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ABSTRACT 
 

Valosin containing protein (VCP)/p97 is a hexameric ATPase of the AAA family, 

which regulates a wide array of essential cellular processes. Dominant mutations in 

the N-domain of the VCP give rise to the complex disease syndrome known as 

Inclusion body myopathy with Paget disease of the bone and frontotemporal 

dementia (IBMPFD). VCP plays a key role in the ubiquitin-proteasome dependent 

protein degradation although mutations in VCP seem to result in a late stage 

autophagy defect. Osteoclast precursors containing VCP mutations are hyper-

responsive to RANKL and M-CSF treatment. This suggests that under normal 

homeostasis VCP plays an important role in regulating the response of osteoclasts to 

bone microenvironment. However, the mechanisms by which VCP mutations 

stimulate osteoclast differentiation in Paget disease of the bone (PDB) are not 

completely understood.  

To gain insight into disease phenotype associated with VCP mutations I 

examined the role of VCP in autophagy and the role of autophagy on 

osteoclastogenesis. I have shown that VCP co-localises with p62 and LC3 at the 

subcellular level in cells undergoing autophagy and that VCP co-immunoprecipitates 

with p62 in the autophagy-dependant manner. I have also examined the stability of 

VCP in the cell and shown that p62 has a role in stabilising the VCP protein and that 

the mutant protomers seem to be less stable than the normal VCP protomers. 

Initiation of autophagy in RAW264.7 cells in the presence of RANKL resulted in 

marked reduction in osteoclast formation, regardless of the time point at which the 

treatment begun. I also found that RANKL and TNFα induced NFκB activation is 

increased (in an autophagy dependent manner) in macrophages from the 

heterozygous VCP mouse compared to normal macrophages.  

These data together with the already existing knowledge on VCP, and the link 

with PDB, suggest that modulation of the autophagy pathway by VCP may represent 

a major regulator of bone remodelling and maintenance.  Autophagy has direct effect 

on the fate of osteoclast progenitor cells thus regulation of osteoclastogenesis is a 

key process underlying the pathogenesis of PDB. This work acts to further our 

understanding of the pathogenic mechanism of VCP-related disease and will facilitate 

the search for modifiers of the disease phenotype. 
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CHAPTER 1:  INTRODUCTION 

1.1 Mutations in the VCP gene cause a degenerative disorder of 

muscle, bone and brain. 

Autosomal dominant mutations in the gene encoding Valosin Containing 

Protein (VCP, also known as p97), which maps to chromosome 9p13.3,  give rise to 

the complex disease syndrome named inclusion body myopathy (IBM) with Paget 

disease of the bone (PDB) and frontotemporal dementia (FTD), also known as 

IBMPFD (OMIM 1167320) (Watts et al., 2004; Kimonis et al., 2008). This hereditary 

multi-system disorder is characterised by three pathological phenotypes of varying 

penetrance – progressive adult-onset proximal and distal myopathy; early-onset PDB 

and premature neuro-degenerative FTD (Fig. 1.1). The combination of all three 

phenotypes was recognised as a genetically distinct syndrome by Kimonis and 

colleagues in 2000. The group found the concurrence of both a limb-girdle muscular 

dystrophic (LGMD) and Pagetic phenotype present in eight out of eleven family 

members (Kimonis et al., 2000). Subsequently, using a candidate gene approach, six 

mutations were identified in the VCP gene in thirteen North American families with 

IBMPFD (Watts et al., 2004). Today, it is known that VCP-related disease may 

manifest in muscle, brain and/or bone. Although patients are considered to have 

IBMPFD if they displayed two or more of the clinical phenotypes, diagnosis is carried 

out by gene sequencing. 

The myopathy phenotype is the most common clinical feature in IBMPFD, 

presenting symptoms in over 90% of affected individuals in their 40s. Patients with 

IBM show an inability to raise the arms and difficulty climbing stairs; exhibit an 

abnormal gait eventually leading to loss of walking ability. Clinically, patients display a 

generalised reduction or absence of tendom reflexes, normal nerve conduction and 

myopathic electromyogram (Hübbers et al., 2007). Muscle biopsies in affected 

individuals show the presence of atrophic and hypertrophic fibres with rimmed 

vacuoles and cytoplasmic inclusion bodies (Weihl et al., 2008). The serum creatine 

phosphokinase levels are normal to slightly elevated (Kimonis et al., 2008). In 

advanced cases, severe degeneration may result in death by complications of 
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respiratory and cardiac failure (resulting from skeletal muscle weakness rather than 

cardiomyopathy).  

   

Figure 1.1. IBMPFD penetrance by phenotypes. Diagram is showing percentage of diagnosed 

IBMPFD patients with one or more of the IBMPFD-associated clinical feature. Statistics 

acquired from Kimonis et al.2011 (GeneReviews). 

PDB, characterised by abnormal bone remodelling, is observed in roughly 50% 

of IBMPFD patients (mean age 42 years). Pathologically increased bone resorption 

and formation results in abundant new bone that is highly disorganised and of poor 

quality.  This can manifest as reduced height, bone pain, enlargement and fractures 

or even hearing loss due to cranial bone deformity (Kimonis and Watts, 2007). The 

imbalance of bone turnover is believed to result from the hyperactivity of osteoclasts 

– bone resorbing cells (Kimonis et al., 2008). Histological analysis reveals abnormally 

large, multinucleated osteoclasts with nuclear inclusions of paired helical filaments 

similar to that seen in muscle tissue of IBM (Kimonis et al., 2008). The average age of 

onset of bone deformity and enlargement is earlier than sporadic Paget’s disease 

(Hiruma et al., 2008). On the other hand, the age of onset is similar to the slowly 

progressive distal and proximal muscle weekness seen in IBMPFD patients with 

myopathy. 

Involvement of the central nervous system (CNS) in IBMPFD typically presents 

as frontotemporal dementia in 30% of cases. Affected individuals develop FTD in their 

12% 

28% 

20% 

2% 

30% 

5% 3% 

IBMPFD phenotypic variations 

IBM, PDB & FTD 

IBM & PDB 

IBM & FTD 

PDB & FTD 

IBM 

PDB 

FTD 
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mid 50s, much later than both the IBM and PDB; manifested by prominent language 

and behavioural dysfunction (Mehta et al., 2007; Kimonis et al., 2008). Contrary to 

Alzheimer’s disease (AD), patients with FTD develop cerebral atrophy in the frontal 

and anterior temporal lobes of the brain; rather than the hippocampal, posterior 

temporal and parietal lobes. Furthermore, AD associates with greater deficits in 

memory and executive function whereas individuals with FTD show relative 

preservation of memory (Forman et al., 2006). Interestingly, a novel rare variant 

within the VCP gene (R95H on exon 2) was found to associate with Alzheimer’s 

disease in one out of 188 sequenced individuals (Kaleem et al., 2007). Other reports 

publish that mutations in VCP cause Amyotrphic lateral sclerosis (ALS) (Johnson et al., 

2010), with further data indicating that mutations may also cause Parkinsonism 

(Mizuno et al., 2003). Although it is unclear if these disorders are part of the clinical 

spectrum of IBMPFD, the classification of VCP-related disease is certainly widening. 

To date, 21 missense mutations in VCP gene have been identified in IBMPFD 

patients (Table 1.1), reported in more than 39 families worldwide (Nalbandian et al., 

2011; Komatsu et al., 2013; Mehta et al., 2013). The majority of mutations cluster 

within the interface between the D1 and N domains (Fig. 1.2). More than 50% of 

these mutations affect the arginine residue at position 155 resulting in a R155H, 

R155C or R155P change. The most common VCP mutation R155H (arginine to 

histidine) leads to increased level of ubiquitin-conjugated proteins, formation of 

cytoplasmic aggregates, impaired Endoplasmic Reticulum-associated degradation 

(ERAD) activity and increased ATPase activity (Halawani et al., 2009; Manno et al., 

2010). Nevertheless, the most severe disease phenotype, characterised by early 

onset PDB and a particularly aggressive myopathy, is linked to A232E VCP mutant 

(Watts et al., 2004) and shows the highest ATPase activity (Manno et al., 2010; Niwa 

et al., 2012). However, the notion that IBMPFD-associated VCP mutants possess the 

elevated ATPase activity is questionable as few have reported a normal ATPase 

activity in VCP mutants (Weihl et al., 2006; Fernandez-Saiz and Buchberger, 2010).  
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 Amino Acid Base Change (ORF) Exon Domain No. of 
Families 

1 I27V 79A>G 2 N terminus 1 

2 R93C 277C>T 3 N terminus 4 

3 R95G 283C>G 3 N terminus 2 

4 R95C 283C>T 3 N terminus 1 

5 P137L 410C>T 4 N terminus 1 

6 R155C 463C>T 5 N terminus 5 

7 R155H 464G>A 5 N terminus 8 

8 R155P 464G>C 5 N terminus 1 

9 R155S 463C>A 5 N terminus 1 

10 R155L 464G>T 5 N terminus 2 

11 G157R 469G>C 5 N terminus 1 

12 G156S 466G>A 5 N terminus 1 

13 R159H 476G>A 5 N terminus 2 

14 R159C 476G>A 5 N terminus 2 

15 R191Q 572G>A 5 Linker 1 1 

16 L198W 593T>G 6 Linker 1 2 

17 I206F 828A>T 6 Linker 1 1 

18 A232E 695C>A 6 L1-D1 Junction 1 

19 T262A 784A>G 7 AAA D1 1 

20 N387H 1159A>C 10 AAA D1 1 

21 A439S 1351G>T 11 Linker 2 1 

 
Table 1.1. VCP mutations identified in patients with IBMPFD. Mutations are predominantly 

dispersed throughout the N-terminal domain, the N-D1 Linker region and D1 ATPase domain 

(not within the catalytic domain). Most of the mutated residues are adjacent and potentially 

interacting with each other (Watts et al., 2007), suggesting that these residues have a similar 

and specific function within the VCP hexamer that does not affect ubiquitin or adaptor 

binding. In the context of the 3D protein structure it is likely that those mutants affect 

conformation of VCP and thus influence its affinity for ligand binding. 

Disease models, carrying common VCP mutations have been generated in 

fruit flies (Ritson et al., 2010) and mice (Weihl et al., 2007; Custer et al., 2010; 



 21 
 

Badadani et al., 2010). These provide insights into the human IBMPFD pathology and 

are useful as tools for preclinical studies and testing of therapeutic strategies. The 

VCPR155H/+ knock-in mouse, generated in the Kimonis Laboratory, expresses the 

mutant VCP allele at the endogenous level providing an opportunity to understand 

the in vivo effects of VCP mutations and the pathogenesis of IBMPFD. Crucially, the 

amino acids affected by the disease-causing mutations are highly conserved across 

species. Indeed, both human and mouse VCP proteins consist of 806 amino acids, and 

the mouse protein differs by only one amino acid residue (at position 684) when 

compared to the human protein containing the common R155H VCP mutation 

(Badadani et al., 2010; Nalbandian et al., 2012). The VCPR155H/+ knock-in mice 

demonstrate muscle weakness starting at approximately 6 months of age, with 

typical histopathology, accumulation of ubiquitin and transactivation response DNA 

binding protein (TDP-43) positive inclusion bodies in the muscle and brain, 

resembling the disease onset in humans in their 30s-40s (Badadani et al., 2010). 

More recently, VCP mutations have also been linked to motor neuron degenerative 

disorder known as familiar amyotrophic lateral sclerosis (ALS) (Johnson et al., 2010). 

Both ALS and IBMPFD lead to the deposition of ubiquitin-positive TDP-43 inclusions in 

diverse tissue types, including neurons of the frontal cortex (Shaw, 2011; Nalbandian 

et al., 2011). Notably, the spinal cords of VCPR155H/+ mice show neuronal atrophy and 

astrocyte proliferation, with electrodiagnostic studies revealing a neurogenic pattern 

typical for ALS. Thus it would appear that VCP mutations cause the mislocalisation of 

TDP-43 from the nucleus and its aggregation in the cytoplasm of motor neurons 

which results in neurodegeneration (Johnson et al., 2010; Shaw, 2011). Beside 

developing a significant progressive muscle weaknes the Micro Computed 

Tomography (CT) analyses of VCPR155H/+ mice skeleton revealed Paget-like lesions at 

the ends of long bones (Nalbandian et al., 2013). PDB-like lesions are patchy with 

increased bone activity, cortical thickness and osteoclastogenesis on bone histology 

resembling the distribution in humans (Nalbandian et al., 2010).  

1.2 VCP is implicated in diseases other than IBMPFD 

 
 While mutations in VCP lead to IBMPFD, Amyotrphic lateral sclerosis (ALS) and 

Motor Neuron disease (NMD), the expression levels on VCP have also been 
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associated with other diseases. Most notably, elevated VCP levels have been found in 

gastric, colon, pancreatic and hepatocellular cancers and are linked to a poor 

prognosis (Vij, 2008).  The strongest correlation between VCP and cancer is in Nuclear 

Factor kappa B (NFκB) signalling which upregulation leads to increased survival and 

proliferation of tumorogenic cells (Hoesel and Schmid, 2013). Similar to TDP-43 and 

p62, VCP has been detected in some of the disease-associated inclusions of a broad 

array of neurodegenerative diseases such as senile plaques  in Alzheimer’s disease, 

Lewy bodies in Parkinson’s disease, neuronal intranuclear inclusions in polyglutamine 

diseases and ubiquitin-positive inclusions in ALS (Mizuno et al., 2003; Hirabayashi et 

al., 2001). 

 As mentioned above, TAR DNA-binding protein 43 (TDP-43) accumulation is 

recognised as a pathological feature in many diseases including IBMPFD and ALS. 

TDP-43 is a 414- amino acid nuclear protein encoded by the TARDBP gene on 

chromosome 1; binds to DNA and RNA and regulates transcription, pre-mRNA 

splicing and translation. Pathological signature of TDP-43 in ALS and FTD is classified 

based upon ubiquitin-positive TDP-43 deposition in central nervous system (including 

hippocampus, neocortex and spinal cord) (McClusky et al., 2009). After neuronal 

injury, TDP-43 redistributes to the cytoplasm where it associates with stress granules 

(Colombrita et al., 2009). VCP and TDP-43 interact genetically and disease-causing 

mutations in VCP lead to this redistribution of TDP-43 to the cytoplasm (where it then 

accumulates), which is sufficient to induce cytotoxicity (Ritson et al., 2010). The 

redistribution of TDP-43 to the cytoplasm contributes to degeneration initiated by 

mutations in VCP.  

VCP has also been shown to interact with other pathological ubiquitinated 

substrates (including MJD and HTT proteins) in a broad array of sporadic and 

inherited human diseases. The MJD protein, which causes Machado-Joseph disease 

(MJD) - the most common inherited spinocerebellar ataxia, was identified as a 

substrate specifically bound by VCP (Hirabayashi et al., 2001). Furthermore, the 

huntingtin protein (HTT), causative agent of Huntington’s disease, interferes with 

ERAD, although it does not interact directly with VCP but with the gp78 - ER-

membrane associated E3 ligase and a VCP cofactor (Erzurumlur et al., 2013). 
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1.3 Structure and function of Valosin Containing Protein (VCP) 

 
 VCP (p97 in mice, TER94 in Drosophila melanogaster and CDC48 in 

Saccharomyces cerevisiae) is a 97-kDa ubiquitously expressed, highly conserved 

member of the type II AAA-ATPase (ATPase associated with variety of cellular 

activities) family (Woodman, 2003). Structurally VCP forms a homohexamer with 

each promoter consisting of an N-domain, two centrally located ATPase domains – 

hallmark feature of AAA-ATPase family members - D1 and D2, and a C-terminal 

domain (Fig. 1.2). While both ATPase domains comprise highly conserved protein 

motifs: Walker A (consensus sequence of GXXXXGK (T/S), associated with phosphate 

binding) and B (consensus sequence of (R/K) XXXXGXXXLXXXD) motifs, necessary for 

ATP binding and hydrolysis, respectively, the D1 domain has less ATPase activity than 

D2 (Wang et al., 2005). The D1 domain is primarily responsible for VCP 

hexamerisation but this molecular assembly is not dependent on nucleotide binding 

(Wang et al., 2003). The ATPase activity conferred by the D2 domain is utilised for 

VCP function as a molecular chaperone to structurally remodel or unfold client 

proteins in diverse cellular processes (including endoplasmic reticulum-associated 

degradation – ERAD, endosomal sorting and mitotic spindle disassociation). 

Nevertheless, either D1 or D2 domain of VCP is sufficient to carry out its unfolding 

activity, partially denpendant on the structure of the polyubiquitinated substrate 

itself (Song et al., 2015). Mutations in the Walker A or Walker B motifs of D2 domain 

are dominantly lethal (Chapman et al., 2011). 

 

Figure 1.2. VCP protein structure. VCP functions as homohexamer composed of six subunits. 

Each subunit consists of a globular N-terminal domain (1-187) (blue), the two AAA ATPase 
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domains D1 (209-460) (crimson) and D2 (481-761) (blush), and a C-terminal tail (762-806) 

(grey). There are two linker domains in the protein: N-D1 linker (orange) and flexible D1-D2 

linker (green). The two AAA domains contain the conserved Walker A, Walker B and a second 

region of homology (SRH). Walker A is required for nucleotide binding, whereas Walker B and 

SRH motifs mediate efficient ATP hydrolysis. The N domain of VCP is responsible for the 

cofactor and ubiquitin binding function. While the D1 domain mediates oligomerisation and 

independent nucleotide binding, the D2 domain confers most of the ATPase activity. The D1 

and D2 form two stacked hexameric rings. The ATP binding and hydrolysis lead to changes in 

the conformation of the hexameric ring. This is assumed to be a driving force for VCP role as 

a chaperone in disassembling protein complexes and mediating extraction of ubiquitinated 

proteins from the ER. Mutations detected in IBMPFD patients predominantly affect 

evolutionarily highly conserved arginine residues in codon 155 of the N-domain. The A232E 

mutant is associated with the most severe disease phenotype, characterised by early onset 

PDB and a particularly aggressive Myopathy. 

The conformational integrity of the D2 ring is altered in mutant VCP complexes 

resulting in increased ATPase activity (Halawani et al., 2009). The N-terminal domain 

is proposed to be the determining factor in target binding specificity (Wang et al., 

2003) and mediates the binding of both adaptor proteins and ubiquitinated 

substrates. Electron-microscopic studies show that the VCP hexameric protein 

structure comprises two ring-shaped layers consisting of the D1 and D2 ATPase 

domains.  The conformation of the N-domain and linker region with respect to the D1 

and D2 regions correlates directly with the ATPase activity of VCP (Niwa et al., 2012). 

The N-domain is connected to D1 by a flexible linker that allows it to adopt either of 

two conformations, named coplanar and flexible with D1. When N-domains are 

coplanar with the D1 ring, VCP is unable to hydrolise ATP. In a flexible state the N-

domains are released from the D1 plane, D2 domains form a compact ring and VCP 

hydrolises ATP (Fig. 1.3). Besides mediating the binding of cofactors and 

ubiquitinated protein substrates, the N-domain is thought to regulate ATPase activity 

of VCP. The C-terminal region binds a subset of cofactors and may be involved in 

maintaining the conformation of the D2 ring (Niwa et al. 2012). In addition, this 

region includes the major tyrosine phosphorylation site implicated in the regulation 

of endoplasmic reticulum (ER) assembly and cell cycle dependent nuclear localization 

of VCP (Lavoie et al., 2000; Song et al., 2015).  
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Figure 1.3. Structural model of VCP N-domain flexibility. During the ATPase cycle, VCP can 

adopt two conformations. When N-domains are coplanar with the D1 ring, VCP is unable 

to hydrolyse ATP. In the flexible state, when the D2 domains form a compact ring and N 

domains are released from the D1 plane, VCP hydrolyses ATP. Only two subunits of the 

hexamer are shown in a side view for clarity (Adapted from Niwa et al., 2012) 

Different aspects of VCP functions depend on its ability to interact with a 

diverse array of cofactor proteins. These cofactors contain specific interaction 

domains or motifs (see below) that bind to VCP either at its N-terminal domain or C-

terminal tail (Meyer et al., 2012). Structural studies on VCP suggest that mutations 

within the N-D1 domains could alter the interaction with the adaptor complexes. 

Moreover, the presence of ubiquitinated inclusions in the affected tissue of IBMPFD 

patients and the known VCP role in the UPS, suggest that these mutations may 

somehow disrupt normal protein degradation (Schroder et al., 2005; Forman et al., 

2006). VCP is known to be essential for the endoplasmic reticulum-associated 

degradation (ERAD), a pathway in which defective or abnormally folded and short-

lived ER proteins are degraded (Ballar et al., 2011). The participation of VCP in this 

pathway depends on its binding partners Ufd1 (ubiquitin fusion degradation 1) and 

Npl4 (nuclear protein localisation homolog 4) (Ye et al., 2003). Once substrates 

designed for proteasomal degradation are retrotranslocated from the ER lumen to 

the cytosolic face of the ER, they are bound by the VCP/Ufd1-Npl4 complex, and this 

triggers subsequent ubiquitination and transfer to the proteasome for degradation 

(Ye et al., 2003). A nonubiquitinated, unfolded segment of a retrotranslocation 

substrate is initially recognised by VCP then, once a polyubiquitin chain has been 

attached, the substrate is recognised by VCP and the cofactor Ufd1-Npl4 in the 

complex; and this interaction may in turn activate the ATPase to pull the polypeptide 

chains out of the membrane (Mayer et al., 2002; Ye et al., 2003). Interestingly, the 
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VCP/Ufd1-Npl4 complex also selectively interacts with UBX domain of Fas-associated 

factor 1 (FAF1, an ubiquitin receptor and substrate-recruiting cofactor) (Lee et al., 

2013), which regulates the recruitment of polyubiquitinated substrates to FAF1 

ubiquitin-associated (UBA) domain further regulating and promoting ERAD. Although 

almost all IBMPFD-specific VCP mutants exhibit enhanced Ufd1-Npl4 binding, the 

functional complexes formed show impaired substrate-processing ability resulting in 

ERAD substrate accumulation (Erzurumlu et al., 2013). Loss of VCP activity or 

expression of an ATP hydrolysis-deficient mutant been shown to lead to 

accumulation of non-degraded ubiquitinated proteins and prevented aggresome 

formation in cells (Ju and Weihl, 2010). The function of VCP and its adaptor 

complexes described here and how this could relate to disease implies that the role 

of VCP within the cell is not confined but determined by the adaptor/substrate 

binding. At the cellular level IBMPFD has been characterised by not only the impaired 

ERAD but also excessive accumulation of ubiquitin-positive protein aggregates in 

affected tissues (Tresse et al., 2010; Yamanaka et al., 2012). In a subset of transfected 

cells, IBMPFD mutations were associated with elevated levels of endogenously 

expressed mutant Cystic fibrosis transmembrane conductance regulator (CFTR, a 

protein degraded by ERAD (Weihl et al., 2006). However, the mutant CFTR protein 

was also shown to be degraded by autophagy (Fu and Sztul 2009). Others noted no 

impairment of the ERAD pathway in cells expressing disease-associated VCP mutants, 

but only in cells with catalytically-dead VCP (Tresse et al., 2010). Therefore the 

current notion is that the dominant negative VCP could have a varied effect on 

cellular function. If the ERAD is not impaired then another ubiquitin-dependant 

degradation pathway is affected by VCP mutations? Seemingly, the exact role of the 

VCP ATPase in the pathogenesis of the IBMPFD syndrome is not yet understood.  

Recent studies have helped shed light on how mutations in VCP affect the 

protein structure. As mentioned above, the majority of disease-associated mutations 

in VCP localise to the interface of the N and D1- domains. These pathogenic mutants 

are able to form proper hexamers just like the wild type (Weihl et al., 2006; Niwa et 

al. 2012) and do not introduce apparent alterations to the part of the structure 

where they occur (Tang et al., 2010). Instead, they alter conformational changes that 

cause impaired communication between the D1 and N domains and indirectly 
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influence the nucleotide binding pocket in D1 (Fernandez-Saiz and Buchberger 2010). 

IBMPFD causing mutations exhibit dysregulated N-domain conformation where they 

adopt an atypical N-domain conformation i.e. all six domains of the complex swing 

upwards (Tang et al., 2010). In addition, Niwa and colleagues observed that the 

A232E mutation introduces a negative charge in a largely hydrophobic area, resulting 

in increased flexibility of the N-domain what in turn ablates its ability to assume the 

coplanar conformation (Niwa et al. 2012). The most apparent effect of this is a 

change in the relative affinity for ATP and ADP. Recently, Tang and colleagues found 

that this uniform arrangement of N-domains in mutant complexes is a secondary 

effect of reduced ADP binding by the D1 domain (Tang and Xia 2013). In wild type 

VCP the prebound ADP cannot be displaced and thus ATP can only bind to empty D1 

sites, resulting in heterogenous nucleotide states within a hexamer (Tang et al., 

2010). Since the movement of the N-domain is controlled by the nucleotide state of 

the D1 domain, the heterogeneity in N-D1 domain conformation seems to be a 

crucial property for the function of wild type VCP. Notably, the IBMPFD-specific VCP 

mutants show an increase in ATPase activity and increased sensitivity to heat-induced 

upregulation in ATPase activity (Halawani et al., 2009). This enhanced ATPase activity 

could be correlated with the availability of nucleotide-binding sites of the D1 domain, 

what in turn stimulates the ATPase activity in the D2 ring (Tang and Xia 2013).  

The disease-associated mutations, through introducing conformational 

changes in the N-domain, also specifically alter interaction of VCP with a subset of 

cofactors, such as Npl4 and Ufd1 heterodimers (Fernandez-Saiz and Bunchberger, 

2010). Specifically, the IBMPFD disease mutants exhibit elevated binding affinities for 

Ufd1-Npl4 as well as for p47 in vitro. However, decreased binding to a UBX cofactor – 

UBXD1 was observed in 293T cells expressing VCP mutants, resulting in impaired 

trafficking of the plasma membrane protein caveolin-1 (Ritz et al., 2011). It would 

thus appear that binding of some but not other cofactors at the N-domain triggers a 

conformational change to convert D1 to the ADP-open state. This allows more ATP to 

bind to D1, thereby stimulating the D2 ATPase.  Crucially, cofactors play a critical role 

in controlling VCP ATPase activity thus the lack of cofactor-regulated communication 

may contribute to VCP-associated disease pathogenesis (Zhang et al., 2015). 

Nevertheless, the autosomal dominance of IBMPFD disease penetrance is indicative 
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of a dominant mechanism; either a toxic gain of function or dominant negative 

activity. Since mutant forms of VCP retain the ability to form hexamers, even the 

A232E mutant, and the ATPase activity of multiple VCP mutants is significantly 

increased, the theory that mutations in VCP result in the amplification of a native 

function is a believable concept (Halawani et al., 2009; Niwa et al. 2012). 

1.4 VCP in the ubiquitin system  

VCP protein is highly abundant in cells and regulates a variety of cellular 

functions, such as nuclear envelope formation, cell cycle progression, apoptosis, 

nuclear envelope reconstruction and postmitotic organelle reassembly (Chapman et 

al., 2011). These seemingly unrelated functions are at least partially regulated by the 

ubiquitin-proteasome system (UPS). The UPS is the major selective proteolytic 

pathway in eukaryotic cells defining the degradation of substrate proteins that are 

tagged with homopolymers of ubiquitin (Franz et al., 2014). Ubiquitin (ub) is a small 8 

kDa protein that is conjugated through an isopeptide bond to a lysine residue of the 

substrate and itself contains seven lysine residues in positions 6, 11, 27, 31, 33, 48 

and 63 (Korolchuk et al., 2010). It can thus either serve as monoubiquitin or be 

extended to create chains through ubiquitination of one of seven lysines generating 

different types of polyubiquitin chains. A polyubiquitin chain is attached to target 

proteins via the action of ubiquitin-activating (E1), ubiquitin-conjugating (E2) and 

ubiquitin-ligating enzymes (E3; dictates substrate specificity) into poly-lysine chains 

with various conformations and monoubiquitinate and multi-monoubiquitinate 

target proteins (Fig. 1.4) (Scheffner et al., 1995; Ikeda and Dikic, 2009). In some cases 

ubiquitin chain elongation factors called E4 enzymes are required for efficient 

ubiquitination (Hoppe, 2005). Ubiquitin can attach at one or multiple sites of a client 

protein. The length of the ubiquitin chain and the linkages between ubiquitin 

molecules determines if that substrate will be degraded via the UPS (Komander and 

Rape, 2012). For example, lysine 11 (K11) - and lysine 48 (K48) – linked chains serve 

to target substrates for degradation at the proteasome (Thrower et al., 2000). 

Conversely, monoubiquitin and other types of chains (e.g. K63-linked) primarily 

trigger lysosomal degradation (through endosomal sorting or autophagy) as well as 

non-proteolytic signalling pathways (Mukhopadhyay and Riezman, 2007). Chains of 
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minimum four ubiquitins interconnected via K48 (or K11) residues are optimal for 

delivery to the proteasome (Fushman and Walker, 2010). The proteasome (26S) is a 

barrel-shaped multicatalytic protease complex localised both in the cytosol and the 

nucleus that consists of a 20S central cylinder subunit and two 19S cap-shaped 

subunits (Peters et al., 1994). The 19S complexes bind cargo-loaded shuttling 

proteins, deubiquitinate the substrates and control access to the six proteolytic sites 

of a central 20S subunit. The catalytic activities of the 26S proteasome are considered 

to be trypsin-, chymotrypsin-, peptide-glutamyl and peptide-hydrolising-like (Peters 

et al., 1994). The narrow size of the proteasome catalytic 20S pore requires protein 

substrates to be partially unfolded prior to entry, process mediated by VCP and 

ubiquitin binding adaptor proteins (Korolchuk et al., 2010). 

In association with the UPS, VCP acts as a molecular segregase and mediates 

ubiquitin-dependent extraction of substrates from membranes, cellular structures 

and multiprotein complexes for recycling or degradation by the 26S proteasome (Fig. 

1.4); this is likely in flux with the alternative route of degradation via autophagy 

(Korolchuk et al., 2009; Meyer et al., 2012). The UPS selectively degrades misfolded 

and short-lived proteins that are covalently modified with a polyubiquitin chain. The 

VCP facilitates steps downstream of ubiquitination, as it directly and indirectly binds 

to ubiquitinated substrates (Jentsch and Rumpf, 2007; Meyer et al., 2012). The 

degree of the requirement for VCP varies and might dependent on substrate 

localisation, structure or solubility (Gallagher et al., 2014). Whilst VCP itself has some 

affinity for ubiquitin, it binds to ubiquitin conjugates largely through adaptor proteins 

with dedicated ubiquitin-binding domains (Franz et al., 2014). VCP has been 

associated with monoubiquitin, lysine 29 (K29), lysine 63 (K63), lysine 48 (K48) – 

linked chains, as well as branched lysine 11/48 (K11/K48) – linked chains (Ye, 2006; 

Meyer and Rape, 2014). VCP mediates the turnover of several cytosolic UPS 

substrates including inhibitor of kappa B (IκB) (Dai et al., 1998), UNC-45B (skeletal 

muscle myosin chaperone) (Janiesch et al., 2007) and hypoxia inducible factor 1α 

(HIF-1α) (Alexandru et al., 2008). Degradation of ubiquitinated proteins by the 26S 

proteasome requires continuous ATP hydrolysis. It was proposed that VCP uses the 

energy from ATP hydrolysis to structurally remodel target proteins in order to unfold 

or extract them from binding partners or cellular structures (Bug and Meyer, 2012). 
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More importantly however, different aspects of VCP functions depend on its ability to 

interact with a diverse array of cofactors. This ability to form adaptor complexes with 

different sets of at least 40 cofactors enables VCP to mediate a myriad of cellular 

processes, including targeting specific substrates for degradation (Yeung et al., 2008; 

Ju and Weihl, 2010; Buchberger et al., 2015). Some of these cofactors serve as 

ubiquitin adaptors or recruit VCP to intracellular membranes. Many of each contains 

UBX (ubiquitin regulatory X) or UBX-like ubiquitin-fold domains that bind to VCP N-

terminal domain (Kloppsteck et al., 2012). They also contain the ubiquitin binding 

domains (UBDs) that recognise the client, such as ubiquitin-associated (UBA), the 

Npl4 zinc finger (NFZ) or the PLAA-family ubiquitin binding (PFU) domains (Meyer et 

al., 2012). The majority of UBDs recognise the Isoleucine 44/ Valine 70 (I44/V70) 

hydrophobic patch on ubiquitin, while some bind to a polar site centred on Aspartic 

Acid 58 (D58) or a hydrophobic patch on leucine 8 (L8) (Searle et al., 2012). The most 

functionally diverse of VCP’s substrate recruiting cofactors is the heterodimeric 

complex Ufd1-Npl4, which mediates many of the proteasome-related activities of 

VCP. Both proteins bind to VCP in a synergistic fashion, Ufd1 via its UBX domain and 

Npl4 via its UBD domain (Chapman et al., 2011). The VCP-Ufd1-Npl4 complex 

facilitates a number of proteasomal degradation pathways such as ERAD, where it 

drives the dislocation of polyubiquitylated substrates from the ER membrane into the 

cytosol, degradation of proteins associated with chromatin and the outer 

mitochondrial membrane, and of important regulators of cell cycle progression and 

signal transduction (Buchberger et al., 2015). Other VCP-interacting motifs identified 

to date include the PNGase/ubiquitin-associated (PUB) domain (Madsen et al., 2009), 

VCP-interacting motif (VIM) (Staph et al., 2011), PUL and PFU (PLAA family ubiquitin 

binding) domains (Mullally et al., 2006) or BS1/SHP (binding site 1) box (Madsen et 

al., 2009) (More on VCP binding partners in Chapter 4). VCP also either directly or 

indirectly (through the UBXD7/Ubx5 adaptor) binds to ubiquitin E3/E4 ligases and 

deubiquitinating enzymes (DUBs) which edit the ubiquitin chains on the substrate 

protein (Alexandru et al., 2008; Sowa et al., 2009). This in turn results in either 

recycle of the substrate or improves its targeting to the proteasome, thus 

determining its fate. E3 ligases that interact with VCP include a large number of 

cullin-RING ligases (CRLs), which facilitate ubiquitin transfer from the E2 enzyme to 
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the substrate (Alexandru et al., 2008). Some of the CRL substrates that require VCP 

for extraction include hypoxia-inducible factor (HIFα - CUL2 substrate), mitotic kinase 

Aurora B, polymerase II catalytic subunit Rpb1 (both ubiquitinated by CUL3) and 

replication licensing factor Cdt1 (targeted by CUL4A) (Meyer et al., 2012). VCP also 

recruits ubiquitin-chain editing factors, such as E4B/Ufd2, which can extend shorter 

ubiquitin chains to promote substrate targeting for degradation (Jentsch and Rumpf, 

2007). In contrast, DUBs remove ubiquitin, shortening ubiquitin chains, to either 

promote substrate recycling or facilitate proteasome recognition and subsequent 

degradation (Franz et al., 2014). VCP facilitates the proteasomal degradation of large 

cohorts of damaged or misfolded proteins in different compartments including the ER 

(via ERAD), the outer mitochondrial membrane and the nucleus, as well as co-

translational degradation at the ribosome (see below). Thus one could say that the 

main function of VCP in ensuring protein homeostasis is well established. 

 

Figure 1.4. General model for the ubiquitin system. Substrate protein is modified by covalent 

attachment of ubiquitin (ub) via a cascade of the ubiquitin-activating enzyme (E1), ubiquitin-

conjugating enzyme (E2) and a specific ubiquitin ligase (E3). VCP cooperates with dedicated 

ubiquitin-binding cofactors in substrate recognition and together with chain-elongation (E4) 

or deubiquitinating (DUB) enzymes in ubiquitin chain editing. VCP converts the energy of ATP 

hydrolysis to extract substrate protein from binding partners (BP) such as protein complexes, 

membranes, or chromatin. Following ubiquitin modification, after segregation from its 

binding partner, substrate protein may either be recycled or transferred to the 26S 

proteasome for degradation.  
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1.5 Protein quality control, stress granules and inclusion bodies 

Cells respond to stresses, like heat shock or oxidative agents, which lead to 

protein aggregation, by activating the protein quality control and attenuating 

translation (Bukau et al., 2006). The protein quality control (PQC) consists of 

molecular chaperones and degradation systems and is an essential player of the 

proteotoxic stress response. In order to minimize protein aggregation chaperones 

assist protein folding; when this is not effective, chaperones assist in targeting 

damaged substrates for clearance by the UPS and the lysosome-based degradation 

systems (Bukau et al., 2006; Korolchuk et al., 2009). In parallel, polysomes (or 

polyribosomes – a cluster of ribosomes bound to a mRNA) disassemble, releasing 

ribosomes, mRNAs (messenger RNAs), defective ribosomal products (DRIPs) and 

newly synthesised proteins, which, due to the stress, are prone to aggregation 

(Schubert et al., 2000).  

In order to maintain proper modulation of gene expression the control of 

mRNA (carrier of genetic code for a specific protein product) translation, as well as its 

localisation and degradation is particularly important. From transcription to 

degradation, cellular mRNAs are coated with proteins in messenger 

ribonucleoprotein (mRNP) complexes.  The mRNP composition dictates whether the 

mRNA engages in translation or remains translationally inactive and is subject to 

either storage or degradation (Erickson and Lykke-Andersen 2011). Non-translating 

mRNPs in eukaryotic cells often assemble into conserved and dynamic cytoplasmic 

mRNP granules known as processing (P) -bodies and stress granules (Buchan and 

Parker, 2009; Erickson and Lykke-Andersen, 2011). Stress granules and P-bodies are 

highly dynamic membraneless cytoplasmic granules observed in a wide variety of 

eukaryotes; and are related to mRNP granules in embryos - where maternal mRNAs 

are stored, neurons - involved in mRNA transport and translational control at 

synapses, and pathological inclusions in some degenerative diseases (Nonhoff et al., 

2007; Buchan and Parker, 2009). Stress granules are typically observed when 

translation initiation is limiting and consist of translationally silent mRNAs, early 

initiation factors, small, but not large, ribosomal subunits, mRNA-binding proteins, 

kinases and signalling molecules, and thus are thought to represent a pool of mRNPs 

stalled in the process of translation initiation (Anderson and Kedersha, 2009; Buchan 
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and Parker, 2009). P-bodies, on the other hand, consist of mRNAs associated with 

translation repressors and the mRNA decay machinery, and while typically present in 

cells at modest levels, they increase when the pool of non-translating mRNPs is larger 

(Parker and Sheth, 2007). Under the microscope, P-bodies generally seem discrete 

and rounded, ranging from 100 to 300 nm in diameter, whereas stress granules can 

seem more diffuse and can average 100 to 200 nm (Yang et al., 2004; Erickson and 

Lykke-Andersen 2011). Stress granules assembly occurs in a challenging subcellular 

environment where aggregate-prone substrates (released by polysomes) tend to 

accumulate, but can also be triggered by the self-aggregation of RNA-binding 

proteins that contain prion-like domains, including T-cell-restricted intracellular 

antigen-1 (TIA-1) (Gilks et al., 2004). 

The formation of stress granules and P-bodies is based on two principles. 

First, they require non-translating RNA for their assembly. Second, individual mRNPs 

are brought together by dimerization or aggregation domains present on mRNP 

binding proteins. For example, the assembly of P-bodies in yeast is driven in part by a 

dimerization domain on the Edc3 protein and a “prion domain” present on the Lsm4 

protein (Decker et al., 2007; Reijns et al., 2008). Similarly, as mentioned above, stress 

granule formation in mammalian cells is promoted by a prion domain on the TIA-1 

protein (Gilks et al., 2004), and mRNA binding proteins frequently contain such 

aggregation prone prion-like or low-complexity domains (Decker et al., 2007; Kim et 

al., 2013). The prevalence of such aggregation domains in RNA binding proteins as 

part of their normal role in forming stress granules and P-bodies suggests they 

provide a significant target for mutations that create pathologically aggregated 

proteins. In fact, mutations in known stress granule proteins which often increase 

their tendency to aggregation have emerged as being involved in some degenerative 

diseases, including such conditions as amyotrophic lateral sclerosis (ALS), 

frontotemporal lobar degeneration (FTLD), fragile X syndrome, spinocerebellar 

ataxia-2, inclusion body myopathy (IBM) and multisystem proteinopathy (MSP) 

(Nonhoff et al, 2007; Didiot et al, 2009; Ito and Suzuki, 2011; Kim et al., 2013). 

Furthermore, a hallmark of ALS, FTLD and some other degenerative diseases is the 

accumulation of cytoplasmic aggregates that contain several stress granule factors 

and RNA (Ito and Suzuki, 2011; Dewey et al, 2012). Specifically, stress granule marker 
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proteins were found to be additional components of trans-activation response DNA 

protein 43 (TDP-43) or fused in sarcoma (FUS)-positive neuronal cytoplasmic 

inclusions (NCIs) in patients with ALS and FTLD (Dormann et al., 2010; Dewey et al, 

2012) and in transgenic mice expressing mutant human VCP (Rodriguez-Ortiz et al., 

2013). TDP-43- positive NCIs were ubiquitin-positive, whereas FUS-positive NCIs 

werere inconsistently ubiquitin-immunoreactive in ALS and FTLD patients (Dormann 

et al., 2010; Ito and Suzuki, 2011). This lead to the hypothesis that inappropriate 

formation or persistence of stress granules, or some related mRNP aggregate might 

be related to the pathogenesis in these diseases. Therefore, since mutations in VCP 

cause ALS, FTLD and MSP, which are all characterised by pathological accumulation of 

TDP-43 and in some cases other stress granule proteins in cytoplasmic aggregates 

(Johnson et al, 2010; Salajegheh et al, 2009; Kim et al., 2013), it is not surprising that 

VCP has been identified to be involved in clearance of stress granules (Buchan et al., 

2013; Seguin et al., 2014). 

VCP and the autophagy-lysosome pathway govern protein (and organelle) 

degradation and are thus key players of the protein quality control. Observations 

suggested that stress granules and P-bodies can be degraded by autophagy, in a 

process termed granulophagy, although stress granules are more commonly targeted 

for autophagy than P-bodies (Buchan et al., 2008; Buchan et al., 2013). Interestingly, 

inhibition of autophagy, lysosomes and VCP impairs stress granules, supporting that 

the PQC modulates stress granule formation and disassembly (Seguin et al., 2014). In 

addition, silencing the VCP co-factors UFD1L and PLAA, which degrade defective 

ribosomal products (DRIPs) and 60S ribosomes, also impair stress granule assembly 

(Seguin et al., 2014). Furthermore, DRIPs and 60S, which are released from 

disassembling polysomes and are normally excluded from stress granules, are 

retained within stress granules in cells with impaired autophagy, lysosome or VCP 

function (Seguin et al., 2014). In contrast, stimulation of autophagy with either 3-MA 

or rapamycin increased rate at which stress granules were cleared following the relief 

of oxidative stress (Wu et al., 2010). Since VCP utilises ATP hydrolysis to segregate 

ubiquitinated proteins from a variety of cellular complexes and stress granules in 

mammalian cells are heavily ubiquitinated (Kwon et al., 2007) it would appear that 

stress granules and P-body dynamics is modulated via ubiquitination. Furthermore, 
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VCP binding partner – HDAC6 is involved in autophagic clearance of ubiquitinated 

proteins (Ju et al., 2008) and itself binds ubiquitinated targets, but also regulates 

stress granule assembly in mammalian cells (Kwon et al., 2008). These findings imply 

that deregulated autophagy, lysosomal or VCP activities, which occur in several 

neurodegenerative (VCP-associated) diseases, may alter stress granule morphology 

and composition. Persistent or partly disassembled stress granules may act as seeds 

for aggregation, what in turn can pose further challenge for RNA and protein 

homeostasis. 

Although most misfolded and aggregated proteins generated in various 

cellular compartments, including the cytoplasm, nucleus and endoplasmic reticulum 

(ER), can be degraded by cellular protein quality control systems, some native and 

mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant 

to all known proteolytic pathways and can thus grow into inclusion bodies or 

extracellular plaques (Ciechanover and Kwon, 2015). The accumulation of protease-

resistant misfolded and aggregated proteins is a common mechanism underlying 

protein misfolding disorders including neurodegenerative diseases such as 

Huntington’s disease (HD), Alzheimer’s disease (AD), Parkinson’s disease (PD), prion 

diseases and Amyotrophic Lateral Sclerosis (ALS) (Mizuno et al., 2003; Johnson et al., 

2010; Erzurumlur et al., 2013). Expansion of polyglutamine (polyQ) tracts in the 

coding region of specific genes, such as huntingtin, atrophin-1, androgen receptor 

and ataxin-1, 2, 3, 6, 7 and 17 results in the accumulation of the mutant proteins into 

micro-aggregates/oligomers and inclusions (Pennuto and Sambataro, 2010). 

Expanded polyglutamine (polyQ) tracts form antiparallel β-strands held together by 

hydrogen bonds between the main chain of one strand and the side chain of the 

adjacent strand. This leads the polyQ protein to acquire a non-native β-sheet 

conformation, which results in the production of various aggregates (Perutz et al., 

1994). Micro-aggregates are relatively small species identifiable by biochemistry and 

atomic force microscopy and are thought to originate as intermediate products that 

generate during the process of aggregation and inclusion formation. Inclusions are 

larger species detectable by immunohistochemistry and are likely to represent a 

protective cellular response to the presence of misfolded protein. Inclusions can be 

found in the cytosol as well as in the nucleus (nuclear inclusions) of neuronal and 
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non-neuronal cells (Perutz et al., 1994; Kopito 2000). Even though polyQ proteins are 

substrates of proteasome, their aggregate species, oligomers and micro-aggregates, 

are not efficiently degraded and accumulate in the cells causing toxicity (Demuro et 

al., 2005). Furthermore, association of polyQ proteins with proteasome may lead to 

sequestration of proteasome components into aggregates. 

VCP interacts with both normal length (shorter than 38 glutamines) and 

mutant (above a threshold length of 38 glutamines; aggregate-prone) polyQ tract 

sequence, although only mutant proteins affect dynamism of VCP and impair its 

function (Imafuku et al., 1998; Fujita et al., 2013). Mutant polyQ proteins such as 

huntingtin (HTT), ataxin-1 and 7 (Atx1 and Atx7), and androgen receptor (AR) are 

bound directly to VCP via polyglutamine sequence reducing the amount of VCP in the 

functional domains in cells (Fujita et al., 2013). On the other hand however, 

overexpression of a C.elegans VCP homologue has been shown to decrease ex-polyQ 

aggregates in C.elegans (Yamanaka et al., 2004). Consistently, overexpression of 

VCP/TERA resulted in the recovery of lifespan in polyglutamine disease flies model 

(Manno et al., 2010). Therefore, these findings suggest that VCP is involved in the 

clearance of pathogenic aggregates. 

Expanded polyglutamine containing proteins or other mutant, aggregate 

prone proteins, such as synuclein in autosomal dominant Parkinson disease, are the 

molecular constituents of the ubiquitinated inclusions (UBIs) (Watts et al., 2004; Ju et 

al., 2008). In some cases these UBIs contain tubulofilamentous inclusions and 

insoluble protein aggregates (Hubbers et al., 2007). In addition, UBIs can form in the 

setting of impaired autophagy (Rubinsztein, 2006), and one potential point of 

intersection between autophagy and the UPS is the “aggresome” or inclusion body 

(Johnston et al., 1998). An aggresome is a microtubule-dependent pericentriolar 

region of the cell that contains sequestered misfolded or aggregated proteins 

(Johnston et al., 1998). Aggresome formation occurs in the setting of UPS dysfunction 

due to decreased proteasome activity or the overwhelming accumulation of 

misfolded proteins (Johnston et al., 1998; Ju et al. 2008). Furthermore, the 

aggresome also contains proteins such as LC3 and p62 along with lysosomes, which 

would imply that these are areas of active autophagic degradation (Bjorkoy et al., 
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2005). As a defence agains polyglutamine-induced cell death, ubiquitinated and 

aggregated proteins are trafficked to the aggresome via interactions with HDAC6, a 

VCP-binding protein and dynein (Kobayashi et al. 2007; Ju et al. 2008). 

In summary, protein quality control via autophagy is particularly important for 

the timely removal of aggregated forms of pathogenic proteins in neurodegenerative 

diseases (Kobayashi et al. 2007; Ciechanover and Kwon, 2015). Although misfolded 

proteins can be immediately and directly delivered to autophagosomes, excess 

misfolded or damaged proteins and their aggregates that accumulate beyond cellular 

capacity are temporarily stored in the aggresome. During this process, called 

aggrephagy, the HDAC 6, in association with molecular chaperones, binds untethered 

ubiquitinated aggregates and delivers them via microtubules to a location that 

minimises their toxicity until they are finally degraded by the UPS or autophagy (Ju et 

al. 2008). Therefore, one way to enhance degradation of pathogenic protein 

aggregates would be to increase the activities of proteolytic pathways. 

1.6 Autophagy in health and disease 

Living organisms developed mechanisms enabling them to capture and utilise 

energy from degrading parts of themselves in order to survive. The major 

evolutionarily conserved breakdown pathway is known as autophagy (Greek), 

meaning ‘to eat oneself’.  Autophagy (as a general process) is a homeostatic process 

that involves degradation of a cell's interior components through the lysosomal 

machinery (Yang and Klionsky, 2010). This ‘self-cannibalisation’ pathway is not only 

responsible for degrading cellular proteins but also degrading cellular organelles and 

even intracellular pathogens, which are too large for other degradation systems. It is 

a tightly regulated process that plays a normal part in cell growth and development, 

helping to maintain a balance between the synthesis, degradation, and subsequent 

recycling of cellular products. Autophagy is a major mechanism by which a starving 

cell re-allocates nutrients from unnecessary to more-essential processes to ensure 

cell survival.  

While a variety of autophagic processes exist (microautophagy, 

macroautophagy and chaperone mediated autophagy), they all degrade intracellular 

http://en.wikipedia.org/wiki/Lysosome
http://en.wikipedia.org/wiki/Cell_growth
http://en.wikipedia.org/wiki/Cellular_differentiation
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components via the lysosome. The most well-known mechanism of autophagy is 

macroautophagy (now more commonly referred to as ‘autophagy’), which involves 

the formation of a double-membrane vesicles (autophagic vacuoles) around a 

targeted region of the cell, separating the contents from the rest of the cytoplasm 

(Mizushima et al., 2008; Yang and Klionski, 2010). The resultant autophagosome then 

fuses with a lysosome creating autolysosome and subsequently degrades the 

contents. In contrast to the UPS, autophagy is restricted to the cytoplasm but is 

capable of degrading a much wider spectrum of substrates, which include functional 

or misfolded soluble proteins, protein complexes, oligomers and protein aggregates, 

and even whole cellular organelles (Korolchuk et al., 2010). Terms like pexophagy, 

mitophagy or ribophagy are used to describe autophagosomal degradation of 

peroxisomes, mitochondria or ribosomes respectively. Autophagy comprises five 

distinct steps: initiation – formation of a double-layered isolation memebrane (also 

called a phagophore), the origin of which has been reported to be the endoplasmic 

reticulum (ER) (Hayashi-Nishino et al., 2009), Golgi (Yen et al., 2010), and the 

mitochondria (Van der Vaart et al., 2010); elongation and engulfment of cytoplasm 

portions containing autophagic substrates, autophagosome formation, lysosome 

fusion and autolysosome activation, where the engulfed content is degraded by 

lysosomal proteases (Fig. 1.5). Autophagy can be selective/ basal or non-

selective/induced. In general, basal autophagy acts as a quality-control mechanism 

for specific cargo, including proteins and organelles. Basal autophagy functions 

mainly in the maintenance of cells, especially terminally differentiated, long-lived 

cells such as neurons, and tissue-dependent physiological functions (Komatsu et al., 

2007 2nd; Tanida and Waguri, 2010). During selective/ basal autophagy, certain 

autophagic substrates are specifically targeted for destruction through ubiquitination 

(Korolchuk et al., 2010). Specifically, K63-linked and K27-linked ubiquitin chains (as 

well as monoubiquitin) all function in the removal of proteins and organelle via 

autophagy (Kirkin et al., 2009). There are several adaptor proteins that serve as 

linkers between ubiquitinated cargo and the autophagy-lysosome degradation 

system. These include p62 (also called SQSTM1), neighbour of BRCA1 gene 1 (Nbr1) 

and autophagy-linked FYVE protein (Alfy) that recognise and form complexes with the 

ubiquitinated proteins or organelle through ubiquitin-binding domains (UBDs). The 

http://en.wikipedia.org/wiki/Lysosome
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most established of these adaptors, p62, is itself an autophagy substrate that 

sequesters ubiquitinated substrates via its ubiquitin-associated (UBA) domain and is 

recruited to the autophagosomal membrane through interaction with LC3 (see 

below) (Pankiv et al., 2007; Itakura and Mizushima, 2011). Non-selective autophagy is 

rapidly induced upon nutrient deprivation (amino acid removal, but not growth factor 

removal), hypoxia or infection and the contents of the induced autophagosomes 

include any protein or organelle that is in the vicinity of the expanding phagophore. 

In mammals induced autophagy is observed mainly in the liver and muscle (Tanida 

and Waguri, 2010). In general, after feeding, autophagy in the liver is suppressed to 

store nutrients and is re-induced again several hours after feeding. Thereafter, when 

fasting continues for over 6 hours, autophagy in the skeletal muscles occurs and then 

in the heart when fasting lasts longer. 

 

 
Figure 1.5. Schematic diagram of the macroautophagy pathway. In mammalian cells, the 

ULK1/2–Atg13–FIP200–Atg101 complex (ULK complex) is responsible for initiation of 

autophagy, in response to certain signals. Initiation of autophagy involves the formation of a 

sequestering membrane called phagophore. Atg12-ATG5-ATG16L complex conjugates to the 

sequestering membrane enabling the recruitment of LC3. Expansion of the phagophore 

allows engulfment of cytosolic components including long-lived and dysfunctional organelles 
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such as mitochondria and endoplasmic reticulum, protein aggregates and foreign organisms 

(viruses and bacteria).  At the end of elongation, sequestering membrane closes and results 

in the formation of a double-membrane vesicle, autophagosome. Once the autophagosome 

is formed, it is delivered to fuse with lysosome to form autolysosome. Lysosomal hydrolases 

degrade the cargo together with the inner membrane of autophagosome; nutrients are 

recycled and reused by the cell. Autophagy can be blocked at early stages, via mTOR kinase 

or pharmacological inhibition of PI3Ks, or at late stage, via inhibition of lysosomes 

acidification with Bafilomycin A1. Conversely, pharmacological or starvation-induced 

inhibition of mTOR or endogenous activity of Class III PI3K positively regulates autophagy. 

The formation of autophagosomes is regulated by the reversible conjugation 

of the ubiquitin-like (UBL) family of proteins (ATG - Autophagy-related proteins) to 

the sequestering double membrane during the autophagosome formation. The ATG 

proteins can be grouped, according to their function, into the Atg1 complex (Atg1-

Atg13-Atg17) controlling autophagosomal induction, the phosphatidyl inositol 3-

phosphate kinase (PI3K) complex III (including PI3K, Beclin 1 and UV-radiation 

associated gene – UVRAG) regulating vesicle nucleation, and two interconnected 

conjugation systems that mediate vesicle elongation and sealing (Korolchuk et al., 

2010). The first conjugation system, consisting of Atg12-Atg5-Atg16L complex, 

localises to the phagophore and is thought to determine the sites of Atg8/LC3 

lipidation (Fujita et al., 2008; Yang and Kilonsky, 2010). The second conjugation 

system (including Atg4, Atg7 and Atg3) regulates the lipidation of Atg8 in yeast, and 

LC3 (Light Chain 3) in mammals (Cherra et al., 2010; Rabinowitz and White, 2010). 

Autophagy proteins undergo their own ubiquitin (ub) – like conjugation reactions 

that are essential for expansion of the autophagosomal membrane. Both Atg8/LC3 

and Atg12 proteins are activated by the E1-like enzyme Atg7, Atg12 is conjugated to 

Atg5 by the E2-like Atg10 and Atg8/LC3 is conjugated to phosphatidylethanolamine 

(PE) by Atg3. The Atg12–Atg5 conjugate forms a complex with Atg16 and this 

hierarchical assembly of proteins can drive the formation of Atg8/LC3–PE in an E3-

like manner (Hanada et al., 2007). Following the formation of autophagosome, 

Atg12-Atg5-Atg16 conjugate is removed from the vesicle, while Atg8/LC3 remains 

attached. Autophagosomes are transported along microtubules in a dynein-

dependent manner and fuse with lysosomes where contents are degraded by 
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lysosomal hydrolases (Ravikumar et al., 2005). The lipidated form of LC3, known as 

LC3-II, conjugates to PE of the autophagosomal membrane and remains on mature 

autophagosome until after fusion with lysosome, where LC3-II is also degraded.  

Other mammalian homologues of Atg8/LC3 include GABARAP (GABA Receptor- 

Associated Protein), GABARAPL1, GATE16 (Golgi-associated ATPase Enhancer of 16 

kDa), and GABARAPL3 (Klionsky and Deretic, 2011), they all share the same ubiquitin-

like fold three-dimensional structure. The lysosomal turnover of LC3-II reflects 

starvation induced autophagy and is thus routinely monitored, via experimental 

methods such as immunoblotting or immunofluorescence. For example, inhibition of 

lysosomal function by inhibition of cathepsins or by acidification of lysosomes inhibits 

the final step of autophagy. This results in significant accumulation of autolysosomes 

and LC3-II because there is little degradation of autolysosomal content. This 

accumulation reflects the activity of the delivery process of LC3-II into lysosomes and 

can be used for measurement of autophagy flux (Tanida and Waguri, 2010). 

Although, in contrast to induced autophagy, there is little increase of LC3-II during 

basal autophagy (Komatsu et al., 2007 2nd). 

 The identification of p62/SQSTM1 and NBR1 (neighbour of BRCA1) as adaptor 

proteins that simultaneously bind LC3 (via LIR) and ubiquitinated cargo (via their ub-

binding domains) indicated that these could allow inclusion of ubiquitinated cargo 

into autophagosomes and their subsequent degradation by the lysosome (Pankiv et 

al., 2007; Kirkin et al., 2009). The direct interaction of SQSTM1/p62 protein with LC3 

in autophagic membranes, was described fairly recently (Bjorkoy et al., 2005; Pankiv 

et al., 2007). It was found that this interaction is dependent on LC3 first 10 N-terminal 

amino acids and on Phe52-Leu53 residues located within the ubiquitin core (Shvets et 

al., 2008). Interestingly, the LC3 ubiquitin core is sufficient for its conjugation to PE, 

serving as a structural recognition module for interacting proteins (Shvets et al., 

2008). The p62 protein binds polyubiquitinated proteins via the UBA domain, 

polymerises via its PB1 domain and binds to LC3 via the LIR motif (Pankiv et al., 

2007). Once the substrate-adaptor protein complex associates with the 

autophagosomal membrane-bound LC3-II the cargo can be incorporated into the 

autophagic vesicle and further recycled by the cell. Therefore, the interaction of p62 

with LC3 is essential for the selective recruitment of aggregated proteins to 
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autophagy for degradation (Tung et al., 2010). Finally, p62 is thought to regulate the 

formation of protein aggregates and is itself removed by autophagy (Komatsu et al., 

2007). Therefore, when autophagy is impaired, the level of p62 is increased in 

addition to the accumulation of ubiquitinated proteins and like LC3 can also be 

monitored by experimental methods (such as immunoblotting or fluorescent 

immunostaining). Therefore levels of ubiquitin and p62 are often monitored for 

estimation of impairment in basal autophagy.  

Autophagy acts as a mechanism to cope with the cellular stress triggered by 

nutrient starvation or hypoxia, allowing both yeast and mammalian cells to survive in 

conditions of low nutrient availability. The ability to sense low levels of nutrients and 

initiate autophagy is regulated by the target of rapamycin (TOR) kinase (Fig. 1.5) and 

thus TOR is said to be a key regulator of autophagy (Kamada et al., 2000). 

Mammalian systems have two distinct mammalian TOR complexes (mTOR) – 

mTORC1 and mTORC2, characterised by the presence or absence of various subunits. 

In nutrient-rich conditions, mTOR has an inhibitory effect on autophagy, whereas 

under starvation conditions mTOR is inactivated which leads to the initiation of 

autophagy. The ability of mTOR to inhibit autophagy occurs via initial incorporation of 

mTORC1 into the ULK1/2–Atg13–FIP200–Atg101 (ULK) complex, followed by the 

phosphorylation of ULK1 and Atg13, thereby preventing initiation of the process 

(Jung et al., 2009). Inhibition of TOR kinase with a chemical agent, such as rapamycin, 

is sufficient to induce cell cycle and growth arrest and autophagy, even in the 

presence of amino acids (Kamada et al., 2000; Wullschleger et al., 2006). The mTOR 

complexes differ in their sensitivity to rapamycin, namely only mTORC1 is inhibited by 

the drug (Wullschleger et al., 2006). Rapamycin treatment acts via releasing ULK1 to 

phosphorylated FIP200 (family interacting protein of 200kDa) and subsequent 

autophagy is induced. Torin1 is another inhibitor of mTOR kinase and induces 

autophagy to a greater degree, as it directly inhibits both mTORC1 and mTORC2 

complexes (Thoren et al., 2009). Class I and class III phosphoinositide 3 kinases 

(PI3Ks), involved in cell growth and survival, positively regulate autophagy and when 

inhibited with either 3-Methyladenine (3-MA) or Wortmanin, the formation of 

autophagosomes is also blocked (Fig 1.4). 
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Autophagy-deficient tissues tend to accumulate ubiquitinated aggregates and 

p62- and LC3- positive inclusion bodies (Komatsu et al., 2007). Therefore, the 

increase in ubiquitin-positive and p62-positive inclusions in tissues indicates the 

possibility of an insufficiency in autophagy. As mentioned above autophagy occurs at 

basal, constitutive levels, although the demand for basal autophagy differs among 

tissues. The brain is probably one of the organs which require most protection 

against starvation, and as one might expect neuronspecific autophagy-deficient mice 

show progressive neurodegeneration associated with the accumulation of 

ubiquitinated protein aggregates and/or inclusion bodies (Komatsu et al., 2006; Hara 

et al., 2006). The neurons in patients with neuronal ceroid lipofuscinosis (NCL) show 

accumulation of  mitochondrial  ATPase  subunit  C  in  lysosomes,  indicating that  

impairment  of  mitochondrial protein degradation occurred in the patients and 

suggesting that  mitochondria  are  degraded  via  the  autophagy-lysosomal system  

in  neurons (Koike et al., 2005).  In addition, mutation of cln3, one of the NCL-related 

genes, or a lack of cathepsin D, one of the major lysosomal proteases, leads to 

neuronal ceroid lipofuscinosis with autophagic vacuolisation (Koike et al., 2005; Cao 

et al., 2006).  Studies reveal that degradation of disease-related mutant proteins, 

such as extended polyglutamine-containing proteins that cause Huntington’s disease 

and spinocerebellar ataxia, and mutant forms of α-synuclein that cause familial 

Parkinson’s disease, is highly dependent on autophagy, in addition to the ubiquitin-

proteasome system (Cuervo et al., 2005; Martinez-Vicente and Cuervo, 2007).  

The same autophagic machinery used to selectively capture cellular organelles 

is used for the selective delivery of microorganisms to lysosomes in a process termed 

xenophagy (Yang and Klionsky, 2010). Pathogen-containing LC3-positive 

compartments can be considerably larger than classical autophagosomes consisting 

exclusively of cellular constituents (Levine and Deretic, 2007), indicating a plasticity of 

the autophagic process that permits it to adapt to the need to engulf microbes that 

are larger than its own organelles. Beyond its direct role in pathogen elimination, 

autophagy also mediates trafficking events required for innate and adaptive 

immunity. In the case of certain RNA viral infections, autophagy is required for the 

delivery of viral nucleic acids to the endosomal toll-like receptor TLR7, and 

subsequent activation of type I interferon signalling (Levine and Deretic, 2007). The 
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autophagic machinery is also used for the major histocompatibility complex (MHC) 

class II presentation of certain endogenously synthesised viral antigens (Schmid et al., 

2007). Given the diverse roles of autophagy in innate and adaptive immunity, it may 

not be surprising that Atg16-deficient macrophages produce more of the 

inflammatory cytokines IL-1β and IL-18 upon stimulation with lipopolysaccharides 

(Saitoh et al., 2008). Furthermore, single nucleotide polymorphisms in Atg16L1 have 

been linked to Crohn’s disease, a major type of inflammatory bowel disease (Hampe 

et al., 2007). These associations suggest that autophagy plays an important role in 

the innate immune response of the intestine. 

One of the first diseases genetically linked to autophagy malfunction was 

cancer, where Beclin 1 (BECN1) was found to be monoallelically deleted in 40-75% of 

cases of human breast, ovarian and prostate cancer (Mathew et al., 2007). 

Additionally, mice with heterozygous disruption of beclin 1 have decreased 

autophagy and are more prone to the development of spontaneous tumours 

including lymphomas, lung carcinomas, hepatocellular carcinomas, and mammary 

precancerous lesions (Qu et al., 2003; Yue et al., 2003). Interestingly, components 

that enhance the autophagic activity of Beclin 1/ class III PI3K complex (Takahashi et 

al., 2007) and additional Atg genes, including atg4c  (Marino et al., 2007) exert 

tumour suppressor effects. Conversely, downregulation of autophagy observed in 

cancer cells is associated with tumour progression. For example, mTOR and Class I 

PI3K which control cell growth, proliferation and cell survival, and inhibit autophagy  

are commonly activated oncogenes (promoter of oncogenesis) (Botti et al., 2006). 

This would suggest that tumour suppression may be a shared property of autophagy 

proteins (ATGs). Although the tumour suppressor effects of autophagy may often be 

counterbalanced by its pro-survival effects that contribute to tumour cell resistance 

to chemotherapy, giving the necessity to differentially target autophagy in a disease-

stage-specific manner (Chan et al., 2005; Abedin et al., 2007). Considering all of the 

available data, there is no doubt that autophagy may help to prevent or halt the 

progression of some diseases, specifically some types of neurodegeneration, heart 

disease and cancer, and play a protective role against infection by intracellular 

pathogens, but paradoxically it may also be deleterious, particularly in cells that 

cannot die by apoptosis (Levine and Yuan, 2005; Levine and Kroemer, 2008).  

http://en.wikipedia.org/wiki/Neurodegeneration
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A common characteristic of all tissues with impaired autophagy is 

accumulation of damaged proteins and organelles, and this is even more evident with 

age and particularly detrimental in non-dividing differentiated cells (Choi et al., 

2013). Muscle biopsies from affected muscle in IBMPFD patients as well as muscle 

from two transgenic mouse models of IBMPFD display ubiquitinated inclusions, TDP-

43 cytoplasmic aggregates and the presence of rimmed vacuoles (Weihl et al., 2007; 

Kimonis et al. 2008; Custer et al., 2010). The accumulation of TDP-43 observed in 

IBMPFD, was replicated in cells upon autophagy inhibition (Ju et al., 2009; Custer et 

al., 2010), suggesting that the accumulation of this protein in the disease state may 

be a consequence of autophagy deficiency. An early disease model of Chloroquine 

myopathy (drug poisoning induced myopathy) in rats linked the muscle atrophy and 

rimmed vacuole formation to accumulated autophagosomes (LC3-II positive vesicles) 

(Suzuki et al., 2002). Further to that, the IBMPFD muscle was shown to accumulate 

autophagosome-associated proteins p62 and LC3-II, which localised to rimmed 

vacuoles (Ju et al., 2009; Bug and Meyer, 2012).  Additionally, myoblasts derived from 

IBMPFD patients show abnormal accumulation of large lysosomal–associated 

membrane protein 1 and 2 (LAMP1- and LAMP2) - positive vacuoles (where both 

LAMP1 and LAMP2 are markers for lysosomes and autolysosomes) and accumulation 

of LC3-II (Tresse et al., 2010). Ultrastructural analysis of rimmed vacuoles from IBM 

patient muscle demonstrated that these were in fact autophagic vacuoles containing 

filamentous material (Hubberts et al., 2007). The muscle pathology seen in patients 

and IBMPFD models implies a possible link between VCP mutations and compromised 

autophagy.  These observations were reproduced in cell culture, either by expressing 

dominant-negative VCP mutant or upon siRNA–mediated depletion of endogenous 

VCP, suggesting that VCP may be required for the autophagosome maturation - 

processes that occur after autophagosome formation, through acidification, including 

lysosomal fusion (Ju et al., 2009; Tresse et al., 2010). First study noted that when VCP 

activity was impaired, autophagosomes (LC3-positive vacuoles) failed to localise with 

acidic and LAMP1 positive vesicles, suggesting that loss of functional VCP results in an 

impairment of the fusion of mature autophagosomes with lysosomes and final 

degradation of autophagic targets  (Ju et al., 2009). Others observed that VCP acts 

after the fusion of autophagosomes with lysosomes since enlarged, acidified 
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cathepsin B protease-positive autolysosomes were detected in VCP-mutant 

expressing cells (Tresse et al., 2010). Therefore, Tresse and colleagues concluded that 

impairment of VCP function (resulting from VCP mutation) results in defective 

autophagosome maturation, but this is not simply a defect in autophagosome-

lysosome fusion (Tresse et al., 2010). 

VCP is also believed to protect against the toxic effects of insoluble 

polyglutamine (polyQ) aggregates, since impaired polyQ aggregate clearance was 

observed in IBMPFD mutant expressing transgenic mouse muscle (Ju et al., 2008) and 

in the Drosophila’s eye degeneration (Higashiyama et al., 2002, Manno et al., 2010). 

Suggested to be responsible for delivering ubiquitinated abnormal proteins and 

aggregated proteins to autophagosomes for degradation (Ju and Weihl, 2010; Manno 

et al., 2010), the full spectrum of VCP function at the interplay of autophagy and UPS 

remains to be elucidated. Nevertheless, there is a significant clinical overlap of 

IBMPFD and disease caused by mutations in other autophagy related genes, and in 

particular in SQSTM1/p62 gene (Moscat and Diaz-Meco 2009). This would suggest 

that VCP and p62 are likely to share a common biological pathway. Noteworthy, 

increase in ubiquitinated aggregates (in autophagy-deficient cells) was shown to be a 

direct effect of the p62 overexpression, which was ablated via overexpression of 

wild-type VCP (Korolchuk et al., 2009). Since IBMPFD-related mutations in VCP result 

in disrupted aggregate clearance, one may postulate that this could result from a 

disrupted interaction of mutant VCP with components of the autophagy pathway, 

and in particular with p62, given that mutations in p62 cause PDB. 

1.7 Paget disease of the bone and aberrant osteoclastogenesis 

 
Paget disease of the bone (PDB) is the second most common metabolic bone 

disease after osteoporosis, affecting up to 3% of adults in the UK over the age of 50 

years (nhs.uk, 2014). Epidemiological studies show a varying prevalence of PDB 

across different ethnicities, with an enrichment of PDB in individuals of a Caucasian 

descent (Chung and Van Hul, 2012). It is a chronic bone disease characterised by focal 

regions of accelerated and disorganised bone turnover, featuring osteoclasts that are 

excessively large, multinucleated and overactive. Resulting new bone is highly 

disorganised and of poor quality.  Additional features include marrow fibrosis and 
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increased vascularity of bone (Ralston, 2008). Pagetic bone lesions are commonly 

found in the pelvis, skull, spine, femur and tibia. The abnormal bone remodelling 

disrupts normal bone architecture and lead to the development of various 

complications such as bone pain, pathological fracture, bone deformity, secondary 

osteoarthritis or nerve compression syndromes. This can further manifest as reduced 

height or hearing loss due to cranial bone deformity.  At the molecular level Pagetic 

osteoclasts contain nuclear inclusion bodies (Kimonis et al., 2008).  

The primary lesion in PDB involves the formation of abnormal osteoclasts 

(large terminally differentiated polykaryons that originate from hematopoietic 

precursors and whose function is bone resorption) which express a "pagetic 

phenotype" that includes increased osteoclast number and size, increased nuclei and 

increased responsivity of the osteoclast precursors to activators of NF B signalling; 

these include RANKL, tumor necrosis factor (TNF)-α, and 1,25-dihydroxy-vitamin 

D3 (1,25-[OH]2D3) (Roodman and Windle, 2005). The formation and activation of 

osteoclasts is regulated by binding of receptor activator of nuclear factor  B ligand 

(RANKL, originally identified as TRANCE - TNF-related activation-induced cytokine) to 

its cognate receptor (RANK) on myeloid progenitor cells and subsequent activation of 

multiple intracellular pathways including AKT/PI3K, MAP kinase, and NFκB (Otero et 

al., 2012). The primary pathway responsible for osteoclast differentiation is the 

RANKL-NFB pathway and it’s this pathway which is said to be dysregulated in PDB 

(Daroszewska and Ralston, 2005). The pagetic osteoclasts also express increased 

levels of coupling factors (including bone morphogenic protein 6 - BMP6, lipid 

mediator sphingosine-1-phosphate - S1P, and collagen triple helix repeat containing 1 

- CTHRC1) which drive aberrant bone formation (Pederson et al., 2008; Takeshita et 

al., 2013; Galson and Roodman, 2014).  The excessive focal bone formation in Paget's 

results in the generation of weak woven bone, with collagen fibres laid down in an 

irregular mosaic pattern, rather than normal lamellar bone (Ralston, 2008). The 

pagetic bone that is formed can bow and result in bone deformity or fracture, skull 

thickening, bone pain, secondary osteoarthritis, and nerve root compression. 

Between 15-40% of Paget's patients have a family history of the disorder with an 

autosomal dominant pattern of inheritance, suggesting a genetic predisposition for 

Paget's disease (Morales-Piga et al., 1995; Galson and Roodman, 2014). 
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Many genetic factors have been associated with PDB and related syndromes; 

these include RANK (or Tumor Necrosis Factor Receptor Superfamily, Member 11a, 

NFKB Activator - TNFRSF11A), Osteoprotegerin (OPG or TNFRSF11B), VCP and 

p62/SQSTM1 (Ralston, 2008; Chung et al., 2011). All of these factors are involved in 

RANKL-NF B signalling pathway (more on the pathway in Chapter 6), which increases 

transcription of genes responsible for the osteoclast differentiation. Therefore, 

mutations in such genes disrupt normal NF B signalling, resulting in increased 

osteoclastogenesis and bone resorption. In addition, increased resorptive activity of 

osteoclast leads to secondary increase in osteoblast activity, resulting in focal 

increase in bone turnover – a unique feature of PDB.  While activating mutations in 

the first exon of the RANK gene cause early onset PDB (Nakatsuka et al., 2003) and 

related conditions: FEO (familial expansile hyperphosphatasia) and ESH (expansile 

skeletal hyperphosphatasia) (Hughes et al., 1994; Whyte and Hughes, 2002); a 

homozygous deletion for the gene encoding OPG (a decoy receptor for RANKL) was 

identified in two Navajo patients with juvenile PDB (Whyte et al., 2002) (Fig.1.6). 

These rare genetic bone disorders display clinical, radiological or histological features 

in common with classic PDB, although the age of onset and the distribution of the 

disease are different. The nature of the genes involved in PDB indicates that the 

regulation of osteoclastogenesis is a key process underlying the pathogenesis of PDB. 

The most commonly associated gene with PDB is sequestosome-1 (SQSTM1), 

located on chromosome 5q35, which encodes the p62 protein. P62 acts as an anchor 

protein and plays an important role in the NF B signalling pathway. It binds either 

TNF receptor–associated factor (TRAF)-6 in the RANK or receptor-interacting protein 

(RIP)-1 in the TNF signaling pathway to activate NF B (Daroszewska and Ralston, 

2005). Mutations in the coding region of p62 are linked to hereditary and most 

sporadic, adult onset PDB disease (Fig.1.6). Approximately 50% of the familiar cases 

are due to dominant mutations that lead to loss of function of polyubiquitin binding. 

This is due to either deletion of the ubiquitin associated (UBA) domain or point 

mutations within this domain, with P392L (proline to leucine change) being the most 

commonly identified mutation (Hocking et al., 2002; Layfield et al., 2004; Chamoux et 

al., 2009). This in turn results in elevated cytokine activation of NF B pathway and 

hyper-responsiveness to receptor activator of nuclear factor  B ligand (RANKL) 
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(Chamoux et al., 2009). A possible explanation for this observation would be a 

continuous activation of the NF B signalling as the mutation in the UBA domain of 

p62 hinders the ubiquitin dependant inactivation of TRAF6 (Sundaram et al., 2011).  

The deubiquitinating enzyme cylindromatosis (CYLD) interacts with the p62 UBA 

domain to inhibit TRAF6 ubiquitination and thus negatively regulates RANK signalling 

and osteoclastogenesis (Sundaram et al., 2011).  Therefore, p62 UBA mutation 

(P392L) abolishes interaction with CYLD, leading to accumulation of polyubiquitinated 

TRAF6 and hence increased downstream activation NF B (Sundaram et al., 2011).   

Interestingly the p62P392L knock-in mice have increased osteoclast formation but do 

not develop characteristic for PDB focal osteolytic lesions (Hiruma et al., 2008). More 

recently however, mice with a proline to leucine mutation at codon 394 of mouse 

Sqstm1 (P394L) developed a PDB-like skeletal disorder (Daroszewska et al., 2011). 

Collectively, it would appear that mutations in the UBA domain of SQSTM1 are 

sufficient to cause PDB in the absence of additional triggers. 

 

Figure 1.6. Activation of the NF-κB signalling cascade leads to increased osteoclastogenesis. 

The RANKL cytokine binds to the RANK receptor in an interaction antagonised by 

osteoprotegerin (OPG). In the absence of inhibitors, downstream TRAF6 associates with 
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RANK and p62 (SQSTM1) adapter protein. Through its N-terminal PB1 domain p62 binds 

aPKC, stimulating activation of IKKβ. This allows IKKβ to enter the nucleus and activate target 

gene expression and initiation of osteoclast formation. VCP binds ubiquitinated IκBα and 

shuttles it to the 26S proteasome for degradation. This allows dissociation of NFκB which 

then enters the nucleus and activates target gene expression and initiation of 

osteoclastogenesis. Mutations in RANK receptor can result in Familial expansile osteolysis 

(FEO), Expansile skeletal hyperphosphatasia (ESH) or Early onset Paget’s disease of bone 

(PDB). Mutations in OPG are associated with Juvenile PDB. Mutations in SQSTM1 (p62) gene 

result in a Classical PDB; mutations in VCP result in the IBMPFD-associated PDB. Effects of 

these mutations lead to elevated cytokine activation of NFκB.  (Adapted from Daroszewska 

and Ralston, 2005) 

 

Genetic factors play an important role in PDB, reflected by the fact that 15-

40% of patients have at least one affected first-degree relative (Morales-Piga et al., 

1995; (Hocking et al., 2002; Lucas et al., 2006). Mutations in VCP gene are responsible 

for the Paget disease of the bone associated with inclusion body myopathy and 

frontotemporal dementia (IBPMPFD). In the clinic, many PDB patients are diagnosed 

incidentally, because PDB is asymptomatic in up to 80%, and is often the case for 

patient with no family history of PDB (sporadic PDB) (Chung and Van Hul, 2012). In 

case of a sporadic PDB the onset starts later in life of the patient (over 55 years old) 

and disease symptoms are much milder than for familial (inherited) PDB (Lucas et al., 

2006; Chung and Van Hul, 2012). None of the currently characterised VCP mutations 

have been associated with sporadic PDB (Lucas et al., 2006). In contrast to sporadic 

PDB, the inherited PDB seen in patients with IBMPFD presents earlier, at mean age of 

42, with typical distribution in the spine, pelvis and skull and later progression to 

involve other bones (Lucas et al. 2005). The age of onset is similar to the slowly 

progressive distal and proximal muscle weakness seen in IBMPFD patients with 

myopathy. On the molecular level VCP mediates ubiquitin-proteasome degradation 

of phosphorylated inhibitor of  B (I B)-α, allowing for dissociation of the 

transcription factor NFκB and subsequent translocation to the nucleus where it 

activates genes responsible for osteoclastogenesis (Fig.1.6). It is postulated that 

expression of mutant VCP in bone tissue leads to increased degradation of I B and 

therefore to increased NF B activation (Vandermoere et al., 2006). This in turn 
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results in formation and activation of osteoclasts, and therefore focal increase in 

bone resorption leading to generation of weak woven “pagetic bone”.  

While both the PDB-mutant p62 and IBMPFD-mutant VCP cause an increase in 

osteoclast activity involving NF B signalling, little is known of the impact of either 

mutation on autophagy. Interestingly, the causative mutations in both p62 and VCP 

affect domains which are involved in ubiquitin binding. This might affect the ability of 

either p62 or VCP to regulate recycling and degradation of NF B signalling pathway 

ubiquitinated components (such as TRAF6, I B or other components). As there 

appears to be a crosstalk between the autophagy and NF B (Hocking et al., 2012), 

changes in NF B activity and autophagic function, could be expected. For example, 

the IKK complex, which is an essential mediator of the RANKL/RANK- NF B pathway, 

contributes to the induction of autophagy and is activated by multiple autophagy 

inducers, without affecting NF B nuclear translocation (Criollo et al., 2010; Comb et 

al., 2011). Activation of IKK in response to cellular starvation induces expression of 

pro-autophagic genes LC3, BECN1, and ATG5; and levels of these genes are markedly 

decreased in IKK deficient cells (Comb et al., 2011). Autophagy also appeared to 

regulate the levels of I Bα (VCP substrate for the proteasomal degradation), the 

inhibitor of NF B (Colleran et al., 2011). Namely, Colleran and collegues observed 

that I Bα co-localized with autophagosomal vesicles in intestinal epithelial cells after 

stimulation with proinflammatory cytokine TNF-α. In fact even thought the first 

phase of IκBα degradation was proteasome (and VCP) - dependent, the second was 

regulated by autophagy and was completely blocked with the type III PI3K inhibitor 3-

MA (Colleran et al., 2011).  Furthermore, indirect evidence supports the notion that 

alterations in autophagy are linked to the pathogenesis of PDB. Specifically, disease-

causing mutations increase osteoclast activity and autophagy positively regulates 

osteoclast activity (DeSelm et al., 2011); and importantly p62, which is commonly 

mutated in PDB, is an autophagy receptor and interacts with VCP (see Chapter 4). In 

addition, PDB-associated mutations map to regions of p62, which are relevant for its 

autophagy-dependent function: principally the UBA domain (Hocking et al., 2002) but 

also the LIR (D335E) (Falchetti et al., 2009) and the KIR (S349T) domains (Michou et 

al., 2010). Nevertheless, perhaps the best evidence of alterations in autophagic 

function comes from studies of the p62P394L mutant mouse, which, as noted above, 
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develops a PDB-like bone disorder with focal bone lesions (Daroszewska et al., 2011). 

Osteoclast precursors from the mutant animals, had not only increased sensitivity to 

RANKL, but also, in the presence of Bafilomycin A1, exhibit increased expression of 

SQSTM1, ATG5, and LC3 along with increased LC3-II protein levels (Daroszewska et 

al., 2011) suggesting a possible increase in autophagic flux (and consistent with the 

known relationship between autophagic and osteoclastic activity) (DeSelm et al., 

2011).  

Interestingly, SQSTM1 mutations, including some UBA domain mutations that 

are associated with PDB, have also been reported in patients with ALS (amyotrophic 

lateral sclerosis) and frontotemporal lobar degeneration (Rubino et al., 2012). 

Curiously, among other recently identified genes for ALS is also VCP (Johnson et al., 

2010). Although, as discussed earlier, the precise role of VCP in autophagy is still 

unclear, in muscle cells the mutant VCP appears to be linked to alterations in 

autophagy (Tresse et al., 2010). Indeed, IBMPFD mutant VCP expression is associated 

with accumulation of nondegradative autophagosomes and a failure to degrade 

aggregated proteins (Ju et al., 2009). Similar to p62P394L mouse, knock-in mouse 

model with mutant VCP has increased levels of LC3-II in muscle cells, osteoclast 

precursors exhibit increased sensitivity to RANKL, and there are focal bone lesions 

(Badadani et al., 2010). Finally, the findings of this study (see Chapters 3-6) further 

imply a mechanistic link between autophagy and osteoclast formation, involving both 

p62 and VCP. 

Although genetic and environmental factors certainly play an important role 

in the differentiation process, the active osteoclast needs to both regulate the 

secretion of hydrolytic enzymes as well as promote the intracellular digestion of 

peptide residues of matrix proteins. Once the terminally differentiated osteoclasts 

become activated they tightly adhere to the bone surface through one or more 

specialized structures termed podosomes. Contained within the podosome, a folding 

of the plasma membrane in the area facing the bone matrix is known as ruffled 

border (RB). The RB is formed by fusion of secretory lysosomes with the plasma 

membrane, and confined by an actin ring, which seals the peripherial contact site 

between osteoclast and bone (Teitelbaum, 2011). Osteoclasts resorb bone at the RB 
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extracellular resorptive space by directionally secreting hydrochloric acid – which 

dissolves the mineral phase of bone, and proteases; key proteases are: matrix 

metalloproteinase 13 (MMP13, collagenase3), tartate resistant acid phosphatise 

(TRAP) and cathepsin K (CatK), these hydrolyse the collagen-rich organic bone matrix 

(Baron, 2008). Interestingly, recent findings suggest that fusion of the secretory 

lysosome to the RB is in part regulated by the autophagic proteins Atg5, Atg7 and 

Atg4B (DeSelm et al., 2011). Specifically, Atg5 and Atg7 promote bone resorptive 

activities both in vivo and in vitro, and serve to target lysosomes to the actin ring of 

the functioning osteoclast. In addition, LC3II was found to localise within the actin 

ring together with CatK, suggesting that the secretory lysosomes are not in fact LC3 

coated (DeSelm et al., 2011; Gelman and Elazar, 2011). Modulation of LC3 with Atg4B 

blocked both resorptive activity and expression of CatK (DeSelm et al., 2011), 

whereas LC3 knock-down inhibited actin ring formation and resorptive activity of 

osteoclast (Chung et al., 2012). Overall, these findings lend support to the notion that 

discussed above autophagy proteins are also involved in modulation of bone 

resorptive activity of osteoclasts. Collectively, all of these observations confirm an 

important, noncanonical role for autophagy in the regulation of both 

osteoclastogenesis and resorptive function of mature osteoclasts. 

1.8 Summary  

The mechanism whereby mutations in VCP lead to the pathogenesis of 

IBMPFD and the selective vulnerability of brain, muscle and bone remains unknown 

but there is a considerable amount of new evidence that points to a role for the 

autophagic process in the clearance of cytotoxic protein aggregates, which 

accumulate in disease states due to impairment of the ubiquitin-proteasome system. 

Importantly, the process of autophagy has been reported to decline in efficiency with 

age and this effect is more pronounced in terminally differentiated cells (Hubbard et 

al., 2012). This would explain the relatively late onset of the VCP-associated diseases.  

In addition, since autophagy plays an essential role in cell homeostasis, and thus 

protects cells against stress, due to their post-mitotic nature, polarisation and size, 

osteoclasts could be particularly sensitive to the accumulation of damaged or 

aggregated proteins and rely on autophagy for survival. Indeed, aberrant, misfolded 
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proteins, along with chaperones, are commonly found in p62- and ubiquitin-positive 

aggregates which are precursors to the inclusion bodies seen in many age-related 

degenerative diseases (Komatsu et al., 2006; Ju et al., 2009). Both p62 and VCP are 

integral to the ubiquitin-based protein degradation pathways and among several 

other proteins (including ALFY/WDFY3 and NBR1) have been linked to autophagic 

regulation of protein aggregates (Bjorkoy et al., 2005; Korolchuk et al., 2009). 

Although, it is not clear if their involvement is limited to selective autophagy or bulk 

autophagy in response to starvation, some of these proteins act as autophagy cargo 

receptors (e.g. NBR1 and p62) (Pankiv et al., 2007), while others are scaffolds (e.g. 

ALFY) that facilitate autophagosome membrane formation around the cargo to be 

degraded (Isakson et al., 2013). Interestingly in osteoclasts, ALFY interacts directly 

with p62 (via its PH-BEACH domain), Atg5 (via its WD40 repeat domain) and 

phosphatidylinositol-3-phosphate (PI3P) (via its FYVE domains) and forms large 

cytoplasmic aggregates (Hocking et al., 2010). 

These new data on VCP and the link with PDB suggest that modulation of the 

autophagy pathway by VCP may represent a major regulator of the bone remodelling 

and maintenance. Crucially, the causative mutations in VCP all cluster within the N-

terminal region, which is known to be involved in ubiquitin (Ub) binding (Dai and Li, 

2001; Lucas et al., 2006). This is relevant since PDB-causative mutations in the 

p62/SQSTM1 gene also affect the Ub-binding domain of the resulting p62 protein 

(Hocking et al., 2004), suggesting that disease processes in PDB and IBMPFD may be 

related. The specific aim of the current study was to determine the relationship of 

VCP to p62 as part of the PDB pathogenic process and evaluate the potential role of 

autophagy during osteoclastogenesis. The main questions addressed were: 

1. To define the potential role of VCP in autophay (particularly if VCP, p62 and 

LC3 have the potential to be working together in clearing of ubiquitinated 

protein substrates); and asses effect of VCP mutation on protein homeostasis. 

2. To evaluate if VCP binds to p62 and if so, is it a direct or indirect protein-

protein interaction.  

3. To elucidate how the VCP is turned over in dividing and differentiated cells. 
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4. Finally, to determine extend that disruption of autophagy pathway has on 

differentiation of osteoclasts and if IBMPFD mutations in VCP affect RANKL 

and TNFα stimulated NFκB signalling in a similar manner to p62. 

Multi-organ involvement that occurs in patients with IBMPFD implies the 

importance of VCP as a mediator of protein degradation in several organ systems. In 

contrast, the effect of p62 mutations seems to be more restricted to cells of the 

osteoclast lineage. The IBMPFD is a multisystem disease that not only affects the 

bone but, as mentioned above, also extends to muscle and brain. Understanding the 

underlying affected pathway in these different tissues will lead to better 

understanding of the IBMPFD as well as the sporadic counterparts FTD, IBM and PDB. 

With the heterozygote R155H/+ VCP mouse model, that recapitulates a full spectrum 

of human disease, one will be able to delineate the pathological molecular cascades 

that result in the clinical manifestation of the disease. Collectively, identifying the 

mechanisms by which VCP missense mutations cause pagetic bone lesions should 

also yield important insights into the pathogenesis of myopathies and 

neurodegenerative disorders. In this study, in addition to the already gathered 

evidence for the involvement of VCP in the autophagy-lysosome degradation, I show 

that VCP directly interacts with key components of the macroautophagy pathway, 

and in particular with p62. I also demonstrate that autophagy defect, resulting from 

mutations in VCP, significantly regulate the osteoclast differentiation. 
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MATERIALS AND METHODS  
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CHAPTER 2: MATERIALS AND METHODS 
 

2.1 Cell culture    

HeLa, HEK293 and mouse embryonic fibroblasts (MEF) cells were cultured in DMEM 

(Dulbecco’s modified Eagle’s medium) containing 4.5 g/l glucose and supplemented 

with 10% heat-inactivated foetal bovine serum (FBS) and 0.5 units/ml Penicillin and 

50 µg/ml Streptomycin solution. 

Stable p62-KO MEF cells were provided by Dr T. Johansen from Molecular Cancer 

Research Group; Institute of Medical Biology; University of Tromso; Tromso, Norway. 

These immortalized p62-MEFs were established by infecting MEFs with a 

recombinant retrovirus carrying a temperature-sensitive simian virus 40 large T 

antigenand, described in Ichimura et al., 2008. 

The murine monocytic cell line RAW264.7 can differentiate into osteoclast-like cells in 

the presence of the receptor activator of nuclear factor kappa B ligand (RANKL). 

RAW264.7 cells were cultured in α-MEM (α-minimal essential medium) 

supplemented with 10% heat inactivated foetal bovine serum (FBS) and 0.5 units/ml 

penicillin and 50 µg/ml streptomycin solution. 

All cells were propagated in a humidified incubator at 37°C in 5% CO2 until reaching 

approximately 80% confluency, at which point cells were passaged (1:10 for HeLa, 

CHO and MEF and 1:6 for RAW264.7 cells). 

 

Culture media and Penicillin-Streptomycin antibiotic solution were purchased from 

Invitrogen/ Gibco. Hanks Balanced Salt Solution (HBSS) used for starvation 

experiments was also purchased from Gibco. 

 

HyClone Foetal Bovine Serum (FBS) was purchased from Thermo Scientific (product 

number SV80160.03), sourced from South America. Heat inactivated at 56°C for 

30minutes. 
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2.2 Plasmids 

Plasmids used in this study were either purchased from external sources or made 

internaly by conventional restriction enzyme-based cloning. All plasmid constructs 

were verified by restriction digestion and/or DNA sequencing.  

Plasmids encoding FLAG-tagged wt p62, V5-tagged wt and R155H VCP were 

constructed in pcDNATM3.2-DEST vector (Fig. 2.1 and Fig 2.2 respectively) (Dr Giles 

Watts’s personal communication).  

 

Figure 2.1. pcDNA3.2-p62-FLAG (7043 nucleotides). Positions of elements in bases: CMV 

promoter: bases 232-819, T7 promoter/priming site: 863-882, attR1 site: 911-1035; Human 

p62 ORF 1036-2355, FLAG epitope with STOP codon: 2356-2383, attR2 site: 2383-2507, V5 

epitope (unused): 2508-2574, V5 reverse priming site: 2542-2562, TK polyadenylation signal: 

2601-2872, f1 origin: 2908-3336; SV40 early promoter and origin: 3363-3671, Neomycin 

resistance gene: 3746-4540; SV40 early polyadenylation signal: 4716-4846, pUC origin (c): 

5229-5902, Ampicillin (b/a) resistance gene (c): 6047-6907, b/a promoter: 6908-7006 (c).    

(c) = complementary strand. 
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Figure 2.2. pcDNA3.2-VCP-V5 (8114 nucleotides). Positions of elements in bases: CMV 

promoter: bases 232-819, T7 promoter/priming site: 863-882, attR1 site: 911-1035; Human 

VCP ORF no STOP codon: 1036-3453, attR2 site: 3454-3578, V5 epitope: 3604-3645, V5 

reverse priming site: 3613-3633, TK polyadenylation signal: 3672-3943, f1 origin: 3979-4407; 

SV40 early promoter and origin: 4434-4742, Neomycin resistance gene: 4817-5611; SV40 

early polyadenylation signal: 5787-5917, pUC origin (c): 6300-6973, Ampicillin (b/a) 

resistance gene (c): 7118-7978, b/a promoter: 7979-8077 (c). (c) = complementary strand. 

Plasmid for wt GFP-tagged LC3B was expressed in pcDNA-DEST53 vector (Fig. 2.3)  

 

Figure 2.3. pcDNA-DEST53-LC3B (6715bp; 7767 nucleotides). Positions of elements in bases: 

CMV promoter: bases 232-819, T7 promoter: bases 863-882, Cycle 3 GFP (N-terminal): bases 

905-1621, attR1 recombination site: bases 1643-1767; Human LC3B ORF with stop codon: 
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bases 1768-2148, attR2 recombination site: bases 2149-2273, BGH polyadenylation region: 

bases2308-2535, f1 origin: bases 2581-3009, SV40 early promoter and origin: bases 3036-

3344; Neomycin resistance ORF: bases 3419-4213, SV40 early polyadenylation region: bases 

4387-4517, pUC origin: bases 4900-5573, Ampicillin resistance ORF (b/a): bases 5718-6578 (c) 

b/a promoter: bases 6579-6677 (c). (c) = complementary strand. 

Plasmids for HA-tagged poly(Q35) and poly(Q79) were expressed in pCMX vector (Fig. 

2.4 and Fig. 2.5 respectively), described in Berke et al., 2004.  

 

Figure 2.4. pCMX-HA-ataxin_3-Q35 (4Kb). 

 

Figure 2.5. pCMX-HA-ataxin_3-Q79 (4Kb). 
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Plasmids encoding EGFP-tagged wt VCP (Addgene plasmid 23971; EGFP tag – N- GOI 

– C –ORF), EGFP-tagged R155H VCP (Addgene plasmid 23972) and EGFP-tagged DKO 

(the ATPase-deficient mutant) VCP (Addgene plasmid 23974), were previously 

described (Tresse et al., 2010) and purchased through the Addgene.org (Appendix, 

Figure A3-A5; EGFP VCP plasmid maps). Tresse and collegues constructed the VCP wt 

and mutant plasmids by PCR amplification of the VCP ORFs lacking the stop codons 

from pcDNA3.1+/VCP-WT, pcDNA3.1+/VCP-R155H, pcDNA3.1+/VCP-A232E, 

pcDNA3.1+/VCP-DKO, and insertion into the BamHI and HindIII sites of pEGFP-N1 

(Clontech) (Tresse et al., 2010). 

2.3 Cloning 

The cloning procedure covers the steps from the amplification of the source DNA till 

the preparation of the expression clones. 

The materials for cloning were derived from internal sources or from the following 

companies: Invitrogen, Roche, New England BioLabs (NEB), Fermentas, BioRad, 

Promega, Sigma Aldrich and Qiagen.  

The general practice has been the following: the source gene was amplified by 

Polymerase Chain Reaction (PCR) using specific primers bearing sequences designed 

for subsequent insertion into a specific plasmid vectors. The destination vector was 

amplified with high copy number E. coli strains and purified. The PCR products were 

then purified from solution or from agarose gel. The purified PCR products and the 

destination vectors were cut with opportune restriction enzymes and treated with 

T4-polymerase and after with a phosphatase in specific reaction mixtures. The 

resulting ligation products were used to transform E. coli strains (the strains used 

were: NEB5α, OmniMAX). The transformed cells were grow in SOC medium 

(Invitrogen, #15544-034; Composition: 2% tryptone, 0.5% yeast extract, 10 mM NaCl, 

2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose) with agitation and 

then plated on agar plates containing antibiotics (see below) and incubated 

overnight. Once obtained the transformants, colonies were selected and checked for 

the presence of the insert with restriction enzyme digestion followed by Agarose Gel 

Electrophoresis. The integrity of the cloned gene sequence was then checked by 
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sequencing, performed by Genome Enterprise limited, John Innes Centre, Norwich. 

All the desired clones were used to grow minicultures from which glycerol stocks 

were prepared and kept at -80°C. 

2.3.1  Generating pQE9 plasmids encoding His-tagged wt p62 and wt LC3B.  

PCR primers for p62-ORF and LC3-ORF were designed using free online primer-design 

software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/), taking particular care of 

keeping the primer length under 30bp and optimum for the primer melting 

temperature (TM). Primers with melting temperatures in the range of 52-58 °C 

generally produce the best results. Primers with melting temperatures above 65°C 

have a tendency for secondary annealing (Primer Design Guide, 2012).  

The target gene was amplified using basic PCR Protocol (Table 2.1) for the Platinum 

Taq DNA Polymerase (Invitrogen, #10966). The PCR products were then purified from 

solution using silica-membrane-based purification employed by the QIAquick PCR 

Purification Kit (Qiagen #28104). 

P62-ORF –F-SalI/ -R-HindIII primers 

Step Tm Time Cycles 

Initial denaturation 94°C 2min 1 

Denaturation 94°C 15sec 

 
35 

Annealing 62°C 15sec 

Extension 68°C 1min 

Incubation 68°C 7min 1 

Cycle completion 4°C ∞ 1 

LC3-ORF –BamHI-F/ -PstI-R primers 

Step Tm Time Cycles 

Initial denaturation 94°C 2min 1 

Denaturation 94°C 15sec 

 
35 

Annealing 64°C 15sec 

Extension 68°C 30sec 

Incubation 68°C 7min 1 

Cycle completion 4°C ∞ 1 

 

Table 2.1. PCR running conditions for the Platinum Taq DNA Polymerase. 
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The pQE-9 plasmid DNA (Fig. 2.6) was cut at specific sites within or adjacent to a 

particular sequence, known as a restriction site. All restriction enzymes used cut the 

DNA backbone to leave 5’ phosphate group, required for subsequent ligation, producing 

either blunt or sticky ends (with either a 3’ or 5’ overhang). To cut vector at the specific 

recognition sequence the following restriction enzymes were used: SalI (Roche 

#10348783001) and HindIII (Roche #10656313001) for p62-ORF DNA fragment; or PstI 

(Roche #10621625001) and BamHI (Roche #10220612001) for LC3-ORF DNA fragment. 

Each restriction enzyme and DNA substrate was mixed with a corresponding Roche 

buffer. Specifically, for every 1μg of DNA to be digested, 1 Unit of restriction enzyme 

was used. All restriction digests were carried out at 37°C for 3hrs and enzymes were 

inactivated at 65°C for 15min. 

The pQE-9 digests were next dephosphorylated with Calf intestinal alkaline phosphatase 

(CIP; NEB #M0290S), to prevent self-ligation and thus increase the success rate of 

cloning, and purified on a 0.8% agarose gel. 

 

Figure 2.6. pQE-9 Vector (3439bp) Quiagen. Positions of elements in bases: 1-6 Start of 

numbering at XhoI (CTCGAG); 7-87 T5 promoter/lac operator, 61 T5 transcription start; 127-

144 6xHis-tag coding sequence; 145-170 Multiple cloning site; 186-280 Lambda t0 

transcriptional termination region; 1042-1140 rrnB T1 transcriptional termination region; 

1616 ColE1 origin of replication; and 3234-2374 β-lactamase coding sequence. 
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The amplified DNA products (p62-ORF and LC3-ORF) were next inserted (ligated) into 

the pQE9 vector/ plasmid using T4 DNA Ligase (Promega #M180A). T4 DNA Ligase 

catalyzes the joining of two strands of DNA between the 5’-phosphate and the 3’-

hydroxyl groups of adjacent nucleotides in either a cohesive-end or blunt-end 

configuration. The ligation reaction (100ng of vector DNA with 17ng insert DNA and 

1µl 10x Ligase Buffer*, plus 0.5µl T4 DNA Ligase) was assembled in a sterile 

microcentrifuge tube and incubated at room temperature for 3 hours. 

* 10X Ligase Reaction Buffer is 300mM Tris-HCl (pH 7.8 at 25°C), 100mM MgCl2, 100mM DTT 

and 10mM ATP. 

Vectors containing a foreign DNA, pQE-9/p62-ORF or pQE-9/LC3-ORF were thereafter 

transformed into bacteria - NEB 5-alpha Competent E.coli cells (NEB #C2987H). 

Procedures were carried out according to the high efficiency transformation protocol 

(NEB #C2987H). The procedure was the following: a tube of competent E.coli cells 

was thawed on ice. Next 1-5µl (containing 1pg-100 ng) of the vector DNA was added 

to 50µl of cells in a 1.5-ml microfuge tube and incubated on ice for 30 minutes; and 

heat shocked at 42°C for 30 seconds afterwards. The tubes were then immediately 

placed back on ice and incubated for further 5 minutes. The transfored cells were 

then grown in 950µl of SOC medium for 1 hour at 37°C with agitation. 50-100µl of the 

cell suspension was next plated out on LB agar plates containing ampicillin and 

incubated overnight at 37°C. The positive control was the transformation of an 

aliquot of competent cells with a known vector bearing the same resistance. The 

negative control was an LB-agar plate with not transformed competent cells, which 

followed the same transformation procedure without the addition of the vector DNA. 

Once obtained the transformants, colonies were selected and incubated in LB 

medium overnight at 37°C. The glycerol stocks were prepared and kept at -80°C.The 

integrity of the cloned gene sequence was then checked by sequencing.  

PCR was carried out accordingly with BIOmix Polymerase (Bioline, BIO-25011) (Table 

2.2) and DNA was run on a 1% agarose gel where bands corresponding to either p62 

or LC3 DNA were identified**. 6xHis-tagged proteins were purified from E.coli under 

native conditions using QIAexpress Ni-NTA Fast Start protein purification kit and 

quantified via Bradford assay (Qiagen #30600). 
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**DNA from pQE9 / clones was sent for sequencing, performed by Genome Enterprise 

limited, John Innes Centre, Norwich. Following sequencing results NEB 5-alpha Competent 

E.coli cells containing the sequence-positive plasmids were grown overnight on LB media 

supplemented with 50 mg/ml ampicillin. 

P62-ORF –F-SalI/ -R-HindIII primers 

Step Tm Time Cycles 

Initial denaturation 94°C 4min 1 

Denaturation 94°C 15sec 

 
35 

Annealing 62°C 15sec 

Extension 72°C 1min 

Incubation 72°C 7min 1 

Cycle completion 4°C ∞ 1 

LC3-ORF –BamHI-F/ -PstI-R primers 

Step Tm Time Cycles 

Initial denaturation 94°C 4min 1 

Denaturation 94°C 15sec 

 
35 

Annealing 64°C 15sec 

Extension 72°C 1min 

Incubation 72°C 7min 1 

Cycle completion 4°C ∞ 1 

Table 2.2. PCR running conditions for the Biomix DNA polymerase. 
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2.3.2  Generating VCP-deletion mutants.  

The DNA for full length human protein (Appendix, Fig.A1) was used for creation of 

VCP-deletion mutants. The DNA has been amplified exploiting specific primers (Table 

2.3). The protocol used for PCR amplification can vary in dependence of the annealing 

and melting temperatures of the primers and of the level of stringency I wanted to 

reach. In general the protocol has been the following: 

Primer Sequence 

AttB dN-VCP-ORF-F 5'- GGGGACAAGTTTGTACAAAAAAGCAGGGCTTCGAA 

GGAGATAGAA – 3’ 

AttB ALT-VCP-ORF-F 5'- GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGA 

GATAGAACC – 3’ 

AttB VCP NOter-ORF-R 5'- GGGGACCACTTTGTACAAGAAAGCTGGGTCGCCATACA 

GGTCATCATCATT– 3’ 

AttB dCterm-VCP-ORF-R 5'– GGGGACCACTTTGTACAAGAAAGCTGGGTCCTGA 

AGGGTCTGGGC – 3’ 

 

Table 2.3. Cloning primers. 

 

Step Tm Time Cycles 

Initial denaturation 94°C 2min 1 

Denaturation 94°C 30sec 

 
35 

Annealing 60°C 30sec 

Extension 72°C 1.5min 

Incubation 72°C 5min 1 

Cycle completion 4°C ∞ 1 

 

Table 2.4. PCR running conditions. 

The C-domain (dC VCP) and both C+N-domains (DKO VCP) deletion PCR products 

were purified from solution with a QIAquick PCR Purification Kit (Qiagen #28104). The 

N-domain deletion (dN VCP) PCR product was purified from 0.8% agarose gel using 

PureLink Quick Gel Extraction Kit (Quiagen #K2100-12). 
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The domain mutants (deletions) products were cloned into the pDONR221 plasmid 

(Fig. 2.7) using Gateway BP Clonase II enzyme mix (Invitrogen #11789-020) according 

to the Gateway BP recombination reaction as described in the Gateway technology 

instruction manual (Invitrogen). Briefly, 5µl (containing 15-150 ng) of the PCR DNA 

was added to 1µl of the donor vector (150ng/µl), 2µl BP Clonase II enzyme mix and 

2µl Tris-EDTA (TE) buffer (pH 8), and incubated at 25°C for 1 hour. Thereafter, a 1µl of 

Proteinase K was added and incubated for further 10 minutes at 37°C to terminate 

the reaction. 

 

Figure 2.7. Plasmid map of pDONR221 plasmid indicating restriction sites. 

Vectors containing a foreign DNA were transformed into bacteria – One Shot® 

OmniMAX 2T1 Phage-Resistant E.coli cells (Invitrogen #C8540-03) following the 

standard procedure. First a tube of competent E.coli cells was thawed on ice. Then a 

1µl of of the vector DNA was incubated with 50µl of the One Shot® cells on ice for 30 

minutes; and heat shocked at 42°C for 30 seconds afterwards. The tubes were then 

immediately placed back on ice and incubated for further 2 minutes. The transfored 

cells were then grown in 250µl of SOC medium for 1 hour at 37°C with agitation. 50-

100µl of the cell suspension was next plated out on LB agar plates containing 

kanamycin and incubated overnight at 37°C. The positive control was the 

transformation of an aliquot of competent cells with a known vector bearing the 
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same resistance. The negative control was an LB-agar plate with not transformed 

competent cells, which followed the same transformation procedure without the 

addition of the vector DNA. 

Once obtained the transformants, colonies were selected and incubated in LB 

medium overnight at 37°C. The glycerol stocks were prepared and kept at -80°C. 

2.4 Bacterial cell cultures 
 

For extraction of plasmid DNA from Escherichia Coli (E.Coli), bacterial colonies were 

grown in 5-10mL LB medium supplemented with antibiotics, either  50 mg/ml 

ampicillin or 50-100 mg/ml kanamycin, at 37°C overnight in a shaker at 180 rpm. The 

concentration of DNA was measured using nanodrop ND-1000 (Labtech). To prepare 

high quality plasmid DNA, the QIAprep spin miniprep kit (Qiagen, #27104) was used 

following the manufacturer instructions. The QIAprep Miniprep Kits use silica-gel–

membrane technology to eliminate the cumbersome steps associated with loose 

resins or slurries. Briefly, the QIAprep miniprep procedure is based on alkaline lysis of 

bacterial cells followed by adsorption of DNA onto silica in the presence of high salt. 

Plasmid DNA is eluted in a small volume of Tris buffer (included in each kit) and is 

immediately ready for use. Once the plasmid DNA has been collected, the nucleic 

acid concentration was determined using an ultraviolet light spectrophotometer 

(NanoDrop ND-1000, Labtech). 

2.5 Reagents 
 

Majority of reagents was obtained from the following companies: Sigma-Aldrich (UK), 

Roche (UK), Thermo Scientific (UK) and Invitrogen (UK). Restriction enzymes used for 

genotyping were purchased from either Roche (UK) or Sigma (UK).  

Protein extraction buffers: 

 M-PER mammalian protein extraction reagent (Thermo scientific, #78501) - 

utilises a proprietary detergent in 25mM bicine buffer (pH 7.6);  

 T-PER protein extraction reagent (Thermo scientific, #78510) - utilises a 

proprietary detergent in 25mM bicine, 150mM sodium chloride (pH 7.6); 
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 Mild NP-40 (from Nonidet-40 detergent) -like lysis buffer (prepared in the lab) - 

100mM Tris base, 150mM NaCl and 0.5% Triton X-100 in ddH2 O; 

 HaltTM protease inhibitor cocktail (Thermo scientific, #87786) - contains six 

potent broad-spectrum protease inhibitors stabilized in dimethylsulfoxide 

(DMSO) (Table 2.5).  

Protease Inhibitor 
Component 

MW   Protease Family Targeted Inhibitor Type 
Concentration  
in 100X Cocktail 

AEBSF•HCl 239.5 Serine proteases Irreversible 100mM 

Aprotinin 6511.5 Serine proteases Reversible 80µM 

Bestatin 308.38 Amino-peptidases Reversible 5mM 

E-64 356.4 Cysteine proteases Irreversible 1.5mM 

Leupeptin 475.6 Serine and cysteine proteases Reversible 2mM 

Pepstatin A 685.9 Aspartic acid proteases Reversible 1mM 

 

Table 2.5. Formulation and concentration of the Thermo Scientific HaltTM Protease 

Inhibitor Cocktail (Thermo scientific, #87786 datasheet) 

Other ready-made solutions: 

Dimethyl sulfoxide (DMSO; Sigma, #D8418), Rapamycin 10nmol (Cell signalling, 

#9904), Torin1 6mM in DMSO (Axon Medchem, #1833), Wortmannin (Sigma, 

#W3144-250UL), Bafilomycin A1 (Sigma, #B1793) 0.1mg/ml in DMSO, Lipofectamine 

2000 (Invitrogen, #11668), MG132 10mM (Calbiochem, #474791), Cycloheximide 

100mg/ml in DMSO (Sigma, #C4859), Tween20 (Sigma, #P1379), Triton X-100 (Sigma, 

#T8787), Paraformaldehyde 16% (Alfa Aesar, #43368). 

2.6 Transfection and Autophagy induction  
 

The culture growth medium was replaced with fresh antibiotic-free DMEM, 

supplemented with 10% heat-inactivated FCS prior to Transfection. HeLa or MEF cells 

were transfected with 1.6µg (12-well plate) or 2.5-4µg (6-well plate) plasmid DNA 

using 2.5-5µl or 5-12 µl Lipofectamine 2000 transfection reagent respectively. The 

cells were incubated at 37°C for 24-30 hours to allow for protein biosynthesis. In 

order to induce autophagy, cells were either incubated in HBSS (Hank’s Balanced Salt 

Solution) for 3 hours or treated with 1-1.5µM Torin1 or 200nM Rapamycin for 2-6 

hours (as required). Total cell lysates were made using M-PER protein extraction 
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reagent (Thermo scientific, #78501) with HaltTM protease inhibitor mixture (Thermo 

scientific, #1861278). Protein expression was then determined by Western blotting. 

Alternatively, transfected cells were washed with PBS, fixed with 4% 

paraformaldehyde (PFA) for 20 minutes, blocked and stained for fluorescence 

microscopy. 

2.7 Cycloheximide-chase degradation assay 
 

Cells were grown in culture medium for 24-48 hours prior to the experiment (ready 

when approximately 80% confluent). Cycloheximide (Sigma, #C4859) was added at 

50-100µg/ml and the cells incubated for 0-6 hours. Cells were lysed at the 

appropriate time point in M-PER protein extraction reagent (Thermo scientific, 

#78501) with HaltTM protease inhibitor mixture (Thermo scientific, #1861278). 

Concentration of the total protein extracted was determined using a BCA Protein 

Assay Kit (Thermo Scientific Pierce, #23227). Equivalent loading and sample stability 

was determined by Western blotting. 

2.8 Co-immunoprecipitation 

 (Dynabeads Protein G Kit, Invitrogen Cat. no.100.07D)  

For Immunoprecipitation experiments, cells were lysed 24 hours after transfection 

using M-PER protein extraction reagent (Thermo scientific, #78501) with 100 x 

HaltTM protease inhibitor cocktail (Thermo scientific, #1861278). Protein samples 

were adjusted to a total concentration of approximately 250µg protein (diluted if 

necessary), and 50µl of Dynabeds was aliquoted to fresh test tubes. Antibodies 

diluted in 200µl PBS pH 6.4 containing 0.02% Tween 20 (Sigma, #P1379), were first 

immobilized on magnetic beads at room temperature for 10-30 minutes. Thereafter 

clarified cellular lysates were applied to the coupled rabbit (Santa Cruz, #SC-2027) or 

mouse (Santa Cruz, #SC-2025) IgG- bead complexes, for 10-30 minutes at room 

temperature, to bind nonspecific proteins (IP:IgG fraction). Small 22µl sample of the 

pre-cleared protein would be kept as a total protein fraction (Input) to be analysed by 

protein blotting at the later stage. Pre-cleared lysates were then mixed with specific 

antibody-bead complexes for 30 minutes – 1 hour to pull down target proteins 

(bound IP fraction). Following removal of unbound proteins (Unbound fraction) and 

washing with 1xPBS, the immunoprecipitated proteins were eluted with 20µl Elution 
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Buffer (50mM Glycine pH2.8) and prepared for analysis by Western blotting (by 

adding pre-mixed 10µl NuPAGE LDS 4x sample buffer, 4µl NuPAGE 10x reducing 

agent and 6µl ddH2O, then heated for 10 minutes at 70°C before loading on a gel). 

2.9 Western blot analysis 

Total cell lysates were made using M-PER protein extraction reagent (Thermo 

scientific, #78501) with HaltTM protease inhibitor mixture (100x; Thermo scientific, 

#1861278). Concentration of the total protein extracted was determined using a BCA 

Protein Assay Kit (Thermo Scientific Pierce, #23227) with a set of diluted Albumin 

(BSA) standards for working range of 20-2000µg/ml concentration. The BCA Working 

Reagent (WR) (prepared by mixing 50:1 reagent A:B) was added to each test tube 

containing a sample or a standard in a ratio of 20:1 WR to Sample. Once mixed tubes 

were incubated at 37°C for 30 minutes and the absorbance of all the samples was 

measure with the scpectrophotometer at 562nm. The average blank-corrected 

measurement for each BSA standard versus its concentration in µg/ml was ploted 

generating the standard curve which was then used to determine the protein 

concentration of each unknown sample. 

A 15µg of protein (diluted in the NuPAGE LDS 4x sample buffer (Novex, #NP0007), 

deionized water and NuPAGE 10x reducing agent (Novex, #NP0004), then heated at 

70°C for 10min) and ready-to-use Western Protein standards were loaded on a gel.  

The MagicMark™ XP (Invitrogen, # LC5603) Western Protein Standard with 9 

recombinant proteins, each of which contains an IgG binding site, in even increments 

from 20-220kDa was used for identification of the target proteins over 20kDa in size.  

The Precision Plus Protein Dual Color Standards (Bio-Rad, # 161-0374) with 10 bands 

of 10-250kDa was used for identification of the target proteins below 20kDa in size. 

Both Protein Standards were compatible with Western kits for chemiluminescent and 

fluorescent detection. 

 

 



 72 
 

For the SDS-PAGE pre-made 4-12% Bis-Tris (Novex, #NP0335BOX) or 3-8% Tris-

Acetate (Novex, #EA0375BOX) gels were used. A 1x Running Buffer for the SDS was 

prepared using: 

 50ml of NuPAGE 20x MES SDS Runing Buffer (Novex, #NP0002) in 950ml of 

deionized water for the Bis-Tris gels.  

 50ml of NuPAGE 20x Tris-Acetate SDS Running Buffer (Novex, #LA0041) in 

950ml of deionized water for the Tris-Acetate gels. 

For reduced samples the upper buffer chamber of the XCell SurLock® Mini-Cell gel 

running tank Module (Invitrogen, EI0002) was filled with 200ml 1x Running Buffer 

containing 500µl NuPAGE Antioxidant (Novex, #NP0005) and lower buffer chamber 

was filled with 600ml of 1x Running Buffer (no additives). Gel Electrophoresis was run 

for either 40 minutes at 200V constant, for the 4-12% Bis-Tris gels, or 1 hour at 150V 

constant for the 3-8% Tris-Acetate gels. Proteins were transferred from gel on to 

Nitrocellulose (NC) membrane using XCell II Blot Module (Invitrogen, EI9051). 2x filter 

pads/filter paper/NC membrane/gel/filter paper/2x filter pads were assembled into a 

‘sandwich’. A 1x Transfer Buffer was prepared using 50ml of NuPAGE 20x Transfer 

Buffer (Novex, #NP0006-1), 100ml (for a single gel) or 200ml (for 2 gels) Methanol, 

1ml NuPAGE Antioxidant (Novex, #NP0005) and deionized water to 1000ml total 

volume. Protein bands from the SDS-gel were transferred to the NC membranes at 30 

Volts for 1 hour.  

2.9.1 Odyssey infrared imaging system (Licor) 

The membrane was soaked in 1xPBS for 1 minute to remove residual transfer buffer 

followed by 1 hour blocking in Odyssey® Blocking Buffer (non-mammalian Odyssey 

blocking reagent in PBS containing 0.1% sodium azide; Licor, #927-40000) or 5% w/v 

milk in 1xTBS containing 0.01% Tween. The membrane was then incubated with 

primary antibodies (Table 2.6) in blocking buffer for 1-4 hours at room temperature 

or overnight at 4°C. After washing 3-5 times for 5min with 1xPBST (1xPBS with 0.01% 

Tween) or 1xTBST (1xTBS with 0.01% Tween) respectively, the membrane was 

incubated with secondary antibodies (Table 2.7) in blocking buffer for 30 minutes – 1 

hour. The membrane was washed as before and images were acquired and analyzed 

using the Odyssey CLx infrared imaging system. 
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Antibody Company/Code Reactivity Concentration Dilution 

Anti-p62 Sigma/P0067 Rabbit 1.2 mg/ml 1/1000 

Anti-p62 MBL/M162-3 Mouse 1 mg/ml 1/1000 

Anti-LC3 Sigma/L8918 Rabbit 1.2 mg/ml 1/1000 

Anti-LC3 B Sigma/ L7543 Rabbit 1.3 mg/ml 1/1000 

Anti-GFP Invitrogen/A6455 Rabbit 0.2 mg/ml 1/750 

Anti-GFP Abcam/ab1218 Mouse 1.38 mg/ml 1/500-1/2000 

Anti-VCP BD Transduction Lab/ 612183 Mouse 250 µg/ml  1/250-1/1000 

Anti-VCP Cell Signal/2648 Rabbit 100 µg/ml 1/1000 

Anti-VCP Abcam/ab109240 Rabbit 1.0 mg/ml 1/1000-1/5000 

Anti-V5 Invitrogen/1038696 Mouse 1.0 mg/ml 1/5000 

Anti-V5 Sigma/V8137 Rabbit 4.5 mg/ml 1/3600 

Anti-FLAG Sigma/F7425 Rabbit 0.8 mg/ml 1/320 

Anti-FLAG Sigma/F3165 Mouse 20 µg/ml 1/1000 

Anti-actin Sigma/A3853 Mouse 1.8 mg/ml 1/3000 

Anti-FK2 Biomol/PW8810 Mouse 10 mg/ml 1/100-1/1000 

Anti-CLC7 Santa Cruz/ sc-28755 Rabbit 200 µg/ml 1/100-1/1000 

Anti-SVIP Sigma/ A3853 Rabbit 0.1 mg/ml 1/200-1/1000 

Anti-IκB-α Cell Signal/9242 Rabbit 100 µg/ml 1/1000 

Anti-Ub Santa Cruz/sc-8017 Mouse 200 µg/ml 1/1000 

Anti-Atg5 Sigma/ A0731 Rabbit 1.0 mg/ml 1/500-1/1000 

Anti-Atg7 Sigma/ A2856 Rabbit 1.0 mg/ml 1/1000 

Anti-LAMP1 Santa Cruz/sc-20011 Rabbit 200 µg/ml 1/1000 

Anti-LAMP1 Cell Signal/3243 Rabbit 100 µg/ml 1/1000 

 

Table 2.6. Primary Antibodies 

Antibody Company/Code Reactivity Concentration Dilution 

Goat anti-rabbit  IRDye 680LT Licor/926-32221 Rabbit 0.05mg/ml 1/10000 

Goat anti-mouse IRDye  680LT Licor/926-32220 Mouse 0.05mg/ml 1/10000 

Goat anti-rabbit  IRDye 800CW Licor/926-32211 Rabbit 0.05mg/ml 1/10000 

Goat anti-mouse  IRDye 800CW Licor/926-32210 Mouse 0.05mg/ml 1/10000 

 

Table 2.7. Secondary Infrared Antibodies 
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2.9.2 WesternBreeze Chemiluminescent Immunodetection  

 (Invitrogen #WB7104 and #WB7106) 

Nitrocellulose (NC) membranes were incubated in the appropriate Blocking Solution 

(For 20ml: 14ml dH2O, 4ml blocker/diluent part A - concentrated buffered saline 

solution containing detergent; 2ml blocker/diluents part B - concentrated 

Hammersten casein solution) for 30 minutes at room temperature (RT). Rinsed with 

water these were next incubated for 1 hour with Primary Antibody Solution (Primary 

antibodies in Blocking Solution). After washing 3 times for 5 minutes with diluted 

Antibody Wash Solution (16x concentrated buffered saline solution containing 

detergent) provided in the kit, membranes were incubated in Secondary Antibody 

Solution (ready-to-use solution of alkaline phosphatase-conjugated, affinity purified 

anti-mouse or anti-rabbit IgG, depending on the origin of the primary antibodies 

used), also provided in the kit, for 30 minutes. Membranes were then washed as 

before and rinsed with deionised water. Finally, Chemiluminescent Substrate (ready-

to-use solution of CDP-Star chemiluminescent substrate for alkaline phosphatase 

mixed 80:20 with Chemiluminescent Substrate Enhancer - Nitro-Block-II enhancer for 

blots on NC membranes) was applied to the surface of the membranes for 5 minutes, 

followed by preparation of transparency plastic/ membrane sandwich for 

luminography. Chemiluminescent Immunodetection was used for Western blots of 

Immunoprecipitation fractions were no further quantification was necessary. 

2.9.3 Quantification of Western Blots 

All membranes were analysed using the Odyssey CLx infrared imaging system 

featuring Image Studio Analysis Software Version 4.0 (Licor).  

The Odyssey CLx Imager begins image acquisition with the membrane scan were 

desired channel(s) (700, 800, or both) are selected and AutoScan initiated. When the 

acquisition is complete, the image appears on the screen where it can be adjusted 

and processed. In the Analysis tab a rectangle is added around an area of 

fluorescence (a fluorescent band for desired protein of a known size). The software 

moves selected shapes to fully enclose areas of fluorescence near the shapes. The 

Image Studio software assigns a value to all the shapes (bands) based on their 

relative signal and substracts the background of the blot (the median value of the 

pixels in the background segment) from the shapes to obtain consistent data. The 
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software will not calculate signal for the shapes if a background method is not 

selected. The signal values assigned to shapes 1, 2 etc. are recorded in the Shapes 

Table. Data from the Shapes Table can then be copied to an Excel Spreadsheet. The 

loading control’s band (for Actin, unless otherwise stated) with the largest signal is 

assigned a value of 1 and the signals from each of the other bands in the 

normalization channel are divided by the largest signal to obtain each band’s 

Normalization Factor. The signal for each band in the other channel is divided by the 

Normalization Factor of the band in the same lane. Aquired data could then be 

compared and presented in a graph if required. 

2.10 Immunostaining 

Following the incubation / treatment period the cells were fixed with 4% PFA solution 

for 20 minutes followed by several washes with PBS. To block non-specific protein 

binding, cell slides were incubated with blocking buffer (5-10% FBS in PBS with 0.01% 

Triton X) for 30 minutes – 1 hour at room temperature (RT), followed by incubation 

with the primary antibodies (Table 2.8) (diluted at 1/200 - 1/400 in blocking buffer) 

for either 1 hour at RT or overnight at 4°C on a shaking plate. After washing 3 times 

for 5-10 minutes with PBS-T (PBS with 0.1% Triton X), the cell slides were incubated in 

secondary antibodies (Table 2.9) for 30 minutes – 1 hour at RT. Washed with PBS-T 

slides were mounted with approximately 20µl VectaShield (Vector Laboratories, #H-

1000 and #H-1200) mounting media with or without DAPI per slide and covered with 

glass cover slips.  

Antibody Company/Code Reactivity Concentration Dilution 

Anti-p62 Sigma/P0067 Rabbit 1.2 mg/ml 1/400 

Anti-p62 MBL/M162-3 Mouse 1 mg/ml 1/400 

Anti-LC3 Sigma/L8918 Rabbit 1.2 mg/ml 1/400 

Anti-LC3 B Sigma/ L7543 Rabbit 1.3 mg/ml 1/400 

Anti-FK2 Biomol/PW8810 Mouse 10 mg/ml 1/400 

Table 2.8. Primary Antibodies used for immunofluorescent staining. 
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Antibody Company/Code Reactivity Concentration Dilution 

Chicken Alexa Fluor 594 Molec Probe /A-21201 mouse 2 mg/ml 1-10 µg/ml 

Chicken Alexa Fluor 594 Molec Probe/ A-21442 rabbit 2 mg/ml 1-10 µg/ml 

Chicken Alexa Fluor 488 Molec Probe/ A-21200 mouse 2 mg/ml 1-10 µg/ml 

Chicken Alexa Fluor 488 Molec Probe/ A-21441 rabbit 2 mg/ml 1-10 µg/ml 

Goat  Alexa Fluor 350 Molec Probe/ A-11045 mouse 2 mg/ml 1-10 µg/ml 

 

Table 2.9. Secondary antibodies used for immunofluorescent staining.  

2.10 Light Microscopy and imaging  

Fluorescence cell imaging was carried out on a Carl Zeiss Axio Imager M2 (with 

ApoTome attachment) microscope with CCD camera for fluorescence acquisition; 

using a Plan-APOCHROMAT  40x/1.4 and 63x/1.4 Oil objective lens attached to a high 

definition camera (AxioCam HRm, Carl Zeiss). Images were processed using Axiovision 

software version 4.8.  

2.11 Imaris analysis  

Microscope images were analysed using Imaris software (Bitplane) to count puncta 

formation and co-localisation by user-defined spot definition parameters. A general 

diameter of 0.75µm was assumed as the standard for autophagosome size 

(Mizushima et al., 2010). This allowed the software to locate regions that come close 

to this measurement in the chosen fluorescent channel and was used for analytical 

purposes. Puncta generated in each fluorescent channel could be afterwards aligned 

to determine their co-localisation. The number of puncta per cell and their diameter 

(ranging from 0.1µm to ≥1µm) was generated and exported to an Excel workbook 

were the spread of data could be analysed. A mean number of puncta (inclusions) per 

cell from ≥14 cells examined (from each treatment/ condition) was determined. 

Statistical analysis was performed using an unpaired two-tailed Student’s T-test 

assuming unequal variance.  
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2.12 Filter-trap assay 

Total cell lysates were made using Mild NP-40-like protein extraction buffer with 

HaltTM protease inhibitor mixture. Cellular debris was pelleted at 1000 r.p.m. for 10 

minutes. Concentration of the total protein extracted was determined using a BCA 

Protein Assay Kit (Thermo Scientific Pierce, 23227) according to the manufacture 

guidlines (see above). The extent of aggregation was measured by trapping the 

aggregated protein on a nitrocellulose membrane (NC), with a 0.2µm pore size and 

by staining with a specific primary antibody.  The efficiency of the NC membrane in 

capturing and retaining aggregated protein in this assay was tested before (Chang 

and Kuret, 2008). Interestingly, in terms of precision, the most sensitive detection 

was found with NC (not cellulose acetate), and by narrowing nitrocellulose porosity 

to 0.2 µm increased by further 1.7 fold (Chang and Kuret, 2008). Here, the NC 

membranes were pre-equilibrated by soaking in 1x PBS directly before use. Blotting 

pads x2 were also soaked before assembling the blotting module. Then, 15µg protein 

sample diluted in 200µl of Mild NP-40-like buffer was applied onto the membrane, 

followed by vacuum filtration through a 96-well dot blot apparatus. Afterwards the 

resultant membrane was blocked in Protein-Free T20 blocking solution (Pierce, 

#37573; contains a proprietary compound in PBS, pH 6.4 with 0.05% Tween-20 

Detergent and Kathon Antimicrobial Agent) for 1 hour, and then incubated with 

specific primary antibodies (Table 2.2) for another 1 hour. After washing 3 times for 5 

minutes with PBST membranes were incubated in horseradish peroxidase (HRP) 

conjugated Secondary Antibody Solution (Goat anti-mouse or anti-rabbit depending 

on the origin of the primary antibodies used) for 30 minutes. Membranes were then 

washed as before and rinsed with deionised water. Finally, Chemiluminescent 

Substrate was applied to the surface of the membranes for 5 minutes, followed by 

luminography. Chemiluminescence was recorded on a Fujifilm LAS-3000 Intelligent 

Dark Box and quantified using the Odyssey CLx Image Studio Analysis Software 

Version 4.0 (Licor).  
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2.13 VCP mouse Genotyping 

The heterozygous R155H/+ knock-in mice used for protein analysis and primary cell 

isolation were generated by Dr Watts and colleagues (Badadani et al., 2010) at 

InGenious Targeting Laboratory, Inc. (Stony Brook, NY) through a Neomycin cassette 

insertion using 129/SvEv mice. 

 Briefly, using a FRT-flanked Neomycin cassette insertion, cultured SvEv embryonic 

stem cells were transgenically modified (Fig. 2.8) to express the pathological Vcp 

R155H/+ mutation and inserted into 129/SvEv blastocysts. The blastocysts were 

implanted in pseudo pregnant females and the chimeric offspring produced were 

mated with 129/SvEv mice, resulting in the F1 mutant generation. The expression of 

mutant VCP was confirmed by RT-PCR using the following primers in the PCR 

reactions: Forward- 5′-CAC GGT GTT GCT AAA AGG AAA GAA AAG; Reverse- 3′-CTG 

AAG AAT CTC CAA ACG TCC TGT AGC, after the RT reactions with the reverse primer.  

These mice were back-crossed with mice of the C57BL/6 strain more than six times, 

resulting in mice that retained >98% genetic homology with the C57BL/6 strain. The 

Neomycin cassette was deleted by crossing with the Flp deletion mouse model. 

 

Figure 2.8. Generation of the VCPR155H/+ knock-in mice. In order to generate a VCP disease 

mouse model, genomic VCP fragments with 7.9 kb of upstream homology sequence and 2.1 

kb of downstream homology sequence were subcloned into a targeting vector. Site-directed 

mutagenesis using the Quick-Change XL SiteDirected Mutagenesis Kit (Stratagene, La Jolla, 

CA) was used to introduce the R to H mutation at amino acid position 155 (Badadani et al., 

2010). Above is a schematic drawing of R155H targeting strategy of the knock-in allele (top) 
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and the wild type allele (below). The localizations of the 5′ (7.9 kb) and 3′ (2.1 kb) targeting 

sequences are indicated by dashed lines. The exons 1 through 5 are numbered and 

Neomycin-cassette is marked by Neo. The Neo-cassette is flanked by FTR sites and LoxP 

restriction sites. Mutation site in exon 5 is indicated. 

Mouse DNA was extracted from either a 0.2cm ear punch or tail tip from each young 

animal. This was initially carried out using Proteinase K (Invitrogen, 25530-049) 

diluted in ddH2O and 10xPCR reaction buffer. Tissue was degraded at 65°C for 4-6 

hours. Thereafter Proteinase K was inactivated at 95°C for 10-20 minutes. Tissue 

derbies were removed by centrifugation and supernatant, containing mouse DNA, 

transferred to new sterile Eppendorf tube.  

The Proteinase K extraction was later replaced by the “HotSHOT” (hot sodium 

hydroxide and tris) alkaline lysis method (Truett et al., 2000), proven to be a fast, 

highly efficient and inexpensive method. Briefly, 75µl of alkaline lysis reagent (25mM 

NaOH, 0.2mM disodium EDTA in ddH2O, pH 12) was added to the tissue sample and 

was heated to 95°C for 30-60 minutes. The tissue sample was checked at 30 minutes 

and the tubes agitated in order to estimate the degree of lysis. Once lysed, the tissue 

sample was cooled to 4°C and 75µl of neutralisation buffer (40mM Tris-HCl in ddH2O, 

pH 5) was added. The samples were centrifuged at 775g for 3 minutes and the 

supernatant transferred to another sterile Eppendorf tube. 

The VCP region on the genomic DNA template was amplified using ‘mus vcp gen-2F’ 

and ‘mus vcp gen-2R’ primers (Table 2.10). PCR protocol for the 2x BioMix with 

BIOTAQ DNA polymerase (Bioline, #BIO-25011; Composition:  BIOTAQ DNA 

Polymerase, 2mM dNTPs, 32mM (NH4)2SO4, 125mM Tris-HCl pH8.8, 0.02% Tween, 

3mM MgCl2, Stabiliser) was used, following the manufacture’s guidelines. Specifically, 

for each 25µl reaction a 12.5µl of BioMix was mixed with 2.5µl Template DNA, 1µl of 

each Primer (2F+2R) and 8µl ddH2O. 

Primer Sequence 

Mus-vcp-gen-2F 5' – TGGAAGGCATCACTGGCAATCTCT – 3’ 

Mus-vcp-gen-2R 5' – TTAAGGCCATCCAATCTCCAAAAGTA – 3’ 

 

Table 2.10. Sequencing primers. 
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Step Tm Time Cycles 

Initial denaturation 94ºC 2min 1 

Denaturation 94ºC 30sec 

 
35 

Annealing 60ºC 30sec 

Extension 72ºC 1.5min 

Incubation 72ºC 5min 1 

Cycle completion 4ºC ∞ 1 

 

Table 2.11. PCR running conditions for the sequencing. 

 

Following PCR (Table 2.11), PCR products were digested with either MspI (cuts wt 

allele) or NcoI (cuts mutant allele) restriction enzymes for a 3hours at 37°C and run 

on a 1% agarose gel at 120V for 1 hour (Appendix Fig. A2). When specifically using 

NcoI to cut Vcp we can identify three fragments corresponding to: a wild-type allele 

(982bp) and two fragments for mutant allele (700bp and 282bp).  

2.14 Primary macrophages culture preparation and In vitro 

osteoclastogenesis 

2.14.1  Osteoclast (OCL) differentiation ‘monocyte separation protocol’ 

Primary mouse Bone Marrow Derived Macrophages (BMDMs) and Spleen derived 

Macrophages (SPLMs) were prepared from >9 week old wild-type and VCP+/R155H 

mutant mice. Mouse femurs (also known as the thigh bone) were isolated from adult 

mice and washed in PBS. Ends of the long bones were cut off in a sterile 

environment, bone marrow cells were flushed from bones with α-MEM with a sterile 

27.5 gauge needle and syringe. Spleens were crushed and washed with α-MEM. Cells 

were centrifuged at 1500 rpm for 5 minutes and resuspended in α-MEM. 

Monocytes/macrophages were separated from the rest of the haematopoietic cells 

on a Ficoll-Paque (GE Healthcare, #17-1440-02) and plated onto a 35mm plate in α-

MEM supplemented with 10% heat inactivated FBS and 1% Penicillin-Streptomycin 

(P/S) antibiotics mix.  

After overnight culture the nonadherent cells were counted and split into cell culture 

plates for osteoclastogenesis. To maintain primary macrophage monolayer (BMDM), 

cells were grown in α-MEM supplemented with 25ng/ml Macrophage Colony 
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stimulating factor from mouse (M-CSF; Initially from Sigma, #M9170; R&D Systems, 

#416-ML-010). To induce osteoclast differentiation BMDMs and SPLMs were 

maintained with 25ng/ml M-CSF and 50 or 100ng/ml RANK Ligand from mouse 

(RANKL; Initially from Sigma, #R0525; R&D Systems, #462-TEC-010). Every 2-3 days a 

¾ of the media was changed with fresh α-MEM media containing M-CSF and RANKL.  

2.14.2 OCL differentiation ‘quick protocol’ 

Primary mouse Bone Marrow Derived Macrophages (BMDMs) were prepared from 

femurs of 3-6 month old wild-type and VCP+/R155H mice. Ends of the long bones were 

cut off in a sterile environment. Bone marrow (BM) cells were flushed from bones 

with α-MEM (containing 10% HI FCS and 1% P/S) with a sterile 27.5 gauge needle and 

syringe. Collected cells were then centrifuged at 1400 rpm for 5 minutes and 

resuspended in fresh media. Whole BM cells were cultured with 10ng/ml M-CSF in α-

MEM, on 10cm Tissue Culture dish, for 4 days. 

After 4 day culture the nonadherent cells were counted and split into cell culture 

plates (24-well plate) at 300 000 cells/ well and maintained with 25ng/ml M-CSF for 

further 3 days. Thereafter, only the adherent fraction was incubated with 25ng/ml M-

CSF and 50-100ng/ml RANKL (R&D Systems, #462-TEC-010) for additional 3-6 days. 

Every 2-3 days a ¾ of the media was changed. New media was added to the 

remaining ¼ such that the final concentration of RANKL is 50-100ng/ml and M-CSF is 

25ng/ml. OCL-like cells were expected to be present in the next 2-4 days. 

2.14.3 OCL differentiation ‘9-day protocol’ 

On day 1 femurs were dissected from adult mice and washed in PBS. Whole bone 

marrow was flushed with α-MEM (containing 10% HI FCS and 1% P/S). Collected cells 

were then centrifuged at 1500 rpm for 5 minutes and resuspended in 10ml fresh α-

MEM containing 5ng/ml M-CSF. On day 2, after overnight culture, the non-attached 

cell suspension was collected and centrifuged at 1500 rpm. The collected cells were 

then resuspended in fresh α-MEM containing 30ng/ml M-CSF and maintained in cell 

culture until day 5. On that day, the non-attached cell suspension was discarded. 

Whereas the attached cells were washed with PBS, scraped off and resuspended in α-

MEM. Cells were counted and split into cell culture plates (96-well plate) at 100 000 - 
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140 000 cells/well. Those BMDM were maintained in α-MEM growth media 

supplemented with 25ng/ml M-CSF and 50-100ng/ml RANKL until day 9 (Fig. 2.9). 

On day 7 a ¾ of the media was changed. New media was added to the remaining ¼ 

such that the final concentration of RANKL is 100ng/ml and M-CSF is 25ng/ml. 

 

 

Figure 2.9. ‘The 9-day osteoclast differentiation protocol’. The whole bone marrow was 

collected on day 1 and cultured in the presence of 5ng/ml M-CSF. The nonadherent cells 

were resuspended in fresh media containing 30ng/ml M-CSF on day 2 and maintained in 

culture allowing for the BMDM to attach. On day 5 the adherent cells were scraped off and 

resuspended in fresh α-MEM supplemented with 25ng/ml M-CSF and 50-100ng/ml RANKL.  

The BMDM were maintained under differentiating conditions until day 9 when 

multinucleated OCL-like cells could be observed. 

2.15 TRAP staining of osteoclasts 
 

To identify osteoclasts, cells grown in the presence of M-CSF and RANKL were fixed 

with 3.7- 4% paraformaldehyde in PBS, and then stained for tartrate resistant acid 

phosphatase (TRAP) activity (Sakiyama et al., 2001) with the Acid Phosphatase kit 

(Sigma, #387A-1KT) following the manufacturer’s instructions. Briefly, the fixed cells 

were first incubated in a solution of Naphthol AS-BI phosphoric acid (12.5mg/ml) and 

freshly diazotized Fast Garnet GBC (fast garnet GBC base, 7mg/ml, in 0.4mol/l 

hydrochloric acid with stabilizer mixed with 0.1mmol/l sodium nitrate in a 50:50 

ratio). Preparation of the working solution: 1ml diazotized Fast Garnet GBC, 0.5ml 

Naphthol AS-BI phosphoric acid, 2ml acetate solution (2.5mol/l acetate buffer, pH 

5.2) and 1ml of the tartate solution (0.335mol/l L(+)-tartate buffer, pH 4.9) in 45ml 

ddH2O. The working solution was mixed by gentle inversion and prewarmed to 37°C 

before appling to the fixed cells and further incubation for 1 hour at 37°C. After 1 
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hour incubation, cells were rinsed thoroughly in deionized water and then 

counterstained for 2 minutes in Hematoxylin Solution (hematoxylin, certified, 6.0 g/l, 

sodium iodate, 0.6 g/l, aluminum sulfate, 52.8 g/l and stabilizers). Thereafter, cells 

were rinsed several minutes in alkaline tap water to blue nuclei, allowed to air dry 

and analysed microscopically.  

This procedure employs stable diazonium salts, which form highly insoluble dye 

deposits. The naphthol AS-BI, released by enzymatic hydrolysis, couples immediately 

with fast garnet GBC forming insoluble maroon dye deposits at sites of activity 

(Sigma, #387A-1KT, Procedure No.387). Cells containing tartaric acid-sensitive acid 

phosphatase are devoid of activity. Those mononuclear cells containing tartaric acid-

resistant phosphatase are not affected by such treatment. 

2.16 Detection of Active NFκB p65 in the Bone Marrow Derived 

Macrophages 
 

The Thermo Scientific NFκB p65 transcription Factor Kit (#89859) was used to 

measure active form of NFκB protein in TNFα or RANKL – activated bone marrow 

derived macrophages (BMDM). 

The BMDM were separated from the whole bone marrow of VCP – mice as described 

above (2.14 ‘monocyte separation protocol’)  and maintained in appropriate growth 

conditions until reaching at least 70% confluence. To activate NFκB, BMDM were 

treated with either 50ng/ml recombinant mouse TNFα (stock at 100µg/ml in PBS + 

0.1% BSA; R&D Systems, #AA80-235; optimal concentration determined through 

titration on RAW264.7 cells – Supplementary Fig.S4) or 100ng/ml RANKL for 45 

minutes. Thereafter cells were lysed with 100µl M-PER + HaltTM protease inhibitor 

and the total protein content were demined with BCA protein assay. 

The Thermo Scientific NFκB transcription Factor Kit (#89859) contains two 

streptavidin-coated 96-well plates with bound NFκB biotinylated-consensus 

sequence. Because only the active form of NFκB binds to the DNA sequence, 

nonspecific binding is minimized, providing greater signal-to-noise ratios than a 

traditional enzyme-linked immunosorbent assay (ELISA). The plate was equilibrated 

to room temperature before opening.  A 50µL of Working Buffer (containing ddH2O, 
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5x NFκB Binding Buffer and 20x Poly dl·dC) was then added to each well. Either 4µl of 

Wild Type (prevents NFκB from binding to the sequence attached to the plate) or 4µl 

of mutant NFκB (does not affect specific NFκB binding) competitor duplex was added 

to control wells to ensure signal specificity, followed by 2µl of positive control TNFα 

Activated HeLa Cell Nuclear Extract per well. A 10µg of specific sample extracts was 

also added to appropriate wells (to a max of 25µl per well). Sealed plate was 

incubated with mild agitation for 1 hour at room temperature, followed by washes 

and 1h incubation with the anti-p65 primary antibody (diluted at 1:1000 in Antibody 

Dilution Buffer). Plate was washed again before incubating with the horseradish 

peroxidase (HRP) conjugated secondary antibody (diluted at 1:10,000 in Antibody 

Dilution Buffer) for 1 hour at room temperature. After final washes, a 100µl of 

chemiluminescent substrate was added to each well. Luminescence was measured 

using Omega 415-0097 plate reader (BMG LabTech) at 460nm absorbance. Raw data 

was transferred to the Microsoft Excel workbook for further analysis. 

2.17 Statistical Analysis.  

When recording difference between two groups the statistical significance was 

determined using a two-tailed student t-test. A paired t-test was applied when 

comparing two lots of measurements performed on the same study subject; whereas 

an unpaired t-test was applied to compare two independent groups. A 95% 

confidence interval was derived from the differences between the two sets of paired 

(unpaired) observations (where appropriate). Statistical significance was recorded 

when the resulting probability (p) value was ≤0.05. 

To assess the difference between three or more groups the analysis of Variance 

(ANOVA) was carried out. When a single independent variable was measured a one-

way analysis of variance (ANOVA) was used. When analysing the independent and 

joint effects of two independent variables a two-way ANOVA was used. In ANOVA the 

significance of difference between multiple sample means was determined by the F 

statistics – tests the null hypothesis that the means of several populations are equal – 

a significant p value (p≤0.05) was recorded when at least one group mean was 

significantly different from the others. 

http://www.graphpad.com/guides/prism/6/statistics/stat_howto_1wayanova.htm
http://www.graphpad.com/guides/prism/6/statistics/stat_howto_1wayanova.htm
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For Immunoblotting technical replicates’ quantification data are presented as mean  

SEM (standard error of the means) to indicate the precision of estimated mean of 

population i.e. how well the sample mean truly represents the entire population 

mean.  

To describe the variability between individual data points within the study sample the 

data are presented as sample mean with standard deviation (SD) i.e. dispersion of 

individual observations about the mean - mean (SD). 

  



 86 
 

CHAPTER 3 
 

VCP IN AUTOPHAGY 
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CHAPTER 3: VCP IN AGGREGATE CLEARANCE 
 

3.1  Introduction  

In addition to the relatively well categorised role of VCP in proteasomal 

degradation, studies of IBMPFD patient tissues suggest the possible involvement of 

VCP in the autophagy pathway (Watts et al., 2004; Vesa et al., 2009; Ju et al., 2010). A 

prominent characteristic of the pathology in IBMPFD is the accumulation of ubiquitin 

conjugates in affected tissues, indicative of a defect in protein degradation. Patients 

with missense mutations in VCP show degenerating fibres, rimmed vacuoles and 

ubiquitin- and TDP-43 positive inclusions. In addition, the vacuoles accumulated in 

IBMPFD patient tissue are enriched in autophagosomal markers p62 and LC3II and 

are suspected to be representing aberrant autophagosomes (Ju et al., 2009). Such 

phenotype was reproduced in transgenic mice expressing disease associated mutants 

of VCP (Badadani et al., 2010; Custer et al., 2010; Nalbandian et al., 2012). The 

heterozygous (R155H/+) VCP mice demonstrate progressive muscle, bone and brain 

pathology when compared with their wild-type littermates, with the onset of disease 

beginning around 6-9 months of age (Nalbandian et al., 2012); and this is accelerated 

in the homozygote (R155H/R155H) VCP mice that develop prominent ubiquitin-

positive aggregates and die by 14-21 days from muscle, spinal cord and cardiac 

pathology (Nalbandian et al., 2012 2nd). On the cellular level, chemical or genetic 

inhibition of VCP function, similarly to an IBMPFD mutant VCP expression, leads to 

the accumulation of non-degradative ubiquitin-containing autophagosomes (Tresse 

et al., 2010; Chou et al., 2011). Importantly, disease-associated mutations in VCP do 

not cause detectable impairment in ubiquitin-dependent degradation by the 

proteasome, further suggesting that defective autophagy contributes to pathological 

accumulation of ubiquitin conjugates and ubiquitin-positive vacuoles in IBMPFD 

(Tresse et al., 2010). Furthermore, overexpression of wild-type VCP in a Drosophila 

polyglutamine-disease model mitigates polyglutamine-induced eye degeneration 

(Koike et al., 2010). Whereas, the VCPK524A mutant inhibits protein degradation, 

triggering abnormal protein aggregation in the nucleus and cytoplasm and leading to 

increased cell death (Poksay et al., 2011).  
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Although previous findings indicate that VCP co-localises with pathological 

protein aggregates such as expanded polyglutamine aggregates, and is involved in 

both formation and clearance of these aggregates (Kobayashi et al., 2007; Kakizuka, 

2008; Ju et al., 2008), it is not certain which mechanisms are employed in the 

process. Kobayashi and colleagues observed that VCP recognizes and accumulates 

onto pre-formed protein aggregates created by proteasome inhibition and proposed 

that it acts as both aggregate-formase (during the expression of extended 

polyglutamines (ex-polyQ)) and aggregate-unfoldase (after the ex-polyQ expression 

becomes low) (Kobayashi et al., 2007). It was also suggested that VCP functions as a 

carrier of abnormal proteins for collecting them into aggregates and that IBMPFD-

mutations in VCP enhance formation of aggregates due to increased ATPase activity 

(Manno et al., 2010). Interestingly, the yeast VCP – equivalent (Cdc48) was found to 

be a critical factor for the proteolysis of insoluble misfolded substrates in the nucleus, 

and the loss of Cdc48 function led to increased inclusion formation in vivo (Gallagher 

et al., 2014). It was also found that VCP interacts with an ubiquitin-binding protein - 

histone deacetylase 6 (HDAC6), in a ratio which may dictate the fate of misfolded 

proteins, shuttle them to aggreasome or facilitate their autophagic degradation (Ju et 

al., 2008). Overexpression of HDAC6 in cells expressing disease mutants of VCP 

partially rescue degradation of ubiquitinated proteins (Ju et al., 2008), suggesting 

that these two proteins may function in a common biological pathway.  Importantly, 

both HDAC6 and p62 contain ubiquitin- and LC3- binding domains, and interact with 

the microtubule-associated protein tau, which accumulates in Alzheimer disease 

brain (Babu et al., 2005; Ding et al., 2008). Interestingly, inhibition of autophagy and 

also reduction of VCP levels was found to trigger increased levels of tau 

phosphorylated at Ser262/356 in a primary neuronal model (Dolan et al., 2011). Taken 

together it would appear that VCP interacts with misfolded and aggregated protein 

and structurally alters them so that they can be trafficked for degradation through 

either an aggresomal or autophagic fate (Bug and Meyer, 2010; Ju and Weihl, 2010). 

Similar to VCP mutants, knock-out of Atg5 or Atg7 (essential for 

autophagosome formation and in early stages of autophagy) in mice results in 

intracellular accumulation of ubiquitin-positive protein aggregates in the neuronal 

cells (Hara et al., 2006) and in the liver (Komatsu et al., 2005). Since the proteasome 
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activity was not affected by Atg7 knockout it was speculated that the accumulation of 

those aggregates was a direct result of autophagy deficiency (Hara et al., 2006; 

Komatsu et al., 2006). It was long thought that inhibition of autophagy would only 

affect long-lived proteins, but subsequent research has shown the possibility that 

autophagy inhibition may also impact the flux through the ubiquitin-proteasome 

system (UPS) and thereby influence clearance of short lived proteins (Korolchuk et 

al., 2009). After autophagy is inhibited, p62 accumulates, causing impaired delivery of 

UPS substrates to the proteasome; and knockdown of p62 in autophagy-deficient 

cells protects against the accumulation of these UPS substrates (Korolchuk et al., 

2009). Although a knock-down of p62 normalised levels of UPS substrates it did not 

affect autophagosome numbers or the autophagic flux (Korolchuk et al., 2009). In 

addition, overexpression of p62 in normal cells increased levels of ubiquitinated 

proteins and polyQ aggregation and interestingly this was abrogated by 

overexpression of VCP (Korolchuk et al., 2009). 

Altogether, these findings suggest that degradation of various ubiquitinated 

substrates on the intersection of autophagy and UPS is coordinated by the interplay 

of VCP and ubiquitin- and LC3- binding partners. We further propose that VCP is 

directly involved in the aggregate clearance via autophagy and dysfunction of this 

pathway (a consequence of deregulating mutations in VCP) results in pathological 

phenotypes observed in the VCP-associated diseases.  

3.2 VCP in autophagy positive cells co-localises not only with 

Ubiquitin but also with p62 and LC3.  

The VCP R155H/+ knock-in mice demonstrate muscle weakness starting at 

approximately 6 months of age, with typical inclusion body Myopathy (IBM) 

phenotype developing at the mean age of 9 months (Nalbandian et al., 2012). At the 

cellular level the VCP mice show similar pathology to IBMPFD patients (Badadani et 

al., 2010; Nalbandian et al., 2012 2nd). The skeleton of these mice is affected by 

Paget-like lesions with increased bone activity, cortical thickness and 

osteoclastogenesis (Nalbandian et al., 2013). While it is known that VCP and p62 

(both involved in pathogenesis of the PDB) are crucial players in main protein 

degradation pathways, it is still uncertain if they work together in response to various 
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aggregated protein challenges. More specifically, p62 is essential for the delivery of 

ubiquitinated proteins to the autophagy-lysosomal system, is degraded by autophagy 

and accumulate when this process is impaired (Moscat et al., 2009). Thus, I decided 

to first observe p62 levels in quadriceps muscle lysates of 6 month and 1 year-old 

(11—13 month) VCP wild-type (wt) or R155H/+ mice (Fig. 3.1 A) and determine 

whether autophagy impairment was present in these animals. I examined extracts 

from 3 animals per age group and per genotype. A significant ~1-fold increase in p62 

accumulation was recorded in 1 year-old mutant animals (Fig. 3.1 B) as expected, 

suggestive of a dysfunction in autophagy pathway and consistent with the findings 

reported to date (Ju et al., 2009; Nalbandian et al., 2012 2nd).  

To elucidate if VCP and p62 have the potential to be working together in 

clearing ubiquitinated intracellular debris; I then examined the distribution of VCP 

and p62 in cellular models. Due to the fact that using commercially available primary 

antibodies to stain for endogenous VCP was unsuccessful, the MEF cells were initially 

transfected with wild-type (wt) VCP-EGFP tagged. The next day cells were treated 

with either 1.5µM Torin 1 (inhibitor of the metabolic regulator mammalian target of 

rapamycin (mTOR) and activator of autophagy) or 80nM Bafilomycin A1 (inhibitor of 

late stage autophagy i.e. impairs autophagosome maturation – through acidification, 

including lysosomal fusion) for 4 hours. I sought to evaluate whether p62 and VCP 

work cooperatively under different conditions of autophagy induction (not in the 

basal conditions). Thus the basal level autophagy was up-regulated with Torin1 

(increases turnover) and then compared to inhibited autophagy turnover with 

Bafilomycin (Fig 3.1C). As suspected in both instances wt VCP presents mostly in a 

diffuse staining throughout the cytoplasm and nucleus with few bright vesicles. 

Significantly more VCP-positive vesicles are formed in cells treated with Torin 1 

(Fig3.1D). Whereas, more p62-positive vesicles are observed in Bafilomycin treated 

cells and this is most likely due to inhibited turnover of p62. Most importantly yellow 

vesicles –positive for both p62 and VCP- are present in the majority of autophagy 

active cells (Fig.3.1C). Nevertheless, percentage vesicles positive for both VCP and 

p62 is roughly the same under both treatment conditions (Fig. 3.3D).  
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Figure 3.1. VCP R155H mutant mice show accumulation of p62 in muscle. Wild-type VCP 

localises to p62-positive structures in autophagy active cells. Immunoblot of p62 and actin 

in 6mth and 1yr-old quadriceps muscle lysates from VCP+/+ and VCPR155H/+ mice (A) with the 

bar chart showing the average p62/actin intensity from 3 different animals. Each bar 

represents the mean with standard deviation from triplicate (*P<0.05, **P<0.01) (B). MEF 

cells transfected with wt VCP-EGFP and immunostained for p62 (C) were observed under 
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induced basal autophagy conditions (upper-Torin 1 treatment), or after Bafilomycin A1 

treatment (lower). Enlarged in insets are vesicles positive for either one or both observed 

proteins. Scale bars equal 10µm. Graph representing the percentage vesicles containing 

either VCP, p62 or both in cells treated with Torin1 and Bafilomycin A1. Error bars represent 

standard errors from 15 cells examined for each condition (±SEM); **p<0.01, n.s. Indicates 

non-significant difference (D) 

To verify these results I observed whether wild-type VCP associates with LC3-positive 

vesicles under conditions of autophagy induction (Fig. 3.2A).  The predominant 

number of small, red LC3 vesicles does not co-localise with VCP vesicles. However, 

again about a third of vesicles that accumulate in Torin 1 and Bafilomycin treated 

cells are positive for both VCP and LC3 (Fig. 3.2C). I also observe accumulation of 

ubiquitin-positive vesicles following Bafilomycin A1 treatment in MEF cells (Fig. 3.2B). 

Vesicles that accumulate in wt VCP-expressing cells are present in both nuclear and 

cytoplasmic lumen. Importantly, nearly 40% of these vesicles contain ubiquitin-

positive material and VCP (Fig. 3.2D). Therefore, I suspect that VCP might be involved 

in the clearance of some (perhaps larger) ubiquitinated substrates by autophagy. 
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Figure 3.2. Vesicles that accumulate in autophagy active cells are positive for VCP, LC3 and 

ubiquitin. MEF cells transfected with wt VCP-EGFP and immunostained for LC3 (A) or 

Ubiquitin (Anti-FK2 #PW8810) (B) were observed under induced basal autophagy  conditions 

(upper-Torin 1 treatment), or after Bafilomycin treatment (lower). Enlarged in insets are 
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vesicles positive for either one or both observed proteins. Scale bars equal 10µm. Graph 

representing the percentage vesicles containing either VCP, LC3 or both in cells treated with 

Torin1 and Bafilomycin  (BafA1). Error bars represent standard errors from 15 cells examined 

for each condition (±SEM); n.s. Indicates non-significant difference (C). Graph representing 

the percentage vesicles containing VCP, Ubiquitin (Ub) or both in cells treated with 

Bafilomycin A1. Error bars indicate standard errors (D).  

3.3 VCP co-localises with ubiquitin, p62 and LC3 in cells expressing 

expanded polyglutamines 

To further evaluate if VCP has the potential to work together with p62 in 

clearing large ubiquitinated substrates I examined the subcellular distribution of VCP 

and ubiquitin or VCP and p62 in the presence of either a pathogenic glutamine repeat 

(Q79), which is used as an autophagic substrate, or a non-pathogenic control 

glutamine repeat (Q35) (UPS substrate). The wt VCP-EGFP was co-expressed with 

either HA-tagged Q79 or Q35 polyglutamines in MEF cells for 24 hours (Fig 3.3). Cells 

expressing Q35 polyglutamines show diffuse green staining throughout with VCP-

positive ubiquitinated perinuclear aggregates (Fig 3.3A top panel). These aggregates 

appear smaller but concentrated. In cells co-transfected with Q79 polyglutamines 

both VCP and ubiquitin surround larger, cytoplasmic inclusion bodies (Fig. 3.3A 

bottom panel).  Also, as shown in Fig. 3.3B (bottom panel), cells expressing expanded 

79-residue glutamine repeat displayed aggregates that co-localised with both VCP 

and p62, suggesting a role for VCP in the clearance of this substrate via autophagy. 

Whereas cells expressing expanded 35-residue glutamine repeat show small p62-

positive punctuate structures and a few VCP-positive perinuclear vesicles (Fig 3.3B 

top panel), majority of which do not co-localise with p62. 

To determine whether VCP is involved in clearance of pathogenic substrates 

by autophagy I immunostained cells co-transfected with polyglutamines and wt VCP-

EGFP for LC3 - membrane associated marker of autophagic vesicles (Fig. 3.4A). In cells 

expressing a shorter polyglutamine (Q35) LC3 did not associate with VCP-positive 

perinuclear aggregates (Fig. 3.4A top panel). Only some cells show small LC3-

punctate structure.  
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Figure 3.3. Large vesicles accumulating in polyglutamine expressing cells are positive for 

VCP, ubiquitin and p62. MEF cells were co-transfected with wt VCP-EGFP and either Q35 or 

Q79 glutamine repeats. Later immunostained for Ubiquitin (A) or p62 (B). Enlarged in insets 

are aggregated structures positive for either one or both observed proteins. Scale bars equal 

10µm.  



 96 
 

In contrast, cells expressing a pathogenic polyglutamine (Q79) displayed large 

doughnut-like shaped vesicles (inclusions), positive for both VCP and LC3 (Fig 3.3A 

bottom panel). Both VCP and LC3 formed a darker ring around lighter lumen of the 

vesicle.  It is possible that VCP might associate with autophagosome membranes 

transiently or at some low level (maybe via binding to LC3) in a way that is 

functionally significant. Especially, since VCP is known to functionally associate with 

membranes of the nuclear envelope, endoplasmic reticulum and the Golgi apparatus 

(Roy et al., 2000; Halawani et al., 2009; Manno et al., 2010). Altogether, I conclude 

that because VCP co-localises with p62 and LC3, it could be directly involved in the 

autophagic clearance of ubiquitinated polyglutamine substrates and aggregates. 

3.4 Cells expressing VCP mutants are more sensitive to protein 

aggregation 
 

The experiments described above show that VCP co-localises with p62 and 

LC3 in poly-ubiquitinated protein aggregates. Whilst  previous reports imply a defect 

in protein turnover resulting in increased aggregation in tissues of IBMPFD patients 

(Mizuno et al., 2003; Ju et al., 2009) and in animal models (Nalbandian et al., 2012) of 

the VCP disease-mutants. Therefore, combined with the preceding data, these 

findings strongly suggest that VCP is involved in the clearance of poly-ubiquitinated 

substrates.  To gain further evidence for the role of VCP in autophagy I then 

examined the ability of cells containing mutant VCP to remove non-pathogenic 

glutamine repeats. Co-expression of R155H VCP-EGFP mutant with Q35 

polyglutamine in cell culture resulted in accumulation of large aggregates, co-stained 

for both VCP and LC3 (Fig. 3.4B top panel). Similarly, co-expression of mutant VCP 

with extended pathogenic polyglutamines (Q79) in MEF cells also resulted in VCP-

positive, doughnut-like shaped vesicles (inclusions) co-localised with LC3 (Fig. 3.4B 

bottom panel).  

The appearance of abnormal, large vesicles in cells expressing non-pathogenic 

polyglutamines suggests that mutant VCP increases cell’s sensitivity to protein 

aggregation. To confirm this suspicion, I used the ‘Imaris’ software analysis to 

determine the number of vesicles (aggregates, inclusion) per cell in poly(Q35) and 

wild-type (wt) or mutant VCP expressing cells. Cells expressing R155H VCP-EGFP in 



 97 
 

conjunction with the Q35 repeat formed significantly more aggregates per cell than 

cells expressing wt VCP (Fig. 3.4C). In addition, looking at the co-localisation of VCP 

puncta with the LC3 puncta in Q35-containing MEF cells, I found that there was 

significantly more VCP and LC3 co-stained aggregates (autophagosomes) in R155H 

VCP mutant-expressing cells. More than 50% of R155H VCP puncta co-localised with 

LC3 puncta, whereas only about 20% of all aggregates was positive for wt VCP and 

LC3 in Q35 expressing cells (Fig. 3.4D). Next, I utilised ‘Imaris’ to analyse aggregate 

formation in cells expressing pathogenic Q79 polyglutamines. I found that cells 

expressing R155H VCP in conjunction with the Q79 repeats formed significantly more 

aggregates per cell than cells expressing wt VCP (Fig. 3.4C). I also observed that the 

overall number of VCP-positive aggregates formed in cells expressing R155H VCP in 

conjunction with the Q35 repeat is similar to the number of aggregates formed in 

cells expressing wt VCP in conjunction with pathogenic Q79 repeat (Fig. 3.4C). 

Nevertheless in cells expressing Q79 polyglutamine both wt and mutant VCP positive 

aggregates were more likely to co-localise with the LC3 puncta (autophagosomes) 

than in cells expressing Q35 polyglutamine (Fig. 3.4D). Nearly 75% and more than 

80% of all cellular aggregates were positive for VCP and LC3 in cells co-expressing 

Q79 and wt VCP or Q79 and R155H VCP respectively. Thus, I suspect that IBMPFD 

mutations in VCP make cells more sensitive to protein aggregation resulting in 

activation of the autophagy pathway (dictated by the increased number of LC3-

positive inclusions). 
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Figure 3.4. Large LC3-positive aggregates accumulate in cells expressing polyglutamines 

and mutant VCP. MEF cells were co-transfected with either Q35 or Q79 glutamine repeats 

and wt VCP-EGFP (A) or R155H VCP-EGFP (B). Enlarged in insets are aggregated structures 

positive for VCP and/or LC3. Note co-aggregation of mutant VCP and LC3 with short poly(Q)-

35 repeats. Scale bars equal 10µm. Graphs showing the average number of VCP-positive 

aggregates per cell (C) and the percentage VCP, LC3-containing aggregates and 

autophagosomes i.e. aggregates positive for both LC3 and VCP (D) in 15 cells examined for 

each condition. Each bar represents the mean number of aggregates per cell ±SEM, (One 

Way ANOVA followed by t-test with **P<0.01, ***P<0.001).  Immunoblot against LC3 and 

actin in MEF cells either treated with 1.5µM Torin 1 (control) or transfected with wt or R155H 

mutant VCP-EGFP and/or polyglutamines (E). Quantification of LC3II normalized against actin 

in drug-exposed/ transfected MEF cells (F). Error bars indicate standard deviation from 

triplicate samples. 

I then used the ‘Imaris’ software to determine the size of aggregates in cells 

expressing either non-pathogenic or pathogenic polyglutamines, assuming a general 

diameter of 0.75µm as the average for autophagosome size. The software located 

regions that come close to this measurement in the chosen fluorescent channel 

allowing calculations of changes in puncta diameter. The average diameter of VCP-

positive aggregates in cells co-expressing mutant VCP and Q35 is significantly larger 

than in cells co-expressing Q35 and wt VCP (Fig. 3.5A). In contrast, there was no 
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apparent difference in average diameter of VCP-positive aggregates in cells 

expressing Q79 polyglutamines in conjunction with either wt or R155H mutant VCP 

(Fig. 3.5A). Furthermore, when looking at the size distribution of aggregates in cells 

expressing non-pathogenic Q35 repeats, it became apparent that the majority of 

aggregates  (~85%)  that accumulate in R155H VCP mutant were over 0.75µm 

diameter in size (Fig. 3.5C). Whereas, less than 15% of all aggregates found in mutant 

VCP expressing cells were smaller than 0.75µm diameter. Conversely, cells expressing 

wt VCP not only displayed much less aggregates than cells expressing mutant VCP, 

but 50% of these were under 0.75µm diameter in size (Fig. 3.5B).  

 I next went on to determine expression levels of LC3 in the poly(Q) and EGFP-

VCP (wild-type and mutant) - transfected MEF cells (Fig. 3.4E). Lysates from MEF cells 

treated with 1.5µM Torin1 for 5 hours were used to show LC3 flux in cells with 

induced autophagy signaling. It is evident that cells co-transfected with either Q35 or 

Q79 and R155H VCP accumulated more lipidated, membrane bound LC3II levels 

when compared to cells expressing wt VCP and either polyglutamines or cells treated 

with Torin 1 (Fig. 3.4E and F). Although not significant, elevated LC3II in cells 

expressing mutant VCP might indicate aberrant clearance of large, polyubiquitinated 

inclusions and accumulation of non-degradable aggregates in the cell.  

Collectively, these data provide more detailed information on effects of the 

mutant VCP on the formation of protein aggregates in the cell, namely that it makes 

cell more sensitive to protein aggregation. Moreover, my findings suggest that the 

aberrant aggregation of both pathogenic and no-pathogenic substrates observed in 

IBMPFD mutants is likely to result from defects in autophagy rather than in the UPS, 

due to observed accumulation of not only ubiquitinated substrates but also 

autophagy markers – p62 and LC3. 
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Figure 3.5. More of large aggregates is formed in cells expressing mutant VCP. MEF cells 

were co-transfected with either Q35 or Q79 glutamine repeats and wt or R155H VCP-EGFP.  

Graph showing the average diameter of VCP-positive aggregates (AG) in cells expressing wt 

or mutant forms of VCP (A). Analysis of variance (ANOVA) was followed by a comparison t-

tests to assess the differences between the samples. Size is estimated in µm. Each bar 
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represents the mean ±SEM, (***P<0.001, n.s. non-significant difference). Pie charts 

describing size distribution of aggregates in cells transfected with Q35 glutamines and either 

wt VCP (B) or R155H VCP (C). Diameter of each granule/aggregate was determined via Imaris 

analysis of Z-stacked immunofluorescent images, presented as a percentage of the total 

number of aggregates > 0.25µm in 15 cells examined for each condition. 

3.5 Overexpression of wt VCP in the cell culture increases clearance 

of poly-ubiquitinated substrates. 

When autophagy is inhibited aggregates and ubiquitinated proteins 

accumulate in cells and tissues (Komatsu et al., 2006; Yang and Kilonsky 2010). The 

pathology of IBMPFD is characterised by accumulation of ubiquitin conjugates 

indicative of a defect in protein degradation, and my observations suggest that 

disease-associated mutations in VCP make cells more prone to protein aggregation. 

To further validate these findings, I next sought to determine the ability of cells 

containing mutant VCP to remove nonpathogenic poly-glutamine repeats. Again MEF 

cells were co-transfected with both Q35 or Q79 polyglutamines and wt, R155H or 

DKO (a catalytically dead, D1 and D2 ATPase mutant; functions as dominant negative 

when expressed exogenously) VCP-EGFP. The levels of accumulated ubiquitinated 

protein aggregates were then analysed by a filter-trap assay with anti-FK2 (Ubiquitin) 

antibody (Fig. 3.6A). As shown in Figure 3.6B, ubiquitinated aggregates accumulated 

largely in VCP mutant expressing cells when compared with that in non-transfected 

control (Null). Furthermore, the IBMPFD-specific mutant VCP (R155H) sequester non-

pathogenic poly(Q)-35 repeat into inclusion bodies, indicated by nearly 3 fold 

increase in ubiquitinated aggregates when compared to that in wt VCP-EGFP 

expressing MEFs (Fig. 3.6B middle graph). As expected pathogenic poly(Q)-79 repeats 

are also sequestered into large non-soluble aggregates in VCP mutant expressing cells 

(Fig. 3.6B bottom graph). In contrast overexpression of wt VCP reduces aggregation, 

possibly promoting clearance of poly-ubiquitinated aggregates. This experiment was 

repeated on three separate occasions, concentrating on the IBMPFD-mutant and wt 

VCP. Combined results revealed a significantly higher insoluble aggregate content in 

cells expressing mutant protein (Fig. 3.6C). Conversely, a sole over-expression of wt 

VCP significantly reduced insoluble aggregate generation when compared to that in 

mutant VCP transfected cells.  
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Figure 3.6. Cells expressing VCP mutants are defective in aggregate clearance. Filter-trap 

analysis immunoblots of SDS-insoluble ubiquitinated aggregates generated in cells co-

transfected with either Q35 or Q79 glutamine repeats and wt, R155H or Double ATPase 

domain mutant (DKO) VCP-EGFP as indicated (A). The signal intensity from the ubiquitin 

immunoblots was quantified and presented as relative percentage values of the non-

transfected control (Null) (B). The average intensity from 3 separate experiments is shown in 

(C), error bars indicate standard deviation from triplicates. Note the measurable 

accumulation of ubiquitin-positive aggregates in R155H/+ VCP expressing cells and in cells co-

transfected with mutant VCPs and poly(Q)’s; (*P<0.05, **P<0.01). 
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There was no significant difference in the concentration of insoluble, ubiquitinated 

aggregates in cells expressing pathogenic Q79 polyglutamines. Collectively, these 

findings suggest that wt VCP is not only essential in clearing ubiquitinated protein 

substrates but also, when over-expressed, can increase the clearance of protein 

aggregates.  With the preceding results in mind I can postulate that VCP is likely to 

participate in the autophagic degradation of ubiquitinated protein cargo in a similar 

way to p62. I therefore propose that VCP interacts with the autophagic machinery 

and decide to investigate further whether VCP binds directly to p62. 

3.6 Discussion 

In this chapter I wanted to further characterise the role of VCP and p62 in the 

cell, especially during autophagy. I investigated the subcellular localisation of VCP and 

p62 by inducing autophagy by either Torin 1 treatment or expression of expanded 

polyglutamine repeat (aggregate-prone proteins with polyglutamine and polyalanine 

expansions which are degraded by autophagy) (Ravikumar et al., 2002). The most 

striking observation was that in cells expressing a pathologic expanded polyglutamine 

repeat VCP, p62 and LC3 (a binding partner of p62) all co-localised to the outside of 

the ubiquitin-positive inclusion body (aggregated polyglutamine). This was not 

surprising, as the expression of the expanded pathogenic polyglutamine does 

produce cellular pathology seen in the disease state.  Thus, this was the first 

indication that VCP and p62 may interact directly and that VCP may have a defined 

role in the early autophagic process, like p62. Further to this, when autophagy was 

induced by Torin 1 treatment or inhibited at late stage with Bafilomycin A1, again 

there was co-localisation of VCP and p62 as well as VCP and LC3 (although it was less 

pronounced). To examine this in physiological conditions I looked at the levels of p62 

in muscle (quadriceps) from aged wild type and heterozygous VCPR155H/+ mice. I 

compared samples from six month and one year old mice, where we have previously 

shown that muscle from these animals develop similar inclusion body pathology to 

that seen in the human disease, in an age dependant manner (Nalbandian et al., 

2012). Nevertheless, in the mouse there is no apparent inclusion body histopathology 

before they reach approximately one year of age and at six months of age there is no 

difference in the histology of wild type and heterozygous muscle (Badadani et al., 
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2010; Nalbandian et al., 2012). In accordance with these findings I observed an age 

dependant significant increase in the levels of p62 in only the one year old 

heterozygous muscle (Fig. 3.1B).   

Although previous findings indicate that VCP co-localises with expanded 

polyglutamine aggregates and is involved in both formation and clearance of these 

aggregates (Kobayashi et al., 2007; Kakizuka, 2008; Ju et al., 2008), it is not certain 

which mechanisms are employed in the process. One suggestion is that histone 

deacetylase 6 (HDAC6), an ubiquitin-binding protein, interacts with VCP in a ratio 

which dictates the fate of misfolded proteins shuttles them to aggresome and 

facilitates their autophagic degradation (Ju et al., 2008). Interestingly, both HDAC6 

and p62 contain ubiquitin- and LC3- binding domains, and interact with the 

microtubule-associated protein tau, which accumulates in Alzheimer disease brain - 

where VCP was also implicated (Babu et al., 2005; Ding et al., 2008). It is also believed 

that VCP actually protects against the toxic effects of insoluble polyglutamine 

aggregates with previous studies showing that increased expression of wt VCP 

reduces polyglutamine inclusion bodies in the Drosophila model (Koike et al., 2010).  

Results of this chapter further demonstrate that VCP plays an important role in the 

degradation of expanded polyglutamine repeats. While the mutant VCP seemed to 

co-localise in a similar pattern as the wt VCP around the pathogenic Q79 

polyglutamine inclusions, I have also observed inclusions in cells expressing the 

control non-pathogenic polyglutamine repeat and mutant R155H VCP. I found that 

the co-expression of mutant VCP and the Q35 (non-pathogenic polyglutamine repeat) 

leads to an increased number of inclusions that were not seen is cells co-expressing 

both the wt VCP and Q35 vectors (Fig. 3.3B and 3.4). Although, the Q35 construct is 

larger than the normal number of repeats seen in the general population (Chen et al., 

2002) it is still considered non-pathogenic. This would be consistent with the lack of 

inclusion bodies seen in cells co-expressing both the wt VCP and Q35 vectors. The 

Q35 polyglutamine repeat should normally show a more diffuse distribution (Fig 3.3) 

and be degraded by the 26S proteasome. Therefore aggregates that accumulate in 

cells co-expressing mutant VCP and the Q35 would indicate that the R155H mutation 

in VCP increases the cell’s sensitivity to potentially aggresome prone proteins, like the 

larger ‘normal’ polyglutamine repeat (Q35). These findings were additionally 
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confirmed by the Imaris analysis of co-transfected cells (Fig. 3.4C and D), showing a 

significantly higher aggregate formation in VCP mutant expressing cells. The Q35 

inclusions (in R155H VCP expressing cells) like the pathogenic Q79 repeats, are 

surrounded by co-localised VCP, p62 and LC3, suggesting that these are pathological 

inclusion bodies containing the Q35 polyglutamine repeat. In addition, expression of 

R155H VCP in Q35-containing cells resulted in accumulation of numerous large 

aggregates over 1µm in diameter that were rarely observed in wild-type VCP. There 

are three scenarios that could potentially lead to this outcome:  

1. The Q35 protein can no longer be degraded by the proteasome because VCP 

has lost its segregate/unfoldase activity that ‘untangles’ aggresome prone 

proteins.  

2. The polyubiquitinated Q35 substrate is misdirected or inappropriately 

directed to the autophagy pathway.  

3. That VCP has lost its ability to recognise and/or bind the polyubiquitinated 

Q35 substrate, so it is not being degraded by the proteasome. 

 I further explored the effects of mutant VCP on autophagy in immortalised 

primary cells (mouse embryonic fibroblasts, MEFs) by western blotting (WB) using 

antibodies to LC3(Fig. 3.4E and F). The expression of the Q79 expanded glutamine 

repeat led to an increase in the levels of LC3II (a marker for activated autophagy) in 

cells expressing either wt or mutant VCP when compared to cells just expressing the 

Q79 repeat. This suggests that the overexpression of either the mutant or wt VCP 

does indeed increase autophagy and potentially enhance the clearance of the 

pathogenic inclusion bodies. Contrary, the expression of the non-pathogenic Q35 

polyglutamine repeat increased the levels of LC3II in all cells (expressing Q35 only, or 

Q35 with either wt or mutant VCP). Intriguingly, for cells just expressing the Q35 

repeat the increased late stage autophagy response was far greater than the one 

elicited by the Q79 repeat. Nevertheless, the co-expression of wt VCP with the Q35 

repeat had very similar levels of LC3II as the cells just expressing the Q35 repeat. 

These observations are potentially very significant for three reasons: 

1. The Q35 repeat induces autophagy, so potentially is not normally degraded by 

the proteasome. 
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2. Cells can normally cope with the autophagy clearance of the Q35 repeat and 

it is non-pathogenic. 

3. The overexpression of wt VCP does not further enhance the autophagy 

response to Q35 repeats compared to the cells normal response (not the case 

for the pathogenic Q79 response). Suggesting that VCP plays a differential 

regulatory role in the cells response to clearing pathogenic inclusion bodies. 

The co-expression of the Q35 repeat with mutant VCP shown a slight increase 

in LC3II levels, but this was not significant. Nevertheless, as it is shown by the Imaris 

image analysis in Figure 3.4(C and D) there was a significant increase in the number 

of pathogenic inclusion bodies in cells co-expressing Q35 and mutant VCP. To 

corroborate this aggregate-clearance defect, I also examined the insoluble 

aggregated fraction, by a filter trap assay, in cells expressing Q35 or Q79 glutamine 

repeats in conjunction with either wt-VCP, R155H-VCP or DKO-VCP (which has 

mutations in both ATPase domains creating a dominant negative effect).  The 

functional feature of the filter trap analysis is the combination of porous membrane 

which allows small insoluble proteins to pass through and immunoblotting for a 

specific aggregate’s content. Only large aggregates are immobilised on the 

membrane, which can be then immuno-probed with a conjugated ubiquitin antibody 

in a manner similar to Western Blotting. In MEFs transfected with just wt-VCP, 

R155H-VCP or DKO-VCP, there was a significant increase in polyubiquitinated 

aggregates in cells expressing the R155H mutant VCP (Fig. 3.6B). By contrast, the 

inactive DKO mutant did not show increased aggregation. Similarly, in cells co-

transfected with Q35 and VCP vectors, there was again a dramatic increase in 

polyubiquitinated aggregates for those cells expressing either R155H-VCP or DKO-

VCP, but not in wt-VCP or just Q35 expressing cells. These observations were similar 

to the results from experiments using the Q79 repeats, where again just the R155H 

and DKO expressing cells showed an increase in polyubiquitinated aggregates (Fig. 

3.6B). If Q35 is indeed an autophagy substrate then the inclusion bodies seen in the 

mutant VCP expressing cells suggests that the mutations in VCP reduce autophagic 

efficiency in degradation of normal aggregate-prone (autophagy) substrates. This 

would be consistent with the current thought that IBMPFD mutations in VCP cause a 

block in late stage autophagy (Ju et al., 2009).  
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It was also interesting to note that wild-type VCP co-localised to a fair extend 

with p62 positive vesicles in normal cells under different conditions of autophagy 

induction (Fig. 3.1). Furthermore, it was previously shown that overexpression of 

wild-type VCP increases the clearance of ubiquitinated substrates in the cell and that 

p62 and VCP compete for these substrates for degradation by either autophagy or 

the proteasome, respectively (Korolchuk et al., 2009).  Importantly, disease-

associated mutations in VCP also lead to p62 accumulation in adult VCPR155H/+ mice 

muscle, likely due to impaired VCP function. Combined with the preceding data these 

observations suggest that these two proteins may function in a common biological 

pathway. The evidence suggests the pathology of IBMPFD is due to a defect in 

autophagy with a lack of any impairment in the UPS (including the ERAD and UFD 

pathways) (Tresse et al., 2010). My findings further indicate that VCP, in the similar 

way to p62, is essential for clearance of ubiquitinated proteins. Therefore, I propose 

that an impairment of autophagy-dependent protein aggregates degradation is likely 

to be the direct result of VCP mutations. 
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CHAPTER 4: VCP FORMS A COMPLEX WITH p62 
 

4.1 Introduction 
 

VCP is one of the most abundantly existing intracellular protein and acts in 

various cellular functions, including protein degradation, membrane fusion and cell 

cycle control (Chapman et al. 2011; Bug and Mayer, 2012). The multifunction 

suggests the presence of multi-partners and/or multi-localisation of VCP itself. 

Indeed, VCP has been proposed to use its co-factors differentially to carry out this 

diversity of activity (Table 4.1). The N-domain and the C-terminus on VCP are mainly 

responsible for the interactions with those various binding partners (Fig. 4.1). The N-

terminal binding site was described a general site of interactions for many cofactors 

with the ubiquitin regulatory X (UBX) and ubiquitin D (UBD) domain-containing 

protein cofactors, such as Ubx2 and Ufd1/Npl4 respectively (Chapman et al. 2011). 

The p47 for example, required in membrane fusion in post-mitotic reassembly of 

Golgi apparatus and transitional ER, binds to the N-domain on VCP via its UBX domain 

(consensus sequence R...FPR; dots indicate separation in primary sequence) as a 

trimmer, blocking other cofactors from binding (Mayer et al., 1998). Interestingly, 

Ufd1/Npl4 complex, involved in the ER-associated protein degradation, binds to a 

single subunit of VCP in a p47 excluding manner (Yeung et al., 2008). Other cofactors 

interact with the N-domain of VCP via small peptide motifs including binding site 1 

(BS1), VCP-binding (VBM) and VCP-interacting (VIM) motifs (Yeung et al., 2008; 

Dargemont et al., 2012). The BS1 motif (consensus sequence FxGxGQRn; x – any 

amino acid, n - nonpolar) resides in p47 and Ufd1 and is a short hydrophobic peptide 

stretch which may be responsible for positioning the adapter in the right orientation 

with respect to VCP and its movements, facilitating general recruitment to the UBD 

domain (Bruderer et al., 2004). The VBM motif (consensus sequence E(I/L)RRRR) was 

found in ubiquitin-related enzymes, including deubiquitinase ataxin-3 (Atx3) 

(Boeddich et al., 2006) and ubiquitin ligase HRD1 (Kikkert et al., 2004). The VIM motif 

(consensus sequence (K/R)RxxLAxAAERRxQ) was identified in a small VCP-interacting 

protein (SVIP) - an inhibitor of ERAD pathway (Nagahama et al., 2003) and in gp78 (an 

ubiquitin ligase for ER-associated degradation, also called AMFR-Autocrine motility 

receptor) (Ballar et al., 2006). The VBM and VIM motifs both contain at least four 
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conserved basic arginine (Arg) and lysine (Lys) residues in their sequences (Liu et al., 

2013). These Arg/Lys-rich motifs are localised on α-helices and form a positively 

charged patch on the helical surface, which may be beneficial to VCP binding (Liu et 

al., 2013). Indeed, VIM motif of SVIP has more positive charges concentrated on an 

area of the helical structure than VBM motif of HRD1 and exhibits a stronger binding 

affinity for VCP (Liu et al., 2013).  Structurally, the Arg/Lys residues in VIM are 

separated into two regions by several residues in sequence, producing a more 

extended binding interface, whereas the binding interface of the VBM localises to a 

single cluster region (Hanzelmann et al., 2011; Liu et al., 2013).  Interestingly, almost 

all proteins containing the arginine/lysine-rich peptide motifs are involved in 

ubiquitin-related protein degradation (Boeddich et al., 2006; Ballar et al., 2006; 

Hanzelmann et al., 2011) hence VIM/VBM motifs should be considered when 

indentifying novel VCP binding partners in the future.  

 

Figure 4.1. Schematic diagram showing VCP protein structure. Each subunit of a VCP protein 

consists of N-terminal domain (1-187) (blue), the two AAA ATPase domains: D1 (209-460) 

(crimson) and D2 (481-761) (blush), and a C-terminal tail (762-806) (grey). There are two 

linker domains in the protein: N-D1 linker (orange) and flexible D1-D2 linker (green).  Known 

VCP cofactors bind by specific VCP-interaction domains (UBX, PUB or PUL domains) or linear 

motifs (VIM, VBM). Some cofactors act as ubiquitin adaptors through different ubiquitin-

interaction domains (Npl4, Ufd1, p47). 

Recent studies demonstrate that the amino –terminal region on VCP (amino 

acids 1-199) is not only critical but also sufficient for the association with the carboxyl 

terminus of gp78 in vitro (Grelle et al., 2006). Intriguingly, mutations within the N-

domain that result in either R93C, R95G or R155H amino acid changes did not affect 
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the binding of cofactors in an in vitro protein binding assay (Huberts et al., 2007; 

Fernandez-Saiz and Buchberger 2010). In fact, it was reported that R95G and R155H 

mutants have elevated binding affinities for p47 and UFD1-Npl4 complex in vivo 

(Fndez-Saiz and Buchberger 2010). In contrast, the P137L mutation completely 

abolishes VCP interactions with Ufd1, Npl4 and p47, while conserving its gp78 binding 

(Erzurumlu et al., 2013). Such binding differences could be due to some alterations 

occurring in the short loop that follows P137L change, residues 140-144 (Erzurumlu 

et al., 2013).  

Co-factors that bind to the VCP C-domain include Ufd3 (functions in the 

endosomal sorting by its association with Hse1, a component of endosomal sorting 

complex required for transport (ESCRT) system) and PNGase (peptide:N-glycanase; 

functions in the post-translational modifications of substrates), which associate via 

the PNGase/ubiquitin-associated (PUB) domain (Madsen et al., 2009; Han et al., 

2014). The Ufd2, an E4 enzyme involved in extending ubiquitin chains, is an 

interesting VCP binding partner as it does not bind to the N- or C-domain, but 

somewhere in D2 or C-domain region (Chapman et al. 2011). Notably, despite Ufd2 

lacking the PUB domain (instead binds via the VIM motif), binding of Ufd2 and Ufd3 

to VCP is mutually exclusive (Rumpf and Jentsh, 2006; Jentsch and Rumpf, 2007).  

This effect could be caused by either phosphorylation of Tyr805 near the C-terminus 

of VCP, which has been shown to block binding of PUB domain containing proteins in 

vitro (Ewens et al., 2010) or by the combination of upregulated Ufd2, due to the 

stress conditions, versus tighter binding of Ufd3 to the VCP (Rumpf and Jentsh, 2006; 

Yeung et al., 2008).  

Currently, the proposed binding partners of VCP seem to serve one of two 

roles:  

1)   Regulate VCP at the level of substrate interaction and/or ATP turnover  

2) Modify the substrates engaged by VCP and in turn dictate the fate of these 

substrates - degradation or release for reuse.  

This versatility of VCP in adaptor binding also highlights the need to discover missing 

VCP cofactors and substrates involved in the more poorly defined pathways. 
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Table 4.1. Proposed VCP-interacting motifs and identified to date cofactors. 

Recent studies suggest that p62 (SQSTM1) protein, via its interaction with 

LC3, mediates degradation of ubiquitinated substrates through autophagy (Bjorkoy et 

al., 2005; Pankiv et al., 2007). The p62 is a 440 residue long adaptor protein. 

Structurally the p62 protein consists of a PB1 (Phox and Bem1p) domain that binds 

the atypical PKC (aPKC) and is responsible for self-oligomerisation of p62, a ZZ finger - 

a binding site for the ring-finger protein tumour necrosis factor (TNF) receptor-

associated factor 6 (TRAF6), two PEST sequences (rich in proline, glutamic acid, serine 

and threonine) associated with proteins that have a short intracellular half-life 

(Rechsteiner and Rogers, 1996), and a ubiquitin (Ub)-associated (UBA) domain (Fig. 

4.2) (Geetha and Wooten, 2002; Seibenhener et al., 2007). The UBA domain, found at 

the p62 C-terminus, contains the Isoleucine (Ile44)/ Valine (Val70) Ub-binding-

specificity hydrophobic patch on its β-sheet surface (Long et al., 2008). The unique 

feature of the p62 UBA domain is however its ability to form a highly stable dimer, 

where the same interface is used for dimerisation as for Ub binding (Long et al., 2010; 

Searle et al., 2012). This means that UBA dimerisation strongly represses the binding 

of mono-Ub, whereas multiple Ub interactions from a polyUb chain result in high-

affinity binding due to the avidity effect from the polyUb chain (Searle et al., 2012).  

Nevertheless, the p62 not only binds directly to poly- and mono-ubiquitin through its 

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Half-life
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C-terminal UBA domain but also binds directly to the the autophagy effector protein 

LC3 and to the related GABARAP and GABARAP-like proteins (Pankiv et al., 2007). The 

region responsible for this interaction is a short 22-amino acid long peptide sequence 

located N-terminally to the UBA domain, named the LC3 interacting region (LIR) of 

p62 (Pankiv et al., 2007). The LIR is an acidic peptide sequence containing three 

glutamate and four aspartate residues and mutation of the C-terminal aspartate 

residue (DDD motif) abates binding to LC3B (Pankiv et al., 2007).  

 

Figure 4.2. Schematic diagram showing p62 protein structure. The p62 protein consists of 

PB1 (Phox and Bem1p) domain, ZZ (Zinc finger) domain, 2 PEST (Proline, Glutamic acid, Serine 

and Threonine) domains LIR (LC3-binding) domain and UBA Ub-associated) domain. The 

general structure is common to all p62 homologues except for ZIP2, which lacks TRAF6 

binding region (Geetha and Wooten, 2002) 

The LC3 belongs to the family of microtubule-associated proteins (MAPs) and 

is cleaved by a cysteine protease to produce LC3I which is located in cytosolic 

fraction, that in turn is converted to LC3II which is then covalently attached to 

phosphatidylethanolamine (PE) on its C terminus and bound to autophagosome 

membranes (Kouno et al., 2005). The cytosolic LC3I is a small protein with a 

molecular mass of approximately 18kDa and is structurally divided into N-terminal 

sub domains (residues 1—29) with two α-helices and C-terminal sub domains 

(residues 30-120) that adopt an ubiquitin fold (Kuno et al., 2005). Interestingly, only 

full-length LC3B interacts with p62, whereas the p62 LIR alone is sufficient for binding 

to all LC3 and GABARAP family proteins (Pankiv et al., 2007).  

While p62 has many motifs and binding domains it is unknown if it contains 

any motifs or domains that have been identified in other proteins that bind to VCP. 

Currently there are three motifs that have been identified for binding to VCP (Yeung 

et al., 2008 and Stepf et al., 2011). The SHP box first defined in the Derlin-1 yeast 

homologue, Dfm1p with CDC48 and consists of an 8 residue motif (FxGxGQRU, where 

x is any amino acid and u is a non-polar residue). This motif was also identified in the 
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p47 yeast homologue Shp1p, from which this motif gets its SHP name. The VCP-

interacting motif (VIM) has been identified in VCP interacting proteins including the 

small VCP-interacting protein (SVIP), glycoprotein 78 (gp78) and the membrane-

spanning ubiquitin E3 ligase Hrd1. The VIM consists of 38 residue semi-conserved 

motif with a core 11 residue motif of Rx5AAx2R. The final motif is the VCP-binding 

motif (VBM), originally identified in the poly-glutamine tract containing protein Atx3 

and recently the VBM was also identified in Hrd1 (which also contains VIM). The VBM 

is a bipartite motif of 11 residues (ELRRRRx3FE). I used the scan prosite bioinformatics 

tool (http://prosite.expasy.org/scanprosite/) to screen various motif (pattern) strings 

against the peptide sequences of the three known SQSTM1 protein sequences 

(NP_003891 p62 variant 1, NP_001135770 p62 variant 2 and NP_001135771 p62 

variant 3). The degenerate search patterns were utilised to increase the likelihood of 

identifying any potential motifs, such as F-x-G-x-G-x-R for the SHP box, E-L-R-x-R-R-

x(4)-E for the VBM and R-x(5)-A-A-x(2)-R for VIM. These search terms did not identify 

any know VCP binding motifs/domains in p62. Nevertheless, given the large number 

of proteins that are known to interact/bind to VCP but do not contain any of these 

known motifs, does not rule out the potential of p62 to bind directly or indirectly. 

My initial imunnostaining experiments showed that VCP, p62 and LC3 co-

localised to inclusion bodies and sites of aggregated protein, thus I suspect that VCP, 

p62 and LC3 could potentially be directly or indirectly interacting with each other. 

4.2 VCP directly interacts with p62 in the mTOR/ autophagy 

dependant manner. 
 

It has been established that p62 is involved in the autophagy pathway and 

that it directly interacts with LC3 (Bjorkoy et al, 2005; Pankiv et al, 2007). I observed 

that in cells expressing a pathologic expanded polyglutamine repeat, VCP, ubiquitin, 

p62 and LC3 all co-localised to the outside of the large vesicles (aggregated 

polyglutamine; Chapter 3, Fig. 3.3 – 3.4). I have also seen co-localisation of VCP and 

p62 when autophagy was induced by Torin 1 treatment and when autophagosome 

maturation was inhibited with Bafilomycin A1 (Chapter 3, Fig. 3.1). This potentially 

indicates that VCP and p62 may interact directly and that VCP may have a defined 

http://prosite.expasy.org/scanprosite/
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role in the early autophagy process, like p62. Therefore I suspect that VCP binds p62 

and promotes autophagy in the presence of protein aggregates. 

I first examined if p62 and LC3 or p62 and VCP co-immunoprecipitaied (co-

IP’d) in the following conditions: fed (normal conditions), starved (incubated in the 

nutrient deprived media - HBSS) and autophagy induced (treated with Rapamycin). 

For each IP experiment a pre-cleared total protein fraction was used as a positive 

control (Input) for the pull down target protein (bound IP fraction).  For the negative 

control I referred to a peptide fraction eluted from Immunoglobulin (IgG, rabbit or 

mouse) coted beads. This approach helps detect co-immunoprecipitated proteins and 

eliminates false-positive results. 

 To begin evaluating if VCP interacts with p62, I over-expressed either wild-

type (wt) p62-FLAG or wild-type (wt) VCP-V5 in HeLa cells for 24 hours in fed 

conditions. Thereafter the transfected cells were either maintained in nutrient-rich 

conditions or starved in HBSS (Hanks balanced salt solution; to activate starvation-

induced autophagy) for 3 hours or treated with 100nM rapamycin for further 2 hours 

(to inhibit mTOR signalling and activate autophagy). Then, either wt p62-FLAG or wt 

VCP-V5 was immunoprecipitated (IP) from total cellular extracts using anti-FLAG 

(Sigma/F7425) or anti-V5 (Sigma/V8137) antibody respectively and precipitated 

fractions were analysed by Western blotting. There was no apparent association of 

endogenous VCP with p62 in cells maintained under fed conditions (Fig. 4.3 A (i) and 

Fig. 4.3B) or in cells treated with rapamycin (Fig. 4.3B).  On the other hand the results 

for co-IP of LC3 with p62 were neither convincing (although a faint band at 16kDa size 

was recorded (Fig. 4.3 A (ii)).    
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Figure 4.3. Immunoprecipitation (IP) of the VCP and autophagy markers LC3 and p62. HeLa 

cells were transfected with p62-FLAG and after 24h were either maintained in nutrient-rich 

conditions (A (i)) or in HBSS for further 3h (A (ii)). Alternatively HeLa cells were transfected 

with a V5-tagged wt VCP for 24h (B) and maintained in either fed conditions or starved in 

HBSS for the last 3h of incubation; or treated with 100nM rapamycin for further 2h. Cell 

lysates were then subject to Immunoprecipitation (IP) by anti-FLAG antibody (Sigma/F7425) 
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(A) or anti-V5 antibody (Sigma/V8137) (B). Pathogenic poly-(Q) 79 glutamines were expressed 

in MEF cells for 24h and analysed for co-IP of VCP with p62 using anti-p62 antibody (C). 

Presence of pulled down proteins was determined by Western blotting with anti-FLAG and 

anti-LC3 (A), anti-V5 and anti-p62 (B) or with anti-p62 and anti-VCP (C) antibodies.  

In order to optimise IP conditions and eliminate the inconsistency of the 

results, I systematically varied transfection methodologies and materials used. The 

main areas which I addressed were: plasmid DNA used for cell transfection and its 

concentration, amount of the transfection reagent used, number of plasmids used, 

timeline of transfection (in hours), additional exposure to stress-inducing reagents 

and cell line exposed (Table 4.2). I initially observed no co-immunoprecipitation of 

VCP with p62 regardless of the transfection variables. This was also the case in the 

reverse experiments where wt VCP-V5 bound to beads did not pull down p62. 

However, similarly co-IP of LC3 with p62 did not establish a strong interaction, thus I 

was not convinced that there was no interaction between p62 and VCP.  

 

Table 4.2. Experimental variables for optimizing IP results.  Areas addressed were: plasmid/s 

DNA used for the cell transfection, amount of the Lipofectamine2000 (L2000) - transfection 
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reagent - used, timeline of transfection (in hours) and cell line exposed. Additional reagents, 

such as Rapamycin, were used to directly activate autophagy in treated cultures.  Starvation-

induced-autophagy response was achieved through 2-3hrs incubation in Hanks Balanced Salt 

Solution (HBSS). 

 Results outlined in this table correspond with Figure A6 (No. 4 -13) in APPENDIX (Fig. A6). 

Since I have observed that p62 and VCP co-localise to pathogenic 

polyglutamines I next decided to determine if I can see VCP and p62 co-preticitipate 

in cells expressing Q79 polyglutamines. I expressed pathogenic Q79 polyglutamines in 

MEF cells as described before and used standard Dynabeds’ IP protocol with antibody 

against p62 (Sigma/P0067)  and recorded co-precipitation of endogenous wild type 

VCP with p62 (Fig. 4.3C; Appendix Fig. A7). This result potentially supports my 

findings from the immunostaining studies, suggesting that both VCP and p62 are 

involved in the clearance of large poly-ubiquitinated substrates. Although this 

interaction is suggestive of autophagy, the exact mechanisms of pathway activation 

remained to be fully delineated. I therefore continued with various treatments to 

directly induce autophagy in cell culture. 

I found that the optimal conditions were to co-transfect HeLa cells with wt 

p62-FLAG and wt VCP-V5 for 24 hours and treating them with either Torin1 (inducer 

of autophagy), HBSS starvation (inducer of autophagy) or Bafilomacin A1 (late stage 

inhibitor of autophagy), I determined that co-IP of VCP with p62 is mTOR dependant 

(Fig. 4.4). In detail, cells were treated at 20 hours post-transfection with either 1µM 

Torin1 or 50nM Bafilomycin A1 for further 4 hours, or incubated in the HBSS 

starvation media for 3 hours. Thereafter a wt p62-FLAG was immunoprecipitated 

from total cellular extracts using rabbit anti-FLAG antibody (Sigma/F7425) and 

precipitated fractions were analysed by Western blotting. I observed that 

endogenous wild type VCP precipitated with wt p62-FLAG only when autophagy was 

induced with a potent mTOR activity inhibitor (Fig. 4.4 B-C). Interestingly, VCP did not 

form a complex with p62 when autophagy was induced through starvation (Fig. 4.4A), 

neither when the protein degradation was inhibited through suppression of 

autophagosome acidification (Fig. 4.4B). Those findings were further validated by 

additional co-IP of VCP and p62 in cells treated with 1µM Torin1 as described above 
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(Appendix Fig.A8).  The above results indicate that in my hands VCP interacts with 

p62 in an mTOR dependant manner, where inhibition of mTOR signalling results in 

activation of p62/VCP complex formation and clearance of ubiquitinated substrates 

via autophagy (Fig 4.4C). 

 

Figure 4.4. Wt VCP Immunoprecipitates (IP) with wt p62 in the mTOR-dependant manner. 

HeLa cells were co-transfected with wt p62-FLAG and wt VCP-V5 and after 24h incubated in 

HBSS for further 3h (A). Alternatively 20h – post transfection cells were treated with either 

1µM Torin1 or Bafilomycin A1 for further 4h (B). Cell lysates were then subject to 

Immunoprecipitation by anti-FLAG antibody (Sigma/F7425). Pulled down proteins were 
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analyzed by Western blotting with anti-FLAG and anti-VCP antibodies. The mTOR inhibition is 

essential for the clearance of polyubiquitinated substrates by interacting VCP and p62 (C). 

Next to determine the effects of mutations in VCP on complex formation with 

wt p62, I co-transfected HeLa cells with GFP-tagged VCP mutants i.e. R155H VCP-

EGFP or DKO VCP-EGFP (Fig. 4.5). In addition to that, cells were treated with 100nM 

rapamycin in 75%HBSS + 25% DMEM media mixture for further 3 hours to induce 

autophagy. A wt p62 was immunoprecipitated with anti-p62 antibody followed by 

Western blotting with anti-GFP rabbit and anti-VCP mouse (Fig. 4.5A) to observe for 

interaction. In Figure 4.5 A and B, it would appear that both R155H VCP and DKO VCP 

migh still be able to form complexes with p62 although a nonspecific binding is also 

observed.  Therefore, I can only speculate that mutations in the N-terminal region of 

VCP do not halt its affinity for binding to p62. 

 

Figure 4.5. Co-immunoprecipitation (IP) of mutant VCP with wt p62. HeLa cells were co-

transfected with R155H VCP-EGFP and wt p62-FLAG or with DKO VCP-EGFP alone. After 24h 

cells were incubated in 75%HBSS + 25% DMEM with 100nM rapamycin for further 3 hours. 

Binding was determined by IP with anti-p62 antibody and Western blot with anti-GFP rabbit 

(A and B) and anti-VCP mouse antibodies (A). Blots in A and B are from two independent 

experiments. 
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Nevertheless, collectively all of the above investigations have identified a 

previously unknown function of VCP that is not only involved in the autophagy 

pathway but also directly interacts with p62. Crucially, complex formation with the 

IBMPFD-mutant VCP further supports our proposed disease model for IBMPFD, 

where a defect in basal autophagy leads to the observed cellular pathology in 

affected tissues. 

Based on these observations, I then decided to determine which VCP 

regions/domains are involved in the binding of p62 and LC3. To test whether there is 

a direct or indirect association between VCP and p62 bacterial plasmids expressing 

His-tagged wt-p62, wt-LC3 and wt-VCP (Chapter 2; 2.4) and plasmids expressing 

truncated versions of VCP were constructed.  Since VCP binds other known adaptor 

proteins via the binding sites primarily located on the N- and C-domains I have 

designed VCP deletion constructs of the N- and C- domain deletions (Fig. 4.6 B and C). 

The oligonucleotides for PCR reactions (Fig. 4.6A) were purchased from Sigma. The 

domain mutants (deletions) were cloned in pDONR221 plasmid (Chapter 2, Fig. 2.7) 

according to the Gateway BP recombination reaction as described in the Gateway 

technology instruction manual (Invitrogen) (Chapter 2; 2.3). Due to the time 

constrains I was unable to pursuit further work and all these plasmids are currently 

stored at -80° and if sequenced can be translated in vitro and subjected to pull-down 

experiments. 
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Figure 4.6. Design of the VCP deletion constructs. Primers for generating truncated VCP 

protein (A) were used to amplify the desired regions on a full length human protein 

(Appendix, Fig. A1)  and PCR products were run on a 1% agarose gel at 120V for 1 h (B). The 

N-domain deletion VCP was gel purified using a PureLink Quick Gel Extraction kit (Invitrogen 

#K2100-12), amplified and validated via gel electrophoresis (C).  

4.3 Discussion 

To determine if the co-localisation of VCP and p62 is a physical interaction of 

some description I examined if p62 co-immunoprecipitated with VCP. These 

experiments took a lot of optimisation as initially the co-immunoprecipitation of VCP 

with p62 was very inconsistent. I found that the key to making the initial finding 

reproducible was determining that the interaction was in fact autophagy dependent.  

This enabled me to show that both wild type VCP and mutant R155H VCP bind p62. 

These findings are significant as they directly link VCP with components of the 

autophagy pathway and lead me to hypothesise that VCP plays a role in the early 

stages of autophagy (Fig.4.7) by interacting with p62. I speculate that p62 is a binding 

partner for VCP and that either VCP, p62 or both (perhaps with an unknown 

secondary binding partner) identify and bind polyubiquitinated substrates. It is highly 

likely that p62 then binds LC3 via its LIR (LC3 Interacting Region) domain and thus 

delivers the polyubiquitinated substrate to the autophagosome. This would be 
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consistent with what is known on how VCP carries out its many different functions 

within the cell (Yeung et al., 2008: Meyer et al., 2012).  

 

Figure 4.7. Model showing how the VCP/p62 interaction potentially is used for substrate 

selection and delivery to the macroautophagy pathway. Here, p62 acts as a VCP binding 

partner, with either p62, VCP or both bind to polyubiquitinated substrates; and the LIR 

domain of p62 is used to target the complex to the lipid bound LC3 in the nascent 

autophagosome. It is currently thought that the IBMPFD mutations in VCP inhibit late stage 

autophagy by some not fully defined mechanism (Ju et al., 2009; Tresse et al., 2010). 

While there are many known VCP binding partners the most commonly used 

ones (Table 4.3) all have various ubiquitin associated functions. These include E3 and 

E4 ubiquitin ligases, deubiquitinating enzymes and ubiquitin binding proteins. 

Furthermore, all of VCP actions are conducted through ubiquitin based interactions. I 

have therefore shown that VCP uses these interactions as part of the early autophagy 

pathway. Interestingly, the molecular lesions, caused by VCP mutations, seem to 

affect late autophagy suggesting another, as yet unidentified, autophagy based role 

(Fig.4.7). 
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Protein Activity Ub Link 

Atx3 E3/DUB K48 

BRCA1 E3 K6 

CHIP E3/E4 K48/K63 

Dorfin E3 K63 

Ufd1 E3 K48 

Ufd2a E3/E4 K29/K48 

Ufd3 E3 K29 

Ufd4 E3 K29 

HDAC6 Binds Ub K48/K63 

Npl4 Binds Ub K63 

p47 Binds Ub 48 

p62 Binds Ub K63 

Rad23a Binds Ub K48 

SAK1 Binds Ub K48 

 
Table 4.3. Common binding partners for VCP. 

 Such data support the hypothesis that p62 either is a VCP binding partner or 

at least forms a complex with VCP and that VCP has an active role in the degradation 

of ubiquitinated substrates by autophagy. With this knowledge, I then decided to 

determine which VCP regions/domains are involved in the binding of p62 and LC3, 

and if interaction of VCP with LC3 II in the autophagic membranes depends solely on 

the p62 binding. To address this question I have constructed bacterial plasmids 

expressing His-tagged wt p62, wt LC3 (Chapter 2, 2.3.1) or truncated versions of VCP 

(Chapter 2, 2.3.2; Fig.4.6). I planned to use the purified recombinant proteins in pull-

down experiments to locate p62 binding sites, although, due to the time constrains I 

was not able (as yet) to translate those plasmids in vitro and subject to pull down 

experiments. 
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CHAPTER 5: STABILITY AND DEGRADATION OF VCP 
 

5.1 Introduction 

 

In association with the ubiquitin-proteasome system (UPS), VCP acts as a 

molecular segregase and mediates ubiquitin-dependent extraction of substrates from 

multiprotein complexes for recycling or degradation by the 26S proteasome (Meyer 

et al., 2012). It has been shown that the N-terminal domain of VCP can bind ubiquitin 

directly, with a preference for polyubiquitin chains (Ye et al., 2003), VCP usually 

requires interaction with a diverse group of adapter proteins that enable it to target 

specific substrates for degradation (Ju and Weihl, 2010). Ufd1 and Npl4 are the main 

binding partners that mediate the proteasome-related activities of VCP. Although, 

VCP can also interact with substrates that have not been modified by a poly-ubiquitin 

chain, Ye and colleagues proposed the dual recognition model for selection of specific 

substrates for degradation (Ye et al., 2003). In summary, the unfolded segment of 

substrate is initially recognised by VCP then, after a polyubiquitin chain has been 

attached to the substrate, the VCP-Ufd1-Npl4 complex binds to the ubiquitinated 

substrate, what in turn activates the ATPase to extract the polypeptide chains out of 

the membrane (Ye et al., 2003). Importantly, the ATP hydrolysing ability of VCP is 

indispensable for its function and is also influenced by many factors. For instance, 

binding of the adaptor protein p47 (in p97/p47-mediated membrane fusion of Golgi 

and ER) to the N-domain of VCP has an inhibitory effect on the ATPase activity 

(Meyer et al., 1998). Notably, VCP mutants that lacked ATPase activities show no 

membrane fusion activities in the in vitro reassembly assay (Uchiyama et al., 2002). In 

addition to the binding of adaptor proteins, VCP ATPase activities are modified by 

phosphorylation and acetylation throughout the protein, especially in the D2α-

domain (Mori-Konya et al., 2009). Collectively, these multilevel regulatory 

mechanisms may explain the multiple functions of VCP observed in different cell 

conditions. With the evidence for VCP playing a role in autophagy coming from 

studies on the pathogenesis of IBMPFD and the vast evidence linking VCP to the UPS 

one unresolved fundamental question remains: how is VCP itself turned over? 

 

http://jcb.rupress.org/search?author1=Keiji+Uchiyama&sortspec=date&submit=Submit
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5.2 VCP stability is linked to p62 instability in cells. 

 

Through its ability to structurally remodel and edit ubiquitinated substrates, 

with the help of associated cofactors, VCP governs many critical cellular pathways. I 

have shown that it interacts directly with key components of the autophagy pathway, 

so my next step was to determine how VCP is degraded in the cell. The p62 protein is 

an ubiquitin binding protein and as I have found, a binding partner of VCP, delivers 

ubiquitinated proteins to autophagic machinery and is known to be degraded by 

autophagy (Bjorkoy et al., 2005; Bjorkoy et al., 2009). It has been shown that the half-

life of p62 is 6 hours which makes it a useful control for monitoring autophagy-

mediated degradation (Bjorkoy et al., 2005).  

First of all, I wanted to confirm the rate of turn-over for p62 and determine 

the general stability of VCP in differentiated cells (i.e. not autophagy or proteasome 

dependent). I performed a cycloheximide (CHX) chase assay in cell culture (Fig. 5.1, 

Fig 5.2; Appendix Fig.A9 and A10). Here, MEF cells were treated with 100µg/ml of 

CHX and the soluble fraction of the lysates was analysed by Western blotting at 0, 2, 

4 and 6 hours after CHX treatment (Fig. 5.1A). As shown in Figure 5.1B, the levels of 

p62 do consistently decrease over time and are lowest at 6 hours post treatment. 

Interestingly VCP seemed to be more stable with a consistent slight increase in 

protein levels at 4 hours post treatment before beginning to drop at 6 hours post 

treatment (Fig. 5.1 B and C) suggesting unusual protein cycling pattern. 

 With those observations in mind I next wanted to evaluate if p62 was playing 

a role in the turnover of VCP. Here, I exposed both p62-expressing (wt) MEFs (MEF 

+/+) and p62-knockout (p62-KO) MEFs to 100µg/ml of CHX for 0-6 hours. As before I 

then assessed the levels of p62 and VCP at each time-point via immunoblotting (Fig. 

5.2A). VCP remained stable in both wt and p62-KO cells up to 4 hours of the chase 

(Fig. 5.2B and C) but whereas VCP levels begin to decrease in the wt cells at 6 hours, 

it continued to increase in the p62-KO cells. As expected there is none to very low 

detectable expression of the endogenous p62 protein in the p62-KO cells, but the 

levels of VCP are seemingly increased despite the lack of new protein synthesis (Fig. 

5.2C). 
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Figure 5.1.  p62 and VCP stability in cells. Immunoblot for VCP, p62 and actin from cellular 

extracts of MEF cells incubated with 100µg/ml Cycloheximide (CHX) for 0-6hrs (A). 

Densitometry analysis of normalized to actin p62 and VCP expression in MEF cells from the 

immunoblot shown in A; results presented as a relative intensity values of an intensity at 0H 

(0H=1.0); data obtained from a single experiment (B). The signal intensity from the VCP 
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immunoblots from four independent experiments was quantified and presented as relative 

intensity values of the VCP at 0 hours exposure to 100µg/ml CHX (0H=1.0); Line chart shows 

mean intensity ± SEM (precision for an estimated population mean) for normalized replicates 

at each time point. 

To further explore this outcome I assessed the amount of VCP present in the 

insoluble fractions of the cellular lysate at each time point of CHX-chase using a filter 

trap assay. Here, the insoluble fractions are captured on a nitrocellulose membrane, 

such that only the large aggregated insoluble complexes are captured and small 

insoluble complexes will pass through the membrane (Fig. 5.2D). In p62-positive (wt) 

MEFs (MEF +/+) the levels of insoluble aggregated VCP remained relatively constant 

throughout the chase, whereas in p62-KO cells it increases from the 2 hour time 

point to peak at 4 hours followed by a rapid decrease by 6 hours (Fig. 5.2E) (See 

Appendix: Fig.A11 for the levels of insoluble aggregated p62 and ubiquitinated-

protein aggregates generated in the wild-type and p62-KO MEFs). 

 It is apparent that the filter-trap assay’s results correlate with the results 

obtained from the soluble protein fractions of cells exposed to 100µg/ml of CHX for 

0-6 hours (Fig. 5.2C). Namely, where VCP aggregated rapidly decreased in the 

insoluble fraction of the p62-KO cells between 4 and 6 hours time point (Fig. 5.2E), it 

continued to increase in the soluble fraction of those cells by 6 hours (Fig. 5.2C).  
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Figure 5.2. VCP stability increases in cells lacking p62.  Immunoblot from cellular extracts of 

p62-expressing (MEF +/+) and p62-knockout (p62-KO MEF) MEFs exposed to 100µg/ml 

Cycloheximide (CHX) for 0-6hrs (A). Densitometry analysis of normalized to actin p62 and VCP 

expression in MEF +/+ cells (B), and comparison of normalized to actin VCP expression in p62-

KO versus VCP expression in p62-expressing (MEF +/+) MEF cells (C). Figures presented in B 

and C show the relative intensity readings (with intensity at 0H=1.0) calculated from arbitrary 

optical density results normalized to loading control-actin from immunoblots shown in A. 

Results obtained in this experiment were reproducible in an independent duplicate 

experiment and are presented in Appendix Fig.A9. Filter-trap analysis of the VCP content of 

SDS-insoluble protein aggregates in p62-expressing (+/+) and p62-knockout (p62-KO) MEFs 

exposed to 100µg/ml Cycloheximide (CHX) for 0-6hrs (D). The signal intensity from the VCP 

filter-trap immunoblots from three independent experiments was quantified and presented 
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as relative intensity values of the VCP control at 0 hours exposure to the CHX treatment 

(0H=1.0); Line charts show mean intensity ± SEM (precision for an estimated population 

mean) for normalized replicates at each time point (E).  

Thereafter, to test whether stability of VCP is affected by autophagy, I used 

two methods to up-regulate activation of autophagy, either by starvation in HBSS 

media or inhibition of mTOR by Torin 1 treatment (Fig. 5.3 A-D). To initiate autophagy 

by starvation, Hela cells were incubated in HBSS starvation media in addition to 

exposure to 100µg/ml CHX for 0-6 hours. As expected decreased p62 levels 

(increased turnover) can be observed when autophagy is induced, with the lowest 

levels of p62 at 6 hours (Fig. 5.3A and B). As observed previously VCP levels increase, 

this time they rise at 2 to 4 hours after autophagy induction and return to normal at 6 

hours (Fig. 5.3C). Almost identical response in VCP levels was noted when MEF cells 

were treated with Torin 1 (6µM for 5 hours) to induce autophagy (Fig. 5.3D and E) 

with a subsequent exposure to 100µg/ml CHX for 0-5 hours. Again, VCP expression 

increases in those cells at approximately 2 hours and return to basal levels at 5 hours 

(Fig. 5.3E). Unmistakably these results show a uniform VCP stability pattern in both 

cell types (normal murine MEF and cancer-derived human HeLa cells) in response to 

autophagy induction. 

Next I wanted to determine if VCP is a substrate for degradation via the 

proteasome. Here, I treated MEF cells with the proteasome inhibitor MG132 at 25µM 

concentration for 6 hours. Following proteasome inhibition the protein synthesis was 

then inhibited for 0-6 hours with cycloheximide (CHX) treatment. Initially decreasing 

levels of both p62 and VCP were noted in the presence of MG132 (Fig. 5.3F). 

Although, densitometry analysis reveals that VCP expression (normalised to actin)  

decreases from 0 to 4 hours and plateaus from 4 to approximately 6 hours, while p62 

levels decrease steadily (Fig. 5.3G). Those results alone might imply that even if the 

ubiquitin-proteasome system (UPS) is not necessarily solely responsible for degrading 

VCP it is a functional component a multiple-pathway/adaptor coupled mechanism 

involved in regulating stability of the VCP (Fig. 5.4D). 
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Figure 5.3. Autophagy regulates VCP protein levels. Immunoblot for VCP, p62 and actin from 

cellular extracts of HeLa cells incubated in HBSS media containing 100µg/ml CHX for 0-6hrs 

(A). Densitometry analysis of normalized to actin p62 (B) and VCP (C) expression in starved 

cells. Figures shown in B and C represent the average intensity from 3 independent 

experiments; presented as relative intensity values of the non-treated controls at 0hrs (0H= 

1.0). Each time point represents the normalized mean intensity ±SEM (indicate the precision 

for an estimated population mean). Lysates from MEF cells treated for 5hrs with 6µM Torin1 

prior to the exposure to 100µg/ml CHX for 0-5hrs were immunobloted (D) and analysed for 
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VCP levels by densiometry (E). Western blot (F) and comparison of normalized to actin 

endogenous VCP and p62 expression in MEF cells treated with 25µM MG132 for 6 hours 

followed by 0-6hrs exposure to 100µg/ml CHX (G). Data shown in figures D-G are from single 

experiments and are yet to be replicated. 

Finally, I wanted to determine if the IBMPFD mutations in VCP affect the 

protein stability in differentiated cells. I expressed R155H mutant VCP (R155H VCP-

V5) and wild type VCP (wt VCP-V5), both V5-tagged, in Hela cells for 20-22 hours prior 

to the CHX-treatment. Thereafter, cellular extracts at 0-6 hours were analysed by 

Western blotting with antibodies for V5-tagged (wt and mutant) VCP and 

endogenous p62 (Fig. 5.4A). The average VCP expression from three independent 

experiments plotted in a linear graph in figure 5.4 B shows that wt VCP is more stable 

than the R155H mutant VCP, suggesting that the mutant protein may be 

preferentially degraded. The degradation of p62 in VCP-mutant expressing cells is 

unaffected (Fig. 5.4 A and C), whereas overexpression of the wild type VCP appears to 

be stabilizing endogenous p62 expression, possibly halting its degradation (Fig. 5.4C). 

Consistently with my earlier results, the decrease in VCP levels is not linear; initially 

dropping then peaking at 4 hours and again reducing at 6 hours.  

In summary to this results chapter, I have shown that stability of VCP is 

directly linked to p62 instability since endogenous VCP continues to increase in the 

soluble fraction of the p62-knockout cells, despite the lack of new protein synthesis. I 

have also noted that overexpression of wt VCP in cells halts degradation of p62, 

whilst it is still being recycled itself. Last but not least, I have shown that R155H 

mutant VCP is less stable than wild type VCP as it appears to be less efficiently 

recycled and quicker degraded. 
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Figure 5.4. Overexpression of wt VCP increases stability of the endogenous p62.  

Immunoblot from cellular extracts of MEF cells, transfected with either wt VCP-V5 or R155H 

VCP-V5, exposed to 100µg/ml Cycloheximide (CHX) for 0-6hrs (A). Comparison of normalized 

to actin densiometric levels of wt and R155H VCP-V5 expression (B) and endogenous p62 

expression (C) in transfected MEF cells. Figures shown in B and C represent the average 

intensity from 3 independent experiments, presented as relative values of the non-treated 

controls at 0hrs (0H=1.0). Line charts show mean intensity ± SEM (precision for an estimated 

population mean) for normalized replicates at each time point. Diagram summarizing 

hypothetical routes for the VCPs participation in cellular degradation pathways (D). VCP is 

critical for the coordination between the UPS and Autophagy pathway. Misfolded proteins 

and unneeded native proteins are degraded by the UPS in 26S Proteasome. Protein 

aggregates formed by misfolded proteins that have escaped UPS are removed by Autophagy. 

It is likely that p62 and other putative regulators influence the stability of VCP in cells; either 

promoting or preventing its multi-ubiquitination and consequent degradation.  
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5.3 Discussion 

While VCP is the main shuttle protein taking polyubiquitinated substrates to 

the proteasome it is not known by which route VCP itself is degraded. It has been 

shown that p62 is important in targeting polyubiquitinated substrates to the 

autophagosome and it is itself degraded by autophagy (Pankiv et al., 2007; Bjorkoy et 

al., 2009). Using p62 as a control for degradation by autophagy I initially just inhibited 

protein synthesis with cycloheximide (CHX) and measured both VCP and p62 levels 

over 6 hours. As expected, p62 level decreased with time, with a half-life of 6 hours 

as previously reported (Bjorkoy et al., 2005). Interestingly, VCP levels seemed to 

increase until about 4 hours, and then it started to go down. Obviously this increase 

is unlikely to be due to protein synthesis, so it must be controlled via another 

mechanism. Since I have shown that VCP is involved in the autophagy pathway and 

that it binds p62 in an autophagy dependent manner, I went on to see if p62 was 

needed for VCP degradation. In that set of investigations I used normal, p62 

expressing (wt) and p62 knockout (p62-KO) MEF cell lines. Importantly, the p62-KO 

cell line is not autophagy negative, is just deficient in p62 protein (Komatsu et al., 

2007). In p62-KO cells, VCP levels continued to increase over time and did not seem 

to be degraded. As any increase in protein level after cycloheximide treatment can 

only be due to changes in protein solubility, I used a filter trap assay to analyse the 

levels of VCP contained in insoluble aggregates after cycloheximide treatment. I 

found that in the wt MEFs the level of insoluble VCP was relatively stable over the 6 

hour time period. Conversely, in the p62-KO MEFs the level of insoluble aggregated 

VCP peaked at 4 hours then returned to its starting level. Therefore it would appear 

that the solubility of VCP in cell is regulated in a p62 dependent manner. In that case, 

the spike of insoluble aggregated VCP I see at 4 hours post cycloheximide treatment 

in p62-KO MEFs, could be the result of VCP collecting and aggregating 

polyubiquitinated substrates to be degraded by autophagy in the absence of p62.  

I have also induced autophagy by starvation and again, after cycloheximide 

treatment, measured VCP and p62 levels. Here I have found that, as expected p62 

was degraded steadily over the time course (Fig.5.3B), although VCP levels increased 

faster than with no autophagy induction and peaked at 2 hours before returning to 
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basal levels at 6 hours. Similarly, when autophagy was induced by Torin1 treatment, 

VCP levels increases rapidly, peaking at 1 hour, before returning towards initial levels 

at the end of the time course. To elucidate if VCP might be a substrate for the UPS 

degradation I inhibited the proteasome with MG132, in conjunction with 

cycloheximide treatment. As predicted the proteasome inhibition did not affect the 

degradation of p62 over the time course, which is consistent with p62 being 

degraded by autophagy. This did however have an effect on the degradation of VCP, 

resulting in a consistent decrease in the VCP levels (with no peaks half-way through 

the CHX-chase), suggesting that proteasome inhibition might increase the efficiency 

of soluble VCP degradation and stop the release of the insoluble pool of VCP. 

Therefore, the likely hypothesis is that soluble pool of VCP is either being degraded 

by autophagy (and not the proteasome) or it is being sequestered to the growing 

(insoluble) aggresome resulting from the proteasomal inhibition. 

 I have then looked at the stability of the mutant form of VCP by transiently 

expressing wt or R155H mutant VCP in cell lines, which were then treated with 

cycloheximide.  The levels of VCP decreased over the time course and the 

characteristic peaking at 4 hours was still evident for wt VCP, although it was less 

pronounced in the mutant VCP (Fig. 5.4B), implying that mutant VCP is less likely to 

be released from the insoluble aggregate pool. Furthermore, the levels of the R155H 

VCP also seemed to decrease faster than those of wt VCP, suggesting that the mutant 

protomers are less stable than the wild-type protein. Interestingly, the 

overexpression of wt VCP stabilised the levels of endogenous p62, while the 

overexpression of mutant VCP did not increase p62 stability, allowing for normal 

degradation. 

These experiments have highlighted the complexity of the cellular processes involved 

in protein turnover.  In summary, I have found that:  

1. VCP is in two states in the cell, one where it is soluble and the other 

where it is insoluble and aggregated.  

2. VCP can be released from the insoluble aggregated fraction and 

recycled to the soluble fraction of VCP (unlike p62 which does seem 

to be degraded but not recycled).  
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3. In the absence of p62 in the cell, VCP is sequestered into insoluble 

aggregates which peak around 4 hours after inhibition of protein 

synthesis, and then VCP is released back to the soluble fraction. This 

would suggest that perhaps VCP is compensating for the loss of p62 

by shuttling substrates to the proteasome for degradation.  

4. Mutant VCP seems to be less stable than wild type VCP, suggesting 

that the mutant VCP is not recycled efficiently and is being degraded 

(potentially by autophagy as p62 is degraded faster in cells 

expressing R155H-VCP). This could be because the mutant VCP is 

unable to release its substrates and is being aggregated as a result. 
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CHAPTER 6: AUTOPHAGY AND OSTEOCLASTOGENESIS 

 

6.1 Introduction 

The skeleton is a dynamic tissue that undergoes continuous remodelling to 

sustain calcium homeostasis, repair microfractures and respond to mechanical load. 

The bone remodelling process is complex and relies on coupling between bone 

formation and resorption that involves osteoblasts (bone forming cells), osteocytes 

(mature, embedded bone forming cells) and osteoclasts (bone resorbing cells). 

One of many important cellular events in bone remodelling is bone resorption 

by osteoclasts, which is preceded by osteoclastogenesis and followed by apoptosis. 

Osteoclasts are multinucleated and non-dividing principal resorptive cells of bone, 

formed by fusion of mononuclear progenitors of monocyte-macrophage lineage. 

These mature polykaryons play a central role in the formation and turnover of the 

skeleton thus regulating its mass. Osteoclast differentiation entails binding of RANK 

ligand (RANKL, originally identified as TRANCE - TNF-related activation-induced 

cytokine) to its cognate receptor (RANK) on myeloid progenitor cells and subsequent 

activation of multiple intracellular pathways including AKT/PI3K, MAP kinase, and 

NFκB (Otero et al., 2012; Khosla, 2001). A ubiquitous NFκB pathway is activated by 

diverse immunological and inflammatory stimuli including inflammatory cytokines 

such as TNFα and IL-1, T-cell activation signals, growth factors and stress inducers 

(Abu-Amer et al., 2008; Baldwin, 2001). These proteins have been classified into 

canonical and non-canonical NFκB pathways (Fig 6.1). The canonical pathway which is 

activated by RANKL as well as by inflammatory stimuli including TNFα and IL-1β, is 

regulated by the IκB kinase (IKK) complex dominated by IKKβ and IKKγ/NEMO leading 

to phosphorylation of IκB and activation of p50, p65 (RelA), cRel transcriptional 

complexes (Otero et al., 2012; Abu-Amer et al., 2008). On the contrary, the non-

canonical NFκB pathway is regulated by NFκB-inducing kinase (NIK) which in turn 

activates IKKα leading to proteolytic processing of the inhibitory protein p100, in 

osteoclast precursors, and releasing p52 and RelB, the downstream effectors of this 

pathway (Novack et al., 2003). Unlike stable IKK complex, NIK is constitutively 

degraded due to its interaction with TRAF3 (Yao et al., 2009).  

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0038694#pone.0038694-Novack1
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Figure 6.1. Canonical and non-canonical NF-κB signalling pathways. Canonical pathway is 

triggered by numerous signals, including RANKL, TNFα and other inflammatory mediators. It 

involves activation of IκB kinase (IKK) complex (regulated via p62/TRAF6/aPKC complex), IKK-

mediated IκBα phosphorylation and subsequent degradation (mediated by the VCP), 

resulting in rapid and transient nuclear translocation of the NFκB, predominantly p65/p50 

heterodimers. Non-canonical NFκB pathway relies on phosphorylation-induced processing of 

p100 to p52 via the proteasome. This is triggered by signalling from a subset of TNFR 

members, although, in the skeletal cells, the only established activator of this pathway is 
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RANKL. RANKL activates the non-canonical pathway NFκB pathway by blocking TRAF3-

mediated NIK degradation. This pathway is dependent on NIK and IKKα, but not on the 

trimeric IKK complex, and mediates the persistent activation of RelB/p52 complex. 

Upon specific stimulation, TRAF3 binds to the cytokine receptor and NIK protein is 

stabilized. NIK-induced processing of p100 is associated with site-specific 

phosphorylation and subsequent ubiquitination, generating the mature p52 and 

inducing nuclear translocation of the RelB/p52 heterodimers. The C-terminal region 

of p100 contains two serine residues, S866 and S870, which resemble the 

phosphorylation site of IκBα (Sun 2011; Xiao et al., 2001). A lysine residue K856, 

located upstream of the phosphorylation site of p100, serves as the ubiquitin 

acceptor site and is analogous to the ubiquitination site (K22) of IκBα (Novack, 2011; 

Novack et al., 2003). Only a subset of TNF family cytokines, including RANKL but not 

TNFα, can activate the non-canonical pathway due to the ability of their 

corresponding receptors to bind TRAF3 (Hauer et al., 2005). 

Ultimately, RANK ligand is considered to be a master regulator of physiologic 

osteoclastogenesis and many factors that stimulate its expression have been 

identified. Briefly, para-thyroid hormone, prostaglandin E2, dexamethason, 

inflammatory cytokines such as interleukin-1 (IL-1) and tumour necrosis factor alpha 

(TNFα), or 1,25 dihydroxy-vitamin D3 can stimulate RANKL expression (Wada et al., 

2006).  By contrast, estrogen or transforming growth factor β (TGFβ) attenuates 

RANKL expression (Kasagi and Chen 2013; Weitzmann and Pacifici 2006). RANK 

receptor has a long cytoplasmic domain without kinase activity that bears several 

TRAF-binding domains. Binding and autoubiquitination of TRAF6, and interaction 

between aPKC and p62 are required for sustained activation of the canonical NFκB 

pathway (Novack 2011; Lamothe et al., 2007). 

TNFα is a potent activator of classical NFκB and there is a strong consensus 

that TNFα and RANKL can act synergistically to induce osteoclastogenesis (Zou et al., 

2001). RANKL stimulates TNFα release from osteoclast progenitors promoting their 

differentiation. Furthermore, TNFα, aside from its RANKL-costimulatory 

osteoclastogenic function, was also shown to induce osteoclast formation in 
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RANK/RANKL-deficient mice, in vivo, despite the fact that these mice also lacked 

NFκB p100 subunit (Yao et al., 2009).  

The etiology of Paget’s disease (PDB) is complicated and various genetic and 

environmental factors have been implicated in the pathophysiology of this disease. 

The most common genetic contribution comes from mutations in the coding region 

of gene encoding the p62 protein. Those mutations result in loss of function of the C-

terminal ubiquitin association (UBA) domain and lead to elevated cytokine activation 

of NFκB. Other genes involved in PDB are TNFRSF11A (encodes for RANK), TNFRSF11B 

(encodes for osteoprotegerin – OPG, a decoy receptor for RANKL) and VCP/p97 

(encodes for VCP) (Sabharwal et al., 2014; Galson and Roodman 2014). The exact 

functional malfunction caused by mutations in VCP gene is less defined. VCP 

regulates the degradation of IκB, releasing NFκB to be activated by phosphorylation 

and then translocated to the nucleus. Knockdown of VCP results in accumulation of 

IκB and decreased activation of NFκB (Vandermoere et al., 2006). Therefore the 

pathogenic mechanism of VCP mutations may involve increased clearance of IκB and 

consequently increased downstream activation of NFκB with pathological 

consequences. Interestingly, recent report proposes that although a short term 

activation of NFκB is mediated by the proteasomal degradation of IκBα, persistently 

activated NFκB state is achieved via the induction of autophagy at later phases, 

following stimulation with TNFα (Colleran et al., 2011).  

On the other hand, a main characteristic of pagetic osteoclast precursors is 

that they are sensitive to lower levels of osteotropic factors than normal precursors. 

Interestingly, both p62 and VCP mutations make osteoclast precursors more 

responsive to RANKL, TNFα and 1,25-dihydroxvitamin D3 (Chung et al., 2011; Hiruma 

et al., 2008). Furthermore, osteoclast precursors from mice with a P394L p62 

mutation (equivalent to P392L mutation in humans) were noted to be not only over-

sensitive to RANKL but also show an increased expression of autophagy-related 

genes,  atg5 and  lc3 (Daroszewszka et al., 2011).  This would imply that regulation of 

NFκB pathway by p62, VCP and other regulatory proteins is more sophisticated and 

does not only involve the ubiquitin-dependent degradation of key modulators of the 

pathway. 
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Unmistakably, osteoclasts are the primary cells affected by PDB and show 

both physiological and morphological abnormalities. They are increased in both 

number and size and contain up to 100 nuclei, in contrast to 3-20 nuclei in normal 

osteoclasts (Sabharwal et al., 2014; Ralston 2008). Another feature of pagetic 

osteoclasts is the characteristic ubiquitinated nuclear and cytoplasmic inclusions 

(Badadani et al., 2010; Kimonis et al., 2008). These features suggest that a 

degradation pathway(s) is likely to be disrupted in those cells. 

There are two main degradation pathways that are important for intracellular 

protein homeostasis; these are ubiquitin-proteasome system (UPS) and autophagy 

pathway. Crucially, both VCP and p62 are placed at a unique position within these 

protein degradation pathways. In settings of impaired autophagy, the accumulation 

of p62 results in a sequestration of UPS substrates; and this can be overcome by the 

overexpression of VCP (Korolchuk et al., 2009). Autophagy is particularly important in 

the event of undernourishment and of oxidative stress, where it is induced to 

degrade long lived proteins and damaged organelles to generate amino acids for 

biosynthetic processes. Moreover, in addition to turnover of cellular components and 

homeostasis maintenance, autophagy is also implemented in development and 

differentiation of multiple cell types, such as adipocyte and chondrocyte (Singh et al., 

2009; Srinivas et al., 2009). Interestingly, it has been recently reported that 

autophagy has an essential regulatory role in the hypoxia-induced osteoclastogenesis 

(Zhao et al., 2012). Zhao and colleagues observed an increase in osteoclast formation 

due to hypoxia-induced autophagy and determined it to be regulated via the HIF-

1α/BNIP3 dependent pathway (Zhao et al., 2012). Stimulatory effects of autophagy 

on osteoclastogenesis were also reported in patients with rheumatoid arthritis (RA) 

(Lin et al., 2013). The key player in the pathogenesis of RA - TNFα increased 

expression of Atg7 and LC3II in murine osteoclasts, whereas inhibition of autophagy 

either by knockdown of ATG7 or by treatment with Bafilomycin A1, strongly impaired 

osteoclast differentiation and expression of osteoclast-associated genes (Lin et al., 

2013). Furthermore, microgravity stimulation induced autophagy in preosteoclast 

cells, identified by elevated expression of Atg5, LC3 and Atg16 mRNA and protein 

levels, resulting in enhanced osteoclast differentiation (Sambandam et al., 2014). 

Others also found that several key autophagy-related markers, including p62 were 

https://www.google.co.uk/search?newwindow=1&rlz=1C1MOWC_enGB407GB407&espv=2&q=unmistakably&spell=1&sa=X&ei=PDIAVcOZBM-taYT4gvAN&ved=0CBsQBSgA
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significantly altered during RANKL-induced osteoclast differentiation (Li et al., 2014; 

Daroszewska et al., 2010). Contrarily, the knockdown of p62 attenuated RANKL-

induced expression of autophagy- and osteoclastogenesis- related genes, 

accumulation of LC3 and formation of TRAP-positive multinuclear cells (Li et al., 

2014). 

On the other hand, since osteoclasts are highly specialised and terminally 

differentiated, they may be particularly sensitive to the accumulation of aggregated 

proteins and depend on autophagy for survival. Indeed, formation of large 

cytoplasmic aggregates, which contained functionally coupled p62 and autophagy-

linked FYVE domain containing protein (ALFY/ WDFY3) was noted in mature 

osteoclasts under conditions of nutrient deprivation (Hocking et al., 2010). 

Furthermore, treatment with inhibitor of autophagy – Bafilomycin A1 increased LC3 II 

protein levels in osteoclasts from P394L p62 mutant mice, compared with wild type 

osteoclasts, suggesting dysregulation of autophagy and enhanced autophagosome 

formation (Daroszewska et al., 2011). 

Although the precise mechanisms are still unclear it becomes apparent that 

autophagy has a role to play in regulating osteoclast formation and function. Having 

proposed a role for VCP in the autophagy pathway, it is next in line to study how the 

R155H mutation in VCP disrupts this process in the osteoclast.  Finally, gaining a 

better understanding of the autophagy pathway in bone could potentially highlight 

new targets for development of therapeutic agents for osteolytic diseases.  
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6.2 Inhibition of the mTOR signalling suppresses both early and 

late stages of osteoclast differentiation  

Mutations in the p62/SQSTM1 gene result in a classic form of PDB, which 

shows similar cellular pathology to that seen in PDB caused by VCP mutations (i.e. 

accumulation of protein inclusion bodies) (Chung et al., 2011). Furthermore, both 

p62 and VCP are integral to ubiquitin-based protein degradation pathways and my 

earlier investigations suggest that they directly interact with each other in an 

autophagy–specific manner. Although, the mammalian target of rapamycin (mTOR) 

kinase is involved in the promotion of osteoclast formation, it is also a major switch 

between anabolic and catabolic processes (Glantschnig et al., 2003), including 

regulation of autophagy. Therefore it is not a surprise that inhibition of mTOR activity 

increases cell death rate of mature osteoclasts, and significantly reduces bone 

resorption (Glantsching et al., 2003).  

To determine the importance of autophagy during osteoclastogenesis I 

examined the effects of inhibiting mTOR activity at different stages of osteoclast 

progenitor cells differentiation. For those experiments I used a murine monocytic cell 

line RAW264.7 – a useful cell model for differentiating osteoclast-like cells. I 

established that the optimal conditions for differentiation were to seed RAW264.7 

cells  at 300 000 – 600 000 cells per well (in a 12-well plate) and culture them in the 

presence of  100ng/ml RANKL for 6 days, following on large osteoclast-like (OCL) cells 

were observed (Fig. 6.2 B and D). 

First, I examined the effects of rapamycin, known to modulate mTOR 

signalling, on RAW264.7 differentiation. The choice of inhibitor was prompted by 

interesting findings from recent studies, which suggested that rapamycin might play a 

role in regulation of osteoclast differentiation and activity (Smink et al., 2012; Kim et 

al., 2012). Smink and colleagues proposed that mTOR signalling controls transcription 

factor CCAAT/enhancer binding protein β (C/EBPβ) isoform ratio that mediates the 

expression level of the monocytic transcription factor MafB, which then directs 

macrophage versus osteoclast differentiation (Smink et al., 2009; Smink et al., 2012; 

Kim et al., 2012). Briefly, the investigators suggested that inactivation of the mTOR 



 147 
 

pathway with rapamycin results in a translational shift of the C/EBPβ toward LAP 

isoform that in turn restricts osteoclast formation (Smink et al., 2009). 

RAW264.7 cells cultured under differentiating conditions, as described above, 

were left untreated or were exposed to 220nM rapamycin on day 1, both day 1 and 

day 4, or day 4 of the cell culture. Significantly large reduction in the number of 

mature osteoclast-like (OCL) cells was noted in cultures treated with this drug on day 

1. Nevertheless, an approximately 2-fold reduction (statistically significant – 

determined with a t-test) was also observed on day 4 and day 1 plus day 4 (Fig. 6.1E) 

when compared to a non-treated control.  

 In an independent experiment differentiating cultures were also treated with 

a vacuolar ATPase (V-ATPase) inhibitor bafilomycin A1, known to not only block the 

acidification of autophagosomes and thus inhibit degradation of proteinous 

inclusions, but also effectively inhibit bone resorption (Xu et al., 2003; Quin et al., 

2012). RAW264.7 cells exposed to 100nM Bafilomycin A1 for over 24 hours exhibited 

apoptosis (over 90% cells detached, results not documented). These results were not 

unexpected since it has previously been shown that Bafilomycin A1 induces apoptosis 

of both RAW cells and osteoclasts in a dose dependent manner (Xu et al., 2003). In 

contrast to Bafilomycin A1 treatment with Rapamycin did not affect cell viability 

during the period of the experiment.  
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Figure 6.2. Inhibition of the mTOR signalling suppresses both early and late stages of 

osteoclast differentiation. RAW264.7 cells were cultured in the presence of 100ng/ml RANKL 

(R&D Systems) for 6 days, with ¾ of the media changed on day 3. Light microscopy images of 

non-differentiated macrophages/monocytes are shown in A and C and osteoclast-like (OCL) 

cells are captured in B and D (indicated by white arrows). In images C and D cells were 

stained for TRAP activity. Magnification is 400x.  

Differentiating RAW264.7 cultures were treated with mTOR signalling inhibitors (Rapamycin 

or Torin 1) on either day 1, day 4 or both day 1 and day 4 (E, F).  Cells were then fixed, stained 

for TRAP activity and scored for osteoclast-like cells (OCL) per well. In both graphs, data are 

shown as normalized Mean (SD) of OCL cells per well from independent experiments 

performed in four samples. None-treated cells were used as a positive control. Number of 

OCL per treatment sample was normalized to none-treated control. Unpaired t-test: *P<0.05, 

**P<0.01, ***P<0.001  
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Next I examined a more potent and selective ATP-competitive inhibitor of the 

mTOR serine/threonine kinase – Torin 1. When preparing for the experiment with 

Torin 1 I had to consider the effect that prolonged exposure to this drug will have on 

a regulatory feedback loop between mTOR catalytic complexes and phosphoinositide 

3-kinase (PI3K). When mTORC1 (mTOR- complex 1) is inhibited for a prolonged period 

of times (over 5 hours), PI3K becomes hyper-activated and in turn promotes mTOR 

signalling cascade (Zhou et al., 2010).  Therefore to avoid such complication it is 

recommended to use this drug at a concentration of at least 250nM for long term 

experiments (Axon Medchem, #1833 Datasheet).  

In this investigation RAW264.7 cells were maintained in the presence of 

100ng/ml RANKL for 6 days, and were either left untreated or were additionally 

exposed to 1.67µM (Appendix, Fig A13) or to 2.5µM Torin 1 (Fig 6.2F) on day 1, both 

day 1 and day 4, or day 4 of the experiment. Such high concentration of the drug 

should ensure successful inactivation of the mTOR signalling cascade and enable 

accurate observation of the exhibited cell response.  Indeed, a nearly complete 

inhibition of osteoclastogenesis was observed when differentiating RAW264.7 cells 

were treated with Torin 1 on day 1 as well as on both day 1 plus day 4 (Fig. 6.2F) and 

also a significant 3.5-fold reduction in OCL cell number was noted when treated on 

day 4 alone. 

 Together, these results indicate that inhibition of mTOR activity with either 

rapamycin or Torin 1 causes marked reduction in RANKL – dependent osteoclast 

formation of murine monocytic cell line RAW264.7 regardless of the treatment time. 

This further emphasizes the importance of mTOR signalling for osteoclast formation 

and survival but sheds little light on determining if activation of autophagy is the 

pathway responsible for this response. 
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6.3 Osteoclast differentiation from the primary Bone marrow 

derived macrophages. 

Ultimately I wanted to elucidate to what extent does the disruption of 

autophagy pathway affect differentiation of Pagetic osteoclasts. I planned to isolate 

osteoclasts from VCPR155H/+ and VCP+/+ mice and test their sensitivity to various 

cellular and chemical factors, such as mTOR signalling or autophagy inhibitors.  

At first, I have isolated bone marrow derived macrophages (BMDM) and 

spleen derived macrophages (SPLM) from 3- 6 month old mice as described in the 

Materials and Methods (Chapter 2; 2.14 ‘monocyte separation protocol’). Primary 

macrophages were plated at 5x105 cells per well in 6-well plates (well diameter of 

34.8mm) and incubated with 25ng/ml M-CSF (Sigma, #M9170)  and either 50 or 

100ng/ml RANKL (Sigma, #R0525)  for 5 days. No characteristically large osteoclast-

like (OCL) cells were found in the culture plates on day 5. Moreover, on the 4th day of 

the culture many cells had detached exhibiting increased rates of cell death, thus 

emphasising that other factors could have been upsetting the growth conditions. 

Next, since monocyte-macrophage derived cells are more likely to successfully fuse 

into multinucleated osteoclasts when cultured at high cell density, I increased 

number of cells plated per area of a well. This time, BMDMs were plated at 1.5x105 

cells per well and SPLMs at 2x105 per well in 96-well plates (well diameter of 5.4mm) 

and incubated in the presence of 25ng/ml M-CSF and 100ng/ml RANKL for 5-6 days. 

Nevertheless, yet again there were no OCL cells present in either of the macrophage 

cultures.  

In order to trouble shoot the lack of differentiated cells and optimise the 

culture conditions I decided to further vary the plating cell number (BMDM at 1.5x105 

to 3x105 and SPLM at 2x105 to 5x105, in 96-well plates). Unfortunately, increasing the 

plating cell number had little to no effect on anticipated differentiation. Since the 

exhibited viability of the monocyte-macrophage derived primary cells was also in 

doubt, another factor I found in need of adjusting was foetal calf serum source and 

its preparation for the cell culture. It was discovered that serum (which came from 

the communal lab stocks) used so far had not been heat inactivated prior to being 

labelled as fit for the cell culture use and other users (members of adjacent labs) also 
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encountered some issues with the viability of their sensitive cell lines. At this point, I 

purchased calf serum from other outside sources (HyClone Europe and HyClone 

South America) heat inactivated it and tested on our sensitive primary cell lines. The 

HyClone calf serum from South America was the most effective in sustaining viability 

of these cells for over 6 days. Although, an early cell death of the primary 

macrophages was no longer an issue, cell differentiation was still not happening. 

Therefore I then decided to test the potency of the RANKL cytokine on the murine 

monocytic cell line RAW264.7. RAW264.7 cells were cultured in the presence of 

25ng/ml, 50ng/ml or 100ng/ml RANKL (Sigma, #R0525)  for 6 days, following on large 

osteoclast-like cells were observed only in cultures treated with 100ng/ml RANKL 

(Data not included). Given that commercially available RANKL is very unstable and 

last for approximately 3 months after reconstitution, a new recombinant mouse 

RANKL was ordered from the R&D Systems (#462-TEC-010). After testing the new 

cytokine on RAW264.7 cells I observed that as low as 5ng/ml of RANKL was sufficient 

to induce OCL cells formation in this cell line (Fig. 6.3 A-C). 

Nevertheless, using new more potent stocks of RANKL on the primary cells 

was not as straight forward as on the RAW264.7 cells. I had to vary the method of 

isolating primary macrophages from the whole bone marrow (Chapter 2; 2.14) and 

eventually by adjusting the original protocol to incubating BMDM with M-CSF alone 

for the first 3 days (Chapter 2; 2.14 ‘The IUPS protocol’) prior to exposure to RANKL I 

observed differentiation to OCL cells. Differentiated/ mature osteoclasts were 

present on day 7 of the differentiation stage (Day 1 when RANKL was first added) 

(Fig. 6.3 D-F). Importantly, primary macrophages were only able to differentiate in 

the presence of at least 10ng/ml of RANKL. Cells incubated with 5ng/ml RANKL did 

not differentiate (Fig. 6.3C). 
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Figure 6.3. Differentiating osteoclasts from RAW264.7 cells and Bone marrow derived 

macrophages (BMDM). RAW264.7 (A-C) and primary BMDM from VCPR155H/+ mouse (D-F) 

were cultured in α-MEM alone (A) or in the presence of either 25ng/ml M-CSF and 5ng/ml 

RANKL (B, D) or 25ng/ml M-CSF and 10ng/ml RANKL (C and E-F). Light microscopy images of 

cells fixed and stained for TRAP activity on day 7 of differentiation  show non-differentiated 

macrophages in A and D and osteoclast-like (OCL) cells in B, C, E and F (indicated by red 

arrowheads).  
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Although, initially successful I was unable to repeatedly and consistently 

differentiate OCLs from the macrophages of VCP mice in the following weeks. 

Therefore I decided to test the ‘IUPS protocol’ and RANKL (R&D Systems #462-TEC-

010) on BMDM from mice with different genetic make-up. I repeated, but also varied, 

the differentiation protocol (plating cell number, cytokine concentrations) using 

BMDM from 14 week-old Balb/c female and 24 week-old CD-1 male; and continued 

with BMDM from >9 week-old VCP mice. With media changed every 2-4 days, I 

extended culture time to up to 10 days, but still there was no consistency with OCL 

cells observed. 

Due to the time constraints and lack of success with the primary cells I have 

abandoned optimising osteoclast differentiation experiments in the favour of OCL-

progenitor cells and concentrated on their responses to cell stress that challenges the 

UPS and Autophagy pathways.  

6.4 Inducers of protein aggregation lead to increased NFκB 

activation and p65 nuclear translocation in the primary 

BMDM. 

The Nuclear Factor kappa B (NFκB) family of transcription factors is implicated 

in the regulation of genes involved in various developmental processes, including 

promotion of osteoclastogenesis. The NFκB proteins are structurally related and form 

a variety of homo- and heterodimers, with the p50/p65 heterodimers being the most 

common (Soysa et al., 2012). VCP has been identified as an important component of 

the NFκB pathway, as it binds ubiquitinated IκBα and shuttles it to the 26S 

proteasome for degradation (Daroszewska and Ralston, 2005). This in turn, allows 

NFκB for translocation to the nucleus and subsequently activation of various 

response genes involved in that particular NFκB pathway. Since one of the 

phenotypes of IBMPFD is Paget disease of the bone, it had been proposed that 

deregulation of the RANKL-NFκB pathway is the main cause for the observed bone 

phenotype (Ralston, 2008). As shown in Figure 6.4, this pathway contains both VCP 

and p62 at separate steps in the pathway. Nevertheless, I have shown that VCP and 

p62 interact either directly or indirectly as a complex during autophagy. In the case of 

IBMPFD this could mean that the disruption of a non-canonical autophagy based 
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pathway could lead to deregulation of NFκB signalling. Similar to the pathology seen 

in muscle and the brain, pagetic osteoclasts show nuclear accumulation of ubiquitin 

positive protein aggregates (Kimonis et al., 2008: 2nd) suggesting that disruption of 

autophagy could be the underlying molecular lesion that gives rise to PDB. 

 

Figure 6.4. Disrupted regulatory pathways lead to over-activation of the NFκB signalling 

cascade and increased osteoclastogenesis. The RANKL cytokine binds to the RANK receptor 

and in the absence of inhibitors, downstream TRAF6 associates with RANK and p62 adapter 

protein.  p62 stimulates downstream signalling that results in activation of target gene 

expression and initiation of osteoclast formation.  VCP binds ubiquitinated IκB and shuttles it 

to the 26S proteasome for degradation. This in turn, allows NFκB for translocation to the 

nucleus and subsequently activation of various response genes involved in 

osteoclastogenesis. Mutations in p62 gene result in a Classical PDB and mutations in VCP 

result in the IBMPFD-associated PDB. Alternatively VCP and p62 may interact directly in a 

different pathway (autophagy-linked) that leads to PDB when either is mutated. 

Abnormal bone remodelling and cellular pathology in IBMPFD patients are 

suggestive of impairment at early stages of osteoclastogenesis. Delicate balance 

between signalling for cell survival or cell differentiation, with VCP responsible for 

keeping it in check, would be thus disrupted in osteoclast progenitor cells of IBMPFD-

mutants. Importantly, precursor osteoclasts from PDB patients (Menaa et al., 2000) 

and from the transgenic mice with the P392L p62 mutation (Hiruma et al., 2008) have 

previously been reported to be hypersensitive to TNFα, RANKL and M-CSF.  Notably, 

it has also been determined that PDB associated mutations in p62 cause increased 

NFκB signalling (Rea et al., 2009).                      
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  To elucidate if IBMPFD mutations in VCP affect RANKL and TNFα stimulated 

NFκB signalling in a similar manner to p62, I used bone marrow derived macrophages 

(BMDM) from wild type (VCP+/+) and mutant (VCPR155H/+)  3 month (11-15 weeks) old 

mice, which were cultured in the presence of 25ng/ml M-CSF, with media changed 

every 2-3 days. Once the cells were approximately 70-80% confluent, they were 

exposed to either 50ng/ml TNFα  (Appendix, Fig A14) or 100ng/ml RANKL for 45 

minutes to activate NFκB signalling cascade. NFκB measurements were obtained 

using an NFκB p65 transcription factor ELISA assay that specifically detects active 

NFκB in both the primary antibody p65 and a secondary horseradish peroxidase 

(HRP) conjugated antibody. I found that activation of NFκB p65 was higher in 

VCPR155H/+ cells than in the wild type macrophages, induced by both TNFα and RANKL 

pathway activators, although the increase was only significantly different for TNFα 

(unpaired t-test, p<0.01) (Fig. 6.5 A and B). At this point it is not known if this was a 

result of an impairment of autophagy or an upregulation of IκBα degradation.  
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Figure 6.5. VCP mutant increases NFκB activation in BMDM. BMDM were separated from 

whole marrow cells of VCP+/+ and VCPR155H/+ mice and maintained in αMEM, supplemented 

with 25ng/ml M-CSF for required period of time, with media changed every 2-3 days. Once 

reaching 70-80% confluence the BMDM were exposed to either TNFα at 50ng/ml 

concentration (A) or 100ng/ml RANKL (B) for 45min to induce NFκB signalling cascade. Active 

NFκB p65 was measured using an NFκB transcription factor assay (Thermo Scientific #89859). 

The colour development was read at an absorbance (OD) level of 460nm. Each bar in (A) 

represents the mean (SD) for three different samples performed in triplicate; Unpaired t-test, 

**P<0.01. RANKL activation was tested on two different samples performed in triplicate; 

Mean (SD) (B). 

Therefore, I next examined the effects of autophagy inhibition and induction 

on the TNFα-induced NFκB pathway. Here, BMDM from VCP+/+ and VCPR155H/+ mice 

were grown as described before and were either left untreated or treated with 



 157 
 

1.5µM Torin1 (inducer of autophagy), 80nM Bafilomacin A1 (late stage inhibitor of 

autophagy) for 4 hours, or 100nM Wortmannin (early stage inhibitor of autophagy) 

for 3 hours (Fig. 6.6A). Thereafter, active NFκB p65 measurements were obtained 

using an NFκB transcription factor ELISA with absorbance read at 460nm. 

 A two-way analysis of variance determined that a type of treatment inflicted 

on BMDM had significant effect on the activation of NFκB p65 (F=19.92, p<0.001). 

There was also a significant difference in TNFα induced activation of NFκB between 

wild type (VCP+/+) and mutant (VCPR155H/+) macrophages (F=17.82, p<0.001). It was 

apparent that induction of autophagy through mTOR inhibition had little effect on 

NFκB activation in both mutant and wild type macrophages (Fig. 6.6 B-C). Conversely, 

inhibition of the late phase of autophagy with Bafilomycin A1 dramatically increased 

NFκB activation in osteoclast progenitor cells from VCP+/+ mice (Fig. 6.6B) and had 

significant effect on VCPR155H/+ BMDM (Fig. 6.6C). Wortmannin also significantly 

increased activation of NFκB signalling in wild type macrophages (Fig. 6.6B). 

Interestingly, this treatment had little to none effect on mutant macrophages (Fig. 

6.6C). Hence, it would appear that inhibition of autophagy in osteoclast progenitor 

cells results in increased NFκB activation. Statistically observed influence of 

treatment type on the NFκB p65 activation did not depend on whether the BMDM 

were wild type nor had the R155H mutation in VCP (ANOVA, F=1.56, p=2.77). 

Nevertheless, it would seem that the R155H mutation in VCP alone efficiently induces 

NFκB activation, likely due to disruption of the basal macroautophagy pathway, 

although the exact mechanism remains to be elucidated. 
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Figure 6.6. Autophagy inhibitors, Bafilomycin A1 and Wortmannin, increase NFκB 

activation in BMDM. BMDM were separated from whole marrow cells of VCP+/+ and 

VCPR155H/+ mice and maintained in αMEM supplemented with 25ng/ml M-CSF for required 

period of time, with media changed every 2-3days. On the day of experiment BMDM were 

either left untreated (Control) or treated with Bafilomycin A1 (Baf A1) or Torin1 for 4h, or 
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Wortmannin (Wort) for 3h at indicated concentrations. Control samples were incubated in 

medium alone supplemented with 25ng/ml M-CSF. For the last 45min of each treatment cells 

were exposed to TNFα at 50ng/ml concentration to induce NFκB signalling cascade (A-C). 

Active NFκB p65 was measured using an NFκB transcription factor assay (Thermo Scientific 

#89859). The colour development was read at an absorbance (OD) level of 460nm. Each bar 

represents the mean (SD) from three different samples with triplicate. Significance was 

measured using two-way ANOVA, recording significant effect for genotype F(1,56)=17.82, 

p<0.001 and effect for treatment F(3,56)=14.92, p<0.001 (A). Analysis of variance was 

followed by comparison t-tests to assess the differences between the nontreated control in 

VCP+/+ (B) and VCPR155H/+ (C) cells exposed to described treatments, **P<0.01. 

Having established that activation of NFκB increases in BMDM treated with 

autophagy inhibitors, I was further interested in determining cellular levels of 

autophagosomal markers in those cells. From the BMDM extracts of 3 month-old 

VCP+/+ and VCPR155H mice examined for the TNFα induced NFκB activation I have 

immunoblotted a single representative sample from each Control, 1.5µM Torin1 and 

80nM Bafilomycin A1 treatments (Fig. 6.7A). Due to low sample volume I was unable 

to analyse equal number of replicate samples for each treatment. Nevertheless, as 

seen in Figure 6.7 (A and C) macrophages from mutant mice appear more sensitive to 

Bafilomycin A1 treatment, accumulating more lipidated LC3II than wild type cells. The 

assembly of the essential for autophagosome formation Atg5-Atg12 (/Atg16) 

complex is also elevated in mutant cells, suggesting up-regulated early autophagy 

signalling (Fig. 6.7B). Contrary to expected, the autophagy flux appears normal in 

both VCP+/+ and VCPR155H BMDM, incubated with the mTOR inhibitor (Fig. 6.7 A and 

B). In contrast, non-treated, TNFα activated wild type Control displays elevated 

expression of both LC3II and Atg5-Atg12 initiation complex, implying that those 

particular representative cells had increased signalling for autophagy at the time of 

experiment. To determine whether it was a treatment or a single sample specific 

response further replicates would need to be analysed and statistical significance 

recorded. 
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Figure 6.7. Autophagy inhibition leads to accumulation of LC3II-positive inclusions in 

BMDM. BMDM separated from whole marrow cells of VCP+/+ and VCPR155H/+ mice and 

maintained in αMEM with 25ng/ml M-CSF for required period of time, were either left 

untreated (Control) or treated with 80nM Bafilomycin A1 (Baf A1) or 1.5µM Torin1 for 4h. 

Control samples were incubated in medium alone supplemented with 25ng/ml M-CSF. For 

the last 45min of each treatment cells were exposed to 50ng/ml TNFα to induce NFκB 

signalling cascade. Cell lysates were immunobloted for LC3 and Atg5 (Atg5-Atg12 complex) 
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(A). Bar charts show Atg5/Actin (B) and LC3II/LC3I (C) optical density (OD) ratios in drug 

exposed, TNFα-activated macrophages. Presented data come from a single experiment with 

no replicates. 

Collectively the above data suggest that increased accumulation of protein 

aggregates in osteoclast precursor cells has stimulating effect on the activation of 

NFκB signalling cascade. This in turn results in enhanced osteoclastogenic potential of 

the BMDM, clearly observed in the IBMPFD cases. Therefore this would imply that 

mutations in VCP, resulting in disruption of autophagic processes, cause an increase 

in osteoclast differentiation as a direct effect of an overactive NFκB. Interestingly, 

while inhibition of autophagy induces NFκB  activation, stimulation of this 

degradation pathway has little to no effect on the osteoclastogenic signalling 

cascade. 

6.5 Disccussion 

Previously I have shown that VCP and p62 interact directly in early autophagy 

and there is a complex relationship between the stability/aggregate status of VCP 

and the autophagy/proteasome axis. Further to this I have found significant 

differences in how the R155H mutation effects the action of VCP in these new 

functions. Overall, this has led me to consider the possibility that the NFκB pathway 

may not be the molecular lesion in PDB and that the cause could be the result of a 

defect in actions of the VCP/p62 complex, leading to deregulation of autophagy and 

ultimately PDB pathology. Therefore, to determine the importance of autophagy 

during osteoclastogenesis, I first decided to examine the effects of inhibiting mTOR 

activity at different stages of osteoclast progenitor cells differentiation. I observed 

the rate of differentiation of RAW264.7 cells cultured with either rapamycin or Torin1 

on various days of the cell culture and found that the induction of autophagy at any 

stage of osteoclastogenesis has an inhibitory effect. Those results were not that 

surprising since other observations reported in the field suggest that modulation of 

mTOR signalling has a major effect on the development and function of osteoclasts. 

 Suppression of the m-TOR pathway is a requirement for osteoprotegerin 

(OPG)/ osteoclastogenesis inhibitory factor production in bone marrow stromal cells 
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(Mogi and Kondo, 2009). Therefore, it is not surprising that inhibition of mTOR 

activity results in increased cell death rate of mature osteoclasts, and significantly 

reduced bone resorption (Glantsching et al., 2003; Indo et al., 2013). Recent studies 

also show that mTOR signalling controls transcription factor CCAAT/enhancer binding 

protein β (C/EBPβ) isoform ratio, which is responsible for regulating osteoclast 

differentiation and bone homeostasis (Smink et al., 2009; Smink and Leutz, 2010). 

C/EBPβ was found to be expressed as two different protein isoforms of variable 

amino terminal length, termed LAP and LIP. Switch between C/EBPβ isoforms 

mediates the expression level of the monocytic transcription factor MafB, which 

directs macrophage versus osteoclast differentiation (Kim et al., 2007; Smink et al., 

2009) (Fig. 6.8). Inactivation of the mTOR pathway with rapamycin results in a 

translational shift of the C/EBPβ toward LAP isoform that in turn restricts osteoclast 

formation. Rapamycin is therefore believed to be a promising therapeutic agent for 

treating osteolytic bone diseases. Besides, rapamycin and its derivatives have already 

proven to effectively decrease tumour cell proliferation when tested in clinical trials 

for treatment of different types of cancer (Chan et al., 2005; Berenson and Yellin, 

2008; Lee et al., 2014).  

 

Figure 6.8. C/EBPβ is a master switch in osteoclast differentiation.  a) The LAP isoform 

induces expression of MafB, which binds to and inactivates NFATc1, Mitf and c-Fos 
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transcription factors. This in turn, prevents osteoclast differentiation. b) The LIP isoform 

inhibits MafB expression. This allows for the osteoclast transcription factors to activate target 

genes (OSCAR and NFATc1) and osteoclast differentiation. (Smink and Leutz, 2010) 

Interestingly, rapamycin, alone or in synergy with TGFβ, was also shown to 

induce osteoclastogenesis of RAW264.7 cells in the presence of RANKL (Shui et al., 

2002). Moreover, preceding study proposed that rapamycin decreases protein levels 

of osteoprotegerin (OPG), a decoy receptor for RANKL, but increases RANKL 

production in bone marrow stromal cells (Hofbauer et al., 2001). These findings 

suggest that immunosuppressants have direct effect on osteoclast progenitor cells, 

but contrast with observations of the more recent studies (Kim et al., 2007; Smink et 

al., 2012). Therefore it is likely that action of rapamycin (and other mTOR inhibitors) 

varies in early and late stages of osteoclast differentiation. 

Although not examined in my investigations, proteasome inhibitors such as 

MG132 were shown to directly impair osteoclast formation and function through the 

disruption of key RANKL-mediated signalling cascades (Ang et al., 2009). Namely, 

altered the subcellular targeting and distribution of p62 and TRAF6, resulting in in the 

accumulation of p62 in osteoclast like-cells. Additionally, proteasomal inhibition also 

blocked RANKL-induced NFB activation by preventing IB degradation and nuclear 

translocation of p65 (Ang et al., 2009). Notably, there appears to be a mechanistic 

link between protein degradation pathways and osteoclast formation. Further 

examination of both autophagy and proteasome regulators, including the use of 

animal models, will be required to fully elucidate their overall effect. 

NFκB is activated by RANKL both in RAW264.7 cells and in monocytes (Hsu et 

al., 1999) and is required for osteoclast formation in vivo. Although, the extended 

aim of this project was to study osteoclastogenesis in the IBMPFD mouse model and 

the sensitivity of osteoclast precursors to protein degradation pathways modulators, 

I encountered some difficulties with optimising the differentiation protocol for the 

primary bone marrow derived macrophages (BMDM). Keeping in mind that primary 

BMDM are known to be quite temperamental and difficult to differentiate under 

basal cell culture conditions, I tested a few standard protocols, which had been 

successfully applied in many key publications in the field (Chapter 2, 2.14). In addition 
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to this, I have changed growth media and ordered new foetal calf serum stocks; I 

have also tested RANKL cytokines from different suppliers, recommended by other 

scientists in the field.  In addition, I have tested all of the above on BMDM from mice 

with different genetic make-up, such as Balb/c (~3mth/14wks-old female) and CD-1 

(6mth/24wks-old male). Nevertheless, due to the time constrains and lack of success 

with the primary cells I was neither able to further examine the effects of inhibiting 

mTOR activity at different stages of osteoclast progenitor cells differentiation nor 

prepared to determine how osteoclasts respond to cell stress that challenges the UPS 

and macroautophagy pathways. 

Given the difficulties getting primary BMDM to undergo osteoclastogenesis, I 

have instead concentrated on non-differentiated macrophages from the wild type 

(VCP+/+) and heterozygous VCPR155H/+ mice. I used those cells to determine if there 

was any difference in the NFB pathway activation in response to either RANKL or 

TNFα.  I found an increased activation of NFB in response to both RANKL and TNFα 

in mutant cells, although only the TNFα response was significantly increased. Seeing 

that the TNFα response was the most robust, I then examined the effects of either 

inducing or inhibiting autophagy on the TNFα activation of NFB.  Interestingly, the 

induction of autophagy by Torin1 increased the level of NFB activation in wild type 

cells (compared to non-Torin1 treated wild type cells) but did not further increase the 

activation in the mutant cells. As a result there was no significant difference in the 

NFB activation between wild type and mutant cells after Torin1 treatment. On the 

other hand, in wild type cells the inhibition of early autophagy with Wortmannin or 

late autophagy by Bafilomycin A1 treatments significantly increased NFB activation. 

While in mutant cells only Bafilomycin A1 treatment significantly increased NFB 

activation, and similar to Torin1 treatment, Wormannin treatment did not further 

increase NFB activation. These observations demonstrate that selective inhibition 

potently attenuate osteoclastogenesis activation in wild type cells but also to certain 

extend in mutant cells. 

Furthermore, my initial examination of early (Atg5) and late (LC3II) autophagy 

markers in BMDM, in response to TNFα stimulation and autophagy induction or 

inhibition, suggests that VCP mutation causes a blunted response to TNFα induced 
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autophagy. In cells just treated with TNFα the levels of Atg5 and LC3II were lower in 

the VCP mutant than those of wild type cells. Conversely, when autophagy was 

inhibited by Bafilomycin A1, the Atg5 and LC3II levels were higher in mutant than 

those in wild type cells. This would fit with the earlier NFB data that show no effect 

on NFB activation in mutant cells when early autophagy is inhibited with 

Wortmannin.   

Nevertheless, the increased sensitivity of mutant macrophages to either TNFα 

or RANKL seems to be a defect in early autophagy (potentially a new role for VCP 

identified in Chapters 3 to 5) implied by the lack of autophagy induction in mutant 

cells after cytokine treatment. This would also fit with the potential role of p62 in 

PDB and that both p62 and VCP mutations cause the same molecular defect in 

cytokine induced activation of autophagy. In light of these findings it is tempting to 

speculate that the possible disease mechanism could be decreased RANK receptor 

recycling, due to impairment of autophagy, which in turn would lead to increased 

downstream signalling. This is not that unlikely since VCP has been previously shown 

to regulate the recycling of dNRAMP receptor, facilitating the SINV infection of 

Human cells (Panda et al., 2013). 

In summary, the results presented in this study further substantiate the 

implications of a likely cross-talk between degradation pathways and RANK-mediated 

signalling in osteolytic bone disease. 
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CHAPTER 7 
 

DISCUSSION 
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CHAPTER 7: DISCUSSION 

 

7.1 The VCP binds to p62 and is involved in the clearance of 

ubiquitinated protein aggregates by autophagy 

Mutations in the VCP gene lead to the autosomal dominant, multisystem 

disorder named IBMPFD, characterised by an Inclusion Body Myopathy (IBM), Paget 

disease of the bone (PDB) and Frontotemporal dementia (FTD) (Watts et al., 2004). 

Cellular degeneration and ubiquitinated protein inclusions, that are also positive for 

p62 and LC3 (Tresse et al., 2010), unify the pathologies of three disparate tissues 

(muscle, bone and brain) in IBMPFD. Unlike other inclusion body disorders, like the 

expanded polyglutamine diseases, mutant VCP does not make up the major 

component of the accumulated protein in IBMPFD (Higashiyama et al., 2002; 

Schroder et al., 2005). VCP is also found in other inclusion diseases but only in small 

concentrations (Mori et al., 2012) and is not used as a major diagnostic marker in the 

histopathology of these disorders. Interestingly, mutations in p62 can lead to an 

inherited form of PDB (26.5% of familiar PDB in Caucasian patients) and is associated 

with 8.9% of sporadic incidences in the UK (Hocking et al., 2002), which 

phenotypically is almost identical to the PDB resulting from VCP mutations. At the 

molecular level both mutant VCP and p62 based PDB have ubiquitin-positive 

inclusions within the nuclei of pagetic osteoclasts (Leach et al., 2006; Kimonis et al., 

2008). In other inclusion body disorders, p62 is used as a histopathology marker, 

particularly for neurodegenerative disorders (Homma et al., 2014; Nakano et al., 

2004; Nakaso et al., 2004), although in these disorders p62 is normal and not 

mutated. This would suggest that p62 has an important role in the pathways that are 

deregulated as a result of mutations in those particular disease genes for the 

Alzheimer’s, Parkinson’s or Huntington’s disease. The function of p62 has been an 

area of intense study in recent years and now it has been shown that p62 plays an 

important role in early autophagy (Itakura and Mizushima, 2011). Further to this, it 

has been shown that VCP and p62 both play an important role in the equilibrium of 

protein homeostasis by the proteasome and autophagy (Korolchuk et al., 2009), 

although the exact mechanism of this interaction has not been yet elucidated. 
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In Chapter 3 I have shown that wild-type VCP co-localises with numerous p62 

and LC3 (a binding partner of p62) - positive vesicles that accumulate following 

Bafilomycin A1 treatment. I have also observed a similar association in cells exposed 

to the autophagy inducer – Torin 1. These observations contrast with previously 

reported findings, where researchers found neither wild-type nor mutant VCP to 

associate with LC3-positive vesicles (Tresse et al., 2010). However, their experiments 

were performed in basal conditions, whereas I noted the described association of 

VCP with p62 and LC3 under different conditions of autophagy induction. Tresse and 

colleagues recorded a nearly 3.5 fold accumulation of p62 protein and accumulation 

of large autophagic vesicles in MEFs following the RNAi-mediated VCP knockdown 

(Tresse et al., 2010). Expression of disease-associated VCP mutants (R155H and 

A232E) also caused this autophagy defect (Ju et al., 2009; Tresse et al., 2010). 

Similarly, I found a significant increase in polyubiquitinated aggregates in normal cells 

expressing the R155H mutant VCP, but not in cells expressing a catalytically inactive 

DKO mutant VCP. However, cells expressing aggregate-prone expanded 

polyglutamines both R155H and DKO mutant VCP show increased aggregation of 

ubiquitinated substrates. These observations suggest that mutations in VCP reduce 

efficiency in degradation of aggregate-prone polypeptides, which partially explains 

cellular pathology seen in the IBMPFD patients. I also recorded a significant 

accumulation of p62 in muscle tissue from adult VCPR155H/+ mice (the IBMPFD mouse 

model) but not in the wild-type litter mates. I observed that p62 co-localises with 

wild-type VCP to large aggregates that formed in cells expressing expanded, 

pathogenic glutamine repeats (Q79, degraded via autophagy) but not in cells 

expressing control polyglutamines (Q35). These data support the previously 

published results where wild-type VCP-GFP co-localised with FLAG-tagged Q79 

aggregates but not with Q35 (Manno et al., 2010).  Further to this, I show 

accumulation of large (over 1µm in diameter) LC3-positive aggregates in cells 

expressing mutant VCP and polyglutamines (in both Q35 and Q79 – expressing cells) 

and thus speculate these to be autophagosomes (degraded via autophagy). The 

autophagosomes that accumulate due to impaired VCP function contain ubiquitin-

positive contents (Tresse et al., 2010), which the authors attribute to defective 

autophagy maturation (processes that occur after autophagosome formation). 
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Interestingly, the structural alteration of the N domain of VCP was reported to induce 

impaired maturation of autophagosome (Yamanaka et al., 2012). Likewise, a 

xanthohumol (XN, a prenylated chalcone present in hops and beer) has been found 

to directly bind to the N-domain of VCP, resulting in increased LC3-II and p62 

accumulation, a consequence of a block of autophagosome maturation (Sasazawa et 

al., 2012). In contrast, IBMPFD – associated mutations (R155H, A232E) did not cause 

detectable impairment in ubiquitin-dependant degradation by the proteasome 

(including the ERAD and UFD pathways) (Tresse et al., 2010). Thus, to further validate 

my data, one could observe distribution of VCP and LC3 positive-vesicles in cells 

expressing expanded, aggregate-prone polyglutamines and treated with proteasome 

inhibitors (such as MG132 or Lactscystin). In such conditions, VCP vesicles would be 

expected to associate with LC3-positive autophagosomes, mirroring the results 

described in this study. In light of the hypothesis that VCP is a critical factor for the 

degradation of polyubiquitinated protein aggregates one could also observe the 

subcellular localisation/organisation of p62 and LC3 in cells treated with puromycin. 

Puromycin treatment increases formation of truncated and misfolded proteins in a 

cell, dramatically accelerating the formation of large cytoplasmic bodies containing 

polyubiquitinated proteins. The co-localisation of VCP to puromycin-induced 

inclusion bodies can also be examined by immunofluorescence. 

However, Korolchuk and colleagues postulated that autophagy inhibition may 

in fact impact on flux through the ubiquitin-proteasome system (UPS) (Korolchuk et 

al., 2009).  This result being largely due to accumulation of p62 (normally degraded 

via autophagy), which in turn inhibits the clearance of ubiquitinated proteasome 

substrates (Korolchuk et al., 2009). Conversely, impairment of the UPS leads to 

increased levels of the UPS client proteins, such as p53, and this result in the 

autophagy upregulation (Ding et al., 2007; Du et al., 2009). The p62 siRNA reduces 

ubiquitin-primed GFP (UbG76V-GFP, an ubiquitin-proteasome activity reporter) and 

p53 (endogenous proteasome substrate) levels in autophagy-deficient cells 

(Korolchuk et al., 2009). In agreement with this, knockdown of p62 neither had an 

effect on autophagosome number nor did affected autophagic flux (by measuring 

levels of LC3-II) in cells in which autophagosome degradation was inhibited (Komatsu 

et al., 2007; Korolchuk et al., 2009). Likewise, p62 knockout mice had no 
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abnormalities in autophagy (Komatsu et al., 2007). In relation to aggregate-prone, 

disease–associated polyglutamines, p62 overexpression increased aggregation and 

toxicity of polyglutamine-expanded huntingtin fragment (httQ74) in autophagy-

deficient cells and this effect was abrogated via VCP overexpression (Korolchuk et al., 

2009). Knockdown of VCP in normal cells compromises the clearance of UbG76V-GFP 

and polyglutamine aggregates (Wojcik et al., 2006; Kobayashi et al., 2007). In 

contrast, increased expression of wild-type VCP reduces polyglutamine inclusion 

bodies in the Drosophila model (Koike et al., 2010). Likewise, I have found that a sole 

over-expression of wild-type VCP decreases the concentration of insoluble, 

ubiquitinated protein aggregates in normal cells (possibly increasing the normal 

turnover of ubiquitinated client proteins), whereas R155H mutant VCP- expressing 

cells showed a significant increase in ubiquitinated aggregates. A recent study 

demonstrated that wild-type Cdc48 (Yeast VCP equivalent) helps maintain the 

solubility of the misfolded insoluble substrates after ubiquitination and prior to 

proteasomal degradation (Gallagher et al., 2014).  Similarly, VCP has been shown to 

prevent the aggregation of denaturated luciferase in vitro and in vivo (Song et al., 

2007) and to re-solubilise heat denatured luciferase from insoluble aggregates as well 

as facilitate the clearance of pre-formed polyglutamine inclusions (Kobayashi et al., 

2007). Contrary, the loss of Cdc48 function led to increased misfolded protein 

insolubility and in vivo inclusion formation (Gallagher et al., 2014). Similarly, my 

results demonstrate increased aggregation and reduced solubility of ubiquitinated 

substrates in cells expressing VCP mutant protein. These data further implies that 

VCP plays an important role in the degradation of aggregate-prone proteins and that 

mutation in VCP make cells more sensitive to protein aggregation. It was proposed 

that VCP competes with p62 for ubiquitin binding, thus overexpression of p62 may 

act by displacing VCP from complexes with ubiquitinated proteins (Korolchuk et al., 

2009). Perhaps, by skewing the VCP/p62 ratio it is likely to result in stopped/slowed 

transfer of ubiquitinated substrates from VCP to p62 and hence the activation of 

autophagy as shown by the increase of p62 in cells where autophagy is impaired.  

The VCP forms a functionally active homohexamer with each promoter 

consisting of four specific domains: the N-terminal domain, 2 centrally located 

ATPase domains (D1 and D2) and C-terminal domain. The N-domain and the C-
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terminus on VCP are mainly responsible for the interactions with various VCP binding 

partners. The N-terminal binding site was described a general site of interactions for 

many cofactors with the ubiquitin regulatory X (UBX) and ubiquitin D (UBD) domain-

containing protein cofactors, such as Ubx2 and Ufd1/Npl4 respectively (Chapman et 

al. 2011). Nevertheless, mutations within the N-domain that result in either R93C, 

R95G or R155H amino acid changes did not affect the binding of cofactors in an in 

vitro protein binding assay (Huberts et al., 2007; Fernandez-Saiz and Buchberger 

2010). In fact, it was reported that R95G and R155H mutants have elevated binding 

affinities for p47 and UFD1-Npl4 complex in vivo (Fndez-Saiz and Buchberger 2010). 

While p62 has many motifs and binding domains it remains unknown if it contains 

any motifs or domains that have been identified in other proteins that bind to VCP. 

Although I have not identified any known VCP binding motifs/domains in p62, this did 

not rule out the potential of p62 to bind to VCP, either directly or indirectly.  The 

finding that VCP co-precipitates with p62 in cells in which autophagy was induced 

with Torin 1 and in cells expressing pathogenic (Q79) polyglutamines, suggests that 

VCP plays a role in the early stages of autophagy (by interacting with p62) and that it 

has an active role in the degradation of ubiquitinated substrates by autophagy (Fig. 

4.7). In addition, mutations in VCP did not appear to abrogate its affinity for binding 

to p62, though further studies are required to address this phenomenon in more 

detail. Nevertheless, these findings are significant as they directly link VCP with 

components of the autophagy pathway and for the first time show that p62 either is 

a VCP binding partner or at least forms a complex with VCP. This could have 

implications for other proteinopathies caused by mutations in either VCP or p62. 

Therefore, the future investigations would ideally elucidate which VCP 

regions/domains are involved in the binding of p62, and in the reverse which p62 

regions/domains are involved in the binding of VCP. These experiments could utilise 

bacterial plasmids expressing truncated versions of VCP, which I have described in 

Chapter 4 of this study, translate them in vitro and subject to pull down experiments. 

It would also be interesting to see how the mutations in p62 affect its binding affinity 

for VCP as this will give the additional insight into p62-associated diseases. Although, 

the molecular lesions, caused by VCP mutations, seem to affect late autophagy, my 

data show that VCP uses ubiquitin based interactions as part of the early autophagy 
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(Fig. 4.7). Additionally, the extent of autophagy impairment may also dictate the 

severity of compromised flux through the UPS. I speculate that mutant VCP is more 

likely to sequester ubiquitinated UPS client proteins into aggregates preventing them 

from being delivered to or into the proteasome. This hypothesis would potentially 

explain accumulation of aggregates in cells expressing polyubiquitinated Q35 

glutamine repeats, normally degraded by the proteasome, and also to some extend 

the cellular pathology observed in the IBMPFD patients. Indeed, inclusions containing 

ubiquitinated proteins are a common pathologic feature found in all mutant VCP 

disease-affected tissues (Weihl et al., 2009). Overall, I propose that formation of 

altered VCP/p62 complexes, which lead to disease pathogenesis, result in an 

impairment of coordination between the UPS and autophagy. This in turn causes 

accumulation of ubiquitinated substrates and protein aggregates implied in the broad 

array of proteinopathies that result from mutations in either VCP or p62.  

7.2 VCP stability is linked to p62 instability 

Protein degradation is essential for the regulation of protein homeostasis 

(proteostasis) and triggers a variety of processes, such as cell cycle progression and 

cellular signalling. All eukaryotic cells use the following two systems for protein 

degradation: the ubiquitin-proteasome system (UPS) and the autophagy-lysosome 

system. The UPS is used for selective degradation of short lived and abnormal or 

misfolded proteins following labelling with Lys-48-linked polyubiquitin chains 

mediated by ubiquitin-protein ligases (Goldberg, 2003). Whereas the lysosome 

mainly degrades extracellular and plasma membrane proteins brought there by 

endocytosis and cytoplasmic components delivered by autophagy. VCP often acts 

between the ubiquitin-protein ligase and the proteasome, coordinating recruitment 

and targeting of ubiquitinated substrate proteins to the proteasome (Mayer et al., 

2012).The evidence also implies that VCP is necessary for lysosomal protein 

degradation via autophagy (Ju et al., 2009; Tresse et al., 2010) and I have shown that 

it interacts directly with key components of the autophagy pathway (specifically that 

it binds directly to p62).  The p62 is an ubiquitin-binding protein, which targets 

ubiquitinated substrates to autophagosome, is itself degraded by autophagy and 

accumulates when autophagy is blocked (Bjorkoy et al., 2005; Korolchuk et al., 2009). 
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The VCP is an interesting protein which uses its ATPase activity to extracts substrates 

from multiprotein complexes (Kobayashi et al., 2007) and also to transport abnormal 

proteins into aggregates (Manno et al., 2010). It binds to a variety of adaptor proteins 

(including p62) and carries out a multitude of processes within the cell, conducted 

through ubiquitin based interaction, but until now its degradation or stability has not 

been studied. I found that VCP availability in the cell is directly linked to the levels of 

p62 (is regulated in a p62 dependent manner). In p62-deficient cells, with functional 

autophagy (Komatsu et al., 2007), VCP is sequestered into the insoluble aggregated 

fraction, likely as the result of VCP collecting and aggregating polyubiquitinated 

substrates to be degraded by autophagy in the absence of p62. This could partially 

explain why the knockdown of p62 neither had an effect on autophagosome number 

nor did affected autophagic flux – normal autophagy in these cells (Komatsu et al., 

2007; Korolchuk et al., 2009). It was also significant that, in the absence of p62 over 

an extended time period, VCP is released back to the soluble fraction, possibly 

further compensating for the loss of p62 by shuttling substrates to the proteasome 

for degradation. This finding helps to explain how p62 siRNA rescues the increased 

levels of soluble ubiquitinated proteasome client proteins in autophagy-deficient cells 

(Korolchuk et al., 2009). Whereas, whilst the proteasome is inhibited, the VCP levels 

stably decrease suggesting that proteasome inhibition might increase the efficiency 

of soluble VCP degradation and stop the release of the insoluble pool of VCP. 

Therefore, the likely hypothesis is that soluble pool of VCP is either being degraded 

by autophagy (and not the proteasome) or it is being sequestered to the growing 

(insoluble) aggresome (vimentin-positive, ubiquitinated large aggregates; Johnson et 

al., 1998) resulting from the proteasomal inhibition. Interestingly, I have noted that 

overexpression of wild-type VCP in cells halts degradation of p62, possibly only for a 

limited time period (though further studies are required to address this) whilst it 

complexes with p62, to capture and deliver polyubiquitinated substrates to the 

autophagy-lysosome machinery for degradation. Thus, elimination of the effects of 

p62 overexpression by overexpressing the wild-type VCP (Korolchuk et al., 2009) is 

likely to act through increased VCP/p62 complex formation, which in turn allows for 

normal degradation of both the UPS ubiquitinated substrates and protein aggregates. 

Therefore I favour a model in which VCP and p62, rather than compete for ubiquitin 
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binding are functionally coupled and dictate the fate of ubiquitinated proteins within 

the cell. 

  Disease-associated mutant VCP proteins are reported to retain a normal 

hexameric structure (Niwa et al. 2012) but exhibit altered communication between 

the N and D1 domains (Fernandez-Saiz and Buchberger 2010). This could manifest as 

a disruption in the normal control of the N-domain where many substrates bind 

(Fernandez-Saiz and Buchberger 2010) and result in either increased or decreased 

binding profile of VCP. Indeed, IBMPFD VCP mutants exhibit elevated binding 

affinities for Ufd1-Npl4 as well as for p47 in vitro (Manno et al., 2010) but decreased 

binding to a UBX cofactor – UBXD1 (Ritz et al., 2011). The enhanced cofactor binding 

ability also enhances binding of ubiquitinated protein substrates and potentially also 

the formation of polyubiquitinated aggregates (Manno et al., 2010). Although, as 

outlined in the Chapter 4, the binding affinity of mutant VCP protein to p62 appears 

normal, result is increased aggregation of polyubiquitinated substrates. Instead, my 

hypothesis is that the mutant VCP is unable to release its substrates and hence is 

being aggregated as a result. The data presented in this study suggests that R155H-

VCP is less likely to be released from the insoluble aggregate pool and as a 

consequence of this decrease the levels of soluble p62 (most likely by accumulation 

in autophagosomes). Previously it has been shown that Cdc48 (yeast VCP) 

requirement for facilitating the proteasomal degradation of some ubiquitin ligase 

San1 substrates correlates with the insolubility of this substrate (Gallagher et al., 

2014). It is possible that in cells in which autophagy is compromised and as result p62 

is accumulated, VCP’s requirement for the degradation of ubiquitinated substrates 

increases. An earlier study demonstrated that IBMPFD-causing mutant VCPs 

possessed elevated ATPase activities (tested biochemically) which the authors link to 

the acceleration of abnormal protein aggregate formation in cells; although this 

effect is not directly attributed to the VCP’s cofactor-binding abilities (Manno et al., 

2010). Additionally, the A232E mutant VCP, which represents the severest clinical 

phenotypes (Watts et al., 2004), demonstrated the highest ATPase activity (Manno et 

al., 2010). It would be interesting to examine the availability of this particular mutant 

protein in the cell and its effect on p62 degradation/stability. Further work could also 

include an examination of p62 stability in cells in which VCP is down regulated.  
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7.3 P62/VCP – dependant autophagy regulates osteoclastogenesis  

Since the identification of both VCP and p62 being involved in classical Paget 

disease of the bone (PDB), there has been a lot of speculation in how they cause the 

disease and what pathways/roles they have in common (Ralston, 2008; Chung et al., 

2011). The metabolic hyperactivity in focal bone resorption is the main feature of 

Paget’s disease. This primary abnormality is believed to be a result of abnormal 

osteoclasts (the principal resorptive cells of the bone) which are increased in size, 

contain many more nuclei than normal osteoclasts and are overactive.  Therefore, it 

has been believed that the common pathway was the RANKL-NFB pathway 

(responsible for osteoclast differentiation) as both p62 and VCP are involved at 

different points within this pathway (Daroszewska and Ralston, 2005). Furthermore, 

causative mutations in the VCP localise within or close to the region in the N-domain 

known to be involved in ubiquitin (ub) – binding (Dai and Li, 2001; Watts et al., 2004). 

Likewise, PDB-causing mutations in the SQSTM1 gene also affect the ub-binding 

domain of the gene product – p62 (Hocking et al., 2004), suggesting that the disease 

processes in PDB and IBMPFD may be related. However, disease-causing mutations in 

the SQSTM1 lead to various degrees of loss of ub-binding function of p62, in the 

context of full-length protein (Garner et al., 2011). In contrast, there is no generalised 

increase or loss in binding affinity for ubiquitinated proteins by mutant VCP (Hubbers 

et al., 2007; Manno et al., 2010; Erzurumlu et al., 2013). Nevertheless, I have shown 

that VCP and p62 interact either directly or indirectly as a complex during autophagy. 

In view of this, I speculate that the disruption of a non-canonical autophagy based 

pathway could lead to deregulation of NFκB signalling resulting in aberrant bone 

phenotype in the IBMPFD (Fig. 7.1).  
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Figure 7.1. Mutations in p62 and VCP disrupt regulatory pathways resulting in over-

activation of the NFκB signalling cascade and increased osteoclastogenesis. Mutations in 

p62 gene result in a Classical PDB and mutations in VCP result in the IBMPFD-associated PDB; 

both lead to elevated cytokine activation of NFκB. The pathogenic mechanism of VCP 

mutations may involve increased clearance of IκB and consequently increased downstream 

activation of NFκB with pathological consequences. Mutations in p62 may result in 

upregulation of downstream signalling from RANK receptor (activated via RANKL cytokine) 

and through TRAF6 association with both RANK and p62 that results in activation of target 

gene expression and initiation of osteoclast formation. Alternatively VCP and p62 may 

interact directly in a different pathway (autophagy-linked) that leads to IBMPFD - PDB when 

either is mutated.  

Osteoclasts (OCL), which have been demonstrated as monocyte-macrophage 

derived multinuclear cells, are principal resorptive cells of bone (Maziere et al., 

2009). Osteoclasts originate from mononuclear progenitors of monocyte-

macrophage lineage (hematopoietic precursors) which, upon cytokine stimulation, 

fuse into multinucleated non-dividing mature osteoclasts. Two characteristics in 

osteoclast differentiation are the expression of tartrate-resistant acid phosphatase 

(TRAP) and the presence of multiple nuclei, which are considered to be biomarkers of 

mature osteoclasts (Sakiyama et al., 2001).  The orchestrated process of osteoclast 

differentiation involves the rearrangement of the cytoskeleton and the degradation 

and renewal of intracellular proteins (Chen and Olson 2005; Oikawa et al., 2013). 

Autophagy possesses pivotal roles in regulating the degradation of cellular proteins 

and organelles (Mizushima and Levine, 2010) and its activation in osteoclast 

differentiation has been implicated in several studies (Zhao et al., 2012; Lin et al., 

2013; Lin et al., 2014). It has been shown that autophagy has an essential regulatory 

role in the hypoxia-induced osteoclastogenesis (Zhao et al., 2012). Increase in the 
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number of TRAP positive multinuclear cells was observed in RAW264.7 cells following 

hypoxia-induced autophagy and determined to be regulated via the HIF-1α/BNIP3 

dependent pathway (Zhao et al., 2012). Conversely, genetic (with dominant negative 

Atg5 mutant – DN-Atg5K130R) and chemical (with 3-methyladenine (MA)) suppression 

of autophagy dramatically attenuated hypoxia-induced osteoclast differentiation 

(Zhao et al., 2012). Stimulatory effects of autophagy on osteoclastogenesis were also 

reported in patients with rheumatoid arthritis (RA) (Lin et al., 2013). The key player in 

the pathogenesis of RA - TNFα increased expression of Atg7 and LC3II in murine 

osteoclasts, whereas inhibition of autophagy either by knockdown of Atg7 or by 

treatment with Bafilomycin A1, strongly impaired osteoclast differentiation and 

expression of osteoclast-associated genes (Lin et al., 2013). In contrast to work 

recently published my data demonstrates that induction of autophagy during 

osteoclastogenesis has an inhibitory effect on osteoclast differentiation. Specifically, 

my study reveals that inhibition of the mTOR signalling (with either rapamycin or 

Torin 1) suppresses early stages of RANKL - dependent osteoclast differentiation of 

mouse macrophage-like RAW 264.7 cells. This could be because the mammalian 

target of rapamycin (mTOR) kinase is involved in the promotion of osteoclast 

formation and inactivation of the mTOR pathway with rapamycin results in a 

translational shift of the C/EBPβ toward LAP isoform that in turn restricts osteoclast 

formation (Smink et al., 2009).  Furthermore, suppression of the m-TOR pathway is a 

requirement for osteoprotegerin (OPG)/ osteoclastogenesis inhibitory factor 

production in bone marrow stromal cells (Mogi and Kondo, 2009). Thus, inhibition of 

mTOR activity increases cell death rate of mature osteoclasts, and significantly 

reduces bone resorption (Glantsching et al., 2003; Indo et al., 2013). This is in 

contrast to the earlier work, where the authors claimed that rapamycin, alone or in 

synergy with TGFβ, induce osteoclastogenesis of RAW264.7 cells in the presence of 

RANKL (Shui et al., 2002). Moreover, preceding study proposed that rapamycin 

decreases protein levels of osteoprotegerin (OPG), a decoy receptor for RANKL, but 

increases RANKL production in bone marrow stromal cells (Hofbauer et al., 2001). In 

addition, the mTOR is also a major switch between anabolic and catabolic processes 

(Glantschnig et al., 2003), including regulation of autophagy. Inhibition of mTOR with 

drugs such as rapamycin or through nutrient deprivation induces autophagy in mouse 
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skeletal muscle (Ju et al., 2010) and further worsens muscle pathology (decrease in 

muscle strength and significant increase in serum creatine kinase) in VCP-mutant 

mice (Ching et al., 2013). Interestingly, VCP-mutant mice showed reduced levels of 

phosphorylated direct mTOR targets (p4EBP1, pp70S6 and pS6 kinase) and overall 

decrease in protein translation, as well as enhanced autophagosome biogenesis 

(Ching et al., 2013). Further to this, chemical inhibition of VCP (with DBeQ) or 

expression of catalytically inactive VCP in U20S cells attenuated activation of mTOR 

upon nutrient stimulation (Ching et al., 2013). This is particularly interesting, since 

p62 was also shown to mediate mTOR activity (amino acid signalling for the 

activation of S6K and 4EBP1 kinase) upon nutrient stimulation, via its direct 

association with raptor and mTOR (Duran et al., 2011). In view of this, I speculate that 

VCP/p62 complex coordinates mTOR signalling versus autophagy in response to 

nutrient availability and this action is impaired when either protein is mutated. 

Additionally, inhibiting mTOR at early stages of osteoclastogenesis mirrors response 

to the lack of nutrients in favour of autophagy and halts osteoclast differentiation in 

favour of cell survival. Therefore it is likely that action of rapamycin (and other mTOR 

inhibitors) varies in early and late stages of osteoclast differentiation. To further test 

this hypothesis, one could examine the effects of mTOR inhibition on osteoclasts 

differentiating from R155H-mutant VCP and p62-mutant hematopoietic precursors. If 

mTOR activity is impaired in VCP-mutants then perhaps restoring it would improve 

cellular pathology in IBMPFD. So far only two molecules have been shown as direct 

activators of mTOR signalling, these are the GTPase Ras homologue enriched in brain 

(Rheb) and the lipid second messenger phosphatidic acid (PA) (Goodman et al., 2010; 

Jacobs et al., 2014). GTP-bound Rheb can bind to the catalytic domain of mTOR and 

overexpression of Rheb is sufficient to activate mTOR signalling (Sato et al., 2009), 

which in turn inhibits autophagy. In accordance with this, expression of Rheb 

effectively enhanced the phosphorylation of p70S6 kinase and increased the 

myofibre size in VCP-IBM mouse muscle (Ching et al., 2013). Stimulation of cells with 

exogenous PA was also shown to increase mTOR signalling (You et al., 2012). 

Mechanistically, PA binds to the FKBP12-Rapamycin binding (FRB) domain of mTOR, 

and like GTP-Rheb, it can directly activate mTOR kinase activity in-vitro (You et al., 

2012). Thus alternatively, one could determine if restoring mTOR activity in 
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rapamycin-treated and IBMPFD-VCP osteoclast precursors with either Rheb or PA 

would alter their response to osteoclastogenic cytokines. 

The RANK ligand (RANKL; activator of both classical/canonical and non-

canonical NFκB) is considered to be a master regulator of physiologic 

osteoclastogenesis and is considered to act synergistically with TNFα (activator of 

classical NFκB) to induce osteoclast differentiation (Zou et al., 2001). Interestingly, a 

key feature of pagetic osteoclast precursors is that they are sensitive to lower levels 

of osteotropic factors than normal precursors. In marrow cultures from patients with 

Paget's disease, OCL are formed in response to 10-fold lower concentrations of the 

cytokines RANKL (Neale et al., 2000; Roodman and Windle, 2005), TNF-α (Kurihara et 

al., 2007) and hormonally active form of vitamin D (1, 25-dihydroxyvitamin D3) 

(Menaa et al., 2000) than normal cells. In accordance with this, I found that R155H-

mutant VCP shows increased activation of NFκB in response to both RANKL and TNFα 

cytokines. It was suggested that mutant VCP amplifies NFκB activation through 

altered regulation of IκB-ubiquitin-dependent degradation (Custer et al., 2010). 

However, a recent report proposed that although a short term activation of NFκB is 

mediated by the proteasomal degradation of IκBα, persistently activated NFκB state 

is achieved via the induction of autophagy at later phases, following stimulation with 

TNFα (Colleran et al., 2011). As such, it would seem that the R155H mutation in VCP 

alone efficiently induces NFκB activation, possibly due to disruption of the basal 

macroautophagy pathway. Likewise, osteoclast precursors from mice with a P394L 

p62 mutation (equivalent to P392L mutation causing PDB in humans) were noted to 

be not only over-sensitive to RANKL but also show an increased expression of 

autophagy-related genes,  atg5 and  lc3 (Daroszewszka et al., 2011).   

It was established that RANKL knockout mice exhibit irregularities in bone 

homeostasis (Boyle et al., 2003) and that inhibition of RANKL/RANK signalling 

pathway will in turn inhibit bone resorption (Zhao et al., 2011; Cordowa et al., 2015). 

For example, local administration of RANK siRNA exerted a protective effect against 

polyethylene (PE) induced osteolysis, decreasing the bone loss and 

osteoclastogenesis (Cordowa et al., 2015). Similarly, RANK antibody directly blocked 

RANKL/RANK signalling leading to inhibition of inflammatory osteolysis associated 
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with implant wearing particles (Zhao et al., 2011). Interestingly, knockdown of p62 in 

both RAW264.7 and in mouse bone marrow macrophages also significantly 

decreased RANKL-induced formation of TRAP-positive multinuclear cells (Li et al., 

2014). Additionally, the key autophagy-related markers (Atg5, Atg12, Atg7 and LC3II) 

that were up-regulated in mature osteoclasts were found attenuated following the 

p62 siRNA in RAW264.7 cells (Li et al., 2014). The authors state that RANKL induces 

autophagy in osteoclasts and propose p62 to be a bridge protein between autophagy 

and RANKL-induced osteoclastogenesis (Li et al., 2014).  

The results outlined in Chapter 6 of this study demonstrate that increased 

accumulation of protein aggregates in osteoclast precursor cells has stimulating 

effect on the activation of NFκB signalling cascade. This implies that enhanced 

osteoclastogenic potential of the bone marrow derived macrophages (BMDM), 

clearly observed in the IBMPFD cases is indeed effect of compromised autophagy. 

Inhibition of the late phase of autophagy with Bafilomycin A1 dramatically increased 

NFκB activation in osteoclast progenitor cells from wild-type mice and had significant 

effect on BMDM from VCP-mutant mice. Coinciding with the osteoclast 

differentiation effects, macrophages from mutant mice appear more sensitive to 

Bafilomycin A1 treatment, accumulating more lipidated LC3II than wild type cells. The 

assembly of the essential for autophagosome formation Atg5-Atg12-Atg16 complex is 

also elevated in mutant cells, suggesting up-regulated early autophagy signalling. 

Likewise, treatment with inhibitor of autophagy – Bafilomycin A1 increased LC3 II 

protein levels in osteoclasts from P394L p62 mutant mice, compared with wild type 

osteoclasts, suggesting deregulation of autophagy and enhanced autophagosome 

formation (Daroszewska et al., 2011). Interestingly, while inhibition of autophagy 

induces NFκB activation, stimulation of this degradation pathway has little to no 

effect on the osteoclastogenic signalling cascade. Similarly, it was demonstrated that 

rapamycin treatment led to increased expression of LC3 II in RAW264.7 cells in time 

dependent manner (over 24 hour period), and also slightly enhanced osteoclast 

differentiation (Zhao et al., 2012). Their study evaluated osteoclastogenic response 

over a long time period whereas my work monitored more immediate NFκB pathway 

responses. Therefore, the increased sensitivity of mutant macrophages to either 

TNFα or RANKL appears to be a defect in early autophagy (potentially a new role for 
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VCP identified in Chapters 3 to 5) implied by the lack of autophagy induction in 

mutant cells after cytokine treatment. Since both p62 and VCP mutations cause the 

same molecular defect in cytokine induced activation of autophagy, it is tempting to 

speculate that the molecular lesion in PDB is a defect in actions of the p62/VCP 

complex, leading to deregulation of autophagy and ultimately PDB pathology. One 

possibility for the increased downstream signalling in pagetic osteoclasts is decreased 

RANK receptor recycling (mediated through the VCP/p62 complex). VCP has been 

previously associated with regulating lysosomal degradation and recycling of 

dNRAMP receptor (Panda et al., 2013) and thus it would not be that surprising if VCP 

also mediated lysosomal degradation of RANK receptor. Under such circumstances, 

aberrant degradation of RANK receptor, due to impairment of VCP function (and 

hence compromise autophagy) would lead to increased downstream signalling and in 

turn enhanced osteoclast differentiation, though further studies are required to 

address this. 

In summary, I have identified VCP as a new and important component of the 

autophagy pathway which may represent a major regulator of bone remodelling and 

maintenance. This would indicate that mutations in VCP, resulting in disruption of 

autophagic processes, cause an increase in osteoclast differentiation as a direct effect 

of an overactive NFκB, causing bone pathology observed in the IBMPFD cases. In an 

effort to further understand autophagic dysfunction in IBMPFD-specific PDB one 

could go on to determine how mature osteoclasts respond to cell stress that 

challenges the UPS and macroautophagy pathways. To further delineate the 

mechanisms responsible for  stimulating effects of mutant VCP on osteoclastogenesis 

one can examine the phosphorylation status of downstream signalling intermediates 

(such as IκBα, MAPK, ERK1 and ERK2)  during osteoclastogenesis mediated by RANKL 

or TNFα. A significant challenge in future IBMPFD research will be to further untangle 

the contribution of individual perturbations caused by VCP mutations to tissue-

specific disease manifestations, and I believe that the mouse model presented in the 

present study provides an excellent resource in our further search for the molecular 

underpinnings of IBMPFD. 
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7.4 Concluding remarks 

I have shown evidence that VCP is important in both the early and late stages 

of autophagy and that VCP does not just act as the main shuttle to the proteasome. I 

have also identified p62 as a new binding partner for VCP which not only links VCP to 

early autophagy but also potentially shows that both p62 and VCP mutations disrupt 

autophagy as the underlying cause of PDB.   Importantly, I have provided evidence 

that not only does VCP and p62 co-localise to pathogenic inclusion bodies, but when 

autophagy is induced, p62 acts as a VCP binding partner. Here, either p62, VCP or 

both are binding to polyubiquitinated substrates with the LIR domain of p62 

potentially being used to target the complex to the lipid bound LC3 in the nascent 

autophagosome. Significantly, this places VCP and p62 as having roles in the early 

stages of autophagy in addition to the previously reported disruption of late stage 

autophagy seen in IBMPFD. I have also demonstrated that mutations in VCP cause a 

reduction in autophagic efficiency of normal aggregate-prone autophagy substrates. 

Interestingly, the solubility of VCP is regulated in a p62 dependent manner, further 

supporting the notion that VCP and p62 cooperate in degradation of substrates by 

the proteasome or autophagy.  I also examined the effects of VCP mutations on 

autophagic activity of osteoclasts and showed here that autophagy defect 

significantly regulates the osteoclast differentiation. Since, the induction of 

autophagy at any stage of osteoclastogenesis has an inhibitory effect; it would imply 

that cytokine activated autophagy has major regulatory role in NFB signalling during 

osteoclastogenesis. I investigated the molecular mechanisms by which autophagy 

mediates osteoclastogenesis through the NFB signalling pathway. The results of this 

study show that the increased NFB activation seen in mutant VCP macrophages 

could be due to a lack of early stage autophagy induction needed for the recycling 

(regulation of receptor availability) of the RANK receptor.  This would also fit with the 

inhibitory effect induced autophagy had on RAW264.7 cell differentiation, where in 

this instance the RANK receptor (and signalling response) is greatly reduced due to 

increased turnover by autophagy. Furthermore, this would fit with the potential role 

of p62 in PDB and that both p62 and VCP mutations cause the same molecular defect 

in cytokine induced activation of autophagy resulting in decreased receptor recycling. 

Significantly, I have shown that mutations in VCP not only affect late stage autophagy 
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(as demonstrated by age dependent accumulations of LC3II in muscle of the IBMPFD 

mouse), but also the new role I have identified for VCP in early stage autophagy.  

Currently there is no cure for PDB and therapies are aimed to reduce or 

stabilise the symptoms and make the life of the patient more comfortable. The 

bisphosphonates (BP) treatment is the most applied pharmacological treatment for 

PDB (Chung and Hul, 2012). BP’s are anti-remodelling drugs that inhibit the function, 

activation and survival of osteoclasts but are known to initiate pro-inflammatory 

response (Chung and Hul, 2012). It is also plausible that over-suppression of the bone 

remodelling could lead to accumulation of microcracks or increase bone deformity 

due to unbalanced activity of osteoblasts. Therefore, I speculate that the 

manipulation of autophagy, or more specifically p62/VCP complex interaction, as a 

potential therapy in IBMPFD-disease could be promising. Activation of impaired 

autophagy in a mouse model of congenital muscular dystrophy using mTOR inhibition 

or dietary modifications improved strength and muscle pathology (Grumati et al., 

2010). Perhaps modulating osteoclast differentiation through time-restricted 

treatment with rapamycin or with an alternative mTOR inhibitor may also be 

beneficial for management of the PDB. Nevertheless, inhibition of the mTOR pathway 

could have adverse side effects, potentiate cellular pathology in IBMPFD cases and 

worsen the disease. Of note, chronic rapamycin treatment significantly worsens the 

degenerative phenotype in VCP-IBM mice (Ching et al., 2013). Thus restoring mTOR 

activity with RHEB (Goodman et al., 2010) may tender better prognosis in advanced 

cases. However, future studies are required to inspect effects of prolonged 

expression of Rheb (or PA) in IBMPFD-mice tissue. Also strategy aimed at controlled 

up-regulation of steady state levels of wild-type VCP may be feasible as means of 

improving prognosis of PDB. However, future studies must define the effects of 

modulating VCP function in the context of whole organism, before therapeutic 

compounds aimed at VCP can move into clinical trials. 
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Homo sapiens VCP/TERA/p97 (Gene ID 7415); Accession Number: NM_007126; 

ATGGCTTCTGGAGCCGATTCAAAAGGTGATGACCTATCAACAGCCATTCTCAAACAGAAGAACCGTCCC

AATCGGTTAATTGTTGATGAAGCCATCAATGAGGACAACAGTGTGGTGTCCTTGTCCCAGCCCAAGATG

GATGAATTGCAGTTGTTCCGAGGTGACACAGTGTTGCTGAAAGGAAAGAAGAGACGAGAAGCTGTTTGC

ATCGTCCTTTCTGATGATACTTGTTCTGATGAGAAGATTCGGATGAATAGAGTTGTTCGGAATAACCTT

CGTGTACGCCTAGGGGATGTCATCAGCATCCAGCCATGCCCTGATGTGAAGTACGGCAAACGTATCCAT

GTGCTGCCCATTGATGACACAGTGGAAGGCATTACTGGTAATCTCTTCGAGGTATACCTTAAGCCGTAC

TTCCTGGAAGCGTATCGACCCATCCGGAAAGGAGACATTTTTCTTGTCCGTGGTGGGATGCGTGCTGTG

GAGTTCAAAGTGGTGGAAACAGATCCTAGCCCTTATTGCATTGTTGCTCCAGACACAGTGATCCACTGC

GAAGGGGAGCCTATCAAACGAGAGGATGAGGAAGAGTCCTTGAATGAAGTAGGGTATGATGACATTGGT

GGCTGCAGGAAGCAGCTAGCTCAGATAAAGGAGATGGTGGAACTGCCCCTGAGACATCCTGCCCTCTTT

AAGGCAATTGGTGTGAAGCCTCCTAGAGGAATCCTGCTTTACGGACCTCCTGGAACAGGAAAGACCCTG

ATTGCTCGAGCTGTAGCAAATGAGACTGGAGCCTTCTTCTTCTTGATCAATGGTCCTGAGATCATGAGC

AAATTGGCTGGTGAGTCTGAGAGCAACCTTCGTAAAGCCTTTGAGGAGGCTGAGAAGAATGCTCCTGCC

ATCATCTTCATTGATGAGCTAGATGCCATCGCTCCCAAAAGAGAGAAAACTCATGGCGAGGTGGAGCGG

CGCATTGTATCACAGTTGTTGACCCTCATGGATGGCCTAAAGCAGAGGGCACATGTGATTGTTATGGCA

GCAACCAACAGACCCAACAGCATTGACCCAGCTCTACGGCGATTTGGTCGCTTTGACAGGGAGGTAGAT

ATTGGAATTCCTGATGCTACAGGACGCTTAGAGATTCTTCAGATCCATACCAAGAACATGAAGCTGGCA

GATGATGTGGACCTGGAACAGGTAGCCAATGAGACTCACGGGCATGTGGGTGCTGACTTAGCAGCCCTG

TGCTCAGAGGCTGCTCTGCAAGCCATCCGCAAGAAGATGGATCTCATTGACCTAGAGGATGAGACCATT

GATGCCGAGGTCATGAACTCTCTAGCAGTTACTATGGATGACTTCCGGTGGGCCTTGAGCCAGAGTAAC

CCATCAGCACTGCGGGAAACCGTGGTAGAGGTGCCACAGGTAACCTGGGAAGACATCGGGGGCCTAGAG

GATGTCAAACGTGAGCTACAGGAGCTGGTCCAGTATCCTGTGGAGCACCCAGACAAATTCCTGAAGTTT

GGCATGACACCTTCCAAGGGAGTTCTGTTCTATGGACCTCCTGGCTGTGGGAAAACTTTGTTGGCCAAA

GCCATTGCTAATGAATGCCAGGCCAACTTCATCTCCATCAAGGGTCCTGAGCTGCTCACCATGTGGTTT

GGGGAGTCTGAGGCCAATGTCAGAGAAATCTTTGACAAGGCCCGCCAAGCTGCCCCCTGTGTGCTATTC

TTTGATGAGCTGGATTCGATTGCCAAGGCTCGTGGAGGTAACATTGGAGATGGTGGTGGGGCTGCTGAC

CGAGTCATCAACCAGATCCTGACAGAAATGGATGGCATGTCCACAAAAAAAAATGTGTTCATCATTGGC

GCTACCAACCGGCCTGACATCATTGATCCTGCCATCCTCAGACCTGGCCGTCTTGATCAGCTCATCTAC

ATCCCACTTCCTGATGAGAAGTCCCGTGTTGCCATCCTCAAGGCTAACCTGCGCAAGTCCCCAGTTGCC

AAGGATGTGGACTTGGAGTTCCTGGCTAAAATGACTAATGGCTTCTCTGGAGCTGACCTGACAGAGATT

TGCCAGCGTGCTTGCAAGCTGGCCATCCGTGAATCCATCGAGAGTGAGATTAGGCGAGAACGAGAGAGG

CAGACAAACCCATCAGCCATGGAGGTAGAAGAGGATGATCCAGTGCCTGAGATCCGTCGAGATCACTTT

GAAGAAGCCATGCGCTTTGCGCGCCGTTCTGTCAGTGACAATGACATTCGGAAGTATGAGATGTTTGCC

CAGACCCTTCAGCAGAGTCGGGGCTTTGGCAGCTTCAGATTCCCTTCAGGGAACCAGGGTGGAGCTGGC

CCCAGTCAGGGCAGTGGAGGCGGCACAGGTGGCAGTGTATACACAGAAGACAATGATGATGACCTGTAT

GGCTAA 

Figure A1. The coding sequence of Human VCP cDNA. 
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Figure A2. Genotype analyses of VCPR155H/+ knock-in mice. Mutant VCP construct is 

shown at the top. Neomycin-cassette is marked by Neo. Green arrows indicate the 

locations of primers used in genotyping. After Neomycin cassette is removed we can 

test for presence of either wild-type or mutant allele. The Nco I restriction enzyme 

cuts mutant allele, conversely Msp I will cut wild-type allele. (i) Subjecting the 

extracted genomic DNA to a PCR protocol results in the generation of DNA fragments 

of 982bp in size. (ii) Digestion of the PCR product with the Nco I restriction enzyme 

results in three fragments (982bp, 700bp and 282bp) in the heterozygous VCPR155H/+ 

mouse extracts only. The heterozygous VCPR155H/+ mouse has a cut (700bp and 

282bp) and uncut (982bp) band indicating that both the mutant and wild-type alleles 

are expressed in this animal. The wild-type mice have uncut (982bp) band only. 
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Figure A3. Plasmid map of EGFP-tagged wt VCP including restriction sites. 

 

 

Figure A4. Plasmid map of EGFP-tagged R155H/+ VCP with restriction sites. 
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Figure A5. Plasmid map of EGFP-tagged DKO VCP indicating restriction sites. 

No. 4 

 

 

 

 



 212 
 

No.5 

 

No.6 and 7 

 

 

No.8  

 



 213 
 

No.9 

 

No.10 

 

No.11 

 

No.12 

 



 214 
 

No.13 

 

Figure A6. Immunoprecitipation (IP) of VCP and autophagic markers p62 and LC3. 

Main areas addressed to trouble shoot the inconsistency of the IP results were: 

plasmid DNA used for the cell transfection and its concentration, amount of the 

transfection reagent used, number of plasmids used, timeline of transfection (in 

hours), additional exposure to stress-inducing reagents and cell line exposed. 

Additional reagents, such as Rapamycin, were used to directly activate autophagy 

pathway within the exposed cells. Induction of starvation through 2-3hrs incubation 

in Hanks Balanced Salt Solution (HBSS) was to trigger starvation-induced-autophagy 

response. Figures below correspond to 4-13 transfection variants described in Table 

4.2 (Chapter 4). NS – IP: IgG; T - total input, B - bound IP fraction, Null – Non-

transfected cell lysate, C – non-IP cellular extract.  

HeLa, HEK293 and MEF cells were cultured in DMEM supplemented with 10% heat 

inactivated FBS and 0.5 units/ml penicillin and 50 µg/ml streptomycin.  

 

 

Figure A7. Wild-type (wt) VCP Immunoprecipitates (IP) with wt p62 in cells 

expressing pathogenic polyglutamines. Pathogenic poly-(Q) 79 glutamines were 

expressed in MEF cells with or without wt VCP-EGFP for 24h and analysed for co-IP of 
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VCP with p62 using anti-p62 antibody (Sigma #P0067). Presence of pulled down 

proteins was determined by Western blotting with anti-p62 and anti-VCP antibodies. 

 

Figure A8. Wild-type VCP Immunoprecipitates (IP) with wt p62 in the mTOR/ 

Autophagy - dependant manner. MEF cells were co-transfected with wt p62-FLAG 

and wt VCP-EGFP or wt VCP-V5 and after 20h, treated with 1µM Torin1 for 4-5 hours. 

Cell lysates were then subject to Immunoprecipitation by either anti-p62 (Sigma 

#P0067) or anti-FLAG antibody (Sigma/F7425). Pulled down proteins were analyzed 

by Western blotting with anti-actin, anti-p62 and anti-VCP antibodies. 

 

Figure A9. VCP stability increases in cells lacking p62.  Immunoblot from cellular 

extracts of p62-expressing (MEF +/+) and p62-knockout (p62-KO) MEFs exposed to 
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100µg/ml Cycloheximide (CHX) for 0-6hrs (A). Densitometry analysis of normalized to 

actin p62 and VCP expression from MEF +/+ immunoblot in A (B), and comparison of 

normalized to actin VCP expression in p62-KO versus VCP expression in normal (p62 

expressing) MEF cells (C). Figures presented in B and C show the relative intensity 

readings (with intensity at 0h=1.0) calculated from arbitrary optical density results 

normalized to loading control-actin from immunoblots presented in A. 

 

 

Figure A10. VCP stability in differentiated cells. Densitometry analysis of normalized 

to actin VCP (Top graph) or p62 and VCP (Bottom graph) expression from 

immunoblots of HeLa cells treated with 100µg/ml cycloheximide for either 3-16 (top) 

or 0-6(bottom) hours. Additional cell treatment details are included in the overheads. 

Figures presented show the relative intensity readings calculated from arbitrary 

optical density results normalized to loading control - actin. 
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Figure A11. Insoluble aggregates in cells lacking  p62. Filter-trap analysis of the p62 

insoluble content  (A) and insoluble ubiquitinated aggregates (C) generated in p62-

expressing  (wild-type; +/+) and p62-KO MEFs exposed  to 100µg/ml Cycloheximide 

(CHX) for 0-6hrs . The signal intensity from the p62 (B) and ubiquitin (D) immunoblot 

was quantified and presented as a relative intensity values of the control at 0hrs 

exposure (0H).  

 

Figure A12. VCP stability in cells. Comparison of normalized VCP levels in MEF cells 

exposed to  100µg/ml Cycloheximide (CHX) alone (None), incubated in HBSS media 
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containing 100µg/ml CHX or treated with 25µM MG132 and 100µg/ml CHX  for 0-6 

hrs . 

 

Figure A13. Inhibition of the mTOR signalling with 1.67µM Torin 1 suppresses both 

early and late stages of osteoclast differentiation. Differentiating RAW264.7 cells 

were treated with 1.67µM Torin 1 (mTOR signalling inhibitor) on either day 1, day 4 

or both day 1 and day 4. Cells were then fixed, stained for TRAP activity and scored 

for osteoclast-like cells (OCL) per well. Each bar represents the normalized mean 

±SEM of OCL per well from four samples, *p<0.05. 

 

Figure A14.  IκB-α expression in RAW264.7 cells after TNFα treatment. Optimising 

NFκB activation with 10, 25 and 50µg/ml TNFα for 30 – 60 minutes.  Bar chart shows 

results of the analysis of post-treatment IκBα expression in RAW264.7 cells. 
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