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Abstract 

Cancer cells produce growth factors that diffuse and sustain tumor proliferation, a form of cooperation 
among cancer cells that can be studied using mathematical models of public goods in the framework of 
evolutionary game theory. Cell populations, however, form heterogeneous networks that cannot be 
described by regular lattices or scale-free networks, the types of graphs generally used in the study of 
cooperation. To describe the dynamics of growth factor production in populations of cancer cells, I 
study public goods games on Voronoi networks, using a range of non-linear benefits that account for 
the known properties of growth factors, and different types of diffusion gradients. The results are 
surprisingly similar to those obtained on regular graphs and different from results on scale-free 
networks, revealing that network heterogeneity per se does not promote cooperation when public goods 
diffuse beyond one-step neighbours. The exact shape of the diffusion gradient is not crucial, however, 
whereas the type of non-linear benefit is an essential determinant of the dynamics. Public goods games 
on Voronoi networks can shed light on intra-tumor heterogeneity, the evolution of resistance to 
therapies that target growth factors, and new types of cell therapy. 
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Introduction 

Growth factors as public goods 

At least five of the hallmarks of cancer [Hanahan & Weinberg 2011] depend on the production of 
diffusible factors by cancer cells [Witsch et al. 2010]: self sufficiency in growth signals, evading 
apoptosis, sustained angiogenesis, immune system evasion and the initiation of metastases. Because 
most of the cytokines and growth factors that promote these processes diffuse in the extra-cellular 
matrix, their effect is not limited to the cells that produce them, and non-producing cells can use the 
factors diffusing from neighbouring producer cells. The production of such diffusible factor is, in other 
words, a form of cooperation between cancer cells [ Jouanneau et al. 1994, Axelrod et al. 2006, Archetti 
et al. 2013a] and growth factors are a type of public good (the term “common goods” would be more 
appropriate because, “public goods” are often defined as being non-rivalrous, as well as non-excludable 
[Samuelson 1954]; this definition, however, applies to very few cases, and “public good” has been used 
more often in biology).  

Public goods in evolutionary game theory 

Public goods raise a collective action problem: why contribute to the production of a public good 
instead of free-riding on the goods (in our case growth factors) produced by other group members? The 
overexploitation of common-pool resources is a common outcome of such collective action problems 
[Hardin 1965]. Because of the strategic, frequency-dependent nature of the interactions, the most 
appropriate framework for the study of public goods is game theory. Evolutionary game theory 
[Maynard Smith 1982], in particular, is appropriate because it does not assume rational behaviour; 
instead, the individuals (or cells), programmed to take the best decision have higher fitness and increase 
in frequency in the population by natural (clonal) selection. The study of cooperation has a long 
tradition in biology [Nowak 2006]. Public goods games in biology have been reviewed recently [for 
well-mixed populations: Archetti & Scheuring 2012; for spatially structured populations: Perc et al. 
2013].  

Growth factors are non-linear public goods 

For the study of growth factor production by cancer cells we must use assumptions that are rarely used 
in the study of public goods games. First, models of public goods often assume that fitness is a linear 
function of number of producers. For cancer cells this would imply that proliferation is a linear function 
of the amount of circulating growth factors, an assumption that is clearly not true; growth rates of 
cancer cells are typically a sigmoid function of the concentration of growth factors [e.g.: Valenzano et al. 
1997, Karey & Sirbasku 1988, Jourdan et al. 2005]. We will assume different types of non-linear 
benefits here.  

Decoupling the update and interaction neighborhood 

Another standard assumption in the study of public goods is that an individual can affects only the 
fitness of its one-step neighbours; more specifically, the assumption is that an individual belongs to 
multiple groups, each group centred on one of that individual’s one-step neighbours, and that 
individual’s fitness is the sum of all the payoffs accumulated by that individual in all these groups [Perc 
et al. 2013]. While this assumption is reasonable for human interactions in social networks, growth 
factors typically diffuse beyond a cell’s one-step neighbours. We must assume, therefore, that the payoff 
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for an individual is a function of the number of producers within the diffusion range of the growth 
factor, which defines the interaction group. In other words, in order to study diffusible public goods, we 
must decouple the interaction neighborhood (the group playing the public goods game) and the update 
neighborhood (the one-step neighbors). This approach has been used to study a two-person game with 
a linear benefit function (the Prisoner’s Dilemma) on a regular lattice [Ifti et al. 2004, Ohtsuki et al. 
2007] and for non-linear public goods games on regular lattices with a fixed diffusion range [Archetti 
2013b]. 

Diffusion gradients 

Given that growth factors diffuse beyond one-step neighbours, we must define the shape of the 
diffusion gradient. Because public goods games have typically assumed a one-step diffusion range, there 
has been little scope for analysing diffusion gradients so far. Four recent studies [Allen et al. 2013, 
Borenstein et al. 2013, Scheuring 2013, Archetti 2013b] have analysed diffusion gradients in the 
context of public goods, and have reached rather discordant conclusions because they used different 
assumptions, particularly on the shape of the benefit function. If the benefit function is non-linear, the 
shape of the diffusion gradient seems to be largely irrelevant for the dynamics, and can be approximated 
by a step function [Archetti 2014a]. This result may be limited, however, to the type of graphs (regular 
lattices) used in those studies. 

Voronoi networks 

The main departure from the standard approach analysed here is the use of Voronoi networks. Two 
topologies are usually considered in the study of spatial games: regular lattices, in which all individual 
nodes are topologically equivalent, and scale-free networks, in which different individuals have a 
distinct number of connections [reviewed in Perc et al. 2013]. While regular lattices neglect the 
importance of variation in connectivity, scale-free networks are not appropriate if players are distributed 
on a planar network. The distribution of cells in biological tissues resembles a Voronoi diagram [Lewis 
1928, Honda 1978, Gibson & Gibson 2009, Csikász-Nagy et al. 2013] rather than a regular lattice or a 
scale-free network. 
 A Voronoi diagram (tessellation) of a set of nodes is a collection of convex polygons, each 
corresponding to one of the nodes, with all the points in one polygons being closer to the 
corresponding node than to any other node; the boundary between two adjacent polygons is a line 
segment, and the line that contains it is the perpendicular bisector of the segment joining the two 
nodes. A Voronoi network is defined as a group of such node-joining segments [Figure 1]. The average 
connectivity of Voronoi networks is 6, with a unimodal distribution in which fewer than 4 or more than 
8 connections are very rare - similar to what is observed in biological samples, both within and among 
species [Lewis 1928, Gibson & Gibson 2009, Csikász-Nagy et al. 2013].  
 Voronoi tesselations have been used [Rejniak & Anderson 2011, Csikász-Nagy et al. 2013] to 
simulate the growth of multicellular spheroids [Schaller & Meyer-Hermann 2005, Beyer & Meyer-
Hermann 2009] and the development of colorectal tumors [Meineke et al. 2001,  Van Leeuwen et al. 
2009], but not in the study of cooperation between cancer cells, or, more in general, in evolutionary 
game theory. A preliminary analysis of cooperation on Voronoi networks with a fixed diffusion range 
has been included in a recent experimental study of IGF-II production in pancreatic cancer [Archetti et 
al. 2015]. Here I describe in detail the effect of the parameters on the dynamics of non-linear public 
goods games on Voronoi graphs, using different types of diffusion gradients, and I compare the results 
with the standard approach on regular lattices and scale-free networks. 
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Methods 

Game structure 

Individual cells occupy the nodes of a network (population size Z is fixed at 1000) and interactions 
proceed along the edges connecting the nodes, as is standard in public goods game. In the standard 
approach, however, a node participates in all public goods games defined by the groups the node 
belongs to (that is, the groups centred on the node’s one-step neighbours), and the node’s fitness is 
given by the sum of the payoffs accumulated by the individual at that node in these games [Perc et al. 
2013]. Here, instead, individual cells participate in only one game, in the group defined by the diffusion 
range of the growth factor. In the simplest scenario, with a fixed diffusion range, the group is simply 
defined by the number of edges d between the focal node and the most distant node whose 
contribution affects the fitness of the focal node [Figure 1]. When we assume a diffusion gradient we 
will make more specific assumptions on the shape of this gradient and how it affects fitness (see below). 

Strategies and payoffs 

A cell can be a producer or a non-producer of a growth factor. All cells benefit from the effect of the 
growth factors produced by cells in their group. The payoff for a cell is b(j)-c, where c is the cost of 
producing the growth factor (0<c<1 for producer cells and c=0 for non-producer cells), j is the number 
of producer cells in the group and  

b(j)=[V(j)-V(0)]/[V(n)-V(0)]           (1) 

is the normalized version of the logistic function  

V(j)=1/[1+e-s(j-k)/n]            (2) 

that describes the non-linear effect of the concentration of the growth factor as a function of the 
number of producer cells in the group. Group size n depends on the diffusion range or gradient of the 
growth factor. The parameter k controls the position of the inflection point (k→n gives strictly 
increasing returns and k→0 strictly diminishing returns) and the parameter s controls the steepness of 
the function at the inflection point (s→∞ models a threshold public goods game; s→0 models an N-
person prisoner’s dilemma) [Archetti & Scheuring 2011, 2012].  

Update rules 

The process starts with a number of non-producers placed at random on the graph; unless stated 
otherwise, the initial fraction of non-producers is 0.05. At each round, strategies are updated according 
to the following rule: a node x with payoff Px is selected (at random) for update (death); a node y (with 
payoff Py) is then chosen among x's neighbors. Two types of update are used: in the deterministic case, if 
Px>Py, no update occurs, while if Px<Py, x will adopt y’s strategy (unconditional imitation); in the 
stochastic case, replacement occurs with a probability given by (Py-Px)/M, where M ensures the proper 
normalization and is given by the maximum possible difference between the payoffs of x and y [Perc et 
al. 2013]. Results are obtained averaging the final 200 thousand of 1 million generations (that is, the 
final 200 of 1000 replications per cell), averaged over 10 different runs.  
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Diffusion gradient 

While in models with a fixed diffusion range a cell’s payoff is determined by the number of producer 
cells within a range d from that cell, in a model with a diffusion gradient each cell receives contributions 
from other producer cells within a diffusion range D of the molecule, and each contribution is weighted 
ccording to the distance i (the number of nodes) from that cell according to the function [Archetti 
2014a]  

G(i)=1-[g(i)-g(0)]/[g(D)-g(0)]         (3) 

where  

g(i)=1/[1+e-z(i-d)/D]            (4) 

The values of d and D determine the shape of the diffusion gradient, which is always decreasing but can 
be concave (d=D), convex (d<<D) or sigmoid (intermediate values of d<D). In the computation of 
payoffs, each producer cell contributes G(i), instead of 1, to the number of producers in the group. The 
number of producers, therefore is not j but the weighted sum of all G(i) values. For example, if d=D/2 
and there are six producer cells all d nodes away from a focal cell (i=d for all producers), G(d)=1/2, that 
is, only half of each producer’s contribution is available for the focal cell, hence the weighted number of 
producers (the sum of all the contributions) in that focal cell’s group is three. With a more realistic 
distribution of i values, the calculation is more complex. The parameter z controls the steepness of the 
gradient at the inflection point: z→0 models a linear gradient; z→∞ models a step function equivalent 
to the case a fixed range (the diffusion range is a step function). 

Topology 

The Voronoi diagram of a set of vertices V is a subdivision of space into Voronoi cells; for any vertex i 
belonging to V, the Voronoi cell of i is the set of points with distance to i not greater than to any other 
vertex of V. The dual of the Voronoi diagram is the Delaunay triangulation defined on the same vertex 
set (Voronoi polygons correspond to Delaunay vertices) [Figure 1]. The two-dimensional Voronoi 
graphs used here are obtained by a Delaunay triangulation of random points on a sphere, using the 
DelaunayTriangulation implementation in Mathematica 8 (Wolfram Research Inc.). If the points are 
drawn on a circle or on a square, the process is straightforward [Figure 1b-c]. Points can be also drawn 
on a sphere in order to avoid edge effects (this is equivalent to the common procedure of connecting the 
edges of a regular lattice to form a toroidal network). Points on a sphere are defined by colatitude (φ) 
and longitude (θ) both drawn from a uniform distribution with support [0,2π].  These can be mapped 
into the Cartesian space using the standard transformation 

x=r*sinφcosθ             (5)
y=r*sinφsinθ             (6)
z=r*cosφ             (7)

with r=1. With this simple mapping, however, the points are more dense at the poles. Because the 
Jacobian determinant of the mapping (which describes how the spherical space is modified by the 
transformation at each point) is independent of θ  our uniform distribution in spherical coordinates is 
uniform in θ  (θ is drawn from [0,2π]), but not in φ. Instead of drawing φ  from [0,2π] therefore we 
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define it as 2ArcSin[Sqrt[Random[0,1]]] using the "Inverse CDF Method" in Mathematica. This 
reduces the density of points around the poles, making them evenly distributed over the spherical area 
[Figure 1d]. In the Cartesian space the polygons appears distorted ad the edges, and they are actually 
connected with the polygons on the opposite edge to form a sphere [Figure 1e]. 
 Regular graphs with connectivity 6 are obtained by a modification of the GridGraph 
implementation in Mathematica and connecting opposing edges to form a toroidal network, in order to 
avoid edge effects. Scale-free networks are obtained by means of the Barabasi–Albert model based on 
growth and preferential attachment [Barabasi & Albert 1999], using the BarabasiAlbert 
GraphDistribution implementation in Mathematica. 

Results  

Differences with the standard approach 

Since the average connectivity on a Voronoi graph is 6, it is useful to compare the results to those 
obtained on regular lattices with connectivity 6. It is also useful to compare results on scale-free 
networks, and results obtained using the standard approach (no diffusion beyond one-step neighbours, 
payoffs calculated over multiple games) [Figure 2].  
 In the standard approach, the cost of public good production (c) is the main determinant of the 
type of dynamics: if c is small enough, a mixed equilibrium exists in which producers and non-
producers persist; the fraction of producers increases with h (the position of the inflection point in the 
benefit function). Scale-free network lead to cooperation for higher costs when h is low. In other words, 
scale-free networks seem to promote cooperation, compared to regular lattices and Voronoi networks. 
Regular lattices allow cooperation for slightly higher values of c at intermediate values of h, compared to 
Voronoi networks, but there are no other significant differences between regular lattices and Voronoi 
networks [Figure 2].  
 With diffusible public goods (diffusion beyond one-step neighbours), scale-free networks lead 
to cooperation only for low values of c, even though they allow cooperation for higher and lower h 
values, and the level of cooperation is lower, compared to planar networks. Regular lattices allow 
cooperation for slightly higher values of c compared to Voronoi networks, again, with no other 
significant differences [Figure 2]. In summary, the results with regular graphs and Voronoi graphs are 
remarkably similar, whereas scale-free networks lead to very different results when diffusion goes 
beyond one-step neighbours. Voronoi graphs seem to be less conducive to cooperation than regular 
lattices. 
 These differences in the amount of cooperation at equilibrium may be explained, at least in part, 
by differences in group size n [Figure 3]. It is well known that mixed equilibria in non-linear public 
goods games exist only below a critical value of c or n and that the amount of cooperation declines with 
c and n. The update neighborhood on a Voronoi graph has on average the same size as on a regular 
lattice with connectivity 6. Voronoi graphs, however, tend to have larger groups (interaction 
neighborhoods) on average as d increases, and obviously higher variance in group size. Scale-free 
networks have an even larger variance, with many nodes with small connectivity and very few nodes 
with much higher connectivity. [Figure 3]. The average size of the interaction neighborhood for d=2 is 
n=19 for a regular lattice with connectivity 6, it is n=20 for a Voronoi network and n=70 for a scale-free 
network; for d=5 it is n=91 for a regular lattice with connectivity 6, n=109 for a Voronoi network and n 
is at least two orders of magnitude higher for a scale-free network.  
 In summary, the higher levels of cooperation observed on planar networks (regular lattices and 
Voronoi networks) seems to be due simply to the fact that, when public goods diffuse beyond one-step 
neighbours, average group size (and variance) is much higher in scale-free networks. The small 
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difference observed between regular lattices and Voronoi networks is due in part to the fact that 
Voronoi graphs have groups with variable size, which is on average slightly higher than in regular 
lattices. 

Effect of costs and benefits 

The fact that the production of public goods is more efficient in smaller groups is well known and may 
explain the differences in the level of cooperation attained in different graph types, as mentioned above. 
For the same reason, since group size increases with the diffusion range of the growth factor (d), we also 
expect lower levels of cooperation as d increases. This is indeed what is observed [Figure 4]. Again, 
regular lattices allow slightly higher levels of cooperation than Voronoi graphs. Cooperation cannot be 
maintained on scale-free networks if c is not negligible and d is higher than 2. This is again arguably an 
effect of group size. For d=3 group size is n=37 for a regular lattice with connectivity 6, n=42 on average 
for a Voronoi network and n>300 for a scale-free networks. For d=5, group size is still n=91 for a regular 
lattice, and n=109 for a Voronoi network, but at least two orders of magnitude higher for a scale-free 
network. While scale-free networks can promote cooperation in the standard approach [Perc et al. 
2013], therefore, they do not lead to any cooperation at all when public goods diffuse beyond one-step 
neighbours, simply because group size increases rapidly with d.
 The amount of cooperation declines with c (the cost of public good production) and s (the 
steepness of the benefit function) on Voronoi networks [Figure 5]. As expected, a stochastic update rule 
is also less conducive to cooperation.  
 Analysing how the structure of the producer and non-producer clusters evolve [Figure 6], 
reveals that non-producers form clusters whose size increases with d. The average degree centrality (the 
number of neighbours) and the closeness centrality (the shortest distance between all pairs of nodes) of 
the producer and non-producer subgraphs are relatively constant (apart from an initial adjustment 
period, especially for high d). The non-producer subgraphs have generally a lower average degree 
centrality and a higher average closeness centrality; that is, non-producers form small and narrow 
clusters among the producers, unless the diffusion range is large, in which case the centrality measures 
are similar. 
 In summary the dynamics and equilibria of public goods games on Voronoi networks are not 
radically different from the results observed in regular lattices. Node heterogeneity does not promote 
cooperation (as in scale-free networks in the standard approach) and does not alter radically the 
dynamics.  

Effect of the diffusion gradient 

The results above assume a fixed diffusion range (a cell’s payoff is determined by the number of 
producer cells within a range d from that cell). If growth factors diffuse according to a more realistic 
gradient, results change slightly [Figure 7]. Different types of diffusion gradient lead to higher levels of 
cooperation. More specifically, while the critical value of c that allows a mixed equilibrium remains the 
same for intermediate values of h, at low and high values of h cooperation is possible at higher values of 
c when we assume a diffusion gradient. 
 While a concave (upwards) diffusion gradient seems to lead to a higher level of cooperation 
than a linear or sigmoid gradient, this may be due simply to a lower weighted number of cells. The 
overall result (a mixed equilibrium in which producers decline in frequency with c and for extreme 
values of h) seems consistent across different types of gradient. 
 Diffusion gradients lead to slightly lower degree centrality and slightly higher closeness 
centrality for the non-producer subgraph, that is, slightly smaller and narrower clusters of non-
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producers among the producers [Figure 8]. Again, this may be due to a smaller effective group size 
[Figure 6]. 

Perturbation of the inflection point 

Anti-cancer therapies that reduce the amount of circulating growth factors can reduce tumor fitness in 
the short term because immediately after treatment the amount of growth factor produced by the (pre-
treatment) equilibrium fraction of producer cells is no longer enough to sustain tumor growth [Figure 
9]. The cell population, however, is no longer at an equilibrium after the therapy, because removing part 
of the circulating growth factors increases the amount of factors that the cells must produce to achieve 
the same pre-treatment benefit, that is, it increases the value of the inflection point h. The population 
therefore will adapt to the new h value, reaching a new equilibrium. Since the post-treatment threshold 
(h) is higher, this can eventually lead to an even higher growth rate for the tumour at the new 
equilibrium [Figure 9]. Both the magnitude of the change and its speed are crucial for the success of 
the therapy: a large change is more likely to lead to a lower tumour fitness, a slow transition can make 
even a very effective therapy to fail and lead to relapse [Figure 10]. 

Summary of the results 

In summary, the results of public goods games on Voronoi networks are similar to those obtained on 
regular graphs with the same average connectivity. Voronoi graphs are slightly less conducive to 
cooperation than regular lattices because group size is variable and, on average, slightly higher on 
Voronoi networks. Scale-free networks, on the other hand, lead to very different results, and when 
diffusion goes beyond one-step neighbours they do not allow the maintenance of cooperation. Node 
heterogeneity is not crucial in determining the dynamics: the existence of a mixed equilibrium 
(coexistence of producers and non-producers) and the amount of cooperation attained depend mainly 
on the diffusion range of the public good (high diffusion reduces cooperation), on the shape of the 
benefit function and on the cost of producing the public good. Like in well-mixed populations and in 
regular lattices, cooperation declines with the cost of public good production and with the steepness of 
the benefit function, and when a stochastic update rule is adopted. While diffusion gradients lead to 
higher levels of cooperation, the exact shape of the gradient does not have a significant effect on the 
dynamics.  

Discussion  

Network heterogeneity does not promote cooperation for diffusible public goods 

Heterogeneity in the number of neighbours promotes cooperation in standard public goods games 
because, essentially, it leads to a heterogeneous payoff distribution, which reduces the critical value of 
the benefit necessary for cooperation at nodes with low connectivity [Perc et al. 2013]. This conclusion, 
however, is based on results for non diffusible public goods (and assumes linear benefits on scale-free 
networks). In that case the difference between the payoff of a producer and a non-producer is inversely 
proportional to the number of games each player plays, that is to the number of neighbours. In the case 
of diffusible public goods analysed here, instead, each player plays one game only, and only group size 
varies. Moreover, other properties besides degree distribution can be important for the dynamics of 
public goods, such as the average path length [Szabó & Fáth 2007], the clustering coefficient [Rong et 
al. 2010] or the presence of correlations among high-degree nodes [Rong & Wu 2009]. Results 
obtained on scale-free networks, therefore, are not necessarily relevant for social dilemmas on Voronoi 
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networks. As we have seen here, indeed, the heterogeneity of Voronoi networks does not enhance 
cooperation compared to regular lattices. A slightly lower level of cooperation is actually observed on 
Voronoi networks, which seems to be due essentially to the fact that group size is slightly higher, on 
average, compared to regular lattices.  

Diffusion matters, but the exact shape of the diffusion gradient does not 

Diffusion beyond one-step neighbours is an essential assumption in the case of growth factors. While 
diffusion can be modeled simply by assuming that a cell’s payoff is determined by the number of 
producer cells within a fixed range from that cell, it could be argued that a more realistic diffusion 
gradient, in which the effect or concentration of the growth factor declines gradually from the source, 
can have important effects on the dynamics. As we have seen, however, the exact shape of the diffusion 
gradient is not crucial, and the amount of cooperation attained can be approximated (if slightly 
underestimated) using a model with a fixed diffusion range. While the effect of diffusion gradients is 
stronger on Voronoi networks than on regular lattices, where diffusion gradients have a negligible effect 
on cooperation [Archetti 2014a], even on Voronoi graphs using different types of diffusion gradient 
leads to similar results. In summary, while assuming diffusion beyond one-step neighbours is crucial, 
exact assumptions on the shape of the diffusion gradient are not. 

The type of non-linear benefit is the main determinant of the dynamics 

The main determinant of the dynamics if the type of benefit function. While evolutionary game theory 
has traditionally focused on linear benefits, biological molecule, have rarely, if ever, linear effects and the 
effect of a growth factor on cell proliferation is generally a sigmoid function of its concentration 
[Cornish-Bowden 2012], because the series of reactions produced by the cascade of signal originating 
from the cellular receptors amplifies even the slightest departure from linearity of the underlying 
individual chemical reactions [Frank 2013]; sigmoid functions are produced, for instance, by positive 
cooperative binding, by titration of repressors or by opposing saturated forward and back reactions 
[Zhang et al 2013]. The effect of growth factors on cell proliferation has been reported to be a sigmoid 
function in different types of cancer [e.g.: Valenzano et al. 1997, Karey & Sirbasku 1988, Jourdan et al. 
2005]. Non-linearities play a major role in the dynamics of diffusible public goods. If the benefit of the 
molecule is a linear function of its concentration, either producers or non-producers have a higher 
fitness for any frequency of producers, depending only on the relative cost/benefit of producing the 
molecule (in sizeable groups, for reasonable costs producers will always have a disadvantage, this results 
in what we usually refer to as “N-person Prisoner’s Dilemma”). If benefits are non-linear, however, 
whether producers or non-producers have higher fitness depends on the frequency of the two types; if 
the cost is not too high, a stable polymorphism is possible [Archetti & Scheuring 2011, 2012]. Steep 
benefit functions allow stable polymorphic equilibria for larger costs, but they make the population less 
robust to random fluctuations in the fraction of producers. Differently from the case of well-mixed 
populations, a very steep benefit function makes it profitable to contribute if and only if that 
contribution is pivotal for the production of the public good, that is, only when there are exactly k-1 
other producers. In spatially structured populations it can happen that a non-producer mutant arises in 
a group centred on one individual with few non-producers, and therefore can invade that group; this 
can however lead an adjacent group that was previously at equilibrium, with exactly k contributors, 
below the unstable equilibrium, which ultimately leads to the extinction of producers in that group 
[Archetti 2014]. Node heterogeneity in Voronoi networks does not seem to change this result. 
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Estimating the parameters 

The dynamics depends on the cost/benefit ratio of the growth factor c/b, its diffusion range d and the 
shape of the benefit function, that is its inflection point h and steepness s. Knowing the value of these 
parameters would allow us to predict the dynamics of a population of cells.  
 The c/b ratio can be estimated by comparing the growth rates of pure producer and non-
producer populations. By providing a saturating amount of exogenous growth factor the difference in 
growth between producers and non-producers essentially measures the cost of producing the growth 
factor (in pancreatic cancer, c/b can be estimated to be approximately 0.2 [Archetti et al. 2015]). 
 The steepness of the benefit function (s) can be estimated by the dose-response curve of the 
growth factor, that is, by measuring cell proliferation as a function of growth factor density in the 
growth medium. In order to estimate the inflection point h, instead, one should measure the benefit as 
function of the fraction of producers rather than of the amount of growth factor; while this could be 
estimated indirectly by knowing the amount of growth factor produced by a single cell, a direct 
measurement requires measuring the growth rates of populations with different fractions of producers.  
 The diffusion range, on the other hand, is more difficult to measure, and is not know for most 
growth factors. The diffusion of EGF in the brain has been estimated to be 5x10-7 cm2/s [Thorne et al. 
2004] which is equivalent to approximately 0.05 cm/hour; therefore d can be estimated to be 
approximately 25 to 50 if we assume that the size of a cell is 10-20µm. Thorne et al. 2004 actually 
calculate the diffusion range of EGF; using the curve shown in their Fig. 6, the diffusion range at which 
the concentration of the growth factor is 50% of the concentration at the source is between 100 and 
600 µm, that is (assuming again that cell size is between 10 and 20 µm), d=5-10 to 30-60. Clearly  
however, diffusion depends on the half-life of the growth factor and on cell type, and should be 
measured for each combination of growth factor and tumor type (although it is possible that diffusion 
may change in a systematic way based on cell size and the size of the growth factor, which would enable 
to estimate the diffusion range based on growth factor and tissue of origin). 

Implications for cancer research 

Growth factor production by cancer cells is essential for tumor development. Tumors grow and expand 
when mutations enable cancer cells to produce their own growth factors (or lead to the constitutive 
activation of their receptors or downstream pathway) that promote proliferation, allow to evade 
apoptosis and immune system reaction, and promote neo-angiogeneis. Metastases also depend on the 
production of growth factors that induce the epithelial-mesenchimal transition. Understanding the 
dynamics of the collective interactions that regulate growth factors, therefore, is important for our 
understanding of tumor growth. More specifically, the frequency-dependent nature of the interactions 
described by evolutionary game theory can shed light on the maintenance of intra-tumor heterogeneity, 
on the development of resistance to therapies, and on the development of new cell therapy approaches. 
 Intra-tumor heterogeneity, the coexistence of different clones within a tumor, is commonly 
observed [Greenman et al. 2007, Navin et al. 2011] and has implications for cancer progression, 
diagnosis, and treatment [Dexter & Leith 1986, Maley et al. 2006, Almendro et al. 2013]. Why such 
heterogeneity exists remains unclear [Merlo et al. 2006, Almendro et al. 2013], because clones that have 
a proliferative advantage within the tumour are expected to drive other subclones to extinction. In the 
light of evolutionary game theory, however, stable intra-tumor heterogeneity is easily explained as a 
stable polymorphic equilibrium resulting from the non-linear benefit of growth factors [Archetti et al. 
2015]. On Voronoi networks this intra-tumor heterogeneity has the same origin: the frequency-
dependent dynamics leads to a stable coexistence of producers and non-producers. 
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Effect on the analysis of therapies based on growth factors 

The effect of modern therapies that target growth factors (or their receptors) can be studied as the 
perturbation of the parameters of a public goods game, namely, as we have seen, perturbations of the 
inflection point of the benefit function. It has been suggested that treatments that target growth factors 
may be less susceptible than traditional drugs to the evolution of resistance [Pepper 2012, Aktipis & 
Nesse 2013]. An analysis of the perturbation of the equilibria of the system can simulate the effect of 
therapies that target growth factor, and reveal their stability and efficacy. Because the effect of growth 
factors is generally a non-linear function of its concentration, treatments that target growth factors need 
to be extremely efficient and fast in order to be evolutionarily stable both in well-mixed populations 
[Archetti 2013a] and in regular graphs [Archetti 2013b].  
 While in well-mixed populations and in regular graphs group size is the same for all groups, and 
therefore changing the threshold h affects all groups equally, in Voronoi graphs group size is variable, 
and as a consequence changing the threshold h (that is, introducing a therapy that targets growth 
factors) could move some clusters of cells in the basin of attraction of the pure non-producer type while 
keeping other clusters in the basin of attraction of the mixed equilibrium. This makes it more likely for 
producers to go extinct. Indeed, as we have seen, network heterogeneity may lead to less cooperation 
than regular graphs with the same average connectivity. The overall, qualitative effect of targeted 
therapies, however, is the same on Voronoi and regular graphs: reducing the amount of circulating 
growth factors increases the value of h, changing the dynamics and leading to a new equilibrium with a 
higher fraction of producers (hence a higher growth rate that may lead to relapse) unless the change is 
large enough or fast enough. 
 Finally, the long term dynamics of cell therapies that rely on genetically modified cancer cells, 
engineered to knock-out growth factors, can also be analysed using public goods games on Voronoi 
networks. Again, like for the study of resistance to therapies, node heterogeneity, may affect the 
dynamics. As the dynamics of such therapies depends on the the group size at the edge of clusters of 
producers and non-producer cells [Archetti 2013c], the higher variance of group size in Voronoi 
networks could make a difference. 

Further developments of the model 

While it is now understood that cancer is a process of clonal selection [Cairns 1975, Nowell 1976, 
Crespi & Summers 2005, Merlo et al. 2006, Greaves & Maley 2012], and game theory has often been 
mentioned as a relevant for cancer research [Gatenby & Maini 2003, Merlo et al. 2006, Axelrod et al. 
2006, Lambert et al. 2011, Basanta & Deutsch 2008], the study of growth factors in the framework of 
evolutionary game theory is still limited. Tomlinson [1997] and Tomlinson & Bodmer [1997] used the 
hawk-dove game, to explain why game theory can be used to understand conflict and cooperation 
between cancer cells; subsequent papers [Bach et al. 2001, 2003, Dingli et al. 2009, Basanta et al. 
2008a,b, 2011, 2012, Gerstung et al 2011] have extended that model to up to 4 strategies. 2-player 
games, however, are not appropriate to study collective interactions and can lead to misunderstandings 
[Archetti & Scheuring 2012]. The approach described here is more appropriate to the study of growth 
factor production in cancer cell populations. The production of growth factors, must be modelled as 
multi-player public goods games on planar heterogeneous networks (Voronoi networks). 
 Further developments that would be useful to pursue include the study of interactions on tri-
dimensional Voronoi networks, and extensions to more complex scenarios in which the benefit function 
is not simply a function of the fraction of producers. In neo-angiogenesis, for example, the public good 
is the vascular endothelial growth factor (VEGF) produced by the cancer cells, but its diffusion range is 
not the same as the diffusion range of resulting benefit (the oxygen received by the cells when VEGF 
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leads to the formation of a new blood vessel, which depends on the diffusion gradient of O2). Tumor-
stroma interactions, in general, depend on the diffusion of growth factors, and can be modelled using 
public goods games that would be more complex from the ones described here. Finally, in the Warburg 
effect, which also depends on diffusible public goods, one must take into account a more complex 
benefit function that includes self-poisoning [Archetti 2014b,c]. 
 Other details, on the other hand, may be less crucial for modeling, either because they seem to 
have a relatively minor effect, like the exact shape of the diffusion gradient, or because they are arguably 
similar to the results we already know for regular lattices, like the effect of different update rules. 
Specific update rules, on the other hand, which are relevant for different types of cancer, may lead to 
different results for different types of cancer. Population size is also relatively unimportant, as long as it 
is large enough [Perc et al. 2013], although it might be interesting to analyse the dynamics in small 
populations (where random drift can be important) to study cooperation and competition at the 
inception of tumor development. 
 Finally, public goods games on Voronoi networks are appropriate for the analysis of other 
problems in biology, beyond cancer research, in ecology (interactions between sessile organisms), 
microbiology (production of diffusible enzymes in microbial biofilms), behavioural ecology (interactions 
between animals owning neighbouring territories) and any collective interaction in which players 
occupy the nodes of planar heterogeneous networks. 
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Figure 1. Voronoi graphs. a: A monolayer of cells can be described by a Voronoi tessellation of points 
on a plane, and the corresponding network by a planar graph (the grey lines) produced by a Delaunay 
triangulation of such points. An individual cell (black circle) is in direct competition with its one-step 
neighbours (grey circles with black edges); a group is defined by the diffusion range of the growth 
factor; here the diffusion range (grey cells) is d=2. Voronoi tessellations can be drawn on a circle (b), on 
a square (c) and on a sphere (d). Voronoi graphs on a sphere can be represented in two dimensions as 
parallelograms whose polygons on opposite edges are connected (e). 
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Figure 2. Difference between diffusible public goods and standard public goods on different graphs.  
The graphs used are Voronoi networks (a, b), regular lattices with connectivity 6 (c, d) and scale-free 
networks (e, f). Results are shown for diffusible public goods (a, c, e; diffusion range d=2), and for 
standard public goods (b, d, f; the shaded areas shows the interaction group of one of the public goods 
games played by the focal individual in the middle). Each cell in the contour plots shows the fraction of 
producers and the average fitness at equilibrium as a function of h (the position of the inflection point 
of the benefit function) and c (the cost of production). 
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Figure 3. Group size. The average size of the update neighborhood (equivalent to the interaction 
neighborhood with d=1) for a Voronoi graph is n=7, the same value (dashed line) as the update 
neighborhood for a regular lattice with connectivity 6. The smallest group size is n=4. The average size 
of the interaction neighborhood with d=2 is n=20, and with d=5 is n=109, larger than for a regular 
lattice with connectivity 6 (dashed lines: n=19 with d=2, and n=91 with d=5). Scale-free networks have 
many nodes with small connectivity and few nodes with much higher connectivity. 
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Figure 4. Effect of diffusion range, cost of production and inflection point. For different values of the 
diffusion range (d), each cell in each contour plot shows the frequency of producers or the average 
fitness for a combination of h (the position of the threshold) and c (the cost of production) values, for 
s=20; deterministic update. 
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Figure 5. Effect of production cost, shape of the benefit function and update rule. Contour plots show 
the frequency of producers or the average fitness of the population at equilibrium in simulations with a 
combination of h (the position of the threshold) and c (the cost of production) values, for different 
values of s (the steepness of the benefit function) and different update rules. The benefit function is 
shown for different values of h and s. Voronoi graphs show snapshots of the final population with 
c=0.05, h=0.5. d=3. 
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Figure 6. Changes in network structure. For different values of the diffusion range (d), the Voronoi 
graphs show the final population structure, and the plots show the change over time of  the frequency 
of producers, degree centrality (the number of neighbours) and closeness centrality (the shortest 
distance between all pairs of nodes) of the producer and non-producer subgraphs. Bold lines are the 
averages of 10 runs. Note that, for d=5, producers go extinct in some populations, which makes average 
degree centrality drop significantly); c=0.01, h=0.5, s=20, deterministic update.  
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Figure 7. Equilibria with different diffusion gradients. For different benefit functions B(x) and 
gradients of diffusion G(i), the contour plots show the fraction of producers at equilibrium as a function 
of h (the inflection point of the benefit function) and c (the cost of producing the growth factor), with 
s=20. a: Fixed diffusion range with no diffusion gradient (d=3, D=6, z=1000). b: Sigmoid diffusion 
gradient (d=3, D=6, z=10). c: Linear diffusion gradient (d=3, D=6, z=1). d: Concave diffusion gradient 
(d=0, D=7, z=3).  
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Figure 8. Changes in network structure over time, with and without diffusion gradients. a: Fixed 
diffusion range (d=3, D=6, z=1000). b: Concave diffusion gradient (d=3, D=6, z=1). c=0.03, s=20 
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Figure 9. Evolution of resistance against therapies that target growth factors. A therapy that targets 
growth factors increases the amount of factors that the cells must produce to achieve the same pre-
treatment benefit, that is, the inflection point h of the benefit function. Simulations here show the 
dynamics when h changes from 0.5 to 0.8 at generation 1000. a: A sudden reduction in tumor growth 
(fitness) is immediately followed by a gradual increases in frequency of the +/+ type and of tumor 
fitness. b: Snapshots of the population at different times before and after therapy. (d=3, c=0.02, s=10).  
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Figure 10. Effect of therapies that target growth factors. Reducing the amount of available growth 
factor increases the benefit threshold from h1=0.5 to h2. If the change from h1 to h2 occurs slowly (in 
100 divisions per cell) tumor proliferation (fitness) does not decline because the fraction of +/+ cells has 
enough time to adjust to the new threshold, and eventually reaches a new equilibrium (h2=0.8), unless 
the reduction in circulating growth factor is extreme (h2=0.99). If the change is fast (10 divisions per 
cell) tumor fitness declines sharply and frequencies do not have enough time to adjust to the new 
equilibrium, which leads to a decline in tumor fitness for lack of growth factors. Bold lines are the 
averages of 10 simulations. (d=3, c=0.01, s=20). 
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