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Abstract 

The rationale behind this work is the discovery that a number of natural 

bromophenols from algae have antibiotic and antioxidant activities. Most natural 

compounds are based on phenol and catechol. Previous studies by the group 

investigated a novel class of halogenated compounds based on resorcinol dimers which 

showed a relatively high antimicrobial activity. In this work, the structures were 

modified further in order to develop a structure-activity relationship for these systems. 

A novel synthetic approach to brominated resorcinol dimers was developed to 

allow efficient synthesis of the products without chromatographic purification. The 

method was additionally applied to the synthesis of a novel class of tetrameric and 

hexameric derivatives. Halogenation and dehalogenation methods were put in place to 

provide additional variety to the derivatives accessible. A set of simplified structures, 

including benzophenones and xanthones, was also prepared for comparison. 

The polyvalent structure of the tetramers and hexamers was investigated and 

exploited for the synthesis of dendrimeric multicalix[4]arene structures, including an 

octacalix[4]arene presenting thirty two amines, as proof of concept for the development 

of novel dendrimers, and among these new potential transfection agents and DNA 

binding structures. 

The library of compounds thus obtained was screened for its effects on the viability of 

two cancer cell lines, MCF-7 and HL60. The results showed a varied profile, ranging 

from potent antiproliferative activity to compounds with very moderate effects. 

Additionally the potential antioxidant activity of the compounds was investigated with 

two in vitro assays and for their cytoprotective activity on MCF-7 cells. 
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1. Introduction  

1.1 Antimicrobials and resistance 

Antibiotics are undoubtedly one of the most important scientific achievements of 

the 20th century. Their introduction, beginning in the 30s with sulfonamides and ɓ-

lactams, revolutionised the treatment and prophylaxis of bacterial infections and paved 

the way for considerable medical progress (e.g. surgery and transplants). Following the 

first discoveries, a ñgolden ageò of development led to the main antibiotic families still 

in use today, with the introduction of chloramphenicol, macrolides, tetracyclines, 

quinolones, aminoglycosides and aminocoumarins (Figure 1).1-4 

 

Figure 1. Major classes of antibiotics with a representative example 

 From the 70s, new classes of broad spectrum antibiotics have not been 

commercialised and only a few new compounds have been approved, often developed 

from older discoveries. 



 

3 

On the other hand, in 1942, immediately after the first discoveries, the problem 

of resistance emerged. Initially, it appeared a minor concern compared to the fast-paced 

development of new treatments. However, at present, it has become an area of major 

concern. Resistance has been identified for all available classes of compounds and 

multidrug-resistant (MDR) strains have been identified, with extreme cases of totally 

drug resistant (TDR) bacteria also now present.1,3 

1.1.1 Drug Targets 

A range of different type of targets have been successfully exploited by 

antibiotics developed to date (Figure 2). ɓ-Lactams produce their bactericidal effects 

by alteration of the homeostasis of the cell wall, a structure mainly sustained by a 

peptidoglycan composed of alternating N-acetylmuramic acid  and N-

acetylglucosamine. These structures are crosslinked through D-alanine pentapeptides 

protruding from the N-acetylmuramic units. The crosslinking reaction is catalysed by 

transpeptidases, which are the target of ɓ-lactams. These are similar to the enzymeôs 

substrate and irreversibly acylate it, leading to impaired wall synthesis. Without the 

wall, the cell is exposed to an hyperosmotic environment with subsequent cell death.5 

A minor class of antibiotics, glycopeptides (e.g. Vancomycin), produce their activity by 

inhibition of both transglycopeptidases and transpeptidases by mimicking their 

structure.6 The absence of the cell wall in mammals drives the selectivity and the interest 

towards these approaches, and novel molecules, such as cationic peptides, are being 

developed to target this key structure.7,8 

 

Figure 2. Antibiotic targets1 
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  Another important family of targets are DNA gyrase and topoisomerase IV. 

Bacterial DNA is normally a circular, single molecule, which is tightly packed into a 

supercoiled conformation. Access to DNA for replication, transcription and other 

processes, requires intervention of either gyrases or topoisomerases. These enzymes can 

introduce temporary breaks which allow unwinding and thus processing of DNA. By 

inhibiting these enzymes, there is impaired access to the genetic information, which 

leads to rapid death of the cell. These targets are also selective, as humans do not express 

the same types of topoisomerases.6 

 DNA-dependent RNA synthesis can also be targeted. Rifampicin, an antibiotic 

derived from structural modifications of natural metabolites of Nocardia mediterranei, 

is able to inhibit RNA synthesis. Its activity is due to binding within the main channel 

of bacterial DNA-dependent RNA polymerase and subsequent blocking of the 

elongation process of the forming RNA.9 

 Downstream of RNA synthesis, translation can additionally be targeted. 

Different families of antimicrobials can inhibit protein synthesis by interfering with 

different cellular structures. Bacterial ribosomes are different in humans and bacteria, 

and thus a rational target for antibiotics. Aminoglycosides, for example, bind to the 30S 

ribosomal unit and cause mistranslations, leading to the synthesis of nonsense proteins. 

Similarly to aminoglycosides, tetracyclines also bind to the 30S subunit (although other 

binding sites have been suggested to be involved in their action) but produce termination 

of the peptide growth. Macrolides and chloramphenicol, on the other hand, bind to the 

50S subunit and prevent elongation, thus producing their bacteriostatic effect.6 

 Sulfonamides were among the first classes of antimicrobials discovered. They 

have a completely different mode of action, as 4-aminobenzoic acid (PABA) analogues 

they compete for dihydropteroate synthetase, an enzyme involved in folic acid 

synthesis. Differently from humans, who acquire folate through the diet, bacteria need 

to produce it. Folate is necessary for a variety of functions, and is essential for the 

synthesis of thymidine, without which the bacteria cannot multiply. Trimethoprim is 

another antimicrobial agent involved in folic acid metabolism; it acts downstream of 

the sulfonamides, and inhibits the reduction of dihydrofolic acid to tetrahydrofolic acid.6 

1.1.2 Modes of Resistance and Transmission 

 Despite all these different mechanisms of action, bacteria have been able to 

develop a multifaceted array of survival adaptations and mechanisms of resistance for 
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every available antibiotic. Often, a single microorganism displays multiple forms of 

resistance against the same type of antibiotic. 

 

Figure 3. Resistance mechanisms 

As illustrated in Figure 3, the ways in which bacteria exert resistance can be 

classified into four main modes of action: 

- modification of the antibiotic 

- modification of the target 

- gene amplification 

- efflux from the cell3,4 
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A notable example of modification of antibiotics is through hydrolysis. 

Penicillins are substrates of ɓ-lactamase, enzymes produced by the bacteria which 

inactivate the antibiotic by hydrolysis of the ɓ-lactam ring. Macrolides are another 

example of family subject to hydrolytic enzymes. Alternatively, chloramphenicol is 

acetylated by a CoA-dependent chloramphenicol acetyltransferase. Another CoA-

dependent acetyltransferase is responsible for the same transformation of 

aminoglycosides. These are also subject to O-phosphorylation and O-adenylation by 

ATP-dependant phosphotransferases and nucleotidyltransferases respectively.5,10,11 

 Resistance by alteration of the target has spread to most classes of 

antimicrobials. It involves a change in the target of the antibiotic, for example a residue 

mutation in the sequence of an enzyme, which retains its activity while reducing the 

affinity for the antimicrobial. A single amino acid mutation in dihydropteroate synthase 

can lead to resistance, as in the case of specific Escherichia coli strains. In other species, 

e.g. Staphylococcus haemolyticus and aureus, multiple mutations cause resistance to 

the sulfonamides. Base repeats leading to modified tertiary structures have also been 

linked to altered response in Streptococcus pneumoniae. Quinolones, macrolides, 

aminoglycosides and ɓ-lactams are other major examples of antimicrobials which can 

incur a resistance by alteration of the target.1,12  

 Gene amplification produces overexpression of either the target protein or other 

systems involved in resistance (e.g. efflux pumps), thus reducing the effect of the 

antimicrobial. Sulfonamides and trimethoprim, for example, are susceptible to this type 

of resistance.3,13 Efflux pumps externalise solutes from the cytosol of the bacteria, 

effectively decreasing their intracellular concentration, with obvious consequences in 

the case of antibiotics. These systems become relevant when they are overexpressed 

(which can be substrate-induced) and/or mutated, thus increasing their effectiveness. 

The pumps can be specific for a substrate or be associated with multi drug resistance.13 

Increased efflux and its consequent reduction of intracellular xenobiotic can facilitate 

the development of resistance either directly, by a combined effect with other resistance 

mechanisms, or indirectly by enhancement of gene transfer and recombination, partly 

by activation of the SOS response, radical mediated damage and subsequent repair 

mechanisms.3,14 

 The genes responsible for resistance can be transmitted both vertically, by 

multiplication of the microorganism, and horizontally, by exchange of genetic 

information from one cell to another, thus maximising the potential of diffusion. 
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Horizontal gene transfer comprises a complex set of regulated functions, involving 

mobile genetic elements. Plasmids are probably the most relevant vectors, but viruses, 

transposons, integrons and naked DNA have been involved with resistance.3,15 

1.1.3 Human Involvement 

 Human activities have a great impact on development and maintenance of 

antibiotic resistance. Although misuse or abuse of antimicrobials for treatment or 

prophylaxis in humans is often perceived as a main factor in promoting and maintaining 

selection of resistant strains, there are many other factors to be accounted for. Treatment 

of household pets has to be considered as well, especially with the animal being in close 

contact with humans. Antibiotics are used in animal prophylaxis and treatment, and 

have also been used for growth production. Aquaculture and agriculture also take 

advantage of antibacterial products. Finally, cleaning products and research also 

contribute to resistance development.3 

1.2 Bromophenols 

Nature provides an incredibly varied range of substances, often with complex 

structures and different biological activities. Therefore, medicinal chemists frequently 

take inspiration from natural compounds. The idea behind this project comes from a 

group of brominated phenols isolated from red algae, which were harvested in the seas 

of China, Korea and Japan. 

Figure 4 shows a set of representative bromophenols (1-59). These compounds 

were isolated from four families of red algae: 

- Rhodomela (confervoides,16-20 larix21) 

- Odonthalia (corymbifera22,23) 

- Symphyocladia (latiscula24-26) 

- Polysiphonia (urceolata,27-29 lanosa30) 

These organisms all have a vanadium bromoperoxidase, a vanadate dependant 

enzyme, which is responsible for the synthesis of a profuse number of brominated 

substances.31 These products are involved in defence (antimicrobial and feeding-

deterrent activities),22,31,32 signaling31 and scavenging H2O2 during oxidative stress.33 

The colour of the algae itself is due to a cuticle composed of polymerised 

bromophenols.33  
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The structures presented in Figure 4 are, for the most part, based on brominated 

catechols and present redundant side chains, especially alcohols, ethers, aldehydes, 

acids and esters. A small number of derivatives coupled with amino acids (22, 23, 33, 

48, 56)17,19,26 or nucleosides (24)19 have also been discovered. Most of the isolated 

compounds are based on mono- and diaryl-bromophenols, only a few examples of tri- 

and tetra-aryl structures are currently known.34 

Of particular interest in this project are brominated bis-phenols such as 27-34, 

produced by dimerisation of brominated catechols and extensively studied for their 

activities as antioxidants and antimicrobials (isocitrate lyase inhibitors). These 

compounds also present an interesting inhibitory activity against aldose reductase,25 Ŭ-

glucosidase34 and tyrosine phosphatase 1B,35 hence they possess a potential antidiabetic 

activity. Natural bis-phenols with these properties and their respective synthetic 

derivatives, already reported, will be individually discussed in the following sections.   
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Figure 4. Natural bromophenols (1-59)16-29 

1.2.1 Brominated bis-phenols as antimicrobials 

Some of the isolated and synthesised brominated phenols and their dimerised 

derivatives have displayed activity against a range of bacteria and fungi. Whilst the 

mechanism of action is not fully clear, isocitrate lyase (ICL) has been identified as a 

potential target.36  

1.2.1.1 Isocitrate Lyase 

Isocitrate lyase is present in bacteria, fungi, some protists and plants. It is part 

of the glyoxylate cycle and mediates the conversion of isocitrate to succinate and 

glyoxylate (Figure 5). It is an anaplerotic path in the tricarboxylic acid cycle (TCA) 
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and allows the microorganism to assimilate 2-carbon compounds for catabolic reactions 

such as carbohydrate synthesis, bypassing the following limiting steps (mediated by 

isocitrate dehydrogenase and Ŭ-ketoglutarate dehydrogenase). Mammals do not have 

ICL, thus it represents an interesting, selective, target for the development of new 

antibiotics and biological tools.18,37-39  

 

Figure 5. Isocitrate lyase (ICL) and tricarboxylic acid cycle (TCA) cycles 

 The role of ICL is critical in Mycobacterium tuberculosis (Mtb). The pathogen, 

which expresses two isoforms, ICL1 and ICL2, is dependent on their activity, notably 

during lung infection and within macrophages. Previous studies proved that deletion of 

both enzymes impairs intracellular replication of the pathogen and leads to its 

elimination from the lungs of mice.40  

Since the identification of ICL as target, a number of inhibitors have been 

reported. Recently, inhibition has been evaluated mostly on Mtb or Candida albicans 

ICL.39 

http://en.wikipedia.org/wiki/Isocitrate_dehydrogenase
http://en.wikipedia.org/wiki/Alpha-ketoglutarate_dehydrogenase
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Figure 6. Classic ICL inhibitors 

Classic inhibitors are substrate analogues, 3-nitropropionate, itaconate and 3-

bromopyruvate (Figure 6). These are toxic compounds, they are aspecific and interact 

with other enzymes of the previously described cycles. 3-Bromopyruvate is also an 

alkylating agent. Their use is limited to that of tools to investigate the activity of the 

enzyme and 3-nitropropionate is usually exploited as a positive control for ICL 

inhibition. The large number of inhibitors discovered up to now have very different 

structures, and they are of both natural and synthetic origin. However, none of these 

compounds have been brought forward to clinical trials. Reviewing ICL inhibitors is 

beyond the scope of this thesis and, for a comprehensive review of these, we recommend 

the recent ñPotential Inhibitors for Isocitrate Lyase of Mycobacterium tuberculosis and 

Non-M. tuberculosis: A Summaryò, BioMed Research International (2015), by Lee.39 

1.2.1.2 Natural and synthetic bromophenols as antimicrobials 

In 2003 Xu et al.18 reported the antimicrobial activity of a small set of natural 

brominated bis-phenols, shown in Figure 7. These were tested against different strains 

of Gram positive and Gram negative bacteria: Pseudomonas aeruginosa, Escherichia 

coli, Staphylococcus aureus and Staphylococcus epidermidis. 

  

Figure 7. Natural brominated bis-phenols tested by Xu et al.18 

The compounds display highest activity in the Staphylococcus family, with 30 and 25 

showing the strongest inhibition, and are almost inactive against Escherichia coli. The 

only conclusion about the structure activity relationship is limited to compounds 29-31: 

the optimal length of -R, for the activity against Staphylococcus, is one carbon.  
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 In 2008 Oh et al.23 described the antibacterial and antifungal activities of some 

natural bromophenols and synthetic derivatives (Figure 8 ï note: some compounds 

were previously discussed but the data cannot be related to that of Xu et al. because the 

strains and methods used are different). Concerning the antifungal activity, the natural 

compound 27 exhibited potent inhibition in all the four strains tested (Candida albicans, 

Aspegillus fumigatus, Trichophyton rubrum, Trichophyton mentagrophytes) with a 

minimum inhibitory concentration (MIC) two- to fourfold lower than the reference, 

Amphotericin B. Any change to the structure caused marked loss of activity, for 

example its regioisomer 68 and the derivatives with different numbers of hydroxyl 

groups are inactive. 

 

Figure 8. Natural and synthetic brominated bis-phenols tested by Oh et al.23 

The antimicrobial activity was tested against six strains of bacteria: 

Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Proteus vulgaris, 

Salmonella typhimurium and Escherichia coli. E. coli showed resistance to all tested 

compounds. Molecules 64 and 65 can inhibit the growth of all the other strains and show 

a potent activity, especially the latter, whose MIC is comparable to that of Ampicillin. 

Analysing compounds 63-65, it is interesting to note that the activity increases when 

the number of bromine atoms increases; the same trend can be observed for compounds 

60 and 71 (which is a strong inhibitor). Surprisingly, and for unknown reasons, 

compound 62 is completely inactive. 

In 2009 and 2010 the same research group published two more papers on the 

subject. The first one considers, for the most part, chlorinated compounds.41 A notable 

structure presented in this work is 69 (Figure 9): it is roughly two times more potent 
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than ampicillin (although, as seen with most molecules with this backbone, it is inactive 

against E. coli). This result suggests that the halogen is playing an important role in 

activity and merits further investigation. 

The second report38 focused on brominated derivatives and, in addition to the 

previous antibacterial and antifungal activities, presents specific information about ICL 

inhibition. The tested compounds are shown in Figure 10. 

  

Figure 10. Bromophenols as isocitrate lyase inhibitors.38 For each column, ICL inhibition increases 

going downwards. 

All tested compounds, with the exception of the non-brominated 77 and 81, 

show strong inhibition of ICL, with potency similar or higher than the reference, 3-

nitropropionate. Compound 73 is the most active compound with an IC50 20 times lower 

than the reference. The structure-activity relationships (SAR) for ICL inhibition that 

can be obtained from this work can be summarised as follows: 

- the activity increases when the number of halogens increases (Figure 10), 

similarly to that seen for the antibacterial activity of compounds 63-65 

(Figure 8). 

- the benzophenone derivatives are more effective than their reduced 

counterparts (71-73 vs. 70, 27). 

 

Figure 9. Potent chlorinated bis-phenol 
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- on the contrary, replacement of the methylene bridge with an ether causes a 

small reduction of activity. 

- in the case of the ethers, changing the length of the bridge has little effect on 

the activity. 

Despite the positive results for the inhibition of ICL, none of the new 

compounds show interesting activity when tested in vitro. Compound 27 is still the most 

potent: this result shows the importance of balancing enzyme-based and whole-

organism studies to enable evaluation of the cell penetrating effects of new 

compounds.38  
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1.3 Radicals, ROS and oxidative damage 

ñA free radical is defined as any atom or molecule that contains unpaired 

electrons and has independent existence (hence, the term free).ò42 Bearing unpaired 

electrons translates into high reactivity. For this reason, radicals are usually short lived 

and tend to react, in a biological context, with different structures, ranging from 

membranes to DNA. 

Oxygen- and nitrogen-centred radicals are often associated with closely related 

and highly reactive non-radical species and are often collectively termed Reactive 

Oxygen Species (ROS). The most important species are illustrated in Table 1.42 

Radicals Non-radicals 

Superoxide (O2
-) Hydrogen peroxide (H2O2) 

Hydroperoxyl (HOOÅ) Alkyl hydroperoxides (LOOH) 

Peroxyl (LOOÅ) Singlet oxygen (1O2) 

Alkoxyl (LO Å) Ozone (O3) 

Hydroxyl (HO Å) Hypochlorous acid (HOCl) 

Nitric oxide (NOÅ) Peroxynitrite (ONOO-) 

Nitrogen dioxide (NO2
Å)  

Table 1. Reactive oxygen species42 

The concept of oxidative stress was originally defined by Helmut Sies as ñan 

imbalance between oxidants and antioxidants in favour of the oxidants, potentially 

leading to damageò.42 Cells are normally able to maintain an equilibrium between the 

production and the removal of radicals, and partially repair the damage caused by their 

activity. Alterations of these homeostasis processes have been identified in a number of 

pathological conditions.42,43 

Although radicals and the concept of oxidative stress are normally associated 

with cellular damage and pathological processes, it is important to remember that 

radicals are also involved in physiological processes. This consideration highlights the 

delicate equilibrium and the controversy that may arise in the evaluation of the activity 

of antioxidants, normally considered as protective agents but whose activity may 

reverse under different conditions.42,44-46 
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1.3.1 ROS: a brief description 

ROS generation is an intertwined, non-linear process. These species are 

produced through a number of different processes and their reactions can lead to other 

ROS. 

Superoxide radicals are mainly, but not exclusively, produced in the 

mitochondria through their electron transport system. They are also generated by 

autoxidation of small molecules (e.g. cysteine) and Fe2+ and its complexes. Cytochrome 

P450, cyclooxygenases and lipoxygenases are also among the enzymes able to produce 

this species. Superoxide is an interesting type of radical as it can either act as oxidising 

(e.g. NADH to NAD+) or reducing (e.g. Fe3+ to Fe2+) agent. Although its reaction with 

DNA, lipids and proteins is not biologically significant, its protonated form 

(hydroperoxyl radical, HOOÅ) and the intermediates of its reaction with Fe3+ can directly 

induce lipid peroxidation.42,47 

Superoxide is also a source of singlet oxygen and H2O2 by spontaneous 

dismutation. In the case of hydrogen peroxide, the conversion can also be catalysed by 

the enzymatic activity of superoxide dismutase (SOD), one of the enzymes involved in 

maintaining the cellular balance of oxidative species. Superoxide is also a source of 

peroxynitrite, which is produced by its reaction with nitric oxide.42,47,48 

Singlet oxygen is another important oxidant as it can directly oxidise guanine 

residues of nucleic acids, polyunsaturated fatty acids, and amino acids.42,48 

Hydrogen peroxide, also generated for the major part from superoxide radicals, 

is a poor oxidant, compared to its precursor, and is targeted by detoxification 

mechanisms, such as catalases, completing the activity of superoxide dismutase. 

Nonetheless, its activity must not be underestimated, its stability and permeability 

allows diffusion and subsequent action at other sites than its origin.42,47 

The effect of hydrogen peroxide is mediated by hydroxyl radicals (HOÅ) which 

are produced by interaction with transition metals (predominantly Cu+ and Fe2+). The 

reaction between these two species has become widely known as the Fenton reaction 

(Scheme 1, a).42,47 
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Scheme 1. a) Fenton reaction. b) reduction of iron (III) to iron (II). 

 It has to be noted that reconversion of Fe3+ to Fe2+ can be mediated by either 

superoxide radical or by other reducing agents, such as ascorbate. It is now evident how 

a reducing agent, widely considered as protective, can exert a pro-oxidant activity, 

allowing the cycle to continue. The reaction also provides a means to produce hydroxyl 

radicals in situ for model studies.42,48 

 Hydroxyl radicals are extremely reactive, do not exclude almost any substrate, 

and often display rates of reaction above 2×109 M-1s-1, which means the availability of 

a substrate and diffusion rate of the radical are the limiting steps of the reaction. They 

are therefore involved in lipid peroxidation, protein, DNA, RNA and carbohydrate 

damage.42 

 Alkyl hydroperoxides (LOOH), alkyl peroxyl (LOOÅ) radicals and alkoxyl 

radicals (LOÅ) are generated prevalently during lipid peroxidation processes. It is a chain 

reaction which is initiated by interaction of a polyunsaturated fatty acid with a reactive 

radical, for example a hydroxyl radical (Scheme 2, Initiation ). 

 

Scheme 2. Lipid peroxidation, adapted from Thanan.49 

 The reaction of the alkyl radical (LÅ) with oxygen to give a peroxyl radical 

(LOOÅ, which can also convert to alkoxyl, LOÅ) and subsequent regeneration of an alkyl 

radical sustain the reaction chain in a propagation step (Scheme 2, Propagation). 42,49 
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Nitrogen radicals are another relevant group of species. Of these, nitric oxide 

(NOÅ) is a particularly interesting molecule. It is produced by nitric oxide synthase under 

physiological condition and it is involved in regulation of vascular relaxation, but it is 

also related to inflammation processes. It can be converted to nitrogen dioxide (NO2
Å) 

by reaction with oxygen. Rapid reaction with superoxide, on the other hand, generates 

peroxynitrite (ONOO-) which is a highly toxic non-radical molecule, which can oxidise 

most biological structures.42,49 

1.3.2 Cell defence against oxidative stress 

 All organisms have developed a set of defence mechanisms to prevent, minimise 

and repair the damage caused by ROS. These mechanisms work at different levels and 

are of different nature. 

 Enzymes are a first line of defence. As previously described, superoxide 

dismutase converts superoxide into the less reactive hydrogen peroxide. This product is 

subsequently decomposed by catalase and glutathione peroxidase (GPX, Scheme 3). 

GPX and another enzyme, thioredoxin, can also decompose peroxynitrite. Glutathione 

peroxidase is part of a detoxifying system involving a number of auxiliary enzymes. 

GPX requires reduced glutathione (GSH) for its activity and converts it to the oxidised 

form (GSSG). Glutathione reductase, although not directly involved in ROS 

decomposition, is required to reconvert GSSG to GSH, allowing the cycle to continue. 

This suggests that the enzymes involved in the biosynthesis of GSH are part of the 

mechanism of protection. Glutathione S-transferase is also involved in protection from 

oxidative damage. It can conjugate products of lipid peroxidation, thus contributing to 

detoxification. Cells can overexpress this set of enzymes in response to increased 

oxidative activity as a means of protection.42 

 

Scheme 3. Detoxification of superoxide and hydrogen peroxide. SOD (superoxide dismutase), CAT 

(catalase), GPX (glutathione peroxidase), GR (glutathione reductase), GST (glutathione S-transferase). 














































































































































































































































































































































































































































































































































