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ABSTRACT: An autonomous underwater vehicle (Seaglider) has been used
to estimate marine primary production (PP) using a combination of
irradiance and fluorescence vertical profiles. This method provides estimates
for depth-resolved and temporally evolving PP on fine spatial scales in the
absence of ship-based calibrations. We describe techniques to correct for
known issues associated with long autonomous deployments such as sensor
calibration drift and fluorescence quenching. Comparisons were made
between the Seaglider, stable isotope (13C), and satellite estimates of PP.
The Seaglider-based PP estimates were comparable to both satellite estimates
and stable isotope measurements.

1. INTRODUCTION
Primary production (PP) is the carbon fixed by plants through
photosynthesis, the basis of almost all terrestrial and marine food
webs. Marine phytoplankton fix 45−50 Gt C yr−1, approximately
half of global PP.1,2 PP is critical for regulating the drawdown of
atmospheric carbon dioxide3 and the air−sea exchange of
radiatively important trace gases.4−6 In situ measurements of PP
in the open ocean are sparse and avoid winter, making it difficult
to resolve and separate spatial and temporal variability.1 Regular
fixed-point sampling is difficult to extrapolate due to spatial
variability. Satellites provide global estimates of oceanic PP over a
range of spatial and temporal scales7−11 but, while satellite-
derived surface chlorophyll captures the variability in PP better
than any other remotely sensed parameter,12 it relies on cloud
free skies and only observes the top few meters, thereby omitting
features such as subsurface chlorophyll maxima (SCM).13 As a
result, PP estimates derived exclusively from satellite data
typically underestimate spatial and temporal variability.1

Methods have been developed to accommodate SCM14 but are
based on broad statistical relationships.15

Significant improvements in PP estimates from satellite surface
chlorophyll fields are possible with simultaneous in situ
chlorophyll and PAR (photosynthetically active radiation)
profiles.12 Underwater gliders provide such data, improving the
vertical and temporal resolution of observations.16,17 However,
gliders use fluorescence as proxy for chlorophyll,19 and long-
duration missions may lack sufficient in situ calibration.18,20

We describe a method for estimating PP at high vertical and
temporal resolution, using glider chlorophyll fluorescence and

irradiance profiles. Significantly, it uses irradiance to calibrate
fluorescence and, therefore, needs no in situ samples for
calibration. This method makes possible depth-resolved
continuous estimates of PP over a full seasonal cycle, in all
weather.

2. DATA SETS

2.1. Area of Study. Data were collected in the northeast
Atlantic Ocean (48°41′ N, 16°11′ W) as part of the OSMOSIS
(Ocean SurfaceMixing, Ocean Submesoscale Interaction Study).
This site is approximately 40 km southeast of the Porcupine
Abyssal Plain sustained observatory (Figure 1).21,22

Currents in this area are generally weak,23,24 with mean dive
averaged currents of 11 cm s−1. Patchy phytoplankton
distributions with fine spatial scales (<10 km) have been
observed in this region.25 Diatoms dominate the spring bloom,
succeeded by prymnesiophytes and dinoflagellates.26,27 In
summer, diatoms form an SCM at the base of the mixed
layer.28,29 Due to the patchy nature of the phytoplankton
distribution, advection of spatial variability can result in apparent
variations in the phytoplankton community structure on daily
time scales.30
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2.2. Seaglider Data. A Seaglider is an autonomous,
buoyancy driven vehicle that profiles to a depth of 1000 m
with a 0.5−1 m vertical sampling resolution along a sawtooth
trajectory.31−33 Seaglider SG566 was deployed from April to
September 2013 sampling a 15 km × 15 km area, following a
figure-of-eight path with an average 1000 m profiling time of 2.6
h for an up/down cast (Figure 1).
SG566 was equipped with an unpumped Seabird SBE13 CT

sail (conductivity−temperature; Seabird Electronics, Bellevue,
USA), a Paine pressure sensor (Paine Electronics, East
Wenatchee, USA), a Triplet Ecopuck (Wetlabs, Philomath,
USA) measuring chlorophyll fluorescence and optical back
scatter, and a broadband 4π cosine photosynthetically active
radiation (PAR) sensor (400−700 nm; Biospherical Instru-
ments, San Diego, USA). Raw measurements from the CT sail
were initially calibrated using manufacturer-supplied coefficients,
with further corrections to account for thermal lag.34 Glider
salinities were calibrated against cruise data.35 Pressure measure-
ments were corrected to remove long-term drift and to account
for pressure hysteresis within each dive.
Manufacturer calibrations were initially applied to data from

the Wetlabs Triplet and 4π PAR by subtracting the instrument
blank and applying a scaling factor. The manufacturer’s
calibration for chlorophyll fluorescence is based on the sensor’s
response to a culture of the phytoplankton species Thalassiosira
weissf logiiat at a known chlorophyll-a concentration (Figure
S3).36 Our secondary calibration is outlined below. Other
empirical methods have been developed to calibrate fluorescence
profiles including ones that take into account the presence of an
SCM,20 but by using in situ PAR data, a scale factor can be

derived which can change dynamically and hence reflect changes
in community composition (see Section 4.2). The manufac-
turer’s PAR sensor calibration uses a traceable 1000 W type FEL
Spectral Irradiance Standard. All data were aggregated into 2 m
depth intervals.
To obtain estimates of PP, we used calibrated chlorophyll

fluorescence, temperature, and PAR (Sections 2.5−2.7, Figure
S1). Optical backscatter measurements were used to correct for
fluorescence quenching,37 and temperature, salinity, and density
were used to estimate mixed layer depths.

2.3. In Situ Samples.Three cruises to the survey region were
conducted by the RRS James Cook: glider deployment (JC085;
April 14−29), midmission (JC087; June 1−18), and glider
recovery (JC090; September 1−16). Water samples for
chlorophyll-a were collected on all cruises from up to six depths
across the euphotic zone using a Seabird 911 plus CTD-Niskin
rosette system. Chlorophyll-a concentrations were measured
using 250 mL water samples filtered onto 25 mmWhatman glass
fiber filters (GF/F; nominal pore size, 0.7 μm). Chlorophyll-a
pigment was extracted in 6mL of 90% acetone at 4 °C in the dark
for ∼20 h before measurement on a Turner Designs Trilogy
fluorometer calibrated against a pure chlorophyll standard
(spinach extract, Sigma Aldritch).38 Two ship-fitted cosine
collectors (Skye Instruments, UK) measured incident PAR.
Measurements of PP using the 13C method39 were made

between 30th May and 18th June on JC087 only. Water samples
were collected from predawn CTD casts at five depths: 55%,
20%, 7%, 5% and 1% of surface irradiance based on profiles
obtained from previous midday CTD casts. Each 1 L water
sample was added to an acid-rinsed Nalgene polycarbonate
bottle, which was wrapped with optical filters (Lee Filters,
Hampshire, UK) to replicate the appropriate irradiance levels.
Each bottle was spiked with 200 μL of 13C labeled sodium
bicarbonate (0.65g in 50 mL of pH adjusted Milli-Q water),
corresponding to an addition of 255 μmol L−1 (or ∼1% of
ambient (∼2084 μmol L−1) dissolved inorganic carbon
concentrations). Sealed sample bottles were placed in on-deck
incubators, which were flushed with surface seawater for 24 h.
Afterward, each sample was filtered onto an ashed (450 °C, 6 h)
25 mm GF/F (Whatman) filter and rinsed with a weak HCl
solution (1−2%) to remove inorganic carbon before being stored
frozen at−20 °C. Filters were oven-dried and encapsulated in tin
capsules. Samples were analyzed for 13C isotopic enrichment at
the Scottish Association for Marine Science using an ANCA NT
preparation system coupled to a PDZ 20-20 Stable Isotope
Analyzer (PDZ Europa Scientific Instruments, UK). PP was
calculated from the stable isotope results using standard
equations.40

2.4. Satellite Ocean Color Data and Primary Production
Estimates. We obtained 1 km resolution daily chlorophyll
composites of MODIS Aqua data from the NERC Earth
Observation Data Acquisition and Analysis Service (NEO-
DAAS). For each Seaglider surfacing, the satellite data pixel that
matched the position and date was extracted. Cloud cover
resulted in data gaps in satellite coverage and surface match ups;
these time periods were omitted from the analysis.
Full depth profiles of chlorophyll were calculated for satellite

data using statistical relationships relating satellite chlorophyll to
the shape of the chlorophyll profile at depth (Supporting
Information).14 For an alternative estimate of PP, for comparison
to the glider-based estimates, these profiles and surface PARwere
inputs to a PP algorithm41 that couples the glider photosynthesis
model42 (Section 3.3) to the HYDROLIGHT radiative transfer

Figure 1. Modis aqua chlorophyll map showing location of study site
and track of glider (black line) and CTD position (blue dots). The black
box in (a) indicates the location of the expanded map (b).
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code43 which uses sea surface temperature, PAR, and day length
to more accurately estimate irradiance with depth.
2.5. Irradiance Corrections, Calibrations, and Calcu-

lation. PP is best parametrized using spectral irradiance, as
shorter wavelengths are absorbed much faster than long
wavelengths; therefore, blue light penetrates much deeper into
the water column.44 Nonspectral methods can overestimate PP
by as much as 50% if only broadband PAR is used.10 A number of
calculations are necessary to spectrally resolve the glider
broadband PAR observations.
The glider only records subsurface PAR, so we first estimate

surface irradiance for comparison with a surface irradiance
model. We then decompose the surface irradiance into spectral
components. Irradiance at depth was calculated using spectrally
weighted algorithms.46 Details are described below.
SG566 returned 1325 profiles of chlorophyll and PAR

(downcast and upcast counted separately). Profiles where PAR
intensity increased with depth (due to passing cloud cover and/
or glider rolls)46 were excluded from the analysis (319). We also
excluded night-time profiles (417) leaving a total of 589
simultaneous profiles for analysis.
2.5.1. Estimating Surface Irradiance from Subsurface Glider

Measurements. The fraction of solar irradiance entering the
water column depends on the amount of sunlight reflected by the
sea surface. This is calculated by separating the diffuse and direct
components of irradiance using determinations of the Fresnel
reflectance and the amount of foam (see Supporting
Information). The total reflectance (rtot) is the sum of direct
reflectance (rd) and diffusive reflectance (rdiff).

= +r r rtot d diff (1)

Glider PAR was extrapolated to just below the surface by
assuming exponential attenuation. The following equation was
then applied to calculate PAR just above the surface, E(0+)

= − ̅
−

+
−

E
E Rr

r
(0 )

(0 )(1 )
(1 )tot (2)

where E(0−) is the irradiance just below the surface and R is the
irradiance reflectance (usually <0.1 in ocean waters). The water−
air Fresnel reflection for the whole diffuse upwelling radiation (r)̅
has a value of 0.48.44 R and r ̅ are needed to obtain the upwelling
irradiance flux, which is subsequently reflected back down upon
reaching the water surface.44

2.5.2. Calculating Spectral Irradiance. Surface PAR from the
Seaglider (eq 2) was spectrally decomposed into 5 nm
wavelengths, E0(λ), using a look-up table

41 created by generating
a clear sky run of a radiative transfer model,47 which is specific for
oceanographic applications and adapted to include the effects of
cloud cover.48 For a given day, this model is run for noon using
the glider surfacing position and relevant meteorological
parameters to attenuate irradiance through the atmosphere
(British Atmospheric Data Centre, BADC). Themodel outputs a
spectrally resolved, full day irradiance time series just above the
surface of the ocean for the location of interest. The integrated
irradiance over all wavelengths for the time of the glider
measurements was calculated in μmol quanta m−2 s−1. The ratio
between E(0+) from eq 2 and the integrated clear sky run is used
to scale the spectral values for the day in question using each
profile in that day to get spectral irradiance over the whole day at
half hour intervals.

2.5.3. Spectral Irradiance through the Water Column. To
calculate spectral irradiance (E(z,λ)) at a given depth in the water
column, we used the equation,49

∫λ λ λ λ= − +E z E K K z( , ) ( ) exp([ ( ) ( )] )
z

0

0

w c (3)

where Kw(λ) is the attenuation coefficient associated with water
and Kc(λ) is the attenuation coefficient associated with
chlorophyll and other dissolved material at specific wavelengths,
λ. Morel and Maritorena45 calculate Kc(λ) as

λ χ λ= λK ( ) ( )Chle
c c

( )
(4)

Figure 2. Scale factors calculated by optimization of modeled attenuation of irradiance against measured attenuation of irradiance (black ×) with the 10
day moving window (black line) and the standard deviation for each moving window (gray dashed line). The tick marks on the x-axis represent the
beginning of each month.
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The coefficient χc and the exponent e(λ) are both functions of
wavelength, and Chl is chlorophyll concentration (mg m−3).
Wavelengths within the PAR broadband range are used at 5 nm
intervals.
2.6. Chlorophyll Corrections and Calibrations. As the

manufacturer’s calibration is often insufficient,20,50 a number of
steps are carried out to calibrate the chlorophyll estimates. First,
the fluorescence data is corrected for quenching. Second, a scale
factor for chlorophyll fluoresence is estimated by comparing
modeled to observed irradiance attenuation. Details are given
below (Figure 1).
2.6.1. Quenching Corrections. Daytime chlorophyll fluo-

rescence exhibited fluorescence quenching in the top 20 m with
low fluorescence during high irradiance. To correct for
quenching, we have used the night-time relationship between
fluorescence and optical backscatter (see Supporting Informa-
tion for details).38,51 We call the result the uncorrected-
chlorophyll.
2.6.2. PAR-Based Chlorophyll Calibrated. We calibrated the

chlorophyll fluorescence sensor using the PAR measurements
and eq 349 to model the irradiance attenuation due to
chlorophyll.46 The uncorrected-chlorophyll profile (with dives
and climb treated separately) was divided by a scaling factor
ranging from 0.2 to 25 in intervals of 0.2, and the spectral
irradiance profile was recalculated for each value based on the
resulting scaled chlorophyll concentration profile and surface
irradiance (eqs 3 and 4). Modeled values of spectral irradiance
were then integrated over all wavelengths (400−700 nm) to
compare to glider PAR measurements. A root mean squared
error (RMSE) was calculated between the modeled and
measured PAR values, over all depths (typically 50 points), for
each scale factor.
For each profile, the scale factor with the lowest RMSE was

then used to scale the uncorrected-chlorophyll concentration.
This approach produces an independent scaling factor for each
dive/climb, allowing for drift in the fluorometer to be corrected.
The method assumes Case I water characteristics where CDOM
and particulates covary with phytoplankton.51,52 This method
can be used if the glider PAR sensor is uncalibrated provided the

fluorescence-chlorophyll relationship is linear as we are only
calculating attenuation rather than absolute PAR.
Variation in the scaling factor over a deployment period may

result from poorly resolved PAR profiles (e.g., significant glider
rolls or cloud cover). Profile-to-profile variability was reduced by
using the median scaling factor calculated for a 10-day moving
window. A 10-day window was picked arbitrarily, but no
significant difference was seen using 6, 8, or 10 days. Longer time
intervals resulted in oversmoothing of the scaling factor.
Final PAR-corrected chlorophyll concentrations for each

profile were obtained using the appropriate 10-day median
scale factor (Figure 2). These calibrated chlorophyll profiles
(Figure 3) were used as input into the PP model, along with the
spectral downwelling PAR (Section 3.1).

2.7. Calculating Primary Production. PP was calculated
with the glider profiles of irradiance and PAR-corrected
chlorophyll using depth, time, and wavelength-resolved irradi-
ance.42 PP is represented by a triple integral, integrating over day
length (L), depth (D), and wavelength (λ) from λ1 = 400 nm to
λ2 = 700 nm,

∫ ∫ ∫ λ λ ϕ λ λ= *
λ

λ

μZ Z t a Z t Z tPP 12 Chl( )PAR( , , ) ( ) ( , , ) d d d
L D

0 0 2

1

(5)

where a* is the absorption cross section per unit of chlorophyll
(m−1) and ϕμ is the net growth rate (mol C (mol quanta)−1).
These values are parametrized as in Morel et al.54 (see
Supporting Information for details). Each separate dive and
climb were assigned an average time and position (latitude and
longitude) for the profile. The model requires surface
downwelling spectral irradiance (Wm−2 nm−1), which is
provided by the glider PAR sensor (Section 3.1.2).

3. RESULTS
3.1. Glider Chlorophyll. 3.1.1. PAR-Corrected Chlorophyll

Data. The scale factor used to calibrate the chlorophyll data
(Figure 2) has a mean of 3 (range of 0.6−11). In May, there is a
peak of 5 but only 4 profiles were used to calculate this scale
factor (range of 1.2−8.8), as the sensors were turned off for a
time to save battery, so it is not as well constrained as in other
months when more profiles were available. Starting in July, the

Figure 3. Time series of PAR corrected chlorophyll profiles; solid white line shows the mixed layer depth (m) and the dashed white line shows the
euphotic depth (m), calculated from the glider PAR profiles.
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scale factor was less variable (range of 1.2−1.8) for the remainder
of the deployment.
The chlorophyll profiles are shown in Figure 3 for the whole

deployment period. Concentrations were <1.5 mg Chl-a m−3

from May until July, when they increased to >2 mg Chl-a m−3.
Before July, the chlorophyll concentration varied little within the
top 30 m. A SCM started to form toward the end of July, with
maximum chlorophyll concentrations >4 mg Chl-a m−3 at a
depth of 30 m. Surface concentrations during August were very
low, <0.6 mg Chl-a m−3. By the end of August, the SCM
deepened to 40 m and maximum concentrations in the SCM
decreased to <2.5 mg Chl-a m−3, with surface concentrations
<0.4 mg Chl-a m−3.
3.1.2. Comparison of Glider and Bottle-Sample Estimates

of Chlorophyll. Figure 4 compares discrete bottle-sample
chlorophyll and PAR-corrected glider chlorophyll for the 3
cruises. In late April (JC085) and prior to the spring bloom, the
discrete chlorophyll concentrations were comparable to the
PAR-corrected chlorophyll concentrations. Surface concentra-
tions ranged from 0.25 to 0.7 mg Chl-a m−3 and 0.15 to 0.8 mg
Chl-a m−3 for the discrete samples and glider estimates,
respectively. The range in glider-based chlorophyll concen-
trations was slightly larger, likely due to the greater number of
glider profiles detecting a wider range of concentrations. At
depths between 75 and 150 m, bottle samples were
approximately 0.1−0.2 mg Chl-a m−3 higher than the glider,
which effectively measured close to zero at these depths, which is
below the euphotic depth (60 m).
In June, the majority of discrete chlorophyll measurements

were elevated compared to the glider estimates, particularly
throughout the upper 50 m. Surface concentrations ranged from
0.05 to 1.2 mg Chl-am−3 for the glider compared with 0.08 to 1.8
mg Chl-a m−3 from bottle samples (Figure 4). There was no
offset between the glider and discrete measurements below 75−
150 m, suggesting no systematic error. Chlorophyll values below
100 m were <0.4 mg Chl-a m−3, with the majority of the glider
and discrete measurements <0.2 mg Chl-a m−3.
For the final cruise in September (JC90), discrete and glider

chlorophyll estimates were comparable (Figure 4). Surface values
ranged between 0.4 and 1 mg Chl-a m−3 in the discrete water
samples, whereas the glider chlorophyll ranged from <0.1 to 0.75
mg Chl-a m−3. A SCM around 40 m was measured by both data
sets, with similar maximum values (3.3 mg Chl-a m−3).
The lateral distances between CTD and glider profiles were

compared with the differences in surface chlorophyll concen-
trations (Figure S4, Spearman55 R2 = 0.53, p < 0.001, n = 19).
Surface chlorophyll differences decrease with distance, suggest-
ing that spatial differences remain an important consideration in
the comparison of glider and in situ data. Many of the CTD
profiles were located >30 km away from the glider making it
possible that spatial variability associated with the onset of the
spring bloom at this time affects the comparison. This is also
consistent with the glider data, which can show significant
variations in water mass properties and chlorophyll concen-
trations along a single 15 km transect. Cloud cover hinders
examining this from satellite images in more detail.
3.2. Depth Integrated Primary Production. 3.2.1. Depth

Integrated Glider Estimates of Primary Production. Glider-
based estimates of PP ranged from 0.38 to 30 g C m−2 d−1 over
the 5 months, displaying strong temporal variability. These
estimates have been compared to ship-based 13C measurements
and 1 km satellite estimates (Figure 5).

The 13C PP estimates from June are compared to glider
estimates in Figure 5a. Glider profiles on the same day were
averaged together for comparison. 13C PP increased from the 6th
to 14th of June, with values ranging from 0.5 to 1.9 g C m−2 d−1,
whereas the glider estimates of PP were relatively consistent,
varying from 1.1 to 1.6 g C m−2 d−1 over the same time period.
Glider PPmeasurements were higher on average by 0.17 g Cm−2

d−1 (or 39%), but offsets were also highly variable (Figure 5a).
PP estimates obtained using the uncorrected-chlorophyll

profiles are also presented in Figure 5a. On average, this resulted
in productivity estimates over 2-fold higher than the 13C
observations.
In Figure 5b, we present a time series of water column

integrated PP over the five month glider deployment, in
conjunction with 13C measurements already shown in Figure

Figure 4.Glider profiles of chlorophyll, uncorrected and PAR-corrected,
compared to ship-based bottle samples of chlorophyll from acetone
extracts. Mean profiles are shown as solid lines. For cruises (a) JC85, (b)
JC87, and (c) JC90.
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5a. The glider estimates were higher than the 13C measurements
but not unreasonably so. Integrated PP rates from late April to
May were∼1 g Cm−2 d−1 increasing to a maximum of 3 g C m−2

d−1 in July. Toward the end of July and through August, rates
decreased to 1.5 g C m−2 d−1 but remained highly variable,
fluctuating by ±0.6 g C m−2 d−1. Due to the high level of cloud
cover, there were no satellite pixel matches during the time
period when the in situ measurements were taken and therefore a
comparison with satellite and ship-based measurements was not
possible.
Integrated PP estimates from the glider and satellite were also

compared (Section 2.3, Figure 5c). The correlation between the
satellite and glider estimates of surface PP was modest but
nevertheless statistically significant (Figure S5; Spearman55 R2 =
0.322, p < 0.0001, n = 122). In general, the glider shows higher
integrated estimates of PP than the satellite. Dissimilarity
between estimates is likely due to differences in the PAR values
and between the modeled and observed SCM. The mean root
mean squared error between the modeled and observed
chlorophyll profiles was 0.9 mg Chl-a m−3 (range of 0.58−1.36
mg Chl-a m−3).
Figure 5c shows that the satellite and glider have reasonably

good agreement during the deployment with similar variability,
trends, and magnitude in PP. Both data sets show an increase in
production from May to June (spring bloom) and a production
maximum in July, with maximum rates of 3 and 2 g C m−2 d−1

decreasing again in late July, for the glider and satellite,
respectively, although glider estimates of PP are on average
16% higher than satellite estimates.

3.2.2. Glider Estimates of Seasonal Primary Production vs
Literature Estimates. Due to the limited number of 13C in situ
measurements, we also present a comparison with productivity
estimates from the literature for the same region (Table
1).25,56−59 The literature values span 0.3−2 g C m−2 d−1,
comparable with our 13C measurements. However, toward the
end of June and July, the literature observations are lower than
those estimated from the glider and our 13C measurements. This
may be interannual variability. Overall, our 13C values are within
the range of literature values supporting the use of this data to
compare to the glider estimates.

3.3. Depth Resolved Primary Production.Depth resolved
PP over the deployment (Figure 6) shows that throughout May
and June PP was highest at the surface and decreased with depth
due to irradiance attenuation. In July, as chlorophyll and
irradiance concentrations increased, PP also increased with
maximum surface rates of 0.45 g C m−3 d−1. In late July, a
subsurface production maximum formed with PP rates of 0.2−
0.3 g C m−3 d−1. The production maximum deepened
throughout August from 15 to 30 m. The productivity maximum
was located just beneath the mixed layer but also below the
optical sampling depth for remote sensing.

Figure 5. (a) Daily mean PP from Seaglider dives compared with in situ
13C estimates of production. Error bars are the standard deviation of the
PP calculated from all the dives in 1 day. Water samples for the
incubations were taken at dawn, a 12 h day for production is assumed.
(b) Differences between integrated PAR-corrected glider primary
production and the uncorrected glider primary production compared
with 13C primary production measurements. (c) Primary production
estimates for the duration of glider deployments for SG566 and
NEODAAS 1 km daily product.

Table 1. Mean Productivity Rates from the NE Atlantic as Reported in the Literaturea

reference sampling period position integration depth (m) n mean (±standard deviation) (g C m−2 d−1)

this study June 2013 48°N 16°W euphotic zone 6 1.16 (0.5)
Chipman et al., (1993)56 May 1989 47°N 20°W euphotic zone 11 0.84 (0.19)
Marra et al., (1995)57 June 1991 59.5°N 21°W euphotic zone 4 1 (0.46)
Savidge et al., (1995)58 May/June 1990 47−60°N 20°W euphotic zone 25 0.70 (0.32)
Bury et al., (2001)59 May 1990 47°N 20°W euphotic zone 8 0.84 (0.50)
Painter et al., (2010)25 July 2006 49°N 16°W euphotic zone 3 0.55 (0.22)

aAll estimates were made using the 13C stable isotope method.
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The euphotic depth was 60−80 m throughout May and June,
with variable mixed layer depths (MLD) of between 40 and 130
m. The euphotic depth shoaled to 35 m in July coincident with
increasing chlorophyll concentrations and greater irradiance
attenuation53 and a shoaling of the MLD due to either surface
forcing (heating) or a restratification through physical processes
such as Ekman transport, mixed layer instabilities, and lateral
advection. The subsurface production maximum in late July and
August was around the same depth as the mixed layer. However,
the SCMwas deeper than the production maximum by 10 m and
below the mixed layer, suggesting that the SCM was
preferentially located where nutrient concentrations were higher.
In August, the SCM was located between the MLD and the
euphotic depth (Figure 3).
Depth profiles of the 13C productivity measurements are

shown in Figure S6 alongside the range and mean of the
coincident glider profiles. Although the 13C productivity rates
were lower than the mean glider profile, they lie mostly within
the range of glider data. Some of the 13C profiles show a
production maximum around 30 m whereas the glider estimated
profiles do not. Two profiles also show higher production at
depth than that estimated from the glider.

4. DISCUSSION
4.1. Advantages of Calculating Primary Production

Using Gliders. Fine scale measurements are important since
submesoscale features are often present, such as highly
productive filaments.25 Furthermore, PP may change over daily
time scales due to changes in irradiance and mixed layer depth.
Such short time scales (hours) are not resolved by remote
sensing, but with several profiles a day, a glider can observe these
changes. Early June showed differences in integrated production
rates between sequential dives of 0.3 and 1 g C m−2 d−1. The
average daily production was <2 g C m−2 d−1, so this difference
was significant. Small scale temporal variations in PP may be
important in determining the carbon budget,25 especially in areas
of high variability of phytoplankton.
A key advantage of using gliders is the ability to resolve

subsurface features, previously only possible using ship-based
measurements. Satellite production estimates are only resolved
to the first optical depth, and it has been shown that including
fluorescence profiles significantly improves estimates.12 Knowing
the distribution of chlorophyll at depth is considered vital for
ecological studies.60 Glider production rates were 16% higher

than satellite estimates during the deployment suggesting that
satellite-based estimates of production may be slightly under-
estimating PP during summer months in this region. Subsurface
chlorophyll maxima contribute significantly to integrated PP in
temperate latitudes so implementation of subsurface glider
profiles will improve regional estimates.61 Subsurface production
maxima are common globally, and this contribution is often
modeled incorrectly for specific regions when using satellite color
to estimate PP.15,62,63 Therefore, gliders have considerable
potential to improve satellite estimates of PP.12

Gliders also have the benefit of being able to continuously
sample in all weather conditions. Ship-based measurements are
weather and time dependent. Satellite coverage is restricted by
cloud cover, which can introduce sampling bias.64,65 During this
deployment, 467 profiles out of 589 (79%) had no direct satellite
matchup due to high levels of cloud cover, equating to a loss of
105 days of satellite coverage over the whole deployment of 141
days. Using 1 km pixel match ups is a strong constraint impacting
the number of match-ups.

4.2. Limitations of Glider Estimated Primary Produc-
tion. The spectral constants for chlorophyll used in the
irradiance attenuation calculations (eq 4) differ compared to
other literature values due to regional differences in community
composition and/or temperature.66,67 Additional uncertainty is
introduced when broadband PAR is split spectrally. The method
assumes that clouds, changes in atmospheric absorption, and
season influence spectral values of PAR linearly.41 The
photosynthetic rate per unit of biomass (eq 5) remains the
largest unknown in the PP algorithm because of its high
variability in the ocean.68

Fluorescence measurements, which are only a proxy for
chlorophyll-a, can be difficult to interpret. The fluorescence yield
per unit of chlorophyll is known to change in response to changes
in community structure.69 The changing scale factor used to
calibrate glider chlorophyll and the rapid decrease in the scale
factor seen in July (Figure 2) may therefore be indicative of
postbloom changes to the community composition. We cannot
verify this with the data available. However, using a time-
dependent scale factor to probe community structure would be
an interesting topic to explore.
Measurements from autonomous platforms present their own

challenges. Sensor calibrations may drift with time or with
biofouling.18 Additional calibration measurements collected at
deployment and recovery could indicate this. For this deploy-
ment, no biofouling was noted at recovery and there was no drift
in dark counts at depth, so fouling is unlikely. Discrepancies were
seen between bottle data and the PAR-corrected glider
chlorophyll. As few CTD casts were made near the glider and
this area is known to display patchy chlorophyll distributions,25

comparisons can be complicated. However, the data are broadly
consistent suggesting that glider productivity rates are generally
appropriate for the region.

4.3. Future Applications. While we have used gliders to
quantify PP in a region of the North Atlantic, this approach will
allow improved estimates of PP more widely in the future,
particularly in regions with SCMs and/or considerable cloud
cover. We have demonstrated the suitability of gliders for
capturing fine-scale temporal changes in production at daily time
scales over a single season. Gliders allow coincident and
simultaneous measurements of physical parameters, including
density, temperature, oxygen, and vertical water velocity.70,71

The coincident analysis of the physical environment allows an
improved understanding of influences on phytoplankton growth.

Figure 6. Time series of PAR-corrected primary production profiles for
SG566 for the entire deployment; the solid white line is the mixed layer
depth (m), and the dashed white line is the euphotic depth (1% of
surface irradiance levels).
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Small-scale physical processes may account for a significant
amount of new production.50,72,73 Several recent studies have
used high resolution data from gliders to analyze biological and
physical connections.74−78 Simultaneous estimates of PP will
further resolve biological and physical connections.
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