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Abstract
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Doctor of Philosophy

The p53/MDM2 protein-protein interaction is the most widely characterised protein-

protein interaction to date. As of 2014, there are over 20 compounds that have been

shown to the p53-MDM2 protein-protein interaction, however many compounds have

not progressed into clinical trials due to their high hydrophobicity.

Herein we describe the synthesis, molecular modelling, physical characterisation and

biological testing of novel inhibitors of the p53/MDM2 protein-protein interaction based

on the natural product chlorofusin.

The first focus is a combinatorial library generated in the Searcey laboratory of known

p53/MDM2 protein-protein interaction inhibitors with the desire to generate novel ana-

logues and study their interactions with the protein through NMR spectroscopy and

molecular modelling. These compounds were tested by in a fluorescence polarisation

assay and also in cell lines overexpressing MDM2 as well as p53-null cells as a com-

parator. This generated two novel compounds shown to have activity selectively for the

p53/MDM2 protein-protein interaction.

The second chapter focuses on simplified substitutions of the azaphilone (the chro-

mophore portion of chlorofusin, a natural product inhibitor of the p53-MDM2 protein-

protein interaction): initially with simple fused bicyclic carboxylic acids and later us-

ing click chemistry substitutions. Interestingly, in vitro studies showed that the click

analogues retained activity or activity improved when the peptide portion was re-

moved and hence further studies of the click amino acid analogues were generated.

This library generated one analogue that was active in vitro as well as selectively in

MDM2-overexpressing cell lines.

The third chapter focusses on the azaphilone chromophore present in the natural prod-

uct chlorofusin. The Sonogashira precursor used to generate azaphilone analogues was

synthesised using a methodology adopted by Porco et al and subsequent analogues were

generated using a novel double-Sonogashira approach followed by functionalisation pub-

lished by Boger et al. Once the azaphilone was synthesised, metholodogies were trialled
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in order to condense the azaphilone with the chlorofusin peptide in order to create

analogues containing both the peptide and small molecule portions of chlorofusin. In

addition, molecular modelling was attempted to generate novel binding analogues.
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Chapter 1

Introduction

p53 is an important transcription factor, which ensures the destruction or repair of cells

containing damaged DNA. p53 also codes for MDM2, which prevents the over-activity

of p53 (which could lead to premature ageing through unnecessary destruction of cells).

When MDM2 is overexpressed, damaged DNA is allowed to replicate and therefore

cancerous cells can be generated.

This introduction will cover the general causes of cancer and therapies available, as

well as give examples of different protein-protein interactions and their role in disease

progression. The introduction will then go on to focus on the p53/MDM2 protein-protein

interaction and inhibitors that have been discovered to date.

1.1 What is Cancer?

Cancer is a multifactorial disease in which cells are permitted to undergo rapid, un-

controlled cellular proliferation.1 This generally occurs when damaged DNA is able to

replicate by bypassing checkpoints present in the cell cycle.

1.1.1 Epidemiology, Aetiology and Pathophysiology

In 2012, 14.1 million people were diagnosed with cancer worldwide and 8.2 million people

died as a result of cancer in the same year.2 At present, it is predicted that 46% of men

and 54% of women diagnosed with cancer between 2010 and 2011 will survive 10 years

or greater.3 The most common cancers constituting over half of all cases worldwide are

breast (15%), lung (13%), prostate (13%) and bowel (13%).2 36% of cancers diagnosed

in the UK between 2009 and 2011 were diagnosed in patients aged 75 and over.4 Cancer

1
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types also vary greatly with age: children (both male and female from birth to 14 years

old) are more prone to leukaemias,5 males (50 years and over) are more likely to suffer

from cancers of the prostate4 and women (25 years and over) are more likely to suffer

from breast cancer.6

Figure 1.1 shows the 5- and 10-year survival statistics for men and women (aged 15

to 99) in England and Wales between 2010 and 2011 (the most recent published data

available via Cancer Research UK).3 The highest survival rates were associated with

testicular cancer (99% at 1-year and 98% at 5- and 10-years), malignant melanoma

(97% at 1-year reducing to 89% at 10-years) and breast cancer (96% at 1-year and 78%

at 10-years). The lowest survival rates were associated with brain cancer (40% at 1-year

reducing to 13% at 10-years), lung cancer (32% at 1-year reducing to 5% at 10-years)

and pancreatic cancer (21% at 1-year survival reducing to 1% at 10-years).3

Figure 1.1: Age-Standardised One-, Five- and Ten-Year Net Survival, Selected Can-
cers, Adults (Aged 15-99), England and Wales, 2010-20113 (data freely accessible to

the public)



Targeting the p53/MDM2 Protein-Protein Interaction 3

1.1.1.1 Causes of Cancer

Cancer can be caused by a variety of different agents, either which directly cause DNA

damage or that lead to uncontrolled cellular proliferation.1 DNA can be damaged by

a variety of different substances: tobacco smoke (either through passive smoking or

first-hand cigarette smoke) attributed to 101,000 new cases in the UK in 2010 and

64,300 deaths in the UK in the same year.7 Smoking is most prevalent in areas of social

deprivation (32.1% of males and 24.3% of females from lower economic backgrounds).8

Alcohol and toxic metabolites can also damage DNA,9 with alcohol and toxic metabolites

being linked to approximately 12,500 cancer cases in the UK in 2010.9 The most common

cancers related to alcohol are those of the upper digestive tract, including the oral cavity

(20.6%) and pharynx (30.4%).

Ultraviolet radiation has been attributed to 3.5% of all cancers and increased exposure

to sunbeds and increased travel overseas has led to an increase in incidence in malig-

nant melanoma over the past 30 years.10 It is approximated that 85.9% of malignant

melanoma cases in the UK in 2010 were correlated to UV radiation exposure. Radia-

tion from ionising sources including X-rays contributed to 1.8% of all cancers in the UK

in 2010.11 Radiotherapy and radon had the highest number of cases (1,380 for each),

background radiation (1,170 cases), followed by nuclear medicine (19 cases).

Although infection is a less likely attributing factor for cancer, it has still been linked

to 3.1% of all cancer cases in the UK in 2010.12 It is more common in females (3.7%

in females versus 2.5% in males), with the top infective agents being human papilloma

virus (2,690 cases), Helicobacter pylori (2,560 cases), Epstein Barr virus (1,210 cases),

hepatitis B and C (620 cases), HIV /Kaposis sarcoma virus and human herpes virus 8

(approximately 25 cases).

Other factors that can attribute to the development of cancers include genetic predispo-

sition (2% to 3% of cancers diagnosed in the UK annually are considered to be the result

of a faulty gene)2 and high body weight (being overweight or obese is believed to cause

5% of total cancers in the UK annually, whilst a diet lacking in fruit and vegetables has

been shown to attribute to 9% of total cancers in the UK each year).2

1.1.2 Cancer Treatment Options

The most common form of cancer therapy is surgery, in which cancerous tissue (and

some surrounding healthy tissue) is excised from the patient, however this is not always

plausible if the cancer is in a difficult-to-target area. It is also important to note that
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excision of affected tissue can have further implications dependent on the tissue being

removed, such as malabsorption due to resection of the bowel (as the bowel becomes

much shorter so there is less surface area for absorption of nutrients into the body).

Other factors to consider in surgical treatment include cost to the NHS due to the

requirement of inpatient hospital stay (for example, laparoscopic resection costs between

£250 and £300 per patient, which could equate to £2.1 million per year for the total

number of patients requiring surgery),13 which can also increase the risk of venous

thromboembolism and opportunistic infections such as hospital-acquired pneumonia.

Radiotherapy is the second most common form of cancer treatment and diagnostics, in

which X-rays are used to destroy tumour cells. Radiotherapy utilisation is most common

in breast (10% of all cancers), lung (7.6% of all cancer cases) and prostate (7.2% of all

cancer cases). The total percentage of patients receiving radiotherapy (across all cancers)

was 52.3% in the year 2005.14 Although this method negates the requirement for surgery

in some cases, radiation from this process can itself lead to the development of cancers.11

Chemotherapy is often used as an adjunctive therapy and works by the premise of

targeting rapidly-dividing cells.15 Although this is still a mainstay of treatment, with

agents such as the antitumour antibiotic doxorubicin and the vinca alkaloid vincristine

still commonly used today (both shown in figure 1.2).
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Figure 1.2: Structures of doxorubicin and vincristine

The greatest disadvantage of classic chemotherapy agents is their myriad of adverse

effects: as they selectively target rapidly-dividing cells (instead of tumour cells specif-

ically), other rapidly-dividing cells such as hair follicles are targeted as a consequence,

resulting in hair loss.16 It is therefore plausible, as in the case of radiotherapy, that

treatment using these agents can lead to the development of cancers in later life, hence

the need for the development of novel, less cytotoxic agents that maintain potency.17 In

order to prevent resistance, many of these cytotoxic therapies are used in combination
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(such as paclitaxel, PEGylated doxorubicin hydrochloride and topotecan for the treat-

ment of advanced ovarian cancer).18 The purpose of using a combination is that it is less

likely that tumour cells will have inherent resistance to multiple therapies and therefore

combination therapies are more likely to lead to full cancer remission without recur-

rence. As chemotherapy is used as an adjunct therapy, trials published in the literature

are usually in combination with another form of treatment such as hormone therapy.

For example, Gelmon et al published a review of randomised controlled trials published

between 1985 and 2000 to examine the 15-year survival of breast cancer patients who

received treatment with polychemotherapy and/or hormonal therapy in the early stages

of the disease.15 The findings of this study were that 6 months of treatment with an

anthracycline in addition to FAC (fluorouracil, doxorubicin, cyclophosphamide) or FEC

(fluorouracil, epirubicin, cyclophosphamide) reduced cancer incidence by 38% for women

under 50 years of age, whilst the addition of adjuvent treatment with tamoxifen over

5 years reduced cancer incidence by 31% in a separate patient sample of women under

50 years of age (although this was only the case for patients with an oestrogen-receptor

positive status). This data was collated with data gathered from meta-analyses, which

generated overall statistics of 57% and 45% reduction in the number of cases of oestrogen-

receptor positive breast cancer in those receiving adjuvent tamoxifen and those without

respectively.15

Although classical chemotherapy agents are still commonly used in the clinic, novel

compounds have begun to emerge in the treatment of a variety of cancers.19 The first in

a novel group of anticancer agents, imatinib (figure 1.3), worked by a novel mechanism of

action by which an unnatural tyrosine kinase was inhibited.20 What was most interesting

and unique about this approach was that this kinase was produced by a mutation in the

Philadelphia chromosome, in which the genes for BCR-Abl are combined and produce

said tyrosine kinase. Since imatinib, other agents such as trastuzumab (a Her2/Neu

receptor antagonist) have been developed, promising increased tolerability in patients

and selectivity for cancer cells.

N
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Figure 1.3: Structure of imatinib

Using the lessons learned from molecular therapeutics and the development of imatinib,

there has been a shift in therapeutic drug development towards agents which play a
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modulatory role in the pathways involved in cancer: a great step forward in the way

that cancer treatment has been perceived. As a result, newer cancer therapies have a

more targeted effect and therefore have an improved side effect profile. At present, there

is a great deal of investigation of protein-protein interactions in the treatment of cancer

as well as a plethora of other illnesses, as they have specific modulatory roles within

cells and therefore would produce targeted effects if stimulated or inhibited.

1.2 Protein-Protein Interactions

Protein-protein interactions (PPIs) are of growing interest to the medicinal chemistry

community due to their ability to modulate outcomes (such as cellular apoptosis) within

cells, hence allowing greater control than classical drug targets such as enzymes or

receptors.21 These interactions are prevalent throughout the body and are able to control

a wide range of biological systems, such as the regulation of inflammation22 or the

development of new nerves.23

Unfortunately, difficulty arises because protein interactions are dynamic and the state

in which they are interacting is transient. Also, the interfaces between proteins where

interactions occur are large, flat and hydrophobic (general interaction area equates to

1500 to 3000 Å2, as opposed to 300 to 1000 Å2 for small molecule interactions with

proteins).24 As a result, binding pockets can be hidden deep within the protein and

may only be exposed upon binding of a complementary ligand.

Despite the known difficulties in targeting, it has not deterred researchers from exploiting

these interactions. There are three main examples of protein-protein interactions that

have been successfully targeted by either cell-penetrating peptides or small molecules

are mentioned below. The third example serves as the focus of this research.

1.2.0.1 The Bcl-2 Family (Example 1)

Figure 1.4 illustrates the interaction of the different members of the Bcl-2 family and

the downstream consequences for the cell.
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Figure 1.4: Diagram showing the interaction of different proteins in the Bcl-2 family
and subsequent downstream effects25 (open access article)

The Bcl-2 family of proteins encompasses fifteen pro-apoptotic (three important mem-

bers being Bcl-2-like protein X, BAX, Bcl-2-associated death promoter, BAD and Bcl-2-

antagonist/killer, BAK)25,26 and five or six anti-apoptotic proteins (one of these being

Myeloid Cell Leukaemia-1, Mcl-1), as shown in table 1.1. The pro-apoptotic proteins

only contain a Binding Homology 3 (BH3) region. When unbound, these BH3 proteins

move to the mitochondria, recruit a series of caspases and cause perforation of the cell

membrane, initiating apoptosis. When the BH3 proteins are in their α-helical confor-

mation they can bind to their anti-apoptotic partners and therefore apoptosis does not

occur. In conclusion, BH3 binding status determines whether or not a cell will apoptose,

which is important in the prevention of damaged or cancerous cells replicating which

could otherwise lead to the development of cancers.
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Bcl family

member

Pro/Anti-

apoptotic

BH1

domain

present

BH2

domain

present

BH3

domain

present

BH4

domain

present

TM

domain

present

BCL-2 Pro Yes Yes Yes Yes Yes

BCL-XL Pro Yes Yes Yes Yes Yes

BCL-W Pro Yes Yes Yes Yes Yes

A1 Pro Yes Yes Yes Yes No

MCL-1 Pro Yes Yes Yes Yes Yes

BOO Pro Yes Yes Yes Yes Yes

BAX Anti No Yes Yes Yes Yes

BOK Anti No Yes Yes Yes Yes

BCL-XS Anti Yes Yes No No Yes

BAK Anti No Yes Yes Yes Yes

BCL-GL Anti No Yes No Yes No

BFK Anti No Yes No Yes No

BAD Anti No Yes No No No

BIK Anti No Yes No No Yes

BID Anti No Yes No No No

HRK Anti No Yes No No Yes

BIM Anti No Yes No No Yes

NOXA Anti No
Yes (2

copies)
No No No

PUMA Anti No Yes No No No

BMF Anti No Yes No No No

Table 1.1: Table showing the different members of the Bcl-2 family, their role in
survival and the binding homology (BH) and transmembrane (TM) domains present in

each protein (adapted from Strasser et al, 2005)27

Evidence for the importance of these proteins in cancer was reported by Zhouet al,

who discovered that Mcl-1 is overexpressed in chronic myeloid leukaemia.28 Further

work published by Quinn et al in 2011 also indicated Mcl-1 overexpression in breast,

lung, ovarian, central nervous system, prostate, melanoma and renal cancers. The high

prevalence of Mcl-1 in a variety of cancers increases its viability as a therapeutic target.

Also, homology between Bcl-2 and Mcl-1 means that current Bcl-2 inhibitors can be

optimised to aid binding into the pocket (the homology is illustrated in figure 1.7,

which indicates the binding modes of a Bcl-2 inhibitor in different members of the Bcl-2

family).
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ABT-737 was the first inhibitor discovered that acted against the Bcl-2/Mcl-1 protein-

protein interaction. It was discovered through a high throughput screen and parallel

synthesis, utilising fragment-based drug discovery, as shown in figure 1.5.26
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Figure 1.5: Fragment-based design of Bcl-2 inhibitors, followed by optimisation of
potency and pharmacokinetics to produce ABT-737

ABT-737 was considered to be a dual inhibitor, as it also inhibited the Bcl-X interactions

with BAD, BAK and BAX proteins (the key binding interactions common to both

ABT-737 and the BH3 domain are illustrated in figure 1.6. ABT-737 was able to mimic

key π-π-stacking and hydrophobic interactions present within the hydrophobic groove,
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with the bichlorophenyl binding in the lower groove with the thiophenyl group binding

in the upper groove of Bcl-2 anti-apoptotic proteins, as shown in figure 1.7.

Figure 1.6: Superimposed image of the BH3 domain and ABT-73729 (reproduced
with permissions)

Figure 1.7: Docking model of ABT-737 within A. the Bcl-xL hydrophobic pocket B.
the Bcl-2 hydrophobic pocket and C. the Mcl-1 hydrophobic pocket29 (reproduced with

permissions)

ABT-737 was found to inhibit the Bcl-2/Mcl-1 interaction with an IC50 value of less than
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10 nM as determined by isothermal titration calorimetry (ITC). Despite pre-clinical suc-

cess, ABT-737 was not orally bioavailable and contained undesirable functional groups,

such as a nitro group which would be readily reduced in vivo30 (although the antibiotic

nitrofurantoin is a nitroaromatic that is used clinically for urinary tract infections, de-

spite its known rare hepatotoxicity resulting from the nitro group).31 As a result, this

compound required further optimisation to improve its pharmacological properties.

The first bioavailable inhibitor of the Bcl-2 pro-apoptotic proteins (ABT-263, also re-

ferred to as Navitoclax, shown in figure 1.8) was reported by Tse et al in 2008.32
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Figure 1.8: Structure of ABT-263 (Navitoclax): a Bcl-2 inhibitor discovered by Tse
and coworkers32

ABT-263 was found to mimic the hydrophobic interactions generated by BAD (a pro-

apoptotic protein). Preclinical animal models showed tumour regression in xenografts

within 2 hours of treatment. The clinical studies of this compound are currently ongoing.

Although ABT-263 was a highly potent inhibitor, it was dose-limiting due to thrombo-

cytopenia. As a result, further work was undertaken to minimise side effects, resulting in

the generation of ABT199,1.9 which is currently in phase I clinical trials.33 The crystal

structures of the Bcl-2 inhibitors are shown in figure 1.9.34



Targeting the p53/MDM2 Protein-Protein Interaction 12

Figure 1.9: A. Cocrystal structure of ABT-263 (Navitoclax) within Bcl-2 (where P2
and P4 indicate the two hydrophobic hotspots on Bcl-2), B. cocrystal structure of an
analogue of ABT-263 in Bcl-2 (where P2 and P4 indicate the two hydrophobic hotspots
on Bcl-2), C. ribbon representation of Bcl-2 bound to ABT-263 (indicating key hydrogen
bonding interactions between Asp103 and the imidazole moiety of ABT-263) D. rib-
bon representation of Bcl-2 bound to intermediary 2 (indicating key hydrogen bonding
interactions between the imidazole of intermediary 2 and Arg107 and Asp103 present
within Bcl-2) and E. structure of final optimised compound ABT-199 (reproduced with

permissions)

At present, there are no inhibitors that act at the Mcl-1 protein. Work is currently being

undertaken by Nguyen and coworkers in the design of novel inhibitors against Mcl-1,35

as the overexpression shown in the CHO cell lines presents itself as a viable target in

the treatment of cancer.28

1.2.0.2 The Nrf2/Keap1 Binding Partners (Example 2)

Figure 1.10 illustrates the Nuclear factor erythroid 2-related factor 2/Keap1: Kelch-like

ECH-associated protein 1 (Nrf2/Keap1) protein-protein interaction.
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Figure 1.10: Diagram showing the binding of the Nrf2 protein to the two Keap1
Kelch domains (adapted from Kansanen et al, 2013)22

Keap1 is a highly cysteine-rich protein, which is able to oxidise at postions C151,

C273 and C288, causing a conformational change and permitting binding to Nrf2.36

Nrf2/Keap1 is a protein-protein interaction involved in the inflammatory response and

has also been implicated in cancer37 (as cancer can be resultant from prolonged inflam-

mation),38 however the interaction’s role in cancer is still not fully understood. Nrf2

binds to 2 key subunits on Keap1 (known as Kelch domains),39 forming a beta-hairpin

structure. Inhibition of this interaction has been shown to reduce the inflammatory

response,40 however its role in the treatment of cancer is somewhat more complex. In

2013, Searcey et al published a high affinity binding sequence consisting of the Trans-

activation domain (TAT) found in HIV to improve cellular permeability and a 14mer

sequence of Nrf2.41 This high-affinity binder was fluorescently tagged as used as a probe

against Keap1 to discover novel inhibitors of the Nrf2/Keap1 protein-protein interaction

through fluorescence polarisation.

High throughput fluorescence polarisation assays were also undertaken by Munoz and

coworkers in 2013 and Silvia and coworkers in the same year.42,43 Munoz and cowork-

ers discovered the inhibiting compound (SRS)-5 (figure 1.11, which had a Kd of 1

µM), whilst the 2D-FIDA assay undertaken by Marcotte and coworkers discovered the

compounds Cpd15 and Cpd16 (figure 1.12), with ED50 values of 118 µM and 2.7 µM

respectively.
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Figure 1.12: Structures of Cpd15 and Cpd16 produced by Sun and coworkers44

In 2014, Sun and coworkers discovered a potent inhibitor of the Nrf2/Keap1 protein-

protein interaction.44 Initially, a static structural analysis of the binding pocket of Keap1

was analysed using the protein databank entry 1X2R, which utilised the Nrf2 sequence

LDEETGEFI. This peptide motif contained side chains capable of forming hydrogen

bonds (in addition to the hydrogen bonds that can be formed by all peptide backbones),

as demonstrated in figure 1.13.
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Figure 1.13: Diagram showing hydrogen-bonding interactions between the Nrf2 bind-
ing sequence and Keap1, as well as their relative intensities as calculated through molec-
ular modelling. The amino acid sequence of NRF2 is labelled in bold. Atom and amino
acid colours indicate the significance of the dipole interaction (red labels are over 80%
importance, purple labels interact with between 60% and 80% importance, blue la-
bels interact with between 40% and 60% importance whilst green labels interact with

between 20% and 40% importance (adapted from Jiang et al, 2014)44

Using this information, combined with the previously described inhibitor Cpd16, Sun

and coworkers undertook a fragment-based approach to determine optimal binding
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within the pocket. It was hypothesised that the addition of carboxylic acids to Cpd16

could improve hydrogen bonding within the Keap1 binding pocket. Compound 2, the

optimised form of Cpd16, is shown in figure 1.14.
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Figure 1.14: Structure of Compound 2, the optimised form of Cpd16 produced by
Sun and coworkers44

Cpd16, FITC-labeled Nrf2 binding sequence and the newly designed compound 2 was

tested in a Bio-Layer Interferometry (BLI) assay, in which the interference of white

light by a substance (in this case a protein) against a biosensor chip is analysed. Any

changes in the interaction state of the proteins will alter the interference with white light,

which can then be detected by a spectrophotometer. The BLI assay indicated that the

optimised compound 2 had a Kd of 3.59 nM, in comparison to Cpd16 (1690 nM) and

the FITC-labeled Nrf2 binding sequence (15.8 nM). EC50 values were also determined

for these three compounds using fluorescence polarisation, with values of 395 nM, 1460

nM and 28.6 nM for 9mer Nrf2, Cpd16 and compound 2 respectively.

In order to determine the downstream effects of compound 2, quantitative realtime

polyerase chain reaction (qRT-PCR) studies were undertaken. The RNA levels of HO-1,

NQO-1 and GCLM RNA levels were examined, as these are known downstream targets

of Nrf2. In each case, levels of these targets increased with increasing concentration of

compound 2.

Although compound 2 showed promising biological data, the compound had poor cell

permeability, which would be caused by the carboxylates present at biological pH (pH

7.2), as the presence of the negative charge on the carboxylates prevents movement

through the cell membrane. Follow-up work to this would be to improve the cell perme-

ability of the Nrf2-Keap1 inhibitors. At present, there is still a great deal of investigation

and optimisation of inhibitors against this interaction.

1.2.0.3 The p53/MDM2 Binding Partners (Example 3)

Figure 1.15 displays an overview of the protein 53/Murine-Double-Minute 2 (p53/MDM2)

protein-protein interaction. The p53/MDM2 interaction has been the most well-studied
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to date and studies by Lane and coworkers showed for the first time that these type of

reactions are “druggable”.45

Figure 1.15: Intracellular pathways affected by the binding of p53 to MDM246 (re-
produced with permissions)

Following are the details of the proteins involved with this interaction as well as down-

stream effects and inhibitors that have been shown to inhibit this interaction.

1.2.1 An Introduction to p53

Figure 1.16 illustrates the genetic construct of protein 53 (p53). p53 was first coined

as the “guardian of the genome by Sir David P Lane in 1992, as it led to the repair

or apoptosis of damanged DNA and therefore preserved the integrity of the genome.47

p53 contains 393 amino acids consisting of a transactivation domain and a proline-

rich domain towards the N-terminus, a DNA binding domain in the central region, an

oligomerisation region that causes p53 to form a homotetramer and a regulatory region

that controls p53 levels within the cell.48 p53 normally resides in the nucleus of the cell,

where it scans for damaged DNA and triggers the cell into apoptosis or DNA repair.
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Figure 1.16: Constructs of both p53 and MDM2, indicating key binding and regula-
tory regions present within each sequence (adapted from Petrenko et al, 2003)46

Tetrameric p53 is exported into the cytoplasm for degradation by MDM2, but monomeric

p53 is thought to have its own separate pathway of degradation, although the exact

mechanism of this is still undergoing investigation. The monomeric pathway is thought

to be masked during the formation of tetrameric p53.49

p53 is an important tumour suppressor protein that ensures that cells that are damaged

by cellular stress (including single- or double-stranded DNA breaks, hypoxia, faulty

spindle formation during anaphase of mitosis, reduction in ribonucleotides, teratogenic

substances and so on) are either repaired or apoptosed.50 As to the pathway chosen,

it is generally considered that higher levels of p53 are associated with apoptosis of the

cell. Under normal conditions, p53 levels in the cell are low. p53-induced apoptosis is

a result of downstream induction of p53 upregulated modulator of apoptosis (PUMA)

and Phorbol-12-myristate-13-acetate-induced protein 1 (also known as NOXA),51 which

are pro-apoptotic proteins. These signalling proteins translocate to the mitochondria

to bind to the anti-apoptotic proteins Bcl-2, Bcl-X, Bcl-W (in the case of PUMA),52

Mcl-1 and Bcl-2A1 (in the case of NOXA).53 When inhibition of the anti-apoptotic

proteins reaches a certain threshold, apoptosis occurs. In addition to the binding to

anti-apoptotic proteins by downstream PUMA and NOXA, translocation of p53 to the

mitochondria can lead to the direct activation of pro-apoptotic members of the Bcl-2

family, causing apoptosis. The final mode of cell death is through downstream signalling

of p21 (a downstream tumour suppressor) caused by elevated p53 levels. Elevated p21

leads to opsonization of damaged cells by macrophages and senescence.54 In addition,

the p21cif1/waf1 complex inhibits the action of cyclin-dependent kinases (Cdks).55

Additional proteins are involved in the promotion of p53 binding to pro-apoptotic part-

ners. Apoptosis-stimulating of p53 protein 1 (ASPP1) and apoptosis-stimulating of p53
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protein 2 (ASPP2) are cofactors that promote the binding of p53 to either BAX or

p53-inducible protein, both of which are pro-apoptotic.56 The RNAi iASPP1 has been

shown to inhibit apoptosis and is overexpressed in breast cancer and AML and has been

linked to a resistance to treatment in ovarian cancers.57 iASPP1 has also been found in

melanomas, but not overexpressed.58

Alternative reading frame (ARF) protein is a protein responsible for the production of

p53. ARF is also capable of binding MDM2, which could contribute to increased p53

stabilisation in the nucleus by prevention of MDM2 shuttling.59 In vitro, it has been

shown that ARF binding to MDM2 does not affect MDM2s ability to bind p53 and

therefore both the ARF-MDM2 and ARF-MDM2-p53 complexes have been formed.60

ARF also causes MDM2 localisation in the nucleolus.

Ubiquitin-specific protein 1 (USP1) has a rather more complex relationship with p53:

USP1 causes deubiquitination of Inhibitors of DNA binding (IDs).61 These IDs then pre-

vent binding of E2A and basic-helix-loop-helix (bHLH) transcription factors, leading to

uncontrolled proliferation through inhibition of cell cycle arrest by p53 and downstream

p21 activation in osteosarcoma models.

C-Abl is also a p53 modulator and in its non-oncogenic role acts to antagonise MDM2

and therefore lead to increased stability of p53.62 Although oncogenic Bcr-Abl is also

able to cause accumulation of p53, it utilises the p53/MDM2 negative feedback loop to

prevent p53 from carrying out its tumour suppressor activities.

p53 is mutated in over 50% of cancers (usually within its DNA binding domain): two

common mutations include E177R, which prevents the binding of p53 to DNA and

S46A, which prevents p53 from inducing apoptosis in HSC-2 human oral squamous cell

carcinomas.63,64

1.2.2 An Introduction to MDM2

Murine-Double-Minute 2 (MDM2) or its human homologue Human-Double-Minute 2

(HDM2) promotion is initiated by p53. MDM2 is an E3 ubiquitin ligase consisting of

491 amino acids.48 MDM2 contains a region specifically for binding tetrameric p53, an

acidic region that is capable of interacting with ribosomal protein L5 and ARF tumour

suppressor protein. It also contains a zinc finger and a Really Interesting New Gene

(RING) finger, which is thought to cause nuclear export of p53.

MDM2 is able to target the retinoblastoma protein (pRB) for degradation through either

ubiquitin-dependent or ubiquitin-independent pathways.65 The associated retinoblas-

toma proteins, p107 and p130, cause the recruitment of Mdm2 but are not ubiquitinated
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by Mdm2.66 p107 inhibits muscle differentiation and also inhibits Myo-D dependent

transactivation.67,68

MDM2 is capable of activating or inhibiting E2F-1.69,70,71 Interestingly, E2F1 was up-

regulated following treatment of cells using doxorubicin, but downregulated by nutlin-

3-treated cells. Normal melanocytes retain E2F1 levels upon nutlin-3, but do not gain

features of senescence. Loss of MDM2 function also appeared to downregulate E2F1

through p53-modulation and proteasome-independent mechanisms. p73, a homologue of

p53, can activate the p53 response element and cause apoptosis through E2F1-associated

pathways.72

MDM2 is overexpressed in 7-8% of cancers. This leads to uncontrolled entry into S phase

and polyploidy, resulting in hyperproliferation of cancerous cells. A key point mutation

leading to MDM2 overexpression and permanent reduction in p53 activity is 309T to G

(SNP309).71

1.2.3 The p53/MDM2 Protein-Protein Interaction

Figure 1.17 illustrates an X-ray crystal structure of the p53/MDM2 protein-protein

interaction, shown diagrammatically by two different methods. When damaged DNA is

detected by p53 in the nucleus, p53 levels rise and the DNA in question is either repaired

or the cell is apoptosed, depending on the degree of damage and factors affecting the

downstream pathway chosen such as the threshold levels of p53 in the cell.

Figure 1.17: X-ray crystal structure of the p53 transactivation domain bound to
MDM2, indicating the key binding amino acids Phe19, Trp23 and Leu26 (reproduced

with permissions).73

During this process p53 also transcribes MDM2, which is a negative modulator of p53

to prevent p53 from overworking and leading to high levels of apoptosis. When MDM2

binds to α-helical tetrameric p53 via the MDM2 hydrophobic pocket (containing Phe19-,
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Trp23- and Leu26-binding regions, as shown in figure 1.17), p53 is then triggered for

ubiquitinylation and degradation by MDM2, thus ceasing the action of p53 within the

nucleus.

Malignancy occurs when MDM2 is overexpressed, as this leads to rapid p53 degradation

and prevents p53 from carrying out its tumour suppressor functions within the cell.

This process is found in 7-8% of all cancers.72 As a result, compounds attempting to

(re)activate p53 or suppress the action of MDM2 are currently being investigated as

cancer therapeutics.

1.3 Inhibitors of the p53/MDM2 Interaction Currently in

Clinical Trials

Table 1.2 indicates the current p53/MDM2 protein-protein interaction inhibitors (all

of which are small-molecule MDM2 antagonists) currently in clinical trials either as

monotherapy or as combination therapies with cytarabine or doxorubicin, both of which

are classical chemotherapy agents.
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Compound Status in Phase I Trials
Clinical Trials

ID
Company

RG7112 (also

known as

RO5045337)

Phase I trial in advanced solid tu-

mours, solid tumours, haematologi-

cal neoplasms and liposarcomas (all

completed)

NCT00559533

NCT01164033

NCT00623870

NCT01143740

Roche

RG7112 (also

known as

RO5045337)

with cytara-

bine

Phase I in AML (completed) NCT01635296 Roche

RG7112 (also

known as

RO5045337)

with doxoru-

bicin

Phase I in soft tissue sarcoma (com-

pleted)
NCT01605526 Roche

RO5503781
Phase I in advanced malignancies

(recruiting)
NCT01462175 Roche

RO5503781

with cytara-

bine

Phase I in AML (recruiting) NCT01773408 Roche

MI-773 (also

known as

SAR405838)

Phase I in malignant neoplasms (re-

cruiting)
NCT01636479 Sanofi

DS-3032b
Phase I in advanced solid tumour

lymphoma (recruiting)
NCT01877382

Daiichi

Sankyo

Table 1.2: Table of all inhibitors of the p53/MDM2 interaction currently in clinical
trials [year 2014]45

It is thought that all inhibitors working at the p53/MDM2 interface are competitive

blockers that bind in the same region as p53, disrupting key hydrophobic and π-π stack-

ing interactions produced by the Phe19, Trp23 and Leu26 of p53. As this inhibition

is competitive and these inhibitors are to only be used in cancers with overexpressed

MDM2, it means that there is still sufficient levels of MDM2 to undertake normal p53

modulation, whilst maintaining levels of p53 required for normal DNA replication and

cell division to take place. The following describes the development of p53/MDM2

protein-protein interaction inhibitors, their synthetic pathways key structural proper-

ties and their biological data. This information is key to gaining a full understanding of
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how these inhibitors work, their advantages and limitations, as well as further informa-

tion on the future development of improved inhibitors and how this impacts the research

completed within this thesis.

1.4 Most Potent Small Molecule Inhibitors of the p53/MDM2

Interaction and their Development

There are four main classes of small molecule inhibitor that act on the p53/MDM2

protein-protein interaction: these are the nutlins, the spiro-oxindoles, the pyrrolidines

and the piperidones.45 Figure 1.18 summarises the chemical structures, biochemical

data and company responsible for the discovery and development of the top four small-

molecule p53/MDM2 inhibitor classes.74 Each of these classes of compounds are ex-

plained in detail below, as well as associated small molecules that were designed from

the optimisation of these key compounds. The nutlins, spiro-oxindoles and pyrrolidines

are currently in clinical trials (RG7112, Mi-773 and RO5503781 respectively in table

1.2, although the exact structure and biochemical data of RO5503781 have yet to be

disclosed); whilst the piperidinones are currently in preclinical trials. As the structure

of RO5503781 has not been disclosed, its most potent published predecessor in its class,

RG7388, is discussed in respect to the pyrrolidines and their structure-activity relation-

ships.
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Figure 1.18: Top four inhibitors of the p53/MDM2 interaction (SpR = surface plas-
mon resonance)74

1.4.1 Main Techniques used to Determine p53/MDM2 Inhibition

There are three main techniques used to determine inhibition of the p53/MDM2 inter-

action: surface plasmon resonance (SpR), fluorescence polarisation (FP) and enzyme-

linked immunosorbance assay (ELISA). Surface plasmon resonance is a technique in

which plane polarised light intercepts an electronically-conducting surface at the inter-

face with a media with a different refractive index. The two interfaces are the media

(high refractive index) and a buffer with a low refractive index. When incident light

covering a range of angles intercepts the surface, energy is absorbed and plasmons are

produced, which reduces the intensity of the reflected light. At points of interaction at

the surface, more energy is absorbed and hence less energy is reflected. This reduction

in intensity of the reflected light is then measurable and can be quantified to indicate

the degree of interaction.75

Fluorescence polarisation (FP) is a technique that analyses the ratio of the intensity of

plane polarised light intercepting from and emitted by a molecule containing a fluorescent

tag.76 The degree of plane polarised light depends on the rate of tumbling of a molecule in

solution, which decreases with size (that is, a complex will tumble slower than untagged

fluorescent peptide). If a competitive inhibitor is introduced, the amount of unbound

fluorescently-tagged ligand increases, causing a reduction in polarisation.
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The last main method (although largely superceded by FP due to cost and assay run-

time) is ELISA. This technique relies on biotinylated peptide, which has affinity for

the streptavidin-coated plate.77 Binding is proceeded by washing, incubation with in-

hibitor and secondary binding partner, further washing to remove any unbound compo-

nents, followed by addition of antibodies that attach to the secondary binding partner

and metabolise a substrate if binding is present. If inhibitor is present, the secondary

binding partner and inhibitor will be washed away and therefore there will be little to

no metabolism of substrate and therefore low absorbance in the detected range by a

spectrophotometer. Other techniques used within the literature are discussed in their

relevant section.

1.4.2 The Discovery of the Nutlins: an Imidazoline-Based Library

The nutlins were the first class of p53/MDM2 protein-protein interaction inhibitors to

be synthesised. The nutlin library of compounds was initially investigated through high

throughput screening by Pazgier and coworkers.78 They are based on a 4,5-dihydroimidazoline

structure. The top hit compound, racemic nutlin-3, was found to have a Kd value of 263

nM using surface plasmon resonance.79

Further research showed that one enantiomer (nutlin-3a, figure 1.19) was 150 times more

active than its alternative stereochemistry enantiomer (nutlin-3b), with a Ki of 40 nM

as determined by fluorescence polarisation assays and an IC50 of 90 nM by competition

surface plasmon resonance alongside recombinant p53 ligand (compared to nutlin-3b,

which was found to have an IC50 of 13.6 µM in the same assay).73 Nutlin-3a was more

potent as the stereochemistry permitted greater π-π-stacking interactions within the

hydrophobic pocket, as the conformation allowed the compound to overlap better with

the key wildtype-p53 interactions with MDM2.

N

N

O
N

NH

O

O

O

Cl

Cl

Figure 1.19: Nutlin-3a, the original nutlin found to inhibit the p53/MDM2 interaction

Nutlin-3a was then tested in cell lines HCT116 (wt p53, key binding sequence SQETFS-

DLWKLLP) and SJSA-1 (overexpressed MDM2), which were stained with in bromod-

eoxyuridine (BrdU), to determine effects in the cell cycle. In both cases, 24 hours
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following 4 µM nutlin-3a treatment, there were increased levels of G1 and G2/M activ-

ity in the cell cycle, with a significant reduction of S-phase activity, which is the point

at which DNA replication occurs. Investigation of gene expression in the presence of

nutlin-3a led to significant increases in the transcription of p53 and p21 (an associated

tumour suppressor protein in the downstream pathway of p53).45

Additional cytotoxicity assays were undertaken to determine the effect of nutlin-3a

on apoptosis through transferasemediated deoxyuridine triphosphate nick end labeling

(TUNEL). As cells undergo damage and apoptosis, the labeling becomes more exten-

sive and this can be quantified using flow cytometry and fluorescence microscopy.80

Using TUNEL, it was determined that 45% of SJSA-1 cells exposed to nutlin-3a be-

came TUNEL-positive 48 h after incubation (at 24 h there were insignificant levels of

TUNEL-positive cells).

In progressing from single cells to animal systems in preclinical studies of nutlin-3a, it

was also determined that nude mice xenografts implanted with SJSA-1 cells had their

tumour growth inhibited by 81% at 10 mg/kg inhibitor (the maximum tolerated dose).

Solution-phase NMR-based studies combined with X-ray crystal structures showed that

the disubstituted benzene ring occupied the Phe19 pocket, whilst the two chlorophenyl

rings inhibit the Trp23 and Leu26 pockets.81 The piperidone-like moiety does not affect

binding, however it works to improve aqueous solubility, as the compound is otherwise

very lipophilic.

Although nutlin-3a showed great promise as an inhibitor, it was not a candidate for

clinical trials due to its poor pharmacokinetic properties (its high lipophilicity made

penetration into the desired tissues and drug formulation for drug delivery was diffi-

cult) and therefore analogues of nutlin-3a were investigated, which retained or improved

potency whilst also improving aqueous solubility.

1.4.2.1 Nutlins Optimisation: The Design of RG7112

In 2011, further SAR studies were undertaken on nutlin-3a to improve the potency of the

nutlins and improve binding to MDMX, a secondary binding partner of both p53 and

MDM2.82 This optimisation led to the development of RG7112 (figure 1.18). RG7112

was the first p53/MDM2 interaction inhibitor to make it into Phase I clinical trials in

advanced solid tumours, early-stage solid tumours, haematological cancers and liposar-

comas; as well as acute myeloid leukaemia (AML) in combination with cytarabine.83

RG7112, the most potent nutlin generated to date (shown in figure 1.18), was devel-

oped through the optimisation of nutlin-3a, in which the key binding modality was
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the projection of the chlorophenyl groups into the Trp23 and Leu26 binding pockets of

MDM2.83

During the development of RG7112, the methoxy group present on nutlin-3a was sus-

ceptible to degradation and produced phenol as a breakdown product of metabolism.

Substitution of the methoxy with a t-butyl functionality prevented the production of

phenol as a toxic metabolite.84 Another key modification was the introduction of methyl

functionalities to prevent the degradation of the imidazoline core to imidazole, which was

completely inactive against MDM2. The isopropoxy functionality was replaced with an

ethoxy to reduce the molecular weight and hence produce a more “druggable” compound

(that is, a compound with desirable pharmacokinetics and potent pharmacodynamics

permitting the formulation of the drug into a medicine). Finally, as the amide side

chain was solvent-exposed, it was hypothesised that this could be used for solubilisation

in aqueous media and therefore a variety of different polar substitutents were investi-

gated. The most active compound, RG7112, contained a piperidine side chain linked to

a methylsulfoxy by a propyl linker. The IC50 of RG7112 as determined by competition

SpR was 2.9 nM (compared to 90 nM for nutlin-3a as determined by competition SpR).

Despite the high potency of the nutlin class, resistance to RG7112 and other nutlins

governed by mutations within the binding pocket and lid region of MDM2 has resulted

in a need for further development of inhibitors.85 Interestingly, a recent paper has

explored the cross-reactivity of nutlin-3a between both the anti-apoptotic Bcl family and

the p52/MDM2 interaction,86 which could reduce the likelihood of resistance as well as

increase its effectiveness in cancers. Using the X-ray crystal structure PDB-1YCR and

nutlin-2 as a small molecule template, the stage was set for the design of novel small

molecules that could inhibit this interaction.

1.4.3 The Spiro-oxindoles

In 2006, Ding and coworkers used structure-based design to produce the spiro-oxindole

library of p53/MDM2 protein-protein interaction inhibitors (figure 1.20), the most po-

tent of which had an IC50 value of 86 nM as determined using an FP assay.87
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Figure 1.20: Mi-773, a spiro-oxindole

The spiro(cyclic)-oxindoles have an aromatic ring fused to a lactam, haveing resem-

blance to the structure of tryptophan, which is present at position 23 of the p53 pep-

tide.88 Structure-based design also considered Leu22 in the analogue design, as it was

proposed that additional hydrophobic interactions could be generated at this position

within MDM2. Substitution at the C3 position (adjacent to the lactam ketone) and

secondary amide moieties permits the generation of libraries. Starting from the spiro-

oxindole core with a ketone in position 3, analogues can be generated through the follow-

ing routes: (i) by reacting the starting compound with an amino acid or primary amine,

it is possible to form an imine, which can react with activated alkenes to form multiple

heterocycles. (ii) The imine can also react with a nucleophile to introduce a chiral centre

at position 3. (iii) Direct reaction with a nucleophile can produce oxo-spiro-oxindoles or

alternatively, (iv) prior reaction with a Michael donor, followed by nucleophilic attack

can remove the heteroatom and instead produce a diastereotopic cyclic system.

The synthetic strategy for this class of inhibitors was examined due to the similarity in

the central core to the isoquinolin-1-ones synthesised in this thesis (as both contain a

lactam functionality fused to an aromatic ring) and therefore it was originally proposed

that similar synthetic strategies may be permitted in this thesis. Figure 1.21 illustrates

the design of the spiro-oxindole library based on the tryptophan present in wt p53. The

initial lead compound Mi-5 was designed through structure-based design and tested in

an FP assay, producing an IC50 of 8.7 µM against the p53/MDM2 protein-protein inter-

action. Further computational studies deduced that chlorinating the aromatic core and

introducing a t-butyl group could maximise interactions within the hydrophobic pocket.

The optimised compound, Mi-17, produced an IC50 of 86 nM in the FP assay. Optimisa-

tion of Mi-17 produced Mi-63, which produced an IC50 of 3 nM in the FP assay, almost

30 times more potent than Mi-17, proving that the strategy to improve interactions

was successful. The limitation of Mi-63 was that it was only approximately 10% orally

bioavailable. Mi-219 was then synthesised, which had improved bioavailability and re-

tained activity, with an IC50 of 5 nM and 65% oral bioavailability in rats. Molecular

modelling of Mi-219 indicated that the chlorophenyl side chain bound within the Phe19
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pocket, whilst the t-butyl group projected into the Leu26 and the fluorochlorophenyl

side chain resides in the Trp23 pocket. Although Mi-219 was very drug-like, further

optimisation was undertaken. The most active diastereomer of Mi-219 was isolated and

further optimised to improve pharmacokinetic properties to produce Mi-888. Mi-888

produced a Ki of 0.44 nM and IC50 of 80 nM by WST-8 assay using SJSA-1 (MDM2

overexpressed) cells. It has also been shown that Mi-888 was able to achieve complete

tumour regression in mice models with overexpressed MDM2.89 Interestingly, pharma-

cological studies have shown that Mi-888 increases the level of autoubiquitinylation of

MDM2 in human B-cell lymphomas, which is not the case with the nutlin library.90
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Figure 1.21: Design and optimisation of the spiro-oxindoles A. design of the oxindole
core based on tryptophan and generation of the first lead compound B. Optimisation of
substituents to improve potency C. Increase in aqueous solubility and potency D. Im-
provements in oral bioavailability E. Further pharmacokinetic optimisation to produce

Mi-888

Whilst Ascenta Therapeutics were in the process of developing Mi-888,89 a rival com-

pany, Sanofi, synthesised Mi-773 (figure 1.18), which is currently in clinical trials (al-

though there is less published data regarding SAR and biological data available for

Mi-773).45 As well as spiro-oxindoles being tested for activity against the p53/MDM2

interaction, the spiro-oxindoles have also showed promise as antimalarial therapy against

Plasmodium falciparum (NITD609).91
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The structure-based design approach was used within this thesis (although different syn-

thetic routes were undertaken), although the starting point for inhibitor development

within this thesis was either the isoquinolin-1-one scaffold or chlorofusin. The major-

ity of inhibitor development within this thesis focused on increasing potency, however

further work was undertaken to improve aqueous solubility and cell permeability of the

isoquinolin-1-one library, discussed in ‘Chapter 2’.

1.4.4 The Pyrrolidines

Figure 1.22 illustrates the pyrrolidine, RG7388, which is the most potent published

pyrrolidine in the literature for which the structure has been disclosed. The original

notion for the design of the pyrrolidine series by Graves et al in 2013 was the use

of a 5-membered ring system instead of a six-membered system (as is present in the

spiro-oxindole core), as the 5-membered ring permitted a greater deal of flexibility and

was postulated to adapt into the hydrophobic pocket to improve the fit.92 Inspiration

for the pyrrolidine library was greatly driven by the development of RG7112, which

also contains a 5-membered ring core. The pyrrolidine library was synthesised as a

racemic mixture through non-stereoselective methods, separated by chiral HPLC and

tested in HTRF binding assays and MTT proliferation in wt p53 (SJSA-1) and mutant

p53 (SW480) cell lines.92 RG7388 had an IC50 of 6 nM by HTRF and 30 nM in MTT

assays, with a selectivity 344 times more potent against wt p53 cells over cells containing

mutant p53.
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Trp23

Figure 1.22: RG7388, a pyrrolidine-based inhibitor currently in clinical development
and its binding epitope within MDM293

Examination of the binding motif of the pyrrolidines showed that RG7388 formed

π-π stacking interactions with the Trp23 through its 2-fluoro-4-chlorophenyl ring. The

2-fluoro-3-chlorophenyl ring aligned with the Leu26 pocket, whilst the neopentyl group
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was found to occupy the Phe19 pocket (see figure 1.22). The carbonyl within the pyrro-

lidine was also able to form hydrogen bonds with His96 (PDB entry 4JRG). Currently,

these compounds are in clinical development but the data has yet to be published.93

1.4.5 The Piperidinones

Another novel HTS lead compound, compound 11 (figure 1.23), was determined through

high throughput screening by Fox et al in 2012.94 The lead compound produced an IC50

of 2.42 µM in serum-based homogenous time-resolved fluorescence (HTRF) and 960 nM

in 15% human serum HTRF.

N OH

OO

Cl

Cl

Figure 1.23: Structure of the initial Amgen lead piperidinone (compound 11)95

Simplification of compound 11 and removal of the additional side chain functionality

towards the Phe19 pocket was used to develop the piperidinone analogues. The halo-

genated phenyl rings were retained for binding into the tryptophan and leucine pockets,

although different halogens and substitution patterns were examined. A carboxylic acid

moiety was introduced adjacent to the piperidone to improve aqueous solubility and a

variety of N-alkyl side chains explored. Cyclopropyl substitution was most potent, with

the final compounds producing IC50 values of 340 nM (in serum-free HTRF) and 370

nM (in 15% human serum HTRF).

Further exploration of the piperidinones led to the design of AM-8553 (figure 1.24),

which contained the piperidinone core, but a much less rigid structure than the Amgen

lead.96 Additional alcohol groups were also added to the compound to improve aqueous

solubility. AM-8553 was tested by SpR, producing an Kd of 400 pM by SpR and an IC50

of 70 nM as determined in the 5-ethynyl-2-deoxyuridine (EdU) proliferation assay, which

works to introduce labeled EdU onto damaged DNA, which can then be quantified using

a spectrophotometer.
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Figure 1.24: Structure of the lead piperidinone AM-8553 and the optimised compound
AMG-23274

Initial replacement of the alcohol group with a variety of nitrile substituents or substitu-

tion with different alcohol functionalities resulted in analogues which may have retained

potency, however cellular activity was severely affected in the case of secondary alco-

hols. Sulfonamides were also substituted in place of the secondary alcohol. Sun and

coworkers discovered that reversing the sulfonamide retained activity but did not con-

fer any advantage in terms of metabolic stability.74 In the case of sulfone deriviatives,

however, it was found to improve hepatic clearance in rat models. This final compound,

AMG-232, was taken into preclinical studies (figure 1.24). Further pharmacokinetic

analyses in mice showed favourable data (with improved hepatic clearance compared to

the previous analogues) but clinical trials data has yet to be published.

1.4.6 Key Features of the Top p53/MDM2 Small Molecule Inhibitors

and Further Development

There are key features common to many of the different p53/MDM2 small molecule

inhibitors. The majority of the small molecules contain either a monocyclic aromatic

(figure 1.25) or fused bicyclic core. The monocyclics are predominantly 5-membered

aromatic rings containing an imidazole, thiophene, or furan functionality, which provides

the central core with rigidity. Three of the top inhibitors also contain a 5-membered

core but are non-aromatic (figure 1.18, with the exception being the spiro-oxindole,

which is a 5-membered ring fused to a 6-membered aromatic ring). RITA (figure 1.25),

although a linear molecule lacking a central core, contains both furan and thiophene

functionalities. As there appear to be a variety of these 5-membered aromatics in the

literature, it was proposed that these could potentially be incorporated into the side

chains of the analogues synthesised within this thesis.
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Figure 1.25: Selection of small molecule p53/MDM2 inhibitors containing a
5-membered aromatic core97,98,99

Many of the small molecule inhibitors, both monocyclic and bicyclic, contain a form of

lactam in their central core (figure 1.26), which provides compounds with a degree of

rigidity and is also relatively stable to degradation, as the lactam can resonate its charge

through its bonds. Isoindolinones contain a five-membered ring,100 piperidinones contain

a six-membered lactam ring, whilst benzodiazepinediones and thiobenzodiazepinediones

contain a seven-membered lactam ring.101,102,103 As the lactam functionality can be

produced synthetically by a variety of reactions (one of which being the Castagnoli

reaction),104 and is common to many of these small molecule inhibitors, it was decided

that this would be incorporated into the first library to be explored within this thesis:

the isoquinolin-1-ones.
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Figure 1.26: Selection of small molecule p53/MDM2 inhibitors incorporating a lactam
functionality

Leading on from the monocyclic and bicyclic cores are the polycyclic molecules that

have been shown to inhibit the p53/MDM2 interaction (figure 1.27). α-Mangostin and

gambogic acid have been shown to inhibit the p53/MDM2 interaction, as tested using a

yeast hybrid screen.105 The activity of these compounds was dependent on the p53 status

in MCF-7 cell lines. Both compounds were shown to have high degrees of interaction at

Gly58, Asp68, Val75 and Cys77 of the MDM2 pocket, but gambogic acid alone was able

to form hydrogen bonds with Gln72 and Phe55.105
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Figure 1.27: Examples of small molecule p53/MDM2 inhibitors containing a poly-
cyclic planar core106,105

Arguably, the most important aspect of binding into the hydrophobic pocket is the

presence of halogenated aromatics, in particular chlorophenyl groups. Hardcastle and

coworkers demonstrated this concept with his most potent isodolinone (figure 1.28).

Hardcastle and coworkers showed that when the most potent isoindolinone chloro groups

were substituted with with methoxy or ethoxy groups, activity was abolished.100

N
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Figure 1.28: Most potent isoindolinone as determined by Hardcastle and coworkers100

Figure 1.29 shows the binding epitopes for the top four classes of p53/MDM2 inhibitors.

The literature shows that the Leu26 pocket is large enough to accomodate an aromatic

ring, whilst further work has been undertaken to form hydrogen bonds with His96

and hydrophobic interactions with the Val93 present within the MDM2 hydrophobic

pocket.107,108
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Figure 1.29: Binding epitopes of the top four classes of p53/MDM2 inhibitor

1.4.7 Peptide-Based Inhibitors

In addition to the research on small molecule inhibitors, there has been copious research

on the used of peptide-based inhibitors, including stapled peptide and helical mimet-

ics. Peptide-based inhibitors pose the advantage of the possibility of high specificity,

potency and low levels of toxicity.109 Initial work on peptide-based inhibitors started in

2000 by Furet et al.110 Initial studies involved the binding of monoclonal antibodies to

p53 regions to determine the key binding sequence. Peptides were sequenced haveing

structural similarity to the p53 sequence with an acetylated N-terminus to permit entry

into cells. Although the initial hexapeptide TFSALW was shown to bind to HDM2, it

had a very weak binding affinity (IC50 = 700 µM). Further screening was undertaken on

phage display libraries and examined by ELISA, which led to the discovery of a potent

octapeptide Ac-FMDYWEGL-CONH2 (IC50 = 8.95 µM). This peptide sequence was

further optimised by substitution of aspartic acid with R-aminoisobutyric acid (Aib),

tyrosine with 6-Cl- β,β-pentamenthylene-β-mercaptopropionic acid (Pmp-6-Cl),111 and

glycine with 1-aminocyclopropanecarboxylic acid (Ac3c),
110 which resulted in an IC50

of 5 nM by ELISA.

In 2009, Lu et al further explored the use of peptide-based inhibitors using phage display.

Phage display was carried out against biotinylated GST-tagged MDM2 and MDMX and
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PMI (TSAFAEYWNLLSP)78 was shown to be a high affinity binder. PMI had a Kd

of 3.3 nM (MDM2) and 8.9 nM (MDMX) as analysed by isothermal titration calorime-

try and surface plasmon resonance respectively. In the binding assays, p53(15-29) and

p53(17-28) were used as comparators, where the numbers in brackets indicates the sec-

tion of amino acids in the p53 sequence used in each assay.

Peptide-based inhibitors suffer from rapid degradation by enzymes. To overcome this

problem an alternative strategy is to use D-amino acids. These are far more stable to

proteolytic degradation, as enzymes present in the body are only capable of processing

L-amino acids due to their stereospecificity. Using chemical ligation and mirror image

phage display, DPMI-α (TNWYANLEKLLR) and DPMI-γ (DWWPLAFEALLR) were

discovered. SpR analysis indicated Kd values of 219 nM for DPMI-α and 53 nM for

DPMI-γ. Unfortunately, these peptides were unable to penetrate into cells and there-

fore showed no cytotoxicity in HCT116 p53 +/+ and HCT116 p53 -/-. Addition of an

arginine-rich cell-penetrating peptide (TAT) led to nonspecific cytotoxicity in p53 +/+

and p53 -/- cells. This outcome has also been shown in other cell-penetrating peptides

attached to p53-like sequences, in which tumour necrosis was induced without p53 ac-

tivation. However, encapsulation of the peptide in liposomes with cyclic-RGD peptide

(a fluorescent, cell-permeable peptide which shows whether or not the liposomes release

into the cell) showed that the DPMI-alpha sequence was active in human glioblastoma

and nude mice xenographs.

A second peptide, pDI (LTFEHAWAQLTS), was also discovered as a high affinity binder

using ELISA against GST-MDM2 and GST-MDMX proteins.112 pDI had an IC50 of

0.01 µM for MDM2 and 0.1 µM for MDMX. Peptide inhibition was also demonstrated

using Western blot, showing a gradual decrease in the MDM2 and MDMX bands with

increasing concentration of peptide.

Despite extensive work on peptide-based inhibitors against the p53/MDM2 interaction,

there are currently no inhibitors in clinical trials. The reason that peptide research is

of particular interest within this thesis is because chlorofusin, a peptide-based natural

product, was used as the lead compound for analogues in chapters 3 and 4, whilst

analogues of the chlorofusin peptide are the primary focus of ‘Chapter 3’.

1.4.7.1 Helical β-peptide Inhibitors

Another way of reducing proteolytic degradation is to use β-peptides: these have an

additional carbon spacer between the carboxylic acid and the amino group. Figure 1.30

illustrates the difference in secondary structure and binding of α- and β-p53 into the

hydrophobic pocket of MDM2. The diagram illustrates that all of the key interactions
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between p53 and MDM2 are maintained regardless of whether they are α- or β-peptides,

however the decreased proteolysis of the β-peptides makes them more promising as drug

molecules.

Figure 1.30: Differences in crystal structure between (A) the native p53 α-helix and
(B) an ideal modified β-helix113 (reproduced with permissions)

In 2004, Schpartz et al synthesised different variations of β53.113 Firstly, the Phe19,

Trp23 and Leu26 interactions were mimicked by the corresponding β-amino acid of p53.

Secondly, the p53 amino acids were replaced by β-alanine, as a drop in activity upon

replacement with alanine would indicate importance for activity. The formation of the

14mer β53 helix was examined by circular dichroism, showing that between 30% and

50% of the peptide adopted the β-helix for sequences β53-1, β53-3 and β53-4 (each of

which contain the key Phe19, Trp23 and Leu26 amino acids, but in different positions).

β53-1 and β53-3 showed inhibition of the p53-hMDM2 interaction by fluorescence po-

larisation, with IC50 values of 94.5 µM and 1589 µM respectively. Direct titration of

fluorescently-tagged β53-1 to hDM2 produced a Kd of 368 nM.

1.4.7.2 Stapled Peptides

The p53 α-helix is only present when bound to MDM2 and remains disordered in solution

at all other times.114 One strategy of increasing the potency against MDM2 is to staple

the peptide, so that p53 is always in the helical conformation (and hence permanently

able to bind to MDM2), as shown in figure 1.31.

Figure 1.31: Three examples of different α-helical stapled peptides114 the i, i+3, i+4
and i+7 refer to positions at which the staple (in this case, an olefin-based staple) can
be attached to rigidify the peptide secondary structure (reproduced with permissions)
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The staple generally consists of a hydrocarbon linker, which forms the staple through

olefin metathesis at the attachment points indicated as i or i + n (where n is the

distance from the inital attachment). Aryl staples have also been used as it was thought

that these could further improve rigidity. The staple also has the added advantage of

reduced proteolysis and can also increase cellular uptake.115 SAH-p53-8 was synthesised

by Walensky and coworkers: the sequence was based on p53 trasactivation domain,

with replacement at S20 and P27 to contain olefinic side chains to form the staple.

Interestingly, this sequence was shown to be active in nutlin-resistant cells.116

1.4.7.3 Peptide Helical Mimetics

As an alternative to α-helical peptide synthesis, α-helical mimetics have been studied,

an example of which is shown in figure 1.32. Again, the peptide helical mimetics are

more stable to degradation than α-peptides.

Figure 1.32: General structure of a peptide helical mimetic and the positions of i,
i+4 and i+7. R1 and R2 indicate the positions at which lipophilic substituents (such

as methyl and t-butyl) are introduced117 (reproduced with permissions)

In 2005, Chen et al synthesised and examined terphenyl-based α-helical mimetics.117

The terphenyl helix mimetics utilized Suzuki coupling to form the oligomerr. Carboxylic

acid functionality was later introduced to improve aqueous solubility. The terphenyl

analogues have substitution at the i, i+4 and i+7 positions to mimic the Phe19, Trp23

and Leu26 interactions with the hydrophobic pocket. The terphenyl helix mimetics

were initially tested in an ELISA assay, with the most potent inhibitors producing IC50

values between 10 µM and 20 µM, which are a great deal higher than the small molecules

that have been synthesised against the p53/MDM2 interaction. The two most potent

compounds were then introduced into HCT116 p53+/+ cells and caused 10-fold p53
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activation at 10 µM, however there are currently no peptide helical mimetics currently

in preclinical or clinical trials.

1.4.8 Chlorofusin: A Natural Product Inhibitor of the p53/MDM2

Interaction with Peptide and Small Molecule Properties

The Searcey lab has a great interest in using nature as an inspiration for the design

and synthesis of drug molecules. The first natural product inhibitor of the p53/MDM2

interaction, chlorofusin (figure 1.33), was of particular interest to the Searcey group due

to its unnatural cyclic peptide and chromophore moietites.118
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Figure 1.33: Structure of chlorofusin, indicating the amino acids and stereochemistry

Chlorofusin was first isolated in 2001 by Duncan et al from the Fusarium sp. Mi-

crodocium caespitosum, a type of marine sponge.119 Initial structural work was carried

out with a combination of ESI mass spectroscopy, 1H-NMR, 13C-NMR, COSY, NOESY

and ROESY. ESI+ revealed masses corresponding to the (M+H)+ and (M+Na)+, re-

sulting in masses of 1363.7 Da and 1385.7 Da respectively.118 There was also evidence

of a chlorine atom due to isotopes present on the ESI spectra (a 3:1 ratio which cor-

responded to 35Cl and 37Cl). The 1H-NMR data, 13C-NMR data and 2D experiments

permitted the assignment of the amino acid macrocycle, revealing an unnatural amino

acid at position 8, aminodecanoic acid. The chromophore was assigned using a combina-

tion of 13C-NMR and 1H-NMR, revealing 8 quarternary carbons and a complex splitting

pattern towards the aliphatic end of the spectrum. The initial screening was done using

a DELFIA-modified ELISA assay, producing a Kd 4.7 µM and IC50 of 4.6 µM.

A follow-up paper was published by Duncan et al in 2002, detailing the modality of

binding of chlorofusin to MDM2.119 The binding of MDM2 to the N-terminus was stud-

ied using surface plasmon resonance. The MDM2 protein was immobilised onto the

carboxymethlated dextran surface of the sensor chip through covalent bonding. MDM2
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quantification was done using the Bradford method, Chlorofusin was passed over the

surface of the chip containing either MDM2 or a ubiquitin control at varying concentra-

tions. The data suggested that that chlorofusin initially binds to MDM2 rapidly, leading

to a conformational change in the protein, after which there is a second, slower binding

step. At present, this is the limit of our knowledge of the mode of chlorofusin binding

to MDM2, as at present there are no crystal structures published.

In 2003, two papers were published on the chlorofusin peptide, one involving the first

synthesis of the chlorofusin peptide (and diastereomers in an attempt to determine

stereochemistry) on solid phase by Searcey et al120 and one on the assignment of the

asparagine stereochemistry by Boger et al completed using solution-phase chemistry.121

The synthesis published by Searcey et al utilised Fmoc solid phase peptide synthesis

with side-chain immobilisation on Rink Amide MBHA resin, followed by head-to-tail

synthesis, followed by cyclisation.120 The starting amino acid was Fmoc-Asp-ODMab,

as the DMab group could be easily removed in the presence of hydrazine to uncover the

free carboxylic acid, which could then cyclise with the terminal amine of asparagine in

the presence of HOBt and DIC. All amino acids were purchased enantiomerically pure

with the exception of 2-aminodecanoic acid. 2-Aminodecanoic acid was synthesised

initially as a racemate and the enantiomers of the peptide sequence were separated by

semi-preparative reverse phase HPLC, as the structural conformation at the time was

unclear.

The 2003 paper published by Boger et al explored the total synthesis of chlorofusin

and assignment of the asparagines at positions 3 and 4 in solution phase. Instead of

synthesising the peptide in solid phase as per Searceys protocol, Boger synthesised the

peptide in fragments using Boc, Fmoc, benzyl, SES and CBZ protection. The fragments

were coupled together using HOAt and EDCI until the full cyclic peptide was produced.

Four separate variants were synthesised by this method, each containing either 3-L-Asn

or 3-D-Asn and 4-L-Asn or 4-D-Asn. 1H-NMR and 13C-NMR analyses compared to

the natural product permitted the absolute stereochemical configuration of 3-L-Asn and

4-D-Asn.

In 2007, Yao et al examined the stereochemical assignment of the azaphilone chro-

mophore of chlorofusin.122 Retrosynthesis of the chlorofusin natural product initially

separated the ornithine side chain from an isochromene. The isochromene was further

analysed by ring opening of the furan side chain, hydrolysis of the butyl ester and ring

opening to produce a Sonogashira precursor.

A variety of different azaphilone analogues were synthesised and condensed onto the

ornithine side chain, each synthesised as a racemate. The compounds were separated

by chiral HPLC and analysed by X-ray single crystal analysis. The analysis suggested
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that the stereochemical configuration of the azaphilone was (4S,8R,9S). This was then

challenged by Boger et al in the same year, who also analysed the different diastere-

omers against the natural product peptide.123 Again, analysis was done by 1H-NMR,

13C-NMR, COSY, ROESY, HMQC, HMBC and it was shown that the stereochemical

assignment of (4R,8S,9R) was a near-identical match to the natural product, whereas

the assignment proposed by Yao et al showed distinct comparisons with the natural

product.

In 2007, the first analogues of chlorofusin were synthesised by Searcey et al.77 Using

the methodology detailed in his 2003 paper, the cyclic peptide portion was analysed.

This time, however, it was possible to synthesise enantiomerically pure Fmoc-Ada-OH

using diethylacetoamidomalonate and 1-bromooctane, followed by hydrolysis and enzy-

matic resolution. Analogues of the peptide were synthesised as well as simple aromatic

substitution in place of the natural azaphilone. ELISA assay was undertaken, but no

hits were determined within the assay. Interestingly, although the stereochemistry was

unimportant for activity, the whole molecule was required in order for binding to occur.

In conclusion, the structure of chlorofusin and its activity has been finalised and at

present no analogues based on the whole chlorofusin molecule have been shown to be ac-

tive against the p53/MDM2 interaction. Also, evidence for chlorofusins binding modality

in the hydrophobic pocket of MDM2 is limited and at present there are no published

crystal structures of this binding. Although inhibitors have already been explored, there

is still scope for a wider variety of inhibitors to be investigated that have yet to be

mentioned within the literature, which is one of the main purposes of this thesis.

1.5 Research Motivations and Objectives

Despite great strides in the development of novel inhibitors, there is still a need for op-

timisation due to resistance to treatment as well as solubility problems associated with

targeting a hydrophobic pocket competitively. The focus of this thesis is to develop novel

inhibitors of the p53/MDM2 interaction based on four different synthetic strategies. The

first strategy was to synthesise small molecule combinatorial libraries for rapid analogue

generation and screening. The second and third strategies used the natural product

chlorofusin, which is fascinating due to its separate chromophore and peptide compo-

nents, which both appear to be important for binding. This thesis focusses on utilising

both the chromophore and the peptide separately, hence the second chapter focusses on

simplefied chromophores linked to the peptide and chlorofusin analogues based on click

chemistry, as the azide group is stable to proteolytic degradation, the azide serves as

a bioisostere of the amide group and click chemistry permits the generation of a wide
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variety of binding partners and hence a variety of analogues. The final synthetic chapter

focusses on generating analogues of the azaphilone chromophore, with the potential to

conjugate onto the native chlorofusin peptide.



Chapter 2

Synthesis, Characterisation and

Biological Testing of Novel

Isoquinolin-1-one Inhibitors of

the p53/MDM2 Interaction
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Figure 2.1: Structure of an isoquinolic acid and position numbering

The first compounds to be explored in this thesis are the isoquinolinones: they are highly

amenable to rapid analogue generation through combinatorial means and have been

previously shown to have activity against the p53-MDM2 protein-protein interaction in

15N-HSQC studies undertaken by Rothweiler and coworkers.124 It also bears similarity

to the piperidinones, another class of p53-MDM2 inhibitors containing a 6-membered

lactam functionality. The nature of the key reaction used to synthesise isoquinolin-

1-ones, the Castagnoli reaction and its various incarnations have been well-documented

in the literature.125 This series of compounds can also be analysed not only for exten-

sive structure-activity relationships, but to also serve as model compounds for molecular

modelling studies and how different enantiomers may interact differently within the hy-

drophobic pocket.

44
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2.1 The Castagnoli Reaction and its Evolution

The classical Castagnoli reaction was first detailed by Neal Castagnoli Jr and Mark

Cushman in 1971.125 The premise of the reaction is the condensation of a Schiff base with

an acid anhydride. The anhydride used by Castagnoli in his initial studies was succinic

anhydride. The Schiff base was produced by the condensation of a primary amine with an

aldehyde. Both the imine formation and the subsequent Castagnoli reaction were heated

to reflux and the imine formation also incorporated the use of Dean Stark apparatus to

collect the water formed in the reaction, which prevented hydrolysis of the newly-formed

imine. The imine proceeded to ring-open the anhydride through nucleophilic attack

and reclose the ring through the formation of a γ-lactam. Although this method was

successful, heating to reflux and the involvement of Dean Stark apparatus did not make

this technique amenable to combinatorial synthesis, however Cushman adapted this work

to produce tetrahydrocannabinols (THC),126 topoisomerase I poisons see scheme 2.4,127

corydalic acid methyl esters128 and nicotine analogues.129
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Figure 2.2: General scheme for the synthesis of topoisomerase I poisons127

The method used to synthesise the topoisomerase I poisons was undertaken at room

temperature using homophthalic anhydride in chloroform. The compound produced

then precipitated out of the organic solution and was then filtered and washed with

further chloroform. If an alcohol was present on the side chain, a silyl group was used to

protect during the synthesis, which was later removed when the isoquinolone structure

was formed, as the alcohol could esterify in the presence of an acid anhydride.

The yields were moderate, ranging from 24% up to 64% depending on the analogue.
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Scheme 2.1: Synthesis of an example tetrahydrocannabinol analogue, produced by
lithiation in the presence of n-butyllithium and subsequent formylation in the presence
of N-methylformanilide. The final step resulted in an 86% yield of the final THC

compound126

Scheme 2.1 shows the scheme for the synthesis of tetrahydrocannabinol. The tetrahydro-

cannabinols were synthesised through the formation of 2,6-dimethoxy-n-amylbenzaldehyde

following lithiation of olivetol dimethyl ether and subsequent lithium exchange with N-

formylanilide. The aldehyde was then reacted with methylamine to form the desired

Schiff base. The imine was then refluxed in xylene with glutaraldehyde to form the de-

sired piperidones, which were then separated by fractional distillation. The final racemic

compound was isolated in 86% yield, whilst the major diastereomer was isolated in 45%

yield and characterised through 1H-NMR spectroscopy.
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Figure 2.3: Synthesis of corydalic acid analogues

In the case of corydalic acid, the components were stirred at room temperature in

acetonitrile for 1.5 hours, as in scheme 2.3. The reaction produced excellent yields of

circa 94% and was adapted to generate a library of analogues.
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Scheme 2.2: Synthesis of an example methylnicotine analogue129

Methylnicotine analogues were synthesised through the nucleophilic attack on succinic

anhydride by a Schiff base in the presence of dry benzene for 12 h. The reaction produced

excellent yields of circa 92% and the reaction was used to generate a wide variety of

analogues.
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Figure 2.4: Modified Castagnoli reaction as a two-step, one-pot reaction i. MgSO4,
CH2Cl2, rt, 2-4 h ii. homophthalic anhydride, rt, overnight

Since the first published procedure variants of this have permitted the production of

large combinatorial libraries, as imine formation can be undertaken in the presence of

magnesium sulphate at room temperature (see scheme 2.4).104

The use of alternative anhydrides such as homophthalic anhydride permitted the second

step of the reaction to be carried out at room temperature, as these anhydrides were

more reactive.130 Generally, these reactions are undertaken in methylene chloride and,

in many cases, the resulting product precipitates out of the methylene chloride and can

be purified by recrystallization, or simply through washing with hot ethyl acetate. In

some cases, where the product was soluble in methylene chloride, the compound was

purified by column chromatography.

OR2

R1

NH2

NO

R2

R1
H

H

H

NHO

R2

R1

H
H

NH2O

R2

R1

H

NH2O

R2

R1

H

N
R1

R2

A. 

B.

Figure 2.5: Mechanism of imine formation between an aldehyde and a primary amine
A. addition of the aminde to the aldehyde B. elimination of water to form the imine
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Imine formation occurs between a primary amine and an aldehyde under anhydrous con-

ditions (see scheme 2.5). The reaction can be acid-catalysed, which causes protonation

of the ketone, increasing electrophilicity and increasing the likelihood of nucleophilic

attack by the amine. In this case, an acid catalyst was not required.

R1 N
R2

O

O

O

COO

N

O

R2

R1

Proton 

transfer N

O

R1

R2

COOH

Figure 2.6: Mechanism of Schiff base nucleophilic attack on homophthalic anhydride.
The R2 and hydrogen can adopt two different conformations, which will determine

whether or not the material is cis or trans

The imine/Schiff base undertakes nucleophilic attack on the ketone carbon, causing ring

opening, as shown in scheme 2.6. The intermediate is then able to undergo proton

transfer to reclose the ring. This methodology is stereoselective, but the individual

enantiomers, in any case, require chiral preparative HPLC to isolate each enantiomer.124

The aim of this chapter is to synthesise a racemic library of isoquinolin-1-ones to be

screened by fluorescence polarisation against the p53/MDM2 protein-protein interaction

(preparation of the protein was undertaken with the assistance of Dr. Richard Steel, Dr.

Tony Blake and Dr. Alex Roberts, whilst preparation of SDS PAGE gels for analysis

were undertaken with the assistance of Dr. Jess Di Gesso and Dr. Jenna Bradley).

Compounds that were shown to inhibit the p53/MDM2 interaction were then tested

for antiproliferative activity using MTS (the preparation of cells and plating of cells

was undertaken with the assistance of Dr. Maria O’Connell). The reason for using

fluorecence polarisation was that it is a rapid technique (preparation and data collection

can be done in an hour compared to a day as is the case of in an ELISA assay). Also,

reagents for the FP assay were readily available and low cost compared to other assays

(for example, antibodies required for ELISA are costly). The rationale for the MTS

assat was to determine cell permeability as well as antiproliferative activity in p53-null,

wt p53 and overexpressed MDM2 cell lines.

Subsequently, the diastereomers and enantiomers would be synthesised separately to

examine any differences, firstly to determine if it was active and the degree of activ-

ity and secondly, to examine the binding epitope using a combination of STD NMR

(preparation of samples and processing of data was undertaken under the supervision

of Dr. Jesus Angulo) and molecular modelling (image generation was undertaken with

the assistance of Dr. Onur Atasoylu). STD NMR was selected as this technique allows
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for accurate visualisation of the binding epitope generated by experimental data, which

gives a greater idea of binding compared to 15N-HSQC (for example).

2.2 Synthesis of Isoquinolin-1-one Analogues

Isoquinolin-1-ones contain a γ-lactam functionality, bearing similarity to the isoquinoline

core of a condensed azaphilone. The advantage of the synthesis of the isoquinolin-1-one

is that it is facile and the product generally precipitates out, only requiring purification

by hot ethyl acetate washing, however this was only feasible when the compounds were

highly insoluble in organic solvents. The methods undertaken here are diastereotopically-

selective but not diastereotopically-specific (the trans conformation appears to be the

dominant diastereomer in the literature as it is more thermodynamically stable), how-

ever there are procedures in the literature that allow for selection over different diastere-

omers, for example through the use of silica-supported perchloric acid to isolate the cis

conformation only or refluxing in acetic acid to isolate the trans conformation only.131

The general procedure for the synthesis of this library is the formation of an imine

by reacting an aldehyde and an amine under anhydrous conditions in the presence of

magnesium sulphate. The resultant Schiff base then acts as a nucleophile and attacks

homophthalic anhydride at the aryl carbonyl, producing an isoquinolin-1-one with a

carboxylic acid in the 3-position (see figure 2.6). This can be further functionalised by

reacting with a primary amine to form an amide bond, which could in theory be used

to improve aqueous solubility, as demonstrated in the 2008 publication by Rothweiler et

al.124

2.3 Design of Isoquinolin-1-one Analogues

Evidence proposed by Huang et al in 2012 and Wang et al in the same year suggested

an importance of halogens for their directing effects into the hydrophobic pockets. This

data, combined with previously reported isoquinolin-1-ones bearing aromatic substitu-

tents to allow for π-π stacking, were used to synthesise a wide variety of analogues (at

the R1 and R2 positions on the isoquinolin-1-one product indicated on 2.6) as well as

comparators to allow for structure-activity relationship analysis.132,133

The first generation library consisted of benzyl substituents on the R1- and R2- positions

to serve as an initial comparator (See figure 2.14). This was then developed further

by producing monosubstituted aromatics such as methyl, ethyl, methoxy, ethoxy and

halogens in the ortho, meta, and para position on the aromatic groups in positions 1- and



Targeting the p53/MDM2 Protein-Protein Interaction 50

2- of the isoquinolin-1-one. Following on from this, di- and tri- substituted aromatics

were screened in a fluorescence polarisation assay.

N
R2

HO O

O

R1

Figure 2.7: General structure of the isoquinolinone scaffold in the generated analogues

Table 2.1, table 2.2, table 2.3 and table 2.4 display the yields of the different isoquinolin-

1-ones synthesised, the ratio of diastereomers, the key 1H-NMR characterisation of the

major diastereomers present and the mass spectrometry data observed. The letter ‘A’

refers to all compounds synthesised in this chapter and the compounds were numbered

sequentially.
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No. R1 R2
%

Yield

Cis-to-

Trans

Ratio

δH(diaster-

eotopic

protons)

in ppm

J-

value

in Hz

MS

A01 2,5-diOMePh Bn 30 1:0

4.52 to 4.54

and 5.38 to

5.39

6.09 440.1

A02 2,4-diMePh Bn 4 1:0

4.52 to 4.54

and 5.10 to

5.12

6.25 408.1

A03 4-OEtPh Bn 20 1:0

4.64 to 4.66

and 4.90 to

4.91

6.00 416.5

A04 4-EtPh Bn 16 0:1
4.07 and

5.22
0* 385.9

A05 2-OH,5-NO2Ph Bn 29 1:2
3.86 and

5.54
0* 419.1

A06 4-ClPh Bn 9 1:1

3.92 and

3.96

(trans);

4.70 to 4.72

and 5.00 to

5.01

0*,

8.07
392.1

A07 4-BrPh Bn 2
Not ex-

amined

Not exam-

ined

Not

exam-

ined

458.0

A08 2-FPh Bn 9 1:1

4.15 and

5.18; 4.72

to 4.74 and

5.06 to 5.08

0*

376.1

and

398.1

A09 3-Ph Bn 8 1:0

4.69 to 4.70

and 4.97 to

4.98

6.76

and

4.51

358.1

A10 3-Pyr Bn 58 0:1
4.16 and

5.40
0* 359.1

A11 4-Pyr Bn 29 0:1
4.17 and

5.36
0* 359.1

Table 2.1: Table of all synthesised first generation isoquinolin-1-ones
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No. R1 R2
%

Yield

Cis-to-

Trans

Ratio

δH(diaster-

eotopic

protons)

in ppm

J-

value

in Hz

MS

A12 3-Thio Bn 2 1:0

4.62 to 4.63

and 5.09 to

5.10

8.09 364.1

A13 3-PhOPh 4-MeBn 16 0:1
4.04 and

5.25
0* 464.1

A14 2,4-diMePh 4-MeBn 31 1:0

4.52 to 4.54

and 5.08 to

5.10

6.68 399.9

A15 4-OEtPh 4-MeBn 22 1:0

4.58 to 4.59

and 4.86 to

4.87

7.35

and

5.88

415.9

A16 4-EtPh 4-MeBn 23 0:1
4.05 and

5.17
0* 400.1

A17 4-ClPh 4-MeBn 2 0:1
4.08 and

5.25
0* 404.1059

A18 4-Cl,3-CF3Ph 4-MeBn 32 0:1
4.17 and

5.46
0* 474.1

A19 4-BrPh 4-MeBn 4 0:1
4.07 and

5.23
0* 450.9

A20 2-FPh 4-MeBn 8 0:1
2.25 and

4.12
0* 389.9

A21 3-Thio 4-MeBn 37 1:3
4.15 and

5.28
0* 377.9

A22 2,4-diMePh 4-OMeBn 41 1:0

4.51 to 4.59

and 5.08 to

5.10

7.19

and

6.16

416.1

A23 2-OH-5-NO2Ph 4-OMeBn 22 0:1
4.03 and

5.50
0* 449.3

A24 2-NO2Ph 4-OMeBn 31 0:1
4.15 and

5.88
0* 433.4

A25 2-FPh 4-OMeBn 45 0:1
4.13 and

5.30
0* 388.9

A26 3-Pyr 4-OMeBn 66 0:1
4.17 and

5.33
0* 468.2

Table 2.2: Table of all synthesised first generation isoquinolin-1-ones
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No. R1 R2
%

Yield

Cis-to-

Trans

Ratio

δH(diaster-

eotopic

protons)

in ppm

J-

value

in Hz

MS

A27 3-PhOPh 4-FBn 28 0:1
4.06 and

5.29
0* 468.2

A28 2,5-diOMeBn 4-FBn 53 1:0

4.55 to 4.56

and 5.39 to

5.40

5.84 465.9

A29 2,4-diMeBn 4-FBn 11 1:0

4.56 to 4.58

and 5.11 to

5.13

6.65 403.9

A30 4-OEtPh 4-FBn 33 0:1
4.06 and

5.29
0* 420.1

A31 4-EtPh 4-FBn 19 0:1
4.07 and

5.22
0* 404.1

A32 2-OH-5-NO2Ph 4-FBn 25 0:1
4.06 and

5.50
0* 436.9

A33 2-NO2Ph 4-FBn 51 0:1
4.17 and

5.92
0* 420.9

A34 4-ClPh 4-FBn 43 0:1
4.08 and

5.31
0* 410.1

A35 4-Cl,3-CF3Ph 4-FBn 50 0:1
4.13 and

5.49
0* 478.2

A36 4-BrPh 4-FBn 30 0:1
4.04 and

5.26
0* 454.0449

A37 2-FPh 4-FBn 47 0:1
4.05 and

5.35
0* 478.2

A38 3-Ph 4-FBn 62 0:1
4.04 and

5.41
0* 376.1

A39 3-Pyr 4-FBn 49 0:1
4.15 and

5.41
0* 376.9

A40 4-Pyr 4-FBn 52 0:1
4.18 and

5.35
0* 376.9

A41 3-Fur 4-FBn 36 0:1
4.07 and

5.16
0* 366.2

A42 4-IPh 4-FBn 4 0:1
4.09 and

5.25
0* 502.0312

A43 3-BrPh 4-FBn 48 0:1
4.13 and

5.35
0* 456.1

Table 2.3: Table of all synthesised first generation isoquinolin-1-ones continued



Targeting the p53/MDM2 Protein-Protein Interaction 54

No. R1 R2
%

Yield

Cis-to-

Trans

Ratio

δH(diaster-

eotopic

protons)

in ppm

J-

value

in Hz

MS

A44 3,4-diBrPh 4-FBn 55 0:1
4.12 and

5.34
0* 534.0

A45 2-ClPh 4-FBn 23 0:1
4.03 and

5.57
0* 432.1

A46 3-PhOPh 4-ClBn 52 0:1
3.98 and

5.32
0* 484.3

A47 4-ClPh 4-ClBn 71 0:1
4.11 and

5.30
0* 426.0658

A48 4-Cl,3-CF3Ph 4-ClBn 57 0:1
4.10 and

5.49
0* 494.0

A49 4-BrPh 4-ClBn 29 0:1
4.09 and

5.28
0* 470.0153

A50 3-Ph 4-ClBn 37 0:1
4.11 and

5.28
0* 392.1

A51 3-BrPh 4-ClBn 47 0:1
4.16 and

5.34
0* 469.9

A52 4-NO2Ph 4-ClBn 29 0:1
4.19 and

5.49
0* 437.1

A53 4-ClPh 4-BrBn 14 0:1
4.10 and

5.31
0* 470.0153

A54 4-BrPh 4-BrBn 19 0:1
4.06 and

5.29
0* 563.9

A55 3-Ph 4-BrBn 38 0:1
4.09 and

5.26
0* 515.9

A56 4-IPh 4-BrBn 5 0:1
4.10 and

5.25
0* 607.9

A57 3-BrPh 4-BrBn 49 0:1
4.16 and

5.34
0* 505.9

A58 4-IPh 4-IBn 24 0:1
3.94 and

4.33
0* 426.1

A59 4-BrPh 3,4-diClBn 29 5:1

4.83 to 4.84

and 5.13 to

5.15

6.17 505.9

A60 3-Ph 3,4-diClBn 29 1:0

4.12 to 4.13

and 5.35 to

5.36

1.20 448.0

Table 2.4: Table of all synthesised first generation isoquinolin-1-ones continued
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2.4 Discussion of the Isoquinolin-1-ones Generated

1H-NMR revealed that the diastereotopic protons in the trans conformation did not un-

dergo splitting, whereas cis-oriented protons were split into doublets. This phenomenon

value is explained with the Karplus equation (equation 2.1).134

J(φ) = Acos2φ+Bcosφ+ C (2.1)

The Karplus equation states the effect that the degree of torsion within a bond affects

the J-coupling value. φ refers to the angle of torsion whilst J refers to the J-coupling

value whilst A, B and C are parameters that vary depending on the constituent atoms

within the molecule. As angle φ exceeds 90◦, J tends towards 0 (as cos90 = 0 whilst

higher angles will result in the A and B terms cancelling out).

Despite previous published data suggesting that the trans conformation was more en-

ergetically stable,124 the characterisation data illustrated that the diastereomer syn-

thesised was highly dependent on the substituents of the amine and the aldehyde:

an unsubstituted benzylamine precursor predominantly led to the production of the

cis isomer, with the exception of pyridine- and nitro- containing analogues. The in-

clusion of halogenated benzylamine precursors in the synthesis generally led to a pre-

dominant trans isomer, with the exception of the dichlorobenzylamine precursor ana-

logues. Also, all of the methoxybenzylamine precursor analogues produced the trans

conformation, with the exception of one compound. Interestingly, the majority of

the analogues synthesised contained predominantly one diastereomer, with the excep-

tion of A06 (4-chlorophenylbenzaldehyde and methylbenzylamine precursors) and A08

(2-fluorophenylbenzaldehyde and dichlorobenzylamine precursors).

In addition to the 1H-NMR characterisation which indicated both the structure and the

conformation, this was also teamed with COSY, 13C-NMR and HSQC experiments to

determine the spatial relations between carbons and hydrogens (see Appendices ‘A’, ‘B’,

‘C’ and ‘D’ for the model spectra for A34 and how the data was interpreted). LCMS

was also used to determine that compounds were of the correct molecular weight, as

well as to examine isotope patterns (for example the 3:1 ratio of chlorine isotopes). IR

spectroscopy was used for completeness to determine the presence of the carboxylic acid

and the amide carbonyls.

In terms of the percentage yield for the generation of analogues there was a great deal

of variability. Low yields were attributed to low levels of precipitation (as the mixture

remaining after precipitation was not further purified). It is also possible that alternative
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diastereomers remained in the mixture and did not precipitate and were therefore not

isolated.

In the case of compounds in which there was no precipitation, the product was isolated

through column chromatography, which proved troublesome as many of the compounds

present in the mixture had similar Rf values in different solvent systems (the two normal-

phase systems used were ethyl acetate:hexane and methylene chloride:methanol).

2.5 In vitro Screening of Compounds Using Fluorescence

Polarisation

2.5.1 Principle of Fluorescence Polarisation

Fluorescence anisotropy can be used in a type of biochemical in vitro assay to deter-

mine binding of ligands to macromolecules. Readings are taken due to a difference in the

rotation of plane-polarised light, caused by a change of rotation speed by a fluorescently-

tagged binder is measured, which can also be explained as a difference in signal intensities

along different degrees of polarisation. This principal has been adopted to examine lig-

and binding as disruption of the fluorescently-tagged compound-protein complex causes

a decrease in anisotropy.

When a fluorescently-tagged binder is tumbling freely in solution, it tumbles rapidly: this

means that when the binder is intercepted by plane-polarised light, the light will scatter

and only a small amount of plane-polarised light is detected (giving a low anisotropy).

When the fluorescently-tagged binder attaches to another macromolecule (such as a

protein) the speed of tumbling greatly slows down, hence when the complex is hit by

plane-polarised light then a much higher percentage of light remains polarised after

interception. This phenomenon can be explained mathematically, as shown in equation

2.2 and equation 2.3.

FP =
Iq − I⊥
Iq + I⊥

(2.2)

FA =
Iq − I⊥
Iq + 2I⊥

(2.3)

The above equations are mathematical representations of fluorescence polarisation (FP,

equation 2.2) and fluorescence anisotropy (FA, equation 2.3) analysis, where Iq refers
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to the fluorescence intensity parallel to the excitation plane and I⊥ refers to the flu-

orescence intensity perpendicular to the excitation plane. Although FP and FA are

used interchangeably, the FA also takes into account twice the perpendicular light emit-

ted from the sample and therefore incorporates a greater degree of rotation in the FA

equation.76

The assay can be used to examine direct binding, competitive binding and enzymatic

conversion, the former two of which are adapted in the assay firstly to illustrate direct

binding of the fluorecently-tagged probe to the protein and the displacement of the probe

through the introduction of a potential inhibitor.135

As this is a difference-based assay it would be correct to assume that a larger difference

in size between the fluorescently-tagged binder and the macromolecule will result in

a larger minimum and maximum anisotropy difference. One challenge of attempting

this is that the HDM2 portion of the protein used within this assay is relatively small

(14.2 kDa). This means, although there is a detectable and reproducible difference, the

difference in the minimum and maximum anisotropy values are smaller than if it was a

larger protein.

Another limitation of this methodology is, if the inhibitor being tested bears any intrin-

sic fluorescence or absorbance in the region that is being analysed then the assay can

produce false positives or negatives and hence a second form of testing is required to

confirm results. Alternatively, the fluorophore can be changed to a fluorophore that is

red-shifted and therefore will not interfere with the assay.

It is also important to note that each varying concentration of protein was repeated in

triplicate to ensure reproducibility, although there is still the possibility of inter-batch

variation (that is, where new containers of protein were used). Inter-batch variation was

caused by using new reagents and different batches of the fluorescently-tagged peptide

and protein, however this was also examined during the process of the biological exper-

iments (wt p53 inhibition was examined on two different days to examine the effect on

the IC50 and Ki values). Inter-batch variation was found not to have a profound effect

on final IC50 and Ki values.

This methodology has been adapted for the examination of protein-protein interactions,

as the procedure is much more rapid than ELISA (hence its application in high through-

put screening), the reagents are much cheaper and also readily available (for example,

there is no need to source expensive antibodies).



Targeting the p53/MDM2 Protein-Protein Interaction 58

2.5.2 Synthesis of Components for Fluorescence Polarisation

In order to undertake the FP assay, the fluorescently-tagged peptide and the protein

were synthesised in-house. The techniques used to synthesise these components are

described below. The fluorescently-tagged peptide used in the assays described in this

thesis was first published by Czarna et al.:136 it was chosen due to its higher affinity for

HDM2 than wt p53, which reduced the quantity required per run of the assay.

2.5.2.1 Synthesis of the Fluorescently-Tagged Peptide for Fluorescence Po-

larisation, A65

Fmoc solid phase synthesis (scheme 2.3 is a well-documented series of reactions utilised

in order to synthesise long polymer chains, in particular peptides, through a series of

deprotection and coupling reactions. Solid phase synthesis involves the synthesis of

polymers on a solid support, which is acid-labile in the case of Fmoc (or base-labile in

the case of Boc), so that cleavage from the resin does not occur prematurely. There is

a wide variety of different resins available, which can produce different carboxy termini:

in this case, MBHA Rink Amide resin was used, as the carboxy terminus is unimportant

for binding and amides are easier to prepare than carboxylic acids, as an amide can be

prepared using a standard coupling and be monitored using the Kaiser test, whereas an

initial ester formation cannot be monitored and requires the preparation of a symmetrical

anhydride to increase reactivity.

The first example of solid phase peptide synthesis was determined by Merrifield in

1963.137 It involved the formation of a tetrapeptide through attachment of amino acids

onto a modified polystyrene solid support with acid-labile protection of the amine. De-

protection of the amine occurred in the presence of TFA and washes were completed

using DMF to remove any residual reagents and prevent side reactions. Cleavage of the

peptide from the resin is undertaken using HF, as the linker is acid-labile to prevent pre-

mature cleavage. This method is effective and is still used today, however the presence

of TFA and HF means that the reaction cannot be automated, as TFA and HF could

react with the vials or the equipment. As an alternative, Fmoc-driven synthesis has

generally superseded Boc solid phase synthesis, although there may still be instances in

which Boc synthesis maybe preferred, such as the incorporation of specialised unnatural

amino acids.
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NHFmoc NH2 NH

AA
Fmoc

NH

AA
NH2

i.                                    ii.                                      iii.

Scheme 2.3: General example scheme for Fmoc solid phase peptide synthesis used to
generate peptides within this thesis. i. Fmoc deprotection of the Rink Amide MBHA
using 40% and 20% piperidine in DMF. ii. Attachment of the first amino acid using
HOBt, HBTU, DIPEA, AA and DMF. iii. Fmoc deprotection of the amino acid using

40% and 20% piperidine in DMF

The principle of Fmoc-driven synthesis involves the use of the fluorenylomethoxycar-

bonyl (Fmoc) group, which is a base-labile amine-protecting group. Fmoc can be

efficiently removed in the presence of either piperidine or piperazine, with the latter

conferring an additional benefit of reduced racemisation during synthesis.138 This de-

protection can be determined through Kaiser testing, in which the ninhydrin component

is able to form a complex with the free amine, resulting in deep blue resin beads, for

which the reaction scheme is shown in scheme 2.4.139,140 The primary amine reacts

with a hydroxyl group to form a complex, which is then decarboxylated and undergoes

further rearrangement. The resultant intermediate is hydrolysed and a second molecule

of ninhydrin reacts, forming Ruhemann’s purple, which is the deep blue colour observed

if primary amines are present. The Kaiser test is the most commonly used test to

determine coupling reaction completion, however it is important to note that this is

destructive and therefore each test will be to the detriment to the overall yield. To

prevent side chain reactions during the process, reactive side chains are protected with

acid-labile groups, which would not deprotect prior to cleavage from the resin.
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Scheme 2.4: Scheme for the generation of the Ruhemann’s purple complex generated
from the reaction of ninhydrin with a primary amine
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Scheme 2.5: Fmoc deprotection in the presence of piperidine. A. Deprotonation in
the presence of piperidine results in a negative charge, which leads to cleavage of the
carbamate and decarboxylation. B. a second molecule of piperidine reacts with the

decarboxylated Fmoc group

Scheme 2.5 illustrates the mechanism for Fmoc deprotection. In the presence of base

(usually piperidine or piperazine), the Fmoc group becomes deprotonated. The resultant

negative charge feeds into the carbamate, resulting in cleavage of the bond and release

of the free amine, carbon dioxide and an aromatic intermediate that can further react

with another molecule of base.
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Following Fmoc deprotection (and subsequent washing with copious amounts of DMF

to prevent premature Fmoc removal of the next amino acid), amino acids are attached

sequentially, using HOBt, HBTU and DIPEA to form amide bonds for peptides synthe-

sised within this thesis. Each coupling was undertaken with 5 equivalents of all reagents

(except for DIPEA, for which 10 equivalents were used). Each coupling was reacted

for 30 minutes, after which a Kaiser test was undertaken to determine if there was any

unreacted free amine, which would indicate an incomplete coupling. If the coupling was

incomplete, the reagents were refreshed and a second coupling was undertaken, as this

would force the reaction towards completion.

NH

AA
NH2

NH3

AA
NH2

i.

TFA

Scheme 2.6: General example scheme for cleavage of the peptide from the resin i.
95:2.5:2.5 TFA:H2O:TIPS

The finished peptide was washed five times with DMF, then three times with CH2Cl2

then three times with 1:1 MeOH:CH2Cl2. The peptide on resin was then treated with

95%:2.5%:2.5% TFA:H2O:TIPS for 3 h to cleave the peptide from the solid support, with

the TIPS and H2O scavenging free radicals to quench any side reactions caused during

side chain deprotection. The cleaved peptide was drained off and the resin washed three

times with neat TFA to wash off any residual peptide and the peptide was concentrated

in vacuo. The organic impurities were removed through precipitation of the peptide

using cold diethyl ether and subsequently filtered. Purification was then performed

using reverse-phase preparative HPLC.

The peptide described by Czarna, LTFEHAQWYLTS-CONH2, was synthesised in house

on solid phase and 5(6)-FAM attached via the N-terminus. Upon purification, the two

diastereomers were separated through semi-preparative HPLC and it appeared that the

minority isomer (the less intense peak by HPLC) was 10-fold more active than the alter-

native stereoisomer. The most potent stereoisomer produced a KD for HDM2 compara-

ble to the literature (1.44 nM experimentally-derived versus 5.40 nMin the literature).136

2.5.2.2 Expression of the HDM2 Protein for Fluorescence Polarisation

Due to the complexity of proteins, it is necessary for these to be synthesised biosyn-

thetically to ensure correct folding, so that the structure of the hydrophobic pocket

is maintained. The sequence of the protein was encoded and inserted into a bacterial
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plasmid. In order to produce sufficient plasmid to cause protein expression, the His-

HDM2 (pET14b) plasmid was first transfected into cloning cells (JM109), which rapidly

produced large quantities of the plasmid. Following transfection, the bacteria was cul-

tured and grown overnight, lysed, and then treated with a commercially-available DNA

miniprep kit to isolate the plasmid (see ‘Experimental’ section). Prior to transfection

into expression cells (BL21(DE3)PLysS), the plasmid was sent for sequencing to ensure

that no mutations occurred during bacterial growth.

Transfection was performed on BL21(DE3)PLysS cells. This particular cell line contains

an enzyme that helps to lyse the cells during the centrifugation process, which aids the

release of the protein. The cells were grown overnight (20 mL) and a sample taken for

a large-scale growth in 2 x 3 L of media, as the fresh media encouraged growth. The

production of protein is undertaken at an optical density (OD) of 0.6, as this is when

the bacteria are growing in the log phase and production of the protein would be rapid.

At this point, Isopropylβ-D-1-thiogalactopyranoside (IPTG) is added, which stimulates

the lac operon (which is usually inhibited) to become active and start producing the

protein. IPTG is a type of sugar subunit and causes displacement of the lac repressor,

which serves the general purpose in bacteria of preventing protein expression under

normal conditions.

Following overnight culture growth, it was found that growing the bacteria overnight at

room temperature was more effective than growing at 37◦C for 5 h (which is also standard

protocol). Overnight growth at room temperature allows bacteria to grow more slowly,

hence reducing the rate for competition for nutrients and therefore appeared in this case

to produce protein more effectively. The bacteria was then lysed and centrifuged. The

lysate was then passed through a nickel-affinity column (as the protein is His-tagged and

therefore will adhere to the column in low concentrations of imidazole and elute from

the column in high concentrations of imidazole). The fractions, non-bound eluent and

the cell lysate were analysed by 15% SDS-page. Pure fractions were then dialysed and

concentrated through spin filtration using a 5 kDa filter, as the protein was only 14.2

kDa and the low porosity was necessary to prevent the protein passing through. The

final protein concentration was determined using nanodrop using the Beer-Lambert law

(equation 2.4), in which A is the absorbance of the protein, ε indicates the extinction

coefficient of the protein, c is the concentration of protein in the sample and l is the

pathlength that the light travels through the sample:

A = εcl (2.4)
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This produced a concentration of 44.1 µM of HDM2 protein in buffer (10 mM PBS, 10%

glycerol, 10 mM β-mercaptoethanol, dd H2O).

Figure 2.8: Gel image of His-HDM2 purification on a nickel-affinity column lane 1.
gel ladder (red line indicates 14.2 kDa) lane 2. Undiluted pellet lane 3. Cell lysate lane
4. and lane 5. Not bound 6. lane and lane 7. wash fractions lanes 8., 9. and 10. eluted

fractions

Figure 2.8 illustrates the SDS-PAGE gel used to analyse the purification of the protein.

The ladder was used in the first lane to determine the presence of the desired molecular

weight. The undiluted pellet was added to determine if any of the protein remained

following lysis of the cell and centrifugation. The crude cell lysate determined whether

or not the protein was present in the sample prior to application to the column. The

unbound lysate was added to determine if the protein in question bound to the column.

Wash fractions and elution fractions were added to determine firstly the presence of the

protein and secondly, whether or not the protein was pure.
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2.5.3 Setup of the Fluorescence Polarisation Assay

2.5.3.1 Preliminary runs to determine the working concentration of HDM2

for the FP assay

Figure 2.9: Binding curve for the FAM-LTFEHAQWYLTS-CONH2, KD = 1.448 nM
(95% CI 0.7608 nM to 2.135 nM), mean +/- SEM, n = 3, 10−2 to 10−6 µM HDM2

(17-125), 10 nM F-LTFEHAQWYLTS-CONH2

Figure 2.9 illustrates the initial triplicate runs of the fluorescently-tagged peptide incu-

bated with various concentrations of the HDM2 peptide. HDM2 was titrated at 10-fold

dilutions ranging from 956 fM to 9.56 µM. The fluorescently-tagged peptide remained

constant at 10 nM. The buffer used was PBS-0.05% Tween-20 (the Tween-20 acting as

a surfactant and preventing protein adhering to the sides of the wells) at pH 7.4.

As the concentration of the protein increases, there is less of the free fluorescently-tagged

peptide present and therefore there is a high anisotropy value. The sigmoidal curve is due

to the saturation of the fluorescently-tagged peptide at high concentrations of protein.

2.5.3.2 Preliminary run to determine experimental KD of positive control

inhibitor

Figure 2.10 shows the displacement of the fluorescently-tagged peptide following the

inclusion of a p53/MDM2 protein-protein interaction inhibitor, in this case, wildtype

(wt) p53 (amino acids 15-27). As more inhibitor is introduced, this causes higher lev-

els of free fluorescently-tagged peptide, therefore resulting in a low anisotropy at high

concentrations of inhibitor.

The calculated IC50 and Ki values are given alongside 95% confidence intervals, which

are the range of values in which the actual value is expected to be found, as shown in
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equation 2.5. µ refers to the mean, SE refers to the standard error of the mean whilst

1.96 is a coefficient used with two-way equations (where the actual value lies within a

Normal distribution).

95%CI = µ± 1.96SE (2.5)

Figure 2.10: Inhibition curve of wt p53, IC50 = 14.45 µM (95% CI (9.194 µM to
22.72 µM) Ki = 1.819 µM (95% CI 1.157 µM to 2.860 µM), mean +/- SEM, n = 3, 10

nM HDM2 (17-125), 10 nM F-LTFEHAQWYLTS-CONH2

Originally, the untagged version of the Czarna peptide was tested, however it was soon

determined that the untagged peptide produced a background fluorescence (due to the

high concentrations of aromatic side chain within the peptide), which caused interference

with the assay at high concentrations and therefore it was not possible to obtain an

accurate inhibition curve. As a result, wildtype (wt) p53 (amino acids 15-27) was used

as the control compound as interference was not observed at higher concentration.

In order to determine the robustness of the assay and suitability for high throughput

screening, a Z-prime was carried out, in which 24 replicates of tagged compound-protein

and 24 replicates of tagged compound-protein-inhibitor are screened and placed into the

following equation,141

Z ′ =
3(σp + σo)

|µp − µo|
(2.6)

In equation 2.6 σ refers to the standard deviation of anisotropy whilst µ refers to the

mean anisotropy. The subscript ‘p’ refers to the positive control (using 100 µM wt p53

within the well) whilst the subscript ‘o’ refers to the negative control (DMSO in place

of inhibitor). If the assay is robust, the Z value should be between 0.5 and 1, meaning

that the values are precise and there is no overlap in the positive and negative controls.

The Z’ value for this assay is 0.57, which demonstrates that this assay has excellent

reproducibility. The graphical representation of this data is shown in figure 2.11.
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Figure 2.11: Z test for robustness; wells 1-23: 100 µM wt p53, 10 nM HDM2 (17-125),
10 nM F-LTFEHAQWYLTS-CONH2; wells 24-46: 10 nM HDM2 (17-125), 10 nM

F-LTFEHAQWYLTS-CONH2

2.5.4 In vitro Screening of Inhibitors Against the p53/MDM2 Protein-

Protein Interaction

N
R2

HO O

O

R1

Figure 2.12: General structure of the isoquinolinone scaffold in the generated ana-
logues
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No. R1 R2
IC50 (95%

CI) in µM

Ki (95%

CI) in µM
R2

A34 4-ClPh 4-FBn
56.61 (25.13

to 127.5)

7.125 (3.163

to 16.05)
0.9142

A36 4-BrPh 4-FBn
19.75 (9.801

to 20.77)

2.486 (1.724

to 3.584)
0.9172

A42 4-IPh 4-FBn
57.74 (31.41

to 106.2

7.286 (3.954

to 13.36)
0.9449

A47 4-ClPh 4-ClBn
61.22 (26.88

to 139.5)

7.706 (3.383

to 17.55)
0.9214

A51 4-BrPh 4-ClBn
21.25 (11.59

to 38.96)

2.675 (1.459

to 4.904)
0.9525

A53 4-ClPh 4-BrBn
27.06 (11.23

to 65.16)

2.357 (1.414

to 8.202)
0.9242

A54 4-BrPh 4-BrBn
6.555 (2.618

to 16.41)

0.8251

(0.3296 to

2.066)

0.8816

Nutlin-

3a
- -

0.6067

(0.494 to

0.745)

0.0771

(0.0627 to

0.0946)

0.9935

Table 2.5: Table of the top hit compounds as demonstrated in the FP assay, including
the positive control Nutlin-3a

Table 2.5 illustrates the most active compounds as shown by the FP assay, with nutlin-3a

compared as a ”gold standard” positive control (as it is the first and most well-known

p53/MDM2 interaction inhibitor). All compounds synthesised were screened at 100 µM

and therefore active compounds were determined to have an IC50 of less than 100 µM.

The results showed that the halogenated compounds were the most active and that the

fluorine substituent on position R2 was more active than chlorine, however the top hit

compound displayed a bromine substituent on both R1 and R2. The importance of the

halogen group was in agreement with the previously reported literature, suggesting that

halogens aid ligand binding into receptors and pockets present within macromolecules.132

Fluorine also serves as a bioisostere of hydrogen and is also capable of forming hydrogen

bonds.142 Also it was interesting to note that all of the hits were para-substituted,

suggesting that the para permits the most effective binding interactions. The compounds

found to be active in the FP assay were taken forward for futher studies in cells.
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2.6 MTS Cytotoxicity Screening of Compounds

2.6.1 Principle of the MTS Assay

N
N

N

N

N
S

SO3

O

O OH

N
N

HN

N

N
S

SO3

O

O OH

   

MTS                                                                     Formazan

Figure 2.13: Structures of MTS and formazan

Scheme 2.13 shows the conversion of MTS to Formazan in the MTS assay. The MTS as-

say determines antiproliferative activity. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carbox-

ymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) is metabolised to formazan in healthy

cells by the mitochondria, which has an absorbance maxima between 490 nm and 500

nm, which is detectable by a spectrophotometer. If the cells that the compound are in-

cubated with are dead, there is no production of formazan and therefore the absorbance

changes.

Positive and negative controls are undertaken, using media without cells and cells with-

out an inhibitor to determine whether or not there is cell death. The outer wells of the

plate contain water to prevent media evaporating during the incubation period. Ini-

tially, a blanket screen was undertaken in triplicate at 100 µM inhibitor concentration

to determine if the compounds were cytotoxic, after which an IC50 value was deter-

mined through screening of the cells at various concentrations of inhibitor (starting at

100 µM in the well, reducing in 1 in 2 dilutions to a final concentration of 781 nM). The

absorbances were processed in GraphPad Prism and the IC50 values determined.

2.6.2 Growth of Cells for the MTS Assay and Cell Lines Chosen

The MTS assay needed to determine if a compound is cytotoxic and iIf a compound

is selective for the p53/MDM2 protein-protein interaction. In order to produce the

desired outcomes, three different cell lines were used. HL60 cells are p53-null cells and

therefore are a determinant of non-specific cytotoxicity, SJSA-1 cells have overexpressed

HDM2 and therefore show whether or not the cytotoxicity is specific to the p53/MDM2
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protein-protein interaction. Finally, A375 cells were used, as these have overexpressed

MDMX, which works alongside HDM2 to silence p53 but through inhibition of p53

transcription instead of through E3 ubiquitin ligase activity.

2.6.3 Cytotoxicity data for the isoquinolin-1-ones found active by flu-

orescence polarisation

N
R2

HO O

O

R1

Figure 2.14: General structure of the isoquinolinone scaffold in the generated ana-
logues

No. R1 R2

SJSA-1

IC50 in

µM

HL-60

IC50 in

µM

A375 IC50

in µM

A34 4-ClPh 4-FBn NA NA NA

A36 4-BrPh 4-FBn NA NA NA

A42 4-IPh 4-FBn 286.9 10 440.3

A47 4-ClPh 4-ClBn NA NA NA

A51 4-BrPh 4-ClBn NA NA NA

A53 4-ClPh 4-BrBn
more than

500
7.5 242.1

A54 4-BrPh 4-BrBn 478.9 8.1 NA

Nutlin-

3a
- - 5.778 NE NE

Table 2.6: Table of all compounds tested in the MTS assay (NA = No Activity up to
500 µM, NE = Not Examined)

Table 2.6 shows all of the compounds tested in the MTS assay. In order for a compound

to be selective for the p53/MDM2 protein-protein interaction, the IC50 should be low

in SJSA-1 cells (MDM2 overexpressed) and high in the other two cell lines (p53-null

and MDMX overexpressed respectively). Although the compounds displayed activity in

SJSA-1 cells, it appeared that there was activity (in some cases, greater activity) in the

other two cell lines, suggesting that these compounds may also work by an alternative

mechanism independent of p53-induced apoptosis.
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2.7 Synthesis of Isoquinolin-1-one Esters

As the cellular penetration of the isoquinolin-1-ones was thought to be low (due to their

insolubility and their negative charge present on the carboxylate at physiological pH), it

was decided that the carboxylic acid would be esterified, as the loss of the carboxylate

present at physiological pH on the isoquinolin-1-one would aid permeability into cells.

The decision to use a methyl ester was to minimise the steric bulk as the carboxylic

acid itself has been shown to be important for binding. This may appear contradictory,

as the paper published by Rothweiler et al. in 2008 showed that ester formation could

increase activity,124 however all of these esters were highly oxygenated (as opposed to a

long hydrocarbon chain) and therefore still capable of performing hydrogen bonding in

aqueous environments.

It was decided that the top binder (A53) would be esterified first to determine if there

was a drop in activity. Esterification was carried out with catalytic sulfuric acid in

methanol and went to completion within 1 hour. The product was concentrated in

vacuo and produced a quantitative yield of the desired methyl ester in position 4. This

compound was tested via FP but failed to show activity: we postulated this to be due

to the reduced capacity to hydrogen bond with His96 within the hydrophobic pocket.

Testing in cells has yet to be undertaken.

2.8 Characterisation of Binding Modality Using Saturated

Transfer Difference Nuclear Magnetic Resonance Spec-

troscopy

2.8.1 Basics of Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) was first realised in the 1940s, during which the

first spectra of solids and liquids were published.143 Ten years later, chemical shifts and

spin-spin coupling was examined as a structural elucidation tool.Twenty years after the

conception of NMR, the Nuclear Overhauser effect would be determined. Thirty years

after NMRs conception came the determination of two-dimensional NMR experiments

and automated spectroscopy. The 1990s led to the development of coupled activities such

as liquid chromatography (LC)-NMR, alongside the production of pulsed field gradients.

In the 2000s, high-sensitivity cryogenic probes and shielded magnets became widely

available and microscale NMR experiments became possible. Since 2010, it has been

possible to produce fast, parallel data acquisitions.
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2.8.2 Saturation Transfer Difference (STD) NMR Spectroscopy

Saturation Transfer Difference (STD) NMR is a recently explored form of NMR anal-

ysis in which a difference in signal is observed and subtracted between the bound and

non-bound ligand and its binding partner.144 If there is an interaction, a signal is ob-

served on the difference spectra, as the two signals do not completely cancel out. This

technique was first published in 1999 by Mayer et al.145 Their initial experiments in-

volved mixtures of ligands for rapid screening and ligand mapping of potential binding

compounds. The initial paper focussed on the binding of oligosaccharides and they were

even able to characterise GlcNAc as a binder through the proton and STD spectra for

this compound. The benefits of this technique include the decreased concentration of

target required (compared to techniques such as 15N-HSQC), the relative ease of use of

the technique as well as the ability to examine large molecular weight targets.

In 2005, Krishnan et al. produced a comprehensive review stating the details of how

NMR can be used to determine protein-ligand interactions. Using the notion that re-

ceptors and ligands display NMR-type characteristics at equilibrium, it is possible to

analyse their binding modality at this point.144 It is the free resonating receptor and

ligand that is NMR-active, whilst the complex itself is NMR-silent. In order to produce

a difference in resonance state, a magnetic frequency is applied to the receptor-ligand

mixture, which is equal to the resonance frequency of the receptor. This causes the

receptor to resonate with greater intensity and resonance travels across the receptor

through spin diffusion. It is key to note that there must be no resonance from the

ligand, else this would interfere with the resultant difference spectra.

Figure 2.15: Diagrammatic representation of spin diffusion and resonance throughout
the target, ligand and a non-binder (star). A. No resonance. B. Application of magnetic
field and spin diffusion across the target. C. Spin transfer from the target to the ligand

D. Exchange of resonating ligand with another ligand in solution
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Once the resonance has spread throughout the receptor it is then transferred to the

ligand through dipole-dipole interaction of neighbouring protons. This resonance causes

the ligand to dissociate from the receptor and causes fresh free ligand to associate with

the target, after which the process is repeated.

A reference “off”-resonance signal is then deduced, which is recorded at a frequency in

which neither the receptor nor the ligand resonates (this is usually between 25 and 50

ppm from the on-resonance frequency).

In order to maintain consistency, the temperature of the environment is controlled (in

the case of our experiments, each run was carried out at 5◦C, as this not only preserved

the life of the protein but also reduced the speed of which the macromolecule tumbled,

hence improving the signal intensities and reducing background noise.

Once the “on” and “off” signals are subtracted, the difference signals left are the result

of the saturated receptor and ligand and, as both the receptor and ligand are present

in solution at their minimum working concentration, the receptor signal is rarely seen.

This technique can also be used to determine KD values as multiple experiments can

be setup in parallel with varying concentrations of ligand, whilst the protein is kept

constant.

In order to maximise the signal produced, experiments were carried out on an 800 MHz

NMR machine (for the greatest possible resolution of the peaks in A34) and in a 300

µL NMR tube to reduce the volume necessary for the experiment. Due to high surface

tension, it was vital that components were added to the tube slowly and the tube was

later centrifuged in order to force components to the bottom of the tube and the air to

the top.

Factors that affect the STD-NMR spectra include the biochemistry of the receptor-ligand

interaction, as well as the type of molecules, for example, protons in carbohydrates and

in DNA are less capable of spin diffusion as protons are further apart and therefore the

transfer of spin is less efficient, hence why proteins are more commonly used, as they

rapidly and readily transfer spin between neighbouring protons to saturate the entire

macromolecule.146 Larger proteins also tend to work better, as they tend to tumble more

slowly in solution and therefore create a greater difference spectrum.147 The working

concentrations of protein required are between 10 µM and 20 µM when in the sample,

whilst the quantity of ligand is approximately 500 µg. For the purpose of this study,

the protein concentration was estimated to be approximately 10 µM and the quantity

of ligand to be 500 µg.

Additional factors to consider when using this technique includes the KD of the ligand,

which should ideally be in the µM range: if the binding is too stong or weak, the NMR
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pulses will not detect a difference between the free and bound states, as any changes in

signal would not be detected at the pulse rate of the machine. For this reason, A34 was

chosen, as it was a moderate strength binder (Ki = 7.125 µM) and would not bind too

strongly or weakly to the protein.

Another factor to consider includes the buffer system, as the presence of DMSO in the

buffer can interfere with the NMR (although interestingly, the presence of DMSO in this

case appeared to improve magnetic distribution across the protein). It is also important

to note that all components require freeze drying multiple times with deuterium oxide

to remove any water present on the molecules that could swamp the NMR signal. Also,

it is important to determine the optimum temperature for the experiments, as lower

temperatures decrease the tumbling in solution but may improve the stability of the

protein for analysis. The buffer used in the analysis was 10% DMSO-d6 (to solubilise

the ligand) in PBS (10 mM PO4
3, 137 mM NaCl, and 2.7 mM KCl) at pH 7.4 to stabilise

the protein.

2.8.3 Parameters of Components Used in STD-NMR

In order to display an STD-NMR signal, it is vital that the pulse rate and power are

optimal. As STD-NMR is a two-dimensional experiment, only resonance in the x-y

plane is detectable. As a result, it is necessary to ensure that the angle of resonance is

optimised for the x-y plane and that involves producing the optimal strength of pulse,

which is known as the free induction decay (FID). The FID is the point at which data

acquisition takes place.

2.8.4 Protocol of STD-NMR Processing

The first step with processing is to integrate each peak on each spectrum (figure 2.16

indicates an example difference spectra of A34, whilst figure 2.17 and figure ??F11

show examples of the weak and strong binding spectra respectively): for the purposes

of the experiment fifteen different pulse rates were used, which produced different levels

of “on” binding. The reference spectrum was overlayed and scaled until it perfectly

overlapped with each peak, which produces a value for each peak known as the scale

factor (that is, the number of times larger or smaller the reference spectra is scaled

to perfectly overlap with the difference spectra). This was done for each peak in each

spectrum, producing a graph for each peak. The extinction coefficient of each graph

was calculated and converted into a ratio against the largest extinction coefficient, as

illustrated in the equation below:147
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ASTD =
I0 − ISAT

I0
× [L]Γ

[P ]
=

ISTD

I0
× [L]Γ

[P ]
(2.7)

Where ASTD is the STD amplification factor, I0 is the intensity of the signal in the

reference spectrum, ISTD is the intensity of the signal in the “bound” spectrum, [L] is

the ligand concentration and [P] is the protein concentration. γ is a coefficient of motion

in solution.

This allowed the quantitative importance of each proton or proton environment to be

determined. Once this was determined, similar molecules were searched for in the lit-

erature and molecular modelling adjusted according to the enhanced parameters. It

is important to note, however, the weaker the binding becomes (due to a lower pulse

rate) the more difficult the scale determination is, as the signal-to-noise ratio greatly

increases.

Figure 2.16: Difference spectra of A34
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Figure 2.17: A34 weak binding spectrum overlayed with proton spectrum for A34.
Due to the lack of interaction there is a low signal-to-noise ratio

Figure 2.18: A34 strong binding spectrum overlayed with proton spectrum for A34.
The high degree of interaction results in a high signal-to-noise ratio

Due to the complexity of the isoquinolin-1-one spectra, it was necessary to use the 800

MHz NMR to resolve each proton environment: using proton, COSY, HSQC, HMBC

and NOESY, it was possible to assign the different proton environments (see Appendices

A to D) for the spectra gathered for A34).

Although NOESY was inconclusive, it was possible to determine the proton environ-

ments within the spectrum using the other modes of NMR analysis. As the fluorine

causes splitting in NMR spectra, it was possible to determine which of the aromatic pro-

tons were closest to the fluorine on the lower ring and those that neighboured through

HSQC and HMBC. Due to the symmetry in the side chain rings, only one set of signals
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was evident for each ring. The aromatic ring on the isoquinolone core was easily deter-

mined, as it was shifted furthest downstream compared to the two side chain aromatic

rings.

Interestingly, it was also determined that the two doublets in the aliphatic spectrum

referred to the methylene group (see ‘Appendix A’), which must be due to its three-

dimensional conformation in space. The two singlets in the aliphatic region was cor-

rectly identified as the two trans protons (the proton adjacent to the carboxylic acid

was shifted further downstream).

Although peaks for the cis conformation were also seen, these were much weaker and

therefore were not considered within the STD-NMR studies undertaken within this the-

sis. The STD data was then taken forward and inputted into the in silico screening to

calculate the most accurate binding motif of the isoquinolinones.

2.9 In Silico Studies of Isoquinolin-1-one Binding

In silico screening and molecular modelling are used to predict how a compound may

interact within a binding pocket. Macromolecules are obtained either through solution-

based NMR studies or through X-ray crystallography and made publically available via

the protein databank.148 Once the protein has been obtained, it is necessary to process

gasteiger charges, hydrogen bonds and any associated water molecules to ensure that the

hydrophobicity/hydrophilicity of the macromolecule is maintained for the most accurate

simulation.

The ligand too requires further processing: once produced (in either ChemDraw or Mar-

vinSketch) all hydrogens are added and the lowest energy 3D conformation is determined

and fixed, as the docking programs do not store data on double-bonds and therefore all

explicit hydrogens must be visible.149

A gridbox is placed on the protein that states the area in which docking is to be sim-

ulated: the bigger the gridbox, the more likely a hit will be discovered however the

less likely that the compound will bind in the desired pocket. The data is saved as a

config.txt file, which enables the script to use the parameters during docking (this and

the Python script used for docking is detailed in the ‘Experimental’ section).

The compound was then processed in Autodock vina and the top screens can then be

imported back into Autodock Tools for visualisation of the binding epitope, as shown in

Figure 2.19 and Figure 2.20.
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Using STD-NMR, it is possible to input this data (relating to charges and quantitative

importance of each proton on binding) experimentally and therefore the binding epitope

generated is more accurate than a purely in silico approach.

Figure 2.19: Docking model of A34 bound to HDM2

Figure 2.20: Docking model of A54 bound to HDM2

Figure 2.19 and figure 2.20 illustrate the binding models of A34 and A54. In both

cases, the bicyclic isoquinolinone core resides in the tryptophan pocket, whilst the flu-

orine and chlorine of A34 reside in the phenylalanine and leucine pockets respectively.

Interestingly, both A34 and A54 adopt the same conformation within the pocket and

in both cases, the methylene group had no importance within binding. This binding

was compared to that of other inhibitors in the literature and interestingly, the bind-

ing of these compounds bears similarity to the binding of the benzodiazepinediones, as

indicated in figure 2.21.
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Figure 2.21: Docking model of a benzodiazepinedione bound to HDM2, as published
in Khoury et al.150 (reproduced with permissions)

2.10 Stereoselective Synthesis of Isoquinolin-1-one Ana-

logues and Subsequenct Optical Rotation Studies

It was proposed that following the results of FP screening that one compound would be

analysed in both the cis and the trans forms to determine if one diastereomer displayed

better binding.

As a result, the cis and trans diastereomers of model compound A34 were synthesised,

as A34 inhibited in the FP assay and was produced in moderate to good yields (circa

43%), hence it was theorised that the two diastereomers could also be synthesised and

activity determined. Both were analysed by 1H-NMR, with the key difference being the

presence of doublets or singlets at 3.98 ppm and 5.14 ppm. If they are doublets, this

indicates the diastereotopic protons exist in the same plane, hence the splitting, whereas

the singlets illustrate that the two diastereotopic protons are in the opposite directions

and therefore the furthest possible points from one another, which can be explained

by the Karplus equation mentioned earlier (where the cosine of the J -coupling value

indicates whether or not diastereotopic protons will be split on a 1H-NMR).

2.10.1 Synthesis of A34a

i., ii.

N

O

OHO

F

Cl

N

O

OHO

F

Cl

+

A34a

Cl F

H2NO

Scheme 2.7: Formation of cis-A34 (A34a) i. Si(HClO4), MgSO4, CH3CN ii. Ho-
mophthalic anhydride rt, overnight (29% yield)
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A34a was synthesised through the reaction of the amine, aldehyde and homophthalic

anhydride in the presence of a perchloric acid silica support, which aides positioning of

the isoquinolin-1-one in the cis conformation.

The yield was moderate but purification proved challenging, as the resultant isoquinolin-

1-one was only soluble in DMF and it was therefore necessary to dissolve in DMF and

precipitate out in the presence of water.

2.10.2 Synthesis of A34b

i.

N

O

OHO

F

Cl

N

O

OHO

F

Cl

N

O

OHO

F

Cl

+

A34                                                                       A34b

Scheme 2.8: Formation of A34b i. Ac2O, reflux, 2 h (7% yield)

A34b was synthesised by refluxing A34 in the presence of acetic anhydride for 2 h. The

hypothesis is that this process causes rearrangement of the cis form to produce all-trans

arrangement.

The compound only required minimal purification by triturating with diethyl ether.

As well as A34a and A34b, the remaining top hit compounds from the initial FP

screen were then dissolved in DMF and the optical rotation measured. It was initially

expected that, as these compounds had been synthesised non-stereoselectively and there

should have in theory been equal quantities of both cis and both trans enantiomers, the

expected rotation was zero.

DMF was used due to the insolubility of the compounds. The optical rotation was then

run in triplicate to determine an average and the results are tabulated below:
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No. R1 R2 Optical Rotation
Concentration

in mg/mL

A34 ClPh FBn +80.00◦ 10

A34a ClPh FBn +283.33◦ 10

A34b ClPh FBn +176.73◦ 10

A36 BrPh FBn +27.0◦ 10

A42 IPh FBn -5.67◦ 10

A47 ClPh ClBn -6.79◦ 10.2

A51 BrPh ClBn -6.33◦ 10

A53 ClPh BrBn +25.00◦ 10.4

A54 BrPh BrBn -63.33◦ 10

Table 2.7: Optical rotation data for the top hit compounds (T = 22.0◦C). As a
control, S-binol was also run through the polarimeter and produced a value of -36.4◦

(c = 1.066 x 10−2 g/ml in THF and T = 23.0◦C), which lies within the error margins
of the reported value (-35.5◦)

This data is very interesting and initially rather surprising as there are very few references

in the literature to optical rotation studies of these compounds, as most papers only go

as far as to say that these compounds are racemic or only undertake optical rotation

studies following purification through chiral HPLC. Cushman made reference to this

phenomenon by stating that these compounds display A strain, which is where the

central core aromatic substituents occupy the axial conformation due to the central

amide linkage.151 Due to the lack of literature information on this topic it is neccesary

to do further study on these compounds.

OR2

Ha

H
N

Hc

O

Hf

He

Hd
Hb

R1

Figure 2.22: Illustration of A strain as hypothesised by Cushman and Castagnoli
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2.11 Synthesis of Modified Isoquinolin-1-ones with Improved

Aqueous Solubility

H2N

OH

+

Br

O

OH

N

Br

N

OHO

OH
O

Br

Scheme 2.9: Synthesis of A64. i. L-phenylalaninol, 4-chlorobenzaldehyde, dry THF,
MgSO4, rt, 1 h. ii. Homophthalic anhydride, rt, overnight (3% yield)

The STD-NMR data suggested that the methylene group had little to no importance

in the binding and would therefore serve as a potential position for improved aqueous

solubility, making the compound more drug-like. It was thought that a carboxylic acid

or an alcohol could be introduced using an amino acid or an amino alcohol in place of

an amine. Attempts to form the imine with an amino acid (in this case, Phenylalanine

to preserve the π-π stacking interactions and the carboxylic acid to increase solubil-

ity) showed that no reaction was occurring, most likely due to the electron-withdrawing

effects of the carboxylic acid, reducing the amine’s ability to act as a nucleophile. Addi-

tionally, the solvent was changed from dichloromethane to tetrahydrofuran, as the amino

alcohols/amino acids were only soluble in THF or methanol.

The successful method involved the use of L-phenylalaninol, which contains a more elec-

tronegative amine than phenylalanine. L-phenylalaninol was combined with a suitable

solvent to ensure the reactants were all dissolved (in this case, THF). Due to the po-

larity of the phenylalaninol, it was necessary to column the product twice, as the first

normal-phase column isolated the baseline product, after which a second reverse-phase

column was used to purify the baseline product. The yield was 3%, but it was possible

to characterise this compound by 1H-NMR, with two key peaks integrating to two at

1.23 ppm and 1.26 ppm, corresponding to the methylene adjacent to the aromatic ring

and the second methylene adjacent to the alcohol respectively. In theory, both peaks

should have been doublets, however the 1H-NMR displayed overlap and therefore it is

not possible to distinguish the split peaks.

A64 was screened in the FP assay (figure 2.23) and was determined to be active (al-

though less so than A53), however the MTS assay screen failed to show activity up to

500 µM. It may be that the compound was unable to permeate into cells, or the substi-

tution of the chlorobenzyl substituent present in A34 with an aryl group may have been

responsible for reducing activity. In either case, further work needs to be undertaken to
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determine whether or not phenylalaninol-type analogues are a viable route to retaining

activity and improving aqueous solubility.

N

O

HO O

HO

A.                                                   B.

Cl

Figure 2.23: Inhibition curve of phenylalaninol analogue A64, IC50 = 15.01 µM (95%
CI 8.212 µM to 27.43 µM) Ki = 1.889 µM (95% CI 1.034 µM to 3.453 µM), mean +/-

SEM, n = 3, 10 nM HDM2 (17-125), 10 nM F-LTFEHAQWYLTS-CONH2

2.12 Conclusions and Future Work

In conclusion, we were able to successfully synthesise a combinatorial library of isoquinolin-

1-ones. 80 compounds were synthesised and of those compounds, 7 showed activity in

the FP assay. These compounds were then screened in the MTS assay, with 3 com-

pounds displaying antiproliferative activity, however none of these compounds displayed

selectivity for the SJSA-1 (MDM2 overexpressed) cell line.

As well as the biochemical screening a number of physicochemical studies were un-

dertaken, which determined the conformations of the compounds generated and the

enantiomeric purity. Interestingly, these compounds appeared to be enantiomerically

selective, possibly due to A-strain present within the molecule, however further studies

need to be performed as there is a lack of data within the literature. It was also possible

to characterise the modality of binding of a model isoquinolin-1-one, which appeared to

be analogous to the benzodiazepinedione binding model.

It would be useful to further examine whether or not the binding modality changes

for the more potent inhibitors and therefore it would be useful to undertake further

STD-NMR studies of the top binding compounds, however there is no guarantee that

these models will show by STD-NMR, as compounds may bind to MDM2 too tightly

and therefore the NMR machine detector would not detect the change in the “off” and

“on” signals.

Another area of interest would be to determine whether or not it is possible to generate

specific enantiomers, as our findings showed that the top inhibitors were enantioselec-

tive. As certain compounds appeared to be cis diastereomers further studies could be
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undertaken to determine whether or not their trans counterparts were active against the

p53/MDM2 protein-protein interaction.

In addition, it would be interesting to use the STD-NMR to determine IC50 values to

act as a comparison to the FP assay and examine any differences in data. This could

be especially useful for coloured compounds for which the FP assay was inconclusive.

Finally, further studies to improve aqueous solubility are required, as A64 proved to

be interesting from the FP assay although did not have activity in the MTS assay,

possibly due to insolubility within the media or a lack of permeability through cells.

Further study could be undertaken to generate additional aqueous-soluble analogues of

A64 that may have increased cell permeability but still retain their aqueous solubility.

It maybe possible to esterify with different polyethylene-based carboxylic acids which

could esterify with A64, as these are the side chains used by Rothweiler et al. in 2008

which were present in their inhibitors of the p53-MDM2 protein-protein interaction as

explored through 1H-NMR and 15N-HSQC studies.124



Chapter 3

Synthesis of Novel Chlorofusin

Analogues

The previous chapter examined the isoquinolin-1-one combinatorial library, which bore

similarity to the azaphilone potion of chlorofusin. Using this route, it was possible to

generate a wide variety of analogues that were shown by FP to inhibit the p53/MDM2

protein-protein interaction. STD-NMR spectroscopy was also used alongside molecular

modelling to determine the binding modality of a model isoquinolin-1-one within the

pocket and the chirality of different analogues were examined.

Although the peptide on its own bears no inhibitory activity against the p53/MDM2

protein-protein interaction (as shown by Woon et al and a separate study by Bogeret

al., in which the chlorofusin peptide was screened by FP assay and ELISA assay re-

spectively),77,152 the notion that it plays a role in holding the azaphilone in place to

optimise binding suggests that azaphilone replacement with simplified inhibitors util-

ising the same hydrophobic interactions within the pocket may also produce potent

inhibitors.

It was decided that this chapter would shift the focus back to examining analogues

focusing on the peptide with replacement of the azaphilone with simple aromatic acids

which could condense with the free amine of ornithine 9 to form a variety of vinylogous

amides, as well as click-based analogues with a variety of different alkyne.

Following synthesis and characterisation, the synthesised analogues would be tested in

vitro using an FP assay and inhibitory compounds would then be screened using the

MTS assay to determine antiproliferative activity, as described in Chapter 2.

84
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3.1 Synthesis of Novel Chlorofusin Analogues by Simplifi-

cation of the Chromophore

Although simple monocyclic substitution of the azaphilone chromophore had previously

been shown as inactive by ELISA in the paper published by Woon in 200777 it was

hypothesised that a bicyclic moiety could pose a better fit within the hydrophobic pocket

as they bore greater similarity to the azaphilones than their monocyclic counterparts.

As a result, it was postulated that bicyclics would provide a better substitute for the

azaphilone and would be synthesised. In order to achieve this, the chlorofusin peptide

was synthesised using Fmoc-solid phase peptide synthesis, deprotected and reacted with

a bicyclic aromatic acid to generate a library of analogues.

3.1.1 Synthesis of the Cyclic Chlorofusin Peptide

Chapter 2 describes in detail the methodology of Fmoc-solid phase peptide synthesis,

whilst scheme 3.1 illustrates the solid phase synthesis undertaken in order to produce

the chlorofusin peptide.
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Scheme 3.1: Fmoc solid phase synthesis of the chlorofusin peptide i. 40% Piperidine
in DMF, rt, 5 min ii. 20% Piperidine in DMF, rt, 5 min iii. 20% Piperidine in DMF,
rt, 5 min iv. Fmoc-AA-OH, HOBt, HBTU, DIPEA, Et3N, DMF v. 2% N2H2 in DMF

vi. 5% DIPEA in DMF vii. DIC, HOBt, DIPEA, DMF, rt, 2 d

The synthesis of the chlorofusin peptide was undertaken as head-to-tail as described

previously by Woon et al.77 The peptide was synthesised on Rink Amide MBHA resin

to produce a primary amide, as this is what is present in the cyclic backbone of the natu-

ral peptide. Dmab-protected Fmoc-aspartic acid was attached first, which was followed

by Fmoc-L-Ala-OH, Fmoc-L-Thr(tBu)-OH, Fmoc-L-Orn(Boc)-OH, Fmoc-D-Ade-OH,
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Fmoc-D-Leu-OH, Fmoc-Thr(tBu)-OH, Fmoc-D-Leu-OH and Fmoc-D-Asn(Trt)-OH. Amin-

odecanoic acid (Ade) was the only peptide that was not comercially available, hence it

was synthesised racemically using 1-bromooctane and dimethylaminomalonate.77 The

D-enantiomer was then selected through enzymatic processing using acylase I (from

Aspergillus melleus), which led to the destruction of the L-enantiomer. The Fmoc

protecting group was then attached following selective silyl protection and subsequent

deprotection of the free carboxy group.

The rationale for the use of Dmab-protected aspartic acid was the facile removal of the

Dmab group in the presence of hydrazine (which did not react with any other protected

side chains on the molecule nor did it react with the solid support linker), following

which the free carboxylic acid can be coupled to the terminal amine using DIC and

HOBt. This methodology was undertaken until a negative Kaiser test was observed.

Cyclisation of the chlorofusin peptide reached completion after 2 days, which was deter-

mined by a negative Kaiser test. This is aided by the fact that the chlorofusin peptide

is made of a mixture of D- and L-amino acids, which naturally produces turns in the

peptide.153 Conversely, peptides consisting solely of L-amino acids have been shown to

cyclise less readily, as they generally do not naturally contain a turn within the chain.

Methods undertaken to form turns within L-only chains includes the formation of disul-

fide bridges to “lock” the conformation of the peptide and forces the chain to bend,154

as does the introduction of a proline, which causes the chain to “kink”.

Once all reactions have been completed, the resin was dried using methylene chloride,

1:1 methylene chloride:methanol, then compressed air. This process ensures that no

DMF is left, as this would not only affect the weight but could become troublesome to

remove later: it could also prevent precipitation of the peptide in the presence of diethyl

ether, which is a common way of removing organic impurities from the peptide following

synthesis (as the peptide is insoluble in the ether). Cleavage of the chlorofusin peptide

was undertaken using 95:2.5:2.5 TFA:H2O:TIPS, with the latter two reagents preventing

side reactions during cleavage through the scavenging of free radicals produced during

cleavage. The scheme for this is shown in scheme 3.2

In order to ascertain whether or not the peptide had been synthesised, a small portion

of the peptide was cleaved and the cleaved peptide was analysed by HPLC against a

standard chlorofusin peptide sample (synthesised by Woon and coworkers77) and was

shown to have a consistent retention time of 11.55 min (in a methanol:water system,

starting at 5:95 methanol:water with 0.05% TFA in each solvent to prevent band broad-

ening, increasing to 95:5 methanol:water over 15 minutes and re-equilibrating to 5:95

methanol:water over 5 minutes). The crude sample was also run on MALDI mass spec-

trometry, which displayed the M+H+ (1011.34 m/z), M+Na+ (1033.31 m/z) and M+K+
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(1049.30 m/z) adducts of the peptide. The crude peptide was then purified using semi-

preparative HPLC and fractions were analysed by analytical HPLC and MALDI to

determine that the correct product was isolated.
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Scheme 3.2: Deprotection of the cyclic chlorofusin peptide from the resin i. 95:2.5:2.5
TFA:H2O:TIPS, rt, 3 h
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In order to synthesise analogues on solid phase, it was necessary to use a form of amine

protection that could be selectively removed without deprotecting any of the other side

groups or from the resin. For this reason, 4-methyltrityl (MTT) was used, as it can be

selectively removed from the peptide in the presence of 1% TFA, which is insufficient to

deprotect other side chains on the peptide or cleavage of the peptide from the resin (this

is shown in scheme 3.3). The resultant trityl cation is also very unreactive due to its low

electrophilicity.155 The subsequent coupling was then undertaken using 5 equivalents of

HOBt, HBTU and the acid. Although small quantities of the coupled peptide were

witnessed by MALDI, the crude peptide did not bear a major peak and purification by

semi-preparative HPLC failed to generate sufficient quantities for testing.
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Scheme 3.4: Solution phase synthesis of analogues i. EDCI, HOBt, DMF, DIPEA, rt,
overnight

Following difficulties in the solid-phase synthesis of this library, it was postulated that

the free amine was too sterically hindered to be able to condense with the free carboxylic

acid. To try and increase the number of collisions between the amine and the carboxylic

acid the peptide was cleaved from the resin and the reaction was repeated in solution

using one equivalent of HOBt, EDCI, peptide and carboxylic acid in DMF, as shown in

scheme 3.4. Using this methodology it was possible to synthesise 5 different analogues,

which would then be tested by fluorescence polarisation for activity.

The rationale for choosing said analogues was to produce wide variety: the unsubstituted

naphthyl was chosen as the comparator compound as well as containing the rigidity of

the azaphilone. The halogenated compounds were chosen to explore the directing effects
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of the halogens chosen. The heterocycles were chosen to modify the electron density of

the aromatic rings and the tetrahydro compound was chosen to examine how flexibility

in one of the rings would affect binding.

3.2 In vitro Screening of Compounds Using Fluorescence

Polarisation

Compounds were screened at a well concentration of 100 µM and IC50 values were cal-

culated for compounds showing activity at less than 100 µM. The FP assay showed that

none of the compounds displayed any inhibitory activity: this could be due to the fact

that the bicyclics were still oversimplified to mimic the proposed binding of the aza-

philone into the hydrophobic pocket. As there are no crystal structures of chlorofusin

bound to MDM2, it is not possible to ascertain the exact binding modality of the aza-

philone component. It may also be plausable that the ketone functionalities present on

the azaphilone are able to provide hydrogen-bonding interactions, as there is a hydrogen

bond donor (histidine 96) within the hydrophobic pocket, however this has yet to be

shown experimentally.

As this methodology had not produced any novel inhibitors, it was decided that one

attempt to produce analogues maintaining the peptide chain would be produced. It

was decided that novel analogues based on click chemistry would be explored, as these

analogues could be synthesised and purified quickly and efficiently and the triazole ring

serves as a bioisostere to an amide bond and is far less susceptible to cleavage.

3.3 Synthesis of Novel Chlorofusin Analogues Based on

Click Chemistry

3.3.1 Principles of Click Chemistry

Click chemistry is a well-documented technique originally conceived by Barry Sharpless

in 2001.156 It concerns reactions that are high yielding, have a wide range of applications,

require minimal or no purification, are simple to perform, use volatile solvents or “green”

solvents (hence are non-toxic) and finally, are insensitive to oxygen or water.

Reactions that fall into the click chemistry category include the following

• Nucleophilic ring opening of strained ring systems (such as epoxides)157
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Scheme 3.5: Example of tandem epoxide-ring opening followed by azide substitution

• Non-aldol-type reactions involving carbonyls158,159
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Scheme 3.6: Click oxime ligation used to form hydrogels

• Addition to alkenes161
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Scheme 3.7: Synthesis of thiolenes through free-radical initiation and propagation

• Cycloaddition reactions162,163
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Scheme 3.8: General scheme for azide-alkyne cycloaddition reactions

Another example of a click reaction is a Huisgen 1,3-dipolar cycloaddition, in which an

azide and an alkyne react to produce a triazole ring. Using copper(II) sulfate (which is

reduced to Cu(I) sulfate in the reaction), 1,4-disubstituted-1,2,3-triazoles are produced.
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This approach is amenable for combinatorial chemistry. It is this reaction that is utilised

in this chapter. This approach is commonly used for clicking on fluorophores for imaging:

this can be done with live cells, DNA and proteins.164,165,166 It is also commonly used

to staple peptides, which “locks” the peptide in a set conformation as determined by

the position of the staple.167 Usually, a “double-click” approach is used, meaning that

both ends of the staple are attached to the peptide via a triazole linkage.168 As an

aside, it is possible to reverse the regiochemistry using a ruthenium catalyst to produce

1,5-disubstituted products, but this was not explored in the scope of this thesis.169
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Scheme 3.9: Mechanism of the Huisgen 1,3-dipolar cycloaddition170

Scheme 3.9 illustrates the proposed mechanism for the click reaction. Copper inserts

itself within the alkyne and deprotonates in the presence of base to form a copper-alkyne

complex. This complex then coordinates with the azide and electrons from the alkyne

feed into the azide. This coordinated structure displaces the copper-ligand complex to

release the triazole moiety.

Standard conditions for a 1,3-dipolar cycloaddition include Cu(II) salts (co-ordinating

metal to produce the correct regioisomer) and sodium ascorbate (ligand). For bioconju-

gation, TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) can be used.171
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3.3.2 Click Chemistry in Peptide Synthesis

Over recent years the interest in producing peptides containing azides either for direct

screening or for clicking onto an organic molecule has increased.168 The triazole ring

is very stable and can be substituted in place of amides to reduce the risk of cleavage.

This methodology also permits the addition of functional groups. The triazole ring can

act as a hydrogen bond acceptor and perform dipole interactions.

3.3.3 Synthesis of Click Chlorofusin Analogues
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Scheme 3.10: Synthesis of Fmoc-azidonorvaline-OH

Initially, Fmoc-δ-Nva(N3)-OH was to be made using a diazotransfer using a sodium

azide-triflic anhydride, which produces a highly reactive organic azide species.172 Al-

though this method has been well-documented in the literature,173 the risk of explosion

of the triflic azide made this route less attractive. It was also discovered that, because of

the highly reactive nature of the triflic anhydride, it was difficult to monitor and control,

therefore it was decided that the methodology would be amended to use less hazardous

reagents.

An alternative method of azide synthesis requires the reaction of a mesyl group with

an alcohol, which can then undergo nucleophilic substitution via the azide, as shown in
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scheme 3.10. The greatest difficultly arose from deciding firstly, which forms of pro-

tecting group could survive each stage of the synthesis and also, how to form an alcohol

in the correct position. As the reaction required basic conditions, acidic side chain

protection was required at both the amino terminus and the carboxylic acid terminus.

Reduction of an acid-based side chain was most appealing, however selective reduction

of the side chain carboxylic acid without reducing the terminal acid proved a challenge.

3.4 Selective Reduction of Boc-Glu-OBu through a CDI

Intermediate

NH

O

O

O

O

HOOC

NH

O

O

O

O

HO
i., ii.

B07

Scheme 3.11: Selective reduction of Boc-Glu-OBu through a CDI intermediate i. CDI,
THF, 0◦C, 10 min ii. NaBH4, H2O, 0◦C to rt, 1 h (68% yield)

The synthesis undertaken (scheme 3.11) utilised ester protection at the terminal car-

boxylic azide, which could permit selective reduction of the free carboxylic acid side

chain by producing a reactive amide intermediate using CDI, which could then be re-

duced with sodium borohydride to produce the novel amino alcohol. The methodology

was adapted from syntheses proposed by Hwang and coworkers.174 The rationale for

using sodium borohydride was that sodium borohydride is unable to reduce esters, but

is capable of reducing a ketone or an activated amide. Previously, it was thought that

lithium aluminium hydride monitored closely and subsequently quenched could carry

out the same reaction, but the reduction of the terminal ester happened readily, forming

an alcohol-type species that could not be converted back into the starting carboxylic

acid.
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Scheme 3.12: Mechanism for the selective reduction of Boc-Glu-OtBu. A. Nucleophilic
attack on CDI to afford the intermediate. B. Reduction by sodium borohydride. C.

Final amino alcohol

The mechanism of this reaction is displayed in scheme 3.12: the boron-hydrogen bond

electrons attack the ketone, eliminating imidazole and producing an aldehyde. This

aldehyde could then be further reduced to the alcohol. Following quenching of any

additional sodium borohydride and borohydride complexes using aqueous hydrochloric

acid, aqueous-organic workup was undertaken, followed by column chromatography to

remove any remaining organic impurities such as unconverted intermediate. This method

was successful and produced modest yields of 68% on average. The free alcohol was

visible by IR as a broad peak at 3363.77 cm−1 and this method did not racemise,

as shown by the optical rotation of +20.3◦ in chloroform (c= 1.012 g/100 mL). The

1H-NMR showed two singlets at 1.42 ppm and 1.45 ppm integrating to nine, which

represented the Boc and tert-butyl groups. The other characteristic peak was a triplet

from 3.64 ppm to 3.67 ppm integrating to two, which represented the protons adjacent

to the alcohol. The 13C-NMR also showed these carbons at 28.01 ppm and 28.08 ppm.

The mass was consistent with the expected product.
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3.5 Mesylation of the Amino Alcohol
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    B07                                                             B08

Scheme 3.13: Mesylation of the alcohol i. MsCl, dry DMF, Et3N (87% yield)

The alcohol was substituted for an azide through conversion to a mesyl group. The

mesyl is a far better leaving group than the alcohol and formation of the mesyl has

been well documented in the literature in excellent yields.175 The triethylamine serves

the purpose of neutralising the HCl formed during the reaction, which in theory could

deprotect the Boc or the tert-butyl ester if the concentration became too great.
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Scheme 3.14: Mechanism for the mesylation of the side-chain alcohol. A. Formation
of the sulfene. B. nucleophilic attack of the sulfene by the alcohol

Scheme 3.14 illustrates the mechanism for the substitution of the alcohol with the

mesyl group. The triethylamine undergoes nucleophilic attack on mesyl chloride and

further rearrangement produces the sulfene, which is the reactive species that undergoes

electrophilic attack on the alcohol via the central sulphur. Proton transfer produces the

final mesylated compound.

The reaction completed within 1 hour and produced the mesylate B08 in excellent

yields (87%). The greatest challenge with this reaction and subsequent reactions was

the removal of DMF through extraction into ether and ten washes with distilled water,

as well as concentrating in vacuo for a prolonged period to ensure that the product was
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completely dry. In contrast, the removal of the need to purify made this route very

efficient at generating large amounts of product quickly.

The 1H-NMR displayed a new singlet integrating to three at 2.97 ppm, representing the

methyl functionality of the mesyl group. This was shown in the 13C-NMR at 37.37 ppm.

The alcohol peak disappeared from the IR spectra and the mass was consistent with the

expected product. and the optical rotation ensured that the chirality was maintained.

3.6 Formation of the Azide through the Displacement of

the Mesyl Group
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O

O
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NH
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i.

  B08                                                        B09

Scheme 3.15: Substitution of the mesyl for an azide functionality i. NaN3, dry DMF,
67◦C, N2, 5 h (69% yield)

The mesyl was readily displaced in the presence of sodium azide through an SN2 mech-

anism. The reaction was carried out under anhydrous conditions to prevent moisture

hydrolysing the mesyl group, as shown in scheme 3.16. The product was extracted into

ether, washed ten times with distilled water and concentrated in vacuo to ensure that

all the the DMF was removed. Again, the product did not require purification and the

product was generated in good yields (69%).
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N3

-OMs

Scheme 3.16: Mechanism of Fmoc-azidonorvaline-OH synthesis

The mesyl was lost from the 1H-NMR, however the azide peak was distinct by IR,

displaying a sharp peak at 2094.81 cm−1. The mass was also consistent with the expected

product and the optical rotation ensured that the chirality was maintained through

maintenance of the direction of rotation.
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3.7 Boc Deprotection of the Azide Species
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Scheme 3.17: Boc deprotection to afford the free amine as the hydrochloride salt i.
2M HCl in EtOAc, rt, overnight (100%)

Deprotection of the acid-labile protection could be done one of two ways: it was possible

to selectively deprotect the Boc group by treating the amino acid overnight in 2M

HCl in ethyl acetate. Alternatively, both protecting groups could be removed in the

presence of 6M HCl in water. Although both routes were explored, it was discovered

that premature deprotection of the terminal carboxylic acid prohibited the attachment

of the Fmoc group to the free amine, as it was postulated that the competing reaction

between the free acid and Fmoc chloride halted the progression of the Fmoc amino acid

formation.
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Scheme 3.18: Boc deprotection to afford the free amine as the hydrochloride salt A.
Removal of the tert-butyl cation B. decarboxylation to afford the free amine as a salt

Protonation of the butyloxy functionality causes the breakdown of the tert-butyl com-

ponent and the release of butene. The chloride anion deprotonates the newly formed

carboxylic acid moiety, causing the release of carbon dioxide, as shown in scheme 3.18.

The subtle difference in lability between the Boc and tert-butyl served as a useful tool,

as Fmoc protection of the ester occured readily and purification was facile due to the

higly non-polar nature of the product.
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3.8 Formation of the Fmoc Amino Acid for Solid Phase

Peptide Synthesis
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Cl

HN
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                                                                       B11

Scheme 3.19: Synthesis of Fmoc-azidonorvaline-OH as the tert-butyl ester i. FmocCl,
NaHCO3, THF, H2O, 0◦C, 30 min (48% yield)

Fmoc protection proved troublesome, as it was not possible to Fmoc-protect with the

free terminal acid, however Fmoc-protection with the tert-butyl-ester-protected acid

was reasonably successful (48%). Characterisation by 1H-NMR displayed characteristic

Fmoc peaks in the aromatic region from 7.27 ppm to 7.29 ppm, 7.35 ppm to 7.39 ppm,

7.64 ppm to 7.67 ppm and 7.76 ppm to 7.78 ppm. Each group integrated to two as

the molecule is symmetrical, and the splitting indicated two sets of triplets, a triplet

of doublets and a doublet due to neighbouring aromatic protons in each environment.

The corresponding aromatic carbons were also displayed in the 13C-NMR spectra, as

well as the four quarternary carbons at 145.31, 145.12, 142.58 and 126.21 ppm. Fmoc

also produces two further characteristic protons, a triplet integrating to one between

4.18 ppm and 4.21 ppm and a multiplet integrating to two between 4.32 to 4.40 ppm

to indicate the two aliphatic environments of Fmoc (in theory, the latter should be a

doublet, but appears as a multiplet due to the complexity of the aliphatic region of the

molecule). The methylene also appeared in the 13C-NMR DEPT-135 at 67.83 ppm.
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3.9 Silyl Deprotection of the Terminal Ester
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Scheme 3.20: Synthesis of Fmoc-azidonorvaline-OH through silyl deprotection i.
Trichloromethylsilane, sodium iodide, dry MeCN, rt, 4 h (34%)

The deprotection of the transesterified product was possible by the in-situ formation of

triiodomethylsilane, which participated in a nucleophilic substitution at the t-butyl ester

as first described by Olah and coworkers in 1979.176 Using water, it was then possible

to hydrolyse the silyl-oxygen bond to liberate the free acid. Although the carboxylic

acid peak was not present in the 1H-NMR in chloroform, the tert-butyl peak integrating

to nine had been lost. This was also evident from the carbon NMR. IR also revealed

that the azide peak was conserved at 2094.81 cm−1, as it was thought to be possible to

reduce the azide with the silyl group.
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Figure 3.1: Synthesis of the cyclic peptide incorporating the azido-amino acid. A.
Synthesis of the linear chain. B. Cyclisation of the peptide. C. Cleavage of the peptide
from the resin. i. 40% Piperidine in DMF, rt, 5 min ii. 20% Piperidine in DMF, rt, 5
min iii. 20% Piperidine in DMF, rt, 5 min iv. Fmoc-AA-OH, HOBt, HBTU, DIPEA,
Et3N, DMF v. 2% N2H2 in DMF vi. 5% DIPEA in DMF vii. DIC, HOBt, DIPEA,

DMF, rt, 2 d. viii. TFA:H2O:TIPS 95:2.5:2.5 rt, 3 h

Subsequent synthesis of azidochlorofusin and cyclisation were carried out as per the

original solid phase synthesis of chlorofusin,77 however the cyclisation required an extra

two days to reach completion. Upon completion, a small amount of resin/peptide com-

plex was cleaved to confirm the correct mass by MALDI. Once mass was confirmed, a
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test reaction on 58 mg of resin/peptide complex was carried out in the presence of one

equivalent of 3-chloro-1-ethynylbenzene, copper sulfate pentahydrate and sodium ascor-

bate overnight on the solid phase. Following mass confirmation on the first analogue,

subsequent analogues were generated in the same manner.
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Figure 3.2: Synthesis of the cyclic peptide-based analogues i. 10 eq R-alkyne, 10 eq
CuSO4.5H2O, 10 eq Na ascorbate

Table 3.1 indicates the different analogues synthesised, their respective yields (assuming

100% yield in the generation of the click chlorofusin peptide) and characterisation by

MALDI and HPLC. The yields for these compounds were poor due to losses of resin

during transfer to the vials as well as losses incurred during purification by HPLC, as

compounds required filtration both from the reaction vessel and again prior to entry

into the HPLC. It was also not until this thesis was completed that the conditions were

optimised to improve yields.
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No. Percentage Yield MALDI MS
HPLC
retention
time

B13 8%
1060.74 m/z and 1076.75
m/z

17.58 min

B14 2%
1161.64 m/z and 1177.66
m/z

18.07 min

B15 3% 1176.46 m/z 18.365 min

B16 2%
1196.19 m/z and 1212.19
m/z

18.41 min

B17 1%
1176.60 m/z and 1192.59
m/z

18.85 min

B18 1%
1242.70 m/z and 1258.11
m/z

18.28 min

B19 4%
1167.33 m/z and 1183.28
m/z

17.96 min

B20 5% 1258.62 m/z 17.80 min

B21 5% 1244.87 m/z 17.70 min

B22 8% 1253.92 m/z 17.80 min

B23 4% 1277.75 m/z 18.122 min

Table 3.1: Characterisation of the Click Chlorofusin Analogues (HPLC was under-
taken in a methanol:water system, starting at 5:95 methanol:water with 0.05% TFA
in each solvent to prevent band broadening, increasing to 95:5 methanol:water over 15

minutes and re-equilibrating to 5:95 methanol:water over 5 minutes)

No.
IC50 (95%
Confidence
Interval) /µM

Ki (95% Confidence
Interval) /µM

R2

B14 NA NA NA

B15
66.01 (40.35 to
108.0)

8.309 (5.079 to 13.59) 0.9443

B16 NA NA NA

B17 NA NA NA

B18 NA NA NA

B19 NA NA NA

B20 NA NA NA

B21 NA NA NA

B22 NA NA NA

B23 NA NA NA

Table 3.2: Biological data for compounds tested in the FP assay (NA = no activity
up to 500 µM), where R2 indicates the correlation coefficient (a value of 0 indicates no

correlation whilst a value of 1 indicates 100% correlation)
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3.10 In vitro screening of Click Chlorofusin Analogues by

Fluorescence Polarisation Assay

Table 3.2 illustrates the results of the in vitro screening through the FP assay. This

data was a breakthrough as this was the first since the first reported isolation of chlo-

rofusin in 2001 that a chlorofusin-based analogue was shown to inhibit the p53/MDM2

interaction. The assay showed that the 4-methylphenyl substituent was active against

the p53/MDM2 protein-protein interaction in vitro, however as only a small library was

synthesised further investigation is required to further examine SAR.

Following this, the importance of the peptide was investigated through replacement of

the peptide with the Fmoc-protected amino acid in its place. The side chains displaying

activity in the FP assay were used to react with the Fmoc amino acid to produce the

click library, as well as a variety of other side chains, which are discussed in more detail

in the next section.

3.11 Synthesis of Click Amino Acid Analogues
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Scheme 3.21: Synthesis of the click amino acid analogues and their respective yields
(i. L-ascorbate,CuSO4, R-alkyne with R-groups and their respective yields listed above,

1:1 t-BuOH:H2O, rt, overnight

As a result of the intial FP data, control Fmoc click amino acids were synthesised to

determine the importance of the peptide. Interestingly, the IC50 drastically decreased

when the peptide chain was replaced with the Fmoc group (see table 3.3). This led to
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the synthesis of a larger group of Fmoc click amino acids, with R-groups chosen due to

their para-position, lipophilicity and bioisosterism to the active toluene analogue B15.

3.12 Removal of the Fmoc Group to Determine Impor-

tance in Binding

CO2H

NHFmoc

N
N

N

F3C

i.

CO2H

NH2

N
N

N

F3C
B26                                                    B31

Scheme 3.22: Deprotection of the Fmoc group. i. 1% DBU in CH2Cl2, 1% Piperidine
in DMF, MeCN, rt, 10 min (82% yield)

In order to determine whether or not the Fmoc group was participating in binding,

it was necessary to selectively remove the Fmoc group. Although the triazole ring is

considered very stable, different deprotection conditions appeared to cause the molecule

to degrade. It appeared that the compound was not stable to 20% piperidine, DIPEA

or triethylamine. Eventually, a methodology utilising 1% piperidine and 1% DBU for 5

minutes was trialled, which proved to be sufficient to deprotect the Fmoc but insufficient

to degrade the molecule. This was shown in the 1H-NMR, as the triazole peak at 8.50

ppm remained whilst the Fmoc peaks disappeared. The mass was also confirmed by

LCMS, however the compound was unstable and therefore it was not possible to get a

high-resolution mass.

3.13 In vitro screening of click compounds by Fluorescence

Polarisation Assay

Table 3.3 illustrates the click-based compounds that were determined to be active

through FP assay. Interestingly and as noted in previous chapters, the presence of a

halogen improved activity, with more electronegative halogens demonstrating increased

potency. The only click chlorofusin analogue that demonstrated activity was the toluene

analogue B15 and the fact that the click amino acid bearing the methyl group was even

more potent suggests that the peptide is not needed for activity.
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No. R-group
IC50 (95%
Confidence
Interval) /µM

Ki (95% Confi-
dence Interval)
/µM

R2

B24 4-OMePh
5.655 (3.391 to
9.431)

0.7118 (0.4268 to
1.187)

0.9659

B25 4-MePh
24.26 (15.13 to
38.90)

3.054 (1.904 to
4.896)

0.9562

B26 4-CF3Ph
60.31 (25.94 to
140.0)

7.592 (3.266 to
17.65)

0.8953

B27 4-NHBocPh
57.36 (34.28 to
95.97)

7.220 (4.315 to
12.08)

0.9813

B28 4-ClPh
6.065 (5.342 to
6.885)

0.7703 (0.6785 to
0.8746)

0.9976

B29 4-IPh
2.899 (2.035 to
4.131)

0.3649 (0.2561 to
0.52)

0.9829

B30 4-BrPh
5.513 (3.503 to
8.676)

0.6939 (0.4409 to
1.092)

0.9702

Nutlin-
3a

-
0.6067 (0.494 to
0.745)

0.0771 (0.0627 to
0.0946)

0.9935

Table 3.3: Biological data for compounds shown to inhibit in the FP assay, including
Nutlin-3a as a positive control

3.14 MTS Cytotoxicity Assays

No. SJSA-1 IC50 /µM
HL-60 IC50

/µM
A375 IC50 /µM

B15 NA NA NA

B24 33.1 NA NA

B25 31.2 5.0 49.3

B26 NA NA NA

B27 NA NA NA

B28 NA NA NA

B29 NA NA NA

B30 NA NA NA

Nutlin-
3a

5.778 NE NE

Table 3.4: Biological data for compounds shown to inhibit in the MTS assay in
overexpressed MDM2 (SJSA-1), p53-null (HL-60) and MDMX-overexpressed (A375)

cell lines (NA = no activity up to 500 µM, NE = not examined)

The MTS data in table 3.4 suggests that B25, although active against p53 and MDM2,

may also work via a p53-null mechanism. B24 showed greatest activity in cells over-

expressing MDM2, with lower levels of activity in the other two cell lines. Although

this indicates promise that B24 may be selective against the p53-MDM2 protein-protein

interaction, further work needs to be undertaken to further support this theory, as cell
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lines are insufficient to model a full anatomical system and variation in the cells can

increase with increasing passage number of the cells (that is, during the cell division and

replication process). As for the lack of activity of the other compounds tested in the

MTS assay, it is possible that cell permeability could be an issue and therefore future

would be to synthesise the compounds as terminal esters on the amino acid.

3.15 Conclusions and Future Work

This chapter explored the synthesis of novel chlorofusin analogues whilst maintaining

the structure of the chlorofusin peptide. Despite simple bicyclic acids displaying no

activity, the use of novel click products reinstated activity, displaying activity in one

analogue, at an IC50 value of 66.01 µM. Simplification of click analogues through trun-

cation of the peptide permitted novel analogues with good inhibition of the p53/MDM2

Protein-Protein Interaction as displayed through FP assay, with six compounds dis-

playing activity at concentrations less than 100 µM. Further studies by MTS, however,

illustrate the need to improve lipophility in order to improve cellular uptake, if indeed

cell permeability is the issue and not that the compounds are inactive. The balance

of lipophilicity is extremely delicate, as the terminal carboxylic acid may participate in

hydrogen-bonding with His96 within the hydrophobic pocket of MDM2. Also, attempts

to form the esters prior to the click reaction were unsuccessful, suggesting that this

reaction would require optimisation.

Future work surrounding these novel analogues concerns improving our understanding on

the binding modality: it is postulated that STD-NMR would be a useful tool in helping

to determine how these novel analogues bind within the hydrophobic pocket. Combining

STD-NMR and molecular modelling would give us a great deal more information and

aid the generation of further analogues.

The next chapter will explore the azaphilone moiety in more detail, with the intention

of creating an azaphilone-based library that can be explored to generate further SAR

with respect to the p53/MDM2 protein-protein interaction.



Chapter 4

Synthesis of Analogues Based on

the Azaphilone Chromophore of

Chlorofusin

4.1 Introduction

The previous chapter involved the synthesis and biological testing of a variety of dif-

ferent analogues based on the chlorofusin peptide. Interestingly, a novel library that

was explored involving an ornithine in which the side chain amine was replaced with an

azide produced one compound that selectively inhibited the p53/MDM2 protein-protein

interaction. Following the success of the click amino acid library, compounded with the

fact that the peptide’s involvement in binding was not necessary to generate inhibitors

in this instance it was decided to shift focus back to the azaphilone component of chlo-

rofusin, which also beared some resemblance to the isoquinolin-1-ones, as it too was a

bicyclic chromophore.

N N

O

O

O R5

X

R4

R3

R1

A.                                      B.

R2O

O OH

Figure 4.1: A. Structure of an isoquinolin-1-one and B. Structure of an azaphilone
core unit

This chapter focusses on the generation of novel azaphilone analogues and the molecular

modelling used to determine analogue generation.

108
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4.2 Introduction to Azaphilones
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Figure 4.2: Core unit of the azaphilone chromophore and subsequent numbering

Azaphilones are bicyclic natural products that are so-called due to their high solubility

in ammonia and subsequent ability to condense to form vinylogous amides (see scheme

4.1).177
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Scheme 4.1: Mechanism of the condensation of azaphilones to form vinylogous amides

Azaphilones are highly abundant in nature, with chlorofusin containing a condensed

azaphilone functionality.

N

O

O

Cl

O

O
OH

O

Figure 4.3: The azaphilone present in chlorofusin

The chlorofusin azaphilone shown in figure 4.3 consists of a butyric ester and a methyl

group at position 4, a chlorine in position 6, a hydroxyl group in position 8 and a

tetrahydrofuran ring extending from position 9. In chlorofusin, it has been suggested

that the azaphilone moiety is responsible for binding in the hydrophobic pocket of p53,

following a conformational change in the MDM2 protein induced by the binding of the

peptide around the outer surface of MDM2119 however no crystal structures have been

published to date. The evidence for this unusual type of binding is further supported

by the ELISA-based assays undertaken by Woon et al.77 Woon demonstrated that,
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by omitting either the peptide or the azaphilone, or by coupling the peptide to simple

aromatics, then there was no binding to MDM2 as demonstrated by the ELISA assay.

Boger expanded the ELISA screen in two ways: by firstly examining the conformation

of the asparagines (as Yao et al. had shown that they were opposite conformations

but were unsure of which was which)122 and by testing stereoisomers of the azaphilone

portion of chlorofusin against the natural product.152 Interestingly, stereochemistry of

the azaphilones did not appear to have an appreciable effect on the IC50.

Research carried out by Hardcastle et al. surrounding the potency of p53-MDM2 in-

hibitors illustrated the importance of the halogen group (which is present in the main

classes of inhibitors including the nutlins, isoindolinones, spiro-oxindoles and benzodi-

azepinediones), suggesting that the halogen is important for directing the molecule into

the hydrophobic pocket in which the Phe19, Trp23, Leu26 of p53 perform key binding in-

teractions. Studies by Hardcastle et al. demonstrated that substitution of the halogens

with methoxy- and ethoxy- functional groups obliterated the potency of an isoindolinone

library.178

It was decided that, following from the previous studies on chlorofusin and analogues

derived from it, that analogues of the full azaphilone moiety would be synthesised in

the hope of attaching it to the natural peptide. By forming azaphilone analogues and

keeping the peptide constant, it was hoped that the interactions in the hydrophobic

pocket could be maximised whilst ensuring that the azaphilone was held in the correct

orientation for binding by the peptide.

4.3 Reported Syntheses of the Azaphilone Chromophore

There are a variety of different methods to achieve the desired Sonogashira precursor

and subsequent azaphilone core required in the synthesis of azaphilone analogues. The

various methods are listed below, as well as the advantages of each method as well as

challenges encountered when trialled in the lab. The methods attempted in the lab were

Methods A and E, with Method E being the chosen route for routine synthesis.

4.3.1 Proton Extraction, Lithiation and Demethylation to form the

Sonogashira Precursor (Method A)

One route to the azaphilone can be achieved through proton extraction in the presence

of n-butyllithium, electrophilic aromatic substitution with iodine produced from diio-

doethane and deprotection of the methyl ethers in the presence of boron tribromide to
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produce C01, as demonstrated in scheme 4.2. This method is rapid and produces a

more effective Sonogashira precursor than that used in the final synthesis as iodide is

a better leaving group than bromide and hence more effective in the reaction. This

method also requires a single column to reach the Sonogashira precursor, as opposed to

four in the final adopted route, as demonstrated in scheme 4.3.

MeO

Me

OMe

nBuLi, THF

-20°C, overnight

then diiodoethane, 

-40°C

MeO

Me

OMe

I BBr3, CH2Cl2,

-78°C, overnight

HO

Me

OH

I

Total yield to Sonogashira precursor= 28% (Literature reported yield = 33%)

O

O

O

R

Cl

H3C
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O
R= (CH2)12CH3

O
O O

Scheme 4.2: One route to form the azaphilone moiety as published by Porco et al179

i. ET3N, 1.6M n-BuLi in THF, diiodoethane, THF, -20◦C to rt, overnight then BBr3,
CH2Cl2, -70

◦C to rt, overnight

MeO
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O
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O

Li

Li
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O

Li

I
I
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Scheme 4.3: Mechanism of proton exchange followed by electron transfer

The disadvantage of method A was the difficulty in monitoring and the strict temper-

ature control required to produce the desired product (see scheme 4.2). Also, the high

reactivity of n-butyllithium resulted in various side reactions and the n-butyllithium

needed discarding frequently due to degradation on storage. Finally, the crude interme-

diate was difficult to handle and subsequent reactions were carried out assuming 100%

yield until the Sonogashira precursor was purified.
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4.3.2 Synthesis of the Natural Azaphilone Using Organolithiation and

Bromination to form the Sonogashira Precursor (Method B)
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Scheme 4.4: A. Method B synthesis of the Sonogashira precursor B. Sonogashira
cross-coupling of TBDPS-protected pentyn-1-ol C. Deprotection of TBDPS to afford
the free alcohol D. Cyclisation of the furan ring of a model chlorofusin azaphilone

Scheme 4.4 illustrates the scheme used by Boger et al. to synthesise the natural chlo-

rofusin azaphilone.122 Boger et al. synthesised the natural azaphilone by protection

of the aldehyde of 3,5-dimethoxybenzaldehyde then bromination in the presence of

t-butyllithium to afford the Sonogashira precursor. The precursor was reacted with

TBDPS-protected pentyn-1-ol, as this protection was required for the 2-step cyclisation

and IBX oxidation. The TBDPS protection was removed following chlorination using

HF-pyridine. The furan ring of a model chlorofusin azaphilone was formed through

oxidative spirocyclisation using silver(III) nitrate and iodine in DMSO and water. Al-

though this method was successful, it was lengthy and required the use of t-butyllithium,

which is spontaneously pyrogenic and therefore an alternative route was sought with less

hazardous chemicals.

The natural azaphilone is chiral at position 4. Previous attempts to synthesise the

azaphilone have been carried out racemically and purification has been carried out using

chiral HPLC.
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4.3.3 Copper-Catalysed Oxidative Dearomatisation to form the Aza-

philone Chromophore (Method C)

Scheme 4.5 illustrates the use of the ligand in the synthesis of the azaphilone core

whilst scheme 4.6 illustrates the ligand analogues generated to synthesise the azaphilone.

Method C confers the advantage of an enantiomerically-pure product in good yields,

however the extraction, purification and synthesis of the sparteine surrogates, as well as

the production of the copper catalyst (for which synthesis requires expensive reagents),

makes this route longer and more expensive than the final methodology used in our lab

(Method E).
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Cu2O2L2

O

O

O

HO

Scheme 4.5: Scheme for the synthesis of Sparteine analogues using a copper-based
ligand with N,N -diisopropylethylamine, CH2Cl2 and DMAP, varying from -10◦C to rt

overnight179
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Scheme 4.6: A. Structure of the copper catalyst synthesised for the oxidative dearo-
matisation of Sonogashira products to form azaphilones B. Chemical structure of
(-)-sparteine179 C. (+)-sparteine surrogates synthesised as ligands for the copper cata-

lyst180
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4.3.4 Biosynthetic Route to form Azaphilones (Method D)

It is also possible to synthesise azaphilones semi-synthetically using Aspergillus nidulans,

as displayed in scheme 4.7.181 Enzymes within the fungi can be genetically engineered

to form the azaphilone precursor, after which water is eliminated and the central bicyclic

chromophore is formed. Due to reagents available and complexity of the bioengineering

required to use this route, this methodology was not explored in our lab.
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Scheme 4.7: A. Reengineered pathway to azaphilone synthesis B. Conversion of the
Sonogashira product to the azaphilone181
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4.4 Synthesis Undertaken to Achieve the Azaphilone Moi-

ety (Method E)
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Scheme 4.8: Initial synthesis to the model azaphilone adopted within this thesis

The initial synthetic route was first realised by Porco et al,182 in which a Sonogashira

precursorC07 is generated, permitting the generation of a variety of analogues, as shown

in scheme 4.8. C07 is then cyclised and oxidised to afford the azaphilone. Finally, to

produce the same functionalisation as the chlorofusin azaphilone, the free alcohol is

esterified and the azaphilone is halogenated in position 6.

Variants of this procedure had been previously documented in the literature.179 Instead

of using IBX and TFA to produce the azaphilone, the same process can be carried out

using a copper catalyst.179 The ligand was a sparteine surrogate, isolated from Cytisus

seeds through dissolution in a dichloromethane, methanol and aqueous ammonium chlo-

ride mixture, followed by dichloromethane extraction.180

The starting material used was 2,6-dimethoxytoluene, as this was much cheaper than

3,5-dimethoxybenzaldehyde and can be readily converted into the aldehyde through the

formation of a Vilsmeier complex and subsequent formylation.
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4.4.1 Vilsmeier Formylation of 2,6-dimethoxytoluene

MeO

OMe

i
MeO

OMe

O

C02

Scheme 4.9: Addition of an aldehyde group through the in situ formation of a Vile-
meier complex i. POCl3, DMF, N2, 0

◦C then 100◦C, 6 h, (74% yield)

Functionalisation of 2,6-dimethoxytoluene with an aldehyde was required for later cy-

clisation to form the azaphilone. The Vilsmeier reaction was chosen as the preferred

method of aldehyde formation, due to its high literature yields (circa 71%).183 It is

an effective method of formylation of electron-rich arenes. The 2,6-dimethoxyltoluene

bears three electron-donating groups, which direct electrophilic attack in the ortho- or

para- positions. Due to the structure of the molecule and its symmetry, the ortho- and

para- positions of the methoxy groups are equivalent due to positive mesomeric effects

outweighing the negative inductive effects, hence electrophilic attack is more likely in

these positions due to increased stabilisation.
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Scheme 4.10: Mechanism for the Vilsmeier reaction A. formation of the Vilsmeier
reagent B. electrophilic aromatic substitution with 2,6-dimethoxytoluene C. proton

transfer with water D. Final compound
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This method requires the in situ formation of the complex, which is formed through nu-

cleophilic attack by the formyl group of DMF, resulting in chloride displacement. The

newly formed ether bond is severed and resonance stabilisation produces the Vilsmeier

product. The product is moisture sensitive and is hence carried out under strict an-

hydrous conditions. The reaction is also exothermic hence DMF is added dropwise at

0◦C.

The Vilsmeier product was then transferred into a solution of 2,6-dimethoxytoluene in

anhydrous DMF, resulting in subsequent electrophilic aromatic substitution. Finally,

to quench the reaction of any unreacted Vilsmeier product and form the aldehyde, ice

water was added.

Yields were moderate to good, with a representative yield being 74% following column

chromatography. Although recrystallisation and purification through the addition and

filtration of activated charcoal produced higher yields, the products were less pure. Most

likely losses of product were due to diformylation of the starting material with excess

Vilsmeier reagent.

Key characterisation was determined through the presence of the aldehyde, which was

prominent by 1H-NMR at 10.23 ppm as a singlet and at 189.20 ppm in the 13C-NMR.

The presence of only 1 peak in both of these spectra confirmed that there was only one

formyl group, and the mass was confirmed by LCMS. 1H-NMR also confirmed that the

aldehyde was present in the desired position, as the methoxy groups appeared as 2 peaks

(at 3.91 ppm and 3.86 ppm), indicating that these protons were not equivalent, as would

be the case if the aldehyde had been introduced at the meta position to the methoxy

groups.

4.4.2 Menke Nitration

OMe

MeO
i.

OMe

MeO

O

NO2

OAc

OAc

C02                                                  C03

Scheme 4.11: Electrophilic aromatic substitution of a nitro group using the Menke
nitration i. CuNO4.2.5H2O, Ac2O, 0◦C to rt, 6 h (73% yield)

The strategy towards formation of the azaphilone requires bromination in the less acti-

vated position: as explained in the Vilsmeier step, electrophilic aromatic substitution is

more likely at the position ortho to the methoxy group. To prevent bromination in the
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incorrect position, a nitration is undertaken to “block” the more active position. It also

prevents dibromination in later steps.

Nitration is generally carried out using a nitrating mixture produced by sulphuric acid

and fuming nitric acid. Although this mixture is effective, the conditions are harsh and

it can become explosive if handled incorrectly. An alternative form of nitration, coined

the Menke nitration, permits the use of less corrosive conditions and is much safer to

handle. The additional benefit of this route as the acetic anhydride also reacts with the

aldehyde to form a geminal diacetate, which prevents the unintentional reduction of the

aldehyde in the next step.

The Menke nitration was first realised in 1925 and utilised cupric nitrate and acetic

anhydride (although other nitrate salts have also been shown to be effective).184 The

advantage of using a cupric nitrate salt is that it is very stable upon storage and the

change in oxidation state of the copper allows for a visible indicator for the progression of

the reaction. The free nitro group is afforded following the formation of a complex with

acetic anhydride. The reaction predominantly affords the ortho-substituted product,

providing that there is an electron-donating group present.
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Scheme 4.12: Mechanism for the Menke nitration. A. formation of the free nitronium
ion through nucleophilic attack on acetic anhydride. B. Electrophilic aromatic sub-
stitution with the nitronium ion. C. Formation of the geminal diacetate using acetic

anhydride

The nitration requires quenching with ice water to prevent dinitration. Following an

aqueous/organic workup and column chromatography, the reaction produced moderate

to good yields (best yield was 73%). There were three key changes in the 1H-NMR: firstly,
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the aldehyde peak disappeared and a new peak integrating to six protons appeared at

2.13 ppm and a new singlet proton at 7.92 ppm, which lies inbetween the diacetate and

nitro groups. Secondly, the proton at 6.73 ppm disappeared following substitution with

the nitro group. LCMS was used to confirm that the product did not dinitrate.

4.4.3 Two-Step Reduction and Bromination

MeO

OMe
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i., ii.
MeO

OMe

OAc

NH2

Br

C03                                                         C04

OAc OAc

Scheme 4.13: Two-step reduction and bromination i. Al, HgCl2, 22:7:1
Et2O:EtOH:H2O ii. Br2, AcOH (65% over two steps)

Nitro groups are heavily electron-withdrawing, which would further deactivate the final

position available for bromination. In order to improve reactivity, the nitro group must

be reduced to an amine to increase the electron density of the ring and to direct to the

less favoured position meta to the methoxy groups. The method of reduction of choice

for this compound was the mercury-amalgam reduction, as this produces hydrogen in

situ and is therefore less explosive than using hydrogen and palladium on carbon.

The first step involves the formation of mercury amalgam by submerging aluminium

in 2% aqueous mercury(II) chloride and drying with diethyl ether prior to introduc-

tion to the reaction mixture (scheme 4.13). The solvent consisted of 22:7:1 diethyl

ether:ethanol:water. The mixture was determined to ensure that the solvent was monopha-

sic. It was also determined that the water was essential for the production of hydrogen,

as ethanol was insufficient. The mechanism is shown in scheme 4.14
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Scheme 4.14: Mechanism for the reduction of the nitro group A. electrons from the
amalgam attack the nitro group, which is followed by nucleophilic attack on water B.
The N(OH)2 species forms a hydroxonium ion which is eliminated, after which another
electron attacks the nitrous ion, following a second radical attack on water C. the
remaining negatively-charged oxygen forms a hydroxonium ion and is eliminated, after
which another hydrogen is taken by the nitrogen D. Final product of the reduction185

Following successful reduction (as determined by TLC) the amalgam was filtered out

using celite and the crude product concentrated in vacuo. As the intermediate was

unstable and the product required filtration this may have had an impact on the final

yield of C03 in the synthesis.

Once the crude product was dried, it was redissolved in acetic acid and bromine was

added (the mechanism of which is shown in scheme 4.15). Once the reaction had reached

completion (as determined by TLC), the bromine was quenched with saturated sodium

thiosulfate to prevent side reactions occurring.
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Scheme 4.15: Mechanism for bromination
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The yield for this two-step reaction following column chromatography was moderate

(65%). 1H-NMR reveals loss of all aromatic protons and a shift of the remaining singlet

proton from 7.93 ppm to 8.14 ppm due to the increased electronegativity introduced by

the amine and the bromine. The amine is also present in the IR spectra as characteristic

N-H stretches at 3476.95 cm−1 and 3378.37 cm−1.

4.4.4 Removal of the Amine Group through Diazotisation and Elimi-

nation of the Salt

NH2
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C04                                                           C05

Scheme 4.16: Removal of the amine through conversion to a diazonium salt i. THF,
H2O, concentrated HCl, NaNO2, 20 min -5◦C, ii. urea, 50% w/v hypophosphorus acid,

0◦C overnight then 40◦C, 4 h (85% yield)

As the amine was no longer required, it was removed through the formation of a dia-

zonium salt. The diazonium salt forms a better leaving group than the primary amine,

as the diazonium salt is more energetically favourable to lose from the molecule. In

order to produce the diazo, a nitrous ion was produced using HCl in water and THF (to

ensure a monohasic system). Urea is then used to quench unreacted nitrite to prevent

side reactions. In order to reintroduce a hydrogen, the diazo was displaced through a

free-radical reaction using hypophosphorus acid.
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Scheme 4.17: Mechanism of diazotisation. A. Formation of the nitrous ion. B. nucle-
ophilic attack of the amine on the nitrous ion and rearrangement to form the diazo. C.

Elimination of the diazonium salt

As there is no further need for the geminal diacetate, that is also removed and converted

back into the aldehyde through acid-catalysed hydrolysis of the acetate groups. The

reintroduction of the aldehyde is prominent at 10.27 ppm as well as an aromatic proton

singlet at 6.93 ppm in the 1H-NMR spectra. Stretches previously present for the N-H

groups are now absent from the IR spectrum.

4.4.5 Demethylation to Afford the Free Alcohol Functionalities
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C05                                                          C06

Scheme 4.18: Alcohol deprotection mediated by boron tribromide i. BBr3, CH2Cl2,
-78◦C to rt, overnight (100% yield)

Initially, to prevent side reactions, the hydroxyl groups by acetic anhydride the alcohols

were protected as methyl ethers. Once the protection is no longer required, demethy-

lation occurs through electrophilic attack of a strong Lewis acid, in this case, boron

tribromide, as alkoxides are poor leaving groups. The ether oxygen displaces bromide,

which then attacks the methyl group. The reaction is quenched with ice water, which

hydrolyses the boron-oxygen complex, producing free alcohols.
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Scheme 4.19: Alcohol deprotection mechanism through electrophilic attack by boron
tribromide

The key indicator that the reaction was successful was the loss of solubility in chloroform

due to the increased polarity created from the free alcohols. As the free alcohols are in

fast exchange with protic solvents, they were not visible by NMR, however they were

clearly visible by IR, with an O-H stretch present at 3334.20 cm−1. LCMS also confirmed

the mass to ensure that both ethers were deprotected.

4.4.6 Sonogashira Cross-Coupling with Aliphatic Side Chains

HO
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Br HO
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O

  C06                                                   C07

i.

(CH2)12CH3

Scheme 4.20: Sonogashira coupling i. PdCl2(1-pentadecyne, PPh3)2, CuI, dry DMF,
Et3N, N2, 60

◦C, 54% yield

Carbon-carbon bond formation is a particularly useful reaction type in the field of medic-

inal chemistry. There are many different methodologies that can be employed to carry

out this type of reaction: the most commonly used are the Suzuki coupling (following

the Miyaura borylation reaction), Hiyama coupling, Kumada coupling, Negishi coupling

and the Stille coupling.186 The method carried out in this synthesis is the Sonogashira

cross-coupling reaction.
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Sonogashira cross-coupling is one of a plethora of carbon-carbon cross-coupling reactions,

which can tolerate a wide variety of substituents. The reagents are comparatively cheap

and there is a wide variety of alkynes available and, as this was the previously reported

method used to form the azaphilones by Porco and coworkers, this was the methodology

undertaken.182 The Sonogashira cross-coupling requires a halogenated reagent (such as

bromine or iodine, chlorine is less electronegative and therefore far less likely to react).

The reaction utilises the transmetallation of the reagents with copper(I) iodide and a

palladium-ligand complex. As palladium(0) is unstable the palladium complex of choice

was bis(triphenylphosphine)palladium(II) dichloride, which converts to palladium(0) in

situ during the reaction. Due to the sensitivity of the reaction to oxygen, the reac-

tion is performed under anhydrous conditions and solvents were degassed prior through

bubbling nitrogen for 30 s to 1 min through the solvents (depending on the volume of

solvent).
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Scheme 4.21: Mechanism of the Sonogashira Cross-Coupling187

Pentadecyne was used as a model alkyne to determine whether or not this method of

Sonogashira coupling would be suitable for producing analogues. The yield for this

reaction was on average 54%, as excesses of catalysts and alkyne were used and the

product had to be purified. Also, any presence of moisture or oxygen reduces the yield

and hence the yields worsened when older bottles of anhydrous reagents were used (which

were likely to no longer be anhydrous). Characterisation was difficult, as the large

overlap of aliphatic protons appeared as a broad peak that was difficult to integrate to

the correct number, most likely due to the large number of overlapping aliphatic protons.

The mass was confirmed by LCMS, hence the compound was taken forward.
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4.5 Formation of the Azaphilone by Oxidative Dearoma-

tisation
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Scheme 4.22: Two-step synthesis of the azaphilone moiety i. TFA, Au(OAc)3,
CH3CH2Cl2, rt, 1 min ii. IBX, rt, 1 h, 48% yield over 2 steps

This methodology relies on a two-step process. Firstly, a metal catalyst (in this case,

gold(III) acetate) co-ordinates the alkyne to align to the aldehyde. Trifluoroacetic acid

(TFA) then removes the metal complex, producing an intermediate. Initial studies on

thie methodology explored a variety of different metal salts, but gold(III) acetate was

shown to be the best compromise between speed and yield, with the reaction reaching

completion within one minute.
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Scheme 4.23: Mechanism for the 2-step cyclisation and oxidation A. metal-catalysed
cyclisation in the presence of trifluoroacetic acid B. oxidation in the presence of IBX

The second step involves o-iodoxybenzoic acid (IBX), a Dess-Martin periodinane which

is a powerful oxidising agent, which produces the diketo functionality and introduces

an additional hydroxyl group at position 4. Due to the stability of the intermediate, it

is necessary to use such a powerful oxidising agent. Due to the high reactivity of IBX,

the reaction must be quenched after 1 hour with saturated sodium thiosulfate, however

yields for this reaction were moderate at best, with the highest achieved yield being 48%.
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Using new IBX and catalyst managed to improve the purity of the final compound, but

the yield decreased to 29%. Further modifications of the length of reaction (at both

steps) and changing the catalyst did not improve the yield.

Formation of the azaphilone had an appreciable effect on the 1H-NMR and 13C-NMR,

with loss of the aldehyde peak at 10.21 ppm and 195.32 ppm respectively. In the 1H-

NMR, there are 3 singlet aromatic peaks at 7.88 ppm, 6.10 ppm and 5.52 ppm integrating

to one, which correspond to the three aromatic protons on the chromene core. The sin-

glet peak at 1.55 ppm integrating to three is the methyl present on the molecule, whilst

the alkyl side chain appears in two regions: a triplet at 2.41 ppm integrating to two

(which is the methylene adjacent to the chromene core that is split by the remainder

of the alkyl side chian). The remainder of the alkyl side chain appears as a broad peak

at 1.26 ppm integrating to twenty protons. The 13C-NMR spectra indicates the cor-

rect number of carbons for the molecule, with fifteen aliphatic carbons (thirteen for the

aliphatic side chain, one for the methyl group attached to the chromene core and one

for the aliphatic carbon within the chromene core) and eight aromatic carbons. The

carbons present at 196.28 and 195.80 most likely refer to the two ketones, due to the

electron-withdrawing effects of the oxygens.

The product was a racemate and wa carried through without separation of the enan-

tiomers.

4.5.1 Formation of the Butyric Ester as a Model Azaphilone
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Scheme 4.24: Synthesis of the butyric ester i. Butyric anhydride, DMAP, rt, overnight
(53% yield)

As the natural azaphilone bore a butyric ester in position 4, it was decided that the

butyric ester would be used for the model compound. Using butyric anhydride and

catalytic DMAP, the butyric ester is formed and the unreacted butyric anhydride is

quenched with methanol and dessicated overnight (scheme 4.24). The yield was mod-

erate, most likely due to losses during purification and the incomplete quenching of the

butyric anhydride.

The ester shows up as two multiplets at 1.68 ppm and 2.42 ppm by 1H-NMR, integrating

to 4 and 3 hydrogens respectively.
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4.5.2 Chlorination of the Model Azaphilone
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Scheme 4.25: Chlorination of the azaphilone moiety i. NCS, AcOH, rt, overnight
(100% yield)

The final component of the natural azaphilone that was to be generated with the ana-

logues was the chloride in position 6, as it is believed that this helps to direct the

azaphilone into the hydrophobic pocket of MDM2, as data published by Hardcastle and

coworkers showed that replacement of halogens with methoxy or ethoxy groups abolished

activity in their compounds.100
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Scheme 4.26: Mechanism for electrophilic attack of NCS on the azaphilone A. For-
mation of the active succimidyl species B. Chlorination of the azaphilone

In order to introduce a chloro group on the final azaphilone, a succimidyl ester was used

(scheme 4.25). Succinimides incur the advantage of producing electrophilic halogens,

which can then undergo electrophilic aromatic substitution in the presence of aromatic

systems. Acetic acid serves as the catalyst as well as the solvent in this reaction. This

reaction was also quantitative.

1H-NMR indicated a loss of the proton at 5.52 ppm and mass confirmed that the com-

pound had the correct number of atoms. The LCMS trace also indicated isotope patterns

which correspond to the presence of chloride in the sample (a 3:1 ratio of 35Cl and 37Cl

respectively).
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4.6 Condensation of Azaphilones

Following successful generation of the azaphilone moiety attempts to condense with

amines was undertaken. Solid- and solution-phase approaches were carried out to at-

tempt to condense the azaphilone with the natural chlorofusin peptide, but MALDI and

HPLC analysis showed that only the uncoupled peptide was visible, as shown in figure

4.4.

)

Figure 4.4: MALDI traces. A. Before coupling (uncoupled peptide seen at 1011.34
(M+H)+ and 1033.31 (M+Na)+) B. After overnight coupling (uncoupled peptide seen

at 1009.74 (M+H)+, 1031.69 (M+Na)+ and 1047.67 (M+K)+

It was then postulated that the reason that the azaphilone was unable to couple was

due to the flexibility of the cyclic peptide, causing it to sterically hinder the exposed

amine on the ornithine. This led to attempts to couple the azaphilone to a dipeptide

in solution, however monitoring of the reaction by TLC and 1H-NMR showed that the

reaction was not proceeding.

Further literature searching revealed that certain azaphilones can become “locked” in an

open state (see figure 4.27, as it is less energetically favourable to rearomatise following

dearomatisation to condense with a free amine. Despite limited success by our lab to
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condense the azaphilone with benzylamine previously, it was not possible to condense

the azaphilones with the peptide or amino acids.104
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Scheme 4.27: Scheme for the production and isolation of an azaphilone in the open
state

4.7 Computational Studies Towards Azaphilone-Based In-

hibitors of the p53-MDM2 Protein-Protein Interaction

Computational analysis using AutoDock Vina was carried out to examine how the aza-

philone was likely to bind in the hydrophobic pocket. Although previous studies have

shown that the azaphilone moiety alone is insufficient to bind into the pocket, it was

postulated that the addition of an additional aromatic group or the natural peptide

would be sufficient to promote binding.77

Molecular modelling requires peptide bonds to become non-rotatable so that there are

reduced degrees of freedom and the software is able to limit the possibilities of binding.

As chlorofusin has a large cyclic peptide moeity, which had previously been hypothesised

as not being important for binding, it was suggested that replacement of the peptide

with ornithine would limit the degrees of freedom for modelling calculations and still

not participate in binding (as the pocket is very hydrophobic so in theory it should be

the azaphilone chromophore that binds in preference).

Following attempts to condense the azaphilone with the full cyclic peptide it was decided

that novel vinylogous amides needed to be synthesised, as these should be easier to syn-

thesise and, if the peptide itself is not binding within the pocket, it was suggested that

simpler amine substitutes could still maintain activity. Previous work in our lab had

resulted in the synthesis of a benzylamine-based vinylogous amide (data not published),

therefore novel analogues were generated using a benzyl group in place of the peptide for

an in silico screen to determine if it was possible to produce azaphilone analogues con-

densed with benzylamine that would inhibit the p53-MDM2 interaction. Other variants

designed for the in silico screen included varying length of alkyl side chain/substitution

with an aromatic side chaine, variation of the halogen with either chlorine, bromine,

iodine or unsubstituted and variation of the ester up to butyric acid as well as the free

alcohol.
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As previously explained in Chapter 2 section 2.9, p53 was used as the comparator and

compounds were docked into the hydrophobic pocket.

Screening revealed 3 novel compounds with comparable binding affinity to wildtype p53.

These compounds contained aromatic side chains, chlorines in position 6 and acetyl

esters. The top 3 binding compounds are shown in figure 4.5, figure 4.6 and figure 4.7.

Figure 4.5: Top binding compound as determined by Autodock Vina. Naphthyl had
a binding energy of -8.8 kcal/mol, whilst wildtype- p53 had a binding energy of -8.5

kcal/mol

Figure 4.6: 2nd best binding compound as determined by Autodock Vina. Acetanilide
had a binding energy of -8.4 kcal/mol, whilst wildtype- p53 had a binding energy of

-8.5 kcal/mol
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Figure 4.7: 3rd best binding compound as determined by Autodock Vina. Trifluo-
romethyl had a binding energy of -8.3 kcal/mol, whilst wildtype- p53 had a binding

energy of -8.5 kcal/mol

4.8 Synthesis of Azaphilone Analogues Bearing an Aro-

matic Side Chain

Attempts to synthesise the novel aromatic azaphilones using the original Sonogashira

methodology did not produce aromatic compounds and, despite variants of ligands and

palladium, bases and fresh anhydrous solvents, it was not possible to directly attach an

aromatic alkyne onto the Sonogashira precursor. Variants in the temperature were also

attempted, but the reaction did not progress (see scheme 4.28).
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Scheme 4.28: Scheme for the attempts of different reagents for the Sonogashira cou-
pling A. PdCl2(PPh3)2, CuI, Et3N, dry DMF, 60◦C, overnight B. PdCl2(PPh3)2, CuI,
DIPEA, Dry DMF, 60◦C, overnight C. Pd(PPh3)4, CuCl, Dry DMF, 80◦C, overnight
D. Dry DMF, PdCl2(PPh3)2, ZnBr2, 60

◦C, overnight E. PdCl2(MeCN)2, CuI, Et3N,
rt, overnight F. PdCl2(MeCN)2, CuI, DIPEA, rt , overnight G. PdCl2(MeCN)2, CuI,

diisopropylamine, rt , 2 days

It was then postulated that functionalisation of the Sonogashira with an alkyne could

solve this problem, provided that the problem was through coordination of the palladium

catalyst and ligand with the bromine. The starting material was then reacted with tri-

t-butylphosphonium tetrafluoroborate (a more stable salt form of tri-t-butylphosphine)
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and bis(acetonitrile)palladium(II) dichloride and TMS-acetylene. The TMS group was

necesary to ensure that the compounds did not dimerise.
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Scheme 4.29: Scheme for alkyne functionalisation i. TMS-acetylene, PdCl2(MeCN)2,
(tBu)3P.HBF4, CuI, DIPA, dry DMF, N2, 60

◦C, 3 h then ii. 1M TBAF in THF, rt, 3
h (63% yield over 2 steps)

The trimethylsilyl (TMS) group is a moderately labile protecting group. Silyl protec-

tion is usually removed by a fluoride, as the Si-F bond is particularly strong. In this

case, t-butylammonium fluoride (TBAF) 1M in THF was used and the product was

concentrated in vacuo without further purification.
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Scheme 4.30: Synthesis of aromatic Sonogashira products i. Pd(PPh3)4, CuI, Et3N,
dry DMF, 60◦C, overnight

The newly formed alkyne compound was then reacted with brominated aromatic com-

pounds. Starting with bromobenzene as a model compound, the Sonogashira coupling

was undertaken using tetrakispalladium(0) and triphenylphosphine. As previously men-

tioned, palladium(0) is the active species for the Sonogashira coupling and in this case,

generation of this species in situ was insufficient to drive the reaction. The triphenylphos-

phine provided the ligand to co-ordinate the alkyne and the halogenated partner.

Following the successful generation of the Sonogashira analogues, the azaphilone syn-

thesis was attempted.

The bromobenzene azaphilone was synthesised first, producing the azaphilone in poor

yields. The reaction produced a variety of side products, despite close monitoring. It was

also found that, when the top binding aromatics were attempted, the starting material

decomposed, indicating that the Sonogashira analogues were not particularly stable.
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It was possible to form the ester of the bromobenzene analogue using glacial acetic acid

in excellent yields, however the chlorinated product has yet to be synthesised.

The main difficulty with these compounds is the low yields towards the end of the

synthesis, resulting in copious amounts of starting materials required for generation. In

addition, the stability of the aromatic compounds prohibited the synthesis being taken

further.

4.9 Conclusions and Future Work

In conclusion, although it was possible to synthesise an azaphilone analogue, it was not

possible to carry out further condensation reactions to produce analogues for biological

testing. In order to progress the azaphilones forward it would be necessary to scale up

the syntheses to multigram quantities in order to produce sufficient quantities to purify

and produce biological testing. Due to the instability of the aromatic analogues it is

likely that alternative heterocycles could be trialled as the stability may improve (such

as pyridinyl and furyl analogues). There may also be the option of using cyclohexyl

groups in place of the aromatic side chains, although these side chains were not screened

in silico and therefore it is not possible to gauge at present whether or not these would

still fit well in the hydrophobic pocket (as the π-π stacking interactions would be lost,

but there would still be a high degree of hydrophobic interactions present).

Alternatively it maybe possible to trial one of the alternative methods listed earlier in

the chapter, such as Method B for the oxidative dearomatisation, which may offer a

greater deal of control in the azaphilone core synthesis. As this method appears to be

milder than the use of IBX in the oxidative dearomatisation, it maybe possible that the

products maybe less likely to degrade.



Chapter 5

Conclusions and Future Work

Within this thesis we have explored novel inhibitors of the p53-MDM2 protein-protein

interaction based on the natural product, chlorofusin.

The first compounds tested within this thesis were the isoquinolin-1-ones, which were

synthesised using a modified Castagnoli reaction in which homophthalic anhydride was

reacted with the imine Schiff base formed between a chosen primary amine and aldehyde.

80 compounds were generated using this methodology and were originally characterised

using 1H-NMR, 13C-NMR, IR and LCMS. The 1H-NMR experiments also revealed the

predominant diastereomers, which in the majority of cases were trans (which is also the

more stable diastereomer as it is more thermodynamically stable than the cis form).

The 80 compounds synthesised were then tested at 100 µM well concentration in an

FP assay and of the 80 compounds tested, 7 were found to have an IC50 of less than

100 µM, with the best inhibitor having an IC50 of 6.555 µM. These 7 compounds were

all halogenated and bore either a fluorine, chlorine or bromine in the amine precursor

or a chlorine or bromine in the aldehyde precursor. In both instances, the substituents

were para substituted in relation to the central isoquinolinone core. The 7 hit com-

pounds were then tested by MTS and, although 3 of these compounds were active in

MDM2-overexpressed cell lines, none of them were selective, suggesting that these com-

pounds also work by an alternative mechanism of action.

In order to determine which diastereomers were active, model compound A34 were

synthesised as both the cis and the trans forms selectively. These compounds were also

tested and the cis form was found to be inactive, whilst the trans selective form was

comparable to the racemate originally synthesised.

Additional optical rotation studies were undertaken to determine whether or not there

was a predominant stereoisomer, which revealed that the compounds that were shown

134
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to be active against the p53/MDM2 protein-protein interaction were predominantly one

enantiomer, however there is little data in the literature examining this and the only

evidence that could be found related to A-strain in the central isoquinolinone core that

could force a particular diastereomer.

These compounds were also studied using a combination of STD-NMR alongside molec-

ular modelling to determine how the compounds were binding into the pocket. A34

was used as a model compound (as the most potent hits may have bound too tightly to

HDM2 and therefore not be able to display “on/off” signals required for STD-NMR).

The results of the STD-NMR were that all of the substituents except for the methylene

were required for binding. STD-NMR is a very powerful technique and future work

could be to further explore the hit compounds (such as the top hit) to see whether

or not a signal could be generated. STD-NMR could also be used to determine IC50

values, which could be used as a comparator against FP data, especially for compounds

for which FP was inconclusive (such as highly fluorescent compounds).

In order to improve aqueous solubility, an alcohol substituent was introduced into the

final compound, using phenylalaninol as the starting amine. This compound was suc-

cessful in the FP assay, however failed to have activity in the MTS assay. Although this

compound was not successful, it would be interesting to explore this further with ad-

ditional analogues potentially bearing polyoxygenated esters at the methylene position,

which would have improved aqueous solubility and potentially improve cellular uptake.

The second chapter focussed on the peptide portion of chlorofusin as a starting point

and the first compounds synthesised were simple fused bicyclic aromatic acid analogues

of the azaphilones (the chromophore portion of chlorofusin), which were condensed with

the cyclic chlorofusin peptide. These compounds were synthesised on solid phase and

in solution, with solution phase synthesis producing higher yields, which could then be

tested in the FP assay. Of this first library of aromatic acid analogues, none of the

compounds displayed activity.

Following the investigation of the simple fused bicyclic analogues the decision was made

to explore click chemistry, which could be used as a handle to generate novel analogues

and for which the azide serves as a bioisostere. Azidonorvaline was synthesised through

the reduction of Boc-Glu-OtBu, which was mesylated, azide substituted, deprotected

and Fmoc-protected to form the amino acid for incorporation into solid phase synthesis.

This was substituted in place of Orn9 in the chlorofusin synthesis and a small portion of

the azidochlorofusin was tested for characterisation and for biological testing. A series

of analogues were generated through a solid-phase click reaction with the exposed azide

and of these 10 analogues, only B15 displayed activity in the FP assay, with an IC50 of

8.309 µM.
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In order to determine the importance of the peptide the Fmoc-azidonorvaline-OH was

reacted with a series of alkynes to form a second generation library. Of the 7 compounds

synthesised, 6 displayed activity. Interestingly, when one of these compounds was Fmoc-

deprotected, activity was lost, hence suggesting the importance of the Fmoc group in

binding within the pocket.

The 7 active click compounds were then placed into the MTS assay, of which 2 were active

and 1 of which was selective against the p53/MDM2 protein-protein interaction. This

compound contained a trifluoromethyl substituent in the para position to the triazole

ring and further exploration of different positions on the alkyne would be needed to give

greater SAR data.

It would also be interesting to use the click analogues in the STD-NMR studies to

determine how they bind, as there are no similar compounds in the literature that have

been studied prior to the publication of these compounds. It would also be useful to

increase the size of the library and to increase the analogues explored to determine if

there are any more active analogues.

With the successes of the first two synthetic chapters the last chapter explored the aza-

philone chromophore, with the intention of generation of novel azaphilone analogues that

could be condensed with the chlorofusin peptide. These analogues would bear greatest

similarity to the lead compound and therefore demonstrate how much chlorofusin itself

could be substituted but activity could be maintained or improved.

Multiple routes to the Sonogashira precursor were explored and, depending on whether

or not the Sonogashira was aliphatic or aromatic, the synthetic route had to be optimised.

The aliphatic side chains could be synthesised under standard Sonogashira conditions,

however aromatic attachment required a novel double-Sonogashira approach. A variety

of different azaphilone precursors were generated with both aromatic and aliphatic side

chains, however the oxidative dearomatisation required for the azaphilone chromophone

synthesised proved to be difficult, as the only aromatic side chain that could tolerate

the reaction conditions was benzylamine, and regardless of the side chain the yields of

successful reactions were poor (circa 37% at best).

It was possible to form the complete azaphilone bearing a pentadecyne side chain, how-

ever it was not possible to condense this with either the chlorofusin peptide nor a dipep-

tide for incorporation onto solid phase. In the case of the benzyl side chain analogue, it

was not possible to complete the synthesis, although it was possible to get as far as the

penultimate stage (the acetylation of the free alcohol).

If the azaphilone work is to be taken further forward it would be necessary to invest

time in generating vast quantities of material for the reactions, as the reaction pathway
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is lengthy and the yields in the penultimate steps are generally poor. It may also be

useful to further explore alternative oxidative dearomatisation methods, which could be

less harsh and therefore less likely to degrade the Sonogashira product.

In conclusion, we have considered, synthesised and tested a wide variety of different

analogues based on chlorofusin, however much work is still to be done to establish greater

SAR data, as well as potential applications in similar protein-protein interactions such

as p53/MDMX and the Bcl-2 binding partners.



Chapter 6

Experimental Section

6.1 General Procedures

6.1.1 Reagents and Solvents

All chemicals were reagent grade and were purchased from Sigma Aldrich and Fisher

Scientific. NMR solvents were purchased from VWR. Fmoc-amino acids and coupling

reagents were purchased from Novabiocchem or AGTC Bioproducts. Anhydrous solvents

were bought in and used as supplied. All water used was distilled.

6.1.2 Physical Characterisation and Spectroscopic Techniques

1H and 13C NMR spectra were recorded in Fourier Transform mode on a Bruker 400

or Bruker 800 spectrometer operating at a 1H-NMR frequency of 400 MHz or 800 MHz

respectively using the specified deuterated solvent. Subsequent spectra were processed

using Topspin 3.0 software. The chemical shifts for both 1H and 13C were recorded

in ppm and were referenced to the residual solvent peak. Multiplicities in the NMR

spectra are described as s = singlet, d = doublet, t = triplet, q = quartet, m = multi-

plet, br = broad; coupling constants are reported in Hz. Low resolution mass spectra

were recorded using a Shimadzu LCMS 2010EV operated under electrospray ionisation

in positive (ES+) mode. Accurate mass spectra were recorded at the EPSRC National

Mass Spectroscopy Service Centre, Swansea. Melting points were recorded using open

capillary tubes on a Mel-Temp electrothermal melting point apparatus. Infared spectra

were recorded as neat samples using a Perkin Elmer Spectrum BX FT-IR and manipu-

lated using Spectrum software. UV spectra was obtained using a Perkin-Elmer Lambda

25 UV/Vis spectrometer at the wavelengths specified.

138
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6.1.2.1 Chromatographic Techniques

Thin layer chromatography was performed on aluminium plates coated with 0.2 mm

silica gel-60 F254, which were purchased from VWR. Following elution, the plates were

viewed under long and short wave UV light and then developed upon staining and

heating with nihydrin or vanillin. Column chromatography took place using 60 µm

particle-size silica gel.

Reverse-phase purification was either undertaken using an Isolera 4 automated purifica-

tion system using 12 g C18 cartridges or an Agilent technologies 1200 series chrromato-

graph using an Agilent technologies ZORBAX Eclipse XDB-C18 (5 m, 9.4x250 mm)

column. HPLC analysis was undertaken using a Agilent technologies ZORBAX Eclipse

XDB-C18 (5µ, 4.6x150 mm) column at 40◦C and a gradient of 95:5 water:methanol

with 0.05% TFA additive to 5:95 water:methanol over 15 min returning to 95:5 wa-

ter:methanol over 5 min at a flow rate of 1 mL/min.

6.1.2.2 Biochemicals

All biological reagents were purchased from Novabiochem, Fisher Scientific, VWR and

Sigma-Aldrich. All reagents were specified as biological grade and assumed to conform

to the manufacturer’s standards. All water was autoclaved on site before use.

6.2 Protein Expression and Purification

6.2.1 Expression of HDM2 and HDMX

6.2.1.1 General Procedures

Plasmids for expression of His-tagged HDM2 was pET14b, a generous gift from Dr.

Gary Parkinson (School of Pharmacy, University College London, UK).

Reagents, antibiotics and media were purchased from Sigma Aldrich, VWR, Novabiochem,

Applichem or Fisher and were all molecular biology grade. ddH2O was used to make

buffers, antibiotic stocks and media. Buffers were vaccuum filtered using a 0.2 µm filter

(purchased from GE healthcare). DNase was purchased from Invitrogen. All media

and glycerol for use in bacterial stocks were autoclaved prior to use. Isolation of DNA

was undertaken using a QIAprep mini-prep kit (manufactured by QIAGEN, buffer con-

stituents not disclosed). DNA was analysed by nanodrop (Thermo Fisher Scientific) and
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sequenced at Cambridge Biochemistry Sequencing Department and analysed by Bioedit

7.1.11 software. BL21(DE3)PLysS cells were purchased from Novagen.

Nickel-affinity (PrepEase High Yield) resin was purchased from USB and glutathione

hi-cap resin was purchased from Qiagen. HiTrap SP HP ion-affinity columns and PD-10

desalting columns were purchased from GE Healthcare. VacuCap vacuum filters were

purchased from Pall Corporation. Centrifugal filters were purchased from Merck.

6.2.2 Heat Shock Transformation of JM109 Cells

JM109 cells (2 x 25 µL) were thawed for 15 min. To one batch of cells, plasmid (1 µL)

was added and the cells were incubated at 0◦C for 30 min. The cells were incubated

at 42◦C for 90 s and LB media (250 µL) was added to each batch. The batches were

incubated at 37 ◦C for 1 h. The culture was then plated at various dilutions (10 µL,

100 µL and 140 µL) onto 1.5% LB:agar plates containing ampicillin (100 µg/mL). The

cultures were incubated at 37◦C overnight, then 4◦C overnight, then three colonies were

isolated from the plates, grown overnight in 15 mL of LB containing ampicillin (100

µg/mL).

6.2.3 Production of Glycerol Stocks

Overnight culture (750 µL) and 80% glycerol in ddH2O (250 µL) were mixed together

and stored at -80◦C until required.

6.2.4 Isolation of Plasmids

JM109 cloning cells containing the desired plasmid were grown overnight in 5 mL of LB

medium containing ampicillin (100 µg/mL) at 37◦C. DNA was isolated using a QIAprep

mini-prep kit (full manufacturer’s protocol can be located via www.qiagen.com/gb/re-

sources and is cited in the bibliography188). The culture was centrifuged (13,000 rpm,

16◦C) for 3 min and supernatant discarded. The pellet was resuspended in 250 µL of

buffer P1, followed by the addition of 250 µL of buffer P2 and the suspension was in-

verted 6 times. 350 µL of buffer N3 was added and the suspension inverted 6 times. The

suspension was transferred to spin columns and centrifuged (13,000 rpm, 16 ◦C) for 30

s and the flow-through was discarded. 500 µL of buffer PB was added, the suspension

was centrifuged (13,000 rpm, 16 ◦C) for 30 s and the flow-through was discarded. 750

µL of buffer PE was added, the suspension was centrifuged (13,000 rpm, 16 ◦C) for 90

s and the flow-through was discarded. The DNA was eluted for 1 min in ddH2O, then

centrifuged (13,000 rpm, rt) for 1 min. DNA was then analysed by nanodrop.
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6.2.4.1 pET14b concentration and purity following isolation

The nanodrop was initially calibrated with ddH2O and then calibrated with the final

buffer solution. The nanodrop gave a reading for the absorbance (calculated against

a pathlength of 1 dm, which could then be placed into the Beer-Lambert equation to

calculate the final concentration).189 The machine also gave two further readings: the

260/280 indicates the ratio of DNA to RNA in the sample (a value of approximately 1.8

indicates ”pure” DNA whereas a value of 2.0 indicates ”pure RNA). The 260/230 value

indicates purity of nucleic acids in the sample, with a ”pure” sample producing a value

between 2.0 and 2.2.

Concentration in solution of pET14b = 197.5 mg/mL, 260/280 = 1.89 and 260/230 =

2.18.

6.2.5 Heat shock transformation of BL21(DE3)PLysS cells

BL21(DE3)PLysS cells (2 x 25 µL) was thawed for 15 min. To one batch of cells,

plasmid (1 µL) was added and the cells were incubated at 0◦C for 30 min. The cells

were incubated at 42◦C for 90 s and LB media (250 µL) was added to each batch.

The batches were incubated at 37◦C for 1 h. The culture was then plated at various

dilutions (10 µL, 100 muL and 140 µL) onto 1.5% LB:agar plates containing ampicillin

(100 µg/mL) and chloramphenicol (51 µg/mL). The cultures were incubated at 37◦C

overnight, then 4◦C overnight, then three colonies were isolated from the plates, grown

overnight in 15 mL of LB containing ampicillin (100 µg/mL) and chloramphenicol (51

µg/mL).

6.2.6 Expression trial

3 batches of both pET14b- and pRP261-containing BL21(DE3)PLysS cells (10 µL) were

grown overnight in LB (10 mL) containing ampicillin (100 µg/mL) and chloramphenicol

(51 µg/mL) at 37◦C. The overnight culture (200 µL) was then added to LB (10 mL)

containing ampicillin (100 µg/mL) and chloramphenicol (51 µg/mL). The OD600 was

measured until 0.6 was reached, after which one batch was grown with 0.4 mM IPTG for

5 h at 37◦C, the second batch was grown with 0.4 mM IPTG overnight at 25◦C and the

third batch was grown with no IPTG for 5 h at 37◦C. The batches were centrifuged and

resuspension buffer (1 mL) containing 20 mM Tris-Cl, 300 mM NaCl, 2 mg/mL MgCl2

and 2 µL of DNase1 20,000 U/µL. Proteins were analysed by 12% SDS-page.
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6.2.7 Expression of histidine-tagged HDM2

6.2.7.1 Overnight culture and scale-up culture

Esherichia coli strain BL21(DE3)PLysS containing the plasmid pET14b were grown in

2 x LB medium containing ampicillin (100 µg/mL) and chloramphenicol (51 µg/mL)

at 37◦C until the OD600 = 0.6. IPTG was added to produce a final concentration of

0.4 mM, the temperature was adjusted to 16◦C and the culture was incubated for 16 h.

The cells were harvested by centrifugation and resuspended using 20 mM Tris-Cl, 300

mM NaCl and 20 mM imidazole. The suspension was then sonicated in 7 x 30 s pulses

and the suspension centrifuged again for 30 min at 10,000 rpm. The supernatant was

analysed by 12% SDS-PAGE.

6.2.7.2 Purification of HDM2

Protein was purified using resuspension buffer consisting of 20 mM Tris-Cl, 300 mM

NaCl and 20 mM imidazole and eluted into 20 mM Tris-Cl, 300 mM NaCl and 300 mM

imidazole using 500 mg of dry nickel-affinity resin (that was resuspended in 5 mL of

resuspension buffer prior to use). A second purification using an ion-affinity resin was

undertaken using a 0-1 M gradient of NaCl in buffer containing 1 mM DTT, 1 mM

EDTA, 10 mM phosphate buffer at pH 7.4. Fractions containing protein were desalted

using a desalting column and were eluted into 10% glycerol, 10 mM β-mercaptoethanol,

10 mM phosphate buffer (pH 7.4) and ddH2O. The protein was concentrated by spin

filtration and analysed by nanodrop. Final protein concentration = 44.1 µM.

6.2.7.3 Cell Culture

SJSA-1 is derived from fibroblastic osteosarcoma cells from a 19-year-old male and pur-

chased from the American Type Culture Collection (ATCC, Virginia, USA). HL-60 is

derived from peripheral blood leukocytes from a 36-year-old female with acute promye-

locytic leukaemia and was purchased from the European Collection of Cell Cultures

(ECACC, Porton Down UK). Both cells were cultured in RPMI-1640 media containing

2 mM L-glutamine and 10% FCS. Cell were maintained at 37◦C and 5% CO2. Both

cell lines were maintained between 1 x 105 and 9 x 10 5 cell/mL in 75 cm3 flasks, split

with fresh media every 3.5 days and used until passage 10 for experimentation. For cell

number and viability, both cell lines were diluted 1 in 5 in trypan blue and counted

using Fisher haemocytometer grid with light microscopy.



Targeting the p53/MDM2 Protein-Protein Interaction 143

6.2.7.4 Fluorescence Polarisation Assay

All solutions were made using doubly-distilled water. Tween-20 and PBS was purchased

from Sigma-Aldrich. Fluorescence polarisation assays were carried out in black Costar

low binding 96 well microplates on a BMG Labtech Optima microplate reader. The

fluorescence polarisation optic measured at 490/520 nm. Data was averaged over 10

readings.

Inhibition curves were generated using 10 nM HDM2, 10 nM fluorescently-tagged peptide

in PBS-0.05% Tween-20 at pH 7.4 with 10 µM of varying concentrations of inhibitor (1

mM to 100 pM well concentration). The plate was incubated for 30 min in darkness

before readings were taken.

IC50 and Ki values were taken and processed using the Cheung-Prusoff equation, shown

in equation 6.1

Ki =
IC50

1 + [ligand]
Kd

(6.1)

6.2.7.5 MTS Cytotoxicity Assay

The antiproliferative activity of compounds was tested by MTS assay using the CellTiter

96 Aqueous One Solution Cell Proliferation Assay and following the manufacturer’s

instructions. The outer wells of the plate were filled with 200 µL water to prevent

evaporation of the cells seeded onto the plate. The remaining plate was seeded with

HL-60, A375 or SJSA-1 cells (5 x 104 / 100 µL) and left untreated (media control), with

DMSO (vehicle control), nutlin-3a (positive control, 100 µM to 1.5625 µM) in triplicate

for 72 h at 37◦C with 5% CO2.

The MTS reagent was then added to each well and the plates incubated for 3 h at

37◦C with 5% CO2. The absorbance was measured at 492 nm using the BMG Labtech

POLARstar Optima microplate reader. It was assumed that the cells incubated with

DMSO alone were taken as 100% cellular proliferation and IC50 values were calculated

using GraphPad Prism Version 6.0 software.

6.2.7.6 Saturation Transfer Difference NMR

All solvents used were deuterated and freeze dried with deuterium oxide. All solvents

and reagents were purchased from Sigma-Aldrich.
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Readings were taken using a Bruker 800 MHz NMR spectrometer at 5◦C over a period

of 15 h. The sample was prepared in a 300 µL NMR tube and centrifuged to ensure

homogenicity and removal of bubbles.

95.6 nM HDM2 (100 µL) and 500 µM A34 (50 µL) in 10% DMSO in PBS (50 µL). One

sample was run thirteen times and each run cycle took 30 min and was run at varying

pulse rates (1 µs for a definite “on” signal to 1 s for a definite “off” signal).

Data was then processed on Topspin 4.0 software. STD-NMR was processed and anal-

ysed as follows:

1. Select run set from corresponding folder

2. Type ‘efp 1 2’ to subtract the “off” signal from the “on” signal

3. Type ‘.md’ to display multiple spectra

4. Overlay the difference and “off” spectra and adjust the “off” spectra so it overlays

as close as possible with each peak in the difference spectra (if no peak is present,

the scale factor becomes zero)

6.2.7.7 Computational Screening

PDB entry 1YCR was used for all computational experiments. Ligands and macro-

molecules were processed in AutoDock Tools and Deepview to add gasteiger chargeses

and insert explicit hydrogens.

The code below was used to generate the gridbox

HDM2.pdbqt

center x = 20

center y = 20

center z = -20

size x = 25

size y = 25

size z = 25

num modes = 9

Once all of the parameters have been set it is then possible to run the simulation (in

this case, using autodock vina). The bash shell code is shown below:
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for f in ligand *.pdbqt; do

b=‘basename $f .pdbqt‘

echo Processing ligand $b

mkdir -p $b

vina –config conf.txt –ligand $f

–out $b/out.pdbqt –log $b/log.txt

done

Following processing, it is possible to use Python script to ascertain the top 10 hits using

the code,

vina screen get top.py 10

The python script used to sort out top hits is as follows:

#! /bin/bash

# search all files ending in .pdbqt

for f in *.pdbqt # create a variable $b which is equal to everything before the first in

the filename

do b=“$f%% *”

# find all files which contain $b at the beginning with anything following

# then use word count to return how many times $b has been found

o=$(find . -name “$b*” — wc -l)

# first for every file containing $b extract characters 14-17 from the filename

# in this case the PDB I.D. for the receptor

# then extract the second line from the file and print the fourth word

# in this case the energy of docking

e=$(for f in $b*.pdbqt

do n=$(echo $f — cut -c 14-17)

echo $n ,

sed -n 2p $f — awk ‘print $4 “,”’

done)

# put all of the pieces collected so far into a file called Sort top.txt

echo $b, $o, $e ¿¿ Sort top.txt

done

# sort through the file Sort top.txt and delete any duplicate lines and save

# to Sort top uniq.txt

uniq Sort top.txt >Sort top uniq.txt
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6.3 Experimental for Chapter 2

6.3.1 General Procedure for the Formation of the First Generation

Isoquinolinones

Aldehyde (2.52 mmol) and amine (2.52 mmol) were shaken with MgSO4 (500 mg) in

CH2Cl2 (5 mL) and left to stand for 4 h. The mixture was filtered and added to ho-

mophthalic anhydride (409 mg, 2.52 mmol) and left to stand overnight at rt. The formed

precipitate was then washed with hot ethyl acetate or, if the product did not precip-

itate, the compound was purified through column chromatography (CH2Cl2:MeOH or

reverse-phase using H2O:MeOH with 0.05% TFA).

3-(2,5-dimethoxyphenyl)-2-[phenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquino

line-4-carboxylic acid (A01)

N

O

HO O

O

O

Purification on silica. White solid, 333 mg, 30% yield. mp 199.5◦C-201.8◦C IR νmax

(neat) cm−1 2913.85 (O-H), 1732.39 (C=O), 1H-NMR (400 MHz, DMSO-d6) δH ppm:

3.43 (3H, s), 3.60 (3H, s), 3.72 (1H, d, J = 15.23 Hz), 4.53 (1H, d, J = 6.09 Hz), 5.31

(1H, d, J = 15.23 Hz), 5.39 (1H, d, J = 6.09 Hz), 6.26 (1H, d, J = 3.40 Hz), 6.77 (1H,

dd, J = 3.05 Hz and 8.95 Hz), 6.87 (1H, d, J = 9.01 Hz), 7.23 to 7.36 (6H, m), 7.45 to

7.49 (1H, m), 7.53 to 7.57 (1H, m), 12.72 (1H, brs) 13C-NMR (100 MHz, DMSO-d6) δC

ppm: 170.79 (C=O), 163.90 (C=O), 151.93 (ArC ), 137.87 (ArC ), 134.69 (ArC ), 132.63

(ArCH), 129.13 (ArC ), 128.97 (ArC ), 128.02 (ArCH), 127.93 (ArCH), 127.90 (ArCH),

127.67 (ArCH), 126.16 (ArCH), 114.47 (ArCH), 113.71 (ArCH), 112.58 (ArCH), 56.38

(CH3), 55.34 (CH3), 53.20 (CH), 48.53 (CH), 48.34 (CH2) LRMS (ES+) calculated for

C25H24NO5 and C25H23NO5Na found 418.1 m/z (M+H)+ and 440.1 m/z (M+Na)+

3-(2,4-dimethylphenyl)-2-[phenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquinolin

e-4-carboxylic acid (A02)
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N

O

HO O

Purification on silica. White solid, 39 mg, 4% yield mp 187.6◦C-194.5◦C IR νmax (neat)

cm−1 3033.51 (O-H), 1740.52 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH ppm: 2.03

(3H, s), 2.18 (3H, s), 3.59 (1H, d, J = 15.54 Hz), 4.53 (1H, d, J = 6.25 Hz), 5.11 (1H,

d, J = 6.42 Hz), 5.40 (1H, d, J = 15.30 Hz), 6.78 (2H, s), 6.91 (1H, s), 7.18 (2H, d, J =

7.59 Hz), 7.26 to 7.33 (3H, m), 7.42 to 7.44 (1H, m), 7.47 to 7.50 (1H, m), 7.54 to 7.57

(1H, m), 8.10 (1H, d , J = 7.64 Hz) ) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 170.79

(C=O), 164.22 (C=O, 163.87 (ArC ), 137.69 (ArC ), 137.63 (ArC ), 137.51 (ArC ), 136.65

(ArC ), 135.52 (ArCH), 132.71 (ArC ), 132.27 (ArCH), 131.52 (ArCH), 130.27 (ArCH),

129.34 (ArC ), 129.11 (ArC ), 129.04 ((ArCH)), 128.71 ((ArCH)), 128.36 ((ArCH)),

128.29 ((ArCH)), 128.06 ((ArCH)), 128.00 (ArCH), 127.91 (ArCH), 127.73 (ArCH),

127.56 (ArCH), 127.39 (ArCH), 127.27 (ArCH), 127.17 (ArCH), 126.89 (ArCH), 125.09

(CH), 55.32 (CH), 48.47 (CH), 47.76 (CH2), 20.97 (CH3), 19.25 (CH3) LRMS (ES+)

calculated for C25H24NO3 and C25H23NO3Na found 386.1 m/z (M+H)+ and 408.1 m/z

(M+Na)+ m/z

3-(4-ethoxyphenyl)-2-[phenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-

carboxylic acid (A03)

N

O

HO O O

Purification on silica. White solid, 20% yield mp IR 1H-NMR (400 MHz, DMSO-d6) δH

ppm: 1.25 to 1.29 (3H, t, J = 13.50 Hz), 3.74 (1H, d, J = 15.00 Hz), 3.94 (2H, q, J =

6.00 Hz and 21.00 Hz), 4.65 (1H, d, J = 6.00 Hz), 4.91 (1H, d, J = 6.00 Hz), 5.33 (1H,

d, J = 16.50 Hz), 6.75 (2H, d, J = 12.00 Hz), 6.87 (2H, d, J = 9.00 Hz) 7.28 to 7.36

(4H, m), 7.45 to 7.49 (1H, m), 7.53 to 7.57 (2H, m), 8.08 (1H, d, J = 7.40 Hz), 12.92

(1H, s) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 170.75 (C=O), 163.48 (C=O), 158.89

(ArC ), 137.87 (ArC ), 134.22 (ArC ), 132.48 (ArCH), 129.43 (ArCH), 129.16 (ArC ),

129.01 (ArCH), 128.71 (ArC ), 128.57 (ArCH), 127.99 (ArCH), 127.93 (ArC ), 127.88
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(ArCH), 127.66 (ArCH), 114.56 (CH), 63.39 (CH2), 60.57 (CH), 48.54 (CH2), 48.34

(CH), 15.07 (CH3) LRMS (ES+) calculated for C26H26NO4 found 416.5 m/z (M+H)+

3-(4-ethylphenyl)-2-[phenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-ca

rboxylic acid (A04)

N

O

HO O

Purification on silica. White solid, 168 mg, 16% yield mp 199.3◦C to 200.2◦C IR

νmax (neat) cm−1 2953.92 (O-H), 1699.35 (C=O), 1641.45 (C=O) 1H-NMR (400 MHz,

DMSO-d6) δH ppm: 1.09 (3H, t, J = 15.05 Hz), 3.81 (1H, d, J = 15.15 Hz), 4.07 (1H,

s), 5.22 (1H, s), 5.29 (1H, d, J = 15.12 Hz), 6.95 (2H, d, J = 8.20 Hz), 7.07 (2H, d, J

= 8.25 Hz), 7.26 (6H, brm ), 7.42 (2H, m), 7.98 to 7.99 (1H, m) 13C-NMR (100 MHz,

DMSO-d6) δC ppm: 172.56 (C=O), 163.92 (C=O), 143.49 (ArC ), 137.73 (ArC ), 136.87

(ArC ), 134.19 (ArC ), 132.39 (ArCH), 130.04 (ArCH), 129.40 (ArC ), 128.63 (ArCH),

128.53 (ArCH), 128.31 (ArCH), 127.47 (ArCH), 127.38 (ArCH), 126.46 (CH), 61.47

(CH), 51.31 (CH), 49.66 (CH2), 28.07 (CH2), 15.77 (CH3)LRMS (ES+) calculated for

C25H23FNO3 and C25H22FNO3Na found 385.9 (M+H)+ m/z and 407.9 (M+Na)+ m/z

3-(2-hydroxy-5-nitrophenyl)-2-[phenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A05)

N

O

HO O

OH

NO2

Purification on silica. Yellow solid, 306 mg, 29% yield mp 269.7◦C to 274.2◦C IR νmax

(neat) cm−1 3077.77 (O-H), 1712.76 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH ppm:

3.86 (1H, s), 4.26 (1H, d, J= 14.67 Hz), 4.99 (1H, d, J= 15.03 Hz), 5.54 (1H, s), 6.95 (1H,

dd, J = 9.07 Hz and 1.57 Hz), 7.17 to 7.27 (6H, m, overlap), 7.42 (2H, m), 7.89 to 7.91

(1H, m), 8.04 (1H, m) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.46 (C=O), 164.16

(C=O), 162.09 (ArC ), 139.20 (ArC ), 137.39 (ArC ), 134.36 (ArC ), 132.62 (ArCH),

130.23 (ArCH), 128.96 (ArC ), 128.63 (ArCH), 128.56 (ArCH), 128.47 (ArCH), 127.57



Targeting the p53/MDM2 Protein-Protein Interaction 149

(ArCH), 127.54 (ArCH), 126.34 (ArC ), 125.54 (ArCH), 122.70 (ArCH), 116.28 (CH),

56.80 (CH), 50.06 (CH), 48.20 (CH) LRMS (ES+) calculated for C23H19N2O6 found

419.1 (M+H)+ m/z

3-(4-chlorophenyl)-2-[phenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquinoline-

4-carboxylic acid (A06)

N

O

HO O Cl

Purification by precipitation. White solid, 89 mg, 9% yield mp 178.9◦C to 181.2◦C

1H-NMR (400 MHz, DMSO-d6) δH ppm (1:1 ratio of cis to trans): 3.85 (1H, d, J =

12.00 Hz), 3.92 (1H, s, trans), 3.96 (1H, s, trans), 4.71 (1H, d, J = 8.07 Hz, cis), 5.01

(1H, d, J = 8.07 Hz, cis), 5.17 (1H, d, J = 12.00 Hz), 5.24 to 5.29 (1H, m), 6.94 to 6.97

(1H, m), 7.02 to 7.04 (1H, m), 7.19 to 7.45 (17H, m), 7.47 to 7.53 (7H, m), 7.54 to 7.56

(4H, m), 7.87 to 7.92 (2H, m), 7.97 to 7.99 (1H, m), 8.07 to 8.09 (2H, m), 12.88 (2H,

brs) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.94 (C=O), 170.70 (C=O), 163.45

(ArC ), 138.69 (ArC ), 137.67 (ArC ), 137.54 (ArC ), 136.75 (ArC ), 136.24 (ArC ), 133.88

(ArC ), 133.39 (ArC ), 132.65 (ArCH), 132.59 (ArCH), 132.02 (ArCH), 131.20 (ArCH),

130.83 (ArCH), 130.08 (ArCH), 130.04 (ArCH), 129.25 (ArC ), 129.02 (ArCH), 128.97

(ArCH), 128.71 (ArCH), 128.62 (ArCH), 128.52 (ArC ), 128.47 (ArCH), 128.09 (ArCH),

128.03 (ArCH), 127.86 (ArCH), 127.69 (ArCH), 127.55 (ArCH), 127.48 (ArCH), 127.39

(ArCH), 126.20 (CH), 61.10 (CH), 60.54 (CH), 51.03 (CH), 49.92 (CH2), 48.71 (CH),

48.52 (CH2), 40.74 (CH2), 40.73 (CH), 40.72 (CH) LRMS (ES+) C23H18ClNO3 found

392.1 (M+H)+ m/z

3-(4-bromophenyl)-2-[phenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-

carboxylic acid (A07)

N

O

HO O Br
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Purification by reverse-phase chromatography. White solid, 23 mg, 2% yield mp 177.5◦C

to 179.5◦C HPLC retention time 16.373 min LRMS (ES+) C23H18BrNO3 found 458.0

(M+Na)+ m/z

3-(2-fluorophenyl)-2-[phenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-c

arboxylic acid (A08)

N

O

HO O

F

Purification by recrystallisation. White solid, 85 mg, 9% yield mp 212.4◦C to 213.7◦C

IR νmax (neat) cm−1 3025.40 (O-H), 1746.99 (C=O), 1698.86 (C=O) 1:1 mixture of cis

and trans 1H-NMR (400 MHz, DMSO-d6) δH ppm: 3.93 (1H, d, J = 14.65 Hz), 4.07

(1H, d, J = 14.65 Hz), 4.15 (1H, s, trans), 4.73 (1H, d, J = 7.33 Hz, cis), 5.07 (1H, d,

J = 5.86 Hz, cis), 5.17 (1H, d, J = 14.80 Hz), 5.25 (1H, d, J = 15.25 Hz), 5.35 (1H, s,

trans), 6.73 to 6.86 (3H, m), 6.99 to 7.10 (1H, m), 7.22 to 7.36 (11H, m), 7.41 to 7.54

(3H, m), 7.56 to 7.58 (2H, m), 8.00 (1H, d, J = 7.17 Hz, trans), 8.10 (1H, d, J = 7.62 Hz,

trans) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.26 (C=O), 163.81 (C=O), 137.56

(ArC ), 132.54 (ArCH), 131.00 (ArCH), 130.04 (ArCH), 129.21 (ArC ), 128.93 (ArCH),

128.58 (ArCH), 128.56 (ArCH), 128.44 (ArC ), 128.09 (ArCH), 127.97 (ArC ), 127.66

(ArCH), 127.53 (ArCH), 127.43 (ArC ), 122.53 (ArCH), 114.73 (ArCH), 113.73 (CH),

61.32 (CH), 50.97 (CH), 50.12 (CH2, trans) LRMS (ES+) calculated for C23H18FNO3

found 376.1 (M+H)+ m/z and 398.1 (M+Na)+ m/z

3-phenyl-2-[phenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylic

acid (A09)

N

O

HO O

Purification by recrystallisation. White solid, 72 mg, 8% yield mp 203.6◦C to 205.8◦C

IR νmax (neat) cm−1 3000.37 (O-H), 1744.89 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 3.77 (1H, d, J = 13.52 Hz), 4.70 (1H, d, J = 6.76 Hz), 4.98 (1H, d, J =

4.51 Hz), 5.32 (1H, d, J = 13.77 Hz), 6.97 (2H, d, J = 6.88 Hz), 7.26 to 7.33 (9H,
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m), 7.47 to 7.56 (3H, m), 8.09 (1H, d, J = 7.19 Hz) 13C-NMR (100 MHz, DMSO-d6)

δC ppm: 170.71 (C=O), 163.58 (C=O), 137.78 (ArC ), 137.09 (ArC ), 134.17 (ArC ),

132.52 (ArCH), 129.16 (ArC ), 129.11 (ArCH), 129.01 (ArCH), 128.74 (ArCH), 128.63

(CH) 128.51 (ArCH), 128.39 (ArCH), 128.24 (ArCH), 128.02 (ArCH), 127.94 (ArCH),

127.92 (ArCH), 127.68 (ArCH), 126.50 (CH) 61.17 (CH), 48.55 (CH2), 48.53 (CH)

LRMS (ES+) calculated for C23H20NO3 found 358.1 (M+H)+ m/z

3-(pyridine-3-yl)-2-[phenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-car

boxylic acid (A10)

N

O

HO O

N

Purification by recrystallisation. White solid, 525 mg, 58% yield mp 226.3◦C-227.8◦C

IR νmax (neat) cm−1 3059.57 (O-H), 1648.34 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH

ppm: 4.16 to 4.20 (2H, d, J = 14.99 Hz), 5.06 (1H, d, J= 14.73 Hz), 5.40 (1H, s), 7.18 to

7.34 (8H, m), 7.41 to 7.47 (2H, m), 7.99 to 8.01 (1H, m) 13C-NMR (100 MHz, DMSO-d6)

δC ppm: 172.20 (C=O), 163.75 (C=O), 149.11 (ArCH), 148.21 (ArCH), 137.50 (ArC ),

135.22 (ArC ), 134.23 (ArCH), 133.86 (ArC ), 132.62 (ArCH), 130.10 (ArCH), 129.29

(ArC ), 128.65 (ArCH), 128.59 (ArCH), 128.53 (ArCH), 127.56 (ArCH), 127.52 (ArCH),

123.85 (CH), 59.89 (CH), 50.89 (CH), 50.14 (CH2) LRMS (ES+) calculated for C22H19N2O3

found 359.1 (M+H)+ m/z

3-(pyridine-4-yl)-2-[phenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-car

boxylic acid (A11)

N

O

HO O
N

Purification by recrystallisation. White solid, 262 mg, 29% yield mp 252.6◦C to 253.6◦C

IR νmax (neat) cm−1 3062.26 (O-H), 1651.30 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH

ppm: 4.14 (1H, d, J = 14.95 Hz), 4.17 (1H, s), 5.12 (1H, d, J = 14.95 Hz), 5.36 (1H, s),

7.02 (2H, d, J = 5.77 Hz), 7.19 to 7.30 (5H, m), 7.40 to 7.43 (2H, m), 7.97 (1H, m), 8.38

(2H, d, J = 6.10 Hz) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.10 (C=O), 163.83
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(C=O), 150.17 (ArCH), 148.83 (ArC ), 137.44 (ArC ), 133.84 (ArC ), 132.58 (ArCH),

130.01 (ArCH), 129.15 (ArCH), 128.67 (ArCH), 128.61 (ArCH), 128.50 (ArCH), 127.60

(ArCH), 127.50 (ArCH), 121.83 (CH), 61.02 (CH), 50.54 (CH), 50.29 (CH2) LRMS

(ES+) calculated for C22H19N2O3 found 359.1 (M+H)+ m/z

2-benzyl-1-oxo-3-(thiophen-3-yl),-1,2,3,4-tetrahydroisoquinoline-4-carboxylic

acid (A12)

N

O

HO O
S

Purified on silica. Yellow solid, 18 mg, 2% yield mp 208.8 ◦C to 212.4 ◦C IR νmax (neat)

cm−1 3031.68 (O-H), 1730.05 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH ppm: 3.90 (1H,

d, J = 16.19 Hz), 4.63 (1H, d, J = 8.09 Hz), 5.10 (1H, d, J = 8.09 Hz), 5.28 (1H, d, J =

16.19 Hz), 6.49 (1H, dd, J = 1.24 Hz and 5.19 Hz), 7.18 (1H, dd, J = 1.24 Hz and 3.05

Hz), 7.27 to 7.34 (6H, m), 7.45 to 7.49 (1H, m), 7.55 to 7.59 (1H, td, J= 1.47 Hz and 15.34

Hz), 7.68 (1H, d, J = 7.78 Hz), 8.05 (dd, J = 1.24 Hz and 7.78 Hz) 13C-NMR (100 MHz,

DMSO-d6) δC ppm: 170.75 (C=O), 163.40 (C=O), 138.19 (ArC ), 137.96 (ArC ), 134.67

(ArC ), 132.42 (ArCH), 129.19 (ArC ), 128.98 (ArCH), 128.61 (ArCH), 128.43 (ArCH),

128.37 (ArCH), 128.01 (ArCH), 127.96 (ArCH), 127.91 (ArCH), 127.63 (ArCH), 127.46

(ArCH), 127.03 (ArCH), 126.97 (ArCH), 125.08 (CH), 57.09 (CH), 48.48 (CH2), 48.11

(CH) LRMS (ES+) calculated for C21H18NO3S found 364.1 (M+H)+ m/z

3-(3-phenoxymethyl)-2-[(4-methylphenyl)methyl]-1-oxo-1,2,3,4-tetrahydroiso

quinoline-4-carboxylic acid (A13)

N

O

HO O O

Purification by recrystallisation. Pale yellow solid, 187 mg, 16% yield mp 207.0 ◦C to

209.5 ◦C IR νmax (neat) cm−1 3069.94 (O-H) 1640.35 (C=O) 1230.24 (C-O) 1H-NMR

(400 MHz, DMSO-d6) δH ppm: 2.25 (3H, s), 4.01 (1H, d, J = 14.99 Hz), 4.04 (1H, s),

5.06 (1H, d, J = 15.55 Hz), 5.25 (1H, s), 6.57 (1H, m), 6.77 to 6.84 (4H, m), 7.05 (2H, d, J



Targeting the p53/MDM2 Protein-Protein Interaction 153

= 7.87 Hz), 7.11 to 7.15 (3H, m), 7.20 to 7.25 (2H, m), 7.31 to 7.35 (2H, m), 7.41 to 7.47

(2H, m), 7.91 (1H, dd, J = 7.27 Hz and 1.61 Hz) 13C-NMR (100 MHz, DMSO-d6) δC

ppm: 172.46 (C=O), 163.74 (C=O), 157.00 (ArC ), 156.49 (ArC ), 142.20 (ArC ), 136.51

(ArC ), 134.46 (ArC ), 132.37 (ArCH), 130.74 (ArCH), 130.48 (ArCH), 129.97 (ArCH),

129.33 (ArC ), 129.16 (ArCH), 128.62 (ArCH), 128.24 (ArCH), 127.37 (ArCH), 124.00

(ArCH), 121.65 (ArCH), 118.90 (ArCH), 118.76 (ArCH), 117.84 (ArCH), 116.57 (CH),

61.47 (CH), 49.68 (CH2), 31.16 (CH), 21.20 (CH3) LRMS (ES+) calculated for C30H26NO4

found 464.1 (M+H)+ m/z

3-(2,4-dimethylphenylmethyl)-2-[(4-methylphenyl)methyl]-1-oxo-1,2,3,4-tetr

ahydroisoquinoline-4-carboxylic acid (A14)

N

O

HO O

Purification by recrystallisation. White solid, 329 mg, 31% yield mp 197.3 ◦C to 200.6

◦C IR νmax (neat) cm−1 2920.34 (O-H), 1738.30 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 2.05 (3H, s), 2.19 (3H, s), 2.28 (3H, s), 3.50 (1H, d, J = 14.64 Hz), 4.53 (1H,

d, J = 6.68 Hz), 5.09 (1H, d, J = 6.68 Hz), 5.40 (1H, d, J = 15.22 Hz), 6.79 (2H, m),

6.93 (1H, s), 7.11 (4H, dd, J = 7.79 Hz and 24.12 Hz), 7.41 (1H, d, J = 7.42 Hz), 7.47

to 7.51 (1H, m), 7.54 to 7.56 (1H, td, J = 1.48 Hz and 15.22 Hz), 8.11 (1H, dd, J =

1.48 Hz and 7.79 Hz) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 171.01 (C=O), 163.73

(C=O), 137.56 (ArC ), 136.91 (ArC ), 136.61 (ArC ), 134.61 (ArC ), 132.66 (ArC ), 132.52

(ArCH), 131.53 (ArCH), 129.63 ArCH), 129.33 (ArC ), 129.12 (ArC ), 128.31 (ArCH),

128.07 (ArCH), 128.04 (ArCH), 127.93 (ArCH), 129.35 (ArCH), 127.20 (CH), 55.05

(CH), 48.36 (CH), 47.34 (CH2), 21.15 (CH3), 20.97 (CH3), 19.26 (CH3) LCMS (ES+)

calculated for C26H26NO3 and C26H25NO3Na found 399.9 (M+H)+ and 421.9 (M+Na)+

m/z

3-(4-ethoxyphenyl)-2-[4-(methylphenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoq

uinoline-4-carboxylic acid (A15)
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N

O

HO O O

Purification by recrystallisation. White solid, 242 mg, 22% yield mp 180.8 ◦C to 183.4

◦C IR νmax (neat) cm−1 2977.77 (O-H), 1739.49 (C=O), 1622.65 (C=O) 1H-NMR (400

MHz, DMSO-d6) δH ppm: 1.28 (3H, t, J = 13.23 Hz), 2.30 (3H, s), 3.63 (1H, d, J =

16.17 Hz), 3.94 (2H, q, J = 7.35 Hz and 22.05 Hz), 4.59 (1H, d, J = 7.35 Hz), 4.87

(1H, d, J = 5.88 Hz), 5.33 (1H, d, J = 16.17 Hz), 6.75 (2H, d, J = 8.82 Hz), 6.86

(2H, d, J = 8.82 Hz), 7.17 (4H, q, J = 5.88 Hz and 22.05 Hz), 7.45 to 7.49 (1H, m),

7.52 to 7.59 (2H, m), 8.08 (1H, d, J = 7.35 Hz) 13C-NMR (100 MHz, DMSO-d6) δC

ppm: 170.74 (C=O), 163.40 (C=O), 158.87 (ArC ), 136.84 (ArC ), 134.75 (ArC ), 134.65

(ArC ), 132.43 (ArCH), 129.62 (ArCH), 129.42 (ArCH), 129.23 (ArC ), 128.70 (ArC ),

128.59 (ArCH), 128.06 (ArCH), 127.91 (ArCH), 127.85 (ArCH), 114.55 (CH), 63.39

(CH2), 60.28 (CH), 48.56 (CH), 47.85 (CH2), 21.17 (CH3), 15.07 (CH3) C26H26NO4

and C26H25NO4Na 415.9 (M+H)+ and 437.9 (M+Na)+ m/z

3-(4-ethylphenyl)-2-[4-(methylphenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A16)

N

O

HO O

Purification by recrystallisation. White solid, 232 mg, 23% yield mp 163.0◦C to 167.8

◦C IR νmax (neat) cm−1 2952.44 (O-H), 1700.10 (C=O), 1638.84 (C=O) 1H-NMR (400

MHz, DMSO-d6) δH ppm: 1.09 (3H, t, J = 15.65 Hz), 2.26 (3H, s), 3.72 (1H, d, J

= 13.87 Hz), 4.05 (1H, s), 5.17 (1H, s), 5.28 (1H, d, J = 13.87 Hz), 6.94 (2H, d, J =

8.51 Hz), 7.08 (4H, m) 7.14 (2H, d, J = 8.51 Hz) 7.18 to 7.21 (1H, m), 7.40 to 7.44

(2H, m), 7.98 to 8.00 (1H, m) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.51 (C=O),

163.89 (C=O), 143.53 (ArC ), 136.77 (ArC ), 136.55 (ArC ), 134.51 (ArC ), 134.08 (ArC ),

132.41 (ArCH), 129.99 (ArCH), 129.41 (ArC ), 129.25 (ArCH), 128.54 (ArCH), 128.38

(ArCH), 128.33 (ArCH), 127.40 (ArCH), 126.43 (CH), 61.19 (CH), 51.27 (CH), 49.22
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(CH2), 28.06 (CH2), 21.18 (CH3), 15.76 (CH3) LRMS (ES+) calculated for C26H26NO3

found 400.1 (M+H)+ m/z

3-(4-chlorophenyl)-2-[4-(methylphenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoq

uinoline-4-carboxylic acid (A17)

N

O

HO O Cl

Purification by recrystallisation. White solid, 20 mg, 2% yield mp 220.0◦C to 223.4◦C

IR νmax (neat) cm−1 2951.07 (O-H), 1716.11 (C=O), 1698.69 (C=O) 1H-NMR (400

MHz, DMSO-d6) δH ppm: 2.26 (3H, s), 3.87 (1H, d, J = 14.87 Hz), 4.08 (1H, s), 5.18

(1H, d, J = 14.87 Hz), 5.25 (1H, s), 7.05 (4H, m), 7.14 (2H, m), 7.19 (1H, m), 7.29

(2H, d, J = 8.41 Hz), 7.43 (2H, m), 7.98 (1H, m), 12.96 (1H, brs) 13C-NMR (100 MHz,

DMSO-d6) δC ppm: 172.23 (C=O), 163.72 (C=O), 138.69 (ArC ), 136.59 (ArC ), 134.42

(ArC ), 133.85 (ArC ), 132.59 (ArC ), 132.50 (ArCH), 130.00 (ArCH), 129.30 (ArC ),

129.21 (ArCH), 129.04 (ArCH), 128.58 (ArCH), 128.46 (ArCH), 128.44 (CH: hidden

underneath 128.46 as shown by HSQC)), 127.47 (CH), 60.86 (CH), 51.01 (CH), 49.46

(CH2), 21.20 (CH3) HRMS (ES-) calculated for C24H19ClNO3 found 404.1059 (M-H)−

m/z

3-(3-trifluoromethyl-4-chlorophenyl)-2-[4-(methylphenyl)methyl]-1-oxo-1,2,3,

4-tetrahydroisoquinoline-4-carboxylic acid (A18)

N

O

HO O Cl

F

F

F

Purification by recrystallisation. White solid, 382 mg, 32% yield mp 249.4◦C to 253.0◦C

IR νmax (neat) cm−1 2918.73 (O-H) 1716.33 (C=O), 1701.61 (C=O) 1H-NMR (400 MHz,

DMSO-d6) δH ppm: 2.22 (3H, s), 4.17 (1H, s), 4.39 (1H, d, J = 14.50 Hz), 4.84 (1H, d, J

= 14.50 Hz), 7.00 (2H, d, J = 7.91 Hz), 7.16 (2H, d, J = 7.91 Hz), 7.25 (2H, m), 7.36 (1H,

m), 7.41 to 7.48 (2H, m), 7.52 (1H, d, J = 8.44 Hz), 7.98 to 8.02 (1H, m) 13C-NMR (100

MHz, DMSO-d6) δC ppm: 172.01 (C=O), 163.49 (C=O), 140.04 (ArC ), 136.71 (ArC ),
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134.30 (ArC ), 133.63 (ArC ), 132.65 (ArCH), 132.10 (ArCH), 132.02 (ArCH), 130.12

(ArCH), 129.99 (ArC ), 129.18 (ArC ), 129.06 (ArCH), 128.96 (ArCH), 128.59 (ArCH),

127.49 (ArCH), 126.94 (ArC ), 126.37 (ArCH), 126.32 (CH), 60.82 (CH), 50.68 (CH),

50.04 (CH2), 21.10 (CH3) LRMS (ES+) calculated for C25H20ClFNO3 found 474.1

(M+H)+ m/z

3-(4-bromophenyl)-2-[4-(methylphenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoq

uinoline-4-carboxylic acid (A19)

N

O

HO O Br

Purification by recrystallisation. White solid, 45 mg, 4% yield mp 197.5◦C to 204.0◦C

IR νmax (neat) cm−1 2951.08 (O-H), 1745.67 (C=O), 1698.33 (C=O) 1H-NMR (400

MHz, DMSO-d6) δH ppm: (1:2 ratio Cis:trans) 2.25 (3H, s), 3.87 (1H, d, J = 15.01

Hz), 4.07 (1H, s), 5.17 (1H, d, J = 15.01 Hz), 5.23 (1H, s), 6.92 (2H, d, J = 8.44 Hz),

7.06 (2H, d, J = 8.44 Hz), 7.11 to 7.19 (4H, m), 7.39 to 7.43 (3H, m), 7.96 to 7.98 (1H,

m) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.23 (C=O), 163.74 (C=O), 139.10

(ArC ), 136.61 (ArC ), 134.39 (ArC ), 133.81 (ArC ), 131.96 (ArCH), 130.38 (ArCH),

129.99 (ArC ), 129.59 (ArCH), 129.22 (ArCH), 128.80 (ArCH), 128.58 (ArCH), 128.46

(ArCH), 128.16 (ArCH), 127.60 (ArCH), 121.14 (ArC ), 60.91 (CH), 50.96 (CH), 49.45

(CH2), 21.20 (CH3) LRMS (ES+) calculated for C24H21BrNO3 found 450.9 (M+H)+

m/z

3-(2-fluorophenyl)-2-[4-(methylphenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A20)

N

O

HO O

F

Purification by recrystallisation. White solid, 78 mg, 8% yield mp 270.3◦C to 273.2◦C

IR νmax (neat) cm−1 2956.90 (O-H), 1739.90 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 2.26 (3H, s), 3.78 (1H, d, 14.85 Hz), 4.07 (1H, s), 5.25 (2H, sd overlap, J =
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17.64 Hz), 7.05 (4H, m), 7.13 to 7.26 (6H, m), 7.40 to 7.44 (2H, m), 7.98 to 8.00 (1H,

m) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.45 (C=O), 163.87 (C=O), 139.65

(ArC ), 136.53 (ArC ), 134.53 (ArC ), 134.10 (ArC ), 132.38 (ArCH), 129.98 (ArCH),

129.42 (ArC ), 129.22 (ArCH), 129.12 (ArCH), 128.45 (ArCH), 128.32 (ArCH), 127.99

(ArCH), 127.40 (ArCH), 126.48 (CH), 61.44 (CH), 51.29 (CH), 49.36 (CH2), 21.20

(CH3) LRMS (ES+) calculated for C24H21FNO3 found 389.9 (M+H)+ m/z

2-benzyl-1-oxo-3-(thiophen-3-yl),-1,2,3,4-tetrahydroisoquinoline-4-carboxylic

acid (A21)

N

O

HO O
S

Purification on silica. White solid, 352 mg, 37% yield mp 274.5◦C to 275.1◦C IR

νmax (neat) cm−1 2918.86 (O-H), 1716.18 (C=O), 1698.75 (C=O) 1H-NMR (400 MHz,

DMSO-d6) δH ppm: (1:3 ratio of cis: trans) 2.28 (3H, s), 3.95 (1H, d, J = 15.28 Hz),

4.15 (1H, s), 5.21 (1H, d, J = 14.55 Hz), 5.28 (1H, s), 6.73 (1H, d, J = 5.09 Hz),

7.08 to 7.11 (3H, m), 7.12 to 7.16 (3H, m), 7.18 to 7.21 (1H, m), 7.27 (1H, d, J =

7.18 Hz), 7.39 to 7.50 (3H, m), 7.97 (1H, d, J = 7.52 Hz), 13.00 (1H, brs) 13C-NMR

(100 MHz, DMSO-d6) δC ppm: 172.32 (C=O), 163.41 (C=O), 141.33 (ArC ), 136.48

(ArC ), 134.76 (ArC ), 134.72 (ArC ), 132.37 (ArCH), 130.01 (ArCH), 129.60 (ArCH),

129.33 (ArCH), 129.21 (ArCH), 128.47 (ArCH), 128.27 (ArCH), 128.05 (ArCH), 127.63

(ArCH), 127.47 (ArCH), 126.40 (ArCH), 122.86 (CH), 58.29 (CH), 50.34 (CH), 49.45

(CH2), 21.21 (CH3) LRMS (ES+) calculated for C22H20NO3S found 377.9 (M+H)+

m/z

3-(2,4-dimethylphenyl)-2-[methoxyphenylmethyl]-1-oxo-1,2,3,4-tetrahydroiso

quinoline-4-carboxylic acid (A22)

N

O

HO O

O
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Purification by recrystallisation. White solid, 430 mg, 41% yield mp 198.2◦C to 200.9◦C

IR νmax (neat) cm−1 3003.82 (O-H), 1737.86 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH

ppm: 2.07 (3H, s), 2.19 (3H, s), 3.50 (1H, d,J = 14.38 Hz), 3.73 (3H, s), 4.55 (1H, d, J =

7.19 Hz), 5.09 (1H, d, J = 6.16 Hz), 5.37 (1H, d, 15.41 Hz), 6.78 (2H, m), 6.88 (2H, d, J

= 9.24 Hz), 6.93 (1H, s), 7.10 (2H, d, J = 8.22 Hz), 7.39 (1H, d, J = 7.19 Hz), 7.49 (1H,

t, J = 7.50 Hz and 14.79 Hz), 7.53 to 7.57 (1H, td, J = 1.19 Hz and 15.50 Hz), 8.10 (1H,

dd, J = 1.19 Hz and 8.91 Hz), 12.84 (1H, brs) 13C-NMR (100 MHz, DMSO-d6) δC ppm:

172.17 (C=O), 171.07 (C=O), 164.03 (ArC ), 163.75 (ArC ), 159.01 (ArC ), 158.91 (ArC ),

136.62 (ArC ), 132.49 (ArCH), 132.27 (ArCH), 131.54 (ArCH), 129.84 (ArCH), 129.51

(ArC ), 129.47 (ArC ), 129.44 (ArC ), 129.35 (ArCH), 129.19 (ArC ), 128.30 (ArCH),

128.07 (ArCH), 128.03 (ArCH), 127.41 (ArCH), 127.32 (ArCH), 127.18 (ArCH), 126.90

(ArCH), 125.13 (ArCH), 114.44 (ArCH), 114.16 (CH), 57.87 (CH), 55.50 (CH3), 55.45

(CH), 54.99 (CH), 49.11 (CH), 48.48 (CH), 48.36 (CH2), 47.04 (CH2), 20.98 (CH3),

20.84 (CH3), 19.30 (CH3), 18.90 (CH3) LRMS (ES+) calculated for C26H26NO4 found

416.1 (M+H)+ m/z
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3-(2-hydroxy-5-nitrophenyl)-2-[methoxyphenylmethyl]-1-oxo-1,2,3,4-tetrahy

droisoquinoline-4-carboxylic acid (A23)

N

O

HO O

OH

NO2

O

Purification by recrystallisation. Yellow solid, 249 mg, 22% yield mp 263.9◦C to 264.0◦C

IR νmax (neat) cm−1 3077.92 (O-H), 1712.89 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH

ppm: 3.68 (3H, s), 4.03 (1H, s), 4.18 (1H, d, J = 14.50 Hz), 4.95 (1H, d, J = 14.50 Hz),

5.50 (1H, s), 6.80 (2H, d, J = 8.92 Hz), 6.95 (1H, d, J = 8.92 Hz), 7.18 (2H, d, J = 8.92

Hz), 7.23 (2H, m), 7.43 (3H, q, J = 3.30 Hz and 9.20 Hz), 7.93 (1H, dd, J = 2.70 Hz and

11.63 Hz), 8.04 (1H, q, J = 3.52 Hz and 9.20 Hz), 12.42 (1H, brs) 13C-NMR (100 MHz,

DMSO-d6) δC ppm: 172.29 (C=O), 163.93 (C=O), 158.89 (ArC ), 139.41 (ArC ), 134.13

(ArC ), 132.57 (ArCH), 130.17 (ArCH), 130.12 (ArCH), 129.28 (ArC ), 129.09 (ArC ),

128.51 (ArCH), 127.54 (ArCH), 126.31 (ArC ), 125.46 (ArCH), 125.30 (ArC ), 122.76

(ArCH), 116.22 (ArCH), 113.98 (ArCH), 56.31 (CH), 55.43 (CH3), 49.23 (CH2), 48.01

(CH) LRMS (ES+) calculated for C24H21N2O7 found 449.3 (M+H)+ m/z

3-(2-nitrophenyl)-2-[methoxyphenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquino

line-4-carboxylic acid (A24)

N

O

HO O

NO2

O

Purification by recrystallisation. White solid, 338 mg, 31% yield mp 215.4◦C to 220.2◦C

IR νmax (neat) cm−1 2357.80 (O-H), 1708.15 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 3.68 (3H, s), 4.15 (1H, s), 4.20 (1H, d, J = 14.05 Hz), 4.83 (1H, d, J = 14.05

Hz), 5.88 (1H, s), 6.71 (3H, m), 6.79 to 6.81 (2H, m), 7.11 to 7.13 (3H, m), 7.26 to 7.28

(2H, m), 7.43 to 7.47 (6H, m), 8.02 to 8.06 (3H, m), 12.94 (1H, brs) 13C-NMR (100

MHz, DMSO-d6) δC ppm: 171.88 (C=O), 163.81 (C=O), 158.86 (ArC ), 148.01 (ArC ),

134.57 (ArC ), 134.10 (ArCH), 133.43 (ArC ), 132.65 (ArCH), 130.47 (ArCH), 130.34
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(ArCH), 129.54 (ArCH), 128.98 (ArC ), 128.84 (ArC ), 128.66 (ArCH), 128.36 (ArCH),

127.51 (ArCH), 125.97 (ArCH), 113.92 (CH), 57.06 (CH), 55.45 18(CH), 49.50 (CH2),

49.22 (CH) LRMS (ES+) calculated for C24H20N2O6 433.4 (M+H)+ m/z

3-(2-fluorophenyl)-2-[methoxyphenylmethyl]-1-oxo-1,2,3,4-tetrahydroisoquin

oline-4-carboxylic acid (A25)

N

O

HO O

F

O

Purification by recrystallisation. White solid, 460 mg, 45% yield mp 190.0◦C to 191.3◦C

IR νmax (neat) cm−1 2957.25 (O-H), 1738.82 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 3.72 (3H, s), 3.96 (1H, d, J = 13.67 Hz), 4.13 (1H, s), 5.13 (1H, d, J = 14.80

Hz), 5.30 (1H, s), 6.08 to 6.83 (4H, m), 6.99 to 7.04 (1H, td, J = 19.16 Hz and 2.13

Hz), 7.19 to 7.22 (3H, m), 7.26 to 7.28 (1H, m), 7.43 (2H, m), 7.97 to 8.00 (1H, m)

13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.16 (C=O), 163.65 (C=O), 158.89 (ArC ),

144.84 (ArC ), 142.78 (ArC ) 133.89 (ArC ), 132.49 (ArCH), 131.08 (ArCH, split peak),

131.00 (ArCH, split peak), 130.12 (ArCH), 129.99 (ArCH), 129.39 (ArC ), 129.33 (ArC ),

128.45 (ArCH), 127.45 (ArCH), 122.55 (ArCH), 122.52 (ArCH), 114.02 (ArCH), 113.70

(CH), 60.84 (CH), 55.46 (CH3), 50.90 (CH), 49.29 (CH2) LRMS (ES+) calculated for

C24H21FNO4 found 406.6 (M+H)+ m/z

3-[(4-methoxyphenyl)methyl]- 1-oxo-3-(pyridine-3-yl)-1,2,3,4-tetrahydroisoquino

line-4-carboxylic acid (A26)

N

O

HO O

N

O

Purification by recrystallisation. White solid, 645 mg, 66% yield mp 246.0 ◦C to 242.1

◦C IR νmax (neat) cm−1 2913.05 (O-H), 1682.65 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 3.71 (3H, s) 4.06 (1H, d, J = 14.60 Hz, 4.17 (1H, s), 5.09 (1H, d, J = 14.60

Hz), 5.33 (1H, s), 6.79 to 6.82 (2H, m), 7.02 to 7.03 (2H, d, J = 6.05 Hz), 7.18 to 7.23
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(3H, m), 7.39 to 7.46 (2H, m), 7.97 to 8.00 (1H, m), 8.38 to 8.40 (2H, m), 13.00 (1H,

brs) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 171.99 (C=O), 163.64 (C=O), 158.94

(ArC ), 150.16 (ArCH), 148.80 (ArC ), 133.69 (ArC ), 132.51 (ArCH), 130.25 (ArCH),

129.95 (ArCH), 129.29 (ArC ), 128.51 (ArCH), 127.51 (ArCH), 121.82 (ArCH), 114.03

(CH), 60.53 (CH), 55.47 (CH3), 50.41 (CH), 49.47 (CH2) LRMS (ES+) calculated for

C23H21FN2O4 found 388.9 (M+H)+ m/z

3-[(4-phenoxyphenyl)methyl]-1-oxo-3-(-(fluorophenyl)methyl)-1,2,3,4-tetrahy

droisoquinoline-4-carboxylic acid (A27)

N

O

HO O

F

O

Purification by recrystallisation. White solid, 330 mg, 28% yield mp 233.2◦C to 235.6◦C

IR νmax (neat) cm−1 2900.00 (O-H), 1698.93 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 4.06 to 4.10 (2H, sd, overlap), 5.05 (1H, d, J = 14.80 Hz), 5.29 (1H, s), 6.57

(1H, t, J = 2.03 Hz), 6.76 to 6.84 (4H, m), 7.03 to 7.07 (2H, m), 7.12 to 7.15 (1H, m),

7.21 to 7.25 (2H, m), 7.29 to 7.35 (4H, m), 7.41 to 7.46 (2H, m), 7.89 (1H, dd, J =

7.52 Hz and 1.45 Hz) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.29 (C=O), 163.72

(C=O), 157.02 (ArC ), 156.47 (ArC ), 141.98 (ArC ), 133.97 (ArC ), 132.50 (ArCH),

130.84 (ArCH), 130.76 (ArCH), 130.74 (ArCH), 130.48 (ArCH), 130.01 (ArCH), 129.25

(ArC ), 128.40 (ArCH), 127.42 (ArCH), 124.02 (ArCH), 121.68 (ArC ), 118.92 (ArCH),

117.86 (ArCH), 117.07 (ArCH), 116.60 (ArCH), 115.39 (ArCH, split peak), 115.18

(ArCH, split peak), 61.41 (CH), 51.10 (CH), 49.27 (CH2) LRMS (ES+) calculated for

C29H23FNO4 found 468.2 (M+H)+ m/z

3-(2,5-dimethoxyphenyl)-2-[4-(fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahyd

roisoquinoline-4-carboxylic acid (A28)

N

O

HO O

F

O

O
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Purification by recrystallisation. White solid, 650 mg, 53% yield mp 227.1◦C to 232.0◦C

IR νmax (neat) cm−1 3003.69 (O-H), 1747.47 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: (Pure cis form) 3.44 (3H, s), 3.63 (3H, s), 3.82 (1H, d, J = 15.57 Hz), 4.56

(1H, d, J = 5.84 Hz), 5.20 to 5.23 (1H, d, J = 15.57 Hz), 5.40 (1H, d, J = 5.84 Hz),

6.24 (1H, d, J = 2.89 Hz), 6.76 to 6.78 (1H, dd, J = 2.89 Hz and 12.54 Hz), 6.86 to

6.88 (1H, d, J = 9.16 Hz), 7.11 to 7.15 (2H, m), 7.27 to 2.30 (2H, m), 7.35 to 7.37 (1H,

m), 7.46 to 7.50 (1H, m), 7.54 to 7.58 (1H, td, J = 1.45 Hz and 16.87 Hz) 13C-NMR

(100 MHz, DMSO-d6) δC ppm: 170.82 (C=O), 163.91 (C=O), 152.93 (ArC ), 151.86

(ArC ), 150.71 (ArC ), 134.75 (ArC ), 134.03 (ArC ), 132.65 (ArCH), 130.09 (ArCH),

130.01 (ArCH), 129.12 (ArC ), 128.01 (ArCH), 127.89 (ArCH), 126.17 (ArC ), 115.75

(ArCH, split peak), 115.53 (ArCH, split peak), 114.50 (ArCH), 113.72 (ArCH), 112.53

(ArCH), 56.36 (CH3), 55.33 (CH3), 53.26 (CH), 48.52 (CH), 47.80 (CH2) LRMS (ES+)

calculated for C25H23FNO5 and C25H22FNO5Na found 465.9 (M+H)+ m/z and 487.9

(M+Na)+ m/z

3-(2,4-dimethylphenyl)-2-[4-(fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroi

soquinoline-4-carboxylic acid (A29)

N

O

HO O

F

Purification by recrystallisation. White solid, 118 mg, 11% yield mp 216.9◦C to 218.1◦C

IR νmax (neat) cm−1 3029.17 (O-H), 1741.94 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: (Pure cis form) 2.07 (1H, s), 2.18 (1H, s), 3.69 (1H, d, J = 14.95 Hz), 4.57

(1H, d, J = 6.65 Hz), 5.12 (1H, d, J = 6.65 Hz), 5.29 (1H, d, J = 14.95 Hz), 6.76 to

6.79 (2H, m), 6.92 (1H, s), 7.10 to 7.14 (2H, m), 7.19 to 7.23 (2H, m), 7.40 (2H, d, J =

7.50 Hz), 7.49 (1H, t, J = 7.50 Hz and 14.67 Hz), 7.54 to 7.58 (1H, td, J = 1.63 Hz and

16.63 Hz), 8.09 (1H, dd, J = 1.63 Hz and 9.13 Hz), 12.82 (1H, brs) 13C-NMR (100 MHz,

DMSO-d6) δC ppm: 171.03 (C=O), 163.87 (C=O), 160.64 (ArC ), 137.57 (ArC ), 136.56

(ArC ), 134.71 (ArC ), 133.89 (ArC ), 133.86 (ArC ), 132.59 (ArCH), 131.55 (ArCH),

130.02 (ArCH), 129.94 (ArCH), 129.07 (ArC ), 128.28 (ArCH), 128.10 (ArCH), 128.08

(CH) 127.40 (ArCH), 127.17 (ArCH), 115.83 (ArCH, split peak), 115.62 (ArCH, split

peak), 55.43 (CH), 48.39 (CH), 47.25 (CH2), 20.97 (CH3), 19.28 (CH3) LRMS (ES+)

calculated for C25H23FNO3 and C25H22FNO3Na found 403.9 (M+H)+ m/z and 425.9

(M+Na)+ m/z
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3-(4-ethoxyphenyl)-2-[4-(fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A30)

N

O

HO O

F

O

Purification by recrystallisation. White solid, 368 mg, 33% yield mp 238.6◦C to 240.8◦C

IR νmax (neat) cm−1 2977.21 (O-H), 1698.45 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH

ppm: 1.25 (3H, t, J = 7.39 Hz and 14.78 Hz), 3.85 (1H, d, J = 14.80 Hz), 3.92 (2H,q, J =

6.96 Hz and 20.87 Hz), 4.03 (1H, d, J = 1.19 Hz), 5.18 to 5.23 (2H, d and s overlap), 6.76

to 6.78 (2H, m), 6.91 to 6.93 (2H, m), 7.05 to 7.09 (2H, m), 7.19 to 7.21 (1H, m), 7.29

to 7.33 (2H, m), 7.40 to 7.44 (2H, m), 7.96 to 7.99 (1H, m), 12.88 (1H, brs) 13C-NMR

(100 MHz, DMSO-d6) δC ppm: 172.51 (C=O), 163.77 (C=O), 158.36 (ArC ), 134.22

(ArC ), 134.03 (ArC ), 134.00 (ArC ), 132.43 (ArCH), 131.16 (ArC ), 130.63 (ArCH,

split peak), 130.55 (ArCH, split peak), 130.04 (ArCH), 128.32 (ArCH), 127.70 (ArCH),

127.41 (ArC ), 115.43 (ArCH, split peak), 115.22 (ArCH, split peak), 114.92 (CH), 63.41

(CH2), 61.02 (CH), 51.36 (CH), 48.65 (CH2), 15.06 (CH3) LRMS (ES+) calculated for

C25H23FNO4 and C25H22FNO4Na found 420.1 (M+H)+ m/z and 443.3 (M+Na)+ m/z

3-(4-ethylphenyl)-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoquin

oline-4-carboxylic acid (A31)

N

O

HO O

F

Purification by recrystallisation. White solid, 203 mg, 19% yield mp 271.5◦C-275.7◦C IR

νmax (neat) cm−1 2956.44 (O-H), 1697.88 (C=O), 1640.69 (C=O) 1H-NMR (400 MHz,

DMSO-d6) δH ppm: 1.09 (3H, t, J = 14.77 Hz), 3.84 (1H, d, J = 16.52 Hz), 4.07 (1H,

s), 5.24 (2H, d, overlap, J = 16.52 Hz), 6.94 (2H, d, J = 7.91 Hz) 7.07 (4H, m), 7.20

(1H, m), 7.31 (2H, m), 7.42 (2H, m), 7.98 (1H, m) 13C-NMR (100 MHz, DMSO-d6) δC

ppm: 172.72 (C=O) 163.91 (C=O), 163.00 (ArC ), 160.59 (ArC ), 143.43 (ArC ), 136.99

(ArC ), 134.51 (ArC ), 134.02 (ArC ), 133.99 (ArCH), 132.36 (ArCH), 130.58 (ArCH),
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130.50 (ArCH), 130.08 (ArCH), 129.32 (ArCH), 128.47 (ArCH), 128.18 (ArCH), 127.33

(ArCH), 126.45 (ArCH), 115.40 (ArCH), 115.18 (CH), 61.54 (CH), 51.64 (CH), 49.05

(CH2), 28.07 (CH2), 15.80 (CH3) LRMS (ES+) calculated for C25H23FNO3 and C25H22FNO3Na

found 404.1 (M+H)+ m/z and 425.1 (M+Na)+ m/z

3-(2-hydroxy-5-nitrophenyl)-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahy

droisoquinoline-4-carboxylic acid (A32)

N

O

HO O

F

OH

NO2

Purification by recrystallisation. White solid, 288 mg, 25% yield mp 269.8◦C to 271.3◦C

IR νmax (neat) cm−1 2969.84 (O-H), 1716.86 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH

ppm: 4.06 (1H, s), 4.19 (1H, d, J = 14.43 Hz), 5.02 (1H, d, J = 14.43 Hz), 5.50 (1H, s),

6.93 to 6.95 (1H, m), 7.00 to 7.05 (2H, m), 7.22 to 7.26 (2H, m), 7.29 to 7.32 (2H, m), 7.42

to 7.44 (2H, m), 7.94 (1H, dd, J = 2.31 Hz and 11.55 Hz), 8.01 to 8.04 (1H, m) 13C-NMR

(100 MHz, DMSO-d6) δC ppm: 172.33 (C=O), 164.08 (C=O), 163.06 (ArC ), 160.64

(ArC ), 139.28 (ArC ), 134.24 (ArC ), 133.75 (ArC ), 132.66 (ArCH), 130.87 (ArCH, split

peak), 130.78 (ArCH, split peak), 130.24 (ArCH), 128.52 (ArCH), 127.53 (ArCH),

126.28 (ArC ), 125.61 (ArCH), 122.65 (ArCH), 116.33 (ArCH), 115.39 (ArCH, split

peak), 115.18 (ArCH, split peak), 56.63 (CH), 49.15 (CH2), 48.04 (CH) LRMS (ES+)

calculated for C23H18FN2O6 and C23H17FN2O6Na found 436.9 (M+H)+ m/z and 458.9

(M+Na)+ m/z

3-(2-nitrophenyl)-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoquin

oline-4-carboxylic acid (A33)

N

O

HO O

F

NO2

Purification by recrystallisation. White solid, 568 mg, 51% yield mp 240.9◦C to 244.6◦C

IR νmax (neat) cm−1 2873.87 (O-H), 1698.75 (C=O) 1H-NMR (400 MHz, DMSO-d6)
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δH ppm: 4.17 (1H, s), 4.25 (1H, d, J = 13.89 Hz), 4.87 (1H, d, J = 14.81 Hz), 5.92 (1H,

s), 6.79 to 6.81 (1H, m), 6.97 to 7.02 (2H, m), 7.26 to 7.30 (3H, m), 7.44 to 7.46 (4H, m),

8.01 to 8.08 (2H, m), 12.97 (1H, brs) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 171.94

(C=O), 163.97 (C=O), 163.00 (ArC ), 160.59 (ArC ), 148.02 (ArC ), 134.59 (ArC ), 134.18

(ArCH), 133.49 (ArC ), 132.75 (ArCH), 131.01 (ArCH, split peak), 130.93 (ArCH, split

peak), 130.55 (ArCH), 129.62 (ArCH), 128.77 (ArC ), 128.68 (ArCH), 128.34 (ArCH),

127.52 (ArCH), 126.10 (ArCH), 115.30 (ArCH, split peak), 115.09 (ArCH, split peak),

57.52 (CH), 49.45 (CH2), 49.21 (CH) LRMS (ES+) calculated for C23H18FN2O5 and

C23H17FN2O5Na found 420.9 (M+H)+ m/z and 442.9 (M+Na)+ m/z

3-(4-chlorophenyl)-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A34)

N

O

HO O

F

Cl

Purification by recrystallisation. White solid, 444 mg, 43% yield αD
22.0 +80.00◦ (c =

10 mg/mL in DMF) mp 254.0◦C-255.6◦C IR νmax (neat) cm−1 3074.53 (O-H), 1697.87

(C=O), 1643.70 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH ppm: 4.00 (1H, d, J =

14.27 Hz), 4.08 (1H, s), 5.14 (1H, d, J = 14.81 Hz), 5.31 (1H, s), 6.97 to 7.03 (2H, m),

7.04 to 7.11 (2H, m), 7.19 to 7.21 (2H, m), 7.21 to 7.24 (1H, m), 7.26 to 7.30 (2H, m),

7.31 to 7.33 (2(2H, m), 8.00 (1H, d, J = 4.55 Hz) 13C-NMR (100 MHz, DMSO-d6) δC

ppm: 170.65 (C=O), 169.08 (C=O), 137.43 (ArC ), 136.27 (ArC ), 133.94 (ArC ), 133.42

(ArC ), 132.42 (ArCH), 132.00 (ArCH), 131.63 (ArC ), 130.66 (ArCH), 130.08 (ArCH),

129.57 (ArCH), 129.48 (ArCH), 128.66 (ArCH), 128.03 (ArCH), 127.13 (ArCH), 115.73

(ArCH), 115.46 (ArCH), 115.25 (CH), 60.67 (CH), 48.59 (CH), 42.00 (CH2) LRMS

(ES+) calculated for C23H18ClFNO3 found 410.1 m/z (M+H)+ m/z

3-[4-chloro-3-(trifluoromethyl)phenyl]-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,

4-tetrahydroisoquinoline-4-carboxylic acid (A35)

N

O

HO O

F

Cl

F

F

F
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Purification by recrystallisation. White solid, 602 mg, 50% yield mp 267.5◦C to 268.5◦C

IR νmax (neat) cm−1 2937.04 (O-H), 1698.23 (C=O), 1644.23 (C=O) 1H-NMR (400

MHz, DMSO-d6) δH ppm: 4.13 (1H, s), 4.38 (1H, d, J = 15.11 Hz), 4.90 (1H, d, J =

15.11), 5.49 (1H, s), 7.20 to 7.30 (4H, m), 7.30 to 7.36 (2H, m), 7.40 to 7.49 (3H, m),

7.97 to 7.99 (1H, m) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 171.98 (C=O), 133.78

(ArC ), 133.64 (C=O), 132.73 (ArC ), 132.08 (ArC ), 131.12 (ArCH), 131.04 (ArCH),

130.16 (ArCH), 130.07 (ArC ), 129.07 (ArC ), 128.63 (ArCH), 127.49 (ArCH), 126.44

(ArCH), 126.40 (ArCH), 115.31 (ArCH), 115.10 (CH), 60.81 (CH), 50.60 (CH), 49.52

(CH2) LRMS (ES+) calculated for C24H17O2NF3Cl found 478.2 m.Z (M+H)+ m/z

3-(4-bromophenyl)-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A36)

N

O

HO O

F

Br

Purification by recrystallisation. White solid, 343 mg, 30% yield αD
22.0 +27.00◦ (c

= 10 mg/mL in DMF) mp 260.3◦C to 263.3◦C IR νmax (neat) cm−1 2959.78 (O-H),

1698.29 (C=O), 1643.81 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH ppm: 3.96 (1H, d,

15.61 Hz), 4.04 (1H, s), 5.12 (1H, d, J = 15.61 Hz), 5.26 (1H, s), 6.85 to 7.17 (5H, m),

7.30 to 7.52 (6H, m), 7.94 to 8.06 (1H, m) 13C-NMR (100 MHz, DMSO-d6) δC ppm:

172.30 (C=O), 163.78 (C=O), 160.66 (ArC ), 139.14 (ArC ), 133.86 (ArC ), 133.83 (ArC ),

132.55 (ArCH), 131.91 (ArCH), 131.56 (ArCH), 130.79 (ArCH), 130.70 (ArCH), 130.42

(ArCH), 130.04 (ArCH), 129.20 (ArC ), 128.81 (ArCH), 128.41 (ArCH), 127.47 (ArCH),

121.12 (ArC ), 115.43 (ArCH), 115.22 (ArCH), 61.10 (CH), 51.12 (CH), 49.16 (CH2)

HRMS (ES+) calculated for C23H18BrFNO3 found 454.0449 m/z

3-(2-fluorophenyl)-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A37)

N

O

HO O

F

F
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Purification by recrystallisation. White solid, 566 mg, 47% yield mp 247.3◦C to 250.8◦C

IR νmax (neat) cm−1 2964.80 (O-H), 1697.86 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 4.05 (1H, s), 4.10 (1H, d, J = 13.50 Hz), 5.12 (1H, d, J = 13.50 Hz), 5.35

(1H, s), 6.83 to 6.5 (2H, m), 7.03 to 7.08 (2H, m), 7.20 to 7.22 (1H, m), 7.24 to

7.28 (2H, m), 7.32 to 7.36 (3H, m), 7.40 to 7.44 (2H, td, J = 1.66 Hz to 15.13 Hz),

7.96 to 7.99 (1H, m) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.22 (C=O), 163.78

(C=O), 161.31 (ArC ), 142.98 (ArC ), 134.27 (ArC ), 133.92 (ArC ), 133.89 (ArC ), 132.52

(ArCH), 131.05 (ArCH, split peak), 130.97 (ArCH, split peak), 130.83 (ArCH, split

peak), 130.74 (ArCH, split peak), 130.05 (ArCH), 129.15 (ArC ), 128.34 (ArCH), 127.40

(ArCH), 122.54 (ArCH, split peak), 122.52 (ArCH, split peak), 115.37 (ArCH, split

peak), 115.15 (ArCH, split peak), 114.88 (ArCH, split peak), 114.67 (ArCH, split

peak), 113.73 (ArCH, split peak), 113.51 (ArCH, split peak), 61.32 (CH), 51.17 (CH),

49.38 (CH2) LRMS (ES+) calculated for C24H17ClF4NO3 found 478.2 (M+H)+ m/z

3-phenyl-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoquinoline-

4-carboxylic acid (A38)

N

O

HO O

F

Purification by recrystallisation. White solid, 587 mg, 62% yield mp 259.8◦C to 261.9◦C

IR νmax (neat) cm−1 2919.25 (O-H), 1696.35 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 3.93 (1H, d, J = 15.13 Hz), 4.04 (1H,s), 5.19 (1H, d, J = 14.47 Hz), 5.20

(1H, s), 7.02 to 7.08 (3H, m), 7.17 to 7.24 (4H, m), 7.31 7.35 (2H, m), 7.39 to 7.42

(2H, m), 7.46 to 7.51 (1H, m), 7.97 to 8.00 (1H, m) 13C-NMR (100 MHz, DMSO-d6)

δC ppm: 170.44 (C=O), 161.82 (C=O), 137.79 (ArC ), 132.54 (ArC ), 131.90 (ArC ),

131.87 (ArC ), 130.21 (ArCH), 128.50 (ArCH, split peak), 128.42 (ArCH, split peak),

127.91 (ArCH), 127.20 (ArC ), 126.92 (ArCH), 126.00 (ArCH), 125.76 (ArCH), 125.21

(ArCH), 124.36 (ArCH), 113.26 (ArCH, split peak), 113.05 (ArCH, split peak), 59.74

(CH), 49.66 (CH), 47.07 (CH2) LRMS (ES+) calculated for C23H19FNO3 found 376.1

(M+H)+ m/z

3-[(4-fluorophenyl)methyl]- 1-oxo-3-(pyridine-3-yl)-1,2,3,4-tetrahydroisoquin

oline-4-arboxylic acid (A39)
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N

O

HO O

N

F

Purification by recrystallisation. White solid, 464 mg, 49% yield mp 265.1◦C to 266.2◦C

IR νmax (neat) cm−1 2919.25 (O-H), 1715.95 (C=O), 1651.37 (C=O) 1H-NMR (400

MHz, DMSO-d6) δH ppm: 4.17 (2H, ds overlap, J = 14.26 Hz), 5.04 (1H, d, J = 14.81

Hz), 5.41 (1H, s), 7.02 to 7.06 (2H, m), 7.18 to 7.22 (2H, m), 7.30 to 7.35 (3H, m),

7.42 to 7.45 (2H, m), 7.97 to 8.00 (1H, m), 8.27 (1H, d, J = 2.19 Hz), 8.36 (1H, dd,

J = 1.10 Hz and 6.03 Hz), 13.01 (1H, brs) 13C-NMR (100 MHz, DMSO-d6) δC ppm:

172.15 (C=O), 163.68 (C=O), 149.10 (ArCH), 148.23 (ArCH), 135.16 (ArC ), 134.24

(ArCH), 133.96 (ArC ), 133.83 (ArC ), 133.81 (ArC ), 132.65 (ArCH), 130.95 (ArCH,

split peak), 130.87 (ArCH, split peak), 130.12 (ArCH), 129.25 (ArC ), 128.56 (ArCH),

127.54 (ArCH), 123.84 (ArCH), 115.40 (ArCH, split peak), 115.19 (ArCH, split peak),

59.71 (CH), 50.80 (ArC ), 49.32 (CH2) LRMS (ES+) calculated for C22H18FN2O3 found

376.9 (M+H)+ m/z

3-[(4-fluorophenyl)methyl]- 1-oxo-3-(pyridine-4-yl)-1,2,3,4-tetrahydroisoquin

oline-4-carboxylic acid (A40)

N

O

HO O
N

F

Purification by recrystallisation. White solid, 493 mg, 52% yield mp 253.2◦C to 256.3◦C

IR νmax (neat) cm−1 2906.83 (O-H), 1716.59 (C=O), 1651.54 (C=O) 1H-NMR (400

MHz, DMSO-d6) δH ppm: 4.12 (1H, d, J = 14.45 Hz), 4.18 (1H, s), 5.09 (1H, d, J =

14.45 Hz), 5.35 (1H, s), 7.1 to 7.03 (2H, m), 7.04 to 7.07 (2H, m), 7.18 to 7.20 (1H,

m), 7.32 to 7.36 (2H, m), 7.40 to 7.43 (2H, m), 7.95 to 7.98 (1H, m), 8.37 to 8.39 (2H,

m), 13.01 (1H, brs) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.04 (C=O), 163.76

(C=O), 150.17 (ArC ), 148.77 (ArC ), 133.80 (ArC ), 133.76 (ArC ), 132.62 (ArCH),

130.97 (ArCH), 130.89 (ArCH), 130.01 (ArCH), 129.12 (ArC ), 128.54 (ArCH), 127.52

(ArCH), 121.84 (ArCH), 115.42 (ArCH, split peak), 115.21 (ArCH, split peak), 60.81
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(CH), 50.40 (CH), 49.43 (CH2) LRMS (ES+) calculated for C22H18FN2O3 found 376.9

(M+H)+ m/z
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3-[(4-fluorophenyl)methyl]- 1-oxo-3-(furan-3-yl)-1,2,3,4-tetrahydroisoquinolin

e-4-carboxylic acid (A41)

N

O

HO O

F

O

Purification by recrystallisation. White solid, 332 mg, 36% yield mp 263.3◦C to 265.8◦C

IR νmax (neat) cm−1 2964.80 (O-H), 1698.65 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH

ppm: 4.09 (2H, sd overlap, J = 14.95 Hz), 5.12 (1H, d, J = 14.95 Hz), 5.16 (1H, s), 5,98

(1H, m), 7.07 to 7.12 (2H, m), 7.32 (1H, d, J = 7.16 Hz), 7,34 to 7.37 (2H, m), 7.40 to

7.41 (1H, m), 7.43 (1H, d, J = 1.29 Hz), 7.45 (1H, d, J = 1.39 Hz), 7.46 (1H, t, J = 3.47

Hz), 7.48 to 7.50 (1H, td, J = 1.52 Hz and 16.38 Hz), 7.93 (1H, dd, J = 1.27 Hz and 8.90

Hz), 12.90 (1H, brs) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.26 (C=O), 163.27

(C=O), 144.26 (ArCH), 140.67 (ArCH), 134.99 (ArC ), 134.25 (ArC ), 134.22 (ArC ),

132.44 (ArCH), 130.71 (ArCH), 130.63 (ArCH), 130.05 (ArCH), 129.22 (ArC ), 128.30

(ArCH), 127.49 (ArCH), 125.05 (ArC ), 115.44 (ArCH, split peak), 115.23 (ArCH, split

peak), 109.47 (CH), 54.64 (CH), 49.73 (CH), 48.86 (CH2) LRMS (ES+) calculated for

C21H17FNO4 found 366.2 (M+H)+ m/z

3-(4-iodophenyl)-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A42)

N

O

HO O

F

I

Purification by recrystallisation. White solid, 51 mg, 4% yield αD
22.0 -5.67◦ (c = 10

mg/mL in DMF) mp 228.5◦C to 231.6◦C IR νmax (neat) cm−1 2958.48 (O-H), 1700.09

(C=O), 1695.81 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH ppm: 3.96 (1H, d, J = 12.22

Hz), 4.09 (1H, s), 5.18 (1H, d, 14.70 Hz), 5.25 (1H, s), 6.84 (1H, d, J = 8.17 Hz), 7.05

to 7.12 (2H, m), 7.19 to 7.21 (1H, m), 7.31 to 7.34 (4H, m), 7.36 to 7.40 (4H, td, J =

1.26 Hz and 16.46 Hz), 7.59 to 7.61 (2H, m), 7.90 (2H, dd, J = 0.89 Hz and 7.65 Hz),

7.97 to 7.99 (1H, m), 12.48 (1H, brs) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.25
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(C=O), 163.76 (C=O), 163.06 (ArC ), 160.65 (ArC ), 139.48 (ArC ), 137.77 (ArCH),

133.89 (ArC ), 132.55 (ArCH), 130.76 (ArCH, split peak), 130.68 (ArCH, split peak),

130.03 (ArCH), 129.20 (ArC ), 128.90 (ArCH), 128.43 (ArCH), 127.45 (ArCH), 115.43

(ArCH, split peak), 115.22 (ArCH, split peak), 94.12 (ArC ), 61.12 (CH), 50.99 (CH),

49.08 (CH2) HRMS (ES+) calculated for C23H18FINO3 found 502.0312 m/z

3-(3-bromophenyl)-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroiso

quinoline-4-carboxylic acid (A43)

N

O

HO O

F

Br

Purification by recrystallisation. White solid, 552 mg, 48% yield mp 291.6◦C to 295.5◦C

IR νmax (neat) cm−1 2954.73 (O-H), 1698.29 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 4.10 (1H, d, J = 14.89 Hz), 4.13 (1H, s), 5.08 (1H, d, J = 14.89 Hz), 5.35

(1H, s), 6.99 (1H, d, J = 7.70 Hz), 7.05 (2H, t, J = 8.83 Hz and 17.67 Hz), 7.17 to 7.22

(3H, m), 7.32 to 7.37 (3H, m), 7.41 to 7.44 (2H, m), 7.97 to 7.99 (1H, m), 12.92 (1H,

brs) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.24 (C=O), 163.74 (C=O), 163.06

(ArC ), 160.64 (ArC ), 142.65 (ArC ), 133.90 (ArC, split peak), 133.87 (ArC, split peak),

132.58 (ArCH), 131.11 (ArCH), 130.87 (ArCH), 130.79 (ArCH), 130.08 (ArCH), 129.55

(ArCH), 129.16 (ArC ), 128.44 (ArCH), 127.42 (ArCH), 125.54 (ArCH), 122.25 (ArC ),

115.37 (ArCH, split peak), 115.16 (ArCH, split peak), 61.18 (CH), 51.13 (CH), 49.39

(CH2) LRMS (ES+) calculated for C23H18FBrNO3 found 456.1 m/z (M+H)+

3-(3,4-dibromophenyl)-2-[4-(fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroiso

quinoline-4-carboxylic acid (A44)

N

O

HO O

F

Br

Br

Purification by recrystallisation. White solid, 740 mg, 55% yield mp 276.6◦C to 278.6◦C

IR νmax (neat) cm−1 2948.24 (O-H), 1698.53 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH
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(ppm) = 4.14 (2H, d, overlap, J= 14.11 Hz), 5.04 (1H, d, J= 14.11 Hz), 5.34 (1H, s), 6.87

(1H, dd, J = 1.90 Hz and 6.33 Hz), 7.04 to 7.08 (2H, m), 7.21 to 7.23 (1H, m), 7.33 to 7.36

(2H, m), 7.39 to 7.46 (3H, m), 7.58 (1H, d, J = 8.23 Hz), 7.97 to 7.98 (1H, m) 13C-NMR

(100 MHz, DMSO-d6) δC (ppm) = 172.00 (C=O), 163.60 (C=O), 141.49 (ArC ), 141.40

(ArC ), 134.18 (ArCH), 133.85 (ArC ), 133.80 (ArC ), 133.75 (ArC ), 132.69 (ArCH),

132.16 (ArCH), 130.96 (ArCH), 130.88 (ArCH), 130.11 (ArCH), 129.06 (ArC ), 128.58

(ArCH), 127.48 (ArCH), 127.40 (ArCH), 124.46 (ArC ), 123.29 (ArC ), 122.39 (ArCH),

115.39 (ArCH, split peak), 115.17 (ArCH, split peak), 60.58 (CH), 50.62 (CH), 49.33

(CH2) LRMS (ES+) calculated for C23H17FBr2NO3 found 534.0 m/z (M+H)+

3-(2-chlorophenyl)-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A45)

N

O

HO O

F

Cl

Purification by recrystallisation. White solid, 250 mg, 23% yield mp 239.8◦C to 240.1◦C

IR νmax (neat) cm−1 3069.09 (O-H), 1709.76 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH

ppm: 3.95 (1H, d, J = 14.60 Hz), 4.03 (1H, s), 5.12 (1H, d, J = 14.60 Hz), 5.57 (1H, s),

6.66 (1H, d, J = 7.86 Hz), 7.03 to 7.10 (3H, m), 7.23 to 7.31 (4H, m), 7.43 to 7.47 (3H, m),

8.03 (1H, m), 13.00 (1H, brs) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.09 (C=O),

164.04 (C=O), 160.76 (ArC ), 135.99 (ArC ), 133.58 (ArC ), 133.53 (ArC, split peak),

133.50 (ArC, split peak), 132.63 (ArCH), 132.28 (ArC ), 130.81 (ArCH), 130.73 (ArCH),

130.62 (ArCH), 130.33 (ArCH), 129.97 (ArCH), 129.04 (ArC ), 128.57 (ArCH), 127.71

(ArCH), 127.50 (ArCH), 115.52 (ArCH, split peak), 115.31 (ArCH, split peak), 58.78

(CH), 49.82 (CH2), 48.62 (CH) LRMS (ES+) calculated for C23H17FClNO3Na found

432.1 m/z (M+Na)+

3-(3-phenoxymethyl)-2-[(4-chlorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroiso

quinoline-4-carboxylic acid (A46)

N

O

HO O

Cl

O
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Purification by recrystallisation. White solid, 634 mg, 52% yield mp 247.1◦C to 249.8◦C

IR νmax (neat) cm−1 3339.19 (O-H), 1698.20 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 3.98 (1H, s), 4.15 (1H, d, J = 14.27 Hz), 4.99 (1H, d, J = 14.27 Hz), 5.32 (1H,

s), 6.56 (1H, s), 6.76 to 6.83 (3H, m), 7.11 to 7.14 (1H, m), 7.20 to 7.24 (1H, m), 7.26 to

7.33 (5H, m), 7.37 to 7.44 (2H, m), 7.44 to 7.36 (2H, m), 7.89 (1H, d, J = 7.43 Hz) 13C-

NMR (100 MHz, DMSO-d6) δC ppm: 172.88 (C=O), 163.89 (C=O), 156.98 (ArC ),

156.49 (ArC ), 142.35 (ArC ), 136.78 (ArC ), 134.73 (ArC ), 132.40 (ArCH), 132.08

(ArC ), 130.68 (ArCH), 130.61 (ArCH), 130.47 (ArCH), 130.08 (ArCH), 129.14 (ArC ),

128.47 (ArCH), 128.11 (ArCH), 127.33 (ArCH), 124.00 (ArCH), 121.66 (ArCH), 118.89

(ArCH), 117.77 (ArCH), 116.60 (ArCH), 62.00 (CH), 51.84 (CH), 49.59 (CH2) LRMS

(ES+) calculated for C29H23ClNO4 found 484.3 (M+H)+ m/z

3-(4-chlorophenyl)-2-[(4-chlorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A47)

N

O

HO O

Cl

Cl

Purification by recrystallisation. White solid, 762 mg, 71% yield αD
22.0 -6.79◦ (c = 10.2

mg/mL in DMF) mp 173.0◦C to 175.0◦C IR νmax (neat) cm−1 2959.59 (O-H), 1701.17

(C=O), 1697.60 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH ppm: 3.96 (1H, d, J =

14.80 Hz), 4.11 (1H, s), 5.18 (1H, d, J = 14.73 Hz), 5.30 (1H, s), 7.05 (1H, d, J = 8.47

Hz), 7.22 to 7.56 (9H, m), 7.97 to 7.99 (1H, m), 13.00 (1H, brs) 13C-NMR (100 MHz,

DMSO-d6) δC ppm: 172.30 (C=O), 163.86 (C=O), 138.53 (ArC ), 136.71 (ArC ), 133.88

(ArC ), 132.77 (ArC ), 132.62 (ArCH), 132.31 (ArCH), 130.58 (ArCH), 130.12 (ArCH),

130.04 (ArCH), 129.19 (ArC ), 129.05 (ArCH), 128.99 (ArC ), 128.85 (ArCH), 128.70

(ArCH), 128.58 (ArCH), 128.47 (ArCH), 127.57 (CH), 61.12 (CH), 51.09 (CH), 49.25

(CH2) HRMS calculated for C23H18Cl2NO3 found 426.0658 m/z

3-[4-chloro-3-(trifluoromethyl)phenyl]-2-[(4-chlorophenyl)methyl]-1-oxo-1,2,3,

4-tetrahydroisoquinoline-4-carboxylic acid (A48)



Targeting the p53/MDM2 Protein-Protein Interaction 174

N

O

HO O

Cl

Cl

F

F

F

Purification by recrystallisation. White solid, 710 mg, 57% yield mp 269.0◦C to 271.0◦C

IR νmax (neat) cm−1 2935.08 (O-H). 1701.17 (C=O), 1698.13 (C=O) 1H-NMR (400

MHz, DMSO-d6) δH ppm: 4.10 (1H, brs), 4.37 (1H, d, J = 13.59 Hz), 4.85 (1H, d,

J = 13.59 Hz), 5.49 (1H, s), 6.99 to 7.02 (2H, m), 7.18 to 7.22 (2H, m), 7.30 to 7.32

(2H, m), 7.36 (1H, brs), 7.42 (2H, t, J = 12.63 Hz), 7.51 (1H, d, J = 8.42 Hz), 7.96

to 7.97 (1H, m) 13C-NMR (100 MHz, DMSO-d6) δC (ppm) = 172.15 (C=O), 163.67

(C=O), 140.12 (ArC ), 139.21 (ArC ), 136.66 (ArC ), 134.06 (ArC ), 132.69 (ArCH),

132.26 (ArC ), 132.10 (ArCH), 130.83 (ArCH), 130.18 (ArCH), 130.09 (ArC ), 128.98

(ArC ), 128.58 (ArCH), 128.43 (ArCH), 127.44 (CH) 127.03 (ArCH), 126.42 (CH),

61.14 (CH), 50.93 (CH), 49.64 (CH2) LRMS (ES+) calculated for C24H17Cl2F3NO3

found 494.0 m/z (M+H)+

3-(4-bromophenyl)-2-[(4-chlorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A49)

N

O

HO O

Cl

Br

Purification by recrystallisation. White solid, 343 mg, 29% yield mp 270.0◦C to 271.1◦C

IR νmax (neat) cm−1 2959.58 (O-H), 1701.50 (C=O), 1697.92 (C=O) 1H-NMR (400

MHz, DMSO-d6) δH ppm: 3.95 (1Hd, J = 14.95 Hz), 4.09 (1H, s), 5.18 (1H, d, J

= 14.98 Hz), 5.28 (1H, s), 6.99 (2H, d, J = 7.40 Hz), 7.20 (1H, d, J = 6.51 Hz),

7.31 (5H, brm), 7.42 to 7.43 (3H, m), 7.97 (1H, d, J = 7.12 Hz) 13C-NMR (100 MHz,

DMSO-d6) δC ppm: 172.25 (C=O), 163.82 (C=O), 139.05 (ArC ), 136.74 (ArC ), 133.95

(ArC ), 132.61 (ArCH), 132.18 (ArC ), 131.95 (ArCH), 130.57 (ArCH), 130.42 (ArCH),

130.05 (ArCH), 129.11 (ArC ), 128.82 (ArCH), 128.54 (ArCH), 128.46 (ArCH), 128.02

(ArCH), 127.46 (ArCH), 121.17 (ArC ), 61.18 (CH), 50.99 (CH), 49.22 (CH2) HRMS

calculated for C23H18ClBrNO3 found 470.0153 m/z (M+H)+
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3-phenyl-2-[(4-chlorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-c

arboxylic acid (A50)

N

O

HO O

Cl

Purification by recrystallisation. White solid, 366 mg, 37% yield mp 288.0◦C to 293.0◦C

IR νmax (neat) cm−1 2960.44 (O-H), 1698.51 (C=O)1H-NMR (400 MHz, DMSO-d6) δH

ppm: 3.90 (1H, d, J = 14.95 Hz), 4.11 (1H, s), 5.22 to 5.26 (1H, s, J = 15.01 Hz), 5.28

(1H, s), 7.04 to 7.06 (2H, m), 7.21 to 7.26 (4H, m), 7.27 (4H, s), 7.42 to 7.44 (2H, m),

7.98 to 8.00 (1H, m) 13C-NMR (100 MHz, DMSO-d6) δC ppm: 172.46 (C=O), 163.94

(C=O), 139.53 (ArC ), 136.85 (ArC ), 134.11 (ArC ), 132.50 (ArCH), 132.14 (ArC ),

130.49 (ArCH), 130.05 (ArCH), 129.26 (ArC ), 129.11 (ArCH), 128.54 (ArCH), 128.38

(ArCH), 128.01 (ArCH), 127.41 (ArCH), 126.51 (CH), 61.69 (CH), 51.23 (CH), 49.20

(CH2) LRMS calculated for C23H19ClNO3 found 392.1 (M+H)+

3-(3-bromophenyl)-2-[(4-chlorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqu

inoline-4-carboxylic acid (A51)

N

O

HO O

Cl

Br

Purification by recrystallisation. White solid, 555 mg, 47% yield αD
22.0 -6.33◦ (c =

10 mg/mL in DMF) mp 299.3◦C to 300.1◦C IR νmax (neat) cm−1 2964.80, 1698.83

1H-NMR (400 MHz, DMSO-d6) δH ppm: 4.06 (1H, d, J = 14.76 Hz), 4.16 (1H, s), 5.11

(1H, d, J = 14.76 Hz), 5.34 (1H, s), 7.00 (1H, d, J = 7.85 Hz), 7.16 to 7.24 (3H, m),

7.28 to 7.34 (4H, m), 7.38 (1H, dd, J = 0.93 Hz and 8.22 Hz), 7.42 to 7.45 (2H, m),

7.97 to 7.99 (1H, m), 12.97 (1H, s) 13C-NMR (100 MHz, DMSO-d6) δC (ppm): 172.17

(C=O), 163.77 (C=O), 142.45 (ArC ), 136.75 (ArC ), 133.89 (ArC ), 132.66 (ArCH),

132.21 (ArC ), 131.16 (ArCH), 130.89 (ArCH), 130.66 (ArCH), 130.11 (ArCH), 129.59

(ArCH), 129.08 (ArC ), 128.50 (ArCH), 127.45 (ArCH), 125.53 (ArCH), 122.30 (ArC ),
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61.19 (CH), 50.86 (CH), 49.42 (CH2) LRMS calculated for C23H18ClBrNO3 found 469.9

(M+H)+ m/z

3-(4-nitrophenyl)-2-[4-(chlorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoquin

oline-4-carboxylic acid (A52)

N

O

HO O

Cl

NO2

Purification by recrystallisation. White solid, 319 mg, 29% yield mp 239.2◦C to 241.4◦C

IR νmax (neat) cm−1 2955.45 (O-H), 1698.84 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH ppm: 4.07 (1H, d, J = 14.54 Hz), 4.19 (1H, s), 5.15 (1H, d, J = 15.65 Hz), 5.49

(1H, s), 7.19 to 7.21 (1H, m), 7.28 to 7.34 (6H, m), 7.41 to 7.44 (2H, m), 7.97 to 8.00

(1H, m), 8.08 (2H, d, J = 8.75 Hz) 13C-NMR (100 MHz, DMSO-d6) δC (ppm): 172.00

(C=O), 163.77 (C=O), 147.34 (ArC ), 147.31 (ArC ), 136.61 (ArC ), 133.65 (ArC ), 132.73

(ArCH), 132.27 (ArC ), 130.72 (ArCH), 130.06 (ArCH), 128.98 (ArC ), 128.61 (ArCH),

128.55 (ArCH), 128.09 (ArCH), 127.57 (ArCH), 124.13 (CH), 61.32 (CH), 50.66 (CH),

49.44 (CH2) LRMS calculated for C23H18ClN2O4 found 437.1 (M+H)+ m/z

3-(4-chlorophenyl)-2-[4-(bromophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqu

inoline-4-carboxylic acid (A53)

N

O

HO O

Br

Cl

Purification by recrystallisation. White solid, 166 mg, 14% yield αD
22.0 +25.00◦ (c =

10.4 mg/mL in DMF) mp 250.5◦C to 251.5◦C IR νmax (neat) cm−1 2958.05 (O-H),

1701.60 (C=O), 1698.35 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH (ppm) = 3.95 (1H,

d, J = 14.64 Hz), 4.10 (1H, s), 5.16 (1H, d, J = 14.64 Hz), 5.31 (1H, s), 7.05 (2H, d, J

= 8.36 Hz), 7.21 (1H, d, J = 7.05 Hz), 7.26 (2H, d, J = 8.22 Hz),7.31 (2Hd, J = 8.81

Hz), 7.42 to 7.46 (4H, m), 7.98 (1H, d, J = 7.64 Hz) 13C-NMR (100 MHz, DMSO-d6)

δC (ppm) = 172.25 (C=O), 163.82 (C=O), 138.64 (ArC ), 137.18 (ArC ), 133.98 (ArC ),
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132.63 (ArC ), 132.60 (ArCH), 131.95 (ArCH), 131.45 (ArCH), 130.92 (ArCH), 130.07

(ArCH), 129.10 (ArC ), 129.03 (ArCH), 128.49 (ArCH), 127.45 (ArCH), 120.27 (ArC ),

61.15 (CH), 51.03 (CH), 49.30 (CH2) HRMS (ES+) calculated for C23H18BrClNO3

found 470.0153 (M+H)+ m/z

3-(4-bromophenyl)-2-[(4-bromophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoq

uinoline-4-carboxylic acid (A54)

N

O

HO O

Br

Br

Purification by recrystallisation. White solid, 271 mg, 21% yield αD
22.0 -63.33◦ (c = 10

mg/mL in DMF) mp 225.3◦C to 232.5◦C IR νmax (neat) cm−1 2958.44 (O-H), 1697.95

(C=O) 1H-NMR (400 MHz, DMSO-d6) δH ppm: 3.91 to 3.95 (1H, d, J = 14.48 Hz), 4.06

(1H, s), 5.14 (1H, d, J = 15.17 Hz), 5.28 (1H, s), 6.98 (2H, d, J = 8.28 Hz), 7.18 to 7.26

(3H, m), 7.41 to 7.44 (6H, m), 7.96 (1H, d, J = 6.90 Hz) 13C-NMR (100 MHz, DMSO-d6)

δC ppm: 172.27 (C=O), 163.82 (C=O), 139.65 (ArC ), 139.07 (ArC ), 137.17 (ArC ),

132.60 (ArCH), 131.95 (ArCH), 131.45 (ArCH), 130.91 (ArCH), 129.82 (ArCH), 128.82

(ArCH), 128.43 (ArCH), 127.45 (ArCH), 121.16 (ArC ), 120.72 (ArC ), 120.07 (ArC ),

61.21 (CH), 51.02 (CH), 49.29 (CH2) HRMS (ES+) calculated for C23H18Br2NO3 found

513.9648 (M+H)+ m/z

3-phenyl-2-[4-(bromophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoquino

line-4-carboxylic acid (A55)

N

O

HO O

Br

Purification by recrystallisation. White solid, 155 mg, 14% yield mp 255.3◦C to 257.4◦C

IR νmax (neat) cm−1 2956.52 (O-H), 1701.73 (C=O), 1698.37 (C=O) 1H-NMR (400

MHz, DMSO-d6) δH (ppm) = 3.85 (1H, d, J = 14.37 Hz), 4.09 (1H, s), 5.20 (1H, d, J =

17.23 Hz), 5.26 (1H, s), 7.02 (2H, d, J = 7.02 Hz), 7.19 (3H, t, J = 7.55 Hz and 14.01 Hz),
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7.23 (3H, d, J = 7.55 Hz), 7.40 to 7.44 (4H, m), 7.97 (1H, d, J = 6.47 Hz), 12.94 (1H,

brs) 13C-NMR (100 MHz, DMSO-d6) δC (ppm) = 172.45 (C=O), 163.93 (C=O), 139.52

(ArC ), 137.29 (ArC ), 134.09 (ArC ), 132.50 (ArCH), 131.45 (ArCH), 130.84 (ArCH),

130.05 (ArCH), 129.25 (ArC ), 129.11 (ArCH), 128.37 (ArCH), 128.01 (ArCH), 127.40

(ArCH), 126.51 (ArCH), 120.67 (ArC ), 61.69 (CH), 51.19 (CH), 49.25 (CH2) LRMS

(ES+) calculated for C23H19BrNO3 found 438.1 (M+H)+ m/z

3-(4-iodophenyl)-2-[4-(bromophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoquin

oline-4-carboxylic acid (A56)

N

O

HO O

Br

I

Purification by recrystallisation. White solid, 266 mg, 19% yield mp 204.3◦C to 205.5◦C

IR νmax (neat) cm−1 2358.91 (O-H), 1698.61 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH (ppm) = 3.90 (1H, d, J = 14.58 Hz), 4.10 (1H, s), 5.18 (1H, d, J = 14.90 Hz),

5.25 (1H, s), 6.84 to 6.86 (2H, m), 7.19 to 7.22 (1H, m), 7.24 to 7.26 (2H, m), 7.41

to 7.48 (5H, m), 7.58 to 7.61 (2H, m), 7.96 to 7.98 (1H, m), 12.93 (1H, s) 13C-NMR

(100 MHz, DMSO-d6) δC (ppm) = 172.25 (C=O), 163.82 (C=O), 139.39 (ArC ), 137.80

(ArCH), 137.18 (ArC ), 133.84 (ArC ), 132.61 (ArCH), 131.46 (ArCH), 130.90 (ArCH),

130.06 (ArC ), 129.10 (ArCH), 128.90 (ArCH), 128.47 (ArCH), 127.45 (ArCH), 120.74

(ArC ), 94.19 (ArC ), 61.23 (CH), 50.88 (CH), 49.22 (CH2) LRMS (ES+) calculated for

C23H18BrINO3 found 563.9 (M+H)+ m/z

3-(3-bromophenyl)-2-[4-(bromophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoquin

oline-4-carboxylic acid (A57)

N

O

HO O

Br

Br

Purification by recrystallisation. White solid, 493 mg, 38% yield mp 294.5◦C to 295.1◦C

IR νmax (neat) cm−1 2952.56 (O-H), 1699.50 (C=O) 1H-NMR (400 MHz, DMSO-d6)
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δH (ppm) = 4.05 (1H, d, J = 14.87 Hz), 4.16 (1H, s), 5.11 (1H, d, J = 14.87 Hz),

5.34 (1H, s), 7.01 (1H, d, J = 7.65 Hz), 7.17 to 7.21 (2H, m), 7.22 to 7.28 (3H,

m), 7.40 to 7.49 (5H, m), 7.99 (1H, dd, J = 2.04 Hz and 9.18 Hz), 12.99 (1H, brs)

13C-NMR (100 MHz, DMSO-d6) δC (ppm) = 172.17 (C=O), 163.78 (C=O), 142.45

(ArC ), 137.17 (ArC ), 133.91 (ArC ), 132.66 (ArCH), 131.66 (ArC ), 131.42 (ArCH),

131.17 (ArCH), 131.00 (ArCH), 130.90 (ArCH), 130.11 (ArCH), 129.59 (ArCH), 129.06

(ArC ), 128.52 (ArCH), 127.44 (ArCH), 125.53 (ArCH), 122.30 (ArC ), 120.77 (ArC ),

61.21 (CH), 50.87 (CH), 49.47 (CH2) LRMS (ES+) calculated for C23H18Br2NO3 found

515.9 (M+H)+ m/z 3-(4-iodophenyl)-2-[4-(iodophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A58)

N

O

HO O

I

I

Purification by recrystallisation. White solid, 76 mg, 5% yield mp 225.0◦C to 227.6◦C

1H-NMR (400 MHz, DMSO-d6) δH (ppm) = 3.94 (1H, s), 4.32 to 4.33 (1H, s), 5.97 (1H,

d, J = 3.63 Hz), 7.22 to 7.24 (1H, m), 7.33 to 7.35 (3H, m), 7.38 to 7.39 (1H, m), 7.51 to

7.53 (2H, m), 7.57 to 7.60 (1H, td, J = 1.15 Hz and 15.38 Hz), 7.70 to 7.76 (2H ,m), 7.81

to 7.83 (2H, m), 8.05 (1H, dd, J = 1.35 Hz and 6.54 Hz) 13C-NMR (100 MHz, DMSO-d6)

δC (ppm) = 172.91 (C=O), 170.36 (C=O), 164.40 (ArC ), 138.06 (ArC ), 137.79 (ArCH),

137.52 (ArCH), 137.39 (ArC ), 134.47 (ArCH), 130.84 (ArC ), 130.22 (ArCH), 129.28

(ArCH), 128.52 (ArCH), 128.28 (ArCH), 127.45 (ArCH), 125.40 (ArC ), 94.90 (ArC ),

78.50 (CH) , 49.45 (CH), 40.50 (CH2) LRMS (ES-) calculated for C23H18I2NO3 found

607.9 (M-H)− m/z

3-(4-bromophenyl)-2-[3,4-(dichlorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydroiso

quinoline-4-carboxylic acid (A59)

N

O

HO O

Cl

Br

Cl
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Purification by recrystallisation. White solid, 624 mg, 49% yield mp 278.8◦C to 279.2◦C

IR νmax (neat) cm−1 3074.58 (O-H), 1749.59 (C=O) 1H-NMR (400 MHz, DMSO-d6)

δH (ppm) = Cis:trans (5:1) 4.15 (1H, d, J = 15.25 Hz), 4.84 (1H, d, J = 6.17 Hz),

4.94 (1H, d, J = 15.58 Hz), 5.14 (1H, d, J = 6.17 Hz), 6.90 (2H, d, J = 8.44 Hz), 7.32

(1H, dd, J = 1.95 Hz to 10.62 Hz), 7.39 (2H, d, J = 8.44 Hz), 7.44 to 7.59 (6H, m),

8.08 (1H, d, J = 7.46 Hz), 13.08 (1H, brs) 13C-NMR (100 MHz, DMSO-d6) δC (ppm)

= 170.72 (C=O), 163.64 (C=O), 139.18 (ArC ), 136.81 (ArC ), 134.12 (ArC ), 132.78

(ArCH), 131.94 (ArCH), 131.54 (ArCH), 131.35 (ArC ), 130.89 (ArCH), 130.68 (ArC ),

130.42 (ArCH), 130.35 (ArCH), 130.11 (ArC ), 128.87 (ArCH), 128.57 (ArCH), 128.48

(ArCH), 128.01 (ArCH), 122.04 (ArC ), 61.25 (CH), 48.51 (CH2), 48.47 (CH) LRMS

(ES+) calculated for C23H17Cl2BrNO3 found 505.9 (M+H)+ m/z
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3-phenyl-2-[3,4-(dichlorophenyl)methyl]-1-oxo-1,2,3, -tetrahydroisoquinoline-

4-carboxylic acid (A60)

N

O

HO O

Cl

Cl

Purification by recrystallisation. White solid, 258 mg, 24% yield mp 228.3◦C to 229.0◦C

IR νmax (neat) cm−1 2930.00 (O-H), 1698.72 (C=O) 1H-NMR (400 MHz, DMSO-d6) δH

(ppm) = 3.98 (1H, d, J = 14.81 Hz), 4.12 (1H, d, J = 1.20 Hz), 5.17 (1H, d, J = 14.81

Hz), 5.35 (1H, brs), 7.05 to 7.07 (2H, m), 7.19 to 7.27 (4H, m), 7.30 to 7.32 (1H, m),

7.41 to 7.45 (2H, m), 7.50 to 7.52 (2H, m), 7.59 (1H, d, J = 2.12 Hz), 7.97 to 7.99 (1H,

m) 13C-NMR (100 MHz, DMSO-d6) δC (ppm) = 172.44 (C=O), 163.98 (C=O), 139.56

(ArC ), 139.21 (ArC ), 132.62 (ArCH), 131.12 (ArC ), 130.72 (ArCH), 130.67 (ArCH),

130.16 (ArCH), 130.05 (ArC ), 129.08 (ArCH), 129.06 (ArC ), 129.02 (ArCH), 128.43

(ArCH), 128.02 (ArCH), 127.40 (ArCH), 126.55 (CH), 61.85 (CH), 51.11 (CH), 49.14

(CH2) LRMS (ES+) calculated for C23H18Cl2NO3 and C23H17Cl2NO3Na found 426.1

(M+H)+ and 448.0 (M+Na)+

cis-3-(4-chlorophenyl)-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydrois

oquinoline-4-carboxylic acid (A34a)

N

O

HO O

F

Cl

N

O

HO O

F

Cl

Purification by recrystallisation. Pale orange solid, 300 mg, 29% yield αD
22.0 +283.33◦

1H-NMR (400 MHz, DMSO-d6) δH (ppm) = 3.96 (1H, d, J = 14.87 Hz), 4.74 (1H, d, J

= 6.61 Hz), 5.06 (1H, d, J = 6.61 Hz), 5.16 (1H, d, J = 14.87 Hz), 6.95 to 6.97 (2H, m),

7.10 to 7.14 (2H, m), 7.25 to 7.28 (2H, m), 7.32 to 7.36 (2H, m), 7.46 to 7.50 (1H, m),

7.54 to 7.56 (2H, m), 8.08 to 8.10 (1H, m) 13C-NMR (100 MHz, DMSO-d6) δC (ppm)

= 170.70 (C=O), 163.47 (C=O), 163.06 (ArC ), 160.65 (ArC ), 136.29 (ArC ), 133.94

(ArC ), 133.91 (ArC ), 133.35 (ArC ), 132.68 (ArCH), 130.30 (ArCH, split peak), 130.22

(ArCH, split peak), 130.08 (ArCH), 129.00 (ArCH), 128.66 (ArCH), 128.48 (ArCH),



Targeting the p53/MDM2 Protein-Protein Interaction 182

128.02 (ArCH), 115.72 (ArCH, split peak), 115.51 (ArCH, split peak), 60.65 (CH),

48.55 (CH), 48.23 (CH2). matches data for A34

trans-3-(4-chlorophenyl)-2-[(4-fluorophenyl)methyl]-1-oxo-1,2,3,4-tetrahydro

isoquinoline-4-carboxylic acid (A34b)

N

O

HO O

F

Cl

N

O

HO O

F

Cl

Purification by recrystallisation. Pale yellow solid, 72 mg, 7% yield αD
22.0 +176.73◦

1H-NMR (400 MHz, DMSO-d6) δH (ppm) = 3.99 (1H, d, J = 14.76 Hz), 4.10 (1H, d, J

= 1.36 Hz), 5.15 (1H, d, J = 13.96 Hz), 5.30 (1H, s), 7.05 (4H, m), 7.19 to 7.21 (1H, m),

7.28 to 7.33 (4H, m), 7.41 to 7.45 (2H, m), 7.97 to 7.99 (1H, m), 12.94 (1H, brs) 13C-NMR

(100 MHz, DMSO-d6) δC (ppm) = 172.23 (C=O), 163.73 (C=O), 160.63 (ArC ), 138.63

(ArC ), 133.86 (ArC ), 132.59 (ArCH), 130.81 (ArCH, split peak), 130.73 (ArCH, split

peak), 130.05 (ArCH), 129.87 (ArC ), 129.72 (ArC ), 129.20 (ArC ), 129.00 (ArCH),

128.48 (ArCH), 128.48 (ArC, overlap by HSQC), 127.47 (ArCH), 115.42 (ArCH, split

peak), 115.21 (ArCH, split peak), 60.95 (CH), 50.96 (CH), 49.13 (CH2). matches data

for A34

5(6)FAM-LTFEHAQWYLTS-CONH2 (A62) MALDI-TOF 1855.48 m/z (M+H),

1877.56 m/z (M+Na) and 1893.45 (M+K) m/z HPLC retention time 15.324 min. matches

literature values182

3-(4-chlorophenyl)-2-[(phenylalaninol)methyl]-1-oxo-1,2,3,4-tetrahydroisoqui

noline-4-carboxylic acid (A64)

N

O

HO O Cl

HO

L-phenylalaninol (381 mg, 2.52 mmol), 4-chlorobenzaldehyde (354 mg, 2.52 mmol) and

MgSO4 (2 g) was stirred in dry THF (25 mL) at rt for 1 h, after which homophthalic

anhydride (408 mg, 2.52 mmol) was added and the mixture was stirred at room temper-

ature overnight. The mixture was concentrated in vacuo and purified firstly on silica (to
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isolate the baseline spot) and then by reverse-phase preparative HPLC, affording 2.6 mg

of a white solid (3% yield) 1H-NMR (400 MHz, CDCl3) δH (ppm) = 1.21 (2H, t, J = 6.99

Hz and 13.58 Hz), 1.26 (2H, s), 3.50 (1H, q, J = 3.47 to 3.52), 3.95 (1H, s), 4.96 (1H, s),

7.05 (2H, d, J= 8.45 Hz), 7.14 to 7.20 (3H, m), 7.31 to 7.35 (1H, td, J= 1.21 Hz and 16.90

Hz), 7.41 to 7.49 (4H, m), 7.62 to 7.64 (1H, m), 8.01 (1H, d, J = 6.64 Hz), 8.36 (1H, dd, J

=1.02 Hz and 8.90 Hz) 13C-NMR (100 MHz, CDCl3) δC (ppm) = 161.59 (C=O), 148.34

(ArC ), 137.92 (ArC ), 136.24 (ArC ), 135.12 (ArCH), 133.50 (ArC ), 130.54 (ArCH),

130.40 (ArCH), 130.05 (ArCH), 129.74 (ArCH), 129.25 (ArCH), 129.05 (ArCH), 128.70

(ArCH), 128.22 (ArCH), 128.11 (ArC ), 123.25 (ArCH), 122.51 (ArCH), 121.37 (ArC ),

109.82 (ArC ), 65.87 (CH2), 39.81 (CH), 29.71 (CH2), 15.20 (ArC ) LRMS (ES+) cal-

culated for C25H23ClNO4 found 436.1 (M+H)+ m/z



Targeting the p53/MDM2 Protein-Protein Interaction 184

6.4 Experimental for Chapter 3

6.5 Synthesis of the chlorofusin Peptide (B01)

N
H

O

HN O

NH

OH
O

NHO

N
H

OH2N

O

HN

NH2

O

O

NHO

HN

HO
O

HN

O

H2N

500 mg of MBHA Rink Amide resin (0.35 mmol, 0.7 mmol/g) was suspended in 15 mL

of DMF. The resin was then allowed to swell for 30 min. DMF was removed under

reduced pressure and Fmoc deprotection was carried out by addition of 3 x 5 mL of 5%

piperazine in DMF, which was shaken for 5 minutes each. The resin was then washed

with 4 x 20 mL of DMF. The resin was treated with a solution of Fmoc-Asp-ODMab

(1.17 g, 1.75 mmol, 5 eq), to which HBTU (663.8 mg, 1.75 mmol, 5 eq) and HOBt (267.8

mg, 1.75 mmol, 5 eq) and DIPEA (608 µLs, 10 eq) in DMF were added. The mixture

was then shaken for 30 min.

Fmoc deprotection and washes were repeated for each subsequent coupling. A Kaiser

test was carried out at each stage to ensure that the coupling had gone to completion.

A single, 30 min coupling with 5 eq of HBTU and HOBT and 10 eq of DIPEA was used

at each stage in the order of Fmoc-Ala-OH, Fmoc-Thr(tBu)-OH, Fmoc-Orn(Boc)-OH,

Fmoc-D-Ade-OH, Fmoc-D-Leu-OH, Fmoc-Thr(tBu)-OH, Fmoc-D-Leu-OH and Fmoc-

D-Asn(Trt)-OH respectively.

Following the attachment of the final amino acid, the DMab group was removed by 3 x

10mLs of 2% hydrazine (581.4 µL in 30 mL) in DMF, shaken for 5 minutes each. The

resin was washed with 4 x 20mLs of DMF, and then washed 4 times with 5% DIPEA in

DMF (5.39 mL in 80 mL). Resin was then shaken with DIC (271 µL, 1.75 mmol, 5 eq)

and HOBt (267.8 mg, 1.75 mmol, 5 eq) for 2 x 24 hours and then 1 x 48 hours.
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The resin was washed 3 times with DMF, then 3 times with CH2Cl2, then 3 times with

1:1 CH2Cl2:MeOH to remove any residual DMF. The resin was then dried in vacuo over

KOH overnight.

A small amount was cleaved from the resin for characterisation: 100 mg of peptide-resin

complex was shaken with 4.706 mLs of 95:2.5:2.5 TFA:H2O:TIPS for 3 hours. The resin

was washed 3 times with TFA and the solution was concentrated in vacuo. The peptide

was precipitated out using cold diethyl ether, which was then filtered off, producing

30.9 mg as a white powder. HPLC was carried out over 30 minutes ranging from

5% acetonitrile:H2O 0.05% TFA to 95% acetonitrile:H2O 0.05% TFA. Peptide had a

retention time of 11.553 min and MALDI-TOF confirmed an M+H+ at 1011.34, an

M+Na+ at 1033.31 and an M+K+ at 1049.30 m/z

6.5.1 Synthesis of Aromatic Acid Analogues of Chlorofusin

6.5.1.1 Solid-Phase Method

Chlorofusin peptide on-resin (50 mg) was treated with 1% TFA three times to deprotect

Orn9. The resin was washed with DMF three times and aromatic acid (1 eq), HOBt (117

mg, 0.175 mmol), HBTU (117 mg, 0.175 mmol) and DIPEA (60.8 µL) in the minimum

volume of DMF was shaken overnight.

6.5.1.2 Solution-Phase Method

chlorofusin peptide (25 mg, 0.025 mmol), benzoic acid (0.025 mmol), EDCI (5 mg,

0.027 mmol), HOBt (4 mg, 0.029 mmol), DIPEA (5 µL, 0.029 mmol) was stirred in

DMF overnight. Compounds were precipitated out using water, filtered and redis-

solved in HPLC-grade methanol and purified by semi-preparative HPLC. HPLC analy-

sis was undertaken over 30 min ranging from 5% acetonitrile:H2O 0.05% TFA to 95%

acetonitrile:H2O 0.05% TFA.
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2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-naphthoic acid)-1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-methyl-5,11-

bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,10,13,16,

19,22,25- nonaazacycloheptacosan-2-yl]acetamide (B02)

N
H

O

HN O

NH

OH
O

NHO

N
H

OH2N

O

HN

NH2

O

O

NHO

HN

HO
O

HN

O

H
N

O

White gel, 6.4 mg, 22% yield HPLC retention time 13.87 min, MALDI mass spectrometry

found 1187.18 (M+Na)+ m/z

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-quinolic acid)-1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-methyl-5,11-bis

(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,10,13,16,19,22,

25-nonaazacycloheptacosan-2-yl]acetamide (B03)

N
H

O

HN O

NH

OH
O

NHO

N
H

OH2N

O

HN

NH2

O

O

NHO

HN

HO
O

HN

O

H
N

O

N

White gel, 1.5 mg, 5% yield HPLC retention time 11.29 min, MALDI mass spectrometry

found 1192.25 (M+Na)+ m/z

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[1,2,3,4-tetrahydronaphthoic acid])-

1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-
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methyl-5,11-bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,

10,13,16,19,22,25-nonaazacycloheptacosan-2-yl]acetamide (B04)

N
H

O

HN O

NH

OH
O

NHO

N
H

OH2N

O

HN

NH2

O

O

NHO

HN

HO
O

HN

O

H
N

O

White gel, 8.7 mg, 30% yield HPLC retention time 12.54 min, MALDI mass spectrometry

found 1190.56 (M+Na)+ m/z

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[2-hydroxy-5-bromonaphthoic

acid])-1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-

23-methyl-5,11-bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,

10,13,16,19,22,25-nonaazacycloheptacosan-2-yl]acetamide (B05)

N
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HN O

NH

OH
O

NHO
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NHO
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HO
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HN

O

H
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Orange gel, 1.6 mg, 5% yield HPLC retention time 14.76 min, MALDI mass spectrometry

found 1282.87 (M+Na)+ m/z

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[6-chloroisochloromene carboxylic

acid])-1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-
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23-methyl-5,11-bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,

7,10,13,16,19,22,25-nonaazacycloheptacosan-2-yl]acetamide (B06)

N
H

O

HN O

NH

OH
O

NHO

N
H

OH2N

O

HN
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NHO
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HO
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HN
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H
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O
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Orange gel, 4.4 mg, 14% yield HPLC retention time 14.76 min MALDI mass spectrom-

etry found 1282.87 (M+Na)+ m/z

6.5.2 Synthesis of Click-Based Analogues of chlorofusin

Boc-L-δ-Nva(OH)-OtBu (B07)

NH

O

O

O

O

OH

Boc-L-Glu-OtBu (613 mg, 2.12 mmol) and 1,1-carbonyldiimidazole (427 mg, 2.62 mmol)

were stirred in THF (4.904 mL) at rt for 10 min. The solution was cooled to 0◦C and

a solution of NaBH4 (123 mg, 3.24 mmol) in H2O (2 mL) was added dropwise. The

resultant mixture was warmed to rt and stirred for 1 h. The mixture was neutralised

with 0.1 M HCl and extracted with ethyl acetate (3 x 10 mL). The extracts were washed

with saturated sodium bicarbonate and brine. The organic phase was then dried over

MgSO4, filtered, and concentrated in vacuo. Purification on silica (100% Hexane to

1:1 Ethyl Acetate: Hexane) produced 383 mg (68% yield) as a colourless oil. 1H-NMR

(400 MHz, CDCl3), δH ppm 1.42 (9H, s), 1.45 (9H, s), 1.60 to 1.71 (3H, brm), 1.83

to 1.86 (1H, brm), 3.66 (2H, t, J = 11.50 Hz), 4.19 (1H, brs) 13C-NMR (100 MHz,

CDCl3) CDCl3), δC ppm 172.05 (C=O), 155.67 (ArC ), 82.00 (CH), 79.81 (CH), 62.18
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(CH2), 53.72 (CH), 29.75 (CH2), 28.41 (CH3)3, 28.35 (CH2), 28.08 (CH3)3, 21.12 (CH)

[αD]23.1 = + 20.1◦ (CH2Cl2) HRMS (ES+) calculated for C14H28NO5 (M+H)+ found

290.1962 m/z

Boc-L-δ-Nva(OMs)-OtBu (B08)

NH

O

O

O

O

O
S

O

O

Boc-L-δ-Nva(OH)-OtBu (353 mg, 1.29 mmol) and triethylamine (785 µL, 1.937 mmol)

were stirred in dry DMF (3 mL). The mixture was cooled to 0◦C and mesyl chloride

(313 µL, 1.937 mmol) was added dropwise. The resulting mixture was then stirred for

45 min at 0◦C. The mixture was then diluted with water and extracted 5 times with

diethyl ether (5 mL). The organic layer was then washed 10 times with water, dried

over MgSO4, filtered and concentrated in vacuo. The reaction produced 387 mg (85%)

of yellow oil that did not require further purification. 1H-NMR (400 MHz, CDCl3),

δH ppm 1.39 (9H, s), 1.42 (9H, s), 1.58 to 1.87 (4H, m), 2.97 (3H, s), 4.14 (1H, brs),

4.20 (2H, t, J = 10.78 Hz), 4.99 to 5.10 (1H, brs) 13C-NMR (100 MHz, CDCl3), δC

ppm 171.39 (C=O), 163.21 (ArC ), 155.43 (ArC ), 84.37 (CH), 82.31 (CH), 82.12 (CH),

79.85 (CH2), 69.41 (CH2), 53.29 (CH), 46.28 (CH2), 39.33 (CH2), 37.37 (CH2), 28.33

(CH3)3, 28.00 (CH3)3, 25.19 (C3) [αD]26.8 = + 8.9 ◦ (CH2Cl2) HRMS (ES+) calculated

for C15H30NO7S (M+H)+ found 368.1737 m/z

Boc-L-δ-Nva(N3)-OtBu (B09)

O NH

O

O

O

N3

Boc-L-δ-Nva(OMs)-OtBu (285 mg, 0.776 mmol), NaN3 (123 mg, 1.892 mmol) and dry

DMF (2 mL) was stirred at 67◦C for 5 h. The resultant mixture was extracted into

diethyl ether (5 x 5 mL). The organic layer was washed 10 times with water, dried over

MgSO4, filtered and concentrated in vacuo. The reaction produced 169 mg (69% yield)

of yellow oil that did not require further purification. 1H-NMR (400 MHz, CDCl3), δH

ppm 1.41 (9H, s), 1.44 (9H, s), 1.82 (3H, m), 1.84 (1H, m), 3.27 to 3.28 (2H, m), 4.16

(1H, d, J = 5.88 Hz), 5.08 (1H, d, J = 7.84 Hz) 13C-NMR (100 MHz, CDCl3), δC ppm
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171.62 (C=O), 155.45 (ArC ), 82.21 (CH), 79.83 (CH), 53.48 (CH), 51.01 (CH2), 30.30

(CH2), 28.38 (CH3)3, 28.06 (CH3)3, 24.83 (CH2) [αD]23.4 = + 4.0◦ (CH2Cl2) HRMS

(ES+) calculated for ArC4H 27N4O4 (M+H)+ found 315.2027 m/z

+H3N-L-δ-Nva(N3)-OtBu (B10)

NH3

O

O

N3

Cl

Boc-L-δ-Nva(N3)-OtBu (117 mg, 0.391 mmol) was stirred in 2 M HCl in ethyl acetate

(2 mL) at rt overnight. The mixture was concentrated in vacuo. The yield of yellow

oil was quantitative (84 mg) and carried forward without further purification. HRMS

(ES+) calculated for C9H19N4O2 (M+H)+ found 215.1503 m/z

Fmoc- L-δ-Nva(N3)-OtBu (B11)

HN

O

O

N3

O

O

+H3N-L-δ-Nva(N3)-OtBu (100 mg, 0.465 mmol), NaHCO3 (158 mg, 1.881 mmol), water

(1.602 mL) and tetrahydrofuran (6.409 mL) was cooled to 0◦C and a solution of Fmoc-Cl

(162 mg, 0.626 mmol) in tetrahydrofuran (1.602 mL) was added dropwise. The resultant

solution was stirred at 0◦C for 20 min. The mixture was quenched with methanol (15

mL) for 5 min and concentrated in vacuo. The mixture was acidified with aqueous 1M

HCl and extracted with ethyl acetate (3 x 20 mL). The organic layers were dried over

MgSO4, filtered and concentrated in vacuo. Purification on silica (100% hexane to 1:9

ethyl acetate: hexane) produced 100 mg (49% yield) of yellow semi-solid. 1H-NMR (400

MHz, MeOD) δH ppm 1.45 (9H, s), 1.60 to 1.73 (3H, brm), 1.81 to 1.90 (1H, brm)

4.20 (1H, t, J = 13.46 Hz), 4.32 to 4.40 (2H, m) 7.27 to 7.29 (2H, td, J= 1.08 Hz and

14.87 Hz), 7.37 (2H, t, J = 14.56 Hz), 7.66 (2H, t, J = 13.39 Hz), 7.77 (2H, d, J = 7.57

Hz) 13C-NMR (100 MHz, MeOD), δC ppm 173.07 (C=O), 158.59 (ArC ), 145.31 (ArC ),

145.12 (ArC ), 142.58 (ArC ), 128.76 (ArC ), 128.13 (ArC ), 126.21 (ArC ), 125.91 (ArC ),
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120.91 (ArC ), 82.81 (CH), 67.83 (CH2), 55.66 (CH2), 51.88 (CH), 29.87 (CH2), 28.24

(CH3)3, 26.37 (CH2) HRMS (ES+) calculated for C24H29N4O4 found 437.2183 m/z

Fmoc- L-δ-Nva(N3)-OH (B12)

HN

OH

O

N3

O

O

Fmoc- L-δ-Nva(N3)-OtBu (50 mg, 0.1225 mmol) and methyltrichlorosilane (17 µL, 0.147

mmol) was added successively to NaI (22 mg, 0.147 mmol) in dry acetonitrile (1 mL).

The mixture was stirred at rt for 6 h under nitrogen. The mixture was quenched using

saturated sodium thiosulfate and extracted into diethyl ether (5 x 5 mL). The organic

phases were washed with water and brine, dried over MgSO4, filtered and concentrated

in vacuo. Purification on silica (100% hexane to 7:3 ethyl acetate: hexane) afforded

32 mg (69% yield). 1H-NMR (400 MHz, MeOD) δH ppm 1.61 to 1.76 (3H, m), 1.90

to 1.94 (1H, m), 4.16 to 4.21 (2H, m), 4,35 to 4.38 (1H, m), 7.30 (2H, t, J = 13.75

Hz), 7.37 (2H, t, J = 15.13 Hz), 7.66 (2H, t, J = 13.75 Hz), 7.77 (2H, d, J = 7.26

Hz) 13C- NMR (100 MHz, MeOD) 175.54 (C=O), 158.65 (ArC ), 145.33 (ArC ), 145.12

(ArC ), 142.57 (ArC ), 128.75 (ArC )2, 128.13 (ArC )2, 126.23 (ArC )2, 120.89 (ArC )2,

67.88 (CH2), 54.83 (CH), 51.92 (CH2), 48.42 (CH), 29.91 (CH2), 26.42 (CH2) HRMS

(ES+) calculated for C20H21N4O4 (M+H)+ found 381.1557 m/z

6.5.2.1 Click chlorofusin yields

200 mg of MBHA Rink Amide resin (0.14 mmol, 0.7 mmol/g) was suspended in 10 mL

of DMF. The resin was then allowed to swell for 30 min. DMF was removed under

reduced pressure and Fmoc deprotection was carried out by addition of 3 x 5 mL of 5%

piperazine in DMF, which was shaken for 5 minutes each. Resin was then washed with 4

x 20 mL of DMF. Resin was treated with a solution of Fmoc-Asp-ODMab (94 mg, 0.14

mmol, 1 eq), to which HBTU (53 mg, 0.14 mmol, 1 eq) and HOBt (21 mg, 0.14 mmol,

1 eq) and DIPEA (24 µLs, 2 eq) in DMF were added. The mixture was then shaken for

30 min.

Fmoc deprotection and washes were repeated for each subsequent coupling. A Kaiser

test was carried out at each stage to ensure that the coupling had gone to completion.
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A single, 30 min coupling with 5 eq of HBTU and HOBT and 10 eq of DIPEA (or 1

eq of HBTU and HOBT and 10 eq of DIPEA for amino acids bearing a *) was used at

each stage in the order of Fmoc-Ala-OH and Fmoc-Thr(tBu), Fmoc- L-δ-Nva(N3)-OH*,

Fmoc-D-Ade-OH*, Fmoc-D-Leu-OH, Fmoc-Thr(tBu)-OH, Fmoc-D-Leu-OH and Fmoc-

D-Asn(Trt)-OH* respectively.

Following the attachment of the final amino acid, the DMab group was removed by 3 x

10mLs of 2% hydrazine (581.4 µL in 30 mL) in DMF, shaken for 5 minutes each. The

resin was washed with 4 x 20mLs of DMF, and then washed 4 times with 5% DIPEA in

DMF (5.39 mL in 80 mL). Resin was then shaken with DIC (108 µL, 0.7 mmol, 5 eq)

and HOBt (107 mg, 0.7 mmol, 5 eq) for 4 x 24 hours.

Resin was washed 3 times with DMF, then 3 times with CH2Cl2, then 3 times with 1:1

CH2Cl2:MeOH to remove any residual DMF. The resin was then dried in vacuo over

KOH overnight.

A small amount was cleaved from the resin for characterisation: 100 mg of peptide-resin

complex was shaken with 4.706 mLs of 95:2.5:2.5 TFA:H2O:TIPS for 3 hours. The resin

was washed 3 times with TFA and the solution was concentrated in vacuo. The peptide

was precipitated out using cold diethyl ether, which was then filtered off, producing 30.9

mg as a white powder.

Subsequent click reactions took place with peptide-resin complex (50 mg, 0.035 mmol),

Alkyne (1 eq), 1 M sodium ascorbate (192 µL), 1 M CuSO4.5H2O (19.2 µL) and DMF

(6 mL) was shaken overnight.
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2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-azidopropyl)-1H -1,2,3-triazol-1-yl]

propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-methyl-5,11-

bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,10,13,16,19,

22,25-nonaazacycloheptacosan-2-yl]acetamide (B13)

N
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HN O
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NHO
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NHO

HN

HO
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HN

O
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Yellow gel, 2.8 mg, 8% yield MALDI-TOF 1060.74 (M+Na) and 1076.75 (M+K) m/z

HPLC retention time 17.58 min

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-(4-phenyl)-1H -1,2,3-triazol-1-yl]

propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-methyl-5,11-

bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,10,13,16,19,

22,25-nonaazacycloheptacosan-2-yl]acetamide (B14)
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White gel, 0.8 mg, 2% yield MALDI-TOF 1161.64 (M+Na) and 1177.66 (M+K) m/z

HPLC retention time 18.066 min
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2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[4-(4-methylphenyl)-1H -1,2,3-

triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-

methyl-5,11-bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,

7,10,13,16,19,22,25-nonaazacycloheptacosan-2-yl]acetamide (B15)
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White gel, 1 mg, 3% yield MALDI-TOF 1176.46 (M+Na) m/z HPLC retention time

18.37 min

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[4-(3-chlorophenyl)-1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-methyl-5,11-

bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,10,13,16,19,22,

25-nonaazacycloheptacosan-2-yl]acetamide (B16)
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White gel, 0.8 mg, 2% yield MALDI-TOF 1196.19 (M+Na) and 1212.19 (M+K) m/z

HPLC retention time 18.41 min
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2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[4-(4-fluorophenyl)-1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-methyl-5,11-

bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,10,13,16,19,22,

25-nonaazacycloheptacosan-2-yl]acetamide (B17)
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White gel, 0.9 mg, 1% yield MALDI-TOF 1176.60 (M+Na) and 1192.59 (M+K) m/z

HPLC retention time 18.85 min

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[4-(2-bromophenyl)-1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-methyl-5,11-

bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,10,13,16,19,22,

25-nonaazacycloheptacosan-2-yl]acetamide (B18)
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Orange gel, 0.6 mg, 1% yield MALDI-TOF 1242.70 (M+Na) and 1258.11 (M+K) m/z

HPLC retention time 18.28 min

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[4-(3-thoiphene)-1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-methyl-5,11-

bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,10,13,

16,19,22,25-nonaazacycloheptacosan-2-yl]acetamide (B19)
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White gel, 1.8 mg, 4% yield MALDI-TOF 1167.33 (M+Na) and 1183.28 (M+K) m/z

HPLC retention time 17.96 min

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[4-(2-isoindoline-3-acetaldehyde)-

1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-

methyl-5,11-bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,

10,13,16,19,22,25-nonaazacycloheptacosan-2-yl]acetamide (B20)
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White gel, 2.1 mg, 5% yield MALDI-TOF 1258.62 (M+Na) m/z HPLC retention time

17.80 min

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[4-(2-phthalimide)-1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-methyl-5,11-

bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-1,4,7,10,13,16,19,

22,25-nonaazacycloheptacosan-2-yl]acetamide (B21)
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White gel, 2.3 mg, 5% yield MALDI-TOF 1244.87 (M+Na) m/z HPLC retention time

17.70 min

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[4-(4-phenoxyphenyl)-1H -1,2,3-

triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-23-methyl-

5,11-bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-

nonaoxo-1,4,7,10,13,16,19,22,25-nonaazacycloheptacosan-2-yl]acetamide (B22)
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White gel, 3.3 mg, 8% MALDI-TOF 1253.92 (M+Na) m/z HPLC retention time 17.80

min

2-[(2R,5R,8S,11R,14R,17S,20S,23S,26S)-17-3-[4-(3,5-dimethylisophthalate)-

1H -1,2,3-triazol-1-yl]propyl-26-(carbamoylmethyl)-8,20-bis(1-hydroxyethyl)-

23-methyl-5,11-bis(2-methylpropyl)-14-octyl-3,6,9,12,15,18,21,24,27-nonaoxo-

1,4,7,10,13,16,19,22,25-nonaazacycloheptacosan-2-yl]acetamide (B23)
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N
H

O

HN O

NH

OH
O

NHO

N
H

OH2N

O

HN

NH2

O

O

NHO

HN

HO
O

HN

O

N

NN

O
O

O

O

Pale yellow gel, 1.5 mg, 4% yield MALDI-TOF 1277.75 (M+Na) m/z HPLC retention

time 18.11 min

6.5.3 Click amino acids

Fmoc- L-δ-Nva(N3)-OH (50 mg, 0.131 mmol), Alkyne (1 eq), 1 M sodium ascorbate

(92 µL), 1 M CuSO4.5H2O (9.2 µL) and 1:1 tBu:H2O (1 mL) was stirred overnight.

Compounds were then purified through reverse-phase preparative HPLC.

(2S)-2-[(9H-fluoren-9-ylmethoxy)carbonyl]amino-5-[4-(4-methoxyphenyl)-1H -1,2,3-triazol-1-

yl]pentanoic acid (B24)

HN

OH

O

N

O

O

N

N

O

White solid, 9% yield 1H-NMR (400 MHz, MeOD) δH ppm 1.71 to 1.73 (1H, m), 1.83

to 1.95 (1H, m), 2.00 to 2.02 (2H, m), 3.82 (3H, s), 4.21 (2H, t, J = 7.39 Hz and 12.94

Hz), 4.35 to 4.38 (2H, m), 4.46 (2H, t, J = 6.47 Hz and 12.94 Hz), 6.97 (2H, d, J = 8.23

Hz), 7.28 to 7.30 (2H, m), 7.34 to 7.38 (2H, m), 7.65 (2H, m), 7.71 (2H, d, J = 9.24
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Hz), 7.77 (2H, d, J = 7.39 Hz), 8.28 (1H, s) HRMS (ES+) calculated for C29H29N4O5

(M+H)+ found 513.2132 m/z

(2S)-2-[(9H-fluoren-9-ylmethoxy)carbonyl]amino-5-[4-(4-methylphenyl)-1H -1,2,3-triazol-1-

yl]pentanoic acid (B25)

HN

OH

O

N

O

O

N

N

White solid, 5.9 mg, 9% yield 1H-NMR (400 MHz, MeOD) δH ppm 1.60 to 1.68 (1H,

m), 1.80 to 1.85 (1H, m), 1.91 to 1.95 (2H, m), 2.26 (3H, s), 4.11 to 4.13 (2H, m), 4.25

to 4.28 (2H, m), 4.38 (2H, t, J = 6.96 Hz and 13.93 Hz), 7.13 to 7.20 (4H, m), 7.25 to

7.28 (2H, m), 7.54 to 7.59 (4H, m), 7.68 (2H, d, J = 7.84 Hz), 8.14 (1H, s) HRMS (ES+)

calculated for C29H29N4O4 (M+H)+ found 497.2183 m/z HPLC retention time 16.567

min

(2S)-2-[(9H-fluoren-9-ylmethoxy)carbonyl]amino-5-[4-(4-(trifluoromethyl)phenyl)-1H -1,

2,3-triazol-1-yl]pentanoic acid (B26)

HN

OH

O

N

O

O

N

N

F

F

F

White solid, 15.9 mg, 22% yield 1H-NMR (400 MHz, MeOD) δH ppm 1.73 to 1.76 (1H,

m), 1.90 to 1.92 (1H, m), 2.03 to 2.06 (2H, m), 4.20 to 4.22 (2H, m), 4.35 to 4.38 (2H,

m), 4.51 (2H, t, J = 6.78 Hz and 13.55 Hz), 7.28 (2H, t, J = 7.91 Hz to 14.68 Hz), 7.36
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(2H, t, J = 7.91 Hz and 15.81 Hz), 7.65 (2H, t, J = 6.78 Hz and 13.55 Hz), 7.71 (2H, d,

J = 7.91 Hz), 7.77 (2H, d, J = 6.78 Hz), 7.99 (2H, d, J = 9.04 Hz), 8.43 (1H, s) HRMS

(ES+) calculated for C29H26F3N4O4 (M+H)+ 551.1901 m/z found 551.1890 m/z

(2S)-5-[4-(4-[(tert-butoxy)carbonyl]aminomethylphenyl)-1H -1,2,3-triazol-1-yl]-2-[(9H-flu

oren-9-ylmethoxy)carbonyl]aminopentanoic acid (B27)

HN

OH

O

N

O

O

N

N

HN

O

O

Pale orange solid, 1.6 mg, 2% yield 1H-NMR (400 MHz, MeOD) δH ppm 1.50 (9H, s),

1.67 to 1.80 (1H, m), 1.83 to 1.95 (1H, m), 1.96 to 2.09 (2H, m), 4.22 (2H, t, J = 6.28

Hz and 12.97 Hz), 4.38 (2H, t, J = 7.18 Hz and 12.17 Hz), 4.47 (2H, t, J = 7.18 Hz and

13.47 Hz), 7.29 (2H, t, J = 7.08 Hz and 15.04 Hz), 7.37 (2H, t, J = 7.08 Hz and 15.04

Hz), 7.64 to 7.66 (2H, m), 7.70 (2H, d, J = 8.43 Hz), 7.78 (2H, d, J = 6.94 Hz), 8.22

(1H, s) LCMS (ES+) calculated for C33H36N5O6 found 598.4 m/z
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(2S)-5-[4-(4-chlorophenyl)-1H -1,2,3-triazol-1-yl]-2-[(9H-fluoren -9-ylmethoxy)carbonyl]a

minopentanoic acid (B28)

HN

OH

O

N

O

O

N

N

Cl

White solid, 2 mg, 3% yield 1H-NMR (400 MHz, MeOD) δH ppm 1.72 (1H, m), 1.88

(1H, m), 2.03 (2H, m), 4.20 (1H, m), 4.34 to 4.39 (1H, m), 4.49 (2H, t, J = 7.24 Hz

and 13.04 Hz), 7.28 to 7.30 (2H, m), 7.35 to 7.39 (2H, m), 7.42 (2H, d, J = 6.08 Hz),

7.64 to 7.65 (2H, m), 7.77 to 7.79 (4H, m), 8.32 (1H, s) HRMS (ES+) calculated for

C28H26N4O4Cl (M+H)+ found 517.1637 m/z

(2S)-5-[4-(4-bromophenyl)-1H -1,2,3-triazol-1-yl]-2-[(9H-fluoren -9-ylmethoxy)carbonyl]a

minopentanoic acid (B29)

HN

OH

O

N

O

O

N

N

Br

White solid, 1.5 mg, 2% yield 1H-NMR (400 MHz, MeOD) δH ppm 1.56 to 1.66 (1H,

m), 1.67 to 1.81 (1H, m), 1.85 to 1.95 (1H, m), 1.97 to 2.01 (2H, m), 4.18 to 4.23 (1H,

m), 4.35 to 4.43 (1H, m), 4.45 to 4.51 (2H, m), 7.29 (2H, t, J = 6.52 Hz to 19.59 Hz),

7.37 (2H, t, J = 7.25 Hz and 14.86 Hz), 7.567 (2H, d, J = 8.33 Hz), 7.63 to 7.67 (2H,

m), 7.72 (2H, d, J = 8.52 Hz), 7.78 (2H, d, J = 7.79 Hz), 8.32 (1H, s) HRMS (ES+)

calculated for C28H26N4O4Br (M+H)+ found 561.1132 m/z



Targeting the p53/MDM2 Protein-Protein Interaction 202

(2S)-5-[4-(4-iodophenyl)-1H -1,2,3-triazol-1-yl]-2-[(9H-fluoren -9-ylmethoxy)carbonyl]a

minopentanoic acid (B30)

HN

OH

O

N

O

O

N

N

I

White solid, 5.6 mg, 7% yield 1H-NMR (400 MHz, MeOD) δH ppm 1.68 to 1.80 (1H,

m), 1.84 to 1.96 (1H, m), 1.97 to 2.08 (2H, m), 4.20 to 4.22 (2H, t, J = 6.31 Hz and

13.01 Hz), 4.35 to 4.38 (2H, m), 4.49 (2H, t, J = 7.10 Hz and 13.41 Hz), 7.29 (2H, t, J

= 7.40 Hz and 14.80 Hz), 7.37 (2H, t, J = 7.40 Hz and 14.80 Hz), 7.58 (2H, d, J = 8.33

Hz), 7.66 (2H, t, J = 6.48 Hz and 12.03 Hz), 7.76 to 7.79 (4H, m), 8.32 (1H, s) HRMS

(ES+) calculated for C28H26N4O4I (M+H)+ 609.0993 m/z found 609.0993 m/z

(2S)-2-amino-5-[4-(4-(trifluoromethyl)phenyl)-1H -1,2,3-triazol-1-yl]pentanoic acid (B31)

HN

OH

O

N

O

O

N

N

F

F

F

White solid, 2.5 mg, 82% yield 1H-NMR (400 MHz, MeOD) δH ppm 1.92 to 2.24 (4H,

m), 4.05 (1H, t, J = 6.08 Hz and 12.77 Hz), 4.60 (2H, t, J = 6.69 Hz and 13.37 Hz), 7.77

(2H, d, J = 8.51 Hz, 8.04 (2H, d, J = 8.51 Hz), 8.50 (1H, s) HRMS (ES+) calculated

for C29H26F3N4O4I (M+H)+ 551.1894 m/z found 551.1901 m/z
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6.6 Experimental for Chapter 4

6.6.1 Initial Synthesis to the Sonogashira Precursor

2,4-dimethoxy-3-methylbenzaldehyde (C01)

O

O

O

Phosphorus(V) oxychloride (2.8 mL, 30 mmol) was added dropwise to dry DMF (5

mL) at 0◦C under nitrogen. The resulting Vilsmeier reagent was then warmed to room

temperature and stirred for a further 30 minutes. The Vilsmeier reagent was then

added to a solution of 2,6-dimethoxytoluene (3.9 g, 25 mmol) in dry DMF (5 mL) and

the mixture was stirred for 4 hours at 100◦C under nitrogen. The reaction was then

quenched with ice water. The mixture was extracted using ethyl acetate (4 x 20 mL)

and the organic phases were combined and washed with brine. The organic phase was

then dried over magnesium sulphate, filtered and concentrated in vacuo. Purification

on silica (100% Hexane to 1:9 Ethyl Acetate:Hexane) afforded 3.39 g (74% yield) as

an off-white solid. mp 53-55◦C. IR νmax (neat) /cm−1 2844.78 (C-H), 1767.02 (C=O),

1744.46 (C=O), 1106.68 (C-O); 1H NMR (400 MHz, CDCl3) δH ppm: 10.23 (1H, s),

7.75 (1H, d, J = 9.99 Hz), 6.75 (1H, d, J = 9.99 Hz), 3.91 (3H, s), 3.86 (3H, s), 2.16 (3H,

s) 13C NMR (100 MHz, CDCl3) δC ppm: 189.20 (COH), 164.01 (ArC ), 162.61 (ArC ),

127.96 (ArC ), 122.84 (ArC ), 120.14 (ArCH), 106.55 (CH), 62.91 (CH3), 55.70 (CH3),

8.52 (CH3). Data matches literature values.182

(Acetyloxy)(2,4-dimethoxy-3-methyl-5-nitrophenyl)methyl acetate (C02)

OAc

O

O

OAc

NO2

2,4-dimethoxy-3-methylbenzaldehyde (5 g, 27.8 mmol) was dissolved in acetic anhydride

(17.3 mL). The solution was added slowly to a mixture of copper(III) nitrite hemipen-

tahydrate (3.86 g, 16.5 mmol) and 17.3 mL of acetic anhydride at 0◦C. The mixture

was warmed to room temperature and stirred for 6 hours. The product was extracted

with ethyl acetate (3 x 20 mL) and the organic phases were washed with distilled water,
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dried over magnesium sulphate, filtered and concentrated in vacuo. Purification on sil-

ica (1:9 Ethyl Acetate:Hexane) 1:9 Ethyl Acetate:Hexane produced 6.63 g of pale cream

solid (73% yield). mp 45-47◦C; IR νmax (neat) /cm−1 2844.67 (C-H), 1681.18 (C=O),

1107.83 (C-O); 1H NMR (400 MHz, CDCl3) δH ppm: 2.13 (6H, s), 2.35 (3H, s), 3.87

(3H, s), 3.91 (3H, s), 7.90 (1H, s), 7.92 (1H, s); 13C NMR (100 MHz, CDCl3) δH ppm:

168.66 (ArC ), 162.60 (ArC ), 150.21 (ArC ), 147.17 (ArC ), 129.20 (ArC ), 141.02 (ArC ),

124.54 (ArCH), 122.20 (ArC ), 105.94 (CH), 84.86 (CH), 62.05 (CH3), 61.74 (CH3),

20.82 ((CH3)2), 10.06 (CH3). Data matches literature values.182

(Acetyloxy)(3-amino-2-bromo-4,6-dimethoxy-5-methylphenyl) methyl acetate

(C03)

OAc

O

O

OAc

NH2

Br

(Acetyloxy)(2,4-dimethoxy-3-methyl-5-nitrophenyl)methyl acetate (5 g, 15.29 mmol) was

dissolved in 22:7:1 diethyl ether: ethanol: water (500 mL). Aluminium foil (4.11 g, 152.9

mmol) was cut into strips and rolled into coils before being dipped into 2% aqueous

mercury solution. Once amalgamated, the aluminium was dipped again in diethyl ether

to dry and added to the reaction mixture. The reaction mixture was stirred for 1 h at

room temperature. The product was filtered through celite and concentrated under re-

duced pressure. The product was redissolved in acetic acid (30 mL), to which a solution

of bromine (858 µL, 16.82 mmol, 1.1 eq) in acetic acid (20 mL) was added dropwise and

stirred over 30 min. The reaction was quenched with saturated sodium thiosulphate

and the product was extracted with ethyl acetate (4 x 30 mL), the organic phases were

washed with saturated sodium bicarbonate and water, then dried over magnesium sul-

phate, filtered and concentrated in vacuo. Purification on silica in a gradient of (1:9

Ethyl Acetate:Hexane to 4:6 Ethyl Acetate:Hexane) afforded 3.74 g (65% yield) of or-

ange solid. mp 126-129◦C; IR νmax (neat) /cm−1 3476.95 (N-H), 3378.37 (N-H), 1738.54

(C=O), 1210.73 (C-O); 1H NMR (400 MHz, CDCl3) δH ppm: 2.10 (6H, s), 2.18 (3H,

s), 3.73 (3H, s), 3.76 (3H, s), 8.14 (1H, s); 13C NMR (100 MHz, CDCl3) δC ppm: 168.66

(ArC ), 150.21 (ArC ), 147.17 (ArC ), 124.54 (ArC ), 123.33 (ArC ), 105.94 (ArC ), 87.75

(ArC ), 62.20 (CH3), 60.37 (CH3), 20.89 ((CH3)2), 14.19 (CH3), 9.71 (CH3). Data

matches literature values.182

2-bromo-4,6-dimethoxy-5-methylbenzaldehyde (C04)
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O

O

O Br

(Acetyloxy)(3-amino-2-bromo-4,6-dimethoxy-5-methylphenyl)methyl acetate (500 mg,

1.33 mmol) was dissolved in THF (5.42 mL) and distilled water (3.61 mL). Concen-

trated HCl (0.904 mL) was added to the mixture and it was cooled to -5◦C. To the

mixture, of sodium nitrite (101.2 mg (1.46 mmol) in distilled water (0.361 mL) was

added to the mixture, which was subsequently stirred for 20 minutes at -5◦C. Urea (36.1

mg) was then added, after which 50% w/v hypophosphorus acid (3.01 mL) was added

dropwise over 20 minutes. The resultant mixture was reacted overnight at 0◦C and then

warmed to 40◦C for 4 hours. The mixture was extracted using ethyl acetate (3 x 10

mL) and the organic phases were washed with distilled water. The organic phases were

dried over magnesium sulphate, which was filtered and the solution was concentrated

in vacuo. Purification on silica (1:9 Ethyl Acetate:Hexane to 4:6 Ethyl Acetate:Hex-

ane) afforded 340 mg (99% yield) of yellow solid. mp 76-78◦C; 1H NMR (400 MHz,

CDCl3) δH ppm: 2.10 (3H, s), 3.81 (3H, s), 3.90 (3H, s), 6.93 (1H, s), 10.27 (1H, s); 13C

NMR (100 MHz, CDCl3) δC ppm: 189.90 (COH), 162.74 (ArC ), 161.97 (ArC ), 124.19

(ArCH), 120.93 (ArC ), 120.90 (ArC ), 112.43 (ArC ), 62.57 (CH3), 56.12 (CH3), 14.12

(CH), 8.42 (CH3). Data matches literature values.182

2,4-dihydroxy-3-methyl-6-bromobenzaldehyde (C05)

O

OH

HO Br

2-bromo-4,6-dimethoxy-5-methylbenzaldehyde (1.4 g, 6.060 mmol) was dissolved in CH2Cl2

(17.92 mL) and the solution was cooled down to -78◦C. To the solution, of BBr3 (5.38

g, 2.17 mL, 21.48 mmol) was added dropwise. The reaction mixture was stirred for 30

minutes at -78◦C, then warmed to room temperature over 30 minutes. The mixture was

then stirred at room temperature for 18 hours and quenched with ice water, after which

it was stirred for a further hour.

The mixture was extracted with ethyl acetate (3 x 20 mL) and the organic phases were

washed with brine. Magnesium sulphate was used to dry the organic layers, after which

the magnesium was filtered off and the solution was concentrated in vacuo. Purification

on silica in 1:9 Ethyl Acetate:Hexane afforded 1.03 g as a white solid (83%). 1H NMR

(400 MHz, MeOD) δH ppm: 2.02 (3H, s), 6.72 (1H, s), 10.08 (1H, s); 13C NMR (100 MHz,
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MeOD) δC ppm: 196.78 (COH), 165.17 (ArC ), 164.83 (ArC ), 126.73 (ArCH), 113.77

(ArC ), 112.67 (ArC ), 112.45 (ArC ), 7.28 (CH3). Data matches literature values.182

Alkynylbenzaldehyde (C06)

O

OH

HO

(CH2)12CH3

2-iodo-4,6-dihydroxy-5-methylbenzaldehyde (500 mg, 2.16 mmol), PdCl2(PPh3)2 (152

mg, 0.216 mmol), CuI (41 mg, 0.22 mmol), of 1-pentadecyne (540.8 mg, 2.6 mmol,

680 µL), dry DMF (16 mL) and triethylamine (1 mL) were stirred under nitrogen at

60◦C for 4 hours. The mixture was allowed to cool to room temperature, was diluted

with distilled water and then neutralised with 1M aqueous HCl. The mixture was

extracted with ethyl acetate (3 x 10 mL) and the organic phases were washed with brine.

The organic phase was dried over magnesium sulphate, filtered and concentrated in

vacuo. Purification on silica in (5:95 Ethyl Acetate:Hexane to 4:6 Ethyl Acetate:Hexane)

afforded 382 mg (52% yield) as a pale yellow solid. 1H-NMR (400 MHz, CDCl3) δH ppm:

1.26 (25H, brm, overlap), 2.11 (3H, s), 2.44 (2H, t, J= 14.17 Hz), 6.48 (1H, s), 10.21

(1H, s), 12.34(1H, s); 13C-NMR (100 MHz, CDCl3) δH ppm: 195.32 (COH), 162.97

(ArC ), 160.28 (ArC ), 114.56 (ArCH), 112.15 (ArC ), 111.36 (ArC ), 97.49 (CH), 34.67

(CH), 31.93 (CH), 31.59 (CH2), 29.66 (CH2), 29.52 (CH2), 29.36 (CH2), 29.12 (CH2),

29.00 (CH2), 28.50 (CH2), 26.92 (CH2), 25.28 (CH2), 22.66 (CH2), 20.69 (CH2), 19.53

(CH2), 14.12 (CH3), 7.09 (CH3). HRMS (APCI+) calculated for C23H35O3 (M+H)+

359.2572 found 359.2581 m/z

7-methyl-6,8-dimethylidene-3-tridecyl-7,8-dihydro-6H-isochromen-7-ol (C07)

O

O

O

HO

(CH2)12CH3

Alkynylbenzaldehyde (373 mg, 1.1396 mmol) was dissolved in dichloroethane (5.647

mL). To the solution, Au(OAc)3 (21.13 mg, 0.0564 mmol) and TFA (564 µL) were

added. The mixture was stirred for 1 minute at room temperature. Dry IBX (342.6 mg,

1.243mmol) and TBAI (20.8 mg, 0.0564 mmol) were then added to the reaction mixture,

which was stirred for a further hour. After this time the reaction was quenched with

saturated sodium thiosulphate. The mixture was extracted with ethyl acetate (3 x 10

mL), then the organic phases were washed with brine. The organic phases were dried
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over magnesium sulphate, filtered and concentrated in vacuo. Purification on silica (1:9

EtOAc:Hexane to 2:8 EtOAc:Hexane), afforded 180 mg (48% yield) as an orange solid.

1H-NMR (400 MHz, CDCl3) δH ppm: 0.88 (4H, brm, overlap), 1.26 (20H, brm, overlap),

1.55 (3H, s), 2.41 (2H, t, J = 15.61 Hz), 5.52 (1H, s), 6.10 (1H, s), 7.88 (1H, s); 13C-NMR

(100 MHz, CDCl3) δC ppm: 196.28 (C=O), 195.80 (C=O), 163.08 (ArC ), 152.95 (ArC ),

144.14 (ArC ), 115.82 (ArCH), 108.28 (ArCH), 104.95 (ArCH), 83.46 (ArCH), 60.37

(CH), 33.20 (CH2), 31.89 (CH2), 29.63 (CH2), 29.61 (CH2), 29.55 (CH2), 29.40 (CH2),

29.32 (CH2), 29.19 (CH2), 28.91 (CH2), 28.51 (CH2), 26.48 (CH2), 22.66 (CH3), 14.10

(CH3). HRMS (ES+) calculated for C23H38NO4 (M+NH4)
+ 392.2799 found 392.2795

m/z

7-methyl-6,8-dimethylidene-3-tridecyl-7,8-dihydro-6H-isochromen-7-yl

butanoate (C08)

O

O

O

O

(CH2)12CH3

O

7-methyl-6,8-dimethylidene-3-tridecyl-7,8-dihydro-6H-isochromen-7-ol (140 mg, 0.4032

mmol),CH2Cl2 (4.172 mL), butyric anhydride (319.9 mg, 5 eq, 328.16 µL, 2.016 mmol)

and DMAP (4.928 mg, 0.1 eq, 0.04032 mmol) were stirred at room temperature for 22

hours. The reaction was then quenched with MeOH (4.172 mL) for 15 minutes, con-

centrated and left overnight in vacuo. Purification on silica (1:9 Ethyl Acetate:Hexane

to 2:8 Ethyl Acetate:Hexane) afforded 90.8 mg (55% yield) as an orange oil. 1H-NMR

(400 MHz, CDCl3) δH ppm: 0.95 (5H, t, J = 13.90 Hz), 0.97 (5H, t, J = 13.90 Hz),

1.26 (25H, brm, overlap), 1.52 (3H, s), 1.66 (2H, t, overlap), 1.68 (3H, m, overlap), 2.34

(1H, t, overlap), 2.42 (4H, m, overlap), 5.57 (1H, s), 6.08 (1H, s), 7.87 (1H, s); 13C-

NMR (100 MHz, CDCl3) δH ppm: 192.80 (C=O), 172.82 (C=O), 162.37 (ArC ), 153.90

(ArC ), 142.70 (ArC ), 115.11 (ArCH), 108.56 (ArCH), 106.72 (ArCH), 84.03 (ArCH),

35.01 (CH2), 33.04 (CH2), 31.86 (CH2), 31.53 (CH2), 29.60 (CH2), 29.58 (CH2), 29.37

(CH2), 29.29 (CH2), 29.17 (CH2), 28.85 (CH2), 26.85 (CH2), 26.48 (CH2), 22.63

(CH2), 22.59 (CH2), 22.12 (CH2), 18.16 (CH3), 14.04 (CH3), 13.42 (CH3). HRMS

(ES+) calculated for C27H44NO5 (M+NH4)
+ 462.3212 found 462.3214 m/z

5-chloro-7-methyl-6,8-dimethylidene-3-tridecyl-7,8-dihydro-6H-isochromen-7-yl

butanoate (C09)
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O

O

O

O

(CH2)12CH3

O

Cl

7-methyl-6,8-dimethylidene-3-tridecyl-7,8-dihydro-6H-isochromen-7-yl butanoate (60 mg,

0.147 mmol) and NCS (25.96 mg, 0.192 mmol) were dissolved in 1.716 mLs of glacial

acetic acid and stirred for 24 hours. The product was filtered to remove the NCS and the

product dried in vacuo overnight. The yield of the orange oil produced was quantitative.

1H-NMR (400 MHz, CDCl3) δH ppm: 0.95 (4H, t, J = 15.06 Hz), 0.97 (3H, J = 14.49

Hz), 1.26 (28H, brm), 1.65 (3H, s), 1.67 (5H, m), 2.44 (2H, m), 2.48 (2H, m), 6.57 (1H,

s), 7.90 (1H, s). HRMS (ES+) calculated for C27H43NClO6 (M+NH4)
+ 496.2820 found

496.2824 m/z

6.6.2 Alternative synthesis to the Sonogashira Precursor

2,4-dihydroxy-3-methyl-6-iodobenzaldehyde (C10)

OH

HO

O

I

To a solution of triethylamine (3.9 mL, 30.5 mmol) in THF (200 mL), 1.6M nBuLi

(22.5 mL, 36.07 mmol) was added and the resultant mixture was stirred for 15 min-

utes at 0◦C. The reaction was then cooled to -20◦C and a solution of 2,4-dimethoxy-

3-methylbenzaldehyde (5g, 27.7mmoles) in THF (50mLs) was added. The mixture was

stirred for a further 30 minutes. A solution of 1.6M nBuLi (46mLs, 73.3mmoles) was

then added dropwise and the reaction mixture was stirred overnight.

The reaction mixture was cooled to -40◦C and a solution of diiodoethane (23.5 g, 83.2

mmoles) in THF (50 mL) was added dropwise. After 5 minutes the reaction was warmed

to room temperature and quenched with 100mLs of saturated ammonium chloride and

40mLs of saturated sodium thiosulphate. The product was extracted using diethyl ether

and magnesium sulphate was used to remove any additional water in the organic phase.

The magnesium sulphate was removed by filtration and the product was concentrated

in vacuo.

The product was then dissolved in 114mLs of CH2Cl2 and cooled to -78◦C for 30 minutes,

then warmed to room temperature over 30 minutes. The solution was then stirred
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overnight. Purification on silica (1:9 ethyl acetate:hexane) afforded 2.04g (26% yield)

of off-white solid 1H NMR (400 MHz, MeOD) δH ppm: 9.72 (1H, s), 7.08 (1H, s), 1.93

(3H, s). 13C NMR (100 MHz, CDCl3) δH ppm: 201.23 (COH), 164.67 (ArC ), 164.50

(ArC ), 121.21 (ArCH), 113.95 (ArC ), 113.35 (ArC ), 100.76 (ArC ), 7.50 (CH3). HRMS

(AP+) calculated for C8H8IO3 (M+H)+ 278.9505 m/z found 278.9499 m/z

6.6.3 Synthesis for the Generation of Azaphilones with an Aromatic

Side Chain

6-ethynyl-2,4-dihydroxy-3-methylbenzaldehyde (C11)

OH

HO

O

2,4-dihydroxy-3-methyl-6-bromobenzaldehyde (400 mg, 1.728 mmol), PdCl2(MeCN)2

(27 mg, 0.104 mmol), CuI (14 mg, 0.072 mmol), (tBu)3.HBF4 (60 mg, 0.208 mmol),

TMS-acetylene (306 mg, 3.12 mmol, 440 µL), dry THF (3.2 mL) and diisopropylamine

(388 µL) were stirred under nitrogen at 50◦C for 3 h. The mixture was allowed to cool to

room temperature, was diluted with ethyl acetate and then neutralised with 1M aqueous

HCl. The mixture was extracted with ethyl acetate (3 x 10 mL) and the organic phases

were washed with brine. The organic phase was dried over magnesium sulphate, filtered

and concentrated in vacuo. Purification on silica in (5:95 Ethyl Acetate:Hexane to 4:6

Ethyl Acetate:Hexane) afforded a pale yellow solid, which was then deprotected using 1

M TBAF in THF ( 2.032 mL, 2.032 mmol) and THF (61.15 mL) at room temperature

for 3 hours. The mixture was diluted with ethyl acetate and then neutralised with 1M

aqueous HCl. The mixture was extracted with ethyl acetate (3 x 10 mL) and the organic

phases were washed with brine. The organic phase was dried over magnesium sulphate,

filtered and concentrated in vacuo. Purification on silica in (5:95 Ethyl Acetate:Hexane

to 4:6 Ethyl Acetate:Hexane) afforded 195 mg (64% yield) as a pale yellow solid mp

172-174◦C. 1H NMR (400 MHz, MeOD) δH ppm: 2.00 (3H, s) 3.84 (1H, s), 6.55 (1H,

s), 10.13 (1H, s); 13C NMR (100 MHz, MeOD) δH ppm: 195.53 (COH), 164.11 (ArC ),

126.35 (ArCH), 113.96 (ArC ), 84.83 (ArC ), 79.73 (ArC ), 32.56 (CH), 23.71 (CH),

14.44 (CH), 7.42 (CH3). HRMS (ES-) calculated for C10H7O3 (M-H)− found 175.0401

m/z

2,4-dihydroxy-3-methyl-6(2-phenylethynyl)-benzaldehyde (C12)
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OH

HO

O

6-ethynyl-2,4-dihydroxy-3-methylbenzaldehyde (102 mg, 0.567 mmol), Pd(PPh3)4 (34

mg, 0.03 mmol), CuI (5 mg, 0.03 mmol), bromobenzene (179 mg, 1.159 mmol, 121 µL)

anhydrous THF (1.05 mL) and triethylamine (161 µL) was stirred at 50◦C under nitrogen

for 2 h. The resulting mixture was diluted with ethyl acetate, and neutralised using 1M

aqueous HCl. The mixture was then extracted using ethyl acetate and the organic phases

were washed with brine. The organic phases were dried over magnesium sulphate, filtered

and concentrated in vacuo. Purification on silica (5:95 EtOAc:Hexane 4:6 EtOAc:Hex-

ane) afforded 60 mg (41% yield) as an orange solid mp 198-200◦C ; IR max (neat) /cm-1

3015.11 (O-H), 2206.63 (C≡C), 1737.16 (C=O) 1H NMR (400 MHz, CDCl3) δH ppm:

2.15 (3H, s), 6.64 (1H, s), 7.39 (3H, m), 7.52 (2H, m), 10.35 (1H, s), 12.38 (1H, s); 13C

NMR (400 MHz, MeOD) δH ppm: 199.86 (ArC ), 195.52 (COH), 164.22 (ArC ), 164.16

(ArC ), 132.65 (ArC ), 130.19 (ArCH), 129.73 (ArC ), 127.30 (ArCH), 123.64 (ArCH),

123.84 (ArCH), 113.20 (ArC ), 95.88 (ArCH), 85.41 (ArCH), 12.44 (CH), 7.46 (CH3)

HRMS (ES-) calculated for C16H11O3 (M-H)− 251.0709 found 251.0714 m/z

7-hydroxy-3,7-dimethyl-7,8-dihydro-6H-isochromene-6,8-dione (C13)

O

O

O

HO

2,4-dihydroxy-3-methyl-6(2-phenylethynyl)-benzaldehyde (60 mg, 0.238 mmol), Au(OAc)3

(4.11 mg, 0.011 mmol), TFA (118 µL) and dichloroethane (1.18 mL). The mixture was

stirred for 1 minute at room temperature. Dry IBX (71.23 mg, 0.259 mmol) and TBAI

(4.11 mg, 0.011 mmol) were added to the reaction mixture, and stirred for a further

hour. The reaction was quenched with saturated sodium thiosulphate and mixture was

extracted with ethyl acetate (3 x 10 mL), then the organic phases were washed with

brine. The organic phases were dried over magnesium sulphate, filtered and concen-

trated in vacuo and reacted further as crude.

To the crude mixture, acetic anhydride (123 mg, 113 µL, 1.195 mmol 5 eq), DMAP (3

mg, 0.0239 mmol, 0.1 eq) and CH2Cl2 (2.08 mL) was stirred at rt for 22 h. Methanol (1

mL) was then added and the mixture was stirred for a further 15 min. The methanol was
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removed under reduced pressure and the product was dried in vacuo. Purification on

silica (1:9 Ethyl Acetate:Hexane to 100% Ethyl Acetate), afforded 23 mg (36% yield) as

an orange glassy solid. 1H NMR (400 MHz, CDCl3) δH ppm: 1.60 (3H, s), 5.70 (1H, s),

6.77 (1H, s), 7.52 (3H, m), 7.74 (2H, d, J = 4.00 Hz), 8.04 (1H, s); 13C-NMR (100 MHz,

CDCl3) δH ppm: 171.24 (ArC ) 132.35 (ArCH), 132.13 (ArCH), 132.03 (ArCH), 128.77

(ArCH), 128.65 (ArCH), 76.70 (CH), 60.43 (CH3) 31.59 (CH), 22.66 (CH), 22.62 (CH),

14.20 (CH), 14.12 (CH3) HRMS (EI+) calculated for C16H12O4 (M)+ found 268.06951

m/z
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7-methyl-6,8-dioxo-3-phenyl-7,8-dihydro-6H-isochromen-7-yl acetate (C14)

O

O

O

O

O

7-hydroxy-3,7-dimethyl-7,8-dihydro-6H-isochromene-6,8-dione (23 mg, 0.0857 mmol), acetic

anhydride (45.57 mg, 40.52 µL, 0.4287 mmol, 5 eq), DMAP (1 mg, 0.00857, 0.1 eq) and

CH2Cl2 (888 µL) was stirred at rt for 22 h. The resulting mixture was stirred with

methanol (5 mL) for 15 min, the solvent was removed under reduced pressure and dried

in vacuo overnight. Purification on silica (100% Hexane to 3:7 Ethyl Acetate: Hexane)

afforded 13 mgs of orange solid. 1H NMR (400 MHz, CDCl3) δH ppm: 1.58 (3H, s),

2.18 (3H, s), 2.19 (3H, s), 5.70 (1H, s), 6.76 (1H, s), 7.51 (4H, m), 7.73 (3H, m), 8.04

(1H, s); HRMS (AP+) calculated for C18H5O5 (M+H)+ found 311.0914 m/z

2,4-dihydroxy-3-methyl-6-[2-(naphthalen-2-yl)ethynyl]benzaldehyde (C15)

OH

HO

O

6-ethynyl-2,4-dihydroxy-3-methylbenzaldehyde (200 mg, 1.112 mmol), Pd(PPh3)4 (66

mg, 0.06 mmol), CuI (10 mg, 0.06 mmol), bromonaphthalene (470 mg, 2.272 mmol)

anhydrous THF (2.06 mL) and triethylamine (316 µL) was stirred at 50◦C under ni-

trogen for 4 h. The resulting mixture was diluted with ethyl acetate, and neutralised

using 1M aqueous HCl. The mixture was then extracted using ethyl acetate and the

organic phases were washed with brine. The organic phases were dried over magne-

sium sulphate, filtered and concentrated in vacuo. Purification on silica (1:9 Ethyl

Acetate:Hexane to 4:6 Ethyl Acetate:Hexane) afforded 120 mg (35% ) as a yellow solid

Mp 100.9-102.5◦C IR νmax (neat) /cm−1 1H-NMR (400 MHz, MeOD) δH ppm: 2.17

(3H, s) 7.30 (6H, m), 7.38 (14H, m), 7.48-7.47 (15H, m, overlap), 7.69-7.67 (8H, m,

overlap), 9.68 (1H, s), 10.33 (1H, s); 13C-NMR (100 MHz, MeOD) δC ppm: 196.18

(ArC ), 195.37 (ArC ), 164.94 (ArC ), 163.24 (ArC ), 134.30 (ArC ), 133.04 (ArC ), 132.77

(ArC ), 131.30 (ArCH), 130.89 (ArCH), 130.14 (ArCH), 129.42 (ArC ), 128.92 (CHH),

127.94 (ArCH), 127.50 (ArCH), 120.64 (ArCH), 115.73 (ArC ), 113.28 (ArC ), 108.93

(ArC ), 54.81 (ArC ), 7.31 (CH3) HRMS (AP+) calculated for C20H5O3 (M+H)+ found

303.1016 m/z
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N-2-(bromophenyl)acetamide (C16)

HN O

Br

2-bromoaniline (2 g, 131.6 µL, 11.70 mmol) and acetic anhydride (2.62 g, 2.44 mLs,

25.74 mmol) were added together at 0◦C and underwent an instantaneous reaction. The

solid was dissolved in ethyl acetate, washed with saturated sodium hydrogen carbonate,

dried over magnesium sulphate, filtered and concentrated in vacuo. The yield of pale

orange solid was quantitative (2.50 g). 1H-NMR (400 MHz, CDCl3) δH ppm: 2.24 (3H,

s), 6.97 (1H, m), 7.31 (1H, t, J = 14.87 Hz), 7.53 (1H, d, J = 6.99 Hz), 7.62 (1H, s), 8.31

(1H, s); 13C-NMR (100 MHz, CDCl3) δH ppm: 168.39 (C=O), 135.65 (ArC ), 132.22

(ArC ), 128.40 (ArCH), 125.24 (ArCH), 122.02 (ArCH), 113.27 (CH), 24.84 (CH), 20.64

(CH3).

N-2-[2-(2-formyl-3,5-dihydroxy-4-methylphenyl)ethynyl]phenylacetamide (C17)

OH

HO

O

HN O

6-ethynyl-2,4-dihydroxy-3-methylbenzaldehyde (95 mg, 0.528 mmol), Pd(PPh3)4 (31

mg, 0.03 mmol), CuI (5 mg, 0.03 mmol), 2-bromoacetamide (231 mg, 1.079 mmol)

anhydrous THF (978 µL) and triethylamine (150 µL) was stirred at 50◦C under nitro-

gen for 3 h. The resulting mixture was diluted with ethyl acetate, and neutralised using

1M aqueous HCl. The mixture was then extracted using ethyl acetate and the organic

phases were washed with brine. The organic phases were dried over magnesium sulphate,

filtered and concentrated in vacuo. Purification on silica (1:9 Ethyl Acetate:Hexane to

4:6 Ethyl Acetate:Hexane) afforded 66 mg (40% ) as a yellow solid 1H-NMR (400 MHz,

CDCl3) δH ppm: 2.14 (3H, s), 6.74 (1H, s), 7.47 (6H, m, overlap), 7.54 (2H, m), 7.66

(5H, m, overlap), 10.28 (1H, s), 12.28 (1H, s); 13C-NMR (100 MHz, CDCl3) δH ppm:

171.24 (COH), 132.35 (ArC ), 132.13 (ArCH), 132.03 (ArCH), 130.41 (ArCH), 128.77

(ArCH), 128.65 (ArC ), 60.43 (CH), 31.59 (CH), 29.06 (CH), 27.67 (CH), 25.28 (CH),

22.56 (CH), 22.62 (CH), 14.26 (CH3), 14.12 (CH3).

2,4-dihydroxy-3-methyl-6-2-[3-(trifluoromethyl)phenyl]ethynylbenzaldehyde (C18)
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HO

OH

O

F

F
F

6-ethynyl-2,4-dihydroxy-3-methylbenzaldehyde (200 mg, 1.112 mmol), Pd(PPh3)4 (66

mg, 0.06 mmol), CuI (10 mg, 0.06 mmol), 3-bromobenzotrifluoride (511 mg, 2.272 mmol,

317 µL) anhydrous THF (2.06 mL) and triethylamine (316 µL) was stirred at 50◦C

under nitrogen for 2.5 h. The resulting mixture was diluted with ethyl acetate, and

neutralised using 1M aqueous HCl. The mixture was then extracted using ethyl acetate

and the organic phases were washed with brine. The organic phases were dried over

magnesium sulphate, filtered and concentrated in vacuo. Purification on silica (1:9

Ethyl Acetate:Hexane to 4:6 Ethyl Acetate:Hexane) afforded 180 mg (50% yield) as a

yellow solid. Mp 179-180◦C IR νmax (neat) /cm−1 3083.10 (O-H), 1H-NMR (400 MHz,

CDCl3) δH ppm: 2.13 (1H, s), 7.34 (1H, m), 7.48 (4H, m), 7.65 (4H, m), 7.74 (1H,brm),

10.27 (1H, s), 12.29 (1H, s); 13C-NMR (100 MHz, MeOD) δC ppm: 195.42 (COH),

146.17 (ArC ), 136.20 (ArC ), 131.31 (ArCH), 130.75 (ArCH), 129.94 (ArCH), 129.17

(ArCH), 126.65 (ArCH), 126.43 (ArC ), 124.79 (ArC ), 114.52 (ArC ), 113.54 (ArC ),

93.90 (ArC ), 87.09 (ArC ), 32.76 (CH), 7.53 (CH3) ppm: HRMS (AP+) calculated for

C17H12O3F3 (M+H)+ found 321.0733 m/z

6.6.4 Formation of the dipeptide

Fmoc-Orn(Boc)-Thr-OBzl (C19)

Fmoc-Orn(Boc)-OH (1.5 g, 3.3 mmol), L-Thr-OBn.Oxalate (1.793 g, 5.78 mmol),

HOBt.2.5H2O (1.52 g, 9.89 mmol) and EDCI (1.89 g, 9.89 mmol) were purged with

N2, then dissolved in dry DMF (13.42 mL) and stirred under N2 at room temperature

overnight. The mixture was extracted three times using ethyl acetate (3 x 10 mL) and

the organic portions were washed with 1M HCl, saturated sodium hydrogen carbonate,

water and brine. The organic extracts were dried over magnesium sulphate, filtered and

concentrated in vacuo. Purification on silica (10% EtOAc in Hexane 100% EtOAc) af-

forded 1.38 g (65% yield) of yellow foam. 1H-NMR (400 MHz, CDCl3) δH ppm: 1.09 (3H,

d, J = 7.89 Hz), 1.33 (5H, brs), 1.44 (1H, t, J = 14.20 Hz), 1.57 (1H, s), 1.79 (1H, brs),

1.95 (9H, s), 4.04 (1H, m), 4.30 (3H, m), 4.55 (1H, dd, J = 9.02 Hz), 4.78 (1H, brs), 5.05

(1H, q, J = 38.32 Hz), 5.89 (1H, d, J = 11.27 Hz), 7.22 (7H, brm), 7.28 (2H, t, J = 14.22

Hz), 7.48 (1H, brm), 7.64 (2H, d, J = 8.13 Hz); 13C-NMR (100 MHz, CDCl3) δH ppm:

207.08 (ArC ), 170.60 (ArC ), 156.50 (ArC ), 143.71 ((ArC )2), 141.28 ((ArC )2), 135.19
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((ArCH)2), 128.61 ((ArCH)2), 128.23 ((ArCH)2), 127.71 (ArCH), 127.08 ((ArCH)2),

119.95 ((ArCH)2), 79.40 (CH), 67.38 (CH), 60.41 (CH), 57.72 (CH2), 47.09 (CH2),

39.56 (CH2), 30.93 (CH2), 28.42 (CH2), 20.08 (CH2), 14.20 (CH3)3. [αD]
18.8 = -3.958.

HRMS (AP+) calculated for C36H44N3O8 (M+H)+ 646.3126 found 646.3123 m/z

Fmoc-Orn-Thr-OBzl (C20)

Fmoc-Orn(Boc)-Thr-OBn (56 mg, 0.086 mmol) was stirred in 1M HCl in Ethyl Acetate

(30 mL) for 1.5 days. The product was then concentrated in vacuo, affording 30 mg

(60% yield) of yellow foam. 1H-NMR (400 MHz, MeOD) δH ppm: 1.23 (4H, m), 1.45

(4H, d, J = 4.86 Hz), 1.80 (5H, brm), 3.00 (2H, brs), 3.33 (1H, s), 4.31 (2H, d, J =

28.35 Hz), 4.36 (2H, s), 5.23 (2H, s), 5.56 (1H, s), 7.22 (7H, brm), 7.28 (9H, brm),

7.65 (2H, brm), 7.78 (3H, brm); 13C-NMR (100 MHz, MeOD) δH ppm: 175.29 (ArC ),

172.20 (ArC ), 168.01 (ArC ), 158.68 (ArC ), 145.27 ((ArC )2), 145.14((ArC)2), 142.60

((ArCH)2), 129.85 ((ArCH)2), 129.69 ((ArCH)2), 128.90 ((ArCH)2), 128.28 ((ArCH)2),

126.29 ((ArCH)2), 121.05 (ArCH), 69.93 (CH), 68.24 (CH), 61.62 (CH), 57.73 (CH2),

54.91 (CH2), 40.32 (CH2), 29.02 (CH2), 25.12 (CH2), 21.00 (CH2), 17.26 (CH2), 14.60

(CH3). [αD]
23 = -13.58. HRMS (ES+) calculated for C31H36N3O6 (M+H)+ 546.2954

found 546.2599 m/z
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