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Abstract 
Microtubules, dynamic protein polymers, form networks that are essential for intracellular 
organisation.  Involved in many cellular processes that are vital in development and 
homeostasis, improper regulation of the microtubule network is implicated in various 
diseases.  This work addresses the relationships between microtubule dynamics and 
organisation, using image processing and modelling, focussing on two features of 
microtubule organisation: radiality and alignment.  The hypothesis that radiality results from 
modulation of dynamics at the cell periphery was tested.  Firstly, cells in which the small 
GTPase Rac1 was inhibited were used as a model for perturbed radiality.  Measurements of 
microtubule dynamics in central and peripheral regions showed that Rac1 inhibition alters 
microtubule dynamics and the orientation of their growth at the cell periphery.  Further 
investigation was carried out with a simple 1-dimensional, two-area dynamics model, which 
confirmed that a two-area dynamics system is sufficient to target microtubules to a given 
length.  The propensity to grow of any given dynamics parameters is a major determinant of 
the accuracy of length targeting, while the extent of pausing and the average length have a 
modulatory effect on accuracy.  Simulation of measured dynamics indicated that two-area 
dynamics may contribute to radiality in reality, but that this mechanism may work in concert 
with other cortex-specific processes.  The alignment of microtubules was quantified with a 
new application of the Fourier transform.  Depletion of +TIP protein EB2 produced highly-
aligned microtubules, and inhibition of formins rescued this phenotype.  Inhibition of Rac1 
produced less-aligned microtubules in otherwise unperturbed cells, while in EB2-depleted 
cells, microtubules were further aligned.  The method was also used to quantify alignment in 
plant microtubule arrays.  This work presents a set of analyses that test ideas as to how the 
microtubule network is organised, and highlight interesting relationships between dynamics 
and organisation that will yield exciting future investigation. 
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Terms/abbreviations list 
 
Biased transition frequency.  Where the transition frequency is calculated using all of 

the time spend in the relevant phase. 

 

Corrected transition frequency.  Where the transition frequency is calculated using 

only the time in the relevant phase that precedes the transition in question. 

 

Fcat.  The catastrophe frequency – see transition frequency. 

 

Fg2p.  The grow-to-pause frequency – see transition frequency. 

 

Fp2g.  The pause-to-grow frequency – see transition frequency. 

 

Fp2s.  The pause-to-shrink frequency – see transition frequency. 

 

Fres.  The rescue frequency – see transition frequency. 

 

Fs2p.  The shrink-to-pause frequency – see transition frequency. 

 

Growth distance.  The average distance covered in the growth phase of pooled 

microtubule tracks. 

 

Growth speed (Vg).  The average speed of growth phases of pooled microtubule 

tracks. 

 

Growth time.  The average time spent in the growth phase of pooled microtubule 

tracks. 

 

MTOC.  Microtubule organising centre.  Microtubules are polymerised from an 

MTOC, and often, minus ends are anchored here. 

 

Pause time.  The average time spent in the pause phase of pooled microtubule tracks. 

 

SBC.  Spatial boundary condition.  Refers to physical obstacles that constrain or 

influence microtubule growth. 

 

Shrinking distance.  The average distance covered in the shrinking phase of pooled 

microtubule tracks. 

 

Shrinking speed (Vs).  The average speed of shrinking phases of pooled microtubule 

tracks. 

 

Shrinking time.  The average time spent in the shrinking phase of pooled microtubule 

tracks. 

 

Transition frequency.  Calculated as the number of transitions over the time spent in 

the relevant phase. 

 

Vg.  See growth speed. 
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Vs.  See shrinking speed. 
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Chapter 1 

Introduction 

A. MICROTUBULE DYNAMICS AND ORGANSIATION 

a. Introduction to microtubules 

Every cell in our bodies contains microtubules, as do the cells in other animals, in plants and 

fungi, and there are similar structures in bacteria.  Why?  What are microtubules?  An 

individual microtubule is a polymer of the protein tubulin: a hollow cylinder of 25 nm in 

diameter, and on the order of tens of microns in length; in a typical cell, there can be 

hundreds of microtubules.  What do microtubules do?  In general, they contribute to the 

structure of the cell, though the exact nature of the job depends on the organism, the type of 

cell, and the particular activity of that cell at any given moment.  Microtubules are not only 

essential for normal development and homeostasis, but if not regulated properly, they can 

also contribute to disease; indeed, many therapies for cancer act on microtubules. 

Along with actin filaments and intermediate filaments, microtubules form the eukaryotic cell  

cytoskeleton.  At 25 nm in external diameter, microtubules are the largest of the three 

cytoskeletal constituents, with intermediate filaments at approximately 10 nm and actin 

filaments at 5-9 nm (Alberts, 2008).  Both actin and intermediate filaments help to impart 

rigidity to the cell; actin filaments form what is known as the cortex, a thin layer just beneath 

the plasma membrane, while some intermediate filaments perform a similar role beneath the 

nuclear lamina, and others form networks to give mechanical strength to tissues (Alberts, 

2008).  Within this cytoskeletal network, microtubules are fundamental to the structuring, and 

thus the correct functioning, of the cell.  Their best-known role is the creation of the mitotic 

spindle, a miracle of molecular engineering whereupon chromosomes are segregated, but 

away from cell division, microtubules also provide tracks for transport of molecules and 

organelles, are involved in cell shape and migration, and sensing physical stimuli.   

Polymerisation of tubulin occurs from monomers which diffuse freely in the cytosol, forming 

hollow cylinders of length on the order of micrometres, though this is not fixed.  In the cell, 

the many hundreds of microtubules are arranged by an organelle called the microtubule 

organising centre (MTOC), and in animal cells, the MTOC is the centrosome.  A typical 

microtubule arrangement is known as the radial array: microtubules are anchored at one end 

to the centrosome, usually in the vicinity of the nucleus, and extend out towards the cell 

periphery, probing the intracellular space.  In many circumstances, which include cell 

migration and changes in cell morphology, the microtubule array must be re-organised so as 

to serve certain cellular requirements.  Such re-organisations are effected through a special 

property of microtubules, known as dynamic instability.   

b. Overview of thesis 

This thesis is for the most part concerned with microtubules in animal cells; specifically, how 

microtubule dynamics are controlled so as to generate proper organisation of the microtubule 

network.  In all of the roles of microtubules described above, the appropriate organisation of 
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microtubules, in relation to one another and to certain cellular structures, is requisite for 

proper function.  Understanding this organisation, how it is generated, maintained, and how it 

can be measured, is the aim of this thesis.  To do this, a specific example of microtubule 

organisation is used: the radial array, and this is elaborated upon in the next chapter.  There is 

also a very small part of this work given to plant microtubules; here, microtubules are 

involved in specification of the physical properties of cells, vital for development.   

B. THESIS CHAPTERS 

a. Overview 

There are four chapters containing original research; these are chapters 3 to 6, while before 

this, in chapter 2, the introduction to microtubule biology continues with a literature review 

of microtubule dynamics and organisation.  Thus chapter 2 serves to illustrate the background 

to the research that follows in subsequent chapters: what we know about microtubule 

dynamics and how that relates to organisation of the microtubule network, how it is 

modulated, and what we still do not know about microtubule dynamics-organisation 

relationships.   

Although the research in chapters 3-6 is united by the common themes introduced above, 

there are various methodologies, and within each, different aspects of microtubule 

organisation are considered.  Thus, there is a discussion of the findings at the end of each 

chapter, and after the research chapters, in chapter 7, a short summary discussion is given, 

along with some conclusions and a consideration of future work.  Briefly, a summary of each 

of the research chapters is given below. 

b. Chapter 3: Measuring microtubule dynamics in a radial array 

As was mentioned above, the radial array, a common type of microtubule network 

organisation in animal cells, is taken as a reference organisation throughout the whole thesis.  

In this chapter, the dynamics of microtubules are measured, involving use of previously 

published image processing software, and original extensions to analyse dynamics further.  

The aim of this chapter is to understand how dynamics are controlled to maintain the 

“radiality” of the radial array; specifically, to test the hypothesis that microtubule dynamics 

are modulated at the cell periphery to maintain radiality.  Thus, unperturbed cells that exhibit 

a radial array, and cells in which the radial array is disrupted by inhibition of the small 

GTPase Rac1, are subject to dynamics measurements.  I find that inhibition of Rac1 affects 

both microtubule dynamics and the orientation of their growth, and that Rac1-inhibited 

microtubules take shallower growth trajectories relative to the cell cortex.  The results of this 

work hint at possible reasons for loss of radiality in the cortex-specific dynamics framework, 

such as a lower proportion of time spent in pause in Rac1-inhibited microtubule networks 

relative to control microtubules. 

c. Chapter 4: Modelling microtubules and radiality 

In this chapter, a model of microtubule dynamics is used to try to elucidate what the 

combinations of dynamics must be if microtubules are to be organised in a radial array.  The 
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work is based on the idea that microtubule dynamics are modulated in some way at the 

periphery of the cell so as to maintain radiality, which has some empirical support (discussed 

further in the next chapter).  Thus, a simple model whereby microtubules grow in two areas: 

an inner and outer area, each with different dynamics, is implemented.  I find here that the 

two-area dynamics model is sufficient to target microtubules to a target length, and thus 

could be a mechanism of radiality.   

The tendency towards growth of any dynamics set is a major determinant of the accuracy of 

such length targeting.  Characterising this propensity for growth with the random walk 

analogy of drift leads to the introduction of “drift space”, which acts as a tool with which we 

can assess the likelihood of any given combinations of dynamics being good microtubule 

length targeting strategies.  Furthermore, introduction of pausing in the model demonstrated 

that it if in the outer area, it enhances targeting, but if in the inner area, it reduces targeting 

accuracy.  Likewise, the theoretical average length, another random walk analogy, has area-

specific effects: increases in the inner area give better targeting accuracy, while increases in 

the outer area worsen targeting accuracy. 

d. Chapter 5: Comparing and modelling measured microtubule dynamics 

Here, the work from chapters 3 and 4 is united to try to understand how the measured 

dynamics contribute to the organisation of the radial array.  The dynamics from chapter 3 are 

first compared to previously reported measurements of microtubule dynamics, and then they 

are considered in the context of the modelling from chapter 4, and additional modelling is 

implemented to better understand dynamics and radiality.  Plotting the measured dynamics 

sets in drift space indicated that the control condition should have better microtubule length 

targeting, and thus more radial microtubules, but its location in drift space suggest that it may 

act in concert with other cell cortex-specific microtubule targeting mechanisms. 

e. Chapter 6: Frequency-based quantification of microtubule organisation 

Where in previous chapters, attention was given to microtubule organisation in the context of 

interactions between microtubules and the periphery of the cell, in this chapter, other 

properties of microtubule organisation, the alignment between microtubules and the 

orientation of microtubules, are considered.  To quantify these properties, a new method 

based on analysing the frequencies in images of the microtubule network is developed, 

involving extensive characterisation of how the method behaves with synthetic images.  The 

new method, called “MtFT”, is then applied to real biological problems, some previously 

studied, some novel, and in one case, in plant cells, and indicates interesting and relatively 

unexplored mechanisms of microtubule alignment.   

Firstly, depletion of the +TIP protein (see next chapter for more details of +TIP proteins) 

EB2 produced better-aligned microtubules, in agreement with previous measures made 

manually.  Also in agreement with those measurements, inhibition of formins, which promote 

actin polymerisation and also interact with microtubules, returned microtubule networks to 

the less-aligned state.  Interestingly, inhibition of Rac1 gave less-aligned microtubules, in 

agreement with chapter 3 results, but simultaneous inhibition and depletion of Rac1 and EB2, 
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respectively, produced networks with enhanced alignment relative to the EB2-depleted-only 

case.   

Finally, two plant cell types with differing microtubule alignment, petiole (well-aligned) and 

pavement (disordered) cells, were analysed in wild-type and two mutant backgrounds.  MtFT 

detected the cell type-specific differences, and quantified a decrease in alignment in a katanin 

(a microtubule severing protein) mutant in both cell types, and an increase in alignment in a 

spiral 2 mutant in both cell types.  These results are consistent with the postulated roles and 

interplay between katanin and spiral 2: katanin severs microtubules at crossover sites, 

allowing them to align with one another, while spiral 2 protects these sites from severing by 

katanin, leading to a disordered microtubule network. 

REFERENCES 

Alberts, B. 2008. Molecular Biology of the Cell: Reference edition. Garland Science. 
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Chapter 2 

Background review 

A. MICROTUBULE DYNAMICS 

I. Fundamentals of microtubule dynamic instability 

a. History 

The term “microtubule” was first introduced by Slautterback (1963) and Ledbetter and Porter 

(1963), at a time when, although fibril-like structures, which were indeed microtubules, had 

been observed in many instances, it was not clear exactly what they were and furthermore, 

whether they were the same in each instance.  Studying electron micrographs of the cortices 

of plant cells (Ledbetter and Porter, 1963) and the Cnidarian organism Hydra (Hydra 

oligactis and Hydra littoralis), it became evident that microtubules were a common 

constituent of animal and plant cells.  Following on from this, further electron microscopy 

was used to determine that microtubules were constructed from “13 subunits in the wall of 

the tubule” (Ledbetter and Porter, 1964), which we know now as the 13 protofilament 

structure of the microtubule (more of which follows below).   

Once microtubules had been described, the matter of determining their constituent protein 

was addressed.  At the time it was known that colchicine, isolated from plants and long-used 

to treat gout, destroyed the mitotic spindle, and also had an array of other effects.  Using 

radioactive labelling of colchicine to identify its target within cells, Borisy and Taylor (1967a) 

found a correlation between binding activity and the presence of tubulin; thus, dividing cells 

and brain cells had high binding activity, while cell extracts in which microtubules were not 

present had low activity.  Next, Borisy and Taylor (1967b) isolated microtubules from the 

mitotic spindle of the sea urchin, and demonstrated that they were responsible for the binding 

of colchicine to the spindle.  They then went on to characterise the protein, and later, Mohri 

(1968) gave it the name “tubulin”. 

Following on from this, it was assumed that microtubules obeyed standard polymer kinetic 

principles (Oosawa and Asakura, 1975) in their growth and shrinkage, by addition and loss of 

tubulin.  In this framework, a microtubule population would be uniform, so that all 

microtubules would either be growing or shrinking, and this assumption underlay the 

interpretation of previous experimental results.  For example, continual uptake of a 

radioactively labelled-tubulin from solution into the microtubule polymer, whilst total 

polymer remained constant, was taken as evidence of net assembly and disassembly being 

confined to opposite ends of individual microtubules (Cote and Borisy, 1981; Margolis and 

Wilson, 1978).   

Although this interpretation is valid in special cases of microtubule behaviour, these data can 

also be explained by the existence of a two-phase population, in that the depolymerisation 

and subsequent regrowth can account for constant label incorporation, and indeed, this 

behaviour was documented in two seminal papers by Mitchison and Kirschner (1984a; 
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1984b).  Termed “dynamic instability”, it was not directly observed until 2 years later by 

Horio and Hotani (1986).  These studies showed that a microtubule population, whether 

centrosome-bound (Mitchison and Kirschner, 1984b) or free (Mitchison and Kirschner, 

1984a) could consist of two sub-populations, some growing, some shrinking; the ratio 

between them ultimately depending on the concentration of free tubulin.  The co-existence of 

these growth and shrinking phases, which occur through addition and loss of tubulin 

monomers, respectively, and infrequent transitions between them, are the main tenets of 

dynamic instability (Kirschner and Mitchison, 1986).   

Subsequent work has shown that dynamic instability is the main mechanism of microtubule 

assembly in the cell, and much effort has been dedicated to understanding and quantifying 

dynamic instability and the factors that influence the process (Desai and Mitchison, 1997).  

This body of work has demonstrated that, not only is dynamic instability an intrinsic feature 

of the microtubule that arises from its structure and biochemistry, it is the underlying 

mechanism for the organisation and manipulation of the microtubule network. 

b. Microtubule structure 

Structural studies of the microtubule had yielded much information before the time dynamic 

instability was proposed (Stephens, 1970), yet with continual improvement of conventional 

techniques (Meurer-Grob et al., 2001) and utilisation of newer technology (Wu et al., 2012), 

present-day studies still add to our knowledge.  As has already been discussed, the basic unit 

of the microtubule is the protein tubulin (Mohri, 1968), which is a heterodimer of α- and β-

tubulin (Bryan and Wilson, 1971).  Tubulin molecules assemble end-to-end to make a 

protofilament, a linear polymer of tubulin, so that α- and β-tubulin alternate along its length.  

Note that, in the context of the microtubule assembly and disassembly, the tubulin 

heterodimer is often referred to simply as a subunit.  In the most common microtubule 

structure, 13 protofilaments associate laterally (Amos and Klug, 1974), known as the 

microtubule lattice, and this forms the hollow cylindrical structure recognised as the 

microtubule (Alberts, 2008) (fig. 1).   

In the microtubule lattice, neighbouring protofilaments do not line up subunit-against-subunit, 

but are instead offset with respect to one another by a distance of approximately 0.9 nm along 

the microtubule axis (Amos and Klug, 1974; Wade, 2009).  It is apparent that there are two 

possibilities with regard to the arrangement of the two types of tubulin in adjacent 

protofilaments: in one configuration, different tubulins are in contact with one another, while 

in the other arrangement, similar tubulins interact.  These are known as “A-type” and “B-type” 

lattices, respectively, named after the A- and B-tubules of the flagellum in which they were 

thought to occur (Amos and Klug, 1974; Song and Mandelkow, 1993) (fig. 2).  Investigations 

based on microtubule binding of the motor domain of kinesin proteins, which transport cargo 

around the cell by moving along microtubules, have shown that microtubules have a B-type 

lattice (Song and Mandelkow, 1993). 
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Figure 1.  Structure and components of the microtubule.  α- and β-tubulin form the tubulin 

heterodimer, or “subunit”, and these associate end-to-end to form a protofilament.  13 

protofilaments interact laterally to form the hollow cylindrical microtubule structure, which is 25 

nm in external diameter.  All protfilaments are oriented in the same direction with regard to their 

tubulin subunits; this confers polarity to the microtubule.  The end with β-tubulin exposed is the 

plus end, and the other end, where α-tubulin is the terminal subunit, is the minus end.  Though 

both α- and β-tubulin can bind GTP, only β-tubulin hydrolyses this to GDP once it is incorporated 

into the microtubule.   

Since the subunits in adjacent protofilaments are offset longitudinally, following either α- or 

β-tubulin from one protofilament to the next actually draws a helix along the microtubule 

axis.  The lengthwise shift combined with the number of protofilaments means that, at regular 

points along the path of this helix, there are discontinuities, where different tubulins contact 

(Song and Mandelkow, 1993) (fig 2).   This discontinuity is commonly known as the 

microtubule “seam” (Song and Mandelkow, 1993; Wade, 2009).  It is thought that the seam 

may act as a recognition site for microtubule-associated proteins (MAPs), and that it may be 

important in microtubule disassembly by providing a structural fault from which to 

effectively peel apart the lattice (Wade, 2009).   

Although offset relative to one another, all protofilaments are oriented in the same manner 

with respect to tubulin subunits, and this confers polarity to the microtubule (Allen and 

Borisy, 1974).  At one end, α-tubulin is the terminal subunit (Fan et al., 1996), referred to as 

the minus-end, and at the other, the final subunit is β-tubulin (Hirose et al., 1995; Mitchison, 

1993), referred to as the plus end (fig. 1).  In the cell, microtubules are anchored to the 

MTOC at the minus end, and the plus end explores the intracellular space (fig. 3).  Hence 

growth and shrinkage occur predominantly at the plus end in vivo; in in vitro assays, the 

minus end does exhibit dynamic instability but with slower kinetics compared to the plus end 

(Farrell and Jordan, 1982; Margolis and Wilson, 1978; Mitchison and Kirschner, 1984a; 

Walker et al., 1988).  
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Figure 2.  Possible arrangements of protofilaments in the microtubule (MT).  In the A-type 

lattice (A), α- and β-tubulin interact between adjacent protofilaments, whereas in the B-type 

lattice (B), same-species interactions occur.  The B-type lattice is the conventional microtubule 

structure (see text for details), and there is a discontinuity, known as the seam, where α- and β-

tubulin are adjacent to one another (dashed red line).  Following the path of subunits across 

protofilaments draws a helical structure (helical path), shown here for the B-type lattice.  Subunits 

on the far side of the cylindrical MT structure are shown in grey (α-tubulin) and patterned 

white/grey (β-tubulin).  This figure is based on Desai and Mitchison (1997), figure 1. 

So the structure of the microtubule provides the physical context for dynamic instability, but 

to understand what governs the occurrences of these phase transitions, we must also 

understand the biochemistry of microtubule assembly. 
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Figure 3.  The microtubule radial array, visualised by immunofluorescence microscopy.  In 

A, microtubules (green) radiate from the centrosome (red channel, visible as yellow spot at 

centre of main cell) to probe intracellular space.  Nuclei are also labelled in blue.  In B, a 

greyscale image of just the microtubule cytoskeleton is shown.  Plus ends are located near the 

cell periphery, while minus ends are anchored at the centrosome.  Scale bar 20 μm. 
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c. Microtubule biochemistry: introducing the GTP cap 

A common feature of microtubules and actin filaments is their ability to bind and hydrolyse 

nucleotide triphosphate (NTP) molecules (Carlier, 1991).  In the case of actin, this is 

adenosine triphosphate (ATP), while microtubules interact with guanosine triphosphate 

(GTP).  Both α- and β-tubulin can bind one molecule of GTP, and in the cytosol, GTP-

binding occurs quickly so that essentially all free tubulin is GTP-bound.  However, when 

incorporated into the microtubule lattice, β-tubulin, but not α-tubulin, can hydrolyse GTP to 

guanosine diphosphate (GDP) (David-Pfeuty et al., 1977; MacNeal and Purich, 1978; 

Spiegelman et al., 1977; Weisenberg et al., 1976).  For this reason, the GTP-binding sites on 

α- and β-tubulin are known as the N- (for non-exchangeable) and E-sites (exchangeable), 

respectively.  Initially, observations of a lag between polymerisation and GTP hydrolysis 

(Carlier and Pantaloni, 1981) lead to the proposition of the “GTP cap” model, whereby this 

kinetic disparity leads to the accumulation of GTP-bound β-tubulin at the plus-end (Carlier 

and Pantaloni, 1981; Kirschner and Mitchison, 1986; Mitchison and Kirschner, 1984b). 

The GTP cap was proposed as the distinguishing feature between the two phases of the 

microtubule, and that it acted to stabilise the growing plus end (Mitchison and Kirschner, 

1984b).  The theory of this stabilising effect is that the GTP cap is effectively a structural 

support, helping to maintain protofilament interactions by keeping them straight, but the 

mechanism for this has not been elucidated (Maurer et al., 2012).  Indeed, GDP-bound 

protofilaments take on a curved conformation (Hyman et al., 1995; Mandelkow et al., 1991; 

Melki et al., 1989; Simon and Salmon, 1990) which would destabilise the microtubule and 

consequently, cause a transition to the shrinking phase (fig. 4).  So the stability of the 

microtubule, and therefore its current phase, is dependent on the relative rates of 

polymerisation and GTP hydrolysis: in some cases, hydrolysis “catches up” with 

polymerisation, the GTP cap is lost, and shrinkage occurs.  For example, free tubulin 

concentration could be low enough so as to limit growth, or the plus end may be prevented 

from growing by a boundary.   

So the GTP cap model provided a convincing account of the events occurring at the 

microtubule plus end, and was consistent with macroscopic observations of microtubule 

dynamics.  For example, shearing of microtubules along their length resulted in immediate 

depolymerisation (Mitchison and Kirschner, 1984b), suggesting a stabilising structure only 

present toward the plus end.  Furthermore, the GTP cap model was supported by theoretical 

analyses (Hill and Chen, 1984).  However, the model was based only on indirect observations, 

and for a long period following its proposition, there was a long period of uncertainty over 

the existence and size of the GTP cap. 
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Figure 4.  Differences in microtubule structure with phase.  Microtubules undergoing growth 

(A, polymerisation) have straight protofilaments, whereas microtubules in the shrinking phase (B, 

depolymerisation) have curled protofilaments that give a “ram’s horns” appearance. 

d. Evidence for the GTP cap 

Obtaining direct evidence to support the GTP cap model proved difficult.  The GTP cap, not 

only a temporally dynamic structure, could also potentially be as small as one layer of tubulin 

subunits (i.e., 8 nm deep) (reviewed in Desai and Mitchison (1997)).  Recent work using end-

binding (EB) proteins, a family of MAPs that bind to the microtubule plus end, has clarified 

the issue.   

Firstly, three studies verified that EB proteins bound to microtubules according to the 

nucleotide state of the microtubule.  Zanic et al. (2009) and Maurer et al. (2011) 

demonstrated that EB proteins (in the former, EB1, the most-studied EB protein, and in the 

latter, EB1 and Mal3, a yeast EB protein) preferentially bind to microtubules bound to slowly 

hydrolysable analogues of GTP over those with bound GDP.  These studies provided 

evidence that the mechanism for the tip-tracking behaviour of the EB proteins is related to the 

bound-nucleotide state of tubulin, and later, Maurer et al. (2012) provided a high-resolution 

reconstruction of the Mal3-microtubule interaction, suggesting that EB proteins recognise a 

GTP-hydrolysis-dependent tubulin conformation.   

The finding that EB proteins recognise the bound nucleotide state of tubulin was a big step 

towards verifying the existence of the GTP cap.  These findings were then used with 

fluorescence recovery after photobleaching (FRAP) to estimate its size.  Seetapun et al. (2012) 

estimate the cap to be around 750 tubulin subunits, corresponding to approximately 60 

subunit-layers.  This figure is far greater than previous estimates, which were as small as a 

single layer of subunits (reviewed in Desai and Mitchison (1997)), but it is supported by 

measurements using optical tweezers that indicate an extended GTP cap (Schek et al., 2007). 

Interestingly, the manner in which Mal3 binds GTP-bound microtubules, bridging 

protofilaments, suggests that they act to stabilise the lattice (Maurer et al., 2012), though 

whether this is in addition to the straightening effect attributed to GTP, or it is in fact the sole 
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mechanism for stabilisation, is unknown.  Note that the latter would mean that GTP cap 

regions would have no intrinsic stability; they would need to permanently bind EB proteins, 

or perhaps other MAPs with similar functions, in order to stabilise the microtubule end.   

Understanding the nature of the GTP cap is further complicated by taking into consideration 

the discrete steps of GTP hydrolysis and the possibility of further tubulin conformational 

changes as a result of the reaction (Brouhard and Sept, 2012).  On the microtubule lattice, 

GTP hydrolysis has a minimum of two stages: first is the actual hydrolysis event, which 

results in GDP and phosphate, or GDP-Pi, and the second stage is phosphate release.  So this 

raises the possibility of 3 domains in the lattice: GTP-bound, GDP-Pi-bound, and GDP-bound.  

The precise nature of the GTP cap is an active area of research; fortunately, given the recent 

EB protein data, we can be more confident of its existence.  These data, around 30 years later, 

lend support to the original proposals of the GTP cap model and that it has a stabilising effect 

at the microtubule plus end (Carlier and Pantaloni, 1981; Mitchison and Kirschner, 1984b). 

e. Consequences of the GTP cap 

The initial lack of direct evidence for the GTP cap did not inhibit analyses and of the effects 

such a structure would have on the properties of the microtubule population; moreover, these 

analyses leant support to the idea, even necessitating the need of the cap or a similar 

stabilising structure.  Not only can the GTP cap account for the phase transitions of individual 

microtubules, it also has other important implications for microtubule behaviour, especially 

in vivo (Kirschner and Mitchison, 1986). 

Perhaps the best starting point to appreciate the effect of the GTP cap is with an analysis of 

conventional polymers, that is, polymers without the kinetic properties conferred by the GTP 

cap.  Common ideas employed in the analysis of polymer formation are those of equilibrium 

and critical concentration; in a system where a polymer is forming from a pool of monomer, 

there is a critical concentration of monomer at which an equilibrium state is achieved, where 

the net exchange between polymer and monomer is zero.  Types of polymer that follow this 

theory can be called equilibrium polymers (Kirschner and Mitchison, 1986).   

Incorporation of monomer into polymer of length n can be simply defined by the monomer 

addition (or “on”) and loss (“off”) rates, α and α’, respectively.  The former interacts with the 

concentration of free monomer, C, while the latter is independent of it.  For simplicity, 

reactions only at one end of the polymer are considered, and this is quite applicable to 

microtubules, since in the cell they are anchored at their minus ends to the MTOC.  The net 

rate of assembly of a polymer, dn/dt, is thus the addition rate multiplied by the free monomer 

concentration, minus the monomer loss rate (after Kirschner and Mitchison (1986)):   

𝑑𝑛

𝑑𝑡
= ∝ 𝐶 −∝′ ,     (1). 

The critical concentration is defined when the system is in equilibrium, that is, when there is 

no net assembly: 
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𝑑𝑛

𝑑𝑡
= 0, 

𝐶𝑐 =  ∝ ′ ∝⁄ =  𝐾𝑑𝑖𝑠𝑠,     (2), 

where Kdiss is the dissociation constant, and Cc is the critical concentration.  Note that in the 

case of microtubules, there is constant exchange between monomer and polymer pools even 

at this equilibrium point.  For this reason, equilibrium of the microtubule system is often 

referred to as steady-state, rather than equilibrium state.   

The above theory assumes that there is a single reversible association reaction for 

incorporation of monomer into polymer, and thus that the free and polymer-incorporated 

monomer is of the same type.  Since GTP hydrolysis essentially accompanies tubulin 

monomer addition to the microtubule lattice, the assembly reaction involves GTP-bound 

tubulin, while GDP-bound tubulin is participant in the disassembly reaction; GTP hydrolysis 

partitions the assembly and disassembly reactions, and the above assumptions do not hold 

(Kirschner and Mitchison, 1986).  Thus, microtubules cannot be considered as simple 

equilibrium polymers.   

The consequences of decoupling microtubule assembly and disassembly reactions are 

fundamental to the characteristics of the microtubule cytoskeleton (Kirschner and Mitchison, 

1986) and its self-organising behaviour (Kirschner et al., 2000).  Most importantly, it permits 

an extremely rapid disassembly reaction, that, were microtubules simple equilibrium 

polymers, would hinder assembly to the extent that very little polymer would form.  So the 

rapid disassembly reaction allows high turnover of polymer without inhibiting the total level 

of polymer, and this is proposed to be advantageous to the cell since greater turnover gives 

better responsiveness should the network need to be re-arranged (Kirschner and Mitchison, 

1986), as is often the case.   

Thus, GTP hydrolysis frees the microtubule system from the confines of eqs. 1 and 2.  As a 

demonstrative example, (Kirschner and Mitchison, 1986) discuss the sperm aster in the 

Xenopus egg, which we will expand upon here.  Individual microtubules in the aster are up to 

500 μm in length, yet they must depolymerise within 10 minutes (Ubbels et al., 1983), giving 

a net disassembly rate of 50 μm min-1.  Even at a very low tubulin concentration, this would 

demand a high α’, and a low α.  However, these values of α and α’ would prohibit 

polymerisation to any sort of substantial length, not least the 500 μm that is observed.  In 

order to adequately satisfy the requirements of long microtubules and fast depolymerisation, 

the concentration would have to be varied.  Not only would this be a slow means of re-

organising the network, since tubulin would either have to be sequestered or synthesised, it 

would also restrict the system to being homogenous; all microtubules would be polymerising 

or all microtubules would be depolymerising.  By partitioning polymerisation and 

depolymerisation, this problem is solved. 

Note that, for the assembly reaction, there is still an on- and off-rate; it is just that the 

disassembly reaction, which occurs as another microtubule phase, is not defined according to 
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the values of those rates; instead, it has its own off-rate.  This is discussed further below (see 

“Dynamic instability parameters”). 

Other consequences arising from the non-equilibrium polymer properties of the microtubule 

include an increased sensitivity of the growing phase to the tubulin concentration (since it is 

not confined by a high off-rate) and it also permits growth of individual microtubules below 

the critical concentration.  With regard to this point, it is an important point that the critical 

concentration refers to the bulk critical concentration, that is, on the whole, microtubule 

polymer will decrease below Cc, however, the stabilisation afforded by the GTP cap permits 

individual microtubules to continue growing (Kirschner and Mitchison, 1986). 

f. Microtubule treadmilling 

Clearly, there are differences in the bound nucleotide states between the two microtubule 

ends.  Tubulin is GTP-bound at the plus-end and GDP-bound at the minus-end, which is 

usually anchored at the MTOC.  However, in some cases, the minus-end is, or can become, 

free of the MTOC, so that there are two free ends with different nucleotides.  As mentioned 

already, the minus-end does undergo dynamic instability, albeit with slower kinetics 

compared to the plus-end, and with only GDP-bound tubulin present, the critical 

concentration for the minus-end is greater than that of the plus-end.  So within a certain range 

of free tubulin concentrations, that is, bounded by the critical concentrations for each end, the 

minus-end will undergo net loss of tubulin, while the plus-end will generally continue growth.  

This produces a subunit flux through the polymer, a phenomenon known as “treadmilling” 

(Margolis and Wilson, 1981), and is a special case of microtubule behaviour.  This type of 

assembly process was first proposed for actin filaments, another constituent of the 

cytoskeleton, by (Wegner, 1976), who gave it the term “head-to-tail” polymerisation.   

Treadmilling is an interesting manifestation of the biochemistry that drives dynamic 

instability, but the extent to which it features in nature is not clear (this is true for actin 

filaments, too).  It is possible to observe treadmilling in vitro (Margolis and Wilson, 1978; 

Rothwell et al., 1985; Walker et al., 1988) and it has also been observed in the cell in some 

instances, such as in the lamellae of migrating newt lung epithelial cells (Waterman-Storer 

and Salmon, 1997), and in melanophore cell fragments (Rodionov and Borisy, 1997).  

Although it is not overtly common in animal cells, observation of its occurrence in migration 

is suggestive of specific, but potentially important, roles.  Treadmilling is commonplace in 

plant cells (see Ehrhardt and Shaw (2006) for a review), which lack a single, defined MTOC. 

II. Measurements of dynamic instability 

a. Dynamic instability parameters 

Soon after the discovery of dynamic instability, efforts were made to describe the parameters 

that define it.  For an anchored microtubule (at the centrosome or MTOC) undergoing 

dynamic instability, it is relatively straightforward to see that there are just a few pertinent 

parameters: growth rate, shrink rate, and the transitions from growth to shrinkage and vice 

versa, known respectively as catastrophe and rescue.  There is also a third phase, pause, seen 
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both in vitro (Walker et al., 1988) and in vivo (Shelden and Wadsworth, 1993), where no net 

growth or shrinkage occurs.  In growth and pausing phases, shortening “excursions” of 

individual protofilaments may occur (Brun et al., 2009; Schek et al., 2007), where a single 

protofilament shrinks while others are in the pausing or growing state.  Transitions between 

all three states, including pause, are possible.  Thus, excluding pause, there are four 

parameters to describe dynamic instability: growth rate, shrinking rate, catastrophe frequency 

and rescue frequency.  Including pause introduces four additional transition frequencies: 

growth to pause and back again, and shrinking to pause and back again; unlike catastrophe 

and rescue, these transitions do not have particular names; a naming convention is explained 

in the next chapter.  Importantly, it is clear that the transitions from one state to another are 

not dependent on the current state, nor the length of time a microtubule has been in that state 

(O'Brien et al., 1990; Walker et al., 1988). 

The factors that contribute to the dynamic instability parameters differ between in vitro and in 

vivo conditions; in vitro, it is the core properties of tubulin that give rise to dynamic 

instability, while in vivo, these properties are modulated by associated proteins and chemical 

modifications of tubulin.  The dynamic instability parameters have been investigated in both 

conditions, described below. 

b. Dynamic instability in vitro 

As discussed, initially, dynamic instability was inferred from biochemical methods and fixed 

immunofluorescence and electron microscopy studies (Mitchison and Kirschner, 1984a; 

Mitchison and Kirschner, 1984b).  From the fixed microscopy data, the second of these 

studies provided an indirect estimate of the growth rate, the on- and off-rates of tubulin 

during growth, and the depolymerisation and off-rate as a function of tubulin concentration, 

for both microtubule ends (Mitchison and Kirschner, 1984b).  These data indicated that 

microtubule polymerisation, as briefly mentioned already, is linearly dependent on the free 

tubulin concentration; while depolymerisation appeared not to be (thus there is only an off-

rate for this phase). 

The first direct observations of dynamic instability were made by Horio and Hotani (1986), 

who, using dark-field microscopy, measured two of the dynamics parameters, growth and 

shrink rates.  Later, Walker et al. (1988) provided a more comprehensive study of 

microtubule dynamics, providing rate constants and transition frequencies in addition to 

growing and shrinking rates.  This study extended our understanding of microtubule 

polymerisation dynamics, showing that not only is growth rate dependent on free tubulin 

concentration, the frequencies of catastrophe and rescue are also.  Catastrophe events, as one 

might expect, decreased with increasing free tubulin concentration, while rescue events 

increased, albeit quite weakly, with increasing tubulin concentration.  Thus, the rate of 

addition of tubulin to the microtubule, and the likelihood of an individual microtubule being 

in the growth phase, through decreased catastrophe and increased rescue, increases with 

increasing free tubulin concentration.  On the other hand, the likelihood of a microtubule 

being in the shrinking phase, through increased catastrophe and decreased rescue, increases 
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with decreasing free tubulin concentration, but the rate of depolymerisation is similar for any 

given concentration.   

Similar studies followed, aimed at further characterising rates and transitions.  These give 

support to the free tubulin concentration-independence of depolymerisation rate, while the 

relationship between rescue frequency and free tubulin concentration is not clear.  Reported 

off-rate values during microtubule polymerisation are rather variable, while catastrophe 

frequency is generally found to decrease with increasing free tubulin concentration.  Finally, 

nucleation also shows free tubulin concentration-dependence, increasing with it (Walker et al., 

1988). 

c. Dynamic instability in vivo 

In the cell, precise experimental variation of the free tubulin concentration is not possible; 

thus, the dynamics parameters are often measured as functions of rather different data, such 

as cell type, cell cycle stage, cell morphology, developmental stage, and even subcellular 

position.  Obviously, without manipulation of the tubulin concentration, derivation of some 

information, such as the on- and off-rates of the growth phase, is not possible. 

Broadly speaking, the differences between microtubule dynamics in vivo to those in vitro are 

that microtubules exhibit greater polymerisation rates and have higher transition frequencies 

(Cassimeris, 1993; Desai and Mitchison, 1997).  Desai and Mitchison (1997) make the point 

that the higher frequencies of transition, particular that for catastrophe, change the 

relationship between some of the dynamics parameters.  They show, for example, that if the 

ratio between polymerisation rate and catastrophe frequency were conserved from the in vitro 

situation, then we would expect essentially no catastrophe events.   

This change in dynamics, of course, must be due to the dynamic instability modulators, of 

which most appear to act by altering transition frequencies (Desai and Mitchison, 1997).  For 

example, at the transition from interphase to mitosis, there is a dramatic re-arrangement of the 

microtubule population, and this is brought on by a higher turnover of microtubules (McNally, 

1996).  The increased turnover results from changes in transition frequencies; Belmont et al. 

(1990) and Verde et al. (1992) report increased catastrophe, without alteration of other 

transition frequencies.  However, Rusan et al. (2001) found that both catastrophe and rescue 

frequencies were altered at mitosis; catastrophe frequency increased and rescue frequency 

decreased, while no change was found in growth and shrink rates.  Interestingly, this study 

also found that there was a reduction in the length of time spent in the pause phase, too.    

An exception to the rule that dynamic instability modulators target transition frequencies 

rather than assembly/disassembly rates must be XMAP215 (Gard and Kirschner, 1987a), 

which promotes greater polymerisation rates through the catalysis of tubulin subunit addition 

to the growing microtubule end (Vasquez et al., 1994).  However, this MAP increases 

microtubule turnover through increased depolymerisation rates, and importantly, also 

decreases rescue frequency (Vasquez et al., 1994), so it still retains transition frequency-

targeting activities characteristic of dynamic instability modulators. 
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Indeed, an emerging theme of in vivo microtubule dynamics is that of differential stabilisation 

of microtubules, rather than alteration of growth rates.  That is to say, the transition 

frequencies of microtubules change, either through different states of cellular differentiation, 

or between different areas, or sub-populations of microtubules, within a cell.  During 

polarisation of MDCKII cells, for example, the growth rates of microtubules are not altered, 

but the rate of microtubule turnover decreases (Bre et al., 1990).  Stabilisation of 

microtubules by septin GTPases, filamentous guanine triphosphatases, which associated with 

microtubules, may provide the decreased turnover seen during polarisation (Bowen et al., 

2011).  There is evidence for a sub-population of microtubules that are more stable, that is, 

undergo decreased turnover, within cells that are not undergoing any over processes (i.e., not 

polarising, migrating, dividing, etc.) (Schulze and Kirschner, 1986; Schulze and Kirschner, 

1987).   

Microtubule dynamics also differ over developmental stage, and between different cell types.  

Gard and Kirschner (1987b) compared microtubule dynamics in Xenopus oocytes, the 

immature egg, and mature activated eggs.  They found that there was no assembly in oocytes, 

whereas in the activated eggs, microtubule polymerisation did occur.  Thus developmental 

events are also intertwined with regulation of the microtubule network.  Once development is 

complete, differences in cell type, reflecting different functions, are also reflected in 

differences in microtubule dynamics.  However, unlike the mode of regulation discussed 

above, whereby dynamics are altered by changes in transition frequencies and growth and 

shortening rates do not change, Shelden and Wadsworth (1993) found that microtubules in 

fibroblast cells have higher rates of growing and shortening than in epithelial cells, while the 

frequency of catastrophe was unchanged.  Still, rescue frequency was greater in epithelial 

cells. 

Interestingly, the levels of unpolymerised tubulin are effectively self-regulated in the cell.  

This was determined through experiments where, firstly, colchicine was again used to 

depolymerise microtubules, which resulted in a decrease in synthesis of both α- and β-tubulin 

(Ben-Ze'ev et al., 1979), and in subsequent experiments where microinjected tubulin was also 

found to decrease tubulin synthesis (Cleveland et al., 1983).  It was found that the effect of 

synthesis was by reduction of tubulin mRNA levels (Cleveland et al., 1981), and that this 

effect depends on free tubulin subunits in the cell binding to the nascent tubulin peptide as it 

is being translated (Yen et al., 1988).  Such a feedback mechanism suggests that free tubulin 

levels are maintained at some target levels in the cell, and hence that the concentration effects 

observed in vitro may not be as pertinent inside the cell.  Indeed, in a situation where 

dynamics can be modulated by a vast array of proteins, it may well be advantageous to have a 

constant, i.e. predictable, level of substrate. 

Finally, it is important to realise the potential bias in measurement of microtubule dynamics 

in vivo.  This could arise due to the fact that many microtubules, when visualised with 

fluorescent probes/proteins, cannot be differentiated from others in regions of the cell that are 

densely packed with microtubules.  Thus, in vivo studies may measure the dynamics of only a 

subset of the microtubule population.  This is evident in the study by Rusan et al. (2001) cited 

above, where only the dynamics of microtubule ends near the cell periphery were measured.  
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This is, of course, no fault of the experimenter; to measure the dynamics of microtubules in 

more dense regions is near-impossible, and at best, would be unreliable.  However, given the 

nature of many proteins that interact with microtubules, which also interact with other 

cellular components, many enriched at the cell periphery (e.g. actin), the results of these 

studies must be interpreted with caution.   

To circumvent this problem, Komarova et al. (2002) employed various techniques to 

visualise microtubule behaviour in the cell interior.  They used photobleacing to effectively 

clear an area of the cell of fluorescence from labelled tubulin, so that they could see 

microtubule growth in interior areas of the cell, and they also tracked microtubule growth 

with fluorescently-labelled proteins that bind to the growing plus end of the microtubule (see 

section AIIIc).  The results of their study indicated that estimates of microtubule dynamics at 

the cell periphery are indeed not representative, finding that microtubule often grow 

persistently from the interior to the periphery without undergoing catastrophe, in contrast to 

the relatively frequent transitions made at the periphery.  An interesting point arising here is 

that, once the radial array is established during interphase, it is often seen as a relatively static 

structure, especially when compared to the mitotic spindle.  That is not to say that it is not 

acknowledged that it is indeed dynamic, but potential subtle re-arrangements of the radial 

array have not been investigated.  The fact that microtubules are seen to depolymerise all the 

way from the periphery to the interior and beyond, and the difference in dynamics between 

these areas, suggests that this is a possibility worth considering further. 

The general picture of microtubule dynamics in vivo is thus a lot more complex than that in 

vitro.  The additional levels of regulation and interaction that give rise to this complexity 

allow precise manipulations and refinement of the microtubule network, which must be 

required to meet the demands of organising the cell. 

III. Modulation of dynamic instability in the cell 

a. Tools for tuning microtubule dynamics 

The basic properties of the microtubule described so far are enough to give rise to all aspects 

of dynamic instability.  Thus, in vitro preparations of purified tubulin reproduce in vivo 

microtubule behaviour.  However, these similarities are only qualitative; although each 

parameter of dynamic instability is present in vitro, they are usually quantitatively different to 

those seen in the cell.  Generally, microtubules in vivo are more dynamic than in vitro 

(Cassimeris, 1993); for example, sea urchin egg extract microtubules polymerise 6-times 

faster than purified sea urchin tubulin (Simon et al., 1992).  Published descriptions of 

microtubule dynamics show that there is indeed a high degree of variability within in vitro 

data and, in vivo, between cell types, and also that such measurements are made with varying 

techniques and precision. However, the discrepancy between in vitro and in vivo microtubule 

dynamics is also due to the presence in the cell of modulators of dynamic instability.  These 

modulatory factors, predominantly MAPs, but also tubulin post-translational modifications 

(PTMs) and microtubule motor proteins, modify the basic properties of microtubules in the 

cell, thus affecting the cellular functions of the microtubule network.   
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b. Nucleation 

Nucleation is the process by which a microtubule is initially generated.  In animals and fungi, 

it takes place at an MTOC, and in animal cells, as was discussed above, the main MTOC is 

the centrosome, but depending on cellular circumstances, this may vary.   

Nucleation involves another member of the tubulin family, γ-tubulin.  This tubulin isoform, 

along with γ-tubulin ring proteins and complex proteins (GRIPs and GCPs, respectively), 

forms a ring structure known as the γ-tubulin small complex (γTuSC) (Moritz et al., 1995).  

Many copies of the γTuSC create the γ-tubulin ring complex (γTuRC) in conjunction with a 

number of associated proteins, and it is this structure that nucleates microtubules (Zheng et al., 

1995).  The mechanism for nucleation by the γTuRC centres on stabilisation of the first 

tubulin heterodimer by γ-tubulin, and, upon hydrolysis of γ-tubulin-bound GTP, γ-tubulin 

undergoes a conformational change, allowing lateral interactions between tubulin 

heterodimers, and subsequent microtubule polymerisation (Wiese and Zheng, 2006). 

c. MAPs 

This class of proteins, as the name suggests, is delineated by the interaction of the member 

proteins with microtubules.  This being the sole criterion, the class has a broad and diverse 

membership, consisting of proteins that interact with different regions of the microtubule and 

that do so through different mechanisms, with varied domains and evolutionary origin.  

Accordingly, the MAP literature is extensive; below, I summarise the MAPs that have links 

to influencing dynamic instability, grouping them according to the region of the microtubule 

which they recognise.  For a thorough review of MAPs in general, see Mimori-Kiyosue 

(2011).  

Plus end tracking MAPs are proteins are referred to simply as +TIPs, and although other 

MAPs have the ability to track microtubule plus ends, for example, the Dam1 complex 

(Lampert et al., 2010), the term +TIPs is generally reserved for those proteins whose binding 

gives rise to comet-like formations at the plus end (Jiang and Akhmanova, 2011; Schuyler 

and Pellman, 2001), and they can be grouped according to the presence of particular domains.   

The +TIPs, due to their position, have the potential to mediate microtubule interactions with 

other proteins, organelles and other cellular components, as they probe intracellular space 

(Galjart, 2010).  The most important +TIPs are those of the end-binding (EB) family, since 

they not only target the microtubule plus end without need for binding partners (Bieling et al., 

2007) through recognition of the GTP cap (Maurer et al., 2011; Zanic et al., 2009), they also 

act as binding partners for other +TIPs.  Such +TIPS include cytoplasmic linker protein 170 

KDa (CLIP-170), adenomatous polyposis coli protein (APC), microtubule-actin crosslinking 

factor (MACF), CLIP-associating proteins (CLASPs).  Some of these, and many other +TIPs, 

not only interact with EB family proteins, but with each other (reviewed in Akhmanova and 

Steinmetz (2008) and Galjart (2010)).  As a result, determining how each +TIP affects the 

dynamics of the microtubule is difficult.   
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Many +TIPs are thought to be involved in microtubule stabilisation, for example, loss of 

MACF, also known as actin-crosslinking family-7 (ACF7), which links microtubules and 

actin, results in less-stable microtubules (Kodama et al., 2003).  Other such stabilising +TIPs 

include APC (Etienne-Manneville and Hall, 2003), CLIP-170 (Fukata et al., 2002) and 

CLASPs (Akhmanova et al., 2001), which all associate with the actin network too (Galjart, 

2010).  EB family proteins are associated with an increase in microtubule dynamics and 

lower incidence of catastrophe (Lansbergen and Akhmanova, 2006), while XMAP215 

promotes microtubule growth by catalysing the addition of subunits at the plus end (Brouhard 

et al., 2008; Vasquez et al., 1994).  CLIP proteins have been reported to promote rescue 

(Komarova et al., 2002), despite apparently not binding depolymerising microtubules 

(Akhmanova and Steinmetz, 2008). 

Finally, it is noteworthy that some of the +TIPs, those with a cytoskeleton-associated protein 

Gly-rich domain (CAP-Gly), only bind to tyrosinated microtubules (Peris et al., 2006).  

Given the nature of the tubulin detyrosination/tyrosination cycle in cells (see “Tubulin 

PTMs”, below), the tyrosinated-tubulin preference results in fewer binding events of CAP-

Gly +TIPs over time.  It is possible that there may be more as-yet-undiscovered examples of 

MAP-PTM interactions. 

As was discussed above, the minus end of the microtubule does undergo dynamic instability, 

albeit with slower kinetics (Mitchison and Kirschner, 1984a).  The lack of dynamic minus 

ends in vivo is due to the fact that microtubules are usually anchored at this end at the MTOC.  

Moreover, microtubules usually initiate, that is, undergo nucleation, at the MTOC.  The 

MTOC can thus be considered as an effector of dynamic instability, and it is γ-tubulin, 

another member of the tubulin family, that is responsible for this.   γ-tubulin is evolutionarily-

conserved, found in a complex with other proteins to form the γ-tubulin ring complex, or γ-

TuRC, and is essential for microtubule nucleation (Raynaud-Messina and Merdes, 2007).  

Other minus-end MAPs, including ninein, pericentrin and centrosomin function to link γ-

tubulin to centrosomes or other structures (Jiang and Akhmanova, 2011).  The kinetic 

advantage conferred by γ-tubulin for microtubule nucleation is crucial to microtubule 

dynamics. 

The MAP2/tau family of MAPs, traditionally associated with expression in neurons, is 

another important class of MAPs that can affect microtubule dynamics.  Members are the 

various isoforms of MAP2 and tau, and MAP4 (Dehmelt and Halpain, 2005).  These proteins 

stabilise microtubules, binding to the side of the microtubule along its length; moreover, 

microtubules are more rigid with MAP2 and tau bound.  Although members of this family are 

generally considered to be restricted to neuronal cells, MAP4 is expressed elsewhere and 

displays similar microtubule-stabilising functions.  It is thought that these proteins stabilise 

microtubules by inhibiting catastrophe, possibly by forming clusters on the microtubule 

d. Tubulin PTMs 

There is a number of tubulin PTMs known; some are general modifications that are known to 

apply to other proteins, while others are specific for tubulin (Janke and Bulinski, 2011).  It 
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has been proposed that the heterogeneity of tubulin PTMs incorporated into the microtubule 

lattice acts as a “tubulin code”, which acts to provide information to the various MAPs in 

analogy to the histone code and chromatin function (Verhey and Gaertig, 2007).  Although 

the first example of tubulin PTM was documented nearly 40 years ago (Arce et al., 1975; 

Hallak et al., 1977), generally, tubulin PTM is an active area of research.  Non-exclusive 

PTMs of tubulin include phosphorylation, ubiquitylation, sumoylation, and palmitoylation, 

while those specific to tubulin are detyrosination and generation of ∆2-tubulin, acetylation, 

polyglutamylation, and polyglycylation (Janke and Bulinski, 2011). 

Tubulin undergoes cycles of addition and removal of a tyrosine functional group, and 

although tyrosination was observed first (Arce et al., 1975), in the majority of α-tubulin genes, 

upon which this modification occurs, a tyrosine residue is encoded at the carboxy-terminal 

(Valenzuela et al., 1981).  Thus detyrosination (Hallak et al., 1977) occurs first.  

Detyrosination takes place preferentially on tubulin incorporated into the lattice (Kumar and 

Flavin, 1981), whereas soluble tubulin is very quickly tyrosinated (Raybin and Flavin, 1977).  

Generation of ∆2-tubulin is a related tubulin PTM, and it results from the removal of the 

glutamate residue that is exposed on detyrosinated tubulin (Paturle-Lafanechere et al., 1991).  

Detyrosination is associated with stable microtubules (Webster et al., 1987), and this occurs 

as a result of the preference for tyrosinated microtubules of depolymerising kinesins (Peris et 

al., 2009), a special family of the microtubule motor protein that are involved in microtubule 

destabilisation (Desai et al., 1999).  Moreover, detyrosination enhances binding of kinesin-1 

(Dunn et al., 2008; Liao and Gundersen, 1998), a conventional kinesin protein (Lawrence et 

al., 2004), while binding of the CAP-Gly domain plus tip MAPs requires tyrosinated α-

tubulin (Peris et al., 2006; Weisbrich et al., 2007); these are examples of the aforementioned 

tubulin code (Verhey and Gaertig, 2007). 

The best-studied example of acetylation is that of Lys40 on α-tubulin (L'Hernault and 

Rosenbaum, 1985), which also occurs on the microtubule polymer (Maruta et al., 1986).  As 

with detyrosination, acetylation is considered as a marker for stabilised microtubules, yet, this 

seems not to be supported by a great deal of evidence, and the apparent promotion of kinesin-

1 and dynein binding in response to acetylation is also subject to debate (both aspects are 

reviewed in Janke and Bulinski (2011)).   

Polyglutamylation and polyglycylation are related tubulin PTMs; they both involve the 

addition of glutamate (Edde et al., 1990) or glycine (Redeker et al., 1994) residues, 

respectively, to the γ-carboxyl group of one or more of the glutamate residues toward the C-

terminus of both polymerised α- and β-tubulin.  The number of residues added is variable, 

and since both modifications occur at the same sites on the tubulin molecule, they are 

competitive (Janke and Bulinski, 2011).  Polyglutamylation has the interesting potential role 

in mediating microtubule severing, since in vitro experiments have shown that long Glu 

chains promote severing, while shorter chains (which are generated by a different enzyme to 

that which catalyses long chain-formation) did not (Lacroix et al., 2010).  (Janke and Bulinski, 

2011) point out that, since many microtubules are polyglutamylated in vivo, for example in 

axons, there must be protective mechanisms in place so that they are not randomly severed.  

Polyglutamylation may also affect motor protein binding (Janke and Bulinski, 2011). 
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B. MICROTUBULE ORGANISATION 

I. Microtubules in minimal systems 

a. A framework for consideration of microtubule organisation 

There is a complex interplay between a variety of cellular processes and organisation of the 

microtubule cytoskeleton.  This relationship goes in both directions, thus, the state of the cell, 

its differentiation programme, and other factors such as adhesions with surrounding matrix 

and with other cells all influence the organisation of the microtubule network, and the 

organisation of the network, in turn, has the capability to influence those processes.  

Therefore, there is a general cell-wide self-organisational process that contributes to the form 

of not only the microtubule network, but the cell as a whole.  In this section, the organisation 

of the microtubule network is considered. 

How do various cellular processes affect the organisation of the microtubule network?  By 

definition of organisation, such processes must affect the behaviour of microtubules in space, 

and somehow maintain this over time.  Targets of organising processes include microtubule 

dynamics, and modulation of interactions of microtubules with each other and with other 

cellular components.   

Although this thesis is concerned with microtubule organisation in animal cells, many 

enlightening studies on microtubule organisation have been conducted in vitro.  In these 

minimal systems, where there are a small number of components, the reduction of the 

intricacy of the problem helps to understand mechanisms of organisation.  Firstly, then, these 

minimal systems studies are described, with the aim of highlighting some of the general 

principles of microtubule organisation without the bewildering complexity of the cell.  After 

this, the additional layers of regulation that have been discovered to be in operation within the 

cell are discussed.   

b. Microtubule-motor self-organisation 

When microtubules are mixed with motor proteins, various large-scale and stable patterns can 

form.  Two classic studies of microtubule-motor protein self-organisation first demonstrated 

and explained the formation of these patterns.  First, Nedelec et al. (1997) showed that  

multimeric kinesin molecules could give rise to different microtubule organisations that was 

dependent on the concentration of the motor protein and also the confining geometry of the 

system.  At fixed concentrations of multimeric kinesin in a confined cylindrical container (but 

almost 2-D, i.e. circular), microtubules consistently formed first a symmetrical aster, then a 

vortex.  It was also found that vortices could form without an aster first forming if a torus-like 

geometry was used.  When unconfined, the concentration of kinesins was important; low 

concentrations produced a network of vortices, while if the concentration was increased, a 

network of asters was organised; still greater concentration produced networks of bundled 

microtubules in a manner also sensitive to microtubule nucleation rate and potentially other 

dynamics parameters.  
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Surrey et al. (2001) expanded upon the work of Nedelec et al. (1997). In this study, 

microtubules with plus end-directed motors formed asters with plus ends oriented toward the 

focus of the aster, while those with minus end-directed motors are oriented with minus ends 

at the centre of the aster.  Interestingly, Surrey et al. (2001) found that the vortices described 

in Nedelec et al. (1997) are dependent on the concentration of the motor: increasing 

concentration leads to an aster.  Reconstruction of the system in silico indicated that the 

ability of the motor (whether plus or minus end-directed) to form asters was dependent on the 

residence time at the microtubule end; longer times meant a greater likelihood of aster 

formation.  This work also presented evidence of an unusual network organisation, whereby 

microtubules were arranged in large parallel bundles in mixtures of both plus end- and minus 

end-directed motors; at one end of the bundle would be a concentration of plus end-directed 

motors, and at the other end, minus end-directed motors.   

In addition to demonstrating that large-scale patterns can be generated by just a few 

components, these studies demonstrate that changes to a simple kinetic parameter, in this case 

the characteristic residence time of a motor protein at the end of a microtubule, can effect 

large-scale changes in network organisation, (a theme expanded upon by Huber and Kas 

(2011)). 

c. Microtubules and forces 

As microtubules grow, they can in theory generate force if this growth takes place against 

some form of barrier.  On the other hand, if microtubules are attached in some way to a 

structure of some sort, then their shrinkage could potentially generate a pulling force.  

Vignaud et al. (2012) call these “spatial boundary conditions” (SBCs).  Furthermore, if a 

microtubule motor is attached to some kind of substrate away from its microtubule-binding 

parts, then by walking on the microtubule, the motor could generate a pulling force.  Many 

minimal systems, often complemented by theoretical analyses, have addressed the issue of 

microtubule forces generation in the organisation of microtubule networks. 

Since a microtubule aster in vivo generally has minus ends clustered at its centre, the most 

commonly addressed mode of motor-mediated force generation is that by the minus end-

directed motor dynein, as, by walking towards the aster centre along a microtubule, it could 

in theory exert a force on the aster.   

Microtubule asters that were formed in micro-fabricated chambers were used to demonstrate 

that the aster will centre itself by the pushing forces generated by microtubule polymerisation 

against the chamber border (Holy et al., 1997).  In a related study, addition of dynein to the 

system, where it was anchored at the borders of the chamber, leads to more stable aster 

centring, so long as the micro-fabricated chamber dimensions are smaller than microtubule 

lengths, allow interaction of microtubules around the chamber perimeter (Laan et al., 2012).  

Indeed, in the former study, dimensions are also important, so as to allow isotropic 

interaction of microtubules and the SBC, if centring is to occur.  This is an excellent example 

of the basic network organisational properties conferred by inherent microtubule dynamics 

and how interaction with appropriately-positioned microtubule motors re-enforces this. 
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Aster off-centring, or so-called symmetry-breaking, can arise from a certain type of 

microtubule-SBC interaction (Vignaud et al., 2012).  In this case, in vitro systems that do not 

permit force-generation by microtubules at the SBC have been used to demonstrate that 

microtubule sliding along the SBC results in off-centring of the aster (Cosentino 

Lagomarsino et al., 2007; Pinot et al., 2009).  As with the previous example, the exact 

outcome depends on the relative dimensions of the microtubules and the SBC: if the SBC is 

large, centring is still observed; the smaller the SBC, the further off-centre the aster becomes 

(see Vignaud et al. (2012), for a review).  Eventually, as microtubules slip along the SBC, the 

network can become arranged as a ring, with microtubules running parallel to the SBC.  Thus, 

as a result of energy minimisation (i.e. microtubules becoming as straight as the SBC 

permits), the network takes on a specific type of organisation. 

d. Microtubule interaction with actin 

One interaction that is commonly acknowledged to be an underlying contributor in many 

cellular functions is that between microtubules and actin (Rodriguez et al., 2003), yet it 

remains somewhat neglected in the domain of in vitro reconstituted systems.  Recently, 

however, López et al. (2014) addressed the effects of each cytoskeletal system on the other.  

In this study, a minimal version of the microtubule and actin binding protein ACF7 was 

created, named “TipAct”, consisting of an N-terminal GFP, an F-actin binding domain, and a 

C-terminal SxIP motif allowing binding of EB proteins.   

The authors found that TipAct could capture and guide microtubule growth along actin 

bundles, whereas in the absence of TipAct, initially-redirected microtubules often “snapped” 

off the actin tracks; this forced and continual alignment was found to be due to the presence 

of TipAct along actin bundles, and subsequent redistribution of EB proteins to the lattice of 

aligned microtubules.  Moreover, initially disorganised microtubule arrays were found to 

gradually co-align with actin bundle orientation to a greater extent in the presence of TipAct 

than without it.  Note, however, that just mechanical interactions between microtubule plus 

tips and actin bundles could redirect microtubule growth in the 2-dimensional system under 

study.  When microtubules and non-bundled actin filaments were studied, it was found that 

microtubules could transport and reshape the actin filaments; thus the two cytoskeletal 

systems can influence the organisation of one another. 

II. Microtubules in vivo 

a. From minimal systems to the cell 

The studies of purified components in controlled conditions described above have contributed 

to our understanding of what such minimal systems are capable of in terms of organisation; 

they set a reference against which the organisation of the microtubule network in the complex 

environment of the cell can be compared.  In many cases, the actual patterns formed in vivo 

are similar to the set of organisations that have been described in vitro (Dogterom and Surrey, 

2013); as Nedelec et al. (1997) pointed out, those types of experiments serve to catalogue the 

“vocabulary” of microtubule organisation.   
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The many types of microtubule-MAP associations, microtubule PTMs etc. may indeed have 

their own set of self-organising properties when isolated with microtubules in a minimal 

system.  Further studies of that kind will determine whether certain organisations emerge 

from simple combinations of microtubules and other associated proteins and processes yet to 

be fully investigated; it is likely that the use of patterning molecules at specific locations 

within fabricated microchambers (e.g. Laan et al. (2012)), will enable further investigation of 

the influence of one or a few molecules at a time on the mechanisms of organisation of the 

microtubule network.  Below, some of the plethora of modifications to the simple pattern-

forming systems behaviours described previously are described; the specific examples are 

chosen with the aim of highlighting the more pertinent factors of in vivo microtubule 

organisation in general, and also to be relevant to the material presented in subsequent 

chapters. 

b. Microtubule nucleation and anchorage 

Unlike the microtubule asters in Nedelec et al. (1997) and Surrey et al. (2001), the 

microtubule asters in animal cells are based around the centrosome.  In undifferentiated cells 

with a radial array, microtubule anchorage is confined to the centrosome, and disruption of 

anchorage by depletion of anchoring proteins, including ninein, a prominent minus end-

anchoring protein (Delgehyr et al., 2005; Mogensen et al., 2000) leads to a change in 

organisation, or rather, disorganisation, of the microtubule array (Dammermann and Merdes, 

2002).  Generally, microtubules remain anchored at the centrosome, though release from the 

centrosome, again under the control of ninein, has been documented in migrating cells (Abal 

et al., 2002). 

Deviations from the basic radial array often involve changes in the location of microtubule 

anchorage, and thus, microtubule anchorage is a major determinant of microtubule 

organisation.  For example, in differentiated columnar epithelial cells, ninein is redistributed 

to apical sites associated with cell-cell junctions, where microtubule minus ends terminate 

(Mogensen et al., 2000; Moss et al., 2007).   

c. Selective microtubule stabilisation by cortical factors 

After discovering dynamic instability, in their typically prescient manner, Kirschner and 

Mitchison (1986) proposed that selective stabilisation of microtubules in certain locations 

within the cell could be one means of regulating microtubule organisation.  As Li and 

Gundersen (2008) point out, in animal cells, microtubules are generally first nucleated and 

anchored at the centrosome, and specialisation in organisation follows, thus, re-organisations 

that depend on stabilising a select population of microtubules are perhaps best effected at the 

location of the plus tips: the cortex.  Moreover, this also confers localisation proximal to 

external signals.  Thus, the idea that microtubule could search cellular space and be 

selectively stabilised or captured (Mimori-Kiyosue and Tsukita, 2003) took shape, and indeed, 

re-organisation of the microtubule cytoskeleton by selective stabilisation, mediated by 

cortical factors, is an acknowledged feature of cellular microtubule organisation. 
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The common theme behind most instances of microtubule stabilisation at the cortex is a 

reduction of the dynamicity of the microtubule and an increase in occurrence of the pausing 

phase (Li and Gundersen, 2008).  This is mediated by various +TIPs and specialised clusters 

of molecules at the cortex, so-called “cortical platforms”.  These platforms contain a 

phosphatidylinositol-3,4,5-triphosphate (PIP3) binding protein, LL5β, and ELKs (Lansbergen 

et al., 2006), while the +TIP CLASP proteins mediate capture of microtubules at the cortex 

(Mimori-Kiyosue et al., 2005) and are also found within these platforms through interaction 

with LL5β (Lansbergen et al., 2006).  LL5β knockdown was found to alter microtubule 

dynamics so that there was an increased tendency to transit from the pausing state and a 

decreased tendency to transit towards it (Lansbergen et al., 2006) and this resulted in a 

decreased density of microtubule plus ends at the cortex; CLASP knockdown had a similar 

but more pronounced effect (Mimori-Kiyosue et al., 2005). 

The regulation of microtubule dynamics at the periphery of the cell so as to allow cortical 

capture appears to be in a delicate balance.  For example, the protein 4.1R, which contains a 

FERM domain, was recently found to contribute to the capture of microtubule plus ends by 

the LL5β/ELKS platforms (Ruiz-Saenz et al., 2013).  Upon knockdown of 4.1R, 

microtubules exhibited lower catastrophe frequency, and longer times in growth to the 

detriment of time spent in shrinkage and pausing, relative to control microtubules.   

Indeed, further evidence for this balance of effectors of microtubule dynamic instability at the 

cortex is provided by the recently discovered role of the kinesin-4 KIF21A in inhibition of 

microtubule growth at the cortex, and in vitro, KIF21A also suppressed catastrophe (van der 

Vaart et al., 2013).  It was proposed that growth inhibition at the cortex contributes to cortical 

capture and correct microtubule organisation at the cortex.   

The modulation of microtubule dynamics at the cortex is also mediated by many other +TIPs.  

One example is CLIP-170, which, in conjunction with IQGAP, is involved in cortical 

targeting of microtubules to distinct sites marked by Rac1/Cdc42 (Fukata et al., 2002); this is 

expanded upon in the next chapter.  Interestingly, protein 4.1 has been shown to be involved 

in recruitment of IQGAP to distinct cortical sites in migrating cells (Ruiz-Saenz et al., 2011).  

Microtubules have been shown to be selectively stabilised downstream of signalling by Rho 

GTPase in response to lysophosphatidic acid (Cook et al., 1998), a component of serum, and 

that this is mediated by an interaction between diaphanous formins, mDia, and +TIPs EB1 

and APC (Palazzo et al., 2001; Wen et al., 2004).  

The mechanisms discussed above are located downstream of particular signalling cascades, 

though a full elucidation of the interplay between various signalling cascades and the cortical 

microtubule interacting proteins is yet to be availed.  A comprehensive discussion of these 

signalling systems is beyond the scope of this thesis; suffice to say that microtubule 

organisation is responsive to external signals (Gundersen and Cook, 1999), the PIP3-binding 

activity of LL5β and the FERM domain of protein 4.1R are examples of the capability of 

these molecules to respond to external signals. 
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d. Microtubule guidance 

In two studies that utilised micropatterned substrates to control cell shape, Thery et al. (2006) 

and Huda et al. (2012) investigated whether microtubule growth was guided within the cell.  

In cells with anisotropic substrate adhesion, the former study demonstrated that upon 

reaching a non-adhesive cell boundary, microtubules continued to grow along the boundary 

and accumulated at adhesive sections; interestingly the accumulation coincided with 

accumulation of APC (Thery et al., 2006).  Huda et al. (2012) showed that microtubule 

growth was guided by actin bundles toward adhesive vertices of the cell.  Notably, such 

guidance was dependent upon focal adhesions; on a substrate that promoted focal adhesion-

independent substrate adhesion, microtubule guidance was no longer in effect (Huda et al., 

2012). 

Before the micropatterning studies, it was observed that microtubules persistently targeted 

focal adhesions (Kaverina et al., 1998), and that these adhesions could capture and stabilise 

microtubules.  This association with focal adhesions only occurred for growing microtubules, 

and indeed occurred at high precision (Krylyshkina et al., 2003), suggesting some mechanism 

of non-random, i.e. guided, microtubule growth.  However, initially, it was not found to be 

dependent upon actin, or indeed intermediate filaments (Kaverina et al., 1998), and 

apparently not re-tested in subsequent studies.  Interestingly, repeated targeting of 

microtubules to focal adhesions results in their disassembly (Kaverina et al., 1999), 

contributing to adhesion turnover. 

An apparent departure from the trend of guidance to and subsequent stabilisation of 

microtubules at particular cellular landmarks (i.e. focal adhesions, localised signalling 

cascades) has been described by Stehbens et al. (2006).  Here, dynamic microtubules were 

observed growing toward E-cadherin puncta at cell-cell adhesions.  Indeed, reduction of 

dynamicity with low doses of the microtubule-depolymerising drug nocodazole lead to 

reduced targeting of microtubule plus ends to these puncta.  In another study, septins were 

found to have a microtubule-guiding role in polarising epithelial cells, and this involved 

suppressing catastrophe frequency and promoting growth (Bowen et al., 2011).  These studies 

highlight the balance between the relative degrees of dynamicity and guidance: in an 

unguided system, a more dynamic microtubule should search space better (Holy and Leibler, 

1994), whereas, in a guided system, persistent growth will permit better targeting. 

Finally, an interesting potential system for microtubule guidance must be interaction with the 

actin cytoskeleton, given the findings described above in in vitro studies.  The actin 

cytoskeleton is organised in a variety of ways within the cell, depending on the activity of a 

number of interacting proteins that modulate the assembly dynamics of actin filaments 

(Blanchoin et al., 2014).  The actin cortex is a thin layer (approximately 190 nm) underlying 

the plasma membrane (Clark et al., 2013), while, in migratory cells, a network of branched 

and cross-linked filaments is found in the lamella, a thin, almost 2-dimensional region at the 

front of the cell, and in filopodia, protrusions resembling cell “fingers” at the front of the cell, 

the actin cortex is organised into bundles (Blanchoin et al., 2014).  



30 

 

Microtubules are known to affect the organisation of actin.  For example, it has been shown 

that microtubule growth into lamellipodial regions promotes actin polymerisation through 

activation of the small GTPase Rac1 (Waterman-Storer et al., 1999).  Here, clever use of the 

microtubule-affecting drugs nocodazole and taxol demonstrated that it was indeed 

microtubule growth, and not dynamics per se, that induced actin polymerisation.  Indeed, 

Rac1 appears to be important in regulating both cytoskeletal systems; it has been shown that 

its activation can promote microtubule growth into lamellipodial areas, while a dominant 

negative Rac1 has the opposite effect (Wittmann et al., 2003), suggesting some sort of 

positive feedback mechanism is at work to promote growth of microtubules and actin 

together.  Exactly how these in vivo findings relate to those documented in vitro remains to 

be determined.  Notably, these studies were conducted in motile cells; Rac1 and its effect on 

microtubule growth at the cortex in non-migrating cells is investigated in chapter 3.  

e. Forces on microtubules 

One of the most obvious features of undifferentiated, non-motile cells in culture is the 

approximately central location of the centrosome.  Centrosome positioning has the potential 

to influence microtubule organisation, but forces generated by microtubules may also 

influence centrosome positioning.  In any case, centrosome relocation can be taken as a re-

organisation of the microtubule network.  Does centrosome positioning occur as a result of 

the centring mechanisms described in minimal systems?   

The additional regulation of microtubule dynamics at the cell cortex suggest that the 

principles of centring that are based on microtubule pushing when polymerising against or 

slipping on a barrier are modified; in the cell, it is unlikely that there will be many surfaces or 

spatial boundary conditions that are so inert as to allow microtubule slipping along it.    

Even in physical terms, the cell is far more complex than the minimal systems already 

considered; there are many SBCs here, for example the nucleus excludes microtubules from a 

large part of the cell volume, and given the association between the centrosome and nucleus, 

this introduces an asymmetry in the microtubule network (Bornens, 2012).  Other organelles 

must have a similar SBC effect, though these may be more uniformly distributed.  The 

pushing effect of microtubules growing against cytosol components has been postulated as a 

potential contributing mechanism for centring of the microtubule network (Zhu et al., 2010), 

but has not been investigated. 

Rather than pushing forces generated by microtubules growing against a barrier, pulling 

forces have been demonstrated in the Caenorhabditis elegans embryo spindle (Grill et al., 

2001; Grill and Hyman, 2005).  Indeed, reliance on pushing force becomes problematic when 

microtubules become long, because longer microtubules will buckle more readily than shorter 

microtubules (Dogterom et al., 2005).  Indeed, there is evidence that dynein pulls on 

microtubules to organise the network (Burakov et al., 2003; Koonce et al., 1999). 

The organisation of the microtubule network is not simply a case of default centring.  In a cell 

with an asymmetric microtubule network, the centrosome can maintain its central position 

(Vignaud et al., 2012).  When adhesive micropatterns have been used to produce particular 
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cell shapes, the consistency of centrosome positioning in many cells of the same shape 

(Thery et al., 2006) suggests this is an integral part of cellular organisation, and centrosome 

positioning is predictable, given cell type and behaviour, for example in the wound healing 

response, where centrosomes localise between the nucleus and the leading edge of migrating 

cells (reviewed in Tang and Marshall (2012)), but the extent to which microtubule-mediated 

forces play a role in this is not clear.   

In a comprehensive modelling study by Zhu et al. (2010), it is suggested that fine-tuning 

between forces generated by microtubules and actin can reliably off-centre the network, and 

this is a possibility.  Indeed, in some cases of microtubule network re-organisation, 

modulation of microtubule dynamics is required, for example in centrosome relocation to the 

immunological synapse, where casein kinase 1δ promotes microtubule growth through EB1 

(Zyss et al., 2011).  In a different system, cellular polarisation after making cell-cell contacts, 

both actin and microtubules have been shown to have a role in centrosome relocation (Desai 

et al., 2009; Dupin et al., 2009; Vignaud et al., 2012). 

To summarise, it is likely that forces on and generated by microtubules play an important role 

in microtubule organisation in vivo, but the complexity of the cell and the sheer number of 

potential force-mediated processes, and the fact that they are in operation at the same time as 

biochemical regulation, means that they are yet to be fully elucidated.  As the study of 

mechanics within cells in general catches up with the more traditional biochemical and 

molecular focus, these processes should become clearer. 

C. SUMMARY 

Overall, the literature reviewed here shows that microtubules are fascinating cellular 

structures, and although there is a great deal known about their dynamics, we are a long way 

from understanding how microtubule dynamics are controlled within the cell to generate 

various organisations.  Moreover, in many cases, other factors, such as physical interactions 

between microtubules and other cellular components, can contribute to microtubule network 

organisation, and this further complicates the issue.  In subsequent chapters, the ways in 

which some of these phenomena contribute to microtubule organisation are addressed. 
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Chapter 3 

Measuring microtubule dynamics in a radial array 

A. INTRODUCTION 

I. Microtubule dynamics and organisation in cells 

a. Dynamics and organisation 

The aim of this thesis is to better understand microtubule organisation in animal and plant 

cells.  As chapter 2 made clear, one of the main contributing factors to any type of 

microtubule organisation is their dynamics.  There are a great number of MAPs and other 

processes that function to modulate microtubule dynamics in some way, and microtubule 

organisation changes as a result of the activity of these many factors in order to serve some 

cellular function.  Making sense of at least some of the relationships between dynamics and 

organisation is the focus of this chapter, wherein the results of extensive processing of time-

lapse recordings of microtubule dynamics are presented. 

b. Microtubule organisation as a system property 

One important question which generally remains unanswered is: how is the microtubule array 

maintained?  To put the question another way, we might ask: what are the factors that 

contribute to the homeostasis of the microtubule network?  Taking the radial array, for 

example, it is fascinating that the microtubules, which are of course extremely dynamic and 

constantly changing, are part of this network which, at a macroscopic level, does not change.  

How delicate, or sensitive, is this unchanging state?  Indeed, an alternative premise might be 

that microtubule dynamics can change a great deal and the organisation of the network does 

not change, i.e. that the network organisation is robust, to use systems terminology; in this 

view, the stasis of the network is not so remarkable.   

However, it is possible to disrupt the organisation of the network, as thousands of 

experiments have demonstrated, and of which we will see more below.  Therefore, if we take 

microtubule network organisation being the manifestation of a precise balance of contributing 

homeostatic processes as a given, a systems biology-type view of microtubule organisation 

emerges.  Here, a number of processes contribute to the properties of the network; these 

properties, collectively referred to under the umbrella term organisation, can vary, depending 

on the type of array.  For example, in the radial array, a pertinent property might be what has 

been termed “radiality” (van der Vaart et al., 2013), i.e. the proportion of microtubules that 

point away from the centrosome; here, the array is characterised by microtubules that are 

relatively straight and extend to the cortex, and stop there.  In mitotic cells, a pertinent 

organisational property might be the length distribution (and perhaps bias in orientation, e.g. 

Wollman et al. (2005)) of microtubules which is important for proper capture of 

chromosomes (Hill, 1985; Holy and Leibler, 1994). 

In this systems view of the microtubule network, it is clear from chapter 2 that a lot of work 

has been dedicated to understanding how the microtubule network becomes asymmetrically 
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organised (reviewed in Sugioka and Sawa (2012)), which often assume a symmetric starting 

point.  Such asymmetries are important in cell polarisation and migration, for example.  In 

addition to symmetry breaking, a lot of attention has been dedicated to understanding the 

maintenance of any given state.  Here, I consider the maintenance of the radial array, 

characteristic of undifferentiated cells.  To do this, I analyse time-lapse recordings of 

microtubule dynamics in normal cells, and also in cells where the system has been perturbed; 

this is the subject of the next section. 

II. Perturbing the system 

a. Pertinent processes 

What are the candidate processes for a role in radial array maintenance?  Clearly, there are 

some system components that are requisite.  Nucleation of microtubules must balance loss of 

microtubules by extinction.  After this, we might want to know how it is that the radiality of 

the system is maintained.  The systems view of radial array maintenance is depicted in figure 

1.  There are two explanations: first, that microtubule dynamics are tuned so that the steady-

state length is appropriate for the size of the cell, so that on average, microtubules are of the 

length equal to the distance between the centrosome and the cortex of the cell.  The second 

explanation is that microtubule dynamics within the cell and at the cortex are different, so 

that microtubules reach the cortex, and stay there.   

The first explanation for radiality suffers from one main weakness: first of all, assuming the 

centrosome is at the centre of the cell, then in any cell that is not circular, the centrosome-

cortex distance is not constant, so in some areas, microtubules would be too long, and in 

others, too short.  The second radiality explanation has some empirical support from van der 

Vaart et al. (2013), who find that the kinesin-4 KIF21A acts to inhibit microtubule growth at 

the cortex.  Some complementary modelling based on their experimental data demonstrated 

that certain differences in dynamics between central and peripheral regions of the cell could 

produce radiality.   

In addition to growth inhibition in peripheral regions of the cell, microtubules can be 

“captured” at the cortex.  This involves +TIP proteins, and other proteins at the cortex and 

still other that act to link between the two (see chapter 2; and also reviewed in Gundersen et 

al. (2004)).  What is the nature of these microtubule-cortex interactions?  In chapter 2, we 

saw that there are a number of types of interaction, and various proteins that mediate them.  

In vitro experiments have elucidated that boundary-bound dynein, the microtubule minus end 

motor, can bind to microtubule plus ends and, by walking toward the minus end, pull on the 

microtubule (Laan et al., 2012).  Moreover, it was shown before that, again in vitro, that 

pushing forces are also produced at boundaries when microtubules grow into them (Holy et 

al., 1997).  Proteins such as CLASPs, CLIPs, IQGAP, 4.1R, and APC, all mediate “capture” 

of microtubule plus ends at the cortex, resulting in their stabilisation there.   

Thus, we have a picture of microtubule-cortex interactions where microtubules are capable of 

continuation of growth into a barrier, producing force, though whether this is the case in vivo 

is not clear, where there are mediators of this growth.  Furthermore, it is possible that growth 
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rate may be reduced whilst growing against a barrier, reducing the size of the GTP cap, 

destabilising the microtubule and resulting in catastrophe.  Previously, a simple model of 

microtubule dynamics in the context of cell growth found that it was necessary to have an 

increased catastrophe rate at the cell periphery in order to explain observed cell growth 

(Picone et al., 2010), while the notion of cortex-induced catastrophe is supported by an 

analysis of the microtubule “life cycle” throughout the cell, finding intracellular catastrophe 

is low compared to boundary catastrophe (Komarova et al., 2002). 

Thus, one of the main determinants of microtubule radiality is microtubule-cortex 

interactions.  Here, I use image processing of time-lapse recordings of the +TIP protein 

CLIP-170, introduced in chapter 2, to characterise the dynamics of microtubules in ordinary 

cells, and in cells in which Rac1, a protein involved in microtubule-cortex interactions, has 

been inhibited.  In the next section, I summarise what is known about Rac1, and why it is of 

interest here. 

b. Rac1 and microtubule organisation 

Rac1 is a member of the Rho family of small GTPases, along with many other members, 

including the well-studied Cdc42 and Rho proteins (A, B and C) (Hall, 2012).  They act as 

molecular switches, cycling between inactive GDP-bound and active GTP-bound states, and 

are involved in a variety of cellular processes by regulating downstream “effector” molecules 

(Hall, 2012).  One of the most prominent cellular activities that the Rho GTPases are 

involved in is cell migration (Ridley, 2001), where Rho proteins promote formation of 

contractile actin structures, “stress fibres”, in response to lysophosphatidic acid (Ridley and 

Hall, 1992), while Rac1 causes membrane ruffles (Ridley et al., 1992) by promotion of 

branched actin filament formation by the Arp2/3 complex (Eden et al., 2002).  Cdc42 is 

involved in formation of cellular protrusions rich in actin, known as filopodia (Hall, 2012) 

Previously, Rac1 was also found to be involved with not only actin but also microtubules in 

migrating cells (Fukata et al., 2002), through one of its effector molecules, IQ motif 

containing GTPase-activating-like protein (IQGAP).  This protein was originally identified as 

a potential Ras GTPase activating protein (GAP) (Weissbach et al., 1994), hence its name.  

However, rather than possessing GAP activity, instead, IQGAP binds Rac1 and Cdc42 in 

their activated GTP-bound forms (Kuroda et al., 1996).  IQGAP is also an intermediary 

between Rac1 and Cdc42 and actin (Bashour et al., 1997; Hart et al., 1996).  When IQGAP is 

bound to active Rac1 or indeed Cdc42, it binds via its C-terminus to the +TIP protein CLIP-

170 (Fukata et al., 2002).   
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Fukata et al. (2002) found that a constitutively-active (CA) form of Rac1 (Racv12) caused 

EGFP-CLIP-170 comets to remain relatively immobile compared to the control condition 

(displacement of < 0.5 μm over 24 seconds), while a C-terminal fragment of IQGAP caused a 

change in localisation of EGFP-CLIP-170 from microtubule plus ends to diffuse in the 

cytoplasm. They also found that a mutant IQGAP that cannot bind to Rac1 (or Cdc42) 

induced formation of multiple leading edges in migratory cells (Fukata et al., 2002), 

suggesting that, in an analogous manner to the role of the yeast CLIP-170 homologue tip1p, 

which produces a polarised microtubule morphology by modulating microtubule behaviour at 

the cortex (Brunner and Nurse, 2000), CLIP-170 may permit the “safe passage” of 

microtubules along the cortex until they reach appropriate locations, which would be 

indicated by the presence of IQGAP and Rac1/Cdc42 (Brunner, 2002).  

An ongoing investigation in the Mogensen laboratory is the mechanism of re-organisation of 

the microtubule population from a radial array to the apico-basal array characteristic of 

differentiated epithelial cells (Bacallao et al., 1989).  In the apico-basal array, microtubules 

are no longer anchored at the centrosome but at apical sites instead (Mogensen et al., 2000), 

and, rather than being nucleated there, a “release and capture” model has been proposed, 

whereby microtubules are originally nucleated at the centrosome and relocate to the apical 

sites, where they are subsequently anchored (Bellett et al., 2009; Mogensen, 1999).   

One of the main anchoring molecules is the protein ninein, an acidic coiled-coil protein 

which localises to the centrosome (Bouckson-Castaing et al., 1996).  Depletion of ninein 

causes disorganisation of the microtubule radial array (Dammermann and Merdes, 2002), and 

its overexpression prevents the release of microtubules from the centrosome in migrating 

cells (Abal et al., 2002).  Furthermore, ninein can also affect nucleation through its 

interaction with microtubule nucleating machinery (Delgehyr et al., 2005; Stillwell et al., 

2004).  Ninein has been shown to mimic the movement of microtubule from centrosomal 

anchorage to apical anchorage in supporting epithelial cells of the mouse cochlea (Mogensen 

et al., 2000), and it is transported along microtubules, in both a plus end- and minus end-

directed fashion, during the polarisation process (Moss et al., 2007).  The apical sites at 

which the microtubules are anchored is apparently associated with adherens junctions (Moss 

et al., 2007), although ninein and another anchoring molecule, nezha, which has been found 

at adherens junctions, do not co-localise (Meng et al., 2008). 

These data suggest that efficient redeployment of ninein to the junctions would require 

targeting of microtubule plus ends to those sites.  Since IQGAP localises to cell-cell junctions 

(Kuroda et al., 1996), the mechanisms outlined above that control microtubule behaviour at 

the cortex in migrating cells may also contribute to microtubule capture, and thus facilitate 

ninein redeployment and later, formation of the apico-basal array and epithelieal polarisation.   

Since Rac1 regulates the positioning of IQGAP-based CLIP-170 interaction, one of the first 

questions to be answered is: how does Rac1 affect microtubule behaviour at the cortex in 

cells with a radial array?  One such cell line is the retinal pigment epithelial (ARPE-19) cell 

in an undifferentiated state (as in fig. 2).  When grown in culture to confluence, these cells 

make contacts with one another, with the localisation of β-catenin to these sites indicative of 
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adherens junctions.  Rac1 has been observed to localise to the adherens junctions in these 

cells; thus, ARPE-19 cells will make a good study system for the effects of Rac1 on 

microtubule behaviour at the cortex, and of course elsewhere in the cell.    

It is clear that Rac1 inhibition has a major effect on the organisation of the microtubule 

cytoskeleton (compare figs. 2 and 3), and as it is localised to adherens junctions and is 

involved in microtubule-cortex interactions in other cell types, the disorganised phenotype 

may be a consequence of disrupted microtubule-cortex dynamics.  Previously, it has been 

shown that a dominant negative (DN)-Rac1 reduced the abundance of “pioneer” microtubules, 

which grow into lamellipodia, and made microtubule dynamics similar to those of more 

centrally-located microtubules (Wittmann et al., 2003).  Here, it might be expected that Rac1-

inhibited cells and cells with a DN-Rac1 might have similar microtubule organisation.  In that 

study, the analysis was performed in the PtK1 cells, a marsupial kidney epithelial cell line, 

and indeed, the lack of these pioneer microtubules produces a more compact array; however, 

many microtubules do apparently reach the border of the cell at a perpendicular angle, 

contrary to the appearance of the Rac1-inhibited cells (Nishimura et al., 2012).  However, in 

this system, cells were migrating, without forming junctions with one another. 

Interestingly, CA-Rac1 has been shown to induce microtubule organisation more similar to 

that shown in figure 3 than that of DN-Rac1 cells (Nishimura et al., 2012).  In that case, both 

the DN- and CA-Rac1 were introduced (separately) into human U2-OS oteosarcoma cells, 

and indeed, the CA-Rac1, but not the DN-Rac1, produced a microtubule organisation similar 

to that shown in figure 3, where microtubules tend to be parallel to the cell edge, often 

forming bundles there.  The discrepancies between the studies of a DN-Rac1 and the Rac1 

inhibition in the Mogensen lab may be to do with the fact that the mechanisms of interfering 

with Rac1 function are different; indeed, it could be the case that the two strategies of 

interfering with Rac1 affect its interaction with IQGAP differently.  Alternatively, the source 

of the differences could be due to the different cell lines used, or the fact that the other studies 

were interested in migrating cells, rather than cells at confluence that had formed junctions 

with one another.  Ultimately, the differences will be better addressed once the CA-, DN-

Rac1 and inhibition are conducted in the same cell line, in the same lab. 

In any case, the Rac1-inhibited microtubule organisation phenotype is reproducible in the 

Mogensen lab, and the fact that it has been shown to have an active role in cortical capture of 

microtubules supports the notion that inhibiting Rac1 will lead to microtubule disorganisation.  

Thus, inhibition of Rac1 will be taken here as a model for disrupted microtubule-cortex 

interaction.  Of course, given the involvement of Rac1 in organisation of the actin 

cytoskeleton as well as microtubules, it is probable that inhibition of Rac1 will interfere with 

actin cytoskeleton organisation.  Given the cross-talk between the two cytoskeletal systems, it 

is therefore also probable that the documented roles, here and elsewhere, of Rac1 in the 

organisation of either system, is a result of interplay between microtubules and actin, and 

Rac1 in organising both of them.  The argument taken here is that while this may be the case, 

Rac1 inhibition still leads to disrupted microtubule organisation, especially at the cortex.  

Such disorganisation may operate through actin, or be direct, or indeed both; mechanisms at 

this level are not the focus of this work, instead, here we are interested in understanding how 
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microtubule dynamics differ between central and peripheral regions of the cell and how that 

affects dynamics in unperturbed and Rac1-inhibited cells. 

To better understand the role of microtubule cortex interactions in organisation of the 

microtubule network, I process time-lapse recordings of CLIP-170-GFP in ARPE-19 cells, 

with and without inhibition of Rac1.  CLIP-170, as discussed already, labels growing 

microtubule plus ends (Perez et al., 1999), and thus, can be used to measure microtubule 

dynamics, as has been done before (Komarova et al., 2002).  Of course, other +TIP proteins 

(discussed in chapter 2) labelled with fluorescent proteins could be used for a similar purpose.  

To date, no extensive investigation into whether these are equivalent, or somehow bias 

measurements of microtubule dynamics by labelling only a subset of microtubules, has been 

made, and is beyond the scope of this work.  Tracking is done with the aid of the tracking 

software “plusTipTracker” (Applegate et al., 2011), and further analysis to fully characterise 

microtubule dynamics in this system.  The software, and subsequent processing, which makes 

use of directional statistics and computational geometry, are described in the next sections. 
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B. METHODOLOGY 

I. Comet tracking 

a. plusTipTracker 

plusTipTracker takes input films as series of TIFF file images.  Method pertaining to 

maintenance and preparation of cells are in appendix (section F).  Time-lapse recordings of 

CLIP-170-GFP comets of 60 frames, 2.5 seconds apart (see appendix I for wet lab 

methodology), were passed to plusTipTracker, which was run with its default tracking 

parameters.  Note that cells were analysed when confluent, so they were not migrating, as in 

figures 2-3.  Although +TIP comets only mark microtubule growth phases, plusTipTracker 

infers the other two states by linking growth tracks together (Applegate et al., 2011).  

The following description of the analysis of microtubule dynamics, based on the output of 

plusTipTracker, warrants a short summary of what this output is exactly, so that it will be 

clear what the data are and where they are coming from.  All of the matrices and structures 

discussed below are the basis for both the processing of data carried out within 

plusTipTracker itself, or my subsequent analysis of microtubule dynamics.   

The main output of plusTipTracker is an index of “sub-tracks”: these are the detected comets 

that have been linked across frames to make microtubule trajectories.  These trajectories may 

be growth, pause or shrinkage phases, and depending on whether a sub-track has been linked 

to another sub-track to make a “compound” track, the sub-tracks may have the same index.  

Thus, the sub-track matrix is an array with mp rows, where mp is the number of sub-tracks 

before reclassification (see below), and the columns contain information about the track:  

1. Compound track index 

2. Start frame 

3. End frame 

4. Growth rate (μm min-1) 

5. Track type (i.e., growth, shrinkage, pausing, unclassified) 

6. Lifetime (frames) 

7. Displacement (pixels) 

 

The compound track index indicates which row to refer to in the co-ordinate matrices; these, 

one for x- and another for y-co-ordinates, are of size n-by-f, where n is the number of 

compound tracks, and f is the number of film frames.  Thus, the co-ordinates of any sub-track 

can be obtained using the compound track index as the row, and the start and end frames as 

the first and last column, respectively, in the co-ordinate matrices.   

There are two more matrices of which we should be aware; they are the “reclassified matrix” 

and the “statistics matrix”: the former is the same as the sub-track matrix, but after 

reclassification of sub-tracks that were initially determined to be pausing as growth, and those 

that were considered to be shrinking as pause.  If a sub-track is reclassified as growth from 

pause, then it is merged with the growth tracks that were adjacent to it (a pause, by definition, 
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must be flanked by growth); thus, the reclassified matrix tends to have fewer rows than the 

sub-track matrix, designated m.  The reclassified matrix has some other differences to the 

sub-track matrix; first, sub-track lifetime is now in seconds, not frames, and displacement is 

in microns, not pixels.  Moreover, the reclassified matrix contains additional information in 

three extra columns:  

8. A logical (i.e., “yes” or “no”) for nucleation, i.e., whether this is the first instance of the 

compound track or not 

9. Only relevant for growth tracks, it indicates the event that resulted in the growth track 

ending (i.e., “termination”, pause, shrinkage, or unclassified) 

10. A logical for whether the sub-track is part of a compound track or not 

 

The statistics matrix is called so because it contains the data that plusTipTracker uses for its 

statistics calculations.  So as not to bias some of these statistics, for example nucleation rate, 

the sub-tracks that were detected in the first frame, and the first linked pause or shrinkage 

track, are removed, as are the sub-tracks that were present in the last frame, along with the 

last linked pause or shrinkage track.  Therefore, it contains ms rows, reduced from m, while 

the columns remain the same as in the reclassified matrix. 

b. Sub-cellular analysis 

In order to easily measure dynamics in central and peripheral areas, I designed an interactive 

tool in Matlab, called “analysetracks”, that allows the user to delineate the areas, and then the 

tracks (so defined by plusTipTracker) in each area are then analysed.  The algorithm runs 

thus: 

1. User input: the first frame of the image, and the projData structure from 

plusTipTracker (this contains the matrices described above).  Check that the image 

and projData structure match by plotting all tracks on the image and asking the user to 

verify they are correct (fig. 4). 

2. Obtain original data from projData; among these are the pixel size, the number of and 

time between frames, and the sub-track, reclassified and statistics matrices described 

above. 

3. Display the first frame and ask user to define the border of the cell by clicking on the 

image with the mouse at positions along the border.  Clicks must be in a clockwise 

direction (since later parts of the process require that the direction of the points is 

known; see 6), and terminated with a click on the first point (fig. 4). 

4. Ask the user to define a relevant cell axis by clicking on the first frame images, and 

then to enter a value for the “relative border size”, the percentage of the length of the 

defined cell axis that will determine the “thickness” of the border region (fig. 5A). 

5. Based on the cell axis and relative border size, the outer and inner borders are plotted 

on the image, and the user is asked to verify that they are happy with them (fig. 5B).  

The inner border is found by moving the specified distance from each vertex of the 

outer border, in the resultant direction of the edges adjacent to each vertex.  Where 

two outer vertices are close together and the inner vertices result in crossed lines for 
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the inner border, the offending inner vertices are removed and replaced by the point at 

which the crossed lines intersect. 

 

 

 

Figure 4.  Example image and time-lapse.  All tracks (red) and user-defined border (purple) 

plotted on left panel; tracks located outside border are coloured yellow.  Scenes from frames 

(right panel, frames indicated by numbers) of a time-lapse film, showing untracked (left column) 

and tracked (cyan, right column) comets.  Scale bar 10 μm.  Image courtesy of Debbie Goldspink, 

Mogensen lab.  Note that cell is in confluent culture, and not migrating. 

7 
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Figure 5.  Defining the “inner border”.  The user defines a relevant cell axis (A, cyan) by 

clicking on the image with the outer border plotted (A, red), and these are then processed to 

produce the inner border (B, cyan), which, together with the outer border (B, red), defines a 

border region of the cell.  Scale bar 10 μm.  Images courtesy of Debbie Goldspink, Mogensen lab.  

Note that cell is in confluent culture, and not migrating. 

6. Next, in order to identify which tracks, or which parts of a track, are in a given area, I 

use an algorithm based on defining the area by the midpoints of its edges and vectors 

that are orthogonal to each edge (fig. 6A).  Here, for each co-ordinate of a track, the 

vectors from each midpoint to that co-ordinate are calculated, and the dot product of 

each of these with the corresponding orthogonal is found.  If the co-ordinate is within 

the area, all of these dot products are positive, since the vectors from each edge 

midpoint point in the same direction as the edge orthogonal vectors, whereas if the co-

ordinate is outside the area, then at least one of the dot products will be negative (fig. 

6A).  However, this algorithm only works for areas that are convex; thus, if the outer 

and inner regions are not convex already, they must be converted into a set of convex 

shapes.  My algorithm for splitting the area into a set of convex shapes, based on a 

common “triangulation” method, is contained in the function “makeconvex”.  Briefly, 

it relies on the fact that the co-ordinates that define each area have been given in a 

clockwise direction.  In fact, it does not matter whether it is clockwise or anti-

clockwise, as long as the direction is always the same, and, just to confuse the issue, 

the directions are actually reversed in an image, since the y-axis runs in the other 

direction (i.e. y = 0 is at top-left).  In Cartesian space, to identify a concave shape, we 

use the fact that in a convex shape, every angle between adjacent edges is always less 

than 180° in the anticlockwise direction.  To convert the concave shape into a set of 

convex shapes, one draws a line from the right-turn to the next-but-one vertex (fig. 
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6A), so long as the next turn is not a right turn; if the next turn is a right turn, then the 

current right turn is abandoned until the next right turn is no longer a right turn by 

having made that sub-shape convex.  Doing this iteratively gives the set of convex 

shapes (fig. 6B). 

7. Now, for every track co-ordinate, the orthogonal dot-product test is conducted to 

determine if it lies within the area.  This is done for the whole area, and the inner area 

alone.  Those that are exclusive to the outer area are defined by being in the first set 

and not the second.  Thus, there is now a set of arrays of tracks that lie within the 

defined areas. 

8. Point 7 can produce tracks of a single point, if a track started in an area and then had 

left by the next frame, or moved into an area in its final frame, or indeed, briefly 

entered an area and then left by the next frame.  These are removed. 

9. The tracks are plotted in their areas and the user is asked to verify that they have been 

allocated to the correct area (fig. 7A). 

10. Information about each set of tracks is collected.  Such information includes the 

descriptive statistics regarding growth and shrinkage etc., much like the output of 

plusTipTracker, the orientations of each track at each frame, and the relative 

orientation between a comet trajectory and the nearest cell edge (fig 7B).  For each 

track in a given area, its speed, displacement, lifetime, etc., are found by searching the 

reclassified matrix with the row and column indices of the co-ordinates of the track in 

that area; the statistics are based on these.  The orientation of each track is found 

using the co-ordinates, which are defined in co-ordinate matrix described above, 

while the nearest edge is found by taking the edge with the minimum perpendicular 

distance to the co-ordinate. 
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Figure 6.  Convex shapes and the “orthogonal dot-product” method.  A shape (A) is defined 

by its edge midpoints (red asterisks) and orthogonal vectors (green lines).  If a point is inside the 

shape (blue plus), the dot products of each of the orthogonal vectors and the vectors from the 

midpoints to the point will be positive (example midpoint-point vector shown in dark grey dash-

dot line to plus).  If a point is outside the shape (blue cross), then at least one of the dot products 

of the orthogonal vectors and the vectors from the midpoints to the point will be negative 

(example negative midpoint-point vector shown in dark grey dash-dot line to cross).  This 

algorithm requires convex shapes, so shapes with “left-turns” (in the clockwise case, shown here 

with magenta asterisks) must be split into convex sub-shapes (light grey dotted lines).  An 

example image (B) is shown with outer (red) and inner (cyan) areas split into convex shapes.  

Scale bar 10 μm, images courtesy of Debbie Goldspink.  Note that cell is in confluent culture, 

and not migrating. 

 

Figure 7.  Area tracks and track-edge coupling.  Tracks exclusive to the inner area (A, cyan) 

and outer area (A, magenta) are displayed, while the outer area tracks are colour-coded to 

indicate their closest edge (B, and enlarged area in white in inset).  Scale bar 10 μm, images 

courtesy of Debbie Goldspink, Mogensen lab.  Note that cell is in confluent culture, and not 

migrating. 
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II. Statistics and calculations 

a. Microtubule dynamics 

The data obtained from plusTipTracker and the subsequent processing as described in the 

previous sub-section can be used to make estimates of parameters used in traditional 

descriptions of microtubule dynamics, i.e. growth and shrinkage rates, and transition 

frequencies.  A diagram of microtubule dynamics is shown in figure 8, with adjustments 

made to indicate the extent of information available from +TIP protein tracking. 

 

Figure 8.  Microtubule dynamics parameters from plusTipTracker.  Microtubules transit 

between the 3 phases shown in black capitals, with frequencies denoted by F.  Nucleation 

frequency (Fnuc), microtubule number (N) and microtubule bending (bending) also affect 

organisation of the network.  As with any labelled +Tip protein, plusTipTracker can only infer the 

characteristics of shrinkage and pausing (indicated by dashed black crosses), and thus, nothing 

can be said of the transitions between these states (indicated by dashed red crosses). 

Growth and shrinkage rates are immediately obtainable; however, transition frequencies are 

estimated based upon the number of occurrences of a given transition, and the time spent in 

the phase it transits from: 

𝐹𝑡𝑟𝑎𝑛𝑠 = 𝑁𝑡𝑟𝑎𝑛𝑠 𝑡𝑝ℎ𝑎𝑠𝑒⁄ ,     (1) 

where Ftrans and Ntrans are the frequency and total occurrences of a transition, respectively, 

and tphase is the time spent in the phase that the transition moves away from.  With the 

plusTipTracker data, as with any data set based on observation of +TIPs, where direct 

information concerning microtubule behaviour is only available for the growth phase, the 

estimation is subject to potential bias.  This is because, e.g. both catastrophes that result in 
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extinction of the microtubule and those that are followed by rescue or a transition to the 

paused state, only catastrophes that are followed by a rescue event can be detected, where the 

+TIP protein re-labels the now growing end.  This is in contrast to live recordings of labelled 

microtubules, where all phases can be observed directly, but it is not as easy to discriminate 

individual microtubules. 

Thus, the catastrophe events that lead to extinction are lost; the catastrophe events that are 

followed by a transition to a pause event have two possible fates: either they will be lost, if 

the paused microtubule undergoes another catastrophe and then goes extinct, or they may be 

detected, if the pause event is followed by a rescue, or subsequent catastrophes and pauses 

are followed at some point by a rescue event.  In the latter case, the shrinkage to pause and 

potential pause to shrinkage transitions, Fs2p and Fp2s, respectively, are never detected, and at 

the level of the plusTipTracker analysis, all that is recorded is one catastrophe event, a 

shrinkage rate with inaccuracy affected by the length of any pausing events, and one rescue 

event.  Therefore, the estimated catastrophe frequency is affected by the rescue frequency, 

since it is rescue events that allow us to infer shrinkage and the preceding catastrophe, and so 

any estimate of catastrophe frequency based on this type of data is likely to be an 

underestimate. 

While the estimation of catastrophe frequency is subject to inaccuracy because of inability to 

observe the true number of events, in theory, every rescue event should be observable.  

However, the estimate of rescue frequency is affected by a related problem: while for 

catastrophe, we can be fairly confident that we know the total time in the growth phase that 

we substitute into eq. 1, for Fres, we do not know the total time in the shrinking phase.  

Assuming that every rescue event is detected, i.e., the preceding growth and shrinkage phases 

were observed and inferred, respectively, estimates of rescue frequency based on these data 

are likely to be overestimates.   

The same arguments apply to the growth to pause, and the reverse, transition, Fg2p and Fp2g, 

respectively, where, here, Fp2g estimation suffers from the same problems as those in 

estimating Fcat, and Fp2g is affected by similar problems for estimating Fres. 

Therefore, when calculating transition frequency estimates with eq. 1, when based on this 

type of data, these caveats must be kept in mind.  A means of addressing the discrepancies 

between catastrophe and rescue (or grow to pause and pause to grow) frequency estimates, 

i.e., the tendency to underestimate the former, and overestimate the latter, is to use only the 

growth or shrinkage times preceding the catastrophe (or grow to pause) or rescue (or pause to 

grow).  In absolute terms, these estimates are still inaccurate, because the times of growth or 

shrinkage in eq. 1 will not the total time; rather, just the time of a subset of tracks, and 

estimates of both transition frequencies will be liable to overestimation.  However, in relative 

terms, the transition frequencies are now more comparable, since the catastrophe frequency is 

based now only on the time preceding it, as is the estimate of rescue frequency.  Indeed, these 

types of estimates may be more valid for calculations of drift (see below), etc.  Both types of 

estimate will be calculated and presented in the results. 
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Transition frequencies calculated according to eq. 1 can be used to obtain a probability 

distribution for the transition in question, as long as it is assumed that the probability of that 

transition is the same through the lifetime of a microtubule (see the next chapter for a 

thorough discussion of this).  However, it is also possible, if the distribution of microtubule 

lifetimes prior to a particular transition is considered, to obtain such a probability distribution 

directly.  In this case, rather than making assumptions about the type of distribution 

describing the lifetimes before transition, we could fit a distribution to the lifetimes.  Such an 

approach is potentially possible with the methods outlined in the previous sub-section.  

However, as reported in the results section below, there were not enough data recorded for 

such an analysis. 

b. Track and edge relative orientation 

The relative orientation of track segments, i.e. the difference in orientation between segments, 

was found by first calculating orientations based on the x- and y-coordinates of tracks, and 

then finding the absolute difference between adjacent segments.  The relative orientation 

between a track and its nearest edge was found in a similar manner. 

For generation of the “straight” track data, tracks were split where a relative orientation was 

greater than a given threshold.  To avoid extensive data manipulation, the co-ordinate 

matrices were not altered, i.e., upon track splitting, the compound track remains the same, but 

the start and end frame references change in the sub-track matrix.  Relative orientations are 

only valid for growth tracks, so velocities, lifetimes and distances of only growing tracks are 

re-calculated.  Entries in the new sub-track matrix that are only one frame long are removed.   

Unfortunately, splitting tracks in this manner means they can no longer be linked to pausing 

and shrinking tracks, and thus, the straight data is intended purely as a means of ascertaining 

whether the growth properties of tracks with low relative orientations differ to the original 

growth properties.   

Fitting of probability distributions to the relative orientation data was conducted in Matlab, 

making use of the interactive distribution-fitting tool, “dfittool”.  Visual analysis in the 

interactive tool was used to determine that all available parametric distributions excluding the 

generalised pareto and exponential were not good fits; subsequent analyses of these 

distributions are reported in the results.  The non-parametric kernel-based approach was also 

used: here, to obtain a relatively smooth probability distribution, the empirical data is 

smoothed by a kernel with a given “bandwidth”; the bandwidth value can be set or 

determined according to which produces the best fit; here, the latter approach was used.  A 

higher bandwidth produces a smoother function, but potentially at the expense of worse 

representation of the empirical data.   
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C. RESULTS 

I. Track orientation 

a. Straight vs. bendy tracks 

The aim of this section is to characterise the “orientation behaviour” of microtubules, i.e. 

essentially to answer the question: how bendy are growing microtubules?  This question is 

applied to both experimental conditions, all tracks, and inner and outer areas.  After post-

processing of data obtained from plusTipTracker (see methodology), the total numbers of 

tracks analysed here were 16,205 and 14,548 in the control condition, for original and 

“straight” tracks, respectively, and 15,155 and 13,341 in the Rac1-inhibited condition for 

original and “straight” tracks respectively. 

Figure 9 shows histograms of the relative orientation between adjacent segments of tracks for 

all tracks, and tracks from outer and inner areas.  Here, the data for each experimental 

condition has been pooled.  Evident in the histograms in figure 9 is the fact that a higher 

proportion of relative orientations are lower for control data, and in the Rac1-inhibited cells, 

there is a greater proportion of larger relative orientations.  This is true for all areas, so 

control tracks are generally straighter than Rac1-inhibited tracks. 

There is an increase, in both experimental conditions in all areas, in proportions of relative 

orientations from about 120° to 180°.  This is unusual, since these are very large angles for a 

microtubule to subtend in a short length segment.  For example, an average growth of 12.67 

μm min-1 over a frame length of 2.5 s, gives a distance of ~0.5 μm.  Of course this distance, 

which is the direct route between two points of growth, may not truly represent the length of 

the microtubule in question, since the microtubule can bend, and does not have to go directly 

between the two points.  Therefore, if we assume that any two orientations in a track define 3 

points on a circle joined by two chords of length 0.5 μm, the radius of this circle is the radius 

of curvature required of a microtubule to pass through these points.  A relative orientation of 

120° would require a radius of curvature of ~0.3 μm, half the value at which microtubules 

have been observed to break (Waterman-Storer and Salmon, 1997).  Faster-growing 

microtubules require a lower radius of curvature for any given relative orientation, e.g., a 

growth speed of 20 μm min-1 giving a distance of ~0.8 μm, could pass through the same 3 

points with a radius of curvature of ~0.5 μm.  Incidentally, these large relative orientations 

are greater than the threshold value specified in plusTipTracker.  The source of this apparent 

error is unclear.    

Do overly deviating tracks influence microtubule dynamics?  An extensive presentation of 

the dynamics results is given in the next sub-section; however, efforts were made here to 

address this question by splitting tracks (see methodology) at points where the relative 

orientation was above a threshold of 60°.  This value was chosen because, although the 

relative orientation that satisfies the constraints discussed in the paragraph above at the 

average speed of 12.67 μm min-1 is approximately 30°, the above discussion is very much an 

approximate account of relative orientation constraints, and moreover, although much of the 

data is below 30°, still a lot of the data would be discarded, and the intermediate relative 
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orientations between 30° and 60° may represent true trajectories.  The original and “straight” 

data are compared in figure 10 and tables I-III. 

 

Figure 9.  Histograms of relative orientation.  The proportion of all data is given for differences 

between adjacent track segments, in bins of 10°, for all (A), outer (B) and inner (C) control and 

Rac1-inhibited (NSC) tracks. 

All tracks 

Outer tracks 

Inner tracks 
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Figure 10.  Track characteristics in original and straight data.  Growth speed, time and 

distance are shown for original and “straight” data for both control (left panels) and Rac1-

inhibited (NSC, right panels) cells.  Lines are median values, boxes extend to 25th and 75th 

percentiles (q1 and q3, respectively), whiskers to q1 – 1.5(q3 – q1) q3 + 1.5(q3 – q1). 

Control NSC 

Control NSC 

Control NSC 
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Table I.  Growth speed of original and straight tracks.  Median values and the inter-quartile 

range (IQR) for each area in each experimental condition (control and NSC), before (original) 

and after splitting of overly deviating tracks (straight), are shown. 

 
All Outer Inner 

 
Original Straight Original Straight Original Straight 

Control       

Median 12.09 11.98 11.89 11.78 12.57 12.50 

IQR 9.61 10.72 9.51 10.03 9.92 11.04 

NSC 
      

Median 4.80 4.50 4.26 4.00 5.00 4.70 

IQR 4.65 5.22 3.59 4.06 4.98 5.66 

 

 

Table II.  Growth time of original and straight tracks.  Median values and the inter-quartile 

range (IQR) for each area in each experimental condition, before (original) and after splitting of 

overly deviating tracks (straight), are shown. 

 
All Outer Inner 

 
Original Straight Original Straight Original Straight 

Control       

Median 7.50 5.00 7.50 5.00 7.50 5.00 

IQR 10.00 7.50 7.50 7.50 7.50 7.50 

NSC       

Median 7.50 2.50 7.50 2.50 7.50 2.50 

IQR 7.50 2.50 7.50 2.50 5.00 2.50 

 

 

Table III.  Growth distance of original and straight tracks.  Median values and the inter-

quartile range (IQR) for each area in each experimental condition, before (original) and after 

splitting of overly deviating tracks (straight), are shown. 

 
All Outer Inner 

 
Original Straight Original Straight Original Straight 

Control       

Median 1.65 1.02 1.50 1.00 1.60 1.01 

IQR 2.36 2.05 1.90 1.80 2.27 1.96 

NSC       

Median 0.69 0.28 0.60 0.28 0.70 0.28 

IQR 0.84 0.51 0.76 0.48 0.85 0.51 
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As figure 10 and tables I-III show, there is a consistent decrease in median values for growth 

speed, time and distance in the straight tracks compared to the original tracks.  This is true for 

both experimental conditions.  As is the case with the original data, the straight data was not 

normally distributed (Chi-squared test, p < 0.05).  The differences between the original and 

straight data were significant for time and distance (Wilcoxon rank sum test, p < 0.01).   

Therefore, tracks with lower intra-segment relative orientation grow more slowly, for less 

time and distance, than tracks with greater intra-segment relative orientation.  The decrease in 

time and distance was expected due to the splitting of tracks between segments with high 

relative orientation.  The decrease in average speed must result from exclusion from the 

straight data of faster parts of tracks; exclusion can result either from the splitting, whereby 

the portion of the track between two frames that have now been put into different tracks is no 

longer considered, or from removal of serial segments that have high relative orientation. 

As the straight growth tracks cannot be linked with tracks allocated to other phases, nothing 

can be said of the characteristics of pausing and shrinkage in straight tracks.  Additionally, 

the trajectories of pausing and shrinkage tracks are of course inferred from flanking growth 

tracks, so it does not make a great deal of sense to commit these phases to the same kind of 

analysis as above. 

b. Orientation distribution 

To quantitatively describe the relative orientation of each experimental condition and 

intracellular area, selected probability distributions were fit to the data.  To avoid overtly 

complex probability models, only relative orientation data up to 60° were considered.  Also, 

it was found that all completely straight adjacent segments (i.e. 0° relative orientation) were 

attributable to those tracks that were originally allocated as pausing tracks but re-assigned to 

growing tracks (see methodology for plusTipTracker data description) by plusTipTracker; 

thus, all zero relative orientation data were removed.   

For each experimental condition or area, the proportions of relative orientations in bins of 5° 

were found; this type of data is analogous to a probability density function.  These data are 

shown in figures 11 and 12 for control and Rac1-inhibited conditions, respectively.  In 

finding an appropriate probability distribution, visual inspection of the probability density 

distributions, which decreased rapidly and then levelled off with increasing relative 

orientation, suggested that an exponential distribution might be a good representative model.  

Further analysis (see methods) suggested that a generalised Pareto distribution may also be an 

appropriate fit.  Random numbers (n = 20,000) taken from these distributions were plotted as 

proportions over the probability densities (figs. 11 & 12 Ai & Bi), or in cumulative 

distributions (figs. 11 & 12 Aii & Bii).  Although in many cases, both of these distributions 

appeared to the fit the data quite well, they were both found to be significantly different from 

the empirical data in all cases (2-sample Kolmogorov-Smirnov test, p < 0.05).   

Other standard distributions also did not fit the data well (methods), and so a non-parametric, 

smoothing kernel-based approach was adopted (again, see methods for details).  Bandwidth 

values for the best-fitting distributions are shown in table IV.  The kernel probability 
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distribution fits are also shown in figures 11Ci-ii and 12Ci-ii.  Visual inspection of these 

distributions suggests that they provide better fits of the data, and indeed, they were 

significantly similar to the data in every case (2-sample Kolmogorov-Smirnov test, p > 0.05). 

 

 

Figure 11.  Control proportions and cumulative distribution functions.  For all tracks (A) and 

outer (B) and inner (C) areas, empirical proportions sampled distributions (i) and empirical and 

modelled cumulative distribution functions (ii) are shown. 
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Figure 12.  Rac1-inhibited proportions and cumulative distribution functions.  For all tracks 

(A) and outer (B) and inner (C) areas, empirical proportions sampled distributions (i) and 

empirical and modelled cumulative distribution functions (ii) are shown. 

Table IV.  Bandwidth values for kernel-based probability distributions.  Values for control 

and Rac1-inhibited (NSC) conditions for each area, so determined by best fitting. 

Condition All Outer Inner 

Control 0.186 0.232 0.206 

NSC 0.232 0.284 0.255 
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It makes sense to test only the relative orientations of control and Rac1-inhibited tracks in 

inner and all tracks groups; these are not normally distributed (Kolmogorov-Smirnov test, p < 

0.05), and differ significantly (2-sample Kolmogorov-Smirnov test, p < 0.001). The 

proportions of relative orientations in bins of 5° show that there is little difference (fig. 13) 

between intracellular areas: the relative orientation data are not significantly different 

between areas (2-sample Kolmogorov-Smirnov test, p > 0.05). 

 

Figure 13.  Proportions and cumulative distribution functions by area.  For control (i) and 

Rac1-inhibited (ii) conditions, the proportions (A), empirical (B) and modelled (C) cumulative 

distribution functions are shown for outer and inner areas. 
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c. Cortical approach orientation 

In this section, the orientation of comet tracks relative to the cell edges is considered.  As 

with the previous analyses of orientation, tracks were split according to the relative 

orientation between adjacent segments.  Since these tracks are close to the cell edge, a greater 

allowance was made for microtubule bending, and the threshold was set at 90°.   

First of all, the edge-relative orientation as a function of the distance between a comet and the 

edge is considered.  Here, the depth of each outer area was normalised so as to allow pooling 

of the data for each condition; thus, a value of 1 is the farthest point from the edge, and 0 is 

right upon the edge.  The distribution of comets was found for discrete groups: distance was 

split into 10 groups of size 0.1 – “normalised groups”, and relative orientation was split into 

18 groups of size 10°.  For each of these groups, the number of comets, or rather, instances of 

a comet (i.e. the appearance of a comet in one frame) was found, and normalised to the 

maximum count.   

Heat maps of the comet counts are shown in figure 14A & B for control and Rac1-inhibited, 

respectively.  Here we see that the greatest number of comets occurs at approximately 0°, i.e. 

parallel to the edge.  In the control condition, this maximum is shifted closer to the edge 

relative to the other condition.  There are more comets in both conditions on the positive 

orientation side, indicating that more microtubules do grow toward the edge rather than away 

from it, and again, in the control condition, these higher values are shifted closer to the edge 

relative to the other condition.   

Another way of representing the data is to express the counts relative to the maximum value 

in each discrete distance bin.  This reveals the distribution of comets at each distance (fig. 14 

C & D).  In this case, the heat maps differ to a greater extent; we see that at greater distances 

in the control condition, there are the highest numbers of comets at high positive angles, 

indicating that microtubules grow predominantly perpendicular to the edge up until around 

the 0.5 distance mark.  In the Rac1-inhibited condition, however, although there are more 

comets at high positive orientations at greater distances than negative orientations, the 

maxima occur closer to the 0° mark, indicating that in this condition, microtubules tend to 

grow predominantly parallel to the edge even at greater distances. 

Finding the resultant relative direction at each discrete distance supports the conclusions 

made above (fig. 15A).  Here, the resultant direction of control comets relative to the edge is 

towards the cell edge more than in the Rac1-inhibited condition, and this difference is marked 

for the first 5 distance groups, i.e. 0.5 – 1.0 in normalised distance. 
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Figure 14.  Heat maps of comet orientation relative to cell edge (previous page).  Colours 

indicate the numbers of comets relative to the maximum (refer to colour bar) for all orientation 

and distance bins (A & B, for control and Rac1-inhibited conditions respectively), and for each 

distance bin (C & D, for control and Rac1-inhibited conditions respectively), i.e. the top row 

colours depend on the ratio of comets in a given bin compared to the bin with the highest number 

of comets overall, while the bottom row colours depend only on ratios compared to the bin with 

highest number of comets in a given distance bin.  The concentration of “hot” colours around 0° 

in D indicates that Rac1-inhibited cells take shallower approach angles that control comets (C). 
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Forgetting the distance groups and taking the proportion of comets in each orientation group, 

there is a higher proportion of comets with edge-relative orientations in the region of 90°-60° 

than in the Rac1-inhibited group (fig. 15B).  For many of the other orientation groups, 

proportions are similar between the conditions; however, the proportion of comets in the 

control condition that are oriented at -90° to -30° is much less than in the other condition.   

 

Figure 15.  Resultant edge-relative comet orientations.  The resultant direction at each 

distance bin, from 1 to 0 in bins of size 0.1, for control (blue) and Rac1-inhibited (red) conditions 

(A), and the proportion of comets in each direction bin for control (blue) and Rac1-inhibited (red) 

(B).  Units in B are degrees. 

Histograms of the edge-relative orientation for all edge distances, and for the closest and 

farthest 5 bins, demonstrate further the differences and similarities between treatments seen 

in the preceding figures (fig. 16).  Here, for all edge distances, proportions of comets are 

similar between conditions apart from the high positive relative orientations (fig. 16A), 

whereas for the furthest distances (bins 1 – 0.5), the conditions have an entirely different 

distribution (fig. 16B), and in the closest distances (bins 0.5 – 0), the conditions again have 

similar distributions, perhaps more so than for all distances (fig. 16C).  Despite the 

similarities in some cases, the differences in edge-relative orientations were significant 

(Wilcoxon rank sum test, p < 0.001), after establishing non-normality (Chi-squared test, p < 

0.05).  Therefore, control condition microtubules generally grow at greater angles relative to 
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the cell edge, and this difference is accentuated at the farthest distance away from the cell 

edge, within the outer areas. 

 

Figure 16.  Edge-relative comet orientation histograms.  The relative orientation of comets for 

each experimental condition, for all edge distances (A), the farthest 5 distance bins (B) and the 

closest 5 bins (C). 
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Another means of quantifying the edge-relative comet orientation is to take the proportion of 

comet tracks that point toward the cell edge; this measure is similar to the radiality measure 

discussed above.  Figure 17 shows the cumulative sums of the proportions of comets in each 

orientation bin of size 10°.  Here, the steeper slopes indicate greater accumulation of tracks, 

and thus, a higher propotion.  Thus, the Rac1-inhibited condition has a greater proportion 

between -90° and approximately -30°, while the steeper slope in the control condition above 

45° indicates that there are a higher proportion of tracks there.  The radiality, based on 

varying levels of threshold edge-relative orientations, is shown in table V.  This shows that 

the control treatment has consistently higher radiality scores than the Rac1-inhibited 

condition. 

 

Figure 17.  Cumulative sums of edge-relative orientation.  Shown for control (blue) and 

Rac1-inhibited (red).  Dashed lines correspond to thresholds shown in table V. 

Table V.  Radiality of outer area comets.  Proportions of comets oriented relative to the cell 

edge above threshold values, θ, are shown for control and Rac1-inhibited (NSC) conditions. 

 Proportion 

Edge-relative orientation Control NSC 

θ > -45° 0.9505 0.9034 

θ > 0° 0.7189 0.6261 

θ > 45° 0.2350 0.1574 
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II. Microtubule dynamics 

a. Whole-cell microtubule properties 

In this section, microtubule properties over the whole cell are considered.  Although in the 

previous section, the orientation data showed that a small proportion of the tracks appear to 

deviate by a rather great extent, there is no thorough means of dealing with these overly-

deviating tracks when it comes to the analysis of microtubule dynamics.  Since shrinking and 

pausing phases are inferred between episodes of growth, splitting tracks according to relative 

orientation criteria effectively disconnects these tracks, and the pausing and shrinking phases 

are lost.  Therefore, the subsequent analysis is based on all of the data.   

First, the speeds, times and distances for each microtubule phase are considered.  The data for 

all similar areas were pooled, i.e. for each treatment, all data for the inner tracks were put 

together, as were those for the outer tracks, and all tracks.  The mean values for each 

treatment (i.e. using the pooled data) are shown in table VI and figure 18.  All data sets were 

found to be non-normally distributed (Chi-squared test, p < 0.01).  Note that, despite this non-

normality, the mean values are reported because the mean is reported in the literature.  

Growth speed, time and distance and pause time (see terms list) were significantly decreased 

in the Rac1-inhibited condition (Wilcoxon rank sum test, p < 0.01). 

 

Figure 18.  Average values of speed, distance and time for pooled data.  All tracks data 

were used to calculate mean values for applicable phases for control and Rac1-inhibited (NSC) 

cells.  Error bars are standard deviation. 



72 

 

Table VI.  Average values of speed, distance and time for pooled data.  The mean values, 

for applicable phases, of data from all tracks for control and Rac1-inhibited (NSC) cells, ± the 

standard deviation.  Units are μm min-1 (speed), s (time) and μm (distance). 

 Control NSC 

Grow 
  

Speed 12.67 ± 6.47 6.12 ± 4.64 

Time 11.63 ± 9.18 9.98 ± 7.87 

Distance 2.63 ± 2.80 0.93  ± 0.82 

Shrink 
  

Speed 22.76 ± 4.50 - 

Time 5.08 ± 0.46 - 

Distance 1.93 ± 0.40 - 

Pause 
  

Time 8.26 ± 2.78 7.77 ± 2.76 

 

b. Microtubule properties by area 

The same properties, for each area in both experimental conditions, are shown in table VII 

and figure 19.  The all track data is repeated for ease of comparison with the inner and outer 

track data.  The difference between experimental conditions found in the all track data is also 

evident in the area data, where the values for similar areas are all greater in the control 

condition than those for the Rac1-inhibited condition.   

Comparing within-treatment values, in the control condition, the inner area growth speed, 

distance and time are all greater than in the outer area, as is the pausing time, while the speed 

of shrinkage is greater in the outer area, and although shrinkage time is reduced in the outer 

area, the distance is narrowly greater there.  For the Rac1-inhibited data, we see that growth 

speed and distance are greater for the inner area, while growth time is greater for the outer 

area.  As in the control cells, pause time is greater in the inner area. 

The results presented in table VII were subject to statistical testing.  Upon tests for normality, 

all data sets were either found to be non-normal (Chi-squared test, p < 0.05) or had too few 

entries (the shrinkage data sets for control cells) to conduct a proper normality test.  The 

collected data, i.e., all areas for each experimental condition for a single measure, e.g., 

growth time (except shrinkage data, which was not assessed for Rac1-inhibited cells) was 

then non-parametrically tested for significant differences.  The data for growth speed, time 

and distance, and pause time were found to have a significant difference (Kruskal-Wallis test, 

p < 0.05), while none of the shrinkage properties were found to be significantly different 

(Kruskal-Wallis test, p > 0.05).  Next, intra-data comparisons were conducted for the growth 

and pause data; these were: 1. all tracks, control vs. Rac1-inhibited, 2. outer tracks, control vs. 

Rac1-inhibited, 3. inner tracks, control vs. Rac1-inhibited, 4. control cells, inner vs. outer 

tracks, and 5. Rac1-inhibited cells, inner vs. outer tracks.   
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Table VII.  Average area values of speed, distance and time.  The average values, ± the 

standard deviation are shown for growing, shrinking and pausing tracks for each cell area for 

control and Rac1-inhibited (NSC) cells.  Units are μm min-1 (speed), s (time) and μm (distance). 

 
Control NSC 

 
All Outer Inner All Outer Inner 

Grow 
      

Speed 
12.67 
± 6.47 

12.46 
± 6.43 

13.13 
± 6.68 

6.12 
± 4.64 

5.32 
± 4.00 

6.37 
± 4.86 

Time 
11.63 
± 9.18 

10.10 
± 7.55 

10.86 
± 8.37 

9.98 
± 7.87 

10.19 ± 
8.36 

9.65 
± 7.52 

Distance 
2.63 

± 2.80 
2.13 

± 2.04 
2.49 

± 2.54 
0.93 

± 0.82 
0.83 

± 0.75 
0.94 

± 0.82 

Shrink 
      

Speed 
22.76 
± 4.50 

24.46 
± 5.91 

22.34 
± 4.12 

- - - 

Time 
5.08 

± 0.46 
4.58 

± 1.02 
5.00 

± 0.74 
- - - 

Distance 
1.93 

± 0.40 
1.92 

± 0.71 
1.87 

± 0.44 
- - - 

Pause 
      

Time 
8.26 

± 2.78 
7.84 

± 2.91 
8.16 

± 2.86 
7.77 

± 2.76 
7.53 

± 2.68 
7.83 

± 2.83 

 

To limit the chance of falsely detecting a significant result, the level taken for significance 

was adjusted according to the Bonferroni method.  Here, the original p value for the collected 

data is divided by the number of intra-data comparisons, thus p = 0.05/5 = 0.01.  In the first 

three comparisons, i.e. those between similar areas of different experimental conditions, all 

data were found to be significantly different (Wilcoxon rank sum test, p < 0.01) apart from 

growth time for outer areas, and pause time for outer and inner areas (Wilcoxon rank sum test, 

p > 0.01).  Thus, in general, growth properties are significantly greater in control versus 

Rac1-inhibited cells, while pause time is only significantly elevated in the all track data. 

For the within-treatment comparisons, in the control cells, inner and outer tracks were found 

to be significantly different from one another in all growth properties (Wilcoxon rank sum 

test, p < 0.01), while pause time was not significantly different (Wilcoxon rank sum test, p > 

0.01).  Therefore, all growth properties are significantly greater in inner areas in control cells, 

while pause time is not.  In the Rac1-inhibited cells, growth speed and distance were 

significantly different (Wilcoxon rank sum test, p < 0.01), while growth and pause time were 

not (Wilcoxon rank sum test, p > 0.01).  Thus, Rac1-inhibited cells, though they exhibit 

significantly lower growth speeds and distances, show the same relationship between growth 

speed and distance (significant) and pause (not significant) time between inner and outer 

areas as control cells, with greater values for the inner area.  The opposite is true for growth 

time, however, which is greater for outer areas in Rac1-inhibited cells, but not significantly 

so.  These statistical results are summarised in table VIII. 
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Table VIII.  Summary of significance tests on comparisons of areas.  Similar areas (“all”, 

“outer” and “inner”) are compared between treatments (“control vs. NSC”) and inner areas are 

compared with outer areas within each treatment (“within treatment”).  A tick indicates 

significance at the level given by the Bonferroni correction (original significance: p < 0.05), while 

a cross indicates a non-significant result. 

 
Control vs. NSC 

Within treatment 
Inner vs. outer 

 

 
All Outer Inner Control NSC 

Grow      

Speed     

Time  x   x 

Distance     

Pause      

Time  x x x x 

 

The data can also be considered in terms of percentages of the total time or distance of track 

observation.  These are shown in table IX.  Here, we see that in inner areas in control and 

Rac1-inhibited cells, growth accounts for proportionately more time than in outer areas, and 

there is a proportionately longer time in pause in outer areas than in inner areas for both 

control and Rac1-inhibited cells.  Inner areas have twice the percentage of observation time 

in shrinking than outer areas.  In proportion to all track data, in control and Rac1-inhibited 

cells, inner and outer areas have an increased and decreased percentage, respectively, time in 

growth, and a decreased and increased percentage, respectively, time in pausing.  The data for 

distance percentage hold little information for the Rac1-inhibited cells, while for control cells, 

inner areas have greater percentage distance in shrinking than outer areas, and decreased 

percentage in growth.  These data are summarised in figure 20. 

Table IX.  Percentages of total time and distance in applicable phases.  The percentages of 

total time or distance for each treatment, in each area, are shown. 

 
Control NSC 

 
All Outer Inner All Outer Inner 

% time  
     

Growing 91.11 90.72 91.29 95.31 94.87 95.47 

Shrinking 0.12 0.07 0.13 0.00 0.00 0.00 

Pausing 8.78 9.21 8.58 4.69 5.13 4.53 

% distance   
    

Growing 99.78 99.85 99.76 100.00 100.00 100.00 

Shrinking 0.22 0.15 0.24 0.00 0.00 0.00 
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Figure 20.  Percentage times and distances in applicable phases.  For each area in each 

condition, the percentage times in growth (A) and in pause (B), and percentage distance in 

growth (C) are shown.  For the shrinking phase, only control data are applicable, for which the 

percentage distance and time (D & E) are shown. 

c. Estimating dynamics parameters 

As figure 8 showed, the parameters available for estimation based on the data obtained with 

plusTipTracker are limited to transition frequencies from growth to pausing and shrinkage 

and back again, the rate of growth and an inferred rate of shrinkage.  Thus, because we 

cannot directly observe shrinkage and pausing with this method, we cannot know the values 

of the transition frequencies between these states.  See the methodological details in the 

previous sub-section for a discussion of the inherent biases in making estimations of 

transitions frequencies based on data obtained with observation of a +Tip proteins. 

The two estimates based on the “biased” and corrected” approaches (again, see methodology) 

of the transition frequencies are shown in table X, along with growth and shrinkage rates and 

numbers of pausing and shrinking tracks.  The calculations of dynamics are based on pooled 

data for each condition.  The growth and shrinkage rates are as presented above, as are the 

numbers of tracks; they are shown again here for the completeness of dynamics parameters 

and to show the numbers involved in making the transition frequency calculations according 

to eq. 1. 
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Table X.  Dynamics parameters.  For each area in control and Rac1-inhibited (NSC) conditions, 

the mean and median (as indicated) phase speeds, transition frequencies and numbers of 

pausing and shrinking events are shown.  Where the biased and corrected values differ, there 

are two values for a transition frequency (in the order indicated); otherwise, just one value is 

shown.  See terms list for definitions of terms. 

 
Control NSC 

 
All Outer Inner All Outer Inner 

Vg 
      

Mean 
Median 

12.67 
12.09 

12.46 
11.89 

13.13 
12.57 

6.12 
4.80 

5.32 
4.26 

6.37 
5.00 

Vs 
      

Mean 
Median 

22.76 
22.59 

24.46 
25.63 

22.34 
22.59 

- 
- 

- 
- 

- 
- 

Fcat 
      

Biased 
Corrected 

0.02 
5.45 

0.01 
5.33 

0.02 
6.62 

0.00 0.00 0.00 

Fres 
      

Biased 
Corrected 

11.80 13.09 12.00 0.00 0.00 0.00 

Fg2p 
      

Biased 
Corrected 

0.70 
4.96 

0.78 
6.07 

0.69 
5.32 

0.38 
6.37 

0.43 
5.89 

0.36 
6.82 

Fp2g 
      

Biased 
Corrected 

7.26 7.66 7.35 7.72 7.97 7.67 

Number 
pause 

1383 466 935 605 192 414 

Number 
shrink 

30 6 24 0 0 0 

 

Since there were no shrinkage events detected in the Rac1-inhibited cells, Fcat and Fres in 

these cells is zero, which, as was touched upon above, is likely to be inaccurate since 

microtubules without these dynamics would be unusual, given that the “dynamicity” of 

microtubules in cells is highly documented.  In the control condition, Fcat is increased in the 

inner area relative to the outer area.  This is true for the biased and corrected methods.  Fres 

decreases in the inner area relative to the outer area.  In the control condition, both Fg2p and 

Fp2g decrease in the inner area relative to the outer area, while in the Rac1-inhibited condition, 

this is true only for Fp2g and the biased calculation of Fg2p; the corrected Fg2p is increased in 

the inner area.  Thus, there is a disagreement between the two methods here.   

Comparing experimental conditions, there is a greater corrected Fg2p in the Rac1-inhibited 

condition for all and inner areas, but not for outer areas, while the biased Fg2p is lower for 

each area in the Rac1-inhibited condition.  So, again, there is disagreement between the two 

types of calculation.  Values for Fp2g are greater in the Rac1-inhibited condition, for all areas, 
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and both conditions show a similar small decrease in inner areas relative to outer areas for 

this transition frequency. 

To clarify the relationships between outer and inner transition frequencies, we can consider 

the ratios between them; these are shown in table XI.  Here, in the control condition, only Fcat 

is smaller in the outer areas relative to inner areas, by both methods; all other transition 

frequencies are greater in the outer area relative to the inner.  For the Rac1-inhibited 

condition, only the corrected value of Fg2p is smaller in the outer area relative to the inner 

area; here, the disagreement between methods described for Rac1-inhibited Fg2p is more 

clearly seen, since the biased value indicates that there is a greater value for this transition 

frequency in outer areas relative to inner areas.   

Table XI.  Ratios of transition frequencies in outer to inner areas for pooled data.  For 

pooled control and Rac1-inhibited (NSC) condition data, the ratios of outer:inner for the indicated 

transition frequencies are shown.  Thus, a value greater than one indicates an increase in the 

outer area relative to the inner area, and values below one: vice versa. 

 
Control NSC 

 
Biased Corrected Biased Corrected 

Fcat 0.56 0.81 - - 

Fres 1.09 1.09 - - 

Fg2p 1.13 1.14 1.18 0.86 

Fp2g 1.04 1.04 1.04 1.04 

 

The ratios of Fg2p in outer to inner areas in both experimental conditions are identical to the 

precision shown, while the biased values for the Fp2g outer to inner area ratio is greater in the 

Rac1-inhibited condition, but the corrected value ratio is smaller than the control condition.  

Therefore, in general, outer areas exhibit greater tendency to undergo a transition in all cases 

but catastrophe, and, according to the corrected method, in growth to pausing transitions in 

the Rac1-inhibited condition. 

Next, we can consider the ratio of “opposing” transition frequencies within areas.  Here, the 

two transition frequencies that move to and from two given phases are compared with one 

another (table XII).  In this case, we have the pairs of Fcat and Fres, and Fg2p and Fp2g.  In 

finding these ratios, the corrected values were used, since, as discussed in the methodology, 

these are more comparable, not only in terms of magnitude but also in the methods of their 

calculation.   

Table XII.  Transition frequency ratios in pooled data.  For both control and Rac1-inhibited 

(NSC) conditions, the indicated ratios are given, using “corrected” frequencies. 

 
Control NSC 

 
All Outer Inner All Outer Inner 

Fcat:Fres 0.46 0.41 0.55 - - - 

Fg2p:Fp2g 0.68 0.79 0.72 0.83 0.74 0.89 
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The trend here is smaller values for those transition frequencies that move away from the 

growing phase, compared to those that move toward the growing phase. Although this trend 

is also present in the Rac1-inhibited condition, the ratios are greater for the all track and inner 

area data, indicating that in these groups, there is an increased tendency toward growth to 

pause transitions than in similar groups in the control condition.   

Finally, the dynamics of the different areas and different treatments are summarised 

qualitatively in figure 21.  Presentation in this way helps understand where the differences 

between areas and treatments lie.  The most obvious difference is that, since no shrinkage 

events were detected in the Rac1-inhibited condition, there are zero values for catastrophe 

and rescue frequencies, and for shrinkage speed.  If these are accurate and not due to false 

negatives, then we can expect the Rac1-inhibited condition to have microtubules that are 

much more prone to growth.   

 

Figure 21.  Summary of microtubule dynamics within inner and outer areas, between 

experimental conditions.  Qualitative descriptions are given as to the relationship between 

dynamics parameters in each area.   

Apart from these differences, the only other qualitative difference between the cell areas in 

the two treatments is for Fg2p; here, there is a higher frequency in the outer area compared to 

the inner in the control condition, but the opposite is true in the Rac1-inhibited condition.  

Added to this the fact that Fp2g is higher in outer areas compared to inner areas in the Rac1-

inhibited condition, we can expect that microtubule growth in the outer areas of this condition 

dominates more than in the outer areas in the control condition.   
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D. DISCUSSION 

I. Microtubule characteristics in unperturbed and Rac1-inhibited cells 

a. Microtubule dynamics throughout the cell 

Tracking of a labelled microtubule +TIP protein CLIP-170 has allowed measurement of 

certain microtubule characteristics, including times, distances, and speeds in the different 

microtubule phases.  Conducting this analysis in control and Rac1-inhibited cells has 

permitted comparison of the dynamics in these different conditions. 

In the control treatment, microtubules were found to grow faster than in the Rac1-inhibited 

treatment, and microtubules spent more time and covered more distance in this phase in the 

control condition too.  In accordance with the disagreement between microtubule 

organisation in Rac1-inhibited cells from the Mogensen lab and in the presence of DN-Rac1, 

the dynamics also differ relative to the respective controls.  In Wittmann et al. (2003), DN-

Rac1 actually elevated microtubule growth speed slightly, whereas here, inhibition of Rac1 

was found to decrease growth speed by over half.  In addition, Nishimura et al. (2012) found 

that DN-Rac1 increased growth speed, but in agreement with the results here, they found that 

DN-Rac1 decreased time spent in growth.  An analysis of dynamics with all means of 

interfering with Rac1 function is necessary to clarify the differences between these studies. 

The dynamics reported are based on two different calculations: one that used total growth and 

(inferred) shrinkage times, the biased method, and one that used only the times in each phase 

that preceded a given transition; the corrected method.  The corrected method was used in 

comparisons of transition frequencies between conditions and subcellular areas because it is 

possible to find values for all transition frequencies based on this method, and therefore 

compare them.  Thus, there is of course an element of inaccuracy and doubt here, but this is 

true of all dynamics measurements.  For example, Shelden and Wadsworth (1993) 

demonstrated that microtubule dynamics measurements vary with the time interval between 

film frames.  As Applegate et al. (2011) suggest, the dynamics measured with plusTipTracker 

have their own set of confounding factors. 

Unusually, there were no shrinkage events detected in the Rac1-inhibited condition in this 

study, although the efficacy of this is doubtful, and the potential interference with tracking of 

overly-deviating microtubule tracks aside, there are three possible scenarios to explain this 

unlikely result: 1) both Fcat and Fres are not zero but very low, hindering their detection, 2) 

Fcat is low and Fres is high, and shrinking events are missed as a result of infrequent 

transitions to and frequent transitions from the state, and 3) Fcat is high and Fres is low, and 

shrinking events are missed because they are rarely rescued but result in extinction instead.  

Distinguishing between these scenarios could be achieved by recording labelled microtubule 

dynamics, rather than using a +TIP protein, or alternatively, modelling could be used.  The 

next two chapters address the latter approach. 
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Values for transitions between pausing and shrinking states were not obtainable with the 

methods employed here.  Estimating values for Fp2s and Fs2p by comparing microtubule 

network properties will also be topics in the next two chapters. 

b. Microtubule dynamics in subcellular areas 

In this study, the development of tools to semi-automatically segment cells into inner and 

outer areas, and to allocate tracks to these areas, has allowed further comparison of 

microtubule dynamics between the subcellular areas and experimental conditions. 

Using just the corrected dynamics values, in the control condition, Vg was decreased and Vs 

increased in outer areas relative to inner areas; Fcat was lower and Fres was higher in outer 

areas, and Fg2p was high and Fp2g was slightly higher in outer areas.  In the Rac1-inhibited 

condition, Vg was also decreased in outer areas relative to inner areas, as was Fg2p; Fp2g, 

however, was higher in outer areas.  Are these dynamics sufficient to explain the 

organisations seen in each condition?  Also, do the differences between conditions explain 

the differences in organisation?  These are difficult questions to answer, and as with 

exploration of the undetermined parameters, discussed above, they will be addressed in the 

next two chapters, which make use of comparisons of the results here with previously-

reported microtubule dynamics (chapter 5), and modelling too (chapters 4 and 5).   

However, the results do suggest possible mechanisms.  Considering the phase time 

percentages now, microtubules spend more time in pause in the control condition, and within 

this condition, this time is greater in outer areas.  In addition, microtubules grow more slowly 

in control outer areas, and spend less time in shrinkage.  Perhaps the higher occurrence of 

pausing is indicative of, or indeed a mechanism of, capture of microtubules at the cortex.  

Indeed, higher incidence of pausing at the cell periphery has been reported (Mimori-Kiyosue 

et al., 2005). 

Interestingly, the relationship between outer and inner areas for time spent in growth and 

pausing is maintained in the Rac1-inhibited condition, except here, there is an increase in 

growth time compared to the control condition.  Perhaps the increase in percentage time in 

growth in the Rac1-inhibited condition is again a manifestation, a cause or a consequence, of 

defective cortical capture. 

Since the dynamics parameters are based only on a subset of times in growth and shrinkage 

phases, correspondence between them and the phase times, both absolute and as percentages, 

should not be assumed.  This is explored further in chapter 5.  The fact that in the control 

condition, Fg2p is higher in the outer area, but in the Rac1-inhibited condition, it is lower in 

the outer area, taken with the phase time percentages, suggests that there is a fundamental 

difference in tendency to pause between microtubules of each condition.  

A potentially interfering factor in this analysis is that the dynamics measurements were made 

with GFP-labelled CLIP-170.  As CLIP-170 is a +Tip protein and is involved in microtubule-

cortex interaction through interaction at its C-terminus and N-terminus with microtubules and 

IQGAP, respectively, labelling CLIP-170 with GFP could interfere with these interactions 
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and confuse the conclusions made above.  Moreover, if microtubules are stabilised at the 

cortex, these would not be observed using this methodology.  Further work might address this 

by combining methods of measuring microtubule dynamics. 

c. Microtubule bending 

The analysis of adjacent segment relative orientation revealed that in some cases, microtubule 

tracks created by plusTipTracker were potentially unrealistically deviating.  Since it was not 

possible to locate the source of allowance of these overly-deviating tracks within 

plusTipTracker, the issue of these bending tracks could not be addressed earlier than the point 

at which comets are linked into tracks.  As a result, the analysis of microtubule dynamics had 

to include these highly-bending tracks.  The extent to which these influenced the dynamics 

measurements is difficult to evaluate, for example, we saw that there were significant 

differences in microtubule dynamics between straight and bendy tracks.  However, in favour 

of the notion that these tracks would have a small rather than large effect, the proportion of 

tracks that were bendy was low, and furthermore, it should be noted that most of these tracks 

were not consistently high in relative orientation, rather, they contained one or a few 

segments that were deviating and thus, by the criteria set, required splitting.   

d. Microtubule orientation relative to the cell edge 

The orientations of microtubule tracks relative to the periphery of the cell were also assessed.  

These results indicated that microtubules in Rac1-inhibited cells grow at shallower angles, 

and even away from the cortex, to a greater extent than control microtubules.  This is 

consistent with the appearance of Rac1-inhibited cells, since, as was described, they have 

relatively low radiality.  The mechanisms of radiality are addressed further in the next two 

chapters.  

II. Microtubule organisation 

a. Organisation as a systems property 

Clearly, there are differences in the organisation of unperturbed and Rac1-inhibited 

microtubule networks.  Similarly, there are differences between the dynamics of microtubules 

in unperturbed and Rac1-inhibited cells.  Moreover, there is not just one simple difference 

between the conditions, belying the possibility of an easily-identifiable mechanism to link 

microtubule dynamics and their organisation; this is a common feature of systems, where the 

outcome is difficult to predict from the components. 

To elaborate, this study has established that Rac1-inhibited microtubules grow more slowly, 

bend to a greater extent, and take shallower angles relative to the cell edge.  Furthermore, 

there are probably differences in microtubule shrinkage rate, and Fcat and Fres; the results 

found zero values for the latter two, and, by extension, a non-existent shrinkage rate.  As has 

been discussed, these values are unlikely, and a number of scenarios have been posited for 

these results.  In any event, there are differences in the organisation of cells subject to these 

experimental conditions: to what extent can differences in their dynamics explain this? 
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These results hint at possible mechanisms for the differences in organisation of the 

microtubule array between control and Rac1-inhibited conditions: microtubules may grow 

more slowly in the Rac1-inhibited condition, but do not transition to the shrinking phase and 

thus grow more persistently than in the control condition.  Moreover, in outer areas, this 

persistence is increased since microtubules transition to the pausing phase less here, relative 

to inner areas.  However, recall from chapter 2 that in some cases, for example where 

microtubule growth is guided by some mechanism, persistent growth might make for a better 

cortical targeting strategy.  Of course, this analysis is based on zero shrinking events in the 

Rac1-inhbited condition, limiting its validity.  The zero Fcat and Fres notwithstanding, the 

difference in conditions in the frequency of their transitions to and from pausing might 

contribute to the differences in organisation. 

b. Mechanisms of organisation 

Here, the inhibition of Rac1 was used as a model for disrupted microtubule-cortex interaction, 

based on previous results in migratory cells (Fukata et al., 2002), and on the disorganised 

microtubule phenotype seen upon Rac1 inhibition in the Mogensen laboratory, where 

microtubules oriented at predominantly parallel angles relative to the cell border suggested 

interference with microtubule-cortex interactions.  The data presented here suggest that Rac1 

does indeed function to promote perpendicular microtubule-cortex targeting: microtubules in 

Rac1-inhibited cells grow at shallow angles relative to the cortex in comparison to control 

cells. 

It should be kept in mind, however, that microtubule dynamics were altered in inner areas as 

well as outer areas of the cell in the Rac1-inhibited cells.  In inner areas, Rac1-inhibited 

microtubules spent a higher percentage of the time in growth relative to inner control areas, 

but actually covered under half the distance of control microtubules due to the slower growth 

rate in this condition.  Furthermore, Rac1-inhibited tracks had greater relative orientation, 

indicating more bendy microtubules, or perhaps aberrant guidance of microtubules, 

throughout the cell.  These differences that are not outer area-specific are important; they 

suggest that Rac1 inhibition affects not only microtubule dynamics at regions of the cortex 

where junctions are located, but elsewhere too.   

Although undifferentiated ARPE-19 cells are quite flat in culture, and Rac1 is localised to 

cell junctions which are at the borders of the cell (when viewing from above or below with a 

microscope), a potential explanation for the altered dynamics in inner areas might be that 

Rac1 is involved in microtubule-cortex interactions elsewhere in the cell, and not just at the 

junctions.  However, there were significant differences between growth speed and distance 

between Rac1-inhibited areas, where microtubules grow more slowly and for shorter 

distances, but for longer times (this was not a significant difference); perhaps the mechanism 

lies here.  In support of this, control outer microtubules spend less time growing than inner 

areas, the opposite of Rac1-inhibited outer microtubules.  Also, control outer microtubules 

spend less time in absolute and in percentage terms than Rac1-inhibited outer microtubules, 

although this difference was not significant.  
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In summary, microtubule dynamics in unperturbed and Rac1-inhibited cells have been 

measured in inner and outer areas of cells, with a view to explaining how microtubule 

dynamics contribute to radiality.  To what extent can the estimated dynamics parameters 

account for the differences in organisation between the two conditions?  It is difficult to 

attribute with complete certainty any organisational difference to the differences in dynamics, 

but it is clear that there are differences between the two experimental conditions that could 

lead to the differences in organisation.  Ultimately, these mechanisms will be better 

understood if they are subject to rigorous analysis with a model; this is the focus of the next 

two chapters. 

E. APPENDIX: MATERIALS AND METHODS 

Cell culture, drug treatment and transfection 

Human retinal pigment epithelial cells (ARPE-19) cells were maintained at 37° in 5% CO2.  

Cells were cultured in DMEM/F12, containing 5 mM Hepes and 2.5 mM L-glutamine, 

supplemented with 5% FBS. 

Rac1 inhibition experiments were performed by treating cells with 250 μM NSC 23766 for 

24 hours.   

For CLIP-170 transfection, 2 μg of CLIP-170-GFP was delivered using JetPrime (Polyplus). 

Microscopy 

After plating and growing to confluence, transfected cells were imaged using a Zeiss 

Axiovert 200M (widefield).   
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Chapter 4   

Modelling microtubules and radiality 

A.  A MODEL FOR RADIALITY 

I. Generation of radiality 

a. Mechanisms of radiality 

Previously in this thesis, the generation and maintenance of radiality, i.e. perpendicular 

microtubule-cortex relative orientation, has been discussed.  We saw in chapter 3 that an 

otherwise radial array is perturbed upon inhibition of Rac1, and that this is accompanied by a 

change in microtubule dynamics.  Indeed, radiality is a common feature of microtubule arrays 

in undifferentiated cells, the large proportion of which exhibit the classic radial array 

microtubule organisation.   

Generally, implicit in discussions of microtubule organisation, in radial arrays and also in 

other types of organisation, is the assumption that microtubule dynamics are modulated in 

some way at the periphery of the cell in order to generate radiality.  Yet, few studies have 

addressed this either by experimental or theoretical means.  Exceptions include Komarova et 

al. (2002), who found that microtubules grow persistently in central regions of the cell, but 

undergo a change in dynamics upon reaching the periphery that gives rise to a tendency to 

shrink more.  van der Vaart et al. (2013) have also addressed the generation of radiality, 

finding that a growth inhibitor located at the cortex contributes to radiality.   

The differences between inner and outer area dynamics were assessed in chapter 3; there, 

differences were found between inner and outer areas within both control and Rac1-inhibited 

cells, and also between experimental conditions.  However, it is difficult to assign 

organisational differences to differences in dynamics, and modelling can help.  In this and the 

next chapter, the basic mechanisms of radiality are first addressed, the focus of this chapter, 

and then in the next chapter, the results of the previous chapter are considered in terms of 

generation of radiality. 

b. Addressing radiality with a model 

The aim of this chapter is to elucidate the ways in which radiality is generated.  I take a 

modelling approach here, simplifying the system to a 1-dimensional problem wherein the 

contribution of different sets of dynamics in inner and outer areas to radiality is assessed by 

the competence of these dynamics in accurately attaining the target length, i.e. the distance to 

the border of the cell. 

II. Why model? 

a. Rationale 

The purpose of a model is to serve almost as a formal thought experiment; one specifies the 

framework of the model: the parameters, i.e. the components of the system, their relationship 

to one another, and the values they will take.  By doing this, we can test our ideas rigorously; 
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unlike a qualitative, or conceptual model, whereby we might display our thoughts of how a 

system works in the form of a diagram, a quantitative model allows us to actually assess 

whether these thoughts make sense.  For example, in this chapter, we will ask: can these two 

sets of dynamics, one for an inner area and one for an outer area, produce a proper radial 

array?  It would be difficult to answer this with an experiment, and thus a model is a 

complementary tool; we know enough about microtubule dynamics to create a model of the 

phenomenon, and use it to test our ideas on how radiality is generated.  In the succeeding 

sub-sections, I will briefly outline some more of the nuances of modelling, and review 

previous models of microtubule dynamics. 

b. Modelling as a tool 

In chapter 2, we saw that microtubule dynamic instability is used and modified in cells to 

give rise to various types of organisation, depending on the requirements of the cell.  In trying 

to define the relationships between microtubule dynamics and organisation, researchers have 

used predominantly microscopic imaging and modelling.  Continual progress in microscopy 

and elegant experimental manipulations (e.g. Schek et al. (2007)) have permitted ever-more 

detailed descriptions of microtubule behaviour, and various image processing algorithms (e.g. 

Applegate et al. (2011)) have made dynamics measurements more accessible.  With these 

advances, modelling has become ever more useful, complementing traditional (although 

modelling has been around for a long time, e.g. the model by Hodgkin and Huxley (1952) of 

action potential propagation, which is over 60 years old, it is generally not practised by the 

majority of investigators) means of experimentation by testing the findings of those 

experiments within the stringent confines of mathematical language. 

c. The modelling process 

As in imaging, modelling approaches have been varied, ranging from fine-grain models at the 

level of the tubulin heterodimer, to coarse-grain and phenomenological models based on 

approximations of whole-microtubule behaviour, and even population-level features (for a 

good short review, see Karsenti et al. (2006)).  The diversity of approaches reflects an 

important point: that one model for one set of experiments may be valid, but it may not be 

applicable to another set; models must be created with experiments and applications decided 

upon a priori.  One model may turn out to be applicable to another set of experiments, but we 

should not assume that it will be; we are not aiming for a universal model (for the time 

being): as Mogilner et al. (2012) put it, there is no modelling “Road to Valhalla”, i.e. it may 

be better to switch between types and scopes of models, rather than dedicate heroic effort 

toward making a “whole-cell” model.  Indeed, as the oft-cited observation that “all models 

are wrong, but some are useful” (Box and Draper, 1987) is true, so it is also true that some 

models are more useful for one application than another.  Thus, part of a good modelling 

study is to identify the type and scope of the model that is most appropriate. 

To identify the relevant scope and type of model, one must match the model to the data that is 

available; the information obtained from experiments must be able to act as inputs to the 

model.  Furthermore, the outputs of the model should be comparable in some way to the 

reality; in essence, the model and experiments must be compatible.  This dialogue works even 
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better when some perturbation can be made, in both model and experiment.  In this way, one 

can test mechanisms suspected to be in operation in reality with the model.   

So, why model?  Modelling is a useful tool to help understand biology, by the fact that 

models can help test our interpretations of experiments, and also suggest new ones.  

However, in order to make the most of a model, we must choose how we go about 

constructing it carefully.  This chapter addresses both the appropriate construction of a model 

and its use to answer a real biological question; this is elaborated on in the next sub-section. 

III. Survey of microtubule models 

a. Modelling methods 

The means of creating and using a model are no different in studies of microtubules, indeed, 

in all biology, to those methods used elsewhere in science.  As was briefly mentioned, all 

models require that their workings be specified explicitly, and this specification usually 

comes in mathematical form.  It is the exact mathematical form the specifications take that 

determines the type of model, which in turn affects the information that is compatible with 

the model and the subsequent analysis of the model.   

The most basic distinction one can make is between models that are deterministic or 

stochastic.  The former type of model is based on differential equations; these can be so-

called ordinary differential equations (ODE), or partial differential equations (PDE).  ODEs 

simply express the change of a variable, usually over time, as a function of the variable, 

whereas PDEs include not only the change of a variable in time, but also space.  Parameters 

in these types of models will usually be rate constants of reactions.  Generally, one will have 

a system of ODEs or PDEs, meaning that there will be one equation per variable in the 

system; variables might be, e.g. concentrations of the molecules in a particular system.  The 

analysis of a model based on ODEs and PDEs centres on finding solutions to the system of 

equations: by solving a system of ODEs, e.g. one can find the variation in concentrations of 

the components of the system over time.  A clear advantage of PDEs over ODEs is that, 

because space is represented in a PDE, one can include, e.g. variations in concentration in 

space; however, PDEs are more difficult to solve. 

Deterministic models are so-called because, given the same parameters, the result will always 

be the same.  This is not the case with stochastic models, which are probabilistic in nature.  

For example, a deterministic model might specify the rate of change of a variable as a 

function of its concentration, perhaps also the concentration of another variable, and a rate 

constant.  In a stochastic model, the change of the same variable will be the result of the 

probability that it will undergo a reaction; the probability will have a distribution obtained 

from some empirical data, or some prior knowledge of the mechanisms that underlie the 

particular reaction.  Because stochastic models are based on probabilities, there is uncertainty 

in the way in which the system will progress: there can be more than one outcome, unlike 

deterministic models.   

Stochastic models can be approached in a number of ways.  Generally, the different 

approaches refer to the way in which the model is “simulated”.  Simulation simply means the 
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advancement of the model through time; probabilities are assessed either at discrete time 

steps, as in a so-called “Monte Carlo” simulation, while finding the time to the next change in 

the system is an approach sometimes referred to as “Gillespie” simulation.  

Other types of models are used in biology, such as Boolean and agent-based models, but 

discussions of these are beyond the scope of this chapter.  For an excellent introduction to the 

various modelling approaches available to a biologist and examples of how they have been 

used, see Mogilner et al. (2012). 

b. Microtubule problems addressed with models 

Generally, microtubule models fall into two groups.  There are those models that address the 

mechanism of dynamic instability, and there are those that consider how dynamic instability 

affects microtubule population organisation.  Models created to understand the mechanisms 

of dynamic instability are generally based on information regarding tubulin dimers: rate 

constants of association and disassociation, etc., whereas models focussed on understanding 

how dynamic instability relates to array organisation are usually based on information on 

whole-microtubule dynamics: growth and shrinking speeds, transitions frequencies, etc.   

Consequently, microtubule models generally accede to the principle of an appropriate level of 

abstraction; it would be unnecessary to use tubulin biochemical data in a model of 

microtubule population dynamics, while a model of dynamic instability based solely on 

growth rates and transition frequencies would tell us nothing new about dynamic instability.  

Often, the properties that “emerge” from a given level, e.g. growth/shrinkage rates and 

transition frequencies that emerge from the biochemistry of tubulin, can be used in a model 

that seeks to explain phenomena at a higher level; thus, the growth and shrinkage rates and 

transition frequencies will be applicable for a model with the goal of understanding 

microtubule array organisation. 

The first applications of modelling to microtubule-oriented problems were carried out in 

order to explain the existence of discrete phases of microtubule polymerisation.  Since it had 

become evident that a population of microtubules could consist of individuals in different 

phases at the same time (Mitchison and Kirschner, 1984a; Mitchison and Kirschner, 1984b), 

which was contrary to established theory on polymer dynamics (Oosawa and Asakura, 1975) 

because of the coupling between polymerisation and GTP (or ATP) hydrolysis, Hill and 

Carlier (1983) and Hill and Chen (1984) sought to better-understand the processes of these 

phase changes with a model.  Their model is stochastic and based at the level of tubulin units 

in a polymer with unit width (i.e. analogous to modelling a single protofilament).  Each unit 

is GTP- or GDP-bound, and the probabilities of changing nucleotide state are calculated 

based on rate constants derived from experimental data; GDP-bound units cannot go back to 

GTP-bound, and upon each iteration of the model, the nucleotide state of each GTP-bound 

unit is tested for change by comparing a uniform random number against the probability of 

changing (Chen and Hill, 1983).  They found that when they did not average results over 

large times (Hill and Carlier, 1983), the modelled microtubules exhibited discrete states 

whereby all units were GDP-bound or GTP-bound (Hill and Chen, 1984), supporting the 
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experimental findings of Mitchison and Kirschner (1984a) and Mitchison and Kirschner 

(1984b). 

Many more studies dedicated to furthering understanding of dynamic instability with 

modelling have since appeared, some combining deterministic and stochastic approaches 

(Ranjith et al., 2009), while others combining mechanical modelling of the microtubule plus 

end with a stochastic approach (VanBuren et al., 2005).  An interesting, more abstract take on 

the mechanism of just catastrophe is provided by Brun et al. (2009).  These authors use a 

stochastic model of a set of protofilaments where catastrophe occurs if a given number N of 

terminal tubulin units in one protofilament become GDP-bound and that protofilament does 

not encounter a GTP-bound unit in an adjacent protofilament as it shrinks, and they find that 

N = 2 best reproduces experimental results.  Of course, since this model is more abstract, i.e. 

it is phenomenological, it is more difficult to interpret the result.  Brun et al. (2009) suggest 

that it might reflect dependencies of catastrophe on mechanical properties of the microtubule 

in addition to kinetic processes. 

Moving on to models that consider microtubule dynamics and organisation, these started with 

the work of Verde et al. (1992) and Dogterom and Leibler (1993).  In this case, microtubule 

dynamics are no longer considered in terms of associations and disassociation of tubulin units 

and hydrolysis of GTP; instead, they are modelled purely in terms of transition frequencies 

and growth and shrinkage rates.  Such models are often described as “mesoscopic” or 

“phenomenological”.  As with the mechanistic models of dynamic instability, they are 

amenable to deterministic and stochastic analysis.   

Stochastic simulations have been used to investigate the efficiency of proposed “search and 

capture” mechanisms, for a general target (Holy and Leibler, 1994), and in the location of 

chromosomes by microtubules (Wollman et al., 2005).  In Wollman et al. (2005), the authors 

found that a spatial bias in catastrophe frequency was required for microtubules to locate 

chromosomes in observed times.  Meanwhile, a deterministic approach was taken by Green et 

al. (2005) to find the average length of microtubules, given experimentally determined phase 

transitions and growth rates.  Here, the authors perturbed the function of APC and measured 

dynamics with EB1.  To find the mean length, they had to derive solutions for their set of 

ODEs; assuming steady-state allowed them to do this. 

One study notable for being an exception to the trend of microtubule population models being 

based on a phenomenological treatment of microtubule dynamics is that of Gregoretti et al. 

(2006).  In this study, the authors explore the effects of limited tubulin concentration and 

limited space in which to grow, with the aims of establishing principles of microtubule 

growth “in a cell-like environment”.  The model is similar to that of Hill and Chen (1984), in 

that it is stochastic and that tubulin units are modelled, with given probabilities of association 

and disassociation, but instead of just one microtubule, many microtubules are modelled, and 

there is a finite amount of free tubulin in solution.  Of course, they also specify concentration 

dependence in these rates.  There is also a finite microtubule length, intended to mimic the 

effects of growing against the boundaries of the cell.   
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Because the authors of this study update the free tubulin concentration upon each iteration of 

the simulation, they can explore the interplay between confined growth and tubulin 

concentration.  They find that, with permissive model parameters, microtubules grow 

persistently in the cell interior, and generally only exhibit catastrophe at the cell border.  This 

behaviour has been documented in real cells by Komarova et al. (2002), and Gregoretti et al. 

(2006) suggest that this behaviour arises because the increase in catastrophe that would not 

occur if there were no cell borders serves to increase the soluble tubulin to a level similar to 

that which would occur for higher total tubulin concentrations (again with no border).  Thus, 

their results can be interpreted thus: boundaries act to effectively increase the total tubulin 

pool, in terms of microtubule behaviour, and this is why microtubules often grow persistently 

against cell borders. 

IV. A rationale for modelling in this chapter 

a. Setting the problem 

The above discussion and review makes it clear that it is good practice in any modelling 

study to set the problem that the model is to address before the type of model and other 

particulars can be decided.  This and the next chapter address two closely related problems: 

the mechanisms of generation of radiality, addressed here, and the role of Rac1 in 

microtubule organisation, addressed in chapter 5.  The problems are related by the fact that 

one phenotype of Rac1 inhibition is loss of radiality; thus, as the general problem of 

establishing radiality is addressed with a model here, in the next chapter, the mechanism 

behind loss of radiality upon inhibition of Rac1 can be considered.  Therefore, the model 

must be made to address the general mechanisms of radiality. 

b. Model reasoning 

A point previously made by van der Vaart et al. (2013) is that, as microtubules are flexible 

and can bend upon growing into a barrier, then when a growing microtubule reaches the cell 

cortex, there is no reason to expect that it should stop growing there and be oriented 

perpendicularly to the edge of the cell; it could indeed bend, and continue to grow 

unimpeded.  Therefore, there must be one or more mechanisms by which microtubule growth 

is halted at the cortex.   

So, following this rationale, radiality ensues from a process or processes by which 

microtubules are accurately targeted to the correct length.  One way in which this could occur 

is a change in microtubule dynamics at the cell periphery, and there are also likely to be 

other, non-exclusive ways in which microtubule properties are modulated so that a target 

length, and thus radiality, can be achieved.  For example, work from Gardner et al. (2011) has 

shown that microtubule catastrophe can be regulated so that it is a multi-step process, 

conferring a lower chance of catastrophe upon younger microtubules.  This type of 

mechanism could be used to tune microtubule length, creating areas of the cell, toward the 

periphery, where catastrophe frequencies are elevated relative to the rest of the cell (Gardner 

et al., 2013).  Moreover, a more basic mechanism could be capture and stabilisation of 

microtubules at the cortex; in this case, a captured microtubule would be withdrawn from the 

dynamic pool of microtubules and remain fixed in length.  The discussion of selective 
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stabilisation in chapter 2 makes it clear that such events are possible.  Notably, such 

microtubules would not be detected by the methods used in chapter 3.   

The true situation is likely to be a balance of these factors; the microtubule-inherent and 

cortex-mediated dynamics changes can both contribute to tuning of microtubule length to a 

target magnitude, while, although contributing to radiality themselves, these mechanisms will 

also contribute to cortical capture, by virtue of fine-tuning microtubule length and thus 

allowing a plus end to remain, on average, in the same place. 

Here, I investigate the cortex-mediated dynamics changes that are posited to contribute to the 

generation of radiality.  Because radiality follows from accurate tuning of microtubule length 

to a target magnitude, then a simplified model is justified.  In this model, a microtubule 

grows in one dimension, i.e. it is straight, and is subject to two sets of dynamics.  The first set 

is that of the inner area, and up to a given length that specifies the start of the cell periphery, 

these are the relevant dynamics.  Once the periphery length has been exceeded, the second 

dynamics set, that of the outer area, is employed.  The aim of using this model is to establish 

which combinations of dynamics produce accurate microtubule length targeting, and thus, 

radiality. 

B. METHODOLOGY 

I. Abstract measures of microtubule dynamics 

a. The purpose of abstract measures 

Where there are a number of parameters in a system, reducing the complexity of the system 

by some form of abstraction can be helpful for comparing sets of parameters.  This applies to 

microtubule dynamics, where, even in the two-state model, there are four parameters, and it is 

difficult to compare different sets of these four values.  These abstract measures include 

microtubule drift, average length, length randomness, and phase proportions.  Below, I 

discuss each of these measures in more detail.  These measures use shorthand notation for the 

dynamics parameters, so please refer to the terms list for definitions. 

b. Microtubule drift 

Microtubule drift, first employed by Verde et al. (1992) and Dogterom and Leibler (1993), is 

based on the treatment of microtubule dynamics as a one-dimensional random walk.  A 

random walk, where in one dimension, the walker takes one step per unit time along a line, 

usually has equal probability of going in either direction.  However, they can be biased, and 

in this case, have a drift term that indicates the direction and extent of the bias by its sign and 

magnitude, respectively (fig. 1).  Thus, the tendency of a microtubule to grow or shrink, and 

how quickly it does either, are indicated by the drift; a positive value indicates continual 

growth, while a negative value indicates shrinking on average.  Verde et al. (1992) and 

Dogterom and Leibler (1993) find the drift, V, in terms of the dynamics parameters: 

𝑉 =  
𝑉𝑔𝐹𝑟𝑒𝑠 − 𝑉𝑠𝐹𝑐𝑎𝑡

𝐹𝑟𝑒𝑠 + 𝐹𝑐𝑎𝑡
,     (1). 
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Where drift is positive, there is “unbounded” growth, and where drift is negative, “bounded” 

growth (Dogterom and Leibler, 1993).  When the drift is zero, there is neither net growth nor 

shrinking.  In unbounded growth, the average microtubule length (see below) is not defined; 

microtubules grow indefinitely, and therefore the average length increases indefinitely.  To 

recap, the dynamics parameters are shown in the diagram in figure 2. 

 

Figure 1.  Random walk analogy of microtubule dynamics.  Microtubule dynamics can be 

treated as a biased one-dimensional random walk, whereby the drift, V, indicates the directional 

bias of the random walk.  If V is negative, then the average length 〈𝐿〉 is defined.  The diffusion 

coefficient, D, indicates the extent to which lengths will vary.  Note that discrepancies between 

the theory and microtubule properties can arise because the random walk can take on both 

positive and negative displacement, whereas microtubules only have positive displacement (i.e. 

their length).  In case 1, decreasing 〈𝐿〉 with constant D will give greater (i.e. more negative) V, 

and empirical measures of variation in length will be expected to decrease.  In case 2, increasing 

D with constant 〈𝐿〉 will also give greater (again, more negative) V, and empirical measures of 

length variation will be expected to increase, but will be limited by the fact that an increased D 

and V mean more of the random walk will be obscured in negative displacement. 
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Figure 2.  Microtubule model parameters.  Microtubules can transition between 3 states (grow, 

pause and shrink) with given frequencies (boxes next to arrows; see text for details on notation).  

Nucleation creates new microtubules in the growth state with a given frequency (Fnuc), while 

there is also a total number of microtubules in the system (N) and microtubules have some kind 

of orientation behaviour (bending).  Microtubules in the growth state grow with rate Vg, and those 

in the shrinking state shrink with rate Vs.  Red boxes denote parameters  

How does V respond to the dynamics parameters?  Increasing Vs or Fcat means that a 

microtubule will be more prone to shrinkage, and increasing Vg or Fres will push the balance 

toward growth; this is fairly intuitive.  Note that V is sensitive to the absolute difference 

between Vg and Vs, and the ratio of Fcat:Fres.  Thus, increasing Fcat and Fres, but maintaining 

Fcat:Fres will produce the same values of V.  Another feature of the drift is that it is, of course, 

bounded by Vg and Vs: a microtubule cannot grow more quickly than Vg, and cannot shrink 

faster than Vs.  The units of drift are those of velocity: μm min-1. 

In the three-state case, the random walk analogy is not strictly valid anymore, since by 

definition, a random walker takes a step at each time increment.  With no allowance for 

remaining in one place, the random walk is not technically applicable.  However, there is a 

threshold value, Vt determined by Green et al. (2005) and Allard et al. (2010): 

𝑉𝑡 = 𝑉𝑠(𝐹𝑔2𝑝𝐹𝑝2𝑠 +  𝐹𝑐𝑎𝑡𝐹𝑝2𝑔 + 𝐹𝑐𝑎𝑡𝐹𝑝2𝑠) − 𝑉𝑔(𝐹𝑝2𝑔𝐹𝑟𝑒𝑠 + 𝐹𝑝2𝑔𝐹𝑠2𝑝 + 𝐹𝑝2𝑠𝐹𝑟𝑒𝑠),     (2𝑎), 

which, like equation 1, indicates the direction and extent of bias by its sign and magnitude.  

Arranged as it is, equation 2a indicates infinite and finite growth with negative and positive 
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values respectively, vice versa to the two-state V in equation 2.  Thus, the equation can be re-

arranged so that the sign of Vt indicates a similar result to the two-state case: 

𝑉𝑡 = 𝑉𝑔(𝐹𝑝2𝑔𝐹𝑟𝑒𝑠 + 𝐹𝑝2𝑔𝐹𝑠2𝑝 + 𝐹𝑝2𝑠𝐹𝑟𝑒𝑠) − 𝑉𝑠(𝐹𝑔2𝑝𝐹𝑝2𝑠 + 𝐹𝑐𝑎𝑡𝐹𝑝2𝑔 + 𝐹𝑐𝑎𝑡𝐹𝑝2𝑠),     (2𝑏). 

This threshold quantity, unlike V, is not bound by Vg and Vs, which can hinder making 

inferences about a set of dynamics based on it.  Instead, it can be put in a form similar to V: 

𝑉3 =
𝑉𝑔(𝐹𝑝2𝑔𝐹𝑟𝑒𝑠 + 𝐹𝑝2𝑔𝐹𝑠2𝑝 + 𝐹𝑝2𝑠𝐹𝑟𝑒𝑠) − 𝑉𝑠(𝐹𝑔2𝑝𝐹𝑝2𝑠 +  𝐹𝑐𝑎𝑡𝐹𝑝2𝑔 + 𝐹𝑐𝑎𝑡𝐹𝑝2𝑠)

(𝐹𝑝2𝑔𝐹𝑟𝑒𝑠 + 𝐹𝑝2𝑔𝐹𝑠2𝑝 + 𝐹𝑝2𝑠𝐹𝑟𝑒𝑠) + (𝐹𝑔2𝑝𝐹𝑝2𝑠 +  𝐹𝑐𝑎𝑡𝐹𝑝2𝑔 + 𝐹𝑐𝑎𝑡𝐹𝑝2𝑠)
,     (3). 

So, as with V, we can make V3 bound by Vg and Vs if we divide by the sum of the terms that 

multiply Vg and Vs.  As stated, the random walk analogy for the three-state has limited 

applicability.  Indeed, V3 is not responsive to increased pause time percentage (see below), 

i.e. a proxy for the percentage of time spent in the pausing state, since a set of dynamics that 

have a predicted pausing time of 0.96% has the same drift as another set of dynamics with 

0.04% predicted pausing time percentage.  However, the particular dynamics sets referred to 

have equal transitions from the pausing state, and the transitions to the pausing state are also 

equal; in this case, the balance, so to speak, of the growth and shrinking phases is equal.   

Although V3 does not accurately reflect the percentage of time spent in pause, it does respond 

to the balance between growth and shrinkage: changing the ratio Fp2g:Fp2s changes the value 

of V3, as does changing the ratio Fg2p:Fs2p.  This is a manifestation of the complex systems 

nature of microtubule dynamics: by changing the flux of microtubules towards or away from 

pause or in the direction of growth or shrinkage, the drift, V3, will change.  Thus, V3 is still of 

some use, but it must be used with caution; presumably, the sign of V3 is still valid as an 

indicator of the direction of drift in three states, but the magnitude must be modulated by the 

pausing proportion; thus, taking V3 with pausing proportion should indicate to what extent V3 

is valid.  

In either case, the drift is intended as a metric for understanding the effect of a combination 

of dynamics parameters; in many cases, it is not exact.  Indeed, it accurately describes the 

growth of a microtubule that at no point shrinks to extinction (Verde et al., 1992), and this is 

a manifestation of the discrepancy between theory and reality highlighted in figure 1.  

Furthermore, where sets of dynamics parameters that produce negative drift are concerned, 

microtubules are only persistent in this case because of re-nucleation (Verde et al., 1992).  If 

there were no re-nucleation in a microtubule population with negative drift, we would not 

observe any microtubules. 

c. Average length 

The average length of the microtubule population is defined only in cases where the drift is 

negative.  This is intuitive since a microtubule population with positive drift will continue to 

grow indefinitely, and the average length increases continually too.  As with drift, Verde et 

al. (1992) and Dogterom and Leibler (1993) have found the average length in terms of the 

dynamics parameters: 
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〈𝐿〉 =
𝑉𝑠𝑉𝑔

𝑉𝑠𝐹𝑐𝑎𝑡 − 𝑉𝑔𝐹𝑟𝑒𝑠
,     (4), 

 

where 〈𝐿〉 is the average length.  In the three-state case, Green et al. (2005) and Allard et al. 

(2010) have derived the appropriate equation for the mean length: 

〈𝐿〉 =
𝑉𝑔𝑉𝑠(𝐹𝑝2𝑔 + 𝐹𝑝2𝑠)

𝑉𝑠(𝐹𝑔2𝑝𝐹𝑝2𝑠 + 𝐹𝑐𝑎𝑡𝐹𝑝2𝑔 + 𝐹𝑐𝑎𝑡𝐹𝑝2𝑠) − 𝑉𝑔(𝐹𝑝2𝑔𝐹𝑟𝑒𝑠 + 𝐹𝑝2𝑔𝐹𝑠2𝑝 + 𝐹𝑝2𝑠𝐹𝑟𝑒𝑠)
,     (5). 

In both cases, the distribution of lengths decreases exponentially.  It is important to note that 

the mean equation ignores nucleation and microtubules with zero length.  Thus, if an 

empirical microtubule average length is to be compared directly with a theoretical prediction, 

the mean length must be calculated for only those microtubules with non-zero length.  

However, 〈𝐿〉 is best used as a theoretical indicator of microtubule growth properties 

d. Length randomness 

The next measure to consider is that of the tendency of a microtubule, or indeed a population 

of microtubules, to fluctuate about the average length.  There are a few related ways of 

quantifying this.  Firstly, continuing with the random walk analogy, Mirny and Needleman 

(2010) use the effective diffusion coefficient, D, as a measure of the extent to which the 

length of a microtubule will fluctuate.  The use of the diffusion coefficient comes from the 

similarities between a random walk and diffusion; here, D indicates the extent to which we 

can expect lengths to deviate from the average.  It is an indirect measure of velocity, in that it 

indicates how quickly a diffusible object (in this case, this is the plus end of the microtubule) 

will explore space, and it has units of μm2 min-1.  Mirny and Needleman (2010) find D in 

terms of the dynamic parameters: 

𝐷 =  
𝑉𝑔𝑉𝑠

𝐹𝑟𝑒𝑠 + 𝐹𝑐𝑎𝑡
,     (6). 

This interpretation of the randomness of microtubule growth is good for its ease of 

understanding.  We can see from equation 6 that the randomness is simply a ratio between the 

product of the growth and shrinkage rates and the sum of the transition frequencies.  

Increasing Vg or Vs, or decreasing the transitions between them, increases the randomness of 

lengths.  This is because, as microtubules will transit between phases less frequently, or if 

they grow or shrink more quickly, they will be able to undergo larger unchecked excursions 

of growth or shrinkage than if Fres or Fcat were greater, or if Vg or Vs were smaller. 

Note that, as with the drift, the diffusion coefficient is not intended to give an exact measure 

of microtubule length randomness; rather, its magnitude indicates how much we can expect 

length to vary, and indeed, a dynamics set with a larger D will have a wider spread of 

microtubule lengths than another set with a smaller D.  The reason that it is not exact is 

because a random walker can go in both directions; the displacement can be negative, 

whereas a microtubule will not have a negative length (fig. 1).  Thus, D is not accurate, but it 

is a good theoretical measure of the spread of microtubule lengths. 
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One other point of note is the case where one of the transitions is zero.  If Fcat is zero, then D 

is not appropriate, because, as all microtubules initiate in the growing state, there will be no 

transitions to the shrinking phase, and there will be no deviation in lengths: the dynamics are 

essentially deterministic in this case; all microtubules will be the same.  If Fres is zero, D is 

still valid. 

Related to the concept of the diffusion coefficient of a given set of dynamics is the total 

displacement of a microtubule over a given time.  This type of measure is similar to the 

mean-squared displacement, commonly employed in random walk theory.  The mean-squared 

displacement actually depends on the diffusion coefficient: 

〈𝑥2〉 = 2𝐷𝑡,     (7), 

where 〈𝑥2〉 is the mean-squared displacement, and t is time.  This relationship is quite 

intuitive, since the diffusion coefficient quantifies how much space a diffusive particle will 

explore, the average displacement would be dependent on this and time; the 2 at the 

beginning of the right-hand-side is a constant that depends on dimensionality (for one 

dimension, the constant is 2).   

The mean-squared displacement, at least in the standard form in equation 7, is again not an 

exact measure of microtubule dynamics due to the same issue discussed above, i.e. that this is 

a relationship based on a true random walk, not microtubule dynamics.  However, there are 

two related concepts: first is one that is quite often employed in the literature and is generally 

referred to as dynamicity (e.g. Rusan et al. (2001)), and the second is the range of 

microtubule lengths.   

Dynamicity is the total length change per unit time as a result of growth and shrinkage, and 

can be used as a measure of microtubule length randomness, the rationale being that 

microtubules that change length more quickly are more random.  The calculation for 

dynamicity is similar to the mean-squared displacement because it involves making growth 

and shrinking episodes of the same sign by squaring; generally, dynamicity is not reported in 

units of μm2 min-1, just μm min-1, therefore the sum of the square root of the square of the 

growth and shrinking distances is used: 

𝑑 = ∑ √𝑥2 ,     (8), 

where d is dynamicity, and x is the displacement of a microtubule plus end.  The dynamicity 

is not exactly comparable to the mean-squared displacement of the diffusion coefficient 

because for high values of D, one must have low transition frequencies, and although such a 

dynamics set could also give rise to high dynamicity values, a dynamics set with high 

transition frequencies could also lead to high dynamicity.  Dynamicity is still a useful 

measure, however, and it is also a good indicator of the time spent in pause, where a low 

dynamicity would indicate long times in pause. 

The second measure related to the mean-squared displacement and D is the length range.  

Although difficult to measure in vivo, such a measure could be used in conjunction with the 

modelling in this chapter.  The rationale behind this measure being an indicator of length 
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randomness is quite simple: dynamics sets that have greater D should have a larger range in 

length, because microtubules will be more prone to undergo significant episodes of growth 

and shrinkage.  The last two measures discussed here are more heuristic than the preceding 

measures that are backed by theory, and below, the theoretical measure D will be used more 

often to compare dynamics; however, for empirical comparison of simulations, both 

dynamicity and length range will be used. 

e. Drift, average length and diffusion coefficient relationship 

The three theoretical measures introduced above are united by the relationship: 

|𝑉| =
𝐷

〈𝐿〉
,     (9), 

where |𝑉| indicates the modulus (the absolute value) of the drift.  Note that, since the average 

length, 〈𝐿〉, is only valid when there is negative drift, as V becomes more negative, the 

average length is shorter, while a larger diffusion coefficient, D, will increase the average 

length for similar values of V.  These relationships provide a quite basic insight to the 

workings of a microtubule population: in the bounded growth regime, the average length is a 

balance of the randomness of length and the drift that is working to shorten microtubules, so 

larger randomness in length can effectively work to overcome the bounds of a negative drift, 

making average length larger.  Likewise, when length randomness is small compared to the 

drift, the drift dominates, and average length is reduced.   

f. Phase time percentages 

Another useful set of measures is the expected proportion of time spent in each phase: 

𝑇𝑔 =
𝐹𝑟𝑒𝑠𝐹𝑝2𝑔 + 𝐹𝑟𝑒𝑠𝐹𝑝2𝑠 + 𝐹𝑝2𝑔𝐹𝑠2𝑝

∑ 𝑇𝑝ℎ𝑎𝑠𝑒
,     (10𝑎), 

𝑇𝑠 =
𝐹𝑐𝑎𝑡𝐹𝑝2𝑠 + 𝐹𝑐𝑎𝑡𝐹𝑝2𝑔 + 𝐹𝑝2𝑠𝐹𝑔2𝑝

∑ 𝑇𝑝ℎ𝑎𝑠𝑒
,     (10𝑏), 

𝑇𝑝 =
𝐹𝑔2𝑝𝐹𝑠2𝑝 + 𝐹𝑔2𝑝𝐹𝑟𝑒𝑠 + 𝐹𝑠2𝑝𝐹𝑐𝑎𝑡

∑ 𝑇𝑝ℎ𝑎𝑠𝑒
,     (10𝑐), 

where Tg, Ts and Tp are the percentages of time in growing, shrinking and pausing, 

respectively, and Tphase denotes the total of the numerators in the three equations.  The 

numerators in the formulae for Tg and Ts are actually used in the calculation of the three-state 

drift, where they are multiplied by Vg and Vs, respectively.  The above formulae, rather than 

giving an absolute number for phase times, which would depend on the time of observation, 

give the percentages of time spent in each phase.  Only the three-state equations are given, 

since in two states, the drift is a good measure of the balance between the two phases.  

Therefore, this measure is particularly useful as an indicator of the prominence of the pausing 

state in any dynamics set.   

As with many of the other measures discussed, these phase proportions are not exact in all 

cases.  One of the main complicating factors that affects the accuracy of these measures is 
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extinction and re-nucleation.  Nucleation is not taken into account in any of the measures so 

far discussed, and in this case, by removing shrinking microtubules and substituting them, at 

some point, by growing microtubules, this process especially affects Tg and Ts, making them 

greater and lower, respectively, than predicted.  Tp is not affected on the same scale as Tg and 

Ts by nucleation, but the extent to which it is affected will depend on the relative sizes of 

transitions to and from the pausing phase.  Knowing this, we can see that the accuracy of the 

phase proportions will be increased for greater average lengths, where nucleation should have 

less of an affect by allowing more representative times in growth and shrinkage, and the 

accuracy should also be increased for dynamics sets that are not as random in length, since it 

is these fluctuations (fig. 1), specifically those in shrinking, that lead to extinction and re-

nucleation. 

II. Modelling approach 

a. Outline 

This section is essentially the methodology section, describing the workings of the model.  

Having reviewed previous instances of use of modelling in microtubule biology, and 

formulated the question that is to be addressed in this chapter, I now summarise the 

requirements of a model that will be used to investigate these problems, and set forth how it 

will be implemented.   

The model is phenomenological, at the level of individual microtubules, their behaviour 

described by the transition frequencies and growth and shrink rates obtained with light or 

fluorescence microscopy of microtubules in real cells, and not by association/dissociation 

reaction rates for tubulin, generally obtained in vitro.  This level of abstraction is chosen 

since it is effectively just below that in which we are interested, the organisation of the 

microtubule population.  Previous models have shown that specifying tubulin interactions, 

modelling at the level below that chosen here, produces the features of dynamic instability at 

our level (Gregoretti et al., 2006).  To model at a lower level here would be to introduce 

unnecessary model complexity.   

In the model, there will be an inner and outer area, each with its own set of dynamics.  

Furthermore, the model will be implemented in two- and three-state versions; thus, depending 

on this, there are four or eight parameters to describe the dynamics within each area.  

Nucleation is instant, i.e. as soon as a microtubule is extinct, it grows again in the next 

iteration; this is justifiable because it is the mechanisms of microtubule radiality that are of 

interest, not the balance of microtubule numbers, or polymer level.  Although the model is 

based on individual microtubule dynamics, the abstract parameters just described will be used 

extensively too, so as to aid in understanding the effect of changing various parameters.  

Employing these measures as a read-out for the effect of combinations of dynamics 

parameters also assists in comparisons of inner and outer area dynamics. 

Microtubule models at this level of abstraction are amenable to stochastic and deterministic 

approaches.  In fact, the average length calculation described in the previous section is based 

on deterministic considerations of microtubules at this level.  Here, I implement a stochastic, 

Monte-Carlo type approach, the methodology for which is described below.  First, the model 
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is introduced, then the parameters and implementation are specified.  A diagram of the model 

is shown in figure 3. 

 

Figure 3.  Microtubule model.  In the model, the inner and outer boundaries are marked by light 

and dark grey dashed lines, respectively.  Microtubules are modelled in 1-dimension; they do not 

bend, and are subject to inner dynamics (blue microtubule) and outer dynamics (green 

microtubule), and can also grow past the outer border (red microtubule).  The microtubules have 

differing levels of accuracy; the green microtubule has accurately targeted the outer area, while 

the blue and red microtubule are inaccurate. 

 

b. Model details 

The model is designed specifically to investigate the mechanism of accurately regulating 

microtubule length in order to produce proper cortical targeting.  It will answer the question: 

what are the combinations of dynamics in inner and outer areas that target microtubules to the 

outer area?  Microtubules here are straight, and all grow in one dimension (fig. 3).  Since the 

model is one-dimensional, the inner and outer areas are represented by lengths: when a 

microtubule reaches a given length, it obeys outer dynamics, and before that, inner dynamics.     

As the model is intended to answer the question of outer area, or cortical, targeting, there is 

no maximum length imposed, and microtubules are free to grow past the outer boundary.  

This is because we want to know here how inner and outer dynamics can combine to produce 

microtubules of the appropriate length.  

c. Dynamics parameters 

Microtubule dynamic instability can be defined by either four or eight parameters, depending 

on whether a two- or three-state model is used.  The former case neglects the pause phase, 

and here, both dynamics models will be used (fig. 2).   
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III. Implementation 

a. Parameter values 

It is very well having the growth and shrink rates expressed in μm min-1 or μm s-1, since, if 

we assume that growth and shrinkage is uniform with microtubule length, i.e., that there is no 

length-dependence in these rates, then the increase in length over unit time is simply 

proportional to the time.  According to the specifications set out in section BII, we can use 

these values as our growth and shrink rates, and scale them according to the time step in the 

simulation, more of which is discussed below.  However, the situation is not so clear-cut with 

the phase transitions.  Commonly, the frequency of a particular transition is calculated by 

dividing the number of occurrences of that transition by the total time spent in the phase that 

the transition leaves (e.g. Rusan et al. (2001)): 

𝐹𝑡𝑟𝑎𝑛𝑠 = 𝑁𝑡𝑟𝑎𝑛𝑠 𝑡𝑝ℎ𝑎𝑠𝑒⁄ ,     (11). 

For example, to calculate the frequency of catastrophe, Fcat, the number of catastrophes is 

divided by the total time spent in the growing phase, tg.  Depending on the units, we may 

have transition frequency expressed in s-1 or min-1; the latter is more common.  Refer to 

section BII in chapter 3 for a discussion of the various ways of calculating transition 

frequencies. 

Our model specification requires that we have some kind of probability for each transition 

that determines what a microtubule will do at each time step.  Since these transitions are 

recorded as frequencies based on long observation times of many microtubules, with units 

min-1 or s-1, how do they fit into a simulation?  To answer this, we need to cover some of the 

basics of probability, and this is discussed in the next section. 

b. On probability 

Thus far, we have established that our qualitative model specifications regarding transition 

frequency do not immediately correspond to measurements that are commonly reported.  The 

problem is this: given that an accurate simulation of microtubule dynamics will require a time 

step on the order of a second or smaller, how do we handle the transition frequencies reported 

in the literature so that we have meaningful probabilities in the simulation?  Here, I cover 

some of the relevant aspects of probability theory with the aim of making the quantitative 

features of the model the best approximation of reality that is possible. 

Probability theory, in what is known as the “frequentist” approach, states that, as we observe 

a process, or repeat an experiment, the longer or the more times for which we do this, the 

frequency of an observed event approaches the probability of that event (Ross, 2006).  To 

illustrate, a common example is rolling two dice.  The “sample space” is the various 

combinations of numbers on the dice, and each of these is said to be an “event”.  The sum of 

the probabilities of each event is 1; it is never more than one.  The more times we roll the 

dice, the frequency with which these combinations occur approaches their probability; this is 

often described as the “relative frequency”.  In this case, the relative frequencies of the events 

should all be equal at 1/36, assuming fair dice.  So, in our case, the longer we watch 
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microtubules for, the frequency of transitions is a truer representation of microtubule 

behaviour.   

However, this still does not solve the problem of how to model a transition probability; yes, 

we have a relative transition frequency, but can we just scale this frequency with time step?  

Firstly, is it appropriate to say, for example, that a transition frequency of 10 min-1 is the 

same as 5 every 30 seconds?  And, given this frequency, is it appropriate to suppose that we 

can expect a transition every 6 seconds?  It makes intuitive sense that this is the case, but this 

is still not a probability, since it is greater than 1, and we know that a probability cannot be 

so.  Of course, it could be easy to make this mistake when using a smaller time step that 

reduces the relative frequency to a value smaller than 1.   

To obtain probabilities of microtubule phase transitions, we require some kind of probability 

model, but what is a probability model, and which would be appropriate for microtubule 

transitions?  A probability model is simply the way in which we expect a variable, in this case 

transition frequency, to behave probabilistically.  As we might expect given the frequentist 

interpretation of probability, such a model is based on the results of a number of experiments; 

it has a distribution, and can tell us the probability of a given event occurring.   

So what is the appropriate probability model for microtubule transitions?  Rather than an 

average number for each transition frequency, the distribution of transition time would 

indicate what type of model would be appropriate.  Unfortunately, very few have addressed 

this question empirically; pioneering work from Odde et al. (1995) is a notable exception. 

Previous modelling work does not make the problem much clearer: methodological details 

being somewhat scarce, some have treated transition probabilities as uniform random 

numbers between 0 and 1, others use an “exponential random number” for transition 

probability, while perhaps the clearest account of microtubule modelling method at this scale 

comes from Gardner and Odde (2010).  In this case, the authors describe how they find the 

transition probability using the cumulative exponential function: 

𝑝 = 1 −  𝑒−𝜇𝜏,     (12), 

where p is a transition probability, μ is the exponential parameter, and τ is the time step of the 

simulation.  In this case, μ is the observed frequency of the transition in question, measured 

as described above.  However, these authors did not state the reasons for their methodology, 

and thus leave us still without a full understanding of transition probabilities. 

Fortunately, the situation can be clarified by taking an alternative approach.  Instead of basing 

a probability model on empirical observation, i.e., on population data, it can be based on what 

is known, or at least, what is assumed, about the process in question at the individual, small-

time scale.  With regard to microtubule catastrophe and rescue (and transitions to and from 

pause), the consensus is that the probability of a transition is the same regardless of 

microtubule age, length, etc.  Thus, given a length of time, the probability that a transition 

will occur in that window is the same as the probability in the next time window, and the 

window after that, and so on.  Recent in vitro work (Gardner et al., 2011), and that work 
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mentioned above from (Odde et al., 1995), has suggested that the situation may not be as 

simple as this, but we will continue with it for now, the reason for this becoming clear later. 

There is a probability model that applies to this problem.  Firstly, bearing in mind that we are 

assuming a constant chance of an event, in this case a transition occurring, per time 

increment, we will set the problem.  The task is to record the time for each event; that is, 

upon starting the experiment, the clock starts, and upon an occurrence of an event, we reset 

the clock, and start counting again.  This is a form of what is known as a counting process, 

known as a “Poisson” process.   

The premises of a Poisson process are that the number of events counted in any given interval 

of time are independent of the number of events occurring in another time interval; this is 

called “independent increments”, and furthermore, that the numbers, n, of events in any given 

time interval, t, are Poisson distributed (Ross, 2006).  These premises essentially state that the 

Poisson process is stochastic; each event is independent of other events.  Given that we are 

assuming that the probability of a transition occurring within any given time window is the 

same as that of another equivalent time window, we can model the counting of transitions as 

a Poisson process.  Forgetting time for a moment, the Poisson distribution, with rate 

parameter λ, is thus: 

𝑝(𝑖) = 𝑃{𝑥 = 𝑖} = 𝑒−𝜆
𝜆𝑖

𝑖!
 ,     𝑖 = 0, 1 …,     (13), 

where x is the random variable, and i is any of the integer values x may take.  The rate 

parameter λ must be greater than zero.  In our case, x would be the number of events of a 

given transition, and thus, the Poisson distribution would give the probability of counting a 

given number, i, of those transitions.   

Of course, from a modelling perspective, the quantity that is really of interest here is not the 

probability of a given number of events occurring, but the time before each transition, i.e. the 

time between events.  The inverse of the time between events gives the frequency; this is the 

same as dividing the number of events by the total time of observation, the common method 

of calculating transition frequencies.  The problem of finding the probability of times 

between events in a Poisson process is known as the “inter-arrival” time problem; in other 

words: given that we are counting events that obey a Poisson process, what is the distribution 

of the times that we wait for each event?   

If we say that the time between the nth and n-1th events is Tn (if it is the first event, T1 is the 

time before the first event) then Tn, for all values of n, gives the distribution of inter-arrival 

times (Ross, 2006).  What is the distribution?  Starting with the first event, T1, we can say that 

the event occurs only if no events have occurred prior to it, in the time interval [0,t], where t 

is the length of time just before T1 occurs (square brackets denote 0 ≤ x ≥ t).  Thus, we want 

to know the probability that T1 is greater than t, i.e. P{T1 > t}.  Taking time into account in 

the Poisson process just involves the time interval, t, multiplying the rate parameter λ (Ross, 

2006). 
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𝑃{𝑇1 > 𝑡} = 𝑃{𝑁(𝑡) = 0} = 𝑒−𝜆𝑡
(𝜆𝑡)0

0!
, 

𝑃{𝑁(𝑡) = 0} =  𝑒−𝜆𝑡,     (14), 

where P{N(t) = 0} is just restating the question; it simply means the probability of events 

occurring in time t, N(t), being zero.  e-λt is an exponential distribution; thus, the distribution 

of times, T1, before the first event, is exponential.  How are the times between the first and 

second events distributed?  In this case, for the second event to occur, the first event must 

already have occurred.  If we denote the time at which the first event occurred as s, and the 

time elapsed from the first event just up to the occurrence of the second event as t, the 

probability for the second inter-arrival time is a conditional probability; we ask: what is the 

probability that T2 is greater than t, given that T1 occurred at time s, i.e. P{T2 > t │T1 = s}, 

where │denotes the condition that T1 = s, thus: 

𝑃{𝑇2 > 𝑡|𝑇1 = 𝑠} = 𝑃{0 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 (𝑠, 𝑠 + 𝑡]|𝑇1 = 𝑠}, 

= 𝑃{0 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 (𝑠, 𝑠 + 𝑡]}, 

= 𝑒−𝜆𝑡
(𝜆𝑡)0

0!
, 

= 𝑒−𝜆𝑡,     (14) 

where, as above, a square bracket indicates a closed interval and a circular bracket indicates 

an open interval, i.e. (s, s + t] = s < x ≥ t.  The conditional statement in the first line can be 

discounted because of independent increments as described above: the probability of events 

occurring in any interval is independent of the probability of events occurring in other 

intervals, thus, the problem is reduced to finding the probability that the numbers of events 

occurring within a given time interval is equal to zero; the same problem as with T1.  

Therefore, T2 follows the same exponential distribution as T1, and this is true for any Tn, n = 

1,2, …  

Thus, a Poisson process, where an event has an equal (and independent) chance of occurrence 

every time increment, gives rise to an exponential distribution of so-called inter-arrival times.  

We can verify this experimentally.  Figure 4 shows the distribution of inter-arrival times for 

an event with rate parameter λ of 0.1 every time increment, t, of one.  The probability and 

time increment are academic here; the point is that this process, whatever the probability or 

waiting time, produces a distribution with this shape.  An exponential distribution can be 

fitted to the inter-arrival times, and indeed, random data shown in figure 4 that are generated 

from the fitted exponential distribution are not significantly different from the original data 

(2-sample Kolmogorov-Smirnov test, p > 0.05).   
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Figure 4.  Inter-arrival times in a Poisson process.  The simulated data, which are the inter-

arrival times between an event occurring with equal chance per time step, are closely matched 

by random numbers generated from the expected distribution; the mean of the distribution is also 

shown (refer to legend) 

How does this bear on our initial problem of finding transition probabilities, given their 

frequencies?  The exponential distribution has a very helpful property in this regard.  The 

expected value, or mean, of the distribution is equal to 1/λ; figure 4 shows the mean value of 

the inter-arrival times.  Here, the rate λ is 0.1; thus we would expect the mean to be 1/0.1 = 

10, and indeed, the experimental mean is close to this value at 10.06.  Therefore, the average 

value of the inter-arrival times is the inverse of the rate parameter of the Poisson process that 

gives rise to those times.  This is the underlying assumption in calculation of microtubule 

transition frequencies, which are taken as the inverse of the observed frequency of transitions.  

Therefore, since the rate parameters of microtubule phases transitions are easily calculated, 

we can find the probability of a transition occurring in a given time step using the exponential 

distribution.  Specifically, the exponential cumulative distribution probability function is 

used: 

𝐹(𝑎) = 1 − 𝑒−𝜆𝑎,     𝑎 ≥ 0,     (15). 

The cumulative distribution function gives the probability of finding a value in the 

exponential distribution with rate parameter λ that is less than or equal to the value of a.  In 

this case, the variable a is a length of time; we substitute for a the time step of the simulation, 

and ask: what is the probability of the time before a transition being less than or equal to the 

time step?  Although this is exactly what we are asking, the question is more intuitively stated 
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thus: over this length of time, what is the probability of observing a transition?  Thus, all 

transition frequencies will be treated this way in the model. 

c. Simulation 

As the model is a stochastic model, it will be simulated with all microtubules in the model 

being updated at each iteration.  The time of the simulation is updated according to a discrete 

time step of 0.1 seconds.  Therefore, at each advance of 0.1 seconds, all microtubules will be 

tested for a phase transition, and their lengths updated accordingly.  To get a good 

appreciation of the effects of the two areas, simulations will be run with two area, the “two-

area” model, and with only one set of dynamics, in an “area-free” model. 

d. Microtubule dynamics 

In the model, each microtubule has a state, a length, and a “region”.  The region property is 

simply a logical for whether the plus end of the microtubule is located in the inner (false) or 

outer (true) area.  For a quicker simulation, the microtubule dynamics are implemented in 

parallel: thus, states, lengths and regions are stored in column vectors of length N, where N is 

the total number of microtubules in the model.   

The model simulation begins with all microtubules in the “extinct” state, having zero length, 

and, of course, being in the inner area.  All minus ends are located at the centrosome, the 

location of which is specified in 2-dimensional Cartesian co-ordinates.  For simplicity, the 

location of the centrosome is kept at (0, 0), and microtubules grow in the positive x-direction, 

i.e. to the right.  At each iteration, it is determined whether a microtubule will undergo a 

phase transition or not.  The particular phase transitions possible depend of course on the 

state of the microtubule.  Thus, those in growth can either undergo catastrophe or growth to 

pause, or stay in growth, and so on for the other states.  As discussed, all transition 

frequencies are assumed to be constant, and thus the probability of each phase transition is 

obtained using the exponential cumulative distribution function with the appropriate rate (i.e. 

the particular transition frequency) and time step (0.1 seconds).   

In order to determine whether a transition will occur, a uniform random number between zero 

and one is generated using the Matlab command “rand”.  This number is compared to the 

transition probability: if it is less than the transition probability, the transition occurs, and if it 

is greater than the probability, the transition does not occur.  This is a standard method of 

simulating probabilities, and is documented for microtubules in Gardner and Odde (2010) 

(note that, in this paper, it is stated that the probability must be less than the uniform random 

number for a transition to occur, but this is erroneous, and a correction is in the process of 

being submitted at time of writing, D. Odde, pers. comm.).   

In the three-state model, there are two potential transitions available, and so the probabilities 

for each transition must use discrete intervals between zero and one.  This is handled by 

assigning one transition value between zero and its probability, and the other transition values 

between the probability of the first transition and its probability added to the probability of 

the first transition.  For example, for the pause state, a transition to growth might occur with 

probability 0.2, and a transition to shrinking might occur with probability 0.1; the transition 
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to growth will occur if the uniform random number x lies on the interval 0 < x ≥ 0.2, and the 

transition to shrinking will occur if the uniform random number x lies on the interval 0.2 < x 

≥ 0.2 + 0.1 = 0.3.  It does not matter which way around this is done; the transitions will still 

occur with the appropriate probability.   

Once it has been determined whether a transition will occur, the state of the microtubule is 

updated if necessary, as is the length.  If the microtubule is to grow, then it is assumed that 

the growth rate is constant; thus the length added is the growth length in a minute multiplied 

by the time step.  At a time step of 0.1 seconds, this is a small increment of growth.  The 

same principles are applied to the shrinking rate if the microtubule is to shrink 

C. PARAMETER VALUES 

I. Dynamics combinations 

a. Two-state dynamics 

As is discussed in the results below, the drift and average length were varied in initial 

simulation of the model so as to investigate cortical targeting accuracy.  The change in drift 

here was implemented by changing the Fcat:Fres ratio.  However, the diffusion coefficient, D, 

which indicates the randomness in microtubule lengths, was required to remain constant so as 

not to bias the results in any way, for example, changing the Fcat: Fres ratio by increasing Fcat 

while holding Fres constant changes not only the drift and average length, but also D.  This 

effect arises because D is sensitive to the sum of the transition frequencies.  Therefore, the 

concept of a target transition frequency sum was introduced: in each dynamics combination, 

the sum of Fcat and Fres is the same, so D is constant.  For full details of the dynamics values, 

see the appendix tables (section F).  All dynamics parameter values were chosen with 

reference to values reported in the literature; these are documented further in chapter 5. 

In the second set of experiments, only outer dynamics were varied, and inner dynamics 

remained at high positive drift.  Two more dynamics sets were created; here, in set 4, the 

diffusion coefficient was held constant while the theoretical average length was varied, and in 

set 5, the theoretical average length was held constant while the diffusion coefficient was 

varied.  In each set, the drift varied with the parameter that was being varied for that set.  

Again, for details of the dynamics, see the appendix tables (section F). 

b. Three-state dynamics 

In these experiments, there were 5 dynamics sets, and as with the second set of experiments 

in two states, only outer dynamics were changed; inner dynamics remained at high and 

positive drift.  Within each set, the abstract parameters were held constant, and the pausing 

time percentage was varied.  Between sets, drift and average length were varied; for values, 

see the appendix tables.   
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D. RESULTS 

I. Two-state dynamics 

a. Model efficacy 

Firstly, the two-state version of the model was tested.  The area-free and two-area simulations 

were both examined, and both types of simulation reproduced the specified dynamics well.  

In the area-free simulation, results were similar, with good agreement between the specified 

and observed transition frequencies indicated by high correlation coefficients.  In fact, the 

Pearson’s linear correlation coefficients here were all 1.00 for each dynamics set (from 

hereon, all correlations will be Pearson’s linear).  The specified and observed transition 

frequencies in the area-free and two-area simulations are plotted in figures 5 and 6, 

respectively.  In the two-area simulation, the correlation between the specified and observed 

transition frequencies in both areas in the first simulation type was also high (table I).   

 

Figure 5.  Specified and observed transition frequencies for 2-state model 1 in area-free 

simulations.  The specified and observed values are plotted for Fcat (A) and Fres (B) for each 

dynamics set (refer to legend).  Transition frequency units are min-1. 
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Figure 6.  Specified and observed transition frequencies for 2-state model 1 in two-area 

simulations. The specified and observed values are plotted for Fcat in the inner (A) and outer (B) 

areas and for Fres in the inner (C) and outer (D) areas, for each dynamics set (refer to legend).  

Transition frequency units are min-1. 

Table I.  Correlation between specified and observed transition frequencies in the two-

area simulation.  The correlation coefficient for each transition frequency in each area, for each 

dynamics set, is shown. 

 Inner area Outer area 

Set Fcat Fres Fcat Fres 

1 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 

3 1.00 0.99 1.00 0.99 

 

b. Population measures 

Where in the previous section, both two-area and area-free simulations were used to test the 

model efficacy, here, only the area-free simulations are used.  This is because simulating a 

single set of dynamics simplifies the complexity of the system a great deal, and it is easier to 

determine if a given set of dynamics reproduce theoretical predictions.  Recall that the aim of 

these sections, where simulated and theoretical population measures are compared, is not to 

test model efficacy; rather, it is to establish the population properties of a given set of 

dynamics, and to understand whether theory agrees with these. 

Firstly, to investigate how the average microtubule length varied in response to changing 

dynamics parameters, the observed length was found by averaging microtubule lengths over 
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the final 10 minutes of a 60-minute simulation for each dynamics set.  The observed lengths 

are plotted against the theoretical length in figure 7.  For all but the greatest of the theoretical 

lengths in each set, the observed lengths are similar to their predicted counterparts; the 

relationship falls off somewhat at the largest predicted value, with the observed value lower 

than predicted.  Nevertheless, the predicted and observed lengths are very well-correlated 

(table II), indicating that the dynamics sets behave as predicted.  Furthermore, the mean-

squared error between the predicted and observed lengths is fairly low, and if the predicted 

and observed lengths at the smallest magnitude negative drift are omitted, the mean-squared 

error is very low (table II), indicating that the dynamics produce the expected theoretical 

population characteristics.   

Note that increasing the simulation time has little effect on the average length, so 

explanations of the discrepancy between the predicted and observed average lengths at the 

smallest negative drift that are based on the population not yet having reached steady state are 

unlikely.  Moreover, at the lowest negative drift, theory suggests that the population should 

shrink less on average, thus presumably reaching a steady state sooner than those with greater 

negative drift.  However, since the lengths are exponentially distributed, to achieve a large 

average length, some individual microtubules would need to be very long; the fact that some 

microtubules may not yet have reached these large lengths may contribute to the lower 

average.  In any case, in the subsequent section, these drift values are found to produce low 

accuracy, and longer simulation time would worsen this accuracy by allowing an increase in 

〈𝐿〉.  Thus, it is not relevant to accuracy, and is not considered further in this section. 

 

Figure 7.  Theoretical and observed length in area-free model 1, two-state.  The theoretical 

average length, 〈𝐿〉, is plotted against the observed average length for each dynamics set (refer 

to legend).  Length units are μm. 
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Next, the diffusion coefficient was considered.  In dynamics sets 1-3, the diffusion coefficient 

is held constant within each set, but it varies between sets; in set 1, it is 33 μm2 min-1; in set 2, 

it is 16.5 μm2 min-1, while in set 3, it is 8.25 μm2 min-1 (appendix).  Recall that these are not 

exact measures, but they do indicate that the expected length randomness should be similar 

within sets, and be twice as large in set 1 as in set 2, and again twice as large in set 2 as in set 

3.  The diffusion coefficient as it is defined by theory (see chapter 4) is not a measurable 

property, and so as a measure of length randomness, the average of the range in length over 

the final 10 minutes of the simulation was taken for each negative drift value in each set 

(table III).   

The first premise of the theory that the randomness should remain similar within each 

dynamics set is not supported by the data.  Within each dynamics set, the average range in 

length decreases with increasingly large negative drift.  The reason for this lies in the 

inconsistencies between the random walk model and real microtubule biology (fig. 1), which 

were discussed in chapter 4.  Because microtubules cannot take on negative length, those 

dynamics sets that have large negative drift, and thus a small average length, are likely to be 

suppressed in terms of length randomness when compared to theory, because the theory 

allows for the random walker to have negative displacement.  Therefore, where there are 

small average lengths, the deviation in lengths is more limited than at large average lengths, 

explaining the decrease in length range as negative drift becomes larger.   
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Table II.  Predicted and observed average lengths for dynamics sets 1-3.  For each set, the 

predicted and observed lengths are shown (units μm) for increasing large values of negative drift.  

The correlation and mean-squared error (MSE), the latter with and without the values for the 

smallest negative drift, are also shown. 

Drift 

(negative) 

Set 1 Set 2 Set 3 

Predicted Observed Predicted Observed Predicted Observed 

Low 47.14 31.81 ± 0.63 37.50 23.26 ± 0.55 18.75 14.18 ± 0.42 

In
c
re

a
s
in

g
 d

rift 

18.97 17.99 ± 0.41 11.15 11.02 ± 0.33 5.57 5.49 ± 0.11 

11.87 11.90 ± 0.34 6.55 6.54 ± 0.14 3.11 3.08 ± 0.06 

8.64 8.57 ± 0.21 4.63 4.62 ± 0.08 2.24 2.22 ± 0.03 

6.79 6.78 ± 0.09 3.59 3.59 ± 0.07 1.74 1.73 ± 0.02 

5.59 5.56 ± 0.09 2.80 2.79 ± 0.03 1.43 1.42 ± 0.01 

4.76 4.76  ± 0.08 2.38 2.37 ± 0.03 1.21 1.20 ± 0.01 

4.14 4.11 ± 0.06 2.07 2.07 ± 0.02 1.03 1.03 ± 0.01 

3.66 3.66 ± 0.04 1.83 1.83 ± 0.01 0.91 0.91 ± 0.01 

High 3.28 3.26 ± 0.04 1.64 1.63 ± 0.01 0.82 0.82 ± 0.00 

Correlation 0.99 0.98 1.00 

MSE    

With lowest 

drift 
23.59 20.27 2.09 

Without 

lowest drift 
0.11 0.00 0.00 

 

Although the first premise of the diffusion analogy to microtubule dynamics is not met, the 

second, stating that lengths should be progressively less random moving from set 1 to 3, is 

supported by the results.  The ratios of the ranges at each negative drift value are shown in 

table III.  As with the average length, the ratios between length ranges are remarkably similar 

to that predicted by theory, roughly at 2, apart from those for the smallest negative drift, 

where the ratio is smaller.  This relationship is clearly visible in figure 8. 

The fact that the range ratio at the smallest negative drift is not as large as expected provides 

an explanation for the average lengths in this case not being as large as predicted.  Here, the 

lengths being not as random as predicted suggests that they have not explored space to the 

extent required to achieve the predicted average length. 
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Table III.  Ranges of microtubule lengths and their ratios in dynamics sets 1-3.  For 

increasingly large negative values of drift, the average range in length (units, μm) for each 

dynamics set is shown.  Also shown are the ratios between sets 1 and 2 (1:2) and 2 and 3 (2:3). 

Drift 

(negative) 

Range Range ratio 

Set 1 Set 2 Set 3 1:2 2:3 

Low 166.21 121.38 78.43 1.37 1.55 

In
c
re

a
s
in

g
 d

rift 

123.86 75.99 41.69 1.63 1.82 

86.71 47.40 22.38 1.83 2.12 

65.30 34.01 17.24 1.92 1.97 

49.26 26.35 13.19 1.87 2.00 

40.92 20.67 10.65 1.98 1.94 

37.21 17.85 8.87 2.08 2.01 

30.42 15.78 7.63 1.93 2.07 

27.20 13.62 6.74 2.00 2.02 

High 24.05 12.15 6.20 1.98 1.96 

 

 

To further explore the relationships between the dynamics parameterisations and empirical 

measures of microtubule properties, the dynamicity was also found for sets 1-3 and the length 

range and dynamicity was found for dynamics sets 4-5.  Using both of these measures as 

indicators of variation in length will allow further comparison of the theory with reality, and 

also establish the utility of the measures.  The dynamicity for sets 1-3 is plotted with the 

length range in figure 8, and the length range and dynamicity for sets 4-5 is plotted in figure 

9.  Note that D is fixed in set 4, and 〈𝐿〉 is fixed in set 5.   

The results in figures 8-9 are consistent with the assessment of the correspondence of the 

theory and reality given in figure 1.  There, it was suggested that increased theoretical length 

should produce greater values of empirical measures of variation in length.  As figure 8 

shows, this is the case for length range, and also for dynamicity.  The fact that dynamicity 

levels of for all dynamics sets 1-3 as a function of theoretical length is explained by the 

theory in that increasing theoretical average length should not increase dynamicity per se, but 

move the random walk space further into positive displacement, and thus allow microtubules 

to reach levels of dynamicity that more accurately reflect the diffusion coefficient.  Because 

the magnitude of drift increases with decreasing theoretical average length, the dynamicity 

and length range are small at large negative drift, and increase as drift approaches zero (fig. 

8).  The theory is also supported by the fact that the sets are ordered in both length range and 

dynamicity by their diffusion coefficients; with the greatest diffusion coefficient having the 

greatest values of these measures. 



115 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 8
. 

 L
e
n

g
th

 r
a
n

g
e
 a

n
d

 d
y
n

a
m

ic
it

y
 i

n
 d

y
n

a
m

ic
s

 s
e

ts
 1

-3
, 

a
re

a
-f

re
e

 s
im

u
la

ti
o

n
s

. 
 T

h
e

 l
e

n
g
th

 r
a

n
g

e
 a

n
d
 

d
y
n

a
m

ic
it
y
 a

re
 p

lo
tt
e

d
 a

s
 a

 f
u

n
c
ti
o

n
 o

f 
th

e
o

re
ti
c
a

l 
a

v
e

ra
g

e
 l

e
n

g
th

 (
A

 a
n

d
 B

, 
re

s
p

e
c
ti
v
e
ly

),
 a

n
d

 o
f 

d
ri
ft
 (

C
 a

n
d

 D
, 

re
s
p

e
c
ti
v
e

ly
),

 
fo

r 
e

a
c
h

 
d
y
n

a
m

ic
s
 
s
e

t 
(r

e
fe

r 
to

 
le

g
e

n
d

).
 
 
L

e
n

g
th

 
a
n

d
 
th

e
o

re
ti
c
a
l 

a
v
e

ra
g
e

 
le

n
g

th
 
u

n
it
s
 
a

re
 
μ

m
; 

d
y
n

a
m

ic
it
y
 a

n
d

 d
ri
ft

 u
n
it
s
 a

re
 μ

m
 m

in
-1

. 
 I

n
c
re

a
s
e
d

 t
h

e
o

re
ti
c
a

l 
le

n
g

th
 p

ro
d
u

c
e

s
 g

re
a

te
r 

v
a

ri
a

ti
o

n
 i

n
 l

e
n
g

th
, 

w
h

ile
 

s
m

a
lle

r-
m

a
g

n
it
u

d
e

 d
ri
ft

 g
iv

e
s
 g

re
a

te
r 

le
n

g
th

 v
a

ri
a

ti
o
n

. 

 



116 

 

 

 

F
ig

u
re

 9
. 

 L
e

n
g

th
 r

a
n

g
e
 a

n
d

 d
y
n

a
m

ic
it

y
 i

n
 d

y
n

a
m

ic
s

 s
e

ts
 4

 a
n

d
 5

, 
a

re
a

-f
re

e
 s

im
u

la
ti

o
n

s
. 

 L
e

n
g

th
 r

a
n

g
e

 a
n

d
 d

y
n

a
m

ic
it
y
 a

re
 p

lo
tt
e
d
 

a
g

a
in

s
t 

th
e

 t
h
e

o
re

ti
c
a
l 
a

v
e

ra
g

e
 l
e

n
g

th
 f

o
r 

s
e

t 
4

 (
A

) 
a

n
d

 t
h

e
 d

if
fu

s
io

n
 c

o
e
ff

ic
ie

n
t 

fo
r 

s
e

t 
5

 (
B

),
 t

h
e

n
 b

o
th

 a
re

 p
lo

tt
e

d
 a

g
a

in
s
t 

d
ri
ft

 f
o
r 

s
e

t 
4

 (
C

) 

a
n

d
 s

e
t 
5

 (
D

).
  
L

e
n
g

th
 a

n
d
 t
h

e
o

re
ti
c
a
l 
a

v
e

ra
g

e
 l
e

n
g

th
 u

n
it
s
 a

re
 μ

m
; 
d

y
n

a
m

ic
it
y
 a

n
d

 d
ri
ft

 u
n

it
s
 a

re
 μ

m
 m

in
-1

. 



117 

 

Dynamics set 4, in which the theoretical average length is varied while D is held constant, 

behaves in a similar manner to dynamics sets 1-3, which also had varying 〈𝐿〉 (fig. 9A).  

Dynamicity and length range both increase with increasing theoretical average length, with 

the dynamicity levelling off as in sets 1-3.  The dynamicity and length range also display a 

similar relationship with drift to sets 1-3 (fig. 9C). 

In set 5, the situation is different, because here, D varies and 〈𝐿〉 is fixed.  However, it is still 

consistent with the assessment of the theory in figure 1.  Here we see that an increase in the 

diffusion coefficient brings about an increase in dynamicity and also initially in length range; 

the latter quickly levels off and remains at similar levels for increasing D.  Because 

theoretical average length is fixed here, an increase in D is limited in its effect on length 

range, because as D increases, the drift becomes larger (negative), and more of the random 

walk space becomes inaccessible to a microtubule, being moved into negative displacement.  

This can explain the steep rise and quick levelling of the length range.  The rate of increase of 

dynamicity is also slowed as D becomes greater, and this is also for the same reason that 

length range cannot increase; however, the effect is more marked for length range because re-

nucleation serves to decrease the length range, but has less of an effect on dynamicity.  

Because the magnitude of drift increases with increasing D, dynamicity is high for large 

negative drift, and length range undergoes a sharp decrease as drift approaches zero. 

To summarise this section, the results indicate that the dynamics sets produce the expected 

population characteristics in general, with some interesting population properties emerging 

from the differences between the theoretical treatment and microtubule biology.  Firstly, 

average length behaves as expected, but the variation in length, rather than being absolute, 

depends on the theoretical diffusion coefficient (because set 1 is still more random than sets 2 

and 3), but also on the average length, or indeed the drift (because high negative drift and 

small average length is less random than low negative drift and large average length).  

Moreover, we have seen from sets 4 and 5 that for similar drift values, microtubule growth 

properties can be quite different.  Next, the applicability of these dynamics sets for cortical 

targeting is assessed. 

c. Cortical targeting in two states 

In the first instance, the effects of combinations of inner and outer dynamics in two states on 

the accuracy of cortical targeting are considered.  The first question addressed with the model 

was: what are the effects of particular combinations of inner and outer area dynamics on the 

accuracy of cortical targeting?  Dynamics sets 1-3 were assessed first, for which only the 

theoretical average length was chosen to vary with drift, and to control for the potential 

effects of a changing diffusion coefficient with decreasing drift and average length, the 

dynamics sets were created in a way so that the diffusion coefficient remained constant (see 

section C). 

The three dynamics sets have drift from -10.06 μm min-1 to 10.22 μm min-1.  The drift 

between these extremes is evenly spaced, and in total there are 20 dynamics combinations.  

Each of these is assigned to an area, giving 202 = 400 simulations, and over 3 dynamics sets, 

1,200.  The diffusion coefficient, though fixed in each dynamics set, was changed for each: in 
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set 1, it was 33 μm2 min-1; set 2, 16.5 μm2 min-1, and set 3, 8.25 μm2 min-1.  The drift and 

theoretical average length varied within sets, but between the sets, because the diffusion 

coefficients had different values, these theoretical average lengths differed.  Thus, in set 1, 

the theoretical average lengths (once in negative drift) ranged from 47.14 μm to 3.28 μm; in 

set 2, from 37.50 μm to 1.64 μm, and in set 3, from 18.75 μm to 0.82 μm.   

Each simulation was run for 50 simulation minutes before results were recorded; first, the 

accuracy of each dynamics combination was found.  The measure of accuracy used here is 

simply the proportion of microtubule plus ends within the target cortical area.  Thus, the 

accuracy was measured starting from 50 minutes, and average over the final 10 minutes of 

simulation time.  As there were two sets of dynamics operating in these simulations, one for 

each area, and thus two drift values per simulation, the accuracy for each dynamics set is 

plotted as a surface, where the accuracy determines the height, or z co-ordinate, and x and y 

are the inner and outer drift, respectively (fig. 10). 

The plots in figure 10 show that, while accuracy depends on the drift in both areas, the sign of 

the outer area drift is a major influence on accuracy; where there is positive outer area drift, 

accuracy is always low regardless of inner area drift.  It is evident that to achieve good levels 

of accuracy, the negative outer area drift is best combined with positive inner area drift; 

however, compared to outer area drift, the accuracy does not fall off so steeply as inner area 

drift decreases, indicating that the accuracy is tolerant to negative inner drift values to a 

greater extent than it is to positive outer drift.  Thus, the first conclusion here is that positive 

inner drift and negative outer drift produce the greatest accuracy in cortical targeting. 

These observations can be reconciled with the average lengths in each dynamics set (fig. 11), 

because average length is effectively an indicator of accuracy.  Again plotted as a surface 

with area drifts on the x- and y- axes, we can see that average length increases with 

increasing drift in both areas, but that the effect is more marked with increases in outer area 

drift.  We can also see that at drift combinations that gave the greatest accuracy, the average 

length is close to the target area distance, indicated by the red shading.  The average length 

here is actually just below the target length in set 3, but above it in set 1, consistent the 

accuracy results. 

Interestingly, the plots in figures 11 reveal that the low accuracy at large negative inner drift 

and large positive outer drift arises for fundamentally different reasons in different sets.  In 

sets 2 and 3, the average length is low at these drift combinations, indicating that the low 

accuracy here is due to microtubules not reaching the target area, while in set 1, the average 

length at these drift combinations is large, indicating that the low accuracy here is due to 

microtubules overshooting the target area.  Therefore, although these dynamics sets have 

similar accuracy results for those drift combinations, the differences between them in their 

diffusion coefficient and theoretical average length mean that these similarities are reached 

via different mechanisms. 
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It is also interesting to note that, although negative drift in the outer area generally produces 

accurate cortical targeting when combined with large positive inner drift, this is not always 

the case.  At small negative outer drift, accuracy is low, and this is true regardless of the sign 

of the inner drift (fig. 10).  Considering the average lengths as a function of area drift, we can 

see that the average length at these drift combinations is very large in comparison to the 

target length, only reducing when the inner drift reach values of around -5 μm min-1.  Thus, 

the small magnitude of the outer drift cannot balance the tendency toward growth of the inner 

area; indeed, the average lengths at these low magnitude, albeit negative, outer area drift 

values are on the order of tens of microns (appendix), thus it appears that there is a point at 

which the negative drift in the outer area becomes too small to allow accurate cortical 

targeting. 

To demonstrate the effect of drift combinations on microtubule lengths, two example 

histograms are plotted in figure 12.  Here we see that for the drift combination that produced 

the greatest accuracy in each dynamics set, i.e. maximum inner drift, minimum outer drift, 

the lengths, on the order of tens of microns, are distributed around the target length (fig. 

12A), while in a drift combination that gives low accuracy, i.e. maximum inner and outer 

drift, the lengths, now on the order of thousands of microns, are distributed a long way from 

the target length (fig. 12B), which now appears more as a thin line than an area, far to the left 

of the histogram.    

One of the most striking features of the plots in figure 10 is the fact that accuracy increases as 

the dynamics sets change: set 3 has the greatest accuracy, and set 1 the worst.  Thus, for 

similar values of drift, the dynamics combinations in set 3 will generally give more accurate 

cortical targeting than those in sets 1 or 2.  Recall that the differences between these 

dynamics sets is in their diffusion coefficients: set 1 has the greatest D, and set 3 the lowest 

D.  Note also that within each dynamics set, since D remains constant while the drift changes, 

the theoretical average length, 〈𝐿〉, must also change.  The difference in accuracy between the 

sets must therefore arise from these differences. 

To clarify the issue, the accuracy of dynamics sets 1-3 is plotted in figure 13 as a function of 

〈𝐿〉 for two inner drift values: 10.22 μm min-1, the maximum, and 5.02 μm min-1, and mid-

range value for positive drift.  Here, we see that contrary to the impression of the surface 

plots, dynamics set 1 actually produces the greatest accuracy for any given 〈𝐿〉.  Indeed, the 

reason that sets 2 and 3 produce greater accuracy is because they attain smaller 〈𝐿〉 than set 1.  

Therefore, we can conclude that although similar area drift combinations produce good 

accuracy between the dynamics sets, the magnitude of this effect of drift is affected by the 

theoretical average length.  This is of course a manifestation of the relationship in equation 9: 

|𝑉| =
𝐷

〈𝐿〉
,     (9), 

so for similar drift values, a decrease in D must be accompanied by a decrease in 〈𝐿〉, 

explaining the results; setting drift equal between the dynamics sets while reducing D means 

that sets with smaller D will have smaller 〈𝐿〉.  To conclude, drift per se is not an absolute 

determinant of accuracy, and for any negative drift value, decreasing both D and 〈𝐿〉 will give 
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greater accuracy.  Or indeed, 〈𝐿〉 per se is not an absolute determinant of accuracy, since, for 

any given 〈𝐿〉, a greater D, and thus drift, will give greater accuracy. 

 

 

Figure 12.  Example histograms of microtubule lengths.  In the maximum inner drift, 

minimum outer drift combination (A), lengths are distributed around the target area (indicated by 

red shading), while for maximum drift in both areas (B), lengths are distributed far from the target 

area.  Length units are μm. 
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Figure 13.  Accuracy and theoretical average length in the outer area, dynamics sets 1-3.  

Accuracy is plotted against theoretical average length for an inner drift of 10.22 μm min-1 (A) and 

5.02 μm min-1 (B) for each dynamics set (refer to legend).  Theoretical average length units are 

μm. 

Note that increases in accuracy as a result of decreasing 〈𝐿〉 is relevant only to the outer area; 

in the inner area, the situation is apparently reversed.  Here, for any given 〈𝐿〉, a smaller D, 

and thus smaller (a small negative) drift, will give greater accuracy here, as the plots in figure 

14 demonstrate; because D is smaller in set 3 compared to sets 1 and 2, and again smaller in 2 

than in 1, for each 〈𝐿〉, the drift is smaller in set 3 than in sets 2 or 1, and accuracy is greater. 
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Figure 14.  Accuracy and theoretical average length in the inner area, dynamics sets 1-3.  

Accuracy is plotted against theoretical average length for an outer drift of -10.06 μm min-1 (A) and 

-5.90 (sets 1-2) and -5.77 (set 3) μm min-1 (B) for each dynamics set (refer to legend).  

Theoretical average length units are μm. 
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These results lead to a rationale for accurate cortical targeting: we can say that for good 

accuracy in targeting microtubule plus ends to an area, positive drift in the inner area 

combined with negative drift in the target area produce the best results, whatever the 

theoretical average length or diffusion coefficient of the particular dynamics sets.  Secondary 

to this, combinations of negative drift in both areas can produce good accuracy in targeting, 

as long as the negative inner drift is not too great.  Within these both-area-negative-drift 

combinations, inner area dynamics sets that have a greater theoretical average length for any 

drift value in the inner area will produce greater accuracy.  Least successful in cortical 

targeting are the combinations that involve positive drift in the outer area, regardless of the 

sign or magnitude of drift in the inner area, though in some cases the mechanisms leading to 

poor accuracy are different.   

This cortical targeting rationale is displayed diagrammatically in figure 15.  It provides a 

convenient means of thinking about cortical targeting in terms of area drift.  Indeed, the 

success of cortical targeting, i.e. accuracy, can be considered in terms of “drift space”, 

whereby the combinations of drift in each area are split into discrete regions based on their 

sign (fig. 15).  Thus, drift combinations in region 4 of drift space will tend to produce 

accurate cortical targeting, while drift combinations in region 1 will be poor at cortical 

targeting.   

Note that this is a general framework, and only indicates potential for successful targeting; 

the discussion of low accuracy at small negative drift in the outer area serves as one example 

where these general rules do not hold.  Moreover, the actual accuracy cannot be determined 

from the drift space, since it is clear that, although drift combinations are major determinants 

of accuracy in cortical targeting, the theoretical average length and diffusion coefficient 

modulate this relationship.  However, it does serve as a heuristic guide as to the plausibility 

of any given dynamics combinations as means of accurate cortical targeting. 

 

Figure 15.  Accuracy and “drift space”.  The combinations of drift in each area can be split into 

discrete regions based on the signs of the drift (A & B).  Quadrants 1 and 2, where outer drift is 

positive with either negative or positive inner drift (B) have low potential for accurate cortical 

targeting (A), while quadrant 3, with negative outer and inner drift (B) has better accuracy 
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potential (A), and quadrant 4, with negative outer and positive inner drift (B) has the best 

accuracy potential.  Units in A for drift are μm min-1. 

With it being apparent that the best combinations of drift for accurate cortical targeting in 

model 1 are positive inner drift and negative outer drift, dynamics sets that satisfied this 

condition were used to investigate further the effect of changing the theoretical average 

length and diffusion coefficient in the outer area.  Two dynamics sets, 4 and 5, are used here, 

each with the same single set of dynamics parameters for the inner area, specified so as to 

give high positive drift, at 12 μm min-1.  Thus, any variation in accuracy in dynamics sets 4 

and 5 will be due to the variation in outer area dynamics, simplifying the problem.  The outer 

area dynamics in sets 4 and 5 are specified so that they both vary in drift, but so that set 4 

varies in average length with a fixed diffusion coefficient, while set 5 has a variable diffusion 

coefficient, but a fixed average length.  Therefore, these dynamics sets will allow further 

exploration of how the theoretical average length and diffusion coefficient affect the accuracy 

of cortical targeting. 

The results, shown in figure 16, demonstrate that both the average length and diffusion 

coefficient affect the accuracy of cortical targeting, and that each one of the parameters can 

indeed remain fixed while the other varies and with it determines accuracy (fig. 16A & B).  

In set 4, where the theoretical average length was varied and the diffusion coefficient held 

constant, the accuracy is very low as length decreases from the maximum, until around 4 μm, 

where the accuracy increases steeply with decreasing average length (fig. 16A & C).  This 

makes intuitive sense, since we might expect that low average lengths in a target area will 

yield more plus ends within that area, and it is also consistent with the previous results.   

Note that the theoretical average length below which accuracy starts to rise is on the order of 

the size of the target area (4 μm), which could lead to the conclusion that theoretical average 

length must be smaller than or equal to the dimension of the target area; however, the 

previous results showed that, although theoretical average length yield greater accuracy when 

it is smaller, in the high D dynamics set (set 1), accuracy began to increase before 4 μm was 

reached.   

The results are not so intuitive in dynamics set 5, where the accuracy increases with an 

increasing diffusion coefficient (fig. 16B & C).  Although this is consistent with the previous 

results, where dynamics sets with greater D (i.e. set 1) produced greater accuracy for any 

given theoretical average length, the more explicit result shown in figure 16 raises the 

question of how a greater D, which should indicate greater randomness in length, leads to 

greater accuracy.   

The result can again be explained by reference to equation 9, which shows that as D 

increases, so must the magnitude of the drift, |𝑉|.  Since we are considering a negative drift 

regime in the outer area, the larger D produces a larger negative drift in the outer area, which 

we have seen contributes to greater accuracy.  Because negative drift indicates dominance of 

shrinkage over growth, D in this instance indicates the extent to which microtubules will 

undergo large excursions, which will generally be in the shrinking state.  Thus, increased 
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accuracy as D increases results from microtubules being more likely to undergo larger 

episodes of shrinkage. 

 

Figure 16.  Accuracy, average length, diffusion coefficient and drift in dynamics sets 4-5.  

Accuracy is plotted as a function of average length (A; length units, μm), diffusion coefficient (B; 

diffusion units, μm2 min-1) and drift (C; drift units, μm min-1) for each dynamics set (see legend).  

In C, the average length and diffusion coefficient are also plotted as a function of drift (dotted 

lines, right y-axis; units as in A and B). 
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Are there common microtubule properties behind the accurate targeting at low 〈𝐿〉 and high 

D?  The previous experiments have already established that good accuracy is essentially an 

indicator of an average length around the target area, so other properties were investigated.  

The range of microtubule lengths and microtubule dynamicity were determined for each 

dynamics set.  Where the length range reveals the extent to which microtubule lengths vary, 

the dynamicity indicates the extent to which microtubules change their length.   

In set 4, with decreasing 〈𝐿〉, the length range at first stays relatively constant, and then 

decreases quite rapidly.  The dynamicity in set 4 behaves differently with decreasing 〈𝐿〉; it 

also decreases at first but then increases at smaller 〈𝐿〉 (fig 17A).  In set 5, as the diffusion 

coefficient increases, so does the dynamicity (fig. 17B).  The length range behaves differently 

here, at first increasing with the diffusion coefficient and then decreasing.  Thus, dynamicity 

in set 4 and length range in set 5 both have a qualitative switch in their relationship with 

either decreasing 〈𝐿〉 or increasing D, respectively.   

This qualitative reversal in length range and dynamicity is brought about by the systems 

effects of decreasing drift in the outer area with a constant positive drift in the inner area.  For 

comparison, the area-free simulations in the previous sub-section showed that length range 

and dynamicity increase with increasing theoretical average length in set 4, with the 

dynamicity levelling off, and so both measures increase as drift approaches zero.  In set 5, the 

dynamicity and length range also increased, but the latter only very steeply and quickly, after 

which it remained relatively constant with increasing diffusion coefficient.  Thus, set 4 

reproduces the area-free behaviour for length range but not dynamicity, and set 5 mimics the 

area-free simulations for dynamicity but not for length range.   

However, the area-free behaviours are reproduced for some of the changes in either 〈𝐿〉 or D; 

at large 〈𝐿〉, dynamicity is similar in these simulations for set 4 as it was in the area-free 

simulations, while in set 5, at small D, length range is similar here to the area-free 

simulations.  The fact that both changes in the relationships occur at similar outer area drift 

values suggests that they are a consequence of the systems nature of these simulations; as 

microtubules in the outer area experience dynamics sets that cause them to shrink more, they 

will be returned to the inner area, upon which they will experience dynamics sets that cause 

them to grow more, and they will return to the outer area.  Thus, the length range reduces, but 

the dynamicity increases; as outer negative drift becomes large, microtubules range less in 

length but cover greater distance.  It is interesting that this common mechanism, which 

produces good accuracy, is manifest purely from the combinations of area dynamics, and 

indeed, causes deviations from the microtubule growth behaviour that would otherwise occur.   

To conclude, in two-state dynamics, the combination of drift in the two areas is a vital 

determinant of accuracy, and this arises from a common mechanism of reducing length range 

while total distance covered increases, regardless of whether theoretical average length or the 

diffusion coefficient is varied to bring about changes in drift.  Having elucidated the 

mechanisms behind accurate targeting of microtubules in two-state dynamics regimes, the 

influence of the third state will be considered next. 
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II. Three-state dynamics 

a. Model efficacy 

In the simulations of three-state model 1, only two transition frequencies were varied within 

each dynamics set; these were Fp2g and Fp2s.  The purpose of varying just these transition 

frequencies was so that the time percentage for the pausing phase varied, but other system 

properties did not.  Therefore, to establish the efficacy of model in three-state simulations, the 

correlation between specified and observed Fp2g and Fp2s will be a useful measure, and the 

mean-squared error for all observed transition frequencies will also be used to test that these 

were close to their specified values.   

The correlation coefficients for Fp2g and Fp2s for each dynamics set were high (table IV), in 

both the area-free and two-area simulations.  These correlations are easy to see in the plots in 

figure 18.  For all transition frequencies, the mean-squared error was low (table V-VI).  These 

results indicate that the 3-state version of model 1 reproduced the specified behaviour well.   

Table IV.  Correlation coefficients for varied transitions frequencies in dynamics sets 6-10.  

The correlation between specified and observed transition frequencies in both simulations types 

is shown. 

Set 
Fp2g Fp2s 

Area-free Two-area Area-free Two-area 

6 1.00 1.00 1.00 1.00 

7 1.00 1.00 1.00 1.00 

8 1.00 1.00 1.00 1.00 

9 1.00 1.00 1.00 1.00 

10 1.00 1.00 1.00 1.00 

 

Table V.  Mean-squared error for transition frequencies in dynamics sets 6-10, area-free 

simulations.  The error between specified and observed transition frequencies is shown. 

Set Fcat Fres Fg2p Fp2g Fs2p Fp2s 

6 0.01 0.01 0.00 0.00 0.00 0.00 

7 0.01 0.01 0.00 0.00 0.00 0.00 

8 0.01 0.00 0.00 0.00 0.00 0.00 

9 0.02 0.00 0.00 0.00 0.00 0.00 

10 0.04 0.00 0.00 0.00 0.00 0.00 
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Table VI.  Mean-squared error for transition frequencies in dynamics sets 6-10, two-area 

simulations.  The error between specified and observed transition frequencies is shown. 

Set 
Fcat Fres Fg2p Fp2g Fs2p Fp2s 

In Out In Out In Out In Out In Out In Out 

6 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

7 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

9 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

Figure 18.  Specified and observed transition frequencies for dynamics sets 6-10 in area-

free and two-area simulations.  The observed transition frequencies, as indicated, for area-free 

(A, C) and two-area (B, D) simulations are plotted against the specified values for each dynamics 

set (refer to legend).  Transition frequency units are min-1. 
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b. Population measures 

Next, certain population properties of model 1 in 3 states are considered.  As with the two-

state version of model 1, these measures are conducted on the area-free simulations only; 

similar measures will be considered for the two-area simulation in the subsequent section.  

Firstly, although dynamics sets 6-10 were created so that the pause time percentage varied 

while drift, length and the diffusion coefficient were fixed within each, the percentage time in 

pause is strictly a population parameter, and is a predicted feature of the simulations.  The 

same is true of the predicted time percentages in the other phases.  Indeed, it is possible that 

the observed times deviate from the predicted values due to certain systems properties, one of 

which is favouring of the growth phase due to re-nucleation.  Since the effect of this process 

is marked at shorter average lengths, deviation of the phase times may well differ here, where 

the average length ranges from 3.84 μm to 0.92 μm.   

The observed phase time percentages are plotted in figure 19.  In each of the individual set 

plots (fig. 19A-E), the pausing time percentage is evidently behaves as expected, since there 

is an essentially linear relationship between the predicted and observed values.  This linear 

relationship is not as strong as we go through the dynamics sets; thus, since the average 

length decreases with the dynamics sets, there is evidence of the aforementioned deviation 

from expected phase time percentages at short average lengths.  Indeed, this trend is more 

marked for the other phases; observed growth time percentage becomes greater than 

predicted as the average length decreases, and the opposite is true of shrinking time 

percentage.  Again, this is consistent with the predictions made above.  Comparing the phase 

times between dynamics sets (fig. 19F-H), these effects are clearer.  Therefore, although 

predicted phase times do differ from the observed phase times, we can understand why, and 

moreover, the observed pause time deviates from the predicted values less than the other 

phases, and it is pause time percentage that we are particularly interested in here.  Also, there 

is good correlation between the predicted and observed phase time percentages (table VII). 

 

Table VII.  Correlation between predicted and observed phase time percentages for 

dynamics sets 6-10, area-free simulation.  For each dynamics set, the correlation between 

predicted and observed phase time percentages is shown. 

Dynamics set Pause Grow Shrink 

6 1.00 1.00 1.00 

7 1.00 1.00 1.00 

8 1.00 1.00 1.00 

9 1.00 1.00 1.00 

10 1.00 1.00 1.00 
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Previously in the two-state version of model 1, the length range was found to decrease with 

larger outer area negative drift and this was concurrent with increased cortical targeting 

accuracy.  Therefore, the length range in the three-state version of model 1 was found as a 

function of pausing time percentage.  In general, the pausing time percentage has little effect 

on the length range (fig. 20), but in dynamics set 6, and to a certain extent dynamics set 7, the 

length range does fall as pausing time percentage reaches its greatest values (fig. 20).  Note 

also that although pausing time percentage has little effect on the length range within each 

dynamics set, the length range is consistently different between the dynamics sets.  Since 

when D is fixed in the two-state version of model 1, length range was found to decrease with 

more negative values of drift, it is likely that the decreasing (i.e. more negative) drift from set 

6 to set 10 is the source of these differences in length range.  Added to this is the differences 

between sets in average length; this decreases concomitantly with drift from set 6 to set 10, 

and a shorter average length combined with a larger negative drift will produce smaller length 

ranges, as we have seen previously.   

 

Figure 20.  Length range and pausing time percentage in dynamics sets 6-10, area-free 

simulations.  The length range is plotted against predicted (A) and observed (B) pause time 

percentage for each dynamics set (refer to legend).  Length range units are μm. 



134 

 

Finally, the average length in the area-free, three-state version of model 1 was determined for 

each dynamics set.  As average length was held constant within each dynamics set, the mean-

squared error for the observed average lengths against the specified average length was 

found.  The result of this are shown in table VIII.  The low mean-squared error for each 

dynamics set indicates that the predicted average length is similar to the observed average 

length in the area-free simulations.   

Table VIII.  The mean-squared error average length in area-free simulations of dynamics 

sets 6-10.  For each dynamics set, the mean-squared error (MSE) for the difference between 

observed and theoretical average length is shown. 

Dynamics set MSE 

6 0.04 

7 0.01 

8 0.00 

9 0.00 

10 0.00 

 

c. Cortical targeting in three states 

Having introduced the third microtubule state into the two-area simulations, the immediate 

matter is verification of the observed pausing time percentages; are they similar to the 

specified pausing percentage times, or does the system change this property?  Figure 21 

shows a plot of the specified and observed pausing time percentages for dynamics sets 6-10.  

The specified and observed pausing time percentage for these two-area simulations was 

highly positively correlated as in the area-free simulations, at 1.00 for all dynamics sets. 

 

Figure 21.  Specified and observed pausing time percentage in two-area simulations of 

dynamics sets 6-10.  For each set (refer to legend), the specified and observed pausing time 

percentages are plotted. 
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Having verified that there are no emergent systems processes whereby the observed and 

specified pausing time percentages differ, the next issue is whether pause time percentage 

affects the accuracy of cortical targeting.  The results are plotted in figure 22.  The accuracy 

of cortical targeting is clearly affected by pausing time percentage; in all dynamics sets, 

accuracy increases with pausing time percentage, and this increase becomes greater with 

large pausing time percentages (fig. 22A).  Given the introduction of drift space in the two-

state model 1 earlier, and the finding that increasing negative drift in the outer area produces 

better accuracy, it is not surprising that, although accuracy responds to pausing time 

percentage in a similar fashion between dynamics sets, the absolute level of accuracy changes 

between these sets, which of course differ in their outer area drift values.  Thus, it is useful to 

consider accuracy as a function of both outer area drift and pausing time percentage (fig. 

22B).  Plotted as a surface, we can see that accuracy is most responsive to increases in 

pausing time percentage when outer area drift is more negative.  Therefore, we can conclude 

that increasing pausing time percentage increases accuracy, but the extent to which it does so 

is modulated by the magnitude of the outer area negative drift. 

It is interesting to note that, although the effect of pausing time percentage is modulated by 

outer area drift, introducing the third state into the simulations produces greater accuracy at 

smaller negative drift compared to the two-state model.  Set 6 represents the smallest outer 

area drift value here, and the most comparable dynamics set used in the two-state model is set 

3.  At similar outer area drift and average length values, accuracy was almost zero in set 3, 

whereas in set 6, it is greater than 0.2.  Note that the inner area drift in dynamics set 3 was 

slightly lower than in set 6, 10.22 μm min-1 at the maximum, and this may have a small effect 

on the accuracy there. 

What is the mechanism by which increases in pausing time percentage increase accuracy?  To 

investigate, various microtubule growth characteristics were analysed.  In the two-state 

simulations, it was found that larger negative drift in the outer area, when combined with 

positive inner drift, resulted in decreased length range and increased dynamicity, regardless 

of whether the changes in outer drift was brought about by changing theoretical average 

length or the diffusion coefficient.  Thus, the length range and dynamicity were investigated 

for sets 6-10.  In the area-free simulations, it was found that increased pausing time 

percentage had little effect on the length range until large Tp was reached, upon which length 

range decreased in the sets with small negative drift (i.e. sets 6 and 7).  Here, the moving 

average of the length range was taken so that the results were easier to interpret; this and the 

dynamicity are plotted against the specified Tp in figure 23.  As with the area-free 

simulations, the length range remains relatively constant for a large portion of Tp, but as Tp 

becomes large, the length range decreases quickly.  In this case, this rapid decrease in length 

range at high Tp occurs in all dynamics sets.  The dynamicity decreases with increasing Tp; 

this follows simple reasoning that larger proportions of time spent in the pausing phase 

should give rise to lower absolute change in length.  
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Figure 22.  Accuracy in three-state simulations of model 1, dynamics sets 6-10.  The 

accuracy is plotted against pausing time percentage (A) for each dynamics set (refer to legend), 

and as a surface against drift (essentially going through dynamics sets 6-10 with increasing drift 

magnitude) and pausing time percentage (B).  Drift units are μm min-1. 
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Figure 23.  Length range and dynamicity for predicted pausing time percentages in 

dynamics set 6-10.  For each dynamics set (see legend), the length range (A) and dynamicity 

(B) are plotted for the specified pausing time percentages.  Length range units are μm; 

dynamicity units are μm min-1. 
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Previously, it was found that both length range and dynamicity increase with theoretical 

average length in area-free two-state simulations, but that in two-area, two-state simulations 

at low 〈𝐿〉, the trend was reversed and dynamicity decreased with increasing 〈𝐿〉.  Since 〈𝐿〉 

was varied between dynamics sets here, the length range and dynamicity were determined for 

each dynamics set, i.e. as functions of 〈𝐿〉.  The averages of the length range and dynamicity 

for each set, i.e. over the variable Tp, are shown in figure 24A & C, while the averages over 

discrete 20% portions of Tp are shown in figure 24B & D.  Here, we see that the relationship 

between length range and 〈𝐿〉 found in two-state simulations still holds here (fig. 24A), and 

that as Tp becomes large, the length range increases with 〈𝐿〉 at a slower rate (fig. 24B).  

Thus, for any given 〈𝐿〉, increasing Tp to very high values makes length range smaller.  

Dynamicity also decreases, albeit slowly, with increasing 〈𝐿〉, consistent with the earlier 

findings.  As with the length range, increasing Tp decreases dynamicity for any given 〈𝐿〉, but 

here, the effect is more marked than for length range. 

 

Figure 24.  Length range and dynamicity as functions of theoretical average length, 

dynamics sets 6-10.  Theoretical average length varies between sets 6-10, with set 6 having the 

largest value, and set 10, the smallest.  Thus, length range and dynamicity are plotted as 

functions of these theoretical average lengths: the average values are shown in A and C, and the 

averages of discrete intervals of Tp (see colour bar) are shown in B and D.  Length range and 

theoretical average length units are μm; dynamicity units are μm min-1. 

As each dynamics set has a constant drift value, the length range and dynamicity can be 

plotted as against outer area drift (fig. 25).  Since drift becomes smaller with increasing 〈𝐿〉, 

the length range and dynamicity behave in a similar manner here, both for average (fig. 25B) 

and discrete Tp averages (fig. 25C); accuracy is quite consistent relative to the two-state 

model (fig. 25A). 
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Figure 25.  Length range, dynamicity and accuracy as functions of drift for dynamics sets 

6-10.  Each dynamics set has one drift value, for which the average accuracy (A), the average 

length range and dynamicity (B), and the length range and dynamicity averaged over discrete Tp 

(see colour bar) (C), are shown.  Length range units are μm; dynamicity and drift units are μm 

min-1. 
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Finally, the fact that on average, accuracy does not increase with larger negative outer drift 

warrants a discussion of the response of accuracy to changing drift and Tp.  Firstly, notice that 

the average accuracy in figure 25A is actually lower at the largest negative drift compared to 

the intermediate negative drifts.  However, the first set of results showed that accuracy is 

greatest at the largest negative drift.  The situation can be clarified by considering in a bit 

more detail how accuracy responds to the combinations of drift and Tp.  In figure 26A, the 

accuracy is plotted with drift, colour-coded for Tp.  Note that the range in accuracy values 

increases with larger negative drift; these are plotted in figure 26B.  The low accuracy values 

for small Tp evidently lower the average accuracy in figure 25A.   

What is the link between a small Tp and non-increasing accuracy with larger negative drift?  

Firstly, it is relevant that the introduction of pausing elevates accuracy for lower negative 

drift values, regardless of the value of Tp; in two-state simulations, accuracy was always very 

low at outer drift value of -2 μm min-1, whereas here it is greater than 0.2 μm min-1; this was 

discussed above.  Secondly, and more fundamentally, introduction of pausing means that 

dynamicity does not vary to the same extent with drift as it does in the two-state simulations.  

Thus, Tp modulates dynamicity almost independently of drift; there is a small decrease in 

dynamicity as drift approaches zero, as discussed.   

However, the introduction of pausing does not alter length range to the same extent as it does 

dynamicity; here, it still increases as drift approaches zero.  This means that for small 

negative drift regimes where the length range is large, the reduction in dynamicity afforded 

by increases in Tp has a small effect, as large Tp values do yield greater accuracy here, but this 

effect is not as great as when length range is small at large negative drift values.  Here, 

reducing dynamicity by increasing Tp can have a stronger effect because the length range is 

not limiting; it is small.  This explains the increase in accuracy range as negative drift 

becomes larger.   

These results suggest that in the two-state case, the increase in dynamicity with decreasing 

length range seen in dynamics set 4 is limiting further increases in accuracy.  Similarly, in the 

two-state dynamics set 5 where D varied and dynamicity increased with increasing D and 

larger negative drift, i.e. dynamicity was effectively “forced”, length range reduced and 

accuracy increased; in two states, accuracy is achieved by decreasing length range but there is 

concomitant increase in dynamicity.  In three states, these are (almost) uncoupled, allowing 

greater accuracy by reducing dynamicity at low length ranges. 

To conclude this section, the findings presented above demonstrate that the systems 

behaviour found in the two-state model is still applicable in general; greater accuracy is 

associated with a decrease in length range and a very slight increase in dynamicity, but that 

pausing contributes to greater accuracy by permitting decreases in dynamicity that would 

otherwise be unattainable.  As with two states, pausing effectively focusses plus ends to the 

target area, but without concomitant increases in dynamicity.  This means higher accuracy is 

attainable at smaller outer negative drift than in two-states, and for any drift value, larger Tp 

means more accurate targeting.   
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Figure 26.  Accuracy and accuracy range with drift, dynamics sets 6-10.  The average 

accuracy for discrete pausing time percentage groups is shown as a function of drift (A), and the 

range of the accuracy values, indicated by the dashed grey lines in A, is shown in B.  Drift units 

are μm min-1. 
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E. DISCUSSION 

I. Mechanisms of radiality 

a. Evaluation of investigation rationale  

In this chapter, the general principles of accurate cortical targeting have been deduced by 

coarsening the model of microtubule dynamics into just three parameters: drift, V, diffusion 

coefficient, D, and theoretical average length, 〈𝐿〉 (though note that only two are ever needed 

because they are related by eq. 4).  Therefore, even though in the model, the full complement 

of dynamics parameters were specified, i.e. Vg, Vs, Fcat and Fres in two states, and the 

transitions to and from the pausing state added to these to make eight parameters for the three 

state case, considering the area dynamics in terms of these parameters borrowed from the 

theory of random walks helped to elucidate the characteristics of area dynamics regimes that 

will give rise to accurate targeting of microtubules to the cortex. 

Here, the framework for the modelling, where one-dimensional microtubules grew in two 

areas with particular dynamics regimes, followed from the rationale that radiality must 

necessarily follow from control of microtubule length, and that one mechanism to do this is 

cell periphery-specific changes in microtubule dynamics relative to the more central areas of 

the cell.  Indeed, it was postulated at the beginning of this chapter that this may not be an 

exclusive mechanism for radiality, and that other processes, particularly microtubule-intrinsic 

length control and cortical capture of microtubules, would contribute to radiality.   

b. General principles of accurate cortical targeting 

In the first simulations of the model in two state (sets 1-3), it is interesting to note that the 

effect of 〈𝐿〉 is opposite between the areas: in outer areas, decreases in 〈𝐿〉 produce more 

accurate targeting, while in inner areas, increases in 〈𝐿〉 give better accuracy.  How can this 

be rationalised?  In inner areas in a negative drift regime, a greater 〈𝐿〉 will mean that 

microtubules will be more likely to reach the target area, whereas in outer areas, lower 〈𝐿〉 

will be beneficial by the fact that microtubules will effectively be contained better within the 

target area, giving greater accuracy.   

The effect of D is less intuitive compared to 〈𝐿〉, since increases in D, essentially an indicator 

of the randomness of microtubule lengths, produce better cortical targeting.  How can this be?  

As discussed in the results, we can rationalise this by the fact that in a negative drift regime, 

larger D means larger negative drift, and thus the randomness, as such, is better thought of as 

an increased tendency for microtubules to undergo large excursions in the shrinking phase.  

Of course, in a two-area model, once the microtubules have shrunk sufficiently, they will 

experience the dynamics allocated to the inner area.  Therefore, when inner area dynamics 

permit, i.e. when they have large and positive drift, large D in the outer area and high 

accuracy is reasonable.   

The switching back and forth between areas that must arise when outer area dynamics 

produce large negative drift and the inner area dynamics have large positive drift is indicated 

by the increase in dynamicity as outer area negative drift got larger in sets 4 and 5; this is 
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especially true of set 4, where D was fixed, because in area-free simulations, the trend in 

dynamicity went against this, decreasing with larger negative drift.   

When pausing in the outer area was introduced into the simulations, it increased accuracy 

when it was increased in the outer area.  We saw that for large negative outer area drift, Tp 

had more of a modulatory effect than at small negative outer area drift, suggesting that at 

these drift combinations (i.e. large negative outer, large positive inner), dynamicity was 

limiting, whereas at small negative outer, large positive inner drift, the smaller modulatory 

role of pausing suggests that here, length range may be the limiting factor.   

These observations can be condensed into a unifying theory of cortical targeting: that the 

accuracy of any targeting strategy depends on the extent to which the inner area promotes 

transit of microtubules to the outer area, and the extent to which the outer area maintains 

these microtubules, or, failing that, returns them to the inner area. 

c. General principles compared to measured dynamics 

In the cell, it is generally assumed that where there is negative drift, the system is maintained 

by a complementary nucleation rate, and where there is positive drift, the confines of the cell 

somehow act to limit this tendency toward growth; very few studies have considered this 

experimentally, although Komarova et al. (2002), Mimori-Kiyosue et al. (2005) and 

Komarova et al. (2009) are good exceptions.   

In those studies, microtubule dynamics were found to be different near the cell periphery 

compared to more central areas of the cell.  In summary, the dynamics at the cell periphery 

differed in such a way that at the periphery, microtubules were found to be in negative drift 

(Komarova et al., 2002), have increased incidence of transitions between states (Komarova et 

al., 2009; Komarova et al., 2002; Mimori-Kiyosue et al., 2005), and increased incidence of 

pausing (Mimori-Kiyosue et al., 2005).  These experimental findings are all consistent with 

the results of the modelling in this chapter, and thus, the “general mechanisms” outlined 

above may be able to account for good cortical targeting in some cases, without the need for 

subsequent capture to be invoked to produce better accuracy.   

Whether these indeed are general mechanisms in vivo and cells do not rely on the 

contribution of other mechanisms, such as the cortical capture and stabilisation of 

microtubules, will require further experiments that address differences in microtubule 

dynamics between central and peripheral areas.   

d. Future experiments 

As discussed earlier in the chapter, the hallmark of a good model is that it will not only test 

our notions of reality, it will also hint at possible future experiments.  What can the model 

suggest for future experiments?  The fact that, in a low or no-pausing dynamics regime, good 

accuracy in cortical targeting is concomitant with increased dynamicity, indicates that 

microtubules need not necessarily be less dynamic as they approach the cell periphery.  

Indeed, as some studies posit an increase in rescue (e.g. Komarova et al. (2009)) at or near 

the cell periphery, repeated cycles of growth, collision with the cell border, shrinkage, and 

subsequent rescue may well increase dynamicity relative to other areas of the cell.  Therefore, 
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a future experiment might address dynamicity and the extent of radiality.  Doing such an 

experiment in conjunction with interfering with the function of various MAPs and potential 

cortical stabilising factors, which were discussed in chapter 2, would be interesting. 

Other experiments might include an assessment of cortical stabilisation.  Indeed, although 

there have been many good studies of selective stabilisation, it would be interesting to further 

characterise dynamics at the periphery and stabilisation.  For example, we might characterise 

microtubule dynamics at the same time as implementation of an assay of selective 

stabilisation, and thus obtain cortical selective stabilisation as a function of microtubule 

dynamics.  Such an experiment could be conducted in conjunction with a certain model 

extension described below. 

II. Modelling for radiality 

a. Model evaluation 

In the discussion of the modelling process near the beginning of this chapter, the point was 

made that models are best when designed for specific purposes with particular 

complementary experiments.  Here, the model was designed with the methodology of chapter 

3 in mind; there, microtubule dynamics were measured in central and peripheral areas of the 

cell; here, microtubules were modelled with two sets of dynamics: one for inner areas and 

one for outer areas.  The complementary experiments are examined in a bit more detail in the 

next chapter; the purpose here was to really understand what makes for a good microtubule 

cortical targeting strategy, and indeed, this has been possible with the simple one-dimensional 

model that was used.  Of course, the model can be extended, and thus be more complex, and 

this is discussed below.  However, models need not be complex for the sake of complexity, 

and the model used here was appropriate for the questions at hand.   

b. Comparison with other models 

Theoretically, Gregoretti et al. (2006) and Vorobjev and Maly (2008) have given attention to 

the effects of a boundary on microtubule dynamics.  The former study found that microtubule 

dynamics could be modulated by the effect of increasing soluble tubulin concentration at the 

cell periphery upon growth being limited by a barrier.  To elaborate, as microtubules grew 

against the cell border, their subsequent transition to the shrinking phase lead to an increase 

in soluble tubulin concentration, and thus an elevated rescue frequency (which was 

concentration-dependent in their model), and thus, microtubules grew again and appropriate 

length was achieved.  This makes for an appealing self-organising mechanism, and is not 

exclusive; it is compatible with the mechanisms discussed here and also with cortical capture.   

The model of Vorobjev and Maly (2008) found that if microtubule length was limited, for 

example by a cell boundary, then positive drift dynamics could produce a radial array.  

Without bending microtubules, this makes sense, since microtubules will grow persistently 

up to a target length, and then stop.  If capture is immediate, then this positive drift could be 

the maximum (i.e. the growth rate) and microtubules would form a radial array.  In some 

ways, the model here builds upon that work by allowing microtubules to continue to grow 
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past a target length, and asking what the appropriate dynamics parameters are if they are to be 

accurately targeted to that length. 

Finally, in a similar model in a predominantly experimental paper, van der Vaart et al. (2013) 

addressed how microtubule growth might be regulated at the cell periphery.  They found that 

the increased rescue frequency found at the cell periphery required a decrease in microtubule 

growth rate if the microtubules were to be radially-organised.  Since decreases in growth rate 

would cause decreases in drift, their findings are consistent with those presented here, and 

again, increased rescue can also be explained if dynamics in the inner area are in positive 

drift.  

c. Model extensions 

An obvious extension to the model that has not been addressed here is inner area pausing.  

The reason it was omitted here is because its effects on accuracy of cortical targeting are 

evaluated in the next chapter; however, as we will see, this is only for dynamics regimes in 

quadrant 3 of drift space.  Therefore, one part of the two-area model to be implemented in the 

future is inner area pausing in dynamics regimes located in quadrant 4 of drift space. 

Note that, although this model was designed to investigate the potential for cell periphery-

specific modulation of microtubule dynamcis, it may also be applicable as a very coarse 

model of microtubule-intrinsic length control.  Indeed, although the term intrinsic is used 

here to indicate mechanisms distinct from those based on cortex-located processes, this 

intrinsic length control can be modulated by microtubule-extrinsic agents, for example 

various kinesins (Gardner et al., 2011).  Thus, discrete areas of dynamics could be applied to 

test age- or length-dependent microtubule dynamics modulation.   

Further extensions to the model could include an investigation of the effect of microtubule 

length control as investigated here on the rate of microtubule capture.  To elaborate, a simple 

hypothesis that extends from the idea that a number of processes contribute to radiality is that 

accurate cortical targeting, as determined by the modelling here, contributes to radiality by 

making microtubules available to capture.  In this view, a microtubule that is more accurately 

targeted to the cortical area will by definition spend more time in that area; capturing a 

microtubule should proceed more successfully if the microtubule is near the capture site more 

often, as it would be if it is more accurately targeted.  Thus, a model whereby microtubules 

are captured with a given frequency and are subsequently stabilised and removed from the 

dynamic pool of microtubules, would be applicable for this type of problem.  Such a model is 

not a significant extension from that used here. 

Related to the evaluation of the model given above, it is apparent that in future modelling 

studies, including cell dimensions may be applicable; indeed, it is likely that the mechanisms 

postulated to contribute to radiality above, and probably many others, are tuned so that they 

are applicable to cell dimensions.  As discussed, it is apparent that the inner-outer changes in 

dynamics here may not, in many cases, be comprehensive for radiality.  Therefore, we could 

expect a cell system whereby the cortex mediated dynamics play a role in the generation of 

radiality, but that this is a role in a large ensemble of other processes that are tuned by the cell 

to produce appropriate microtubule dynamics, and thus length, and subsequent radiality.  
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Such tuning might include concentrations of various molecules that contribute to the 

microtubule-intrinsic mechanisms, and localisation of cortical molecules for modulation of 

dynamics and also capture and subsequent stabilisation of microtubules.  

To conclude, in this chapter, the general mechanisms for accurate cortical targeting have been 

characterised, and abstraction of the many dynamics parameters into just a few parameters 

has helped in doing this.  The modelling should inform future studies of cortical microtubule 

behaviour, and there are also a number of extensions to the model that will be interesting to 

explore.  In the next chapter, the model is carried forward and we revisit the dynamics 

measurements made in the previous chapter, and together with modelling of dynamics sets 

similar to those of chapter 3, a small survey of literature-reported microtubule dynamics is 

conducted so as to be able to better understand where the measured dynamics and the 

dynamics sets used in this chapter relate to dynamics recorded by other researchers.  
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F. APPENDICES 

I. Two-state dynamics 

Table IX.  Dynamics set 1.  Dynamics parameters, Vg, Vs, Fcat and Fres are shown, together with 

the Fcat:Fres ratio, and abstract measures theoretical average length, 〈𝐿〉, drift, V, and diffusion 

coefficient, D.  Units: Vg, Vs, V, μm min-1, Fcat, Fres, min-1, 〈𝐿〉, μm, and D, μm2 min-1.  Each row 

was assigned in turn to one of the model areas.   

 

Vg Vs Fcat Fres Fcat:Fres 〈𝑳〉 V D 

11 15 0.15 4.85 0.03 - 10.22 33 

11 15 0.35 4.65 0.08 - 9.18 33 

11 15 0.55 4.45 0.12 - 8.14 33 

11 15 0.75 4.25 0.18 - 7.10 33 

11 15 0.95 4.05 0.23 - 6.06 33 

11 15 1.15 3.85 0.30 - 5.02 33 

11 15 1.35 3.65 0.37 - 3.98 33 

11 15 1.55 3.45 0.45 - 2.94 33 

11 15 1.75 3.25 0.54 - 1.90 33 

11 15 1.95 3.05 0.64 - 0.86 33 

11 15 2.25 2.75 0.82 47.14 -0.70 33 

11 15 2.45 2.55 0.96 18.97 -1.74 33 

11 15 2.65 2.35 1.13 11.87 -2.78 33 

11 15 2.85 2.15 1.33 8.64 -3.82 33 

11 15 3.05 1.95 1.56 6.79 -4.86 33 

11 15 3.25 1.75 1.86 5.59 -5.90 33 

11 15 3.45 1.55 2.23 4.76 -6.94 33 

11 15 3.65 1.35 2.70 4.14 -7.98 33 

11 15 3.85 1.15 3.35 3.66 -9.02 33 

11 15 4.05 0.95 4.26 3.28 -10.06 33 
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Table X.  Dynamics set 2.  Dynamics parameters, Vg, Vs, Fcat and Fres are shown, together with 

the Fcat:Fres ratio, and abstract measures theoretical average length, 〈𝐿〉, drift, V, and diffusion 

coefficient, D.  Units: Vg, Vs, V, μm min-1, Fcat, Fres, min-1, 〈𝐿〉, μm, and D, μm2 min-1.  Each row 

was assigned in turn to one of the model areas. 

 

Vg Vs Fcat Fres Fcat:Fres 〈𝑳〉 V D 

11 15 0.3 9.7 0.03 - 10.22 16.5 

11 15 0.7 9.3 0.08 - 9.18 16.5 

11 15 1.1 8.9 0.12 - 8.14 16.5 

11 15 1.5 8.5 0.18 - 7.10 16.5 

11 15 1.9 8.1 0.23 - 6.06 16.5 

11 15 2.4 7.6 0.32 - 4.76 16.5 

11 15 2.8 7.2 0.39 - 3.72 16.5 

11 15 3.2 6.8 0.47 - 2.68 16.5 

11 15 3.6 6.4 0.56 - 1.64 16.5 

11 15 4 6 0.67 - 0.60 16.5 

11 15 4.4 5.6 0.79 37.50 -0.44 16.5 

11 15 4.8 5.2 0.92 11.15 -1.48 16.5 

11 15 5.2 4.8 1.08 6.55 -2.52 16.5 

11 15 5.6 4.4 1.27 4.63 -3.56 16.5 

11 15 6 4 1.50 3.59 -4.60 16.5 

11 15 6.5 3.5 1.86 2.80 -5.90 16.5 

11 15 6.9 3.1 2.23 2.38 -6.94 16.5 

11 15 7.3 2.7 2.70 2.07 -7.98 16.5 

11 15 7.7 2.3 3.35 1.83 -9.02 16.5 

11 15 8.1 1.9 4.26 1.64 -10.06 16.5 
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Table XI.  Dynamics set 3.  Dynamics parameters, Vg, Vs, Fcat and Fres are shown, together with 

the Fcat:Fres ratio, and abstract measures theoretical average length, 〈𝐿〉, drift, V, and diffusion 

coefficient, D.  Units: Vg, Vs, V, μm min-1, Fcat, Fres, min-1, 〈𝐿〉, μm, and D, μm2 min-1.  Each row 

was assigned in turn to one of the model areas. 

 

Vg Vs Fcat Fres Fcat:Fres 〈𝑳〉 V D 

11 15 0.6 19.4 0.03 - 10.22 8.25 

11 15 1.4 18.6 0.08 - 9.18 8.25 

11 15 2.2 17.8 0.12 - 8.14 8.25 

11 15 3.1 16.9 0.18 - 6.97 8.25 

11 15 3.9 16.1 0.24 - 5.93 8.25 

11 15 4.7 15.3 0.31 - 4.89 8.25 

11 15 5.5 14.5 0.38 - 3.85 8.25 

11 15 6.3 13.7 0.46 - 2.81 8.25 

11 15 7.2 12.8 0.56 - 1.64 8.25 

11 15 8 12 0.67 - 0.60 8.25 

11 15 8.8 11.2 0.79 18.75 -0.44 8.25 

11 15 9.6 10.4 0.92 5.57 -1.48 8.25 

11 15 10.5 9.5 1.11 3.11 -2.65 8.25 

11 15 11.3 8.7 1.30 2.24 -3.69 8.25 

11 15 12.1 7.9 1.53 1.74 -4.73 8.25 

11 15 12.9 7.1 1.82 1.43 -5.77 8.25 

11 15 13.7 6.3 2.17 1.21 -6.81 8.25 

11 15 14.6 5.4 2.70 1.03 -7.98 8.25 

11 15 15.4 4.6 3.35 0.91 -9.02 8.25 

11 15 16.2 3.8 4.26 0.82 -10.06 8.25 

 

 

 

 

 

 

 

 

 

 

 

 



150 

 
Table XII. Dynamics set 4.  Dynamics parameters, Vg, Vs, Fcat and Fres are shown, together with 

the abstract measures theoretical average length, 〈𝐿〉, drift, V, and diffusion coefficient, D.  Units: 

Vg, Vs, V, μm min-1, Fcat, Fres, min-1, 〈𝐿〉, μm, and D, μm2 min-1.  Here, the single dynamics set for 

the inner area is shown, and the outer area parameters are summarised. 

 

Vg Vs Fcat Fres 〈𝑳〉 V D 

Inner       

12 15 0 5 - 12 36 

       

Outer       

11 15 
6.67 

to 
12.12 

8.33 
to 

2.88 

19.8 
to 

1.1 

-0.56 
to 

-10 
11 

 

 

Table XIII. Dynamics set 5.  Dynamics parameters, Vg, Vs, Fcat and Fres are shown, together with 

the abstract measures theoretical average length, 〈𝐿〉, drift, V, and diffusion coefficient, D.  Units: 

Vg, Vs, V, μm min-1, Fcat, Fres, min-1, 〈𝐿〉, μm, and D, μm2 min-1.  Here, the single dynamics set for 

the inner area is shown, and the outer area parameters are summarised. 

 

Vg Vs Fcat Fres 〈𝑳〉 V D 

Inner       

12 15 0 5 - 12 36 

       

Outer       

11 15 
44 
to 

4.44 

55 
to 

1.06 
3 

-0.56 
to 

-10 

1.67 
to 
30 
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II. Three-state dynamics 

Table XIV.  Dynamics set 6.  Dynamics parameters, Vg, Vs, Fcat to Fp2s are shown, together with 

the abstract measures theoretical average length, 〈𝐿〉, drift, V, diffusion coefficient, D and 

pausing time percentage, Tp.  Units: Vg, Vs, V, μm min-1, all transition frequencies, min-1, 〈𝐿〉, μm, 

and D, μm2 min-1.  Here, the single dynamics set for the inner area is shown, and the outer area 

parameters are summarised. 

 

Vg Vs Fcat Fres Fg2p Fp2g Fs2p Fp2s V 〈𝑳〉 D Tp 

Inner 

12 15 0 5 0 0 0 0 12 - - 0 

Outer 

11 15 10 10 1.50 

0.01 

to 

24.25 

1.50 

0.01 

to 

24.25 

-2.00 3.84 7.67 

98.68 

to 

3.00 

 

Table XV.  Dynamics set 7.  Dynamics parameters, Vg, Vs, Fcat to Fp2s are shown, together with 

the abstract measures theoretical average length, 〈𝐿〉, drift, V, diffusion coefficient, D and 

pausing time percentage, Tp.  Units: Vg, Vs, V, μm min-1, all transition frequencies, min-1, 〈𝐿〉, μm, 

and D, μm2 min-1.  Here, the single dynamics set for the inner area is shown, and the outer area 

parameters are summarised. 

 

Vg Vs Fcat Fres Fg2p Fp2g Fs2p Fp2s V 〈𝑳〉 D Tp 

Inner 

12 15 0 5 0 0 0 0 12 - - 0 

Outer 

11 15 10.91 9.09 1.50 

0.01 

to 

22.04 

1.50 

0.01 

to 

22.04 

-3.18 2.43 7.67 

98.55 

to 

3.00 
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Table XVI.  Dynamics set 8.  Dynamics parameters, Vg, Vs, Fcat to Fp2s are shown, together with 

the abstract measures theoretical average length, 〈𝐿〉, drift, V, diffusion coefficient, D and 

pausing time percentage, Tp.  Units: Vg, Vs, V, μm min-1, all transition frequencies, min-1, 〈𝐿〉, μm, 

and D, μm2 min-1.  Here, the single dynamics set for the inner area is shown, and the outer area 

parameters are summarised. 

 

Vg Vs Fcat Fres Fg2p Fp2g Fs2p Fp2s V 〈𝑳〉 D Tp 

Inner 

12 15 0 5 0 0 0 0 12 - - 0 

Outer 

11 15 11.67 8.33 1.50 

0.01 

to 

20.20 

1.50 

0.01 

to 

20.20 

-4.17 1.86 7.67 

98.42 

to 

3.00 

 

Table XVII.  Dynamics set 9.  Dynamics parameters, Vg, Vs, Fcat to Fp2s are shown, together with 

the abstract measures theoretical average length, 〈𝐿〉, drift, V, diffusion coefficient, D and 

pausing time percentage, Tp.  Units: Vg, Vs, V, μm min-1, all transition frequencies, min-1, 〈𝐿〉, μm, 

and D, μm2 min-1.  Here, the single dynamics set for the inner area is shown, and the outer area 

parameters are summarised. 

 

Vg Vs Fcat Fres Fg2p Fp2g Fs2p Fp2s V 〈𝑳〉 D Tp 

Inner 

12 15 0 5 0 0 0 0 12 - - 0 

Outer 

11 15 13.33 6.67 1.50 

0.01 

to 

16.16 

1.50 

0.01 

to 

16.16 

-6.33 1.23 7.67 

98.04 

to 

3.00 
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Table XVIII.  Dynamics set 10.  Dynamics parameters, Vg, Vs, Fcat to Fp2s are shown, together 

with the abstract measures theoretical average length, 〈𝐿〉, drift, V, diffusion coefficient, D and 

pausing time percentage, Tp.  Units: Vg, Vs, V, μm min-1, all transition frequencies, min-1, 〈𝐿〉, μm, 

and D, μm2 min-1.  Here, the single dynamics set for the inner area is shown, and the outer area 

parameters are summarised. 

 

Vg Vs Fcat Fres Fg2p Fp2g Fs2p Fp2s V 〈𝑳〉 D Tp 

Inner 

12 15 0 5 0 0 0 0 12 - - 0 

Outer 

11 15 15 5 1.50 

0.01 

to 

12.12 

1.50 

0.01 

to 

12.12 

-8.50 0.92 7.67 

97.40 

to 

3.00 
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Chapter 5 

Comparing and modelling microtubule dynamics 

A. INTRODUCTION 

I. Chapter aims 

The first aim of this chapter is to put the results of chapter 3 into context by comparing them 

with previously reported measurements of microtubule dynamics.  This will reveal the extent 

to which the dynamics reported in chapter 3 differ or are similar to other measurements of 

dynamics, and it will also indicate the degree to which microtubule dynamics differ across 

various cell lines, types, etc.  In order to be able to compare sets of microtubule dynamics, the 

abstract measures used in the previous chapter are again employed to reduce the complexity 

of the task and to allow an understanding of how changing certain dynamics parameters, or 

the relationships between them, influence the population-level characteristics of the network. 

In the discussion at the end of chapter 3, it was apparent that in many cases, the results 

suggest mechanisms to explain the organisation, and in the systems view of microtubule 

organisation proposed in that chapter, those results would indeed be taken as the components 

of the system, from which the organisation emerges.  However, another fact in evidence in 

that discussion was that it is difficult to truly establish those results as causes of the 

organisation seen.  Therefore, the second aim of this chapter is to begin to establish a 

rationale for explaining the maintenance of organisation in the radial array.  This will be 

carried out in light of the survey and comparison of microtubule dynamics and the modelling 

results from the previous chapter.  Indeed, the aim is to identify common principles between 

the surveyed dynamics and those reported in the chapter 3, in the hope that these might be the 

important components of the radial array system.  This is then carried forward into the second 

part of this chapter, where the proposals are evaluated with the model used in chapter 4. 

B. METHODOLOGY 

I. Survey of dynamics 

Literature searches were carried out using standard databases.  To limit the extent of the 

survey, firstly, only reports of microtubule dynamics in vivo were kept, and secondly, of 

those, only reports of dynamics in animal cells were retained.  In every case, the values for 

dynamics parameters were obtained from the report, and all measurements were adjusted so 

that they were in similar units.  This last step was taken so that values were more easily 

compared.  Where there were more than one instance of a set of dynamics, even if some of 

the measurements were the same between sets, two entries were made into the results table.  

Examples where this type of thing occurred include repeated experiments, and different cell 

lines, etc.  Average values reported in the literature are not always explicitly stated as being 

the mean average; it is assumed here that this is the case.  Only the average values were 

surveyed here; no efforts were made to obtain information as to the distribution of speeds, 

times, etc.  Thus, there are no ± standard deviations/standard errors in the results table. 
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II. Modelling of measured dynamics 

The model used in chapter 4 is used again here, so refer to the methodology of that chapter 

for a detailed discussion of the model and issues pertaining to it.  In this chapter, different 

dynamics sets were used; the tables documenting them are in the appendix, and here, a brief 

description of the rationale for the choice of parameters is given. 

In light of the location in drift space of the measured dynamics from chapter 3, presented 

below in the results, the dynamics combinations here were chosen so as to be able to 

investigate how the abstract parameterisations affected accuracy when imposed on a 

dynamics background from quadrant 3 of drift space.  Thus, where quadrant 4 of drift space 

was investigated in the majority of the previous chapter, in this chapter, dynamics sets 

produce area dynamics combinations that are in quadrant 3 of drift space, i.e. negative inner 

and outer drift.  

As stated, the aim was to investigate the effect of changing the parameterisations of 

dynamics, including Tp.  To this end, there were three “principal” dynamics sets, and three 

variations on each principal set.  To avoid confusion when comparing these dynamics sets 

with the sets from the previous chapter, these 3 sets of 3 dynamics sets are numbered from 

11-19.  The defining feature of a principal set is the drift of the inner area; the principal 

dynamics sets have inner area drifts of -0.56 μm min-1 (sets 11, 14 and 17), -2.00 μm min-1 

(sets 12, 15 and 18), and -4.17 μm min-1 (sets 13, 16 and 19).  The variation between the sets 

with similar inner area drift is the outer area drift: these are: -10.06 μm min-1 (sets 11-13), -

5.38 μm min-1 (sets 14-16) and -0.96 μm min-1 (sets 17-19). 

Within each of these sets, there are subsets that have different 〈𝐿〉 and D, and within each of 

these subsets, there are 5 sets with Tp values of 10, 20, 40, 60 and 80.  In sets 11 and 12, and 

the corresponding sets with similar inner area drift, there are four subsets.  In these, 〈𝐿〉 is 

described qualitatively: there is a “high”, “equal”, “mid” and “low” value, and since drift is 

fixed within each set, D varies with 〈𝐿〉; small 〈𝐿〉, small D.  The qualitative values, or rather, 

relative 〈𝐿〉, indicate the value of 〈𝐿〉 in relation to the target length.  So, the high 〈𝐿〉 is 

greater than the average length, equal 〈𝐿〉 is around the target length, mid 〈𝐿〉 is just under 

half the target length, and low 〈𝐿〉 is approximately half of the mid value.  For the actual 

values of 〈𝐿〉, see the appendix tables (section E).   

In the sets with the largest magnitude inner area drift (sets 13, 16 and 19), the high 〈𝐿〉 is not 

achievable, since the large negative drift prevents reaching such values of 〈𝐿〉; therefore, in 

those sets, there are only 3 subsets, with relative 〈𝐿〉 of equal, mid and low.  Note that even 

for the equal relative 〈𝐿〉 in sets 13, 16 and 19, the value of 〈𝐿〉 is not as great as for sets 11-

12 and their corresponding sets (i.e, 14-15, and 17-18).   

Recall that for each subset, there are 5 different values of Tp; thus, for the four-subset sets, 

there are 20 parameter combinations, and for the three-subset sets, 15.  In examination of 

results, it is probably easiest to forget which set each dynamics combination comes from, and 

rather, bear in mind that each relevant parameter has been systematically varied; to place too 
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much emphasis on where each sub-set lies in terms of drift space and accuracy will only 

cause confusion. 

C. RESULTS 

I. Dynamics survey 

Values for dynamics parameters were obtained from the literature and sorted according to 

magnitude (table I).  For ease of comparison, the dynamics parameters found in chapter 3 are 

also in table I, highlighted.  Reports of transitions to and from pausing are scarce, and are 

discussed in the text rather than entered into table I.  Dynamics parameters definitions can be 

found in the terms list. 

Table I.  Values for dynamics parameters in the literature.  Mean values for each parameter 

of microtubule dynamics are shown, sorted by increasing magnitude.  Refer to key below table 

for details of notation.  Highlighted values are results of previous chapter; the mean value for Vg 

and Vs is shown. 

Parameter Value Cell/system Methodology Reference 

Growth 
rate, 

Vg 

μm min-1 

3.6 F, 1 Microinjection 1 

4.5 τ1 E, 2 Microinjection 8 

4.9 E, 2 DIC 7 

5.32 E, 7 GFP-CLIP-170 NSC, outer 

6.37 E, 7 GFP-CLIP-170 NSC, inner 

6.8 τ2 E, 2 Microinjection 8 

7.05 † X Added tubulin 5 

7.2 E, 2 DIC 2 

7.9 E, 2 DIC 4 

9.2 F, 1 Microinjection 7 

9.3 X Added tubulin 3 

11.5 E, 5 Microinjection 9 

11.5 E, 5 Stable GFP 9 

11.9 E, 3 Microinjection 6 

12.46 E, 7 GFP-CLIP-170 Ctrl, outer 

13.13 E, 7 GFP-CLIP-170 Ctrl, inner 

15.8 El, 6 Microinjection, enucleation 10 

16.5 El, 6 GFP-CLIP-170 10 

17.8 El, 6 Microinjection, photobleach 10 

18.3 El, 6 GFP-CLIP-170, enucleation 10 

18.5 El, 6 Microinjection 11 

19.7 F, 4 Microinjection 6 

21.2 ‡ F, 4 Microinjection 6 

24.3 El, 6 YFP-CLIP-170 11 

 



159 

 

Table I contd. 

Parameter Value Cell/system Methodology Reference 

Shrink rate, 

Vs 

μm min-1 

5.2 E, 2 Microinjection 8 

7.6 E, 2 Microinjection 8 

9.35 † X Added tubulin 5 

12.4 F, 1 Microinjection 7 

12.8 X Added tubulin 3 

13.1 E, 5 Stable GFP 9 

14.3 E, 2 DIC 7 

14.8 E, 5 Microinjection 9 

17.3 E, 2 DIC 2 

19.8 E, 3 Microinjection 6 

21.1 ‡ F, 4 Microinjection 6 

22.34 E, 7 GFP-CLIP-170 Ctrl, inner 

24.46 E, 7 GFP-CLIP-170 Ctrl, outer 

28.8 El, 6 Microinjection 10 

30 El, 6 YFP-CLIP-170, microinjection 11 

32.2 F, 4 Microinjection 6 

Catastrophe 
frequency, 

Fcat 

min-1 

0 E, 7 GFP-CLIP-170 NSC 

0.2 El, 6 Microinjection 12 

0.3 *φ1 El, 6 
Microinjection, photobleach, 

enucleation 
10 

0.3 El, 6 YFP-CLIP-170 11 

0.6 *ξ1 X Added tubulin 3 

0.61 E, 2 Microinjection 8 

0.66 *ξ2 X Added tubulin 5 

0.72 *ξ2 X Added tubulin 5 

0.84 * E, 2 DIC 2 

0.96 * E, 2 DIC 7 

1.57 E, 2 Microinjection 8 

1.6 * E, 5 Stable GFP 9 

1.9 *ξ1 X Added tubulin 3 

1.91 *‡ F, 4 Microinjection 6 

1.98 * F, 1 Microinjection 7 

2.1 * E, 5 Microinjection 9 

3.246 * E, 3 Microinjection 6 

3.636 * F, 4 Microinjection 6 

4.8 *φ2 El, 6 
Microinjection, photobleach, 

enucleation 
10 

 5.33 E, 7 GFP-CLIP-170 Ctrl, outer 

 6.62 E, 7 GFP-CLIP-170 Ctrl, inner 
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Table I contd. 

Parameter Value Cell/system Methodology Reference 

Rescue 
frequency, 

Fres 

min-1 

0 E, 7 GFP-CLIP-170 NSC 

0.5 *ξ1 X Added tubulin 3 

0.96 *ξ1 X Added tubulin 3 

0.96 *ξ2 X Added tubulin 5 

1.2 *ξ2 X Added tubulin 5 

2.31 E, 2 Microinjection 8 

2.59 E, 2 Microinjection 8 

2.6 * E, 2 DIC 2 

3.12 * E, 2 DIC 7 

6 * F, 1 Microinjection 7 

7.2 * El, 6 Microinjection 10 

7.794 * F, 4 Microinjection 6 

8.22 *‡ F, 4 Microinjection 6 

10 El, 6 YFP-CLIP-170, microinjection 11 

10.5 * E, 5 Stable GFP 9 

11.77 * E, 3 Microinjection 6 

 12.00 E, 7 GFP-CLIP-170 Ctrl, inner 

 13.09 E, 7 GFP-CLIP-170 Ctrl, outer 

 

General key: 

‡ = stable microtubule population 

† = my average of experiment repeats 

* = frequency recalculated to min-1 

ξ = Minimum and maximum values from experiment repeats (numbers denote 

experiments) 

“ = “as above” 

τ = Values for microtubules perpendicular (τ1) and parallel (τ2) to cell edge 

φ = Values for cell interior (φ1) and periphery (φ2) 

 

“Cell/system” key: 

E: epithelial cell 

F: fibroblast cell 

X: Xenopus extract 

El: epithelial-like 

 

1: African Green Monkey (Cercopithecus aethiops) kidney (BSC1) 

2: Newt (Taricha granulosa) lung 

3: Rat Kangaroo (Potorous tridactylis) kidney (PtK1) 

4: Chinese Hamster (Cricetulus griseus) ovary (CHO) 

5: Pig (Sus scrofa) kidney (LLCPK-1) 

6: Chinese Hamster (Cricetulus griseus) ovary sub-clone (CHO-K1) 

7: Human retinal pigment epithelium (ARPE-19) 
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Table references:  

1. Schulze and Kirschner (1986) 

2. Cassimeris et al. (1988) 

3. Belmont et al. (1990) 

4. Hayden et al. (1990) 

5. Verde et al. (1992) 

6. Shelden and Wadsworth (1993) 

7. Vasquez et al. (1997) 

8. Waterman-Storer and Salmon (1997) 

9. Rusan et al. (2001) 

10. Komarova et al. (2002) 

11. Komarova et al. (2009) 

 

The values in the control condition for Vg, at 12.46 μm min-1 (mean) and 11.89 μm min-1 

(median) for outer areas, and 13.13 μm min-1 (mean) and 12.57 μm min-1 (median) for inner 

areas, are comparable to those reported in the literature, being positioned approximately at 

the median position and above within the data.  The Rac1-inhibited Vg is low in comparison; 

at 5.32 μm min-1 (mean) and 4.26 μm min-1 (median) for outer areas, and 6.37 μm min-1  

(mean) and 5.00 μm min-1 (median) for inner areas, it is closest to the values reported for 

microtubules in Newt lung epithelial cells that were measured throughout the cell (4.9 μm 

min-1) (Vasquez et al., 1997) or just for those growing perpendicular to the cell edge (4.5 μm 

min-1) or parallel (6.8 μm min-1) (Waterman-Storer and Salmon, 1997). 

Vs for the Rac1-inhibition is not comparable to any reported in the literature; it is undefined in 

this condition.  As was discussed in chapter 3, it is not probable that there really are no 

shrinking events in the Rac1-inhibited condition, and the effect of introducing shrinking 

episodes in the dynamics set for the Rac1-inhibited condition is explored below.  However, in 

the control condition, values for Vs, at 24.46 μm min-1 (mean) and 25.63 μm min-1 (median) 

for outer areas and 22.34 μm min-1 (mean) and 22.59 μm min-1 (median) for inner areas, are 

toward the high end of reported values, with only shrinkage speeds in the Chinese Hamster 

ovary (CHO) cell line, between 28.8 μm min-1 (Komarova et al., 2002) and 32.2 μm min-1 

(Shelden and Wadsworth, 1993) exceeding  them. 

The zero values for Fcat and Fres in the Rac1-inhibited condition are of course the lowest of 

all; no other zero values have been reported.  The lowest values in the literature for Fcat are 

for microtubules in the inner areas of cells, at 0.2 min-1 (Komarova et al., 2009) and 0.3 min-1 

(Komarova et al., 2009; Komarova et al., 2002).  The lowest values in the literature for Fres 

are found in the Xenopus extract system; these range from 0.5 min-1 (Belmont et al., 1990) to 

1.2 min-1 (Verde et al., 1992).  Therefore, very low values of Fcat and Fres have been reported, 

but none so low as those found in the Rac1-inihibited condition.  As mentioned, it may be 

that Fcat and Fres are not truly zero, and could indeed be just very low as in the Xenopus 

studies, and the low frequencies, combined with higher relative orientation between track 

segments, has hindered detection of shrinking events, and thus catastrophe and rescue, in 

plusTipTracker.  Alternatively, these transitions could have values heavily in favour of one 

over the other; this is explored further below. 
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In the control condition, the values for Fcat, at 5.33 min-1 and 6.62 min-1 for outer and inner 

areas, respectively, and Fres, at 13.09 min-1 and 12.00 min-1 for outer and inner areas, 

respectively, are higher than any of those reported in the literature.  As discussed in the 

methodology section, the “corrected” values (those which are quoted above) are likely to be 

an overestimate; however, these values will have to be used from a practical standpoint, 

because “biased” values for Fres (and also Fp2g) are the same as the corrected values.  

Moreover, it is likely that the biased values are an underestimate, so both figures have 

limitations.   

Mimori-Kiyosue et al. (2005) have measured transitions to and from pausing in central and 

peripheral regions of the cell.  The results of that study and the values determined for the 

transition frequencies Fg2p and Fp2g in chapter 3, i.e. the two that are obtainable with 

plusTipTracker, are shown in table II. 

Table II.  Transitions to and from pause compared.  The dynamics measured in chapter 3 are 

compared to those of another study, (Mimori-Kiyosue et al., 2005). 

Transition 

min-1 

Chapter 3 

Mimori-Kiyosue et al. 

(2005) 

Control NSC 

Outer Inner Outer Inner Outer Inner 

Fg2p 6.07 5.32 5.89 6.82 24.1 14.3 

Fp2g 7.66 7.35 7.97 7.67 0.960 3.20 

Fs2p - - - - 16.5 12.8 

Fp2s - - - - 1.56 2.28 

 

Comparing these transition frequencies, we see that those estimated for Fg2p by Mimori-

Kiyosue et al. (2005) are large relative to those determined in chapter 3, for both areas in both 

conditions.  The trend between areas is the same between that study and the control 

condition, however, with the outer area Fg2p being greater than that of the inner area; this is 

not the case for the Rac1-inhibited condition.  For Fp2g, the values in Mimori-Kiyosue et al. 

(2005) are much more different between outer and inner areas compared to the values of 

chapter 3.  In fact, the relationship between areas is reversed here for both conditions in the 

chapter 3 dynamics compared to Mimori-Kiyosue et al. (2005), with Fp2g being greater for the 

outer area in chapter 3 dynamics. 

The values for Fs2p and Fp2s could not be determined with the methodology of chapter 3; 

however, for Mimori-Kiyosue et al. (2005), table II shows that Fs2p is elevated in outer areas 

relative to inner areas, and Fp2s is decreased in outer areas relative to inner areas.  These area 

relationships preserve the relationships between areas for Fg2p and Fp2s reported by Mimori-

Kiyosue et al. (2005): the transitions to pause are larger in outer areas compared to inner 

areas, and also greater than the transitions away from pause in the outer areas, which are both 

smaller for outer areas compared to inner areas.   
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II. Population measures 

a. Two-state drift, average length and diffusion coefficient 

To make comparison of microtubule dynamics easier, the drift, average length and diffusion 

coefficient were found for the dynamics sets reported in table I.  In addition to these, as was 

done in chapter 3, the Fcat:Fres ratio can also be considered as an easy means of establishing 

the balance between the two.  In order to compare the dynamics measured in the previous 

chapter with the literature, the two-state versions of the drift, average length and diffusion 

coefficient were calculated for these dynamics.   

To compare literature dynamics with the Rac1-inhibited condition, where no catastrophes or 

rescues were detected, some values had to be specified for these transitions, and also for the 

shrinkage rate.  Commonly, as table I shows, the shrinkage rate, Vs, is greater than the growth 

rate, Vg, and so, in this case, values for Vs were specified for each area in the Rac1-inhibited 

condition that gave the same Vg:Vs ratio of the same area in the control condition.  Thus, in 

the Rac1-inhibited condition, Vs for outer areas was 9.18 μm min-1 and 8.99 μm min-1 for 

inner areas.  These values are used for this condition hereafter.  The three possibilities 

proposed for the values Fcat and Fres in this condition were encapsulated in three parameter 

sets (table III), where both are equal and low, and then each is alternately much greater than 

the other.  Here, values were chosen that gave Fcat:Fres ratios of 0.1 (low Fcat, parameter set 2) 

and 10 (high Fcat, parameter set 3). 

Table III.  Values for Fcat and Fres in the Rac1-inhibited condition.  Three different sets of 

values for these transition frequencies are tested. 

Parameter set Fcat min-1 Fres min-1 Fcat:Fres 

A 0.1 0.1 1 

B 1 10 0.1 

C 10 1 10 

 

The Fcat and Fres ratio, drift, average length and diffusion coefficient are presented in table 

IV.  Predominantly, drift values are positive in the surveyed dynamics, indicating that in the 

majority of cases, microtubules are in the unbounded growth regime, continually increasing 

their length.  In the cell, this presumably means that microtubules grow to the periphery of 

the cell, and then undergo some sort of cortex-mediated behaviour as modelled in the 

previous chapter, since we rarely observe microtubules that simply continue growing along 

the cortex; the role of Rac1 in this behaviour is of course a theme of this and other chapters.   

On the matter of cortex-specific behaviour, the outer area in the control condition has greater 

positive drift than the control inner area, at 1.03 μm min-1 to 0.07 μm min-1, which is perhaps 

contrary to what might be expected if it were the case that microtubule dynamics are 

modulated at the cell periphery to effectively stop microtubules and contribute to radiality, as 

the model in the previous chapter suggested would be required.  The fact that this is a two-

state simplification of a three-state dynamic set might bear upon this problem, and is 
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investigated in the next sub-section.  With regard to area differences in the Rac1-inhibited 

condition, there is in fact much-reduced difference between areas relative to the control 

condition.  This is true for the three dynamics sets (tables III-IV), so is probably not due to 

domination of the population measures by one particular dynamics parameter.  Again, the 

role of simplification of this parameter set to two states is not clear. 

Although the drift is sensitive to all of the two-state dynamics parameters, the role of the 

Fcat:Fres ratio in its contribution to drift is particularly well-demonstrated in table IV.  Indeed, 

the drift increases from its most negative value of -7.96 μm min-1 in the outer area of the 

Rac1-inhibited condition (parameter set 3) at an Fcat:Fres ratio of 10, up to its maximum value 

of 22.72 μm min-1 in the inner areas of Chinese hamster ovary sub-clone cells (CHO-K1) 

(Komarova et al., 2009), at an Fcat:Fres ratio of 0.03; between these, the increases in drift and 

Fcat:Fres ratio are generally associated.  Further evidence of the significant contribution of the 

Fcat:Fres ratio to drift is seen in the Rac1-inhibited parameter sets.  The largest ratio 

(parameter set 3) provides the most negative drift, the intermediate ratio (set 1) a greater drift, 

and the smallest ratio (set 2) a positive drift.   

Note that average length does not always increase with increasing drift.  Certainly, the 

relationship between average length, drift and diffusion coefficient as discussed in chapter 4, 

is in evidence in table IV.  For example, in the dynamics sets reported for the Xenopus extract 

(Belmont et al., 1990), we see that the average lengths do not increase with increasing drift; 

instead, of the three reported dynamics sets, the set with the intermediate drift has the greatest 

average length.  This is reconciled by considering the diffusion coefficient; it is greatest for 

this intermediate set, at 123.77 μm2 min-1 compared to 59.83 μm2 min-1 (lowest drift) and 

80.14 μm2 min-1 (greatest drift), so the average length is greater as a result.  What contributes 

to the increased length randomness in this particular case?  Inspection of the dynamics 

parameters indicates that the set with the largest diffusion coefficient also has the greatest 

shrinkage rate, and although it has the lowest growth rate, it also has the lowest Fcat and joint-

lowest Fres; the large Vs and small Fcat and Fres produce the greater D.  The effect of lower 

transition frequencies on D is further illustrated by the Rac1-inhibited dynamics parameter 

sets; the lowest Fcat and Fres values (set 1) produce the greatest D.
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b. Three-state drift, average length and diffusion coefficient 

Calculation of the three-state drift and average length requires that we have values for Fs2p 

and Fp2s, which were not obtainable with plusTipTracker.  Earlier, the values for transitions 

to and from pause from another study were shown (Mimori-Kiyosue et al., 2005).  Those 

values, for Fg2p and Fp2g, were found to be larger than those determined in chapter 3.  It is 

difficult to estimate values for undetermined transition frequencies, however, pause time 

percentage, introduced in the previous chapter, can be compared between chapter 3 dynamics 

and literature-reported values.  Therefore, by comparing the percentage time spent in pause 

and the other phases in the experiments to the times given in the literature, we can estimate 

values for these transition frequencies.   

To elaborate, we can consider how the transition frequencies affect the times spent in the 

different phases.  A diagram of this framework is shown in figure 1.  Here, by comparing the 

proportion of time spent in each phase, we arrive at an idea of what values Fs2p and Fp2s might 

take.  This rationale makes the assumption that pause time proportion will be similar between 

the experiments in the previous chapter and those being compared from the literature, which 

may not be valid in every case.  However, this means of estimating values for the remaining 

dynamics parameters should at least provide an idea of how these transitions between the 

pausing and shrinking state affect the phase proportions, and also how these transition 

frequencies affect the population measures (investigated later). 

In this view, we now consider the transition frequencies in relation to the phase time 

percentages.  Note that these percentages, as the name suggests, refer to the total percentage 

of time spent in a phase, and not the average absolute time in a phase; the two measures can 

be very different.  They are calculated according to equations in chapter 4.  Each transition 

frequency appears twice in figure 1; each serves to increase one phase time and decrease 

another.  Those which are unknown in the current situation have antagonistic effects on the 

time in shrinkage and in pause.   

The phase time percentage values reported in the literature, along with the values found in the 

experiments of chapter 3, are shown in table V.  Microtubules in both experimental 

conditions consistently spent less time in pause than previously reported pause times.  The 

same is true for the time spent in the shrinking phase, while the growth phase proportion is 

over two-times greater than the average of literature values.   

What do these differences mean for the dynamics parameters found with plusTipTracker in 

the chapter 3?  Three questions become apparent; first of all, two related questions are: 1) is 

the discrepancy between phase proportions real?  And 2) if so, what is the source of this 

discrepancy?  The third question asks: what values must Fs2p and Fp2s take to correct these 

discrepancies? 

Focussing on the first two questions, it is plausible that there is overestimation of time spent 

in the growth phase using plusTipTracker, because, as was touched upon in chapter 3, 

catastrophes are only recorded if they are followed by a rescue event, and growth to pause 
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events are only recorded if they are followed by a pause to grow event.  Thus, we 

overestimate time in the growth phase, and underestimate shrinking and pausing time.   

 

Figure 1.  Diagram of relationship between transition frequencies and phase times.  Phase 

time can be considered a “system property”, emerging from the combination of transition 

frequencies, which either act to increase or decrease certain phase times.  Transition 

frequencies shown in red are those that are unknown. 

Table V.  Phase time percentages for experimental and literature microtubule dynamics.  

The experimentally-determined and literature-reported proportions for each phase are shown. 

Study Grow Shrink Pause 

Experimental    

Control outer 90.72 0.07 9.21 

Control inner 91.29 0.13 8.58 

NSC outer 94.87 0 5.13 

NSC inner 95.47 0 4.53 

Surveyed 
   

6 - - 46.3 

8 35.7 24.2 40.1 

8 75.6 17.7 6.7 

9 16.7 12.8 70.5 

9 15 11.5 73.5 

Average of surveyed 36.35 19.92 43.72 

 

Table references: 

6.  Shelden and Wadsworth (1993) 

8.  Waterman-Storer and Salmon (1997) 

9.  Rusan et al. (2001) 
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However, it is also true that the calculation of the “corrected” transition frequencies is based 

only on the times in the growing phase where an event subsequently occurred.  The 

estimation of transition frequencies is based only upon portions of the total time in a given 

phase.  For transitions between growth and shrinkage, we use the time in growth preceding a 

catastrophe or the time in shrinkage preceding a rescue.  For transitions between growth and 

pause, we use the time in growth preceding a growth to pause transition, or the time in pause 

preceding a pause to growth transition.  Since these calculations are based only on intervals 

of the total phase times, it is likely that they are overestimated.   

The fact that the dynamics parameters are calculated using only a portion of the time in 

growth, which is also only a portion of the time in that phase, and thus only a portion of the 

growth phase proportion reported in table V, complicates the issue.  This is because it is 

likely that the measured proportion of time in growth will not correspond to the same 

measure calculated according to equations 10a-c, which are based on the dynamics 

parameters.  Thus, although the discrepancy is real by the fact that there is a difference 

between the experimentally-measured value and those reported in the literature, it is likely 

that this value has been overestimated by the particular experimental methodology; this is the 

probable source of the discrepancy.  Calculating the phase proportions by equations 10a-c 

will elucidate the matter, but the third question above, the matter of the choice of values for 

Fp2s and Fs2p, must be answered before this is done; a number of rationales are employed: 

1. Fs2p and Fp2s are equal, and are small compared to other transition frequencies. 

2. Fs2p and Fp2s are equal, and are of similar magnitude to other transition frequencies. 

3. Fs2p and Fp2s are equal, and are large compared to other transition frequencies. 

4. Fs2p and Fp2s take values equal to the transitions that go towards the phase that they 

leave, from the phase that they do not go towards; thus, Fs2p = Fcat, and Fp2s = Fg2p. 

5. Fs2p and Fp2s take values equal to the transitions that go away from the phase they also 

go away from; thus, Fs2p = Fres, and Fp2s = Fp2g. 

6. Fs2p and Fp2s take values equal to the transitions that go away from the phase they go 

to, to the phase they do not come from; thus, Fs2p = Fp2g, and Fp2s = Fres. 

 

The different dynamics regimes produced following the rationales above are chosen so as to 

be able to study the effects of the systems nature of the microtubule dynamics sets.  In this 

respect, it is important to bear in mind the relative values of the transition frequencies; it is 

this that drives the systemic nature of microtubule dynamics sets.  Evidence of this is seen 

below. 

In table VI, the predicted phase time percentages for the control condition are reported.  

These values are quite different to the measured phase proportions, and more similar to those 

reported in the literature.  However, Tg is still larger and Tp smaller than the literature-

reported average phase proportions.  Ts, however, is now much more similar to the literature 

values; indeed, there is a dramatic increase in Ts when calculated according to equation 10b 

in comparison to the measured value.  As a result of this increase, Ts is now actually 

generally greater than the average of the literature values, with the exception of the outer area 

dynamics in regime 5.  



170 

 

Because each transition frequency affects more than one system property (fig. 1) and these 

effectively emerge from the combination of transition frequencies, it is difficult to predict 

how changes in the transition frequencies will affect the phase time percentages.  This is 

borne out by the fact that increasing and equal values of Fs2p and Fp2s produce increased time 

in shrinkage, and decreased time in pause.  Why do increased and equal transitions to 

different phases not produce increased time in both?  It is a manifestation of system 

dynamics: the differences in the other transition frequencies mean that similar increases 

between Fs2p and Fp2s will not have the same effect on the phases which they go towards. 

It is also difficult to predict how changing Fp2s and Fs2p will affect the population properties.  

The drift and theoretical length are also given in table VI, and here, we can see that over the 

first 3 regimes, where Fs2p and Fp2s are equal but increase relative to the other transition 

frequencies, there is a decrease in the drift values for both areas.  This being so, the 

theoretical average length also reduces.  Interestingly, there is a qualitative change in the 

relationship between outer and inner areas as values of Fs2p and Fp2s increase in the first 3 

regimes: first, the drift in outer areas is greater than inner areas, and is even unbounded where 

the inner area is bounded.  The relationship remains the same at intermediate values of Fs2p 

and Fp2s, although the outer area is also now bounded, while in regime 3, the drift in the outer 

area is now less than that of the inner area, and the theoretical length is also.  This is an 

example of how the system dynamics can produce effects that would be difficult to predict.   

An important related note here is that the values for the undetermined transition frequencies 

have been kept the same here, so as just to study the effect of changing their value on the 

abstract measures.  In the second part of this chapter, the effect of changing pausing time 

percentage in the inner area is investigated. 

In the regimes where Fs2p and Fp2s use values of other transition frequencies, we see that 

regime 4 produces negative drift for both areas, but the theoretical length for the inner area is 

very large.  This occurs without a large change in the phase times relative to the outer area; 

indeed, Tg is less in regime 4 for the inner area than the outer area.  Regime 5 gives positive 

drift for both areas, with increased Tg in the outer area relative to the inner area, and regime 6 

produces the greatest negative drift for both areas.  Consequently, the theoretical lengths are 

the shortest here, too.  In the outer area in regime 6, this large negative drift occurs with the 

highest growth phase time; however, there is also the lowest pause time percentage here, and 

indeed, regime 6 has the two greatest shrinking phase time percentages. 

Incidentally, the data in table VI demonstrate the point made earlier that changing just Fs2p 

and Fp2s has the biggest effect on Ts and Tp, and little effect on Tg; changing these transition 

frequencies influences the times spent in Ts and Tp directly, but only influence Tg indirectly
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Analysis like this helps to assess both the implications of the measured dynamics parameters, 

but it also helps to choose appropriate values for undetermined parameters.  In table VI, there 

are some instances of combinations of parameters that produce theoretical lengths that would 

appear quite short, when compared to the dimensions of a cell; this is true for regime 6.  The 

issue of theoretical average length in the inner area is addressed in the second part of this 

chapter.  There are other cases where the theoretical average length is either undefined, due to 

unbounded growth, or the theoretical average length is very great.  However, unbounded 

growth is often reported in the literature, as table IV showed, and an ever-growing 

microtubule array is usually posited to be “contained” by the cell.   

The fact that, in a few cases, the outer area drift is larger than the inner area, suggests that 

these parameter values may not be appropriate for good cortical targeting in light of the 

results from the previous chapter.  Furthermore, the phase time percentages, although 

different to the average of the surveyed data, are in the range of the values surveyed.  As 

mentioned, the effect of pausing in the inner area is investigated later; in the previous chapter, 

we saw that greater pausing time percentage in the outer area produced better accuracy; at the 

values in table VI, accuracy increased relatively modestly (the largest increases in accuracy 

were at mch higher values of Tp). 

Next, we must explore the parameters in the Rac1-inhibited condition.  Recall that there are 

three proposed possibilities to account for the zero shrinking events in this condition: A) Fcat 

and Fres are both very small; B) Fcat is small relative to Fres, and C) Fcat is large relative to 

Fres.  These possibilities can be assessed with similar means as those used for the control 

condition.  First, using the same system of choosing Fs2p and Fp2s as in the control condition, 

the drift, theoretical length and phase times were found for the three different sets of values 

for Fcat and Fres (tables VII-IX). 

In all cases in the Rac1-inhibited set A, drift is negative.  In this set, while drift is relatively 

constant for A1-3, the theoretical average length decreases, and phase time percentages 

remain relatively similar between areas.  However, in sets 4 and 5, the drift has much greater 

magnitude in both areas, and theoretical average length is small.  In set 6, drift is at its 

smallest magnitude for both areas, and the difference between the area drifts is greatest here.  

In all case in the Rac1-inhibited set B, drift is positive, and thus the theoretical average length 

is undefined.  In these sets, growth would be unbounded, and in light of the results from the 

previous chapter, we could expect very low accuracy in cortical targeting here.  Thus, it is 

unlikely that these parameter values, where Fres is much greater than Fcat, are realistic.  In 

Rac1-inhibited set C, again, drift is negative as in set A for all areas.  However, theoretical 

average length is very low for all sets, as is Tg in comparison to some of the values in Rac1-

inhibited A.   
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Thus far, the dynamics obtained in chapter 3 have been compared to some of the dynamics 

reported in the literature, and various values have been proposed for the undetermined 

parameters based on these comparisons.  Examination of how these parameters alter the 

abstract population measures for the measured dynamics sets has demonstrated that there is 

not a great difference between inner and outer areas, which, according to the previous 

chapter, is requisite for accurate cortical targeting.  However, in chapter 3, the differences in 

microtubule organisation between unperturbed and Rac1-inhibited cells was presented, and 

there clearly is a difference in radiality between these microtubule networks.  Aberrant 

modulation of microtubule dynamics at the cell periphery was put forward as a potential 

cause for this, but so far, it has been difficult to attribute the differences in organisation to any 

of the differences in dynamics between treatments and between areas within treatments.  To 

better understand how the dynamics measured in chapter 3 affect cortical targeting accuracy, 

the rest of this chapter returns to a model. 

III. A model of measured dynamics 

a. Cortical targeting with measured dynamics 

In the previous chapter, we saw that drift space is a large part of attaining good accuracy (fig. 

2), and within quadrant 4 of drift space, where outer drift is negative and inner drift is 

positive, the two drift regimes combine to reduce the range in microtubule length, and this is 

concurrent with an increase in dynamicity.  When pausing is introduced into the outer area 

with these dynamics combinations, the length range reduces as in the two-state simulations, 

but dynamicity is also reduced, and greater accuracy over the two state dynamics regimes is 

achieved.  

 

Figure 2.  Drift space recap.  Drift space is the combination of inner and outer drift, with 

numbered quadrants defining the particular combination.  In chapter 4, the accuracy potential of 

each quadrant was determined.  
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In this section, the relevance of the findings with the model from chapter 4 to the dynamics 

measured in chapter 3 is considered.  Firstly, in the control condition, the dynamics 

combinations that were specified in table VI earlier, where various values for the transitions 

to and from the pausing state where specified, are plotted in drift space in figure (3A).  

Similarly, the Rac1-inhibited condition dynamics (tables VII-IX) are plotted in drift space in 

figure (3B-D).  The experimental dynamics for both the control and Rac1-inhibited condition 

are located in either quadrant 1 or 3 of drift space, with the exception of set 1 in the control 

condition, which is in quadrant 2.  As discussed, quadrants 1 and 2 yield little or no accuracy 

in cortical targeting at all; however, quadrant 3 of drift space can produce increased levels of 

accuracy relative to quadrant 1; thus, dynamics combinations in quadrant 3 are investigated 

further here.   

Although quadrant 3 was investigated in the first set of experiments, the effect of pausing in 

the inner area was not.  If the applicability of experimentally-measured dynamics for cortical 

targeting are to be assessed, then an investigation of the effect of pausing in the inner area is 

necessary.  However, the situation is complicated when there is negative inner area drift by 

the fact that 〈𝐿〉 and D can both vary for the same drift value.  For example, if drift is -5, D 

and 〈𝐿〉 can be 25 μm2 min-1 and 5 μm or 100 μm2 min-1 and 20 μm.   
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The particular combinations of 〈𝐿〉 and D for any given drift value are likely to be important 

because in a negative drift regime in the inner area, one could hypothesise that greater 〈𝐿〉, 

and thus D, could be advantageous for cortical targeting because it might give the 

microtubules in the inner area more chance to reach the outer area.  The fact that in the first 

set of experiments with dynamics sets 1-3, larger 〈𝐿〉 gave rise to greater accuracy supports 

this notion.   

For this reason, it would be difficult to investigate the dynamics sets from chapter 3 directly, 

since the theoretical average length is likely to be important in its relative magnitude 

compared to the cell size, or indeed, target length.  Instead, the inner area negative drift, 〈𝐿〉, 

and Tp can be systematically varied to determine how Tp and 〈𝐿〉 affect cortical targeting 

accuracy for inner area negative drift regimes.   

In these experiments, there are 3 principal dynamics sets, sets 11-13, which have inner area 

drifts of -0.56 μm min-1  (11), -2 μm min-1  (12), and -4.17 μm min-1  (13).  Within these sets, 

〈𝐿〉 is varied in terms of its relative magnitude to the model cell size: in set 11, 〈𝐿〉 starts at 

80.54 μm and is lowest at 7.88 μm; in set 12, maximum 〈𝐿〉 is 51.56 μm and minimum, 7.86 

μm; in set 13, the greatest 〈𝐿〉 is 30.56 μm and the smallest 〈𝐿〉 is 7.79 μm.  The reasoning for 

these values of 〈𝐿〉 are that the greatest value is larger than the target length, the second value 

is similar to the target length, and the third and fourth values are progressively smaller.  In 

sets 12 and 13, the greatest value of 〈𝐿〉 cannot reach that attained in set 11, and in set 13, the 

largest 〈𝐿〉 attainable is still smaller than the target length.  This is due to the progressively 

larger negative drift in these sets.  However, particular 〈𝐿〉 values will still be comparable 

between the sets, allowing an investigation of the effect of negative drift.  This relative length 

will be referred to as the relative theoretical average length, or relative 〈𝐿〉. 

Note that, because drift increases from set 11 to 13, for the values of 〈𝐿〉 that are similar 

between sets, D is greater in the sets with larger negative drift.  In addition to this, each 〈𝐿〉 

value in each set is run for five simulations with differing pause time percentage values: 10, 

20, 40, 60 and 80.  Moreover, each single combination of drift, 〈𝐿〉 and Tp is repeated three 

times.  Finally, outer drift is also varied to allow better exploration of drift space within 

quadrant 3, meaning that there are 2 more sets of 3 dynamics: sets 11-13 have an outer drift 

of -10.06 μm min-1; sets 14-16 correspond to 11-13, but have an outer drift of -5.38 μm min-1, 

and sets 17-19 again correspond to 11-13, but have an outer drift of -0.96 μm min-1.  Again, 

for a more detailed explanation of these dynamics sets, refer to section BII and the appendix 

tables (section E). 

Firstly, we can consider how the theoretical average length of the inner area affects the 

accuracy of cortical targeting, in the different inner and outer area drift backgrounds; the 

results are plotted in figure 4.  Here we see that for all negative inner area drift, increases in 

inner area 〈𝐿〉 increase accuracy, as was hypothesised.  Furthermore, increases in inner area 

Tp decrease accuracy for all inner and outer area drift combinations.  The relationship 

between theoretical average length and accuracy is remarkably similar for all inner and outer 

area drift combinations, though note that at the combinations of the smallest inner and outer 

area negative drift values (fig. 4G), the accuracy levels off between the two largest values of 
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〈𝐿〉, which does not occur for the larger inner area negative drift dynamics sets at this outer 

area drift (fig. 4H and I). 
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The effect of Tp is more evident in figure 5.  Here, we can see that for any combination of 

inner and outer area negative drift, and indeed for any 〈𝐿〉, an increase in Tp results in a 

decrease in accuracy.  Therefore, pausing in the inner area in a negative drift regime is 

adverse for accurate cortical targeting. 

Having found that increased 〈𝐿〉 and decreased Tp in a negative inner area drift regime 

produce more accurate cortical targeting, we can now consider more explicitly the effects of 

the magnitude of the negative inner and outer area drift on accuracy.  Investigating this 

properly requires that the effects of Tp and 〈𝐿〉 are taken into account.  In figure 6, the 

accuracy is plotted as function of inner area drift, with each line corresponding to a particular 

〈𝐿〉 and rows and columns corresponding to outer area drift and Tp, respectively.  Here we see 

that for any 〈𝐿〉, Tp and outer area drift, changes in the inner area drift have very little effect 

on the accuracy of cortical targeting.  Thus, where Tp and 〈𝐿〉 have a clearly discernable effect 

on accuracy, inner area drift has very little influence on the accuracy. 

Does outer area drift influence the accuracy?  Shown in figure 7 is the accuracy plotted as a 

function of outer area drift, with each line again corresponding to a particular 〈𝐿〉 and each 

column a particular Tp.  Since outer area drift is now on the x-axis, inner area drift changes 

with the rows in figure 7.  Unlike inner area drift, the outer area drift has a more interesting 

relationship with accuracy.  At lower Tp values (up to and including Tp = 40) and equal to 

high relative 〈𝐿〉, cortical targeting accuracy is at its greatest here for intermediate outer area 

drift.  For higher Tp values and smaller relative 〈𝐿〉, accuracy does not behave in a similar 

manner; instead, there is either a modest increase or similar values between intermediate and 

low magnitude outer area drift.  In all cases, an intermediate outer area drift produces greater 

accuracy than the greatest magnitude outer area drift.  This relationship between accuracy and 

outer area drift differs to the case in quadrant 4 of drift space, where accuracy increased with 

greater magnitude outer area negative drift. 

That fact that the increase in accuracy as a function of outer area drift was marked for larger 

relative 〈𝐿〉 than the smaller relative 〈𝐿〉 suggested that a similar mechanism to that behind 

the poor accuracy in quadrants 3 and 4 in the first set of experiments with dynamics sets 1-3 

was at work, where low magnitude negative outer drift effectively could not contain 

microtubules in the target area.  To test this idea, the average lengths for the lowest Tp for 

each inner and outer area drift and relative 〈𝐿〉 were found (fig. 8).  Indeed, here we see that 

for all relative 〈𝐿〉 and all inner area drift values, the average length undergoes a marked 

increase from the intermediate outer area drift value to the smallest magnitude outer area drift 

value.  This increase, as would be expected, is greater for the high and equal relative 〈𝐿〉 than 

for the mid and low relative 〈𝐿〉.  Therefore, the large increase in average length at low 

magnitude negative outer area drift is likely to be the reason that accuracy is lower at this 

outer area drift value compared to the intermediate outer area drift value; again, the low 

magnitude outer area drift cannot contain microtubules sufficiently. 
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Figure 8.  Average length for outer area drift regimes.  For common relative theoretical 

lengths (rel. 〈𝐿〉, i.e. high (A), equal (B), mid (C) and low (D) from different dynamics sets with 

different inner area drift values (indicated by colour; see colour bar) and different outer area drift 

values (plotted on the x-axis), the average length is shown.  Average length units: μm; drift units, 

μm min-1. 

The results from negative inner and outer drift simulations indicate that accurate cortical 

targeting depends on the relative magnitude of the theoretical average length of the inner area 

compared to the size of the cell, and that the magnitude of the outer area drift also has an 

important role in determining accuracy.  Interestingly, the magnitude of the inner area drift 

has little effect on accuracy; rather, theoretical average length and pausing time percentage 

are important determinants here.  Note that, even though outer area drift can hinder accuracte 

targeting at high relative 〈𝐿〉 for inner areas, the accuracy is always greater for higher relative 

〈𝐿〉 than for lower relative 〈𝐿〉.   

With these results in mind, we can discuss further the potential for accurate cortical targeting 

of the experimentally-measured dynamics sets.  In figure 9, the inner area theoretical average 

lengths for the control and Rac1-inhibited conditions are shown.  Of these, we see that the 

control dynamics condition has greater 〈𝐿〉 in general, compared to the other condition sets.  

Sets 1 and 4 in the control condition have particularly large 〈𝐿〉, while all sets in the Rac1-

inhibited C condition (fig. 9C) have very low 〈𝐿〉.  Rac1-inhibited A sets have intermediate 

〈𝐿〉.  In light of the model results, we can expect that higher accuracy could be achieved in the 

control sets compared to the Rac1-inhibited sets as a result of the larger 〈𝐿〉. 
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However, as the modelling made clear, although 〈𝐿〉 has an important role in dynamics 

regimes in quadrant 3 of drift space, the magnitude of the outer area negative drift is also 

important.  The drift values for both areas are plotted as bar plots in figure 9D-F.  Although 

control dynamics sets 1 and 4 had 〈𝐿〉 values found to be good for cortical targeting in the 

model, these sets have positive outer drift (thus, it is not plotted in figure 9D) and low 

magnitude outer drift, respectively.  As a result, cortical targeting accuracy is likely to be low 

in these cases, as it was found that negative outer drift of similar magnitude cannot maintain a 

low average length.  In fact, all dynamics sets in the control condition have low magnitude 

outer area drift, apart from set 6 that has intermediate drift magnitude in both areas.  

However, this set may still yield low accuracy as a result of its low inner area theoretical 

average length of 7.44 μm (fig. 9A).   

In the Rac1-inhibited condition, the combinations of inner area 〈𝐿〉 and outer area drift 

magnitude generally are those found to be poor for cortical targeting accuracy.  In Rac1-

inhibited A, we see that for those sets that produce greater 〈𝐿〉 in the inner area (fig. 9B), thus 

holding potential for good targeting, have low magnitude outer area drift (fig. 9E).  Those 

sets that have high magnitude outer are drift have low 〈𝐿〉 in the inner area.  In Rac1-inhibited 

C, all inner area 〈𝐿〉 are very small, but the drift magnitude in the outer area here are large.   

Finally, the modelling suggested that pausing time is a significant factor of accurate cortical 

targeting.  In the control dynamics sets, pausing time percentages are all quite similar, with 

set 6, which so far has the dynamics combinations most likely to produce accurate cortical 

targeting in light of the modelling, having the lowest values for both inner and outer areas.  

Indeed, earlier modelling suggested that increased Tp in the outer area was desirable for 

accurate cortical targeting, while the modelling in this chapter shows that decreased Tp in the 

inner area are better for accuracy.  However, in the control condition, there are only small 

differences in the pausing time percentages.  This may of course be an artefact of the fact that 

the two undetermined transition frequencies in chapter 3 both pertained to the pausing state.   

As in the control condition, in the Rac1-inhibited condition A and C dynamics sets, inner and 

outer Tp are similar within each set.  However, there is greater deviation between dynamics 

sets here in Tp, and again, this is likely to be an artefact of the undetermined transitions 

frequencies; in Rac1-inhibited A sets, both Fcat and Fres are low in comparison to the other 

transition frequencies, even when Fp2s and Fs2p are varied in magnitude but equal to each 

other (i.e. sets 1-3).  Thus, in this case, variations in the latter two transition frequencies are 

unlikely to affect Tp to a great extent because they are always large; they do not affect the 

systems movement of microtubules through the three states.  In sets 4 and 5, Fs2p takes on 

values of Fcat and Fres, respectively, and so Tp will be smaller here as a result of the small 

values of Fcat and Fres.  Again, this is in evidence in set 5 of Rac1-inhibited C sets, where Fcat 

is large compared to Fres; here, in set 5 where Fs2p is equal to Fres, Tp is small.   

Without a great difference in Tp between inner and outer dynamics sets, it is unlikely that 

pausing would play an instrumental role in targeting accuracy; it would hinder accuracy in 

the inner area and promote it in the outer area.  However, note that in the control condition, 
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where theoretical average length was large, i.e. sets 1 and 4, and especially in set 4, where 

outer area negative drift is also relatively large, higher Tp here may aid targeting accuracy. 

D. DISCUSSION 

I. Chapter 3 dynamics in context 

a. Comparisons of dynamics 

The first part of this chapter was concerned with comparing microtubule dynamics, both as 

they are traditionally measured, i.e. in terms of transition frequencies and growth and 

shrinkage speeds, and by the abstract parameters used in chapter 4.  The aim of this was to 

obtain an idea of how the measured dynamics compared with previous reports of microtubule 

dynamics.  With the exception of the shrinking speed and Fres and Fcat in the Rac1-inhibited 

condition, the measured dynamics were comparable to previously-reported measurements of 

microtubule dynamics.  The control condition Fcat and Fres were in fact the largest values of 

the survey, with the inner area Fcat being largest, and the outer area Fres being greatest.  As 

was discussed in chapter 3, these values may be slightly overestimated, and thus the extent to 

which conclusive comparisons can be made here is limited.  However, it is important that 

these transition frequencies were not so large as to appear unrealistic. 

The surveyed dynamics were then compared by finding their abstract measures.  There, most 

of the surveyed dynamics had positive drift, while the control condition, albeit with estimated 

Fp2s and Fs2p, had predominantly negative drift, and the Rac1-inhibited condition had 

negative drift for sets A and C, where Fcat was equal to and ten times greater than Fres, 

respectively, whereas Rac1-inhibited set B, where Fres was ten times greater than Fcat, had 

positive drift values more comparable to the surveyed dynamics.  How can the differences in 

drift be explained?  Just a glance at the drift values for the surveyed and measured dynamics 

shows that they are quite variable, but where many are positive and the measured sets are 

generally negative, a fundamental difference in the growth properties is evident.  One 

difference between the measured and surveyed dynamics is the methodology; although some 

of the surveyed dynamics were based on tracking of +TIP proteins, none used 

plusTipTracker.  In future work, comparisons of dynamics measured in this way will 

elucidate this matter.  Other than methodology, reasons for the differences in drift are not 

clear. 

b. Surveyed dynamics and microtubule organisation 

To what extent can the comparisons described above contribute to our understanding of 

microtubule organisation?  The rationale here is that changes in microtubule dynamics should 

underlie changes in microtubule organisation.  With the exception of the Xenopus extract 

system (Belmont et al., 1990) and dynamics measured specifically at the cell periphery 

(Komarova et al., 2002), the drift was found to be positive for all surveyed dynamics.  

Although the drift values do vary from 0.38 μm min-1 (Vasquez et al., 1997) to 22.72 μm min-

1 (Komarova et al., 2009), any positive drift value indicates continual growth.  It can be 

argued that the consensus between microtubule growth characteristics is an indicator that 

microtubule arrays have similar systems properties, despite variations in cell type, cell line, 
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and dynamics measurement (which necessarily involves interfering with the cell in some 

way). 

However, the question remains as to how radiality is attained in a microtubule dynamics 

regime where microtubules will on average grow continually.  In this respect, the previous 

studies of microtubule dynamics at the cell periphery and in central areas are informative; 

these studies (Komarova et al., 2009; Komarova et al., 2002; Mimori-Kiyosue et al., 2005; 

van der Vaart et al., 2013) found that peripheral dynamics did differ to central dynamics, and 

the results of these four studies collectively suggest that microtubules are more likely to 

switch between states at a higher rate, grow more slowly, and spend more time in pausing at 

the cell periphery.   

These results are consistent with the findings of the model in the previous chapter, but how 

do they compare to the results of chapter 3?  The results of chapter 3 have been extensively 

analysed.  If one takes the measured, not predicted, pausing time percentage that was 

originally reported in chapter 3 and is reproduced in table V, those times, at 9.21 and 8.58 for 

control outer and inner areas, respectively, and 5.13 and 4.53 for Rac1-inhibited outer and 

inner areas, respectively, are low compared to the surveyed times and also (for the outer area) 

the model predictions from the previous chapter.  However, they do have the appropriate 

relationship between areas; the outer area is greater than the inner area, and although this is 

also true for the Rac1-inhibited condition, the values are both lower than the control 

condition, and this suggests that one way in which Rac1-inhibited cells lose the radiality of 

their microtubules because they pause less frequently at the periphery.   

The predicted pausing time percentages, however, do not generally differ by such an extent.  

One reason for this is that in order to calculate these values, the values of the two 

undetermined transition frequencies, Fs2p and Fp2s, had to be estimated based on comparison 

with other reports.  With the exception of a few parameter values, the values chosen for Fs2p 

and Fp2s gave greater values of Tp that were more comparable to the reported values.  Two 

points are of note following this: first, that the values for Fs2p and Fp2s were often of similar 

magnitude between the inner and outer areas, and secondly, although Tp with these Fs2p and 

Fp2s values were comparable to the literature, they were consistently lower.  Therefore, 

perhaps further differences between the inner and outer area dynamics sets in the control and 

Rac1-inibited conditions lie in differences for these undetermined transition frequencies.  

Further experimental work to measure these is a future project. 

II. Mechanisms of radiality 

a. Comparison to previous modelling 

In the previous chapter, it was noted that the accuracy of cortical targeting in quadrant 4 of 

drift space is better when 〈𝐿〉 is small and large in outer and inner areas respectively, and this 

was explained by the fact that a smaller 〈𝐿〉 will confine microtubules in a target area more 

effectively than a larger 〈𝐿〉 for outer areas, and in inner areas, a larger 〈𝐿〉 produces more 

microtubules that grow to the outer area.  This explanation is supported by the results of this 

chapter where the three-state simulations in which negative inner drift regimes were explored 
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(i.e. sets 11-19).  In these simulations, in the different negative inner drift regimes, the sub-

sets of dynamics with a greater D and 〈𝐿〉 always produced greater accuracy, regardless of the 

drift in either area. 

Another interesting finding in this chapter is the fact that inner area drift had little effect on 

the accuracy of cortical targeting, and indeed, 〈𝐿〉, Tp and outer area drift were found to have 

more of an effect on cortical targeting accuracy than inner area drift, which is not what might 

have been expected given the results of the previous chapter, where drift, albeit more for the 

outer area, was found to be so important.  This is not to say that drift space is rendered 

invalid; rather, it still represents a useful framework for considering dynamics combinations 

between areas, and as stated when it was introduced, it is a guide, and actual accuracy is 

determined by the specific combination of the abstract parameters. 

b. Radiality for measured dynamics 

The model has been used to identify the mechanisms of cortical targeting, but is it able to 

explain the differences in the organisation of control and Rac1-inibited cells that were 

documented at the beginning of chapter 3?  Control, unperturbed cells have good radiality; 

microtubules generally approach the cell cortex at perpendicular relative orientations, and in 

Rac1-inhibited cells, this radiality is lost.  Both experimental conditions have dynamics 

regimes located in similar quadrants of drift space.  Because two of these quadrants were 

found to produce poor accuracy, they were not investigated further, but the quadrant where 

both inner and outer drift are negative was found to produce reasonable accuracy, so the 

dynamics sets that were located there were investigated.   

It is apparent that the control condition certainly has more suitable dynamics regimes in terms 

of theoretical average length; model simulations found that for high and equal relative 

theoretical average length in the inner area, accuracy was improved, so long as this was 

accompanied by negative outer drift of appropriate magnitude.  Only one of the control 

dynamics sets had outer drift of an appropriate magnitude, but in this set, inner theoretical 

average length was quite low.   

Related to this is the fact that in the Rac1-inhibited condition, all theoretical average lengths 

were found to be small in the set that gave most relevant drift combinations, set A, but that 

Rac1-inhibited cells are in general smaller than unperturbed cells.  Previously, a link between 

microtubule dynamics and cell size has been postulated by Picone et al. (2010), so further 

investigation here might prove fruitful.  Of course, this would probably require use of 

micropatterning technology as in Picone et al. (2010) to control for variations in cell shape. 

Perhaps one of the most interesting features of the analysis of the experimentally-determined 

dynamics is that the control condition dynamics sets generally had a greater difference 

between the magnitude of inner and outer area negative drift.  Indeed, the mean absolute 

difference between the inner and outer area drift values for dynamics sets was 0.29 μm min-1 

compared to 0.20 μm min-1 and 0.15 μm min-1 for Rac1-inhibited condition A and C sets.  

Although some of the differences in inner and outer area drift are what could be considered 

the wrong way around in light of the modelling, i.e. positive outer drift and negative inner 
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drift, the fact that there is a greater difference between the two areas in the Rac1-inhibited 

condition hints that Rac1 could function to co-ordinate dynamics between inner and outer 

areas.  

III. Modelling for measured dynamics 

a. Model evaluation 

After testing general mechanisms for targeting, the experimentally-measured dynamics were 

examined.  Because it was apparent that average theoretical length in the inner area may have 

had a role in cortical targeting, and modelling verified this, the experimentally-measured 

dynamics sets could not be directly modelled.  However, dynamics sets that were similar to 

these, but for which the theoretical average length was controlled, were used to investigate 

cortical targeting accuracy in dynamics regimes similar to that of the experimentally-

measured dynamics.  Thus, this is a legitimate methodology; controlling for otherwise 

undetermined but important parameters of the model. 

b. Model extensions 

As discussed in the previous chapter, an interesting extension of the model would be to 

consider the effect of the residence time of a microtubule in the target area on cortical 

capture.  Following on from this, it may be that the accuracy values found in simulations of 

dynamics regimes in quadrant 3 of drift space, which seem low if this type of mechanism was 

to contribute to radiality with these dynamics regimes, might actually generate reasonable 

accuracy if it were combined with other mechanisms, such as cortical capture.  Another 

interesting experiment would therefore be determination of the relative times spent in target 

areas for the different regimes.   
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E. APPENDICES 

Table X.  Dynamics sets 11-19.  Each sub-set within each dynamics set is shown, denoted by 

the letters in the “set” column.  For each set, the outer area drift is also shown.  The abstract 

measures theoretical average length, 〈𝐿〉, drift, V, diffusion coefficient, D are shown for each 

dynamics sub-set.  Note that they repeat, so, for example, the only difference between sets 11 

and 14 is the outer area drift.  Also note that for each dynamics sub-set (i.e. each table row), five 

values for the pausing time percentage were used: 10, 20, 40, 60 and 80.  Thus each row 

represents 5 different parameter sets.  Units: V, μm min-1, 〈𝐿〉, μm, and D, μm2 min-1.   

Set V 〈𝑳〉 D 

Set 11, outer area drift = -10.06 

a -0.56 80.54 44.75 

b -0.56 38.63 21.46 

c -0.56 15.09 8.38 

d 0.56 7.88 4.38 

Set 12, outer area drift = -10.06 

a -2 51.56 103.13 

b -2 38.37 76.74 

c -2 15.00 30.00 

d -2 7.86 15.71 

Set 13, outer area drift = -10.06 

a -4.17 30.56 127.34 

b -4.17 15.31 63.81 

c -4.17 7.79 32.44 

Set 14, outer area drift = -5.38 

a -0.56 80.54 44.75 

b -0.56 38.63 21.46 

c -0.56 15.09 8.38 

d 0.56 7.88 4.38 

Set 15, outer area drift = -5.38 

a -2 51.56 103.13 

b -2 38.37 76.74 

c -2 15.00 30.00 

d -2 7.86 15.71 
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Table X, contd. 

 

Set 16, outer area drift = -5.38 

a -4.17 30.56 127.34 

b -4.17 15.31 63.81 

c -4.17 7.79 32.44 

Set 17, outer area drift = -0.96 

a -0.56 80.54 44.75 

b -0.56 38.63 21.46 

c -0.56 15.09 8.38 

d 0.56 7.88 4.38 

Set 18, outer area drift = -0.96 

a -2 51.56 103.13 

b -2 38.37 76.74 

c -2 15.00 30.00 

d -2 7.86 15.71 

Set 19, outer area drift = -0.96 

a -4.17 30.56 127.34 

b -4.17 15.31 63.81 

c -4.17 7.79 32.44 
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Chapter 6 

Frequency-based quantification of microtubule organisation 

A.  FREQUENCY-BASED ORGANISATION QUANTIFICATION: WHAT FOR? 

I.  Rationale 

a. Organisational features hitherto unquantified 

Since the microtubule cytoskeleton is so important for cellular organisation, its organisation, 

in turn, is also very important.  Thus it comes as no surprise that there are a vast number of 

ways in which the organisation of the microtubule network can be modulated in the cell, as 

discussed in chapter 2.  Previously in this thesis, we saw that changing microtubule dynamics 

parameters influenced the organisation of the network, and that other factors, such as cell 

boundaries, also influence the organisation of the array.  Thus it is clear that microtubule 

dynamics, which by definition determine microtubule behaviour through time and space, are 

a major determinant of the organisation of the array.  In some cases, however, microtubule 

organisation is dependent on more than just the length distribution of its individuals.  Such 

cases include certain spatial properties, such as the orientation, alignment, and bending of 

microtubules.  Indeed, chapter 3 established that there is a difference in microtubule bending 

between control and Rac1-inhibited cells.  The diagrams in figure 1 demonstrate these 

concepts, and they are expanded upon in table I, which gives the “parameters” of the different 

features of organisation.  Some of these parameters will be used later on in this chapter.   

A means of quantitatively describing the organisation of the microtubule cytoskeleton in 

other terms, that reflect these organisational features, should be helpful.  In this chapter, I 

address this problem for two of these: orientation and alignment.  Before proposing a method 

for quantification of these types of organisational features, I will first elaborate on why these 

organisation features have important functional consequences for the cell, and why they 

might make useful organisational metrics.  Where applicable, I will also review previous 

attempts at quantification. 

Table I.  Features of microtubule organisation.  Various important properties of microtubule 

organisation are shown, with details and parameters.  Shaded areas are those investigated here. 

Feature Details Parameter(s) 

Length Distribution of microtubule lengths 
Type of distribution 

Distribution-specific parameters 

Alignment 
Distribution of orientations of 

individual microtubules 

Normally distributed Uniformly distributed 

Mean 
Standard deviation 

Orientation range 

Orientation 
Predominant orientation of 

microtubule population 
Circular mean of orientation 

Spacing 
Distance between principal axes  

of individual microtubules 
Mean distance 

Variance of distance 

Bending 
Mode(s) of bending of  
individual microtubules 

Number of modes 
Amplitudes of modes 
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Figure 1.  Microtubule organisation properties.  Microtubule organisation can be considered 

in relation to the features shown; variations in each are shown in corresponding panels. 

b. Microtubule orientation 

Microtubule orientation is clearly an important feature of microtubule network organisation.  

The most obvious case to demonstrate this is the radial array in undifferentiated animal cells, 

whereby the distribution of orientations of the component microtubules is uniform on the 

interval [1°, 360°], perhaps the main functional consequence of which is proper transport 

throughout the cell.  Moreover, as was discussed in chapters 2, and will be elaborated on in 

the next chapter, the orientation of plant cortical microtubules is a major determinant of plant 

morphology (Wasteneys and Ambrose, 2009), and in fission yeast cells, microtubules are 

oriented so that they run parallel with the principal axis of the cell, and this is an important 

factor in yeast cell growth and shape (Brunner and Nurse, 2000).   
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Microtubules can also re-orientate or fine-tune their orientation according to certain cues.  

For example, in plants, the predominant orientation of the cortical array can change in 

response to blue light (Lindeboom et al., 2013).  In animal cells grown on micro-patterned 

substrates, it has been shown that microtubules target areas of cell-substrate adhesion, even 

though nucleation orientation is isotropic (Thery et al., 2006).  Making use of micro-

patterning again, in cells grown on thin, long substrates; microtubules have been shown to 

orientate parallel to the principal axis of the cell, in a similar manner to yeast microtubules 

(Picone et al., 2010).  In some cases, biases in microtubule orientations are quite subtle.  For 

example, in the Drosophila oocyte, a very slight but significant bias in microtubule 

orientation has been demonstrated, and this has important developmental functions (Parton et 

al., 2011).  These studies make it clear that microtubule orientations can be indicative of 

important cellular processes. 

How are microtubule orientations measured?  One of the most thorough attempts of 

microtubule orientation quantification has been in the last study discussed above.  Here, with 

images of plus tip protein EB1 labelled with GFP in the Drosophila oocyte, Parton et al. 

(2011) used a probabilistic threshold to assign a probability to each pixel that it “belonged” to 

an EB1-GFP particle.  The probability was based on finding the intensity of the background 

at each pixel, and an estimation of the variation in intensity as a result of noise.  The former 

was found using the median of the intensity over a number, n, of film frames before and after 

the current frame, this number being the time it takes an EB1-GFP particle to move from one 

pixel to another.  The variation in intensity was defined as the mean of the standard 

deviations of intensity of the n frames before and after the current frame.   

Finding the probability that a pixel is a “foreground” pixel (i.e. an EB1-GFP particle) 

involves subtracting the background intensity and variation (multiplied by some constant) 

and dividing by the background variation.  Next, the probability images were segmented, and 

particles were linked into tracks using a previous method (Sbalzarini and Koumoutsakos, 

2005).  Once tracks are created, orientations can be determined, as was carried out in chapter 

3 with plusTipTracker-created microtubule tracks.  This probability-based method differs 

from that of Picone et al. (2010), where a conventional threshold was used to segment 

labelled microtubules from the background.  Unfortunately, very few methodological details 

are provided, but after segmentation, presumably orientations were calculated according to 

gradients in the binary images. 

Boudaoud et al. (2014) have implemented their method of quantifying microtubule 

orientation (and also alignment – see next sub-section) in “FibrilTool”, an ImageJ/FIJI 

(Schindelin et al., 2012; Schneider et al., 2012) plugin.  Based on gradients in pixel intensities, 

it gives the predominant orientation in an image, and it has previously been deployed in 

analysis of microtubule organisation the plant cortical array (Uyttewaal et al., 2012).  In this 

method, images of labelled microtubules are subject to a pixel-by-pixel analysis of intensity; 

for each pixel, the gradient in intensity between it and those around it is found, giving a local 

gradient direction.  The local gradients across the image are averaged, and this gives the 

predominant orientation.  
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Another method, developed by Lichtenstein et al. (2003) and also independently by 

Lindeboom et al. (2013), involves a rotating filter that resembles a microtubule or any 

filamentous structure.  The microtubule-like filter is a line of given width, length and 

orientation, and by varying the orientation, one can determine the preferred orientation about 

the central pixel.  Lindeboom et al. (2013) use summation of the intensities underneath the 

rotating kernel as a measure of preferential alignment, while Lichtenstein et al. (2003) take 

the correlation with the kernel.  Both methods then employ a threshold step on the subsequent 

intensity or correlation to segment the stronger orientations from the background.  The 

method of Lindeboom et al. (2013) is incorporated into the ImageJ plugin “LOCO”, and has 

been used to measure orientation in the plant cortical array (Lindeboom et al., 2013). 

In summary, the orientation of microtubules is an important factor in cell, and there have also 

been some good attempts at quantifying it, which have been varied in their methodology.  

Some involve segmentation, and in one case, use a probabilistic threshold, while others are 

based on the raw image, and others employ a filter-based approach.  The FibrilTool method 

(Boudaoud et al., 2014) can be distinguished from the others by the fact that this requires 

absolutely no kind of threshold to delineate microtubules from the background; all others, 

whether it is the first step based on intensity (Picone et al., 2010), or a later step based on, e.g. 

probabilities (Parton et al., 2011) or correlation (Lichtenstein et al., 2003), set a point at 

which the signal is recognised over the background.  Boudaoud et al. (2014) simply take the 

average image gradient direction to determine orientation; the method presented here will 

also not require any threshold or pre-processing step. 

c. Microtubule alignment 

The alignment in a network of microtubules goes hand-in-hand with orientation; the extent of 

alignment can be thought of as the extent of anisotropy in the orientation.  Furthermore, the 

predominant orientation of a network of microtubules loses its relevance when there is no 

alignment; thus, an alignment score of some kind can be thought of as a proxy for the 

efficacy of the orientation estimate.   

The alignment in microtubule networks varies between cell type and cycle stage, 

developmental stage, between organisms, and in response to environmental cues.  For 

example, in plants, the anisotropy of orientations in the cortical microtubule array is a 

predictor of the extent of anisotropy in cell growth (Wasteneys and Ambrose, 2009); through 

its association with cellulose deposition in the cell wall (Paredez et al., 2006).  Here, the so-

called “growth continuum” paradigm posits that control of the organisation of the plant 

cytoskeleton is the main factor in the generation of diverse plant cell shapes; microtubule 

alignment is one such organisational property that is an important and highly modulated 

factor within this framework (Wasteneys and Galway, 2003). 

In a theoretical study, it has been shown that the degree of alignment of a network is a major 

determinant of cargo transport, modulated by the extent of coupling between active transport 

and resulting cytoplasmic advection (Khuc Trong et al., 2012).  Indeed, returning to the 

Drosophila oocyte, the slight bias in microtubule orientation is responsible for the correct 
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localisation of mRNA and protein with important developmental functions (Parton et al., 

2011), and the theory in Khuc Trong et al. (2012) serves to elucidate why the microtubule 

network in the oocyte is not anisotropic to the extent one might expect in cases where 

unidirectional intracellular transport of various molecules is required: depending on the 

degree of coupling between active transport and the consequent advection, a weakly-biased 

network can actually localise molecules to a given target better than a strongly-biased 

network. 

FibrilTool (Boudaoud et al., 2014) also quantifies the extent of alignment.  Whereas the 

orientation is estimated as the circular average of the gradients in the image, the alignment, or 

orientation anisotropy, is taken to be the circular variance of the gradients in the image (see 

Mardia and Jupp (1999), for a good introduction to circular/directional statistics).   

FibrilTool is a good example of user-friendly software to quantify alignment; indeed, other 

approaches at assessing alignment do not have such utility.  For example, in a fascinating 

study of the effects of the protein Spiral 2 on the organisation of the plant cortical array, 

Wightman et al. (2013) use a statistical test (the type of which is not indicated) to 

discriminate between orientation distributions in different experimental conditions.  Of 

course, this serves the purpose of being able to determine whether one condition is more or 

less aligned than another, but it does not permit comparison of many conditions, or different 

experiments.   

The alignment of the microtubule network is also clearly an important factor in many 

instances.  This feature of organisation is perhaps better-studied in plant biology, wherein it 

plays an essential part in development.  However, there are cases in animal biology, for 

example the Drosophila oocyte, where microtubule alignment comes to the fore as a major 

force in development, but the extent to which it is involved in the proper functioning of 

animal cells is not clear; however, it is clear that, in theory, microtubule alignment can have a 

major effect on transport of molecules, which is one of the main functions of the microtubule 

network in animal cells.  Moreover, previous work in the Mogensen laboratory has indicated 

that microtubule alignment is affected by the +Tip protein EB2, where its depletion caused an 

increase in microtubule alignment, and subsequent defects in cell differentiation (Goldspink 

et al., 2013).  Thus, it is likely that there are at least certain cases where microtubule 

alignment is important in animal, as well as plant, cells.  Next, I will introduce the concept of 

quantifying microtubule orientation and alignment based on the frequencies in an image. 

d. The Fourier transform for microtubule organisation quantification 

Here, I propose that the Fourier Transform (FT) of images of the microtubule network is 

ideally suited to quantify the orientation and alignment of microtubule networks.  The FT is 

used commonly in image processing and elsewhere; it effectively transforms a signal (here, 

images are the signals) into its component frequencies.  These frequencies are represented by 

complex exponential sinusoids, the magnitudes of which indicate the prominence of each 

frequency in the original signal.   
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When dealing with a two-dimensional image, the FT is taken in each direction, i.e., the result 

is 2-dimensional.  In order to demonstrate the potential applicability of this method, an 

example image of the microtubule array is shown in figure 2 with its corresponding FT 

(specifically, it is the power spectrum that is shown; this is covered in the next section).  In 

figure 2, the lowest frequencies are at the centre of the image, and the higher intensities at the 

borders.  Immediately, it is possible to see that the greater intensities in the FT, indicated by 

brighter values, are generally located in a region that is oriented perpendicularly to the 

predominant direction of the microtubules in the original image.  This is because the 

frequencies that are most prominent in the image are those that are perpendicular to the 

microtubules.   

As an analogy, imagine walking over the original image, where the greater the intensity, the 

greater the altitude.  Walking perpendicular to the microtubules means there will be a lot of 

ups-and-downs; plotting altitude as a function of position when walking this way will yield a 

signal that changes a lot.  The FT can decompose this signal into a collection of sinusoids, of 

which there will be many contributing to the FT power spectrum in this direction.  Walking 

parallel to the microtubules, however, and making the same plot, will yield a signal that does 

not change a great deal, because there will not be the same up-and-down profile as before.  

Thus, when decomposed by the FT, there will not be much contribution to the power 

spectrum in this direction.   

 

Figure 2.  The Fourier transform (FT) of a microtubule image.  An original image (left) and its 

FT power spectrum (right) are shown, with the highest intensities in the power spectrum in a 

region oriented perpendicularly to the prominent orientation of microtubules in the original image 

(indicated by the red line).  Spatial information (x and y) is converted to frequency information (u 

and v), the latter of which is displayed so that the lowest frequencies are central. 

These principles are the essence of all the work presented in this chapter.  The next step in the 

process is to analyse the FT power spectrum and find the direction of the greatest intensities, 

and how spread these intensities are; these measures will indicate the predominant orientation 

and extent of alignment, respectively, of the microtubules.  The purpose of this chapter is to 

establish the best means of analysing the power spectrum to quantify orientation and 

alignment in microtubule images, to test the method in a biologically-relevant situation, and 

further, to use the method to derive new information regarding the organisation of the 

microtubule network.  Before I present these analyses, I will first summarise the principles of 

the FT and review its previous uses in biomedical image processing. 
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II. The Fourier transform 

a. Principles 

The Fourier transform originates with the man after whom it is named: Jean Baptiste Joseph 

Fourier, whose work on heat transfer lead to his theory that any periodic function can be 

expressed as a sum of sinusoids with different frequencies and amplitudes, and this concept is 

extendable to non-periodic functions, too; the former is known as a Fourier series, and the 

latter is known as the Fourier transform.  Thus, any signal is converted into a collection of the 

frequencies that contribute to it, and what is more, this frequency domain information can be 

converted back again using the inverse Fourier transform.  The formula for the Fourier 

transform in 2-dimensions is shown in equation 1: 

𝐹(𝑢, 𝑣) =  ∑ ∑ 𝑓(𝑥, 𝑦)

𝑁 −1

𝑦=0

𝑒−𝑗2𝜋(
𝑢𝑥
𝑀

 + 
𝑣𝑦
𝑁

)

𝑀−1

𝑥=0

,      (1), 

where u and v are the frequency variables, and f(x,y) is the image of size M-by-N.  Since 

Fourier’s ideas were published in the 19th century, applications of his ideas have become 

widespread.  The types of signals to which it is applied are usually those which vary in time 

or space, and as mentioned, in images the FT is 2-dimensional: one FT in the direction of 

each axis.  Generally, analysis of signals with the FT involves the power spectrum, 

encountered in figure 2, the formula for which is below: 

𝑃(𝑢, 𝑣) =  |𝐹(𝑢, 𝑣)|2,      (2). 

Thus, the power spectrum is the magnitude of the Fourier transform, squared.  All of the 

work in this chapter is based on the power spectrum.  As was shown in figure 1, the power 

spectrum is usually shifted so that the lowest frequency is at the centre, and frequencies 

increase toward the borders of the spectrum.  As a result, the power spectrum is symmetrical 

about the two principal axes. 

The range of frequencies, Ω, in the power spectrum is dependent upon the rate at which the 

original function has been sampled, i.e. the sampling interval, ΔT: 

𝛺 =  1/𝛥𝑇,     (3). 

The sampling interval in images obtained from a microscope will be dependent firstly on the 

resolution obtainable with the microscope, and secondly, on the manner in which the 

continuous, optical image formed by the microscope is handled and converted into a digital 

image.  Focussing on the former first, in microscopy, theory tells us that the resolution, 

commonly defined as the smallest resolvable distance between two objects, is a function of 

the numerical aperture (N.A.) of the microscope system (i.e. including the N.A. of the 

objective lens and the condenser; in epi-illumination systems, the objective also acts as the 

condenser), and the wavelength of the light being used to create the image.  The smallest 

resolvable distance, d, is found like so: 
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𝑑 =  0.61𝜆 𝑁. 𝐴.,     (4),⁄  

where λ is the wavelength of the light used to create the image.  Generally, for systems with 

magnification of 60x, N.A. can approach 1, and thus, for light at median wavelength (550 

nm), d is about 0.3 μm, while for 100x systems, N.A. can reach 1.4, which, for similar light, 

gives values of d around 0.2 μm.  Such calculations should be used as a guide; imperfect 

optics in the light path and fluorophores with different excitation and emission spectra will 

alter the resolution. 

Moreover, the above equation is not all, since it applies to optical images, which are 

continuous functions in space, yet digital images are not continuous, but are instead 

represented by discrete elements, known as pixels.  Hence, we arrive at the second issue 

mentioned above.  The sampling interval is also determined by the area we choose to 

designate to each element in the camera attached to the microscope (which, in turn, gives us 

the area each pixel represents).  Since pixels are square, we only need one figure to define the 

sampling rate.  It is good practice in any signal processing, of which this analysis can be 

deemed an example, to sample at what is known as the Nyquist rate or criterion: 

∆𝑇 = 2𝐹𝑚𝑎𝑥 ,     (5), 

where Fmax is the maximum frequency, or likewise, the minimum resolvable distance, in the 

continuous signal (here, the optical image).  The Nyquist criterion tells us simply that we 

must sample our continuous function, in this case the light emitted from fluorophores in the 

sample, at twice the greatest frequency in the function; abiding by this specification means 

that the highest frequencies in optical image will be represented in the digital image.  In our 

case, this is 0.1 μm at best.  Using the maximum expected frequency of 0.2 μm from 

calculations of d, and eq. 3, we can calculate the FT frequency range: 

𝛺 = 1 0.2⁄ = 5 𝑐𝑦𝑐𝑙𝑒𝑠 𝜇𝑚−1,     (6). 

This makes intuitive sense: the highest frequency in the FT will correspond to a signal that is 

varying at 5 cycles μm-1, which, in the continuous optical signal, corresponds to 0.2 μm, for 

which the required sampling interval, according to eq. 5, for the digitised signal, is half that at 

0.1 μm.  Thus, the calculations agree, and in the frequency spectrum obtained from the FT, 

there will be a range from zero to 5 cycles μm-1.  Of course, as is clear by now, this changes 

according to the resolution of the microscope system. 

Another pertinent factor is the resolution, or spacing, Δu, in the FT.  This is dependent upon 

the total space sampled, T (in one dimension): 

∆𝑢 = 1 𝑇⁄ ,     (7). 

In microscopy images, T will typically vary between a sub-sample of a cell, on the order of 

microns, to a total cell, on the order of tens of microns: 

𝑇 = 2 𝜇𝑚, 

∆𝑢 = 0.5 𝑐𝑦𝑐𝑙𝑒𝑠 𝜇𝑚−1,     (7𝑎), 
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𝑇 = 50 𝜇𝑚, 

∆𝑢 = 0.02 𝑐𝑦𝑐𝑙𝑒𝑠 𝜇𝑚−1,     (7𝑏). 

We can see that the greater the space sampled, the smaller spacing we have in the FT, which 

means greater frequency resolution.  Depending on the application, analyses of images are 

influenced by T and ΔT to varying extents.  In this application, there is not the possibility of 

improving ΔT, since this is imposed by the physics of the imaging process, but T can be 

easily changed by changing the size of the image to be analysed.  The extent to which 

frequency resolution matters for this particular application is debatable, since it is the 

direction(s) in which higher intensities in the power spectrum are positioned, rather than 

differences in frequencies.  If the application was, e.g. an analysis of characteristic distances 

between microtubules, then T and ΔT might be more important. 

Furthermore, there is essentially a trade-off between getting better frequency resolution and 

the heuristic use of the power spectrum.  Although Δu decreases with increasing T, and thus 

resolution improves as T gets bigger, it may become more difficult to understand the 

correspondence between the frequencies resulting from the FT and the spatial distribution of 

intensities in the image.  With smaller images, it is relatively easy to understand which parts 

of the image are represented by which parts of the FT; this becomes harder as T increases.  

Thus, any gains in frequency resolution resulting from increasing T are offset by the loss in 

understanding what the frequencies correspond to in the image.  Later, in section B, this point 

is demonstrated.   

One of the pitfalls of using the FT in image analysis is that the FT (and the inverse FT) are 

infinitely periodic (Gonzalez and Woods, 2006).  This means that taking the FT of an image 

is analogous to assessing the frequencies in an infinitely-sized 2-dimensional tiled array of 

that image (fig. 3).  Clearly, where the tiles meet, there is generally a large step, i.e. a 

discontinuity in most frequencies; the effect of this is to create a large signal, at every 

frequency, at these positions.  Thus, in the power spectrum, there are high values at 

orientation corresponding to the principal axes, to which the tile edges are parallel.  This is 

called an “edge effect”, and analysis based on the FT must take measures to reduce them; 

without dealing with edge effects, there will be strong maxima in the FT along the principal 

axes, and this will hinder the identification of a principal orientation and calculation of 

alignment. 

Once edge effects have been eliminated, an appropriate method of analysing the power 

spectrum must be chosen.  The manner in which the power spectrum changes with orientation 

can be found with the following formula, which splits the power spectrum into radial sections 

(i.e. like the sections of a pie chart) and sums intensities in each (Gonzalez and Woods, 2006): 

𝑆(𝑟) =  ∑ 𝑆𝜃(𝑟)

179°

𝜃=0°

,     (8), 
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where r is the radius of the circle from which the sections, oriented at θ, are taken.  Hereafter, 

I refer to this function as the “orientation magnitude”. 

 

Figure 3.  Edge effects.  The FT treats images as being infinitely-tiled (A; original image in 

yellow square), leading to truncation of signals in the image (white lines in A; black lines in B) at 

the edges of the tiles.  Where the signals are not continuous at the edges (asterisks at dotted line 

in B), a large signal is created at the same orientation as the tile edge in the power spectrum 

(black box in C).  This example is for the y-axis; the same is true for the x-axis. 
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Here, I have discussed the principles of the FT and the pertinent image parameters that affect 

the analysis.  But how can the power spectrum be analysed to quantify microtubule 

organisation?  This is discussed later; before then, in the next section, I review cases where 

the FT has been used in similar situations, whether this has been for processing of biomedical 

images or an application from a different field. 

b. Relevant applications of the FT 

The aim of this section is to inform the next sub-section, where I assess the applicability of 

the FT for microtubule organisation quantification.  In addition to being well-used in signal 

processing, the FT has been used extensively for diverse image processing applications.  

Many of these are not related to this application, and so reviewing them here would be 

superfluous; this only reflects the sheer applicability of the FT.  Thus, I focus below on 

applications in analysis of filamentous structures; here, some of the applications are quite 

different to the one in this chapter, but similar methods of analysis justify their inclusion.   

The principle of analysing frequencies using the power spectrum to derive information 

regarding the predominant orientation and the alignment in that orientation is not new.  For 

example, Bayan et al. (2009) analysed the power spectra of images of collagen fibres with 

and without fibroblasts by taking the intensities of each orientation in the spectrum.  Ayres et 

al. (2008) have used the FT in an analysis of scaffolds for tissue engineering generated by 

“electrospinning”.  In these scaffolds, the orientation and anisotropy of orientation of their 

constituent fibres are important in determining their material properties.  Returning to 

collagen matrix organisation, Schriefl et al. (2013) used a similar approach to Bayan et al. 

(2009), summing power spectrum intensities at discrete orientations, to assess collagen fibre 

orientations in human abdominal aortas.  The FT has also been used to detect structural 

changes in skin biopsies of patients diagnosed with Sjörgen-Larsson syndrome (SLS); here, 

histological staining of the biopsies was determined to be different between SLS sufferers 

and control patients in frequency components (Auada et al., 2006).  

To determine the alignment in an image, some groups have defined a measure based on the 

“support” of the dominant orientation from the other orientations, i.e. the extent to which 

greater power spectrum intensities were at similar orientations to that which was determined 

to be dominant (Bayan et al., 2009).  This type of method has the advantage that it includes 

all of the data; some other methods that use the maximum value in the orientation magnitude 

as an indicator of alignment (Ayres et al., 2008) (also the indicator of orientation, and 

dependent on the normalisation method – see below) effectively ignore all other data.   

In a method related to the dominant angle support approach, Auada et al. (2006) calculated 

the resultant vector of the power spectrum.  This group took frequency bands (i.e. annular 

sections of the spectrum) and, weighting vectors to each pixel by the intensity of that pixel, 

found the magnitude of the resultant vector for that frequency band.  Thus, at discrete 

frequency bands, Auada et al. (2006) could use the magnitude of the resultant vector as an 

indicator of anisotropy; greater magnitude, greater anisotropy.  Of course, since the power 
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spectrum is symmetrical, this method, and that of Bayan et al. (2009), requires that only half 

of the spectrum is used (it does not matter which half).   

Moreover, with calculations of this kind, different spectrum halves have to be considered for 

each of the principal axes.  This is because, e.g. a resultant vector calculated just for the 

interval of [90°, -89°], will always be positive for the x-axis direction, as all vectors are 

positive for x.  The same can be said for the y-axis direction if the resultant is calculated over 

the interval [0°, 179°].  The fact that the power spectrum is symmetrical means that this type 

of manipulation is legitimate because the y-positive and x-positive areas correspond, so long 

as the “correspondence” is correct, e.g. an intensity at -80° will be the same as 100°.  This 

will be expanded upon in a later section. 

Another interesting method of quantifying alignment is that of Schriefl et al. (2013), who, 

after smoothing the orientation magnitude data, fit linear lines to the cumulative probability 

distribution of the orientation magnitude.  Because isotropic orientation magnitude will have 

a linear cumulative distribution, those distributions that were not fit well by a linear line, 

defined according to a threshold R2 value, were taken to be anisotropic (Schriefl et al., 2013). 

“Benchmarking” is a common theme in analyses based on the FT; the idea is that some kind 

of “ground truth” is established, where the true characteristics of the image are known, to 

verify the accuracy of the method.  Bayan et al. (2009) made efforts to benchmark their 

analysis based on synthetic image data, for which they knew the true dominant orientation 

and alignment, and Marquez (2006) has conducted a thorough analysis of the effect of fibre 

aspect ratio on detection of orientation using synthetic images.  In that study, the FT-based 

quantification was found to work best for thin fibres. 

In another study which compared methods to quantify orientation and alignment, in which, 

incidentally, the FT was found to be most reliable and quickest, synthetic images of “fibres” 

were created with varying numbers, predominant orientation and “anisotropy index” (i.e. 

some measure of anisotropy) (Sander and Barocas, 2009).  This type of synthetic analysis is 

attractive since it allows exploration of a number of organisation parameters. 

Where others have used synthetic images to benchmark their analysis, Ayres et al. (2008) use 

spaghetti.  Here, spaghetti that was either left uncooked or had been cooked (5 min, al dente) 

for increased flexibility was arranged into various orientations and degrees of alignment.  

Importantly, cooked spaghetti was found to have a decreased alignment relative to uncooked 

spaghetti when arranged in similar orientations, verifying the efficacy of the method. 

In some cases, benchmarking methods are based not on synthetic data or spaghetti, but on 

pre-assessment of the images to be analysed.  For example, in their analysis of collagen 

organisation in human aortas, Schriefl et al. (2013) chose the threshold R2 value in the fitting 

of linear lines to cumulative orientation magnitude probability distributions by labelling the 

images as isotropic or anisotropic first, and then chose the R2 value that was in accordance 

with these labels. 
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Removal of edge effects is of course another important feature of FT analysis.  In attempting 

to eliminate edge effects, Ayres et al. (2008) have used a circular window, where the image 

values outside the largest circle that fits into the image dimensions are set to increase from 

some given value at the borders of the images, to some unspecified higher value at the border 

of the image and circle window; other groups have employed similar methods (Schriefl et al., 

2013).  This method is similar to the windowing approaches employed in one-dimensional FT 

analysis, for which there are a number of functions to alter the image intensities so that edge 

effects are removed, each with slightly different characteristics. 

Finally, to properly compare orientation magnitude plots, it is useful to normalise data in 

some way.  Various approaches have been implemented, including seemingly ad hoc 

methods based on selection of one of the data points to subsequently divide the rest of the 

data by (Ayres et al., 2008), to “area normalisation”, whereby the data is divided by the area 

so that the area under the data is equal to one (Bayan et al., 2009). 

c. Suitability for quantifying microtubule organisation 

The review above certainly contains promising indicators that the proposed method will be 

suitable for quantifying microtubule organisation, as there are a number of studies that have 

used similar methods to quantify the organisation of fibrillar structures, that are similar in 

appearance to microtubules.  In particular, the analyses of electrospun scaffolds (Ayres et al., 

2008), and of collagen matrices (Bayan et al., 2009; Schriefl et al., 2013) were carried out 

with aims similar to those here.  Other cases, for example in the skin classification (Auada et 

al., 2006), suggest that FT analysis may also be useful for classifying cells based on the 

organisation of their microtubule cytoskeletons. 

The review also highlights some methodological details that will be useful in this analysis.  

Firstly, it will be desirable to establish the applicability of ways to quantify orientation and 

alignment with some type of ground truth.  Second, edge effect removal will need to be 

implemented.  Third, to aid in comparison of data, a means of normalising the data will be 

required. 

Another important point to come out of the above review is that there is generally not a 

consensus regarding ways to deal with the above points, i.e. orientation and alignment 

quantification, edge effect removal, and normalisation.  Different groups have implemented 

their own methods, some overlap, and some are quite unique.  Thus, appropriate methods for 

these will have to be determined; in this respect, ground truth data will be a useful tool. 

Although some have made efforts to analyse not only orientation but also variations in 

frequency, given an orientation (i.e. the “frequency magnitude” as opposed to the orientation 

magnitude) (Auada et al., 2006), it is apparent that in most cases, only orientation information 

is taken into account, i.e. only pie-sections of the power spectra, and not annular sections, are 

considered.  Thus, it will be sufficient to take a similar approach in this study. 

In section B, these issues will be addressed in a preliminary analysis, involving ground truth 

images and some real microtubule images.   



209 

 

B.  PRELIMINARY ANALYSES 

I. Synthetic images 

a. The need for synthetic images 

By the end of section I, I will have carried out a thorough analysis of the FTs of synthetic 

images.  The aim of doing this will be to have a benchmark against which to compare FTs of 

real cells.  First, though, I briefly demonstrate why synthetic images are essential. 

Figure 4 shows an image of fixed human retinal pigment epithelial, or ARPE-19, cells, 

visualised using similar parameters to all of fixed specimens under study throughout this 

thesis.  We can see that the arrangement of the microtubule cytoskeleton varies between the 

cells, and within each cell.  Some have well-aligned regions, while others are fairly 

disorganised, and some areas are well-aligned but bending.  The power spectrum in figure 4b 

is for the whole image in figure 4a, while the power spectra of sections of the image are also 

shown in figure 4c. 

Here, two important points become apparent.  First, how can we be sure that certain features 

in the spatial domain relate to a given set of frequencies in the FT?  Second, how do we go 

about quantifying the information in the FTs so as to enable us to compare microtubule 

networks?  In relation to the first point, going backwards from the frequency information to 

the spatial domain can be informative: e.g. the power spectra for sections 2-4 show prominent 

frequencies oriented roughly perpendicular to the predominant orientation of the 

microtubules in the images.  Thus, where there is a reasonable degree of alignment, it is quite 

simple to interpret the power spectrum; in cases where there is low alignment, or indeed a 

large image has been analysed, the power spectrum is more difficult to understand. 

In relation to the second point, although it is easier to understand the power spectrum in 

smaller sections of an image, to do this for many images manually would be tedious and 

unfeasibly time-consuming.  Hence, an automated method will be required, yet, one has to be 

sure that such a method behaves as it should; to establish a good automated method, 

candidate procedures can be tested on synthetic data, or compared against expert-labelled real 

data.  Both approaches have been used previously, and here, I employ the former approach. 

In summary, the argument for generation of synthetic data runs thus: thorough analysis of 

real images will require automation, but automation will require a method that we have 

confidence in.  To do this, various approaches can be tested on data for which we know the 

parameters of interest: orientation and alignment, and we can then use them as a comparison 

when we look at real images. 
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b. Construction of synthetic images 

How do we go about constructing these images, and what are the parameters we will vary?  

In a similar manner to Sander and Barocas (2009), I create a set of binary images with “fibres” 

with normally-distributed orientations with a given mean, μ, and standard deviation, σ (fig. 5).  

From here on, the mean and standard deviation in the synthetic images will be referred to as 

the “synthetic mean”, or just predominant orientation, and the “synthetic standard deviation”.  

For each combination of μ and σ, there are 20 images. 

 

Figure 5.  Summary of synthetic image set.  Synthetic “fibres” are created, imitating 

microtubule images, with varying principal orientation, μ, and standard deviation, σ, about the 

predominant orientation. 

c. Obtaining the orientation magnitude 

The orientation magnitude, touched upon earlier, and found with the following formula: 

𝑆(𝑟) =  ∑ 𝑆𝜃(𝑟)

179°

𝜃=0°

,     (8), 



212 

 

is an appropriate way of analysing how the power spectrum changes with orientation, and 

hence, the orientations present in the image.  Keeping r fixed means that this can be omitted 

from the formula: 

𝑆 =  ∑ 𝑆𝜃,

179°

𝜃=0°

     (8𝑏), 

and thus, “orientation magnitude” and “S” will be used interchangeably hereafter. 

The orientation magnitude is a one-dimensional function, for which taking statistical 

measures, such as the circular mean and standard deviation, allows us to quantify the 

characteristics of the FTs (Gonzalez and Woods, 2006).  The question I aim to answer in this 

sub-section is: what is the best way of obtaining the orientation magnitude? 

In carrying out the summation in eq. 8, there are some preliminary considerations.  First, it is 

clear that, due to the symmetry of the power spectrum, we only need analyse half of it (this is 

why θ goes from 0° to 179°, and not 359°, in eq. 8).  Note that the issue mentioned earlier in 

determining the predominant orientation and extent of alignment by resultant vectors or 

dominant angle approaches is discussed further in section BIf.  Second, the sums could be 

made over discrete ranges of θ, or, instead, they could run continuously, with a “window” of 

specified size centred at each orientation.  Important parameters here are the number of 

groups for the “discrete” method, and the window size for the “continuous” method.   Figure 

6 depicts both the discrete and continuous approaches on the power spectrum of an example 

synthetic image. 

From here onwards, I will specify whether the method was continuous or discrete.  Figure 7 

shows three example synthetic images, and plots of the orientation magnitude obtained with 

both methods; it also shows two different pre-processing methods, which are discussed in the 

next sub-section.  It is clear that, while the discrete method produces step-like changes in the 

orientation magnitude, the continuous method, as might be expected, tends to produce 

“smoother” data.  Reassuringly, both methods agree on the locations of maximum 

orientations.  In this section, both methods will be used, with the aim of coming to a 

conclusion as to which is better for subsequent analysis. 

In terms of subsequent analysis, even a brief look at the orientation magnitude plots in figure 

7 suggests that values such as the mean of the distribution might not be quite what we are 

after; here, we are interested in the anisotropy of the distribution of the orientation magnitude: 

high anisotropy should indicate strong alignment, while low anisotropy should indicate weak 

alignment.  Thus, we want to calculate how the power spectra of the synthetic control images 

vary with orientation (eq. 8) and compare the values for each orientation with one another, 

i.e., the intra-data set differences.  However, before we address this problem, we must first 

consider how we will pre-process the orientation magnitude data.  
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Figure 6.  Methods of obtaining the orientation magnitude.  The power spectrum of the 

synthetic image in A is analysed for orientation magnitude according to the “discrete” method (B) 

and the “continuous” method (C).  In the discrete method, the areas analysed, from 90° to -90°, 

are depicted in black, and in the continuous method, the orientation at the centre of each area 

analysed is also shown in black (Ci).  Cii depicts the first (green) and last (red) areas analysed as 

the central orientation sweeps from 90° to -89° (as indicated by the arrow). 
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Figure 7.  Orientation magnitude methods and pre-processing efficacy.  For synthetic 

images with varying standard deviations and principal orientations, respectively: 0, - 60° (Ai), 5, -

30° (Aii), and 20, -90° (Aiii), the orientation magnitudes are shown for the discrete (Bi-iii) and 

continuous (Ci-iii) methods, after pre-processing by either rescaling (blue lines) or normalisation 

(green lines).  
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d. Data pre-processing 

A problem that arises in analysis of the orientation magnitude is that all of the data are very 

large values, and differences between them, may be small in comparison to their magnitude, 

making it difficult to detect any differences.  Hence, some kind of pre-processing of the data 

should be required before any analysis.  Furthermore, once we have compared values within 

single data sets, pre-processing should allow better comparison between data sets, since the 

results will not be affected by differences in magnitude between different sets.  One form of 

pre-processing is to rescale the data so that all points are on the interval [0,1].  This is 

achieved with the following formula: 

𝑥′ =  
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛
,     (9), 

where, for each data point x, x’ is the rescaled value, while xmin and xmax are the minimum and 

maximum values of the original data set, respectively. 

Another form of pre-processing data is to normalise so that the area underneath a graph of the 

data is equal to one.  This is achieved like so: 

𝑥′ =
𝑥

𝑎
,     (10), 

where, again, for each data point x, x’ is the normalised value, and a is the area underneath 

the plot of the original data.  This is the same method as that used by Bayan et al. (2009). 

In figure 7, we can see that for the example synthetic images, both pre-processing methods, 

as with the different orientation magnitude methods, agree on where maxima are located in 

the data.  Due to the differences in the two methods, we would of course expect quite 

different values, and this is indeed what we see, but both have similar shapes.   

However, one concern with the rescaling method is that, because the maximum value takes 

the new value of one and the minimum takes the new value of zero, it might accentuate intra-

data differences if the original distribution does not have a large maximum.  Likewise, as 

figure 7 shows, the normalisation method appears to have smaller peaks at the predominant 

orientations relative to the other data; are either of these concerns valid?  A simple analysis 

based on data with a clear maximum (“peaky” data) (fig. 8A) and another set with no clear 

maximum (“flat” data) (fig. 8D), can clear up the issue.  Figure 8 shows that rescaling 

perfectly reproduces the shape of the original peaky data (fig. 8B), while normalisation tends 

to reduce the maximum slightly (fig. 8C).  However, in the flat data, even though it appears 

that both rescaling and normalisation preserve the shape of the original data, comparison of 

the two appears to indicate differences between resultant data (fig. 8E-G).   
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Figure 8.  Further tests for pre-processing method efficacy.  Data with a clear maximum 

(“peaked”) (A) were tested with both rescaling and normalisation pre-processing, the results of 

which are presented in B and C, respectively, with both plotted with the original data.  Relatively 

flat data (D) were also subject to the same analysis (E and F), and the results of rescaling and 

normalisation are also plotted together in G. 

To better understand this, the ratios of the minimum to maximum, and mean to maximum, 

values of the data before pre-processing, and after pre-processing with both rescaling and 

normalisation, were calculated.  Here, the aim was to quantify, to some extent, the shape of 

the data.  The ratios are shown in table II, and as expected, rescaling deals well with the 

peaky data with both ratios, but so too does normalisation; perhaps the plotting process and 

axis scales used obscured the relationships within the data.  The ratios for the flat data 

suggest that rescaling does indeed accentuate intra-data differences in situations where the 

original data was relatively uniform; the minimum to maximum ratio is zero, as would be 
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expected given that rescaling assigns zero to the former and one to the latter, whereas for the 

original and normalised data, this ratio is 0.919.  The mean to maximum ratio is also 

misrepresented after rescaling the flat data: here, the value is 0.530, while for the original and 

normalised data, it is 0.962.  Thus, caution should be exercised when using the rescaling 

method of pre-processing since it has the potential to change intra-data relationships.  

However, for the analysis of synthetic images, I will continue to employ both methods, where 

I can be sure that there is indeed a peak in the data at the predominant orientation.  

Table II.  Data metrics before and after pre-processing.  Ratios of minimum to maximum 

value, and of the mean to the maximum value, are shown for original, rescaled, and normalised 

data.  The discrepancies between the rescaled and original data are highlighted in grey. 

 Original Rescaled Normalised 
 Peaked data: 

Min/max 0 0 0 
Mean/max 0.141 0.141 0.141 

 Flat data: 

Min/max 0.919 0 0.919 
Mean/max 0.962 0.530 0.962 

 

e. Eliminating edge effects 

Edge effects, and the various means that have been proposed to deal with them, were covered 

in section AII.  Here, I investigate a number of potential means of reducing the effects of 

edge.  The first way is to simply ignore them, and exclude the data at the principal axes from 

the analysis.  This is not entirely satisfactory since, in the case that there is true strong 

alignment along one of the principal axes, it will not be detected.  By taking into account that 

there are usually high values at these orientations, and including them if the values here are 

unusually high, is a possibility, and has been employed previously (Ayres et al., 2008).  

Another way would be to look at the power spectrum in all other directions, and if there are 

maxima here, it is likely the principal axes maxima are only edge effects; in essence, we are 

asking: is there information elsewhere in the FT, and if so, we will ignore the principal axes.  

However, this could be quite a complex and time-expensive analysis. 

Another way to determine whether it is an edge effect or a real result from the information in 

the image is to take the FT and analyse it, then rotate the original image by a known amount 

and take the FT again.  In this approach, if the principal axes maxima represent real 

information, there will now be maxima at the orientation of the angle the image has been 

rotated by.  If they were edge effects, there will not be a new maximum at this orientation.  

This is a promising method, but as before, it could lead to a lengthy time of analysis, since it 

will double the number of images to analyse. 

Although the above practises provide means of identifying edge effects and eliminating them 

from subsequent analyses, better approaches might aim to remove edge effects earlier, at the 

image stage, so they do not need to be identified.  In this way, we would not risk removing 

legitimate data when trying to rid the analysis of edge effects.  In signal processing, where the 

FT is used extensively, a process called windowing is employed to negate the effects of sub-
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sampling sections of a 1-dimensional signal.  This could be an option here, but it is only 

compatible with certain types of analysis; namely, those that are filter-based, and centre a 

window of some size on each pixel of the image.  This type of method is described in a bit 

more detail in the full analysis; suffice to say that it is not the method of choice here, and so 

windowing cannot be considered.   

A better-established method in image processing to eliminate edge effects before taking the 

FT is to pad the image.  Here, the image is surrounded, or padded, by more sections of image.  

The idea of padding is to negate the effect of effectively abruptly truncating the wavelengths 

in the image at the image borders (demonstrated in fig. 3).  The padding sections produce an 

area that softens this abrupt stop, and thus decreases the signal created by it in the FT. 

There are a few options as to the positioning and content of these extra padding sections of 

image; here, I analyse zero, mean, and reflection padding.  These approaches are summarised 

in figure 9.  Zero padding consists of positioning rectangular sections of zeros around the 

image (fig. 9B).  Whether padding at the top or bottom of the image or left and right, one of 

the dimensions of these sections clearly depends on the size of the image, while the other 

dimension that determines how “deep” the section is, is up to the user to decide.  Generally, 

this dimension will correspond to the size of the image in some way; it might be the same 

size as the image, or it might be half the size.  Another option is mean-padding.  Here, instead 

of zeros, the image is padded with its mean value (fig. 9C).  In some cases, this might be 

preferable because it could soften the transition at the border of the image to a greater extent 

than zero-padding.  In addition to zero- and mean-padding, we can fill the padding sections 

with a reflection of the image (fig. 9D).  We might expect that this approach is the best choice 

since the image is now more periodic; the FT algorithm expects periodic input; thus, it might 

perform better with a reflection-padded image.   

The choice between these three approaches will usually be based on assessment of their 

corresponding FTs.  It is to some extent a decision based on preliminary data rather than there 

being a definitive method.  Later, we will examine these different approaches with a 

preliminary study to establish which is best-suited to our system of study. 

There is an extension to the padding approaches described above, and this involves changing 

the shape of the image that is surrounded by padding sections (fig. 9).  Here, the idea is that 

by removing the edges present in a square image, we should reduce the spurious signal 

created by these edges.  Hence, instead of padding around a square image, we first remove 

sections of the image so that it is now in a circle.  Of course, we will not want to make this 

circle too small, since we will start losing real signal from our image; good practice will be to 

use a circle of diameter similar to that of the smallest dimension of the image.  As above, the 

choice as to whether padding is zero, mean or reflected is based on preliminary analysis; 

however, it is unlikely that reflection will be appropriate here, where there are no straight 

image borders. 
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Figure 9.  Padding approaches.  A synthetic image (A) is padded either with zeros (B), the 

mean value of the circular “windowed” image (C), or reflected (D). 

To determine which of these methods works best for this application, I carried out an analysis 

on the synthetic images, with data obtained using the discrete method and rescaling for pre-

processing.  In this analysis, for each types of padding, the mean orientation magnitude at the 

principal axes was found for synthetic images where the signal here would be expected to be 

low (i.e., predominant orientations -30° and -60°) and those where principal axis signal 

would be expected to be high (i.e., predominant orientations 0° and -90°).  Finally, I then 

rotated the latter set of images by 45°, and found the mean orientation magnitude at the 

principal axes.  A good padding approach should therefore give low signal in the first group, 

high signal in the second group, and low signal in the third.  The results are plotted in figure 

10.  

It is clear to see from figure 10 that some padding approaches perform better than others.  For 

example, zero and reflection padding increase the signal relative to non-padded images at the 

principal axes in the first group, which suggests enhancement of edge effects in some way, 

while mean padding decrease the signal for this group.  All padding approaches conserve the 

signal in the second group, which is good, while, in the rotated set, mean padding reduces the 

signal best relative to the non-padded data.  Thus, mean padding performs best in this 

analysis, and will be used hereafter to eliminate edge effects. 
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f. Analysis of the orientation magnitude 

In this sub-section, I propose various methods to predict the predominant orientation from the 

orientation magnitude data, and also to quantify the anisotropy in the data, and after 

discussing their advantages and disadvantages, I test some of the more promising methods.   

To recap, so far, we have seen that two methods of obtaining the orientation magnitude, the 

discrete and continuous approaches, are applicable, while we also have two methods to pre-

process the orientation magnitude, rescaling and normalisation, albeit with some reservations 

as to the efficacy of the former.  We have also seen that the most appropriate method for 

elimination of edge effects in the FT of the synthetic images is mean padding.  Therefore, all 

analyses in this sub-section will be based upon images that have been mean padded prior to 

calculation of the FT, and both methods for obtaining the orientation magnitude and pre-

processing will be used. 

To predict the predominant orientation in an image, there are three potential methods: 

1. Take the orientation at which the maximum magnitude occurs 

2. Calculate the mean orientation of the data 

3. Calculate the “dominant” orientation 

These methods are summarised in table III.  In many cases, these methods may give similar 

results; however, the latter two may be better means of estimating the predominant 

orientation because it takes into account all of the data.  For example, if there is one outlying 

value that is a maximum, while there are many slightly lower magnitudes clustered elsewhere, 

then the mean orientation would indicate the predominant orientation better than simply 

taking the maximum value.  Calling this the mean value can be misleading, since at first, one 

might think that, in any case, a mean value will not be a good indicator of where maxima are 

located in the data.  However, it is not the mean value of the orientation magnitude, rather, it 

is the mean value of the orientations analysed, weighted by the orientation magnitudes.  

Hence, it is analogous to angle of the resultant vector, the magnitude of which is discussed as 

a means of quantifying alignment below.  See Mardia and Jupp (1999) for a thorough guide 

on descriptive statistics for data that are collections of angles (i.e. “circular” data). 

The second method suffers from a problem that is commonly encountered in analyses of 

circular data (Mardia and Jupp, 1999); what I call the “transition problem”, in that, since the 

orientation magnitude is defined on an interval of 90° to -89°, if a peak were located across 

these angles, then the resultant vector would be small where it should be large, because the 

set of vectors, some clustered around +90° and some around -89°, would oppose one another.  

Thus, the second method is prone to giving spurious results, depending on where the 

principal orientation lies. 

The third method maximises a function used to find what has been called the dominant 

orientation (Allard et al., 2010; Baulin et al., 2007), it is also used again, below, in one of the 

measures proposed to quantify alignment.  Briefly, it is the orientation for which the 
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projection of all of the data in that direction, minus the projection of all of the data in the 

orthogonal direction, is at a maximum.   

It may be the case that the third method is best suited to orientation magnitude data obtained 

by the continuous method, because, as table III outlines, it is calculated by maximising a 

function that has continuous input values of α, which is a set of angles from 0° to 179°; this 

can also be -89° to 90°.  However, the third method will be tested with discrete orientation 

magnitude data; the particular combinations of methods is shown in table IV. 

The third method does not suffer from the same problem as the second method, because, 

firstly, only the cosine of the difference between the input value α and a given angle θ is 

found, and it is squared; thus, σs(α) is at its minimum when θ is perpendicular to α, and it 

increases from this minimum for both differences less than and greater than 90°.  Therefore, 

“opposing” angles such as 90° and -89° actually give the same value as “similar” angles, i.e. 

90° and 89°. 

Next, the measures that will be used to quantify the extent of alignment, or rather, the 

anisotropy in the orientation magnitude, will be defined.  There are a number of measures 

that may be useful: 

1. Take the proportion of the integral around the maximum value to the integral of the 

rest of the data 

2. Subtract the proportion of the second biggest integral to the maximum integral from 

one 

3. Subtract the proportion of the mean value to the maximum integral from one 

4. Measure the kurtosis, or “peakedness” of the data 

5. Find magnitude of resultant vector of data 

6. Calculate an “order” parameter 

The measures, and how they are calculated, are also summarised in table III.  In some cases, 

as with the principal orientation prediction measures, it is clear that a particular measure is 

better suited to the discrete or continuous orientation magnitude approaches.  For example, 

measures 1-3, that take the ratios of the integrals around the maximum value to the integrals 

of rest of the data (measure 1) and the second-highest value (measure 2), and the ratio of the 

integral around the maximum value to the mean value (measure 3), will be better suited to 

data obtained by the discrete method, since the smoothness of the continuous data, where 

many points make up a maximum, will likely make these measures obsolete.  Again, the 

combinations of methods can be found in table IV. 

Kurtosis is a standard descriptor of distributions; it is designed to indicate the extent to which 

data are peaked.  There are variations on how kurtosis is calculated; the method used here is 

the built-in Matlab command, and with this method, distributions that are more likely to 

contain outliers, or rather, distributions where more of the area under the curve is 

concentrated in a peaked area, have a higher kurtosis.  The normal distribution, according to 

the formula in table, has a kurtosis of 3; thus, values above 3 indicate that the data are more 

peaked than the normal distribution, and values below, less peaked data. 
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The fifth method suffers from the same transition problem as the direction of the resultant 

vector (method 2 for principal orientation prediction) suffers from.  Here, a peak straddling 

the orientations of -89° to 90° will produce a small resultant vector where it should be large, 

again because the vectors oppose one another.  Thus, the magnitude of the resultant vector is 

prone to giving spurious results, depending on where the principal orientation lies, and so will 

not be ideal for this analysis. 

The sixth method is related to method 3 for principal orientation prediction.  Again, this is 

based on work in Baulin et al. (2007) and Allard et al. (2010), and it quantifies the relative 

difference between the projections of the data in the principal orientation and the orthogonal 

direction.  It takes values between 0 and 1, with 1 being perfect alignment, and 0, complete 

disorder. 

To reiterate, the aim of using many methods with the synthetic is to obtain some idea as to 

which set of methods works best, and we can be confident that we can identify which is best 

as we know the ground truth; once we have determined which set of methods works best, we 

can then use just that set on real images.  It has been clear that some of the methods proposed 

will not be suitable, thus, only some will be tested; these are shaded in grey in table III. 
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Table III.  Summary of measures used to predict the principal orientation and to quantify 

the anisotropy of orientation magnitude data.  For orientation prediction, measures 1-3 

indicate the orientation at which the maximum value occurs, the mean orientation, and the 

“dominant” orientation, respectively.  For anisotropy, measures 1-3 indicate the ratio of the 

maximum integral to the rest of the data integrated, the ratio of the second-largest integral to the 

maximum integral taken from one, and the ratio of the mean value to the maximum integral taken 

from one, respectively.  Measure 4 is the kurtosis, or “peakedness” of the data, while measure 5 

is the resultant vector of the data, and measure 6 is an order parameter indicating the extent of 

alignment in the data. 

Measure Formula  Notes 

Principal orientation prediction  

1 𝜃𝑚𝑎𝑥 = max (𝑆(𝜃))   

2 𝜃̅ = {
tan−1(𝑌̅ 𝑋̅⁄ )

tan−1(𝑌̅ 𝑋̅⁄ ) + 𝜋

  𝑖𝑓 𝑋̅ ≥ 0

  𝑖𝑓 𝑋̅ < 0
  

𝑋̅ =
1

𝑛
∑ cos(𝜃𝑗)𝑛

𝑗=1   

𝑌̅ =
1

𝑛
∑ sin (𝜃𝑗)𝑛

𝑗=1   

3 𝛺 = max (𝜎𝑠(𝛼)) 
𝜎𝑠(𝛼) =

1

𝑛
∑ 𝑆(𝜃𝑗)cos2(𝛼 − 𝜃𝑗)𝑛

𝑗=1   

𝛼 = {0, … ,179}  

Orientation magnitude anisotropy  

1 𝑚1 =
∑ 𝑆(𝜃)𝑠 ∈ 𝐴

∑ 𝑆(𝜃)𝑠 ∈ 𝐵
   

2 𝑚2 = 1 − (
∑ 𝑆(𝜃)𝑠 ∈ 𝐶

∑ 𝑆(𝜃)𝑠 ∈ 𝐴
)   

3 𝑚3 = 1 − (
𝑠̅

∑ 𝑆(𝜃)𝑠 ∈ 𝐴
)   

4 𝑘 =
𝐸(𝑠− 𝜇)4

𝜎4
   

5 𝑅̅ = (𝑋̅2 + 𝑌̅2)
1

2⁄  

𝑋̅ =
1

𝑛
∑ cos(𝜃𝑗)𝑛

𝑗=1   

𝑌̅ =
1

𝑛
∑ sin(𝜃𝑗)𝑛

𝑗=1   

6 𝜌 =  ∑ 𝑆(𝜃𝑗)
(cos2(𝜃𝑗−𝛺)−sin2(𝜃𝑗−𝛺))

∑ 𝑆(𝜃𝑗)𝑛
𝑗=1

𝑛
𝑗=1    
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Table IV.  Summary of combinations of methods and measures in synthetic image 

analysis.  Both discrete and continuous methods of obtaining the orientation magnitude are 

combined with both recalling and normalisation, while particular sets of measures for principal 

orientation prediction and orientation magnitude anisotropy are used. 

Orientation 
magnitude Pre-processing 

Principal orientation 
prediction 

Orientation 
magnitude 
anisotropy 

Discrete 
Rescaling 

3 1-4,6 
Normalisation 

Continuous 
Rescaling 

3 4,6 
Normalisation 

 

Later, when these measures are taken of real images of the microtubule cytoskeleton, it will 

be a simpler task to compare data sets, which would, in this case, be different cells, images, 

or parts of an image.  In this case, the analysis will be based on relative data.  However, it 

might also be useful to have some kind of absolute measure of alignment.  Applying the 

measures in table III to the synthetic images will enable this; the values obtained from real 

image can be compared to those obtained from synthetic images for which we know the true 

alignment parameters, as summarised in figure 5.   

Now that the combinations of methods to obtain the orientation magnitude, and means of 

estimating the principal orientation and quantifying the extent of alignment have been 

decided, they can be put to the test.  Firstly, the accuracy of each combination of orientation 

magnitude data and pre-processing was assessed using the mean squared error of the 

predictions of principal orientation in the synthetic images.  Remember, the orientations in 

the synthetic images are 0°, -30°, -60°, and -90°.  Thus, the principal orientation in the 

magnitude data should be perpendicular to these, at 90°, 60°, 30°, and 0°.  Table V shows the 

mean squared error for each combination and figure 11 has plots of the real orientation and 

the prediction of each combination for each synthetic standard deviation.  Table V and figure 

11 show that the continuous orientation magnitude, whether combined with rescaling or 

normalisation, has greater accuracy in principal orientation prediction than the discrete 

method. 

Table V.  Mean squared error of principal orientation prediction.  For each orientation 

magnitude and pre-processing method, i.e., discrete (D), continuous (C), and rescaling (R), and 

normalisation (N), the mean squared error (MSE) in principal orientation prediction is shown; n = 

400 for each combination. 

 Method 

 D/R D/N C/R C/N 

MSE 2.25 2.25 0.35 0.35 
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Figure 11.  Principal orientation prediction for method combinations.  For the discrete (d) 

and continuous (c) methods, combined with rescaling (r) and normalisation (n), the predicted 

principal orientation is plotted for each standard deviation and orientation (A), and enlarged for 

each orientation (B-E) with the real orientation (dashed line) also plotted; n = 80 for each point. 
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Next, we can consider how the alignment measures vary with the method combinations.  For 

the order measure ρ, rescaling for pre-processing with both discrete and continuous produces 

greater values than the normalised counterparts (fig. 12A; table VI).  However, all curves are 

similar in their trajectories, all indicating decreasing alignment with increasing synthetic 

standard deviation.   

Table VI.  Mean order, ρ, for synthetic images with different standard deviations.  For each 

combination of treatment, i.e., discrete (D), continuous (C) and rescaling (R) and normalisation 

(N), the mean value, ± SD, for each standard deviation is shown; n = 80 for each treatment. 

 Standard deviation 
Method 0 2 5 10 20 

D/R 0.95 ± 0.02 0.94 ± 0.02 0.91 ± 0.04 0.88 ± 0.03 0.75 ± 0.07 
D/N 0.91 ± 0.04 0.90 ± 0.04 0.86 ± 0.05 0.82 ± 0.04 0.68 ± 0.07 
C/R 0.93 ± 0.01 0.92 ± 0.01 0.90 ± 0.01 0.86 ± 0.02 0.74 ± 0.06 
C/N 0.89 ± 0.02 0.88 ± 0.02 0.85 ± 0.02 0.80 ± 0.02 0.67 ± 0.06 

 

Kurtosis, which actually gave identical values for rescaling and normalisation in each type of 

orientation magnitude data, is heavily affected by changes in method combinations.  Here, the 

discrete orientation magnitude produces a plot similar to that of ρ, with decreasing kurtosis as 

synthetic standard deviation increases (fig. 12B; table VII).  The continuous orientation 

magnitude is very different to this, actually increasing slightly from standard deviation of 

zero to two, and thereafter decreasing, albeit at a slow rate (table VII).  The cause of this 

difference is most likely to be the fact that the discrete orientation magnitude is generally 

more peaked (fig. 7), and the continuous data gives smoother peaks, and thus could result in a 

lower kurtosis.   

Table VII.  Mean kurtosis for synthetic images with different standard deviations.  The 

values for both rescaled and normalised data are the same for either discrete (D) or continuous 

(C) orientation magnitude, so only one set of values for each is shown.  Values are ± SD, and n = 

80 for each treatment. 

 Standard deviation 
Method 0 2 5 10 20 

D 13.65 ± 3.58 12.51 ± 3.40 9.48 ± 2.05 6.18 ± 2.16 3.85 ± 1.40 
C 4.26 ± 0.06 4.27 ± 0.04 4.20 ± 0.06 3.57 ± 0.29 1.40 ± 0.45 

 

Measures 1-3, which were only used with discrete orientation magnitude data, gave varying 

responses to increasing synthetic standard deviation (fig. 12 C-E).  First, measure 1, the ratio 

of the maximum integral to that of the rest of the data, follows a similar trajectory to ρ, 

decreasing with increasing standard deviation (fig. 12C).  Here, rescaling and normalisation 

give similar results, with rescaling actually producing greater values (table VIII).  Measure 2, 

the ratio of the second biggest integral to the maximum, taken from 1, is highly variable for 

each synthetic standard deviation, as indicated by the error bars on the plot (fig. 12D).  

Moreover, it does not behave as might be expected as synthetic standard deviation increases; 

first, it increases between standard deviations 0 and 5, and then decreases between 5 and 20 

(table VIII).  As the ratio of the second biggest integral to the maximum, taken from one, we 
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might expect this measure to high (i.e., close to one) with low synthetic standard deviation, 

and thereafter, decrease.  However, this is not the case, and its variability and trajectory most 

likely render it and unsuitable measure of alignment.  Both rescaling and normalisation 

produce similar results here.  Measure 3, the ratio of the maximum integral to the mean value, 

taken from one, behaves in a similar manner to measure 1, but is apparently less sensitive at 

the lower synthetic standard deviations (fig. 12E, table VIII).  Again, rescaling and 

normalisation produce similar results. 

 

Figure 12.  Mean alignment measures for method combinations.  For discrete (d) and 

continuous (c) orientation magnitude data with rescaling (r) and normalisation (n) for pre-

processing, the average values (mean ± SD, n = 80) for each synthetic standard deviation are 

shown for ρ (a), kurtosis (B) and measures 1-3 (C-E).  For kurtosis, the values for both rescaling 

and normalisation were the same in each orientation magnitude data set, so only two curves are 

shown (B).  The measures 1-3 were carried out only on discrete data, so only two curves, for 

rescaling and normalisation, are shown there (C-E).  Refer to table III to recap each measure. 
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Table VIII.  Mean values for measures 1-3 for synthetic images with different standard 

deviations.  These measures were only conducted with the discrete orientation magnitude 

method, but both pre-processing methods of rescaling (R) and normalisation (N) were used.  

Values are ± SD, and n = 80 for each treatment. 

Measure/Method Standard deviation 
Measure 1 0 2 5 10 20 

R 0.83 ± 0.07 0.79 ± 0.07 0.66 ± 0.10 0.42 ± 0.09 0.24 ± 0.05 
N 0.78 ± 0.09 0.74 ± 0.09 0.62 ± 0.10 0.39 ± 0.08 0.22 ± 0.05 

Measure 2      
R 0.24 ± 0.17 0.26 ± 0.16 0.29 ± 0.12 0.17 ± 0.09 0.12 ± 0.09 
N 0.24 ± 0.17 0.26 ± 0.15 0.29 ± 0.12 0.17 ± 0.09 0.11 ± 0.09 

Measure 3      
R 0.89 ± 0.01 0.89 ± 0.01 0.87 ± 0.01 0.83 ± 0.03 0.73 ± 0.04 
N 0.89 ± 0.01 0.88 ± 0.01 0.87 ± 0.01 0.82 ± 0.03 0.71 ± 0.05 

 

The plots in figure 12 and data in tables VI-VIII show how each measure tested behaves, and 

whether its behaviour is changed when the type of orientation magnitude data or pre-

processing is changed.  They also give an indication as to which combinations are likely to 

make useful measures later on in the analysis of real cells.  For example, kurtosis with the 

continuous method looks unsuitable, as does measure 2, while measures 1 and 3, and ρ, look 

promising, as does kurtosis combined with the discrete orientation magnitude.  However, to 

obtain a quantitative understanding of how these measures perform, we need a statistical 

measure of how well they perform in terms of distinguishing different synthetic standard 

deviations.  Thus, for each set of method and measures, we need to assess the extent to which 

the data for each standard deviation differ from one another. 

The results of this analysis are presented in tables IX-XI.  For each combination of methods 

and measures, the analysis runs thus: 

1. Establish whether the variances of the standard deviation data sets are similar with 

Levene’s test; if so, a parametric test can be employed (if the data also satisfy 

normality criteria), and if not, a non-parametric test must be used. 

2. In every case, the data were found to have unequal variances.  Thus, the non-

parametric equivalent of an analysis of variance, the Kruskal-Wallis test, is used to 

determine if there is significant difference between the standard deviation data. 

3. In every case, there was a significant difference between the standard deviation data.  

Therefore, the non-parametric equivalent of a student’s t-test, the Wilcoxon rank sum 

test, is used to compare adjacent standard deviation data (i.e., 0 is compared with 2; 2 

with 5; 5 with 10; 10 with 20), giving four comparisons.   

4. Because multi-comparison procedures like this are prone to statistical error (type 1 

error), an adjustment is made to the significance level for which the p-value is judged 

to be significant.  Here, the Bonferroni adjustment is used, which determines the new 

significance level by dividing the previous level by the number of comparisons; thus, 

here, it is 0.01/4 = 0.0025. 
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Table IX.  Statistics for synthetic alignment quantified by order measure ρ.  In each 

combination of methods, i.e., discrete (D), continuous (C) and rescaling (R) and normalisation 

(N), the data for each synthetic standard deviation were tested for homoscedasticity with 

Levene’s test.  A significant p-value () indicates heteroscedasticity.  A Kruskall-Wallis test was 

then conducted to test for significant () differences between all standard deviation data.  

Individual standard deviation sets (SD#) were then compared with one another using a Wilcoxon 

rank sum test, with significance (no = x; yes = ) being tested against a p-value defined by the 

Bonferroni correction. 

 Method 

Measure D/R D/N C/R C/N 

Levene p 1.12 x10-8 5.55 x10-7 4.50 x10-15 3.35 x10-17 

p < 0.01    

Kruskal-Wallis p 2.86 x10-60 1.26 x10-58 6.31 x10-78 8.79 x10-71 

p < 0.01    

Wilcoxon rank 
sum 

SD# 

p < Bonferroni 

    

0 vs 2 0.01 0.01 1.39 x10-14 2.52 x10-5 

 x x   

2 vs 5 7.04 x10-7 2.82 x10-6 5.02 x10-23 1.39 x10-10 

    

5 vs 10 2.87 x10-11 1.52 x10-10 4.03 x10-27 7.85 x10-24 

    

10 vs 20 5.64 x10-25 1.03 x10-24 1.84 x10-27 1.27 x10-27 

    

 

For ρ, the only non-significant results were for the comparison of synthetic standard deviation 

0 and 2 for both rescaling and normalisation with discrete data (table IX).  Thus, ρ performs 

better when used with continuous data; there is not much to choose between rescaling and 

normalisation here, although rescaling does produce smaller p-values.   

In all comparisons of synthetic standard deviations 0 and 2, kurtosis did not show a 

significant difference (table X).  Therefore, the increase in kurtosis with the continuous data 

between standard deviations 0 and 2 is not a significant increase, and the large decrease for 

kurtosis with the discrete data is not also not significant; this is supported by the fact that 

these mean values have large standard deviations (fig. 12B, table VII).  Thereafter, all 

standard deviations with both types of data are statistically distinguishable.  In fact, although 

the differences between synthetic standard deviations for kurtosis with continuous data 

appeared to be indistinguishable in the plots (fig. 12B), these actually have smaller p-values 

than kurtosis based on the discrete data (table X). 
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Table X.  Statistics for synthetic alignment quantified by Kurtosis.  In each combination of 

methods, i.e., discrete (D), continuous (C) and rescaling (R) and normalisation (N), the data for 

each synthetic standard deviation were tested for homoscedasticity with Levene’s test.  A 

significant p-value () indicates heteroscedasticity.  A Kruskall-Wallis test was then conducted to 

test for significant () differences between all standard deviation data.  Individual standard 

deviation sets (SD#) were then compared with one another using a Wilcoxon rank sum test, with 

significance (no = x; yes = ) being tested against a p-value defined by the Bonferroni correction. 

 Method 

Measure D/R D/N C/R C/N 

Levene p 7.11E-19 7.11E-19 1.96E-23 1.96E-23 

p < 0.01    

Kruskal-Wallis p 6.25E-61 6.25E-61 3.85E-68 3.85E-68 

p < 0.01    

Wilcoxon rank 
sum 

SD# 

p < Bonferroni 

    

0 vs 2 8.33E-02 8.33E-02 2.10E-02 2.10E-02 

 x x x x 

2 vs 5 4.79E-09 4.79E-09 2.03E-10 2.03E-10 

    

5 vs 10 1.55E-17 1.55E-17 2.39E-27 2.39E-27 

    

10 vs 20 2.10E-13 2.10E-13 6.54E-26 6.54E-26 

    

 

The analysis of measures 1-3 supports the previous conclusion that measure 2 is not ideally 

suited to quantifying alignment, since the first two comparisons, for synthetic standard 

deviations 0 and 2, and 2 and 5, were not significant (table XI).  The low sensitivity of 

measure 3 at lower standard deviations is supported by the non-significant result between 0 

and 2, but significant differences elsewhere.  Measure 1 also has a non-significant difference 

between synthetic standard deviations of 0 and 2, but significant differences between all other 

groups.  For every measure, these results are the same for rescaled and normalised data. 
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Table XI.  Statistics for synthetic alignment quantified by measures 1-3.  For only discrete 

orientation magnitude data, rescaled (R) and normalised (N) data for each synthetic standard 

deviation were tested for homoscedasticity with Levene’s test.  A significant p-value () indicates 

heteroscedasticity.  A Kruskall-Wallis test was then conducted to test for significant () 

differences between all standard deviation data.  Individual standard deviation sets (SD#) were 

then compared with one another using a Wilcoxon rank sum test, with significance (no = x; yes = 

) being tested against a p-value defined by the Bonferroni correction. 

 Method 

Measure 1 R N 

Levene p 9.44E-07 2.06E-07 

p < 0.01  

Kruskal-Wallis p 2.42E-71 3.67E-70 

p < 0.01  

Wilcoxon rank sum 

SD# 

p < Bonferroni 

  

0 vs 2 4.69E-03 6.98E-03 

 x x 

2 vs 5 4.45E-14 1.72E-12 

  

5 vs 10 2.16E-24 8.71E-24 

  

10 vs 20 1.37E-24 2.16E-24 

  

Measure 2   

Levene p 2.55E-15 9.37E-16 

p < 0.01  

Kruskal-Wallis p 1.30E-16 5.42E-17 

p < 0.01  

Wilcoxon rank sum 

SD# 

p < Bonferroni 

  

0 vs 2 3.20E-01 3.54E-01 

 x x 

2 vs 5 3.89E-01 4.08E-01 

 x x 

5 vs 10 1.52E-10 1.39E-10 

  

10 vs 20 2.92E-04 1.83E-04 

  
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Table XI, contd. 

Measure 3   

Levene p 5.34E-27 1.55E-26 

p < 0.01  

Kruskal-Wallis p 2.42E-71 3.67E-70 

p < 0.01  

Wilcoxon rank sum 

SD# 

p < Bonferroni 

  

0 vs 2 0.005 0.007 

 x x 

2 vs 5 4.45E-14 1.72E-12 

  

5 vs 10 2.16E-24 8.71E-24 

  

10 vs 20 1.37E-24 2.16E-24 

  

 

Clearly, the lower synthetic standard deviations, 0 and 2, are the most difficult to distinguish 

with the measures proposed here; indeed, they are more similar than any other of the standard 

deviations.  The only measure that distinguishes between these data is ρ, with continuous data.  

Furthermore, ρ is a good candidate for the alignment measure since it can also distinguish 

every other synthetic standard deviation.  Thus, it performs better than any other measure 

tested.  In addition to this, its best performance is with continuous data, which also gives the 

best orientation prediction accuracy (table V), and the formula for ρ is also calculated using 

Ω, the means of estimating principal orientation.  Thus, continuous data and ρ are methods of 

choice, but we must distinguish between rescaling and normalisation for the pre-processing 

step.  Since there is very little to choose between them in the analysis here, we can return to 

the previous analysis of these methods, where it was found that normalisation reproduced 

characteristics of the original data better than rescaling; thus, normalisation will be used for 

pre-processing form hereon. 

g. Window size in the continuous orientation magnitude 

The continuous method of obtaining the orientation magnitude was found to be preferable in 

the last sub-section, and, although the order measure ρ was determined to be preferable, the 

other available measure for continuous orientation magnitude data, kurtosis, will also be used 

here, to check whether it improves in its utility in this analysis.  One facet of the continuous 

method that was briefly mentioned above but discussed no further was the size of the 

“window” used.  The easiest measure for window size is just the size of the angle that it 

covers; for example, in the previous sub-section, the window size was 30°, meaning that the 

area that contributed to one point in the orientation magnitude data was the sum of an area of 

the FT that spanned 30°.  As yet, we have no idea as to how, if at all, the window size affects 

the orientation magnitude data and subsequent analyses; thus, the focus of this sub-section is 

to investigate window size. 
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The window sizes analysed here are: 5°, 10°, 20°, 30° and 40°.  Data were generated as 

before, using the synthetic images and normalisation as the pre-processing method.  Table 

XII shows how changing window size affects the accuracy of orientation prediction, 

quantified by the mean squared error.  The smallest window size of 5° degrees achieves total 

accuracy for the synthetic images with zero standard deviation, yet, this window size and that 

of 10° are less accurate than the larger windows when synthetic images with larger standard 

deviations are tested.  Overall, taking the mean squared error of all predictions over all 

standard deviations indicates that the window size of 30° is the best all-rounder.  Thus, the 

sacrifice of increased accuracy at smaller synthetic standard deviations for better predictions 

at greater standard deviations produces a better overall score.  Moreover, the likelihood that, 

in real images, we are unlikely to encounter perfect alignment, as in the zero standard 

deviation case, supports the choice window sizes 20° - 40°, which perform better at 

intermediate and large synthetic standard deviations. 

 

Table XII.  Mean squared error of principal orientation prediction for each synthetic image 

standard deviation and overall, for each window size.  The mean squared error of orientation 

prediction is given for each combination of synthetic image standard deviation (SD) and window 

size, as well as the overall value for each window size.  For each mean value, n = 80. 

 Window size (°) 
SD 5 10 20 30 40 

0 0.0000 0.0125 0.0125 0.0125 0.0125 

2 0.2500 0.3125 0.3125 0.3000 0.3125 

5 1.5750 1.4875 1.5000 1.5000 1.5125 

10 4.2625 4.1375 4.1125 4.2250 4.1375 

20 19.0125 19.1000 18.6875 18.5500 18.6250 

Overall 5.0200 5.0100 4.9250 4.9175 4.9200 

 

How does changing window size affect alignment scores?  Figure 13 shows the orientation 

magnitude for these different window sizes, plotted in groups of synthetic image standard 

deviation, for the synthetic images with a principal orientation of -60°.  Remember, according 

to the rule that the maxima in the FT are perpendicular to the direction of best alignment in 

the image, the peaks in the orientation magnitude are at approximately 30° in figure 13.  For 

each synthetic image standard deviation group, there is an example orientation magnitude 

plot, taken from one instance of the 80 repeats for each, and the mean orientation magnitude.   

The most striking feature of the plots at lower standard deviations is how much more peaked 

the data are for smaller window sizes, for both the single examples and averages.  Thus, 

decreasing window size increases the size of peaks in the orientation magnitude at lower 

standard deviations.  This is to be expected, since where there is a tightly localised maximum 

in the FT, the orientation magnitude will elicit a greater response at smaller window values, 

which do not decrease the intensity of the maximum through averaging with adjacent, lower 

values.   
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The increased peak size is consistent with the findings in table XII that the smallest window 

size of 5° has excellent accuracy at lower standard deviations, since this is probably a result 

of unambiguous localisation of the peak, due to its size.  However, again in agreement with 

the data in table XII, the peaks for smaller window sizes are quickly diminished as the 

standard deviation increases.  In both the single and average cases, the smallest window size 

is still responsible for the greatest orientation magnitude at the larger standard deviations, but 

those of larger window sizes approach much closer here, especially in the average cases.   

Furthermore, as we might expect, where smaller window sizes produced larger orientation 

magnitudes from less averaging in the lower standard deviations, at the larger standard 

deviations, the lower amount of averaging makes the orientation magnitude plot more 

“noisy”, since it will now be more sensitive to variations in the FT.  In all cases, the width of 

the peaks in orientation magnitude increase with increasing standard deviation. 

To test whether these differences in orientation magnitude across the window sizes has an 

effect on the quantification of alignment, the mean values of order, ρ, and kurtosis were 

found for each synthetic standard deviation and window size combination.  I re-examine 

kurtosis here, even though it performed poorly with continuous data in the previous analysis, 

simply to determine if changing window size affects the performance of this measure.  The 

data are plotted in figure 14. 

For the order measure ρ, the values behave in a similar manner with increasing standard 

deviation for each window size; the effect of increasing window size is to shift the data so 

that each value for ρ is greater (fig. 14, table XIII).  This agrees with the orientation 

magnitude plots (fig. 13), where smaller window size produced larger peaks.  Thus, for ρ, 

although changing window size has a quantitative effect on absolute scores of alignment, it 

does not change the relationship between synthetic image standard deviation and alignment 

quantification.   

The same is not true of kurtosis, where decreasing window size not only quantitatively affects 

the result, but qualitatively changes the relationship between standard deviation and 

alignment quantification (fig. 14, table XIII).  Again, the increase in kurtosis with smaller 

window size will be a result of the more peaked orientation magnitude data, though the origin 

of the qualitative relationship change is not immediately clear; it may be related to the 

problem of apparently reduced anisotropy when the peak spans the -89°-90° transition, 

briefly discussed earlier.  This is an issue from which some of the other alignment measures, 

such as the resultant vector, suffer, and it results and decreased alignment score, because the 

peak is effectively split within the data.  The reason it could contribute less when window 

size is small is because these data have narrower peaks; narrower peaks are less likely to span 

the -89°-90° transition, and so the data will not present the same problem.  The fact that the 

kurtosis scores are so dramatically enhanced for lower standard deviations supports this 

notion, since, in these cases, peaks are even narrower than their higher standard deviation 

counterparts.  Moreover, the kurtosis value for window size 5° and standard deviation of 20 

are of a similar magnitude to those of larger window size. 
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Figure 13.  Orientation magnitude depends on synthetic standard deviation and window 

size (previous page).  Plots of single data sets (“example”; left panels) and averages (“average”; 

right panels, n = 80) for synthetic images with varying standard deviation (SD) and principal 

orientation -60°, for each window size. 
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Figure 14.  Mean order, ρ, and kurtosis for each synthetic image standard deviation and 

window size.  Left and right panels show average values of ρ and kurtosis, respectively, as 

synthetic standard deviation increases, colour coded by window size. 

Table XIII.  Mean order, ρ, and kurtosis for synthetic images with different standard 

deviations for each window size.  The mean order, ρ, and kurtosis for orientation magnitude is 

given for each combination of synthetic image standard deviation (SD) and window size.  Values 

are ± standard deviation, and n = 80 for each. 

 Window size (°) 
 5 10 20 30 40 

ρ      

SD      
0 0.93 ± 0.03 0.93 ± 0.03 0.91 ± 0.03 0.89 ± 0.02 0.86 ± 0.02 
2 0.92 ± 0.02 0.91 ± 0.02 0.90 ± 0.02 0.88 ± 0.02 0.85 ± 0.02 
5 0.89 ± 0.02 0.89 ± 0.02 0.87 ± 0.02 0.85 ± 0.02 0.82 ± 0.02 
10 0.84 ± 0.02 0.84 ± 0.02 0.82 ± 0.02 0.80 ± 0.02 0.78 ± 0.02 
20 0.70 ± 0.06 0.70 ± 0.06 0.69 ± 0.06 0.67 ± 0.06 0.65 ± 0.06 

      
Kurtosis      

SD      
0 30.72 ± 0.97 15.91 ± 0.67 7.19 ± 0.15 4.26 ± 0.06 2.84 ± 0.03 
2 22.91 ± 2.15 14.60 ± 0.59 7.10 ± 0.11 4.27 ± 0.04 2.86 ± 0.02 
5 12.68 ± 2.77 10.22 ± 1.46 6.52 ± 0.29 4.20 ± 0.06 2.88 ± 0.02 
10 7.35 ± 2.53 5.97 ± 1.59 4.59 ± 0.72 3.57 ± 0.29 2.74 ± 0.10 
20 5.21 ± 2.33 3.83 ± 1.31 2.75 ± 0.67 2.34 ± 0.45 2.08 ± 0.29 

 

 

Given the principal orientation prediction and alignment data, how do we evaluate which 

window size is best?  Clearly, some window sizes are better at predicting principal 

orientations than others, depending on the standard deviation in the synthetic image (table 

XII).  The alignment measures show that some window sizes may not be suitable if we wish 

to persevere with both alignment measures, i.e., a window size of 40° may yield kurtosis 

quite unhelpful to discriminate grades of alignment (fig. 14).  On the other hand, the kurtosis 

values appear to be remarkably reproducible, with low standard deviation (table XIII). 
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To better grasp the utility of each window size and the complementary alignment measures, 

we can turn to an analysis similar to that of the previous sub-section.  Here, for each window 

size, if all of the data are found to be significantly different in some way with an analysis of 

variance, then the data for standard deviation are compared with the data for adjacent 

standard deviations, testing for significant difference between them with a t-test or non-

parametric equivalent.  The aim is to establish which combination of window size and 

alignment measure is best, taking “best” to be that which distinguishes adjacent standard 

deviation data with statistical significance. 

The results of this analysis are shown in table XIV.  For each measure and for every window 

size, it was found that the data for each standard deviation did not have equal variance 

(Levene’s test, p < 0.01), and that there were significant differences between them (Kruskal-

Wallis, p < 0.01).  Hence, adjacent data sets were tested against one another, with all but one 

comparison being significantly different at the level of Bonferroni adjustment for multi-

comparison statistics (Wilcoxon rank sum test, p < 0.01/4).  The two sets of data that were 

not significantly different were those previously determined to not be different, for kurtosis 

with window size 30°, standard deviations 0 and 2. 

The significant differences between data sets for kutosis at all window sizes apart from that 

mentioned is quite surprising, given that, in figure 14 and table XIII, they appear, in many 

cases, to be quite similar.  However, as already mentioned, those values have very small 

standard deviations, and that is consistent with the statistical findings here. 

Continuing with kurtosis, although there is significant difference between standard deviation 

data for window sizes of 30° and 40°, it is unlikely that this window size and alignment 

measure combination will be useful in the analysis of real images, since the kurtosis actually 

increases before decreasing, as synthetic image standard deviation increases.  Two things are 

of note here: first, that, although there are significant differences at the synthetic standard 

deviations tested, in real images, levels of disorder that are intermediates of the synthetic 

standard deviation may prove indistinguishable, and second, in order to limit the number of 

comparisons in the multi-comparison statistical tests, only adjacent data were tested against 

one another; we do not know if distant groups are statistically different from one another or 

not. 

For ρ, it would be difficult to choose between window sizes based on the analysis in table 

XIV.  Indeed, the p-values are similar for each adjacent data set across the window sizes 

tested.  This is consistent with the plot of ρ in figure 14, where the data followed similar 

trajectories, the only difference being the position on the y-axis. 

To conclude this section and fix the last variable in the pipeline of analysis, the average 

accuracy of orientation prediction afforded by window sizes of 20°-40° certainly makes those 

sizes more attractive.  Moreover, although smaller window sizes allow excellent orientation 

prediction at smaller synthetic standard deviation, such high degrees of order are unlikely to 

be encountered in real images.  However, choosing window sizes of this size will prohibit the 

use of kurtosis as an alignment measure, though ρ performs just as well as kurtosis, so the 
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need for two measures is negated somewhat.  In terms of ρ, since there is nothing to choose 

between window sizes for distinction of synthetic standard deviations (table XIV), then the 

choice is dictated by orientation prediction (table XII), for which window size 30° performs 

best, particularly at the greatest standard deviation, which may well be representative of a 

similar level of disorder found in real cells.  Thus, for the preliminary analysis of real cells in 

the next section, orientation magnitude will be obtained by the continuous method with a 

window size of 30°, normalised, and subsequently analysed for anisotropy using only the 

order measure ρ. 
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Table XIV.  Statistics for synthetic alignment for window sizes quantified by ρ and kurtosis.  

For each window size, the data for each synthetic standard deviation were tested for 

homoscedasticity with Levene’s test.  A significant p-value () indicates heteroscedasticity.  A 

Kruskall-Wallis test was then conducted to test for significant () differences between all 

standard deviation data.  Individual standard deviation sets (SD#) were then compared with one 

another using a Wilcoxon rank sum test, with significance (no = x; yes = ) being tested against 

a p-value defined by the Bonferroni correction. 

 Window size (°) 

 5 10 20 30 40 

ρ      

Levene p 9.50E-17 8.29E-17 7.44E-17 3.35E-17 1.29E-17 

p < 0.01     

Kruskal-Wallis p 4.43E-70 4.71E-70 3.15E-70 8.79E-71 1.97E-71 

p < 0.01     

Wilcoxon rank 

sum 

SD# 

p < Bonferroni 

     

0 vs 2 9.37E-06 9.82E-06 1.20E-05 2.52E-05 9.66E-05 

     

2 vs 5 3.90E-09 5.76E-09 2.18E-09 1.39E-10 2.94E-12 

     

5 vs 10 6.82E-23 7.81E-23 3.82E-23 7.85E-24 1.23E-24 

     

10 vs 20 1.32E-27 1.32E-27 1.32E-27 1.27E-27 1.27E-27 

     

Kurtosis      

Levene p 9.91E-04 1.75E-09 2.54E-26 1.96E-23 3.53E-33 

p < 0.01     

Kruskal-Wallis p 9.83E-77 4.27E-78 1.17E-76 3.85E-68 5.43E-64 

p < 0.01     

Wilcoxon rank 

sum 

SD# 

p < Bonferroni 

     

0 vs 2 9.75E-28 4.34E-22 1.85E-04 2.10E-02 1.81E-08 

    x 

2 vs 5 1.42E-27 1.32E-27 1.13E-25 2.03E-10 2.76E-10 

     

5 vs 10 1.26E-20 2.48E-24 2.99E-27 2.39E-27 4.72E-25 

     

10 vs 20 1.36E-10 1.27E-15 1.81E-24 6.54E-26 3.28E-26 

     
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II. Real images: introducing “MtFT” 

a. The data 

The extensive analysis of the various components of the FT-based analysis to derive 

microtubule organisation can now be put together in an analysis of real microtubule images.  

This analysis pipeline, consisting of image mean-padding, taking the FT, analysing the power 

spectrum to obtain the orientation magnitude using the “continuous” method with a window 

size of 30°, and quantifying orientation and alignment using the dominant angle, Ω, and the 

order parameter, ρ, is encompassed in what will be referred to as “MtFT”, for Microtubule 

Fourier Transform.   

Here, I analysed sections taken randomly from images of the microtubule cytoskeleton in 

cells depleted of the plus-tip protein EB2, discussed in the introductory chapter, and 

compared them to control, scramble-siRNA cells (analysis of full images is discussed in 

section C).  Here, EB2 is depleted with siRNA, and the control cells are treated with scramble 

siRNA; methods are detailed in the appendix (section E).  Previously in the Mogensen lab, 

depletion of EB2 has been shown to give rise to straighter, better-aligned and perhaps more 

bundled microtubules (Goldspink et al., 2013).  In that study, microtubule alignment was 

quantified by manually counting the number of occurrences of microtubules crossing each 

other (fig. 15). 

 

Figure 15.  Previous analysis of EB2-siRNA microtubule organisation.  EB2 depleted cells 

(bottom right) were found to have significantly better-aligned microtubules than control cells (top-

right), quantified by numbers of microtubule crossover events (left).  From Goldspink et al. (2013). 

Using images that have previously been shown to differ in microtubule organisation means 

that we already have some idea that there are differences in microtubule alignment, otherwise 

it will be difficult to assert that the alignment measures are effective, and that MtFT is useful.  

Rather than try to quantify organisation in the whole of each image, for this preliminary 

analysis, I will take a section from each image.   
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b. Quantifying microtubule organisation 

Both experimental treatments were subject to the same analysis: first, the FT was taken of 

each region, and the orientation magnitude was found using the continuous approach with a 

window size of 30°, and normalisation as the choice of pre-processing.  Then, the principal 

orientation was predicted using the dominant angle and the anisotropy of the orientation 

magnitudes was quantified using the order measure, ρ.  This analysis pipeline is summarised 

in figures 16 and 17 for the control and EB2-depleted regions, respectively. 

A general inspection of the FTs and orientation magnitude plots in figures 16-17 suggests that 

there is indeed a difference between the two treatments: first, the FTs in the control regions 

tend not to have any discernable maxima in a specific direction, agreeing with the region 

images, while those for the EB2-depleted regions appear to have higher intensities in the FTs 

at particular locations that correspond to the apparent principal orientations in the images.  

Second, these observations are borne out in the orientation magnitude plots, where the 

absolute values of data tend to be lower in the control treatment than in the EB2-depleted 

treatment, and, furthermore, the shapes of the control orientation magnitude do indeed appear 

to be more isotropic than those of the EB2-depleted regions. 

On this note, the choice of normalisation for pre-processing finds support from the fact that 

some of the orientation magnitude plots for the control condition (fig. 16) resemble the “flat” 

data used earlier (fig. 8); there, it was found that rescaling did not reproduce some 

characteristics of this type of data as well as normalisation (table II). 

The values in figures 16-17, for ρ, serve to justify the initial conclusions that were made upon 

inspection of the FTs and orientation magnitudes of each treatment.  We can see that the 

values for control regions are consistently lower than those for control cells; indeed, the 

maximum value for the control regions, 0.28, is still 0.15, over half its value, lower than the 

minimum, 0.43, for the EB2-depleted regions.  The individual ρ values are collected in table 

XV, with the mean value also shown.  A one-sample Kolmogorov-Smirnov test for both the 

control and EB2-depleted conditions, against a standard normal distribution, verified that 

they satisfied normality (null hypothesis of normality, p > 0.01 for both treatments), and the 

data were found to have equal variances with both a Bartlett’s and Levene’s test (null 

hypothesis of equal variances, p >> 0.01).  The non-significant value for the Bartlett’s test 

also supports the result of the Kolmogorov-Smirnov test, since Bartlett’s test can return 

significant p-values if used with non-normal data.  Thus, as the data satisfied the normality 

and equal variance requirements of the t-test, a two-sample, two-tailed t-test was used to test 

for a difference between the conditions.  The ρ values for control and EB2-depleted regions 

were found to be significantly different (p < 0.001). 
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Figure 16.  Preliminary analysis of real cells, scramble treatment.  Regions of control, 

scramble cells (left panels), their FTs (middle left panels) and corresponding orientation 

magnitude plot (middle right panels), and order, ρ, and predicted principal orientation (θp).  
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Figure 17.  Preliminary analysis of real cells, EB2-siRNA treatment.  Regions of EB2-siRNA 

cells (left panels), their FTs (middle left panels) and corresponding orientation magnitude plot 

(middle right panels), and order, ρ, and predicted principal orientation (θp).  
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Table XV.  Microtubule alignment and orientation in real scramble and EB2-depleted cells, 

quantified by order, ρ.  The orientation magnitudes in regions 1-5 in figures () and () were 

quantified for anisotropy with ρ, and the mean value was also determined. 

 Treatment 
Region Scramble EB2-siRNA 

 Alignment 

1 0.03 0.57 
2 0.28 0.58 
3 0.19 0.43 
4 0.17 0.43 
5 0.24 0.62 

Mean 0.18 0.53 
 Orientation 
 Original Adjusted Original Adjusted 

1 52 -38 -79 11 
2 88 -2 32 -58 
3 87 -3 -15 75 
4 13 -77 -79 11 
5 -89 1 -76 14 

 

The significant difference in microtubule alignment between control and EB2-depleted 

regions supports the efficacy of the method presented in this chapter, providing strong 

evidence that it is applicable to quantification of the organisation of the microtubule 

cytoskeleton, since the cells used for this preliminary analysis were previously found to have 

differences in alignment using a different method.  To further evaluate the method, the next 

sub-section describes comparison with a previously-published method to quantify 

microtubule orientation and alignment. 

c. Comparison with an established method 

To further evaluate the efficacy of MtFT, I compare it here to the method developed by 

Boudaoud et al. (2014), who created “FibrilTool” to quantify microtubule, or any other 

fibrillar structure, orientation and alignment.  FibrilTool was used on the same images as in 

the previous sub-section (figs. 16-18) and the results are shown in table XVI, with the values 

from my method repeated for ease of comparison.  The tool required that a region-of-interest 

(ROI) is first defined, and the enclosed area is analysed.  Thus, ROIs were created that 

encompassed the majority of each image (fig. 18).   
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Figure 18.  Analysis of preliminary images with “FibrilTool”.  ROIs (yellow) were defined that 

covered most of each image (1-5) in each treatment.  FibrilTool plots a line on the image that is 

oriented in the direction of the principal orientation (blue), with length according to the degree of 

alignment in this direction.  Scramble indicates the scramble siRNA-treated cells, and FibrilTool 

is explained in the text. 

The alignment scores from FibrilTool also satisfy normality and equal-variance criteria (2-

sample F-test, p > 0.05).  While the alignment scores from each method for the scramble 

condition were not significantly different from one another (2-sample t-test, p > 0.05), they 

were in the EB2-depleted condition (2-sample t-test, p < 0.05).  However, FibrilTool 

alignment scores for the two conditions were significantly different from one another (2-

sample t-test, p < 0.05).   

The results from FibrilTool and MtFT thus agree qualitatively on the difference in alignment 

between the two conditions.  Quantitatively, this agreement is stronger for the scramble 

condition, where both methods report low alignment scores.  MtFT returns a lower average 

value for the scramble condition and higher average value for the EB2-depleted condition, 

hence MtFT finds a greater difference between the two.  In terms of orientation prediction, 

the two methods estimate similar values in situations where the alignment is stronger; in the 

EB2-depleted condition, therefore, the orientation predictions are close to one another.  

However, in the scramble condition, the two image regions that visually look most difficult to 

interpret (numbers 1 and 3) are those that yield the greatest disagreement between the two 

methods.  In the other three cases, where a predominant orientation is perhaps more easily 

identified by visual inspection, orientation predictions are not as similar as in the EB2-

depleted condition, but they are more similar than image regions 1 and 3. 
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Table XVI.  Comparison of FibrilTool and MtFT for orientation prediction and alignment.  

For each experimental condition, the alignment scores and orientation predictions from each 

method are shown.   

Region Alignment Orientation 

 FibrilTool MtFT FibrilTool MtFT 

Scramble     

1 0.17 0.03 -85.92 -38 

2 0.39 0.28 1.3 -2 

3 0.18 0.19 81.43 -3 

4 0.29 0.17 -81.17 -77 

5 0.25 0.24 25.76 1 

Mean 0.26 0.18   

EB2-siRNA  
 

 
 

1 0.38 0.57 14.52 11 

2 0.52 0.58 -57.08 -58 

3 0.37 0.43 83.51 75 

4 0.32 0.43 14.64 11 

5 0.41 0.62 17.43 14 

Mean 0.40 0.53   

 

In this sub-section, only a low number of regions of these cells have been analysed, and, 

although these were selected from similar intracellular locations and that they also returned a 

statistically significant difference, it will be important to analyse whole cells to further 

validate the method, and moreover, to look for interesting differences between the two 

treatments, and within cells.  Moreover, images of cells where further experimental 

manipulations have been made will also be subject to analysis by MtFT.  This is the focus of 

the next section. 
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C.  FULL ANALYSIS 

I. Approaches to whole-image MtFT analysis 

Here, I now look to analyse whole images of the cells subject to preliminary analysis in the 

previous section.  Previously, only selected regions were analysed for principal orientation 

and alignment, so means of dealing with a large image was not an issue.  Here, we have this 

problem: how should we deal with an entire image?  Should the FT be taken of the whole 

image, or just parts of it?  Or should a filter-based approach be implemented with an FT for 

each pixel of the image? 

Recalling the introduction to this chapter, we know that we obtain better frequency resolution 

in the FT if the image is larger (eq. 7).  However, it was also noted that we sacrifice the 

ability to understand where certain frequency components have originated if the image is big, 

so there is a trade-off between frequency resolution and diagnostic power, so to speak.  For 

the sake of estimating principal orientations and alignment, however, the frequency 

resolution is not as important to us as if we wanted to pinpoint a scale of alignment.  This is 

demonstrated by the nature of the analysis up to this point: we have not considered the power 

spectrum as a function of frequency, only orientation (eq. 8); thus, analogous to “orientation 

magnitude”, we do not obtain the “frequency magnitude”.  Therefore, our choice of how to 

implement this method with whole images should be dictated less by frequency resolution 

constraints, and more so by the need to locate the parts of the microtubule cytoskeleton that 

produce certain principal orientation and alignment values.   

There are also practical considerations.  Briefly mentioned above was a filter-like approach, 

where, for each pixel in the image, an area of given size is centred on it, and the FT is taken 

of that area.  This continues for every pixel in the image, and the output would be arrays of 

principal orientation and alignment scores the same size as the input image.  However, with 

this “filter” approach, for images with dimensions on the order of hundreds to thousands of 

pixels, it is clear that this approach might be costly in terms of computation time; for one 

image of 1,000-by-1,000 pixels, we would have 1,000,000 FTs!  Add to this the question of 

whether there would be much to gain in terms of localising information, since areas for 

adjacent pixels would have a large overlap, and it is clear that this approach has some 

disadvantages. 

Another way is to take the FT of distinct areas of the image.  In image compression, such as 

with the JPEG file format, images are split into regions, usually eight of equal size, and the 

FTs are taken of these (Gonzalez and Woods, 2006).  This “blocked” method allows 

localisation of frequency information, since we know it has originated from a specific image 

sub-section.  A similar method can be applied to the images under analysis here.  As with the 

filter method, this approach also has disadvantages, for example, certain regions of interest in 

an image may be partitioned into separate areas, thus making it difficult to localise 

characteristics to that region.  

So each potential method has good and bad points; here, I opt to use the blocked method, as, 

since this is less computationally expensive, it is a good starting point; the filter method can 
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be tested at a later date.  Furthermore, there is still some degree of sub-cellular analysis 

permitted with the blocked method, and this will be demonstrated in the results (next section). 

II. EB2-depleted cells 

For the whole-image MtFT analysis, 5 images of the control (scramble siRNA) and EB2-

depleted cells were used; in each condition, images were similar and thus chosen at random.  

Notable, EB2-depleted cells are generally larger, and this may affect the extent to which 

conclusions can be made in any analysis of differences within cells.  However, the main aim 

here is to test MtFT on two sets of cells treated differently, and the “blocked” analysis uses 

blocks smaller than a cell to limit such effects regardless.  Examples of these images are 

shown in figure 19.  Each image was subject to the blocked analysis, as described above.  

Furthermore, images of cells where the small GTPase Rac1 had been inhibited (with inhibitor 

NSC), in the backgrounds of scramble and EB2 siRNA, were analysed, and these images, of 

which there were again 5, are also shown in figure 19. 

 

Figure 19.  Examples of images used.  Control (scramble siRNA, A), EB2-depleted (B), Rac1-

inhibited (C) and EB2-depleted, Rac1-inhibited (D) cells were used.  For each experimental 

condition, 5 images were used.  Images courtesy of Debbie Goldspink, Mogensen lab; scale bar 

20 μm. 
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The blocked analysis runs thus: 

1. An area dimension “range” is decided upon.  This is simply the permissible 

dimensions, in pixels, of the blocks. 

2. To choose block dimensions from this range, the smallest value in the range that 

gives the smallest remainder when it is divided into the image dimension is 

identified as the best choice.  This is done for both x and y dimensions. 

3. The minimum size of the mean padding area to be positioned around the image is 

half of the maximum block dimension, while it is increased in the direction of the 

minimum block dimension so as to produce a square image; this gives a better MtFT 

analysis, since the orientation magnitude is programmed to extend the same distance 

in all directions (i.e., it is semi-circular), and the radius of the semi-circle it defines is 

limited by the smallest dimension of the FT; thus, with a square image, more of the 

FT is surveyed. 

4. The FT is taken of the mean-padded block, and the orientation magnitude is found, 

and the principal orientation and alignment is determined as in the preliminary 

analysis of these cells. 

For this analysis, the range was chosen to be from 80 to 120 pixels; the reason for point 

number 1 is to try not to miss edges of the image.  By specifying a range of acceptable block 

sizes, we can survey more of an image, while the FTs and resulting orientation magnitude, 

etc., should not be overtly affected by small changes in block sizes of this order.  An example 

of an image split into blocks is shown in figure 20.   

It is evident from the example in figure 20 that there are regions of the image that we may not 

want to include in the analysis.  The most obvious of these is the space where there are no 

cells.  To allow this, I created a simple interactive tool in Matlab whereby the image, with all 

blocks plotted, is displayed, and the user chooses which are to be analysed simply by clicking 

in the blocks of choice.  Figure 21 shows an example of an image with only blocks selected 

that are positioned over cells. 

To assist in visual inspection, the images can be displayed with blocks colour-coded 

according to the principal orientation estimate for that area, or for the value of ρ for that area.  

Examples of both of these are shown in figure 22.  For the orientation prediction, the angles 

have been converted to predict the actual orientation now, rather than that of the orientation 

magnitude, which is situated perpendicular to the real image.  The angles are also now on the 

interval 0° to 180° to make visual inspection simpler. 

The example orientation plot in figure 22 demonstrates that this type of display will be useful 

to analyse microtubule orientations in cells.  Further analysis could include calculation of 

dominant angles within a cell, or, orientation relative to intra- or extracellular features/cues, 

such as the centrosome or the edge of the cell. 
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Figure 20.  Example of a “blocked” image.  Here, each block, or area, is analysed, thus, first, 

the FT is taken, then the orientation magnitude found with the continuous method, then the data 

is normalised, and then the principal orientation is estimated and the alignment measured.  The 

algorithm for fitting blocks is based on a range of acceptable block dimensions, so that the size 

that leaves the least area at the bottom and right sides of the image can be chosen from the 

range. Image courtesy of Debbie Goldspink, Mogensen lab; scale bar 20 μm. 

The results of this blocked analysis are shown in table XVII.  The mean and median (due to 

non-normality, see below) alignment for each image was found, while the mean for all blocks, 

i.e., the mean for every single block measured, was also determined.  To exclude possible 

effects of the blank spaces in images, the mean alignment in only the blocks positioned over 

cells (as in fig. 21) was also found; the results of this cell block-only analysis are shown in 

figure 23. 

As table XVII shows, the results of the full analysis agree with the preliminary analysis; EB2 

depletion generally increases microtubule alignment.  Only one image (number 5) scored 

lower for alignment than images of scramble cells.  The mean of all blocks analysed is also 

greater for EB2 depleted cells.  Furthermore, although elimination of blank spaces in the 

image increases the mean alignment in both of these conditions, the increase is greater in EB2 

depleted cells.   
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Figure 21.  Block selection.  Here, only blocks that are positioned over cells have been 

selected.  Image courtesy of Debbie Goldspink, Mogensen lab; scale bar 20 μm. 

Table XVII also shows the results for the other two treatments.  Rac1 inhibition generally 

decreased microtubule alignment, as evidenced by the block and cell means, all of which are 

lower than the scramble cells.  Only two images are greater than the lowest-scoring image in 

the scramble cells.  Again, the omission of black spaces increased the alignment score in all 

treatments, as the cells value is greater than the blocks value. 

Interestingly, the treatment where both EB2 was depleted and Rac1 was inhibited scored the 

highest for alignment.  The reduction, just discussed, in alignment in the Rac1-inhibited cells 

makes this a surprising result because now, in combination with depletion of EB2, it has 

seemingly contributed to the opposite result.    
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Figure 22.  Blocks according to principal orientation prediction and alignment.  Each block 

is colour-coded according to the principal orientation prediction (A) or alignment score (B) for that 

area.  Images courtesy of Debbie Goldspink, Mogensen lab; scale bar μm. 
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Table XVII.  Mean and median alignment values, ρ, for the different experimental 

conditions.  The mean value, ± the standard deviation, for scramble, EB2-depleted, Rac1-

inhibited (NSC) and EB2-depleted and Rac1-inhibited cells are shown for each image (1-5), for 

all blocks analysed (Blocks), and for only the blocks positioned over cells (Cells).  The median 

and inter-quartile range (IQR) are also shown for blocks over cells.  n = number of blocks. 

 Scramble EB2 siRNA NSC EB2 siRNA + NSC 
Image         

1 0.3781 ± 0.16 0.4128 ± 0.14 0.3467 ± 0.13 0.4275 ± 0.15 

2 0.3534 ± 0.14 0.3945 ± 0.17 0.3265 ± 0.14 0.4235 ± 0.14 

3 0.3360 ± 0.13 0.4087 ± 0.15 0.3161 ± 0.17 0.4151 ± 0.18 

4 0.3609 ± 0.13 0.4008 ± 0.15 0.2736 ± 0.17 0.4110 ± 0.14 

5 0.3840 ± 0.15 0.3761 ± 0.14 0.3484 ± 0.15 0.4496 ± 0.16 

Blocks     

Mean 0.3625 ± 0.14 0.3993 ± 0.15 0.3232 ± 0.15 0.4260 ± 0.15 

n 910 882 826 871 

Cells     

Mean 0.3638 ± 0.14 0.4051 ± 0.15 0.3323 ± 0.15 0.4265 ± 0.15 

Median 0.3735 0.4194 0.3528 0.4374 

IQR 0.21 0.21 0.21 0.22 

n 857 793 601 777 

 

The data for each condition were found to be non-normally distributed for both the blocks 

and cells analysis (chi-square goodness-of-fit test, p < 0.01), so non-parametric tests were 

employed.  There was a significant difference between all groups (Kruskal-Wallis test, p < 

0.01), and four groups were then individually compared with each other: scramble vs all other 

groups (3 comparisons) and EB2 siRNA vs EB2 siRNA + NSC.  As before, the Bonferroni 

correction was employed to make the multi-comparisons more stringent.  The three non-

control groups differed significantly (Wilcoxon rank sum test, p < 0.01/4), while the EB2 

siRNA + NSC group was not significantly different from the EB2 siRNA group at the most 

stringent significance level (Wilcoxon rank sum test, p > 0.01/4), but was so at a reduced 

significance level (Wilcoxon rank sum test, p < 0.05/4).   

The method developed in this chapter, MtFT, has thus been able to detect, at a statistically 

significant level, differences in microtubule alignment between control and EB2-depleted 

cells, and this is in agreement with the previously published analysis of EB2 depletion and 

microtubule organisation (Goldspink et al., 2013).  In addition, the method has also revealed 

an effect of Rac1 inhibition on microtubule organisation, where microtubules are apparently 

less well-aligned than control cells, and fascinatingly, a reversal of the effect of Rac1 

inhibition on microtubule organisation when combined with EB2 depletion.  In the latter 

scenario, microtubule alignment was also increased to a greater extent than in the EB2 

depleted only condition.   
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Figure 23.  Mean (A) and median (B) microtubule alignment for blocks over cells.  Values 

are ± standard deviation (A), and boxes extend to 25th and 75th percentiles (q1 and q3, 

respectively), whiskers to q1 – 1.5(q3 – q1) q3 + 1.5(q3 – q1). 
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III. Formin inhibition in EB2-depleted cells 

Thus far, MtFT has been used to verify the effect of EB2 depletion on microtubule alignment, 

previously quantified by counting the number of microtubule crossovers by Goldspink et al. 

(2013).  Furthermore, a potentially interesting interplay between EB2 depletion and Rac1 has 

been uncovered, since microtubule alignment was found to be significantly increased when 

Rac1 was inhibited in EB2-depleted cells.   

In the previous study of EB2 depletion and microtubule organisation, it was found that 

depletion of EB2 not only increased microtubule alignment, but also induced re-organisation 

of the actin cytoskeleton, and co-alignment of microtubules and actin filaments (Goldspink et 

al., 2013).  In their investigation into the processes involved in this phenotype, Goldspink et 

al. (2013) considered formins, which are a group of highly conserved proteins that are 

involved in remodelling both the actin and microtubule cytoskeleton (Wallar and Alberts, 

2003), and “crosstalk” between these two systems (Bartolini and Gundersen, 2010).  

Goldspink et al. (2013) inhibited formins with SMIFH2 (Rizvi et al., 2009), and again 

quantified microtubule alignment by counting the number of crossovers (fig. 24). It was 

found that the inhibition of formins rescued the EB2-depleted phenotype, returning 

microtubules back to their less-aligned organisation. 

 

Figure 24.  Microtubule alignment is rescued upon formin inhibition.  In the EB2-depleted 

cells, formin inhibition produced less-aligned microtubules, similar to scramble, non-inhibited 

cells.  From Goldspink et al. (2013). 

To further assess the capability of MtFT, the same “blocked” analysis as before was carried 

out on images of four experimental conditions: 1) scramble, 2) formin-inhibited (SMIFH2), 3) 

EB2-depleted, and 4) EB2-depleted and SMIFH2.  In this case, only the blocks over cells 

were analysed, as in the latter part of the previous analysis.  The results are shown in table 

XVIII and in figure 25.   
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Table XVIII.  Mean and median alignment values, ρ, for the different experimental 

conditions.  The mean value, ± the standard deviation, median and inter-quartile range (IQR) for 

scramble, formin-inhibited (SMIFH2), EB2-depleted, and EB2-depleted and SMIFH2 cells are 

shown for only the blocks positioned over cells.  n = number of blocks. 

 Scramble SMIFH2 EB2 siRNA 
EB2 siRNA 
+ SMIFH2 

Mean 0.3047 ± 0.14 0.3087 ± 0.15 0.3745 ± 0.14 0.3223 ± 0.13 

Median 0.3116 0.3154 0.3909 0.3322 

IQR 0.21 0.24 0.19 0.19 

n 533 502 733 385 

 

Again, the depletion of EB2 in this set of experiments was found to result in increased 

microtubule alignment, and, in agreement with previous work, formin inhibition in EB2-

depleted cells reduced the microtubule alignment.  As in the previous analysis, the data for 

each condition were found to be non-normally distributed (chi-square goodness-of-fit test, p 

< 0.01), and there was a significant difference between all groups (Kruskal-Wallis test, p < 

0.01).  In this analysis, five comparisons were made: the scramble treatment was compared to 

all other treatments (3 comparisons), the SMIFH2 treatment was compared to the EB2 siRNA 

treatment, and the EB2 siRNA treatment was compared to the EB2 siRNA + SMIFH2 

treatment.  In a similar manner to the previous analysis, the Bonferroni correction was 

employed to make the multi-comparisons more stringent.   

Here, the differences between the scramble condition and SMIFH2 and the EB2 siRNA + 

SMIFH2 treatments were not significant even at the non-corrected p-value (Wilcoxon rank 

sum test, p > 0.05).  The EB2 siRNA condition was significantly different to the scramble 

condition (Wilcoxon rank sum test, p < 0.001).  In the other two comparisons, the SMIFH2 

and EB2 siRNA + SMIFH2 treatments were not significantly different, and again, this was 

even the case at the non-corrected p-value (Wilcoxon rank sum test, p > 0.05).  Importantly, 

the EB2 siRNA + SMIFH2 condition was significantly different to the EB2 siRNA only 

treatment (Wilcoxon rank sum test, p < 0.001), supporting previous findings. 

There, MtFT, has again been able to detect, at a statistically significant level, differences in 

microtubule alignment between control and EB2-depleted cells, and EB2-depleted only and 

EB2-depleted and formin-inhibited cells.  These findings are again supported by previously 

published analyses on these experiments (Goldspink et al., 2013).     
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Figure 25.  Mean (A) and median (B) microtubule alignment for blocks over cells.  Values 

are ± standard deviation (A), and boxes extend to 25th and 75th percentiles (q1 and q3, 

respectively), whiskers to q1 – 1.5(q3 – q1) q3 + 1.5(q3 – q1). 

 

 



259 

 

IV. Microtubule alignment in plant cells 

Finally, MtFT can be used in the analysis of plant microtubule organisation.  As has been 

described already, plant microtubules exist in what is essentially a 2-dimensional system, 

known as the “cortical array”, and the alignment of microtubules in this array is a major 

determinant of plant cell growth.  Since microtubule alignment is such an important feature 

of plant development, it has received a lot of attention, and methods, including “FibrilTool” 

described and compared with MtFT earlier, have been developed to quantify it.  Here, I am 

interested in whether MtFT can be used to detect differences in plant cortical microtubule 

organisation. 

Images to be analysed here are kindly provided by the Turner laboratory at the University of 

Manchester; relevant methods are discussed in the appendix (section E).  The Turner lab is 

interested in the mechanisms of plant cortical microtubule organisation, particularly the role 

of microtubule severing by the protein katanin, and modulation of its activity by spiral 2.  The 

set consists of six images: 3 of pavement cells, and 3 of petiole cells; in each of these, there is 

an image for wild-type (WT), a katanin mutant (bot1-7) and a spiral 2 mutant (spr1-2) (fig. 

26).  As with earlier analyses, although cell shapes and sizes differ, blocks of sizes smaller 

than cells will be used to limit possible effects. 

To recap, the wild-type organisation in pavement and petiole cells differs: in the former, 

microtubule organisation is more “net-like”, while in the latter, microtubule are much more 

aligned.  Katanin mutants have previously been shown to exhibit these net-like microtubule 

arrays, and in both pavement and petiole cells, this is the case (fig. 26).  There is strong 

evidence to support the fact that katanin activity is somehow modulated by spr2 since, in spr2 

plants, cortical arrays are well-aligned, in both pavement and petiole cells.  Although the 

biochemical mechanism is currently unknown, spr2 appears to prevent severing of 

microtubule crossovers, protecting these from severing by katanin, thus permitting formation 

of net-like arrays.   

Here, I use MtFT to quantify the extent of alignment in the cortical microtubule arrays in the 

images in figure 26.  Since these images have many cells and there is thus less image for each 

cell, the acceptable block range is reduced for this analysis from 80-120 pixels, as before, to 

60-80 pixels.  Only blocks over cells were analysed. 

The blocked MtFT analysis is shown colour-coded for alignment in figure 27.  The most 

striking difference is that of the spr2 cells; here, the presence of many yellow boxes indicates 

greater values of ρ.  After this, it is difficult to ascertain the differences, if any, between the 

other conditions.  Table XIX shows the mean and median values for each condition; here we 

see that in WT, petiole cells have better-aligned cortical arrays, while in bot1-7, petiole 

cortical array alignment is reduced to a much greater extent than in pavement cells.  As 

suggested in figure 27, the spr2-1 plants have higher levels of microtubule alignment than 

any of the other conditions.  Here, the spr2-1 petiole cells have much greater alignment than 

the pavement cells, supporting the notion of Wightman et al. (2013) that these cortical arrays 

are “hyper-aligned”.   
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Figure 26.  Plant microtubules in indicated cell types and mutant lines.  Images courtesy of 

Ray Wightman, Turner lab (see text).  Scale bar 50 μm.   
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Figure 27.  Alignment in plant microtubule arrays.  Block colours indicate extent of alignment, 

quantified by MtFT.  Only blocks positioned over cells were analysed, but all are shown here.  

Images courtesy of Ray Wightman, Turner lab (see text).   
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Table XIX.  Mean and median alignment values, ρ, for the different experimental 

conditions.  The mean value, ± the standard deviation, median and inter-quartile range (IQR) for 

wild-type (WT), mutant katanin (bot1-7) and mutant spiral (spr2-1) are shown for only the blocks 

positioned over cells.  n = number of blocks. 

 WT bot1-7 spr2-1 

 Pavement Petiole Pavement Petiole Pavement Petiole 

Mean 
0.2493  

± 0.12 

0.3127  

± 0.15 

0.2486  

± 0.13 

0.2583  

± 0.11 

0.3598  

± 0.19 

0.4480  

± 0.17 

Median 0.2456 0.3210 0.2322 0.2567 0.3853 0.4672 

IQR 0.16 0.23 0.19 0.16 0.27 0.27 

n 224 227 249 247 221 244 

 

Although some of the alignment values were normally distributed, not all were (chi-square 

goodness-of-fit test, p < 0.01), so again, non-parametric tests were used.  There were found to 

be significant differences between alignment values (Kruskal-Wallis test, p < 0.001), so 

comparisons were made between individual treatments, following the same statistical 

procedures as before.  Here, the difference between WT pavement and petiole microtubule 

alignment was significant, as was the difference between spr2-1 pavement and petiole 

alignment (Wilcoxon rank sum test, p < 0.001), while there was no significant difference 

between pavement and petiole microtubule alignment in the bot1-7 condition (Wilcoxon rank 

sum test, p > 0.05).   

Now comparing WT cells with the other two conditions, the difference between WT and 

bot1-7 was significant only for petiole cells (Wilcoxon rank sum test, p < 0.001), and not for 

pavement cells (Wilcoxon rank sum test, p > 0.05).  Between WT and spr2-1, both cell types 

had significantly increased alignment (Wilcoxon rank sum test, p < 0.001).  Therefore, loss of 

spr2-1 functionality clearly has great consequences for the organisation of the cortical 

microtubule array.  Indeed, the increased alignment in spr2-1 in pavement cells was 

significantly increased compared to the WT petiole cell (Wilcoxon rank sum test, p < 0.01).   

Again, microtubule alignment has been successfully measured with MtFT.  Previously, this 

has only been measured by comparing orientation distributions (Wightman et al., 2013); thus, 

MtFT may assist further analyses in this respect. 
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D. DISCUSSION 

I. Summary of MtFT 

a. Development of MtFT 

In this chapter, a new method for quantification of microtubule organisation, specifically, the 

orientation and alignment of microtubules, has been developed.  Although there are previous 

instances of image processing methods based on the FT, none of these have been applied to 

microtubules, and have generally been confined to quantification of the properties of 

biological matrices, for example collagen fibres (Bayan et al., 2009; Schriefl et al., 2013).   

The new method was then applied to real biological problems, for which there were previous 

results against which to benchmark the method to evaluate its efficacy, and in some cases, the 

particular problem was new.  

b. Benchmarking of MtFT 

The verification that MtFT worked as it should involved extensive analysis based on 

synthetic images for which the parameters of interest, i.e. orientation and alignment, were 

known.  This approach has been used previously in the development of another FT-based 

image processing method (Bayan et al., 2009; Sander and Barocas, 2009), and it proved 

useful here, showing that MtFT could predict the image parameters, and that the accuracy of 

prediction depended on a number of variables of the processing algorithm, allowing 

appropriate parameters and the values of those parameters to be chosen. 

Further benchmarking included comparison with another published method to quantify 

microtubule orientation and alignment.  Here, the lower alignment scores for the scramble 

siRNA condition and higher alignment scores for the EB2-depleted condition when using 

MtFT suggests that it may be more sensitive to microtubule alignment than FibrilTool 

(Boudaoud et al., 2014), which is an exciting result.  To be sure of this, further comparison 

will help, and perhaps use of synthetic data too. 

In fact, this touches on a general point: there are many methods for quantification of 

microtubule alignment and orientation, but as yet, they have not been compared thoroughly 

on the same data.  This will be a task for the future. 

c. Extensions to MtFT 

The most obvious extension to the method developed in this chapter is an analysis of the 

scale of alignment.  Here, rather than taking the arc segments of the FT that were used to 

obtain the orientation magnitude, the analogous “scale magnitude” could be obtained by 

taking circumferential segments of the FT.  Analysis of such a scale magnitude should allow 

quantification of the scale of the alignment, i.e. it could answer the question: how far apart 

are these aligned microtubules?  And: is the spacing between these microtubules consistent, 

or does it vary?  These would be interesting problems to investigate.  Such analysis would 

also be applicable to other filamentous agents, for example, the actin cytoskeleton. 
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Additionally, the control synthetic images used in the benchmarking should also give us the 

opportunity to explore the effects of non-biological factors, i.e., noise, blurring, and the 

dimensions of the area being analysed.  Noise is inherent to all microscopic imaging, for 

which there are a few potential sources, and blurring could be used to imitate defocussing, 

which may occur in these images since they have been taken using a widefield microscope 

and have a height, albeit not a very great one.  It may also imitate the result of the fact that 

microtubules are smaller than the resolution of the microscope. 

On this note, deconvolution has the potential to improve alignment quantification by re-

assigning out-of-focus light, and thus allow the FT of the image to better represent the 

microtubule organisation.  Moreover, confocal images may also have this attribute, but their 

use in anything other than almost 2-dimensional images will warrant development of MtFT 

for three dimensions, if it is to be truly applicable to data acquired as a set of slices in a stack.  

We saw in the discussion of the principles of the FT that the size of the “window” being 

analysed is a determinant of the frequency resolution of the FT.  An analysis of this type 

would be requisite for the extension of MtFT to quantify scales of alignment, since frequency 

resolution would be limiting in quantification of scale.  

Finally, the blocked analysis implemented here could be improved on.  Firstly, we should be 

able to identify areas of the image where there is not any information, i.e., where the cell is 

not.  In these areas, we can abandon the sequential divisions of the image, which will help to 

speed up the analysis too.  Secondly, areas that match one another in orientation or alignment 

could be kept together, and those that are different, separated.  An output of such an analysis 

would be a map of areas of similar local alignment or orientation. 

II. Mechanisms of microtubule alignment 

a. In animal cells 

The findings in this chapter, some of which were previously described by Goldspink et al. 

(2013) with different methods, suggest some interesting parallels between the mechanisms of 

microtubule alignment in vivo and in vitro actin-mediated organisation of microtubules, as 

described by López et al. (2014).  There, actin bundles were observed persistently redirecting 

the growth of microtubules to match their orientation, and this depended on the presence of a 

specially-engineered minimal version of ACF7, which bound along the lattice of 

microtubules and actin so as to maintain the redirected orientation of the microtubule. 

In cells, the situation appears to follow similar principles.  Upon depletion of EB2, EB1 is 

observed along the microtubules (Goldspink et al., 2013) and microtubules are more aligned 

and furthermore, co-aligned, at least by eye, with actin filaments.  In Rac1-inhibited cells, 

microtubules are less aligned, but when Rac1 is inhibited and EB2 is depleted as well, the 

microtubules are aligned to a greater extent than in an EB2-depleted background alone.  As 

Rac1 can mediate microtubule-actin interaction, for example through IQGAP, a mechanism 

presents itself: microtubule-actin interactions, mediated or inhibited in some way by Rac1 

and EB2, and promoted by formins and EB1, lead to greater microtubule alignment.  EB2 
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must lie downstream to Rac1 in this proposed process, since inhibition of Rac1 leads to lower 

microtubule alignment; the precise mechanism for this is not clear; it may involve other Rac1 

functions that mediate microtubule-actin interactions but are not dependent on EB2.  Thus, 

when EB2 is depleted, EB1 can redistribute along the length of the microtubule and promote 

interactions with actin, while inhibition of Rac1 makes this phenotype stronger. 

b. In plant cells 

Previously, the organisation of the plant cortical microtubule array has been considered either 

by comparison of histogram distributions (Wightman et al., 2013) or by image processing 

techniques based on spatial (Lindeboom et al., 2013; Uyttewaal et al., 2012), rather than 

frequency, information.  The contribution of the protein spr2 and the severing protein katanin 

to microtubule alignment was assessed here. 

In the wild-type background, petiole cells have better-aligned microtubules compared to 

pavement cells, and this was verified here with MtFT.  In the katanin mutant bot1-7, this 

alignment was nearly completely abolished, indicating that indeed, katanin does have a role 

in cortical microtubule alignment.  Furthermore, in the spr2 mutant, alignment was increased 

relative to wild-type in both cell types, to the extent that the pavement cell alignment in spr2-

1 was significantly greater than in wild-type petiole cells.  Therefore, spr2 also has a role in 

microtubule alignment.  Though the biochemistry of the mechanism is yet to be determined, 

it is probably given the localisation of spr2 to microtubule crossovers, that spr2 protects these 

sites from severing by katanin. 

The facts that in both spr2-1 petiole and pavement cells, microtubule alignment was 

significantly increased over WT petiole cells suggests that spr2 still has some activity in 

petiole cells.   

III. Biological significance of microtubule alignment 

a. In animal cells 

In animal cells, microtubule alignment has been investigated to a lesser extent than in plant 

cells.  One of the main reasons for this is likely to be that in plants, microtubule alignment 

plays a pivotal role in the development of the plant.  The extent to which microtubule 

alignment is a factor in development of animals in general, or in particular cases of cell 

differentiation, is an unknown entity.  However, the theoretical study of Khuc Trong et al. 

(2012) served to demonstrate firstly that the alignment of a microtubule network is important 

for transport of a molecule and furthermore, that the interplay between the active transport 

and advection in the array can lead to unexpected results.   

Theory aside, these potential effects of microtubule alignment have not really been addressed, 

but there are indications that it is important.  For example, subtle orientation biases in the 

Drosophila oocyte described in Parton et al. (2011) are involved in correct segregation of fate 

determinants within the cell.  Furthermore, the expression of EB2, which was also addressed 

here, changes with cell differentiation state in epithelial cells of the inner ear and intestinal 

crypt (Goldspink et al., 2013). 
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Interestingly, the less-aligned microtubule phenotype seen upon Rac1 inhibition in this 

chapter is consistent with the quantification of microtubule bending based on the 

plusTipTracker data in chapter 3.  There, it was found that Rac1-inhibited microtubules 

produced growth tracks with greater relative orientation between track segments, indicating 

that their growth was more circuitous than a control microtubule.  The modelling of chapter 5 

was implemented with the aim of determining whether the Rac1-inhibited phenotype, in 

which microtubules have lost their radiality, is a result of aberrant microtubule dynamics 

modulation at the cell periphery.  Thus, bending was not included, but the results in chapter 3 

and those presented here that Rac1-inhibited microtubules are apparently more flexible, or 

not guided in the same manner as control microtubules, is worth investigating further.  This 

will be another focus of future work. 

b. In plant cells 

The general significance of plant cortical microtubule alignment has already been briefly 

discussed above.  The alignment of microtubules is thought to be important for the 

mechanical properties of the cell because proteins that deposit cellulose into the cell wall co-

localise with microtubules (Paredez et al., 2006), and thus, the organisation of microtubules 

affects the organisation of the cell wall.  In turn, the organisation of the cell wall affects how 

the cell behaves under pressure, and because plant cells are highly pressurised, with turgor 

pressure exerting outward forces on the cell wall, this is an important part of plant biology.  

Indeed, the mechanical properties of the cell determine its shape, and thus how development 

will proceed.  Therefore, the activity of both katanin and spr2 is an important determinant of 

plant development; through the mediated severing of microtubules, these proteins can form 

different organisations, and consequently, control the physical properties of the cell. 

In summary, the new method, MtFT, developed here, can quantify microtubule organisation 

in terms of alignment and orientation, and it has been used to address real biological 

problems, providing insight into mechanisms of microtubule alignment in animals and plants. 

E.  APPENDIX: MATERIALS AND METHODS 

Cell culture, drug treatment and transfection 

ARPE-19 human retinal pigment epithelial cells were maintained at 37° C in 5% CO2, and passaged 

two times per week.  Cells were cultured in DMEM/F12 containing 5mM Hepes and 2.5mM L-

glutamine (Invitrogen), supplemented with 5% FBS. 

Rac1 inhibition was carried out as described in the methodology section (appendix 1) of chapter 3.  

To inhibit formins, cells were treated with 10μM of the formin inhibitor SMIFH2 (Sigma) for 40 

minutes.  In control treatments, cells were treated with DMSO. 

Cells were fixed, and subsequently immunolabelled as described in Bellet et al. (2009).  Rabbit 

polyclonal antibodies against α-tubulin (ab15246, Abcam) were used to label microtubules.  

Secondary antibodies, conjugated to either AlexaFluor 488, 568, or 647 (Invitrogen) were used at a 

dilution of 1:1000. 



267 

 

Cells were treated with 27nM of siRNA (Qiagen), delivered by Oligofectamine (Invitrogen) as per 

manufacturers protocol twice, at 0 hours (the initial transfection) and 48 hours.  For negative controls 

Allstar scramble siRNA sequence (Qiagen) was used.  Human EB2 siRNA target sequences; EB2 

siRNA (a) CAGCAGGTGCAGCTAAARCAA, EB2 siRNA (b) AACGCAGGTCATACAGCTTAA, 

EB2 siRNA (c) GACCTTATTAATAGGAGCATA, EB2 siRNA (d) 

CTCGATAACCCAAGAGACTAT.  Any one of these four sequences were used, as all resulted in 

complete knockdown of EB2 at 96 hours post-initial transfection. 

Microscopy 

After fixation and immunolabelled, cells were imaged on a widefield Zeiss Axiovert 200M 

microscope. 

Plant experiments 

All wet lab work pertaining to the plant experiments was carried out in the Turner laboratory 

(University of Manchester), and methods can be found in Wightman et al. (2013).   
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Chapter 7 

Summary discussion and conclusions 

A. SUMMARY OF THESIS 

I. Overview of work 

In this thesis, the mechanisms governing the organisation of the microtubule cytoskeleton, and 

means of quantifying it, were addressed.  This work centred on one of the most common 

microtubule network organisations, the radial array, for which the dynamics of microtubule 

within it were measured, the contribution of a proposed two-area dynamics model to the radial 

array was assessed, and various associated processes contributing to the alignment of the 

microtubules within the network were examined.   

The work has been interdisciplinary, involving biological experiments, image processing and 

computational modelling.  These various approaches have been united in their application for 

understanding how the organisation of the microtubule network is determined.   

The microtubule network within the cell is immensely complex; even our understanding of the 

basic mechanisms of microtubule dynamic instability is being updated by new work.  Add to 

this the modulation by the vast number of MAPs, PTMs, motor proteins, and other components 

of the cell, including other cytoskeletal systems and signalling cascades, and we see that a full 

understanding of how the microtubule network is organised is quite incomplete.  However, in 

this work, genuine progress has been made towards understanding common principles of how 

dynamics can be modulated to produce a radial array, and this allowed an assessment of how 

the dynamics in chapter 3 could explain the differences in organisation between unperturbed 

and Rac1-inhibited cells. 

Additionally, the image processing developed in chapter 6, “MtFT”, has been comprehensively 

characterised and benchmarked, which has allowed deployment of this frequency-based 

method that has been used in various settings but not for the microtubule cytoskeleton, and 

never standardised for this purpose, to quantify orientation and alignment in the microtubule 

network.  Thus, the extensive work to understand how the frequency-based measurements 

behave with synthetic data has allowed use of MtFT to answer legitimate biological questions.  

There, the effects of the lesser-studied EB protein, EB2, Rac1 and formins on microtubule 

alignment, were assessed.  Furthermore, its application to a plant cell biology problem 

demonstrates its generality, and also permitted quantitative comparison of cortical microtubule 

array organisation, so important in plant development, in various mutant lines. 

Overall, we know more now about the organisation of the mechanisms of microtubule network 

organisation than we did at the beginning of this thesis; modulation of dynamics at the cell 

periphery can be a major factor in microtubule radiality, and microtubule alignment within the 

cell is affected by various associated proteins. 

 

 



270 

 

II. Putting the work into context 

a. Main findings 

In relation to the topics discussed at the beginning of this thesis in chapter 2, perhaps the most 

pertinent findings of the subsequent work are the general mechanisms identified as being 

important for microtubule radiality, and potential role for microtubule-actin interactions in the 

alignment of microtubules within the array. 

b. Mechanisms of radiality 

Firstly, the thorough examination of the dynamics regimes required in order to target 

microtubules accurately to a certain length, and thus a target area, with a model has allowed 

explicit statement of the modulation of dynamics that is needed for radiality.  As was discussed 

in chapter 4, it is often assumed that microtubule dynamics are altered in some way at the 

periphery of the cell so as to assist in cortical capture of microtubules, but cases in which this 

notion has been explicitly tested are few.  The introduction of the simple, 1-dimensional model 

allowed proper exploration of cortical targeting mechanisms, finding that dynamics that 

produce strong negative drift in an outer area, combined with dynamics that give rise to strong 

positive drift in the inner area produce most accurate cortical targeting, and in the model, 

pausing helped to increase accuracy when in the outer area, but was detrimental to accurate 

targeting when in the inner area.  This provides a framework for future studies of microtubule 

dynamics and the role of modulators of dynamics in generation and maintenance of radiality 

in the radial array. 

After the general mechanisms of good cortical targeting were elucidated in chapter 4, chapter 

5 showed that the measured dynamics from chapter 3 were in some ways similar to previously 

reported dynamics from the literature, and in some cases, different.  The experimental 

methodology probably played a part in some of the differences there.  The experimental 

dynamics were modelled so as to assess their contribution to radiality, and to establish whether 

the differences in dynamics could explain the differences in organisation between unperturbed 

and Rac1-inhibited cells within this cortical modulation of dynamics framework.  The majority 

of the measured dynamics were found to be in a quadrant of drift space that can give 

intermediate levels of accuracy, and the modelling verified that accuracy is lower for dynamics 

sets that were similar to the measured dynamics when compared to dynamics regimes that were 

in optimal locations of drift space.  The fact that other processes contribute to microtubule 

radiality, for example cortical capture and subsequent stabilisation of microtubules, was posited 

as an explaining factor for the lower-than-optimal measured dynamics sets.   

c. Mechanisms of microtubule alignment 

Development of MtFT allowed quantification of microtubule organisation in cells depleted of 

EB2, finding that, in agreement with a previous quantification of microtubule alignment in 

these cells, microtubules were better-aligned when EB2 was depleted relative to scramble 

siRNA-treated cells.  A new finding in chapter 6 was that Rac1-inhibited cells had significantly 

less-aligned microtubules, but when Rac1 was inhibited in conjunction with depletion of EB2, 

microtubules were actually better-aligned than in scramble siRNA cells.  Again in agreement 
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with previous results, microtubule alignment quantified by MtFT was decreased back to normal 

levels, similar to scramble siRNA-treated microtubules when formins were inhibited in EB2-

depleted cells.   

Therefore, the previous results verified by MtFT, and the new results pertaining to Rac1 

inhibition, and the fact that previously, EB1 was shown to redistribute along microtubules when 

EB2 was depleted and microtubules were co-aligned with actin filaments (Goldspink et al., 

2013), suggests that microtubule-actin interactions are operating in vivo to control microtubule 

alignment.  The potential mechanisms of this interaction were expanded upon in chapter 6, and 

indeed, these findings are consistent with the in vitro characterisation of microtubule-actin 

interactions.  Since expression levels of EB2 are associated with changes in microtubule 

organisation during cell differentiation in situ (Goldspink et al., 2013), this suggests and 

exciting interplay between these two cytoskeletal systems, whereby they influence one 

another’s organisation as cells undergo their differentiation programme. 

B. FUTURE WORK 

There are a number of ways in which the work in this thesis could be extended, and as such, 

they form part of a series of experiments, modelling and image processing studies that will 

contribute to our understanding of the organisation of the microtubule array.  Future work has 

been proposed in the individual discussions in each of the research chapters, and below is a 

short summary of these proposals. 

Perhaps the most obvious of these extensions is further measurements of microtubule dynamics 

in the radial array.  Although the methods used, based on analysis of data obtained with the 

software plusTipTracker, are of course valid, there are a number of ways in which those 

measurements could be complemented.  For example, the dynamics could be further 

characterised by obtaining values for the transition frequencies between the shrinking and 

pausing phases.  The transitions were not observable with plusTipTracker, and instead, results 

were compared with the literature to obtain estimates of their value.  In order to characterise 

these transitions, labelling of tubulin with a fluorescent protein would allow observation of the 

pausing and shrinking phases. 

Aside from this, another avenue of future research is extensions to the modelling in chapters 4 

and 5.  Here, a model of cortical capture as a function of plus end residence time within a target 

area, i.e. near the cortex, would allow testing of the hypothesis that modulation of dynamics at 

the cell periphery contribute to radiality by making microtubule plus ends available more often 

to capture by cortical protein complexes.  Another extension to the model that would go hand-

in-hand with the first extension is to model a cell boundary, whereby microtubules can no 

longer grow beyond the outer area, and implement microtubule bending.  The bending 

parameters determined in chapter 3 could then be used in such a model. 

The image processing in chapter 6 can also be taken further.  In terms of characterisation of the 

method, it was already discussed that some image properties could be addressed, such as 

blurring and noise.  Furthermore, potential uneven illumination, and variations in intensity 

between images could be investigated further. 
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In terms of the utility of MtFT, it was discussed that it could be modified so that areas with no 

information, whether because there is not a cell within it or there is low anisotropy, are 

automatically recognised and subsequently discarded.  Such a method would speed up 

analyses, and this might allow the pixel-by-pixel approach that was discussed in chapter 6.  

Building on this, a means of automatically “joining up” areas with similar anisotropy or 

orientations could be implemented, allowing the study of discrete areas of alignment and 

orientation.  Finally, another extension discussed was to use the method to analyse scales of 

alignment. 

C. CONCLUSION 

The microtubule cytoskeleton is a fascinating example of persistent organisation emerging 

from the chaotic nature of the cell interior.  Here, in the context of millions of molecules being 

bombarded by thermal forces, colliding and interacting with one another, tubulin subunits 

associate and dissociate, coupled with changes in their biochemistry, giving rise to the 

microtubule phases that have been the focus of this thesis.  These phases in turn, though the 

transitions between them are essentially stochastic, are regulated by the cell in a multitude of 

ways so that the microtubule network organisation that we see when looking down a 

microscope appears remarkably static, yet ready to respond to any relevant cue to re-organise.  

The image processing and modelling in this thesis have helped to better understand certain 

instances of this regulation, and thus contribute to our understanding of dynamics-organisation 

relationships in the microtubule cytoskeleton.  Hopefully, the future work summarised above 

will continue to further our understanding of this complex and beautiful biology. 
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