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Abstract		

Purpose: Diffusion MRI is frequently used to assess prostate cancer. The prostate consists of 

cellular tissue surrounding fluid filled ducts. Here, the diffusion properties of the ductal fluid 

alone were studied. Monte Carlo simulations were used to investigate ductal residence times 

to determine whether ducts can be regarded as forming a separate compartment and whether 

ductal radius could determine the ADC of the ductal fluid. 

Methods: Random walks were simulated in cavities. Average residence times were estimated 

for permeable cavities. Signal reductions resulting from application of a Stejskal-Tanner 

pulse sequence were calculated in impermeable cavities. Simulations were repeated for 

cavities of different radii and different diffusion times. 

Results: Residence times are at least comparable with diffusion times even in relatively high 

grade tumours. ADCs asymptotically approach theoretical limiting values. At large radii and 

short diffusion times, ADCs are similar to free diffusion. At small radii and long diffusion 

times, ADCs are reduced towards zero, and kurtosis approaches a value of -1.2.  

Conclusions: Restricted diffusion in cavities of similar sizes to prostate ducts may reduce 

ductal ADCs. This may contribute to reductions in total ADC seen in prostate cancer.  
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Introduction	

The use of quantitative diffusion MRI (Magnetic Resonance Imaging) for assessment of 

prostate cancer has been investigated by many groups [1-10]. Interpretation of these 

measurements is complicated by the structure of prostate tissue which consists of fluid filled 

ducts surrounded by epithelial and stromal cells. The radius of the ductal lumen seen in 

histological sections of the normal prostate is ~300 µm [11, 12] which is at least an order of 

magnitude greater than one dimensional Einstein diffusion distance of ~20 µm (assuming a 

diffusion time of 80ms, typical of clinical scanners, and diffusion coefficient of 3 µm2ms-1, 

similar to that of water [13, 14]). The residence time of a water molecule within ducts in 

normal prostate is therefore likely to be long compared with the diffusion time. 

Consequently, the ductal and cellular (i.e., epithelial plus stromal) spins will effectively 

reside in separate compartments and generate separate signals each with its own characteristic 

parameters. Although there are no direct experimental demonstrations of separate ductal and 

cellular compartments, the hypothesis is consistent with the observation of biexponential 

diffusion [3, 15] and T2 relaxation [16, 17]. Furthermore, the ADC of the fast diffusing (2-3 

µm2mm-1 [3, 15]) and long T2 (~500ms [16, 18]) components in the prostate are typical of 

fluids and much greater than values found in cellular tissue (ADC ~ 0.7 µm2mm-1 [19] and T2 

~80ms [20] in the brain, for example). (In the following we use ‘ADC’ to refer to any 

measured approximation of a diffusion coefficient, regardless of the equation used for 

fitting.) We therefore hypothesize that the biexponential signal components seen in DWI (and 

T2 relaxometry) of the prostate arise primarily from the glandular fluid and the cellular 

compartments.  

It is known from both hyperpolarized 3He studies in the lungs [21] and studies in porous 

media [22-24], that measured diffusion coefficients can depend strongly on the size of the 

cavity in which the studied molecule resides. Furthermore, Jensen et al. [25, 26] have given 

several examples where hindrance, compartmentalization and restriction lead to non-

Gaussian behaviour of diffusion. Analytical formulations of restricted diffusion inside 

cylindrical and spherical pores have previously been presented [27-30]. However, although 

the non-Gaussian nature of restricted diffusion was recognized in these studies, diffusion 

decays were assumed to be simple exponentials for simplicity. It is not clear that analytical 

solutions that include the effects of non-Gaussian diffusion are possible. Monte Carlo 

simulation is an alternative to analytical methods that is both easily extensible to non-



Gaussian distributions and also to complex geometries. Monte Carlo studies of restricted 

diffusion in two compartments [31] and in depth analysis of restricted diffusion [32] have 

already been published. However Monte Carlo simulation of diffusion in single 

compartments has not been published previously. 

This paper primarily considers diffusion within the ductal fluid alone. Although this is only 

one component of a complex tissue, it is necessary to understand the properties of each 

component individually before the overall diffusion properties of the prostate can be 

understood. We wish to answer three questions. 1) What are the residence times of water 

within the ductal lumen with the reduced radii seen in cancer; and hence, can the ductal fluid 

be treated as a separate compartment in cancer? 2) Could restricted diffusion within the 

ductal lumen determine the diffusion coefficient and kurtosis of the ductal fluid? 3) Are 

changes in ductal diameter that occur in cancer [11, 12, 33] sufficient to alter measured 

diffusion coefficient and kurtosis of the ductal fluid?  

The purpose of this study was therefore threefold. 

1. To estimate ductal radius in normal and cancerous prostate from figures obtained 

from histology texts. 

2. To use Monte Carlo simulations of permeable cavities to determine the relationship 

between permeability, cavity size and residence times; and to establish plausible 

limits to residence times. 

3. If the results of aim two justify the assumption of long residence times, to use Monte 

Carlo simulates of impermeable cavities to investigate the effect of cavity size on 

diffusion and kurtosis. The assumption of impermeable cavities greatly simplifies the 

simulations and has been adopted in previous studies [34]. 

Theory	

Residence	Times	

The ductal lumen can be considered a separate compartment from the surrounding epithelium 

and stroma if the residence times of water molecules inside are long compared with diffusion 

times [31]. Residence time is determined by ductal compartment size and geometry and the 

permeability of its boundaries, usually described in units of µms-1. Regan and Kuchel [35, 36] 



and Lee et al. [37] calculated the equivalent probability, p, of crossing upon hitting a barrier 

in random walk simulations: 

  
p =κ 6Δt

Dfree

 (1) 

where κ is permeability, Dfree is the diffusion coefficient in the absence of barriers, and Δt is 

the time step of the random walks. 

Diffusion	

The average distance moved by a freely diffusing spin in three dimensions is given by the 

Einstein diffusion equation [38] 

  
r = 6DfreeTD  (2) 

where Dfree is again the unrestricted diffusion coefficient or diffusion coefficient in very small 

times compared to the boundaries and TD is the time over which diffusion occurs. When the 

spin is constrained within a small cavity the apparent diffusion coefficient, D, will be 

reduced. From Eq. (2) it is clear that D is a function of the ratio, α, 

  
α =

rd
2

TD

 (3) 

where rd is the radius of the cavity. In other words, when diffusion times are long, spins 

diffuse further and reach the walls of relatively large cavities. Conversely, spins reach the 

walls of small cavities in short diffusion times. 

We expect the following asymptotic behavior of D 

0
lim

6
lim free

D

D D
α→

α→∞

α=

=
 (4) 

i.e., for very small α, all spins traverse the cavity many times and ADC is that for ; for 

very large α, most spins never reach the walls of the cavity and diffusion is effectively free. 

r = rd



When diffusion is restricted or the diffusion signal arises from more than one compartment, 

the probability density function, P(r), describing diffusional displacement becomes non-

Gaussian. The excess kurtosis, K, is the normalized the fourth moment of P [25, 26]: 

  

K =
r 4P(r)dr∫
r 2P(r)dr∫( )2 − 3

 
 (5) 

where r is displacement and the subtraction of 3 is conventionally applied to ensure that the 

kurtosis of a Gaussian is zero. For non-Gaussian P, K becomes non-zero. Kurtosis is a 

complex function that depends on tissue complexity and microgeometry, the disparity in 

diffusion coefficients between different tissue components and the degree of restriction [25]. 

In this study, kurtosis is only a function of the degree of restriction in the simulated 

component. When α is large, P is nearly Gaussian and K is close to zero. Conversely, when α 

is small, each molecule traverses the cavity many times, P becomes increasingly platykurtic 

(boxy) as it approaches a boxcar function for which it is simple to show from Eq. (5) that K = 

-1.2. Accordingly we expect the following asymptotic behavior of K: 

0
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K

K
α
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= −

=
.
 (6) 

Methods	

Ductal	Radius	

From histological studies [11, 12, 33] it is clear that ductal radius varies widely and differs in 

different grades of cancerous prostate. However, to our knowledge no estimates of radius 

have been published. We therefore measured radii in histology sections obtained from two 

different references [11, 12]. The histology sections were scanned and loaded into ImageJ 

V1.48 [39]. The lumen of individual ducts were segmented and the area measured. Radii 

were calculated assuming circular lumen (i.e., r A π=  where A is the lumenal area). A 

minimum of 20 different measurements were obtained for each figure from each source and 

the minimum, maximum and mean radii recorded. The process was performed on sections of 

normal peripheral zone, Gleason grades 3, 4 and 5, and a section with Gleason score 3+4. 



Residence	Times	

All simulations were performed in MATLAB Release 2013b (MathWorks, Natick, MA). 

Residence times were estimated from simulations similar of those of Regan and Kuchel [36] 

and Fieremans et al. [31]. Spins were placed randomly within spherical cavities and random 

walks simulated as follows. At each time step, the spin was moved a fixed distance Δr in a 

random direction. The length of Δr is determined by the unrestricted diffusion coefficient of 

the fluid, 

6 freeD tΔ = Δr   (7) 

where Δt, the step time, is TD divided by Ns, the number of steps in the simulation. For this 

study we assumed that Dfree was that of free water at 37°C (3.08 µm2ms-1) [13, 14]. Δt was 

25µs was used giving Δr  ≈ 0.65µm. 

If the step Δr took the spin beyond the boundary of the cavity a random number was drawn 

from a uniform distribution with minimum zero and maximum one. If this value as less than 

the assigned probability of crossing (Eq. (1)) then the spin was assumed to have exited and 

the total time to that point recorded. Otherwise, the spin was placed back at its previous 

position and randomly moved in a different direction at the next step. This approach has 

previously been shown to give similar results to the alternative of elastic reflection [40].  

This procedure was repeated for 1,000,000 spins and the mean of all times recorded as the 

mean residence time. 

The ductal lumen is surrounded by a single layer of epithelial cells with thickness of ~10 µm. 

[11, 12]. Crossing probability (Eq. (1)) requires an estimate of the permeability of this layer 

which has not be measured as far as we know. However, the permeability of cells walls has 

been estimated to be anywhere between 6 and 200 µms-1 [41-44]. This simulation was 

therefore performed with a somewhat conservative value, twice the maximum value found in 

cell walls, 400 µms-1.  With this permeability, the probability of a spin crossing the cavity 

wall on hitting it is 8.8% (Eq. (1)). 



Diffusion	

If residence times are long relative to diffusion times, then semi-permeable cavitites can be 

approximated by impermeable cavities. This approach has been used previously and greatly 

simplifies simulations [34]. Moreover, the probability that a spin crosses the boundary at a 

single collision is less than 10% even with high values of permeability (see above). Hence, 

even with permeable barriers diffusion is substantially impeded. We therefore believe the 

approximation is reasonable.  

Six different values of sphere rd (10, 20, 30, 40, 50, and 60µm) and 12 values of TD (40, 50, 

60, 64, 70, 80, 90, 100, 133, 150, 180 and 200 ms) were simulated to give a total of 27 

different values of α. This range of values gives a range of α such that predicted values of D 

range between zero and Dfree. Five different values of cylinder rd (10, 20, 30, 50 and 90µm) 

and 3 values of TD (50, 80 and 100 ms) were simulated to give a total of 12 different values 

of α. Cylinder height, z, was either two or four times the radius. Some values of α were 

simulated multiple times with different combinations of rd and TD.  

Spins were placed randomly in these cavities and 40,000 random walks generated as above 

for each cavity.  

Phase shifts caused by Stejskal-Tanner [45] PGSE gradients and hence the signal were 

calculated using Hall et al.’s [46] method. At each step, i, each spin accumulates a phase δϕi 

relative to spins at the zero point of the gradients 

.i tδϕ = γ ΔGr  (8) 

where γ is the gyromagnetic ratio, r is the position of the spin, G is the applied gradient and 

Δt is the time of each step. The signal from each spin is equal to the cosine of the final phase 

  
s = cos δϕii=1

Ns∑( )  (9) 

and total signal is the sum of the signals from all spins. This calculation was performed 

separately for x, y and z diffusion weighting gradients using the same trajectories. 

For the cylinders these calculations were performed in 15 different directions and averaged to 

nullify out directionality effects.  



Estimates of apparent diffusion coefficient and apparent diffusion kurtosis were obtained 

from the simulated signals as follows. Signals were simulated for 50 equally distanced b 

values using the same spin trajectories. The maximum b-value was dependent on α and 

ranged from around 500 s.mm-2 for very high αs to around 15000 s.mm-2 for very low αs. The 

following expression [25] was then fitted to the signals 

 
2 2

6( ) (0)
KD bbD
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=   (10) 

where D and K are the apparent diffusion coefficient and apparent diffusion kurtosis 

respectively. Three values of D and K were obtained for the x, y and z directions and 

averaged. 

Results	

Ductal	Radius	

Radius measurements obtained from the two different sources [11, 12] did not appear to 

differ substantially so were combined. There was considerable variability, possibly due to 

sectioning of ducts that are approximately cylindrical at a variety of angles. Nonetheless 

consistent reductions in diameter with increasing tumour grade are seen. Results are given in 

Table 1.  

Residence	Times	

Table 1 gives the estimates of residence times for ducts in tissues of different Gleason grades, 

assuming a high permeability value of 400 µms-1. These times are at least comparable with 

typical in vivo diffusion times at least up to Gleason score 3+4. The times are also somewhat 

greater than intracellular residence times measured for glioma cells (50 ms [47]), bovine optic 

nerve (62 ms [48]), and red blood cells (10-14 ms [49]).  

Diffusion	

Estimated values of D and K derived from the sphere and cylinder simulations are plotted 

against α in Fig. 1. Asymptotic values of D (Eq. (4)) are also plotted for the sphere as α 

approaches zero. Results are somewhat noisy due to the limited number of simulations run. 

However, simulation results agree very well with the expected asymptotes. At large α (i.e., 

large radii and/or shorter diffusion times), D approaches the free diffusion coefficient and 

kurtosis approaches zero. Conversely at small α (i.e., small radii and/or long diffusion times) 



D approaches zero and kurtosis approaches a value of -1.2, equal to that of a uniform 

distribution. As far as we are aware this is the first suggestion that negative values of kurtosis 

might be found in tissue. Values are similar for spheres and cylinders, particularly the small 

cylinders. This might be expected since diffusion distances in two out of the three directions 

(perpendicular to the axis of the cylinder) will be equal in cylinders and spheres. 

Fig. 2 gives a plot of D/Dfree and K against Gleason scores using measured radii (Table 1). 

Other parameters were TD = 80ms and Dfree = 3.08 µm2ms-1. 

Finally, to illustrate the effect of negative kurtosis, is plotted against the 

dimensionless product bD, for three different values of α in Fig. 3. (bD was chosen as the 

abscissa to emphasize the increase in relative size of the kurtosis effect at low α.) As α 

approaches zero, diffusion becomes increasing platykurtic and the signal drops relative to 

Gaussian diffusion.  

Discussion	and	Conclusions	

The biexponential behavior of both T2 [16, 17] and diffusion [3, 15] in the prostate has been 

experimentally demonstrated. Although other explanations exist for bi-exponential behavior, 

one possibility is the existence of two separate compartments with long spin residence times. 

We have hypothesized that these two compartments correspond to spins within the ductal 

fluid and the surrounding cellular tissue (stroma plus epithelium). This is consistent with two 

observations. First, the fast diffusion coefficient and long T2 are typical of fluids and much 

greater than seen in cellular tissues. Second, simple biophysical arguments show that spin 

residence times in ductal fluid are long in normal prostate because ductal diameter is much 

greater than diffusion distances. Panagiotaki et al. [50] have attributed biexponential behavior 

to slow exchange between intra- and extra-cellular water. However, biexponential T2s 

observed in other tissues are ~10 and ~80 ms [20] both much shorter than the long T2 seen in 

the prostate (~500 ms). Moreover, the residence times we have estimated for ductal lumen are 

rather greater that those observed for intracellular water [31, 47, 48]. It therefore seems 

probable that at least some (if not most) of the observed biexponential behavior should be 

attributed to separate ductal and cellular compartments. 

In normal prostate, ductal radii are an order of magnitude greater than diffusion distances. 

Ductal and cellular spins must therefore present as different compartments. In cancer, 

  ln S S0( )



however, ductal radii are much reduced and become comparable with diffusion distances at 

Gleason grade 5. Our simulations suggest that residence times in permeable ducts may also 

become comparable with diffusion times at about Gleason grade 3 or 4. Nonetheless, 

biexponentiality is still observed in cancer [3, 16]. It is quite possible that a second source of 

compartmentalization becomes dominant in cancer. However, it seems likely that ductal 

compartmentalization also contributes to the biexponential signals seen in cancer. 

The ductal volume in normal prostate has been measured histologically to be about 28% [51]. 

The observation of a short T2 signal fraction of 27% seen by Storas et al. [16] and 40% seen 

by Gilani et al. [17] is reasonably consistent with this figure. However, the fast diffusing 

signal fraction seen by Shinmoto et al. in vivo [3] and by Bourne et al. in fixed samples [52] 

were ~70%, much greater than would be expected from the histological volume. Some of this 

difference can be accounted for by greater spin density in ductal fluid relative to cellular 

tissue – the glandular fluid contains few solids so that water content is 100% whereas most 

soft tissues have a water content of about 75% [53, 54].  Some of the difference will be due to 

perfusing spins (the IVIM effect); and some to the effect of non-Gaussian diffusion in either 

compartment. However, Bourne et al. [52] also observed a fast diffusing component in fixed 

cellular tissues. Although the measured ADC of this component (1.56 µm2mm-1) was rather 

lower than that seen in pure ductal lumen (2.2 µm2mm-1) it seems likely that this also 

contributes to the fast component seen in vivo.  

Jensen et al. [25] suggested platykurtic diffusion may occur for restricted diffusion in pores 

but most previous reports (e.g., [55-60]) have suggested leptokurtic diffusion is the norm. 

However, these studies considered the net diffusion properties of tissues consisting of 

multiple tissue components with a variety of different water exchange rates. Results are 

therefore consistent with Jensen et al.’s [25, 26] finding of overall leptokurtic diffusion in 

tissues consisting of two exchanging Gaussian compartments. Similarly, Rosenkrantz et al. 

[9] found apparent leptokurtic diffusion for all the three compartments of the prostate as a 

whole but did not consider the possibility of biexponential diffusion which will mimic 

monoexponential diffusion with positive kurtosis over the range of b-values used (maximum 

2000 smm-2). The possibility of restricted, platykurtic diffusion may need to be taken into 

account in investigations of the net diffusion properties of tissues with different slowly 

exchanging compartments, e.g., between intra- and extra-cellular water fractions. 



The effect of compartment size on measured diffusion coefficient is recognized in 

hyperpolarized gas imaging of the lungs [21] where alveolar enlargement in emphysema 

explains increases in measured diffusion coefficient. The phenomenon is also well known in 

diffusion measurements in porous media [22-24] where cavity size is often explored using 

diffusion measurements at multiple values of TD. Here we have used Monte Carlo simulations 

to show that lumenal size may influence the measured diffusion coefficients of ductal fluid in 

the prostate. This finding is consistent with several recent studies of the prostate both in vivo 

and in vitro.  

First, Shinmoto et al. [3] observed biexponential diffusion in prostate tissue and found fast 

ADCs of 2.9 and 1.7 µm2ms-1 in healthy prostate and prostate cancer respectively. Their 

diffusion time is not given but TE was 91ms, so that TD would be around 80ms. With this TD 

an ADC of 1.7 µm2ms-1 corresponds to rd = 35µm (Fig. 1a). This is similar to the ductal radii 

we measured in tissues with Gleason scores between 7 and 8 (Table 1). 

Second, the measured fast diffusion coefficients has been shown to depend on diffusion time 

in ex vivo prostate samples [61] using either Gaussian or non-Gaussian biexponential fits. 

This time dependency and the dependency on cavity size are essentially the same phenomena 

viewed from different perspectives (see Eq. (3)) thus these findings are consistent with those 

presented here.  

Finally, Chatterjee et al. [62] recently showed that the relative volumes of the different 

prostate compartments is a determining factor in ADC measurements and, furthermore, that 

correlations between ADC and relative volumes were stronger than with cellularity.  

We have used Jensen et al.’s kurtosis framework to describe the non-Gaussian nature of 

restricted diffusion. Alternative equations, e.g., a stretched exponential [63], could also be 

used. However, the use of a stretched exponential is an essentially heuristic device with no 

easily interpreted connection with the underlying biophysics of diffusion. Although kurtosis 

cannot unambiguously be associated with any specific microstructural feature of the tissue, it 

does relate directly to the probability density function that describes diffusional motion. For 

this reason we prefer it as an analysis method. 

An association between lumenal radius and diffusion within the ductal fluid, if confirmed, 

would have a number of interesting implications. First, if D, K and the ductal signal fraction, 

fd are all well-defined functions of rd then an estimate of any one would allow estimation of 



the others, minimizing the number of b values required for measurement. Furthermore, fd 

could be estimated from biexponential T2 measurements (which can be somewhat easier to 

make) thus further simplifying measurement. Second, as recently discussed by Bourne [64], 

given the diffusion time dependency of measurements, it is important that future diffusion 

studies of the prostate should include this parameter and consequently that scanner 

manufacturers should include it in sequence specifications. Finally, by measuring 

biexponential ADCs as a function of diffusion time it might be possible to estimate ductal 

radius. Since duct size is a key determinant of Gleason grade this might improve the accuracy 

of cancer diagnosis and grading. Although this could be challenging, Shinmoto et al. [3] have 

previously measured reductions in the ADC of the fast diffusing component in cancer. 

There are a number of limitations to this study. Most obviously, it considers only one 

component of a complex system and ignores signals arising from the cellular (i.e., stromal 

plus epithelial) compartment. Development of a full model for the prostate incorporating 

signals from all compartments, and considering exchange between them, is the subject of 

ongoing research. Second, we have only considered a system in which the biexponential 

diffusion behavior of the prostate is due to compartmentization of spins between cellular 

tissue and ductal lumen. There is no direct evidence for this and other explanations are 

possible. However, we believe that we have demonstrated that such a system is plausible and 

largely consistent with the data. Third, simulations of restricted diffusion assumed 

impermeable spheres. This is an unrealistic approximation that, at first sight, invalidates the 

assumption that restricted diffusion occurs in the prostate ducts. However, even with high 

permeability assumed here, the probability of a spin crossing the barrier at an individual 

collision is less than 10%. Consequently, although diffusion is not strictly restricted, it is 

heavily impeded and ADC will be reduced as a result. However, the estimates of ADC and K 

presented here must be regarded as lower limits.  Fourth, it would be better to compare our 

results with tumours well characterized with post-surgical, whole-mount Gleason scores. 

Similarly it would be better to compare the simulations with diffusion measurements 

explicitly designed to estimate the full complexity of diffusion in the prostate. Again, this is 

the subject of ongoing research. Fifth, cylinders or spheres may not provide a realistic 

representation of lumenal ducts. However, our main objective was to demonstrate that 

diffusion within structures of size similar to that of the ductal lumen can demonstrate 

restricted diffusion and thus can determine measured Dd. Finally, the free diffusion 

coefficient of ductal fluid may be somewhat less than that of water as assumed here because 



of high protein concentration [65]. This would reduce the effect of changes in ductal radius 

on diffusion. However, the effect is unlikely to be large. 

Conclusion	

Restricted diffusion in cavities of similar sizes to prostate ducts may reduce ductal ADCs. 

This may contribute to reductions in total ADC seen in prostate cancer.  



Tables	

Table 1. Ductal radius for different Gleason grades and equivalent residence times assuming 

ductal permeability of 400 µms-1. 

 Ductal Radius 

Mean±SD (range) / µm 
Residence Time / ms 

Healthy PZ 300±120 (50-500) 2100 

Grade 3 65±36 (15-110) 130 

Score 3+4 45±24 (5-110) 70 

Grade 4 30±13 (5-50) 35 

Grade 5 20±8 (3-40) 21 

 	



Figure	Captions	

Figure 1.  Diffusion parameters derived by fitting Eq. (10) to simulated signals plotted as a 

function of α. Simulations were performed at six different radii with TD adjusted 

to provide the required value of α. a) D vs. α. The dotted line gives the asymptote 

for (α/6) from Einstein’s formula. b) K vs. α. 

Figure 2. D/Dfree and K of lumenal fluid predicted for different Gleason scores (normal 

peripheral zone = 1). TD = 80ms and Dfree = 3.08 µm2ms-1. 

Figure 3. Plot of ln(S/S0) vs. dimensionless parameter bD for α = 1, 10 and ∞ (i.e., free 

diffusion) corresponding to D = 0.15, 1.44 and 3.08 µm2mm-1 and K = -1.1, -0.42 

and 0. 
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