Atmospheric OH reactivity in central London:Observations, model predictions and estimates of in situ ozone production

Whalley, Lisa K., Stone, Daniel, Bandy, Brian, Dunmore, Rachel, Hamilton, Jacqueline F., Hopkins, James, Lee, James D., Lewis, Alastair C. and Heard, Dwayne E. (2016) Atmospheric OH reactivity in central London:Observations, model predictions and estimates of in situ ozone production. Atmospheric Chemistry and Physics, 16. pp. 2109-2122. ISSN 1680-7324

[thumbnail of Whalley PDF]
Preview
PDF (Whalley PDF) - Published Version
Download (8MB) | Preview

Abstract

Near-continuous measurements of hydroxyl radical (OH) reactivity in the urban background atmosphere of central London during the summer of 2012 are presented. OH reactivity behaviour is seen to be broadly dependent on air mass origin, with the highest reactivity and the most pronounced diurnal profile observed when air had passed over central London to the east, prior to measurement. Averaged over the entire observation period of 26 days, OH reactivity peaked at  ∼  27 s−1 in the morning, with a minimum of  ∼  15 s−1 during the afternoon. A maximum OH reactivity of 116 s−1 was recorded on one day during morning rush hour. A detailed box model using the Master Chemical Mechanism was used to calculate OH reactivity, and was constrained with an extended measurement data set of volatile organic compounds (VOCs) derived from a gas chromatography flame ionisation detector (GC-FID) and a two-dimensional GC instrument which included heavier molecular weight (up to C12) aliphatic VOCs, oxygenated VOCs and the biogenic VOCs α-pinene and limonene. Comparison was made between observed OH reactivity and modelled OH reactivity using (i) a standard suite of VOC measurements (C2–C8 hydrocarbons and a small selection of oxygenated VOCs) and (ii) a more comprehensive inventory including species up to C12. Modelled reactivities were lower than those measured (by 33 %) when only the reactivity of the standard VOC suite was considered. The difference between measured and modelled reactivity was improved, to within 15 %, if the reactivity of the higher VOCs (⩾ C9) was also considered, with the reactivity of the biogenic compounds of α-pinene and limonene and their oxidation products almost entirely responsible for this improvement. Further improvements in the model's ability to reproduce OH reactivity (to within 6 %) could be achieved if the reactivity and degradation mechanism of unassigned two-dimensional GC peaks were estimated. Neglecting the contribution of the higher VOCs (⩾ C9) (particularly α-pinene and limonene) and model-generated intermediates increases the modelled OH concentrations by 41 %, and the magnitude of in situ ozone production calculated from the production of RO2 was significantly lower (60 %). This work highlights that any future ozone abatement strategies should consider the role that biogenic emissions play alongside anthropogenic emissions in influencing London's air quality.

Item Type: Article
Additional Information: © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License.
Uncontrolled Keywords: sdg 11 - sustainable cities and communities ,/dk/atira/pure/sustainabledevelopmentgoals/sustainable_cities_and_communities
Faculty \ School: Faculty of Science > School of Environmental Sciences
UEA Research Groups: Faculty of Science > Research Groups > Marine and Atmospheric Sciences (former - to 2017)
Faculty of Science > Research Groups > Atmospheric Chemistry (former - to 2018)
Faculty of Science > Research Groups > Centre for Ocean and Atmospheric Sciences
Depositing User: Pure Connector
Date Deposited: 21 Mar 2016 23:05
Last Modified: 21 Oct 2022 04:33
URI: https://ueaeprints.uea.ac.uk/id/eprint/57601
DOI: 10.5194/acp-16-2109-2016

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item