2)

{
−F̃− 1

2 Y′n
(

δBF̃
1
2

)2α
z2

I + 2δBν2

(
Yn

|B̄| 12

)′ (
δBF̃

1
2

)α
zI

+δ2
BF̃

1
2 (ν2 + 2ν)

(
Yn

|B̄|

)′}

+O

(
F̃ 1

2

(
δBF̃

1
2

)α
,
F̃ 3−k

2

δk
B

(
δBF̃

1
2

)kα
)

, (5.130)

ζ̂ ∼
∞

∑
n=1

Bn(t)Yn(τ)

12(1− ν2)

[(
δBF̃

1
2

)α
zI − δBF̃

1
2

ν2

|B̄|

]

+O

(
F̃ 3

2

δB
,
F̃ 2−k

2

δ2+k
B

(
δBF̃

1
2

)kα
,
F̃ 1−k

2 δ2

δ1+k
B

(
δBF̃

1
2

)kα
)

. (5.131)

Here, the integer k is the highest power of zI that appears at higher orders in

the approximations. For (5.126)–(5.128) to match with (5.129)–(5.131), we must

have

Ă(τ, t) = −δBF̃
1
2

∞

∑
n=1

ν2Bn(t)Yn(τ)

|B̄| 12
, B̆(τ, t) = 0. (5.132)
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We note that the quadratic and linear terms in the asymptotic behaviour

(5.126) for ξ̂ in the outer shear layer match onto higher-order terms in the

approximation (5.129) for ξ̂ in the bending layer as zB → ∞. We also note

that the constant term in (5.129) matches with higher-order terms in (5.126).

Finally, the constant term in the approximation (5.130) for η̂ in the bending

layer as zB → ∞ matches with higher-order terms in the outer shear-layer

approximation (5.127) as z̆→ 0.

Substituting (5.132) into (5.29)–(5.31), the corrected deformations in the

outer shear layer are found to be

ξ̂ =
1

12B̄(1− ν2)

∞

∑
n=1

Bn(t)

{
F̃− 1

2

µn

∂

∂τ

(
1
h

∂Yn

∂τ

) [
1

µn

(
1− e−µn z̆)− z̆

]

+δBν2 ∂

∂τ

[
1
h

∂

∂τ

(
Yn(τ)

|B̄| 12

)]
z̆

}
+ O(F̃ 1

2 ), (5.133)

η̂ =
1

12(1− ν2)

∞

∑
n=1

Bn(t)

{
F̃− 1

2

µn

∂Yn

∂τ

[
1

µn

(
1− e−µn z̆)− z̆

]

+δBν2 ∂

∂τ

(
Yn(τ)

|B̄| 12

)
z̆

}
+ O(F̃ 1

2 ), (5.134)

ζ̂ =
∞

∑
n=1

Bn(t)Yn(τ)

12(1− ν2)

[
1

µn

(
1− e−µn z̆)− δBF̃

1
2

ν2

|B̄| 12

]
+ O(F̃ ). (5.135)

Comparing these deformations with those originally found by Whittaker

(2015), we see that the correction terms are all a factor of O(δBF̃
1
2 ) = O(F 1

2 δ
3
2 `)

smaller than the leading-order terms, and the leading-order behaviour of the

deformations in the outer shear layer is not altered. However as δB � F̃
1
2 ,

these correction terms are larger than the other higher-order terms within the

expressions and thus are more important than the other higher-order terms. In

ξ̂ and η̂, the correction terms are linear in z̆ and thus alter the axial gradient

of the normal and azimuthal deformations. In ζ̂, the correction term is instead

constant in z̆ and imposes a constant shift in the axial deformation.

By relaxing the condition F = O(1) and setting F = O(δ−3`−2), the

correction terms become large enough to contribute at leading order. However,

substituting this value of F into the definition (5.1) of F̃ , we instead find

F̃ = O(δ−1). As δ � 1, we have F̃ � 1 in this scenario, and the shear

layer studied by Whittaker (2015) no longer has a significant effect on the bulk

solution and does not need to be considered. Hence, further investigation is

required to see what happens in this case.

In Figures 5.5, 5.6 and 5.7, the first n = 1 mode of the leading-order
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approximations for ξ̂, η̂ and ζ̂ in the original outer shear layer studied by

Whittaker (2015), which we denote as ξ̂s, η̂s and ζ̂s, are plotted in the axial

direction for fixed τ. Also plotted is the first n = 1 mode of the leading-order

approximations F̃ 1
2 ξ̂(0), δ2

BF̃
1
2 η̂(0), δBF̃

1
2 ζ̂(0) for the deformations in the bending

layer, as found in (5.119)–(5.121), and the first mode of the corrected outer

shear-layer deformations (5.133)–(5.135), which we denote as ξ̂c, η̂c and ζ̂c.

It is seen that the bending-layer deformations and axial gradient are all zero

at the clamped boundary Z = 0, and the clamped boundary conditions are

satisfied. The linear corrections to ξ̂ and η̂ and the constant shift to ζ̂ in the

outer shear layer is also observed. Finally, it is noted that the correction to

the outer shear-layer ξ̂ behaves differently from the far-field behaviour of the

approximation for ξ̂ in the bending layer. This is because the leading-order

terms in the bending layer match with higher-order terms in the outer shear

layer, with axially uniform behaviour in the intermediate region. Conversely

the leading-order terms in the outer shear layer match with the higher-order

terms in the bending boundary layer, with axially quadratic behaviour in the

intermediate region. Hence, the leading-order bending-layer ξ̂ does not alter

the leading-order shear-layer ξ̂, and the correction seen in the shear layer is due

to terms that arise at higher-order in the bending layer.
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Figure 5.5: The first n = 1 modes of the approximations ξ̂s, F̃
1
2 ξ̂(0), and ξ̂c, of ξ̂ in

the original outer shear layer studied by Whittaker (2015), in the bending layer, and

in the corrected outer shear layer, respectively. The approximations F̃ 1
2 ξ̂(0) and ξ̂c are

found in (5.119) and (5.133), and all the approximations are plotted in the case σ0 = 0.6,

δ = 0.001, ` = 10, ν = 0.49, F = 1, τ = 0 and B1(t) = 1, with Y1(τ) normalised such

that Y1(0) = 1. In this case δB = 0.026.
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Figure 5.6: The first n = 1 modes of the approximations η̂s, δ2
BF̃

1
2 η̂(0), and η̂c, of η̂ in

the original outer shear layer studied by Whittaker (2015), in the bending layer, and in

the corrected outer shear layer, respectively. The approximations δ2
BF̃

1
2 η̂(0) and η̂c are

found in (5.120) and (5.134), and all the approximations are plotted in the case σ0 = 0.6,

δ = 0.001, ` = 10, ν = 0.49, F = 1, τ = 2.6656 (where Y′1(τ) is near its maximum value)

and B1(t) = 1, with Y1(τ) normalised such that Y1(0) = 1. In this case δB = 0.026.

With the expression (5.133) for ξ̂ in the outer shear layer, it is also possible

to determine the correction to the cross-sectional area change within the outer

shear layer. Substituting (5.133) into the expression (5.122), the area change

A(z̆, t)− A0 in the outer shear layer is found to be

A(z̆, t)− A0 =
∞

∑
n=1

∆Bn(t)
12`(1− ν2)

{
F̃− 1

2

µn

[
1

µn

(
1− e−µn z̆)− z̆

] ∫ 2π

0

1
B̄

(
Y′n
h

)′
dτ

+δBν2z̆
∫ 2π

0

1
B̄

(
1
h

(
Yn

|B̄| 12

)′)′
dτ

+ O

(
∆F̃ 1

2

`

)
. (5.136)

As with the normal deformation ξ̂, the correction term is a factor of O(δBF̃
1
2 )

smaller than the leading-order term so does not alter the leading-order

behaviour of the area variation. However, this term is larger than the other

higher-order terms, meaning the correction term is more important than the
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Figure 5.7: The first n = 1 modes of the approximations ζ̂s, δBF̃
1
2 ζ̂(0), and ζ̂c, of ζ̂ in

the original outer shear layer studied by Whittaker (2015), in the bending layer, and in

the corrected outer shear layer, respectively. The approximations δBF̃
1
2 ζ̂(0) and ζ̂c are

found in (5.121) and (5.135), and all the approximations are plotted in the case σ0 = 0.6,

δ = 0.001, ` = 10, ν = 0.49, F = 1, τ = 0 and B1(t) = 1, with Y1(τ) normalised such

that Y1(0) = 1. In this case δB = 0.026.

other higher-order terms. This correction is linear in z̆ and thus gives a

correction to the axial gradient of the area change.

5.14 Corrections to the Bulk-Layer Solution

Now we determine what effect the bending layer has on the bulk solution by

considering the behaviour of the deformations (5.133)–(5.135) in the outer shear

layer as z̆ → ∞. It is first convenient to express z̆ and Z in terms of some

intermediate variable zm. By considering the typical axial scales in the outer

shear layer and bulk solution, we define zm as

(
`F̃ 1

2

)−β
Z = zm =

(
`F̃ 1

2

)1−β
z̆, where 0 < β < 1. (5.137)
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It is seen that when zm = O(1), we must have Z → 0 and z̆→ ∞ due to the fact

that `F̃ 1
2 = O(δ`2)� 1.

As z̆→ ∞ the deformations (5.133)–(5.135) in the outer shear layer become

ξ̂ ∼ 1
12B̄(1− ν2)

∞

∑
n=1

Bn(t)

{
1

µn

∂

∂τ

(
1
h

∂Yn

∂τ

)[
F̃− 1

2

µn
− 1

`F̃

(
`F̃ 1

2

)β
zm

]

+
δB

`F̃ 1
2

ν2 ∂

∂τ

[
1
h

∂

∂τ

(
Yn(τ)

|B̄| 12

)](
`F̃ 1

2

)β
zm

}

+O

(
F̃ 1−s

2

`s

(
`F̃ 1

2

)sβ
)

, (5.138)

η̂ ∼ 1
12(1− ν2)

∞

∑
n=1

Bn(t)

{
1

µn

∂Yn

∂τ

[
F̃− 1

2

µn
− 1

`F̃

(
`F̃ 1

2

)β
zm

]

+
δB

`F̃ 1
2

ν2 ∂

∂τ

(
Yn(τ)

|B̄| 12

)(
`F̃ 1

2

)β
zm

}
+ O

(
F̃ 1−s

2

`s

(
`F̃ 1

2

)sβ
)

, (5.139)

ζ̂ ∼
∞

∑
n=1

Bn(t)Yn(τ)

12(1− ν2)

[
1

µn
− δBF̃

1
2

ν2

|B̄| 12

]
+ O

(
F̃ 2−s

2

`s

(
`F̃ 1

2

)sβ
)

, (5.140)

where we have rewritten z̆ in terms of the intermediate variable zm using

(5.137), and the integer s is the highest power of zm that appears at higher

orders within the deformations (5.133)–(5.135) in the outer shear layer.

In the approximations (5.138), (5.139) for ξ̂, η̂ as we exit the outer shear

layer, we see that the axially linear correction terms in the second lines of

the expressions are smaller than the leading-order axially linear terms in the

first lines of the expressions. As such the correction terms will affect the

bulk solution at a higher order than the leading-order linear terms. As the

axially constant terms are O(F̃− 1
2 ) within (5.138), (5.139), they must match

onto terms that have the same size in the bulk layer. However, by noting that

Z = (`F̃ 1
2 )βzm in the bulk layer, we see that the linear correction terms, which

are O(F̃− 1
2 δB`

−1(`F̃ 1
2 )β) in the intermediate region, must instead match onto

terms in the bulk solution that are O(F̃− 1
2 δB`

−1). As δB`
−1 � 1, the terms in

the bulk region that match onto the linear correction terms are smaller than the

terms that match onto the constant terms. Hence, the bending layer induces

corrections to ξ̂ and η̂ in the bulk solution that appear at higher orders than

terms matching onto the leading-order axially constant and linear terms in the

outer shear layer, seen in (5.133), (5.134). From (5.122) the cross-sectional area

variation is dependent only on the normal deformation ξ̂. Hence, the bending

layer also induces corrections to the area change in the bulk solution that appear

at higher orders than terms matching onto the leading-order axially constant
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and linear terms in the outer shear layer, seen in (5.136). As these corrections

are so small, they are not computed here.

In the approximation (5.140) for ζ̂ as we exit the outer shear layer, there is a

leading-order constant term in zm and a smaller correction term also constant

in zm. Hence the correction term will not affect the leading-order solution in the

bulk layer, but instead induce a correction to the bulk solution at a higher order.

As determining the correction would require calculating a general solution of

ζ̂ in the bulk layer which does not depend on any boundary conditions at the

tube ends, we do not calculate the correction to ζ̂ here.

5.15 Conclusions

In this chapter, we have introduced a bending boundary layer to the model

in Chapter 2, in regime Ib where δ`2 � 1, and the width δB of this bending

layer lies in between the widths F̃ 1
2 , F̃− 1

2 of the inner and outer shear layers

found by Whittaker (2015). It is found that the inner shear layer is no longer

needed in this scenario. As such, the bending layer is situated at the ends of the

elastic-walled tube and matches onto the outer shear layer. In introducing this

bending layer, the full clamped boundary conditions (5.44) have been satisfied

at the ends of the elastic-walled tube. The effects this bending layer induces

on the outer shear layer studied by Whittaker (2015) and the bulk solution

modelled in Chapter 2 have also been evaluated.

As in Regime Ia studied in Chapter 4, we have used Kirchhoff–Love

shell theory to model the wall mechanics in the bending layer. In doing

so, the force-balance equations in the normal, azimuthal and axial directions

were derived. It was initially unclear however what matching conditions

the deformations should have as we exit the bending layer. To resolve this

problem, the system was recast in terms of the in-plane stresses Ñ, S̃ and Σ̃. By

examining the resulting normal force-balance equation, it was found that the

only terms that contribute at leading order are terms that arise from azimuthal

and axial stretching mechanisms, and axial bending mechanisms. For these

terms to balance, we found that the width δB of the bending layer must be

δB = O(δ
1
2 ). This does not agree with the estimate (3.48) for the bending-layer

width derived in the toy model in §3.6. This is due to the fact that the toy

model does not capture the effects of azimuthal and axial stretching, which are

found to contribute at leading order in this regime. Although δB is different
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from the value predicted by the toy model, we still have F̃ 1
2 � δB � F̃−

1
2 and

the bending-layer width is still larger than the inner shear layer, and smaller

than the outer shear layer, both modelled by Whittaker (2015).

To determine a solution for the system, asymptotic expansions of the

stresses Ñ, S̃ and Σ̃ within the bending layer were considered. These

approximations were solved up to second order and, using these stresses,

the normal, azimuthal and axial deformations within the bending layer were

derived up to the largest non-zero higher-order term. The normal deformation

was then used to derive an expression for the leading-order area change within

the bending layer. This area change was determined to be O(∆F̃ 1
2 `−1) in the

bending layer, and it was also found that as zB → ∞, the area variation tends

to a constant in zB.

Using the leading-order deformations in the bending layer, the corrections

to the deformations in the outer shear layer have been determined. These

corrections have been found to be a factor of O(δBF̃
1
2 ) smaller than the

leading-order terms and as such do not alter the leading-order behaviour of

the deformations. However the correction terms are larger than the other

higher-order terms by a factor of O(F̃ 1
2 δ−1

B ) and so these corrections are more

important than the other higher-order terms. In the normal and azimuthal

deformations, ξ̂ and η̂, these corrections are linear in z̆ and so alter the axial

gradient of the deformations, whereas in the axial deformation ζ̂ the correction

term is constant in z̆ and forces a constant shift in the axial direction. Using the

expression for ξ̂, the correction to the area variation in the outer shear layer has

also been calculated. Like in ξ̂, the correction does not affect the leading-order

behaviour of the area variation. Instead the correction appears at a higher order

and alters the axial gradient of the area change at a lower order than any of the

other non-zero higher-order terms. If we relax the condition F = O(1) and

instead set F = O(δ−3`−2), these correction terms become large enough to

contribute at leading order. However, this also sets F̃ � 1, and in this case

the shear layer studied by Whittaker (2015) no longer has a significant effect on

the bulk solution and does not need to be considered. Further investigation is

required to see what happens in the case with F = O(δ−3`−2).

Finally, we have evaluated how the corrections to the deformation in the

outer shear layer affect the bulk layer modelled in Chapter 2. In the normal,

azimuthal and axial deformations ξ̂, η̂, ζ̂, as well as the cross-sectional area

variation A− A0, the corrections in the outer shear layer enforce corrections to
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the corresponding variables in the bulk layer that appear at a higher order than

terms matching onto the leading-order terms in the outer shear layer.

It is seen here that the bending layer in this regime is passive and does

not contribute to the leading-order deformations in the outer and bulk layers.

However it allows the axial gradient of the tube wall to decrease to zero as the

clamped boundary at Z = 0 is reached. This bending layer also allows the

stresses Ñ and S̃ to decay from their respective O(F̃ 1
2 ) and O(δBF̃

1
2 ) values at

Z = 0 to the O(F̃ 3
2 ) and O(F̃ ) values needed in the outer shear layer, while

keeping Σ̃ approximately constant in Z. The decay of Ñ and the conservation

of the size of Σ̃ was originally accomplished by the inner shear layer. However,

the value of S̃ in the original inner shear layer was the same size as the

corresponding value in the outer shear layer. As such, the bending layer has

increased the size of this in-plane shear stress near the clamped boundary by a

factor of δB/F̃ 1
2 .
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5.A Reformulation in Terms of Stress Variables

To determine a solvable system with a complete set of matching conditions,

valid within the bending boundary layer, we consider a change of variables

from the deformations ξ̂, η̂ and ζ̂, to the leading-order azimuthal hoop stress Ñ,

the leading-order in-plane shear stress S̃, and the leading-order axial stress Σ̃.

These stresses are defined in terms of the deformations ξ̂, η̂ and ζ̂ in equations

(5.21)–(5.23). This reformulation follows closely the reformulation carried out

by Whittaker (2015).

Manipulating (5.21)–(5.23) and applying the clamped boundary conditions

(5.44) allows the following expressions for the displacements in terms of the

stresses to be found

ζ̂(τ, zB, t) =
∫ zB

0

δB

12(1− ν2)

(
Σ̃(τ, z′, t)− νÑ(τ, z′, t)

)
dz′, (5.141)

η̂(τ, zB, t) =
∫ zB

0
δB

(
h(τ)S̃(τ, z′, t)

6(1− ν)
− ∂ζ̂(τ, z′, t)

∂τ

)
dz′, (5.142)

ξ̂(τ, zB, t) =
h(τ)
B̄(τ)

(
νΣ̃(τ, zB, t)− Ñ(τ, zB, t)

12(1− ν2)
+

1
h(τ)

∂

∂τ

(
η̂(τ, zB, t)

h(τ)

))
. (5.143)

With these expressions, we rewrite the terms within the force-balance

equations (5.41)–(5.43) in terms of the stresses. It is found that all the terms

in (5.41)–(5.43) may be rewritten using the following expressions and their

derivatives

∂ζ̂

∂zB
=

δB(Σ̃− νÑ)

12(1− ν2)
, (5.144)

∂2η̂

∂z2
B
=

δ2
Bh
12

(
2

δB(1− ν)

∂S̃
∂zB
− 1

h
∂

∂τ

(
Σ̃− νÑ
1− ν2

))
, (5.145)

∂2ξ̂

∂z2
B
=

δ2
Bh

12B̄

(
− 1

δ2
B

∂2

∂z2
B

(
Ñ − νΣ̃
1− ν2

)
+

1
h

∂

∂τ

(
2

δB(1− ν)

∂S̃
∂zB
− 1

h
∂

∂τ

(
Σ̃− νÑ
1− ν2

)))
, (5.146)

− B̄ξ̂

h
+

1
h

∂

∂τ

(
η̂

h

)
=

Ñ − νΣ̃
12(1− ν2)

. (5.147)

Substituting these expressions and their derivatives into (5.41)–(5.43), we find
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the governing force-balance equations in terms of the stresses to be

0 = ÑB̄− δ2

δ2
B

1
12B̄

[
− 1

δ2
B

∂4

∂z4
B

(
Ñ − νΣ̃
1− ν2

)
+

12
δ2

Bh
∂3

∂τ∂z2
B

(
1
h

∂2η̂

∂z2
B

)]
+
F̃ (1− ν2)h

B̄

[
− 1

δ2
B

∂2

∂z2
B

(
Ñ − νΣ̃
1− ν2

)
+

12
δ2

Bh
∂

∂τ

(
1
h

∂2η̂

∂z2
B

)]
+δ2`ptm + O

(
δ2

δ2
B

Ñ,
δ2

δB
S̃,

δ2

δ2
B

Σ̃
)

, (5.148)

0 =
1
h

∂Ñ
∂τ

+
1
δB

∂S̃
∂zB

−δ2 (1 + ν)B̄
24h

∂

∂τ

[
1
B̄

[
− 1

δ2
B

∂2

∂z2
B

(
Ñ − νΣ̃
1− ν2

)
+

12
δ2

Bh
∂

∂τ

(
1
h

∂2η̂

∂z2
B

)]]
+O

(
δ2
(

1
δB

, `2
)

Ñ,
δ2`2

δB
S̃, δ2

(
1
δB

, `2
)

Σ̃
)

, (5.149)

0 =
∂Σ̃
∂zB

+
δB

h
∂S̃
∂τ
− δ2

12δ2
B

∂3

∂z3
B

(
Ñ − νΣ̃
1− ν2

)
+

δ2

δ2
Bh

∂2

∂τ∂zB

(
1
h

∂2η̂

∂z2
B

)
+O

(
δ2`2

δB
Ñ, δ2`2S̃,

δ2`2

δB
Σ̃
)

, (5.150)

where ∂2η̂/∂z2
B is given in terms of the stresses by (5.145).

The clamped boundary conditions (5.44) are now converted into conditions

on the stresses. From the expressions (5.141) and (5.142) for the deformations

ζ̂ and η̂, we see that when zB = 0, η̂ = ζ̂ = 0 automatically. Using (5.143),

it can then be shown that for the remaining clamped boundary conditions

(ξ̂ = ∂ξ̂/∂zB = 0 at zB = 0) to be satisfied, we must have

Ñ − νΣ̃ = 0, and
∂Ñ
∂zB
− ν

∂Σ̃
∂zB
− 2(1 + ν)δB

h
∂S̃
∂τ

= 0, at zB = 0. (5.151)
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5.B Limit of a Circular Cross-Section (σ0 → ∞)

Here, we determine the leading-order stresses and deformations in the bending

layer in the limit where the undeformed tube has a circular cross-section

as opposed to an elliptical cross-section. We first use Fourier series in the

azimuthal coordinate τ to obtain solutions for stresses Ñ, S̃, Σ̃, that satisfy

(5.45)–(5.54) at leading order. These stresses are then used to determine the

deformations ξ̂, η̂ and ζ̂ at leading order in the circular limit.

5.B.1 Governing Equations as (σ0 → ∞)

As σ0 → ∞ and the undeformed cross-section of the tube becomes circular, we

have from (5.2), (5.3) and (5.11) that

c ∼ 2e−σ0 , h(τ)→ 1, B̄→ −1. (5.152)

Whittaker (2015) also found that as σ0 → ∞, the functions Yn(τ) seen in the

matching conditions (5.52)–(5.54) are given by

Yn(τ)→ cos(2nτ). (5.153)

Substituting these approximations, as well as the sizes (5.58), (5.59) of Ñ, S̃

and Σ̃ into the force-balance equations (5.45)–(5.47), we find the leading-order

force-balance equations as σ0 → ∞ to be

Ñ +
δ2

δ4
B

1
12(1− ν2)

∂4

∂z4
B

(
Ñ − νΣ̃

)
= 0, (5.154)

∂Ñ
∂τ

+
1
δB

∂S̃
∂zB

= 0, (5.155)

∂Σ̃
∂zB

= 0. (5.156)

As seen in §5.8, we need δB = O
(

δ
1
2

)
for the axial-bending term in (5.154) to

balance the first term in the equation. We set

δB =

√
2δ

1
2

(12 (1− ν2))
1
4

, (5.157)

where the factor of
√

2
(
12
(
1− ν2))− 1

4 has been included to simplify the

following analysis.
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5.B.2 Fourier Representation

We see that (5.154)–(5.156) have no explicit dependence on τ. We also note that

these equations are linear and so we expect to find solutions that are sinusoidal

in τ. Whittaker et al. (2010d) found that in the bulk layer, the deformations

ξ̂, η̂ and ζ̂ are periodic over π, and η̂ is odd in τ, whereas ξ̂ and ζ̂ are even

in τ. So the deformations in the outer shear layer could match onto these

bulk layer deformations, Whittaker (2015) only considered outer shear layer

deformations with these same properties. Similarly, here we will only consider

deformations in the bending layer with these properties so that they may match

onto the deformations in the outer shear layer. By considering these properties

and the expressions (5.21)–(5.23) for the stresses Ñ, S̃ and Σ̃ in terms of the

deformations, it is found that the stresses are also all periodic over π, and S̃ is

odd in τ, whereas Ñ and Σ̃ are even in τ. We therefore look for solutions of the

form

Ñ =
∞

∑
n=0

αn(zB) cos(2nτ), S̃ =
∞

∑
n=0

βn(zB) sin(2nτ), Σ̃ =
∞

∑
n=0

γn(zB) cos(2nτ).

(5.158)

Substituting (5.158) into (5.154)–(5.156), we find that the different Fourier

modes decouple, and for each mode n we have

α′′′′n + 4αn − νγ′′′′n = 0, (5.159)

−2nαn +
1
δB

β′n = 0, (5.160)

γ′n = 0, (5.161)

where ′ denotes a derivative with respect to zB. We also substitute (5.158) into

the boundary conditions (5.48), (5.49) to obtain the following, leading-order

conditions at zB = 0

αn − νγn = 0 and α′n − νγ′n = 0 at zB = 0. (5.162)

It is noted that in the condition (5.49), the ∂S̃/∂τ term is a factor of δ2
B smaller

than the other terms in the condition (due to the sizes (5.58), (5.59) of the

stresses), and has been neglected in the leading-order condition here.

Finally, we determine the leading-order matching conditions for αn, βn and

γn. By comparing the size (5.58) of Σ̃ in the bending layer to the size of

the leading-order term in the matching condition (5.54) for Σ̃, it is seen that

these sizes are the same and the matching condition (5.54) may be used here.
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Substituting the approximations (5.152), (5.153) and the Fourier series (5.158)

for Σ̃ into (5.54), we find the following leading-order condition for γn as zB → ∞

γn ∼ F̃
1
2 Bn(t) for n ≥ 1, (5.163)

where all the higher-order terms within (5.54) have been neglected here. We

note that when n = 0, we obtain the matching condition γ0 ∼ 0 as zB → ∞.

It is found that this condition combined with the rest of the system sets

α0 = β0 = γ0 = 0. As such, we now only consider the scenario n ≥ 1.

Unlike Σ̃, the sizes (5.59) of Ñ and S̃ are larger than the sizes of the

leading-order terms in their corresponding matching conditions (5.52) and

(5.53). As such, the leading-order Ñ and S̃ must tend to zero as zB → ∞.

Hence, we have the following leading-order matching conditions for αn, βn

αn, βn → 0 as zB → ∞. (5.164)

5.B.3 General Solution

We proceed to find the solution of the system (5.159)–(5.164), starting with the

general solutions of αn(zB), βn(zB) and γn(zB). First, by integrating (5.161), we

find

γn = C1n, (5.165)

where C1n is a constant to be found. Substituting this into (5.159) gives the

following ODE for αn

α′′′′n + 4αn = 0, (5.166)

which has the general solution

αn = [C2n cos (zB) + C3n sin (zB)] e−zB + [C4n cos (zB) + C5n sin (zB)] ezB , (5.167)

where C2n–C5n are constants to be found. Finally, by substituting (5.167) into

(5.160), an ODE for βn is obtained. Solving this ODE, the general solution of βn

is found to be

βn = C6n + nδB
{
[−(C2n + C3n) cos (zB) + (C2n − C3n) sin (zB)] e−zB

+ [(C4n − C5n) cos (zB) + (C4n + C5n) sin (zB)] ezB} , (5.168)

where C6n is a constant to be found.
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5.B.4 Applying Boundary and Matching Conditions

We now apply the boundary conditions (5.162) and matching conditions (5.163),

(5.164) to the solutions (5.165), (5.167), (5.168) for γn, αn, βn. Applying the

matching conditions (5.163) and (5.164) to (5.165), (5.167) and (5.168) allows us

to find

C1n = F̃ 1
2 Bn(t), C4n = C5n = C6n = 0. (5.169)

Substituting (5.165) and (5.167) into the clamped boundary conditions (5.162)

then yields

C2n = C3n = νF̃ 1
2 Bn(t). (5.170)

5.B.5 Full Solution of the Modes

We now substitute (5.169) and (5.170) into the expressions (5.165), (5.167) and

(5.168) for γn, αn and βn. Doing so, we find the full, leading-order solutions of

αn, βn, γn to be

αn(zB) = νF̃ 1
2 Bn(t) [cos (zB) + sin (zB)] e−zB , (5.171)

βn(zB) = −2nδBνF̃ 1
2 Bn(t) cos (zB) e−zB , (5.172)

γn(zB) = F̃
1
2 Bn(t). (5.173)

The first n = 1 modes of these Fourier coefficients have been plotted in Figure

5.8, in the case δ = 0.001, ` = 10, ν = 0.49 and Bn(t) = 1. From the figure, it is

seen that the leading-order coefficients α1 and β1, which relate to the azimuthal

hoop stress Ñ and in-plane shear stress S̃, both decay to zero as zB → ∞. This

reduction in size is particularly apparent for α1. However, the leading-order

coefficient γ1, which relates to the axial stress Σ̃, is seen to remain constant

within the bending layer.

Using (5.171)–(5.173), we may calculate and substitute the leading-order

stresses Ñ, S̃, Σ̃ into the expressions (5.141)–(5.143) in Appendix 5.A to find

the leading-order values of the deformations ξ̂, η̂ and ζ̂ in the circular limit.
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Figure 5.8: The leading-order solutions (5.171)–(5.173) for the first n = 1 Fourier

coefficients α1, β1, γ1 in the expansions (5.158) for the stresses Ñ, S̃, Σ̃, in the case

δ = 0.001, ` = 10, ν = 0.49. These coefficients have been normalised such that

B1(t) = 1.

Doing so, the leading-order deformations are found to be

ξ̂ =
∞

∑
n=1

νF̃ 1
2 Bn(t) cos(2nτ)

12(1− ν2)

[
(cos (zB) + sin (zB)) e−zB − 1

]
, (5.174)

η̂ =
∞

∑
n=1

δ2
BF̃

1
2 nBn(t) sin(2nτ)

12(1− ν2)

{
ν(ν + 2)

[
(cos (zB)− sin (zB)) e−zB − 1

]
+z2

B − 2ν2zB

}
, (5.175)

ζ̂ =
∞

∑
n=1

δBF̃
1
2 Bn(t) cos(2nτ)

12(1− ν2)

[
zB + ν2 (cos (zB) e−zB − 1

)]
. (5.176)

The axial behaviour of these leading-order deformations for the first n = 1

mode has been plotted in Figure 5.9, in the case δ = 0.001, ` = 10, ν = 0.49

and Bn(t) = 1. In the plots, we have also set τ = 0 in ξ̂, ζ̂, and τ = π/4 in η̂,

to ensure these deformations demonstrate their maximum amplitude in the τ

coordinate. From the figure, it is seen that all the leading-order deformations

and the leading-order axial gradient ∂ξ̂/∂zB take the value of zero at zB = 0,
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and the full clamped boundary conditions (5.44) are satisfied at leading order.

As zB → ∞, the sizes of all the deformations increase to different values. It

is also seen that ξ̂, η̂ and ζ̂ behave as a constant, quadratically and linearly

respectively, in the axial direction when zB → ∞.
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Figure 5.9: The leading-order axial behaviour of the solutions (5.174)–(5.176) for the

first n = 1 mode of the deformations ξ̂, η̂, ζ̂, in the case δ = 0.001, ` = 10, ν = 0.49.

These deformations have been normalised such that B1(t) = 1, and we have set τ = 0

in ξ̂, ζ̂, and τ = π/4 in η̂.



Chapter 6

The Boundary Layer in Regime II

(δ`� 1)

6.1 Introduction

In this chapter, another regime of the general problem described in Chapter

3, where a boundary layer is introduced to the model derived in Chapter 2

describing flow through an elastic-walled tube, is considered. This boundary

layer will allow the canonical clamped boundary conditions to be satisfied at

the ends of the elastic-walled tube, where it is clamped onto two fixed rigid

tubes.

The regime considered here is regime II, where the dimensionless tube wall

thickness δ � 1 and tube length ` � 1 are set so that δ` � 1. Unlike in

regimes Ia and Ib considered in Chapters 4 and 5, the shear-relaxation layer

studied by Whittaker (2015) does not have a significant effect on the solution

in the bulk of the tube and does not need to be considered here. In the toy

model in §3.6, it was estimated that an axial-bending boundary layer would

have dimensionless width δB = O(`−1). Hence, in this regime it is expected that

δB � δ, and the boundary-layer width is smaller than the thickness of the tube

wall. As the tube wall thickness is no longer the smallest geometric parameter,

the Kirchhoff–Love shell equations (Flügge, 1972; Søndergaard, 2007) can no

longer be used to model the mechanics of the tube wall and a new model must

be derived.

As it is expected that δB � δ, the transmural pressure will not have an

effect at leading-order in the boundary layer. This is because terms from other

mechanisms such as axial bending and pre-stress and axial curvature will grow

172
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to be larger than the transmural pressure in the boundary layer. Also, since the

axial scale aδB is much smaller than the azimuthal scale a, we expect to be able

to neglect the effects of azimuthal variation when studying the boundary layer.

As such, it is possible that the wall mechanics can be modelled using a 2D

model in the normal and axial directions only. We consider modelling a cross

section of the tube wall in the normal and axial directions near the interfaces

between the elastic and rigid-walled tubes, as seen in Figure 6.1. In the

boundary layer, the tube wall must transition from being clamped horizontally

at the rigid wall, to being bent at an angle in order to match on to the bulk

solution. Since the wall is thin, it cannot sustain large transverse forces. The

large axial tension force F must therefore be aligned with the angle of the wall

in the far-field, as shown in Figure 6.1.

δ

δB

Clamped edge

Elastic tube wall

Axial tension
force
F

Rigid tube wall

n̂

ẑ

Figure 6.1: Two-dimensional cross section of the tube wall in the normal and axial

directions near the clamped edge.

This scenario is equivalent to a 2D semi-infinite block that is clamped along

its short edge and bent by applying a large axial tension. In this chapter, we

concentrate on deriving and solving a model for this scenario. As the original

tube wall is subject only to small amplitude deformations, the deformations

considered in this model will also be small, allowing us to linearise the problem.

However, this model must also include the effect of the large pre-stress, which

will add additional terms relating to rotations of the pre-stress as the block

deforms.

By deriving and solving this model, it is found that in the case δ` � 1,
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we obtain an axial-bending boundary layer with the same size width as that

predicted by the toy model in §3.6. This magnitude of the bending layer is

also in agreement with the size of the bending layer in regime Ia considered in

Chapter 4. However, in the regime we are considering here, δ`� 1, a different

boundary layer with a much larger width is found. This boundary layer is

found to be a transverse shear-relaxation layer (different from the shear layer

modelled by Whittaker (2015)), instead of the expected bending layer.

This chapter is organised as follows. In §6.2, the mathematical set-up of

the semi-infinite block under tension is provided, along with its deformations,

necessary tensors, governing equation and boundary conditions. In §6.3, a

linearised constitutive law is derived for the Cauchy stress tensor σ of the

block, and in §6.4, the linearised governing equation and boundary conditions

for the problem are derived. §6.5 focuses on rewriting the governing system

in a form that can be solved numerically by the numerical finite-element

differential equation solver ”FEniCS“ (Dupont et al., 2003), and in §6.6 an

analytic solution in terms of normal modes is sought. Although progress has

been made in finding an analytic solution, it has not been possible to determine

the amplitudes of the modes explicitly. Even though these amplitudes have not

yet been found, it is possible that a modification of a method used by Shankar

(2003) could be used to determine these amplitudes.

In §6.7 approximations for the deformations in the far-field are derived, and

in §6.8 these approximations are compared with the numerical solutions of the

problem found using FEniCS. The effect that varying the axial tension imposed

on the block has on the deformations is evaluated in §6.9. This 2D model is then

applied to the elastic-walled tube in §6.10 and the corrections to the boundary

conditions on the bulk layer modelled in Chapter 2 are calculated. Finally, in

§6.11, a physical interpretation of the boundary layers that arise in the cases

δ`� 1 and δ`� 1 is provided.

6.2 Mathematical Set-Up

6.2.1 Set-Up of the Semi-Infinite Block

A two-dimensional scenario as seen in Figure 6.2 is considered. Here we have

an almost incompressible, semi-infinite block of dimensional thickness d, and

we set dimensional Eulerian coordinates in the normal and semi-infinite (axial)

direction to be x1 and x2 respectively. These coordinates are encapsulated in
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the vector representation x = (x1, x2). The block initially occupies the region

x1 ∈ [0, d], x2 ∈ [0, ∞) and is subject to a large dimensional axial tension of size

F. For convenience, the coordinates have been set so that x2 is aligned with

the far-field axial tension F, even after the block undergoes the deformations

considered here. Hence, the deformations are induced by changing the angle

of the clamped boundary at x2 = 0 instead of changing the angle of F. The

boundaries of the block are denoted γ1, γ2, γ3 and γ4, where

γ1 is initially at 0 ≤ x1 ≤ d, x2 = 0,

γ2 is initially at x1 = 0, 0 ≤ x2,

γ3 is initially at 0 ≤ x1 ≤ d, x2 → ∞,

γ4 is initially at x1 = d, 0 ≤ x2.

This block is set to have Lamé’s first parameter λ and Lamé’s second parameter

µ. From these, the incremental Young’s modulus E, Poisson’s ratio ν and

bending stiffness K can be derived.

x1

x2

Boundary γ1

φ

u =
(

0, tan(φ)
(

x1 − d
2

))

Boundary γ4

σ · n = 0

Boundary γ2

σ · n = 0

Boundary γ3

σ · n→ (0, F)

Figure 6.2: The set-up of the semi-infinite block subject to the deformation u and axial

tension F.

In order to relate this semi-infinite block to the elastic-walled tube modelled

in Chapters 2–5, we set the axial tension F to have the same value as the

pre-stress in the elastic-walled tube. That is

F =
K`2

a3δ
F , (6.1)
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where a is the typical radial scale of the tube, `� 1 is the dimensionless length

of the tube, δ = d/a � 1 is the dimensionless thickness of the tube wall, and

F = O(1) is the dimensionless axial tension of the tube.

A small amplitude deformation

u =

(
u1

u2

)
,

is induced on the block by clamping boundary γ1 (initially at 0 ≤ x1 ≤ d,

x2 = 0) at an angle φ to the x1-axis. We have stress-free boundary conditions

on boundaries γ2 and γ4 (initially at x1 = 0, d, x2 ≥ 0) and no change to

the pre-stress F on boundary γ3 (initially at 0 ≤ x1 ≤ d, x2 → ∞). The

boundaries and their associated conditions may be seen in Figure 6.2. Owing

to the symmetry of the boundary conditions and the form of the linearised

elastic model which we derive in §6.3–§6.4, the component u1 of u in the

x1-direction is found to be symmetric about x1 = d/2, and the component

u2 of u in the x2-direction is found to be antisymmetric about x1 = d/2. Since

the deformation is assumed to be small, we will later linearise the problem back

to the domain 0 ≤ x1 ≤ d, 0 ≤ x2.

6.2.2 Lagrangian Representation of the System

The corresponding Lagrangian coordinates of this system are denoted X =

(X1, X2), where X1, X2 represent Lagrangian coordinates in the normal and

axial directions of the block respectively. Using this coordinate system, we

define the applied deformation on the block in the Lagrangian coordinate

system as U, where

U =

(
U1

U2

)
,

and Ui is the component of the deformation in the Xi-direction. Howell et al.

(2009) show that the Eulerian coordinates x may be expressed in terms of the

Lagrangian coordinates X as follows

δx = δX + (δX · ∇)U(X) + . . . , (6.2)

where, in two dimensions

(δX · ∇) = δX1
∂

∂X1
+ δX2

∂

∂X2
. (6.3)
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6.2.3 Tensor Notation

The various tensors that are needed to derive a suitable model for this problem

are now defined. Firstly, the strain tensor E is defined as

Eij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi
+

2

∑
k=1

∂uk

∂Xi

∂uk

∂Xj

)
. (6.4)

Next, we define the deformation gradient tensor G to be

Gij =
∂xi

∂Xj
, (6.5)

and let σ be the Cauchy stress tensor of the block. Finally we introduce the

second Piola–Kirchhoff stress tensor S of the block, which is related to the

Cauchy stress tensor σ by

S = det(G)G−1σ
(
GT
)−1

. (6.6)

Rearranging (6.6), it is seen that

σ =
GSGT

det(G) , (6.7)

and we will later use this expression to derive an appropriate constitutive law

for σ.

6.2.4 Governing Equation and Boundary Conditions

To model the mechanics within the block, we use the static version of Cauchy’s

momentum equation in absence of external forces (Howell et al., 2009, p. 10)

given by

∇ · σ = 0. (6.8)

In terms of σ, the boundary conditions may be written as follows

u =

 0

tan(φ)
(

x1 − d
2

)  on γ1, σ · n→
(

0

F

)
on γ3,

σ · n = 0 on γ2, γ4, (6.9)

where n is the outward unit normal to the block. We note that the factor of

−d/2 in the condition on boundary γ1 forces the shift in the x2-direction to be

antisymmetric about the centre of the block. It is also noted that as this system

is going to be converted into a linear problem, the choice of the (small) angle φ

of clamping only alters the amplitude of the deformations.
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6.3 Constitutive Law for σ

Before we can derive solutions for the system (6.8)–(6.9), we must determine a

constitutive law for σ. In this constitutive law, we must include the pre-stress

F applied to the block and create a linear model for small deformations to

the pre-stressed state. The naive option of simply adding a pre-stress to the

constitutive law for an isotropic linearly elastic solid fails as this does not take

into account rotations in the tension as the material deforms. In particular

for an O(ε) deformation, the interactions between the O(1) tension and O(ε)

rotations of the material will be O(ε) and should be included in a linear model.

However, these interactions would be omitted from a model derived in the

above way.

6.3.1 A Modified Saint Venant–Kirchhoff Model

Instead we consider using a different model applicable to hyperelastic

materials, where a material is deemed to be hyperelastic if its stress-strain

relationship is dependent on some strain energy density function which is

different for each material. The model in question is the nonlinear Saint

Venant–Kirchhoff model (Howell et al., 2009, p. 230) for hyperelastic materials,

which gives the second Piola–Kirchhoff stress tensor S as

S = λTr(E)I + 2µE , (6.10)

where I is the identity matrix.

In its current form, the Saint Venant–Kirchhoff model (6.10) does not include

the effects of the pre-stress F. However, we may easily modify this model to

obtain an appropriate constitutive law for S that includes the effects of the

pre-stress in the following way

S = S0 + λTr(E)I + 2µE , (6.11)

where

S0 =

(
0 0

0 F

)
.

6.3.2 Approximations for G, GT and det(G)−1

By examining the relationship (6.7), it can be seen that the constitutive law (6.11)

for S can be used to derive an appropriate constitutive law for σ. However, it is
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observed that applicable expressions are also needed for G, GT and det(G)−1 to

derive an expression for σ. Approximations for these terms are now derived.

Firstly, applying the relation (6.2) between the Eulerian coordinates x and

the Lagrangian coordinates X to the expression (6.5) for Gij, the following

approximation is obtained

Gij =
∂xi

∂Xj
=

δxi

δXj
≈ δij +

∂Ui

∂Xj
, (6.12)

where δij is the Kronecker delta. Using this approximation, it is seen that GT

may be approximated by

GT
ij ≈ δij +

∂Uj

∂Xi
. (6.13)

The determinant det(G) may be calculated by using the following definition

for the determinant of a 3× 3 matrix in index notation

det(G) = εijkGi1Gj2Gk3, (6.14)

where the permutation symbol εijk is given by

εijk =


1 i, j, k = 1, 2, 3 2, 3, 1 or 3, 1, 2

−1 i, j, k = 3, 2, 1 2, 1, 3 or 1, 3, 2

0 otherwise

. (6.15)

Substituting the approximation (6.12) of G into (6.14), noting that G33 = 1 and

Gi3 = G3i = 0 for i 6= 3 as we are considering a two-dimensional problem, we

find

det(G) ≈ 1 +
∂U1

∂X1
+

∂U2

∂X2
+ O(U2). (6.16)

Finally, taking the inverse of (6.16) and calculating the binomial expansion

yields

det(G)−1 ≈ 1− ∂U1

∂X1
− ∂U2

∂X2
+ O(U2). (6.17)

6.3.3 Linearising the Problem

Using the constitutive law (6.11) for S , along with the approximations (6.12),

(6.13), (6.17), for G, GT and det(G)−1, it is now possible to determine a

constitutive law for σ. Before we do so, we simplify these expressions by

linearising for small |u| and |U|. This allows us to neglect any terms that

are quadratic or higher order in these deformations. As we have a small

displacement u compared to any other length scale, we also have that the

Eulerian and Lagrangian coordinates, x and X, are equal to lowest order in
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u. Hence, as we are only considering terms linear in the deformations, we may

replace X by x and ∂/∂Xi by ∂/∂xi throughout our expressions. It is also the

case that the components ui of u in the xi-direction are equal to the components

Ui of U in the Xi-direction, at leading order in the deformations. Hence, we

may linearise the expressions (6.11)–(6.13), (6.17) for S , G, GT and det(G)−1 as

follows

S = S0 + λTr(Ē)I + 2µĒ , (6.18)

Gij ≈ δij +
∂ui

∂xj
, (6.19)

GT
ij ≈ δij +

∂uj

∂xi
, (6.20)

det(G)−1 ≈ 1− ∂u1

∂x1
− ∂u2

∂x2
, (6.21)

where Ē is the linearised strain tensor

Ēij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (6.22)

6.3.4 A Linearised Constitutive Law for σ

We now substitute (6.18)–(6.22) into the expression (6.7) for σ. Doing so, we

find the constitutive law for σ to be

σ = σ0 + σ1, (6.23)

where

σ0 =

(
0 0

0 F

)
, (6.24)

σ1 =

 λ
(

∂u1
∂x1

+ ∂u2
∂x2

)
+ 2µ ∂u1

∂x1
µ
(

∂u1
∂x2

+ ∂u2
∂x1

)
µ
(

∂u1
∂x2

+ ∂u2
∂x1

)
λ
(

∂u1
∂x1

+ ∂u2
∂x2

)
+ 2µ ∂u2

∂x2


+F

 0 ∂u1
∂x2

∂u1
∂x2

∂u2
∂x2
− ∂u1

∂x1

 . (6.25)

We note that σ0 represents the constant pre-stress, whereas σ1 contains all the

terms linear in the deformations ui. We can see that the pre-stress F makes

contributions to σ1 as well as σ0. It is also noted that in the limit F → 0, the

usual constitutive law for a linearly elastic isotropic material is recovered.
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6.4 Linearising the Governing Equation and Boundary

Conditions

Now that we have a suitable constitutive law for σ, we may evaluate and

linearise the governing equation (6.8) and boundary conditions (6.9) imposed

on the semi-infinite block. Substituting (6.23) into (6.8) and noting that σ0 is a

constant tensor, the following governing equation is obtained

∇ · σ1 = 0. (6.26)

The boundary conditions (6.9) are now linearised back to the rectangular

boundaries γ̄1, γ̄2, γ̄3 and γ̄4 where

γ̄1 is at 0 ≤ x1 ≤ d, x2 = 0,

γ̄2 is at x1 = 0, 0 ≤ x2,

γ̄3 is at 0 ≤ x1 ≤ d, x2 → ∞,

γ̄4 is at x1 = d, 0 ≤ x2.

Hence, in the following, the γi denote the non-linearised boundaries whereas

the quantities γ̄i with the overbars denote the corresponding linearised

boundaries.

Firstly, the boundary condition (6.9a) on γ1 is linearised back to the

boundary γ̄1 to give

u =

 0

tan(φ)
(

x1 − d
2

)  at x2 = 0. (6.27)

We now focus on linearising the more complicated conditions on the other

boundaries of the block.

6.4.1 Boundary Conditions on Boundaries γ̄2 and γ̄4

We recall the following stress-free conditions on boundaries γ2 and γ4

σ · n = 0 on γ2, γ4, (6.28)

where n is the outward unit normal to the material. We must be careful with

how this normal is treated as it will take different values before and after the

problem has been linearised. In the linearised case, the normal n0 to boundaries

γ̄2 and γ̄4 will be (−1, 0) and (1, 0) respectively. However, in the non-linearised
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case there will be a correction to the normal linear in the deformation u, as well

as higher-order corrections in u. Hence, we may decompose the normal n to

the non-linearised boundary as follows

n = n0 + n1 + . . . , (6.29)

where n0 is the unit normal to the boundary in the linearised case and n1 is a

correction term linear in u.

To evaluate the components within (6.29), we first consider a unit vector t

that is tangential to boundary γ2, as shown in Figure 6.3. We can see from

the figure that the ratio of the x1 and x2 components of t must be ∂u1/∂x2,

evaluated at the appropriate point on the boundary. We then normalise t in the

following way to ensure that it is a unit vector

t =

(
1 +

(
∂u1

∂x2

)2
)− 1

2
(

∂u1
∂x2

1

)
,

=

(
0

1

)
+

(
∂u1
∂x2

0

)
+ O

(∣∣∣∣∂u1

∂x2

∣∣∣∣2
)

. (6.30)

Hence, we may decompose t as follows

t = t0 + t1 + . . . , (6.31)

where

t0 =

(
0

1

)
, t1 =

(
∂u1
∂x2

0

)
.

As t and n are unit vectors that are perpendicular to each other, we rotate

t by π/2 to obtain the unit normal n and thus its components. Doing so, the

components n0, n1 of the unit normal to boundary γ2 are found to be

n0 =

(
−1

0

)
, n1 =

(
0

∂u1
∂x2

)
. (6.32)

Using a similar argument, the components n0, n1 of the unit normal to

boundary γ4 are calculated as

n0 =

(
1

0

)
, n1 =

(
0

− ∂u1
∂x2

)
. (6.33)

With the expressions (6.29), (6.32), (6.33) of the normal and its components

on boundaries γ2 and γ4, we linearise the boundary conditions (6.28) back to
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Boundary γ2n

n1 =
(

0, ∂u1
∂x2

)n0 = (−1, 0)

t
t1 =

(
∂u1
∂x2

, 0
)t0 = (0, 1)

Figure 6.3: Components of the unit tangent vector t and unit outward normal n of

boundary γ2.

the linearised boundaries γ̄2 and γ̄4. We first express σ · n in the following way

σ · n = σ0 · (n0 + n1) + σ1 · (n0 + n1) + . . . (6.34)

≈ σ0 · n1 + σ1 · n0 on γ2, γ4. (6.35)

Here we have used the fact that σ0 · n0 = 0 for the values of n0 in (6.32) and

(6.33), and σ1 · n1 contains only terms that are quadratic in the deformation u

and may be neglected. Substituting (6.35) into the boundary conditions (6.28)

along with the definitions (6.24), (6.32) and (6.33) for σ0 and n1 along each

boundary, the following linearised boundary conditions along boundaries γ̄2

and γ̄4 are found

σ1 · n0 =

(
0

−F ∂u1
∂x2

)
at x1 = 0, (6.36)

σ1 · n0 =

(
0

F ∂u1
∂x2

)
at x1 = d. (6.37)

6.4.2 Boundary Condition on Boundary γ̄3

On boundary γ3, we have the following condition of no stress perturbation

σ · n→
(

0

F

)
as x2 → ∞, (6.38)
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where now n is a unit vector in the same direction as the axial tension F, as

x2 → ∞. This vector can be decomposed as in (6.29), where n0 is now the unit

vector in the same direction as F as x2 → ∞ in the linearised case, and n1 is a

correction term linear in the deformation u. Using a similar argument to that

used to determine the components of the normal to boundaries γ2 and γ4, we

find at boundary γ3

n0 =

(
0

1

)
, n1 =

(
∂u2
∂x1

0

)
. (6.39)

Substituting the expression (6.24) for σ0 and (6.39) into (6.34), σ · n may be

rewritten as

σ · n ≈ σ0 · n0 + σ1 · n0 on γ3, (6.40)

where σ0 · n1 = 0 and σ1 · n1 is again composed of terms quadratic in u

and is neglected. It is also found that σ0 · n0 = (0, F) on boundary γ3.

Substituting (6.40) into the boundary condition (6.38) and rearranging, the

linearised boundary condition to be applied at γ̄3 is calculated as

σ1 · n0 → 0 as x2 → ∞. (6.41)

6.4.3 The Linearised Problem

Combining the governing equation (6.26) with the boundary conditions (6.27),

(6.36), (6.37) and (6.41), the full linearised problem is

∇ · σ1 = 0 for 0 ≤ x1 ≤ d, x2 ≥ 0, (6.42)

u =

 0

tan(φ)
(

x1 − d
2

)  at x2 = 0, (6.43)

σ1 · n0 =

(
0

−F ∂u1
∂x2

)
at x1 = 0, (6.44)

σ1 · n0 =

(
0

F ∂u1
∂x2

)
at x1 = d, (6.45)

σ1 · n0 → 0 as x2 → ∞. (6.46)

This system is depicted in Figure 6.4. We now proceed to solve this linearised

problem, both numerically and using analytical techniques.



6.5. Numerical Solution 185

∇ · σ1 = 0
Boundary γ̄1

(x2 = 0)

u =
(

0, tan(φ)
(

x1 − d
2

))
σ1 · n0 → 0

Boundary γ̄3

(x2 → ∞)

Boundary γ̄4

σ1 · n0 =
(

0, F
∂u1
∂x2

)

(x1 = 0)
Boundary γ̄2

σ1 · n0 =
(

0,−F
∂u1
∂x2

)

(x1 = d)

Figure 6.4: The linearised problem of a semi-infinite block being bent under axial

tension. The domain is given by A = {(x1, x2) : 0 ≤ x1 ≤ d, 0 ≤ x2} and the total

boundary of the domain is given by ∂A = γ̄1 ∪ γ̄2 ∪ γ̄3 ∪ γ̄4.

6.5 Numerical Solution

Here, a numerical solution of the system (6.42)–(6.46) is determined using the

numerical finite-element differential equation solver “FEniCS” (Dupont et al.,

2003). As FEniCS can only solve problems within a finite domain, we must

restrict the range of x2 to 0 ≤ x2 ≤ xmax, where xmax is some fixed, finite

value. As long as a large enough value for xmax is chosen, along with a suitable

number of grid points, the numerical solution will still accurately simulate

the deformation. The numerical scheme used by FEniCS is the finite element

method, an overview of which is given by Iserles (1996).

For FEniCS to be able to apply the finite element method to a problem, the

problem must be written in variational form. That is

a(u, v) = L(v), (6.47)

where u is the unknown function to be found, known as a trial function, v is an

arbitrary function known as a test function, and a, L are differential operators.

Hence, in order to use FEniCS to find a numerical solution for the system

(6.42)–(6.46), we must rewrite the system in variational form.

We begin by taking the dot product of the governing equation (6.42) with a

test function v, and integrating over the (linearised) area A of the block, given

by A = {(x1, x2) : 0 ≤ x1 ≤ d, 0 ≤ x2 ≤ xmax}. Doing so, we obtain∫∫
A
(∇ · σ1) · v dA = 0. (6.48)

This may be rewritten as∫∫
A
∇ · (σ1 · v)− σ1 : (∇v)dA = 0, (6.49)
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where the Frobenius inner product : of two tensors M, N is defined by

M : N = ∑
i

∑
j

MijNij, (6.50)

and the gradient ∇a of a vector a is given by

∇a =
∂ai

∂xj
eiej, (6.51)

where ei is a unit vector in the xi-direction. Applying the divergence theorem

to the first term in (6.49), we find∮
∂A
(σ1 · n0) · v ds−

∫∫
A

σ1 : (∇v)dA = 0, (6.52)

where n0 is the unit normal to the boundary of the linearised domain.

6.5.1 Evaluating the Integrals in (6.52)

The integrals in (6.52) are now evaluated. We start by evaluating the line

integral over the linearised boundaries γ̄1, γ̄2, γ̄3 and γ̄4 separately.

On γ̄1, we have the boundary condition (6.43) for u. In the finite-element

formulation, the test function v must vanish on the segments of the boundary

where u is known. As such, we must have v = 0 along γ̄1, and the line integral

along γ̄1 vanishes from (6.52).

Along boundaries γ̄2 and γ̄4, we have the boundary conditions (6.44) and

(6.45). Using the values of σ1 · n0 within these conditions and noting that we

must take our integrals in the anticlockwise direction around the boundary ∂A

as in Figure 6.4, we find the line integrals along boundaries γ̄2 and γ̄4 become∫
γ̄2

(σ1 · n0) · v ds =
∫

γ̄2

−F

(
∂u1

∂x2
v2

)
ds,=

∫ 0

xmax

F

(
∂u1

∂x2
v2

) ∣∣∣∣
x1=0

dx2, (6.53)

∫
γ̄4

(σ1 · n0) · v ds =
∫

γ̄4

F

(
∂u1

∂x2
v2

)
ds,=

∫ 0

xmax

F

(
∂u1

∂x2
v2

) ∣∣∣∣
x1=d

dx2, (6.54)

where v1, v2 are the components of the test function v in the x1 and x2-directions

respectively.

Finally, on boundary γ̄3 we have the boundary condition σ1 · n0 = 0. Hence,

the line integral along γ̄3 vanishes. Combining the line integrals along each

boundary, the total line integral around the domain is determined to be

∮
∂A
(σ1 · n0) · v ds = −

∫ xmax

0
F

(
∂u1

∂x2
v2

∣∣∣∣
x1=0

+
∂u1

∂x2
v2

∣∣∣∣
x1=d

)
dx2. (6.55)



6.5. Numerical Solution 187

The surface integral within (6.52) is now evaluated. Using, the expression

(6.25) for σ1, it is found that∫∫
A

σ1 : (∇v)dA =
∫∫

A

∂v1

∂x1

[
(λ + 2µ)

∂u1

∂x1
+ λ

∂u2

∂x2

]
+

(
∂v1

∂x2
+

∂v2

∂x1

) [
(µ + F)

∂u1

∂x2
+ µ

∂u2

∂x1

]
+

∂v2

∂x2

[
(λ−F)

∂u1

∂x1
+ (λ + 2µ + F)

∂u2

∂x2

]
dA.

(6.56)

6.5.2 Rewriting the Problem in Terms of E and ν

The expressions (6.55) and (6.56) can now be used to derive the variational

form of the problem. However, it is found to be convenient to first rewrite the

problem in terms of the Young’s modulus E, and Poisson’s ratio ν of the block.

The parameters λ and µ can be rewritten in terms of E and ν as follows

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E
2(1 + ν)

. (6.57)

It is also found to be convenient to rewrite axial tension F as

F =
EF̄

2(1 + ν)(1− 2ν)
, (6.58)

where F̄ is a dimensionless parameter, the size of which we determine later

on. The factor of [2(1 + ν)(1− 2ν)]−1 has been included for mathematical

convenience in the following calculations. Rewriting (6.55) and (6.56) in terms

of these parameters yields∮
∂A
(σ1 · n0) · v ds = −

∫ xmax

0

EF̄
2(1 + ν)(1− 2ν)

(
∂u1

∂x2
v2

∣∣∣∣
x1=0

+
∂u1

∂x2
v2

∣∣∣∣
x1=d

)
dx2,

(6.59)∫∫
A

σ1 : (∇v)dA =
∫∫

A
E
{

∂v1

∂x1

[
ν

(1 + ν)(1− 2ν)

(
∂u1

∂x1
+

∂u2

∂x2

)
+

1
1 + ν

∂u1

∂x1

]
+

(
∂v1

∂x2
+

∂v2

∂x1

) [
1

2(1 + ν)

(
∂u1

∂x2
+

∂u2

∂x1

)
+

F̄
2(1 + ν)(1− 2ν)

∂u1

∂x2

]
+

∂v2

∂x2

[
ν

(1 + ν)(1− 2ν)

(
∂u1

∂x1
+

∂u2

∂x2

)
+

1
1 + ν

∂u2

∂x2

+
F̄

2(1 + ν)(1− 2ν)

(
∂u2

∂x2
− ∂u1

∂x1

)]}
dA.

(6.60)
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Rewriting the problem in this way has two advantages. First of all, this

ensures that all terms within the components (6.59) and (6.60) of the governing

equation (6.52) have a single factor of the Young’s modulus E within them.

This factor of E can then later be eliminated from (6.52) leaving us with only

one parameter to set, the Poisson’s ratio ν.

The second advantage of rewriting the problem is that we have a clear choice

of value for ν. If the block was perfectly incompressible, a natural choice of the

Poisson’s ratio would be ν = 0.5, corresponding to a perfectly incompressible

material. However, this value would form singularities within the numerical

solutions. We instead choose a Poisson’s ratio of ν = 0.49 to correspond

to an almost incompressible material and avoid any singularities. This is a

common choice of Poisson’s Ratio used by other authors. When we later plot

the numerical and analytical solutions for the deformations in §6.8, we will set

ν = 0.49.

It is noted that although F̄ is dimensionless, it is not necessarily O(1).

To find the size of F̄ , we recall the expression (6.1) for the dimensional axial

tension F, which is

F =
K`2

a3δ
F ,

where K is the bending stiffness of the block, F = O(1) is a scaled

dimensionless axial tension, a is the typical radial scale of the original tube

and δ = d/a � 1, ` � 1 are the dimensionless wall thickness and length of

the original tube. Substituting the expression (6.58) for F into (6.1), rearranging

and using the fact that the bending stiffness K may be rewritten in terms of E

and ν as

K =
Ed3

12(1− ν2)
,

we find

F̄ =
(1− 2ν)Fδ2`2

6(1− ν)
. (6.61)

Hence as F = O(1), we have F̄ = O(δ2`2). In regime II considered here, we

have δ` � 1, which corresponds to the limit F̄ → ∞. We can also consider

regime I in this model by taking the limit F̄ → 0, which corresponds to δ`� 1.

We note that although F̄ has the same scaling as the parameter F̃ defined in

(3.36) and used to describe the axial tension in the study of regimes Ia and Ib

in Chapters 4 and 5, F̄ and F̃ do not have the exact same value. It is found to

be mathematically convenient to write the following equations in terms of F̄ ,

rather than F or F̃ .
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6.5.3 Variational Form of the Problem

By substituting (6.59) and (6.60) into (6.52), a numerically solvable equation

is obtained. To enable FEniCS to solve this equation, we rewrite it in the

variational form given in (6.47). Rewriting (6.52) in this form, dividing through

by the Young’s modulus E and multiplying by 2(1 + ν)(1− 2ν) yields

a(u, v) =
∫∫

A

∂v1

∂x1

[
2ν

(
∂u1

∂x1
+

∂u2

∂x2

)
+ 2(1− 2ν)

∂u1

∂x1

]
+

(
∂v1

∂x2
+

∂v2

∂x1

) [
(1− 2ν)

(
∂u1

∂x2
+

∂u2

∂x1

)
+ F̄ ∂u1

∂x2

]
+

∂v2

∂x2

[
2ν

(
∂u1

∂x1
+

∂u2

∂x2

)
+ 2(1− 2ν)

∂u2

∂x2

+F̄
(

∂u2

∂x2
− ∂u1

∂x1

)]
dA

+
∫

γ̄2

−F̄
(

∂u1

∂x2
v2

)
ds +

∫
γ̄4

F̄
(

∂u1

∂x2
v2

)
ds, (6.62)

L(v) = 0. (6.63)

This is the form of the problem needed for FEniCS to compute the solution.

This is because FEniCS uses a domain specified in the code to evaluate the

limits of the surface and line integrals, as well as the direction of the line

integral around ∂A. Including the limits of the integrals in the definition (6.62),

the analytical form of a(u, v) is found to be

a(u, v) =
∫ xmax

0

∫ d

0

∂v1

∂x1

[
2ν

(
∂u1

∂x1
+

∂u2

∂x2

)
+ 2(1− 2ν)

∂u1

∂x1

]
+

(
∂v1

∂x2
+

∂v2

∂x1

) [
(1− 2ν)

(
∂u1

∂x2
+

∂u2

∂x1

)
+ F̄ ∂u1

∂x2

]
+

∂v2

∂x2

[
2ν

(
∂u1

∂x1
+

∂u2

∂x2

)
+ 2(1− 2ν)

∂u2

∂x2

+F̄
(

∂u2

∂x2
− ∂u1

∂x1

)]
dx1dx2

−
∫ xmax

0
F̄
(

∂u1

∂x2
v2

∣∣∣∣
x1=0

+
∂u1

∂x2
v2

∣∣∣∣
x1=d

)
dx2. (6.64)

It is now possible to input the expressions (6.62), (6.63), along with the

boundary condition (6.27) at x2 = 0 into FEniCS and calculate the numerical

solution to the system (6.42)–(6.46). This solution is shown in §6.8, where it is

compared with the analytical approximations for the solution derived in §6.6.
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6.6 Analytical Treatment

Analytical techniques are now used to determine a solution to the system

(6.42)–(6.46). As a starting point, we eliminate u2 from the system, leaving

us with a governing system to be solved for the deformation u1.

6.6.1 Eliminating u2 from the Governing Equation

We begin by eliminating u2 from the governing equation (6.42). The two

components of (6.42) yield

2(1− ν)
∂2u1

∂x2
1
+

∂2u2

∂x1∂x2
+ (1− 2ν + F̄ )∂2u1

∂x2
2
= 0, (6.65)

(1− 2ν)
∂2u2

∂x2
1
+

∂2u1

∂x1∂x2
+ (2(1− ν) + F̄ )∂2u2

∂x2
2
= 0. (6.66)

where again the Lamé constants λ, µ have been rewritten in terms of the

Young’s modulus E and Poisson’s ratio ν using (6.57), and the axial tension

F has been rewritten in terms of F̄ using (6.58). This has provided a factor of E

in each term in (6.42) allowing this parameter to be cancelled entirely from the

governing equations. For mathematical convenience, the governing equations

have also been multiplied by 2(1 + ν)(1− 2ν).

Rearranging (6.65), we obtain

∂2u2

∂x1∂x2
= −

[
2(1− ν)

∂2u1

∂x2
1
+ (1− 2ν + F̄ )∂2u1

∂x2
2

]
, (6.67)

and differentiating (6.66) with respect to x1 and x2 yields

(1− 2ν)
∂4u2

∂x3
1∂x2

+
∂4u1

∂x2
1∂x2

2
+ (2(1− ν) + F̄ ) ∂4u2

∂x1∂x3
2
= 0. (6.68)

To eliminate u2 from (6.68), we may differentiate (6.67) twice with respect to

x1, and twice with respect to x2, to obtain expressions for ∂4u2/∂x3
1∂x2 and

∂4u2/∂x1∂x3
2 in terms of u1. These expressions may then be substituted into

(6.68). This gives the following fourth-order governing PDE for u1

0 =
∂4u1

∂x4
1
+

[
2(1− ν) + F̄

2(1− ν)
+

1− 2ν + F̄
1− 2ν

]
∂4u1

∂x2
1∂x2

2

+
(2(1− ν) + F̄ )(1− 2ν + F̄ )

2(1− ν)(1− 2ν)

∂4u1

∂x4
2

. (6.69)
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6.6.2 Eliminating u2 from the Boundary Conditions

We now determine conditions on u1 from the prescribed boundary conditions

(6.43)–(6.46) shown in Figure 6.4. Some of these boundary conditions

will translate to traditional boundary conditions on u1. However, others

will become integral constraints on u1 which must be satisfied so that a

corresponding solution for u2 exists. In order to convert the boundary

conditions into a suitable form, we must find an expression for u2 in terms

of u1 and see what constraints are necessary for u2 to satisfy the boundary

conditions.

By integrating (6.67) with respect to x2 and then x1, we obtain

u2 =
∫ x1

d
2

(∫ ∞

x2

[
2(1− ν)

∂2u1

∂x2
1
+ (1− 2ν + F̄ )∂2u1

∂x2
2

]
dx′2 + C(x1)

)
dx′1 + K(x2),

(6.70)

where C(x1) and K(x2) are functions to be determined by the boundary

conditions of the problem. It is convenient to set these particular limits for

the integrals as they simplify the form of C(x1) as well as ensure that u2 is

antisymmetric about x1 = d/2. We note that as we have switched the limits in

the x2 integral, the minus sign from (6.67) vanishes.

We begin by evaluating the boundary condition (6.46) as x2 → ∞. In

Appendix 6.A, the boundary conditions (6.43)–(6.46) have been used to show

that the condition (6.46) is equivalent to

∇u1,∇u2 → 0 as x2 → ∞. (6.71)

The first of these conditions is a condition on u1 which may be applied to

the problem immediately. The second of these conditions is a condition on u2

which must be applied to the expression (6.70) for u2, to find a corresponding

integral condition on u1. When x2 → ∞, (6.70) yields

u2
∣∣

x2→∞ =
∫ x1

d
2

C(x1)dx′1 + K(x2)
∣∣

x2→∞. (6.72)

As u2 → constant as x2 → ∞ from (6.71), we cannot have any x1 dependence in

(6.72). Hence, we must have

C(x1) = 0. (6.73)

For (6.71) to be satisfied, we must also have

K → constant as x2 → ∞. (6.74)
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We now evaluate the boundary condition (6.43) at x2 = 0. Straight away, we

have the boundary condition on u1

u1 = 0 at x2 = 0. (6.75)

From (6.43), there is also the condition

u2 = tan(φ)
(

x1 −
d
2

)
at x2 = 0.

Applying this condition to the expression (6.70) for u2, it is found that

tan(φ)
(

x1 −
d
2

)
=
∫ x1

d
2

∫ ∞

0

[
2(1−ν)

∂2u1

∂x2
1
+(1−2ν+F̄ )∂2u1

∂x2
2

]
dx2 dx′1 + K(0).

(6.76)

Differentiating (6.76) with respect to x1 and evaluating the x2 integral, we obtain

the following integral condition on u1

tan(φ) = (1− 2ν + F̄ )
[

∂u1

∂x2

]x2→∞

x2=0
+ 2(1− ν)

∫ ∞

0

∂2u1

∂x2
1

dx2. (6.77)

Substituting (6.77) into (6.76), we find

K(0) = 0. (6.78)

Finally, we evaluate the stress-free conditions (6.44), (6.45) at x1 = 0, d,

rewriting these conditions in terms of E, ν and F̄ . Evaluating the first

components of these conditions and multiplying by (1 + ν)(1− 2ν) gives

(1− ν)
∂u1

∂x1
+ ν

∂u2

∂x2
= 0 at x1 = 0, d. (6.79)

Substituting the expression (6.70) for u2 into the conditions (6.79), we obtain

(1− ν)
∂u1

∂x1

∣∣∣∣
x1=d
− ν

∫ d
2

0
2(1− ν)

∂2u1

∂x2
1
+ (1−2ν+F̄ )∂2u1

∂x2
2

dx1 + ν
dK
dx2

= 0, (6.80)

(1− ν)
∂u1

∂x1

∣∣∣∣
x1=0

+ ν
∫ d

d
2

2(1− ν)
∂2u1

∂x2
1
+ (1−2ν+F̄ )∂2u1

∂x2
2

dx1 + ν
dK
dx2

= 0. (6.81)

By subtracting (6.81) from (6.80) and rearranging, another integral condition on

u1 is determined∫ d

0

(
(1− ν)(1− 2ν)

∂2u1

∂x2
1
− ν(1− 2ν + F̄ )∂2u1

∂x2
2

)
dx1 = 0. (6.82)

If we instead add together (6.80) and (6.81) and integrate the resulting

expression with respect to x2, the following expression for K(x2) is found after
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rearranging

K(x2) =

∫ x2

0

[
ν− 1

2ν

(
∂u1(x1, x′2)

∂x1

∣∣∣∣
x1=d

+
∂u1(x1, x′2)

∂x1

∣∣∣∣
x1=0

)

+
∫ d

d
2

(1− ν)
∂2u1(x1, x′2)

∂x2
1

+
1−2ν+F̄

2
∂2u1(x1, x′2)

∂x′22
dx1

−
∫ d

2

0
(1− ν)

∂2u1(x1, x′2)
∂x2

1
+

1−2ν+F̄
2

∂2u1(x1, x′2)
∂x′22

dx1

]
dx′2. (6.83)

Here we have used the property (6.78) to set the limits of the x′2 integral.

The second components of the stress-free conditions (6.44), (6.45) are

∂u1

∂x2
+

∂u2

∂x1
= 0 at x1 = 0, d. (6.84)

As the boundaries of the block at x1 = 0, d are parallel to the x2-direction, we

may differentiate (6.84) with respect to x2. Doing so, we obtain

∂2u1

∂x2
2
+

∂2u2

∂x1∂x2
= 0 at x1 = 0, d. (6.85)

Substituting the expression (6.67) for ∂2u2/∂x1∂x2 into (6.85), the following

boundary condition for u1 is found

2(1− ν)
∂2u1

∂x2
1
− (2ν− F̄ )∂2u1

∂x2
2
= 0 at x1 = 0, d. (6.86)

The boundary and integral conditions on u1 are thus (6.71a), (6.75), (6.77), (6.82)

and (6.86).

Substituting the expressions (6.73), (6.83) for the functions C(x1) and K(x2)

into (6.70), we find the full expression for u2 in terms of u1 to be

u2 =
∫ x1

d
2

∫ ∞

x2

2(1− ν)
∂2u1(x′1, x′2)

∂x′21
+ (1− 2ν + F̄ )∂2u1(x′1, x′2)

∂x′22
dx′2 dx′1 + K(x2),

(6.87)

where K(x2) is defined by (6.83). As long as the integral conditions (6.77) and

(6.82) are satisfied, this u2 along with the corresponding u1 will automatically

satisfy all the boundary conditions (6.43)–(6.46). Hence, once a solution for u1

is calculated, we may use (6.87) to find u2 as well.

6.6.3 Governing System for u1

Combining the governing equation (6.69) with the boundary conditions (6.71),

(6.75), (6.86) and integral conditions (6.77), (6.82), we obtain the following
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system to be solved for u1.

0 =
∂4u1

∂x4
1
+

[
2(1− ν) + F̄

2(1− ν)
+

1− 2ν + F̄
1− 2ν

]
∂4u1

∂x2
1∂x2

2

+
(2(1− ν) + F̄ )(1− 2ν + F̄ )

2(1− ν)(1− 2ν)

∂4u1

∂x4
2

, (6.88)

∇u1 → 0 as x2 → ∞, (6.89)

u1 = 0 at x2 = 0, (6.90)

2(1− ν)
∂2u1

∂x2
1
− (2ν− F̄ )∂2u1

∂x2
2
= 0 at x1 = 0, d, (6.91)

(1− 2ν + F̄ )
[

∂u1

∂x2

]x2→∞

x2=0
+ 2(1− ν)

∫ ∞

0

∂2u1

∂x2
1

dx2 = tan(φ), (6.92)

∫ d

0

(
(1− ν)(1− 2ν)

∂2u1

∂x2
1
− ν(1− 2ν + F̄ )∂2u1

∂x2
2

)
dx1 = 0. (6.93)

We now proceed to solve the system (6.88)–(6.93). As the governing

equation (6.88) is fourth-order and linear with constant coefficients, we expect

solutions for u1 to be exponential, trigonometric or up to cubic in x1, x2. As we

must have solutions that tend to a constant as x2 → ∞, due to the boundary

condition (6.89), we seek separable solutions of the forms

u1 = û1

(
x1 −

d
2

)
tan(φ) e−Ωx2 , (6.94)

where û1 is an unknown function to be found, and

u1 = H tan(φ), (6.95)

where H is a constant to be found. The real parameter Ω > 0 is the rate of

decay in the x2-direction and the function û1 gives the behaviour in the normal

x1-direction. The factor of −d/2 will later allow symmetry conditions about the

midpoint of the block in the x1-direction to be applied. As the problem is linear,

the resulting deformations will be proportional to tan(φ). Using this property,

we have written explicitly this dependence on tan(φ) and thus removed all φ

dependence from û1 and the constant solution (6.95). It is noted that we do

not look for solutions that are proportional to exp(Ωx2) or are linear or higher

order in x1 or x2 as these will not satisfy the boundary condition (6.89) as

x2 → ∞. It is noted that the full solution of u1 will comprise a summation of

all the valid solutions that have the same form as either (6.94) or (6.95).
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6.6.4 General Solution for û1

Substituting the expression (6.94) for u1 into the governing equation (6.88), the

following ODE for û1 is derived

0 = û′′′′1 +

[
2(1−ν)+F̄

2(1−ν)
+

1−2ν+F̄
1−2ν

]
Ω2û′′1 +

(2(1−ν)+F̄ )(1−2ν+F̄ )
2(1−ν)(1−2ν)

Ω4û1,

(6.96)

where ′ represents a derivative with respect to x1. As this is a fourth-order

linear ODE with constant coefficients, we seek solutions of the form

û1

(
x1 −

d
2

)
= eiΛΩ(x1− d

2 ), (6.97)

where Λ ∈ C is to be determined. The factor of Ω is included in the exponential

to simplify the calculations that follow. Substituting (6.97) into (6.96), a

quadratic equation to be solved for Λ2 is derived. Solving this quadratic, it

is determined that

Λ2 =
2(1− ν) + F̄

2(1− ν)
,

1− 2ν + F̄
1− 2ν

. (6.98)

As all the parameters within (6.98) are real and F̄ > 0, ν < 1/2, we find Λ2 > 0

and thus Λ must be real. Taking the square root of (6.98) yields

Λ = ±

√
2(1− ν) + F̄

2(1− ν)
,±

√
1− 2ν + F̄

1− 2ν
. (6.99)

Hence, for every value of Ω, we have four corresponding values of Λ, and we

find

û1 = A cos
(

ΩΛ1

(
x1 −

d
2

))
+ B cos

(
ΩΛ2

(
x1 −

d
2

))
+C sin

(
ΩΛ1

(
x1 −

d
2

))
+ D sin

(
ΩΛ2

(
x1 −

d
2

))
, (6.100)

where Λ1, Λ2 are given by

Λ1 =

√
2(1− ν) + F̄

2(1− ν)
, Λ2 =

√
1− 2ν + F̄

1− 2ν
, (6.101)

and A, B, C, D are real constants to be found.

The expression (6.100) for û1 may be simplified further by using the fact that

the deformation in the x1-direction is symmetric about x1 = d/2. This implies

C = D = 0, (6.102)
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which, when applied to (6.100), yields

û1 = A cos
(

ΩΛ1

(
x1 −

d
2

))
+ B cos

(
ΩΛ2

(
x1 −

d
2

))
. (6.103)

Substituting (6.103) into the definition (6.94) of u1, the following solution for u1

is obtained

u1 =

[
A cos

(
ΩΛ1

(
x1 −

d
2

))
+ B cos

(
ΩΛ2

(
x1 −

d
2

))]
tan φ e−Ωx2 .

(6.104)

6.6.5 Determining the Decay Rate Ω

The boundary condition (6.91) and integral condition (6.93) on u1 are now used

to find the possible values of the decay rate Ω. Substituting u1 into both of

these and rearranging gives the following relations to be satisfied

A[(1− ν)Λ1 + να] sin
(

dΩΛ1

2

)
+ B(1− 2ν)Λ2 sin

(
dΩΛ2

2

)
= 0, (6.105)

A(1− αΛ1) cos
(

dΩΛ1

2

)
+ B(1 + Λ2

2) cos
(

dΩΛ2

2

)
= 0, (6.106)

where

α = (1− 2ν + F̄ )Λ−1
1 − 2(1− ν)Λ1. (6.107)

It is noted that due to the symmetry of u1, the boundary condition (6.91) gives

the same condition (6.106) at x1 = 0 and x1 = d. The homogeneous conditions

(6.105), (6.106) may be written in matrix form like so(
ā b̄

c̄ d̄

)(
A

B

)
= 0. (6.108)

where

ā = [(1− ν)Λ1 + να] sin
(

dΩΛ1

2

)
,

b̄ = (1− 2ν)Λ2 sin
(

dΩΛ2

2

)
,

c̄ = (1− αΛ1) cos
(

dΩΛ1

2

)
,

d̄ = (1 + Λ2
2) cos

(
dΩΛ2

2

)
.

For a non-trivial solution for the constants A, B to exist, we need the

determinant of the matrix in (6.108) to be zero. Setting this, we obtain the

following eigenvalue equation for Ω

ψ1 sin
(

dΩΛ1

2

)
cos

(
dΩΛ2

2

)
− ψ2 sin

(
dΩΛ2

2

)
cos

(
dΩΛ1

2

)
= 0, (6.109)
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where

ψ1 = [(1− ν)Λ1 + να](1 + Λ2
2),

ψ2 = (1− αΛ1)(1− 2ν)Λ2.

Solving the eigenvalue equation (6.109) numerically using Maple, we find

countably many eigenvalues for the decay rate Ω. We denote the nth eigenvalue

of the decay rate as Ωn, with Ω0 being the fundamental eigenvalue. As we

have countably many eigenvalues, there are countably many modes for the

deformations, each with their own distinct decay rate along the x2-direction.

Solutions of the first five eigenvalues Ωn for different values of the scaled

pre-stress F̄ in the case d = 1, ν = 0.49 are given in Table 6.1. The decay

rates Ωn of the first four modes of the deformations have also been plotted in

Figure 6.5. We see from the table and plots that in general, as the pre-stress

is increased, the decay rate of all the different modes decreases. The only

exception is the fundamental mode where, for small values of F̄ , there is an

increase in Ω0 when F̄ is increased. We elaborate on this more in §6.9.

F̄ Ω0 Ω1 Ω2 Ω3 Ω4 Ω5

0.01 0.9343 28.36 58.146 85.10 115.0 141.9

0.1 0.9978 3.939 8.976 14.01 16.94 18.02

1 0.4265 1.317 2.200 3.082 3.971 4.470

10 0.1399 0.4209 0.7017 0.9825 1.263 1.544

100 0.04441 0.1333 0.2221 0.3110 0.3998 0.4887

Table 6.1: The eigenvalues Ωn of the decay rate in the x2-direction for different values

of F̄ , when d = 1, ν = 0.49.

6.6.6 General Solutions for u1 and u2

As there are countably many modes for u1 of the form (6.104), the general

solution of the deformation u1 will be comprised of the summation of all of

these modes and the constant solution (6.95) given by u1 = H tan φ. It is

noted that the constant solution (6.95) satisfies the boundary condition (6.91)

on x1 = 0, d and the integral condition (6.93). Combining these solutions, the
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Figure 6.5: The decay rates Ωn of the first four modes of the deformations u1, u2,

against F̄ , for ν = 0.49, d = 1. The red, blue, green and black curves correspond to the

fundamental, second, third and fourth modes respectively.

general solution of the deformation u1 is found to be

u1 =

(
∞

∑
n=0

An

[
cos

(
ΩnΛ1

(
x1 −

d
2

))
− ān

b̄n
cos

(
ΩnΛ2

(
x1 −

d
2

))]
e−Ωnx2

+H

)
tan φ. (6.110)

The constants An are the coefficients corresponding to the nth modes of the

deformation, and by relating the coefficients of the two cosine terms within the

expression (6.104) for the modes of u1 using (6.108), we set

ān = [(1− ν)Λ1 + να] sin
(

dΩnΛ1

2

)
,

b̄n = (1− 2ν)Λ2 sin
(

dΩnΛ2

2

)
.

Substituting the expression (6.110) for u1 into (6.87), the following general

solution for u2 is derived

u2 =
∞

∑
n=0

An tan(φ)
[

α sin
(

ΩnΛ1

(
x1 −

d
2

))
+

ān

b̄n
Λ2 sin

(
ΩnΛ2

(
x1 −

d
2

))]
e−Ωnx2 . (6.111)
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6.6.7 Applying the Remaining Conditions

The remaining conditions are now applied to the general solution (6.110) for u1.

These conditions are the boundary condition (6.90) at x2 = 0 and the integral

condition (6.92) over x2.

Applying the boundary condition (6.90) to (6.110), we find the following

expression for H in terms of the coefficients An

H =
∞

∑
n=0

An

[
ān

b̄n
cos

(
ΩnΛ2

(
x1 −

d
2

))
− cos

(
ΩnΛ1

(
x1 −

d
2

))]
. (6.112)

This represents both a condition on the coefficients An, since the

right-hand-side of (6.112) must be constant in x1, as well as an expression to

determine H. By differentiating (6.112) with respect to x1, and setting x1 = d/2

within (6.112), the two conditions may be explicitly shown. Applying these

calculations, the following is obtained

0 =
∞

∑
n=0

AnΩn

[
Λ1 sin

(
ΩnΛ1

(
x1 −

d
2

))
− ān

b̄n
Λ2 sin

(
ΩnΛ2

(
x1 −

d
2

))]
, (6.113)

H =
∞

∑
n=0

An

(
ān

b̄n
− 1
)

. (6.114)

The first of these relations (6.113) is a condition on the coefficients An, while

(6.114) allows H to be found once the An are known.

Substituting the general solution (6.110) for u1 into the integral condition

(6.92), another condition on the coefficients An is obtained

1 =
∞

∑
n=0

AnΩn

[
αΛ1 cos

(
ΩnΛ1

(
x1 −

d
2

))
+

ān

b̄n
Λ2

2 cos
(

ΩnΛ2

(
x1 −

d
2

))]
.

(6.115)

At first, it appears that we do not have enough degrees of freedom to satisfy

the two Fourier like conditions (6.113), (6.115) on An, since we have just a

single countable set of eigenvalues. However, by following the calculations

in Appendix 6.B, it is found that for large F̄ the eigenvalue equation (6.109)

can be approximated by (6.206), that is

ψ1 sin
(

dΩΛ1

2

)
cos

(
dΩΛ2

2

)
≈ 0.

Hence, we actually get two coupled sets of solutions for the eigenvalues which

correspond to the zeroes of the sine and cosine functions respectively. Although
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the two sets are less apparent for F̄ . O(1), we expect similar behaviour in this

case. Because of this, finding a solution may be possible.

A similar situation arises in finding the solution of the biharmonic equation

in a semi-infinite strip. This has been studied by Shankar (2003) and details

of his work may be found in Appendix 6.C. Shankar (2003) shows how it

is possible to decouple the governing biharmonic equation into two coupled

ODEs, and find a biorthogonality relation between the eigenfunctions that

arise. Using this biorthogonality relation, it is possible to find a solution that

satisfies two independent boundary conditions imposed on the short edge of

the strip. Thus far, we have been unable to find a similar decomposition and

biorthogonality relation for the system (6.42)–(6.46) considered here due to

the increased complexity of the governing equation and boundary conditions.

However, the same underlying principles hold and may allow a solution to be

found.

6.7 Far-field Approximation for x2 → ∞

Although a full analytic solution to the system (6.42)–(6.46) has not yet been

found, it is possible to determine an approximation for the deformation u away

from x2 = 0, up to a multiplicative constant and constant shift. Near x2 = 0,

all modes will be having an effect on the overall deformation. However as we

move away from x2 = 0, the higher-order modes all decay more rapidly, so

the solution becomes dominated by the fundamental mode. Hence, away from

the x2 = 0 boundary we may approximate the deformation using this mode.

Taking the fundamental modes of the expressions (6.110) and (6.111) for u1 and

u2, we determine approximations for the components of the deformation up to

a constant A0 setting the amplitude of the deformation, and a constant shift H

in u1. These approximations are given by

u1=

(
A0

[
cos

(
Ω0Λ1

(
x1−

d
2

))
− ā0

b̄0
cos

(
Ω0Λ2

(
x1−

d
2

))]
e−Ω0x2+H

)
tan φ,

(6.116)

u2= A0

[
α sin

(
Ω0Λ1

(
x1−

d
2

))
+

ā0Λ2

b̄0
sin
(

Ω0Λ2

(
x1−

d
2

))]
tan φ e−Ω0x2 ,

(6.117)

where H is a constant dependent on all of the An via the relation (6.114).
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6.8 Comparison of Analytical and Numerical Results

We now see how well the fundamental mode approximations (6.116), (6.117) of

the components u1, u2 of the deformation agree with the numerical simulations

developed in §6.5, away from the clamped x2 = 0 boundary. In order to

compare the numerical solutions and analytical approximations, we first define

u∞
1 and u∞

2 to be

u∞
1 = u1(x1, xmax), u∞

2 = u2(x1, xmax), (6.118)

in the numerical simulations, and

u∞
1 = H tan φ, u∞

2 = 0, (6.119)

in the analytical approximations. Using these definitions, u1 − u∞
1 and u2 − u∞

2

will tend to zero as x2 → ∞ in both the numerical simulations and analytical

approximations, and any constant shift in the deformations is removed. The

only parameter that then needs to be set is the amplitude A0 of the analytical

approximations. This constant may be set to best fit the amplitude of the

analytic approximations to the amplitude of the numerical solutions. In Figures

6.6 and 6.7, the numerical solutions and analytical approximations of u1 − u∞
1

and u2 − u∞
2 have been plotted.

In Figure 6.6, u1 − u∞
1 and u2 − u∞

2 have been plotted as functions of x1

for fixed values of x2, and in Figure 6.7, u1 − u∞
1 and u2 − u∞

2 have been

plotted as functions of x2 for fixed values of x1. For both the analytical and

numerical results, we have set the width of the block as d = 1, the angle of

clamping to satisfy tan φ = 1, the axial tension as F̄ = 1 and the Poisson’s

ratio to be ν = 0.49. In the numerical simulations, the mesh over the domain

in question is set to have 100 points in the x1-direction and 1000 points in

the x2-direction. It is also found that xmax = 20 is a large enough choice of

xmax to simulate the deformations accurately for the chosen parameters. In the

analytical approximations, the amplitude A0 of the deformations is set to be

A0 = 0.08072 to fit the analytical approximations to the numerical simulations.

We see from Figure 6.6 that in the x1-direction, the numerical solutions and

analytical approximations are almost identical to each other, apart from some

slight deviation when x2 = 2. This deviation is found near the midpoint of

the block for u1 − u∞
1 and near the stress-free boundaries for u2 − u∞

2 . Figure

6.7 again displays that the numerical results and analytical approximations

are in good agreement in the x2-direction, apart from in a small region near
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the clamped boundary x2 = 0. The differences between the two solutions

near x2 = 0 are expected due to the higher-order modes, that are neglected

in the analytical approximations, having a significant effect on the overall

solution for smaller values of x2. Hence, by setting the single parameter A0

in the analytical approximations (6.116) and (6.117) for u1 and u2, we have

excellent agreement between the numerical solutions developed in §6.5 and the

analytical approximations away from x2 = 0, in both the x1 and x2-directions.

This demonstrates that the analytical approximations accurately capture the

behaviour of the deformations.
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Figure 6.6: The numerical solutions for u1 − u∞
1 and u2 − u∞

2 across x1 for fixed values

of x2, in the case d = 1, F̄ = 1, ν = 0.49, tan φ = 1 (solid lines). Also shown are

the corresponding analytical approximations (6.116), (6.117) for u1 − H tan φ, u2, with

A0 = 0.08072 (dashed lines).
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Figure 6.7: The numerical solutions for u1 − u∞
1 and u2 − u∞

2 across x2 for fixed values

of x1, in the case d = 1, F̄ = 1, ν = 0.49, tan φ = 1 (solid lines). Also shown are

the corresponding analytical approximations (6.116), (6.117) for u1 − H tan φ, u2, with

A0 = 0.08072 (dashed lines).
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6.9 The Effect of Varying Axial Tension on the

Deformations

We now evaluate the effect that varying the axial tension F̄ has on the

deformations. In particular, we focus on how the boundary-layer width of

the deformations, and the value u∞
1 that u1 takes as x2 → ∞, changes as we

vary F̄ . The behaviour of the boundary-layer width is important as this will let

us know if we have an axial-bending layer with the width predicted in the toy

model in §3.6, or if we have a different boundary layer with a different width.

The value of u∞
1 is also important as this determines what boundary conditions

should be applied to the bulk solution modelled in Chapter 2 at the ends of the

elastic-walled tube in the 3D case. As the limits F̄ → 0 and F̄ → ∞ correspond

to the regimes I (δ` � 1) and II (δ` � 1), we can determine if the behaviour

of the boundary layer derived here matches with the behaviour of the bending

layers found in regime I, studied in Chapters 4 and 5. We can also find what the

behaviour of the boundary layer is in regime II, as well as how this boundary

layer affects the bulk layer.

6.9.1 Effect of Varying F̄ on the Decay Rate and Boundary-Layer
Width

We begin by evaluating the effect that varying F̄ has on the decay rate of

the deformations as x2 → ∞, and hence the boundary-layer width of the

deformations. As the fundamental mode has the smallest value of Ω, it is

this mode that has the slowest decay rate. Hence, it is this mode that we need

to examine to determine the overall boundary-layer width.

In Figure 6.5, it is observed that for large values of F̄ , the fundamental

decay rate Ω0 is always decreasing as F̄ increases. However when F̄ is small,

it is seen that Ω0 increases with increasing F̄ . In Appendix 6.B, asymptotic

approximations of Ω0 in the limits F̄ → ∞ and F̄ → 0 have been calculated. It

is found that

Ω0 ∼
π
√

1− 2ν

d
F̄− 1

2 as F̄ → ∞, (6.120)

and

Ω0 ∼
(

6(1− ν)

d2(1− 2ν)

) 1
2

F̄ 1
2 as F̄ → 0. (6.121)

These approximations are in agreement with the behaviour shown by the decay

rate Ω0 of the fundamental mode in Figure 6.5.
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Figure 6.8: The boundary-layer width δ̃B = 1/Ω0 of the fundamental mode against F̄ ,

for ν = 0.49, d = 1 (red line). The asymptotic approximations (6.122), (6.123) of δ̃B in

the limits F̄ → ∞ and F̄ → 0 have also been plotted in green and blue respectively.

We define the boundary-layer width of the fundamental mode to be δ̃B =

1/Ω0. Using the numerically found values of Ω0 calculated in §6.6 and shown

in Figure 6.5, δ̃B is calculated and plotted against F̄ in Figure 6.8. From the

figure, it is observed that for large tension values, the boundary-layer width

is increasing for increasing F̄ . However for small enough F̄ , the behaviour

of the fundamental mode changes, and the boundary-layer width decreases

with increasing F̄ . Also plotted in Figure 6.8 are the following asymptotic

approximations

δ̃B ∼
d

π
√

1− 2ν
F̄ 1

2 as F̄ → ∞, (6.122)

δ̃B ∼
(

1− 2ν

6(1− ν)

) 1
2

dF̄− 1
2 as F̄ → 0, (6.123)

as calculated in Appendix 6.B. We see that there is excellent agreement between

the numerically found boundary-layer width and the analytic approximations

(6.122), (6.123) for the corresponding sizes of F̄ .

We note that in the limits F̄ → 0 and F̄ → ∞ (which, by using the

expression (6.61) for F̄ , correspond to δ` � 1 and δ` � 1 respectively), the

boundary-layer width δ̃B is larger than the thickness d of the semi-infinite block.

This property is also demonstrated by the estimate (3.48) of the boundary-layer
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width derived from the toy model in §3.6 when δ` � 1, as well as by the

bending layer widths (4.43), (5.68) derived in regimes Ia and IB, where δ` � 1,

in Chapters 4 and 5. However, when δ` � 1, the toy-model estimate (3.48)

of the boundary-layer width is smaller than the tube wall thickness, which is

different from how δ̃B actually behaves in the limit F̄ → ∞.

6.9.2 Effect of Varying F̄ on u∞
1

We now evaluate the effect F̄ has on the limiting value u∞
1 , defined in

(6.118) and (6.119) for the numerical simulations and analytical approximations

respectively. We note that in both these cases, the value of u∞
1 corresponds to

the limit limx2→∞u1. In Figure 6.9, the numerical value of u∞
1 , given by (6.118),

has been plotted against F̄ for two different sets of values for xmax, the largest

x2 value in the numerical domain. This is to ensure that the solutions for these

two sets of xmax agree, and the choice of values for xmax is high enough for the

numerical simulations to model the deformations accurately. The first set of

values we choose for xmax, which we denote xmax1, are

xmax1 =


200 10−6 ≤ F̄ ≤ 10−4

20 10−4 ≤ F̄ ≤ 1

50 1 ≤ F̄ ≤ 102

400 102 ≤ F̄ ≤ 104

. (6.124)

The second set of values chosen for xmax, which we denote xmax2, are

xmax2 =


400 10−6 ≤ F̄ ≤ 10−4

40 10−4 ≤ F̄ ≤ 1

100 1 ≤ F̄ ≤ 102

800 102 ≤ F̄ ≤ 104

. (6.125)

We note that xmax2 = 2xmax1. Finally, we have set ν = 0.49, d = 1, tan(φ) = 1

for both cases of xmax.

It is seen in Figure 6.9 that there is excellent agreement between the plots

using the two sets of values (6.124) and (6.125) for xmax. As such, the plots are

accurately representing the values of u∞
1 . For both small and large F̄ , it is seen

that log(u∞
1 ) increases linearly with increasing log(F̄ ). It is later found that

these plots have a gradient of −1/2 in both cases, meaning that u∞
1 is behaving

like F̄− 1
2 , for small and large F̄ . It is also observed that between 10−2 ≤ F̄ ≤ 1,

there is a transitional region that joins the linearly behaving plots found in the

regions with smaller and larger F̄ . Within this transitional region, the gradient
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Figure 6.9: The numerical value of u∞
1 , defined in (6.118), against F̄ for ν = 0.49, d = 1,

tan φ = 1. The red line corresponds to setting xmax = xmax1, defined in (6.124), in the

numerical simulations, whereas the blue line corresponds to setting xmax = xmax2,

defined in (6.125).

of the curve is slowly varying. We now consider further how u∞
1 behaves for

small and large F̄ .

6.9.3 Fundamental-Mode Approximation for u∞
1

We first investigate a possible approximation for u∞
1 in the limits F̄ → 0 and

F̄ → ∞. In order for the conditions (6.113), (6.115) on An, as well as the

relation (6.114) between the An and the finite constant H to hold, the sum

of the coefficients An must converge. It is then assumed that the coefficient

A0 of the fundamental mode is much larger than than coefficients An of the

higher-order modes that comprise the deformations u1 and u2. (This may or

may not be a good assumption.) Making this assumption, we may neglect the

higher-order coefficients An. This simplifies the expressions (6.113)–(6.115) and

allows approximations for A0 and H to be formed. These approximations may

then be used to derive an approximation for u∞
1 which can be tested against

numerical values of u∞
1 .

Neglecting all the An with n ≥ 1 in the condition (6.115), rearranging, and
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setting x1 = d/2 yields the following approximation for A0

A0 ∼ Ω−1
0

(
αΛ1 +

ā0

b̄0
Λ2

2

)−1

, (6.126)

where ā0, b̄0 are defined as

ā0 = [(1− ν)Λ1 + να] sin
(

dΩ0Λ1

2

)
, b̄0 = (1− 2ν)Λ2 sin

(
dΩ0Λ2

2

)
,

(6.127)

as before. It is also found that neglecting all the An apart from A0 in (6.114)

gives the following approximation for H

H ∼ A0

(
ā0

b̄0
− 1
)

. (6.128)

Substituting (6.126), (6.128) into the analytic definition (6.119) for u∞
1 , we derive

the following approximation for u∞
1

u∞
1 = H tan φ ∼

(
ā0
b̄0
− 1
)

tan φ

Ω0

(
αΛ1 +

ā0
b̄0

Λ2
2

) . (6.129)

To determine how this approximation behaves in the limits F̄ → ∞ and F̄ → 0,

we use the asymptotic approximations (6.120) and (6.121) of the fundamental

decay rate Ω0 in the limits F̄ → ∞ and F̄ → 0, respectively. Substituting (6.120)

and (6.121) into (6.129) yields the approximations

u∞
1 ∼

(
ā0
b̄0
− 1
)

dF̄ 1
2 tan φ

π(1− 2ν)
1
2

(
αΛ1 +

ā0
b̄0

Λ2
2

) as F̄ → ∞, (6.130)

and

u∞
1 ∼

 (1− 2ν)
(

ā0
b̄0
− 1
)2

6(1− ν)
(

αΛ1 +
ā0
b̄0

Λ2
2

)2


1
2

dF̄− 1
2 tan φ as F̄ → 0. (6.131)

6.9.4 Behaviour of u∞
1 for Small and Large F̄

The approximations (6.130), (6.131) are now tested against the numerical

simulations, starting with the approximation (6.131) as F̄ → 0. In Figure

6.10, the numerical value of u∞
1 has been plotted for small F̄ , along with the

approximation (6.131) of u∞
1 . From the figure, we see that there is excellent

agreement between the numerical solution and the approximation of u∞
1 , up

until we exit the regime of small F̄ at F̄ = O(10−3). This indicates that
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Figure 6.10: The numerical solution for u∞
1 for small F̄ when ν = 0.49, d = 1, tan φ = 1

(red line). Also plotted is the fundamental-mode approximation (6.131) of u∞
1 (blue

line) and −0.082F̄− 1
2 (black line).

simply taking the fundamental mode of the deformation yields an accurate

approximation for u∞
1 when F̄ is small.

Also plotted in Figure 6.10 is −0.082F̄− 1
2 . It is seen that both the numerical

simulation and analytical approximation have the same gradient as F̄− 1
2 . It is

also noted that u1, and thus u∞
1 , must contain a single dimensional parameter

d in order for the dimensional deformation to have the dimensions required.

This is in agreement with the approximation (6.131). Using this information, it

is concluded that

u∞
1 = O

(
dF̄− 1

2

)
= O

(
aF− 1

2 `−1
)

as F̄ → 0, (6.132)

where we have used (6.61) to evaluate the size of F̄ . As u∞
1 = H tan φ, it is also

seen that

H = O
(

aF− 1
2 `−1

)
as F̄ → 0. (6.133)

We now test the approximation (6.130) for u∞
1 in the limit F̄ → ∞. In Figure

6.11, the numerical solution of u∞
1 as well as the approximation (6.130) has been

plotted for large F̄ . It is seen from the figure that although the curves of the
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numerical solution and approximation of u∞
1 have the same gradient, there is

a constant difference between the two. As such the numerical solution and

analytical approximation have the same power of F̄ but a different coefficient.

This is likely to be due to using only the coefficient A0 of the fundamental mode

when deriving approximation (6.130) of u∞
1 . As all the other coefficients An are

neglected, it is possible that a contributing term that has the same order as the

true value of u∞
1 has been lost. This implies that although the fundamental

mode gives the correct qualitative behaviour for u∞
1 as F̄ → ∞, there are other

modes that contribute to u∞
1 which cannot be neglected.
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Figure 6.11: The numerical solution for u∞
1 for large F̄ when ν = 0.49, d = 1, tan φ = 1

(red line). Also plotted is the fundamental-mode approximation (6.130) of u∞
1 (blue

line) and −0.0385F̄− 1
2 (black line).

We have also plotted −0.0385F̄− 1
2 in Figure 6.11, and we see that the

numerical value of u∞
1 has the same gradient as F̄− 1

2 . As such, by again noting

that u∞
1 must contain a single dimensional parameter d for the dimensions of

u∞
1 to be consistent, it is concluded that

u∞
1 = O

(
dF̄− 1

2

)
= O

(
aF− 1

2 `−1
)

as F̄ → ∞, (6.134)

where once again (6.61) has been applied to evaluate the size of F̄ . Again, we
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use the fact that u∞
1 = H tan φ to determine

H = O
(

aF− 1
2 `−1

)
as F̄ → ∞. (6.135)

6.10 Applying the 2D Model to the Elastic-Walled Tube

The model for bending a semi-infinite block under tension is now used to

model a boundary layer at the ends of the elastic-walled tube considered in

Chapters 2 and 3, in the case δ` � 1 which corresponds to having a large

axial tension F̄ . By doing so, it is seen what corrections this boundary layer

imposes on the bulk solution modelled in Chapter 2. It is noted that contrary

to the original estimation of the boundary-layer width (3.48) derived in §3.6,

the boundary-layer width grows with increasing F̄ instead of decreases with

increasing F̄ . Because of this the boundary-layer width is larger than expected

and azimuthal variation in the tube wall may not necessarily be small in the

boundary layer. As such, it is possible the 2D model studied here may neglect

some significant effects arising from azimuthal variation, and it may not model

the tube wall correctly near the tube ends. However, it is still informative to

apply this model to the tube wall as it will give corrections to the bulk solution

which may be tested against numerical simulations of the tube to see if the 2D

model is accurately modelling the tube near the tube ends.

6.10.1 Summary of the Set-up of the Elastic-Walled Tube

Before we apply the 2D model to the elastic-walled tube, it is convenient to

review the set-up of the tube as described in §2.2.1 (also used by Whittaker et al.

(2010c)) and depicted in Figure 6.12. As the properties of the fluid within the

tube do not contribute to the boundary layer at leading order, or the correction

in the bulk layer, we do not describe the properties of the fluid here.

Here, an initially elliptical tube of length L, wall thickness d and

circumference 2πa is set so that the tube axis is aligned with the z∗-axis. We

also set x∗ to be the dimensional coordinate normal to the undeformed tube

wall and perpendicular to z∗. The point x∗ = 0 is set to be on the inner surface

of the tube wall. The ellipticity of the tube is set by a parameter σ0, and the

tube is split into three regions: two rigid sections occupying 0 < z∗ < z∗+
and z∗− < z∗ < 1, and an elastic-walled section within z∗+ < z∗ < z∗− which

is clamped onto the rigid tubes at z∗ = z∗+, z∗−. (It is noted that z∗+ and z∗−
correspond to z1L and z2L in Chapter 2.)
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Figure 6.12: The set-up of the tube used by Whittaker et al. (2010c). An initially

elliptical elastic-walled tube is clamped between two rigid tubes, and oscillates with

amplitude b(t).

The elastic-walled region is subject to both a steady deformation and

an oscillatory deformation of frequency ω and amplitude b(t), where t is

non-dimensional time. (Full details of the non-dimensionalization are found

in §2.2.3.) It is assumed that the elastic wall behaves linearly elastically over the

range of deformations considered here, and has Poisson’s ratio ν, incremental

Young’s modulus E and bending stiffness K. An axial tension force F is applied

at the ends of the elastic-walled tube, yielding a uniform axial pre-stress of

F = F/(2πad) in the undeformed configuration.

The dimensional cross-sectional area of the tube in its deformed and

undeformed state is A∗ and A∗0 respectively, and r, r0 are the dimensional

positions of the tube wall in the deformed and undeformed configuration. The

component of the dimensional deformation normal to the tube wall (in the

x∗-direction) is then denoted ξ∗.

The following dimensionless parameters are also introduced

` =
L
a
� 1, δ =

d
a
� 1, F =

aF
2πK`2 = O(1), ∆(t) =

b(t)
a
� 1, (6.136)

which correspond to the tube length, wall thickness, axial tension and

amplitude of the deformations respectively. In this parameter regime, we have

a long, thin-walled tube under large axial tension, subject to small-amplitude,

slowly varying deformations. Using the definition of F , the pre-stress F may

be rewritten as

F =
K`2

a3δ
F ,

which matches with the pre-stress (6.1) applied to the semi-infinite block in the

2D model.

The dimensional axial coordinate z∗, the axial coordinates z∗± of the clamped

ends of the elastic-walled tube, and cross-sectional areas A∗, A∗0 in the
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deformed and undeformed states are non-dimensionalized with the following

scalings

z∗ = a`z, z∗± = a`z±, A∗0 = a2A0, A∗ = a2A. (6.137)

As the tube wall is subject first to a steady deformation, and then oscillatory

deformations of dimensionless amplitude ∆(t) about the steady deformed

state, Whittaker et al. (2010c) decomposed the non-dimensional area variation

A− A0 in the following way

A(z, t)− A0 =
1

α2`St
Ā(z) + ∆(t)Re(Ã(z)eiωt), (6.138)

where Ā, Ã are the non-dimensional components of the area change due to

the steady and oscillatory deformations respectively. Multiplying (6.138) by a2

gives the following dimensional expression for the area variation

A∗(z∗, t)− A∗0 =
a2

α2`St
Ā(z∗) + ∆(t)a2 Re(Ã(z∗)eiωt). (6.139)

Finally, the midplane of the tube wall is parameterized with dimensional

Lagrangian coordinates (x1, x2), which are measures of arc length in the

azimuthal and axial directions respectively, in the undeformed state. These

are then converted into two dimensionless Lagrangian surface coordinates

τ ∈ [0, 2π), z ∈ [0, 1] using the relations

x1 = ah(τ)τ, x2 = a`z, (6.140)

where the scale factor h(τ) is defined as

h(τ) = c(sinh2 σ0 + sin2 τ)
1
2 ,

and c(σ0) is a known function of the ellipticity parameter σ0, defined in (2.1) in

§2.2.1.

6.10.2 Relating the Coordinate Systems and Deformations in the 2D
and 3D models

One important difference between the 2D model of the semi-infinite block,

and the 3D model of the elastic-walled tube, is that the coordinates (x1, x2)

and normal deformation u1 used in the 2D model are not aligned with the

coordinates (x∗, z∗) and normal deformation ξ∗ used in the 3D model. Hence,

to apply the 2D model to the 3D model of the elastic-walled tube, relations
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must be found between these coordinate systems and deformations. It is noted

that as the 3D model is described in terms of the area variation, which only

depends on the normal deformation ξ∗, we need only consider determining

a relation between ξ∗ and the deformations u1, u2 in order to determine the

corrections to the bulk layer. The azimuthal and axial deformations in the 3D

model are therefore not considered here.

In the 2D model, the deformations u1 and u2 in the x1 and x2-directions have

been defined in (6.110) and (6.111) in terms of the dimensional coordinates x1

and x2. These coordinates are oriented such that x2 is in the direction of the

tension acting on the block (and so in the direction of the centre line of the

block at the exit of the boundary layer) and x1 is perpendicular to x2. The

origin of this coordinate system is set to be at the bottom corner of the short

edge of the block in its undeformed configuration. In the 3D model in Chapter

2, z∗ is defined to be the dimensional coordinate aligned with the tube axis,

and x∗ is a dimensional coordinate both perpendicular to z∗ and normal to

the surface of the tube wall in its undeformed configuration. The dimensional

normal deformation ξ∗ is then set as the deformation in the x∗-direction. In

Figure 6.13, we see how these sets of coordinates are oriented relative to a 2D

cross-section of the elastic tube wall near the clamped boundary z∗ = z∗+. The

components u1 and u2 of the deformation u of the point O in the undeformed

2D block to a point P, as well as the component ξ∗ of the deformation r− r0

of the point Q in the undeformed tube wall to the point P are also displayed.

The components of O, P and Q are (x1O, x2O), (x1P, x2P) and (x1Q, x2Q) in the

(x1, x2) coordinate system, and (x∗O, z∗O), (x∗P, z∗P) and (x∗Q, z∗Q) in the (x∗, z∗)

coordinate system.

From the figure, it is observed that near the end of the tube wall situated at

z∗ = z∗+, the coordinates (x∗, z∗ − z∗+) are simply rotations of the coordinates

(x1, x2) by the small angle of clamping φ, about the point x1 = x∗ = d/2,

x2 = z∗ − z∗+ = 0, where the flexible tube joins the rigid tube. Conversely, if we

instead consider the end of the tube z∗ = z∗−, the coordinates (x∗, z∗ − z∗−) are

rotations of (x1, x2) by an angle φ about x1 = x∗ = d/2, x2 = z∗ − z∗− = 0.

It is noted that as the angle φ is dependent on the azimuthally varying,

time-dependent deformations acting on the tube, φ = φ(τ, t) is a function of

both τ and t. Using this information, x∗ and z∗ may be written as the following

x∗ =
(

x1−
d
2

)
cos φ + x2 sin φ +

d
2

, z∗ − z∗± = ±
(

x2 cos φ−
(

x1−
d
2

)
sin φ

)
.

(6.141)
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Figure 6.13: Orientation of the coordinates (x1, x2) and (x∗, z∗ − z∗+), as well as the

deformations u1, u2 and ξ∗, relative to a 2D cross-section of the tube wall, near the

rigid-flexible wall boundary at z∗ = z∗+.

The sign of the rotation in the definition (6.141) of z∗ depends on which

clamped boundary we are rotating from. At z∗+, the flexible tube is in the

positive z∗-direction so we must have a positive sign. Conversely, the flexible

tube is in the negative z∗-direction from z∗− and so the rotation must have a

minus sign.

6.10.3 An Expression for ξ∗

We now consider deriving an expression for the normal component ξ∗ of

the deformation of a point Q in the tube wall to some point P. To do so,

we introduce a point O in the undeformed 2D block equivalent to Q in the

undeformed tube wall. The point O then undergoes a deformation u to deform

to the point P. We first set the components of O in the (x1, x2) coordinate system

to be the general points x1O = x1 and x2O = x2. Hence, the coordinates of O in

the (x∗, z∗ − z∗±) system are given by the expressions (6.141). In order for Q to

be the point in the undeformed tube wall equivalent to the point O in the 2D

block, the components of Q in the (x∗, z∗ − z∗±) system are set to be

x∗Q = x1, z∗Q − z∗± = ±x2. (6.142)
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As the point P is a deformation of O by u, the coordinates of the deformed point

P in the (x1, x2) system are x1P = x1 + u1(x1, x2) and x2P = x2 + u2(x1, x2). By

applying the expressions (6.141), these coordinates are given in the (x∗, z∗− z∗±)

system by

x∗P =

(
x1 + u1 −

d
2

)
cos φ + (x2 + u2) sin φ +

d
2

, (6.143)

z∗P − z∗± = ±
[
(x2 + u2) cos φ−

(
x1 + u1 −

d
2

)
sin φ

]
. (6.144)

The normal component ξ∗ of the deformation from Q to P is simply

ξ∗ = x∗P − x∗Q. (6.145)

Substituting the definitions (6.142) and (6.143) of x∗Q and x∗P into (6.145) and

rearranging yields

ξ∗ =

(
x1 −

d
2

)
(cos φ− 1) + u1 cos φ + (x2 + u2) sin φ. (6.146)

This expression may be simplified further by rewriting x2 in terms of z∗ − z∗±.

Rearranging the expression (6.141) for z∗ gives

x2 = ± z∗ − z∗±
cos φ

+

(
x1 −

d
2

)
sin φ

cos φ
. (6.147)

Substituting (6.147) into (6.146), we obtain

ξ∗ =

(
x1 −

d
2

)(
cos φ− 1 +

sin2 φ

cos φ

)
+ u1 cos φ + u2 sin φ± (z∗ − z∗±) tan φ,

=

(
x1 −

d
2

)(
1− cos φ

cos φ

)
+ u1 cos φ + u2 sin φ± (z∗ − z∗±) tan φ. (6.148)

As the range of deformations considered here are assumed to be small, the

angle φ of clamping is also assumed to be small. With this assumption, we can

make the approximation

cos φ ∼ 1. (6.149)

Applying this to (6.148), we find

ξ∗ = u1 + u2 sin φ± (z∗ − z∗±) tan φ, (6.150)

and substituting the expressions (6.110) and (6.111) for u1 and u2 into (6.150)

gives the full expression for ξ∗ in the boundary layer as

ξ∗ =
∞

∑
n=0

An tan φ e−Ωnx2

{
cos

(
ΩnΛ1

(
x1 −

d
2

))
− ān

b̄n
cos

(
ΩnΛ2

(
x1 −

d
2

))
+ sin φ

[
α sin

(
ΩnΛ1

(
x1 −

d
2

))
+

ān

b̄n
Λ2 sin

(
ΩnΛ2

(
x1 −

d
2

))]}
+ [H ± (z∗ − z∗±)] tan φ. (6.151)
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In order to use the expression (6.151) for ξ∗ to match the boundary layers

to the bulk solution, we must determine the behaviour of ξ∗ as we exit the

boundary layers situated near z∗+ and z∗−. This corresponds to the limit x2 → ∞.

By examining the relation (6.141) between z∗ and x2, it is seen that as x2 → ∞,

z∗ → ∞ in the boundary layer near z∗+, and z∗ → −∞ in the boundary layer

near z∗−. Hence, ξ∗ must be evaluated within the boundary layers near z∗+ and

z∗− as z∗ → ∞ and as z∗ → −∞ respectively. Using the expression (6.147) for

x2, we find

exp(−Ωnx2) = exp
(
∓Ωn

z∗ − z∗±
cos φ

)
exp

(
−Ωn

(
x1 −

d
2

)
tan φ

)
, (6.152)

in the boundary layers near z∗ = z∗±. As z∗ → ±∞ within the boundary layers

situated near z∗ = z∗±, (6.152) tends to zero. Hence as we exit the boundary

layers, ξ∗ behaves as

ξ∗ ∼ [H ± (z∗ − z∗±)] tan φ. (6.153)

6.10.4 Area Change at the Exit of the Boundary Layers

Now that the behaviour of ξ∗ as we exit the boundary layers has been

determined, we use this behaviour to see what corrections the boundary layers

impose on the bulk region of the tube modelled in Chapter 2. As the model for

the bulk region describes the tube in terms of the cross-sectional area variation

of the tube, as well as in terms of the pressure and axial velocity of the fluid

passing through the tube, it is convenient to determine the area change as we

exit the boundary layers so that the corrections to the area change in the bulk

solution can be determined.

As a starting point, we use the following relation found by Whittaker et al.

(2010d) between the cross-sectional area of the elastic-walled tube and the

deformation of the tube wall

A∗(z∗)− A∗0 =
∮
(r− r0) · n̂ ah(τ)dτ + O(∆2), (6.154)

where n̂ is the outward, normal unit vector to the tube wall in its undeformed

state. As the normal component of r− r0 is the normal deformation ξ∗, (6.154)

is rewritten as

A∗(z)− A∗0 = a
∫ 2π

0
ξ∗h(τ)dτ + O(∆2). (6.155)

Substituting the expression (6.153) for ξ∗ at the exit of the boundary layers into

(6.155) gives

A∗(z)− A∗0 ∼ a
∫ 2π

0
[H ± (z∗ − z∗±)] h(τ) tan φ dτ as z∗ → ±∞, (6.156)
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in the boundary layers near z∗ = z∗±. The only parameter in (6.156) that

depends on the transverse variable τ, other than h(τ), is the angle of clamping

φ, and any term that does not depend on φ or h(τ) may be extracted from the

integral. Doing so, (6.156) is rewritten as

A∗(z∗)− A∗0 ∼ a[H ± (z∗ − z∗±)]
∫ 2π

0
h(τ) tan φ dτ as z∗ → ±∞, (6.157)

in the boundary layers near z∗ = z∗±.

As the area change within the bulk region is decomposed into a steady

component and oscillatory component, it is convenient to decompose (6.157)

into steady and oscillatory components. This can be done by splitting the

gradient of clamping tan φ as follows

tan φ =
1

α2`St
tan φs + ∆(t)Re(tan φoeiωt), (6.158)

where tan φs is the gradient of clamping after the steady deformation, and

tan φo is the mode shape of the oscillatory gradient of clamping about the

steady configuration. Substituting (6.158) into (6.157) yields

A∗(z∗)−A∗0 ∼ a[H±(z∗−z∗±)]
∫ 2π

0
h(τ)

(
1

α2`St
tan φs+∆(t)Re(tan φoeiωt)

)
dτ,

(6.159)

as z∗ → ±∞ within the boundary layers near z∗ = z∗±. Comparing the steady

and oscillatory components of (6.159) to the corresponding components in

(6.139), we find

Ā ∼ H ± (z∗ − z∗±)
a

∫ 2π

0
h(τ) tan φs dτ, (6.160)

Ã ∼ H ± (z∗ − z∗±)
a

∫ 2π

0
h(τ) tan φo dτ, (6.161)

as z∗ → ±∞ in the boundary layers near z∗ = z∗±.

6.10.5 Matching the Boundary-Layer Area Change to the Bulk
Solution

To match the area change (6.159) as we exit the boundary layers to the area

change in the bulk solution, the limit of the area variation in the bulk solution

as z∗ → z∗± must first be determined. From the expression (6.139), the area

variation in the bulk layer has a steady component Ā and an oscillatory

component Ã to match onto the boundary layer. These components may

be considered separately and we focus first on matching the oscillatory area

variation Ã.
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Taking the Taylor series of the oscillatory area Ã about z∗ = z∗±, where the

clamped boundaries are located, gives

Ã(z∗) = Ã(z∗±) + (z∗ − z∗±)
dÃ
dz∗

(z∗±) + . . . as z∗ → z∗±. (6.162)

By truncating (6.162) after the first-order term and substituting into the

oscillatory component (6.161) of the area change as we exit the boundary layers,

we obtain

H ± (z∗ − z∗±)
a

∫ 2π

0
h(τ) tan φo dτ ∼ Ã(z∗±) + (z∗ − z∗±)

dÃ
dz∗

(z∗±). (6.163)

Equating the leading and first-order terms in z∗− z∗± in (6.163) and rearranging

gives the following relations∫ 2π

0
h(τ) tan φo dτ =

a
H

Ã(z∗±), (6.164)∫ 2π

0
h(τ) tan φo dτ = ±a

dÃ
dz∗

(z∗±). (6.165)

Eliminating the integral from (6.164) and (6.165) yields the following conditions

on Ã

Ã(z∗±)∓ H
dÃ
dz∗

(z∗±) = 0. (6.166)

Following a similar method, the new conditions on the steady component

Ā of the area variation in the bulk layer are found to be

Ā(z∗±)∓ H
dĀ
dz∗

(z∗±) = 0. (6.167)

Hence the new conditions on Ā and Ã have the same form. As the original

conditions imposed by Whittaker et al. (2010c) on Ā and Ã also have the same

form as each other, the corrections to the original conditions will take the

same form in both the steady and oscillatory components. Thus, we need

only consider the corrections to one of these components. Here, we focus

on determining the corrections to the boundary conditions on the oscillatory

component.

6.10.6 Corrections to the Original Boundary Conditions in the Bulk
Layer

To see how the new conditions (6.166) on Ã are different from the

original boundary conditions, and see how large the correction term is,

we must non-dimensionalize (6.166). The axial coordinates z∗ and z∗± are
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non-dimensionalized as in (6.137) and the only parameter left that needs

non-dimensionalizing is the dimensional constant H. It was found in §6.9.2

that for F̄ → ∞

H = O
(

aF− 1
2 `−1

)
. (6.168)

A sensible scaling for the dimensional constant H is therefore

H =
a

F 1
2 `

H̄, (6.169)

where H̄ is an O(1) dimensionless constant. Using the scalings (6.137) and

(6.169) in (6.166), the new non-dimensional boundary condition on Ã in the

bulk solution is found to be

Ã(z±)∓
1

F 1
2 `2

H̄
dÃ
dz

(z±) = 0. (6.170)

This condition may be rewritten in terms of the oscillatory transmural

pressure p̃(z) using the following relation

Ã = −A0

ω2
d2 p̃
dz2 , (6.171)

which was derived in §2.4. Applying (6.171) to (6.170) and rearranging gives

the following boundary conditions on p̃

d2 p̃
dz2 (z±)∓

1

F 1
2 `2

H̄
d3 p̃
dz3 (z±) = 0. (6.172)

The original boundary conditions at the clamped ends of the tube, given by

(2.85) in §2.5.2, were
d2 p̃
dz2 (z±) = 0. (6.173)

The new boundary condition (6.172) has a correction term proportional to

d3 p̃/dz3, which has size O(F 1
2 `−2). As ` � 1, we have `−2 � 1, and as

F = O(1), the new boundary condition (6.172) can only be applied at higher

orders within the bulk solution. Hence, there is no change to the original

boundary condition (6.173) at leading order, and we would need to calculate

the asymptotic solution of the bulk region up to O(`−2) to evaluate the effects

of the correction term. However, if the condition F = O(1) is relaxed and we

allow F = O(`−4) or smaller (corresponding to a smaller axial tension force),

the correction terms then become significant at leading order. However, as the

restoring forces due to pre-stress contribute at leading order in the bulk layer,

it is possible that reducing the size of the axial tension will alter the behaviour

in the bulk layer, as the axial tension will no longer contribute at leading order

there.
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6.11 Physical Interpretation

In the model for bending a semi-infinite block under tension, different

behaviours are witnessed for small F̄ and large F̄ . From (6.123) in §6.9.1, it

is seen that in the limit F̄ → 0, the dimensional boundary-layer width δ̃B has

magnitude O(dF̄− 1
2 ). Using the expression (6.61) for F̄ , and the dimensionless

parameter δ = d/a, this can be rewritten as

δ̃B = O
(

a

F 1
2 `

)
. (6.174)

By comparing this with the dimensionless bending-layer widths (3.48) from

the toy model in §3.6, and (4.43) in regime Ia studied in Chapter 4 (which are

dimensionalized by simply multiplying by a), it is seen for small F̄ that the

boundary layer here has the same size as the bending layers found in the toy

model and in regime Ia, where δ`� 1� δ`2. It is also seen later that the axial

deformation u2 is approximately a uniform shear across the width of the block

for small F̄ , meaning that any transverse shear stresses are negligible. Hence,

the deformation of the block must be due to bending effects and the boundary

layer modelled here must be an axial-bending boundary layer.

In the limit F̄ → ∞, it is seen from (6.122) in §6.9.1 that δ̃B = O(dF̄ 1
2 ).

Again using (6.61) and δ = d/a, this is rewritten as

δ̃B = O
(

aF 1
2 δ2`

)
. (6.175)

This behaviour is different to the behaviour in the limit F̄ → 0, as well as the

behaviours displayed by the toy model in §3.6 and the bending layers modelled

in regime Ia (δ` � 1 � δ`2) and regime Ib (δ`2 � 1), in Chapters 4 and

5 respectively. Hence, the boundary layer for large F̄ is due to a different

mechanism.

To see what this new mechanism is, the behaviour of u2 is examined for

both small and large F̄ values. In Figure 6.14, the numerical solution for u2 in

the x1-direction has been plotted for F̄ = 10−4, and F̄ = 10. This has been

done for x2 = 0, 1 and x2 = 75
n
5 where n = 1, 2, 3, 4, in the case d = 1, ν = 0.49,

tan(φ) = 1. From the figure, it is seen for small F̄ that in the x1-direction, there

is little deviation in u2 from a uniform shear over the width of the block, for all

values of x2. However, in the case with large F̄ , for all values of x2 apart from

at the clamped boundary x2 = 0, u2 appears to be behaving sinusoidally across

x1, and there is a much larger deviation from uniform shear.
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Figure 6.14: The numerical solution of u2 in the x1-direction for small F̄ (F̄ = 10−4)

and large F̄ (F̄ = 10), in the case d = 1, ν = 0.49, tan(φ) = 1, for fixed values of x2.

The black and red lines correspond to x2 = 0, 1 and the blue, green, pink and cyan

lines correspond to x2 = 75
n
5 , for n = 1, 2, 3, 4.
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To obtain more information about the deviation from uniform shear for

small and large F̄ , the following normalisation of u2 is employed

u(n)
2 =

u2(x1, x2)

u2(d, x2)
− 2

d

(
x1 −

d
2

)
. (6.176)

In this normalisation, the deformation u2 is divided by u2(d, x2) to ensure that

the deformation has the same amplitude at the stress-free boundaries x1 = 0, d,

for all values of x2. A uniform shear of the same amplitude is then subtracted

so the resulting function shows the normalised deviation from a uniform shear.

In Figure 6.15, the numerical solution for u(n)
2 in the x1-direction is displayed

in the case F̄ = 10 (large F̄ ), d = 1, ν = 0.49 and tan(φ) = 1, for x2 = 0, 1

and x2 = 75
n
5 where n = 1, 2, 3, 4. It is observed from the figure that as

the value of x2 is increased, u(n)
2 deviates away from the uniform shear set

at the clamped boundary x2 = 0, and tends towards a self-similar form of

sinusoidal shape. This self-similar form corresponds to the fundamental mode

of the deformation. It is found for small F̄ (F̄ = 10−4) that u(n)
2 is almost

indistinguishable from u(n)
2 = 0 on the scale used in Figure 6.15, and thus the

normalised deviation from uniform shear is negligible.

Finally, the decay of this shear as x2 is increased is evaluated. This is done by

observing the following three quantities. The first quantity is u2(d, x2), which

corresponds to the amplitude of the deformation u2 at the stress-free boundary

x1 = d. The second quantity is du2/dx1 at x1 = d/2, which is the gradient

of the deformation in the x1-direction at the midpoint of the block, where the

gradient is at its highest. The final quantity is

du(n)
2

dx1

(
d
2

, x2

)
=

du2
dx1

(
d
2 , x2

)
u2(d, x2)

− 2
d

, (6.177)

which corresponds to the gradient of the normalised deviation from uniform

shear, in the x1-direction at the midpoint of the block. It is noted that the

calculation of this consists of the ratio of the previous two quantities, u2(d, x2)

and du2/dx1 at x1 = d/2, with a constant subtracted.

In Figure 6.16, these three quantities have been plotted for F̄ = 10 (large

F̄ ), d = 1, ν = 0.49 and tan(φ) = 1. From the figure, it is seen that u2 and

du2/dx1, at x1 = d and x1 = d/2 respectively, both decay to zero as x2 is

increased. Hence, the amplitude of the deformation and its gradient in the

x1-direction are both decaying for increasing x2. It is also seen that du(n)
2 /dx1

at the midpoint of the block tends to a constant as x2 → ∞. Hence, the gradient
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Figure 6.15: The numerical solution of u(n)
2 in the x1-direction for F̄ = 10 (large F̄ ),

in the case d = 1, ν = 0.49, tan(φ) = 1, for fixed values of x2. The black and red

lines correspond to x2 = 0, 1 and the blue, green, pink and cyan lines correspond to

x2 = 75
n
5 , for n = 1, 2, 3, 4.

of the normalised deviation from uniform shear tends to a constant, and the

deformation u2 is indeed tending to a self-similar form.

Overall, it is seen that for small F̄ , the boundary layer that occurs is a

bending layer. In this bending layer, the deformation u2 is indistinguishable

from a uniform shear across the width of the block that decays as x2 → ∞.

However when F̄ is large, u2 varies sinusoidally about a uniform shear across

the width of the block. These deviations from uniform shear arise so that the

stress-free conditions on the top and bottom boundaries of the block are still

satisfied. The variations tend towards a self-similar solution as x2 → ∞ and

the boundary layer then allows for the decay of this self-similar solution in the

axial direction. Hence, the boundary layer is allowing u2 to deviate away from

uniform shear across the width of the block, and thus we have a transverse

shear-relaxation layer. It is noted that this boundary layer is different from

the shear-relaxation boundary layer studied by Whittaker (2015), which deals

with shear in the azimuthal direction of the elastic-walled tube. The difference
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Figure 6.16: The numerical solutions of u2 (black line) at x1 = d, du2/dx1 (red line) at

x1 = d/2, and du(n)
2 /dx1 (blue line) at x1 = d/2, in the x2-direction, for F̄ = 10 (large

F̄ ), d = 1, ν = 0.49 and tan(φ) = 1.

between the boundary layers for small and large F̄ is depicted in Figure 6.17.

6.12 Conclusions

In this chapter, we have considered deriving a model to describe the behaviour

near the clamped ends of the elastic-walled tube modelled in Chapter 2, in

regime II where δ` � 1. In this regime, it was originally predicted by the

toy model in §3.6 that a bending layer of dimensionless width δB � δ would

reside at the tube ends. As such, it was originally expected that the boundary

layer would be smaller than the thickness of the block, and Kirchhoff–Love

shell theory (Flügge, 1972; Søndergaard, 2007) could not be used to model

the mechanics of the tube wall. Instead, a linearised 2D model describing

the mechanics of a semi-infinite block being bent under tension has been

derived. It was initially expected that this would be a good representation

of a cross-section of the tube wall in the normal and axial directions, as there

would be slow azimuthal variation within a boundary layer of width δB � δ.

However, in this 2D model, a larger transverse shear-relaxation layer has been
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Figure 6.17: Sketch of the different shapes of u2 for small and large F̄ . For small F̄ , u2

is indistinguishable form a uniform shear. For large F̄ , u2 first evolves into a sinusoidal

deviation from uniform shear, which then decays as x2 → ∞.

found when δ` � 1. The properties of this shear layer have been evaluated,

and although this layer is of a size that azimuthal variation may be important,

the 2D model has been applied to the elastic-walled tube and corrections to the

boundary conditions of the bulk layer have been calculated. These corrections

can be tested against numerical simulations in future work.

In the 2D model, Cauchy’s momentum equation in absence of external

forces (Howell et al., 2009) is used as a governing equation for the wall

mechanics, and a modified Saint Venant–Kirchhoff model (Howell et al., 2009,

p. 230) is used to derive an appropriate constitutive law for the Cauchy stress

tensor σ. This linearised 2D model has been solved numerically using the

numerical finite-element differential equation solver ”FEniCS“ (Dupont et al.,

2003), and analytical techniques have also been applied to the model. With

these analytical techniques, approximations for the normal deformation u1 and

axial deformation u2, away from the clamped boundary x2 = 0, have been

derived and these have been shown to be in agreement with the numerical

solutions. A full analytical solution satisfying the clamped boundary conditions

(6.43) at x2 = 0 has not yet been derived. However, it is possible that a similar

technique to that used by Shankar (2003) to solve the biharmonic equation in

a semi-infinite strip, detailed in Appendix 6.C, could be used to obtain the full

solution.

It has been found that the deformations u1 and u2 are composed of a

series of modes, each of which decay exponentially in the axial direction with
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their own unique decay rate. It was determined that for all values of the

scaled pre-stress F̄ = O(δ2`2F ), the decay rates of the higher-order modes

all decrease with increasing F̄ . However, the decay rate Ω0 of the fundamental

mode, is found to have different behaviours for small and large F̄ . By forming

asymptotic approximations of Ω0 for small and large F̄ , it was found that in

the limit F̄ → 0, Ω0 behaves as Ω0 ∼ d−1F̄ 1
2 , and in the limit F̄ → ∞, the

asymptotic behaviour of Ω0 is given by Ω0 ∼ d−1F̄− 1
2 .

Using the approximations for Ω0, the dimensional boundary-layer width δ̃B

was determined to behave as δ̃B ∼ dF̄− 1
2 as F̄ → 0, and δ̃B ∼ dF̄ 1

2 as F̄ → ∞.

Using the expression (6.61) and noting that d can be written as d = aδ, the

asymptotic behaviours of δ̃B may be rewritten as

δ̃B ∼ O(a`−1F− 1
2 ) as δ`→ 0, (6.178)

δ̃B ∼ O(aδ2`F 1
2 ) as δ`→ ∞. (6.179)

The behaviour (6.178) for δ`→ 0 is the same as the behaviours (3.48) and (4.43)

of the widths of the bending layers in the toy model in §3.6 and the bending

layer in regime Ia (δ` � 1 � δ`2). This behaviour is also different from the

behaviour (5.68) of the bending layer in regime Ib (δ`2 � 1). This is because

azimuthal effects that are neglected in this model are found to contribute at

leading-order in regime Ib. However, the behaviour (6.179) of δ̃B as δ` → ∞

does not match with the behaviour of any of the previous boundary layers

considered.

It has also been found that as x2 → ∞, u1 tends to some constant u∞
1 whereas

u2 → 0. It is determined that for both small and large F̄ , u∞
1 = O(dF̄− 1

2 ) and

the asymptotic behaviour of u∞
1 does not differ between the cases with small

and large F̄ .

This 2D model has been used to determine corrections to the boundary

conditions imposed on the bulk layer of the elastic-walled tube modelled in

Chapter 2. It is found that when F = O(1), the corrections are a factor of

`−2 smaller than the leading-order boundary condition. Hence, the correction

term does not affect the leading-order bulk layer solution, but does affect the

solution at O(`−2) and higher. Hence, to determine the effects of this correction,

an asymptotic solution of the bulk layer would need to be calculated up to

O(`−2). To increase the size of these corrections so that they have an effect at

leading order in the bulk of the tube, it was seen that the condition F = O(1)

must be replaced with F = O(`−4), corresponding to a smaller axial tension

force. Introducing this parameter regime may however change the behaviour
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of the bulk solution. It is noted that as there is a possibility that azimuthal

variation, neglected in the 2D model, could have a leading-order effect at the

scale of the boundary layer, these corrections may not be accurate. To determine

the validity of these corrections, the corrected solution could be tested against

numerical simulations, or the sizes of the neglected azimuthal effects could be

evaluated to see if they contribute at leading order on the axial scale of the

boundary layer. Even if this 2D model does not yield valid corrections to the

bulk layer of the elastic-walled tube, this model can still be applied to more

general problems of clamped shells under tension.

Finally, by examining the behaviour of u2 for both small and large F̄ , the

dominant mechanism within this boundary layer has been found. For small F̄ ,

there is very little difference between u2 and a uniform shear across the width

of the block. However for large F̄ , the deviation of u2 from a uniform shear

is much larger and tends towards a decaying self-similar solution as x2 → ∞.

Hence, the boundary layer in the case δ` � 1 allows deviation away from

uniform shear across the block, and we have a transverse shear-relaxation layer.

This shear layer is different from that modelled by Whittaker (2015).
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6.A Deriving the Boundary Condition (6.71) as x2 → ∞

Here, the governing equation (6.42) and boundary conditions (6.44)–(6.46) are

used to prove that in the current problem the original boundary condition

(6.46), which states

σ1 ·
(

0

1

)
→ 0 as x2 → ∞, (6.180)

is equivalent to the condition (6.71) used in §6.6, which is

∇u1,∇u2 → 0 as x2 → ∞. (6.181)

We note that if ∇u1,∇u2 → 0 as x2 → ∞, then from the definition (6.25) of σ1

we must have σ1 → 0 as x2 → ∞, and this implies the condition (6.180). Now

we consider proving that (6.180) implies (6.181).

We start with the governing equation (6.42) which is valid in all areas of the

block

∇ · σ1 =
∂

∂x1

(
σ1 ·

(
1

0

))
+

∂

∂x2

(
σ1 ·

(
0

1

))
= 0. (6.182)

In §6.6, it was shown that the deformation u2 can be eliminated from the

components of (6.42), leaving a homogeneous, fourth-order PDE with constant

coefficients to be solved for u1. Similarly, it can be shown that eliminating

u1 from the components of (6.42) yields a homogeneous, fourth-order PDE

with constant coefficients to be solved for u2. For u1 and u2 to satisfy their

corresponding governing PDEs, they must have either sinusoidal or exponential

behaviour in the x1 and x2-directions, or be cubic or lower order in x1, x2. With

this information, the condition (6.180) then implies

∂

∂x2

(
σ1 ·

(
0

1

))
→ 0 as x2 → ∞. (6.183)

Applying (6.183) to (6.182), it is found that

∂

∂x1

(
σ1 ·

(
1

0

))
→ 0 as x2 → ∞,

and hence

σ1 ·
(

1

0

)
∼ A(x2) as x2 → ∞, (6.184)
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where A is a function of x2. To determine A, we use the stress-free boundary

conditions (6.44), (6.45), which state

σ1 ·
(

1

0

)
=

(
0

F ∂u1
∂x2

)
at x1 = 0, d. (6.185)

As A is independent of x1, applying (6.185) to (6.184) yields

A =

 0

F ∂u1
∂x2

∣∣∣
x1=0

 . (6.186)

(It is noted that due to the symmetry of the boundary conditions (6.43)–(6.46)

and the form of the governing equation (6.42), u1 is symmetric about x1 = d/2,

and hence ∂u1/∂x2 is also symmetric about x1 = d/2. Because of this the value

of ∂u1/∂x2 is the same at x1 = 0, d, and both the conditions within (6.185) give

the value (6.186) for A(x2).)

Using the definition (6.186) of A along with the conditions (6.180) and

(6.184), it is determined that

σ1 ∼

 0 0

F ∂u1
∂x2

∣∣∣
x1=0

0

 , as x2 → ∞. (6.187)

Substituting the definition (6.25) of σ1 into (6.187), each of the components of

(6.187) give a condition to be satisfied as x2 → ∞. These conditions are

(λ + 2µ)
∂u1

∂x1
+ λ

∂u2

∂x2
→ 0 as x2 → ∞, (6.188)

(λ−F)
∂u1

∂x1
+ (λ + 2µ + F)

∂u2

∂x2
→ 0 as x2 → ∞, (6.189)

(µ + F)
∂u1

∂x2
+ µ

∂u2

∂x1
→ 0 as x2 → ∞, (6.190)

(µ + F)
∂u1

∂x2
+ µ

∂u2

∂x1
→ F

∂u1

∂x2

∣∣∣
x1=0

as x2 → ∞. (6.191)

As the conditions (6.188) and (6.189) are homogeneous conditions involving

the terms ∂u1/∂x1 and ∂u2/∂x2, these may be combined and written in matrix

form. Doing so gives(
λ + 2µ λ

λ−F λ + 2µ + F

)
·
(

∂u1
∂x1
∂u2
∂x2

)
→ 0 as x2 → ∞. (6.192)

Taking the determinant of the matrix within (6.192), we obtain∣∣∣∣∣ λ + 2µ λ

λ−F λ + 2µ + F

∣∣∣∣∣ = (λ + 2µ)(λ + 2µ + F)− λ(λ−F)

= 2(λ + µ)(F + 2µ).
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In the current scenario, the Lamé parameters satisfy µ, λ + µ > 0. Hence, as

long as the axial tension is set such that F > 0, corresponding to a stretching

force rather than a compression force, we have∣∣∣∣∣ λ + 2µ λ

λ−F λ + 2µ + F

∣∣∣∣∣ = 2(λ + µ)(F + 2µ) 6= 0.

Thus, for (6.192) to be satisfied, it follows that

∂u1

∂x1
,

∂u2

∂x2
→ 0 as x2 → ∞. (6.193)

We now proceed to apply a similar method to the conditions (6.190), (6.191)

to obtain similar constraints on ∂u1/∂x2 and ∂u2/∂x1. We first use the condition

(6.193) on ∂u1/∂x1 to rewrite the term on the right-hand-side of (6.191) in a way

that it can be combined with the terms on the left-hand-side. Using the fact that

∂u1/∂x1 → 0 as x2 → ∞, and that u1 has sinusoidal or exponential behaviour,

or is cubic or lower order in x1, x2, this implies

∂

∂x2

(
∂u1

∂x1

)
→ 0 as x2 → ∞, =⇒ ∂

∂x1

(
∂u1

∂x2

)
→ 0 as x2 → ∞.

From this, we see that there is negligible variation in ∂u1/∂x2 in the x1-direction

as x2 → ∞. Hence, we must have

∂u1

∂x2

∣∣∣
x1=0
∼ ∂u1

∂x2
as x2 → ∞. (6.194)

Substituting (6.194) into the condition (6.191) and rearranging yields

µ
∂u1

∂x2
+ µ

∂u2

∂x1
→ 0 as x2 → ∞. (6.195)

This can be combined with the condition (6.190) and rewritten in matrix form

to give (
µ + F µ

µ µ

)
·
(

∂u1
∂x2
∂u2
∂x1

)
→ 0 as x2 → ∞. (6.196)

We take the determinant of the matrix in (6.196) to find∣∣∣∣∣ µ + F µ

µ µ

∣∣∣∣∣ = µF 6= 0,

provided µ, F 6= 0. Hence, for (6.196) to be satisfied, we must have

∂u1

∂x2
,

∂u2

∂x1
→ 0 as x2 → ∞. (6.197)
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Combining (6.193) and (6.197), it is seen that

∂ui

∂xj
→ 0 as x2 → ∞,

for all i, j. Thus

∇u1,∇u2 → 0 as x2 → ∞,

holds true. �
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6.B Asymptotic Analysis of the Fundamental Decay Rate

Ω0 for F̄ � 1 and F̄ � 1

Here, we formulate asymptotic approximations for the decay rate Ω0 of the

fundamental modes of the deformations u1, u2 for both large and small axial

pre-stress F̄ . We begin by considering the eigenvalue problem (6.109) to be

solved for Ω

ψ1 sin
(

dΩΛ1

2

)
cos

(
dΩΛ2

2

)
− ψ2 sin

(
dΩΛ2

2

)
cos

(
dΩΛ1

2

)
= 0, (6.198)

where

ψ1 = [(1− ν)Λ1 + να](1 + Λ2
2) ψ2 = (1− αΛ1)(1− 2ν)Λ2, (6.199)

Λ1 =

√
2(1− ν) + F̄

2(1− ν)
, Λ2 =

√
1− 2ν + F̄

1− 2ν
, (6.200)

α = (1− 2ν + F̄ )Λ−1
1 − 2(1− ν)Λ1. (6.201)

By substituting the expression (6.200a) for Λ1 into (6.201), it is found that α may

be rewritten as

α = −

√
2(1− ν)

2(1− ν) + F̄
. (6.202)

To evaluate (6.198) for different sizes of F̄ , we must consider the behaviour of

the parameters Λ1, Λ2, α, ψ1 and ψ2 as F̄ varies.

When F̄ → ∞, we find the following approximations for the parameters

(6.199)–(6.201)

Λ1 ∼
F̄ 1

2√
2(1− ν)

, Λ2 ∼
F̄ 1

2
√

1− 2ν
, α ∼ −

√
2(1− ν)F̄− 1

2 , (6.203)

ψ1 ∼
√

1− νF̄ 3
2

√
2(1− 2ν)

, ψ2 ∼ 2
√

1− 2νF̄ 1
2 . (6.204)

From (6.204), it is seen that in the case of large F̄ , ψ1 = O(F̄ 3
2 ) and ψ2 = O(F̄ 1

2 ).

Hence, ψ1 � ψ2. However, in the limit F̄ → 0, we instead have the following

approximations

Λ1 ∼ 1, Λ2 ∼ 1, α ∼ −1, ψ1 ∼ 2(1− 2ν), ψ2 ∼ 2(1− 2ν).

(6.205)

We see from (6.205) that Λ1 ∼ Λ2 and ψ1 ∼ ψ2 when F̄ is small. Using

the approximations (6.203)–(6.205), we now evaluate the eigenvalue equation

(6.198) in the limits F̄ → ∞ and F̄ → 0.
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6.B.1 Decay Rate Ω0 as F̄ → ∞

In the limit F̄ → ∞, we have ψ1 � ψ2. Hence, the first term in (6.198) is the

dominant term, and we may approximate the eigenvalues of Ω using

ψ1 sin
(

dΩΛ1

2

)
cos

(
dΩΛ2

2

)
≈ 0. (6.206)

The roots of (6.206) occur when

dΩΛ1

2
≈ nπ, and

dΩΛ2

2
≈
(

n +
1
2

)
π, (6.207)

where n is a positive integer. Rearranging the expressions within (6.207), we

find

Ω ≈ 2nπ

dΛ1
, and Ω ≈

2
(
n + 1

2

)
π

dΛ2
. (6.208)

To determine the fundamental decay rate Ω0, we must determine what the

smallest, non-trivial solution of Ω is. By inspection, we see that the smallest

solution will be either

Ω0 ≈
2π

dΛ1
, or Ω0 ≈

π

dΛ2
. (6.209)

To determine which of these is smaller, we examine the behaviour of 2/Λ1

and 1/Λ2 for large F̄ . Using the expressions (6.200) for Λ1, Λ2, it is seen that

2Λ2/Λ1 is given by

2Λ2

Λ1
= 2

√
1 + F̄ (1− 2ν)−1

1 + F̄ (2− 2ν)−1 > 2, (6.210)

for F̄ > 0, ν < 1/2. The inequality within (6.210) holds as (1 − 2ν)−1 >

(2− 2ν)−1, which implies that the square root in (6.210) is greater than 1. From

this inequality, it is deduced that

2
Λ1

>
2

Λ2
>

1
Λ2

. (6.211)

Hence, applying this inequality to (6.209), it is seen that the decay rate Ω0 of

the fundamental mode for large F̄ must be

Ω0 ≈
π

dΛ2
. (6.212)

Substituting the approximation (6.203b) for Λ2 when F̄ → ∞ into (6.212), we

find Ω0 may be approximated by

Ω0 ∼
π
√

1− 2ν

d
F̄− 1

2 as F̄ → ∞. (6.213)
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Finally, by defining the boundary-layer width of the fundamental mode as

δ̃B = 1/Ω0, the boundary-layer width is approximated by

δ̃B ∼
d

π
√

1− 2ν
F̄ 1

2 as F̄ → ∞. (6.214)

In §6.9, the expression (6.214) is plotted in Figure 6.8 along with the numerically

found boundary-layer width. It is observed that there is excellent agreement

between the two solutions for large F̄ .

6.B.2 Decay Rate Ω0 as F̄ → 0

In the limit F̄ → 0, we have that ψ1 ∼ ψ2 and thus both terms within the

eigenvalue equation (6.198) contribute at leading order. We also have that

Λ1 ∼ Λ2 for small F̄ . As a starting point for evaluating the eigenvalue equation

(6.198), we take the Taylor series of the expressions (6.199), (6.200) for Λ1, Λ2,

ψ1, ψ2 about F̄ = 0. Doing so, we find

Λ1 = 1 +
1

4(1− ν)
F̄ − 1

32(ν− 1)2 F̄
2 + O(F̄ 3), (6.215)

Λ2 = 1 +
1

2(1− 2ν)
F̄ − 1

8(2ν− 1)2 F̄
2 + O(F̄ 3), (6.216)

ψ1 = 2− 4ν +
3− 2ν

2(1− ν)
F̄ +

3− 4ν + 4ν2

16(1− 2ν)(1− ν)2 F̄
2 + O(F̄ 3), (6.217)

ψ2 = 2− 4ν + F̄ − 1
4(1− 2ν)

F̄ 2 + O(F̄ 3). (6.218)

We also find it convenient to rewrite the eigenvalue equation (6.198) as

ψ1 + ψ2

2
sin
(

dΩ
2

(Λ1 −Λ2)

)
+

ψ1 − ψ2

2
sin
(

dΩ
2

(Λ1 + Λ2)

)
= 0, (6.219)

where we have used the identities

sin
(

dΩ
2

(Λ1 ±Λ2)

)
= sin

(
dΩΛ1

2

)
cos

(
dΩΛ2

2

)
± cos

(
dΩΛ1

2

)
sin
(

dΩΛ2

2

)
.

The following asymptotic expansions are now considered

Λ1 + Λ2 = α(0) + α(1)F̄ + α(2)F̄ 2 + O(F̄ 3), (6.220)

Λ1 −Λ2 = β(0) + β(1)F̄ + β(2)F̄ 2 + O(F̄ 3), (6.221)

ψ1 + ψ2 = γ(0) + γ(1)F̄ + γ(2)F̄ 2 + O(F̄ 3), (6.222)

ψ1 − ψ2 = δ(0) + δ(1)F̄ + δ(2)F̄ 2 + O(F̄ 3), (6.223)

where α(0), α(1), . . . , δ(2), are O(1) constants that are determined from the Taylor

series (6.215)–(6.218) of Λ1, Λ2, ψ1 and ψ2, about F̄ = 0. Using these Taylor
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series, it is immediately observed that β(0) = δ(0) = 0. We also calculate the

following coefficients

α(0) = 2, α(1) =
3− 4ν

4(1− ν)(1− 2ν)
, (6.224)

β(1) = − 1
4(1− ν)(1− 2ν)

, β(2) =
3− 4ν

32(1− ν)2(1− 2ν)2 , (6.225)

γ(0) = 4(1− 2ν), γ(1) =
5− 4ν

2(1− ν)
, (6.226)

δ(1) =
1

2(1− ν)
, δ(2) =

7− 12ν + 8ν2

16(1− ν)2(1− 2ν)
. (6.227)

Finally, we assume that the decay rate Ω behaves like an unknown power

of F̄ at leading order as F̄ → 0, and set

Ω = Ω̄F̄ n, (6.228)

where n is real and Ω̄ = O(1) as F̄ → 0. Substituting the asymptotic

expansions (6.220)–(6.223) and the expression (6.228) into the eigenvalue

equation (6.219), we obtain

0 =
γ(0)+γ(1)F̄+γ(2)F̄ 2+O(F̄ 3)

2
sin
(

dΩ̄F̄ n

2

(
β(1)F̄+β(2)F̄ 2+O(F̄ 3)

))
+

δ(1)F̄+δ(2)F̄ 2+O(F̄ 3)

2
sin
(

dΩ̄F̄ n

2

(
α(0)+α(1) F̄+α(2) F̄2+O(F̄ 3)

))
.

(6.229)

This problem is now split into three separate cases; n < 0, n = 0 and n > 0.

Case when n < 0

When n < 0, the leading-order component of (6.229) becomes

γ(0)

2
sin

(
dΩ̄β(1)F̄ n+1

2

)
= 0. (6.230)

For (6.230) to be satisfied, we need

dΩ̄β(1)F̄ n+1

2
= kπ, (6.231)

where k is an integer. For this to be the case, we must have n = −1 and

Ω̄ =
2kπ

dβ(1)
, for k = 1, 2, 3, . . . . (6.232)
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Hence, by applying the expression (6.225a) for β(1) to (6.232) and substituting

into (6.228), the following leading-order approximations for the eigenvalues Ω

are calculated

Ω ∼ 8kπ(1− ν)(1− 2ν)d−1F̄−1 for k = 1, 2, 3, . . . as F̄ → 0. (6.233)

This yields countably many solutions, all of which are decreasing with

increasing F̄ .

In Figure 6.18, the approximations (6.233) for k = 1, 2, and 3 are plotted

for small F̄ , in the case ν = 0.49, d = 1. Also plotted are the numerically

determined solutions Ω1, Ω2 and Ω3 of the eigenvalue equation (6.198) for

the first, second and third modes, as seen in Figure 6.5 in §6.6. It is seen

that the approximations and numerical solutions are in strong agreement for

F̄ � 1. We note that the small-amplitude, high-frequency variations seen in

the numerical solutions for larger values of F̄ are part of the solution rather

than any numerical deficiency. These high-frequency variations arise from the

second term in the rewritten eigenvalue equation (6.219), which is found to be

negligible at leading order in the limit F̄ → 0.

Figure 6.18: The asymptotic approximations (6.233) of Ω in the limit F̄ → 0, for

ν = 0.49, d = 1 (dashed lines). The approximations when k = 1, 2 and 3 are plotted in

red, blue and black, respectively. Also shown are the numerically determined solutions

Ω1 (red solid line), Ω2 (blue solid line) and Ω3 (black solid line), of the eigenvalue

equation (6.198) for the first, second and third modes, as seen in Figure 6.5.
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Case when n = 0

In the case n = 0, (6.229) becomes

0 =
γ(0) + γ(1)F̄ + γ(2)F̄ 2 + O(F̄ 3)

2
sin
(

dΩ̄
2

(
β(1)F̄ + β(2)F̄ 2 + O(F̄ 3)

))
+

δ(1)F̄ + δ(2)F̄ 2 + O(F̄ 3)

2
sin
(

dΩ̄
2

(
α(0) + α(1)F̄ + α(2)F̄ 2 + O(F̄ 3)

))
.

(6.234)

Taking the Taylor series of

sin
(

dΩ̄
2

(
β(1)F̄ + β(2)F̄ 2

))
about F̄ = 0 and substituting into (6.234), the leading-order eigenvalue

problem at O(F̄ ) is determined to be

dγ(0)β(1)

4
Ω̄ +

δ(1)

2
sin

(
dα(0)

2
Ω̄

)
= 0. (6.235)

Substituting in the expressions (6.224)–(6.227) for the constants α(0), β(1), γ(0)

and δ(1) into (6.235) and rearranging, we obtain

sin(dΩ̄) = dΩ̄. (6.236)

The only (real) solution of (6.236) is the trivial solution Ω̄ = 0. However, as

F̄ → 0, Ω̄ = O(1), and so Ω̄ = 0 cannot be a valid solution. Thus, there are no

non-trivial solutions that arise from this scenario.

Case when n > 0

In the final case n > 0, we take the Taylor series of both sine functions within

(6.229) to obtain

0 =
dΩ̄
4

[(
δ(1)α(0) + γ(0)β(1)

)
F̄ n+1

+
(

δ(2)α(0) + δ(1)α
(1) + γ(0)β(2) + γ(1)β(1)

)
F̄ n+2

]
− 1

12
δ(1)

(
dΩ̄
2

α(0)
)3

F̄ 3n+1 + . . . . (6.237)

Using (6.224)–(6.227), we note that

δ(1)α(0) + γ(0)β(1) = 0.
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Hence, there is no O(F̄ n+1) term in (6.237) and we must examine the next

order to find the leading-order equation. To find non-trivial solutions for Ω̄,

we need the O(F̄ n+2) and O(F̄ 3n+1) terms to have the same size, allowing

them to balance at leading order. To enable this, we set n = 1/2. At leading

order, found to be at O(F̄ 5
2 ), (6.237) then becomes after rearranging

dΩ̄
4

(
δ(2)α(0) + δ(1)α

(1) + γ(0)β(2) + γ(1)β(1)
)
=

1
12

δ(1)
(

dΩ̄
2

α(0)
)3

. (6.238)

Substituting the constants (6.224)–(6.227) into (6.238) and rearranging, we

obtain

Ω̄ =

(
6(1− ν)

d2(1− 2ν)

) 1
2

, (6.239)

and hence, substituting (6.239) into (6.228) yields the following leading-order

approximation for Ω

Ω ∼
(

6(1− ν)

d2(1− 2ν)

) 1
2

F̄ 1
2 as F̄ → 0. (6.240)

Unlike the solutions (6.233) for Ω found for the case when n < 0, the solution

(6.240) increases with increasing F̄ . This solution is also the smallest possible

value of Ω in the case F̄ → 0 and so must be the approximation for the decay

rate Ω0 of the fundamental mode. As such, it is this mode that has the largest

boundary-layer width δ̃B = 1/Ω0. Hence, we find the boundary-layer width of

the deformations in the limit F̄ → 0 to be approximated by

δ̃B ∼
(

1− 2ν

6(1− ν)

) 1
2

dF̄− 1
2 as F̄ → 0. (6.241)

The approximation (6.241) for the boundary-layer width has been plotted in

Figure 6.8 in §6.9, along with the numerically found boundary-layer width. It

is seen that there is excellent agreement between the two solutions for small F̄ .
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6.C Finding the Solution of the Biharmonic Equation

Here we give a summary of the work of Shankar (2003), which looks at the

problem of solving the biharmonic equation

∇4Ψ(x, y) = 0, (6.242)

in the semi-infinite strip x ∈ (−1/2,+1/2), y ∈ (−∞, 0). This problem has the

prescribed boundary conditions

Ψ(x, 0) = p(x), ∇2Ψ(x, 0) = q(x), (6.243)

along the short edge y = 0, where p(x), q(x) are known functions, and

p(x) satisfies the compatibility conditions p(±1/2) = p′(±1/2) = 0, where
′ denotes a derivative with respect to x. The following homogeneous boundary

conditions are also prescribed

Ψ = 0 and
∂Ψ
∂x

= 0 at x = ±1
2

, (6.244)

Ψ→ 0 as y→ −∞. (6.245)

To simplify the problem, it is assumed that p(x), q(x) and Ψ(x, y) are all

symmetric in x. However, the method applied here can also be applied to

the case of general p(x), q(x) and Ψ(x, y).

To solve the linear system (6.242)–(6.245), separable solutions of the form

Ψ(x, y) = φ(x)eκy, (6.246)

are sought, where κ is a complex scalar. In order for this type of solution to

satisfy the boundary condition (6.245) as y→ −∞, it is assumed that Re(κ) > 0.

6.C.1 Solution for φ(x)

Substituting (6.246) into (6.242) and (6.244), the following fourth–order ODE

governing φ(x) is found

d4φ

dx4 + 2κ2 d2φ

dx2 + κ4φ = 0, (6.247)

as well as the following homogeneous boundary conditions

φ(x) = 0 and
dφ

dx
= 0 at x = ±1

2
. (6.248)
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Solving the governing ODE (6.247) and using the fact that φ(x) is assumed

to be symmetric about x = 0, the following general solution for φ(x) is derived

φ(x) = Ax sin(κx) + B cos(κx), (6.249)

where A, B are constants to be found.

Substituting (6.249) into the boundary conditions (6.248) and rewriting in

matrix form yields(
1
2 sin

(
κ
2

)
cos

(
κ
2

)
sin
(

κ
2

)
+ κ

2 cos
(

κ
2

)
−κ sin

(
κ
2

) )( A

B

)
= 0. (6.250)

It is noted that by rearranging the first component of (6.250), the constant B

may be rewritten in terms of A as follows

B = −A
2

tan
(κ

2

)
. (6.251)

For non-trivial solutions for A and B to exist, the determinant of the matrix

within (6.250) must be zero. By setting this, the following eigenvalue equation

for κ is derived

sin(κ) = −κ. (6.252)

This has countably many solutions for κ which we label as κn, where n ≥ 0.

As we have countably many solutions for κ, we also have countably many

modes φn(x) given by

φn(x) = An

(
x sin(κnx)− 1

2
tan

(κn

2

)
cos(κnx)

)
, (6.253)

where the coefficients An are to be determined using the boundary conditions

(6.243) at y = 0. The solution of φ(x) is comprised of the sum of the modes

φn(x) as follows

φ(x) =
∞

∑
n=0

φn(x). (6.254)

We then substitute (6.254) into (6.246) to obtain the following for Ψ(x, y)

Ψ(x, y) =
∞

∑
n=0

φn(x)eκy. (6.255)

6.C.2 A Biorthogonality Relation Between the Eigenfunctions φn(x)

In order for Ψ(x, y) to be fully determined, the coefficients An must be

determined. Shankar (2003) achieves this using a biorthogonal relation between
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the eigenfunctions φn(x). The derivation of this biorthogonal relation is now

provided.

The first step in deriving the biorthogonal relation is to decompose the

governing ODE (6.247) for φ(x) (also satisfied by each of the modes φn(x))

into a pair of coupled, second-order ODEs. Replacing κ and φ(x) by the nth

eigenvalue κn and nth mode φn(x) in (6.247), it is seen that (6.247) may be

factorized as follows (
d2

dx2 + κ2
n

)2

φn = 0. (6.256)

Using this factorization, we see that it is convenient to introduce a new function

un(x) defined as

un(x) =
d2φn

dx2 + κ2
nφn. (6.257)

Substituting (6.257) into (6.256) yields

d2un

dx2 + κ2
nun = 0. (6.258)

Hence, the original governing ODE (6.247) has been decomposed into the

coupled pair of equations (6.257) and (6.258). Rearranging and rewriting these

in matrix form gives

LUn = κ2
nUn, (6.259)

where

L =

(
− d2

dx2 1

0 − d2

dx2

)
, Un =

(
φn(x)

un(x)

)
. (6.260)

We now define the dual space vectors Vn and the dual space inner product

of two vectors. We first set

Vn =

(
χn(x)

vn(x)

)
, (6.261)

where χn(x), vn(x) are arbitrary functions of x, and the vn(x) are chosen to

satisfy the same homogeneous boundary conditions (6.248) as φn(x) along the

long edges at x = ±1/2. The dual space inner product of Un and Vn is defined

by

〈Un, Vn〉 =
∫ 1/2

−1/2
φn(x)χn(x) + un(x)vn(x)dx. (6.262)

Taking the inner product of LUn and Vn yields

〈LUn, Vn〉 =
∫ 1

2

− 1
2

(
un(x)− d2φn

dx2

)
χn(x)− d2un

dx2 vn(x)dx,

=
∫ 1

2

− 1
2

−φn(x)
d2χ

dx2 + un(x)
(

χn(x)− d2vn

dx2

)
dx, (6.263)
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where we have used integration by parts to move the derivatives from the

functions φn(x), un(x) to the functions χn(x), vn(x). We have also used the fact

that φn(x) and vn(x) both satisfy the homogeneous boundary conditions (6.248)

at x = ±1/2 to eliminate the boundary terms that arise through integration by

parts. The expression (6.263) may be rewritten using an adjoint operator L∗ in

the following way

〈LUn, Vn〉 = 〈Un, L∗Vn, 〉 ∀Un, Vn, (6.264)

where

L∗ =

(
− d2

dx2 0

1 − d2

dx2

)
. (6.265)

We now set Vn to be an eigenvector of L∗ such that

L∗Vn = ι2nVn, (6.266)

where ιn are the corresponding eigenvalues of Vn. It is seen that the

components of (6.266) have the same form as the components of the relation

LUn = κ2
nUn, only with vn(x), χn(x) and ιn taking the place of φn(x), un(x)

and κn, respectively. Hence, the eigenvectors Vn of L∗, and their corresponding

eigenvectors ιn must be

Vn =

(
un(x)

φn(x)

)
, ιn = κn, (6.267)

and we have from (6.266)

L∗Vn = κ2
nVn. (6.268)

Using the relations (6.259), (6.264) and (6.268), the following is found

〈LUn, Vm〉 = 〈κ2
nUn, Vm〉 = κ2

n〈Un, Vm〉

= 〈Un, L∗Vm〉 = 〈Un, κ2
mVm〉 = κ2

m〈Un, Vm〉. (6.269)

Hence, we have κ2
n〈Un, Vm〉 = κ2

m〈Un, Vm〉, which implies

(κ2
n − κ2

m)〈Un, Vm〉 = 0. (6.270)

Hence if κm 6= κn, then 〈Un, Vm〉 = 0 and (6.270) is the biorthogonality relation

needed to derive the unknown constants An in the expression (6.253) for the

modes φn(x).
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6.C.3 Determining the Constants An

Using the biorthogonality relation (6.270) between the eigenfunctions φn(x),

it is now possible to apply the boundary conditions (6.243) at y = 0 and

determine the unknown constants An.

Substituting the representation (6.255) for Ψ(x, y) into the boundary

conditions (6.243), we obtain

p(x) =
∞

∑
n=0

φn(x), q(x) =
∞

∑
n=0

d2φn

dx2 + κ2
nφn(x) =

∞

∑
n=0

un(x), (6.271)

where we have used (6.257) to rewrite the second condition in terms of the

functions un(x). We recall that the general solution (6.253) for the φn(x) is

φn(x) = An

(
x sin(κnx)− 1

2
tan

(κn

2

)
cos(κnx)

)
,

and substituting (6.253) into (6.257), we find

un(x) = 2Anκn cos(κnx). (6.272)

The conditions (6.271) may be rewritten in the following form(
p(x)

q(x)

)
=

∞

∑
n=0

Un, (6.273)

where we have set UT
n = (φn(x), un(x)).

We now set VT
m = (um(x), φm(x)) and take the inner product of (6.273) with

Vm. Doing so yields 〈(
p(x)

q(x)

)
, Vm

〉
=

∞

∑
n=0
〈Un, Vm〉. (6.274)

Using the biorthogonality relation (6.270), it is seen that all the modes on

the right-hand-side of (6.274) vanish apart from the mode n = m. With the

definition (6.262), the inner product of Um and Vm can be directly calculated to

be

〈Um, Vm〉 = −2A2
m cos2

(κm

2

)
, (6.275)

where the eigenvalue equation (6.252) has been used to simplify this expression.

It is also calculated that〈(
p(x)

q(x)

)
, Vm

〉
=

〈(
p(x)

q(x)

)
,

(
2Amκm cos(κmx)

Am
(
x sin(κmx)− 1

2 tan
(

κm
2

)
cos(κmx)

) )〉

= Am

∫ 1
2

− 1
2

q(x)
(

x sin(κmx)−1
2

tan
(κm

2

)
cos(κmx)

)
+ 2p(x)κm cos(κmx)dx. (6.276)
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Substituting (6.275) and (6.276) into (6.274) and rearranging, the following

expression for the constants Am is obtained

Am = − 1
2 cos2

(
κm
2

) ∫ 1
2

− 1
2

2p(x)κm cos(κmx)

+ q(x)
(

x sin(κmx)−1
2

tan
(κm

2

)
cos(κmx)

)
dx. (6.277)

It is noted that (6.277) is different from the expression for Am derived by

Shankar (2003) by a factor of 4κm. However, (6.277) is consistent with the

computed values of Am presented in the work of Shankar (2003), leading us

to believe that the expression (6.277) for Am is correct. Using this expression,

the modes φn(x) can be fully calculated using (6.253). Provided that the set of

eigenfunctions φn is complete, these eigenfunctions along with the expression

(6.255) give the complete analytical solution of Ψ(x, y). For more details on

the completeness of the set of biharmonic eigenfunctions, also known as the

Papkovich–Fadle eigenfunctions, see Gregory (1980).

6.C.4 Application to the Semi-Infinite Block Under Tension

The work of Shankar (2003) summarised here gives an idea of how it may

be possible to find the full analytical solution for the problem of bending a

semi-infinite block under tension. Unfortunately, as the governing equation

(6.88) and boundary and integral conditions (6.89)–(6.93) for the normal

deformation u1 are more complicated than the system considered by Shankar

(2003), a biorthogonality relation allowing us to determine the constants An

in the expressions (6.110), (6.111) for the deformations u1, u2 has not yet been

found. However, if such a relation is found, it would allow a complete analytical

solution to the problem to be determined.



Chapter 7

A One-Dimensional Model for

Bending a Semi-Infinite Block

Under Tension

7.1 Introduction

In this chapter, we examine the possibility of using a 1D model to describe

a semi-infinite block being bent under tension, which is modelled in 2D in

Chapter 6. By considering different methods of deriving a 1D model for this

problem, more details of the underlying mechanisms occurring within the

boundary layers found in the model in Chapter 6 are revealed.

In §3.6, a toy model was derived that modelled an axial-bending boundary

layer near the ends of the elastic-walled tube modelled in Chapter 2. This

model predicted that the dimensionless bending boundary-layer width δB has

magnitude δB = O(F− 1
2 `−1), where F = O(1) and ` � 1 are dimensionless

parameters representing the axial tension and tube length. The problem of

adding an axial-bending boundary layer to the model in Chapter 2 was then

split into two regimes depending on the sizes of the length of the tube ` and

the dimensionless tube wall thickness δ � 1. In the first of these regimes,

regime I, the case where δ and ` are set such that δ` � 1 is considered.

Using the estimate from the toy model, it was predicted that δB � δ and the

bending layer would be larger than the tube wall thickness. This implied that

the Kirchhoff–Love shell equations (Flügge, 1972; Søndergaard, 2007) used to

model the wall mechanics in the bulk of the tube in Chapter 2 could still be

applied to the bending layer. This regime was studied in Chapters 4 and 5. In

247
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the second of these regimes, regime II, we considered the scenario where δ and

` are set to satisfy δ`� 1. In this case, the toy model estimates that δB � δ and

the bending layer is smaller than the tube wall thickness. As it was predicted

that δ was no longer the smallest geometric parameter, Kirchhoff–Love shell

theory could not be used in this regime to model the expected bending layer.

Instead of using Kirchhoff–Love shell theory to model the tube wall

in regime II, we returned to first principles and derived a 2D model for

a semi-infinite block being bent under tension in Chapter 6. This block

represented a two-dimensional cross-section of the tube wall in the normal and

axial directions, near the ends of the elastic-walled tube where it is clamped

onto fixed rigid tubes. In solving this model, it was found that in the case

δ` � 1, the dimensional boundary-layer width δ̃B had size δ̃B = O(dδ`),

where d is the width of the block. Hence, it was seen that δ̃B � d and the

boundary-layer width is larger than the width of the block. It was found that

this boundary layer is in fact a transverse shear-relaxation layer as opposed to

an axial-bending layer.

As δ̃B � d, it is possible that Kirchhoff–Love shell theory, or some other

approximation applying the fact that d is small compared to the other geometric

parameters, can be used to derive a 1D model for this shear layer. This

possibility is investigated in this chapter by deriving and testing three different

one-dimensional models against the 2D model derived in Chapter 6. In doing

so, more information about the mechanics within the shear layer is obtained.

This chapter is arranged as follows. In §7.2, a recap of the mathematical

set-up of the linearised model of bending a semi-infinite block under tension, as

derived in §6.4, is provided. In §7.3, the possibility of deriving an appropriate

1D model for the linearised problem using Kirchhoff–Love shell theory is

investigated. It is found that an accurate 1D model cannot be derived using

this theory as one of the assumptions made in Kirchhoff–Love shell theory

is violated. In §7.4, a 1D model is derived by averaging the components

of Cauchy’s momentum equation, the governing equation for the linearised

system in §6.4. This model yields exponentially decaying deformations as the

axial coordinate x2 → ∞. The decay rates of these deformations have the same

qualitative behaviour as the decay rate of the fundamental mode found in the

2D model, but there is still a discrepancy between these decay rates. The final

1D model considered here is derived in §7.5, which is formed using the system

(6.88)–(6.93) governing the semi-infinite block with the axial deformation u2
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eliminated. This model produces deformations consisting of exponentially

decaying modes, and the decay rate of the slowest decaying of these modes

matches the decay rate of the fundamental mode in the 2D model. However,

there are still large discrepancies between the deformations from the 1D and

2D models. Finally, to explain these discrepancies, the behaviour of the normal

deformation u1 near the clamped boundary of the block is evaluated in §7.6.

Here a 2D compression effect not incorporated into the 1D models is found

near the clamped boundary.

7.2 Mathematical Set-Up

We recall the linearised model derived in §6.4 and depicted in Figure 7.1. Full

details of the original set-up can be found in §6.2. Here, we have an almost

incompressible semi-infinite block of dimensional thickness d. Dimensional

Eulerian coordinates in the normal and semi-infinite (axial) direction have been

set to be x1 and x2 respectively. The block is set to occupy the region x1 ∈ [0, d],

x2 ∈ [0, ∞), and has incremental Young’s modulus E and Poisson’s ratio ν.

The block is subject to a scaled dimensionless axial tension F̄ . It is noted

that F̄ = O(δ2`2), where δ � 1 and ` � 1 are the dimensionless tube wall

thickness and tube length in the model of the elastic-walled tube in Chapter 2.

In the original set-up before the linearisation, a small amplitude deformation

u =

(
u1

u2

)
,

is induced on the block by clamping the boundary at x2 = 0 at an angle φ to

the x1-axis. Here, u1 and u2 are the components of the deformation in the x1

and x2-directions respectively.

2(1− ν) ∂2u1
∂x2

1
+ ∂2u2

∂x1∂x2
+ (1− 2ν + F̄ ) ∂2u1

∂x2
2
= 0

(x2 = 0)

u =
(

0, tan(φ)
(

x1 − d
2

))
∇u1,∇u2 → 0

(x2 → ∞)

(1− ν) ∂u1
∂x1

+ ν ∂u2
∂x2

= 0, ∂u1
∂x2

+ ∂u2
∂x1

= 0

(x1 = 0)

(1− ν) ∂u1
∂x1

+ ν ∂u2
∂x2

= 0, ∂u1
∂x2

+ ∂u2
∂x1

= 0

(x1 = d)

(1− 2ν) ∂2u2
∂x2

1
+ ∂2u1

∂x1∂x2
+ (2(1− ν) + F̄ ) ∂2u2

∂x2
2
= 0

Figure 7.1: The linearised problem of a semi-infinite block being bent under axial

tension. The domain is given by A = {(x1, x2) : 0 ≤ x1 ≤ d, 0 ≤ x2}.
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The linearised governing system is given by (6.42)–(6.46). It can be shown

that this system may be rewritten in the following way

2(1− ν)
∂2u1

∂x2
1
+

∂2u2

∂x1∂x2
+ (1− 2ν + F̄ )∂2u1

∂x2
2
= 0 for 0 < x1 < d, x2 > 0,

(7.1)

(1− 2ν)
∂2u2

∂x2
1
+

∂2u1

∂x1∂x2
+ (2(1− ν) + F̄ )∂2u2

∂x2
2
= 0 for 0 < x1 < d, x2 > 0,

(7.2)

u1 = 0, and u2 = tan(φ)
(

x1 −
d
2

)
at x2 = 0, (7.3)

(1− ν)
∂u1

∂x1
+ ν

∂u2

∂x2
= 0 at x1 = 0, d, (7.4)

∂u1

∂x2
+

∂u2

∂x1
= 0 at x1 = 0, d, (7.5)

∇u1,∇u2 → 0 as x2 → ∞. (7.6)

It is noted that (6.46) was found to be equivalent to (7.6) in Appendix 6.A. Due

to the form of the governing equations (7.1) and (7.2), and the symmetry of

the boundary conditions (7.3)–(7.6), it is found that u1 and u2 are symmetric

and antisymmetric about x1 = d/2, respectively. Finally, it is noted that as this

system is linear, the angle of clamping φ only alters the overall amplitude of

the deformations.

7.3 Application of Kirchhoff–Love Shell Theory

We now consider deriving an appropriate 1D model for the problem of bending

a semi-infinite block under tension using Kirchhoff–Love shell theory.

In §6.9.1, it was found that the boundary-layer width δ̃B of the deformations

is larger than the thickness d of the block in both the regimes F̄ → 0 and

F̄ → ∞. As such, the thickness of the block is smaller than any of the

other geometric properties of the block, which is necessary for the use of

Kirchhoff–Love shell theory. Because this condition is met, it initially appears

that Kirchhoff–Love shell theory may be applied to the current problem when

the axial tension is both small and large. (This is contrary to the prediction of

the toy model in §3.6, which estimated that for large tension the boundary-layer

width would be too small for Kirchhoff–Love shell theory to be applicable.)

Using Kirchhoff–Love shell theory, a 1D model can be derived for bending a

semi-infinite block under tension. This is done by first using the Kirchhoff–Love
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shell equations (Flügge, 1972; Søndergaard, 2007) to derive axial force-balance,

normal force-balance and moment-balance equations, averaged over the width

of the block. Usually, these equations are derived using a Cauchy stress tensor

σ with a constitutive law for an isotropic linearly elastic solid. However, a

different constitutive law must be used here that incorporates the pre-stress

and its interactions with the rotations of the material (see §6.3). As such,

in the 1D model the linearised constitutive law (6.23) for σ, derived using a

modified Saint Venant–Kirchhoff model (Howell et al., 2009, p. 230) in §6.3, is

applied instead of the constitutive law for an isotropic linearly elastic solid. In

doing so, the effects of the pre-stress are included in the modified force and

moment-balance equations.

A pair of truncated Taylor series about x1 = d/2 are then used to

approximate the deformations u1 and u2. By substituting these truncated series

into the modified force and moment-balance equations, as well as into the

linearised boundary conditions (7.3)–(7.6) of the linearised system (7.1)–(7.6)

governing the block, a new one-dimensional governing system is formed.

Solving this new system, deformations that decay exponentially in the axial

direction are found. However, the boundary-layer width of these deformations

is found to behave vastly differently to the boundary-layer width found in the

2D model in Chapter 6, for large values of F̄ . As this 1D model does not

produce deformations that accurately display the behaviour shown in the 2D

model, the details of the 1D model are omitted here.

This discrepancy in the boundary-layer widths occurs because in the case

F̄ → ∞ (δ` � 1), another of the assumptions needed in Kirchhoff–Love shell

theory is violated. The full set of assumptions are listed by Søndergaard (2007),

and one of the necessary assumptions is that the normal to the centre line of the

material is preserved after a deformation. That is, the linearised strain tensor

of the material eij, defined by

eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
,

must satisfy

ei1 = 0,

where the x1-direction is normal to the shell. Hence, we must have

∂u1

∂x2
= −∂u2

∂x1
, (7.7)

for Kirchhoff–Love shell theory to hold.
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In Figure 7.2, ∂u1/∂x2 and −∂u2/∂x1 have been plotted against x1, at a fixed

x2 within the boundary layer, for small and large F̄ . In the plot with small F̄
(F̄ = 10−4), it is seen that although the two curves behave slightly differently,

the difference in the amplitudes of the curves is very small, and both are well

approximated by being uniform in x1. Hence, we have

∂u1

∂x2
∼ −∂u2

∂x1
,

and the assumption of preservation of normals holds. Thus, the Kirchhoff–Love

shell equations can accurately model the mechanics within the boundary layer

for small F̄ . In the plot with large F̄ (F̄ = 102) however, there is a large

difference between the values of ∂u1/∂x2 and −∂u2/∂x1. As such

∂u1

∂x2
� −∂u2

∂x1
,

and the assumption of preservation of normals is violated. Because of this,

Kirchhoff–Love shell theory cannot be used to model the mechanics within the

boundary layer for large F̄ .
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Figure 7.2: The numerical solutions for ∂u1/∂x2 (solid lines) and −∂u2/∂x1 (dashed

lines) across x1 for x2 = 5, in the case of small F̄ (F̄ = 10−4) and large F̄ (F̄ = 102).

Here, d = 1, ν = 0.49, tan(φ) = 1 and xmax = 100. The boundary-layer widths δ̃B in

the cases of small and large F̄ are calculated to be δ̃B ≈ 8.1 and δ̃B ≈ 22.5 respectively.
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7.4 A 1D Model Derived from the Averaged Cauchy’s

Momentum Equation

Another potential 1D model that is considered is one that is derived from the

components (6.65), (6.66) of Cauchy’s momentum equation. The full details

of the derivation of the model and its solution are found in Appendix 7.A.

In summary, a pair of governing equations that are only dependent on the

x2 coordinate are derived by averaging the normal force-balance equation

(6.65) as well as the moment-balance equation (derived by multiplying the

axial-force balance equation (6.66) by x1 − d/2) over the width of the block.

Taylor series of u1 and u2 are then taken about x1 = d/2. These series

are truncated after the first non-zero terms and then substituted into the

averaged normal force-balance and moment-balance equations, yielding a pair

of coupled ODEs in terms of two variables. Boundary conditions are then

obtained by substituting the truncated series into the boundary conditions

(7.3)–(7.6) of the linearised system (7.1)–(7.6) governing the block.

Solving this model, it is found that u1 and u2 are approximated by

u1 ∼
(1− 2ν) tan φ

(1− 2ν + F̄ )Λ̄

(
e−Λ̄x2 − 1

)
, (7.8)

u2 ∼
(

x1 −
d
2

)
tan φ e−Λ̄x2 . (7.9)

Hence, both u1 and u2 decay exponentially to a constant, with decay rate

Λ̄ =
1
d

(
12(1− 2ν)F̄

(1− 2ν + F̄ )(2(1− ν) + F̄ )

) 1
2

, (7.10)

as x2 → ∞. Denoting the boundary-layer width from this 1D model as

δ̃CM = 1/Λ̄, it is found that

δ̃CM = d
(
(1− 2ν + F̄ )(2(1− ν) + F̄ )

12(1− 2ν)F̄

) 1
2

. (7.11)

This is plotted against F̄ in Figure 7.3, along with the boundary-layer width δ̃B

from the 2D model, as seen in Figure 6.8. In both plots, d = 1 and ν = 0.49.

It is seen that although δ̃CM has the same gradient (and thus the same power

of F̄ ) as δ̃B in the limits F̄ → 0 and F̄ → ∞, there is a constant difference

between the two widths in both of these limits. This difference is particularly

large for small values of F̄ . As the decay rate Λ̄ and boundary-layer width

δ̃CM are not matching with the fundamental decay rate Ω0 and boundary-layer
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width δ̃B from the 2D model, the 1D model in Appendix 7.A is not accurately

representing the deformations, even if it is displaying the right qualitative

behaviour for the boundary-layer width.

Figure 7.3: The boundary-layer width δ̃CM = Λ̄−1 given by (7.11), obtained from the

1D model in Appendix 7.A, against F̄ for d = 1, ν = 0.49 (blue line). The solution

of the boundary-layer width δ̃B obtained from the 2D model, as seen in Figure 6.8, is

plotted in red.

One cause of the differences between the 1D model in Appendix 7.A and

the 2D model is the use of the truncated Taylor series to approximate the

deformations u1 and u2. As these Taylor series are truncated, information

from the higher-order terms, which can significantly contribute to the overall

solution, is lost. In particular, in the 1D model derived here, the deformations

u1 and u2 are assumed to be constant and linear respectively in the x1-direction.

However in the 2D model, u1 and u2 behave as trigonometric functions over

the width of the block. This behaviour can be clearly seen in Figure 6.6. In

order to better model this behaviour, higher-order terms are needed in the

truncated Taylor series for u1 and u2. Hence, one way to improve on the model

in Appendix 7.A is to derive a 1D model that incorporates more terms from the

Taylor series of u1 and u2. Such a model is derived in §7.5.
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7.5 Deriving a 1D Model from the System (6.88)–(6.93)

A new one-dimensional model for u1 is now derived from the governing system

(6.88)–(6.93). By using this system instead of the system (7.1)–(7.6) written

in terms of u1 and u2, it is possible to derive a system with three non-trivial

governing equations instead of the two found in the 1D model in §7.4. Using

this extra governing equation, three terms from a Taylor series of u1 are

incorporated into this model, as opposed to just the pair of leading-order terms

in the Taylor series of u1 and u2 that were incorporated into the model in §7.4.

As the model considered here incorporates more terms from the Taylor series,

the deformations found in this 1D model are found to match the deformations

in the 2D model better than either of the previous 1D models considered.

The system (6.88)–(6.93) once again is

0 =
∂4u1

∂x4
1
+

[
2(1− ν) + F̄

2(1− ν)
+

1− 2ν + F̄
1− 2ν

]
∂4u1

∂x2
1∂x2

2

+
(2(1− ν) + F̄ )(1− 2ν + F̄ )

2(1− ν)(1− 2ν)

∂4u1

∂x4
2

, (7.12)

∇u1 → 0 as x2 → ∞, (7.13)

u1 = 0 at x2 = 0, (7.14)

2(1− ν)
∂2u1

∂x2
1
− (2ν− F̄ )∂2u1

∂x2
2
= 0 at x1 = 0, d, (7.15)

(1− 2ν + F̄ )
[

∂u1

∂x2

]x2→∞

x2=0
+ 2(1− ν)

∫ ∞

0

∂2u1

∂x2
1

dx2 = tan(φ), (7.16)

∫ d

0

(
(1− ν)(1− 2ν)

∂2u1

∂x2
1
− ν(1− 2ν + F̄ )∂2u1

∂x2
2

)
dx1 = 0. (7.17)

To derive a 1D model from this system, a Taylor series for u1 about x1 = d/2 is

again considered. This series will instead be truncated after the third non-zero

term, as opposed to truncating after the first non-zero terms in the Taylor series

for u1 and u2 in the 1D model in §7.4. Truncating the Taylor series for u1 at this

higher order allows constant, quadratic and quartic variation in u1 across the

width of the block to be incorporated into the model. This is different from the

model in §7.4 that instead incorporates only constant behaviour in u1 and linear

behaviour in u2 across the width of the block. Although it is possible to include

even more higher-order terms from the Taylor series of u1 within the model,

it is found that only the first three terms of the Taylor series appear at leading
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order in d and x1 − d/2 in the governing equations. Hence, the higher-order

governing equations in the system are needed to find the higher-order terms in

the Taylor series. As such, to derive the simplest complete governing system,

only the first three terms of the Taylor series for u1 are considered.

7.5.1 Governing Equations, Boundary and Integral Conditions

As a starting point for deriving a one-dimensional model from the system

(7.12)–(7.17), the following Taylor series for u1 about x1 = d/2 is considered

u1 = u(0)
1 (x2) +

(
x1 −

d
2

)2

u(2)
1 (x2) +

(
x1 −

d
2

)4

u(4)
1 (x2) + . . . , (7.18)

where we set u(1)
1 = u(3)

1 = · · · = 0 so that u1 is symmetric about x1 =

d/2, as required by the symmetry of the system (see §6.2). To obtain the

governing equations for the one-dimensional model, (7.18) is substituted into

the governing equation (7.12), the boundary condition (7.15) at x1 = 0, d and

the integral condition (7.17) in the x1-direction. Doing so yields

0 = Λ2
1Λ2

2
d4u(0)

1

dx4
2

+ 2(Λ2
1 + Λ2

2)
d2u(2)

1
dx2

+ 24u(4)
1

+

(
x1 −

d
2

)2
(

Λ2
1Λ2

2
d4u(2)

1

dx4
2

+ 12(Λ2
1 + Λ2

2)
d2u(4)

1

x2
2

+ . . .

)

+

(
x1 −

d
2

)4
(

Λ2
1Λ2

2
d4u(4)

1

x4
2

+ . . .

)
+ O

((
x1 −

d
2

)6
)

, (7.19)

0 = −(2ν− F̄ )
d2u(0)

1

dx2
2

+ 4(1− ν)u(2)
1 + d2

(
− (2ν− F̄ )

4
d2u(2)

1

dx2
2

+ 6(1− ν)u(4)
1

)

+d4

(
− (2ν− F̄ )

16
d2u(4)

1

dx2
2

+ . . .

)
+ O(d6), (7.20)

0 = d

(
−ν(1− 2ν + F̄ )

d2u(0)
1

dx2
2

+ 2(1− ν)(1− 2ν)u(2)
1

)

+d3

(
−ν(1− 2ν + F̄ )

12
d2u(2)

1

dx2
2

+ (1− ν)(1− 2ν)u(4)
1

)

+d5

(
−ν(1− 2ν + F̄ )

80
d2u(4)

1

dx2
2

+ . . .

)
+ O(d7), (7.21)

where Λ1 and Λ2 are given by

Λ1 =

√
2(1− ν) + F̄

2(1− ν)
, Λ2 =

√
1− 2ν + F̄

1− 2ν
,
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as in (6.101), and the dots represent the u(6)
1 and higher-order terms from

the Taylor series (7.18) of u1. Substituting the Taylor series (7.18) into the

remaining conditions (7.13), (7.14) and (7.16) of the system (7.12)–(7.17) yields

the following conditions

2
(

x1 −
d
2

)
u(2)

1 + 4
(

x1 −
d
2

)3

u(4)
1 + · · · → 0 as x2 → ∞, (7.22)

du(0)
1

dx2
+

(
x1 −

d
2

)2 du(2)
1

dx2
+

(
x1 −

d
2

)4 du(4)
1

dx2
+ · · · → 0 as x2 → ∞, (7.23)

u(0)
1 +

(
x1 −

d
2

)2

u(2)
1 +

(
x1 −

d
2

)4

u(4)
1 + · · · = 0 at x2 = 0, (7.24)

tan φ = (1− 2ν + F̄ )
[

du(0)
1

dx2

]x2→∞

x2=0

+ 4(1− ν)
∫ ∞

0
u(2)

1 dx2

+

(
x1 −

d
2

)2
[
(1− 2ν + F̄ )

[
du(2)

1
dx2

]x2→∞

x2=0

+ 24(1− ν)
∫ ∞

0
u(4)

1 dx2

]

+

(
x1 −

d
2

)4
[
(1− 2ν + F̄ )

[
du(4)

1
dx2

]x2→∞

x2=0

+ . . .

]

+ O

((
x1 −

d
2

)6
)

, (7.25)

where once again the dots represent the u(6)
1 and higher-order terms from the

Taylor series (7.18) of u1.

It is seen that substituting the Taylor series (7.18) into the system

(7.12)–(7.17) gives a set of three coupled governing equations for the functions

u(0)
1 (x2), u(2)

1 (x2), u(4)
1 (x2), . . . comprising the Taylor series, as well as some

boundary and integral conditions for these functions. As we only have three

governing equations, the leading-order equations in d and x1 − d/2 can only

be fully solved for three of the functions within the Taylor series. As such,

the Taylor series is truncated after the u(4)
1 term to obtain the following

approximation for u1

u1 ∼ u(0)
1 (x2) +

(
x1 −

d
2

)2

u(2)
1 (x2) +

(
x1 −

d
2

)4

u(4)
1 (x2), (7.26)

and the system (7.19)–(7.25) must be converted into a system to be solved for

u(0)
1 , u(2)

1 and u(4)
1 .

First, the governing equations (7.19)–(7.21) are converted into a set of three

coupled ODEs for u(0)
1 , u(2)

1 and u(4)
1 . This is achieved by neglecting the terms of
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O((x1 − d/2)2), O(d4) and O(d5) in (7.19), (7.20) and (7.21) respectively. Doing

so, we neglect all the u(6)
1 and higher-order terms from the Taylor series (7.18)

that appear within (7.19)–(7.21) at these sizes. Neglecting these terms yields the

following coupled ODEs

0 = Λ2
1Λ2

2
d4u(0)

1

dx4
2

+ 2(Λ2
1 + Λ2

2)
d2u(2)

1
dx2

+ 24u(4)
1 , (7.27)

0 = −(2ν− F̄ )
d2u(0)

1

dx2
2

+ 4(1− ν)u(2)
1 + d2

(
− (2ν− F̄ )

4
d2u(2)

1

dx2
2

+ 6(1− ν)u(4)
1

)
,

(7.28)

0 = −ν(1− 2ν + F̄ )
d2u(0)

1

dx2
2

+ 2(1− ν)(1− 2ν)u(2)
1

+ d2

(
−ν(1− 2ν + F̄ )

12
d2u(2)

1

dx2
2

+ (1− ν)(1− 2ν)u(4)
1

)
, (7.29)

where (7.21) has been divided by a factor of d to give (7.29).

Next, the boundary conditions (7.22)–(7.24) are converted to conditions

on u(0)
1 , u(2)

1 and u(4)
1 . By neglecting terms involving u(6)

1 , u(8)
1 , . . . within

(7.22)–(7.24), and equating the coefficients of (x1 − d/2)n, it is found that

du(0)
1

dx2
, u(2)

1 , u(4)
1 → 0 as x2 → ∞, (7.30)

u(0)
1 (0) = u(2)

1 (0) = u(4)
1 (0) = 0. (7.31)

It is also found from (7.23) that

du(2)
1

dx2
,

du(4)
1

dx2
→ 0 as x2 → ∞. (7.32)

However, it is later found that the governing equations (7.27)–(7.29) of this

system can be reduced to a homogeneous, sixth-order ODE with constant

coefficients for u(0)
1 . This form of ODE has exponential, sinusoidal, linear and

constant solutions, and it is also later found that the functions u(2)
1 and u(4)

1 have

these behaviours as well. As such, any solution of (7.27)–(7.29) that satisfies the

conditions (7.30) also satisfies the conditions (7.32). Hence, the conditions (7.32)

are superfluous.

Finally, two suitable integral conditions are obtained from (7.25) by equating

the coefficients of (x1 − d/2)0 and (x1 − d/2)2, and neglecting terms of

O((x1 − d/2)4) as the functions u(6)
1 , u(8)

1 , . . . appear at this order. The two
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integral conditions are found to be

tan φ = (1− 2ν + F̄ )
[

du(0)
1

dx2

]x2→∞

x2=0

+ 4(1− ν)
∫ ∞

0
u(2)

1 dx2, (7.33)

0 = (1− 2ν + F̄ )
[

du(2)
1

dx2

]x2→∞

x2=0

+ 24(1− ν)
∫ ∞

0
u(4)

1 dx2. (7.34)

It is later found that the boundary and integral conditions (7.30)–(7.34)

impose nine constraints on a system with only eight degrees of freedom. Hence,

one of these constraints will have to be dropped to enable a solution for the

system (7.27)–(7.34) to be found. This is considered further in §7.5.5, but for

the time being we will only apply the conditions (7.30) to ensure the arising

deformations decay as x2 → ∞.

7.5.2 Eliminating u(2)
1 and u(4)

1 from the Governing Equations

To solve the system (7.27)–(7.34), u(2)
1 (x2) and u(4)

1 (x2) are first eliminated

from the governing equations (7.27)–(7.29) to form a single ODE for u(0)
1 (x2).

Rearranging (7.27) gives

u(4)
1 = −Λ2

1Λ2
2

24
d4u(0)

1

dx4
2
− (Λ2

1 + Λ2
2)

12
d2u(2)

1

dx2
2

. (7.35)

Substituting (7.35) into (7.28) and (7.29) and rearranging yields the following

Au(2)
1 = Bu(0)

1 , (7.36)

Cu(2)
1 = Du(0)

1 , (7.37)

where the operators A, B, C and D are defined as

A = 4(1− ν)− d2

4
[
2ν− F̄ + 2(1− ν)(Λ2

1 + Λ2
2)
] d2

dx2
2

, (7.38)

B = (2ν− F̄ ) d2

dx2
2
+

d2

4
(1− ν)Λ2

1Λ2
2

d4

dx4
2

, (7.39)

C = 2(1− ν)(1− 2ν)− d2

12
[
ν(1− 2ν + F̄ ) + (1− ν)(1− 2ν)(Λ2

1 + Λ2
2)
] d2

dx2
2

,

(7.40)

D = ν(1− 2ν + F̄ ) d2

dx2
2
+

d2

24
(1− ν)(1− 2ν)Λ2

1Λ2
2

d4

dx4
2

. (7.41)

We now eliminate u(2)
1 from (7.36) and (7.37). To do so, we apply the operator

C to (7.36), as well as apply the operator A to (7.37). The difference between
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these expressions then gives

(BC −AD) u(0)
1 = 0. (7.42)

Substituting the definitions (7.38)–(7.41) for the operators A, B, C and D into

(7.42) and rearranging, the following ODE for u(0)
1 is obtained

d6u(0)
1

dx6
2
− M̄

d2
d4u(0)

1

dx4
2

+
N̄
d4

d2u(0)
1

dx2
2

= 0, (7.43)

where M̄ and N̄ are set to be

M̄ =
64
(
(1− 2ν)2 + F̄ (1− 2ν)(2− ν) + F̄ 2 ( 7

8 − ν
))

F̄ (2(1− ν) + F̄ )(1− 2ν + F̄ )
, (7.44)

N̄ =
384(1− ν)(1− 2ν)

(2(1− ν) + F̄ )(1− 2ν + F̄ )
. (7.45)

It is noted that as the Poisson’s ratio ν must satisfy −1 < ν < 1/2, and F̄ > 0,

we have M̄, N̄ > 0.

7.5.3 General Solution for u(0)
1

The general solution of (7.43) is calculated to be

u(0)
1 (x2) = A1e

r+
d x2 + A2e−

r+
d x2 + A3e

r−
d x2 + A4e−

r−
d x2 + A5x2 + A6, (7.46)

where

r± =

(
M̄±

√
M̄2 − 4N̄
2

) 1
2

, (7.47)

and A1, ..., A6 are constants to be found. Without loss of generality, we take

Re(r±) ≥ 0. To determine the behaviour of the modes, we must find whether

r+ and r− are real or complex.

We first determine whether r2
+ and r2

− are real or complex. Using the

definitions (7.44) and (7.45) of M̄ and N̄, the discriminant M̄2 − 4N̄ found

within the definition (7.47) for r± is calculated to be

M̄2 − 4N̄ =
64

F̄ 2(2(1− ν) + F̄ )2(1− 2ν + F̄ )2

[
F̄ 4(4ν− 5)2

+ 8F̄ 3(1− 2ν)(4ν2 − 25ν + 19) + 16F̄ 2(1− 2ν)2(ν2 − 18ν + 20)

+128F̄ (1− 2ν)3(2− ν) + 64(1− 2ν)4
]

. (7.48)

As F̄ > 0 and −1 < ν < 1/2, all the coefficients of the powers of F̄ in (7.48), as

well as the fraction multiplying the power series of F̄ within (7.48), are positive
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and we have M̄2 − 4N̄ > 0. Hence, from the definition (7.47), it is seen that

r2
± ∈ R.

Now we determine whether r+ and r− are real or complex. As M̄, N̄ > 0

and M̄2 − 4N̄ > 0 for F̄ > 0 and −1 < ν < 1/2, we must have

M̄ >
√

M̄2 − 4N̄,

which in turn yields

M̄±
√

M̄2 − 4N̄ > 0.

Hence, we have r± ∈ R for F̄ > 0, −1 < ν < 1/2, and the modes in the general

solution (7.46) are exponentially growing and decaying, with no oscillatory

behaviour.

As r+ and r− are both real and positive, it is seen that for (7.46) to satisfy

the boundary condition (7.30), the exponentially growing modes must be

eliminated and we must set

A1 = A3 = A5 = 0. (7.49)

Substituting (7.49) into (7.46), we obtain the following expression for u(0)
1

u(0)
1 (x2) = A2e−

r+
d x2 + A4e−

r−
d x2 + A6. (7.50)

7.5.4 General Solutions for u(2)
1 and u(4)

1

Using the expression (7.50) for u(0)
1 (x2), it is possible to obtain the general

solutions for u(2)
1 (x2) and u(4)

1 (x2). Substituting (7.50) into (7.36) and

rearranging, the following ODE for u(2)
1 is obtained

d2u(2)
1

dx2
2
− C2

1

d2C2
0

u(2)
1 = − 1

d4C2
0

(
A2C+e−

r+
d x2 + A4C−e−

r−
d x2
)

, (7.51)

where

C0 =

(
2
(
(1− 2ν)(2− ν) + F̄ (1− ν)

)
1− 2ν

) 1
2

, C1 = 4(1− ν)
1
2 , (7.52)

and

C± = 4(2ν− F̄ )r2
± + (1− ν)Λ2

1Λ2
2r4
±. (7.53)

It is noted that as F̄ > 0 and −1 < ν < 1/2, we have C0, C1 > 0. The general

solution of (7.51) is calculated to be

u(2)
1 (x2) = B1e

C1
dC0

x2 + B2e−
C1

dC0
x2 +

1
d2

(
A2K+e−

r+
d x2 + A4K−e−

r−
d x2
)

, (7.54)
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where

K± =
C±

C2
1 − C2

0r±
, (7.55)

and B1, B2 are constants to be found. For (7.54) to satisfy the condition (7.30) as

x2 → ∞, u(2)
1 cannot be exponentially growing. Hence as C0, C1 > 0, we must

have B1 = 0 and the first term of (7.54) vanishes.

Finally, using the expressions (7.50) and (7.54) for u(0)
1 and u(2)

1 , an

expression for u(4)
1 is derived. Substituting (7.50) and (7.54) into (7.35) gives

for u(4)
1

u(4)
1 (x2) =

A2L+

d4 e−
r+
d x2 +

A4L−
d4 e−

r−
d x2 − B2(Λ2

1 + Λ2
2)C

2
1

12d2C2
0

e−
C1

dC0
x2 , (7.56)

where

L± = − 1
12

(
(Λ2

1 + Λ2
2)K±r2

± +
Λ2

1Λ2
2r4
±

2

)
. (7.57)

7.5.5 Finding the Full Solution of the 1D Model

Now that expressions for u(0)
1 (x2), u(2)

1 (x2) and u(4)
1 (x2) have been derived, the

next step is to apply the remaining boundary and integral conditions (7.31),

(7.33) and (7.34), in order to obtain values for the four unknown constants A2,

A4, A6 and B2. It is first noted that (7.31), (7.33) and (7.34) give five different

conditions. As we only have 4 unknown constants to be found within the 1D

model, there are not enough degrees of freedom to satisfy all the conditions.

As such, one of these conditions must be neglected to ensure the degrees of

freedom and conditions imposed in the model are consistent. In the following,

we neglect the condition u(4)
1 (0) = 0 so there is an equal number of boundary

conditions at x2 = 0 and integral conditions across the length of the block. It

is found that neglecting the condition u(4)
1 (0) = 0, as opposed to neglecting

the other conditions, yields the solution that closest resembles the results from

the 2D model. However, we will see in §7.5.7 that there are still significant

discrepancies between the two results.

Applying the conditions (7.31) for u(0)
1 and u(2)

1 at x2 = 0 to the expressions

(7.50) and (7.54) for u(0)
1 and u(2)

1 gives the following relations after rearranging

A6 = −(A2 + A4), (7.58)

B2 = − 1
d2 (A2K+ + A4K−). (7.59)

Substituting (7.50), (7.54) and the expression (7.59) for B2 into the first integral
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condition (7.33) and rearranging yields

A4 =
d tan φ

χ−
− A2χ+

χ−
, (7.60)

where the χ± are defined as

χ± = (1− 2ν + F̄ )r± + 4(1− ν)K±

(
1

r±
− C0

C1

)
. (7.61)

Finally, the expressions (7.54) and (7.56) for u(2)
1 and u(4)

1 , and the expressions

(7.59) and (7.60) for B2 and A4, are substituted into the second integral condition

(7.34) to yield the following expression for A2 after rearranging

A2 = −d tan φ

χ−

χ1

χ2
, (7.62)

where

χ1 = (1− 2ν + F̄ )K−
(

r− −
C1

C0

)
+ 24(1− ν)

(
L−
r−

+
(Λ2

1 + Λ2
2)C1K−

12C0

)
,

(7.63)

χ2 = (1− 2ν + F̄ )
[

K+

(
r+ −

C1

C0

)
+

K−χ+

χ−

(
C1

C0
− r−

)]
+ 24(1− ν)

[
L+

r+
− χ+L−

χ−r−
+

(Λ2
1 + Λ2

2)C1

12C0

(
K+ −

K−χ+

χ−

)]
. (7.64)

Substituting the solutions (7.50), (7.54) and (7.56) for u(0)
1 , u(2)

1 and u(4)
1 into

the truncated Taylor series (7.26), the 1D-model approximation for u1 is found

to be

u1 = A2e−
r+
d x2 + A4e−

r−
d x2 + A6

+

(
x1−

d
2

)2 [
B2e−

C1
dC0

x2 +
1
d2

(
A2K+e−

r+
d x2 + A4K−e−

r−
d x2
)]

+

(
x1−

d
2

)4 (A2L+

d4 e−
r+
d x2 +

A4L−
d4 e−

r−
d x2 − B2(Λ2

1 + Λ2
2)C

2
1

12d2C2
0

e−
C1

dC0
x2

)
,

(7.65)

where A2, A4, A6 and B2 are given by (7.58)–(7.60) and (7.62).

7.5.6 Comparing the Decay Rates in the 1D and 2D models

We now compare the deformations obtained from this 1D model to the

deformations obtained from the 2D model, starting with the decay rates of

the modes. In the 2D model we obtain countably many modes, whereas in the
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1D model we have three modes with three distinct decay rates. In Figure 7.4,

the decay rate Ω0 of the fundamental mode found from the 2D model, as seen

in Figure 6.5, is plotted against F̄ . Also plotted are the following decay rates

from the 1D model: r+ and r− as defined in (7.47), and C1/C0 where C0, C1

are defined in (7.52). It is seen from the figure that there is good agreement

between Ω0, r− and C1/C0 in the limit F̄ → ∞. The decay rate r− is still in

strong agreement with Ω0 in the limit F̄ → 0, and it is only in the transitional

region between the two limits where there is a slight difference between r− and

Ω0. However, in the limit F̄ → 0, the value of C1/C0 diverges away from the

values of r− and Ω0 to a larger constant value. Finally, it is seen that the decay

rate r+ is much larger than any of the other decay rates for all values of F̄ > 0.

From this, it is concluded that the decay rate of the fundamental (and

slowest decaying) mode is being captured by the 1D model, either using one

mode in the case of small F̄ , or two modes for large F̄ . As it is the fundamental

mode that determines the boundary-layer width, we also conclude that the 1D

model is accurately representing the boundary-layer width.

Figure 7.4: The solution of the fundamental decay rate Ω0 from the 2D model (red

line) against F̄ , as seen in Figure 6.5. Also plotted are the following decay rates from

the 1D model: r+ and r− as defined in (7.47) and C1/C0 (where C0, C1 are defined in

(7.52)), in black, blue and green respectively.

In Figure 7.5, the decay rates Ω1, Ω2 and Ω3 of the first, second and third



266 Chapter 7. A 1D Model for Bending a Semi-Infinite Block Under Tension

modes from the 2D model, as well as the decay rate r+ from the 1D model, have

been plotted against F̄ . It is observed that the decay rate r+ has a higher value

than the decay rates from the 2D model in the limit F̄ → ∞. However as F̄ → 0,

r+ becomes smaller than the decay rates from the 2D model. As such, r+ does

not appear to be reflecting any of the decay rates found in the 2D model. This is

likely due to only incorporating the first three terms of the Taylor series (7.18)

for u1 within the 1D model, whereas in reality the higher-order terms of the

Taylor series play a part in capturing the decay rates of the higher-order modes.

We note that the variations seen in Ω1, Ω2 and Ω3 are part of the solution and

not down to some numerical deficiency. Further details of these variations can

be found in Appendix 6.B.

Figure 7.5: The solutions of the decay rates Ω1, Ω2 and Ω3 of the first, second and

third modes from the 2D model (blue, green and black lines respectively) against F̄ , as

seen in Figure 6.5. Also plotted is the decay rate r+ from the 1D model as defined in

(7.47) (red line).

7.5.7 Comparing the Deformations in the 1D and 2D models

We now compare the deformations numerically obtained from the 2D model

and those obtained from the 1D model, for different values of F̄ . In Figure 7.6,

the numerical solution of u1 from the 2D model and the analytic solution of u1

from the 1D model have been plotted in the x1 and x2-directions, for d = 1,

ν = 0.49, tan(φ) = 1 and F̄ = 0.001. In the plot in the x1-direction, the 2D and
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1D model solutions of the normalised function u1− u1(0, x2) have been plotted

at the values x2 = 2, 4, 6. This normalisation has been chosen as it forces the

deformations from the 2D and 1D models to have a value of 0 when x1 = 0,

allowing for easier comparison between the two solutions in the x1-direction.

It is seen that in the x1-direction, the deformation u1 is behaving the same in

both the 2D and 1D models, but the amplitude of the deformation is slightly

larger in the 1D model. In the plot in the x2-direction, the values of u1 from

the 2D and 1D models have been plotted at x1 = 0.5. As in the x1-direction, we

find that the deformation u1 behaves the same in the 2D and 1D models in the

x2-direction, but again with a larger amplitude in the 1D model.

In Figure 7.7, we have again plotted the numerical solution of u1 from the

2D model and the analytic solution of u1 from the 1D model along the x1

and x2-directions, only now with F̄ = 1 along with d = 1, tan(φ) = 1 and

ν = 0.49. The plot in the x1-direction again has values of the normalised

function u1 − u1(0, x2) from the 2D and 1D models, at the points x2 = 2, 4.

From this plot, it is observed that the two models behave differently for small

values of x2, with the 1D model giving a positive normalised deformation and

the 2D model giving a negative normalised deformation. As we increase the

value of x2 however, the deformations behave in a similar way again. Unlike

the case with F̄ = 0.001 depicted in Figure 7.6, the amplitude of the normalised

deformation is larger in the 2D model than in the 1D model. The plot in the

x2-direction displays the value of u1 in both models, at x1 = 0.5. It is seen from

this plot that although both models are yielding a deformation decaying to a

constant as x2 → ∞, the amplitude of the deformation in the 1D model is much

larger than that of the deformation in the 2D model.

Finally, in Figures 7.8 and 7.9, the numerical and analytical solutions of

u1 from the 2D and 1D models respectively have been plotted in the x1 and

x2-directions, for F̄ = 1000, d = 1, tan(φ) = 1 and ν = 0.49. In Figure 7.8,

once again the values of the normalised function u1 − u1(0, x2) from the 2D

and 1D models have been plotted in the x1-direction, but this time at the points

x2 = 20, 40, 60. We observe from this figure that the normalised deformation

behaves differently in both models, with the solution from the 1D model being

positive and the solution from the 2D model being negative. We also note

that the amplitude of the normalised deformation is much larger in the 1D

model. In Figure 7.9, again the plot in the x2-direction shows the values of

u1 in both models, at x1 = 0.5. This figure shows that the deformations have
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similar behaviour in both the 2D and 1D models in the x2-direction, although

the amplitude is much larger in the 1D model.

Overall, we see that for small F̄ , although the 1D model does not match

the 2D model exactly, it does display similar behaviour and the amplitude of

the deformations has the right order of magnitude. However, for larger values

of F̄ , we start getting discrepancies between the two models for the behaviour

of u1 in the x1-direction. We also find that the amplitudes of the deformations

become much larger in the 1D model than in the 2D model. To determine why

we are getting such large differences between the two models, we first see if it is

possible to arbitrarily set the constants A2, A4, A6 and B2, found in the solution

(7.65) for u1 in the 1D model, so that the 1D model matches the behaviour of

the 2D model away from the clamped boundary x2 = 0.
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Figure 7.6: The numerical solution of the 2D model (solid lines) and the analytic

solution (7.65) of the 1D model (dashed lines) for u1, when F̄ = 0.001, d = 1,

tan(φ) = 1 and ν = 0.49. In the plot in the x1-direction, u1(x1, x2) − u1(0, x2) has

been plotted at x2 = 2, 4, 6, and in the x2-direction, u1 has been plotted at x1 = 0.5.
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Figure 7.7: The numerical solution of the 2D model (solid lines) and the analytic

solution (7.65) of the 1D model (dashed lines) for u1, when F̄ = 1, d = 1, tan(φ) = 1

and ν = 0.49. In the plot in the x1-direction, u1(x1, x2)− u1(0, x2) has been plotted at

x2 = 2, 4, and in the plot in the x2-direction, u1 has been plotted at x1 = 0.5.
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Figure 7.8: The numerical solution of the 2D model (solid lines) and the analytic

solution (7.65) of the 1D model (dashed lines) for u1(x1, x2) − u1(0, x2) in the

x1-direction at x2 = 20, 40, 60, when F̄ = 1000, d = 1, tan(φ) = 1 and ν = 0.49.

It is noted that both figures show the same plots, but with different scales along the

vertical axis.
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Figure 7.9: The numerical solution of the 2D model (solid lines) and the analytic

solution (7.65) of the 1D model (dashed lines) for u1 in the x2-direction at x1 = 0.5,

when F̄ = 1000, d = 1, tan(φ) = 1 and ν = 0.49. It is noted that both figures show the

same plots, but with different scales along the vertical axis.



7.5. Deriving a 1D Model from the System (6.88)–(6.93) 273

7.5.8 Matching the 1D Model to the 2D Model

In §7.5.7, it is seen that there are large discrepancies between the numerical

solutions for the deformations of the 2D model and the analytical solutions for

the deformations of the 1D model. In order to see why these discrepancies

arise, it is first seen how well the 1D-model solution matches the 2D-model

solution when the constants A2, A4, A6 and B2 in the general solution (7.65) for

u1 are chosen to provide a better fit. If these constants can be set so that the 2D

and 1D model give similar solutions away from the clamped boundary x2 = 0,

then it can be concluded that some effect near the boundary, not captured

by the 1D model, is giving rise to the large difference in the amplitudes of

the deformations in the two models. Otherwise, the discrepancy will be due

to an incorrect assumption made in the derivation of the governing system

(7.27)–(7.34) for the 1D model, such as the truncation of the Taylor series (7.18)

of u1.

Procedure for Setting A2–B2

To choose the constants A2, A4, A6 and B2 that appear in the solution (7.65) for

u1 in the 1D model, the following procedure is used. First of all, the constant

term A6 that determines the value that u1 decays to as x2 → ∞ is set to be

A6 = u1(d/2, xmax); the numerical value of u1 at x1 = d/2, x2 = xmax, in the 2D

model.

The next constant that is determined is A4, which is the coefficient of the

slowest decaying mode within the solution (7.65) for u1 in the 1D model.

This is done by considering log(u1(d/2, x2) − A6) from the 1D model and

log(u1(d/2, x2) − u1(d/2, xmax)) from the 2D model. Substituting (7.65) into

the first expression yields

log(u1(d/2, x2)− A6) = log
(

A2e−
r+
d x2 + A4e−

r−
d x2
)

, (7.66)

and the constant A6, as well as the terms involving the constant B2 which

are only found at O((x1 − d/2)2), vanish. As such, only the two exponentially

decaying modes with decay rates r+ and r− remain. It was determined in §7.5.6

that r− < r+ and so the mode with the decay rate r− is the slowest decaying

and fundamental mode. Hence, away from x2 = 0, u1 is dominated by this

mode and (7.66) is approximated by

log(u1(d/2, x2)− A6) ∼ log
(

A4e−
r−
d x2
)
= log(A4)−

r−
d

x2 as x2 → ∞.

(7.67)
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Therefore, away from x2 = 0, the function (7.67) gives linear behaviour with

a constant shift log(A4). The constant A4 can then be chosen to best shift

log(u1(d/2, x2)− A6) from the 1D model so that it matches log(u1(d/2, x2)−
u1(d/2, xmax)) from the 2D model, away from x2 = 0.

Once A4 is set, A2 can then be chosen to alter the behaviour of u1(0.5, x2)

near x2 = 0 (as it alters the amplitude of the quickest decaying mode in the 1D

model). This is chosen so that in the 1D model, u1(0.5, 0) ≈ 0.

The final constant to be set is B2 and this is done by looking at logarithmic

plots of ∂2u1/∂x2
1 at x1 = d/2 in the 1D and 2D models. Substituting the

expression (7.65) for u1 in the 1D model into ∂2u1/∂x2
1 gives at x1 = d/2

∂2u1

∂x2
1

∣∣∣∣
x1=

d
2

= 2B2e−
C1

dC0
x2 +

2
d2

(
A2K+e−

r+
d x2 + A4K−e−

r−
d x2
)

, (7.68)

and we are left with three exponentially decaying modes with decay rates r+,

r− and C1/C0. It was found in §7.5.6 that for small F̄ , C1/C0 > r− and so the

mode with decay rate C1/C0 decays faster than the fundamental mode with

decay rate r−. Hence, in this case, B2 is chosen so that the value of ∂2u1/∂x2
1

at x1 = d/2 in the 1D model best fits the corresponding 2D-model value near

x2 = 0. For large F̄ however, it was found in §7.5.6 that C1/C0 ∼ r−, and

thus the modes with these two decay rates both contribute to the fundamental

mode of the deformation u1 in the 1D model. Hence, by taking the logarithm

of (7.68), we find the following approximation as x2 → ∞

log

(
∂2u1

∂x2
1

∣∣∣∣
x1=

d
2

)
∼ log

[(
2B2 +

2A4K−
d2

)
e−

r−
d x2

]
as x2 → ∞,

∼ log
(

2B2 +
2A4K−

d2

)
− r−

d
x2 as x2 → ∞. (7.69)

Again, away from x2 = 0, the function (7.69) behaves linearly and the constant

B2 gives a constant shift in the function. Thus for large values of F̄ , B2 is chosen

to shift the value of the function (7.69) from the 1D model so that it matches

with the corresponding value from the 2D model away from x2 = 0.

Comparing the New 1D-Model Deformation with the 2D Model

By following this procedure, the constants A2–B2 have been chosen to match the

solution for the deformation u1 in the 1D model to its 2D-model counterpart,

in the cases F̄ = 0.001, 1, 1000, with d = 1, tan(φ) = 1 and ν = 0.49. In

Figures 7.10–7.12, we see how the analytical solution for u1 in 1D model now
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compares to the 2D-model solution. In each of these figures, Figure A has plots

of u1− u1(0, x2) from the 1D and 2D models, along the x1-direction for different

values of x2. Figure B has plots of u1(0, x2) from both models in the x2-direction,

and Figure C contains plots of u1(d/2, x2)− A6 and u1(d/2, x2)− u1(d/2, xmax)

from the 1D and 2D models respectively, in the x2-direction with a logarithmic

scale on the vertical axis.

From Figure 7.10, it is observed that in the case with small F̄ (F̄ = 0.001),

the solution from the 1D model now matches the numerical solution well in

both the x1 and x2-directions, apart from in a very small region near x2 = 0. It

is also seen in Figure 7.10C that the gradient of the curves from the 1D and 2D

models is the same apart from at a region near x2 = 20, where the numerical

scheme is forcing the solution from the 2D model to decay to zero at x2 = xmax

rather than as x2 → ∞. As such, we find that the solutions from the 1D and

2D models are exhibiting the same behaviour for small F̄ . Hence, it is only

the conditions (7.31)–(7.34) forcing the choice of constants A2–B2 within the

expression (7.65) for u1 that are causing inaccuracies between the 1D and 2D

models. As the inaccuracies are reasonably small for small F̄ , it is possible

that this issue can be resolved by simply including more terms from the Taylor

series (7.18) of u1 within the model and determining these extra terms.

In Figures 7.11 and 7.12, the behaviour of the solution from the 1D model is

compared to the behaviour of the 2D model for large F̄ (F̄ = 1, 1000). Figures

7.11A and 7.12A show that although the amplitudes of the deformations from

the 1D and 2D models do not match exactly in the x1-direction, the overall

behaviour is similar and the amplitudes are much better than those derived

from the conditions (7.31)–(7.34). This is particularly evident for larger values

of x2.

In Figures 7.11B and 7.12B, similar results are seen in the x2-direction. Again

the amplitudes of the deformations from the two models are not matching

exactly, but the overall behaviour is similar apart from in a region near x2 = 0.

Finally, in Figures 7.11C and 7.12C, it is seen that the gradients of the curves

from the 1D and 2D models are not quite equal, meaning that the decay rates

of the deformations are not the same. However the gradients are similar apart

from near x2 = 0 (where higher-order modes are having an effect), and near

x2 = xmax (where the numerical scheme is forcing the solution from the 2D

model to decay to zero at x2 = xmax rather than as x2 → ∞). As such, we

conclude that for large F̄ , the 1D model has the correct behaviour to emulate
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the 2D model away from x2 = 0, and the conditions (7.31)–(7.34) are forcing the

constants A2–B2 to take significantly incorrect values in the 1D model.

We have found that the discrepancies between the expression (7.65) for u1

in the 1D model and the deformation in the 2D model are very large for large

values of F̄ . We have also found that it does not seem to be possible to set the

constants A2–B2 so that the behaviour near the x2 = 0 boundary is accurately

represented at the same time as the behaviour away from x2 = 0. Hence, there

may be an effect near the x2 = 0 boundary in the 2D model that is particularly

significant for large F̄ , which is not captured by the 1D model. To see if this is

the case, the behaviour of u1 near x2 = 0 in the 2D model is evaluated for both

small and large F̄ in §7.6.
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Figure 7.10: The analytical solution (7.65) for u1 in the 1D model (dashed lines) in the

x1 and x2-directions, for F̄ = 0.001, d = 1, tan(φ) = 1, ν = 0.49, A2 = 0.03, A4 = 2.51,

A6 = −2.5629 and B2 = 0.01. Also plotted is the corresponding solution from the 2D

model (solid lines).
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Figure 7.11: The analytical solution (7.65) for u1 in the 1D model (dashed lines) in the

x1 and x2-directions, for F̄ = 1, d = 1, tan(φ) = 1, ν = 0.49, A2 = 0.03, A4 = 0.01,

A6 = −0.04053 and B2 = 0.15. Also plotted is the corresponding solution from the 2D

model (solid lines).
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Figure 7.12: The analytical solution (7.65) for u1 in the 1D model (dashed lines) in

the x1 and x2-directions, for F̄ = 1000, d = 1, tan(φ) = 1, ν = 0.49, A2 = 0.00085,

A4 = 0.00035, A6 = −0.0012162 and B2 = 0.002. Also plotted is the corresponding

solution from the 2D model (solid lines).
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7.6 Behaviour of u1 for Small x2

In §7.5, a one-dimensional model was derived for the problem of bending a

semi-infinite block under tension. It was found that although this 1D model

was able to accurately emulate the fundamental decay rate of the deformations

found in the 2D model derived in §6.4, the amplitudes of the deformations

themselves differed between the two models, particularly for large values of

the axial tension F̄ . It was also found that, even when arbitrarily setting

the coefficients of the modes found in the 1D model, it was not possible to

accurately model the behaviour of the normal deformation u1 near x2 = 0 and

away from x2 = 0 at the same time, in the case of large F̄ . As such, it is possible

that an effect in the 2D model near the clamped boundary is not captured by

the 1D model. This possibility is now evaluated.

In Figure 7.13, the numerical solution of u1 in the 2D model has been plotted

for small tension (F̄ = 0.001) and large tension (F̄ = 1), in the x1-direction at

x2 = 0.02. Hence, we are evaluating u1 near the clamped boundary x2 = 0.

From the figure, it is observed that for F̄ = 0.001, the value of u1 is always

negative. However, in the case F̄ = 1, it is seen that the value of u1 rises to

a positive value near the stress free boundaries, for small x2. The reason for

this is that as the axial tension bends the block, one side of the block near the

clamped boundary compresses whereas the opposing side expands. For small

values of F̄ , this 2D compression effect is negligible as the block smoothly

bends over a relatively long distance. However for large values of F̄ , the block

bends over a much shorter distance, meaning that this 2D compression effect

has a significant effect on the deformations. It is not possible for the 1D model

in §7.5 to capture this 2D effect and as such, the conditions (7.31)–(7.34) in the

1D model do not set the correct amplitudes for the deformation. However,

the 1D model does still capture the correct behaviour of the deformation away

from the clamped boundary x2 = 0 when we choose appropriate values for the

constants A2–B2.

7.7 Conclusions

In this chapter, we have considered three possible methods for deriving an

appropriate 1D model for the linearised system (6.42)–(6.46) modelling a

semi-infinite block being bent under tension. The accuracy of each of these

models has been evaluated.
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Figure 7.13: The numerical solution for u1 in the 2D model along the x1-direction, at

x2 = 0.02, for the tensions F̄ = 0.001 and F̄ = 1, and d = 1, tan(φ) = 1, ν = 0.49.

The first 1D model that was considered was one derived from

Kirchhoff–Love shell theory. It was found in §6.9 that in the limit F̄ → ∞,

corresponding to the regime δ` � 1, the boundary-layer width δ̃B has size

δ̃B = O(dF̄ 1
2 ) � O(d). Hence, the boundary-layer width is larger than the

width of the block, and it initially appears that Kirchhoff–Love shell theory can

be used to model the problem. A model has been derived from Kirchhoff–Love

shell theory, but the boundary-layer width derived from this model behaves

vastly differently from the boundary-layer width calculated in the 2D model,

for large values of F̄ . The reason for this was found to be due to the violation

of one of the assumptions made in Kirchhoff–Love shell theory within the

boundary layer. The assumption violated was the preservation of the normal to

the centre line of the material after a deformation, which is due to the fact that

the boundary layer in question is a transverse shear-relaxation layer for large

values of F̄ .

The second 1D model to be considered was a model derived by averaging

the components of Cauchy’s momentum equation over the width of the block.

This model approximated the deformations u1 and u2 using the leading-order
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terms from the Taylor series of the deformations about the midpoint x1 = d/2

of the block. This model yielded exponentially decaying deformations in the

axial direction, with a decay rate that has the same qualitative behaviour as the

fundamental decay rate from the 2D model. There was however still a constant

difference between the decay rates, for both small and large F̄ . This difference

was particularly large for small F̄ . The reason for this large discrepancy is

likely due to the truncation of the Taylor series used to approximate u1 and u2.

The final 1D model to be considered was one derived from the system

(6.88)–(6.93), where u2 has been eliminated from the governing system. In

this model, the deformation u1 is approximated with the first three non-zero

terms of the Taylor series of u1 about the midpoint x1 = d/2 of the block.

The inclusion of these extra terms, corresponding to a constant, quadratic

and quartic variation in u1 in the x1-direction, improves the accuracy of

this 1D model compared to the model derived from averaging Cauchy’s

momentum equation, which only accounts for constant behaviour of u1 and

linear behaviour of u2 in the x1-direction.

Three exponentially decaying modes are found within this final 1D model,

all with their own distinct decay rates. The first and smallest decay rate

r− obtained from this model was found to be in good agreement with the

fundamental decay rate from the 2D model. The second decay rate C1/C0 was

also found to imitate the fundamental decay rate for large F̄ , but diverge to a

larger value for small F̄ . This implies that only one mode from the 1D model is

involved in simulating the fundamental mode in the 2D model for small values

of F̄ , but for larger values of F̄ , two modes from the 1D model combine to

simulate the fundamental mode. The final decay rate r+ from the 1D model

is much larger than the other decay rates r− and C1/C0, for all values of F̄ .

It is found that r+ does not accurately model any of the decay rates of the

modes obtained in the 2D model. The reason for this is most likely down to

higher-order terms from the Taylor series of u1, which are neglected in this

model, being needed to accurately simulate the higher-order modes in the 2D

model.

By fully solving this model and applying conditions at x2 = 0, an

approximation for the deformation u1 has been derived. For small F̄ , there

is a small discrepancy in the amplitude of the deformations in the 1D and the

2D model, but the overall behaviour is similar. However, as F̄ is increased, the

amplitude of the 1D-model deformation becomes much larger than that of the
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2D-model deformation. The direction of the deformation in the x1-direction

also differs between the two models for smaller values of x2. By arbitrarily

choosing the constants that appear in the general solution of u1 instead of

applying the boundary conditions at x2 = 0 to find them, it was found that

it is possible for this 1D model to obtain much better agreement with the 2D

model away from x2 = 0. This implies that the 1D model is capturing the

necessary mechanisms in the far-field away from x2 = 0, but it is not able to

model the deformations well near x2 = 0.

Finally, the behaviour of u1 for small values of x2 has been evaluated to

determine why the final 1D model cannot accurately simulate the deformations

near x2 = 0. It was found that for small values of F̄ , the deformation always has

the same sign, and the block is always being deformed in the same direction.

Conversely, for large F̄ , it was seen that near the stress-free boundaries x1 = 0, d

close to the clamped boundary x2 = 0, the value of u1 has a different sign from

the value of u1 in the bulk of the block around x1 = d/2. Hence, the block is

deforming in a different direction at the edges of the block compared to the

centre of the block. This is due to a 2D compression effect which arises from

one side of the block expanding and the other contracting near x2 = 0, as the

block is bent. This compression effect is much more significant for larger values

of F̄ as the block bends over a much shorter distance compared to the case with

small F̄ . It is not possible for the final 1D model to capture this 2D effect, and

as such, this explains the discrepancies between the final 1D model and the 2D

model, which are particularly large for large values of F̄ .

It is possible that the 1D models considered here may be improved upon

further by using modes motivated by the transition to, and decay of, the

self-similar solution observed in §6.11, instead of the Taylor series of the

deformations. These modes are not independent of x1 and so would add new

effects that the current models have not included. It is also possible that by

using these modes based on the self-similar solutions, a new model could be

derived to describe the behaviour of the block close to the clamped edge of the

block. Further investigation is needed to evaluate these possibilities.
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7.A Deriving a 1D Model from the Averaged Cauchy’s

Momentum Equation

Here, we derive a 1D model for the problem of bending a semi-infinite block

under tension. This model is derived from the components (7.1), (7.2) of the

linearised Cauchy’s momentum equation (6.42), which are

2(1− ν)
∂2u1

∂x2
1
+

∂2u2

∂x1∂x2
+ (1− 2ν + F̄ )∂2u1

∂x2
2
= 0 for 0 ≤ x1 ≤ d, x2 ≥ 0,

(7.70)

(1− 2ν)
∂2u2

∂x2
1
+

∂2u1

∂x1∂x2
+ (2(1− ν) + F̄ )∂2u2

∂x2
2
= 0 for 0 ≤ x1 ≤ d, x2 ≥ 0.

(7.71)

The components of the linearised boundary conditions (7.3)–(7.6), given by

u1 = 0, and u2 = tan(φ)
(

x1 −
d
2

)
at x2 = 0, (7.72)

(1− ν)
∂u1

∂x1
+ ν

∂u2

∂x2
= 0 at x1 = 0, d, (7.73)

∂u1

∂x2
+

∂u2

∂x1
= 0 at x1 = 0, d, (7.74)

∇u1,∇u2 → 0 as x2 → ∞, (7.75)

are later applied to this model.

7.A.1 Averaged Force-Balance and Moment-Balance Equations

To create an appropriate 1D model, we need to average the force-balance

equations and moment-balance equation over the width of the block. These

averaged equations are now derived. First, it is convenient to rewrite (7.70) and

(7.71) in the following way

2
[
(1− ν)

∂2u1

∂x2
1
+ ν

∂2u2

∂x1∂x2

]
+ (1− 2ν)

∂2u2

∂x1∂x2
+ (1− 2ν + F̄ )∂2u1

∂x2
2
= 0, (7.76)

(1− 2ν)

(
∂2u2

∂x2
1
+

∂2u1

∂x1∂x2

)
+ 2ν

∂2u1

∂x1∂x2
+ (2(1− ν) + F̄ )∂2u2

∂x2
2
= 0. (7.77)

This will later allow us to apply the boundary conditions (7.73) and (7.74) at

the stress-free boundaries of the block. By integrating (7.76) and (7.77) over the

width of the block and dividing by d, we find the averaged normal force-balance
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and axial force-balance equations to be

2
d

[
(1− ν)

∂u1

∂x1
+ ν

∂u2

∂x2

]x1=d

x1=0
+ (1− 2ν)

〈
∂2u2

∂x1∂x2

〉
+ (1− 2ν + F̄ )

〈
∂2u1

∂x2
2

〉
= 0,

(7.78)

1− 2ν

d

[
∂u1

∂x2
+

∂u2

∂x1

]x1=d

x1=0
+ 2ν

〈
∂2u1

∂x1∂x2

〉
+ (2(1− ν) + F̄ )

〈
∂2u2

∂x2
2

〉
= 0,

(7.79)

where

〈A〉 = 1
d

∫ d

0
A dx1

is the average of a function A over the width of the block. Applying the

boundary conditions (7.73) and (7.74) for u1 and u2 at x1 = 0, d, it is found

that the first terms of (7.78) and (7.79) vanish, leaving

(1− 2ν)

〈
∂2u2

∂x1∂x2

〉
+ (1− 2ν + F̄ )

〈
∂2u1

∂x2
2

〉
= 0, (7.80)

2ν

〈
∂2u1

∂x1∂x2

〉
+ (2(1− ν) + F̄ )

〈
∂2u2

∂x2
2

〉
= 0. (7.81)

We later find when applying the symmetry and antisymmetry properties of

the deformations that (7.81) becomes a trivial equation. In order for the axial

force-balance equation (7.77) to be captured in the 1D model, we convert (7.77)

into a moment-balance equation, and average over the width of the block. This

is done by multiplying (7.77) by x1 − d/2, integrating the resulting equation

over the width of the block, and dividing by d. This yields the following

0 = (1− 2ν)

〈(
x1 −

d
2

)(
∂2u2

∂x2
1
+

∂2u1

∂x1∂x2

)〉
+ 2ν

〈(
x1 −

d
2

)
∂2u1

∂x1∂x2

〉
+ (2(1− ν) + F̄ )

〈(
x1 −

d
2

)
∂2u2

∂x2
2

〉
. (7.82)

This expression may be simplified further by evaluating the first averaged term.

Using integration by parts, we find〈(
x1 −

d
2

)(
∂2u2

∂x2
1
+

∂2u1

∂x1∂x2

)〉
=

1
d

[(
x1 −

d
2

)(
∂u1

∂x2
+

∂u2

∂x1

)]x1=d

x1=0

−
〈

∂u1

∂x2
+

∂u2

∂x1

〉
=

1
2

[
∂u1

∂x2
+

∂u2

∂x1

]x1=d

x1=0
−
〈

∂u1

∂x2
+

∂u2

∂x1

〉
.

(7.83)
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Using the boundary condition (7.74), it is seen that the boundary term within

(7.83) vanishes, leaving

〈(
x1 −

d
2

)(
∂2u2

∂x2
1
+

∂2u1

∂x1∂x2

)〉
= −

〈
∂u1

∂x2
+

∂u2

∂x1

〉
. (7.84)

Substituting (7.84) into (7.82) yields the following averaged moment-balance

equation

0 = 2ν

〈(
x1 −

d
2

)
∂2u1

∂x1∂x2

〉
+ (2(1− ν) + F̄ )

〈(
x1 −

d
2

)
∂2u2

∂x2
2

〉
−(1− 2ν)

〈
∂u1

∂x2
+

∂u2

∂x1

〉
. (7.85)

7.A.2 Deriving the 1D Model

Using the force-balance equations (7.80), (7.81) and the moment-balance

equation (7.85), a 1D model is now derived. We first recall that u1 is symmetric

and u2 is antisymmetric about x1 = d/2 (see §6.2). As such, we have that

∂2u1

∂x1∂x2
and

∂2u2

∂x2
2

,

are antisymmetric about x1 = d/2, and thus

〈
∂2u1

∂x1∂x2

〉
= 0 and

〈
∂2u2

∂x2
2

〉
= 0. (7.86)

Substituting (7.86) into the axial force-balance equation (7.81) yields a trivial

equation which cannot be used in deriving a 1D model. Contrariwise, the

terms

∂2u2

∂x1∂x2
,

∂2u1

∂x2
2

,
∂u1

∂x2
,

∂u2

∂x1
,
(

x1 −
d
2

)
∂2u1

∂x1∂x2
and

(
x1 −

d
2

)
∂2u2

∂x2
2

,

are all symmetric about x1 = d/2, and thus averaging these terms over the

width of the block yields non-zero values. Hence, all the terms within the

normal force-balance equation (7.80) and the moment-balance equation (7.85)

are non-zero, and these equations may be used to derive a 1D model.
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It is convenient to rewrite (7.80) and (7.85) in the following way

(1− 2ν)
∂

∂x2

〈
∂u2

∂x1

〉
+ (1− 2ν + F̄ ) ∂2

∂x2
2
〈u1〉 = 0,

(7.87)

2ν
∂

∂x2

〈(
x1 −

d
2

)
∂u1

∂x1

〉
+ (2(1− ν) + F̄ ) ∂2

∂x2
2

〈(
x1 −

d
2

)
u2

〉
−(1− 2ν)

(
∂

∂x2
〈u1〉+

〈
∂u2

∂x1

〉)
= 0.

(7.88)

Doing so, the equations (7.87), (7.88) are now written in terms of four averaged

variables instead of the six variables found in (7.80), (7.85). We now rewrite

(7.87) and (7.88) as a pair of coupled ODEs governing two variables that are

only dependent on x2. To achieve this, we consider the following Taylor series

for u1 and u2 about x1 = d/2

u1 = u(0)
1 (x2) +

(
x1 −

d
2

)2

u(2)
1 (x2) + . . . , (7.89)

u2 =

(
x1 −

d
2

)
u(1)

2 (x2) +

(
x1 −

d
2

)3

u(3)
2 (x2) + . . . , (7.90)

where u(1)
1 , u(3)

1 , · · · = 0 and u(0)
2 , u(2)

2 , · · · = 0, so that u1 and u2 are

symmetric and antisymmetric about x1 = d/2, respectively. To obtain only

two x2-dependent variables from these series, we truncate (7.89) after u(0)
1 , and

(7.90) after u(1)
2 to yield

u1 ∼ u(0)
1 (x2), u2 ∼

(
x1 −

d
2

)
u(1)

2 (x2). (7.91)

Using these approximations, we determine the averaged terms within (7.87)

and (7.88) to be

〈u1〉 = u(0)
1 (x2),

〈
∂u2

∂x1

〉
= u(1)

2 (x2),
〈(

x1 −
d
2

)
∂u1

∂x1

〉
= 0,〈(

x1 −
d
2

)
u2

〉
=

〈(
x1 −

d
2

)2
〉

u(1)
2 =

d2

12
u(1)

2 (x2). (7.92)

Substituting (7.92) into (7.87) and (7.88) yields the following pair of coupled

ODEs in terms of u(0)
1 and u(1)

2

(1− 2ν)
du(1)

2
dx2

+ (1− 2ν + F̄ )
d2u(0)

1

dx2
2

= 0, (7.93)

(2(1− ν) + F̄ ) d2

12
d2u(1)

2

dx2
2
− (1− 2ν)

(
du(0)

1
dx2

+ u(1)
2

)
= 0. (7.94)



288 Chapter 7. A 1D Model for Bending a Semi-Infinite Block Under Tension

We also substitute the truncated Taylor series (7.91) into the remaining

boundary conditions (7.72) and (7.75), at x2 = 0 and x2 → ∞ respectively,

to obtain

u(0)
1 = 0 at x2 = 0,

du(0)
1

dx2
→ 0 as x2 → ∞, (7.95)

u(1)
2 = tan φ at x2 = 0, u(1)

2 → 0 as x2 → ∞. (7.96)

7.A.3 Solution of the System (7.93)–(7.96)

To solve the system (7.93)–(7.96), u(1)
2 (x2) is first eliminated from the governing

equations (7.93) and (7.94). Differentiating (7.94) with respect to x2 yields the

following

(2(1− ν) + F̄ )d2

12
d3u(1)

2

dx3
2
− (1− 2ν)

d2u(0)
1

dx2
2
− (1− 2ν)

du(1)
2

dx2
= 0. (7.97)

Rearranging (7.93), and differentiating (7.93) with respect to x2 twice, gives the

relations

du(1)
2

dx2
= −1− 2ν + F̄

1− 2ν

d2u(0)
1

dx2
2

, (7.98)

d3u(1)
2

dx3
2

= −1− 2ν + F̄
1− 2ν

d4u(0)
1

dx4
2

. (7.99)

Substituting (7.98) and (7.99) into (7.97), we obtain the following ODE for

u(0)
1 (x2)

d4u(0)
1

dx4
2
− Λ̄2 d2u(0)

1

dx2
2

= 0, (7.100)

where

Λ̄ =
1
d

(
12(1− 2ν)F̄

(1− 2ν + F̄ )(2(1− ν) + F̄ )

) 1
2

. (7.101)

The ODE (7.100) has the general solution

u(0)
1 (x2) = AeΛ̄x2 + Be−Λ̄x2 + Cx2 + D, (7.102)

where A, B, C, D are constants to be found. Applying the boundary conditions

(7.95) to (7.102) yields

A = C = 0, D = −B, (7.103)

and substituting the constants (7.103) into (7.102), it is found that

u(0)
1 (x2) = B

(
e−Λ̄x2 − 1

)
. (7.104)
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Substituting the expression (7.104) into (7.98) and integrating, it is calculated

that

u(1)
2 (x2) =

(1− 2ν + F̄ )Λ̄B
1− 2ν

e−Λ̄x2 + E, (7.105)

where E is a constant to be found. The boundary conditions (7.96) can then be

applied to (7.105) to find

B =
(1− 2ν) tan φ

(1− 2ν + F̄ )Λ̄
, E = 0. (7.106)

Applying (7.106) to the expressions (7.104) and (7.105), u(0)
1 and u(1)

2 are

determined to be

u(0)
1 (x2) =

(1− 2ν) tan φ

(1− 2ν + F̄ )Λ̄

(
e−Λ̄x2 − 1

)
, (7.107)

u(1)
2 (x2) = tan φ e−Λ̄x2 , (7.108)

and thus, by substituting (7.107) and (7.108) into the truncated Taylor series

(7.91), u1 and u2 are found to be approximated by

u1 ∼
(1− 2ν) tan φ

(1− 2ν + F̄ )Λ̄

(
e−Λ̄x2 − 1

)
, (7.109)

u2 ∼
(

x1 −
d
2

)
tan φ e−Λ̄x2 . (7.110)



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, the effects of wall inertia and axial bending have been added

to the model by Whittaker et al. (2010c) which describes instabilities in flow

through an elastic-walled tube. The changes to the instabilities and stability

criteria due to the addition of wall inertia and axial bending have been

evaluated.

We first added wall inertia to the Whittaker et al. (2010c) model in Chapter

2. In forming the new model, it was found that the wall inertia term does not

enter the governing equation in the same way the fluid inertia does, but instead

combines with the azimuthal bending term. In this new model we found that,

as in the Whittaker et al. (2010c) model, countably many oscillatory modes exist,

each with its own distinct eigenfrequency. These modes are distinguished by

having different numbers of spatial oscillations in the axial direction. As the

amount of wall inertia increases, it is found that the eigenfrequencies of all the

modes decrease, but this decrease is more rapid for higher-order modes than

for lower-order modes. We have discovered that the axial mode shapes of the

higher-order modes for the pressure and axial velocity start spatially oscillating

about a non-zero value, when wall inertia is increased to a non-zero value. We

have also found that the axial mode shapes of the area change tend towards

being symmetric about the axial midpoint of the tube, as the wall inertia is

increased. The properties of the axial mode shapes are witnessed in Figures

2.4–2.6.

By examining the stability criterion and growth rates of the different modes,

it was seen that odd modes (including the fundamental mode) become more

290
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unstable for increasing wall inertia, whereas the even modes become more

stable for increasing wall inertia. The reason for this is because as wall inertia

is increased, it dominates over the fluid inertia terms and the leading-order

balance is found to be between axial tension, azimuthal bending and wall

inertia. As the fluid inertia no longer contributes at leading-order, the odd

and even modes for the oscillatory area variation become symmetric and

antisymmetric respectively in the axial direction about the midpoint of the tube.

As such, the even modes have little flux within the upstream rigid region of the

tube as the fluid predominantly moves between the crests and troughs of the

oscillations in the elastic-walled tube. Because of this, the energy influx into

the system is small, and as there is not as much energy available to drive the

instabilities, the modes are much more stable. For the odd modes however,

there is a larger flux in the upstream rigid region resulting in a greater influx

of energy into the system. Because of this increase in available energy to drive

the instabilities, the odd modes are more unstable.

It is also seen that the growth rates of all the modes decrease with increasing

wall inertia, but the growth rates of the even modes decrease much faster. It

is shown that the fundamental mode is always the most unstable and has the

highest growth rate. As this mode also becomes more unstable with increasing

wall inertia, it is found that wall inertia is a destabilising effect on the system.

Finally, the size of the effect wall inertia has on the frequency, critical

Reynolds number (the Reynolds number at which the growth rate of a mode is

zero), and the growth rate (differentiated with respect to the Reynolds number)

of the fundamental mode has been quantified for a couple of physical examples.

In the case of blood flow through the main pulmonary artery, it was found

that the wall inertia parameter M takes the value M ≈ 0.003. Using this

value of M instead of M = 0 yielded a 0.9% decrease in the frequency of

the fundamental mode, a 0.5% decrease in the critical Reynolds number of the

fundamental mode, and a 1.8% decrease in the gradient of the growth rate

for the fundamental mode. Hence in this case, the effects of wall inertia are

negligible. The example of crude oil flowing through a steel submarine pipe

was also considered. Here, we instead have M ≈ 0.02, which yields a 5.7%

decrease in the frequency of the fundamental mode, a 3.2% decrease in the

critical Reynolds number of the fundamental mode, and a 10.8% decrease in

the gradient of the growth rate for the fundamental mode. Thus, the effects of

wall inertia are more significant here and cannot necessarily be neglected.
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The problem of expanding the Whittaker et al. (2010c) model so that

the canonical clamped boundary conditions are satisfied at the ends of the

elastic-walled tube was then considered in Chapters 3–7. In the original

Whittaker et al. (2010c) model, only the normal and azimuthal displacements

of the tube wall were fixed to be zero at the tube ends. Whittaker (2015)

extended this model further to allow the Dirichlet parts of the pinned boundary

conditions, which fix the normal, azimuthal and axial displacements to be zero,

to be satisfied at the tube ends. This was done by introducing a shear-relaxation

boundary layer near the ends of the tube. Whittaker (2015) found that this

shear layer splits into an inner and outer shear-relaxation layer, and that the

shear layer only has a significant effect on the bulk solution when δ` � 1,

where δ � 1, ` � 1 are dimensionless parameters representing the tube wall

thickness and tube length respectively.

In this thesis, it was determined that an axial-bending boundary layer must

be introduced to raise the axial order of the system enough for the full clamped

boundary conditions to be satisfied. In Chapter 3, a toy model was constructed

from the Föppl–von Kármán equations (Landau & Lifshitz, 1959), and using

this model the bending-layer width δB was predicted to be δB = O(F− 1
2 `−1),

where F = O(1) is a dimensionless parameter representing the axial tension

acting on the tube wall. With this estimate, it was found in Chapter 3 that this

problem splits into three different regimes.

In the first of these regimes, regime Ia, we have δ` � 1 � δ`2. In this

case, the shear-relaxation layer studied by Whittaker (2015) has a significant

effect on the bulk solution, and so must be considered. Using the predictions

of the toy model in Chapter 3, the bending layer was expected to be larger than

the tube wall thickness δ, but smaller than the inner and outer shear layers.

In the second regime, regime Ib, δ`2 � 1 and again the shear layer found by

Whittaker (2015) must be considered. In this case, the toy model predicted

that the bending layer would be larger than the tube wall thickness and inner

shear layer, but smaller than the outer shear layer. In both regimes Ia and Ib,

Kirchhoff–Love shell theory could be used to model the wall mechanics. In the

final regime, regime II, the case where δ`� 1 was considered. In this case, the

shear layer studied by Whittaker (2015) no longer has a significant effect on the

bulk solution and does not need to be considered. The toy model predicts that

the bending layer would be smaller than the tube wall thickness in this regime,

and as such Kirchhoff–Love shell theory can no longer be used to model the
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wall mechanics.

In Chapter 4, regime Ia where δ` � 1 � δ`2 was considered. Here a

bending layer with width δB = F− 1
2 `−1 was found, which is in agreement

with the prediction from the toy model. Hence, this bending layer is larger

than the tube wall thickness, and smaller than both the inner and outer shear

layers. As such, the bending layer was found to be situated at the ends of

the elastic-walled tube and matches onto a modified inner shear layer. The

dominant balance within the bending layer was found to be between axial

bending and pre-stress and axial curvature.

The leading-order deformations within this bending layer have been

calculated, and it was found that there was no change in the cross-sectional

area at leading order within this layer. The corrections to the inner shear-layer

deformations were also calculated and were found to be O(F−1δ−1`−2) smaller

than the leading-order terms. These corrections may appear at lower or higher

orders than the other higher-order terms in the approximations for the inner

shear-layer deformations, depending on sizes of δ and `. If the condition

F = O(1) is relaxed and we instead have F = O(δ−1`−2) yielding a smaller

tension, this will allow the correction terms to contribute at leading order.

However, this may also alter the behaviour of the bulk solution, and will change

the widths of the bending and inner shear layers so that they become the same

size. As such, further investigation is needed to see what happens in this

case. Returning to the case where F = O(1), it was calculated that there

would be no corrections to the normal deformation or area change in the outer

shear and bulk layers due to the leading-order deformations in the bending

layer. It was also seen that the leading-order bending-layer deformations induce

higher-order corrections to the azimuthal and axial deformations in the outer

shear and bulk layers.

Overall, the bending layer in regime Ia is found to be passive and not

contribute to the leading-order displacements or area change in the other layers.

Instead, it simply allows the axial gradient to decrease to zero as the clamped

end of the tube is reached. Hence, the effects of this bending layer on the shear

layers and bulk solution may be safely neglected in the case δ` � 1 � δ`2,

δ � 1, ` � 1, F = O(1). This is consistent with numerical results published

by Whittaker (2015), which are calculated in regime Ia.

Chapter 5 concentrates on regime Ib where δ`2 � 1. In this regime, a

bending layer of width δB = O(δ
1
2 ) was found, and the dominant balance
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within this bending layer was determined to be between axial bending,

azimuthal stretching and axial stretching. This width is different from the one

predicted by the toy model in Chapter 3 because of the effects of azimuthal

stretching, which are not included in the toy model. However, this width is still

in between the widths of the inner and outer shear layers. It was determined

that the inner shear layer is no longer present. Instead there is a bending layer

situated at the ends of the elastic-walled tube which matches onto a modified

outer shear layer. Asymptotic approximations for the in-plane stresses within

the bending layer have been calculated up to second order, and using these,

approximations for the bending-layer deformations have been calculated up to

the largest non-zero higher-order term. It is also found that the area variation

in the bending layer is O(∆F̃ 1
2 `−1), where ∆(t) is the dimensionless, slowly

varying amplitude of the oscillation, and F̃ = O(Fδ2`2) is a scaled axial

tension. This area variation tends to a constant multiple of ∆(t) as we exit

the bending layer.

The leading-order bending-layer deformations in regime Ib then induce

corrections to the outer shear-layer deformations that are found to be a factor

of O(F 1
2 δ

3
2 `) smaller than leading-order terms. These corrections were also

determined to be larger than the other higher-order terms in the expressions for

the deformations. The corrections to the normal and azimuthal deformations

in the outer shear layer were found to be linear in the axial coordinate,

affecting their axial gradient, and the correction to the outer shear-layer axial

deformation was found to be constant in the axial coordinate, yielding a

constant shift. Also calculated was the correction to the area change in the

outer shear layer, which was found to be smaller than the leading-order terms

but larger than the other higher-order terms. This correction was seen to behave

linearly in the axial direction, affecting the axial gradient of the area change.

If the condition F = O(1) is relaxed and we instead have F = O(δ−3`−2),

resulting in a larger tension, the correction terms will contribute at leading

order. However, this will also set F̃ � 1, and in this scenario the shear layer

found by Whittaker (2015) does not have a significant effect on the bulk solution

and does not need to be considered. Hence, further investigation is needed

to determine what happens for this scenario. Returning to the case where

F = O(1), it was found that the bending layer enforces corrections to the

bulk-layer deformations and area variation that apply at higher orders.

Overall, the bending layer in regime Ib is found to be passive and not
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contribute to the leading-order displacements or area change in the larger

layers. Instead it allows the axial gradient to decrease to zero at the clamped

boundary, and allows for the decay of the leading-order in-plane azimuthal

hoop stress Ñ and shear stress S̃ from their values at the clamped boundary

to the smaller values needed in the outer shear layer. The bending layer also

keeps the leading-order in-plane axial stress Σ̃ approximately constant in the

axial direction. As such, the effects of this bending layer on the outer shear

layer and bulk solution may be safely neglected in the case δ`2 � 1, δ � 1,

`� 1, F = O(1).

The final regime, regime II where δ` � 1, is studied in Chapters 6 and

7. In Chapter 6, a new model was derived to describe the wall mechanics

as the toy model in Chapter 3 predicted that the bending layer would be too

small for Kirchhoff–Love shell theory to be valid. This model is a linearised

two-dimensional model describing bending a semi-infinite block under tension.

The block in question corresponds to a 2D cross-section of the tube wall in

the normal and axial directions. This model is based on the assumption that

azimuthal variation is slow on the scale of the bending layer predicted by the

toy model. Numerical solutions for this model have been constructed, and

by applying analytical techniques, it was found that the deformations of the

block are composed of countably many modes that decay exponentially in the

axial direction, each with their own distinct decay rate. Analytical far-field

approximations for the deformations have been developed and are found to be

in agreement with the numerical solutions. A full analytical solution to this

model has not yet been found, but it was seen that it may be possible to apply

a method similar to that used by Shankar (2003) to determine the coefficients

of the modes of the deformations.

In this 2D model, different behaviours were found in the cases δ` � 1 and

δ`� 1. In the case δ`� 1, corresponding to regimes Ia and Ib, a bending layer

with dimensionless width δB = O(F− 1
2 `−1) is found, which is in agreement

with the bending layers found in the toy model and in regime Ia. However

when δ` � 1, corresponding to regime II, a new boundary layer is found

with dimensionless width δB = O(F 1
2 δ2`), suggesting that a different dominant

mechanism is occurring within this boundary layer. In both cases however, the

dimensional normal deformation u1 is found to behave as u1 = O(aF− 1
2 `−1)

(where a is the typical radial scale of the elastic-walled tube) as we exit the

boundary layer.
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Applying this 2D model to the elastic walled tube in regime II, where

δ` � 1, it was found that the corrections to the boundary conditions in the

bulk layer are a factor of O(F− 1
2 `−2) smaller than the leading-order conditions.

It is noted that these corrections may not be accurate as the boundary layer is

larger than originally expected in this regime, and azimuthal variation which

is neglected by the 2D model may be significant on this scale. Further work is

required to check the validity of these corrections, but even if these corrections

are incorrect, this model is still applicable to more general problems of clamped

shells under tension. Providing these corrections are accurate, then by relaxing

the condition F = O(1) and instead setting F = O(`−4) corresponding to a

smaller axial tension, the correction terms become large enough to contribute

at leading order. However, applying this change may alter the behaviour of the

solution in the bulk layer. As such, further work is needed to analyse what

happens for this smaller tension. It is seen that in the case δ` � 1, δ � 1,

` � 1, F = O(1), the correction terms are small enough that the effects of

the bending layer can be safely neglected in the bulk layer. The fact that these

corrections may be neglected is consistent with numerical simulations run by

Whittaker et al. (2010d).

By examining the new boundary layer that occurs in the 2D model for

δ`� 1, it was found that the axial deformations of the block deviate away from

a uniform shear across the width of the block and tend towards a sinusoidal

self-similar solution as the axial coordinate is increased. As such, this new

boundary layer was found to be a transverse shear-relaxation layer. This shear

layer is different from the one modelled by Whittaker (2015), which arises due

to azimuthal shear.

Finally in Chapter 7, the 2D model in Chapter 6 is considered further

and the possibility of using a one-dimensional model to describe bending

a semi-infinite block under tension is investigated. Here, three possible

one-dimensional models are considered. The first model is one derived from

Kirchhoff–Love shell theory. It is found that although the shear-layer width

in regime II is larger than the block thickness, indicating that Kirchhoff–Love

shell theory is applicable, applying this theory yields a model which does not

give the right behaviour for the boundary-layer width when δ` � 1. This is

because another assumption made in Kirchhoff–Love shell theory, which is the

preservation of the normal to the centre line of the block after a deformation,

is violated in the shear layer that appears in this regime. The second model
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considered is one derived by averaging the components of the governing

Cauchy’s momentum equation over the width of the block. Although this

model is able to yield the right qualitative behaviour for the boundary-layer

width, there are still quantitative discrepancies between the boundary-layer

width from this model and the boundary-layer width from the 2D model,

particularly for δ`� 1.

The final model considered in Chapter 7 is one derived by solving the

2D governing system (6.88)–(6.93) for the block written solely in terms of the

normal deformation u1, using a truncated Taylor series to approximate u1.

This model yields three exponentially decaying modes for the deformation,

each with their own distinct decay rate. The smallest of these decay rates,

corresponding to the slowest decaying mode, is found to be in good agreement

with the fundamental decay rate in the 2D model. The next smallest decay rate

also agrees with the fundamental decay rate in the 2D model for δ` � 1, but

diverges away from the fundamental decay rate for δ` � 1. This implies that

for δ` � 1, only one of the modes in the 1D model contributes in modelling

the fundamental mode, whereas for δ`� 1, two of the modes in the 1D model

contribute in describing the fundamental mode. The largest of these decay

rates, corresponding to the quickest decaying mode, does not appear to model

any of the modes found in the 2D model. This is likely due to more terms from

the Taylor series of u1 being needed to capture the behaviour of the higher-order

modes in the 2D model.

It is found that this model is able to capture the behaviour of the

deformations away from the clamped edge of the block using arbitrary

conditions set at the clamped edge. However, the behaviour near the clamped

edge cannot be modelled accurately at the same time, and the discrepancies in

the behaviour of the 1D and 2D models near the clamped edge are particularly

large for δ` � 1. This was found to be due to a 2D compression effect

that occurs near the clamped boundary which cannot be captured by the 1D

model. As this compression effect is particularly significant for δ` � 1, the

discrepancies between the solutions in the 1D and 2D models are distinctly

large in this case.

It is possible that these models can be improved upon further by using

modes motivated by the self-similar solution found in Chapter 6 to approximate

the deformations instead of using truncated Taylor series. It may also be

possible to use these modes to derive a new model for the behaviour of the
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block near the clamped boundary. Further investigation is needed to examine

these possibilities.

The boundary layers needed for the clamped boundary conditions to be

satisfied in regimes Ia, Ib and II are summarised in table 8.1. We have

determined that in the case δ � 1, ` � 1, F = O(1), the boundary layers

introduced to satisfy the clamped boundary conditions in each of the regimes

do not apply any leading-order effects to the larger boundary layers in their

respective regimes, or the bulk solution. As such, the effects of the bending

layer can safely be neglected in these larger boundary layers and in the bulk

solution. We have also seen that by relaxing the condition F = O(1) and

instead setting F = O(δ−1`−2) in regime Ia, F = O(δ−3`−2) in regime Ib, and

F = O(`−4) in regime II, the effects of the axial-bending and transverse-shear

layers on the larger layers become significant at leading order. In setting these

tensions, the properties of the inner and outer shear layers and the bulk layer

also change. As such, further study is required to determine what effects the

axial-bending and transverse-shear layers have on the larger layers when we

have different values of F .

Regime Ia Ib II

δ,` Bounds δ`� 1� δ`2 δ`2 � 1 δ`� 1

Physical Mechanism

of Inner Boundary

Layer

Axial

Bending

Axial

Bending
Transverse

Shear-Relaxation

Width of Inner

Boundary Layer
O(F− 1

2 `−1) O(δ
1
2 ) O(F 1

2 δ2`)

Type of Outer

Boundary Layers

{
Inner Shear

Outer Shear None
Outer Shear

Width of Outer

Boundary Layers

{
O(F 1

2 δ`)
O(F− 1

2 δ−1`−1) –
O(F− 1

2 δ−1`−1)

Table 8.1: Summary of the boundary layers needed to satisfy the full clamped

boundary conditions in regimes Ia, Ib and II.
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8.2 Recommendations for Future Work

Some recommendations for future work to be carried out on the models

developed here are now suggested. Firstly, numerical simulations of flow

through an elastic-walled tube can be run to test the accuracy of the analytical

results determined in Chapter 2, where the effects of wall inertia are evaluated.

In particular, the frequency, axial mode shape, growth rate and stability

criterion of the fundamental mode may be checked against the numerical

simulations. This work is ongoing in collaboration with Matthias Heil of the

University of Manchester.

Numerical simulations of the elastic-walled tube can also be used to check

the effects induced by introducing a bending layer in the case δ` � 1,

δ � 1, ` � 1, F = O(1). Using these simulations, the bending layer and

the corrections to the inner and outer shear layers can be tested against the

numerical simulations of the elastic-walled tube near the clamped ends. These

numerical simulations can be carried out by combining Kirchhoff–Love shell

theory with the use of the object-oriented multi-physics finite-element library,

oomph-lib, developed by Heil & Hazel (2006). Such numerical simulations

were used by Whittaker et al. (2010d) to evaluate the validity of their tube law.

In the case δ` � 1, δ � 1, ` � 1, F = O(1), it is possible that

azimuthally dependent effects could be significant on the scale of the transverse

shear-relaxation layer found in Chapter 6. To evaluate this possibility, the

scalings of the azimuthally dependent effects neglected in the derivation of

the 2D model in Chapter 6 can be determined to see if they appear at leading

order on the axial scale of the boundary layer. If these effects do not appear

at leading order, then the 2D model in Chapter 6 will be applicable to the 3D

elastic-walled tube, and the shear layer will exist in the 3D case. Numerical

simulations can then be used to test the properties of this shear layer and

determine the validity of the corrections to the bulk solution predicted by

the 2D model. These simulations will have to be constructed in a different

way to the simulations described for the case δ` � 1, as it was witnessed in

§7.3 that Kirchhoff–Love shell theory cannot accurately model the transverse

shear-relaxation layer. One possible way of constructing these simulations is to

combine oomph-lib with a modified Saint Venant–Kirchhoff model similar to

that used in deriving the 2D model in Chapter 6.

It has been seen that when F = O(1) in each of the regimes of introducing a

boundary layer to satisfy the clamped boundary conditions, the effects of each
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of the new boundary layers are not significant at leading order in the other

layers. However, if we vary F , it is possible that these effects will become

significant at leading order. Varying F to force these effects to be significant

may also change various properties of the problem, such as the behaviour of the

bulk layer, and the sizes and behaviours of the inner and outer shear-relaxation

layers studied by Whittaker (2015). As such, further study is required to see

if it is possible to vary F so that the bending layers in regimes Ia and Ib, and

the transverse shear layer in regime II, yield corrections at leading order to the

other layers. This can be investigated by setting F to be the predicted values

at which the bending layers and transverse shear layer affect the leading-order

behaviour in the other layers in their respective regimes, and then resolving the

governing systems in each layer.

To further extend the models derived here, non-linear effects in the tube

wall can be considered. This can be done by keeping the assumption that wall

displacements are small, but instead of neglecting terms which are quadratic

and higher-order in the deformations, some of these non-linear terms are

retained. The resulting governing equations can then be solved by forming

a perturbation solution for the deformations. In extending the model in this

way, the sizes of the non-linear effects can be evaluated and possible regimes

where these effects may become significant can be found.

Another effect that can be considered is larger amplitude oscillations. This

can be included in the models considered here by removing the assumption that

the wall displacements are small compared to the tube diameter. In doing so,

the dimensionless parameter ∆(t) representing the dimensionless amplitude of

the instabilities will now be O(1), and terms that are quadratic and higher-order

in the deformations will be significant at leading order. Due to the increased

complexity of the governing system, it may be that a solution can only be found

numerically. This situation corresponds to the case where the amplitude of

the instabilities in the models considered here have grown large enough to be

comparable to the tube radius.

Finally, axially varying tube properties such as wall thickness and stiffness

may also be incorporated into the model by setting these properties to be

known functions of the axial coordinate z. By doing so, it is possible to evaluate

what happens if there is a sudden jump in these properties between two regions

of the flexible tube, which may correspond to, for example, a flexible tube

comprised of two regions made of different materials. In this case, different
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governing systems will need to be derived in each region using similar methods

to those applied in the current models, and the solutions of the two regions will

have to match at the interface between the two regions.
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