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Abstract

Temperature-rate-dependent thermoelasticity is a theory of thermoelasticity in
which the stress, entropy and heat flux are permitted to depend on the rate of
change of temperature and the temperature gradient as well as the usual variables
temperature and deformation gradient. This has the effect of introducing two re-
laxation times into the equations of thermoelasticity. Another important effect is
that heat now travels at a finite speed rather than the infinite speed implied by
the diffusion equation. In an isotropic temperature-rate-dependent thermoelastic
material it is found that four plane harmonic waves may propagate, two purely
elastic transverse waves and two longitudinal waves which are dispersive and at-
tenuated. All four waves are stable in the sense that their amplitude remains
bounded. An alternative theory that forces heat to travel at finite speed is gener-
alized thermoelasticity in which the rate of change of heat flux also appears in the
heat conduction equation, thereby introducing a relaxation time. Two different
methods of combining the effects of temperature-rate-dependent thermoelasticity
and generalized thermoelasticity are discussed and it is found that the transverse
waves are unaltered but that one or both of the longitudinal waves become unsta-
ble.
Keywords
Thermoelasticity, generalized thermoelasticity, second sound, harmonic waves, sta-
bility, two temperatures, two relaxation times.

1 Introduction

The theory of generalized thermoelasticity emerged over the last few decades to overcome
the drawback of classical thermoelasticity which predicts infinite speeds for thermal
disturbances. This is regarded as unrealistic from a physical point of view.

At present there are two different models of generalized thermoelasticity which are
being extensively used, both being modifications of the classical theory of thermoelastic-
ity. The first, proposed by Lord and Shulman [1], involves a modification of Fourier’s heat
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conduction equation by incorporating into that equation a term dependent on the rate
of change of heat flux. This introduces a relaxation time into the equations of thermoe-
lasticity. We refer to the Lord and Shulman [1] theory as generalized thermoelasticity.
The second model, proposed by Green and Lindsay [2], allows the stress, entropy and
heat flux to depend on the rate of change of temperature and the temperature gradient,
in addition to the temperature and deformation gradient. This has the effect of intro-
ducing two relaxation times into the equations of thermoelasticity. A noteworthy feature
of the Green and Lindsay [2] theory is that it preserves the classical Fourier equation
of heat conduction provided that the material has a centre of symmetry at each point.
Furthermore, it implies the symmetry of the heat conduction tensor. We refer to the
Green and Lindsay [2] theory as temperature-rate-dependent thermoelasticity.

In both of the above theories the hyperbolic-parabolic equations of classical thermoe-
lasticity are replaced by purely hyperbolic systems of equations in which all disturbances,
including thermal ones, propagate at finite speed. This extra wave propagating at finite
speed is known as second sound.

In his book on heat waves Straughan [3] discusses at length the theories of Lord
and Shulman [1] and Green and Lindsay [2], together with other theories involving the
finite-speed propagation of heat effects. The development of the second sound effect has
been reviewed also by Chandrasekharaiah [4].

Chandrasekharaiah and Keshavan [5] have introduced a certain linear combination
of the equations of classical thermoelasticity and temperature-rate-dependent thermoe-
lasticity in order to provide a unified system of governing equations which we shall ex-
plore as a possible model for generalized temperature-rate-dependent thermoelasticity.
Ignaczak [6], on the other hand, provides a model for isotropic generalized temperature-
rate-dependent thermoelasticity which is a rationally based combination of generalized
thermoelasticity and temperature-rate-dependent thermoelasticity in the isotropic case.
We generalize his results to the anisotropic case.

A small-amplitude wave form is said to be linearly stable if it remains of uniformly
bounded amplitude in the direction of propagation. In any material we might expect an
initial small disturbance either to decay to zero or remain bounded as time increases.
Thus we might regard the linear stability of wave forms as being a possible criterion for
physically reasonable response. Leslie and Scott have demonstrated the linear stabil-
ity of isotropic classical thermoelasticity [7, section 2] and also of isotropic generalized
thermoelasticity [8, section 2]. The former topic was discussed also by Chadwick [9].

The present work is a study of the wave stability of isotropic materials in the context
of temperature-rate-dependent thermelasticity and the two generalized thermoelasticity
theories that are mentioned above. In Section 2 we derive the secular equation for plane
harmonic waves in the temperature-rate-dependent thermoelasticity theory of Green
and Lindsay [2]. We find that there are two longitudinal waves and that both are
stable in the sense that they propagate with bounded amplitude. Similar calculations
are performed in Section 3 for Chandrasekharaiah and Keshavan’s [5] unified system of
governing equations, considered here as a possible model of generalized temperature-
rate-dependent thermoelasticity, but we now find that one longitudinal wave is stable
and the other unstable. Similarly, in Section 4 for Ignaczak’s [6] model of generalized
temperature-rate-dependent thermoelasticity we find that either one longitudinal wave
is stable and the other unstable or that both longitudinal waves are unstable. The final
section contains a discussion of our results.
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2 Temperature-rate-dependent thermoelasticity

The system of four field equations of linear classical thermoelasticity for a homogeneous
and anisotropic material is, see Chadwick [10],

c̃ijkluk, jl − βijθ, j = ρüi,

kijθ, ij − Tβiju̇i, j = ρcθ̇,
(1)

in which c̃ijkl are the isothermal elasticity tensor components, βij are the components of
the temperature coefficient of stress, kij are the components of the thermal conductivity
tensor, and c is the specific heat at constant deformation. The displacement components
uk and the temperature increment θ depend on position x and time t. The constants ρ
and T denote density and absolute temperature in the equilibrium state, respectively.
The superposed dot is a time partial derivative and ( ),j denotes the space partial deriva-
tive ∂( )/∂xj and the summation convention is applied over twice-occurring subscripts.

The system of field equations of linear temperature-rate-dependent thermoelasticity
for a homogeneous and anisotropic material is

c̃ijkluk, jl − βij(1 + α′1
∂
∂t

)θ, j = ρüi,

kijθ, ij − Tβiju̇i, j = ρc(1 + α′0
∂
∂t

)θ̇,
(2)

see Green and Lindsay [2] or Straughan [3]. The material constants α′1, α
′
0 are relaxation

times satisfying
α′1 ≥ α′0 ≥ 0, (3)

these inequalities coming from the second law of thermodynamics, see [2]. Taking α′1 =
α′0 = 0 reduces (2) to (1).

For an isotropic thermoelastic body the components c̃ijkl, βij and kij take the simple
forms

c̃ijkl = λ̃′δijδkl + µ̃′(δikδjl + δilδjk), βij = βδij, kij = kδij, (4)

in which λ̃′ and µ̃′ are the isothermal Lamé elastic moduli, δij denote the components
of the unit tensor, β is the scalar temperature coefficient of stress and k is the scalar
thermal conductivity. Inserting (4) into (2) gives the field equations for an isotropic
temperature-rate-dependent thermoelastic material:

(λ̃′ + µ̃′)uj, ij + µ̃′ui, jj − β(θ, i + α′1θ̇, i) = ρüi,

kθ, jj − Tβu̇j, j = ρc(θ̇ + α′0θ̈).
(5)

If β 6= 0 the displacements u and temperature increment θ are coupled together in these
equations. However, if β = 0 the system (5) decouples into (5)1, a hyperbolic system
of isothermal elastic wave propagation, and (5)2, the usual equation of heat conduction
with the addition of a relaxation time α′0.

2.1 The secular equation

Now we seek solutions of (5) in the form of harmonic plane waves

{ui, θ} = {Ui,Θ} exp {iω′(sn · x− t)} , (6)
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where ω′ is the angular frequency and n is the unit wave normal vector in the direction
of propagation, both of which are real constants. The amplitudes {Ui,Θ} and slowness
s are in general complex constants. The slowness s is the reciprocal of the (complex)
wave velocity v: s = 1/v. If a quantity Q has the x and t dependence of (6) then
derivatives of Q become simply products of Q:

Q, j = (iω′snj)Q, Q̇ = (−iω′)Q.

Inserting (6) into the momentum equation (5)1 and dividing by γ(iω′s)2, where γ is
a positive constant with the physical dimensions of stress, leads, after cancelling the
exponential factor, to the three propagation conditions

[(λ̃+ µ̃)ninj + (µ̃− w)δij]Uj + iω′−1s−1γ−1βni(1− iω′α′1)Θ = 0, (7)

in which we have defined

λ̃ =
λ̃′

γ
, µ̃ =

µ̃′

γ
, w =

ρs−2

γ
, (8)

the first two of which are dimensionless Lamé moduli and w is effectively a dimensionless
squared wave speed.

On inserting the harmonic plane wave forms (6) into the energy equation (5)2 and
dividing by γc(iω′s2) we find, after cancelling the exponential factor, that

ω′s−1
Tβ

γc
njUj +

{
iω′k

γc
+ w(1− iω′α′0)

}
Θ = 0. (9)

Eliminating Θ between equations (7) and (9) leads to{
(µ̃− w)δij +

[
λ̃+ µ̃+ ε

w(1− iωα1)

w(1− iωα0) + iω

]
ninj

}
Uj = 0, (10)

in which we have introduced the dimensionless quantities

ω =
ω′

ω∗
, α0 = α′0ω

∗, α1 = α′1ω
∗, ε =

Tβ2

ρcγ
, (11)

where ω∗ = γc/k has the physical dimensions of frequency. Then ω is a dimensionless
frequency and α0 and α1 are dimensionless relaxation times such that

ω′α′0 = ωα0, ω′α′1 = ωα1 and α1 ≥ α0 ≥ 0, (12)

the inequalities coming from (3). The thermomechanical coupling constant ε is a di-
mensionless measure of the degree of coupling between mechanical and thermal effects,
so-called because it vanishes with β.

The requirement that (10) should have non-trivial solutions for Uj, j = 1, 2, 3, leads
to the secular equation

det

{
(µ̃− w)1 +

[
λ̃+ µ̃+ ε

w(1− iωα1)

w(1− iωα0) + iω

]
n⊗ n

}
= 0, (13)
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where 1 denotes the unit tensor, n the wave normal vector and ⊗ the dyadic product of
vectors. We quote from [11, (A1)] the identity

det(A + αa⊗ a) = detA + αa ·Aadja, (14)

in which α, a and A are arbitrary quantities and adj denotes the adjugate of a matrix,
i.e. the transposed matrix of cofactors. Applying (14) to (13) gives the secular equation
in the form

det
{

(µ̃− w)1
}

+

[
λ̃+ µ̃+ ε

w(1− iωα1)

w(1− iωα0) + iω

]
n ·
{

(µ̃− w)1
}adj

n = 0. (15)

Because

det{(µ̃− w)1} = (µ̃− w)3 and n · {(µ̃− w)1}adjn = (µ̃− w)2 (16)

we can rewrite (15) in the form

(µ̃− w)2
[
λ̃+ 2µ̃− w + ε

w(1− iωα1)

w(1− iωα0) + iω

]
= 0. (17)

We now select a convenient value for the scaling parameter γ, namely,

γ = λ̃′ + 2µ̃′, so that λ̃+ 2µ̃ = 1, (18)

and the secular equation (17) becomes in fully non-dimensional form

(w − µ̃)2
[
1− w + ε

w(1− iωα1)

w(1− iωα0) + iω

]
= 0. (19)

The choice (18)1 of scaling parameter means that we are comparing all squared wave
speeds with the squared wave speed (λ̃′ + 2µ̃′)/ρ of purely elastic longitudinal waves in
an isothermal isotropic linearly elastic solid.

The secular equation (19) has the repeated root

w = µ̃ =
µ̃′

λ̃′ + 2µ̃′
(20)

which corresponds to two transverse non-dispersive purely elastic isothermal isotropic
waves unaffected by heat conduction. Since usually λ̃′ > 0 the dimensionless transverse
squared wave speed w = µ̃ is restricted by

0 < µ̃ <
1

2
(21)

as compared with the dimensionless isothermal longitudinal squared wave speed w = 1.
After expanding and rearranging the part within square brackets of equation (19)

we obtain the following form of the non-dimensional secular equation for longitudinal
waves in isotropic temperature-rate-dependent thermoelasticity:

w(w − 1− ε) + iω
1 + w(α1 − α0)

1− iωα1

(w − 1) = 0. (22)
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Upon multiplying by 1− iωα1 and collecting terms in w we obtain an alternative form
of the secular equation:

w2(1− iωα0)− w
[
1 + ε− iω(1 + α0 + εα1)

]
− iω = 0. (23)

This is a quadratic equation for the dimensionless squared wave speed w as a function
of the dimensionless frequency ω and the non-negative dimensionless constants α0, α1

and ε. As ω varies over 0 ≤ ω <∞ the two branches of the complex function w(ω) vary
over the complex plane. A wave form is said to be linearly stable if it remains uniformly
bounded in the direction of propagation. The condition for linear stability of these wave
forms is

Im w ≤ 0, (24)

for 0 ≤ ω <∞, see [12, (18)].
On taking α1 = α0 = 0, (23) reduces to the corresponding secular equation for clas-

sical thermoelasticity, see [9, (5)], which is discussed further at [7, (2.14)] and illustrated
in Figure 1. It is of interest to note also that on putting α1 = α0 in (23), and replacing
both by τ , there results the secular equation [8, (2.14)] of longitudinal waves in isotropic
generalized thermoelasticity. In this sense, then, it can be said that generalized thermoe-
lasticity is a special case of temperature-rate-dependent thermoelasticity. However, the
relevant underlying field equations of isotropic temperature-rate-dependent thermoelas-
ticity, namely (5) with α′1 = α′0 and both replaced by τ0, are different from those of
isotropic generalized thermoelasticity, see [8, (2.3)], even though the secular equations
are the same.

The roots of the quadratic equation (23) are given by

w0,1 =
z1 ∓ [z21 + 4iω(1− iωα0)]

1
2

2(1− iωα0)
, (25)

where
z1 = 1 + ε− iω(1 + α0 + εα1). (26)

If we put α0 = α1 = 0 in (25) and (26), we recover the two branches of w which
occur in the case of the classical thermoelasticity of an isotropic material, see [7, (2.15)].
Similarly, if we put α0 = α1 in (25) and (26) and replace both by τ , we recover the two
branches of w for isotropic generalized thermoelasticity, see [8, (2.15)].

The uncoupled case ε = 0. In this case, the roots of (23) reduce to

w0 =
−iω

1− iωα0

, w1 = 1, (27)

where w0 represents a purely diffusive mode and w1 represents an unattenuated, non-
dispersive longitudinal wave (a purely elastic mode). We can show that as ω varies over
positive values the branch w0 describes a semicircle in the lower half w-plane if α0 > 0
with centre at (1/2)α0 + 0i and radius (1/2)α0, as illustrated in Figure 2(a).
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2.2 Low frequency expansions

At zero frequency the roots (25) become, for ε > 0,

w0 = 0, w1 = 1 + ε, (28)

as is most easily seen by putting ω = 0 in (22). The points (28) are marked with a ×
on each part of Figures 1–4 and in each case mark the point ω = 0 at the beginning of
a mode.

Expanding (25) for small ω we find that

w0 =
−iω
1 + ε

+O(ω2). (29)

and that

w1 = 1 + ε− iωε
{
α1 − α0 +

1

1 + ε

}
+O(ω2). (30)

Equation (29) is a diffusive mode and equation (30) is an elastic mode. On putting
ω = 0 in both these equations we recover (28), as expected. Since α1 ≥ α0 we see that
both these branches have negative imaginary part and so are stable at low frequency.

2.3 High frequency expansions

Collect terms in iω in (23) together:

w(w − 1− ε)− iω
[
α0w

2 − (1 + α0 + εα1)w + 1
]

= 0. (31)

The roots of the secular equation (23) in the high frequency limit, as ω → ∞, may be
obtained by equating to zero the coefficient of iω in (31):

H(w) ≡ α0w
2 −

[
1 + α0 + εα1

]
w + 1 = 0.

We now need to determine the positions of the two zeros of H(w):

H(0) = 1 > 0,

H(1) = −εα1 < 0,

H(1 + ε) = −ε− ε(α1 − α0)− ε2(α1 − α0) < 0,

H(∞) =∞ > 0,

(32)

so that the equation H(w) = 0 has two real roots h̄1 and h̄2 satisfying

0 < h̄1 < 1 < 1 + ε < h̄2. (33)

These are the two real roots of the secular equation (31) in the high frequency limit.
They satisfy the quadratic polynomial

h̄(w) = (w − h̄1)(w − h̄2),

and we must have
H(w) ≡ α0h̄(w).
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The secular equation (31) may now be written as

w(w − 1− ε)− iωα0(w − h̄1)(w − h̄2) = 0. (34)

For ω sufficiently large the roots of (34) may be written as

w0 = h̄1 − iAω−1 +O
(
ω−2

)
and w1 = h̄2 − iBω−1 +O

(
ω−2

)
, (35)

where the constants A and B are to be determined. Substituting (35) into (34) gives

A =
h̄1
(
h̄1 − 1− ε

)
α0

(
h̄1 − h̄2

) > 0 and B =
h̄2
(
h̄2 − 1− ε

)
α0

(
h̄2 − h̄1

) > 0, (36)

the fact that A and B are positive coming from the inequalities (33). It follows from the
stability condition Im w ≤ 0 that both branches are stable in the high frequency limit.

We have shown that both branches are stable at both low and high frequencies and
we may further show that both are stable for all frequencies by considering (34) rewritten
as

w(w − 1− ε)
α0(w − h̄1)(w − h̄2)

= iω. (37)

For a branch to become unstable at some frequency ω satisfying 0 < ω < ∞ would
require w to be real at that frequency for then the branch would be passing from Im w <
0 to Im w > 0, see (24). But this is impossible as then (37) would be seeking to equate
a real number with a purely imaginary one. Thus both branches are stable for all
frequencies.

The high frequency limits h̄1 and h̄2 are marked with a ◦ in Figures 1–2 except that
h̄2 is infinite in Figure 1.

2.4 Intersection of branches

We see that in most of the plots of Figures 1 and 2 the branches w0(ω) and w1(ω) do
not intersect for any value of ω, the exceptions being parts (d) of each Figure. These
points of intersection correspond to a double root of the secular equation (23) which can
occur only when the term z1

2 + 4iω(1 − iωα0) in (25) vanishes. The vanishing of the
imaginary part of this quantity yields the relation

α0 + εα1 =
1− ε
1 + ε

(38)

between the parameters α0, α1 and ε, whilst the vanishing of the real part gives the
expression

ωc =
1 + ε√

(1 + α0 + εα1)2 − 4α0

=
1
2
(1 + ε)2√

1− α0(1 + ε)2
(39)

for the critical frequency ωc at which the point of intersection occurs, where (38) has
been used to eliminate εα1. For given α0 and α1, (38) may be regarded as a (quadratic)
equation for the critical value εc at which the point of intersection occurs.

Since α1 ≥ α0 ≥ 0 from (12)3, (38) shows that

0 ≤ εc ≤ 1.
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Taking εc = 0 in (38) forces α0 = 1 and ωc → ∞ in (39). In fact, if ε = 0 there can be
no points of intersection as is illustrated in Figures 1(a) and 2(a). If, on the other hand,
εc = 1 then (38) forces α1 = α0 = 0, the case of isotropic classical thermoelasticity, and
the point of intersection occurs at the frequency ωc = 2, as illustrated in Figure 1(d).
We may therefore conclude that at a point of intersection

0 < εc < 1. (40)

Because the right hand side of (38) is less than unity it follows that α0 must be selected
so that α0 < 1. For any positive choice of α0 such that α0 < 1 and any choice of α1 such
that α1 ≥ α0 it can be shown that (38) can be solved to give a value of εc satisfying
(40) and that these choices correspond to a point of intersection. This is illustrated in
Figure 2(d) in which for the choices α0 = 0.1 and α1 = 0.2 we find that εc ≈ 0.6310
corresponds to a point of intersection.

In the special case α0 = 0, solving (38) for εc and employing (39)2 gives

εc =
2

[(1 + α1)2 + 4α1]1/2 + 1 + α1

, ωc =
1

2
(1 + εc)

2, (41)

and this value of εc satisfies (40) for any choice of α1 > 0.

2.5 Numerical results

In Figures 1 and 2 the roots (25) are plotted as functions of frequency ω for fixed values
of ε, α0 and α1. In each subplot of Figures 1 and 2 there is a × at w = 0 and w = 1 + ε,
marking the low frequency limits, and a ◦ marks the high frequency limits.

In each figure the measure of the degree of thermoelastic coupling, ε, is varied between
the subplots for fixed values of α0 and α1. In all the subplots of Figures 1 and 2 we can see
that Im w ≤ 0, illustrating the linear stability of each branch of w(ω) as proved above.
Therefore, for isotropic classical thermoelasticity, in which α1 = α0 = 0, see Figure 1, and
also for isotropic temperature-rate-dependent thermoelasticity, in which α1 ≥ α0 > 0,
we see that both longitudinal modes are stable. Isotropic classical thermoelasticity is
discussed also in [7].

An infinite branch of w(ω) is one for which w → ∞ as ω → ∞. In Figure 1 we see
one finite branch and one infinite branch in each subplot. This occurs because α0 = 0
which leads to H(w) being linear in w, rather than quadratic, so that the second high
frequency root becomes infinite (i.e. h̄2 → ∞ as α0 → 0). We see that for ε = 0 the
left hand branch lies entire on the negative imaginary axis and so is is diffusive for all
frequencies and the right hand branch is elastic for all frequencies. This pattern persists
for ε > 0 small enough, see parts (b) and (c) of Figure 1. For larger values of ε the left
hand branch is diffusive for low frequencies but elastic for high frequencies and the right
hand branch is elastic for low frequencies but diffusive for high frequencies, see parts (e)
and (f) of Figure 1. The crossover point is at ε = 1 in part (d). This process is described
by Chadwick [9].

In Figure 2 both branches are finite. For low frequencies the branch beginning at the
origin is diffusive for all values of ε and both branches are elastic for high frequencies. For
ε small enough the branch beginning at the origin remains diffusive for all frequencies,
see parts (a)–(c) of Figure 2. For ε large enough the branch beginning at the origin
becomes elastic at high frequencies but the other branch is elastic at low frequencies and
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becomes diffusive at high frequencies, see parts (e) and (f) of Figure 2. The crossover
point is again in part (d) and corresponds to a point of intersection of the two branches
as discussed in the previous subsection.
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Figure 1: The longitudinal squared wave speeds of isotropic classical thermoelasticity.
For each part, α0 = 0, α1 = 0.
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Figure 2: The longitudinal squared wave speeds of isotropic temperature-rate-dependent
thermoelasticity. For each part, α0 = 0.1, α1 = 0.2.
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3 Generalized temperature-rate-dependent thermoe-

lasticity: Model 1

For linear generalized thermoelasticity the heat flux vector component qi is given by the
constitutive equation

(1 + τ ′0
∂
∂t

)qi = −kijθ, j, (42)

where τ ′0 > 0 is a relaxation time. This non-zero τ ′0 has the effect of leaving (1)1
unchanged but replacing (1)2 by

kijθ, ij = (1 + τ ′0
∂
∂t

)(Tβiju̇i, j + ρcθ̇), (43)

which is equivalent to

kijθ, ij − Tβij(u̇i, j + τ ′0üi, j) = ρc(θ̇ + τ ′0θ̈), (44)

see [13]. On taking τ ′0 = 0 we see that (42) reduces to the usual Fourier law of heat
conduction and that (44) reverts to (1)2.

Chandrasekharaiah and Keshavan [5] seek to combine the theories of temperature
dependent thermoelasticity and generalized thermoelasticity by considering the following
unified system of governing equations

c̃ijkluk, jl − βij(θ, j + α′1θ̇, j) = ρüi,

kijθ, ij − Tβij(u̇i, j + τ ′0üi, j) = ρc(θ̇ + α′0θ̈),
(45)

see [5, (2.3)]. The first equation is simply (2)1 of temperature-rate-dependent ther-
moelasticity and the second is an ad hoc amalgamation of (2)2 and (44) of generalized
thermoelasticity in which the second occurrence of τ ′0 in (44) has been replaced by
α′0. Putting τ ′0 = 0 reduces (45) to equation (2) of temperature-rate-dependent ther-
moelasticity. On the other hand, putting α′1 = 0 and α′0 = τ ′0 > 0 gives generalized
thermoelasticity but this involves taking α′1 < α′0 which contravenes inequality (3) of
temperature-rate-dependent thermoelasticity thus exposing the ad hoc nature of the
system (45). There is no choice of constitutive assumptions for stress, entropy and heat
flux which gives rise to the system (45). We shall refer to this system of equations as
generalized temperature-rate-dependent thermoelasticity: Model 1, though (45) was not
proposed as such a model by Chandrasekharaiah and Keshavan [5] .

Substituting the isotropic tensor components (4) into (45) gives the field equations
of isotropic generalized temperature-rate-dependent thermoelasticity: Model 1.

(λ̃′ + µ̃′)uj, ij + µ̃′ui, jj − β(θ, i + α′1θ̇, i) = ρüi,

kθ, jj − Tβ(u̇i, j + τ ′0üi, j) = ρc(θ̇ + α′0θ̈).
(46)

3.1 The secular equation

Now we look for solutions of (46) of plane harmonic type (6) by inserting (6) into (46)
and cancelling the exponential factors. Then divide (46)1 by γ(iω′s)2 to get[

(λ̃+ µ̃)ninj + (µ̃− w)δij

]
Uj + iω′−1s−1βni(1− iω′α′1)Θ = 0 (47)
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which is exactly the same as (7). From (46)2, on dividing by γc(iω′s2), we find that

ω′s−1
Tβ

γc
(1− iω′τ ′0)njUj +

{
iω′k

γc
+ w(1− iω′α′0)

}
Θ = 0, (48)

which replaces (9). Eliminating Θ between equations (47) and (48) leads to{
(µ̃− w)δij +

[
λ̃+ µ̃+ ε

w(1− iωα1)(1− iωτ0)
w(1− iωα0) + iω

]
ninj

}
Uj = 0, (49)

in which we have introduced the dimensionless quantities (11) as before together with
the further dimensionless relaxation time

τ0 = τ ′0ω
∗, such that ω′τ ′0 = ωτ0.

Equation (49) can be treated exactly as was (10) in the previous section to obtain the
non-dimensional secular equation

(w − µ̃)2
[
1− w + ε

w(1− iωα1)(1− iωτ0)
w(1− iωα0) + iω

]
= 0. (50)

in place of (19). On putting τ0 = 0 in (50), we recover (19), as expected. The two
transverse waves w = µ̃ in (50) are as at (20).

After expanding and rearranging the part within square brackets of equation (50)
we obtain an alternative form of the non-dimensional secular equation for longitudinal
waves in isotropic generalized temperature-rate-dependent thermoelasticity: Model 1.

w(w − 1− ε) + iω
1 + w{α1 − α0 + τ0(1− iωα1)}

(1− iωα1)(1− iωτ0)
(w − 1) = 0. (51)

This can be rearranged as a quadratic equation in w:

w2(1− iωα0)− w[1− iωα0 + ε(1− iωα1)(1− iωτ0)− iω]− iω = 0. (52)

The roots of this quadratic equation are given by

w0,1 =
z2 ∓ [z22 + 4iω(1− iωα0)]

1
2

2(1− iωα0)
, (53)

in which
z2 = 1− iωα0 + ε(1− iωα1)(1− iωτ0)− iω. (54)

The uncoupled case ε = 0. In this case, the roots (53) of (52) reduce to those of
the purely temperature-rate-dependent case, namely, equations (27). This explains why
Figures 2(a) and 3(a) are the same.
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3.2 Low frequency expansions

At zero frequency the roots (53) are again given by (28) for ε > 0, as is most easily seen
by putting ω = 0 in (51). These roots are marked × in Figure 3.

From (53) for small ω, we find that

w0 =
−iω
1 + ε

+O(ω2). (55)

and that

w1 = 1 + ε− iωε
{
α1 − α0 + τ0 +

1

1 + ε

}
+O(ω2). (56)

Equation (55) represents a diffusive mode and equation (56) an elastic mode. Both modes
are stable at low frequency. They should be compared with (29) and (30), respectively,
in the temperature-rate-dependent case.

3.3 High frequency expansions

The high frequency domain ω →∞ is explored by writing ζ = ω−1 in (52), multiplying
by ζ2 and collecting terms in powers of ζ to obtain

ζ2w(w − 1− ε)− iζ
[
α0w

2 − α0w − wε(α1 + τ0)− w + 1
]

+ wεα1τ0 = 0. (57)

The high frequency limit is taken by allowing ζ → 0. Putting ζ = 0 in (57) reduces it to

wεα1τ0 = 0

with roots
w0 = 0, w1 →∞, (58)

provided εα1τ0 > 0. Thus in Figure 3 parts (b)–(f) the origin is marked with a × and a
◦ as it is both a low and high frequency limit.

For small ζ these roots may be better approximated by

w0 = iAζ +O(ζ2), w1 = iBζ−1 + C +O(ζ). (59)

The constants A, B and C may be obtained by substitution into (57) to arrive finally
at the high frequency approximations

w0 =
iω−1

εα1τ0
+O(ω−2), w1 = − iωεα1τ0

α0

+
1 + α0 + ε(α1 + τ0)− εα1τ0/α0

2− α0

+O(ω−1).

(60)
It is clear that w0 is unstable and w1 stable in the high frequency limit.

In Figure 3 parts (b)–(f) we see that w1 →∞ in the lower half w-plane as ω →∞, as
is indicated by (60)2. Also in Figure 3 parts (b)–(f) we see that both branches are stable
at low frequency but one is stable and the other unstable at high frequency. Therefore
one branch changes from stable to unstable as ω increases. This is in contrast with
Figures 1 and 2 for which all branches are stable.
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3.4 Intersection of branches

Points of intersection of the branches of w(ω) correspond to double roots of the secular
equation (52). From its solution (53) we see that this secular equation has a double root
if and only if

D ≡ z22 + 4iω(1− iωα0) = 0,

where z2 is defined by (54).
Apart from the spurious root ω = 0, the vanishing of ImD gives the following

expression for the critical frequency ωc at which the branches intersect:

εα1τ0 ω
2
c = 1 + ε− 2

d
, (61)

where d is defined by
d = 1 + α0 + ε(α1 + τ0). (62)

The vanishing of ReD gives the equation

(1 + ε)2 − ω2
[
2(1 + ε)εα1τ0 + d2 − 4α0

]
+ ω4(εα1τ0)

2 = 0.

We now use (61) to eliminate ω2
c from this equation and eventually reduce it to

d[d(1 + ε)− 2](d2 − 4α0)− 4εα1τ0 = 0, (63)

which is quintic in ε as d is linear in ε. We regard (63) as a quintic equation (with
coefficients dependent on the parameters α0, α1, τ0) for the critical value εc of ε for
which the branches intersect. We now insert such a root εc of (63) into (61) to obtain
the critical frequency ωc at which the branches intersect.

This is illustrated in Figure 3(d) where for the parameter values α0 = 0.1, α1 = 0.2,
τ0 = 0.1, we find that the critical values giving a point of intersection are εc = 0.58 and
ωc = 2.00.
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Figure 3: The longitudinal squared wave speeds of isotropic generalized temperature-
rate-dependent thermoelasticity: Model 1. For each part, α0 = 0.1, α1 = 0.2, τ0 = 0.1.
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4 Generalized temperature-rate-dependent thermoe-

lasticity: Model 2

Following Ignaczak [6] in the isotropic case, we combine the heat-flux constitutive equa-
tion (42) of generalized thermoelasticity with the field equations (2) of temperature-rate-
dependent thermoelasticity to obtain the following field equations for the anisotropic
case

c̃ijkluk, jl − βij(θ, j + α′1θ̇, j) = ρüi,

kijθ, ij = (1 + τ ′1
∂
∂t

)(Tβiju̇i, j + ρc(1 + α′0
∂
∂t

)θ̇).
(64)

The relaxation time τ ′1 here plays exactly the same role as does τ ′0 in (42) and (43)
and the new notation is selected simply to differentiate between this section and the
previous one. If we take τ ′1 = 0 then (64) reverts to (2) of temperature-rate-dependent
thermoelasticity and if we take α′1 = α′0 = 0, (64) reverts to the equations of generalized
thermoelasticity, see [13].

4.1 The secular equation

Similarly to the two previous sections, by inserting (4) into (64) we will get the field equa-
tions of isotropic generalized temperature-rate-dependent thermoelasticity: Model 2.

(λ̃+ µ̃)uj,ij + µ̃ui,jj − β(θ + α1θ̇),i = ρüi,

kθ, ii − Tβ(u̇j,j + τ ′1üj,j)− ρc(θ̇ + (α′0 + τ ′1)θ̈ + α′0τ
′
1

...
θ ) = 0.

(65)

We now seek solutions of (65) in the form of plane harmonic waves (6) and follow the
same steps as in the previous sections to obtain the non-dimensional secular equation

(w − µ̃)2
[
1− w + ε

w(1− iωα1)(1− iωτ1)
w(1− iωα0)(1− iωτ1) + iω

]
= 0, (66)

in which τ1 = τ ′1ω
∗ is another dimensionless relaxation time. The two transverse waves

w = µ̃ are as before. If we take τ1 = 0 then (66) reverts to (19) of temperature-rate-
dependent thermoelasticity and if we take α′1 = α′0 = 0, (66) reverts to the equations of
generalized thermoelasticity, see [8].

After expanding and rearranging the part within square brackets of equation (66)
we obtain an alternative form of the non-dimensional secular equation for longitudinal
waves in isotropic generalized temperature-rate-dependent thermoelasticity: Model 2.

w(w − 1− ε) + iω
1 + w(α1 − α0)(1− iωτ1)

(1− iωα1)(1− iωτ1)
(w − 1) = 0. (67)

This can be rearranged as a quadratic equation in w:

w2(1−iωα0)(1−iωτ1)−w[(1−iωα0)(1−iωτ1)+ε(1−iωα1)(1−iωτ1)−iω]−iω = 0 (68)

with roots

w0,1 =
z3 ∓ [z23 + 4iω(1− iωα0)(1− iωτ1)]

1
2

2(1− iωα0)(1− iωτ1)
, (69)

where
z3 = (1− iωα0)(1− iωτ1) + ε(1− iωα1)(1− iωτ1)− iω.
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The uncoupled case ε = 0. In this case the roots (69) become, from (67),

w0 =
−iω

(1− iωα0)(1− iωτ1)
, w1 = 1, (70)

the latter corresponding to an unattenuated, non-dispersive longitudinal elastic mode.
On decomposing (70)1 into its real and imaginary parts w0 = u0 + iv0 we find on
eliminating ω that w0 describes the full circle(

u0 −
1

2(α0 + τ1)

)2

+ v20 =

(
1

2(α0 + τ1)

)2

(71)

in the complex w-plane as ω ranges over positive values, beginning at the origin (ω = 0)
and finishing also at the origin (ω →∞). The real axis is intersected at u0 = 1/(α0+τ1),
v0 = 0, corresponding to the frequency ω = 1/

√
α0τ1. This mode is diffusive for small ω

but becomes elastic as ω → 1/
√
α0τ1. For 0 ≤ ω ≤ 1/

√
α0τ1, w0 describes a semicircle in

the lower half w-plane and so represents a stable mode, whereas for 1/
√
α0τ1 < ω <∞,

w0 describes a semicircle in the upper half w-plane and so represents an unstable mode.
This is illustrated in Figure 4(a).

4.2 Low frequency expansions

At zero frequency the roots (69) are given once again by (28) for ε > 0, as is most easily
seen by putting ω = 0 in (67). These roots are marked × in Figure 4, in which the roots
(69) are plotted in the complex w-plane for various values of ε ≥ 0.

From (69) for small ω, we find that

w0 =
−iω
1 + ε

+O(ω2) (72)

and that

w1 = 1 + ε− iωε
{
α1 − α0 +

1

1 + ε

}
+O(ω2). (73)

These modes are identical to (29) and (30), respectively, in the temperature-rate-dependent
case and so both are stable at low frequency. The presence of the additional relaxation
time τ1 does not affect the low frequency results at O(ω).

4.3 High frequency expansions

We explore the high frequency domain ω →∞ by putting ω = 1/ζ in (68), multiplying
by ζ2 to obtain

w2(ζ − iα0)(ζ − iτ1)− w[(ζ − iα0)(ζ − iτ1) + ε(ζ − iα1)(ζ − iτ1)− iζ]− iζ = 0, (74)

and then taking the limit ζ → 0. Putting ζ = 0 in (74) reduces it to

w2 − w
(

1 + ε
α1

α0

)
= 0

with roots
w0 = 0, w1 = 1 + ε

α1

α0

, (75)
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both of which are marked ◦ in each part of Figure 4. Thus the origin is marked by both
× and ◦ in each part of the Figure.

For small ζ these roots may be better approximated by

w0 = iAζ +O(ζ2), w1 = 1 + ε
α1

α0

+ iBζ +O(ζ2). (76)

The constants A and B may be obtained by substitution into (74) to arrive finally at
the high frequency approximations

w0 =
iω−1

α0τ1

(
1 + ε

α1

α0

)−1
+O(ω−2), (77)

w1 = 1 + ε
α1

α0

+
iω−1εα1

α2
0τ1

(
1 + ε

α1

α0

)−1 [
1− τ1

(
1 + ε

α1

α0

)(
1− α0

α1

)]
+O(ω−2). (78)

Clearly the branch w0 is unstable as is illustrated in each part of Figure 4. The branch
w1 is stable provided

τ1 >

(
1 + ε

α1

α0

)−1(
1− α0

α1

)−1
. (79)

Thus for fixed values of α0, α1 and ε the branch w1 is unstable for τ1 small enough.
However, for τ1 = 0 the equations of this section reduce to those of temperature-rate-
dependent thermoelasticity for which all branches are stable.

The inequality (79) can be rewritten as

1 + ε
α1

α0

>
1

τ1

(
1− α0

α1

)−1
. (80)

Thus for fixed values of α0, α1 and τ1 the branch w1 could be unstable for ε small enough,
though if

τ1 >

(
1− α0

α1

)−1
the branch w1 is stable for all ε ≥ 0 . This is illustrated in Figure 4 where w1 is unstable
for ε < 1.5 and stable for ε > 1.5. In Figure 4(d), where ε = 1.5, the inequalities (79)
and (80) are satisfied as equalities (for α0 = 0.1, α1 = 0.2, and τ1 = 0.5) and so B = 0 in
(76)2, so that higher order terms in ζ must be considered in order to determine stability
or otherwise.

4.4 Intersection of branches

Points of intersection of the branches of w(ω) given by (69) occur when

D ≡ z23 + 4iω(1− iωα0)(1− iωτ1) = 0.

The vanishing of ImD gives the following expression for the critical frequency ωc at
which the branches intersect:

ω2
c =

(1 + ε)d1 − 2

d1e21 − 2α0τ1
, (81)

19



where d1 and e1 are defined by

d1 = 1 + α0 + τ1 + ε(α1 + τ1), e1 = (α0 + εα1)τ1. (82)

The vanishing of ReD gives

(1 + ε)2 − ω2[d21 + 2(1 + ε)e21 − 4(α0 + τ1)] + ω4e21 = 0,

which on eliminating ω using (81) gives an equation of eighth degree in ε (unless α1τ1 =
1/
√

2), a positive real root of which yields a value εc at which the two branches intersect
at the frequency ωc given by (81). This is illustrated in Figure 4(d) in which we see that
for α0 = 0.1, α1 = 0.2 and τ1 = 0.5 the branches intersect for εc ≈ 0.179.
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Figure 4: The longitudinal squared wave speeds of isotropic generalized temperature-
rate-dependent thermoelasticity: Model 2. For each part, α0 = 0.1, α1 = 0.2, τ1 = 0.5.
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5 Discussion

We saw in Section 2 that Green and Lindsay’s [2] theory of temperature-rate-dependent
thermoelasticity is linearly stable in the isotropic case, that is, the amplitude of an
initially small disturbance remains uniformly bounded in the direction of travel for all
time. Leslie and Scott have previously demonstrated the linear stability of isotropic
classical thermoelasticity [7, section 2], see also Chadwick [9], so that the present work
is an extension of these results. Furthermore, Leslie and Scott have demonstrated the
linear stability of isotropic generalized thermoelasticity [8, section 2] in which Fourier’s
law of heat conduction is replaced by (42), thereby introducing a relaxation time.

In Section 3, however, we saw that the model we proposed for generalized temperature-
rate-dependent thermoelasticity on the basis of Chandrasekharaiah and Keshavan’s [5]
unified system of governing equations is not linearly stable, one of the two longitudinal
waves being stable for all frequencies and the other unstable at high frequencies.

In any material we might expect an initial small disturbance either to decay to zero
or remain bounded as time increases. Thus we might regard the linear stability of wave
forms as being a possible criterion for physically reasonable response. We have seen that
both classical and generalized thermoelasticity possess this property and that Green
and Lindsay’s [2] theory of temperature-rate-dependent thermoelasticity also shares this
property. However, in Section 3 we saw that generalized temperature-rate-dependent
thermoelasticity: Model 1 does not possess this property. Therefore, we might conclude
that this is not a good physical model; this is hardly surprising as it is based on a system
of equations (47), see also [5, (2.3)], that has no physical basis.

In Section 4 we considered an alternative theory of generalized temperature-rate-
dependent thermoelasticity put forward originally by Ignacak [6] in which he combined
the field equations of temperature-rate-dependent thermoelasticity (46) with the heat
conduction equation (42) of generalized thermoelasticity. We saw that this procedure
too led to one or both of the longitudinal waves being unstable at high frequencies.
This is somewhat surprising as Ignacak’s theory is rationally based and was obtained in
exactly the same way that the (stable wave) theory of generalized thermoelasticity, see
[8], is obtained from the classical thermoelasticity equations (1) and the heat conduction
equation of generalized thermoelasticity (42). We cannot explain this lack of linear
stability in a theory that seems otherwise to be rationally based.
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