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Abstract 

This thesis describes the synthetic approaches undertaken to generate various 

substituted 1,2,3-triazoles and a small group of bis alkyne-containing compounds, 

followed by their attempted application in an asymmetric ‘click’ reaction. The first 

chapter gives an outline to the importance of desymmetrization within organic 

synthesis, providing examples of the types of stereoselective reactions found within the 

literature. Attention is then focused on the field of ‘click’ chemistry, specifically the 

copper-catalysed azide-alkyne cycloaddition (CuAAC), its mechanistic studies and 

recent applications. 

Chapter two contains the results and discussion of the project and begins with the 

application of the CuAAC reaction to produce a simple 1,4-disubstituted 1,2,3-triazole 

from its two coupling partners, an azide and an alkyne, in near quantitative yields. The 

1,4-disubstituted triazole is then transformed to its corresponding triazolium salt, with 

the longer alkyl chains only giving 40-45% product. They are then reacted with 

potassium  tert-butoxide to generate the 1,5-disubstituted 1,2,3-triazole in yields of 83% 

or above. The reaction steps were optimised to give a standard procedure for the 

conversion of 1,4- to 1,5-triazoles, with a small series of test reactions giving overall 

yields of up to 90%.  

The second section of the results and discussion chapter centres on the development of 

meso bis-alkynes which were to be used in the evaluation of an asymmetric ‘click’ 

reaction. A number of synthetic approaches to these compounds are described, with 

most falling short of their final target compound, and either needing further work or a 

redesign of the target compound itself. One target compound, meso-1,2-bis-(prop2-yn-

1-ol)benzene 29, was synthesised and a series of further meso bis-alkynes produced by 

various additions to the propargylic alcohol. Evaluation of the asymmetric ‘click’ 

reaction using this group of compounds under a wide selection of reaction conditions 

gave no successful results, all returning only starting material. Chapter two concludes 

with a brief summary of future work. 

Finally, chapter 3 contains full experimental details for the synthetic studies carried out 

in the preceding chapters.  
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1.0     Desymmetrization 

The production of enantioenriched compounds has been a challenge for the organic 

synthetic chemist for many years. Taking symmetrical compounds and introducing one 

or more aspects of chirality is a task which has been researched by many different 

groups. The desymmetrization of meso or achiral substrates is most commonly achieved 

by the use of an asymmetric catalyst. Areas of interest for chemists include researching 

how to improve the selectivity of these reactions, their application as key steps in the 

total synthesis of natural products, and the possibility of introducing selectivity into 

reactions that currently act indiscriminately. It is this final aspect my research focuses 

on.  

This strategy of stereoselective synthesis uses a chiral reagent or catalyst which 

distinguishes between two enantiotopic groups or atoms within the same compound. 

The two reactive centres may be in the form of a single reactive enantiotopic group 

(such as that of an epoxide) or as two separate enantiotopic groups (such as a 

symmetrical diol). This distinguishing feature allows desymmetrization substrates to be 

classified as those that undergo a single transformation (ring opening of an epoxide) or 

able to perform multiple transformations (acylation of a diol, Figure 1).  

 

Figure 1: Classification of desymmetrization substrates 

In some cases, the desymmetrization reaction is similar to a kinetic resolution. Unlike 

kinetic resolutions, which distinguish between two enantiomers of a substrate, the 

catalyst chooses between asymmetric centres of units. This means that the compounds 

that are successful kinetic resolution catalysts are often efficient at desymmetrization 

reactions. 
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1.1     Compounds containing one reactive functional group with two enantiotopic 

centres 

1.1.1     Ring-opening of epoxides and aziridines 

Symmetrically substituted meso-epoxides and aziridines are examples of compounds 

with only one reactive functional group, where a reaction at each of the enantiotopic 

carbons leads to a different enantiomer of the product (Scheme 1).1  

 

Scheme 1: Desymmetrization of meso-epoxides 

An example of this desymmetrization was published by Jacobsen in which he used 

TMS-azide as the nucleophile to perform the ring-opening in 98% ee (Scheme 2).2 As 

with most of the desymmetrization substrates that contain just a single reactive group, 

once the transformation has taken place it is inert to a further reaction; this means that 

the ee should remain constant provided that the catalyst remains unchanged. 

 

Scheme 2: Enantioselective ring-opening of meso-epoxides with (R,R)-1 

The selectivity-determining step of this reaction occurs at the point of insertion of the 

nucleophile once the epoxide has coordinated to the metal centre, so it is the orientation 
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of the epoxide within the metal-ligand system that induces the product stereochemistry. 

An in-depth study of the binding was carried out by Murphy and Fallis, in which they 

used several techniques, including pulsed EPR and DFT, to show the binding of an 

epoxide in a vanadyl salen complex.3 They concluded that it is a combination of steric 

properties, H-bonds and weak electrostatic contributions that determines how the 

epoxide interacted. It is specifically the H-bond between the epoxide oxygen atom 

(Oepoxide) and the methine proton (Hexo) of the vanadyl salen complex that provides the 

pathway for the stereochemical communication (Figure 2). 

 

Figure 2: Interaction between the metal-salen complex and the epoxide 

Like epoxides, aziridines are extremely reactive due to the high ring strain of the three-

membered ring and will undergo similar reactions yielding various chiral amines. 

Although the enantioselective catalytic desymmetrization of meso-aziridines has been 

known for some time now, these generally also employ metal-based Lewis acids with 

chiral ligands.4–7 Aziridines can mimic the interactions between the metal-salen 

complex and the ring that is observed with epoxides, above. It is only in recent years 

that the use of small organocatalysts has emerged, such as the cinchona alkaloid 

derivative 2, the chiral phosphoric acid derived from VAPOL 3 and the chiral thiourea 4 

(Figure 3).8 
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Figure 3: Examples of organocatalysts used in enantioselective aziridine ring-opening 

A review by Wang described the enantioselectivity obtained when the organocatalysts 

shown in Figure 3 were used with different aziridines.8 One of the more selective 

reactions used (R)-VAPOL phosphoric acid 3 as the catalyst and a silylated reagent 

(Scheme 3).9  

 

Scheme 3: Enantioselective desymmetrization of meso-aziridines 

Unlike transition metal catalysis, it is the steric hindrance of the chiral pocket created by 

the VAPOL phosphoric acid 3 that prevents the attack to one side of the aziridine, 

controlling the stereochemistry.10 In this example, the aziridine is not bound directly to 

the phosphoric acid; instead phenyl trimethylsilyl selenide reacts with 3 to generate the 

chiral catalyst. First the catalyst undergoes proton exchange with the phenyl TMS 

selenide; the silicon forms a complex with the carbonyl of the aziridine to form 5. It is 

at this stage that the sterics of the VAPOL group directs which side of the aziridine is 

attacked. Finally, the protonation of the catalyst releases the amide product (Scheme 4). 
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Scheme 4: Proposed mechanism for the organocatalytic desymmetrization of aziridines 

1.1.2     Heck reaction 

Since its discovery in 1972, the Heck reaction has proven to be an extremely useful 

reaction for carbon-carbon bond formation, especially as it allows substitution at planar 

sp2-hybridized carbon centres.11 The first intramolecular version of the reaction was 

reported by Mori in 1977,12 but it was not until over a decade later that chiral ligands 

were employed to give asymmetric versions of both the inter- and intramolecular 

reaction.13,14 A recent example of a desymmetrization using the intermolecular Heck 

reaction was reported by Zhou, where cyclic substituted olefins were desymmetrized in 

high dr and ee (Scheme 5).15  

 

Scheme 5: Desymmetrization of a cyclic olefin using the Heck reaction 
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In this reaction the stereochemical discrimination occurs from the enantioselective 

insertion of the alkene starting material into either the si or the re face to give the olefin-

coordinated complex. This is then followed by a β-hydride elimination reaction, where a 

direct interaction between this hydrogen and the vacant site on the palladium centre is 

required. The mechanism of the palladium-catalysed asymmetric arylation was studied 

by Hayashi,16 with their results helping to explain the ee seen in Scheme 5. In their 

example (6) the steric repulsion between the olefin and the equatorial phenyl group lead 

to an initial insertion through the re face, however when (R)-Xyl-SPD(O) is used (7) 

this is no longer a consideration (Figure 4).  

Once the aryl group has been inserted a rotation around the Pd-C bond is required so 

that the β-hydride is in direct interaction with the vacant orbital. If the compound inserts 

onto the re face then the rotation required for the hydride elimination creates steric 

repulsion between the new aryl group and the equatorial phenyl group. Insertion on the 

si face does not result in any steric issues in the elimination step and the product in 

Scheme 5 is obtained in good ee (Scheme 6). 

 

Figure 4: Enantioselective insertion of the two different catalysts (the backbone of the 

ligands has been omitted for clarity) 



 

Introduction 

 

 

8 

 

 

Scheme 6: Bond rotation and dissociation of olefin 

1.1.3     Ring-opening of bridged systems 

Much like the ring-opening of epoxides and aziridines, extensive research has been 

carried out regarding the enantioselective synthesis of new carbon-carbon and carbon-

nitrogen bonds through the displacement of reactive bridged systems. Various 

nucleophiles and bridgehead atoms were tested, using rhodium as the metal catalyst.17 

Lautens studied the reaction between oxabenzonorbornadienes and various alcohol and 

nitrogen nucleophiles to form new carbon-oxygen and carbon-nitrogen bonds, 

respectively. The rhodium catalyst utilizing the cyclooctadiene ligand ([Rh(COD)Cl]2) 

was used in every example giving enantioselectivities above 90% ee in most cases 

(Scheme 7).17  

The reaction starts with the solvation of the dimeric complex 8, resulting in the 

formation of the active rhodium catalyst 9. The exo-coordination of the substrate is 

followed by an oxidative insertion into the bridgehead carbon-oxygen bond, retaining 

its stereochemistry to give the rhodium-alkoxide complex 10. 

It was proposed by Lautens that the formation of the complex is irreversible due to the 

release of the ring strain, and that this step is the enantiodiscriminating step of the 

catalytic cycle.18 The final step consists of the protonation of the rhodium alkoxide and 

nucleophilic SN2’ attack with inversion of configuration to afford the trans-product as 

well as regeneration of the catalyst (Scheme 8).  
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Scheme 7: Rhodium-catalysed asymmetric ring opening 

 

Scheme 8: Proposed catalytic cycle of the rhodium catalysed asymmetric ring opening 

1.2     Compounds containing two reactive enantiotopic groups 

1.2.1     Desymmetrization and kinetic resolution 

When a compound has a system containing two enantiotopic groups there is the 

potential for the reaction to occur twice on the single substrate. This means that meso 

substrates can be involved in an initial desymmetrization, followed by a kinetic 
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resolution step, which can lead to an increased enantiomeric purity of the product. A 

good example of this can be seen in the desymmetrization of diols.19 However, this 

concept can be applied to many other desymmetrization reactions. In the reaction 

between a meso-diol and acetic anhydride using a planar chiral catalyst, matched and 

mismatched combinations with the catalyst may be observed. The matched pair will 

lead to a more rapid formation of the major enantiomer, while the mismatched pair will 

react slower to give the minor enantiomer (Scheme 9). 

 

Scheme 9: Desymmetrization of a meso-diol with a planar catalyst 

 As both these products contain another reactive site, they can undergo a further 

transformation, which will give rise to a kinetic resolution. The kinetic resolution may 

lead to an increase in ee of the desired enantiomer because of the second reaction. Once 

the mismatched pair has done the initial reaction, the remaining reactive site is a 

matched pair and will react quickly. The opposite occurs if they start as a matched pair, 

with the first reaction being quick, followed by a slower second reaction between the 

mismatched pairs of the remaining reactive site. In practice this means that any of the 

minor enantiomer 11 that is formed will react quickly to give the diacylate 12, leaving 

the major enantiomer 13, as its reacts slowly with the second acyl unit (Scheme 10).20 
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Scheme 10: Desymmetrization and kinetic resolution of meso-diols 

1.2.2     Monoprotection of meso-compounds 

Using meso-compounds, different functional groups can be reacted with various 

protecting groups to give monoprotected products in an enantioselective manner. The 

allylation of diamide derivatives, acylation and silylation of diols are the selected cases 

that are covered in this section. 

1.2.2.1     Acylation of prochiral diols 

The examples shown above rely on the fact that the hydroxyl groups are adjacent to the 

pro-stereogenic centres. However, in systems where the hydroxyl groups are more 

remote, it proved more difficult to reach high enantioselectivity without the use of 

kinetic resolution.21  

 

Scheme 11: Formation of dinuclear zinc complex 14 from 15 

Trost developed the novel dinuclear zinc complex 14 from 15 and diethyl zinc for 

asymmetric aldol reactions (Scheme 11),22 and hoped that its ability to act both as an 

acid and a base would enable it to catalyse the asymmetric acylation of 1,3-diols. The 
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group was able to successfully produce the monoprotected products in up to 95% ee 

(Scheme 12). 

 

Scheme 12: Enantioselective acylation of a 1,3-propanediol 

The group proposed a catalytic cycle (Scheme 13) which starts with the coordination of 

the vinyl benzoate to the zinc centre with it pointing away from the diarylcarbinol unit 

of the prolinol group to give complex 16.  

 

Scheme 13: Proposed catalytic cycle for the desymmetrization of 2-substituted-1,3-

propanediols 

According to Trost, the enantioselectivity occurs when the aryl group shifts to the 

oxygen of the alkoxide, with the two diarylcarbinol moieties defining the chiral space. 

The monoprotected product is then released, another diol unit inserts to give complex 

17 and the vinyl alkoxide is released as acetaldehyde, continuing the cycle. 
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1.2.2.2     Allylation of meso-diamides 

Vicinal diamides and their derivatives have received great attention from synthetic and 

medicinal chemists, with various optically active diamine derivatives being employed as 

chemotherapeutic agents.23 The first example of the asymmetric desymmetrization of 

meso-diamine derivatives was described in 2006 using a chiral allyl palladium 

catalyst.24 In the area of transition metal catalysed N-C bond-forming reactions, this is a 

rare example of asymmetric induction at the nitrogen nucleophilic site. The reason why 

there are so few examples of this type of reaction may be the high nucleophilic 

reactivity of the amino groups, and their affinity to form a complex with transition 

metals, resulting in the dissociation of the chiral ligand and the deactivation of the 

catalyst. By using less reactive amide groups, Taguchi hoped that the nitrogen 

nucleophile would not form a complex and enantioselectivity could be achieved through 

the spatial arrangement of the chiral ligand around the metal centre (Scheme 14).  

 

Scheme 14: Asymmetric desymmetrization of meso-diamides through catalytic 

enantioselective N-allylation 

The group used Trost ligands 18-20 with palladium for the N-monoallylation of meso-

1,2-bis-(Trs)-amides to get good to excellent enantioselectivity (85-96%).25 

 

Figure 5: Example of a meso 1,2-bis-(Trs)-amide used by the group 
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Figure 6: Several Trost ligands 

They discovered that the presence of the Trs sulfonyl substituent on the nitrogen atom 

was essential for achieving such high enantioselectivity. When the reaction was carried 

out under the same conditions using a toluenesulfonyl group as the substituent, the other 

enantiomer was obtained (Scheme 15). Further reactions with different sulfonylamide 

derivatives indicated the importance of an o-alkyl substituent for (1R,2S)-selectivity. 

 

Scheme 15: Substituent effect of the sulfonyl group on the nitrogen atom 

1.2.2.3     Silylation of meso-diols 

Silyl groups are among the most commonly used protecting groups for alcohols; hence, 

the enantioselective protection of meso-diols using commercial silyl chlorides would 

prove extremely valuable in the development of complex synthesis. Hoveyda & 

Snapper used small amino acid-based molecules as catalysts to achieve exactly that 

(Scheme 16).26 The substrate-catalyst association occurs through hydrogen-bonding, 

with the main bulk of the substrate pointing away from the catalyst due to steric 
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hindrance. The imidazole moiety of the catalyst also promotes the redistribution of 

electron density and enhances the silicon electrophilicity. These factors combine to give 

a transition state model as proposed in Figure 7. 

 

Scheme 16: Catalytic enantioselective silylation of a meso-diol 

 

Figure 7: Proposed transition state model for catalytic enantioselective silylation of 

meso-diols 

1.2.3     Reduction of meso-compounds 

Although the reductive enantioselective desymmetrization of meso-imides is a known 

and effective strategy, researchers in the field believed it to be limited to 3,4-

disubstituted saturated imides.27,28 The direct desymmetrization of maleimides and 

succinimides by reduction cannot be performed selectively because of the second mirror 

plane of the molecule. One approach to avoid this difficulty is to temporarily remove 

the second mirror plane through a Diels-Alder reaction to give the substituted imide 

21.29 The enantioselective reduction reaction can then proceed as described above, 

followed by the functionalization of the hydroxy lactam 22 and finally the retro Diels-

Alder reaction of 23 to generate the desired product (Scheme 17).  
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Scheme 17: Use of an anthracene template for the desymmetrization of an N-substituted 

maleimide 

The rigid framework of the installed anthracene group helps control the selectivity, with 

the reduction occurring from the more accessible face of the imide 24, with the catalyst 

arranging to minimize the steric interaction (Figure 8). 

 

Figure 8: Model for the selectivity observed in the reduction of meso-imides 
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1.3     Desymmetrization in total synthesis 

Desymmetrization reactions are a key tool that can be employed by synthetic organic 

chemists in the total synthesis of complicated natural products. A few examples of these 

applied methods are discussed below, with the desymmetrization occurring at different 

stages of the synthetic route, as well as being used to prove the absolute configuration 

of a natural compound.  

(+)-Biotin 25, also known as vitamin H, is a B-vitamin necessary for cell growth, the 

production of fatty acids and the successful metabolism of fats into amino acids. The 

first synthetic process for the synthesis of (+)-biotin was developed by Sternbach & 

Goldberg in the 1940s.30 In 2010, Chen reported an improved synthesis involving the 

enantioselective desymmetrization of a meso cyclic-anhydride 26 at an early stage of the 

synthesis using catalyst 27 (Scheme 18).31 

 

Scheme 18: Synthetic route to (+)-biotin 25 

 

Figure 9: Structure of desymmetrization catalysts 27 & 29 

In 2011, You reported an enantioselective intramolecular aza-Michael reaction used to 

desymmetrize a molecule several steps into the synthesis of (−)-mesembrine.32 Starting 
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from various p-substituted phenols, a sequence of reactions was performed to prepare 

28, followed by the aza-Michael reaction using catalyst 29 (Scheme 19). 

 

Scheme 19: Desymmetrization using an enantioselective intramolecular aza-Michael 

reaction 

The use of cinchona alkaloid-based catalysts such as 29 for the asymmetric aza-Michael 

reaction has been thoroughly researched to determine how the selectivity is achieved. 

The suggested reaction transition state can also be applied to the intramolecular version 

of the reaction, as seen above, with the model explaining how such high ee’s are 

achieved.33 The amino group of the catalyst establishes a hydrogen bond with the 

carbonyl, and the protected amino group on compound 28 approaches the double bond, 

with the lowest steric hindrance occurring from the aromatic group, as in 30 (Figure 

10). 

 

Figure 10: Suggested reaction transition state 

A recent interesting example of a desymmetrization reaction used, not as a key step of a 

total synthesis, but instead to prove the absolute configuration of the antitumour 

acetogenin mosin B.34 Mosin B is a syn/trans/anti-type mono-tetrahydrofuran 
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acetogenin that was isolated in 1997.  Its structure 31 was assigned mainly on the basis 

of 1H and 13C NMR spectroscopy and MS data.35 Although the relative stereochemistry 

of the tetrahydrofuran part was determined, the absolute configuration remained 

unknown, having 31a and 31b as the two possible structures. 

 

Figure 11: Possible structures of mosin B 

The differentiation of the two possible structures using 1H and 13C NMR spectra 

analysis would be difficult because the two stereogenic regions are separated by a long 

carbon chain. X-ray analysis also proved to be difficult due to the waxy nature of the 

compound. It was therefore proposed that the group would establish the absolute 

configuration of mosin B by synthesising both candidate structures. This was achieved 

using stereodivergent synthesis, starting with the desymmetrization of the common 

intermediate 4-cyclohexene-1,2-diol 32 (Scheme 20). 

 

Scheme 20: Stereodivergent synthesis to give both candidate structures 

The desymmetrization is catalysed by bis-sulfoxide 33: the catalyst and the diol are 

condensed to form an acetal, the acetal moiety is rearranged to form a stabilised enol 
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and the resulting alkoxide is protected. Finally, an acid hydrolysis yields the 

desymmetrized diol (Scheme 21). The stereochemistry for both compounds was 

confirmed by a modified Mosher method. 

 

Scheme 21: Asymmetric desymmetrization protocol for cyclic meso 1,2-diols 

The selectivity occurs at the acetalization step with the cyclic part of the diol pointing 

up and away from the sulfinyl oxygen (see top view). The six-membered ring chelated 

intermediate then undergoes an anti-elimination (see side view), which after trapping of 

the released alkoxide and acid hydrolysis yields the product.36 

 

Figure 12: Possible chelation intermediates of base-promoted acetal fission 

2.0     ‘Click’ chemistry 

Synthetic chemists endeavour to prepare known and new substances similar to those 

found in Nature. This can be achieved by joining smaller subunits together with 

heteroatom linkers, developing a collection of building blocks that can be combined on 

both the large and small scale. The foundation of this approach is known today as 

‘click’ chemistry and was introduced by Sharpless in 2001, when he, Finn & Kolb 

published a review describing this new strategy for organic synthesis.37 Sharpless and 
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his colleagues note how Nature has a preference towards making carbon-heteroatom 

bonds over carbon-carbon bonds. Nucleic acids, proteins and polysaccharides are 

condensation polymers of small subunits that are connected by these carbon-heteroatom 

bonds. As a way of mimicking Nature’s approach, they developed a set of powerful, 

highly reliable and selective reactions for the rapid synthesis of new compounds using 

heteroatom linkers. There are stringent criteria for a process to be classified as ‘click’ 

chemistry: 

“The reaction must be modular, wide in scope, give very high yields, generate only 

inoffensive by-products that can be removed by non-chromatographic methods, and be 

stereospecific (but not necessarily enantioselective).” 

The reaction conditions also need to meet specified criteria: 

“The required process characteristics include simple reaction conditions (ideally, the 

process should be insensitive to oxygen and water), readily available starting materials 

and reagents, the use of no solvent or a solvent that is benign (such as water) or easily 

removed, and simple product isolation. Purification must be by non-chromatographic 

methods such as crystallisation or distillation.” 

The click part of the name was coined by Sharpless and is meant to signify that 

following the outlined criteria, the joining of small molecular blocks should be as easy 

as clicking together the two pieces of a seat belt buckle. Certain aspects of the ‘click’ 

chemistry criteria are subjective, and although some of the more measurable and 

objective ones may be met, it is unlikely that any reactions will fit all of them perfectly. 

However, some reactions fit the concept more than others and can be classed as ‘click’ 

reactions. These reactions are classified into categories including cycloadditions to 

unsaturated species, additions to unsaturated carbon-carbon bonds, nucleophilic ring-

opening reactions, and non-aldol type carbonyl chemistry (Scheme 22). 
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Scheme 22: Some examples of 'click' reactions 

2.1     Olefin-based additions 

Olefins are one of the most attractive starting materials due to their availability, from 

Nature in the form of terpenes and fatty acids, or from the manipulation of petroleum-

based hydrocarbons. Olefins become even more important given their role as precursors 

to higher energy intermediates such as epoxides and aziridines, which are perfect for 

click chemistry transformations. As well as being click chemistry precursors, olefins 

and alkynes are also able to react under click conditions in the thiol-ene/thiol-yne and 

dihydroxylation reactions. 

A dihydroxylation is the transformation of an alkene to a vicinal diol using a high 

oxidation state transition metal, such as osmium or manganese, in the presence of an 

oxidant. There are several named methods that have been developed over the years, 

each with their own variation, the most recent and possibly the most useful being the 

Sharpless asymmetric dihydroxylation.38 The mechanism of the dihydroxylation using 

the osmium catalyst remains the same as in other examples (Scheme 23). However it is 

Sharpless’ use of a chiral auxiliary which positions the OsO4, delivering the hydroxyl 

groups to either the α- or β-face, inducing the selectivity. 
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Scheme 23: Mechanism for dihydroxylation using osmium tetroxide 

Both the thiol-ene and thiol-yne reactions involve the addition of a thiol across an 

unsaturated hydrocarbon system in an anti-Markovnikov manner by either a free radical 

or ionic mechanism (Scheme 24).39 Historically, these reactions have been employed by 

the polymer and materials science fields in the preparation of large polymer networks 

and films.40 Generally, these reactions are extremely rapid, tolerant to the presence of 

atmospheric air and moisture, and give the corresponding thioethers in near quantitative 

yields in a highly regioselective manner. 

 

Scheme 24: Proposed mechanisms for the hydrothiolation of an unsaturated 

hydrocarbon 
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2.2     Nucleophilic ring-opening 

Olefins are readily converted into three-membered ring heterocyclic electrophiles. 

These high-energy species, such as epoxides, aziridines, and cyclic sulphates can then 

easily undergo an SN2 ring-opening from various nucleophiles. An advantage of three-

membered ring-opening reactions is that not only does the steric strain cause the 

substrates to be especially susceptible to nucleophilic attack, but also that the competing 

elimination process, which would further increase the steric strain on the ring, is 

stereoelectronically disfavoured, resulting in high yields. Most of these reactions can be 

attempted in the absence of solvents or in water, with the choice of solvent affecting the 

regioselectivity in some cases (Scheme 25).41,42 

 

Scheme 25: Solvent effect on regioselectivity reactions of amines with a diepoxide 

Aziridines are the nitrogen analogues of epoxides, but the presence of a substituent on 

the nitrogen atom allows an extra element which can be manipulated to alter its 

reactivity and give greater product diversity. An example of the effect of the N-

substituent has been described by Stamm:43 changing from a sulfonyl to an acyl group 

results in an attack on the other carbon of the aziridine (Scheme 26). 
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Scheme 26: Influence of the nitrogen substituent on the regioselectivity of aziridine 

ring-opening 

2.3     Non-aldol carbonyl chemistry 

The synthesis of oxime ethers occurs when the carbonyl group, from either a ketone or 

an aldehyde, is reacted with an aminooxy group (Scheme 27).  

 

Scheme 27: Synthesis of oxime ethers 

This reaction earns its place within the concept of click chemistry as a result of some of 

its applications within the biochemical field. Like most other ‘click’ reactions, its 

tolerance to a wide range of reaction conditions makes it ideal for use in biological 

systems. One such example was reported by Nantz when he applied the oximation 

reaction to link the polar DNA binding domain and hydrophobic domain of structurally 

manipulated lipids (Scheme 28).44 The manipulation of lipids, such as DOTMA & 

DOTAP, would improve the polynucleotide binding and delivery properties. The 

reliability and efficiency of this reaction makes it ideal for use as the linking reaction. 
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Scheme 28: Synthesis of hydrophobic oxime ether 

 

Figure 13: Common transfection lipids 

The area of hydrazine formation is equally important in the field of chemical synthesis; 

for example, the hydrazine moiety is present in a number of drugs, such as Lodosyn® & 

Nardil®. The synthesis of hydrazines can be used in the preparation of amino acid 

analogues, such as cilengitide: replacing the α-carbon of an amino acid in a peptide with 

a nitrogen atom to give an aza-peptide.45 The condensation of hydrazines with carbonyl 

containing compounds can also lead to the formation of various aromatic heterocycles. 

Again, the ease and reliability of this ‘click’ reaction makes it ideal in the synthesis of 

pyrazole-containing drugs such as Celebrex® 38.46 

 

Figure 14: Drugs containing hydrazine and pyrazole moieties 
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2.4     Cycloaddition reactions 

Some of the best examples of ‘click’ chemistry can be found in the area of 

cycloadditions. Indeed, the formation of cyclic compounds can require very little 

energy, and, in some cases, the reaction is exothermic. One of the most common click 

reactions used in organic synthesis is the Diels-Alder reaction, which involves a [4+2] 

cycloaddition reaction between a diene 39 and a dienophile 40 (Scheme 29). The reason 

that the reaction is so desirable is that by simple variation of the substituent groups on 

either the diene or dienophile, one can control the regio and stereochemical properties of 

the product. The selectivity of this reaction and other cycloadditions can be easily 

rationalized by examining the frontier molecular orbitals (FMO) of the reaction 

components. 

 

Scheme 29: General Diels-Alder reaction of a diene and a dienophile 

2.4.1     Stereoselectivity of Diels-Alder reactions 

When the dienophile is substituted, the reaction can give a product where the 

substituents are pointing either towards or away from the newly formed double bond. 

These two compounds are known as the endo and exo adducts, 42 and 41, respectively. 

This can be seen more easily looking at an example where both the diene and dienophile 

are cyclic (Scheme 30). The selectivity occurs because of the dienophile substituent 

interaction with the π-system of the dienophile. The interaction may not be obvious just 

from looking at the products, however looking at the transition states of the reaction it 

becomes clearer. For normal Diels-Alder reactions, dienophiles with electron-

withdrawing groups such as carbonyls, the endo transition state is preferred, despite the 

additional steric hindrance in the transition state.47 
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Scheme 30: Example Diels-Alder reaction giving the endo and exo adducts 

2.4.2     Regioselectivity of Diels-Alder reactions 

When looking at the regioselectivity of cycloaddition reactions, it can help to look at the 

relative energies and size of the frontier orbital coefficients as this can give a good 

approximation of reactivity. The frontier orbitals of a molecule are the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The 

occupied orbitals of one molecule (HOMO) and the unoccupied orbitals of another 

(LUMO) can interact with each other, causing an attraction. In compounds where 

conjugation can be observed, such as those with a carbonyl group, the conjugation 

lowers the energy of the LUMO, distorting the size of the coefficients on the α- and β-

carbon and affecting the level of interaction between the two frontier orbitals. 

 

Figure 15: Comparison of orbitals of conjugated systems 

The most important frontier molecular orbital interactions in the Diels-Alder reaction 

are between the HOMO of the diene and the LUMO of the dienophile, and so these will 

now be discussed. As the diene is a conjugated system, the same effect discussed above 

will be observed, with the two central carbons having the smaller coefficients. The 

reaction will therefor occur at the terminal carbons of the diene. The addition of 

different substituents onto the diene and dienophile will also affect the size of the 

coefficient. The compounds will arrange so that the largest coefficients will come 

together, giving the regioselectivity observed in Figure 16 between the HOMO of the 

diene and the LUMO of the dienophile (the central orbitals of the diene have been 

omitted). 
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Figure 16: Regioselectivity observed in Diels-Alder reactions 

2.5     Copper-catalysed Huisgen 1,3-cycloaddition - The ‘Click reaction’ 

Another excellent example of a cycloaddition click reaction is the Huisgen 1,3-dipolar 

cycloaddition between an azide and an alkyne to yield a 1,2,3-triazole (Scheme 31). The 

triazoles are afforded as a mixture of the 1,4- and 1,5-adduct in a 1:1 ratio. This reaction 

is so reliable and wide in scope that it has been referred to as the “cream of the crop” of 

‘click’ reactions and a “premier example of a click reaction”.48,49  

 

Scheme 31: Azide-alkyne Huisgen cycloaddition 

In 2002, two independent reports were published by Sharpless and Meldal in which they 

reported an improved version of the Huisgen 1,3-cycloaddition with the use of a metal 

catalyst.50,51 The copper(I)-catalysed variant gives the 1,4-triazole exclusively; however, 
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it can only be used between an azide and a terminal alkyne. This reaction is better 

known as the Copper(I)-catalysed Azide-Alkyne Cycloaddition (CuAAC). It is this 

variant on the Huisgen 1,3-cycloaddition that our group has been focusing its research 

on. 

Many different sources of copper(I) can be used to catalyse the reaction such as cuprous 

bromide or iodide; however, the reaction works better when the Cu(I) is produced in-

situ. A mixture of copper(II), such as copper(II) sulfate, and a reducing agent, such as 

sodium ascorbate, leads to the formation of the Cu(I) source. The benefits of producing 

the Cu(I) in this way means that there is no need to have a base in the reaction, which 

may lead to side reactions, and the presence of the reducing agent will make up for any 

oxygen in the system, which would otherwise oxidize the Cu(I) to Cu(II) and impede 

the reaction. 

2.5.1     Mechanism of the CuAAC 

There have been several proposed mechanisms reported for this reaction, all based on 

DFT calculations. In 2008 Meldal & Tornøe published a comprehensive review in 

which they discussed the role of the copper catalyst in the cycle, as well as the disputes 

and revisions since its discovery.52 In 2002 Sharpless proposed a catalytic cycle 

involving a single Cu(I)-catalysed ligation (Scheme 32).50  

It begins with the formation of the linear copper(I)-acetylide 43, followed by the azide 

species insertion. It was originally believed that the azide inserted through a concerted 

[2+3] cycloaddition (B-direct); however, DFT calculations have since suggested this 

path was disfavoured and instead a stepwise sequence, which proceeds through the six-

membered copper-containing intermediate 45, is involved (B-1  B-2  B-3). 

In 2006, Bock improved our understanding of the mechanism when he suggested that 

multiple copper species are involved in the catalytic cycle.53 Indeed, the first step in the 

catalytic cycle is now believed to be the formation of the π-complex 46, followed by the 

Cu(I) insertion into the terminal alkyne (Scheme 33). The original DFT calculations 

assumed that the Cu+ orientated itself linearly with the alkyne in the transition state. 
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Instead the Cu+ coordinates first with the acetylene π-electrons, lowering the pKa of the 

acetylenic proton and leading to exothermic formation of the Cu+-acetylide complex. 

 

 

Scheme 32: Proposed catalytic cycle for the Cu(I)-catalysed ligation 
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Scheme 33: Catalytic cycle proposed by Bock 

Furthermore, considering the second order kinetics for the Cu(I) and the structural 

evidence, it is unlikely that a single Cu(I) atom is involved in the catalysis. It was 

instead suggested that the acetylide and azide are not necessarily coordinated to the 

same copper atom in the transition state 47. The six-membered transition state 48 is then 

formed, allowing the subsequent formation of the triazole. Transition state 47 was 

suggested as having the two Cu(I) atoms involved is the only way to unambiguously 

explain the absolute regioselectivity of the reaction. 

In 2013, Fokin reported further studies into the involvement of two copper atoms within 

the cycloaddition step.54 After establishing the involvement of two copper centres, the 

two centres were then shown to act discretely, each with its own specialized role. Fokin 

hypothesized that the copper in the acetylide acts purely as a strongly σ-bound ligand, 

whereas the second copper bonds through weak π-complexation. Due to the stability of 

the copper-alkyne complex 46 and the acetylide 43, the copper isotopes 63Cu and 65Cu 
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can be used to observe their role in the mechanism. A stoichiometric crossover 

experiment was designed in which the isotopic enrichment of the resulting triazolide 46 

would support the hypothesis (Scheme 34). The result of the experiment showed that 

there was a 50% isotopic enrichment during the cycloaddition. 

 

Scheme 34: Observed isotopic enrichment of triazolide 46 

To show that the isotopic enrichment was not due to the exchange of copper 

independently of the reaction, two control reactions were carried out. In each reaction, 

43 and 46 were heated with the isotopically pure 63Cu catalyst to show that no 

enrichment was observed, and therefore the results seen in Scheme 34 were due to the 

roles of the copper atoms in the mechanism (Scheme 35). 

 

Scheme 35: Control reactions showing no isotopic enrichment 

From the results of the experiments, a mechanism to account for the results was then 

proposed (Scheme 36). Firstly, the σ-bound copper acetylide bearing a π-bound 

enriched copper atom 49 coordinates with the organic azide to form complex 50. 

Nucleophilic attack at the N-3 of the azide by the acetylide forms the first C-N bond, 

producing intermediate 51. The ligand exchange of this intermediate is faster than the 
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ring closing C-N bond formation, explaining the statistical 50% isotopic enrichment of 

the triazolide 52.  

 

Scheme 36: Mechanistic rationale for the isotopic enrichment of triazolide 52 

These results, alongside the previous full catalytic cycle studies, support the mechanistic 

model featuring two chemically equivalent copper atoms working together to give the 

desired triazole (Scheme 37). 
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Scheme 37: Proposed catalytic model for the CuAAC with two copper atoms 

2.5.2     Applications of the CuAAC 

With the tolerance of CuAAC for many different conditions (e.g., temperature, solvent 

system and copper catalyst sources) it has become an extremely desirable reaction to 

apply to many different areas of research, particularly in the area of biochemistry. 

2.5.2.1     ‘Click’ chemistry in bioconjugation 

Bioconjugation is an area of science found between molecular biology and chemistry, 

whereby a stable covalent link is made between molecules in a biological environment. 

Current methods involve the introduction of labels into a biomolecular object; the 

incorporation of fluorophores,55 isotopic labels56 or ligands57 into proteins and nucleic 
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acids. Bioconjugation is also used in the joining of two or more complicated systems, 

linking a biologically active carbohydrate or protein with a solid surface.58 

Soon after his first publication reporting ‘click’ chemistry, Sharpless recognised that the 

‘click’ reaction could be employed within biochemical environments and so began 

research into its use in the ligation of large protein structures.59 The group chose the 

cowpea mosaic virus (CPMV) as the test protein because it has a structurally rigid 

assembly of 60 identical copies of a two-protein asymmetric unit around a single RNA 

genome, which was also readily available in gram quantities. The group covered the 

outside of the protein with the reactive azides or alkynes at the reactive lysine or 

cysteine sites, using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) to activate 

the reaction between the surface amine group and the carboxylic acid group on the 

azide/alkyne fragment, giving particles 53-55 (Figure 17). 

 

Figure 17: CPMV coated in azides or alkynes 

To measure the efficiency of the reaction, the azide/alkyne-coated CPMV was reacted 

with the corresponding alkyne/azide-dye 56 & 57 (Figure 18), and the number of 

chromophores attached was determined by measurement of the absorbance. The results 

showed that they were able to successfully ligate the virus scaffold with a large number 

of attachments to each particle, with no damage occurring to the proteins. This led the 

group to correctly anticipate that this azide-alkyne ligation methodology would be 

applicable to a wide variety of biomolecules, scaffolds and cellular components. 
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Figure 18: Azide/alkyne-dyes that were attached to the azide/alkyne-coated CPMV 

In 2006, Gierlich used this tagging method to add small compounds such as 57 to 

different DNA strands, helping in the detection and sequencing of the strands.60 

Choosing different groups to incorporate into the DNA allow the group to either 

identify or isolate the strand depending on the nature of the probe. 

Another interesting application of ‘click’ chemistry in biochemistry was reported by 

Chaikof,58 in which the group demonstrated the ability to immobilize carbohydrates and 

proteins onto a solid surface. This was achieved through the sequential use of the Diels-

Alder and CuAAC reactions, with neither reaction affecting the activity of the 

immobilized molecule or producing unwanted side products. The solid surface used was 

a maleimide-derivatized glass slide, allowing the connection of the alkyne-terminated 

PEG linker through the Diels-Alder reaction with the cyclopentadiene at the opposite 

end of the linker. The desired biotin substrate could then be immobilized using the 

CuAAC reaction between the alkyne-derived glass slide and the azide-derived 

biomolecule (Scheme 38). 

As well as being able to immobilize biotin onto the glass surface using reliable ‘click’ 

reactions, the group also immobilized azide-containing sugars and recombinant proteins 

with C-terminal azide groups (Figure 19). 

Immobilization of sugars is important as all cells bear many sugar containing entities 

formed by glycoproteins, proteoglycans and glycolipids, which is involved in specific 

events between cells and proteins, hormones, antibodies and toxins. Using immobilized 

carbohydrates allows the study of the mechanisms of these processes, which may lead 

to the development of new antimicrobial, anticancer and anti-inflammatory therapies. 
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Scheme 38: Biotinylated surface produced by sequential Diels-Alder and azide-alkyne 

cycloadditions 

The use of ‘click’ reactions to immobilize proteins has proven to be invaluable as it is 

imperative that the protein has the correct orientation to achieve optimal interaction to 

form the functional complex. Previous reported surface conjugation methods offer only 
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a limited ability to control the three-dimensional orientation of the bound proteins, but 

the stereoselectivity of the ‘click’ reactions used makes them ideal for overcoming this 

problem. 

 

 

Figure 19: Schematic illustration of test substrates immobilized onto the glass slide 

2.5.2.2     ‘Click’ chemistry in materials science 

Dendrimers, such as 58 (Figure 20), are large repetitively branched molecules, which, 

due to their unique properties, make them ideal for applications in medicinal and 

materials science. Dendrimers are often symmetrical around the core, with each 

branched unit being called a dendron. Dendrimers have been synthesized for over 25 

years, but there are still difficulties in the purification and separation of these 

compounds from closely related impurities. The fundamental ideas of ‘click’ chemistry, 
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high efficiency and ease of work-up, make it an ideal system to use in the synthesis of 

these large complicated polymers. 

 

Figure 20: Dendrimer synthesized using click chemistry 

The first example of dendrimers synthesized using the click chemistry methodology was 

reported by Fokin in 2004.61 The group were able to efficiently produce a catalogue of 

diverse dendritic structures in high purity and excellent yield. A key aspect of this route 

was the near perfect reliability of the CuAAC reaction, requiring only stoichiometric 

amounts of starting material and generating virtually no by-products. Fokin used a 

convergent approach in the synthesis, first building the individual dendrons, starting 

with the outer parts of the molecule. The branches were then coupled to the multivalent 

centre core piece, leading to a variety of dendrimers with different chain-end groups (R) 

and internal repeating units (X) (Scheme 39). The first branched level formed is known 

as a first generation dendron, with the following additions giving the second and third 

generation dendrons. 
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Scheme 39: Convergent approach toward triazole dendrimers (a) CuSO4, sodium 

ascorbate, H2O/tBuOH (1:1); b) NaN3, CH3COCH3/H2O (4:1), 60 ºC, 1-3 h) 

Based on this approach, Fokin was able to produce many dendrimers through the 

combination of different chain-end-functionalized azides 65-70 and polyacetylene cores 

71-74 (Figure 21). This method was further adapted in the synthesis of bivalent 

dendrimers, large unsymmetrical molecules containing dual purpose recognition and 

detection agents.62 To prepare the bivalent dendrimers, two sets of dendrons are 

synthesized independently and then joined together using ‘click’ chemistry. In the 

reported example, the bivalent dendrimer 75 contains one hydrophobic and one 

hydrophilic dendron (Figure 22). 

For the inhibition of haem-agglutination, mannose and coumarin derivatives were used 

as this allowed for the simultaneous interaction with the biological receptor and the 

detection of this interaction, respectively.   
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Figure 21: Selection of azides and polyacetylene cores used in the synthesis of chain-

end-functionalized dendrimers 

 

Figure 22: Asymmetrical dendrimer containing 16 mannose units and 2 coumarin 

chromophores 

As well as ‘click’ chemistry being ideal for polymer synthesis applications due to its 

high efficiency and ease of purification/separation, it has also helped in overcoming an 
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issue in polymer science regarding incomplete reactions due to steric inaccessibility. 

Haddleton achieved the synthesis of sugar derived polymers, neoglycopolymers, in a 

close to 100% yield using the CuAAC reaction.63 These compounds received attention 

due to their possible medicinal applications and interactions with protein receptors. A 

method was used by which the authors were able to react a mixture of azide-bearing 

sugar moieties, α-mannoside 76 and β-galactoside 77, with an alkyne-derived 

homopolymer chain using a CuAAC reaction (Scheme 40). 

 

Scheme 40: Synthesis of neoglycopolymers using alkyne-derived polymer and azido-

derived sugars 

Supramolecular chemistry refers to an area of chemistry which focuses on the forces 

responsible for the spatial organization of compounds, examining the weaker and 

reversible non-covalent interactions between molecules. Calixarenes are some of the 

most useful compounds in the supramolecular field, especially water-soluble calixarenes 

such as 78. Water-soluble calixarenes are extremely attractive because of their well-

defined hydrophobic cavities, which make it possible to study molecular recognition in 

water. The introduction of such hydrophilic groups can be difficult due to functional 

group compatibility issues. Ryu and Zhao used ‘click’ chemistry to introduce these 

hydrophilic groups in high yields.64 The group tested two systems in parallel, one in 

which alkynyl-derived calixarenes were reacted with water-soluble azides, and the other 

where azidocalixarenes were reacted with water-soluble alkynes. The results showed 

that azidocalixarenes performed better than alkynylcalixarenes as precursors; this was 

due to possible side reactions between the alkynes.   
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Figure 23: Example of a water-soluble calixarene 

2.5.2.3     ‘Click’ chemistry in drug discovery and natural product 

synthesis 

In the last decade there have been various target-guided synthesis (TGS) approaches 

developed for the synthesis of protein inhibitors from a large pool of smaller reactive 

fragments, using the target protein as a template. There are three major classes of TGS; 

(a) dynamic combinatory chemistry (DCC), (b) catalyst-accelerated TGS, and (c) 

kinetic TGS. In dynamic TGS, a large pool of reactive fragments is mixed and the 

complementary reacting fragments are connected through a reversible covalent bond-

forming reaction. Once all of the possible combinations have formed, the target is 

introduced into the mix. The combination that has the most effective ligation then 

inhibits the target, removing it from the reaction pool, and the equilibrium shifts 

towards the product showing the highest affinity. As the name suggests, catalysed-

accelerated TGS requires a catalyst to promote the covalent bond formation between 

two fragments that are bound to the target protein.  

In kinetic TGS, the fragments are joined by a covalent bond in an irreversible way. The 

target protein is introduced to the fragment pool from the start, each fragment binds to 

the individual sites and those with the highest affinity will form a covalent bond due to 

the close proximity of their reactive functionalities. Ideally, these reacting 

functionalities would combine slowly to form the covalent bond, with no or minor side 

products. The reaction should also work in aqueous media without affecting the 
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biological target. During the development of ‘click’ chemistry, Sharpless identified that 

the 1,3-dipolar cycloaddition between alkynes and azides has the ideal reaction profile 

for kinetic TGS.49 Since then, in-situ ‘click’ chemistry has been successfully applied in 

numerous examples of kinetic TGS, for example in the discovery of an inhibitor of 

acetylcholine esterase (AChE).65 Although these reactions proceed in the absence of 

copper, and therefore cannot be classed as CuAAC reactions, it is the target enzyme 

itself that acts as the catalyst, promoting a ‘pseudo-CuAAC’ reaction. 

For the synthesis of the AChE bivalent inhibitor, a selection of site-specific inhibitors 

based on tacrine and phenanthridinium motifs were functionalized with alkyl azides and 

alkyl acetylenes of varying chain lengths (Figure 24). This small group of fragment 

molecules gave 98 potential bivalent inhibitors for AChE. 

 

Figure 24: Azide and acetylene building blocks 

The fragments were incubated at room temperature in the presence of Electrophorus 

electricus (electric eel) AChE. The rate of the reaction without the enzyme present was 

found to be negligible; hence it can be assumed that any formation of a triazole is due to 

the enzyme holding the fragments in close enough proximity to react. It can therefore be 

assumed that any product formation is an indication of successful binding. The 
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experiment showed that only one combination, 79 & 94, showed a detectable amount of 

triazole present. Next, the group established which regioisomer had been formed using 

HPLC comparison, revealing triazole 95 as the produced inhibitor. 

 

Figure 25: Inhibitor found directly by the azide-alkyne cycloaddition in the presence of 

AChE 

This method of using in-situ ‘click’ chemistry has been applied to the synthesis of other 

inhibitors of important enzyme targets such as carbonic anhydrase (CA),66 associated 

with the symptoms of glaucoma, and HIV-1 protease (HIV-1-Pr),67 recognised as being 

involved in the replication of the HIV virus. 

Thus far, the methods discussed for the synthesis of biological inhibitors have used the 

enzyme to catalyse the reaction; however, methods that utilize the CuAAC reaction in-

situ have also been reported. In this screening process, a single functionalized moiety 

that shows affinity to the target is reacted with a large group of diverse possible binding 

fragments with the corresponding functionalization. Because the CuAAC reaction does 

not lead to the formation of side products, the synthesized triazole compounds can be 

screened directly with the target molecules, with no need for separation or purification. 

Although this method of screening produces a large number of compound ‘misses’ that 

are seemingly useless, the ability to quickly and easily produce these using CuAAC in 

such great numbers outweighs the low success rate. 
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One such example of this method was reported by Wong, in which he used this method 

to synthesize the inhibitor for fucosyltransferases (Fuc-T), an important catalyst in the 

biosynthesis and expression of many important saccharides.68 The final step of this 

pathway involves the transfer of L-fucose from guanosine diphosphate β-L-fucose 

(GDP-fucose). It was found that the majority of the binding energy of Fuc-T lies at the 

GDP moiety and the hydrophobic pocket adjacent to the binding site. This led Wong to 

design a library of compounds that retained the important GDP core, while the attached 

hydrophobic group and linker length were varied. 85 Azide compounds were 

synthesized and reacted with the GDP-alkyne core to give 85 triazole candidates, from 

which three emerged as ‘hits’. Further IC50 measurements of these three compounds 

showed that compound 96 had the highest affinity for Fuc-T. 

 

Figure 26: Inhibitor of Fuc-T synthesized using CuAAC 

‘Click’ chemistry has also been used to synthesize analogues of natural products that 

show biological activity. It has been reported that triazoles can be used to replace 

several different functional groups within the structure of large natural compounds. 

Sewald reported that an endocyclic trans-amide linkage could be replaced by a 1,4-

disubstituted 1,2,3-triazole ring.69 They showed that although the size and dipole 

moment of the triazole ring are larger compared to a trans-amide, the physiochemical 

properties are similar enough that the triazoles act as trans-amide mimetics. This 

method was applied to the synthesis of cryptophycin-52 97, a macrocyclic antitumor 

agent, with its trans-amide linker replaced to give the analogue “clicktophycin-52” 98 

(Figure 27). Drug candidate 97 displayed high cytotoxicity against multidrug resistant 

cancer cells and solid tumours; however, it failed in phase II clinical trials because of 
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neurotoxicity. The group hoped that by replacing the amide linker with the triazole ring 

the high cytotoxicity would be maintained but the neurotoxicity issues would be 

overcome. In cytotoxicity assays against the multidrug resistant human cervix 

carcinoma cell line KB-V1, triazole analogue 98 showed results that were only slightly 

reduced compared to those of 97.  

 

Figure 27: Antitumour agent cryptophycin-52 and triazole analogue "clicktophycin-52" 

Liskamp also reported a similar method by which the group replaced the biaryl ether 

bridge in vancomycin 99 with the triazole ring system.70 The reduction of 

conformational flexibility is important to maximize the affinity of a peptide for its 

receptor. There are many covalent constraints used to reduce this flexibility, with some 

reducing flexibility further with the creation of cavity or shell-like structures. 

 

Figure 28: Structure of antibiotic vancomycin 
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The triazole ring can be introduced very conveniently by the CuAAC reaction either at 

the beginning of the synthesis or towards the end. These results showed that there is 

scope for the preparation of small cyclic peptides containing 1,4-disubstituted triazole 

ring systems. This method was expanded to the introduction of 1,5-disubstituted 

triazoles using the ruthenium-catalysed azide-alkyne cycloaddition (RuAAC), in which 

the substituents are positioned at a smaller angle relative to the 1,4-stereoisomer 

(Scheme 41). 

 

Scheme 41: Structural mimics of vancomycin comprising 1,4- and 1,5-disubstituted 

triazole-containing cyclic tripeptides 

2.6     Ruthenium-catalysed Huisgen 1,3-cycloaddition 

To this point, this section is focused on the copper-catalysed variant of the Huisgen 1,3-

cycloaddition to give 1,4-disubstituted triazoles; however, it is also important to also 

indicate how to selectively synthesize 1,5-disubstituted triazoles. By using a ruthenium 

catalyst (RuAAC), the 1,5-triazole is selectively prepared (Scheme 42).71 Unlike the 

CuAAC reaction, in the RuAAC both terminal and internal alkynes can participate in 

the reaction, suggesting there is a different metal-alkyne interaction in the catalytic 

cycle. Unlike in the CuAAC reaction where the alkyne interacts in an end-on linear 

fashion (Scheme 37), in the RuAAC, the metal coordinates perpendicularly to the 
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alkyne to give the activated complex 105 (Scheme 43). Next, the azide and alkyne are 

added using oxidative coupling to give the ruthenacycle 106. It is this step that controls 

the regioselectivity of the reaction, with the new carbon-nitrogen bond forming between 

the more electronegative and less sterically-demanding carbon of the alkyne to the 

terminal nitrogen of the azide. Finally, the intermediate undergoes reductive elimination 

to release the triazole and regenerate the original catalyst.72 This is different to that in 

the CuAAC process as the ruthenium catalyst does not coordinate to the alkyne in a 

linear fashion, instead coordinating across the triple bond. This allows the nitrogen 

containing the R’-group to form a new bond with the carbon of the alkyne with the R-

group, giving the 1,5 regioisomer. 

 

Scheme 42: Ru-catalysed synthesis of triazoles from internal alkynes 

 

Scheme 43: Proposed catalytic cycle of the RuAAC reaction 



 

Introduction 

 

 

51 

 

3.0     Aim of the project 

The aim of this project is to create a system where it is possible to selectively perform 

the CuAAC reaction on a single alkyne moiety of a meso bis-alkyne system. Under 

normal CuAAC conditions, reacting one equivalent of an azide with a bis-alkyne would 

yield a statistical mixture of the two mono-reacted products and the bis-triazole product 

(Scheme 44).73 The proposal is that the introduction of a chiral ligand into the catalyst 

will allow the selective reaction of one alkyne over the other (Scheme 45). 

 

Scheme 44: Bis-alkyne reactivity under CuAAC conditions 

 

Scheme 45: Proposed reaction to give a selective version of the CuAAC 
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To show that the system would work and to explore the potential scope of the reaction, 

a series of meso bis-alkynes with different functional groups was synthesized       

(Figure 29). 

 

Figure 29: Meso bis-alkynes that will be synthesized for testing 

3.1     Current work  

In 2005, Finn attempted to use the CuAAC reaction for kinetic resolution.74 Different 

racemic 1-phenylpropargylic compounds were reacted with azides under CuAAC 

conditions in the presence of several chiral ligands. However, absolutely no 

enantiomeric discrimination was observed (Scheme 46).  

 

Scheme 46: Attempted kinetic resolution using CuAAC 
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More recently Zhou was able to achieve high yield and high enantioselectivity in the 

desymmetrization of oxindole-based 1,6-heptadiynes (Scheme 47).75 Although this is 

not a meso system, like the one we wish to investigate, the ability of the group to 

desymmetrize the bis-alkyne with such high selectivity was extremely encouraging. 

 

Scheme 47: Desymmetrization of bis-alkynes by CuAAC 

Work within our own group also resulted in the desymmetrization of another bis-alkyne 

with a certain degree of enantioselectivity (Scheme 48).76 We hoped that we could build 

on these results and those of Zhou, going forward and applying them to our synthesized 

meso bis-alkyne systems. 

 

Scheme 48: Asymmetric 'click' reaction with a bis-alkyne 

Once the meso bis-alkynes had been synthesized they would be tested using various 

chiral ligands under different CuAAC reaction conditions to try to create asymmetric 

‘click’ reaction conditions. 
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1.0     Manipulation of triazoles 

At the beginning of the project, the group was interested in manipulating the triazole 

ring to allow it to break down into its original components: an alkyne and an azide 

(Scheme 1). The discovery of a reversible ‘click’ reaction would open up a wide variety 

of applications in the fields of biological chemistry and synthesis. One possible 

application would allow a biological tag to be easily added to a compound for testing 

using the CuAAC reaction, and, once the testing is complete, the tag would be removed, 

leaving the original target unaffected. Another possible application would be the use of 

triazoles as a delivery agent, transporting compounds to specific regions, allowing a 

process to occur, and finally ‘unclicking’ and departing.  

 

Scheme 1: Separation of a triazole into its original components 

To date the only method that had successfully ‘unclicked’ a triazole moiety required 

extremely specific conditions that would not be practical for normal synthetic research 

applications.77 The group hypothesized that triazoles, although inert toward chemical 

and thermal perturbation, could undergo cycloreversion through the application of a 

site-specific mechanical force. The desired pericyclic reaction is achieved through the 

application of ultrasound to polymer chains, which then direct the forces to the 

connected mechanophores or small molecules.78 Using this as a foundation, the group 

first synthesized a triazole-centred poly(methyl acrylate) 1, where the average molecular 

weight of the polymer was 96 kD, and split it into its respective alkyne and azide with 

the application of ultrasound for 2 h (Scheme 2). Although this method was successful 

in breaking down the triazole, its lack of versatility and limited application meant that a 

new, more practical, method was desirable. 
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Scheme 2: Application of ultrasound to a triazole embedded within a poly(methyl 

acrylate) chain 

1.1     Synthesis of 1-benzyl-4-phenyl-1,2,3-triazole 

Before the triazole cleavage could be attempted, a triazole had to be synthesized. 1-

Benzyl-4-phenyl 1,2,3-triazole 2 was chosen as its successful synthesis has been 

reported multiple times using readily available starting materials. The original method 

reported by Fokin & Sharpless was repeated, giving triazole 2 in an 82% yield (Scheme 

3).50 

 

Scheme 3: Synthesis of triazole 2  

Although this method involved a simple work-up and was high yielding, the relatively 

high cost of the benzyl azide reagent, as well as the explosive properties associated with 

small azide compounds, led us to search for a cheaper and safer method. We found that 

benzyl azide can be formed in-situ from cheap reagents,79 decreasing the cost and 

improving the safety, as the azide is never isolated and reacts with the alkyne reagent as 

soon as it is formed. We adapted Kacprzak’s method,79 using the same solvent system 

(tbutanol/H2O) as in the previous procedure, without affecting the results and producing 

triazole 2 in 87% yield (Scheme 4). 
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Scheme 4: Synthesis of triazole 2 using a one-pot procedure 

This method also has an easy work-up procedure and gives a higher yield; further, the 

lower cost of starting materials and increased safety aspect allows for the experiment to 

be repeated on a much larger scale, producing large quantities of 2. 

While researching into the possibility of a one-pot click reaction, we also found that 

Fokin & Eycken had reported a microwave-assisted synthesis where the organic azide 

was generated in-situ.80 This method dramatically reduced the reaction time, from 12 h 

down to 10 min. We applied this method in the synthesis of triazole 2, which was 

successfully produced in 90% yield (Scheme 5). 

 

Scheme 5: Synthesis of triazole 2 using a microwave-assisted one-pot procedure 

Although this method gave the highest yield, and produced a product of the highest 

purity, it was limited by its scalability. Indeed, when the reaction was carried out on a 

scale larger than 1 mmol, the yield and purity were lower. For this reason the one-pot 

and not the microwave-assisted procedure was employed for the production of 2 on a 

large enough scale for the next step, the cleavage part, of the research. 
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1.2     Attempts to ‘unclick’ a triazole 

The group believed that to be able to break the triazole into the original azide and 

alkyne, it would be necessary to make the ring more reactive. We attempted to convert 

the triazole into the corresponding triazolium salt using various alkyl halides, to see if 

this would have any effect on the ring stablity (Scheme 6). 

 

Scheme 6: Conversion of a triazole into the corresponding triazolium salt 

Firstly, the procedure described by Liebscher was used to synthesise a triazolium salt 

target.81 The triazole 2 was heated under reflux in the presence of iodomethane for 24 h, 

yielding the triazolium salt 3 in 78% yield (Scheme 7).  

 

Scheme 7: Conversion of a triazole to its triazolium salt using the original procedure 

With 1-benzyl-3-methyl-4-phenyl triazolium iodide 3 in hand, we turned our attention 

to the reactivity of the substituted triazolium cation, in the hope that reduction of the 

cationic aromatic five-membered ring could be achieved, thus affording products that 

would be susceptible to hydrolysis. We chose to begin with a hydride reduction, and as 

we expected the reactivity of the aromatic cationic π-system to be low, the highly 

reactive lithium aluminium hydride was chosen as the reducing agent. 

The cationic triazolium salt was reduced in THF at 0 °C to give a neutral product, 

however, to our surprise the product was proven to be the debenzylated 1,5-substituted 

1,2,3-triazole 4 (Scheme 8). 
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Scheme 8: Reduction of triazolium salt 3 using LiAlH4 

The structure of the product was determined using analysis of the 1H-NMR data, which 

showed signals corresponding to both the methyl and phenyl groups, and none 

corresponding to the benzyl group. The suggested structure of the product was 

confirmed to be 4 as the characterisation data was consistent with literature values.82 

The unexpected formation of the 1,5 regioisomer is important as it represents a new 

pathway in the synthesis of 1,5-disubstituted triazoles without the need of expensive 

organo-ruthenium catalysts. A similar approach was reported by Koguchi, in which they 

use 1-(3,4-dimethoxylbenzyl)-4-substituted 1,2,3-triazole substrates, install a selection 

of alkyl groups at N(3), and finally have the 3,4-dimethoxylbenzyl (DMPM) protecting 

group removed using either ammonium nitrate or ceric ammonium nitrate (CAN) 

(Scheme 9). 

 

Scheme 9: The synthesis of 1,5-disubstituted 1,2,3-triazoles as proposed by Koguchi 

We believed that if developed into an efficient procedure, our debenzylation of 3 could 

provide a more general pathway to form 1,5-disubstituted triazoles using the cheaper 

copper catalyst, with an easier method of deprotection of the triazolium salt.  
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1.3     Developing the 1,3- to 1,5-triazole interconversion pathway 

1.3.1      N-alkylation step 

To prove that our method could be applied more generally, the introduction of various 

groups at the N(3) position of the triazole was attempted. This could mean, however, 

that as we tried to introduce larger groups onto the triazole, yields would drop and 

reaction times would need to be increased. As seen above, using microwave-assisted 

synthesis improved yields and reduced reaction times in the synthesis of triazoles. We 

attempted to adapt the methodology to the N-alkylation step. The synthesis of 3 was 

attempted using microwave-assisted synthesis at the same temperature as the original 

procedure, to see if this had any effect on yield, with the results being extremely 

encouraging (Scheme 10). 

 

Scheme 10: Microwave-assisted conversion of a triazole to its triazolium salt 

The increased yield showed that the microwave-assisted synthesis was a more efficient 

method for this reaction. Hence, further optimisation of the reaction yield was attempted 

by altering the reaction time, equivalents of iodomethane and the reaction temperature 

(Table 1). 

Table 1: Optimization of the N-alkylation reaction step 

Entry Time (Min) Equiv. MeI Temp (°C) Yield (%)a 

1A 120 2 100 50 

1B 120 2 120 58 

1C 120 2 140 54 

1D 180 2 100 78 

1E 180 2 120 91 

1F 180 2 140 81 
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Entry Time (Min) Equiv. MeI Temp (°C) Yield (%)a 

1G 210 2 100 69 

1H 210 2 120 73 

1I 210 2 140 68 

1J 240 2 100 83 

1K 240 2 120 71 

1L 240 2 140 65 

1M 180 1 120 63 

1N 180 4 120 95 

1O 180 5 120 97 
a) yield determined from the mass of product collected after purification. 

If this data is represented in a 3D graph, with the yield being shown as a function of 

reaction time and temperature (Figure 1), we can see that there are 2 areas of high yield 

(A & B).  
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Figure 1: Optimization of N-alkylation step showing yield as a function of reaction 

time and temperature 
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From the two areas with the highest yield, A was chosen not only because it showed the 

highest yield but also that the reaction time was lower.  

When the results from entry 1E, 1M, 1N & 1O are compared, the effect of the number 

of equivalents of the haloalkane on the yield is seen. From the optimization experiments 

we were able to design a procedure that could be used for the N-alkylation of triazole 2 

with different alkyl groups (Scheme 11). 

 

Scheme 11: Standard procedure for the N-alkylation of 2 with different alkyl groups 

1.3.2     Debenzylation step 

Next, we turned our attention to improving the removal of the benzyl group from the 

triazolium salt, giving the 1,5-triazole. When we used LiAlH4, the 1,5-triazole was 

obtained in 24% yield. We believed that this low yield was due to the poor reactivity of 

the triazolium species, as the starting material was recovered in 66% yield. In an attempt 

to find a faster version of the debenzylation reaction, we switched from using the 

reducing agent LiAlH4 to the nucleophiles/bases NaOMe in methanol and NaOEt in 

ethanol. Under these conditions, the removal of the benzyl group was not observed, and 

instead the methyl group was removed, reforming 2 in up to 96% yield (Scheme 12). 

 

Scheme 12: Attempted debenzylation of 3 using NaOMe & NaOEt 
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This result led us to reason that LiAlH4 played a special role in the reaction, not acting 

as a hydride donor for the direct nucleophilic SN2 displacement of the triazole, but 

instead with the benzyl group leaving through an SN1 mechanism (Scheme 13).  

 

Scheme 13: Possible mechanisms for the displacement of the benzyl group 

To explore this possibility further, we chose to test the stronger non-nucleophilic base 

potassium tert-butoxide (tBuOK) in the reaction. When this was used in the 

debenzylation step, we immediately saw excellent results with the conversion of 3 to 4 

taking place in 93% yield (Scheme 14). 

 

Scheme 14: Debenzylation of 3 using tBuOK 

Combining these positive results and the optimised N-alkylation step, we began to test 

our interconversion pathway with various alkyl groups.  

Another possible mechanism for the debenzylation of the triazolium salt may be by 

which the iodide anion attacks the benzyl carbon in an SN2 fashion, releasing the neutral 

triazole. With the isolated triazolium salts being extremely stable, it would appear that 
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the presence of compounds such as LiAlH4 or tBuOK is needed for the debenzylation to 

occur, but this would need further investigation. 

1.4     Testing of the 1,3 to 1,5-triazole interconversion pathway 

Armed with the reaction pathway and optimized conditions (Scheme 15), we began to 

study the efficiency of the method with increasing alkyl chain lengths.  

 

Scheme 15: Optimized reaction plan for the 1,3- to 1,5-triazole interconversion 

Table 2: 1,3- to 1,5-triazole interconversion reactions 

Entry RX 
N-alkylation Step  

Yield (%) [Product] 

Debenzylation Step  

Yield (%) [Product] 

2A MeI 97 [3] 93 [4] 

2B EtI 88 [5] 95 [8] 

2C nPrI 44 [6] 90 [9] 

2D nBuI 40 [7] 83 [10] 

Initially the results were encouraging, with entry 2A & 2B giving high overall yields; 

90% and 84% respectively, an improvement on those reported by Koguchi.83 However, 

the remaining experiments showed a dramatic drop in yield, with yields from step A 

more than halving. With large amounts of starting material being recovered, it was 

believed that the low yields were a result of the decreasing reactivity of the haloalkanes 

as alkyl chain length increases. Therefore the synthesis of 6 & 7 was repeated with the 

reaction temperature increased to 160 oC resulting in full consumption of the starting 

material; however, compounds 6 & 7 were not isolated. Instead, analysis of the 1H-
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NMR data showed a pair of identical peaks corresponding to those expected for an alkyl 

chain (see A-D, Figure 2). The data also indicated that the benzyl group was no longer 

present, with the aromatic protons integrating to 5, corresponding to the phenyl group 

on C(4), and the absence of the signal corresponding to the benzylic protons that would 

be expected around 5.5 ppm. This, along with the analysis of the 13C-NMR, COSY and 

HSQC spectra led us to believe that the N-alkylation of the triazole at the positions 1 

and 3 was achieved alongside the displacement of benzyl group at the position 1 in a 

three-step one-pot procedure. The procedure was then repeated with the remaining alkyl 

chain lengths (Scheme 16). 

 

Scheme 16: Excess N-alkylation of triazole 2 

 

Figure 2: 1H-NMR of unknown compound, believed to be 14 

With the ‘over-alkylation’ observed with the different alkyl groups, we next proceeded 

with part (2) of the synthesis. Now that the triazoles no longer had a benzyl group that 

could be removed, we were intrigued to see if the use of tBuOK would still selectively 

promote the loss of one of the groups to give the corresponding neutral 1,4- or 1,5-
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triazole. The reaction resulted in both groups still being present in the compound, as 

confirmed by the presence of signals in the 1H-NMR data corresponding to the two n-

butyl groups. The low polarity of the compound also suggested that it was a neutral 

triazole, instead of the much more polar triazolium salt. In a triazolium salt, the peaks 

corresponding to the substituted groups are shifted further downfield compared to those 

of neutral triazoles; the substituted n-butyl peak of triazolium salt 7 is observed at 4.52 

ppm, compared to the corresponding peak observed for the neutral triazole 10 at 4.35 

ppm. The absence of the signal corresponding to the triazole proton, along with the 

information discussed, suggested the reaction proceeded to give a 1,4,5-trisubstituted 

triazole (Scheme 17). 

 

Scheme 17: Synthesis of 1,4,5-trisubstituted triazole 15 

One method for the synthesis of a 1,4,5-triazole is the ruthenium-catalysed azide-alkyne 

cycloaddition (RuAAC), used with an internal alkyne.84 However, this method has the 

drawback that if the groups either side of the alkyne are not the same, then there can be 

an issue of regioselectivity in the reaction (Scheme 18).  

 

Scheme 18: Regioselectivity in the RuAAC 

With the reaction in Scheme 17 we believe we have discovered a new pathway for the 

ruthenium-free synthesis of 1,4,5-trisubstituted triazoles with complete regioselective 

control (Scheme 19). 

 



  

Results & Discussion 

 

 

67 

 

 

Scheme 19: New possible pathway for the regioselective copper-catalysed synthesis of 

1,4,5-trisubstituted triazoles 

1.5     Testing the new pathway for the synthesis of 1,4,5-trisubstituted triazoles 

1-Benzyl-4-phenyl-1,2,3-triazole was chosen as the substrate for the testing sequence, 

applying the synthetic method discussed above. This consisted of alkylating the triazole 

at both the N1 and N3 positions, using various haloalkanes to displace the benzyl group 

and give a 1,3-dialkyl-4-phenyl triazolium halide (Scheme 20, Table 3). As the N-

alkylation was first observed when the triazole was heated to 160 ºC using microwave 

irradiation in the presence of the alkylating agent, these conditions were used. 

 

Scheme 20: General scheme for the N-alkylation of triazole 2 

Table 3: Excess N-alkylation of triazole 2 

Experiment RX Yield (%) [Product] 

3A MeI 93 [11] 

3B EtI 91 [12] 

3C nPrI 87 [13] 

3D nBuI 90 [14] 
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Figure 3: Products of the N-alkylation reactions 

Once the alkylation step had been achieved, the rearrangement reaction was attempted 

on the triazolium salts using potassium tert-butoxide (Scheme 21, Table 4). 

 

Scheme 21: General scheme for the reaction of triazolium salts with tBuOK 

The results of the experiments showed that instead of the rearrangement observed for 

entry 4D, only the triazoles 4, 8 and 9 were isolated. It then appeared that for the 

triazolium salt systems where n-butyl was not the alkyl group, the group at the N1 

position was removed, giving the corresponding 1-alkyl-5-phenyl-1,2,3-triazole 

(Scheme 22).  

Table 4: Reaction of triazolium salts with tBuOK 

Experiment R  Yield (%) [Product] 

4A Me Only 4 observed 

4B Et Only 8 observed 

4C nPr Only 9 observed 

4D nBu 86 [15] 
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Scheme 22: Reaction of triazolium salts with tBuOK 

In an attempt to explain why only experiment 4D gave the 1,4,5-trisubstituted triazole, 

the mechanism behind the rearrangement was explored. One possibility is that first the 

triazole proton is removed by the tert-butoxide. The anion could then attack the alkyl 

group at the N1 position, either inter- or intramolecularly, to give the 1,4,5-triazole 

(Scheme 23). 

 

Scheme 23: Alternative possible mechanism for the 1,3,4- to 1,4,5-triazole 

interconversion 

An experiment was designed to help with the investigation of the mechanism. A 

mixture of the 1,3-dimethyl-4-phenyl and 1,3-dibutyl-4-phenyl triazolium salts were 

dissolved in THF in the presence of potassium tert-butoxide (Scheme 24). 



  

Results & Discussion 

 

 

70 

 

 

Scheme 24: Products from the inter- and intra-molecular reaction 

Analysing the composition of the mixture of products produced would help determine 

the mechanistic pathway, and, in particular, whether the transfer of the alkyl group at 

the N1 position occurs through an inter- or intramolecular shift. If the reaction is 

intramolecular, only two triazoles should be obtained: 1,4-dibutyl-triazole 15 and 1,4-

dimethyl-triazole 18. If, on the other hand, the reaction is intermolecular, a statistical 

mixture of four products, 1-butyl-4-methyl- 16, 1-methly-4-butyl- 17, 1,4-dibutyl- 15, 

1,4-dimethyl-triazoles 18, would be obtained, resulting from all the possible 

combinations. There is also the possibility that both pathways can occur. 

Our results only showed a mixture of products 4 & 10, suggesting that instead of the 

expected rearrangement of the triazolium salts to the 1,4,5-trisubstituted triazoles, each 

salt had lost an alkyl group to yield the 1,5-disubstituted triazole. In an attempt to 

further explore the mechanism of the reaction, and reason why we had not seen the 

rearrangement in the above reaction, or in the reactions where the R-group chain length 

was shorter than n-butyl, we re-examined the original reaction that gave the 1,4-dibutyl-

5-phenyl-triazole 15. However, when the synthesis of 15 was repeated using our 

reported procedure, the reaction only yielded 1-butyl-5-phenyl-triazole 10. We are 

currently attempting to repeat the synthesis of 15, which we hope will help explain our 

previous findings. 
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1.6     Application of the 1,3- to 1,5-triazole interconversion to asymmetric ‘click’ 

systems 

Our group has reported the use of an asymmetric ‘click’ reaction to break the symmetry 

of bis-alkyne systems.76 We believe that the application of the 1,3- to 1,5-triazole 

interconversion would provide the organic synthetic chemist with another tool for the 

diversification of a compound. Due to the limited amount of material produced from the 

asymmetric ‘click’ reactions, we decided that the tests would be run using a racemic 

mixture of the mono-triazole product 19, from our cyanoacetate-derived series of 

prochiral bis-alkynes. First, the bis-alkyne 19 was synthesized using the method 

reported by the group, followed by the ‘click’ reaction to prepare the corresponding 

mono-‘click’ product (Scheme 25). 

 

Scheme 25: Synthesis of the cyanoacetate-derived mono-triazole 20 

Once the mono-triazole compound was synthesized, the interconversion process was 

started with the N-alkylation of 20 using iodomethane (Scheme 26). The product was 

separated from the remaining starting material and isolated as a mixture of two 

inseparable compounds in a disappointingly low yield (≈15%).  
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Scheme 26: Attempted 1,3 to 1,5-triazole interconversion of mono-triazole 20 

The spectroscopic data showed the presence of the expected N-alkylated triazolium salt 

21, but also that a second triazolium salt 22 was formed. Unlike the previous reactions, 

this was not a case of over alkylation, as the expected benzyl peaks were present for 

both compounds. Instead, when the 1H-NMR spectrum of the compound 22 was 

analysed, the signal corresponding to the methoxy group was not present and a new 

multiplet corresponding to a single proton was observed. This led us to believe that the 

methyl ester had been cleaved from the compound, giving triazolium salt 22. The 

mixture of salts was taken forward to the debenzylation step, which not only removed 

the benzyl groups but also the remaining ester group in salt 21, to give a single neutral 

triazole 23, in near quantitative yield. 

We suspect that the presence of the iodine in the reaction causes the loss of the ester 

group through a Krapcho decarboxylation mechanism (Scheme 27). The issue was 

immediately overcome by using an alkylating agent that did not contain a halide, in this 

case methyl triflate, yielding the triazolium salt 24 in 96% yield (Scheme 28). 
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Scheme 27: Krapcho decarboxylation of 20 

 

Scheme 28: N-alkylation of mono-triazole 20 using MeOTf 

As the N-alkylation was successful, the removal of the benzyl group using potassium 

tert-butoxide was attempted. Unfortunately, the reaction was unsuccessful and only 

starting material was isolated. By altering the anion stabilizing the charge of the 

triazolium salt to the triflate, we conjectured that the ability of the tert-butoxide to act as 

a base and support the benzyl elimination was decreased. In an attempt to overcome this 

issue, we repeated the experiment using a non-nucleophilic base, lithium 

bis(trimethylsilyl)amide (LHMDS), but only starting material was observed. 

After multiple attempts to remove the benzyl group, we decided that the results we had 

observed supported the theory discussed earlier, in which the iodide acts as a 

nucleophile to remove the benzyl group. Therefor a different approach would be taken 

to perform the 1,4- to 1,5-triazole interconversion while still retaining the original 

stereochemistry at the chiral centre.  



  

Results & Discussion 

 

 

74 

 

The first new approach involved the reduction of the methyl ester to the corresponding 

alcohol, attempted using the common reducing agents sodium borohydride and lithium 

aluminium hydride (Scheme 29). 

 

Scheme 29: Attempted reduction of the methyl ester in 20 

 These reactions were unsuccessful: the sodium borohydride reduction only led to the 

recovery of the starting material as it was not reactive enough to reduce the ester 

moiety, and the lithium aluminium hydride reduction yielded a complicated mixture of 

products as both the ester and nitrile moieties reacted with the reducing agent. 

Following a review of the literature, it appeared that there was no effective way to 

selectively reduce the methyl ester, so we once again attempted a different method to 

overcome the decarboxylation difficulties. 

As discussed above, we believed that the compound was undergoing a Krapcho 

decarboxylation, initiated by the presence of the iodine. The initial attempts to replace 

the iodine were successful; however, further complications arose later in the synthesis. 

As the reduction attempts were unsuccessful, we planned to transform the methyl ester 

to the corresponding carboxylic acid using alkaline hydrolysis (Scheme 30). 



  

Results & Discussion 

 

 

75 

 

 

Scheme 30: Saponification of 20 

With the successful conversion of 20 into 25, we are now able to reattempt the N-

alkylation reaction, in the hope that the decarboxylation, allowing us to achieve the 1,5-

disubstituted triazole while retaining the stereochemistry at the chiral centre. 

2.0     Synthesis of meso compounds 

The second part of our research focuses on developing an asymmetric ‘click’ reaction 

which would be capable of selectively breaking the symmetry of meso bis-alkynes. 

Although bis-alkyne structures are common (our group has previously studied some of 

them76), the availability of natural meso bis-alkynes is extremely low. This means that 

before the asymmetric ‘click’ reaction could be tested, a number of test compounds had 

first to be synthesized (Figure 4). 
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Figure 4: Meso bis-alkynes to be synthesized for testing 

The synthetic paths investigated to synthesize meso bis-alkynes 26-32 are described 

below. 

2.1     Meso bis-alkyne 26  

The synthetic plan for 26 involved a nucleophilic addition to the bis-aldehyde 33, a key 

intermediate prepared from the commercially available meso-compound galactaric acid 

(mucic acid) 34 (Scheme 31). 

 

Scheme 31: Retrosynthetic route for the synthesis of 26  

The synthesis began with the acid-catalysed esterification of 34 using methanol to give 

35, followed by the protection of the two diol moieties with 2,2-dimethoxypropane 

(Scheme 32). 
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Scheme 32: Synthesis of meso-diester 36 

After the diol bis-protection, we next needed to reduce both ester moieties to prepare the 

novel bis-aldehyde 37. Firstly, the direct conversion of the acid to the aldehyde was 

attempted using di-iso-butylaluminium hydride (DIBAL-H) and the method reported by 

Wu.85 However, we were unable to isolate the desired bis-aldehyde 37 (Scheme 33). 

 

Scheme 33: Attempted synthesis of di-aldehyde 37 

After multiple unsuccessful attempts to achieve the direct conversion of 36 to 37, we 

decided to synthesize 37 by reducing 36 to the primary alcohol 38 and then oxidizing 

the alcohol to the aldehyde (Scheme 34).  
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Scheme 34: Reduction of ester 36 to primary alcohol 38 

The ester was successfully reduced in high yield using LiAlH4. The reduction proceeded 

smoothly, with the product easily purified by recrystallization. The next part of the 

synthesis was the oxidation: many methods for performing this transformation are 

available and we chose to begin with the Swern oxidation.86  

 

Scheme 35: Attempted Swern oxidation of 38 

Analysis of the spectroscopic data suggested that the reaction was not successful as 

characteristic signals corresponding to an aldehyde moiety were not observed. The 

experiment was repeated several times, each time giving the same result, with TLC 

analysis showing a complex mixture of products. 

The success of the Swern oxidation is reliant on the reaction temperature being kept 

below −60 °C, otherwise breakdown of the alkoxysulfonium ion can occur, giving a 

methylthiomethyl ether side product as a result. To try to overcome the issue of the 

temperature dependence, we attempted the Parikh-Doering oxidation,87 which is similar 

to the Swern oxidation, except the use of a sulfur trioxide-pyridine complex allows the 

reaction to be carried out between 0 °C and room temperature (Scheme 36). 
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Scheme 36: Attempted Parikh-Doering oxidation of 38 

The Parikh-Doering oxidation of 38 led to similar results to the Swern oxidation, giving 

a complex mixture of products, and the presence of an aldehyde group was not observed 

using spectroscopic data analysis. 

We next tried the Dess-Martin oxidation,88 in the hope that using the Dess-Martin 

periodinane (DMP) instead of an activated dimethyl sulfoxide as the oxidizing reagent 

would lead to the successful oxidation of 38. Firstly, we had to synthesize the DMP 39, 

following the procedure reported by Martin (Scheme 37).88 

 

Scheme 37: Synthesis of DMP 39 

The oxidation was attempted using DMP 39, but analysis of the 1H NMR spectrum of 

the crude reaction mixture showed signals corresponding to the presence of several 

aldehyde functional groups in small amounts, and after column chromatography we 

were not able to isolate the desired product 37 (Scheme 38). 
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Scheme 38: Attempted Dess-Martin oxidation of 38 

After attempting several different oxidation methods, we were unable to obtain the 

desired bis-aldehyde 37; hence, this synthetic route was abandoned. We believed that 

the possible issue with the oxidation is that once one aldehyde group has been oxidized, 

the alcohol group attacks the newly formed aldehyde intramolecularly. To see if this 

was a factor affecting the reaction, we investigated the possibility of mono-protecting 

the bis-alcohol, oxidizing the unprotected alcohol and inserting the alkyne, and then 

repeating the same sequence for the remaining alcohol moiety (Scheme 39). 

 

Scheme 39: Synthetic route to avoid the intramolecular reaction 
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This research was carried out by another member of the group, with a successful 

outcome.89 The group member was able to mono-protect the compound and oxidize the 

remaining alcohol group, and finally perform a Grignard reaction to insert the alkyne 

and give a racemic mixture of stereoisomers 41 & 42 (Scheme 40). 

 

Scheme 40: Synthesis to avoid the intramolecular reaction 

Although this synthetic route supported our theory about the intramolecular reaction, 

the low yielding step for the mono-protection, as well as the poor selectivity of the 

Grignard reaction, meant that this route was not pursued further. The mixture of 

stereoisomers 41 & 42 raised concerns that we would not be able to control the 

stereochemistry of the alkyne insertion to prepare 26. To overcome this issue, we 

planned to insert the alkynes in the β-position with regards to the protected diols in an 

SN2 fashion, replacing the alcohol moieties: bis-alkyne 43 was targeted (Figure 5). 
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Figure 5: Structure of new target meso bis-alkyne 

As the alkyne would be inserted as a nucleophilic acetylide ion, we planned to replace 

the alcohol moiety by a group that is a better leaving group, such as a halide or a 

tosylate (Scheme 41). 

 

Scheme 41:  Conversion of the alcohol to a better leaving group 

We began by using p-toluenesulfonyl chloride (TsCl) to convert the alcohol moieties 

into the corresponding bis-tosyl derivative 44 (Scheme 42), as the reactants were readily 

available, and required conditions that were milder than those used for the substitution 

by a halide.   

 

Scheme 42: Tosylation of 38 

We next attempted the insertion of the alkyne moieties, beginning with the use of the 

Grignard reagent ethynyl magnesium bromide (Scheme 43).  
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Scheme 43: Alkynylation of 44 using the Grignard reaction 

This reaction was unsuccessful, with 1H NMR spectra analysis showing only the 

presence of starting material. The reaction was repeated using ethynyltrimethylsilane 

(TMSA) and nBuLi as the acetylide source (Scheme 44). 

 

Scheme 44: Alkynylation of 44 using TMSA and nBuLi 

As observed with the addition of a Grignard reagent, only starting material was present. 

We therefore chose to exchange the alcohol group for a different leaving group, a 

halogen. One method for this transformation is the Appel reaction,90 but its use of the 

hazardous carbon tetrabromide makes it undesirable. We instead chose to use the milder 

iodination method described by Garegg, which employs an iodine-triphenylphosphine-

imidazole reagent combination.91 The reaction using this milder method was successful, 

yielding the bis-iodide moiety in 89% yield (Scheme 45). 
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Scheme 45: Iodination of 38 using Garegg's conditions 

We repeated the alkynylation reaction with the iodo group, however results proved to be 

unsuccessful (Scheme 46). This is currently as far as the synthesis has progressed. 

 

Scheme 46: Alkynylation of 45 using TMSA and nBuLi 

2.2     Meso bis-alkyne 27 

The synthesis of meso bis-alkyne 27 was inspired by the work of Brabander that 

described cyclopropargyl ethers being produced with high stereoselectivity (Scheme 

47).92 

 

Scheme 47: Pt(II)-catalyzed synthesis of a cyclopargyl ether 

With these results suggesting that the cis-isomer is the preferred product, we attempted 

to synthesize a compound containing two propargylic alcohols which could then be 

cyclized to give the desired meso bis-alkyne 27 (Scheme 48). Although introducing a 
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second alkyne would no longer allow the Pt(II) catalyst to direct the cyclization, a 

similar system was designed to afford a 2,6-cis-tetrahydropyran. 

 

Scheme 48: Retrosynthetic approach for the synthesis of 27 

The synthesis began from the readily available starting material glutaryl dichloride 47, 

which underwent incorporation of the alkyne groups by treatment with 

bis(trimethylsilyl)acetylene (BTMSA) in the presence of aluminium chloride (Scheme 

49). 

 

Scheme 49: Alkyne addition to glutaryl chloride 

The mechanism of the reaction is reminiscent of the Friedel-Crafts acylation, where an 

acylium ion is produced upon interaction of an acyl chloride and aluminium chloride. 

The resulting ion is then trapped by BTMSA. Loss of a TMS group regenerates the 

alkyne moiety to give the desired product (Scheme 50) 

 

Scheme 50: Acylation mechanism 

Once both of the TMS-protected alkynes were installed, giving the protected di-

propargylic ketone, the TMS groups could be removed. Several different standard 
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methods for the removal of silyl protecting groups were investigated (Scheme 51). We 

began by using fluoride to remove the protecting group, with tetra-n-butylammonium 

fluoride (TBAF) as the fluoride anion source. These conditions appeared to be too 

harsh, and a mixture of decomposed materials was obtained. Next, a milder deprotection 

using potassium carbonate was attempted,93 resulting in the product 49 being isolated in 

a very low yield (around 6%). Finally a method using borax (sodium tetraborate) was 

employed, yielding the product 49 in near quantitative yield (Scheme 51).94 

 

Scheme 51: Removal of TMS protecting groups 

The next step was the reduction of the ketone moieties to give the diol 46 in an anti-

arrangement, which we hoped would result in the cis-isomer after an acid-catalysed 

cyclization. To begin, a simple reduction was performed using the reducing agents 

NaBH4 and LiAlH4. The reaction with the milder reducing agent NaBH4 was slow, and, 

although the starting material was nearly fully consumed, a mixture of inseparable 

diastereoisomers was isolated (Scheme 52). 
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Scheme 52: Propargylic ketone reduction using NaBH4 

When the more reactive LiAlH4 was used, full conversion of the starting material was 

observed; however, a complicated mixture of products was obtained. 1H NMR spectra 

analysis showed signals corresponding to the expected alcohols although the signal 

from the alkyne’s terminal proton was not present. New multiplets were observed 

between 5.5-6.5 ppm, which suggested that the new compound contained an alkene, 

with the J-values being consistent with those of the trans-isomer. The newly formed 

propargylic alcohol has been reduced to the (E)-allylic alcohol 50 using LiAlH4 

(Scheme 53). Once the hydride has added to the carbonyl group, the aluminium that is 

bound to the oxygen reacts through a trans-selective hydrometallation of the triple 

bond, releasing the alkene upon work-up (Scheme 54).95,96  

 

Scheme 53: Propargylic alcohol reduction using LiAlH4 

 

Scheme 54: Mechanism of the reduction of propargylic ketones to (E)-allylic alcohols 

mechanism 

This reaction meant that LiAlH4 could not be used in the reduction of the dione. The 

problems encountered using both reducting agents led us to investigate the possibility of 

performing an asymmetric reduction of the propargylic ketone. The Midland reduction 
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was chosen because of its reported high enantioselectivity in the reduction of propargyl 

ketones, utilising the asymmetric reducing agent B-3-pinanyl-9-borabicyclo[3.3.1]-

nonane 51 (alpine-borane).97  

Before the enantioselective reduction was attempted, we wanted to ensure that the 

desired diol would cyclize to give the tetrahydropyran: the mixture of diols 46 was 

stirred with p-toluenesulfonic acid (p-TSA) at room temperature in the presence of 4Å 

molecular sieve (Scheme 55). 

 

Scheme 55: Cyclization of diol mixture 

2,6-Tetrahydropyran 27 was obtained in 73% yield and was then used to confirm that 

such bis-alkyne compounds would react under CuAAC reaction conditions to give the 

triazole product. The bis-alkyne 27, as a mixture of the meso and the racemate, was 

submitted to standard CuAAC conditions with an excess of azide to give the expected 

mixture of bis-triazoles 52 (Scheme 56).79 

 

Scheme 56: ‘Click’ reaction performed on the mixture of meso and racemic bis-alkyne 

The success of the cyclization and ‘click’ reactions were encouraging, and the 

enantioselective Midland reduction of dione 49 was then attempted. The alpine-borane 

reducing agent 51 was prepared using a method reported by Midland and used 

immediately without isolation (Scheme 57).97  
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Scheme 57: Synthesis of alpine-borane 51 

The dione 49 was then treated with the freshly prepared solution of alpine-borane 51, to 

yield a complicated mixture of products (Scheme 58). Analysis of the 1H NMR 

spectrum suggested that a small amount of 46 as a mixture of diastereoisomers was 

present, along with the mono-reduced products (±)46a. Isolation of (±)46 was attempted 

using column chromatography, however, the small quantity of (±)46 and the presence of 

other by-products meant that isolation was not successful. 

 

Scheme 58: Reduction of dione 49 using alpine-borane 51 

2.3     Meso bis-alkyne 28 

The target compound 28 was chosen because it can be easily prepared as a single 

diastereoisomer using the stereospecific Diels-Alder reaction. The Diels-Alder reaction 

between cyclopentadiene and maleic anhydride, a standard reaction found in many 

undergraduate chemistry laboratories, was our starting point. The two carbonyl moieties 

would be reduced, and the corresponding hydroxyl groups used to introduce the 

alkynes, giving the meso bis-alkyne 28 (Scheme 59). 

 

Scheme 59: Retrosynthetic approach for the synthesis of 28 
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The Diels-Alder reaction was carried out to give anhydride 54 in high yield, after 

recrystallization from methanol. Reduction of the anhydride using lithium aluminium 

hydride afforded diol 53 in 75% yield, without further purification required after the 

work-up (Scheme 60).  

 

Scheme 60: Synthesis of diol 53 

As with the synthesis of meso bis-alkyne 26, we next attempted to manipulate the 

alcohol groups so that alkynes could be introduced. With compound 26, when the diol 

was oxidized in an attempt to form the dialdehyde product, we believe that a reaction 

intermediate cyclized. As the structure of 53 is more rigid, we hoped that the oxidation 

would be successful. However, we were cautious, as the close proximity of the diols 

may lead to a similar cyclisation. The Swern oxidation was the chosen method of 

oxidation. Analysis of the spectroscopic data showed that no aldehyde or alcohol was 

present in the crude product mixture (Scheme 61). 

 

Scheme 61: Attempted Swern oxidation of 53 

As the oxidation route was unsuccessful, we attempted to convert the alcohol into a 

more effective leaving group to perform the alkyne introduction. We began with the 

transformation of the alcohol to the tosyl group, following the procedure used in the 

synthesis of 27. This was successful, the ditosylate 56 being isolated in 52% yield 

(Scheme 62). 
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Scheme 62: Conversion of an alcohol to a tosyl group 

With the successful transformation to the tosyl groups, we next tried to install the 

alkyne groups using two different methods. Insertion of the alkyne moieties was 

attempted by using the Grignard reagent ethynyl magnesium bromide, and then 

trimethylsilylacetylene (TMSA) and nBuLi as the acetylide source, but neither method 

was successful (Scheme 63).  

 

Scheme 63: Attempted insertion of alkyne groups into 56 

The same reactions were then repeated using an iodide as the leaving group. The iodo 

compound was synthesized first from the transformation of ditosylate 56 using sodium 

iodide (Scheme 64); this was then replaced by the more direct, one-step transformation 

of diol 53 using the method described by Garegg (Scheme 65).91 
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Scheme 64: Conversion of 56 to 58 

 

Scheme 65: Conversion of 53 to 58 

The incorporation of the alkyne groups was then attempted, but neither the reaction 

using ethynyl magnesium bromide, nor ethynyltrimethylsilane (TMSA) with nBuLi 

yielded the desired product (Scheme 66). Analysis of the 1H NMR spectrum of the 

reaction mixture obtained using bisTMSA showed the presence of the desired product 

28, albeit in a negligible amount. This is currently as far as the synthesis has progressed. 

 

Scheme 66: Attempted incorporation of alkyne groups into 58 
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2.4     Meso bis-alkynes 29, 30, 31 & 32 

2.4.1     Meso bis-alkyne 29 

The preparation of compounds 30, 31 & 32 began with the synthesis of the meso bis-

alkyne 29, which involves the addition of ethynyl magnesium bromide to the di-

aldehyde o-phthalaldehyde. The addition reaction is not stereoselective, and gave a 

mixture of the racemic and meso bis-alkynes. It was attempted in the hope that the 

separation of the products could be achieved using chromatography. The reaction 

afforded the mixture of diastereoisomers as an orange oil in 89% yield in a 2:1 ratio 

(Scheme 67). 

 

Scheme 67: Reaction of o-phthalaldehyde with ethynyl magnesium bromide 

When the orange oil mixture was re-examined it was discovered that orange crystals 

had begun to form. These orange crystals were collected by filtration and washed with 

petroleum ether. Analysis of the 1H NMR spectrum of the crystals indicated that a 

single diastereoisomer had crystallised, specifically the one that was believed to be 

meso compound 29 (Figure 6).  
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Figure 6: A - 1H NMR spectrum of the diastereoisomer mixture; B - 1H NMR spectrum 

of the crystal collected from the mixture 

To separate the meso compound from the mixture, the mixture was dissolved in CH2Cl2 

and a small amount of petroleum ether was added. Small light orange crystals formed 

which were collected and dried. The light orange crystals were then recrystallized from 

hot ethanol giving colourless crystals, which were sent for X-ray analysis. The X-ray 

analysis of the crystal confirmed that it had the structure of the meso bis-alkyne 29 

(Figure 7). 

 

Figure 7: ORTEP drawing showing 2 units of meso bis-alkyne 29 
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Inspection of the 1H NMR spectrum of the mixture of diols 29 and (±)29 shows the 

expected pair of doublets for the alkyne protons of the two isomers (Figure 9A), at 2.73 

and 2.75 ppm, corresponding to the racemic and meso forms. Conversion of the mixture 

of diols into the corresponding diesters using Mosher’s acid (Figure 8) was also 

investigated to observe the effects on chemical shifts.98  

 

Figure 8: (R)-Mosher's acid 

2.4.1.1     Assignment of configuration of chiral propargylic alcohols 

using Mosher’s ester 

Conversion of the racemic form into the Mosher’s diesters results in a pair of 

diastereoisomers, each of which produces one doublet in the 1H NMR spectrum. Similar 

derivatization of the meso compound provides a single compound in which the alkyne 

protons are in different environments (Scheme 68), and therefore also produces a pair of 

doublets in the 1H NMR spectrum (Figure 9B). It is interesting to note that the upfield 

chemical shift change is larger for the meso parent than the racemate; 0.18 & 0.32 ppm 

for the meso and 0.15 & 0.24 ppm for racemate. The larger upfield chemical shift 

observed for the meso parent is consistent with the guidelines described by Mosher. 

This observation may prove of use in the assignment of stereochemistry in further series 

of bis-alkynes. 
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Scheme 68: Reaction of diol 29 mixture with Mosher's acid (ME representing Mosher's 

ester) 
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Figure 9: A - 1H NMR spectrum of the mixture of diols; B - 1H NMR spectrum of the 

mixture of Mosher diesters 

Now that we had a method for successfully synthesizing and isolating compound 29 

(Scheme 69), we attempted to improve our synthesis and improve the yield of the 

desired product. Indeed, the racemic compound that remained, after isolation from the 

product mixture, can be recycled: oxidation to the ketone followed by a 

diastereoselective reduction should afford the diol.  
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Scheme 69: Synthesis of 29 

To achieve a diastereoselective reduction, a bulky reducing agent that acts as a single 

hydride source would be needed.99 Kündig showed that the use of the reducing agents 

LiAlH4 and [Al(H2)(OCH2CH2OME)2][Na] (Red-Al) on tetralin-1,4-dione gave the 

trans-diastereoisomer, whereas lithium tri-sec-butylborohydride (L-selectride) afforded 

product enriched with cis-diol (Scheme 70).  

 

Scheme 70: Diastereoselective reduction of tetralin-1,4-dione 

In the future, we hope that using L-selectride will give compound 29, increasing its 

overall yield and allowing us to recycle by-products. The Jones oxidation of (±)29 

afforded the propargyl dione 59 in a high yield (Scheme 71).  

 

Scheme 71: Synthesis of 59 from (±)29 

The oxidation of (±)29 will be followed by the selective reduction of 59 using L-

selectride to give the mixture of diols 29 & (±)29 (Scheme 72). We hope that our results 
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will reflect those reported by Kündig, with the meso-diol 29 being isolated as the major 

diastereoisomer. A drawback to this synthetic route is the high cost of the reducing 

agent L-selectride. Although this pathway allows for the use of the reaction by-product 

(±)29, which would otherwise be discarded, the cost of the reducing agent against the 

amount of 29 returned would need to be evaluated. 

 

Scheme 72: Reduction of 59 using L-selectride 

Now that we had successfully synthesised meso bis-alkyne 29, the testing of the 

selective mono-‘click’ reaction could start. In particular, we wanted to alter the β-

substituents to see how this affected the selectivity of the mono-‘click’ reaction. Acyl, 

benzyl and benzoyl groups were targeted to give the meso-compounds 30, 31 and 32 

respectively (Scheme 73). 

 

Scheme 73: Structures of meso-compounds 30, 31 & 32 

2.4.2     Meso bis-alkyne 30 

For further transformations, pure compound 29 was used to ensure that when the 

reaction was performed, as the relative stereochemistry should be retained, the final 

product should also be meso and remove any need for separation of diastereoisomers. 

The acylation was carried out using the method reported by Xiao, in which acetic 



  

Results & Discussion 

 

 

99 

 

anhydride was used as the acyl source, giving the bis-acyl product 30 in high yield 

(Scheme 74). 

 

Scheme 74: Synthesis of 30 from 29 

2.4.3     Meso bis-alkyne 31 

For the transformation of alcohols in 29 to benzyl ethers, the method reported by Lee 

was employed, which utilized benzyl bromide and the strong base sodium hydride.100 

The reaction proved to be extremely efficient, giving the desired compound 31 in high 

yield (Scheme 75). 

 

Scheme 75: Synthesis of 31 from 29 

2.4.4     Meso bis-alkyne 32 

For the transformation of the alcohol to the benzoyl ester, a very similar method to that 

used for the synthesis of 30 was employed, replacing the acetic anhydride with benzoyl 

chloride. Although this method was not as high yielding, it still produced pure 

compound 32 (Scheme 76). 
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Scheme 76: Synthesis of 32 from 29 

2.4.5     Meso bis-alkyne 60 

So far all the compounds, 29-32, contain an oxygen β- to the alkyne group. To further 

test the effects the β-group has on the selectivity of the mono-‘click’ reaction, 

exchanging the oxygen for another heteroatom such as nitrogen, may provide an 

interesting starting point. The amino group was chosen, giving new target compound 

meso bis-alkyne 60 (Figure 10). 

 

Figure 10: Target compound 60 

The conversion of an alcohol to an amine is generally a multistep process: first, the 

alcohol must be converted into a better leaving group such as a mesyl or tosyl group, 

which can then be displaced by an azide. Reduction of the azide should give the target 

compound 60, while retaining the relative stereochemistry of 29 (Scheme 77). 
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Scheme 77: Retrosynthetic plan for the synthesis of 60 

The mesylation reaction was carried out using methanesulfonyl chloride in the presence 

of an excess of triethylamine according to the method described by Baskaran.101 The 

reaction was extremely efficient, with isolation giving near quantitative yields of 62 

(Scheme 78). However, compound 62 was extremely air sensitive and unstable, and 

decomposed before spectral analysis could be performed; hence, in subsequent 

synthesis it was used immediately in the next reaction without complete isolation. 

 

Scheme 78: Synthesis of 62 from 29 

Substitution of the mesyl group was attempted using an excess of sodium azide in DMF, 

stirred at room temperature, through a base-catalysed nucleophilic substitution.101 The 

azide product 61 was not isolated due to the potential explosive properties associated 

with small azide compounds, and so was carried forward to the next step without further 

purification. The reduction of the azide to the amine was completed using the method 

described by Zhang, using zinc powder and ammonium chloride.102 Analysis of the 1H 

NMR spectrum of the crude reaction showed signals corresponding to a mixture of the 

fully converted bis-amine, as well as the mono-reacted and original starting diol. 

Purification of the mixture by column chromatography yielded the final product 60 in 

7% yield over the two steps (Scheme 79). 
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Scheme 79: Synthesis of target compound 60 from 62 

Although compound 60 was successfully synthesized, the poor yield obtained means 

that the synthesis needs to be improved before enough material can be produced to test 

the selective mono-‘click’ reaction. 

2.4.6     Synthesis of meso-compounds using meta- & para-phthalaldehyde  

At this point, we had altered the group in the β-position to the alkyne moiety and 

attempted to change the heteroatom as a way to compare their effects on the mono-

‘click’ reaction. Furthermore, we believed that it might be interesting to study the effect 

of the distance between the two alkyne groups on the selectivity of the ‘click’ reaction. 

In the examples reported for the mono-‘click’ reaction of achiral bis-alkynes, the two 

alkyne groups were in close proximity.15,76 If the addition of the alkynyl Grignard 

reagent is applied to meta- and p-phthalaldehyde, meso bis-alkyne systems with 

increasing distances between the reactive alkyne sites would be produced. These 

systems would provide an interesting comparison and might help explore whether the 

relative position of the alkynes moiety is a factor in the selectivity.  

Fortunately, the non-selective Grignard addition yielded the meso-diastereoisomer as 

the main product during the synthesis of 29. We were fortunate again that the meso-

product formed crystals, allowing for its easy separation from the mixture of 

diastereoisomers. When the reaction was performed on meta- and para-phthalaldehyde, 

neither of the reactions gave a product mixture containing a solid, and thick orange oils 

were obtained in both cases. Remarkably, in both of these examples, the signals in the 

1H NMR spectra for the meso and racemic forms of the diol products 63/(±)63 and 

64/(±)64 are coincident. Again, Mosher’s esters were prepared using a sample of the 
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crude reaction mixtures, which after NMR spectra analysis, clearly showed the presence 

of both the meso and racemic-products in a near 1:1 ratio in both cases (Scheme 81).  

 

Scheme 80: Reaction of meta-diol mixture with Mosher's acid (ME representing 

Mosher's ester) 

 

Scheme 81: Grignard addition to meta- and para-phthalaldehyde 

Unfortunately, the diastereoisomers were inseparable using column chromatography, 

and multiple recrystallization solvent systems also failed to yield either as a solid, 

returning only the mixture of diastereoisomers as an oil. Currently this is as far in the 

synthesis of meso bis-alkynes 63 & 64 that we have achieved. 

Although the use of chiral auxiliaries for the enantioselective addition to phthalaldehyde 

has been reported,103,104 the racemic bis-alkyl was the only compound targeted. A 
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possible route to prepare the meso structure as the main product could be obtained by 

applying the method used in the synthesis of 29: the unwanted diastereoisomer was 

recycled by oxidation of the diol mixture followed by a selective reduction. Although 

this may not give a single diastereoisomer as the product, the presence of a larger 

proportion of one may help in the recrystallization and separation. 

3.0     The asymmetric ‘click’ reaction with meso bis-alkynes 

With a small pool of meso bis-alkynes in hand (Figure 11), we were able to begin the 

testing for the asymmetric ‘click’ reaction. 

 

Figure 11: Synthesised meso bis-alkynes for testing 

To begin, meso compounds 29, 30, 31 & 32 were submitted to standard CuAAC 

reaction conditions with an excess of azide reactant, to confirm that both alkynes are 

reactive and would give the corresponding bis-triazole product. When the CuAAC 

reaction was performed on these compounds, however, the starting material was the 

only compound observed (Scheme 82).  



  

Results & Discussion 

 

 

105 

 

 

Scheme 82: CuAAC reaction with meso bis-alkynes 

As the reaction using the standard CuAAC conditions was not successful, it was 

repeated on compound 29, varying how the azide was introduced, the copper catalyst 

source, the solvent, as well as the reaction time and temperature (Scheme 83, Table 5).  

 

Scheme 83: CuAAC reaction with 29 

Table 5: Attempts to perform the CuAAC reaction on 29 

Experiment Azide Cu source Solvent Temp (ºC) Time Yield 

5A BnBr + NaN3 CuSO4.5H2O
* tBuOH/H2O

† RT 12 h SM 

5B BnBr + NaN3 CuSO4.5H2O
* tBuOH/H2O

† MW 100 1 h SM 

5C BnN3 Cu powder tBuOH/H2O
† RT 12 h SM 

5D BnN3 Cu powder tBuOH/H2O
† MW 120 1 h SM 

5E BnN3 CuSO4.5H2O
* tBuOH/H2O

† RT 12 h SM 
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Experiment Azide Cu source Solvent Temp (ºC) Time Yield 

5F BnN3 
2 Eq. 

CuSO4.5H2O
* 

tBuOH/H2O
† RT 12 h SM 

5G BnN3 CuCl 2,5-hexadione 0 12 h SM 

5H BnBr + NaN3 CuCl 2,5-hexadione RT 12 h SM 

5I BnBr + NaN3 CuCl tBuOH/H2O
† RT 12 h SM 

5J BnBr + NaN3 CuCl tBuOH/H2O
† MW 120 1 h SM 

* In the presence of sodium ascorbate; † 1:1 ratio of solvents 

When the original experiment 5A gave only starting material, we first hoped that an 

increase in the reaction temperature (5B) would afford the desired product. When this 

also failed, the azide source was altered. Instead of forming the azide in-situ, from 

sodium azide and benzyl bromide, benzyl azide was prepared prior to the reaction and 

then added to the reaction mixture (5C-G). Previously within the group, we have had 

success in performing the CuAAC reaction using a different source for the copper 

catalyst, and so copper powder (5C-D) and copper chloride (5G-J) were tested. So far, 

every modification of the reaction conditions failed to yield the desired product; in a 

final attempt to synthesize the bis-triazole product, the reaction solvent was changed. 

2,5-Hexadione, an unusual solvent, has been reported to be the optimum solvent to 

achieve the successful mono-‘click’ of achiral bis-alkyne systems.75  

As none of the reaction condition alterations improved the outcome, we began to 

investigate why the reaction was not proceeding as expected. To confirm that aromatic 

propargylic alcohols are capable of forming a triazole through the CuAAC reaction, 1-

phenylprop-2-yn-1-ol was synthesised (Scheme 84). 

 

Scheme 84: Synthesis of 1-phenylprop-2-yn-1-ol 

For the test reaction, obtaining the product as a single enantiomer was not required; 

hence a non-selective Grignard addition was used. Once synthesized, the standard 

CuAAC conditions were used on compound 69 to form the triazole (Scheme 85). 
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Scheme 85: CuAAC reaction with 69 

The reaction showed that aromatic propargylic alcohols were able to form triazoles 

through the CuAAC reaction, so this was not the issue preventing the click reaction 

affording 29. 

Next, we looked at how the mechanism of this reaction would proceed, specifically if 

having the two alkyne groups in close proximity alters the standard mechanistic route, 

hindering the reaction. As discussed above, a large number of mechanistic studies of the 

CuAAC reaction have been undertaken. Initially, the monocopper species was believed 

to be the active catalyst; however, later, dicopper complexes were reported to act as the 

main reactive species. Indeed, Bertrand reported the isolation of one such bis-copper 

acetylide.105 The group suggested that the mono- and bis-copper pathways are active in 

the CuAAC reaction but that the latter is the more kinetically favoured. If the bis-copper 

pathway is the preferred one, then having the two alkyne groups close to each other may 

be leading to a copper-alkyne complex system involving both alkynes, so sterically 

hindering the insertion of the azide and blocking the reaction (Figure 12). 

 

Figure 12: Possible structures of bis-copper-alkyne complexes 

Zhou reported the highest selectivity in the asymmetric ‘click’ reaction of quaternary 

oxindoles when the ligand 2,6-bis[(4S)-4-phenyl-2-oxazolinyl]pyridine L1 was used 

(Figure 13). In this copper-ligand species, the copper is coordinated to the three nitrogen 
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atoms of the ligand, so that its ability to coordinate the second alkyne is reduced, which 

may overcome the issue caused by the bis-copper pathway. 

 

Figure 13: Structure of L1 

Although we had not managed to synthesise the bis-triazole, we began to attempt the 

asymmetric ‘click’ reaction on the meso bis-alkyne compounds in the presence of 

commercially available L1 (Scheme 86, Table 6). For these reactions, a single 

equivalent of pre-prepared azide was used. 

 

Scheme 86: Asymmetric ‘click’ reactions of meso bis-alkynes 29-32 

Table 6: Asymmetric click of meso bis-alkynes 29-32 

Experiment Meso bis-alkyne Yield (%) 

6A 29 SM 

6B 30 SM 

6C 31 SM 

6D 32 SM 
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With none of the reactions involving the meso bis-alkynes yielding the corresponding 

triazole product, the reaction was repeated on 29 using different chiral ligands (Figure 

14) and in two different solvent systems (Scheme 87, Table 7). Zhou reported 

enantioselectivity of between 50-70% ee when the ligands L2, L3 & L4 were employed 

and we hoped to find a system that would reproduce these results. 

 

Scheme 87: Asymmetric click of meso bis-alkynes 29 

 

Figure 14: Structures of chiral ligands used 

Table 7: Asymmetric click of meso bis-alkynes 29 

Experiment Solvent Ligand Yield (%) 

7A tBuOH/H2O
† L1 SM 

7B tBuOH/H2O
† L2 SM 

7C tBuOH/H2O
† L3 SM 

7D tBuOH/H2O
† L4 SM 
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Experiment Solvent Ligand Yield (%) 

7E 2,5-hexadione L1 SM 

7F 2,5-hexadione L2 SM 

7G 2,5-hexadione L3 SM 

7H 2,5-hexadione L4 SM 

† 1:1 ratio of solvents 

With all of the reactions only returning the starting compound 29, further investigation 

into different reaction conditions is required. 

4.0     Future work 

4.1     Manipulation of triazoles  

After producing an efficient pathway for the ruthenium-free synthesis of 1,5-triazoles by 

proceeding through the 1,3,4-triazolium salt intermediate, we would like to explore the 

scope of the route (Scheme 88). 

 

Scheme 88: Ruthenium-free synthesis of 1,5-triazoles 

Apart from testing on the cyanoacetate-derived prochiral bis-alkyne 19, we have only 

tested systems based on the 1-benzyl-4-phenyl-1,2,3-triazole, with the N-alkylation at 

the N3 position being performed using simple linear alkyl groups. If testing proves that 

the pathway can be applied to different groups, then we would wish to compare our 

results to those reported using the RuCAAC one. It may be possible to improve these 

reactions by applying our method, increasing the yield and reducing the cost of the 

reaction. 

We would also perform further tests on the 1,3,4- to 1,4,5-trisubstituted triazole 

interconversion pathway to determine the scope and possible synthetic applications of 

the route (Scheme 89).   
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Scheme 89: 1,3,4- to 1,4,5-trisubstituted triazole interconversion 

If this is successful then we would attempt to change the benzyl group for another alkyl 

group. If this is possible, then we would have a ruthenium-free pathway by which one is 

able to designate each group at the 1-, 4- and 5-position (Scheme 90). 

 

Scheme 90: Stereoselective synthesis of 1,4,5-trisubstituted triazoles 

4.2     Synthesis of meso bis-alkynes 

In the synthesis of the meso bis-alkynes, compounds 28 & 43 are both at a stage in the 

synthesis where the alkyne moiety has yet to be inserted. We have attempted to insert 

the alkyne group using a Grignard addition to replace various leaving groups, as well as 

using nBuLi to form an acetylide species. The reaction was repeated multiple times 

using different conditions; however, more time could be spent to discover a successful 

set of conditions. Finally, a different selection of leaving groups could be tested. 

Although the synthesis of compound 60 was successful, the yield obtained was 

extremely poor and we were unable to isolate the compound from the crude product 

mixture. This reaction could perhaps be improved, specifically the transformation from 

the mesyl leaving group to the amine, as these are the low-yielding steps. One option is 

that once the azide has been installed, the Staudinger reaction could be performed to 

give the primary amine (Scheme 91). 

 

Scheme 91: Staudinger reaction 
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Another option is the transformation of the bis-alcohol 29 into a bis-tosylamide moiety, 

proceeding through a mesylate species, at which point the tosyl group may be removed 

(Scheme 92).106 

 

Scheme 92: Conversion of a primary alcohol to a primary amine 

For compounds 63 & 64, the meso and racemic-compounds were obtained in a 1:1 ratio, 

but it was not possible to separate them using standard separation methods. We would 

like to attempt this separation, ideally using recrystallization as the method. As these are 

novel compounds, a large number of recrystallization systems would need to be tested, 

if it is even possible for either to form crystals. 

The synthesis of compounds 29-32 began with the addition to the bis-aldehyde 

phthalaldehyde. Although these reactions are neither elegant nor very efficient, they are 

a quick path to reliably form propargylic alcohols. More meso bis-alkynes could be 

synthesized by using other compounds susceptible to Grignard reagent addition such as 

a bis-ketone species. Examples of such compounds are readily available commercially, 

some at low cost, which would be ideal because of the non-enantioselectivity of the 

reaction (Scheme 93). 

 

Scheme 93: Bis-ketone candidates for the synthesis of new meso bis-alkynes 

The successful synthesis of such meso bis-alkynes would provide a large pool of test 

compounds for the investigation of the asymmetric ‘click’ reaction. 
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4.3     Asymmetric ‘click’ reaction 

Due to the large amount of time taken in the synthesis of the meso bis-alkynes, we were 

not able to perform as many tests as we would have liked, to achieve the successful 

asymmetric ‘click’ reaction. In future we would wish to continue with these tests, 

employing various chiral ligands and reaction conditions to try to achieve a high yield 

and selectivity. The synthesis of a larger pool of compounds would allow for a greater 

number of test reactions to be performed, giving a scope for the reaction. 

Currently there is an issue where the two alkynes are in close proximity, possibly 

caused by a laddering effect of a bis-copper-alkyne species hindering the reaction. If the 

synthesis of compounds 63 & 64 is successful then this may provide systems where the 

alkynes are further apart, allowing them to react more independently. 

If the asymmetric click reaction is successful, then the absolute configuration of the 

product will need to be determined. This will be done using techniques such as X-ray 

crystallography or with methods similar to determination using Mosher’s esters. When 

this is complete, we hope to be able to report the relationship between the chirality of 

the ligand and the chirality of the mono-‘click’ product that is produced. Next, the 

reaction will be repeated, using the opposite enantiomer of the ligand to test if the 

opposite enantiomer of the product is observed. 

 

5.0     Conclusion 

 

In conclusion, during this project we have successfully been able to provide a reliable 

new synthetic pathway for the production of 1,5-disubstituted triazoles, making use of 

the copper-catalysed ‘click’ reaction (Scheme 94). During this research we encountered 

an unusual rearrangement to get a 1,4,5-trisubstituted triazole, which although we have 

not successfully been able to repeat, we shall continue to look into its availability as a 

new pathway. 
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Scheme 94: New pathway for the synthesis of 1,5-triazoles using the CuAAC reaction 

The synthesis of the meso bis-alkynes proved to be extremely difficult, with most 

needing further work. However, we had a great deal of success in synthesising meso-

1,2-bis-(prop2-yn-1-ol)benzene 29, and were further fortunate in the ability to separate 

and purify the meso compound using recrystallization (Scheme 95). This novel 

synthesis led to the production of more meso bis-alkynes by various transformations at 

the propargylic alcohol of 29 (Figure 15). 

 

Scheme 95: Reaction of o-phthalaldehyde with ethynyl magnesium bromide 

 

Figure 15: Synthesised meso bis-alkynes for testing 

Finally, although we were not able to react any of meso bis-alkynes using the CuAAC 

reaction, we believe that this may be caused by strong intermolecular forces between the 

molecules, stopping the reaction from taking place. 
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General Experimental 

Unless otherwise stated, all starting materials were purchased from commercial 

suppliers and were used without further purification. If necessary, solvents were dried in 

the usual manner; THF and EtO2 were distilled from the sodium benzophenone ketyl 

radical, and toluene, CH2Cl2, MeCN, pyridine and DMF were distilled from CaH2. 

Petroleum ether 40/60 was distilled in the lab prior to use. All non-aqueous reactions 

were carried out under an atmosphere of nitrogen or argon using flame-dried glassware, 

with liquid reagents and solvents being added to the reaction vessel by means of 

syringes through rubber septa. 

TLC analysis was carried out on commercially available Kieselgel aluminium-backed 

plates. Visualization was accomplished by UV fluorescence, basic KMnO4 solution and 

heat, phosphomolybdic acid and heat, acidic dinitrophenylhydrazine solution and heat, 

or acidic vanillin solution and heat. Column chromatography was carried out on 

Davisil® chromatographic silica media LC60Å 40-63 μm using standard methods. 

Melting points were obtained using a Büchi Melting Point B-545 apparatus and are 

uncorrected. IR spectra were recorded in the range 4000-400 cm-1 on a Perkin-Elmer 

Spectrum 100 FT-IR spectrophotometer as thin films on KBr plates or as solid samples 

on diamond windows. NMR spectra were recorded on a Bruker Ascend™ 500 

spectrometer at 500 MHz for 1H NMR & 126 MHz for 13C NMR, or a Bruker 

Ultrashield™ 400 plus spectrometer at 400 MHz for 1H NMR & 101 MHz for 13C 

NMR. Chemical shifts were recorded in parts per million (ppm) and are referenced to 

either tetramethylsilane or the residual protons (1H) or carbons (13C) of the deuterated 

solvents used. Mass spectra were determined at the EPSRC Mass Spectrometry Unit  at 

the University of Wales, Swansea. Single crystal X-ray structures were determined at 

the School of Chemistry, University of St Andrews. 

  



  

Experimental 

 

 

117 

 

1-Benzyl-4-phenyl-1H-1,2,3-triazole 2107 

 

 

Chemical Formula: C15H13N3 

Molecular Weight: 235.28 

Original synthetic method: 

Benzyl azide (3.90 g, 29.32 mmol) was dissolved in a BuOH/H2O (1:1, 120 mL) 

mixture with stirring. Sodium ascorbate (0.582 g, 2.94 mmol), phenyl acetylene (3.46 

mL, 31.57 mmol) and copper sulfate (0.469 g, 1.87 mmol) were added, and the solution 

stirred vigorously overnight. The solution was diluted with cold H2O; the solid that 

formed was collected using suction filtration and washed with cold H2O. The solid was 

dissolved in CH2Cl2, the solution dried with anhydrous MgSO4, and impurities removed 

with activated charcoal. The solution was filtered through Celite and the solvents 

removed under reduced pressure. The crude product was recrystallized from 

CH2Cl2/petroleum ether 40/60, yielding the titled compound as large colourless crystals 

(5.653 g, 82%). 

One-pot procedure: 

Sodium azide (2.14 g, 32.94 mmol) was dissolved in a BuOH/H2O (1:1, 120 mL) 

mixture with stirring. Benzyl bromide (3.6 mL, 30.27 mmol) was added and the mixture 

stirred for 10 min. Sodium ascorbate (0.78 g, 3.94 mmol), phenyl acetylene (3.3 mL, 

30.08 mmol) and copper sulfate (0.99 g, 3.97 mmol) were added, and the solution 

stirred vigorously overnight. The solution was diluted with cold H2O; the solid that 

formed was collected using suction filtration and washed with cold H2O. The solid was 

dissolved in CH2Cl2, the solution dried with anhydrous MgSO4, and impurities removed 

with activated charcoal. The solution was filtered through Celite and the solvents 
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removed under reduced pressure. The crude product was recrystallized from 

CH2Cl2/petroleum ether 40/60, yielding the titled compound as large colourless crystals 

(6.06 g, 87%).  

Microwave-assisted one-pot method: 

Sodium azide (0.10 g, 1.53 mmol) was dissolved in a BuOH/H2O (1:1, 4 mL) mixture in 

a small microwave vial with stirring. Benzyl bromide (0.13 mL, 1.09 mmol), sodium 

ascorbate (0.019 g, 0.096 mmol), phenyl acetylene (0.11 mL, 1.0 mmol) and copper 

sulfate (0.021 g, 0.09 mmol) were added to the solution. The reaction was submitted to 

microwave irradiation for 10 min at 125 ºC. The solution was diluted with cold H2O; the 

solid that formed was collected using suction filtration and washed with cold H2O. The 

solid was dissolved in CH2Cl2, the solution dried with anhydrous MgSO4, and 

impurities removed with activated charcoal. The solution was filtered through Celite 

and the solvents removed under reduced pressure. The crude product was recrystallized 

from CH2Cl2/petroleum ether 40/60, yielding the titled compound as large colourless 

crystals (0.22 g, 90%).  

1-Benzyl-4-phenyl-1H-1,2,3-triazole 2: m.p. 130-131 °C, lit. 129-129.5 °C;107 IR 

(neat): 3122, 1466, 1224, 1075, 1049, 766, 728, 693 cm-1; 1H NMR (CDCl3, 400 MHz) 

δ: 7.80 (m, 2H), 7.66 (s, 1H), 7.46-7.35 (m, 5H), 7.35-7.28 (m, 3H), 5.58 (s, 2H); 13C 

NMR (CDCl3, 126 MHz) δ: 134.9, 130.7, 129.3, 129.0, 128.9, 128.4, 128.2, 125.9, 

119.7, 54.4. 

 

  



  

Experimental 

 

 

119 

 

1-Benzyl-3-methyl-4-phenyl-1H-1,2,3-triazolium iodide 3108 

 

 

Chemical Formula: C16H16IN3 

Molecular Weight: 377.22 

Original synthetic method: 

1-Benzyl-4-phenyl-1,2,3-triazole 2 (2.008 g, 8.5 mmol) was dissolved in MeCN (40 

mL). Iodomethane (3.95 mL, 63.45 mmol) was added with vigorous stirring. The 

reaction mixture was heated at reflux for 24 h. The solvents were removed under 

reduced pressure to yield the desired product 3 as a light orange solid (2.52 g, 78%).  

Microwave-assisted method: 

1-Benzyl-4-phenyl-1,2,3-triazole 2 (1.1795 g, 5.02 mmol) was dissolved in MeCN (12 

mL) in a microwave vial. Iodomethane (0.31 mL, 0.71 mmol) was added. The reaction 

was submitted to microwave irradiation for 1 h at 60 °C. The solvents were removed 

under reduced pressure to yield the desired product 3 as a light yellow solid (1.60g, 

85%).  

Optimised microwave-assisted method: 

1-Benzyl-4-phenyl-1,2,3-triazole 2 (1.66 g, 7.07 mmol) was dissolved in MeCN (12 

mL) in a microwave vial. Iodomethane (1.73 mL, 35.10 mmol) was added. The reaction 

was submitted to microwave irradiation for 3 h at 100 °C. The solvents were removed 

under reduced pressure to yield the desired product 3 as a light yellow solid (2.79 g, 

93%).  

1-Benzyl-3-methyl-4-phenyl-1H-1,2,3-triazolium iodide 3: m.p. 133-135 °C, lit. 146-

148 °C;108 IR (neat): 3467, 3040, 1611, 1493, 1455, 1155, 768, 746, 699 cm-1; 1H NMR 
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(CDCl3, 400 MHz) δ: 9.33 (s, 1H), 7.69-7.60 (m, 4H), 7.54-7.40 (m, 3H), 7.37-7.33 (m, 

3H), 5.97 (s, 2H), 4.26 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ: 143.2, 132.2, 131.4, 

130.1, 130.1, 129.8, 129.7, 129.6, 129.4, 121.7, 57.6, 39.6.  
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1-Benzyl-3-methyl-4-phenyl-1H-1,2,3-triazolium iodide 3 with sodium alkoxide 

 

 

With sodium methoxide: 

Sodium (3.12 g, 135.7 mmol) was slowly dissolved in absolute MeOH (50 mL), and the 

solution was cooled to 0 ºC. Once all of the sodium was dissolved, 1-benzyl-3-methyl-

4-phenyl-1H-1,2,3-triazolium iodide 3 (0.3193 g, 0.847 mmol) dissolved in absolute 

MeOH (15 mL) was added to the sodium methoxide solution, and the mixture was 

stirred overnight. The reaction was quenched with 1M HCl (25 mL) and the product 

was extracted from the aqueous layer using EtOAc (3x20 mL). The organic layers were 

combined and the solvents were removed under reduced pressure to yield compound 2 

as colourless crystals (0.1811 g, 91%) 

Data consistent with that reported for the original synthetic method of 2. 

With sodium ethoxide: 

Sodium (3.03 g, 131.7 mmol) was slowly dissolved in absolute EtOH (50 mL), and the 

solution was cooled to 0 ºC. Once all of the sodium was dissolved, 1-benzyl-3-methyl-

4-phenyl-1H-1,2,3-triazolium iodide 3 (0.4213 g, 1.118 mmol) dissolved in absolute 

EtOH (15 mL) was added to the sodium ethoxide solution, and the mixture was stirred 

overnight. The reaction was quenched with 1M HCl (25 mL) and the product was 

extracted from the aqueous layer using EtOAc (3x20 mL). The organic layers were 

combined and the solvents were removed under reduced pressure to yield compound 2 

as colourless crystals (0.252 g, 96%) 

Data consistent with that reported for the original synthetic method of 2. 
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1-Methyl-5-phenyl-1H-1,2,3-triazole 4109 

 

 

Chemical Formula: C9H9H3 

Molecular Weight: 159.19 

Reduction using LiAlH4: 

1-Benzyl-3-alkyl-4-pehnyl triazolium iodide 3 (3.0145 g, 7.99 mmol) was dissolved in 

THF (30 mL) and the solution was cooled to 0 °C. LiAlH4 (0.8776 g, 23.13 mmol) was 

added and the mixture was stirred overnight. The reaction was quenched with H2O (20 

mL), stirred for a further 30 min, and the solution was filtered over Celite. The product 

was extracted from the aqueous layer using EtOAc (3x20 mL), the organic portions 

were combined, and the solvents removed under reduced pressure. The residue was 

purified using silica gel column chromatography, eluting with 1:1 EtOAc/ petroleum 

ether 40/60 to yield the desired compound 4 as a yellow oil (0.307 g, 24%). 

Reduction using tBuOK: 

1-Benzyl-3-alkyl-4-pehnyl triazolium iodide 3 (0.78 g, 2.05 mmol) was dissolved in 

THF (45 mL) and the solution was cooled to 0 °C. tBuOK (0.61 g, 5.46 mmol) was 

added and the mixture stirred overnight. The reaction was quenched with H2O (30 mL), 

stirred for a further 30 min, and the solution was filtered over Celite. The product was 

extracted from the aqueous layer using EtOAc (3x20 mL), the organic portions were 

combined, and the solvents removed under reduced pressure. The residue was purified 

using silica gel column chromatography, eluting with 1:1 EtOAc/ petroleum ether 40/60 

to yield the desired compound 4 as an orange oil (0.31 g, 93%). 
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1-Methyl-5-phenyl-1H-1,2,3-triazole 4: IR (neat): 3060, 3030, 2953, 1732, 1484, 

1454, 1245, 767 cm-1; 1H NMR (CDCl3, 500 MHz) δ: 7.73 (s, 1H), 7.57-7.45 (m, 3H), 

7.45-7.35 (m, 2H), 4.08 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ: 129.3, 128.7, 127.1, 

35.7, 14.3.  
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1-Benzyl-3-ethyl-4-phenyl-1H-1,2,3-triazolium iodide 5 

 

 

Chemical Formula: C17H18IN3 

Molecular Weight: 391.25 

Prepared according to the procedure for the synthesis of 1-benzyl-3-methyl-4-phenyl-

1H-1,2,3-triazolium iodide 3, from 2 (1.65 g, 7.01 mmol) and iodoethane (2.8 mL, 

35.00 mmol). The crude product was purified using silica gel column chromatography, 

eluting first with 1:1 EtOAc/petroleum ether 40/60, followed by 10% MeOH in CH2Cl2 

to yield the desired compound 5 as a light yellow solid (1.19 g, 86%).  

m.p. 129-131 °C; IR (neat): 3467, 3041, 1610, 1492, 1456, 1153, 767, 739, 700 cm-1;  

1H NMR (CDCl3, 400 MHz) δ: 9.39 (s, 1H, H-8), 7.77-7.70 (m, 2H, H-1,5), 7.66-7.55 

(m, 5H, H-2,3,4,11,15), 7.47-7.41 (m, 3H, H-12,13,14), 6.13 (s, 2H, H-9), 4.57 (q, 

J=7.3 Hz, 2H, H-16), 1.64 (t, J=7.3 Hz, 3H, H-17); 13C NMR (CDCl3, 126 MHz) 

δ:142.7 (C-7), 132.3, 131.5, 130.23, 130.17, 130.0, 129.9, 129.74, 129.69 (C-1-6,10-

15), 121.9 (C-8), 57.9 (C-9), 47.8 (C-16), 14.8 (C-17); HRMS (NSI): m/z calcd for 

[C17H18N3]
+: 264.1495; found for [M - I]+: 264.1493. 

  



  

Experimental 

 

 

125 

 

1-Benzyl-3-n-propyl-4-phenyl-1H-1,2,3-triazolium iodide 6 

 

 

Chemical Formula: C18H20IN3 

Molecular Weight: 405.28 

Prepared according to the procedure for the synthesis of 1-benzyl-3-methyl-4-phenyl-

1H-1,2,3-triazolium iodide 3, from 2 (1.65 g, 7.01 mmol) and iodopropane (3.4 mL, 

34.86 mmol). The crude product was purified using silica gel column chromatography, 

eluting first with 1:1 EtOAc/ petroleum ether 40/60, followed by 10% MeOH in CH2Cl2 

to yield the desired compound 6 as a pale yellow solid (0.62 g, 44%).  

m.p. 120-122 °C; IR (neat): 3467, 3040, 1610, 1491, 1456, 1152, 768, 736, 700 cm-1; 1H 

NMR (CDCl3, 500 MHz) δ: 9.45 (s, 1H, H-8), 7.75-7.69 (m, 2H, H-1,5), 7.65-7.53 (m, 

5H, H-2,3,4,11,15), 7.46-7.40 (m, 3H, H-12,13,14), 6.14 (s, 2H, H-9), 4.46 (t, J=7.4 Hz, 

2H, H-16), 2.04-1.96 (m, 2H, H-17), 0.96 (t, J=7.4 Hz, 3H, H-18); 13C NMR (CDCl3, 

126 MHz) δ: 142.8 (C-7), 132.2, 131.5, 130.2, 130.1, 130.0, 129.9, 129.7, 129.6 (C-1-

6,10-15), 121.9 (C-8), 57.9 (C-9), 53.5 (C-16), 22.9 (C-17), 11.0 (C-18); HRMS (NSI): 

m/z calcd for [C18H20N3]
+: 278.1652; found for [M - I]+: 278.1652. 
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1-Benzyl-3-n-butyl-4-phenyl-1H-1,2,3-triazolium iodide 7 

 

 

Chemical Formula: C19H22IN3 

Molecular Weight: 419.30 

2 (0.94 g, 4.01 mmol) was dissolved in MeCN (12 mL) in a microwave vial and 

iodobutane (2.3 mL, 3.72 g, 20.20 mmol) was added. The reaction mixture was 

submitted to microwave irradiation for 3 h at 130 °C. The solvents were removed under 

reduced pressure and the residue purified using silica gel column chromatography, first 

with 1:1 EtOAc/ petroleum ether 40/60, followed by 10% MeOH in CH2Cl2. The 

fractions containing the product were combined and the solvents were removed. The 

residue was further purified using silica gel chromatography using 10% EtOH in 

CH2Cl2 as the eluent to give product 7 as a yellow oil (0.67 g, 40%). 

IR (neat): 3104, 2957, 1609, 1568, 1489, 1455, 1145, 764, 731, 696 cm-1; 1H NMR 

(CDCl3, 500 MHz) δ: 9.48 (s, 1H, H-8), 7.77–7.68 (m, 2H, H-1,5), 7.65–7.50 (m, 5H, 

H-2,3,4,11,15), 7.48–7.38 (m, 3H, H-12,13,14), 6.15 (s, 2H, H-9), 4.52–4.44 (m, 2H, H-

16), 1.99–1.87 (m, 2H, H-17), 1.40–1.29 (m, 2H, H-18), 0.90 (t, J=7.4 Hz, 3H, H-19); 

13C NMR (CDCl3, 126 MHz) δ: 132.1, 129.9, 129.7, 129.5, 57.7, 51.5, 31.0, 19.4, 13.1; 

HRMS (NSI): m/z  calcd for [C19H22N3]
+: 292.1808; found for [M - I]+: 292.1810. 
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1-Ethyl-5-phenyl-1H-1,2,3-triazole 8109 

 

 

Chemical Formula: C10H11N3 

Molecular Weight: 173.21 

Prepared according to the procedure for the synthesis of 1-methyl-5-phenyl-1H-1,2,3-

triazole 4, from 5 (1.18 g, 3.00 mmol) and tBuOK (0.86 g, 7.65 mmol) dissolved in 

THF (50 mL). The product did not need further purification and the desired compound 8 

was obtained as a light yellow oil (0.61 g, 95%). 

IR (neat): 3061, 2983, 2939, 1483, 1455, 1245, 766 cm-1; 1H NMR (CDCl3, 500 MHz) 

δ: 7.69 (s, 1H), 7.54-7.46 (m, 3H), 7.43-7.34 (m, 3H), 4.40 (q, J=7.3 Hz, 2H), 1.48 (t, 

J=7.3 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ: 133.3, 129.6, 129.3, 128.9, 127.4, 43.6, 

15.8.  
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1-n-propyl-5-phenyl-1H-1,2,3-triazole 9 

 

 

Chemical Formula: C11H13N3 

Molecular Weight: 187.24 

Prepared according to the procedure for the synthesis of 1-methyl-5-phenyl-1H-1,2,3-

triazole 4, from 6 (0.60 g, 1.48 mmol) and tBuOK (0.44 g, 3.89 mmol) dissolved in 

THF (50 mL). The product did not need further purification and the desired compound 9 

was obtained as a light yellow oil (0.28 g, 90%). 

IR (neat): 3061, 2967, 2935, 1483, 1456, 1241, 767 cm-1; 1H NMR (CDCl3, 500 MHz) 

δ: 7.73 (s, 1H, H-8), 7.56-7.49 (m, 3H, H-2,3,4), 7.44-7.38 (m, 2H, H-1,5), 4.35 (t, 

J=7.3 Hz, 2H, H-9), 1.91-1.82 (m, 2H, H-10) 0.91 (t, J=7.3 Hz, 3H, H-11); 13C NMR 

(CDCl3, 126 MHz) δ: 133.5, 129.2, 128.9 (C-1,2,3,4,5), 50.0 (C-9), 23.7 (C-10), 11.2 

(C-9); HRMS (NSI): m/z [M + H]+ calcd for : 188.1182; found: 188.1181. 
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1-n-Butyl-5-phenyl-1H-1,2,3-triazole 10109 

 

 

Chemical Formula: C12H15N3 

Molecular Weight: 201.27 

Prepared according to the procedure for the synthesis of 1-methyl-5-phenyl-1H-1,2,3-

triazole 4, from 7 (0.21 g, 0.51 mmol) and tBuOK (0.15 g, 1.30 mmol) dissolved in 

THF (50 mL). The residue was purified using silica gel column chromatography, 

eluting with 3:7 EtOAc/ petroleum ether 40/60 to give the desired compound 10 as a 

light yellow oil (0.10 g, 83%). 

IR (neat): 3059, 2960, 2933, 1483, 1458, 767 cm-1; 1H NMR (CDCl3, 500 MHz) δ: 7.69 

(s, 1H), 7.55-7.44 (m, 3H), 7.43-7.33 (m, 3H), 4.35 (t, J=7.3 Hz, 2H), 1.87-1.73 (m, 

2H), 1.34-1.22 (m, 2H), 0.86 (t, J=7.3 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ: 133.1, 

129.4, 129.1, 128.8, 127.4, 48.1, 32.2, 19.7, 13.4. 
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1,3-Dimethyl-4-phenyl-1H-1,2,3-triazolium iodide 11110  

 

 

Chemical Formula: C10H12IN3 

Molecular Weight: 301.13 

1-Benzyl-4-phenyl 1,2,3-triazole 2 (1.044 g, 4.44 mmol) was dissolved in MeCN (12 

mL) in a microwave vial. Iodomethane (1.55 mL, 24.89 mmol) was then added to the 

solution. The reaction was submitted to microwave irradiation for 3 h at 160 °C. The 

solvents were removed under reduced pressure and the crude purified using silica gel 

column chromatography, first with 1:1 EtOAc/ petroleum ether 40/60, followed by 10% 

MeOH in CH2Cl2 to yield the desired product 11 as a light yellow solid in good purity 

(1.24 g, 93%).  

m.p. 168-170 ºC; IR (neat): 3455, 3397, 3003, 1069 cm-1; 1H NMR (CDCl3, 500 MHz) 

δ: 9.32 (s, 1H), 7.73 – 7.65 (m, 2H), 7.57 – 7.50 (m, 3H), 4.47 (s, 3H), 4.27 (s, 3H); 13C 

NMR (CDCl3, 126 MHz) δ: 143.0, 131.9, 130.5, 129.7, 121.7, 41.4, 39.4. 

  



  

Experimental 

 

 

131 

 

1,3-Diethyl-4-phenyl-1H-1,2,3-triazole 12111  

 

 

Chemical Formula: C12H16IN3 

Molecular Weight: 329.18 

Prepared according to the procedure for the synthesis of 1,3-dimethyl-4-phenyl-1H-

1,2,3-triazolium iodide 11, from 2 (0.9989 g, 4.25 mmol) and iodoethane (1.70 mL, 

21.25 mmol). The residue was purified using silica gel column chromatography, first 

with 1:1 EtOAc/ petroleum ether 40/60, followed by 10% MeOH in CH2Cl2 to yield the 

desired product 12 as a light yellow oil (1.27 g, 91%).  

IR (neat): 3444, 3048, 2983, 2940, 1612, 1448 cm-1; 1H NMR (CDCl3, 500 MHz)         

δ: 9.52 (s, 1H), 7.73 – 7.66 (m, 2H), 7.62 – 7.54 (m, 3H), 4.93 (q, J = 7.4 Hz, 2H), 4.59 

(q, J = 7.3 Hz, 2H), 1.74 (t, J = 7.4 Hz, 3H), 1.62 (t, J = 7.3 Hz, 3H); 13C NMR (CDCl3, 

126 MHz) δ: 142.6, 132.1, 130.0, 129.9, 129.7, 122.0, 50.4, 47.7, 14.8, 14.6. 
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1,3-Di-n-propyl-4-phenyl-1H-1,2,3-triazolium iodide 13  

 

 

Chemical Formula: C14H20IN3 

Molecular Weight: 357.23 

Prepared according to the procedure for the synthesis of 1,3-dimethyl-4-phenyl-1H-

1,2,3-triazolium iodide 11, from 2 (0.9889 g, 4.20 mmol) and n-propyl iodide (2.05 mL, 

21.05 mmol). The crude was purified using silica gel column chromatography, first with 

1:1 EtOAc/ petroleum ether 40/60, followed by 10% MeOH in CH2Cl2 to yield the 

desired product 13 as a light yellow oil (1.31 g, 87%).  

IR (neat): 3458, 3279, 2967, 2935, 1654, 1458 cm-1; 1H NMR (CDCl3, 500 MHz) δ: 

9.63 (s, 1H, H-8), 7.70 – 7.66 (m, 2H, H-1,5), 7.63 – 7.55 (m, 3H, H-2,3,4), 4.89-4.69 

(m, 2H, H-9), 4.56-4.38 (m, 2H, H-12), 2.20-2.11 (m, 2H, H-10), 2.02-1.97 (m, 2H, H-

13), 1.05 (t, J = 7.4 Hz, 3H, H-11), 0.94 (t, J = 7.4 Hz, 3H, H-14); 13C NMR (CDCl3, 

500 MHz) δ: 142.6 (C-7), 132.0 (C-3), 130.2 (C-2,4), 129.9 (C-8), 129.7 (C-1,5), 121.9 

(C-6), 56.1 (C-9), 53.5 (C-12), 23.1 (C-10), 22.6 (C-13), 10.9 (C-11), 10.8 (C-14). 
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1,3-Di-n-butyl-4-phenyl-1H-1,2,3-triazolium iodide 14  

 

 

Chemical Formula: C16H24IN3 

Molecular Weight: 385.29 

Prepared according to the procedure for the synthesis of 1,3-dimethyl-4-phenyl-1H-

1,2,3-triazolium iodide 11, from 2 (1.6558 g,7.05 mmol) and n-butyl iodide (4.0 mL, 

29.74 mmol). The residue was purified using silica gel column chromatography, first 

with 1:1 EtOAc/ petroleum ether 40/60, followed by 10% MeOH in CH2Cl2 to yield the 

desired product 14 as a light brown oil (2.452 g, 90%).  

IR (neat): 3453, 3266, 2959, 2872, 1652, 1455 cm-1; 1H NMR (CDCl3, 500 MHz)         

δ: 9.29 (s, 1H, H-8), 7.77 – 7.70 (m, 2H, H-1,5), 7.65 – 7.60 (m, 3H, H-2,3,4), 4.93 (t, J 

= 7.4 Hz, 2H, H-13), 4.55 (t, J = 7.4 Hz, 2H, H-9), 2.19 – 2.10 (m, 2H, H-14), 2.02 – 

1.92 (m, 2H, H-10), 1.56 – 1.45 (m, 2H, H-15), 1.44 – 1.32 (m, 2H, H-11), 1.04 (t, J = 

7.4 Hz, 3H, H-16), 0.94 (t, J = 7.4 Hz, 3H, H-12); 13C NMR (CDCl3, 126 MHz) δ: 142.9 

(H-7), 132.1 (H-3), 129.9 (H-1,2,4,5), 129.9 (H-8), 121.9 (H-6), 54.9 (H-13), 51.9 (H-

9), 31.4(H-14), 31.2 (H-10), 19.7 (H-15,11), 13.6 (H-16,12); HRMS (NSI): m/z  calcd 

for [C16H24N3]
+: 258.1965; found for [M − I]+: 258.1959. 
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1,4-Di-n-butyl-5-phenyl-1H-1,2,3-triazole 151 

 

 

Chemical Formula: C16H23N3 

Molecular Weight: 257.37 

1,3-Di-n-benzyl-4-phenyl triazolium iodide 14 (2.323 g, 5.54 mmol) was dissolved in 

THF (100 mL) and the solution was cooled to 0 °C. tBuOK (1.5545 g, 13.85 mmol) was 

added and the mixture stirred overnight at room temperature. The reaction was 

quenched with H2O (50 mL), stirred for a further 30 min, and the solution was filtered 

over Celite. The product was extracted from the aqueous layer using EtOAc (3x30 mL), 

the organic portions were combined, and the solvents were removed under reduced 

pressure. The residue was purified using silica gel column chromatography, eluting with 

1:1 EtOAc/ petroleum ether 40/60 to yield the desired compound 15 as a light yellow oil 

(1.224 g, 86%). 

IR (neat): 2959 2934, 2873 1637 cm-1; 1H NMR (CDCl3, 500 MHz) δ: 7.62 – 7.53 (m, 

2H, H-1,5), 7.48 – 7.41 (m, 2H, H-2,4), 7.38 – 7.31 (m, 1H, H-3), 4.28 (t, J = 7.3 Hz, 

2H, H-13), 4.12 (t, J = 7.3 Hz, 2H, H-9), 1.90 – 1.83 (m, 2H, H-14), 1.83 – 1.75 (m, 2H, 

H-10), 1.48 – 1.38 (m, 2H, H-15), 1.36 – 1.27 (m, 2H, H-11), 0.97 (t, J = 7.4 Hz, 3H, H-

16), 0.89 (t, J = 7.4 Hz, 3H, H-12); 13C NMR (CDCl3, 126 MHz) δ: 129.0 (H-7), 128.3 

(H-1,5), 128.2 (2,4), 127.5 (H-3), 51.4 (H-13), 44.5 (H-9), 31.1 (H-14), 30.9 (H-10), 

20.0 (H-15), 19.7 (H-11), 13.8 (H-16), 13.5 (H-12).  

                                                
 

 

1 Since the first successful reaction, these results have not been repeatable 
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Methyl 2-cyano-2-(prop-2-yn-1-yl)pent-4-ynoate 1576 

 

 

Chemical Formula: C10H9NO2 

Molecular Weight: 175.18 

Methyl cyanoacetate (15 mL, 169.99 mmol) was dissolved in MeCN (300 mL) and 

K2CO3 (62.43 g, 451.70 mmol) was added to the solution. The mixture was cooled to 0 

°C and propargyl bromide (50 mL, 336.22 mmol) was slowly added over a period of 5 

min. When the addition of the compound was complete, the reaction was heated at 

reflux for 12 h. The solution was cooled and diluted with H2O (100 mL). The product 

was extracted from the aqueous layer using EtOAc (3x30 mL). The organic layers were 

combined, washed with H2O (100 mL) and brine (100 mL), and then dried over 

anhydrous MgSO4. The solvents were removed under reduced pressure and the crude 

product was then purified by vacuum distillation at 115-125 °C to give the desired 

compound 19 as a colourless oil which solidified to a colourless solid (22.63 g, 76 %).  

m.p. 47-49 °C; IR (neat): 3287, 2959, 2250, 2128, 1747 cm-1; 1H NMR (CDCl3, 500 

MHz) δ: 3.89 (3H, s), 2.94 (4H, d, J = 2.7 Hz), 2.23 (2H, t, J = 2.7 Hz); 13C NMR 

(CDCl3, 126 MHz) δ: 166.6, 117.1, 76.2, 73.9, 54.3, 47.3, 25.9. 
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Methyl 2-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]-2-cyanopent-4-ynoate 2076 

 

 

Chemical Formula: C17H16N4O2 

Molecular Weight: 308.33 

Methyl 2-cyano-2-(prop-2-yn-1-yl)pent-4-ynoate 19 (2.010 g, 11.47 mmol), copper (II) 

sulfate pentahydrate (2.970 g, 46.69 mmol) and benzyl azide (3 mL, 23.63 mmol) were 

dissolved in tBuOH/H2O (1:1, 50 mL) and the mixture was stirred overnight. The 

reaction was diluted with H2O (40 mL) and the product was extracted from the aqueous 

layer using EtOAc (3x25 mL). The organic layers were combined, dried using 

anhydrous MgSO4 and then activated charcoal was added to remove any remaining 

copper. After filtering the solution over Celite the solvents were removed under reduced 

pressure and the crude product was purified using silica gel column chromatography, 

eluting with 1:1 EtOAc/petroleum ether 40/60 to yield the desired compound 20 as a 

colourless solid (1.626 g, 46%).  

m.p. 70-72 °C; IR (neat): 3288, 3140, 2956, 1748 cm-1; 1H NMR (CDCl3, 500 MHz) δ: 

7.49 (1H, s), 7.40 – 7.32 (3H, m), 7.26 – 7.22 (2H, m), 5.52 (2H, s), 3.80 (3H, s), 3.39 

(2H, s), 2.93 (1H, dd, J = 16.9, 2.6 Hz), 2.81 (1H, dd, J = 16.9, 2.6 Hz), 2.22 (1H, t, J = 

2.6 Hz); 13C NMR (CDCl3, 126 MHz) δ: 167.2, 140.7, 134.6, 129.1, 128.7, 127.9, 

123.0, 117.7, 76.7, 73.5, 54.1, 53.9, 49.0, 32.1, 26.2. 
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Alkylation of methyl 3-(-1-benzyl-1H-1,2,3-triazol-4-yl)-2-[(1-benzyl-1H-1,2,3-

triazol-4-yl)methyl]-2-cyanopropanoate 20 with iodomethane 

 

 

 

Compound 20 (0.142 g, 0.462 mmol) was dissolved in MeCN (5 mL) in a microwave 

vial. Iodomethane (0.2 mL, 0.456 g, 3.23 mmol) was added. The reaction mixture was 

submitted to microwave irradiation for 3 h at 100 °C. The solvents were removed under 

reduced pressure and the residue purified using silica gel column chromatography, 

eluting with 10% MeOH in CH2Cl2 to yield an inseparable mixture of products 21 and 

22.  

21-Benzyl-4-(2-cyano-2-(methoxycarbonyl)pent-4-yn-1-yl)-3-methyl-1H-1,2,3-

triazolium iodide 21: 1H NMR (CDCl3, 500 MHz) δ: 8.97 (s, 1H), 7.59–7.45 (m, 5H), 

5.94 (s, 2H), 4.46 (s, 3H), 3.92 (dd, 2H, J=61.2, 15.9 Hz), 3.22–3.09 (m, 2H), 2.33 (t, 

1H, J=2.6 Hz);  

1-Benzyl-4-(2-cyano-pent-4-yn-1-yl)-3-methyl-1H-1,2,3-triazolium iodide 22: 1H 

NMR (CDCl3, 500 MHz) δ: 9.20 (s, 1H), 7.41–7.37 (m, 5H), 5.87–5.80 (m, 2H), 4.41 (s, 

3H), 3.75 (td, 1H, J=11.2, 5.6 Hz), 3.59 (ddd, 2H, J=25.1, 15.7, 7.5 Hz), 2.86–2.75 (m, 

4H), 2.20 (t, 2H, J=2.6 Hz). 
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2-((1-Methyl-1H-1,2,3-triazol-5-yl)methyl)pent-4-ynenitrile 23 

 

 

Chemical Formula: C9H10N4 

Molecular Weight: 174.20 

The mixture of compounds 21 and 22 was dissolved in THF (20 mL) and tBuOK (0.08 

g, 0.71 mmol) was added. The reaction mixture was stirred at room temperature for 12 

h. The reaction was quenched with 1M HCl (30 mL) and the product was extracted 

from the aqueous layer using EtOAc (3x20 mL). The organic layers were combined and 

the solvents were removed under reduced pressure. The crude product was purified 

using silica gel column chromatography, eluting with 1:1 EtOAc/petroleum ether 40/60, 

to yield the desired compound 23 as a brown oil (0.012 g, 15% over 2 steps).  

IR (neat): 3287, 2923, 2852, 2250, 1722, 1450, 1242, 700 cm-1; 1H NMR (CDCl3, 500 

MHz) δ: 7.69 (s, 1H), 4.08 (s, 3H), 3.19 (d, 2H, J=6.6 Hz), 3.07–2.99 (m, 1H), 2.68–

2.56 (m, 1H), 2.28 (t, 1H, J=2.6 Hz); 13C NMR (CDCl3, 126 MHz) δ: 73.5, 30.3, 24.5, 

21.5; HRMS (NSI): m/z  calcd for [C9H11N4]
+: 175.0978; found for [M + H]+: 175.0977. 
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1-Benzyl-4-(2-cyano-2-(methoxycarbonyl)pent-4-yn-1-yl)-3-methyl-1H-1,2,3-

triazol-3-ium triflate 24 

 

 

Chemical Formula: C19H19F3N4O5S 

Molecular Weight: 472.44 

Compound 20 (0.541 g, 1.758 mmol) was dissolved in CH2Cl2 (15 mL) and methyl 

trifluoromethanesulfonate (1.5 mL, 2.244 g, 13.675 mmol) was added with stirring. 

After 20 min, the reaction was diluted with H2O (15 mL) and the product extracted from 

the aqueous layer using EtOAc (3x10 mL). The organic layers were combined and 

solvents were removed under reduced pressure to yield the desired compound 24 as a 

colourless oil (0.801 g, 96%).  

IR (neat): 3289, 2253, 2126, 1751, 1440, 1254, 1166, 1030 cm-1; 1H NMR (CDCl3, 500 

MHz) δ: 8.45 (s, 1H), 7.54-7.39 (m, 5H), 5.75 (s, 2H), 4.39 (s, 3H), 3.82 (s, 3H), 3.71 

(q, 2H, J=15.9 Hz), 3.02 (qd, 2H, J=15.9, 2.6 Hz), 2.30 (t, 1H, J=2.6 Hz); 13C NMR 

(CDCl3, 126 MHz) δ: 166.1, 138.8, 130.5, 130.2, 129.8, 129.5, 75.5, 75.3, 60.6, 58.1, 

55.0, 47.2, 38.8, 28.5, 27.3, 21.2, 20.6, 14.3; HRMS (NSI): m/z  calcd for 

[C18H19N4O2]
+: 323.1503; found for [M – CF3SO3]

+: 323.1499. 
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Methyl 2-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]-2-cyanopent-4-ynoic acid 25 

 

 

Chemical Formula: C16H14N4O2 

Molecular Weight: 294.31 

Compound 2 (0.3662 g, 1.18 mmol) was dissolved in H2O (100 mL) and MeOH (10 

mL). LiOH (0.3265 g, 7.78 mmol) was added and the reaction mixture heated at reflux 

for 12 h. The reaction mixture was allowed to cool to room temperature and quenched 

with 1M HCl (50 mL). The product was extracted from the aqueous layer using EtOAc 

(3x25 mL) and the organic layer were combined, and fried over anhydrous MgSO4. The 

solvents were removed under reduced pressure to yield the desired compound 25 as a 

colourless oil (0.2288 g, 55%). 

IR (neat): 3289, 2253, 2126, 1751, 1440, 1254, 1166, 1030 cm-1; 1H NMR (CDCl3, 500 

MHz) δ: 7.58 (s, 1H, H-8)), 7.29 – 7.25 (m, 3H, H-1,3,5), 7.17 – 7.15 (m, 2H, H-2,4), 

5.42 (dd, J = 32.8, 14.9 Hz, 2H, H-7), 3.42 (q, J = 14.6 Hz, 2H, H-10), 2.79 (ddd, J = 

17.1, 2.6 Hz, 2H, H-15), 2.17 (t, J = 2.6 Hz, 1H, H-17); 13C NMR (CDCl3, 126 MHz) δ: 

167.9 (C-13), 140.7 (C-6), 133.9 (C-9), 129.4 (C-1,5), 129.2 (C-3), 128.3 (C-2,4), 124.1 

(C-8), 118.1 (C-12), 77.3 (C-16), 73.8 (C-17), 54.9 (C-7), 31.5 (C-10), 31.1 (C-11), 26.1 

(C-15).  
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 (2R,3S,4R,5S)-dimethyl 2,3,4,5-tetrahydroxyhexanedioate 35112 

 

 

Chemical Formula: C8H14O8 

Molecular Weight: 238.19 

Galactaric acid (20.316 g, 96.68 mmol) was dissolved in MeOH (100 mL) and conc. 

H2SO4 (1.5 mL, 26.733 mmol) was added slowly with vigorous stirring. The reaction 

mixture was heated at reflux for 12 h. The solution was allowed to cool to room 

temperature and the mixture was filtered using a Buchner funnel. The solid was washed 

with water and then dried to give the desired compound 35 as a white solid (22.410 g, 

99%). 

m.p. 189-190 ºC, lit. 189 ºC;112 IR (neat): 3343, 3263, 2965, 1722, 1287 cm-1; 1H NMR 

(DMSO, 400 MHz) δ: 4.92 (d, J = 8.0 Hz, 2H), 4.84 – 4.78 (m, 2H), 4.31 (d, J = 8.0 Hz, 

2H), 3.82 – 3.75 (m, 2H), 3.64 (s, 6H); 13C NMR (DMSO, 101 MHz) δ: 174.1, 71.2, 

70.3, 51.4. 
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(4S,4'S,5R,5'R)-Dimethyl-2,2,2',2'-tetramethyl-[4,4'-bi(1,3-dioxolane)]-5,5'-

dicarboxylate 36112 

 

 

Chemical Formula: C14H22O8 

Molecular Weight: 290.27 

Compound 35 (15.096 g, 63.378 mmol) was suspended in acetone (250 mL), pTSA 

(0.076 g, 0.40 mmol) and DMP (17.5 mL, 14.84 g, 141.401 mmol) were then added to 

the solution with stirring. A Soxhlet extractor packed with 4Å molecular sieve was 

attached and the reaction was heated at reflux for 12 h. The reaction was allowed to cool 

to room temperature and then neutralised using a solution of Na2CO3 (100 mL). The 

solution was filtered over Celite and solvents were removed under reduced pressure to 

give a light yellow solid. The solid was recrystallized from hot ethanol to give the 

desired compound 36 as a white solid (15.327 g, 76%). 

m.p. 96-97 ºC, lit. 98 ºC;112 IR (neat): 3278, 2987, 1758, 1727, 1219 cm-1; 1H NMR 

(DMSO, 500 MHz) δ: 4.60 – 4.44 (m, 2H), 4.44 – 4.35 (m, 2H), 3.68 (s, 6H), 1.36 (s, 

6H), 1.31 (s, 6H); 13C NMR (DMSO, 126 MHz) δ: 171.3, 111.9, 78.8, 75.6, 52.7, 27.1, 

26.0. 
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((4R,4'R,5S,5'S)-2,2,2',2'-Tetramethyl-[4,4'-bi(1,3-dioxolane)]-5,5'-diyl)dimethanol 

38113 

 

 

Chemical Formula: C12H22O6 

Molecular Weight: 262.30 

LiAlH4 (0.416 g, 3.86 mmol) was suspended in Et2O (15 mL) and, a solution of 36 

(1.010 g, 3.17 mmol) in Et2O (15 mL) was added. The grey suspension was heated at 

reflux for 12 h and then it was allowed to cool to room temperature. A spatula of 

anhydrous Na2SO4 was added to the mixture and dropwise addition of H2O (3 mL) 

quenched the reaction. The solution was filtered over Celite and washed with Et2O (40 

mL). The crude solid was recrystallized from isopropyl alcohol with petroleum ether 

40/60 to give the desired compound 38 as a white solid (0.704 g, 85%). 

m.p. 111-112 ºC; IR (neat): 3323, 2990, 1738, 1381, 1216 cm-1; 1H NMR (DMSO, 400 

MHz) δ: 4.81 (t, J = 5.7 Hz, 2H), 4.06 – 3.89 (m, 2H), 3.84 – 3.69 (m, 2H), 3.61 (ddd, J 

= 11.7, 5.7, 3.1 Hz, 2H), 3.43 (dt, J = 11.7, 5.7 Hz, 2H), 1.32 (s, 6H), 1.30 (s, 6H); 13C 

NMR (DMSO, 126 MHz) δ: 110.1, 81.4, 78.9, 62.6, 27.1, 26.9. 
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2-Iodoxybenzoic acid (IBX) 40114 

 

 

Chemical Formula: C7H5IO4 

Molecular Weight: 280.02 

2-Iodobenzoic acid (10.1288 g, 251.33 mmol) was dissolved in H2SO4 (10 mL, 178.22 

mmol) and KBrO3 (8.850 g, 52.99 mmol) was added. The reaction mixture was heated 

at reflux for 48 h. The solution was allowed to cool to room temperature and filtered. 

The collected solid was washed with H2O, followed by MeOH, and dried to give the 

desired compound 40 as a white solid (9.65 g, 84%). 

m.p. 231-232 ºC, lit. 232-233 ºC;114 IR (neat): 3428, 2255, 2128, 1651, 1026 cm-1;      

1H NMR (DMSO, 500 MHz) 8.14 (d, J = 7.7 Hz, 1H), 8.03 (dd, J = 7.7, 1.3 Hz, 1H), 

8.00 (td, J = 7.7, 1.3 Hz, 1H), 7.84 (td, J = 7.7, 1.3 Hz, 1H); 13C NMR (DMSO, 126 

MHz) δ: 168.1, 146.8, 133.8, 133.4, 131.5, 130.5, 125.2. 
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1,1,1-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one (DMP) 39114 

 

 

Chemical Formula: C13H13IO8 

Molecular Weight: 424.14 

IBX 40 (9.0682 g, 32.39 mmol) was suspended in acetic acid (45 mL) and acetic 

anhydride (2.9 mL, 30.61 mmol) was added. The reaction mixture was heated at reflux 

for 12 h. The reaction solution was allowed to cool to room temperature and 

concentrated by removal of solvent under reduced pressure. The precipitate formed was 

filtered using a Buchner funnel, washed with EtO2 and dried to yield the desired 

compound 39 as a white solid (8.5615 g, 59%). 

m.p. 133-134 ºC, lit. 133-134 ºC;114 IR (neat): 3063, 2921, 1634, 1299 cm-1; 1H NMR 

(CDCl3, 500 MHz) 8.27 (dd, J = 7.6, 1.4 Hz, 1H), 8.01 (dd, J = 8.3, 0.6 Hz, 1H), 7.95 – 

7.91 (m, 1H), 7.72 (td, J = 7.5, 0.9 Hz, 1H), 2.26 (s, 3H), 2.23 (s, 3H), 2.17 (s, 3H).; 13C 

NMR (CDCl3, 126 MHz) δ: 175.7, 174.0, 166.0, 142.2, 135.8, 133.8, 131.9, 126.5, 

126.4, 20.4, 20.3.  
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((4R,4'R,5S,5'S)-2,2,2',2'-Tetramethyl-[4,4'-bi(1,3-dioxolane)]-5,5'-

diyl)bis(methylene) bis(4-methylbenzenesulfonate) 44115 

 

 

Chemical Formula: C26H34O10S2 

Molecular Weight: 570.67 

Compound 38 (0.9985 g, 3.8 mmol) was dissolved in CH2Cl2 (30 mL) and p-

toluenesulfonyl chloride (4.3964 g, 23.06 mmol) was added. Pyridine (1.2 mL, 79.1 

mmol) was added and the reaction mixture stirred at room temperature for 12 h. The 

solvents were removed under reduced pressure and the crude dissolved in EtOAc (30 

mL). The mixture was filtered over Celite and washed with 1M HCl (40 mL). The 

organic layer was separated, washed with aq. NaHCO3 (30 mL), aq. CuSO4 (30 mL), 

brine (30 mL) and then dried over anhydrous MgSO4. The solvents were removed under 

reduced pressure to yield the desired compound 44 as a white solid (1.04 g, 48%). 

m.p. 164-166 ºC, lit. 164-166 ºC;115 IR (neat): 3037, 2986, 2893, 1360, 1181 cm-1;      

1H NMR (DMSO, 500 MHz) δ: 7.78 (d, J = 8.0 Hz, 4H), 7.48 (d, J = 8.0 Hz, 4H), 4.14 

(dd, J = 10.8, 2.0 Hz, 2H), 4.08 – 4.03 (m, 2H), 3.99 (dd, J = 10.8, 6.0 Hz, 2H), 3.70 

(dd, J = 6.0, 2.0 Hz, 2H), 2.41 (s, 6H), 1.21 (s, 6H), 1.17 (s, 6H); 13C NMR (DMSO, 126 

MHz) δ: 145.2, 131.9, 130.2, 127.8, 110.1, 77.3, 76.5, 69.7, 26.6, 21.1. 
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(4S,4'S,5R,5'R)-5,5'-Bis(iodomethyl)-2,2,2',2'-tetramethyl-4,4'-bi(1,3-dioxolane) 45 

 

 

Chemical Formula: C12H20I2O4 

Molecular Weight: 482.09 

Triphenylphosphine (1.4001 g, 5.34 mmol) and imidazole (0.4144 g, 6.09 mmol) were 

dissolved in CH2Cl2 (40 mL) and cooled to 0 ºC. Iodine (1.2265 g, 4.83 mmol) and 

compound 38 (0.5032 g, 1.92 mmol) were added to the solution and it was allowed to 

reach room temperature. After stirring for 12 h, the solution was filtered over Celite and 

washed with EtOAc (3x25 mL). The solvents were removed under reduced pressure and 

the crude product was purified using silica gel column chromatography, eluting with 1:1 

EtOAc/ petroleum ether 40/60, to yield the desired compound 45 as a white solid 

(0.8242 g, 89%) 

m.p. 107-108 ºC; IR (neat): 2984, 2895, 1380, 1161, 1061 cm-1; 1H NMR (CDCl3, 500 

MHz) δ: 3.89 – 3.79 (m, 2H, H-3,4), 3.78 – 3.65 (m, 2H, H-2,5), 3.52 (dd, J = 10.8, 3.4 

Hz, 2H, H-6,1), 3.34 (dd, J = 10.8, 5.5 Hz, 2H, H-6,1), 1.48 (s, 6H, H-8,11), 1.40 (s, 6H, 

H-9,12); 13C NMR (CDCl3, 126 MHz) δ: 110.5 (H-7,10), 81.5 (H-2,5), 79.4 (H-3,4), 

27.5 (H-8,11), 27.5 (H-9,12), 7.3 (H-1,6).  
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1,9-Bis(trimethylsilyl)nona-1,8-diyne-3,7-dione 4894 

 

 

Chemical Formula: C26H34O2Si2 

Molecular Weight: 292.52 

Aluminium chloride (4.2710 g, 32.04 mmol) was dissolved in CH2Cl2 (50 mL) and 

cooled to 0 ºC. Bis-(trimethylsilyl)acetylene (6.5 mL, 29.5 mmol) and glutaryl 

dichloride (1.5 mL, 11.83 mmol) were added and the reaction solution stirred at 0 ºC for 

2.5 h. The reaction mixture was quenched with ice-cold H2O (100 mL) and the product 

extracted from the aqueous layer using CH2Cl2 (3x30 mL). The organic layers were 

combined, washed with aq. NaHCO3 (40 mL) and dried using anhydrous MgSO4. The 

solvent was removed under reduced pressure and the crude purified using bulb-to-bulb 

distillation to yield the desired compound 48 was a light yellow oil (3.45 g, 100%). 

IR (neat): 2964, 2901, 2150, 1679, 1252, 1108 cm-1; 1H NMR (CDCl3, 500 MHz) δ: 

2.63 (t, J = 7.2 Hz, 4H), 1.99 (p, J = 7.2 Hz, 2H), 0.24 (s, 18H); 13C NMR (CDCl3, 126 

MHz) δ: 186.8, 101.9, 98.4, 44.0, 17.9, -0.7. 
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Nona-1,8-diyne-3,7-dione 4994 

 

 

Chemical Formula: C9H8O2 

Molecular Weight: 148.16 

Desilylation using potassium carbonate: 

48 (1.0590 g, 3.62 mmol) was dissolved in a MeOH/H2O mixture (9:1, 30 mL). 

Potassium carbonate (2.1325 g, 15.43 mmol) was added and the solution stirred at room 

temperature for 12 h. The reaction mixture was quenched with 10% citric acid (30 mL) 

and the product extracted from the aqueous layer using EtOAc (3x20 mL). The organic 

layers were combined, washed with brine and dried using anhydrous MgSO4. The 

solvents were removed under reduced pressure and the residue purified using silica gel 

column chromatography, eluting with 3:2 EtO2/ petroleum ether 40/60, to yield the 

desired compound 49 as a yellow oil (0.032 g, 6%) 

Desilylation using sodium borate: 

48 (2.79 g, 9.54 mmol) was dissolved in a MeOH/H2O mixture (9:1, 150 mL). Sodium 

borate (0.423 g, 0.164 mmol) was added and the solution stirred at room temperature for 

12 h. The reaction mixture was quenched with 10% citric acid and the product extracted 

from the aqueous layer using EtOAc. The organic layers were combined, washed with 

brine and dried using anhydrous MgSO4. The solvents were removed under reduced 

pressure and the crude purified using silica gel column chromatography, eluting with 

3:2 EtO2/ petroleum ether 40/60, to yield the desired compound 49 as a yellow oil (1.38 

g, 98%) 

Nona-1,8-diyne-3,7-dione 49: IR (neat): 3281, 1455, 1411, 1023, 1013 cm-1; 1H NMR 

(CDCl3, 500 MHz) δ: 3.23 (s, 2H), 2.67 (t, J = 7.1 Hz, 4H), 2.05 – 1.99 (m, 2H); 13C 

NMR (CDCl3, 126 MHz) δ: 186.3, 81.4, 78.9, 44.3, 18.6.   
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Nona-2,8-diyne-3,5-diol 46 (mixture of diastereoisomers) 

 

  

Chemical Formula: C9H12O2 

Molecular Weight: 152.19 

49 (0.5233 g, 3.54 mmol) was dissolved in THF (45 mL) and the solution was cooled to 

0 ºC. Sodium borohydride (0.5425 g, 14.35 mmol) was added and the reaction solution 

heated at reflux for 12 h.  The reaction mixture was allowed to cool to room 

temperature, quenched with 1M HCl (40 mL) and the product was extracted from the 

aqueous layer using EtOAc (3x25 mL). The organic layers were combined, washed with 

brine and dried using anhydrous MgSO4. The solvents were removed under reduced 

pressure and the residue purified using silica gel column chromatography, eluting with 

3:2 EtO2/ petroleum ether 40/60, to yield the desired compound 46 as a mixture of 

diastereoisomers as a light yellow oil (0.34 g, 63%). 

IR (neat): 3282, 2940, 1702, 1604, 1417 cm-1; 1H NMR (CDCl3, 500 MHz) δ: 5.01 – 

4.87 (m, 2H), 3.73 – 3.54 (m, 2H), 2.17 – 2.11 (m, 2H), 1.61 – 1.56 (m, 4H); 13C NMR 

(CDCl3, 126 MHz) δ: 77.3, 62.6, 32.7, 31.8, 23.8.  
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2,6-Diethynyltetrahydro-2H-pyran 27 (mixture of diastereoisomers) 

 

 

Chemical Formula: C9H10O 

Molecular Weight: 134.18 

46 (0.3211 g, 2.11 mmol) was dissolved in CH2Cl2 (30 mL) and 4Å molecular sieve 

were added to the reaction flask. p-Toluenesulfonic acid (0.0573 g, 0.30 mmol) was 

added and the reaction solution stirred at room temperature for 12 h. The reaction 

mixture was filtered over Celite and washed with EtOAc (40 mL). The solvents were 

removed under reduced pressure to yield the desired compound 27 as a mixture of 

diastereoisomers as a yellow oil (0.207 g, 73%). 

IR (neat): 3294, 2952, 2867, 1250 cm-1; 1H NMR (CDCl3, 500 MHz) δ: 4.50 – 4.27 (m, 

2H), 2.47 (d, J = 2.1 Hz, 2H), 1.87 – 1.57 (m, 8H); 13C NMR (CDCl3, 126 MHz) δ: 84.8, 

73.3, 62.8, 62.3, 37.2, 31.1, 20.8. 
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2,6-Bis(1-benzyl-1H-1,2,3-triazol-4-yl)tetrahydro-2H-pyran 52 (mixture of 

diastereoisomers) 

 

 

Chemical Formula: C23H24N6O 

Molecular Weight: 400.48 

Sodium azide (0.5689 g, 8.75 mmol) was dissolved in a tBuOH/H2O (1:1, 50 mL) 

mixture with stirring. Benzyl bromide (1.0 mL, 8.51 mmol) was added and the mixture 

stirred for 10 min. Sodium ascorbate (0.1441 g, 0.73 mmol), compound 27 (0.5 g, 3.70 

mmol) and copper sulfate (0.1995 g, 0.80 mmol) were added, and the solution stirred 

vigorously for 12 h. The solution was diluted with cold H2O (100 mL); the solid that 

formed was collected using suction filtration and washed with cold H2O. The solid was 

dissolved in CH2Cl2 (40 mL), dried with anhydrous MgSO4 and impurities removed 

with activated charcoal. The solution was filtered through Celite and the solvents 

removed under reduced pressure to yield the desired compound 52 as a light yellow oil 

(0.645 g, 63%). 

IR (neat): 3298, 2926, 1694, 1455 cm-1; 1H NMR (CDCl3, 500 MHz) δ: 7.47 (s, 2H), 

7.37 – 7.30 (m, 10H), 5.51 – 5.43 (m, 4H), 4.93 – 4.77 (m, 2H), 1.82 – 1.50 (m, 6H); 

13C NMR (CDCl3, 126 MHz) δ: 134.6, 129.3, 128.9, 128.3, 128.3, 128.3, 31.1, 29.8, 

22.8, 21.3; HRMS (NSI): m/z [M + H]+ calcd for : 401.2084; found: 401.2083. 
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B-3-Pinanyl-9-borabicyclo[3.3.1]-nonane (Alpine-borane) 5197 

 

 

Chemical Formula: C23H24N6O 

Molecular Weight: 400.48 

9-BBN (50 mL, 0.5 M in THF, 25 mmol) and α-pinene (3.6 mL, 22.67 mmol) were 

heated at reflux for 3 h. The reaction mixture was allowed to cool to room temperature 

and the solution of 51 used immediately in the reduction reaction without isolation. 
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endo-Norbornene-5,6-dicarboxylic anhydride 54116 

 

 

Chemical Formula: C9H8O3 

Molecular Weight: 164.16 

Maleic anhydride (11.5072 g, 117.42 mmol) was dissolved in toluene (160 mL) and 

cooled to 0 ºC. Cyclopentadiene (11.0 mL, 131.0 mmol) was added dropwise and the 

reaction mixture stirred at room temperature for 12 h. The solvents were removed under 

reduced pressure and the product recrystallized from hot MeOH to yield the desired 

compound 54 as colourless crystals (15.020 g, 78%). 

m.p. 154-156 °C,  lit. 164-165 °C;116 IR (neat): 2980, 2954, 1772, 1705 cm-1; 1H NMR 

(CDCl3, 500 MHz) δ: 6.29 (t, J = 1.7 Hz, 2H), 3.57 (dd, J = 2.9, 1.6 Hz, 2H), 3.52 – 

3.43 (m, 2H), 1.84 – 1.49 (m, 2H); 13C NMR (CDCl3, 126 MHz) δ: 171.5, 135.6, 52.8, 

47.2, 46.2.  
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endo-Norbornene-5,6-dimethanol 53117 

 

 

Chemical Formula: C9H14O2 

Molecular Weight: 154.21 

LiAlH4 (0.9329 g, 24.55 mmol) was suspended in Et2O (20 mL) and the suspension 

cooled to 0 ºC. A solution of 54 (2.0460 g, 12.48 mmol) in THF (20 mL) was added to 

the LiAlH4 solution and the reaction mixture heated at reflux for 1 h. The reaction 

mixture was allowed to cool to room temperature and quenched with 10% H2SO4 (10 

mL). The product was extracted from the aqueous layer using EtOAc (3x20 mL), the 

organic layers were combined and dried using anhydrous MgSO4. The solvents were 

removed under reduced pressure to yield the desired compound 53 as a light yellow 

solid (1.443 g, 75%). 

m.p. 80-82 °C, lit. 68.0-68.5 °C;117 IR (neat): 3274, 2959, 2908, 2868, 1023 cm-1;        

1H NMR (CDCl3, 500 MHz) δ: 6.03 (t, J = 1.8 Hz, 2H), 3.64 (dd, J = 11.2, 3.6 Hz, 2H), 

3.44 – 3.31 (m, 2H), 3.16 (s, 2H), 2.83 – 2.76 (m, 2H), 2.60 – 2.45 (m, 2H), 1.45 – 1.35 

(m, 2H); 13C NMR (CDCl3, 126 MHz) δ: 134.9, 63.7, 50.1, 46.7, 45.3. 
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endo-Norbornene-5,6-diylbis(methylene)-bis(4-methylbenzenesulfonate) 56117 

 

 

Chemical Formula: C23H26O6S2 

Molecular Weight: 462.58 

53 (0.780 g, 5.06 mmol) was dissolved in pyridine (40 mL) and the solution was cooled 

to -5 °C. p-Toluenesulfonyl chloride (2.9083 g, 15.25 mmol) was added and the reaction 

mixture stirred at room temperature for 30 min. The reaction was quenched with H2O 

(40 mL) and the product extracted from the aqueous layer using EtOAc (3x20 mL). The 

organic layers were combined, washed with 1M HCl (40 mL), CuSO4 solution (40 mL), 

brine (40 mL), and dried over anhydrous MgSO4. The solvents were removed under 

reduced pressure to yield the desired compound 56 as a white solid (3.6694 g, 52%). 

m.p. 87-88 °C, lit. 87.5-88.0 °C;117 IR (neat): 2978, 1597, 1361, 1176, 1096, 952 cm-1; 

1H NMR (CDCl3, 500 MHz) δ: 7.78 – 7.70 (m, 4H), 7.36 (dd, J = 8.5, 0.5 Hz, 4H), 5.91 

(t, J = 1.8 Hz, 2H), 3.78 – 3.69 (m, 2H), 3.62 – 3.49 (m, 2H), 2.95 – 2.82 (m, 2H), 2.54 

– 2.47 (m, 2H), 2.47 (s, 6H), 1.49-1.27 (dd, J = 8.7, 107.3 Hz, 2H); 13C NMR (CDCl3, 

126 MHz) δ: 145.1, 135.5, 132.9, 130.1, 128.0, 70.3, 48.9, 45.5, 40.9, 21.8. 
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endo-Norbornene-5,6-dimethyl iodide 58 

 

 

Chemical Formula: C9H12I2 

Molecular Weight: 374.00 

From bis-tosyl 56: 

 

56 (0.2095 g, 0.45 mmol) was dissolved in acetone (25 mL) and sodium iodide (0.7339 

g, 4.89 mmol) was added. The reaction mixture was heated at reflux for 24 h. The 

solution was allowed to cool to room temperature, filtered over Celite and washed with 

cold acetone. The solvent was removed at reduced pressure, keeping the temperature 

below 40 °C to prevent degradation. The oil was dissolved in Et2O (30 mL), washed 

with aqueous sodium thiosulfate (40 mL), and the combined organic layers dried over 

anhydrous MgSO4. The solvents were removed under reduced pressure. The residue 

was purified using silica gel column chromatography, eluting with 1:1 EtO2/ petroleum 

ether 40/60, to yield the desired compound 48 as a brown oil (0.1503 g, 87%). 
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From diol 53: 

 

Triphenyl phosphine (4.2973 g, 16.40 mmol) and imidazole (1.1246 g, 16.54 mmol) 

were dissolved in CH2Cl2 (40 mL), and the solution was cooled to 0 °C. Iodine (4.2504 

g, 16.75 mmol) and 53 (1.0683 g, 6.94 mmol) were added, and the reaction mixture was 

stirred at room temperature for 12 h. The reaction solution was filtered over Celite and 

the solvents removed under reduced pressure. The residue was purified using silica gel 

column chromatography, eluting with 1:1 EtO2/ petroleum ether 40/60, to yield the 

desired compound 58 as a brown oil (1.634 g, 63%). 

 

endo-Norbornene-5,6-dimethyl iodide 58: IR (neat): 3055, 2973, 1429, 1176 cm-1;   

1H NMR (CDCl3, 500 MHz) δ: 6.29 (t, J = 1.8 Hz, 2H, H-5,6), 3.33 – 3.27 (m, 2H, H-

1,4), 3.20 (dd, J = 8.9, 4.0 Hz, 2H, H-8,9,2,3), 2.74 – 2.61 (m, 4H, H-8,9), 1.50 (dt, J = 

8.6, 1.8 Hz, 1H, H-7), 1.35 (dt, J = 8.6, 1.3 Hz, 1H, H-7); 13C NMR (CDCl3, 126 MHz) 

δ: 135.5 (C-5,6), 49.9 (C-1,4), 47.9 (C-7), 47.8 (C-2,3), 7.6 (C-8,9).  
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1,2-bis-(Prop-2-yn-1-ol)benzene 29 

 

 

Chemical Formula: C12H10O2 

Molecular Weight: 186.21 

o-Phthalaldehyde (2.0025 g, 14.93 mmol) was dissolved in THF (75 mL) and ethynyl 

magnesium bromide solution (0.5 M in THF, 66 mL, 32.80 mmol) was added. The 

mixture was heated at reflux for 3 h, and allowed to cool to room temperature. The 

reaction was quenched with saturated aqueous NH4Cl (60 mL) and the product extracted 

from the aqueous layer using EtOAc (3x25 mL). The organic layers were combined and 

dried over anhydrous MgSO4. The solvents were removed under reduced pressure and 

the crude product was purified using silica gel column chromatography, eluting with 1:1 

EtOAc/ petroleum ether 40/60 to yield the product as a mixture of diastereoisomers as a 

yellow oil (2.473 g, 89%). 1H NMR spectrum analysis showed a mixture of isomers in a 

ratio of 2.1:1 meso/racemic. The meso isomer was precipitated from the product mixture 

using CH2Cl2/petroleum ether, and was separated by filtration of the crystalline meso 

isomer and washing with petroleum ether. The (±)-isomer remained in the filtrate. 

Several precipitations were required to achieve almost complete separation.  
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meso-(1S,1'R)-1,2-bis-(Prop-2-yn-1-ol)benzene 29:  

 

 

Large colourless crystals (1.67 g, 60%); m.p. 98-99 °C; IR (neat) 3276, 3264, 2116   

cm-1; 1H NMR (CDCl3, 500 MHz) δ 7.92-7.77 (m, 2H, H-1,2,3,6), 7.49-7.35 (m, 2H, H-

1,2,3,6), 5.91 (dd, J = 4.7, 2.2 Hz, 2H, H-7,10), 2.95 (d, J = 4.7 Hz, 2H, H-8,11), 2.75 

(d, J = 2.2 Hz, 2H, H-13,14); 13C NMR (CDCl3, 126 MHz) δ 134.7 (C-4,5), 129.7 (C-

1,2), 129.1 (C-3,6), 80.3 (C-9,12), 75.8 (C-13,14), 62.7 (C-7,10); Crystal data: 

C12H10O2, M = 186.21, triclinic, a = 9.7265(12), b = 10.6455(11), c = 11.2471(7) Å, V = 

980.67(19) Å3, T = 173 K, space group P-1 (no. 2), Z = 4, 13495 reflections measured, 

3562 unique (Rint = 0.0564), which were used in all calculations. The final wR2 was 

0.1219 (all data).  

(±)-1,2-bis-(Prop-2-yn-1-ol)benzene (±)29:  

 

Thick orange oil (0.79 g, 29%); IR (neat) 3414, 3287, 2117 cm-1; 1H NMR (CDCl3, 500 

MHz) δ 7.73-7.63 (m, 2H), 7.41-7.37 (m, 2H), 6.03 (d, J = 2.3 Hz, 2H), 2.73 (d, J = 2.3 

Hz, 2H); 13C NMR (CDCl3, 126 MHz) δ 137.7 (C-4,5), 129.5 (C-1,2), 129.3 (C-3,6), 

82.8 (C-9,12), 75.8 (C-13,14), 63.4 (C-7,10).   
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General method for the esterification of compounds using Mosher’s acid for the 

assessment of stereochemistry 

 

 

The compound, (R)-(+)-α-methoxy-α-trifluoromethylphenylacetic acid (3 Eq, 0.2 M in 

CH2Cl2), DCC (3 Eq) and DMAP (0.1 Eq, 0.06 M in CH2Cl2) were added, and stirred at 

room temperature for 20 min. H2O (5 mL) was added and the layers separated. The 

aqueous layer was xtracted using CH2Cl2 (5 mL). The organic layers were combined 

and dried over anhydrous MgSO4. The solvents were removed under reduced pressure 

to yield the desired Mosher’s ester ready for 1H NMR analysis.  
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1,1'-(1,2-Phenylene)-bis-(prop-2-yn-1-one) 59118 

 

 

Chemical Formula: C12H6O2 

Molecular Weight: 182.17 

(±)29 (0.752 g, 4.04 mmol) was dissolved in acetone (15 mL) and Jones reagent (0.534 

g CrO3 dissolved in 0.46 mL conc. H2SO4, and diluted to 5 mL with H2O) was added. 

The reaction solution was stirred at room temperature for 12 h. The reaction mixture 

was quenched using iso-propanol (15 mL) and the product extracted from the aqueous 

layer using Et2O (3x10 mL). The organic layers were combined and washed with a 

solution of sodium bicarbonate (30 mL), brine (30 mL), and dried over anhydrous 

MgSO4. The solvents were removed under reduced pressure and the crude product was 

purified using silica gel column chromatography, eluting with 1:1 EtOAc/ petroleum 

ether 40/60 to yield the desired compound 59 as a light yellow oil (1.315 g, 93%). 

IR (neat): 3215, 1635 cm-1; 1H NMR (CDCl3, 500 MHz) δ: 7.87 (dd, J = 5.7, 3.3 Hz, 

2H), 7.67 (dd, J = 5.7, 3.3 Hz, 2H), 3.44 (s, 2H);  
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(1S,1'R)-1,2-bis-(1-(Acetyl)prop-2-yn-1-yl))benzene 30 

 

 

Chemical Formula: C16H14O4 

Molecular Weight: 270.28 

Compound 29 (0.5010 g, 2.68 mmol) was dissolved in CH2Cl2 (6 mL) at 0 °C. DMAP 

(6.588 g, 54.0 mmol), triethylamine (1.1 mL, 8.06 mmol), and acetic anhydride (0.76 

mL, 8.06 mmol) were added. The reaction mixture was stirred at room temperature for 2 

h and quenched with H2O (25 ml). The product was extracted from the aqueous layer 

using CH2Cl2 (3x10 mL) and the organic layers were combined, washed with brine (30 

mL), and dried over anhydrous Na2SO4. The solvents were removed under reduced 

pressure and the crude product purified by precipitation from a CH2Cl2/petroleum ether 

40/60 solvent system to yield the desired compound 30 as a colourless solid (0.63 g, 

87%). 

IR (neat) 3278, 3266, 2127, 1738, 1369, 1218 cm-1; 1H NMR (CDCl3, 500 MHz) δ 7.70-

7.62 (m, 2H, H-8,9), 7.46-7.37 (m, 2H, H-7,10), 6.75 (d, J = 2.3 Hz, 2H, H-3,12), 2.63 

(d, J = 2.3 Hz, 2H, H-5,14), 2.12 (s, 6H, H-1,16); 13C NMR (CDCl3, 126 MHz) δ 169.5 

(C-2,15), 134.7 (C-6,11), 129.7 (C-8,9), 129.1 (C-7,10), 80.3 (C-4,13), 75.8 (C-5,14), 

62.7 (C-3,12), 21.0 (C-1,16). m/z HRMS (NSI) calcd for [C16H18O4N]+ 288.1230; 

Found for [M + NH4]
+ 288.1229.  
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(1S,1'R)-1,2-bis-(1-(Benzyloxy)prop-2-yn-1-yl))benzene 31 

 

 

Chemical Formula: C26H22O2 

Molecular Weight: 366.45 

29 (2.0012 g, 12.3 mmol) was dissolved in a THF/DMF mixture (5:1, 60 mL) and the 

solution was cooled to 0 °C. NaH (0.89 g, 37.1 mmol) was added and the reaction 

mixture stirred for 30 min. Benzyl bromide (9.1 mL, 76.5 mmol) was added and the 

reaction mixture stirred at room temperature for a further 12 h. The reaction was 

quenched with H2O (50 mL) and the product extracted from the aqueous layer using 

EtOAc (3x20 mL). The organic layers were combined, washed with brine (40 mL), and 

dried over anhydrous Na2SO4. The solvents were removed under reduced pressure and 

the crude product was purified using silica gel column chromatography, eluting with 1:1 

EtOAc/petroleum ether 40/60 to yield the desired compound 31 as a yellow oil (3.23 g, 

82%). 

 

IR (neat) 3287, 3064, 3031, 2866, 2112, 1496, 1454 cm-1; 1H NMR (CDCl3, 500 MHz) 

δ 7.77-7.67 (m, 2H, H-13,14)), 7.43-7.37 (m, 2H, H-12,15), 7.36-7.26 (m, 10H, H-

1,2,3,4,5,22,23,24,25,26), 5.60 (d, J = 2.2 Hz, 2H, H-8,17), 4.70 (d, J = 11.6 Hz, 2H, H-

7,20), 4.58 (d, J = 11.6 Hz, 2H, H-7,20), 2.60 (d, J = 2.2 Hz, 2H, H-10,19); 13C NMR 

(CDCl3, 126 MHz) δ 137.6 (11,16), 136.2 (C-12,15), 129.0 (C-13,14), 128.5 (C-

1,5,22,26), 128.3 (C-2,4,23,25), 127.9 (C-3,24), 81.6 (C-9,18), 75.9 (7,20), 70.6 (C-

10,19), 67.6 (C-8,17). m/z HRMS (NSI) calcd for [C26H26O2N]+ 384.1958; Found for 

[M + NH4]
+ 384.1957.  
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(1S,1'R)-1,2-bis-(1-(Benzoyloxy)prop-2-yn-1-yl))benzene 32 

 

 

Chemical Formula: C26H18O4 

Molecular Weight: 394.42 

29 (0.5032 g, 2.68 mmol) was dissolved in CH2Cl2 (20 mL) and benzol chloride (0.5 

mL, 4.02 mmol), triethylamine (0.75 mL, 5.36 mmol) and DMAP (0.0163 g, 0.13 

mmol) were added. The reaction mixture was stirred at room temperature for 2 h. The 

product was extracted using CH2Cl2 (3x20 mL) and the combined organic layers were 

dried over anhydrous MgSO4. The solvents were removed under reduced pressure and 

the crude product was purified using silica gel column chromatography, eluting with 1:1 

EtOAc/petroleum ether 40/60 to yield the desired compound 32 as an orange oil (0.687 

g, 64%). 

IR (neat) 3289, 3063, 2124, 1724, 1257 cm-1; 1H NMR (CDCl3, 500 MHz) δ 8.11-7.99 

(m, 2H, H-13,14), 7.86-7.77 (m, 2H, H-12,15), 7.56-7.50 (m, 2H, 3,23), 7.51-7.46 (m, 

4H, H-2,4,22,24), 7.42-7.33 (m, 4H, H-1,5,21,25), 7.10 (d, J = 2.3 Hz, 2H, H-8,17), 

2.61 (d, J = 2.3 Hz, 2H, H-10,19); 13C NMR (CDCl3, 126 MHz) δ 165.1 (C-7,20), 134.9 

(C-11,16), 133.4 (C-6,26), 130.1 (C-13,14), 129.9 (C-12,15), 129.5 (C-

1,2,4,5,21,22,24,25), 128.5 (C-3,23), 80.3 (C-9,18), 76.2 (C-10,19), 63.5 (C-8,17). m/z 

HRMS (NSI) calcd for [C26H22O4N]+ 412.1543; Found for [M + NH4]
+412.1540.  
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(1S,1'R)-1,2-bis-(1-((Methylsulfonyl)oxy)prop-2-yn-1-yl))benzene 62 

 

 

Chemical Formula: C14H14O6S2 

Molecular Weight: 342.39 

29 (0.5013 g, 3.09 mmol) was dissolved in CH2Cl2 (15 mL) and the solution was cooled 

to 0 °C. Triethylamine (1.25 mL, 9.02 mmol) was added, followed by methanesulfonyl 

chloride (0.8205 g, 7.20 mmol) and the reaction solution stirred for 30 min. The 

reaction solution was diluted with CH2Cl2 (30 mL), washed with water (30 mL) and 

brine (30 mL), and dried over anhydrous MgSO4. The solvents were removed under 

reduced pressure to yield the desired compound 62 as a light yellow oil (1.0275 g, 

97%). The isolated compound decomposed before spectral analysis could be performed. 
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1,3-bis-(Prop-2-yn-1-ol)benzene 63 

 

 

Chemical Formula: C12H10O2 

Molecular Weight: 186.21 

m-Phthalaldehyde (0.5022 g, 3.75 mmol) was dissolved in THF (20 mL). Ethynyl 

magnesium bromide solution (0.5 M in THF, 17 mL, 8.36 mmol) was added to the 

solution. The mixture was heated to reflux for 3 h, and allowed to cool to room 

temperature. The reaction was quenched with saturated aqueous NH4Cl (30 mL) and the 

product extracted from the aqueous layer using Et2O (3x20 mL). The organic layers 

were combined and dried over anhydrous MgSO4, filtered, and the solvents removed 

under reduced pressure. The crude product was purified using column chromatography, 

eluting with EtOAc/petroleum ether 40/60 (1:1) to give the desired product 63 as 

mixture of diastereoisomers as an orange oil (0.5293 g, 76%). 

IR (neat): 3404, 3287, 2115, 1697, 1037 cm-1; 1H NMR (CDCl3, 500 MHz) δ: 7.74 (d, J 

= 1.7 Hz, 1H), 7.54 (dd, J = 7.7, 1.7 Hz, 2H), 7.45 – 7.40 (m, 1H), 5.49 (d, J = 3.7 Hz, 

2H), 2.68 (d, J = 2.2 Hz, 2H), 2.31 (d, J = 5.8 Hz, 2H); 13C NMR (CDCl3, 126 MHz) δ: 

140.7, 129.2, 126.9, 126.9, 125.0, 125.0, 83.5, 75.2, 64.3. 
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1,4-bis-(Prop-2-yn-1-ol)benzene 64 

 

 

Chemical Formula: C12H10O2 

Molecular Weight: 186.21 

p-Phthalaldehyde (2.0335 g, 15.18 mmol) was dissolved in THF (75 mL). Ethynyl 

magnesium bromide solution (0.5 M in THF, 66 mL, 32.80 mmol) was added to the 

solution. The mixture was heated to reflux for 3 h, and allowed to cool to room 

temperature. The reaction was quenched with saturated aqueous NH4Cl (50 mL) and the 

product extracted from the aqueous layer using Et2O (3x30 mL). The organic layers 

were combined and dried over anhydrous MgSO4, filtered, and the solvents removed 

under reduced pressure. The crude product was purified using column chromatography, 

eluting with EtOAc/petroleum ether 40/60 (1:1) to give the desired product 64 as 

mixture of diastereoisomers as an orange solid (1.9156 g, 67%). 

m.p. 101-106 °C; IR (neat): 3342, 3281, 2118, 1411, 1023, 1013 cm-1; 1H NMR 

(DMSO, 500 MHz) δ: 7.44 (s, 2H), 6.03 (d, J = 5.9 Hz, 1H), 5.34 (dd, J = 5.9, 2.3 Hz, 

1H), 3.48 (d, J = 2.3 Hz, 2H); 13C NMR (DMSO, 126 MHz) δ: 141.31, 126.22, 85.51, 

75.79, 62.10. 
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General method used for the attempted ‘click’ reaction of 29 shown in Table 5 

 

 

Compound 29 (1.1 Eq, 0.2M in solvent), the copper source (0.1 Eq) and the azide 

source (2 Eq) were stirred for the desired time at the desired temperature. The reaction 

was quenched with 1M HCl. The product was extracted from the aqueous layer using 

EtOAc and the organic layer were combined, and fried over anhydrous MgSO4. The 

solvents were removed under reduced pressure to yield the reaction product. 
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