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Abstract 
In designing economic evaluations alongside clinical trials, analysts are frequently faced with 

alternative methods of collecting the same data, the extremes being top-down (“gross 

costing”) and bottom-up (“micro-costing”) approaches. 

A priori, bottom-up approaches may be considered superior to top-down but are also more 

expensive to collect and analyse.  In this paper, we use value of information analysis to 

estimate the efficient mix of observations on each method in a proposed clinical trial. 

By assigning a prior bivariate distribution to the two data collection processes, the predicted 

posterior (i.e. preposterior) mean and variance of the superior process can be calculated 

from proposed samples using either process.  This is then used to calculate the preposterior 

mean and variance of incremental net benefit and hence the expected net gain of sampling.   

We apply this method to a previously collected dataset to estimate the value of conducting a 

further trial and identifying the optimal mix of observations on drug costs at two 'levels': by 

individual item (“process A”) and by drug class (“process B”).  We find that substituting a 

number of observations on process A for process B leads to a modest £35,000 increase in 

expected net gain of sampling (ENGS).  Drivers of the results are the correlation between the 

two processes and their relative cost.   

This method has potential use following a pilot study, to inform efficient data collection 

approaches for a subsequent full-scale trial.  It provides a formal quantitative approach to 

inform trialists whether it is efficient to collect resource use data on all patients in a trial, on 

a subset of patients only, or to collect limited data on most and detailed data on a subset. 
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1. Introduction 
In designing economic evaluations alongside randomised controlled trials, analysts are faced 

with alternative methods to collect the same data.  For example, hospitalisation costs can be 

estimated using time-and-motion studies and detailed measurement of all drugs dispensed, 

tests conducted and appropriate allocation of overhead costs; alternatively they can be 

approximated on a per-admission or per bed-day basis.  Drug costs can be estimated by 

quantifying exact consumption of every drug by every patient; alternatively they can be 

approximated based on recorded prescriptions of a particular drug or drug class and 

assumptions over dose and frequency.   

The two extremes are known as top-down or gross costing and bottom-up or micro-costing.  

The choice can, to a certain extent, be determined by the study question.  For example, in an 

economic evaluation comparing two surgical procedures, it would be appropriate to micro-

cost the index procedure.  However, resources may only permit a more top-down approach 

to costing other elements such as post-operative length of stay, readmission etc.  Indeed, 

the considerable effort required to accurately measure and value resource use has long 

been recognised,(1) and some quite dramatic reductions in the cost of projects as a result of 

careful scrutiny of trial logistics have been documented.(2, 3) 

There are numerous examples of comparisons of alternative approaches to collecting the 

same data (e.g.(4-13)), but very few attempts to quantify the cost-effectiveness of one 

approach compared with another, and thus to judge when a detailed approach is warranted 

or whether a more approximate approach is sufficient for purpose, releasing scarce research 

funds for greater benefit elsewhere.  One study that did consider the cost-effectiveness of 

research focused on a comparison of a prospective RCT versus a retrospective study 

design,(14) rather than on collecting specific (resource use) elements within a proposed RCT. 

In this paper we present an adaptation of the principles of value of information analysis (15-

18) to compare the expected return on investment from collecting data using one process 

compared with another.  The scenario we analyse is where a bottom-up data collection 

process is considered a priori superior to a top-down process, but is also more expensive.  

We apply the method and set it in context with a previously collected dataset by firstly 

predicting whether a repeat of the trial to further reduce decision uncertainty would be 

efficient, and if so, the optimal mix of observations on a specific parameter using two data 

processes (defined as the mix that maximises the expected return on investment).  
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2. Method 
In this section we present a narrative explanation of the principles followed by the algebra.  

We then describe the analyses to be presented in the results.  Appendices detailing all 

working are provided as online supplementary material.  A Microsoft Excel spreadsheet with 

all calculations is available on request from the corresponding author. 

2.1 Narrative explanation 

2.1.1 Value of information analysis 

Value of information analysis is a technique to predict the expected return on investment in 

research and is rooted within Bayesian statistical decision theory.(15, 19)  The Bayesian 

statistical approach of defining a prior and updating it with data to generate a posterior is 

known as posterior analysis.  Value of information analysis involves predicting the data 

based on the prior, which are then combined with the prior to generate a predicted 

posterior (or ‘preposterior’) distribution, and so is sometimes known as preposterior 

analysis.(15) 

Suppose a new intervention is proposed to replace an existing treatment.  Whether this 

represents an overall increase in health to an economy is determined by the (mean) 

incremental net benefit, which we denote ΔB.  This is a rearrangement of the incremental 

cost-effectiveness ratio(20) and if positive, the new intervention should be adopted; if 

negative, the existing treatment should be retained.  Decision makers are assumed risk 

neutral(21) and thus make adoption decisions on expected values only, irrespective of 

uncertainty.   

Decision uncertainty is represented by the (prior) probability distribution of ΔB, denoted 

f(ΔB)0 in Figure 1.  The mean is positive so the decision would be to adopt the new 

treatment.  However, the proportion of the probability mass to the left of the Y-axis shows 

that there is a probability (approximately 33% in this example, the sum of the two shaded 

areas) that ΔB is negative and a decision to adopt would be wrong.  The expected loss due to 

uncertainty is approximately the probability of being wrong multiplied by the average 

consequence of being wrong, (18)(22)   i.e. the absolute value of the area under the f(∆D)0 

curve from -∞ to zero.  Equivalently, this is the expected gain from eliminating that 

uncertainty, or the expected value of perfect information (EVPI). 

New information (e.g. a clinical trial, database analysis or survey) is expected to reduce the 

standard error of mean incremental net benefit and so will tighten the distribution around 
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the (updated) mean, yielding f(ΔB)1 in Figure 1.  The proportion of the probability mass to 

the left of the Y-axis will therefore decrease (dark shaded area) and thus reduce the 

expected loss (i.e. the predicted posterior EVPI will be less than the prior EVPI).  The 

expected reduction in the expected loss is the expected gain from a particular study, or the 

expected value of sample information (EVSI).  A larger study will provide more information 

than a smaller one, but also cost more.  The EVSI of a study of sample size n less the 

(expected) cost is the expected net gain of sampling (ENGS).  The predicted optimal sample 

size for a new study, n*, is that which maximises ENGS. 

It may be more efficient to concentrate data collection on one or more components of ∆B, 

such as health outcomes or some component of cost.  To calculate the ENGS of such a study, 

the expected reduction in standard error of that component from n observations is followed 

through to the expected reduction in standard error of ΔB (i.e. the expected reduction in 

parameter uncertainty is translated into an expected reduction in decision uncertainty).(18)  

The EVSI and ENGS are then calculated as before. 

2.1.2 Extension of principles to compare alternative data collection processes 

Pratt, Raiffa & Schlaifer provide an extension to these principles to compare two alternative 

data collection processes.(15)  We adapt their technique to the healthcare field as follows: 

Given a choice between a top-down and bottom-up approach to calculating a component of 

ΔB (for example incremental cost of drugs), the prior distribution of the two is assumed 

bivariate Normal.  Note the covariance provides information on the relationship between 

the two.  Such data could be obtained from a pilot study where both approaches (hereafter 

termed ‘data processes’) are observed in the same patient group, a review of the literature, 

or elicited from experts (e.g. (23, 24)).   

As stated, we assume the bottom-up process is superior to the top-down in that it is a more 

accurate measure of cost (that is, it provides the least biased estimate of the mean and the 

most appropriate characterisation of the dispersion of individual costs around the mean).   

We label the bottom-up process A and the top-down process B.  The estimate of (mean 

incremental) drug cost yielded from process A, Δ𝐶𝑑
𝐴 should be used in the calculation of ΔB 

as it is believed to be a ‘better’ estimate than that yielded from process B, Δ𝐶𝑑
𝐵 (the 

subscript ‘d’ refers to drugs).  Specifying a prior bivariate distribution allows one to 

determine how belief about Δ𝐶𝑑
𝐴 should be revised given information on Δ𝐶𝑑

𝐵 alone, or a 
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mix of information on Δ𝐶𝑑
𝐴 and Δ𝐶𝑑

𝐵.  In other words, given a reduction in standard error of 

Δ𝐶𝑑
𝐵 from n observations on Δ𝐶𝑑

𝐵, it is possible to predict the expected reduction in standard 

error of Δ𝐶𝑑
𝐴, which is then followed through to a predicted reduction in standard error of 

ΔB (i.e. reduction in decision uncertainty, Figure 2).  The EVSI and the ENGS of the proposed 

study can then be calculated.  This approach is repeated with combinations of sample sizes 

for observations on Δ𝐶𝑑
𝐴 and Δ𝐶𝑑

𝐵.  The ENGS-maximising combination is the optimal 

combination.  (Note that we assume that only one process is observed in each individual.  

This is a limitation of the method and is considered in the discussion.) 

2.2 Algebraic explanation 

This explanation comprises three sections. In the first, the basic model is set up linking prior 

data or expert beliefs explicitly to distributions of incremental net benefit and its 

components.  The second section explains the relationship between the two data collection 

processes for the incremental cost of drugs.  The final section briefly explains how the value 

of information statistics are calculated; more detailed explanations of these are available 

elsewhere e.g. (18, 25). 

2.2.1 Basic model: means, variance and covariance 

The objective is to maximise expected net benefit, which can be expressed as choosing the 

option with the highest expected net benefit, or where there are only two treatment 

options, choosing new treatment (T) in place of current practice (C) if the incremental net 

benefit of T compared with C is positive.  Define mean net benefit per patient in treatment 

arm j, Bj, as the value of mean health gain (QALYs gained, E, multiplied by the value attached 

to a QALY, λ), less the mean cost (equation [1]).   

𝐵𝑗 = 𝜆𝐸𝑗 − 𝐶𝑗          𝑗 = 𝑇, 𝐶 (𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑎𝑛𝑑 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) [1] 

Here, cost comprises just two components: cost of drugs, 𝐶𝑑
𝐴, and all other (non-drug) costs, 

Cn (equation [2]).  (The superscript ‘A’ is explained below).   

𝐶𝑗 = 𝐶𝑛,𝑗 + 𝐶𝑑,𝑗
𝐴           𝑗 = 𝑇, 𝐶 [2] 

Where individual patient data are available, mean costs and QALYs can be calculated directly 

(equation [3]).  Alternatively they may be based on a meta-analysis of existing data or expert 

beliefs (e.g. (23, 24)). 

𝑋𝑗 =
∑ 𝑥𝑖,𝑗

𝑛𝑗
𝑖=1

𝑛𝑗
          𝑗 = 𝑇, 𝐶;   𝑋 = 𝐸, 𝐶𝑛, 𝐶𝑑

𝐴;   𝑥𝑖 = 𝑒𝑖, 𝑐𝑛,𝑖, 𝑐𝑑,𝑖
𝐴 ;    𝑖 = 𝑝𝑎𝑡𝑖𝑒𝑛𝑡; 

[3] 
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𝐸𝑗 = mean QALYs in arm j,  

𝐶𝑛,𝑗 = mean non − drug costs in arm j,  

𝐶𝑑,𝑗
𝐴 = mean drug costs (using process A)in arm j; 

𝑒𝑖,𝑗 = QALYs gained by patient i in arm j, 

𝑐𝑛,𝑖,𝑗 = non − drug costs in patient i, arm j,  

𝑐𝑑,𝑖,𝑗
𝐴  = drug costs (using process A) in patient I, arm j. 

(Mean) incremental net benefit, ΔB, can be defined as the difference in (mean) net benefit 

between each course of action (BT and BC respectively; equation [4]).  Note that Equation [4] 

can also be derived from a rearrangement of the incremental cost effectiveness ratio (ICER).   

𝛥𝐵 = 𝐵𝑇 − 𝐵𝐶       𝑇 = 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 𝐶 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 [4] 

The variance of ΔB, v(ΔB) is therefore the sum of the variances of net benefit in each arm 

(equation [5]).   

𝑣(𝛥𝐵) = 𝑣(𝐵𝑇) + 𝑣(𝐵𝐶) [5] 

As net benefit in each arm is a linear function of cost and outcome, and cost is a linear 

function of drug and non-drug costs, the variances of each  are as per equations [6] and [7].   

𝑣(𝐵𝑗) = 𝜆2𝑣(𝐸𝑗) + 𝑣(𝐶𝑗) − 2𝜆𝐶𝑜𝑣(𝐸𝑗 , 𝐶𝑗)                   𝑗 = 𝑇, 𝐶 [6] 

𝑣(𝐶𝑗) = 𝑣(𝐶𝑑,𝑗
𝐴 ) + 𝑣(𝐶𝑛,𝑗) − 2𝜆𝐶𝑜𝑣(𝐶𝑑,𝑗

𝐴 , 𝐶𝑛,𝑗)          𝑗 = 𝑇, 𝐶 [7] 

As before, the variances and covariances can be calculated from trial data (Equations [8-9]) 

or estimated from meta-analyses and/or expert opinion.  We adopt the convention of a 

lower case letter denoting an individual observation whilst uppercase denotes the 

population mean.  Thus ei,j is the QALYs gained by patient i in arm j, whilst Ej is the mean 

QALYs gained per patient in arm j.  As such v(ej) is the sample variance of QALYs in arm j, 

whilst v(Ej) is the variance of the mean (Equation [8]).  It is of critical importance not to 

confuse these two, or their square roots (the standard deviation and standard error of the 

mean respectively). 

𝑣(𝑋𝑗) =
1

𝑛𝑗
.
∑ (𝑥𝑖,𝑗 − 𝑋𝑗)

2𝑛𝑗

𝑖=1

(𝑛𝑗 − 1)
          𝑗 = 𝑇, 𝐶;    𝑋 = 𝐸, 𝐶𝑛, 𝐶𝑑

𝐴;  𝑥𝑖,𝑗 =  𝑒𝑖,𝑗, 𝑐𝑛,𝑖,𝑗, 𝑐𝑑,𝑖,𝑗
𝐴 ;        

𝑖 = 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙; 𝑗 = 𝑎𝑟𝑚 

[8] 

𝐶𝑜𝑣(𝑋𝑗 , 𝑌𝑗) =
1

𝑛𝑗
.
∑ (𝑥𝑖,𝑗 − 𝑋𝑗)(𝑦𝑖,𝑗 − 𝑌𝑗)

𝑛𝑗

𝑖=1

(𝑛𝑗 − 1)
          𝑗 = 𝑇, 𝐶;    

[9] 
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{𝑋, 𝑌} = {𝐶𝑛, 𝐶𝑑
𝐴}, {𝐸, 𝐶} 

Inserting equation [6] into [5] provides an alternative expression for v(ΔB) as the sum of the 

variances of incremental cost and outcomes less twice the respective covariances (equation 

[10]).   

𝑣(Δ𝐵) = 𝜆2𝑣(𝐸𝑇) + 𝑣(𝐶𝑇) − 2𝜆𝐶𝑜𝑣(𝐸𝑇 , 𝐶𝑇) + 𝜆2𝑣(𝐸𝐶) + 𝑣(𝐶𝐶) − 2𝜆𝐶𝑜𝑣(𝐸𝐶 , 𝐶𝐶) 

= 𝜆2(𝑣(𝐸𝑇) + 𝑣(𝐸𝐶)) + 𝑣(𝐶𝑇) + 𝑣(𝐶𝐶) − 2𝜆(𝐶𝑜𝑣(𝐸𝑇 , 𝐶𝑇) + 𝐶𝑜𝑣(𝐸𝐶 , 𝐶𝐶)) 

= 𝜆2𝑣(Δ𝐸) + 𝑣(Δ𝐶) − 2𝜆𝐶𝑜𝑣(Δ𝐸, Δ𝐶) 

[10] 

Expressing the covariance  as the product of the correlation coefficient (ρ) and the standard 

errors (equation [11]) and with the subscript ‘0’ denoting the priors yields equations for the 

prior variance of incremental net benefit as a whole (equation [12]) and incremental cost 

specifically (equation [13]). 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝜌𝑋,𝑌 √𝑣(𝑋) √𝑣(𝑌) [11] 

𝑣(Δ𝐵)0 = 𝜆2𝑣(Δ𝐸)0 + 𝑣(Δ𝐶)0 − 2𝜆𝜌Δ𝐸,Δ𝐶,0√𝑣(Δ𝐸)0√𝑣(Δ𝐶)0 [12] 

𝑣(Δ𝐶)0 = 𝜆2𝑣(Δ𝐶𝑛)0 + 𝑣(∆𝐶𝑑
𝐴)

0
+ 2𝜆𝜌Δ𝐶𝑛,∆𝐶𝑑

𝐴,0√𝑣(Δ𝐶𝑛)0√𝑣(∆𝐶𝑑
𝐴)0 

[13] 

Note that there are five parameters to 𝑣(Δ𝐵)0 (equations [12-13]): not only 𝑣(Δ𝐸), 𝑣(Δ𝐶𝑛), 

and 𝑣(∆𝐶𝑑
𝐴), but also ρΔE,ΔC and ρΔ𝐶n,Δ𝐶𝑑

𝐴, information on any of which could be used to 

revise the variance of ΔB to its posterior, 𝑣(Δ𝐵)1. 

2.2.2 Defining the relationship between the alternative data collection processes and 

calculation of predicted posteriors (preposteriors) following proposed data collection. 

Now assume that process B, qualitatively inferior to A, is available to estimate the 

incremental cost of drugs.  Call this ∆𝐶𝑑
𝐵.  Given prior belief that A is ‘superior’, ∆𝐶𝑑

𝐴 should 

be used in the calculation of ∆B.  However, knowledge of the relationship between ∆𝐶𝑑
𝐴 and 

∆𝐶𝑑
𝐵 allows revision of beliefs about ∆𝐶𝑑

𝐴 in the light of information on ∆𝐶𝑑
𝐵.  The logic is as 

follows: 

The prior expectations and variance/covariance matrix (of the means) are in Equation [14].   
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𝐸 [
∆𝐶𝑑

𝐴

∆𝐶𝑑
𝐵] = [

∆𝐶𝑑,0
𝐴

∆𝐶𝑑,0
𝐵 ] , 𝑉 [

∆𝐶𝑑
𝐴

∆𝐶𝑑
𝐵] = [

𝑉(∆𝐶𝑑
𝐴)

0
𝐶𝑜𝑣(∆𝐶𝑑

𝐴, ∆𝐶𝑑
𝐵)0

𝐶𝑜𝑣(∆𝐶𝑑
𝐴, ∆𝐶𝑑

𝐵)0 𝑉(∆𝐶𝑑
𝐵)

0

] 
[14] 

 Suppose some data were to be collected on ∆𝐶𝑑
𝐴 and ∆𝐶𝑑

𝐵.  The sample means, denoted 

∆𝐶𝑑,𝑠
𝐴  and ∆𝐶𝑑,𝑠

𝐵  with sample sizes nA and nB respectively, have expectations and 

variances/covariances as per Equation [ 15], where 𝑣(∆𝑐𝑑
𝐴)𝑠 𝑛𝐴⁄  and 𝑣(∆𝑐𝑑

𝐵)𝑠 𝑛𝐵⁄  are the 

variances of the means estimated from the sample data according to equation [8] (note the 

lower case ‘c’ denoting the sample variance). 

𝐸 ([
∆𝐶𝑑,𝑠

𝐴

∆𝐶𝑑,𝑠
𝐵 ]| [

∆𝐶𝑑
𝐴

∆𝐶𝑑
𝐵]) = [

∆𝐶𝑑,0
𝐴

∆𝐶𝑑,0
𝐵 ] ,

𝑉 ([
∆𝐶𝑑,𝑠

𝐴

∆𝐶𝑑,𝑠
𝐵 ]| [

∆𝐶𝑑,0
𝐴

∆𝐶𝑑,0
𝐵 ]) = [

𝑣(∆𝑐𝑑
𝐴)𝑠 𝑛𝐴⁄ 0

0 𝑣(∆𝑐𝑑
𝐵)𝑠 𝑛𝐵⁄

] 

[15] 

The objective is to combine [15] with [14] to estimate the preposterior distributions.  Given 

the bivariate Normal distribution, this is achieved as follows (notation adapted from Pratt, 

Raiffa & Schlaifer(15)): 

1. Define H' as the inverse of the prior var/covar matrix (Equation [ 16]) 

𝑯′ = [
𝐻11

′ 𝐻12
′

𝐻21
′ 𝐻22

′ ] = [
𝑣(∆𝐶𝑑

𝐴)
0

𝐶𝑜𝑣(∆𝐶𝑑
𝐴, ∆𝐶𝑑

𝐵)0

𝐶𝑜𝑣(∆𝐶𝑑
𝐴, ∆𝐶𝑑

𝐵)0 𝑣(∆𝐶𝑑
𝐵)

0

]

−1

 

=
1

𝑣(∆𝐶𝑑
𝐴)0𝑣(∆𝐶𝑑

𝐵)0 − 𝐶𝑜𝑣(∆𝐶𝑑
𝐴, ∆𝐶𝑑

𝐵)0
2 [

𝑣(∆𝐶𝑑
𝐵)

0
−𝐶𝑜𝑣(∆𝐶𝑑

𝐴, ∆𝐶𝑑
𝐵)0

−𝐶𝑜𝑣(∆𝐶𝑑
𝐴, ∆𝐶𝑑

𝐵)0 𝑣(∆𝐶𝑑
𝐴)

0

] 

[16] 

 

2. Define H as the matrix of 1 over each component of Equation [15] (i.e. the precision 

matrix, Equation [17]) 

𝑯 = [

𝑛𝐴
𝑣(∆𝑐𝑑

𝐴)𝑠
⁄ 0

0
𝑛𝐵

𝑣(∆𝑐𝑑
𝐵)𝑠

⁄
] 

[17] 

 

3. Define H'' as the sum of H' and H (Equation [18]) 

𝑯′′ = 𝑯′ + 𝑯 = [

𝐻′11 +
𝑛𝐴

𝑣(∆𝑐𝑑
𝐴)𝑠

⁄ 𝐻′12

𝐻′21 𝐻′22 +
𝑛𝐵

𝑣(∆𝑐𝑑
𝐵)𝑠

⁄
] 

[18] 
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The posterior variance/covariance matrix is the inverse of H''. The posterior distribution is 

summarised in Equations [ 19] and [ 20], where m is the matrix of sample means from each 

data process (Equation [ 21]). 

[
∆𝐶𝑑,1

𝐴

∆𝐶𝑑,1
𝐵 ] = 𝑯′′−1

(𝑯′ [
∆𝐶𝑑,0

𝐴

∆𝐶𝑑,0
𝐵 ] + 𝑯𝒎) 

[19] 

𝑽′′ = [
𝑣(∆𝐶𝑑

𝐴)
1

𝐶𝑜𝑣(∆𝐶𝑑
𝐴, ∆𝐶𝑑

𝐵)1

𝐶𝑜𝑣(∆𝐶𝑑
𝐴, ∆𝐶𝑑

𝐵)1 𝑣(∆𝐶𝑑
𝐵)

1

] = 𝑯′′−1 
[20] 

𝒎 = [
∆𝐶𝑑,𝑠

𝐴

∆𝐶𝑑,𝑠
𝐵 ] 

[ 21] 

 

Equations [16-21] thus show how the preposterior mean and variance of the bivariate 

Normal parameters are calculated after proposed collection of (nA, nB) observations on each 

process respectively.   

2.2.3 Value of information statistics 

The predicted posterior mean and variance of process A (∆𝐶𝑑,1
𝐴  in equation [19] and 

𝑣(∆𝐶𝑑
𝐴)

1
 of equation [20] respectively) are used to calculate the predicted posterior mean 

and variance of ΔB (equations [12] and [13]), and thence the ENGS, defined as the EVSI less 

the cost of sampling (Equation [22]).  The EVSI is calculated using the unit Normal linear loss 

integral (UNLLI, Equations [23] to [25]).  The UNLLI is explained in greater detail elsewhere, 

(18, 25) but briefly, this simply calculates the difference in expected loss between the prior 

and predicted posterior distributions of ΔB and can be used where ΔB is normally distributed 

and loss is linear in ΔB.   

The total cost of sampling is conventionally simplified to a variable per-patient cost for each 

data process, ks,A and ks,B respectively, plus a fixed cost, Ks (incurred if either nA or nB are 

greater than zero), plus the expected opportunity loss of patients enrolled into the inferior 

arm of the study (Equation 26).  Calculating for a range of values of nA and nB, identifies the 

combination yielding the highest ENGS. 
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𝐸𝑁𝐺𝑆𝑛𝐴,𝑛𝐵
= 𝐸𝑉𝑆𝐼𝑛𝐴,𝑛𝐵

− 𝑇𝐶𝑛𝐴,𝑛𝐵
 [ 22] 

𝐸𝑉𝑆𝐼𝑛𝐴,𝑛𝐵
= (𝑁 − 2(𝑛𝐴 + 𝑛𝐵)). √𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛) 

[23] 

 

𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛)

= 𝜙 (
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

)

−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

[Φ (−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

) − 𝐼{∆𝐵0 < 0}] 

𝜙(x)= standard Normal pdf evaluated at x,  

Φ(x) = standard Normal cdf evaluated at x. 

[24] 

𝑣(∆𝐵)𝑠,𝑛 = 𝑣(∆𝐵)0 − 𝑣(∆𝐵)1 

                   = 𝑣(∆𝐵)0 −
𝑣(∆𝑏)

𝑛0 + (𝑛𝐴 + 𝑛𝐵)
 

                   = 𝑣(∆𝐵)0 − (
𝑣(∆𝑏)

𝑣(∆𝑏)
𝑣(∆𝐵)0

+ (𝑛𝐴 + 𝑛𝐵)
) 

                   =  𝑣(∆𝐵)0 − (
1

𝑣(∆𝐵)0
+

(𝑛𝐴 + 𝑛𝐵)

𝑣(∆𝑏)
)

−1

 

[25] 

𝑇𝐶 =  [𝑘𝑠𝐴𝑛𝐴 + 𝑘𝑠𝐵𝑛𝐵 + 𝐾𝑠𝐼{𝑛𝐴 > 0 ∪ 𝑛𝐵 > 0} + (𝑛𝐴 + 𝑛𝐵)|∆𝐵0|]   [26] 
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2.3 Analyses and layout of results 

The ultimate objective is to identify the optimal mix of top-down and bottom-up 

observations to collect drug costs, that is, the mix that maximises the expected return on 

investment, as part of any future study.  However we set this in context by also presenting 

standard value of information analyses on other components of ΔB.  This is then broadened 

to identify the overall optimal number of observations on each drug cost process, as well as 

other parameters (non-drug costs and QALYs gained), thus providing a decision analytic 

approach to overall trial design.  Therefore, we report the following: 

i. Value of information analysis for a repeat of the subject trial. 

Analysis of uncertainty in ∆B and standard value of information analysis (reporting the EVPI, 

EVSI and optimal sample size of a trial reporting ∆B and collecting all data on all patients). 

ii. Value of information analysis for studies collecting one component of data alone. 

We report analyses pertaining to studies collecting (a) incremental QALYs and (b) 

incremental cost alone.  We then sub-divide cost into two individual studies collecting (c) 

incremental non-drug costs (Δ𝐶𝑛 )  and (d) incremental cost of drugs (Δ𝐶𝑑
𝐴) alone. 

iii. Comparison of value of alternative data collection processes on drug costs. 

This is the key analysis of the paper.  Here we introduce the top-down ‘process B’ for 

collecting drug costs and report the efficient mix of observations between the two measures 

of drug costs (i.e. nA and nB observations on  Δ𝐶𝑑
𝐴 and  Δ𝐶𝑑

𝐵 respectively.). 

iv. Overall efficient design of a future trial 

The efficient numbers of observations on Δ𝐶𝑑
𝐴, Δ𝐶𝑑

𝐵, non-drug costs (Δ𝐶𝑛) and QALYs (∆𝐸)  

are determined simultaneously in this analysis using a Nelder-Mead search algorithm,(26) 

providing an overall efficient ‘portfolio study’.(27) 
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2.4 Data 

Full details are provided in Appendix 1.  Briefly, data are taken from a study of 359 patients 

randomised to leukotriene receptor antagonists versus conventional treatment in asthma 

patients in a UK setting (the ‘ELEVATE’ study).(28, 29)  The data were divided into drug and 

NHS-non drug costs and QALYs gained at two years.  For illustrative purposes, ΔB was 

calculated at a threshold of £5000 per QALY.   

Drug costs were originally calculated in a bottom-up manner at individual preparation level, 

based on actual quantities of drugs prescribed.  To simulate a ‘top down’ approach, the cost 

for each datum was recalculated at the BNF chapter section level, using aggregate cost per 

prescription as reported in the Prescription Cost Analysis 2005.(30)  Therefore every patient 

had two estimates of drug costs, one based on actual prescribed doses of drugs and the 

other an approximation aggregated at the BNF section level.  We define process A as the 

drug costs estimated using actual prescribed doses, and process B as the approximation 

aggregated at BNF section level. 

The resulting summary statistics are in Tables 1-2.  At a willingness to pay for a QALY of 

£5000 and using process A for drug costs, incremental net benefit is £56.41.  The adoption 

decision would therefore be in favour of intervention.   

As process ‘A’ is considered superior to ‘B’, estimates of mean ΔB are based on data from 

process A.  Nevertheless, for the purpose of illustration, recalculating the results using 

process B yields an incremental net benefit of -£130.86.  Using these data the adoption 

decision would be in favour of control (Table 1).   

The population who could benefit from the information is 524,380 (Appendix 1).  The fixed 

cost of sampling is £1,305,470, with a variable cost of £288.58 per patient to collect all data 

components (QALYs, non-drug and drug costs, Appendix 1).  We assume a per patient 

variable cost of £192.19 for a trial collecting solely QALY or cost data (2/3rds the full cost), 

£96.19 for one collecting data on either non-drug cost or drug cost data alone (1/3rd) and 

£9.62 for one collecting only drug cost data using process B (1/10th the cost of process A).  

These costs are assumptions based on the authors’ opinions and experience as to the 

relative research effort required to collect and analyse the data.   
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3. Results 
Full details for all analyses are in Appendix 2, boxes A2.1-12, and summarised in Table 3.  

Additional figures are in Appendix 3.  

3.1 Value of information analysis for a repeated trial 

As reported in the description of the data, prior mean incremental net benefit is £56.41 with 

a standard error of £217.15 (Table 1 and 2, Figure A3.1a).  The population EVPI is £32.2m 

(Table 3, Box A2.1).  The ENGS-maximising sample size is a trial enrolling 2,277 patients per 

arm yielding an ENGS of approximately £27.3m (Box A2.2, Figure A3.1b & Table 3).  Thus the 

efficient sample size of a repeat of the trial reporting incremental net benefit as its outcome 

is 2,277 per arm. 

3.2. Value of information analysis of four separate studies reporting incremental QALYs, 

incremental cost, incremental non-drug cost and incremental drug cost alone 

The expected value of eliminating uncertainty in outcomes (QALYs) alone (i.e. EVPPIQALYs) is 

£29.2m, and in cost, £6.759m (Boxes A2.3, A2.5 respectively and Table 3).  Optimal sample 

sizes of trials just collecting QALYs or Cost are 2,473 and 1,585 per arm respectively (Box 

A2.4, Figure A3.2a & Box A2.6, Figure A3.2b respectively & Table 3). 

Further dividing costs into non-drug and drug costs, the EVPPI is £3.943m and £3.433m 

respectively (Boxes A2.7 and A2.9, Table 3), with optimal sample sizes of studies collecting 

data on those components alone of 1,947 and 1,852 per arm (Box A2.8 & Figure A3.2c and 

Box A2.10 & Figure A3.2d, Table 3).  Figure A3.3 summarises the EVPI, and EVPPI on QALYs, 

non-drug costs and drug costs. 

3.3 Comparison of value of alternative data collection processes on drug costs 

The optimal sample size of a study collecting drug cost data alone is estimated at 1621 

observations on ∆𝐶𝑑
𝐴 plus 819 observations on ∆𝐶𝑑

𝐵 per arm (Box A2.11, Table 3).  Figure 3 

shows a three dimensional plot of the ENGS as a function of the sample size of each 

component.  This peaks at (1621, 819) with an expected net gain of sampling of £0.855m.  

This compares with £0.820m for a trial collecting data only on ∆𝐶𝑑
𝐴. 

3.4 Overall efficient trial design 

Calculating for different combinations of nΔE, nΔCn, nΔCAd and nΔCBd (that is, the number of 

observations per arm collecting QALYs, non-drug costs, drug costs using process A and drug 

costs using process B respectively), the ENGS maximising combination can be identified.  The 

combination is (2913, 1064, 736, 901) for (𝑛∆𝐸 , 𝑛∆𝐶𝑛
, 𝑛∆𝐶𝑑

𝐴 , 𝑛∆𝐶𝑑
𝐵), yielding an ENGS of 
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£27.846m (Box A2.12, Table 3 final row).  This compares with the maximum ENGS of a trial 

reporting INB alone of £27.312m (Table 3, first row). 
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4. Discussion 
4.1 Implications of results 

In this paper we demonstrate how value of information analysis can be extended to consider 

the efficient choice between two methods for collecting the same data, thus providing 

guidance for researchers planning an economic evaluation alongside a clinical trial. 

The results demonstrate high expected value from eliminating all known decision 

uncertainty (EVPI £32.1m, Table 3), due to both high per patient decision uncertainty 

(coefficient of variation of 217.15/56.41 = 3.8) and the large population who could benefit 

from this information.  There are very few other VoI studies in respiratory disease.  The only 

other study we identified was of pharmacogenomic approaches to diagnosing non-small-cell 

lung cancer, which estimated an EVPI to the US economy of $31.4m.(31) 

If a trial were proposed with the objective of estimating ∆B, the optimal sample size would 

be 2,277 per arm, costing £2.6m (plus an opportunity loss of £0.1m leading to a total cost of 

£2.7m), but would yield an expected net gain of sampling of £27.3m.  This would be a large 

trial, approximately 12 times the size of the original.(28)  Nevertheless it is the predicted 

optimal sample size taking into account the cost of acquiring the data and the expected 

value of the information to the population. 

The key analysis in this paper estimated the expected return on a study of incremental drug 

costs alone, comparing two alternative approaches to collecting the data.  We estimate an 

optimal mix of 1621 observations using the bottom-up process (A) and 819 observations 

with the top-down (B).  The cost of such a study would be £1.7m (plus £0.1m opportunity 

loss), yielding an ENGS of £0.855m.  By using a mix of both processes, a small increase (of 

£35,000) in the expected return can be obtained compared with using process A alone (rows 

5 and 6 of Table 3). 

Finally, the optimal numbers of observations for each data component within one study, 

including the optimal mix between the two data processes for drug cost data, are 2913 on 

QALYs, 1064 on non-drug cost, 736 on drug cost using the process A and 901 observations 

using the process B (row 7, Table 3).  This would yield an ENGS of £27.846m, an increase of 

£534,000 on a trial collecting all data on 2,277 observations.  Thus selectivity in data 

collection in this case leads to a higher expected return on investment.  It should also be 

noted that gathering information on all parameters simultaneously changes the optimal mix 

of observations on data processes A and B:  where only A & B are collected (row 6, Table 3), 

approximately 2/3rds of observations should be on the superior process A.  When other data 
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are also collected, only 45% of the observations should be on process A (736 of 1637, row 7, 

Table 3). 

4.2 Practical Implementation 

Our analyses provide an estimate of efficient sample size unconstrained by budget, defining 

the optimum at the point where the marginal gain from an observation is equal to the 

marginal cost (analogous to the profit maximising condition in the theory of the firm).  When 

designing a trial, this technique can be used to provide a rational quantitative approach to 

determining what data to collect on which patients.  The prior distributions required for 

each of the inputs and research cost estimates would ideally be provided by a pilot or 

feasibility study conducted prior to a full scale trial.  Alternatively uncertainty in parameters 

can be captured via a formal elicitation process.(24) 

However, trialists are usually faced with exogenous budget or sample size constraints.  To 

incorporate these constraints, it is simply a question of defining a feasible set of 

observations on each component such that the cost of sampling is less or equal to the 

budget, K (Equation 27).  In this case, for a maximum budget of £2m the optimal 

combination of observations on (nΔE, nΔCn, nΔCAd, nΔCBd) is (2379, 722, 419, 900).  This trial 

would cost £1,999,981 and yield an ENGS of £27.754m.  This solution was identified using 

the Nelder-Mead algorithm.   

Likewise, it is straightforward to choose the optimal mix from a feasible set where the 

sample size has already been determined (for example through a conventional power 

calculation based on a clinically important difference in a primary outcome). 

𝑘𝑠𝐸𝑛𝐸 + 𝑘𝑠𝐶𝑛
𝑛𝐶𝑛

+ 𝑘𝑠𝐶𝑑
𝐴𝑛𝐶𝑑

𝐴 + 𝑘𝑠𝐶𝑑
𝐵𝑛𝐶𝑑

𝐵

+ 𝐾𝑠𝐼 {𝑛𝐸 > 0 ∪ 𝑛𝐶𝑛
> 0 ∪ 𝑛𝐶𝑑

𝐴 > 0 ∪ 𝑛𝐶𝑑
𝐵 > 0} ≤ 𝐾 

[27] 

Where ksX = variable cost of sampling parameter X; Ks = fixed cost of sampling; I{} = indicator 
function returning 1 if the expression in parentheses is true. 

In this analysis, we focused on a very narrow example, driven by the data available to us.  

However, there is no reason that the principles cannot be extended to other related 

problems such as the decision to use routine or administrative data sources in place of study 

specific data.  All that is required is a prior belief that one method is measuring the true 

quantity of interest, that the other is an approximation, and that there is some prior belief 

about the relationship between the two. 
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It should be noted that the class of decision problem where this analysis applies is where 

there is a genuine choice between two alternative methods to collect the same information, 

such as top-down versus bottom-up costing, medical records versus patient questionnaires 

or routine administrative data versus study specific collection.  Decisions over collection of 

different components of cost, such as whether to include dispensing fees in drug cost 

calculations, or social services costs as well as hospital costs can be analysed using standard 

value of information approaches. 

 

4.3 Determinants of optimal mix of observations between two processes 

The optimal mix of observations on two data processes is a function of the relationship 

between the two (as expressed in the correlation coefficient, ρ) and the relative cost of 

sampling.  Where the data processes are very closely related (ρ close to ±1), then one would 

expect the top-down (process B) to be the optimal choice due to the lower cost of sampling: 

observations on B can be used to revise beliefs about A simply by adjusting for the prior 

estimate of bias.  However, where the processes are less closely related there is a trade-off 

between the extra cost of A and the extra information it yields compared to B.  Where the 

correlation is zero, gathering information using B provides no information on A, therefore it 

would never be efficient to use process B. 

In the dataset used in this paper, the (prior) correlation coefficient between Δ𝐶𝑑
𝐴 and Δ𝐶𝑑

𝐵 is 

0.83.  Given this, and the relative cost of processes A & B, it is efficient for 34% (819/2440) of 

observations to be on process B.  It is worth investigating how the optimal mix changes with 

different values of ρ (Figure 4).  As predicted, at almost perfect positive or negative 

correlation, process B provides equivalent information to process A; as process B is cheaper 

than process A, it is always preferable to draw observations on that process.  As ρ falls, for a 

given sample size process B provides less information on Δ𝐶𝑑
𝐴, until the value of the 

information falls below the marginal cost of sampling at which point it is only worth 

collecting data using process A. 

4.4 Comparison with other studies 

The origins of this analysis lie in statistical decision theory, developed in the 1960s at the 

Harvard Business School.(15)  However, we are aware of only one previous application of 

value of information principles to help choose study designs.  Shavit and colleagues(14) 

presented a method to compare the 'net information benefit' of an RCT with an 

observational study.  They define this as a function of the current evidence and estimates of 
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the magnitude of five discrete sources of bias associated with the two designs: 

representation, selection, time frame, real-life reflection and accuracy of records.  Measures 

of each bias were quantified and expressed as percentage deviation from the true mean. 

A key difference between their approach and ours is the question being asked: Shavit and 

colleagues(14) are concerned with the choice between a prospective RCT and retrospective 

cohort study to answer a decision question.  Our analysis starts where an RCT design has 

already been chosen, but the approach to collecting various components of the data is 

undecided. 

4.5 Strengths and Limitations 

We present a quantitative method to assist the design of a clinical trial, specifically 

predicting the numbers of observations on different input parameters to incremental net 

benefit based on maximising the expected return on investment in research.  To this end,  

there are a number of limitations and assumptions which must be considered. 

Firstly, we referred to costing a particular resource item as a ‘data process’ without explicitly 

differentiating between measurement and valuation.  However, this has no consequence for 

the analysis: two data collection processes may vary in how resource use data are collected 

(e.g. medical records vs patient self-report) or by valuation technique (costing individual 

items vs average unit costs to classes of items).  The example presented here simulates a 

hybrid of the two: the simpler data process collects data at a more aggregate level and 

applies an average unit cost by drug class based on a representative daily dose. 

Secondly, we expressed the covariance between parameters as the product of the 

correlation coefficient and standard errors.  This allows the correlation coefficient to be 

treated as independent from the variances, and potentially as a parameter about which 

information could be sought.  However, for simplicity, we assumed the correlation 

coefficient, ρ, to be constant.  This raises two issues.  Firstly, this only allows a very simple 

linear relationship between the two parameters and secondly we ignored uncertainty in ρ.  

The first issue can be handled either by transforming one of the parameters (for example, 

the relationship may be log-linear), or formal modelling of the relationship between the 

parameters.  The second issue raises additional complications as ρ has a non-normal  

distribution.   

Indeed a key limitation of the analysis is the assumption of Normality: costs are known to be 

right skewed, whilst QALYs may be left skewed (depending on the patient population).  The 
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major advantage of this assumption is ease of computation and availability of analytic 

solutions, but at the risk of misleading conclusions should a Normal distribution be a poor 

representation of prior beliefs.  Simulation approaches may overcome this, but are 

computationally expensive.  However, techniques have been developed to ‘short cut’ such 

processes.(32, 33)  The Central Limit Theorem states that the sampling distribution of the 

mean will be approximately Normal.  However this is only true in data with a small 

coefficient of variation and/or large sample size.(34)  Therefore an obvious extension to this 

work is to consider alternative distributional forms for cost data such as bivariate gamma, or 

simulation approaches using appropriate software(35) with appropriate programming 

expertise. 

Thirdly, we assumed that the overall sample size in analysis 3.4 would be the maximum of 

each individual parameter, namely 2913 patients in each arm (on which QALY data would be 

obtained).  Of those, 1064 would be chosen at random from which non-drug cost data would 

be obtained, then 1637 would be chosen from which drug cost data would be obtained, 736 

of which using process A and 901 using process B.  The cost of the trial was estimated on this 

basis.  However, where patients provide data on more than one component, the covariance 

and hence correlation between those components can be estimated and used to revise the 

prior estimates of the correlation coefficient.  Our analysis currently ignores this additional 

information and so may be overestimating optimal trial sizes.  However, incorporating this is 

not straightforward and is an area for further research. 

Other limitations are exclusion of other developments in the application of value of 

information analysis to the healthcare field, such as the appropriate time horizon for an 

analysis,(36) delays whilst research is conducted(37) and optimal allocation of projects 

across different jurisdictions(38) potentially affecting the ENGS of a study.  We also assumed 

a constant marginal cost of recruitment.  This is an oversimplification of the cost function as 

the first patients are likely to be easier to recruit than the last ones, as stocks of ‘willing 

volunteers’ get exhausted, and further effort is required to identify new patients.  
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5. Conclusion 
In this paper we have shown how it is possible to adapt the principles of value of 

information analysis to estimate the optimal mix of bottom-up and top-down data collection 

processes for a component of resource use data in an economic evaluation alongside a 

clinical trial.  Furthermore we have shown how this can be incorporated within a broader 

decision analytic approach to estimating efficient sample sizes of different data components.  

Selectivity in the numbers of observations for each component can help contain cost and 

yield a higher expected net benefit of sampling than one measuring all data on all patients. 

Whilst the method presented can be used to help researchers design trials, future work will 

address the current limitations and incorporate other recent advances in VoI methodology. 
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Tables  
Table 1: Summary statistics - means  

Statistic Description Intervention Control Increment (Δ) 

𝑛 Sample size 175 184  
𝐸𝑗  QALYs at two years 1.612 1.578 0.034 

𝐶𝑛,𝑗 NHS cost (excl. drugs) £190.53 £177.35 £13.18 

𝐶𝑑,𝑗
𝐴  Drug cost, process A £665.58 £563.04 £102.54 

𝐶𝑗
𝐴 Total cost, process A £856.11 £740.39 £115.72 

𝐵𝑗
𝐴 Net Benefit, process A £7203.89 £7149.61 £56.41 

𝐶𝑑,𝑗
𝐵  Drug cost, process B £801.38 £511.56 £289.82 

𝐶𝑗
𝐵 Total cost, process B £991.91 £688.91 £303.00 

𝐵𝑗
𝐵 Net Benefit, process B £7069.70 £7200.57 -£130.86 

Figures subject to rounding, net benefit calculated at a value of £5000 per QALY, NHS cost perspective 
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Table 2: Summary statistics - variance and covariance 

Statistic Description Equation Intervention Control Increment 
(Δ)** 

𝑛 Sample size - 175 184  

√𝑣(𝑒𝑗) 
standard deviation, 
QALYs 

Footnote * 0.371 0.386 0.536 

√𝑣(𝑐𝑛𝑗) 
standard deviation, 
non-drug costs 

Footnote *  £395.46 £536.81 £666.75 

√𝑣(𝑐𝑑𝑗
𝐴 ) 

standard deviation, 
drugs, process A 

Footnote * £416.11 £443.34 £608.03 

√𝑣(𝑐𝑑𝑗
𝐵 ) 

standard deviation, 
drugs, process B 

Footnote * £516.65 £384.42 £643.97 

𝐶𝑜𝑣(𝑐𝑑𝑗
𝐴 , 𝑐𝑑𝑗

𝐵 ) Sample covariance, 
drug costs processes 
A and B 

Footnote † £183,804.36 £137,185.50  

√𝑣(𝑐𝑗
𝐴) 

Standard deviation, 
total cost, drugs 
estimated using 
process A 

Footnote * £619.84 £846.73 £1,049.35 

√𝑣(𝑏𝑗
𝐴) 

Standard deviation, 
net benefit, process 
A 

Footnote * £2,010.64 £2,356.20 £3,097.47 

√𝑣(𝐸𝑗) 
Standard error, 
QALYs 

Footnote ‡ 0.028 0.028 0.040 

√𝑣(𝐶𝑛,𝑗) 
Standard error, non-
drug costs 

Footnote ‡ £29.89 £39.57 £49.60 

√𝑣(𝐶𝑑𝑗
𝐴 ) 

Standard error, drug 
costs, process A 

Footnote ‡ £31.46 £32.68 £45.36 

√𝑣(𝐶𝑑𝑗
𝐵 ) 

Standard error, drug 
costs, process B 

Footnote ‡ £39.05 £28.34 £48.25 

𝐶𝑜𝑣(𝐶𝑑𝑗
𝐴 , 𝐶𝑑𝑗

𝐵 ) Covariance between 
mean drug costs 
processes A and B 

Eq. [4-9] £1,056.35 £749.65 £1,805.99 

√𝑣(𝐶𝑗
𝐴) 

Standard error, total 
costs, process A for 
drugs cost 

Footnote ‡ £46.88 £62.48 £78.11 

√𝑣(∆𝐵𝑗
𝐴) 

Standard error of 
incremental net 
benefit, process A 
for drug costs 

Footnote §   £217.15 

ρΔ𝐶n,Δ𝐶𝑑
𝐴 Correlation 

coefficient between 

Δ𝐶n and Δ𝐶𝑑
𝐴 

Footnote ||   0.352 

ρΔ𝐶,Δ𝐸 Correlation 
coefficient between 
Δ𝐶and Δ𝐸 

Footnote ||   -0.036 

ρΔ𝐶𝑑
𝐴,Δ𝐶𝑑

𝐵  Correlation 
coefficient between 

Δ𝐶𝑑
𝐴 and Δ𝐶𝑑

𝐵 

Footnote ¶   0.83 
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*  √𝑣(𝑥𝑗) = √
∑ (𝑥𝑖,𝑗−𝑋𝑗)

2𝑛𝑗
𝑖=1

(𝑛𝑗−1)
 

†   𝐶𝑜𝑣(𝑥𝑗 , 𝑦𝑗) =
∑ (𝑥𝑖,𝑗−𝑋𝑗)(𝑦𝑖,𝑗−𝑌𝑗)

𝑛𝑗
𝑖=1

(𝑛𝑗−1)
 

‡   square root of equation [8] 

§   square root of equation [12] 

|| re-arrangement of equation [11] 

¶   ρΔ𝐶𝑑
𝐴,Δ𝐶𝑑

𝐵 =
𝐶𝑜𝑣(Δ𝐶𝐷𝑗

𝐴 ,Δ𝐶𝐷𝑗
𝐵 )

√𝑣(Δ𝐶𝑑𝑗
𝐴 )√𝑣(Δ𝐶𝑑𝑗

𝐵 )
 

** Thus √𝑣(∆𝑒) is 0.536 and √𝑣(∆𝑐𝑁) is £666.75 etc. 
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Table 3: Summary results 

 EVPI £fixed £var n* EVSI TC OC ENGS 

INB £32.161m £1.305m £288.58 2,277 £30.061m £2.620m £0.128m £27.312m 
QALYs £29.228m £1.305m £192.39 2,473 £27.454m £2.257m £0.140m £25.058m 
Cost £6.759m £1.305m £192.39 1,585 £  5.738m £1.915m £0.089m £  3.733m 
Non-drug Cost £3.943m £1.305m £  96.19 1,947 £  3.070m £1.680m £0.110m £  1.280m 
Drug cost 
(process A) 

£3.433m £1.305m £  96.19 1,852 £  2.586m £1.662m £0.104m £  0.820m 

Drug cost 
(processes A, B) 

£3.433m £1.305m (£96.19,  
£9.62) 

(1621, 
819) 

£  2.579m £1.633m £0.091m £  0.855m 

INB (QALYs, non-
drug cost, drug 
cost process A, 
drug cost process 
B) 

£32.161m £1.305m (£96.19, 
£96.19, 
£96.19, 
£9.62) 

(2913, 
1064, 
736, 
901) 

£30.240m £2.230m £0.164m £27.846m 

 
EVPI =Expected Value of Perfect Information; £fixed = fixed cost of a new study; £var = 
variable cost of a new study; n* = ENGS-maximising n per arm; EVSI = expected value of 
sample information; TC = total cost of new study of size n* per arm.  OC = opportunity cost of 
patients enrolled in the ‘wrong’ arm of the study; ENGS = Expected Net Gain of Sampling 
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Figures 
 
Figure 1: Prior and Predicted Posterior distributions of Incremental Net Benefit 

 

The (prior) EVPI is the sum of the shaded areas.  After incorporating n predicted observations 
on ∆B, the prior distribution of ∆B, f(∆B)0 is revised to f(∆B)1.  The remaining area to the left 
of the Y-axis is then the predicted posterior EVPI.  The difference between the prior and 
predicted posterior EVPI is the EVSI.  EVPI: Expected Value of Perfect Information; EVSI: 
Expected Value of Sample Information, ∆B: Incremental Net Benefit.   

Incremental Net Benefit (ΔB) 

f(ΔB)1 
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Figure 2: Calculation of ENGS of a trial using a combination of processes A & B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑣 is the variance of the mean of X and is calculated as per Equation [8].  Incremental net 

benefit is a function of incremental drug costs, incremental non-drug costs and incremental 

QALYs gained.  Likewise the standard error of incremental net benefit is a function of the 

standard errors of incremental drug costs, incremental non-drug costs and incremental 

QALYs gained.  If we have some information about the relationship between drug costs 

measured using process A and drug costs measured using process B, we can revise belief 

about the mean incremental cost of drugs using process A after gathering data using process 

B.  Conceptually, this is best understood by considering extremes:  If and were perfectly 

correlated, information on one provides perfect information about the other: the two 

measures are perfect substitutes and so gathering data using process B can be used to 

directly revise belief about plausible values obtained from process A.  If there was no 

correlation between the two measures, gathering information on process B provides no 

information about process A, and therefore there is no reason to revise beliefs about 

plausible values for process A given data on B.  Where the correlation is imperfect, we should 

revise beliefs in a proportionate manner, as per the algebra presented in this manuscript. 
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Figure 3: Optimal mix of observations from each data process 

 
ENGS is maximised at (nA, nB) = (1621, 819)  

0

880

1760

2640

3520

£0.00

£0.20

£0.40

£0.60

£0.80

£1.00

0

4
0

0

8
0

0

1
2

0
0

1
6

0
0

2
0

0
0

2
4

0
0

2
8

0
0

3
2

0
0

3
6

0
0

4
0

0
0

Sa
m

p
le

 s
iz

e
 p

e
r 

ar
m

, P
ro

ce
ss

 A
 (

n
A

) 

EN
G

S 

£
M

ill
io

n
s 

Sample size per arm, Process B (nB) 



32 
 

Figure 4: Optimal mix of observations on each process as a function of ρ 
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Appendix 1: Details of data set, beneficial population and cost of 

research 
The data used in the example are taken from the ELEVATE study, a study of leukotriene 

receptor antagonists compared with conventional treatment in asthma patients.(28)  The 

study comprised two separate trials, on 'step 2' and 'step 3' patients.  The data used here are 

those relating to the more severe 'step 3' patients,(29)  reanalysed from the perspective of 

the UK NHS to divide costs into drug (𝐶𝑑) and NHS-non drug items (𝐶𝑛, comprising primary, 

secondary and tertiary resource use) at two years, and outcomes as QALYs (𝐸) gained at two 

years (costs and QALYs incurred in year two were discounted at 3.5%).  Incremental net 

benefit (ΔB) was calculated at a threshold of £5000 per QALY in order to illustrate the 

method demonstrated in this manuscript.   

Drug cost in the original trial analysis was calculated based on individual items with the unit 

cost per item extracted from the British National Formulary (BNF) 2005(39) using unique 

BNF code at the individual preparation level.  There were 27,028 items of data in the raw 

dataset extracted from the study database, representing individual prescription items 

dispensed to 683 patients over two years enrolled in the two trials comprising the ELEVATE 

study.  The cost for each datum was recalculated at the BNF chapter section level, using 

aggregate cost per prescription as reported in the Prescription Cost Analysis 2005.(30)  For 

eight observations, no sub-paragraph or chapter section data were available.  Four of these 

were costs for specific wound dressings so the original unit cost included was applied to 

both summary cost estimates.  The other four were blank entries that were subsequently 

excluded from all analyses.  Therefore every patient had two estimates of drug costs over 

the two year study period: one bottom-up, based on actual prescribed doses of drugs 

(process A yielding 𝐶𝑑
𝐴) and the other top-down, aggregated at the BNF section level 

(process B yielding 𝐶𝑑
𝐵).  Complete drug data were available on all patients. 

As stated, the other data items were NHS non-drug cost (𝐶𝑛 ) and QALYs gained (𝐸) at two 

years.  47 (6.9%) and 283 (41.4%) of 683 observations on NHS cost and QALYs were missing.  

Multiple imputation was performed on the missing data including step, group, sex, age, 

education and employment status as coefficients.  Five iterations were calculated and the 

results combined using Rubin's rules.(40)  Data on the step 2 patients was discarded. 
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Population able to benefit from the information 

In 2004 there were an estimated 5.2m people with asthma in the UK.(41)  Approximately 7% 

of adolescents with asthma are at 'step 3' (requiring add-on therapy, usually of a long acting 

beta agonist, LABA).(42)  In the absence of general population data, we assume the same 

proportion of adults is at step 3.  During the period 1990 - 1998, GPRD data suggests the 

prevalence of asthma in the UK general population rose from approximately 3% to 5%.(43)  

This equates to an increase of approximately 0.025% per annum.  Assuming a linear 

increase, and based on a UK population in 2004 of 59,834,300,(44) the estimated prevalence 

of step 3 patients in 2011 is approximately 437,297, with an incidence of 10,471 each year.  

Over a ten year period therefore, the potential population who could benefit from the 

information yielded by the studies proposed in this paper is 542,007 or 524,380 (discounted 

at 3.5%; Table A-1). 

Table A-1: Potential Beneficial Population 

 

 

Cost of research 

Table A-2 summarises the predicted expenditure on a new ‘ELEVATE’ trial in 2010£.  Overall 

cost is divided into a total fixed cost estimate of £1,305,470 and variable costs of £198,253 

for 687 patients, or £289 per patient for a new trial. 

  

Year Patients df discounted 

0 437297 1.000 437297 

1 10471 0.966 10117 

2 10471 0.934 9775 

3 10471 0.902 9444 

4 10471 0.871 9125 

5 10471 0.842 8816 

6 10471 0.814 8518 

7 10471 0.786 8230 

8 10471 0.759 7952 

9 10471 0.734 7683 

10 10471 0.709 7423 

 542007  524380 
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Table A-2: Estimated budget based on expenditure for previous trial 2010£ 

        

 
% FTE months year 1 year 2 year 3 year 4 total 

Fixed costs 
  

295619 288452 292732 428854 1305470 
(including RA x1.5, admin, 
consumables, IT, statistical 
support, project supervision, 
expenses and overheads)        
        
Variable costs 
(Including practice visits, practice RAs & GP 
costs   69522 66096 62662  198253 

        

Grand total             1503723 
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Appendix 2: Details of VoI calculations 
Boxes below show the details of calculations of population EVPI and ENGS at the ENGS-

maximising sample sizes.  Optimal sample sizes were identified by calculating for a wide 

range of sample sizes using Microsoft Excel.  Search algorithms were employed to identify 

the optimal mix of observations in Boxes A2.11 (a bespoke algorithm comparing many 

computations simultaneously) and A2.12  (Nelder-Mead algorithm).  A Microsoft Excel 

spreadsheet is available on request from the corresponding author detailing all calculations. 

Box A2.1: Population EVPI 

Population EVPI 
𝑃𝐸𝑉𝑃𝐼 = 𝑁. √𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝑏0, √𝑣(∆𝐵)𝑠,𝑛)

= 𝑁. √𝑣(∆𝐵)𝑠,𝑛. (𝜙 (
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

)

−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

[𝛷 (−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

) − 𝐼{∆𝐵0 < 0}]) 

 

Expected reduction in 
standard error of 
incremental net benefit 

√𝑣(∆𝐵)𝑠,𝑛 = √𝑣(∆𝐵)0 − 𝑣(∆𝐵)1 = √217.152 − 02 = 217.15 

 

Therefore population 
EVPI 

= 524,380 ∗ 217.15 ∗ (𝜙(0.26) − 0.26[𝛷(−0.26) − 0]) 
= 524,380 ∗ 217.15 ∗ 0.28 
= £32,161,096 

 

Box A2.2: ENGS, INB at n=2277 per arm 

Expected net benefit of 
sampling n 
observations per arm 

𝐸𝑁𝐵𝑆(𝑛) = (𝑁 − 2𝑛). √𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛)

− (𝐾𝑠 + 2𝑘𝑠𝑛 + 𝑛∆𝐵0) 

 

Beneficial population (𝑁 − 2𝑛) = (524,380 − 2 ∗ 2277) = 519,826 
Expected reduction in 
standard error of 
incremental net benefit 

√𝑣(∆𝐵)𝑠,𝑛 =
√

217.152 −
1

1

217.152 +
2,277

3,097.472

= 208.06 

Normalised mean at 
which to calculate unit 
normal loss 

|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

=
56.41

208.06
= 0.27 

Unit normal loss 
𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛) = 𝜙(0.27) − 0.27[Φ(−0.27) − 0]

=  0.28 
Cost of sampling 𝐾𝑠 + 2𝑘𝑠𝑛 + 𝑛∆𝐵0 

= £1,305,470 + 2 ∗ 2277 ∗ 288.58 + 2277 ∗ 56.41 
= £2,748,107 

Expected net benefit of 
sampling 

∴ 𝐸𝑁𝐵𝑆(2277) = 519,826 ∗ 208.06 ∗ 0.28 − 2,748,107 
= £27,312,499 
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Box A2.3: EVPPI, QALYs 

Population 
expected value of 
partial perfect 
information on 
QALYs 

𝑃𝐸𝑉𝑃𝑃𝐼𝑄𝐴𝐿𝑌𝑠
= 𝑁√𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛) 

= 𝑁. √𝑣(∆𝐵)𝑠,𝑛. (𝜙 (
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

)

−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

[𝛷 (−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

) − 𝐼{∆𝐵0 < 0}]) 

Pre-posterior 
variance of INB 
and its 
components 

𝑣(∆𝐵)1 = 𝜆2𝑣(Δ𝐸)1 + 𝑣(Δ𝐶)1 − 2λρΔ𝐸,Δ𝐶,1√𝑣(Δ𝐸)1√𝑣(Δ𝐶)1 

𝑣(Δ𝐶)1 = 𝑣(Δ𝐶)0 = 78.112 
𝑣(Δ𝐸)1 = 0 
ρΔ𝐸,Δ𝐶,1 = ρΔ𝐸,Δ𝐶,0 = −0.036 

∴ 𝑣(∆𝐵)1 = 0 + 78.112 − 0 = £6101.77 
Expected 
reduction in 
standard error of 
INB 

√𝑣(∆𝐵)𝑠,𝑛 = √𝑣(∆𝐵)0 − 𝑣(∆𝐵)1 = √£47,155.03 − £6101.77

= √£41,053.26 = £202.62 
 

EVPPI 𝑃𝐸𝑉𝑃𝑃𝐼𝑄𝐴𝐿𝑌𝑠
= 524,380 ∗ 202.62

∗ (𝜙 (
56.41

202.62
)

−
56.41

202.62
[𝛷 (−

56.41

202.62
) − 𝐼{56.41 < 0}]) 

= 524,380 ∗ 202.62 ∗ 0.28 
= £29,228,197 
 

 

 
Box A2.4: ENGS, QALYs @ n=2473 per arm 

Expected net gain 
of sampling data 
on QALYs, 
n=2473 per arm 

𝐸𝑁𝐺𝑆(𝑛) = (𝑁 − 2𝑛)√𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝑏0, √𝑣(∆𝐵)𝑠,𝑛)

− (𝐾𝑠 + 2𝑘𝑠𝑛 + 𝑛∆𝐵0) 

Beneficial 
population 

(𝑁 − 2𝑛) = (524,380 − 2 ∗ 2,473) = 519,434 

 

Expected 
reduction in 
standard error of 
incremental net 
benefit 

√𝑣(∆𝐵)𝑠,𝑛 = √𝑣(∆𝐵)0 − 𝑣(∆𝐵)1 
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Preposterior 
variance of INB 
and its 
components 

𝑣(∆𝐵)1 = 𝜆2𝑣(Δ𝐸)1 + 𝑣(Δ𝐶)1 − 2λρΔ𝐸,Δ𝐶,1√𝑣(Δ𝐸)1√𝑣(Δ𝐶)1 

𝑣(Δ𝐶)1 = 𝑣(Δ𝐶)0 = 78.112 

𝑣(Δ𝐸)1 = (1
𝑣(Δ𝐸)0

⁄ + n
𝑣(Δ𝑒)⁄ )

−1
= (1

0.042⁄ + 2473
0.5362⁄ )

−1

= 0.0001082 

ρΔ𝐸,Δ𝐶,1 = ρΔ𝐸,Δ𝐶,0 = −0.036 

∴ 𝑣(∆𝑏)1 = 50002 ∗ 0.0001082 + 78.112

− 2λ(−0.036)√0.0001082√78.112 = £9,095.06 

Therefore 
expected 
reduction in 
standard error of 
INB 

√𝑣(∆𝐵)𝑠,𝑛 = √47,155.03 − 9095.06 = 195.09 

 

Normalised mean 
at which to 
calculate unit 
normal loss 

|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

=
56.41

195.09
= 0.29 

 

Unit normal loss 
𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛)

= (𝜙 (
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

)

−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

[𝛷 (−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

) − 𝐼{∆𝐵0 < 0}])

=  0.27 

 

Cost of sampling 𝐾𝑠 + 2𝑘𝑠𝑛 + 𝑛∆𝐵0 = £1,305,470 + 2 ∗ 2473 ∗ 192.39 + 2473 ∗ 56.41

= £2,257,008 

 

Expected net 
benefit of 
sampling 

∴ 𝐸𝑁𝐵𝑆(2,473) = 519434 ∗ 195.09 ∗ 0.27 − 2,257,008

= £25,057,882 
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Box A2.5: EVPPI, Cost 

Population 
expected value of 
partial perfect 
information on 
cost 

𝑃𝐸𝑉𝑃𝑃𝐼𝐶𝑜𝑠𝑡
= 𝑁√𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛) 

= 𝑁. √𝑣(∆𝐵)𝑠,𝑛. (𝜙 (
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

)

−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

[𝛷 (−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

) − 𝐼{∆𝐵0 < 0}]) 

Pre-posterior 
variance of INB 
and its 
components 

𝑣(∆𝐵)1 = 𝜆2𝑣(ΔE)1 + 𝑣(Δ𝐶)1 − 2λρΔ𝐸,Δ𝐶,1√𝑣(Δ𝐸)1√𝑣(Δ𝐶)1 

𝑣(Δ𝐸)1 = 𝑣(Δ𝐸)0 = 0.042 
𝑣(Δ𝐶)1 = 0 
ρΔ𝐸,Δ𝐶,1 = ρΔ𝐸,Δ𝐶,0 = −0.036 

∴ 𝑣(∆𝐵)1 = 500020.042 + 0 − 0 = £39,940.91 
Expected 
reduction in 
standard error of 
INB 

√𝑣(∆𝐵)𝑠,𝑛 = √𝑣(∆𝐵)0 − 𝑣(∆𝐵)1 = √£47,155.03 − £39,940.91

= √£7,214.12 = £84.94 
 

EVPPI = 524,380 ∗ 84.94

∗ (𝜙 (
56.41

84.94
) −

56.41

84.94
[𝛷 (−

56.41

84.94
) − 𝐼{56.41 < 0}]) 

= 524,380 ∗ 84.94 ∗ 0.15 
= £6,758,658 
 

 

 
Box A2.6: ENGS, Cost @ n=1585 per arm 

Expected net gain 
of sampling data 
on cost, n=1585 
per arm 

𝐸𝑁𝐺𝑆(𝑛) = (𝑁 − 2𝑛)√𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛)

− (𝐾𝑠 + 2𝑘𝑠𝑛 + 𝑛∆𝐵0) 

 

Beneficial 
population 

(𝑁 − 2𝑛) = (524,380 − 2 ∗ 1585) = 521,210 
 

Expected 
reduction in 
standard error of 
incremental net 
benefit 

√𝑣(∆𝐵)𝑠,𝑛 = √𝑣(∆𝐵)0 − 𝑣(∆𝐵)1 

 

Preposterior 
variance of INB 
and its 
components 

𝑣(∆𝐵)1 = 𝜆2𝑣(Δ𝐸)1 + 𝑣(Δ𝐶)1 − 2λρΔ𝐸,Δ𝐶,1√𝑣(Δ𝐸)1√𝑣(Δ𝐶)1 

𝑣(Δ𝐸)1 = 𝑣(Δ𝐸)0 = 0.0402 

𝑣(Δ𝐶)1 = (1
𝑣(Δ𝐶)0

⁄ + n
𝑣(Δ𝑐)⁄ )

−1

= (1
78.112⁄ + 1585

1049.352⁄ )
−1

= £623.71 

ρΔ𝐸,Δ𝐶,1 = ρΔ𝐸,Δ𝐶,0 = −0.036 

∴ 𝑣(∆𝐵)1 = 50002 ∗ 0.0402 + 623.71 − 2λ(−0.036) ∗ 0.040√623.71
= £40,920.26 
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Therefore 
expected 
reduction in 
standard error of 
INB 

√𝑣(∆𝐵)𝑠,𝑛 = √47,155.03 − 40,920.26 = √6234.77 = 78.96 

 

Normalised mean 
at which to 
calculate unit 
normal loss 

∆𝐵0

√𝑣(∆𝐵)𝑠,𝑛

=
56.41

78.96
= 0.71 

Unit normal loss 
𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛) = (𝜙(0.71) − 0.71[𝛷(−0.71) − 0]) =  0.14 

Cost of sampling 𝐾𝑠 + 2𝑘𝑠𝑛 + 𝑛∆𝐵0

= £1,305,470 + 2 ∗ 1,585 ∗ 192.39 + 1,585 ∗ 56.41
= £2,004,746  

Expected net 
benefit of 
sampling 

∴ 𝐸𝑁𝐵𝑆𝐶𝑜𝑠𝑡(1,585) = 521,210 ∗ 78.96 ∗ 0.14 − 2,004,746
= £3,732,954 

 

 
 
Box A2.7: EVPPI, non-drug cost 

Population 
expected value of 
partial perfect 
information on 
non-drug cost 

𝑃𝐸𝑉𝑃𝑃𝐼𝑁𝑜𝑛−𝑑𝑟𝑢𝑔 𝑐𝑜𝑠𝑡
= 𝑁√𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛) 

= 𝑁. √𝑣(∆𝐵)𝑠,𝑛. (𝜙 (
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

)

−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

[𝛷 (−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

) − 𝐼{∆𝐵0 < 0}]) 

Pre-posterior 
variance of INB 
and its 
components 

𝑣(∆𝐵)1 = 𝜆2𝑣(ΔE)1 + 𝑣(Δ𝐶)1 − 2λρΔ𝐸,Δ𝐶,1√𝑣(Δ𝐸)1√𝑣(Δ𝐶)1 

𝑣(Δ𝐸)1 = 𝑣(Δ𝐸)0 = 0.042 

𝑣(Δ𝐶)1 = 𝑣(Δ𝐶n)1 + 𝑣(Δ𝐶d
A)

1
+ 2ρΔ𝐶n,Δ𝐶d

A,1√𝑣(Δ𝐶n)1√𝑣(Δ𝐶d
A)

1
 

𝑣(Δ𝐶d
A)

1
= 𝑣(Δ𝐶d

A)
0

= £45.362 

𝑣(Δ𝐶n)1 = 0 
ρΔ𝐶n,Δ𝐶d,1 = ρΔ𝐶n,Δ𝐶d,0 = 0.352 

∴ 𝑣(Δ𝐶)1 = 0 + £45.362 + 0 = £45.362 
ρΔ𝐸,Δ𝐶,1 = ρΔ𝐸,Δ𝐶,0 = −0.036 

∴ 𝑣(∆𝐵)1 = 𝜆20.042 + £45.362 − 2𝜆 ∗ (−0.036)√0.042√£45.362

= £42,644.50 
Expected 
reduction in 
standard error of 
INB 

√𝑣(∆𝐵)𝑠,𝑛 = √𝑣(∆𝐵)0 − 𝑣(∆𝐵)1 = √£47,155.03 − £42,644.50

= √4510.53 = £67.16 

EVPPI = 524,380 ∗ 67.16

∗ (𝜙 (
56.41

67.16
) −

56.41

67.16
[𝛷 (−

56.41

67.16
) − 𝐼{56.41 < 0}]) 

= 524,380 ∗ 67.16 ∗ 0.112 
= £3,943,242 
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Box A2.8: ENGS, non-drug cost @ n=1947 

Expected net gain 
of sampling data 
on non-drug cost, 
n=1947 per arm 

𝐸𝑁𝐺𝑆(𝑛) = (𝑁 − 2𝑛)√𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝑏0, √𝑣(∆𝐵)𝑠,𝑛)

− (𝐾𝑠 + 2𝑘𝑠𝑛 + 𝑛∆𝐵0) 

Beneficial 
population 

(𝑁 − 2𝑛) = (524,380 − 2 ∗ 1947) = 520,486 
 

Expected 
reduction in 
standard error of 
incremental net 
benefit 

√𝑣(∆𝐵)𝑠,𝑛 = √𝑣(∆𝐵)0 − 𝑣(∆𝐵)1 

 

Preposterior 
variance of INB 
and its 
components 

𝑣(∆𝐵)1 = 𝜆2𝑣(Δ𝐸)1 + 𝑣(Δ𝐶)1 − 2λρΔ𝐸,Δ𝐶,1√𝑣(Δ𝐸)1√𝑣(Δ𝐶)1 

𝑣(Δ𝐸)1 = 𝑣(Δ𝐸)0 = 0.0402 

𝑣(Δ𝐶)1 = 𝑣(Δ𝐶n)1 + 𝑣(Δ𝐶d
A)

1
+ 2ρΔ𝐶n,Δ𝐶d

A,1√𝑣(Δ𝐶n)1√𝑣(Δ𝐶d
A)

1
 

𝑣(Δ𝐶d
A)

1
= 𝑣(Δ𝐶d

A)
0

= £45.362 

𝑣(Δ𝐶n)1 = (1
𝑣(Δ𝐶n)0

⁄ + n
𝑣(Δ𝑐n)⁄ )

−1

= (1
49.602⁄ + 1947

666.752⁄ )
−1

= £208.94 

ρΔ𝐶n,Δ𝐶d
A,1 = ρΔ𝐶n,Δ𝐶d

A,0 = 0.352 

∴ 𝑣(Δ𝐶)1 = £208.94 + £45.362 + 2(0.352)√£208.94√£45.362

= £2728.32 
ρΔ𝐸,Δ𝐶,1 = ρΔ𝐸,Δ𝐶,0 = −0.036 

∴ 𝑣(∆𝐵)1 = 50002 ∗ 0.0402 + 2728.32 − 2λ(−0.036)

∗ 0.040√2728.32 = £43,413.04 
 

Therefore 
expected 
reduction in 
standard error of 
INB 

√𝑣(∆𝐵)𝑠,𝑛 = √47,155.03 − 43,413.04 = √3741.99 = 61.17 

 
 

Normalised mean 
at which to 
calculate unit 
normal loss 

|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

=
56.41

61.17
= 0.92 

Unit normal loss 
𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛) = (𝜙(0.92) − 0.92[𝛷(−0.92) − 0]) =  0.10 

Cost of sampling 𝐾𝑠 + 2𝑘𝑠𝑛 + 𝑛∆𝐵0 = £1,305,470 + 2 ∗ 1947 ∗ 96.19 + 1947 ∗ 56.41
= £1,789,880 

Expected net 
benefit of 
sampling 

∴ 𝐸𝑁𝐵𝑆𝑁𝑜𝑛−𝑑𝑟𝑢𝑔 𝑐𝑜𝑠𝑡(9,456) = 520,486 ∗ 61.17 ∗ 0.10 − 1,789,880

= £1,279,698 
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Box A2.9: EVPPI, Drug Cost 

Population 
expected value of 
partial perfect 
information on 
non-drug cost 

𝑃𝐸𝑉𝑃𝑃𝐼𝑑𝑟𝑢𝑔𝑠 𝑐𝑜𝑠𝑡
= 𝑁√𝑣(∆𝐵)𝑠,𝑛 . 𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛) 

= 𝑁. √𝑣(∆𝐵)𝑠,𝑛. (𝜙 (
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

)

−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

[𝛷 (−
|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

) − 𝐼{∆𝐵0 < 0}]) 

Pre-posterior 
variance of INB 
and its 
components 

𝑣(∆𝐵)1 = 𝜆2𝑣(ΔE)1 + 𝑣(Δ𝐶)1 − 2λρΔ𝐸,Δ𝐶,1√𝑣(Δ𝐸)1√𝑣(Δ𝐶)1 

𝑣(Δ𝐸)1 = 𝑣(Δ𝐸)0 = 0.042 

𝑣(Δ𝐶)1 = 𝑣(Δ𝐶n)1 + 𝑣(Δ𝐶d
A)

1
+ 2ρΔ𝐶n,Δ𝐶d

A,1√𝑣(Δ𝐶n)1√𝑣(Δ𝐶d
A)

1
 

𝑣(Δ𝐶n)1 = 𝑣(Δ𝐶n)0 = £49.602 
𝑣(Δ𝐶d

A)
1

= 0 

ρΔ𝐶n,Δ𝐶d,1 = ρΔ𝐶n,Δ𝐶d,0 = 0.352 

∴ 𝑣(Δ𝐶)1 = £49.602 + 0 + 0 = £49.602 
ρΔ𝐸,Δ𝐶,1 = ρΔ𝐸,Δ𝐶,0 = −0.036 

∴ 𝑣(∆𝐵)1 = 𝜆20.042 + £49.602 − 2𝜆 ∗ (−0.036)√0.042√£49.602

= £43,106.96 
Expected 
reduction in 
standard error of 
INB 

√𝑣(∆𝐵)𝑠,𝑛 = √£47,155.03 − £43,106.96 = √4048.07 = £63.62 

 

EVPPI = 524,380 ∗ 63.62

∗ (𝜙 (
56.41

63.62
) −

56.41

63.62
[𝛷 (−

56.41

63.62
) − 𝐼{56.41 < 0}]) 

= 524,380 ∗ 63.62 ∗ 0.103 
= £3,433,463 
 

 
 
 

Box A2.10: ENGS, drug cost @ n=1852 

Expected net gain 
of sampling data 
on drug cost  

𝐸𝑁𝐺𝑆(𝑛) = (𝑁 − 2𝑛)√𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝑏0, √𝑣(∆𝐵)𝑠,𝑛)

− (𝐾𝑠 + 2𝑘𝑠𝑛 + 𝑛∆𝐵0) 
 

Beneficial 
population 

(𝑁 − 2𝑛) = (524,380 − 2 ∗ 1852) = 520,676 
 

Expected 
reduction in 
standard error of 
incremental net 
benefit 

√𝑣(∆𝐵)𝑠,𝑛 = √𝑣(∆𝐵)0 − 𝑣(∆𝐵)1 

 

Preposterior 
variance of INB 
and its 
components 

𝑣(∆𝐵)1 = 𝜆2𝑣(Δ𝐸)1 + 𝑣(Δ𝐶)1 − 2λρΔ𝐸,Δ𝐶,1√𝑣(Δ𝐸)1√𝑣(Δ𝐶)1 

𝑣(Δ𝐸)1 = 𝑣(Δ𝐸)0 = 0.0402 

𝑣(Δ𝐶)1 = 𝑣(Δ𝐶n)1 + 𝑣(Δ𝐶d
A)

1
+ 2ρΔ𝐶n,Δ𝐶d

A,1√𝑣(Δ𝐶n)1√𝑣(Δ𝐶d
A)

1
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𝑣(Δ𝐶n)1 = 𝑣(Δ𝐶n)0 = £49.602 

𝑣(Δ𝐶d
A)

1
= (1

𝑣(Δ𝐶d
A)

0
⁄ + n

𝑠(Δ𝐶d
A)2⁄ )

−1

= (1
45.362⁄ + 1852

608.032⁄ )
−1

= £181.97 

ρΔ𝐶n,Δ𝐶d
A,1 = ρΔ𝐶n,Δ𝐶d

A,0 = 0.352 

∴ 𝑣(Δ𝐶)1 = £49.602 + £181.97 + 2(0.352)√£49.602√£181.97
= £3,112.92 

ρΔ𝐸,Δ𝐶,1 = ρΔ𝐸,Δ𝐶,0 = −0.036 

∴ 𝑣(∆𝐵)1 = 50002 ∗ 0.0402 + 3112.92 − 2 ∗ 5000(−0.036)

∗ 0.040√3112.92 = £43,848.33 
 

Therefore 
expected 
reduction in 
standard error of 
INB 

√𝑣(∆𝐵)𝑠,𝑛 = √47,155.03 − 43,848.33 = √3306.70 = 57.50 

 
 

Normalised mean 
at which to 
calculate unit 
normal loss 

|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

=
56.41

57.50
= 0.98 

Unit normal loss 𝐿𝑁∗(∆𝐵0, 𝑣(∆𝐵)𝑠,𝑛) = (𝜙(0.98) − 0.98[𝛷(−0.98) − 0]) =  0.09 

Cost of sampling 𝐾𝑠 + 2𝑘𝑠𝑛 + 𝑛∆𝐵0 = £1,305,470 + 2 ∗ 1852 ∗ 96.19 + 1852 ∗ 56.41
= £4,247,740 

Expected net 
benefit of 
sampling 

∴ 𝐸𝑁𝐵𝑆𝑑𝑟𝑢𝑔 𝑐𝑜𝑠𝑡(9,197) = 520,676 ∗ 57.50 ∗ 0.09 − 4,247,740

= £819,728 

 

Box A2.11: ENGS, drug cost, two processes @ na=1621, nb=819 

Prior mean 
incremental cost of 
drugs from 
processes A and B 

[
(∆𝐶𝑑

𝐴)
0

(∆𝐶𝑑
𝐵)

0

] = [
£102.54
£289.82

] 

Prior 
variance/covariance 
matrix 

𝑽′ = [
£2,058 £1,806
£1,806 £2,328

] 

 

Inverse of prior 
matrix 

𝑯′ = 𝑽−1 =
1

2058 ∗ 2328 − 18062 [
2328 −1806

−1806 2058
]

= [
0.0015 −0.0012

−0.0012 0.0013
] 

sample precision 
matrix 𝑯 = [

𝑛𝐴
𝑣(∆𝑐𝑑

𝐴)⁄ 0

0
𝑛𝐵

𝑣(∆𝑐𝑑
𝐵)⁄

] = [

1621
608.032⁄ 0

0 819
643.972⁄

]

= [
0.0044 0

0 0.0033
] 

 

Inverse of pre- 𝑯′′ = 𝑯′ + 𝑯 = [
0.0059 −0.0012

−0.0012 0.0033
] 
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posterior var/covar 
matrix 

 

Pre-posterior 
var/covar matrix 

𝑽′′ = 𝑯′′−1 =
1

0.0059 ∗ 0.0033 − 0.00122 [
0.0059 −0.0012

−0.0012 0.0033
]

= [
£182.25 £64.81
£64.81 £324.23

] 

 

Therefore pre-
posterior variance 
of incremental cost 
of drugs using 
process A 

∴ 𝑣(∆𝐶𝑑
𝐴)1 = 𝑽′′

𝟏,𝟏 = £182.25 
 

Expected net gain 
of sampling data on 
drug cost (nA,nB) 
observations with 
each process per 
arm 

𝐸𝑁𝐺𝑆(𝑛𝐴, 𝑛𝐵) = (𝑁

− 2(𝑛𝐴 + 𝑛𝐵)). √𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛)

− [𝑘𝑠𝐴𝑛𝐴 + 𝑘𝑠𝐵𝑛𝐵 + 𝐾𝑠𝐼{𝑛𝐴 > 0 ∪ 𝑛𝐵 > 0}
+ (𝑛𝐴 + 𝑛𝐵)∆𝐵0] 

Beneficial 
population 

(𝑁 − 2(𝑛𝐴 + 𝑛𝐵)) = (524,380 − 2 ∗ (1621 + 819)) = 519,500 

 

Expected reduction 
in standard error of 
incremental net 
benefit 

√𝑣(∆𝐵)𝑠,𝑛 = √𝑣(∆𝐵)0 − 𝑣(∆𝐵)1 

 

Preposterior 
variance of INB and 
its components 

𝑣(∆𝐵)1 = 𝜆2𝑣(Δ𝐸)1 + 𝑣(Δ𝐶)1 − 2λρΔ𝐸,Δ𝐶,1√𝑣(Δ𝐸)1√𝑣(Δ𝐶)1 

𝑣(Δ𝐸)1 = 𝑣(Δ𝐸)0 = 0.0402 

𝑣(Δ𝐶)1 = 𝑣(Δ𝐶n)1 + 𝑣(Δ𝐶d
A)

1
+ 2ρΔ𝐶n,Δ𝐶d

A,1√𝑣(Δ𝐶n)1√𝑣(Δ𝐶d
A)

1
 

𝑣(Δ𝐶n)1 = 𝑣(Δ𝐶n)0 = £49.602 
𝑣(∆𝐶𝑑

𝐴)1 = £182.25 
ρΔ𝐶n,Δ𝐶d

A,1 = ρΔ𝐶n,Δ𝐶d
A,0 = 0.352 

∴ 𝑣(Δ𝐶)1 = £49.602 + £182.25 + 2(0.352)√£49.602√£182.25
= £3,113.55 

ρΔ𝐸,Δ𝐶,1 = ρΔ𝐸,Δ𝐶,0 = −0.036 

∴ 𝑣(∆𝐵)1 = 𝜆2 ∗ 0.0402 + 3113.55 − 2λ ∗ (−0.036)

∗ 0.040√3113.55 = £43,849.05 
 

Therefore expected 
reduction in 
standard error of 
INB 

√𝑣(∆𝐵)𝑠,𝑛 = √47,155.03 − 43,849.05 = √3305.98 = 57.50 

 

Normalised mean 
at which to 
calculate unit 
normal loss 

|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

=
56.41

57.50
= 0.98 

 

Unit normal loss 
𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛) = (𝜙(0.98) − 0.98[𝛷(−0.98) − 0]) =  0.09 

 

Cost of sampling 𝑘𝑠𝐴𝑛𝐴 + 𝑘𝑠𝐵𝑛𝐵 + 𝐾𝑠𝐼{𝑛𝐴 > 0 ∪ 𝑛𝐵 > 0} + (𝑛𝐴 + 𝑛𝐵)∆𝐵0

= 96.19 ∗ 1621 + 9.62 ∗ 819 + £1,305,470 ∗ 1
+ (1621 + 819) ∗ 56.41 = £1,724,528  
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Expected net 
benefit of sampling 

∴ 𝐸𝑁𝐵𝑆(9081,240) = 519500 ∗ 57.50 ∗ 0.09 − 1,724,528
= 854,804 

 

 
 

Box A2.12: ENGS of overall optimal trial design (𝒏𝚫𝑬, 𝒏𝚫𝑪𝐧,𝒏𝚫𝑪𝐝
𝐀 , 𝒏𝚫𝑪𝐝

𝐁) = (𝟐𝟗𝟏𝟑, 𝟏𝟎𝟔𝟒, 𝟕𝟑𝟔, 𝟗𝟎𝟏) 

Prior mean 
incremental cost of 
drugs from 
processes A and B 

[
(∆𝐶𝑑

𝐴)
0

(∆𝐶𝑑
𝐵)

0

] = [
£102.54
£289.82

] 

Prior 
variance/covariance 
matrix 

𝑽′ = [
£2,058 £1,806
£1,806 £2,328

] 

 

Inverse of prior 
matrix 

𝑯′ = 𝑽−1 =
1

2058 ∗ 2328 − 18062 [
2328 −1806

−1806 2058
]

= [
0.0015 −0.0012

−0.0012 0.0013
] 

Inverse of sample 
var/covar matrix 𝑯 = [

𝑛𝐴
𝑣(∆𝑐𝑑

𝐴)⁄ 0

0
𝑛𝐵

𝑣(∆𝑐𝑑
𝐵)⁄

] = [

736
608.032⁄ 0

0 901
643.972⁄

]

= [
0.0020 0

0 0.0022
] 

 

Inverse of pre-
posterior var/covar 
matrix 

𝑯′′ = 𝑯′ + 𝑯 = [
0.0035 −0.0012

−0.0012 0.0035
] 

 

Pre-posterior 
var/covar matrix 

𝑽′′ = 𝑯′′−1 =
1

0.0031 ∗ 0.0022 − 0.00122 [
0.0031 −0.0012

−0.0012 0.0022
]

= [
£320.84 £107.69
£107.69 £320.40

] 

 

Therefore pre-
posterior variance 
of incremental cost 
of drugs using 
process A 

∴ 𝑣(∆𝐶𝑑
𝐴)1 = £320.84 

 

Expected net gain 
of sampling data on 
drug cost (nA,nB) 
observations with 
each process per 
arm, nE 
observations on 
QALYs and nn on 
non-drug costs 

𝐸𝑁𝐺𝑆 (𝑛Δ𝐸 , 𝑛Δ𝐶n,𝑛Δ𝐶d
A , 𝑛Δ𝐶d

B)

= [𝑁 − 2

∗ max (𝑛Δ𝐸 , 𝑛Δ𝐶n,𝑛Δ𝐶d
A

+ 𝑛Δ𝐶d
B)] . √𝑣(∆𝐵)𝑠,𝑛. 𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛)

− (𝑘𝑠Δ𝐸𝑛Δ𝐸 + 𝑘𝑠Δ𝐶n
𝑛Δ𝐶n

+ 𝑘𝑠Δ𝐶d
A𝑛Δ𝐶d

A + 𝑘𝑠Δ𝐶d
B𝑛Δ𝐶d

B

+ 𝐾𝑠𝐼 {𝑛Δ𝐸 > 0 ∪ 𝑛Δ𝐶n
> 0 ∪ 𝑛Δ𝐶d

A > 0 ∪ 𝑛Δ𝐶d
B > 0}

+ max (𝑛Δ𝐸 , 𝑛Δ𝐶n,𝑛Δ𝐶d
A + 𝑛Δ𝐶d

B) ∆𝐵0) 

Beneficial 
population 

𝑁 − 2 ∗ max (𝑛Δ𝐸 , 𝑛Δ𝐶n,𝑛Δ𝐶d
A + 𝑛Δ𝐶d

B)

= (524,380 − 2 ∗ max(2913, 1064, 736 + 901))
= 518,554 
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Expected reduction 
in standard error of 
incremental net 
benefit 

√𝑣(∆𝐵)𝑠,𝑛 = √𝑣(∆𝐵)0 − 𝑣(∆𝐵)1 

 

Preposterior 
variance of INB and 
its components 

𝑣(∆𝐵)1 = 𝜆2𝑣(Δ𝐸)1 + 𝑣(Δ𝐶)1 − 2λρΔ𝐸,Δ𝐶,1√𝑣(Δ𝐸)1√𝑣(Δ𝐶)1 

𝑣(Δ𝐸)1 = (1
0.042⁄ + 2,913

0.5362⁄ )
−1

= 0.000093 

𝑣(Δ𝐶)1 = 𝑣(Δ𝐶n)1 + 𝑣(Δ𝐶d
A)

1
+ 2ρΔ𝐶n,Δ𝐶d

A,1√𝑣(Δ𝐶n)1√𝑣(Δ𝐶d
A)

1
 

𝑣(Δ𝐶n)1 = (1
49.602⁄ + 1064

666.752⁄ )
−1

= 357.15 

 

𝑣(∆𝐶𝑑
𝐴)1 = 𝑽𝟏𝟏

`` = £320.84 

ρΔ𝐶n,Δ𝐶d
A,1 = ρΔ𝐶n,Δ𝐶d

A,0 = 0.352 

∴ 𝑣(Δ𝐶)1 = 357.15 + 320.84 + 2(0.352)√357.15√320.84
= £916.38 

 
ρΔ𝐸,Δ𝐶,1 = ρΔ𝐸,Δ𝐶,0 = −0.036 

∴ 𝑣1 = 𝜆20.000093 + 916.38 − 2λ(−0.036)√0.000093√916.38

= £3,339.43 

Therefore expected 
reduction in 
standard error of 
INB 

√𝑣(∆𝐵)𝑠,𝑛 = √£47,155.03 − £3,339.43 = √43,815.61 = 209.32 

 

Normalised mean 
at which to 
calculate unit 
normal loss 

|∆𝐵0|

√𝑣(∆𝐵)𝑠,𝑛

=
56.41

209.32
= 0.27 

Unit normal loss 
𝐿𝑁∗ (∆𝐵0, √𝑣(∆𝐵)𝑠,𝑛) = (𝜙(0.27) − 0.27[𝛷(−0.27) − 0]) =  0.279 

 

Cost of sampling 𝑘𝑠𝐸𝑛𝐸 + 𝑘𝑠𝐶𝑛
𝑛𝐶𝑛

+ 𝑘𝑠𝐶𝑑
𝐴𝑛𝐶𝑑

𝐴 + 𝑘𝑠𝐶𝑑
𝐵𝑛𝐶𝑑

𝐵

+ 𝐾𝑠𝐼 {𝑛𝐸 > 0 ∪ 𝑛𝐶𝑛
> 0 ∪ 𝑛𝐶𝑑

𝐴 > 0 ∪ 𝑛𝐶𝑑
𝐵 > 0}

+ 𝑚𝑎𝑥 (𝑛𝐸 , 𝑛𝐶𝑛
, 𝑛𝐶𝑑

𝐴 , 𝑛𝐶𝑑
𝐵) ∆𝐵0

= 2 ∗ (96.19 ∗ 2913 + 96.19 ∗ 1064 + 96.19 ∗ 736
+ 9.62 ∗ 901) + £1,305,470 + (2913) ∗ 56.41
= £2,393,847  

 

Expected net 
benefit of sampling 

∴ 𝐸𝑁𝐵𝑆(2913,1064,736,901)

= 518,554 ∗ 209.32 ∗ 0.279 − 2,393,847

= £27,845,773 
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Appendix 3: Additional Figures 
Figure A3.1a: Prior distribution of incremental net benefit. 

 

 

 

Figure A3.1b: EVSI, total cost and opportunity loss, and ENGS 
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Figure A3.2a: ENGS QALYs 

 

Figure A3.2b: ENGS for Cost 

 

Figure A3.2c: ENGS non-drug cost 
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Figure A3.2d: ENGS, drug cost 

 
 
 
Figure A3.3: EVPI and EVPPI @ λ=£5,000 
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