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Abstract Structures built on the sea shore, such as harbour walls and breakwaters,
are prone to damage by breaking waves. Such structures often need costly repairs
especially after winter storms. The consulting company H.R. Wallingford gives ad-
vice to clients who design, build and repair seawalls. H.R. continually seek theories,
models and simulations to predict the wave loads on coastal structures. Mathematics
helps account for the surprisingly large forces exerted by sea waves hitting seawalls.
A case is made for solving Laplace’s equation, with mixed boundary conditions, to
treat wave impact. Based on Euler’s equations of fluid dynamics, the theory accounts
for the high accelerations and pressures during the brief time of impact. We predict
a sudden change in the water-velocity field in the impacting wave. Also there is an
impulsive pressure field: the pressure-impulse is a useful concept and variable for an
engineer to understand the loads on a structure when hit by a breaking wave. Solv-
ing mathematical problems can unveil the mystery and drama of breaking waves
and splashes.

1 Introduction

Some of the most collaborative and creative times in my professional life have
been spent while trying to solve companies’ problems at European Study Groups
with Industry. Typically, on the Monday of a week-long Study Group, the company
presents a problem in physical terms, without any theory, and the question that the
company wants answered may be unclear, even after days of debate. On the Friday
each academic team gives a presentation to the company, after four days of wrestling
with formulating it as a set of mathematical statements, and maybe a solution too!
Always there are points for further mathematical exploration by the company. The
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company reps are usually delighted by the new ideas and progress made by the
mathematicians.

The UK company Hydraulics Research Wallingford (H.R.) is an international
industrial consultancy in areas such as ocean wave processes, flood risks, and the
design of structures in marine environments. As long ago as 1990 I first presented
my PhD research at a meeting at H.R. on wave forces. H.R.’s interest in my work
comes from their ongoing wish to have more realistic theories and computer simula-
tions to support the best engineering advice for clients designing or building coastal
structures. A typical concern is, what influence will a new structure have on the wave
regime at my site? Will the waves change, from just breaking benignly offshore, to
breaking against the structure? And if breaking-wave impact does occur, what ex-
treme forces might the structure have to withstand? See Fig. 1. In 1990 the standard
engineering reference manuals said little about impact pressures and recommended
testing laboratory-scale models of the structure. There were also peculiar observa-
tions at the sites of damaged structures – How can stone blocks in a seawall be
sucked out by waves? How can rubble from a damaged breakwater move seawards?

In recent years H.R. have been interested in wave impact forces on, and inside
complex structures. This is especially important when scaling-up measurements
from laboratory models to make a forecast at full-scale. We will find that apart
from the model equations, it is helpful to consider scaling the variables to identify
dimensionless numbers. These constants also help classify problems.

In §2 and §3 we develop the theory and formulation of the governing equations
and boundary conditions of Pressure-Impulse Theory. A solution relevant to the

Fig. 1 Sea-wave impact.
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company’s problem is worked out in §4. Lastly, §5 draws lessons from this chapter,
and contains other topics that you can explore.

2 Development of the Mathematical Model

We follow the theory presented in [2] and [3]. We assume the wave water is friction-
less (inviscid) and unsqueezable (incompressible) of fixed density ρ = 1000kg/m3.
The fluid flow is described by a velocity vector field v(x,y,z, t), where t is time and
x,y,z are a cartesian coordinate frame of reference fixed relative to the seawall and
sea bed. The positive x-axis is horizontal and at right-angles to the shoreline. The
positive y axis points vertically up. For a plane seawall the z-axis runs horizontally
along the seawall. From offshore, incoming waves can approach a seawall at any an-
gle, but we focus on the most violent impacts which occur when the wave’s forward
motion is directed normal to the seawall. We have a two-dimensional problem in the
x,y plane. (The following theory is valid in three spatial dimensions.) Acheson [1]
describes Euler’s equations of fluid flow, in terms of the velocity and the gradient ∇

of the pressure p(x,y, t):

∂v
∂ t

+(v·∇)v =− 1
ρ

∇p−gj, (1)

where g = 9.81ms−2 is the acceleration due to gravity. The wave water is incom-
pressible so its velocity v = ui+ vj+ wk has a constraint on its divergence (∇·):

∇ ·v = 0.
(

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0.
)

(2)

Next we scale eq. (1) to find the dimensionless constants. The incident wave has
a characteristic speed U , (e.g. the forward speed of the breaking wave face), and a
characteristic length scale h, (e.g. water depth, or height of the breaking wave). The
impact occurs in the time-interval 0≤ t ≤ ∆ t, where we expect ∆ t to be a very short
time scale compared with h/U . We define an impact to be an event for which the
dimensionless violence number Nv = h/(U∆ t), is large. We define dimensionless
starred variables: v =Uv∗, x = hx∗, y = hy∗, z = hz∗, t = t∗∆ t and p = p0 p∗,
where the constant p0 is chosen below. We substitute the new variables into eq. (1)
and find that

∂v∗

∂ t∗
+

U ∆ t
h

(v∗·∇∗)v∗ =− p0∆ t
ρUh

∇
∗p∗− g∆ t

U
j. (3)

During an impact the fluid acceleration (whose magnitude is U/∆ t in our scaling)
can be thousands of g. So the dimensionless number in the final term of (3), g∆ t/U
is very much less than one. Hence we neglect the influence of gravity. Another
dimensionless number, on the left of (3), is U∆ t/h = N−1

v , which is small, so the
nonlinear term in eq. (3) is also negligible. We only have two terms left to balance
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the equation. The first term balances the pressure gradient provided the latter has
coefficient equal to one. Consequently the pressure scaling is

p0 =
ρUh
∆ t

. (4)

Equation (4) is important, as it helps us appreciate the huge pressure scale. Let’s
choose some consistent values: U = 10ms−1, h= 10m and a guess that ∆ t = 0.1s.
Then p0 = 106 Nm−2, which is ten times atmospheric pressure.

We don’t need to guess a value for ∆ t, or calculate p0. The important theoretical
and practical point is that the pressure-impulse, roughly the product p0 ∆ t, goes with
a change in momentum. Equation (4) shows us that the scale of pressure-impulse is

p0 ∆ t = ρUh. (5)

In elementary mechanics, the impact of two snooker balls is treated using an im-
pulse – a vector consisting of an indefinitely large contact force multiplied by an
indefinitely small time ∆ t of contact. We do not care about the sizes of the large
force or the small time, because to compute the change in the two colliding balls’
momenta we only need the product of the force and time, and the same is suggested
by eq. (5). Next we show how to do impact mechanics for a fluid.

3 Pressure-Impulse Theory

Motivated by (5), first we define the pressure-impulse P(x,y,z):

P(x,y,z) =
∫

∆ t

0
p(x,y,z, t)dt. (6)

We return to dimensional variables, and neglect all the terms in eq. (1), except for
the first one on each side:

∂v
∂ t

=− 1
ρ

∇p. (7)

Now we integrate with respect to time, t ∈ [0,∆ t] and substitute from (6). The left-
hand side is transformed into the sudden change in velocity:

va(x,y,z)−vb(x,y,z) =−ρ
−1

∇P(x,y,z), (8)

where va is the velocity field at time ∆ t, just after impact, and vb is the velocity field
at time t = 0, just before impact. The subscripts b for ‘before’, and a for ‘after’, are
used throughout. Equation (8) will be useful later for finding va from vb after we
have obtained the pressure-impulse, P.

The divergence of eq. (8) is zero, owing to eq. (2). So, in two space dimensions,
eq. (8) implies that the pressure impulse P satisfies Laplace’s equation:
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∂ 2P
∂x2 +

∂ 2P
∂y2 = 0. (9)

The domain of eq. (9) is the specified fluid domain at t = 0.
Next we derive the boundary conditions for (9). On the water surface, where the

pressure is zero, eq. (6) ensures that P = 0 there too. Next, suppose that part of the
boundary of the fluid domain is a fixed impermeable surface, called B, with an out-
ward normal unit vector n. There are two possibilities:

(i) If fluid is in contact with B before impact then the impermeability condition en-
sures n ·va = 0 = n ·vb. Hence the n component of eq. (8) implies n·∇P = 0, and
we write this boundary condition as ∂P/∂n = 0, for short. The sea bed is one place
where this condition on boundary B applies.

(ii) A second possibility is, before impact the face of the wave approaches B with
a non-zero normal velocity component n ·vb. After impact the fluid stays on B
and flows tangentially to B. So n ·va = 0. Together these things imply that the n-
component of eq. (8) is n·∇P = ρn ·vb, and we write this boundary condition as

∂P/∂n = ρn ·vb, on B, (10)

on that part of the solid boundary B, that is struck by the fluid, and the RHS contains
given data. The normal velocity component of a breaking wave face is close to
the wave’s phase speed, which in shallow water of depth h is close to

√
gh. The

boundary-value problem for P = P(x,y,z) is now complete.
The problem is of mixed type in that P = 0 is a Dirichlet condition, at the free

surface, and ∂P/∂n given on B, is a Neumann condition on the solid parts of the
boundary. We next show what the theory can do with a simple solution of (9). It will
tell us a bit about the fluid dynamics when an idealised wave hits a vertical wall.

4 An Example Calculation with an Idealised Triangular Wave

We remove as much as possible of the complexity of a real breaking wave, and try
a geometry which is simple, but not too simple. We take a seawall that is vertical,
a sea bed that is flat, and a free surface that is a sloping straight line, as in Fig. 2.
The fluid domain is the interior of a right-angled triangle. The hypotenuse is the
free surface, set at an angle to the horizontal of π/8 radians (22.5o). The sea bed is
the x-axis (y = 0) between x = 0 and x = a, where a > 0 is a given constant. The
vertical wall lies at x = a, from y = 0 up to y = h, where h is the water depth at the
wall h = a tan(π/8) = (

√
2−1)a = 0.4142a.

On the bed the normal derivative ∂P/∂y = 0, and on the wall we suppose that
the wave face just before impact has a component in the direction n = i, normal to
the wall, of U(1− 3y2/a2), where U is a prescribed constant equal to the normal
component of velocity at the foot of the wall. From eq. (10) we find
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∂P
∂x

= ρU
(

1− 3y2

a2

)
0≤ y≤ h. (11)

We model U =
√

gh, where h is the water depth at the wall. This boundary data
is crafted to fit a simple solution of Laplace’s eq. (9). It describes a wave whose
forward face is in most violent impact with the foot of the wall, and smallest im-
pact velocity component (0.515U) at the top of the wall. (General boundary data is
treated in [3], [4].) We must also have P = 0 on the free surface, y = (

√
2−1)x.

A quick way to solve Laplace’s eq. (9) comes from the fact that the real (imag-
inary) part of an analytic function of a complex variable x+ iy is a solution. E.g. a
real constant k times Re{(x+ iy)4}. After fixing the value of k to satisfy eq. (11),
the pressure-impulse is

P(x,y) = (ρUh)
1

4a3h
(x4−6x2y2 + y4). (12)

You can check: ∂P/∂y = 0 on the bed at y = 0, and P = 0 on y = (
√

2−1)x.
Next we discuss the consequences of eq. (12). The contours of constant P(x,y)

are drawn in Fig. 3. The pressure-impulse has its global maximum value of 0.604ρUh
at the foot of the wall. As we go up the wall, P decreases to zero at the top, where
the free surface meets the wall.

The pressure-impulse at a point in the fluid can be converted to a pressure max-
imum with respect to time, from eq. (4). More useful to an engineer is the total
impulse I, exerted by the wave on the wall (per unit length of wall): I is the integral
of P from y = 0 to y = h, at x = a:

I = 0.4ρUh2. (13)

Formula (13) has a factor 0.4 – a pure number that depends on the shape of the
wave. Also I is directly proportional to density ρ and the impact speed U . More
interestingly, I increases as the square of the height h of the wave – if the wave is
3 times higher it delivers 9 times the punch! E.g. if h = 5m and U = 7m/s, then
I = 70,000Ns per metre length of wall. This is the same impulse delivered by a
5-tonne truck in a collision at 30miles per hour.

The velocity field just after impact va, is found from (8) in which we now know
P(x,y). We choose the water velocity just before impact vb, to be horizontal and
given. E.g. vb = U(1− 3y2a−2) i. Here vb is consistent with eq. (11). Taking the
gradient of expression (12), the velocity field just after impact is

va(x,y) =
U
a3

(
[a3−3ay2− x3 +3xy2]i+ y[3x2− y2]j

)
. (14)

We may evaluate this velocity anywhere in the fluid domain of Fig. 2. The velocity
at the free surface is obtained by setting y = xh/a = (

√
2− 1)x = 0.4142x. For

x : 0≤ x≤ a the velocity after impact is
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va(x,hx/a) =U
([

1−0.5147
x2

a2 −0.4853
x3

a3

]
i+1.172

x3

a3 j
)
. (15)

The upward, j, component is greatest at x = a, where the free surface meets the
wall, and the maximum is 1.17U . This is 2.4 times greater than the fluid’s speed
at this point just before impact. The velocity (15) describes the beginning of a jet,
that splashes up the wall. Equation (15) implies that after a short time ∆ t, the free
surface is near to y = 0.4142x+1.172U∆ t x3/a3.

Mathematical modelling shows what waves can do to a structure in terms that are
qualitative (what type?) and quantitative (how much?). This is the kind of theoretical
tool that H.R. seeks. Section 10 of [5] discusses the company’s use of the theory for
a harbour wall.

5 Conclusions and Further Explorations

When the violence number Nv = h/(U∆ t) is large, Pressure-Impulse Theory can
be used to find the sudden change in wave velocity. When Nv is large the gradient
of pressure-impulse balances the abrupt change in fluid momentum – snooker-ball
mechanics for fluids. Like the idea of impulse in particle mechanics, the pressure-
impulse P(x,y,z) is easier to handle than pressure, p(x,y,z, t). Another advantage
is that the domain is the initial position of the fluid domain. The pressure impulse
obeys Laplace’s equation, subject to mixed conditions. Once P has been found we
can then find the velocity just after impact and the total impulse on the wall. The
pressure-impulse theory is flexible. It estimates what waves can do at a particular
site, either to an existing structure or one in design. These insights aim to help H.R.
in discussions, computations and measurements.

Topics that you can investigate include the following. First, evaluate the impul-
sive moment about the foot of the wall. Secondly, find the volume of water that an
impact throws upwards and forwards over the seawall. (H.R. has an ongoing interest
in overtopping as it is a hazard to pedestrians and vehicles parked on top of harbour
walls.) Thirdly, model the fate of debris lost from damaged breakwaters. In Fig. 3
notice the horizontal gradient of pressure-impulse along the sea bed, from the max-
imum of P at the wall towards lower values of P near the origin. The fluid impulse
on a boulder on the bed is modelled in [2], [4]. Another topic of interest is when
the seawall is a row of caissons. Each caisson (box) moves due to an impulse, and it
slides until friction brings it to a stop. The displacement is proportional to the square
of the impulse.

You might try using Pressure-Impulse Theory in other situations. I have super-
vised project investigations of the skipping of stones thrown onto a water surface, in
the ancient game of Ducks & Drakes. The theory accounts for the repeated bouncing
of the stone – or of cannon balls achieved in 18th-century naval gunnery – a trick
that inspired Sir Barnes Wallis for his ‘bouncing bomb’!
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Fig. 2 Upper left: sketch of an approaching wave. Main: an idealised triangular wave at the start
of its impact against a vertical wall. The incident velocity field is prescribed so that the face of the
wave hits the wall at x = a.

Fig. 3 Contours of constant pressure-impulse P, in units of ρUh. The free-surface (hypotenuse) is
P = 0. The maximum P = 0.604ρUh, occurs at the foot of the wall.
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