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Abstract

Microtubules, dynamic protein polymers, form networks that are essential for intracellular
organisation. Involved in many cellular processes that are vital in development and
homeostasis, improper regulation of the microtubule network is implicated in various
diseases. This work addresses the relationships between microtubule dynamics and
organisation, using image processing and modelling, focussing on two features of
microtubule organisation: radiality and alignment. The hypothesis that radiality results from
modulation of dynamics at the cell periphery was tested. Firstly, cells in which the small
GTPase Racl was inhibited were used as a model for perturbed radiality. Measurements of
microtubule dynamics in central and peripheral regions showed that Racl inhibition alters
microtubule dynamics and the orientation of their growth at the cell periphery. Further
investigation was carried out with a simple 1-dimensional, two-area dynamics model, which
confirmed that a two-area dynamics system is sufficient to target microtubules to a given
length. The propensity to grow of any given dynamics parameters is a major determinant of
the accuracy of length targeting, while the extent of pausing and the average length have a
modulatory effect on accuracy. Simulation of measured dynamics indicated that two-area
dynamics may contribute to radiality in reality, but that this mechanism may work in concert
with other cortex-specific processes. The alignment of microtubules was quantified with a
new application of the Fourier transform. Depletion of +TIP protein EB2 produced highly-
aligned microtubules, and inhibition of formins rescued this phenotype. Inhibition of Racl
produced less-aligned microtubules in otherwise unperturbed cells, while in EB2-depleted
cells, microtubules were further aligned. The method was also used to quantify alignment in
plant microtubule arrays. This work presents a set of analyses that test ideas as to how the
microtubule network is organised, and highlight interesting relationships between dynamics
and organisation that will yield exciting future investigation.
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Terms/abbreviations list

Biased transition frequency. Where the transition frequency is calculated using all of
the time spend in the relevant phase.

Corrected transition frequency. Where the transition frequency is calculated using
only the time in the relevant phase that precedes the transition in question.

Fcat. The catastrophe frequency — see transition frequency.
Fg2p. The grow-to-pause frequency — see transition frequency.
Fp2g. The pause-to-grow frequency — see transition frequency.
Fp2s. The pause-to-shrink frequency — see transition frequency.
Fres. The rescue frequency — see transition frequency.

Fsop. The shrink-to-pause frequency — see transition frequency.

Growth distance. The average distance covered in the growth phase of pooled
microtubule tracks.

Growth speed (Vg). The average speed of growth phases of pooled microtubule
tracks.

Growth time. The average time spent in the growth phase of pooled microtubule
tracks.

MTOC. Microtubule organising centre. Microtubules are polymerised from an
MTOC, and often, minus ends are anchored here.

Pause time. The average time spent in the pause phase of pooled microtubule tracks.

SBC. Spatial boundary condition. Refers to physical obstacles that constrain or
influence microtubule growth.

Shrinking distance. The average distance covered in the shrinking phase of pooled
microtubule tracks.

Shrinking speed (Vs). The average speed of shrinking phases of pooled microtubule
tracks.

Shrinking time. The average time spent in the shrinking phase of pooled microtubule
tracks.

Transition frequency. Calculated as the number of transitions over the time spent in
the relevant phase.

Vg. See growth speed.



Vs. See shrinking speed.



Chapter 1

Introduction
A. MICROTUBULE DYNAMICS AND ORGANSIATION
a. Introduction to microtubules

Every cell in our bodies contains microtubules, as do the cells in other animals, in plants and
fungi, and there are similar structures in bacteria. Why? What are microtubules? An
individual microtubule is a polymer of the protein tubulin: a hollow cylinder of 25 nm in
diameter, and on the order of tens of microns in length; in a typical cell, there can be
hundreds of microtubules. What do microtubules do? In general, they contribute to the
structure of the cell, though the exact nature of the job depends on the organism, the type of
cell, and the particular activity of that cell at any given moment. Microtubules are not only
essential for normal development and homeostasis, but if not regulated properly, they can
also contribute to disease; indeed, many therapies for cancer act on microtubules.

Along with actin filaments and intermediate filaments, microtubules form the eukaryotic cell
cytoskeleton. At 25 nm in external diameter, microtubules are the largest of the three
cytoskeletal constituents, with intermediate filaments at approximately 10 nm and actin
filaments at 5-9 nm (Alberts, 2008). Both actin and intermediate filaments help to impart
rigidity to the cell; actin filaments form what is known as the cortex, a thin layer just beneath
the plasma membrane, while some intermediate filaments perform a similar role beneath the
nuclear lamina, and others form networks to give mechanical strength to tissues (Alberts,
2008). Within this cytoskeletal network, microtubules are fundamental to the structuring, and
thus the correct functioning, of the cell. Their best-known role is the creation of the mitotic
spindle, a miracle of molecular engineering whereupon chromosomes are segregated, but
away from cell division, microtubules also provide tracks for transport of molecules and
organelles, are involved in cell shape and migration, and sensing physical stimuli.

Polymerisation of tubulin occurs from monomers which diffuse freely in the cytosol, forming
hollow cylinders of length on the order of micrometres, though this is not fixed. In the cell,
the many hundreds of microtubules are arranged by an organelle called the microtubule
organising centre (MTOC), and in animal cells, the MTOC is the centrosome. A typical
microtubule arrangement is known as the radial array: microtubules are anchored at one end
to the centrosome, usually in the vicinity of the nucleus, and extend out towards the cell
periphery, probing the intracellular space. In many circumstances, which include cell
migration and changes in cell morphology, the microtubule array must be re-organised so as
to serve certain cellular requirements. Such re-organisations are effected through a special
property of microtubules, known as dynamic instability.

b. Overview of thesis

This thesis is for the most part concerned with microtubules in animal cells; specifically, how
microtubule dynamics are controlled so as to generate proper organisation of the microtubule
network. In all of the roles of microtubules described above, the appropriate organisation of



microtubules, in relation to one another and to certain cellular structures, is requisite for
proper function. Understanding this organisation, how it is generated, maintained, and how it
can be measured, is the aim of this thesis. To do this, a specific example of microtubule
organisation is used: the radial array, and this is elaborated upon in the next chapter. There is
also a very small part of this work given to plant microtubules; here, microtubules are
involved in specification of the physical properties of cells, vital for development.

B. THESIS CHAPTERS
a. Overview

There are four chapters containing original research; these are chapters 3 to 6, while before
this, in chapter 2, the introduction to microtubule biology continues with a literature review
of microtubule dynamics and organisation. Thus chapter 2 serves to illustrate the background
to the research that follows in subsequent chapters: what we know about microtubule
dynamics and how that relates to organisation of the microtubule network, how it is
modulated, and what we still do not know about microtubule dynamics-organisation
relationships.

Although the research in chapters 3-6 is united by the common themes introduced above,
there are various methodologies, and within each, different aspects of microtubule
organisation are considered. Thus, there is a discussion of the findings at the end of each
chapter, and after the research chapters, in chapter 7, a short summary discussion is given,
along with some conclusions and a consideration of future work. Briefly, a summary of each
of the research chapters is given below.

b. Chapter 3: Measuring microtubule dynamics in a radial array

As was mentioned above, the radial array, a common type of microtubule network
organisation in animal cells, is taken as a reference organisation throughout the whole thesis.
In this chapter, the dynamics of microtubules are measured, involving use of previously
published image processing software, and original extensions to analyse dynamics further.
The aim of this chapter is to understand how dynamics are controlled to maintain the
“radiality” of the radial array; specifically, to test the hypothesis that microtubule dynamics
are modulated at the cell periphery to maintain radiality. Thus, unperturbed cells that exhibit
a radial array, and cells in which the radial array is disrupted by inhibition of the small
GTPase Racl, are subject to dynamics measurements. | find that inhibition of Racl affects
both microtubule dynamics and the orientation of their growth, and that Racl-inhibited
microtubules take shallower growth trajectories relative to the cell cortex. The results of this
work hint at possible reasons for loss of radiality in the cortex-specific dynamics framework,
such as a lower proportion of time spent in pause in Racl-inhibited microtubule networks
relative to control microtubules.

c. Chapter 4: Modelling microtubules and radiality

In this chapter, a model of microtubule dynamics is used to try to elucidate what the
combinations of dynamics must be if microtubules are to be organised in a radial array. The



work is based on the idea that microtubule dynamics are modulated in some way at the
periphery of the cell so as to maintain radiality, which has some empirical support (discussed
further in the next chapter). Thus, a simple model whereby microtubules grow in two areas:
an inner and outer area, each with different dynamics, is implemented. | find here that the
two-area dynamics model is sufficient to target microtubules to a target length, and thus
could be a mechanism of radiality.

The tendency towards growth of any dynamics set is a major determinant of the accuracy of
such length targeting. Characterising this propensity for growth with the random walk
analogy of drift leads to the introduction of “drift space”, which acts as a tool with which we
can assess the likelihood of any given combinations of dynamics being good microtubule
length targeting strategies. Furthermore, introduction of pausing in the model demonstrated
that it if in the outer area, it enhances targeting, but if in the inner area, it reduces targeting
accuracy. Likewise, the theoretical average length, another random walk analogy, has area-
specific effects: increases in the inner area give better targeting accuracy, while increases in
the outer area worsen targeting accuracy.

d. Chapter 5: Comparing and modelling measured microtubule dynamics

Here, the work from chapters 3 and 4 is united to try to understand how the measured
dynamics contribute to the organisation of the radial array. The dynamics from chapter 3 are
first compared to previously reported measurements of microtubule dynamics, and then they
are considered in the context of the modelling from chapter 4, and additional modelling is
implemented to better understand dynamics and radiality. Plotting the measured dynamics
sets in drift space indicated that the control condition should have better microtubule length
targeting, and thus more radial microtubules, but its location in drift space suggest that it may
act in concert with other cell cortex-specific microtubule targeting mechanisms.

e. Chapter 6: Frequency-based quantification of microtubule organisation

Where in previous chapters, attention was given to microtubule organisation in the context of
interactions between microtubules and the periphery of the cell, in this chapter, other
properties of microtubule organisation, the alignment between microtubules and the
orientation of microtubules, are considered. To quantify these properties, a new method
based on analysing the frequencies in images of the microtubule network is developed,
involving extensive characterisation of how the method behaves with synthetic images. The
new method, called “MtFT”, is then applied to real biological problems, some previously
studied, some novel, and in one case, in plant cells, and indicates interesting and relatively
unexplored mechanisms of microtubule alignment.

Firstly, depletion of the +TIP protein (see next chapter for more details of +TIP proteins)
EB2 produced better-aligned microtubules, in agreement with previous measures made
manually. Also in agreement with those measurements, inhibition of formins, which promote
actin polymerisation and also interact with microtubules, returned microtubule networks to
the less-aligned state. Interestingly, inhibition of Racl gave less-aligned microtubules, in
agreement with chapter 3 results, but simultaneous inhibition and depletion of Racl and EB2,



respectively, produced networks with enhanced alignment relative to the EB2-depleted-only
case.

Finally, two plant cell types with differing microtubule alignment, petiole (well-aligned) and
pavement (disordered) cells, were analysed in wild-type and two mutant backgrounds. MtFT
detected the cell type-specific differences, and quantified a decrease in alignment in a katanin
(a microtubule severing protein) mutant in both cell types, and an increase in alignment in a
spiral 2 mutant in both cell types. These results are consistent with the postulated roles and
interplay between katanin and spiral 2: katanin severs microtubules at crossover sites,
allowing them to align with one another, while spiral 2 protects these sites from severing by
katanin, leading to a disordered microtubule network.

REFERENCES

Alberts, B. 2008. Molecular Biology of the Cell: Reference edition. Garland Science.



Chapter 2

Background review

A. MICROTUBULE DYNAMICS

I. Fundamentals of microtubule dynamic instability
a. History

The term “microtubule” was first introduced by Slautterback (1963) and Ledbetter and Porter
(1963), at a time when, although fibril-like structures, which were indeed microtubules, had
been observed in many instances, it was not clear exactly what they were and furthermore,
whether they were the same in each instance. Studying electron micrographs of the cortices
of plant cells (Ledbetter and Porter, 1963) and the Cnidarian organism Hydra (Hydra
oligactis and Hydra littoralis), it became evident that microtubules were a common
constituent of animal and plant cells. Following on from this, further electron microscopy
was used to determine that microtubules were constructed from “13 subunits in the wall of
the tubule” (Ledbetter and Porter, 1964), which we know now as the 13 protofilament
structure of the microtubule (more of which follows below).

Once microtubules had been described, the matter of determining their constituent protein
was addressed. At the time it was known that colchicine, isolated from plants and long-used
to treat gout, destroyed the mitotic spindle, and also had an array of other effects. Using
radioactive labelling of colchicine to identify its target within cells, Borisy and Taylor (1967a)
found a correlation between binding activity and the presence of tubulin; thus, dividing cells
and brain cells had high binding activity, while cell extracts in which microtubules were not
present had low activity. Next, Borisy and Taylor (1967b) isolated microtubules from the
mitotic spindle of the sea urchin, and demonstrated that they were responsible for the binding
of colchicine to the spindle. They then went on to characterise the protein, and later, Mohri
(1968) gave it the name “tubulin”.

Following on from this, it was assumed that microtubules obeyed standard polymer kinetic
principles (Oosawa and Asakura, 1975) in their growth and shrinkage, by addition and loss of
tubulin.  In this framework, a microtubule population would be uniform, so that all
microtubules would either be growing or shrinking, and this assumption underlay the
interpretation of previous experimental results. For example, continual uptake of a
radioactively labelled-tubulin from solution into the microtubule polymer, whilst total
polymer remained constant, was taken as evidence of net assembly and disassembly being
confined to opposite ends of individual microtubules (Cote and Borisy, 1981; Margolis and
Wilson, 1978).

Although this interpretation is valid in special cases of microtubule behaviour, these data can
also be explained by the existence of a two-phase population, in that the depolymerisation
and subsequent regrowth can account for constant label incorporation, and indeed, this
behaviour was documented in two seminal papers by Mitchison and Kirschner (1984a;



1984b). Termed “dynamic instability”, it was not directly observed until 2 years later by
Horio and Hotani (1986). These studies showed that a microtubule population, whether
centrosome-bound (Mitchison and Kirschner, 1984b) or free (Mitchison and Kirschner,
1984a) could consist of two sub-populations, some growing, some shrinking; the ratio
between them ultimately depending on the concentration of free tubulin. The co-existence of
these growth and shrinking phases, which occur through addition and loss of tubulin
monomers, respectively, and infrequent transitions between them, are the main tenets of
dynamic instability (Kirschner and Mitchison, 1986).

Subsequent work has shown that dynamic instability is the main mechanism of microtubule
assembly in the cell, and much effort has been dedicated to understanding and quantifying
dynamic instability and the factors that influence the process (Desai and Mitchison, 1997).
This body of work has demonstrated that, not only is dynamic instability an intrinsic feature
of the microtubule that arises from its structure and biochemistry, it is the underlying
mechanism for the organisation and manipulation of the microtubule network.

b. Microtubule structure

Structural studies of the microtubule had yielded much information before the time dynamic
instability was proposed (Stephens, 1970), yet with continual improvement of conventional
techniques (Meurer-Grob et al., 2001) and utilisation of newer technology (Wu et al., 2012),
present-day studies still add to our knowledge. As has already been discussed, the basic unit
of the microtubule is the protein tubulin (Mohri, 1968), which is a heterodimer of a- and -
tubulin (Bryan and Wilson, 1971). Tubulin molecules assemble end-to-end to make a
protofilament, a linear polymer of tubulin, so that a- and B-tubulin alternate along its length.
Note that, in the context of the microtubule assembly and disassembly, the tubulin
heterodimer is often referred to simply as a subunit. In the most common microtubule
structure, 13 protofilaments associate laterally (Amos and Klug, 1974), known as the
microtubule lattice, and this forms the hollow cylindrical structure recognised as the
microtubule (Alberts, 2008) (fig. 1).

In the microtubule lattice, neighbouring protofilaments do not line up subunit-against-subunit,
but are instead offset with respect to one another by a distance of approximately 0.9 nm along

the microtubule axis (Amos and Klug, 1974; Wade, 2009). It is apparent that there are two

possibilities with regard to the arrangement of the two types of tubulin in adjacent

protofilaments: in one configuration, different tubulins are in contact with one another, while

in the other arrangement, similar tubulins interact. These are known as “A-type” and “B-type”
lattices, respectively, named after the A- and B-tubules of the flagellum in which they were

thought to occur (Amos and Klug, 1974; Song and Mandelkow, 1993) (fig. 2). Investigations

based on microtubule binding of the motor domain of kinesin proteins, which transport cargo

around the cell by moving along microtubules, have shown that microtubules have a B-type

lattice (Song and Mandelkow, 1993).
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Figure 1. Structure and components of the microtubule. a- and B-tubulin form the tubulin
heterodimer, or “subunit’, and these associate end-to-end to form a protofilament. 13
protofilaments interact laterally to form the hollow cylindrical microtubule structure, which is 25
nm in external diameter. All protfilaments are oriented in the same direction with regard to their
tubulin subunits; this confers polarity to the microtubule. The end with B-tubulin exposed is the
plus end, and the other end, where a-tubulin is the terminal subunit, is the minus end. Though
both a- and B-tubulin can bind GTP, only B-tubulin hydrolyses this to GDP once it is incorporated
into the microtubule.

Since the subunits in adjacent protofilaments are offset longitudinally, following either a- or
B-tubulin from one protofilament to the next actually draws a helix along the microtubule
axis. The lengthwise shift combined with the number of protofilaments means that, at regular
points along the path of this helix, there are discontinuities, where different tubulins contact
(Song and Mandelkow, 1993) (fig 2). This discontinuity is commonly known as the
microtubule “seam” (Song and Mandelkow, 1993; Wade, 2009). It is thought that the seam
may act as a recognition site for microtubule-associated proteins (MAPs), and that it may be
important in microtubule disassembly by providing a structural fault from which to
effectively peel apart the lattice (Wade, 2009).

Although offset relative to one another, all protofilaments are oriented in the same manner
with respect to tubulin subunits, and this confers polarity to the microtubule (Allen and
Borisy, 1974). At one end, a-tubulin is the terminal subunit (Fan et al., 1996), referred to as
the minus-end, and at the other, the final subunit is B-tubulin (Hirose et al., 1995; Mitchison,
1993), referred to as the plus end (fig. 1). In the cell, microtubules are anchored to the
MTOC at the minus end, and the plus end explores the intracellular space (fig. 3). Hence
growth and shrinkage occur predominantly at the plus end in vivo; in in vitro assays, the
minus end does exhibit dynamic instability but with slower kinetics compared to the plus end
(Farrell and Jordan, 1982; Margolis and Wilson, 1978; Mitchison and Kirschner, 1984a;
Walker et al., 1988).
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A B Helical
path

a-tubulin
B-tubulin
a-tubulin
B-tubulin

on far-side of MT

Figure 2. Possible arrangements of protofilaments in the microtubule (MT). In the A-type
lattice (A), a- and B-tubulin interact between adjacent protofilaments, whereas in the B-type
lattice (B), same-species interactions occur. The B-type lattice is the conventional microtubule
structure (see text for details), and there is a discontinuity, known as the seam, where a- and -
tubulin are adjacent to one another (dashed red line). Following the path of subunits across
protofilaments draws a helical structure (helical path), shown here for the B-type lattice. Subunits
on the far side of the cylindrical MT structure are shown in grey (a-tubulin) and patterned
white/grey (B-tubulin). This figure is based on Desai and Mitchison (1997), figure 1.

So the structure of the microtubule provides the physical context for dynamic instability, but
to understand what governs the occurrences of these phase transitions, we must also
understand the biochemistry of microtubule assembly.
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Figure 3. The microtubule radial array, visualised by immunofluorescence microscopy. In
A, microtubules (green) radiate from the centrosome (red channel, visible as yellow spot at
centre of main cell) to probe intracellular space. Nuclei are also labelled in blue. In B, a
greyscale image of just the microtubule cytoskeleton is shown. Plus ends are located near the
cell periphery, while minus ends are anchored at the centrosome. Scale bar 20 pym.
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c. Microtubule biochemistry: introducing the GTP cap

A common feature of microtubules and actin filaments is their ability to bind and hydrolyse
nucleotide triphosphate (NTP) molecules (Carlier, 1991). In the case of actin, this is
adenosine triphosphate (ATP), while microtubules interact with guanosine triphosphate
(GTP). Both a- and B-tubulin can bind one molecule of GTP, and in the cytosol, GTP-
binding occurs quickly so that essentially all free tubulin is GTP-bound. However, when
incorporated into the microtubule lattice, B-tubulin, but not a-tubulin, can hydrolyse GTP to
guanosine diphosphate (GDP) (David-Pfeuty et al., 1977; MacNeal and Purich, 1978;
Spiegelman et al., 1977; Weisenberg et al., 1976). For this reason, the GTP-binding sites on
a- and B-tubulin are known as the N- (for non-exchangeable) and E-sites (exchangeable),
respectively. Initially, observations of a lag between polymerisation and GTP hydrolysis
(Carlier and Pantaloni, 1981) lead to the proposition of the “GTP cap” model, whereby this
Kinetic disparity leads to the accumulation of GTP-bound B-tubulin at the plus-end (Carlier
and Pantaloni, 1981; Kirschner and Mitchison, 1986; Mitchison and Kirschner, 1984b).

The GTP cap was proposed as the distinguishing feature between the two phases of the
microtubule, and that it acted to stabilise the growing plus end (Mitchison and Kirschner,
1984b). The theory of this stabilising effect is that the GTP cap is effectively a structural
support, helping to maintain protofilament interactions by keeping them straight, but the
mechanism for this has not been elucidated (Maurer et al., 2012). Indeed, GDP-bound
protofilaments take on a curved conformation (Hyman et al., 1995; Mandelkow et al., 1991,
Melki et al., 1989; Simon and Salmon, 1990) which would destabilise the microtubule and
consequently, cause a transition to the shrinking phase (fig. 4). So the stability of the
microtubule, and therefore its current phase, is dependent on the relative rates of
polymerisation and GTP hydrolysis: in some cases, hydrolysis “catches up” with
polymerisation, the GTP cap is lost, and shrinkage occurs. For example, free tubulin
concentration could be low enough so as to limit growth, or the plus end may be prevented
from growing by a boundary.

So the GTP cap model provided a convincing account of the events occurring at the
microtubule plus end, and was consistent with macroscopic observations of microtubule
dynamics. For example, shearing of microtubules along their length resulted in immediate
depolymerisation (Mitchison and Kirschner, 1984b), suggesting a stabilising structure only
present toward the plus end. Furthermore, the GTP cap model was supported by theoretical
analyses (Hill and Chen, 1984). However, the model was based only on indirect observations,
and for a long period following its proposition, there was a long period of uncertainty over
the existence and size of the GTP cap.
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A Polymerising

B Depolymerising ()

Figure 4. Differences in microtubule structure with phase. Microtubules undergoing growth
(A, polymerisation) have straight protofilaments, whereas microtubules in the shrinking phase (B,
depolymerisation) have curled protofilaments that give a “ram’s horns” appearance.

d. Evidence for the GTP cap

Obtaining direct evidence to support the GTP cap model proved difficult. The GTP cap, not
only a temporally dynamic structure, could also potentially be as small as one layer of tubulin
subunits (i.e., 8 nm deep) (reviewed in Desai and Mitchison (1997)). Recent work using end-
binding (EB) proteins, a family of MAPs that bind to the microtubule plus end, has clarified
the issue.

Firstly, three studies verified that EB proteins bound to microtubules according to the
nucleotide state of the microtubule. Zanic et al. (2009) and Maurer et al. (2011)
demonstrated that EB proteins (in the former, EB1, the most-studied EB protein, and in the
latter, EB1 and Mal3, a yeast EB protein) preferentially bind to microtubules bound to slowly
hydrolysable analogues of GTP over those with bound GDP. These studies provided
evidence that the mechanism for the tip-tracking behaviour of the EB proteins is related to the
bound-nucleotide state of tubulin, and later, Maurer et al. (2012) provided a high-resolution
reconstruction of the Mal3-microtubule interaction, suggesting that EB proteins recognise a
GTP-hydrolysis-dependent tubulin conformation.

The finding that EB proteins recognise the bound nucleotide state of tubulin was a big step
towards verifying the existence of the GTP cap. These findings were then used with
fluorescence recovery after photobleaching (FRAP) to estimate its size. Seetapun et al. (2012)
estimate the cap to be around 750 tubulin subunits, corresponding to approximately 60
subunit-layers. This figure is far greater than previous estimates, which were as small as a
single layer of subunits (reviewed in Desai and Mitchison (1997)), but it is supported by
measurements using optical tweezers that indicate an extended GTP cap (Schek et al., 2007).

Interestingly, the manner in which Mal3 binds GTP-bound microtubules, bridging
protofilaments, suggests that they act to stabilise the lattice (Maurer et al., 2012), though
whether this is in addition to the straightening effect attributed to GTP, or it is in fact the sole
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mechanism for stabilisation, is unknown. Note that the latter would mean that GTP cap
regions would have no intrinsic stability; they would need to permanently bind EB proteins,
or perhaps other MAPs with similar functions, in order to stabilise the microtubule end.

Understanding the nature of the GTP cap is further complicated by taking into consideration
the discrete steps of GTP hydrolysis and the possibility of further tubulin conformational
changes as a result of the reaction (Brouhard and Sept, 2012). On the microtubule lattice,
GTP hydrolysis has a minimum of two stages: first is the actual hydrolysis event, which
results in GDP and phosphate, or GDP-Pi, and the second stage is phosphate release. So this
raises the possibility of 3 domains in the lattice: GTP-bound, GDP-Pi-bound, and GDP-bound.
The precise nature of the GTP cap is an active area of research; fortunately, given the recent
EB protein data, we can be more confident of its existence. These data, around 30 years later,
lend support to the original proposals of the GTP cap model and that it has a stabilising effect
at the microtubule plus end (Carlier and Pantaloni, 1981; Mitchison and Kirschner, 1984b).

e. Consequences of the GTP cap

The initial lack of direct evidence for the GTP cap did not inhibit analyses and of the effects
such a structure would have on the properties of the microtubule population; moreover, these
analyses leant support to the idea, even necessitating the need of the cap or a similar
stabilising structure. Not only can the GTP cap account for the phase transitions of individual
microtubules, it also has other important implications for microtubule behaviour, especially
in vivo (Kirschner and Mitchison, 1986).

Perhaps the best starting point to appreciate the effect of the GTP cap is with an analysis of
conventional polymers, that is, polymers without the kinetic properties conferred by the GTP
cap. Common ideas employed in the analysis of polymer formation are those of equilibrium
and critical concentration; in a system where a polymer is forming from a pool of monomer,
there is a critical concentration of monomer at which an equilibrium state is achieved, where
the net exchange between polymer and monomer is zero. Types of polymer that follow this
theory can be called equilibrium polymers (Kirschner and Mitchison, 1986).

Incorporation of monomer into polymer of length n can be simply defined by the monomer
addition (or “on”) and loss (“off”) rates, a and a’, respectively. The former interacts with the
concentration of free monomer, C, while the latter is independent of it. For simplicity,
reactions only at one end of the polymer are considered, and this is quite applicable to
microtubules, since in the cell they are anchored at their minus ends to the MTOC. The net
rate of assembly of a polymer, dn/dt, is thus the addition rate multiplied by the free monomer
concentration, minus the monomer loss rate (after Kirschner and Mitchison (1986)):

dn C—o', (1)
—=x( —«’, .

dt

The critical concentration is defined when the system is in equilibrium, that is, when there is
no net assembly:
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where Kgiss 1S the dissociation constant, and C is the critical concentration. Note that in the
case of microtubules, there is constant exchange between monomer and polymer pools even
at this equilibrium point. For this reason, equilibrium of the microtubule system is often
referred to as steady-state, rather than equilibrium state.

The above theory assumes that there is a single reversible association reaction for
incorporation of monomer into polymer, and thus that the free and polymer-incorporated
monomer is of the same type. Since GTP hydrolysis essentially accompanies tubulin
monomer addition to the microtubule lattice, the assembly reaction involves GTP-bound
tubulin, while GDP-bound tubulin is participant in the disassembly reaction; GTP hydrolysis
partitions the assembly and disassembly reactions, and the above assumptions do not hold
(Kirschner and Mitchison, 1986). Thus, microtubules cannot be considered as simple
equilibrium polymers.

The consequences of decoupling microtubule assembly and disassembly reactions are
fundamental to the characteristics of the microtubule cytoskeleton (Kirschner and Mitchison,
1986) and its self-organising behaviour (Kirschner et al., 2000). Most importantly, it permits
an extremely rapid disassembly reaction, that, were microtubules simple equilibrium
polymers, would hinder assembly to the extent that very little polymer would form. So the
rapid disassembly reaction allows high turnover of polymer without inhibiting the total level
of polymer, and this is proposed to be advantageous to the cell since greater turnover gives
better responsiveness should the network need to be re-arranged (Kirschner and Mitchison,
1986), as is often the case.

Thus, GTP hydrolysis frees the microtubule system from the confines of egs. 1 and 2. As a
demonstrative example, (Kirschner and Mitchison, 1986) discuss the sperm aster in the
Xenopus egg, which we will expand upon here. Individual microtubules in the aster are up to
500 um in length, yet they must depolymerise within 10 minutes (Ubbels et al., 1983), giving
a net disassembly rate of 50 pm min™. Even at a very low tubulin concentration, this would
demand a high o’, and a low a. However, these values of o and o’ would prohibit
polymerisation to any sort of substantial length, not least the 500 pm that is observed. In
order to adequately satisfy the requirements of long microtubules and fast depolymerisation,
the concentration would have to be varied. Not only would this be a slow means of re-
organising the network, since tubulin would either have to be sequestered or synthesised, it
would also restrict the system to being homogenous; all microtubules would be polymerising
or all microtubules would be depolymerising. By partitioning polymerisation and
depolymerisation, this problem is solved.

Note that, for the assembly reaction, there is still an on- and off-rate; it is just that the
disassembly reaction, which occurs as another microtubule phase, is not defined according to
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the values of those rates; instead, it has its own off-rate. This is discussed further below (see
“Dynamic instability parameters”).

Other consequences arising from the non-equilibrium polymer properties of the microtubule
include an increased sensitivity of the growing phase to the tubulin concentration (since it is
not confined by a high off-rate) and it also permits growth of individual microtubules below
the critical concentration. With regard to this point, it is an important point that the critical
concentration refers to the bulk critical concentration, that is, on the whole, microtubule
polymer will decrease below Cc, however, the stabilisation afforded by the GTP cap permits
individual microtubules to continue growing (Kirschner and Mitchison, 1986).

f. Microtubule treadmilling

Clearly, there are differences in the bound nucleotide states between the two microtubule
ends. Tubulin is GTP-bound at the plus-end and GDP-bound at the minus-end, which is
usually anchored at the MTOC. However, in some cases, the minus-end is, or can become,
free of the MTOC, so that there are two free ends with different nucleotides. As mentioned
already, the minus-end does undergo dynamic instability, albeit with slower kinetics
compared to the plus-end, and with only GDP-bound tubulin present, the critical
concentration for the minus-end is greater than that of the plus-end. So within a certain range
of free tubulin concentrations, that is, bounded by the critical concentrations for each end, the
minus-end will undergo net loss of tubulin, while the plus-end will generally continue growth.
This produces a subunit flux through the polymer, a phenomenon known as “treadmilling”
(Margolis and Wilson, 1981), and is a special case of microtubule behaviour. This type of
assembly process was first proposed for actin filaments, another constituent of the
cytoskeleton, by (Wegner, 1976), who gave it the term “head-to-tail” polymerisation.

Treadmilling is an interesting manifestation of the biochemistry that drives dynamic
instability, but the extent to which it features in nature is not clear (this is true for actin
filaments, too). It is possible to observe treadmilling in vitro (Margolis and Wilson, 1978;
Rothwell et al., 1985; Walker et al., 1988) and it has also been observed in the cell in some
instances, such as in the lamellae of migrating newt lung epithelial cells (Waterman-Storer
and Salmon, 1997), and in melanophore cell fragments (Rodionov and Borisy, 1997).
Although it is not overtly common in animal cells, observation of its occurrence in migration
is suggestive of specific, but potentially important, roles. Treadmilling is commonplace in
plant cells (see Ehrhardt and Shaw (2006) for a review), which lack a single, defined MTOC.

I1. Measurements of dynamic instability
a. Dynamic instability parameters

Soon after the discovery of dynamic instability, efforts were made to describe the parameters
that define it. For an anchored microtubule (at the centrosome or MTOC) undergoing
dynamic instability, it is relatively straightforward to see that there are just a few pertinent
parameters: growth rate, shrink rate, and the transitions from growth to shrinkage and vice
versa, known respectively as catastrophe and rescue. There is also a third phase, pause, seen
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both in vitro (Walker et al., 1988) and in vivo (Shelden and Wadsworth, 1993), where no net
growth or shrinkage occurs. In growth and pausing phases, shortening “excursions” of
individual protofilaments may occur (Brun et al., 2009; Schek et al., 2007), where a single
protofilament shrinks while others are in the pausing or growing state. Transitions between
all three states, including pause, are possible. Thus, excluding pause, there are four
parameters to describe dynamic instability: growth rate, shrinking rate, catastrophe frequency
and rescue frequency. Including pause introduces four additional transition frequencies:
growth to pause and back again, and shrinking to pause and back again; unlike catastrophe
and rescue, these transitions do not have particular names; a naming convention is explained
in the next chapter. Importantly, it is clear that the transitions from one state to another are
not dependent on the current state, nor the length of time a microtubule has been in that state
(O'Brien et al., 1990; Walker et al., 1988).

The factors that contribute to the dynamic instability parameters differ between in vitro and in
vivo conditions; in vitro, it is the core properties of tubulin that give rise to dynamic
instability, while in vivo, these properties are modulated by associated proteins and chemical
modifications of tubulin. The dynamic instability parameters have been investigated in both
conditions, described below.

b. Dynamic instability in vitro

As discussed, initially, dynamic instability was inferred from biochemical methods and fixed
immunofluorescence and electron microscopy studies (Mitchison and Kirschner, 1984a;
Mitchison and Kirschner, 1984b). From the fixed microscopy data, the second of these
studies provided an indirect estimate of the growth rate, the on- and off-rates of tubulin
during growth, and the depolymerisation and off-rate as a function of tubulin concentration,
for both microtubule ends (Mitchison and Kirschner, 1984b). These data indicated that
microtubule polymerisation, as briefly mentioned already, is linearly dependent on the free
tubulin concentration; while depolymerisation appeared not to be (thus there is only an off-
rate for this phase).

The first direct observations of dynamic instability were made by Horio and Hotani (1986),
who, using dark-field microscopy, measured two of the dynamics parameters, growth and
shrink rates. Later, Walker et al. (1988) provided a more comprehensive study of
microtubule dynamics, providing rate constants and transition frequencies in addition to
growing and shrinking rates. This study extended our understanding of microtubule
polymerisation dynamics, showing that not only is growth rate dependent on free tubulin
concentration, the frequencies of catastrophe and rescue are also. Catastrophe events, as one
might expect, decreased with increasing free tubulin concentration, while rescue events
increased, albeit quite weakly, with increasing tubulin concentration. Thus, the rate of
addition of tubulin to the microtubule, and the likelihood of an individual microtubule being
in the growth phase, through decreased catastrophe and increased rescue, increases with
increasing free tubulin concentration. On the other hand, the likelihood of a microtubule
being in the shrinking phase, through increased catastrophe and decreased rescue, increases
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with decreasing free tubulin concentration, but the rate of depolymerisation is similar for any
given concentration.

Similar studies followed, aimed at further characterising rates and transitions. These give
support to the free tubulin concentration-independence of depolymerisation rate, while the
relationship between rescue frequency and free tubulin concentration is not clear. Reported
off-rate values during microtubule polymerisation are rather variable, while catastrophe
frequency is generally found to decrease with increasing free tubulin concentration. Finally,
nucleation also shows free tubulin concentration-dependence, increasing with it (Walker et al.,
1988).

c. Dynamic instability in vivo

In the cell, precise experimental variation of the free tubulin concentration is not possible;
thus, the dynamics parameters are often measured as functions of rather different data, such
as cell type, cell cycle stage, cell morphology, developmental stage, and even subcellular
position. Obviously, without manipulation of the tubulin concentration, derivation of some
information, such as the on- and off-rates of the growth phase, is not possible.

Broadly speaking, the differences between microtubule dynamics in vivo to those in vitro are
that microtubules exhibit greater polymerisation rates and have higher transition frequencies
(Cassimeris, 1993; Desai and Mitchison, 1997). Desai and Mitchison (1997) make the point
that the higher frequencies of transition, particular that for catastrophe, change the
relationship between some of the dynamics parameters. They show, for example, that if the
ratio between polymerisation rate and catastrophe frequency were conserved from the in vitro
situation, then we would expect essentially no catastrophe events.

This change in dynamics, of course, must be due to the dynamic instability modulators, of
which most appear to act by altering transition frequencies (Desai and Mitchison, 1997). For
example, at the transition from interphase to mitosis, there is a dramatic re-arrangement of the
microtubule population, and this is brought on by a higher turnover of microtubules (McNally,
1996). The increased turnover results from changes in transition frequencies; Belmont et al.
(1990) and Verde et al. (1992) report increased catastrophe, without alteration of other
transition frequencies. However, Rusan et al. (2001) found that both catastrophe and rescue
frequencies were altered at mitosis; catastrophe frequency increased and rescue frequency
decreased, while no change was found in growth and shrink rates. Interestingly, this study
also found that there was a reduction in the length of time spent in the pause phase, too.

An exception to the rule that dynamic instability modulators target transition frequencies
rather than assembly/disassembly rates must be XMAP215 (Gard and Kirschner, 1987a),
which promotes greater polymerisation rates through the catalysis of tubulin subunit addition
to the growing microtubule end (Vasquez et al.,, 1994). However, this MAP increases
microtubule turnover through increased depolymerisation rates, and importantly, also
decreases rescue frequency (Vasquez et al., 1994), so it still retains transition frequency-
targeting activities characteristic of dynamic instability modulators.
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Indeed, an emerging theme of in vivo microtubule dynamics is that of differential stabilisation
of microtubules, rather than alteration of growth rates. That is to say, the transition
frequencies of microtubules change, either through different states of cellular differentiation,
or between different areas, or sub-populations of microtubules, within a cell. During
polarisation of MDCKII cells, for example, the growth rates of microtubules are not altered,
but the rate of microtubule turnover decreases (Bre et al.,, 1990). Stabilisation of
microtubules by septin GTPases, filamentous guanine triphosphatases, which associated with
microtubules, may provide the decreased turnover seen during polarisation (Bowen et al.,
2011). There is evidence for a sub-population of microtubules that are more stable, that is,
undergo decreased turnover, within cells that are not undergoing any over processes (i.e., not
polarising, migrating, dividing, etc.) (Schulze and Kirschner, 1986; Schulze and Kirschner,
1987).

Microtubule dynamics also differ over developmental stage, and between different cell types.
Gard and Kirschner (1987b) compared microtubule dynamics in Xenopus oocytes, the
immature egg, and mature activated eggs. They found that there was no assembly in oocytes,
whereas in the activated eggs, microtubule polymerisation did occur. Thus developmental
events are also intertwined with regulation of the microtubule network. Once development is
complete, differences in cell type, reflecting different functions, are also reflected in
differences in microtubule dynamics. However, unlike the mode of regulation discussed
above, whereby dynamics are altered by changes in transition frequencies and growth and
shortening rates do not change, Shelden and Wadsworth (1993) found that microtubules in
fibroblast cells have higher rates of growing and shortening than in epithelial cells, while the
frequency of catastrophe was unchanged. Still, rescue frequency was greater in epithelial
cells.

Interestingly, the levels of unpolymerised tubulin are effectively self-regulated in the cell.
This was determined through experiments where, firstly, colchicine was again used to
depolymerise microtubules, which resulted in a decrease in synthesis of both a- and B-tubulin
(Ben-Ze'ev et al., 1979), and in subsequent experiments where microinjected tubulin was also
found to decrease tubulin synthesis (Cleveland et al., 1983). It was found that the effect of
synthesis was by reduction of tubulin mRNA levels (Cleveland et al., 1981), and that this
effect depends on free tubulin subunits in the cell binding to the nascent tubulin peptide as it
is being translated (Yen et al., 1988). Such a feedback mechanism suggests that free tubulin
levels are maintained at some target levels in the cell, and hence that the concentration effects
observed in vitro may not be as pertinent inside the cell. Indeed, in a situation where
dynamics can be modulated by a vast array of proteins, it may well be advantageous to have a
constant, i.e. predictable, level of substrate.

Finally, it is important to realise the potential bias in measurement of microtubule dynamics
in vivo. This could arise due to the fact that many microtubules, when visualised with
fluorescent probes/proteins, cannot be differentiated from others in regions of the cell that are
densely packed with microtubules. Thus, in vivo studies may measure the dynamics of only a
subset of the microtubule population. This is evident in the study by Rusan et al. (2001) cited
above, where only the dynamics of microtubule ends near the cell periphery were measured.
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This is, of course, no fault of the experimenter; to measure the dynamics of microtubules in
more dense regions is near-impossible, and at best, would be unreliable. However, given the
nature of many proteins that interact with microtubules, which also interact with other
cellular components, many enriched at the cell periphery (e.g. actin), the results of these
studies must be interpreted with caution.

To circumvent this problem, Komarova et al. (2002) employed various techniques to
visualise microtubule behaviour in the cell interior. They used photobleacing to effectively
clear an area of the cell of fluorescence from labelled tubulin, so that they could see
microtubule growth in interior areas of the cell, and they also tracked microtubule growth
with fluorescently-labelled proteins that bind to the growing plus end of the microtubule (see
section Alllc). The results of their study indicated that estimates of microtubule dynamics at
the cell periphery are indeed not representative, finding that microtubule often grow
persistently from the interior to the periphery without undergoing catastrophe, in contrast to
the relatively frequent transitions made at the periphery. An interesting point arising here is
that, once the radial array is established during interphase, it is often seen as a relatively static
structure, especially when compared to the mitotic spindle. That is not to say that it is not
acknowledged that it is indeed dynamic, but potential subtle re-arrangements of the radial
array have not been investigated. The fact that microtubules are seen to depolymerise all the
way from the periphery to the interior and beyond, and the difference in dynamics between
these areas, suggests that this is a possibility worth considering further.

The general picture of microtubule dynamics in vivo is thus a lot more complex than that in
vitro. The additional levels of regulation and interaction that give rise to this complexity
allow precise manipulations and refinement of the microtubule network, which must be
required to meet the demands of organising the cell.

I11. Modulation of dynamic instability in the cell
a. Tools for tuning microtubule dynamics

The basic properties of the microtubule described so far are enough to give rise to all aspects
of dynamic instability. Thus, in vitro preparations of purified tubulin reproduce in vivo
microtubule behaviour. However, these similarities are only qualitative; although each
parameter of dynamic instability is present in vitro, they are usually quantitatively different to
those seen in the cell. Generally, microtubules in vivo are more dynamic than in vitro
(Cassimeris, 1993); for example, sea urchin egg extract microtubules polymerise 6-times
faster than purified sea urchin tubulin (Simon et al., 1992). Published descriptions of
microtubule dynamics show that there is indeed a high degree of variability within in vitro
data and, in vivo, between cell types, and also that such measurements are made with varying
techniques and precision. However, the discrepancy between in vitro and in vivo microtubule
dynamics is also due to the presence in the cell of modulators of dynamic instability. These
modulatory factors, predominantly MAPs, but also tubulin post-translational modifications
(PTMs) and microtubule motor proteins, modify the basic properties of microtubules in the
cell, thus affecting the cellular functions of the microtubule network.
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b. Nucleation

Nucleation is the process by which a microtubule is initially generated. In animals and fungi,
it takes place at an MTOC, and in animal cells, as was discussed above, the main MTOC is
the centrosome, but depending on cellular circumstances, this may vary.

Nucleation involves another member of the tubulin family, y-tubulin. This tubulin isoform,
along with y-tubulin ring proteins and complex proteins (GRIPs and GCPs, respectively),
forms a ring structure known as the y-tubulin small complex (yTuSC) (Moritz et al., 1995).
Many copies of the YTuSC create the y-tubulin ring complex (yTuRC) in conjunction with a
number of associated proteins, and it is this structure that nucleates microtubules (Zheng et al.,
1995). The mechanism for nucleation by the yTuRC centres on stabilisation of the first
tubulin heterodimer by y-tubulin, and, upon hydrolysis of y-tubulin-bound GTP, y-tubulin
undergoes a conformational change, allowing lateral interactions between tubulin
heterodimers, and subsequent microtubule polymerisation (Wiese and Zheng, 2006).

c. MAPs

This class of proteins, as the name suggests, is delineated by the interaction of the member
proteins with microtubules. This being the sole criterion, the class has a broad and diverse
membership, consisting of proteins that interact with different regions of the microtubule and
that do so through different mechanisms, with varied domains and evolutionary origin.
Accordingly, the MAP literature is extensive; below, | summarise the MAPs that have links
to influencing dynamic instability, grouping them according to the region of the microtubule
which they recognise. For a thorough review of MAPs in general, see Mimori-Kiyosue
(2011).

Plus end tracking MAPs are proteins are referred to simply as +TIPs, and although other
MAPs have the ability to track microtubule plus ends, for example, the Daml complex
(Lampert et al., 2010), the term +TIPs is generally reserved for those proteins whose binding
gives rise to comet-like formations at the plus end (Jiang and Akhmanova, 2011; Schuyler
and Pellman, 2001), and they can be grouped according to the presence of particular domains.

The +TIPs, due to their position, have the potential to mediate microtubule interactions with
other proteins, organelles and other cellular components, as they probe intracellular space
(Galjart, 2010). The most important +TIPs are those of the end-binding (EB) family, since
they not only target the microtubule plus end without need for binding partners (Bieling et al.,
2007) through recognition of the GTP cap (Maurer et al., 2011; Zanic et al., 2009), they also
act as binding partners for other +TIPs. Such +TIPS include cytoplasmic linker protein 170
KDa (CLIP-170), adenomatous polyposis coli protein (APC), microtubule-actin crosslinking
factor (MACF), CLIP-associating proteins (CLASPs). Some of these, and many other +TIPs,
not only interact with EB family proteins, but with each other (reviewed in Akhmanova and
Steinmetz (2008) and Galjart (2010)). As a result, determining how each +TIP affects the
dynamics of the microtubule is difficult.
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Many +TIPs are thought to be involved in microtubule stabilisation, for example, loss of
MACF, also known as actin-crosslinking family-7 (ACF7), which links microtubules and
actin, results in less-stable microtubules (Kodama et al., 2003). Other such stabilising +TIPs
include APC (Etienne-Manneville and Hall, 2003), CLIP-170 (Fukata et al., 2002) and
CLASPs (Akhmanova et al., 2001), which all associate with the actin network too (Galjart,
2010). EB family proteins are associated with an increase in microtubule dynamics and
lower incidence of catastrophe (Lansbergen and Akhmanova, 2006), while XMAP215
promotes microtubule growth by catalysing the addition of subunits at the plus end (Brouhard
et al., 2008; Vasquez et al., 1994). CLIP proteins have been reported to promote rescue
(Komarova et al., 2002), despite apparently not binding depolymerising microtubules
(Akhmanova and Steinmetz, 2008).

Finally, it is noteworthy that some of the +TIPs, those with a cytoskeleton-associated protein
Gly-rich domain (CAP-Gly), only bind to tyrosinated microtubules (Peris et al., 2006).
Given the nature of the tubulin detyrosination/tyrosination cycle in cells (see “Tubulin
PTMs”, below), the tyrosinated-tubulin preference results in fewer binding events of CAP-
Gly +TIPs over time. It is possible that there may be more as-yet-undiscovered examples of
MAP-PTM interactions.

As was discussed above, the minus end of the microtubule does undergo dynamic instability,
albeit with slower kinetics (Mitchison and Kirschner, 1984a). The lack of dynamic minus
ends in vivo is due to the fact that microtubules are usually anchored at this end at the MTOC.
Moreover, microtubules usually initiate, that is, undergo nucleation, at the MTOC. The
MTOC can thus be considered as an effector of dynamic instability, and it is y-tubulin,
another member of the tubulin family, that is responsible for this. y-tubulin is evolutionarily-
conserved, found in a complex with other proteins to form the y-tubulin ring complex, or y-
TuRC, and is essential for microtubule nucleation (Raynaud-Messina and Merdes, 2007).
Other minus-end MAPs, including ninein, pericentrin and centrosomin function to link vy-
tubulin to centrosomes or other structures (Jiang and Akhmanova, 2011). The Kinetic
advantage conferred by y-tubulin for microtubule nucleation is crucial to microtubule
dynamics.

The MAP2/tau family of MAPs, traditionally associated with expression in neurons, is
another important class of MAPs that can affect microtubule dynamics. Members are the
various isoforms of MAP2 and tau, and MAP4 (Dehmelt and Halpain, 2005). These proteins
stabilise microtubules, binding to the side of the microtubule along its length; moreover,
microtubules are more rigid with MAP2 and tau bound. Although members of this family are
generally considered to be restricted to neuronal cells, MAP4 is expressed elsewhere and
displays similar microtubule-stabilising functions. It is thought that these proteins stabilise
microtubules by inhibiting catastrophe, possibly by forming clusters on the microtubule

d. Tubulin PTMs

There is a number of tubulin PTMs known; some are general modifications that are known to
apply to other proteins, while others are specific for tubulin (Janke and Bulinski, 2011). It
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has been proposed that the heterogeneity of tubulin PTMs incorporated into the microtubule
lattice acts as a “tubulin code”, which acts to provide information to the various MAPs in
analogy to the histone code and chromatin function (Verhey and Gaertig, 2007). Although
the first example of tubulin PTM was documented nearly 40 years ago (Arce et al., 1975;
Hallak et al., 1977), generally, tubulin PTM is an active area of research. Non-exclusive
PTMs of tubulin include phosphorylation, ubiquitylation, sumoylation, and palmitoylation,
while those specific to tubulin are detyrosination and generation of A2-tubulin, acetylation,
polyglutamylation, and polyglycylation (Janke and Bulinski, 2011).

Tubulin undergoes cycles of addition and removal of a tyrosine functional group, and
although tyrosination was observed first (Arce et al., 1975), in the majority of a-tubulin genes,
upon which this modification occurs, a tyrosine residue is encoded at the carboxy-terminal
(Valenzuela et al.,, 1981). Thus detyrosination (Hallak et al., 1977) occurs first.
Detyrosination takes place preferentially on tubulin incorporated into the lattice (Kumar and
Flavin, 1981), whereas soluble tubulin is very quickly tyrosinated (Raybin and Flavin, 1977).
Generation of A2-tubulin is a related tubulin PTM, and it results from the removal of the
glutamate residue that is exposed on detyrosinated tubulin (Paturle-Lafanechere et al., 1991).
Detyrosination is associated with stable microtubules (Webster et al., 1987), and this occurs
as a result of the preference for tyrosinated microtubules of depolymerising kinesins (Peris et
al., 2009), a special family of the microtubule motor protein that are involved in microtubule
destabilisation (Desai et al., 1999). Moreover, detyrosination enhances binding of kinesin-1
(Dunn et al., 2008; Liao and Gundersen, 1998), a conventional kinesin protein (Lawrence et
al., 2004), while binding of the CAP-Gly domain plus tip MAPs requires tyrosinated o-
tubulin (Peris et al., 2006; Weisbrich et al., 2007); these are examples of the aforementioned
tubulin code (Verhey and Gaertig, 2007).

The best-studied example of acetylation is that of Lys40 on a-tubulin (L'Hernault and
Rosenbaum, 1985), which also occurs on the microtubule polymer (Maruta et al., 1986). As
with detyrosination, acetylation is considered as a marker for stabilised microtubules, yet, this
seems not to be supported by a great deal of evidence, and the apparent promotion of kinesin-
1 and dynein binding in response to acetylation is also subject to debate (both aspects are
reviewed in Janke and Bulinski (2011)).

Polyglutamylation and polyglycylation are related tubulin PTMs; they both involve the
addition of glutamate (Edde et al., 1990) or glycine (Redeker et al., 1994) residues,
respectively, to the y-carboxyl group of one or more of the glutamate residues toward the C-
terminus of both polymerised a- and B-tubulin. The number of residues added is variable,
and since both modifications occur at the same sites on the tubulin molecule, they are
competitive (Janke and Bulinski, 2011). Polyglutamylation has the interesting potential role
in mediating microtubule severing, since in vitro experiments have shown that long Glu
chains promote severing, while shorter chains (which are generated by a different enzyme to
that which catalyses long chain-formation) did not (Lacroix et al., 2010). (Janke and Bulinski,
2011) point out that, since many microtubules are polyglutamylated in vivo, for example in
axons, there must be protective mechanisms in place so that they are not randomly severed.
Polyglutamylation may also affect motor protein binding (Janke and Bulinski, 2011).
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B. MICROTUBULE ORGANISATION
I. Microtubules in minimal systems
a. A framework for consideration of microtubule organisation

There is a complex interplay between a variety of cellular processes and organisation of the
microtubule cytoskeleton. This relationship goes in both directions, thus, the state of the cell,
its differentiation programme, and other factors such as adhesions with surrounding matrix
and with other cells all influence the organisation of the microtubule network, and the
organisation of the network, in turn, has the capability to influence those processes.
Therefore, there is a general cell-wide self-organisational process that contributes to the form
of not only the microtubule network, but the cell as a whole. In this section, the organisation
of the microtubule network is considered.

How do various cellular processes affect the organisation of the microtubule network? By
definition of organisation, such processes must affect the behaviour of microtubules in space,
and somehow maintain this over time. Targets of organising processes include microtubule
dynamics, and modulation of interactions of microtubules with each other and with other
cellular components.

Although this thesis is concerned with microtubule organisation in animal cells, many
enlightening studies on microtubule organisation have been conducted in vitro. In these
minimal systems, where there are a small number of components, the reduction of the
intricacy of the problem helps to understand mechanisms of organisation. Firstly, then, these
minimal systems studies are described, with the aim of highlighting some of the general
principles of microtubule organisation without the bewildering complexity of the cell. After
this, the additional layers of regulation that have been discovered to be in operation within the
cell are discussed.

b. Microtubule-motor self-organisation

When microtubules are mixed with motor proteins, various large-scale and stable patterns can
form. Two classic studies of microtubule-motor protein self-organisation first demonstrated
and explained the formation of these patterns. First, Nedelec et al. (1997) showed that
multimeric kinesin molecules could give rise to different microtubule organisations that was
dependent on the concentration of the motor protein and also the confining geometry of the
system. At fixed concentrations of multimeric kinesin in a confined cylindrical container (but
almost 2-D, i.e. circular), microtubules consistently formed first a symmetrical aster, then a
vortex. It was also found that vortices could form without an aster first forming if a torus-like
geometry was used. When unconfined, the concentration of kinesins was important; low
concentrations produced a network of vortices, while if the concentration was increased, a
network of asters was organised; still greater concentration produced networks of bundled
microtubules in a manner also sensitive to microtubule nucleation rate and potentially other
dynamics parameters.
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Surrey et al. (2001) expanded upon the work of Nedelec et al. (1997). In this study,
microtubules with plus end-directed motors formed asters with plus ends oriented toward the
focus of the aster, while those with minus end-directed motors are oriented with minus ends
at the centre of the aster. Interestingly, Surrey et al. (2001) found that the vortices described
in Nedelec et al. (1997) are dependent on the concentration of the motor: increasing
concentration leads to an aster. Reconstruction of the system in silico indicated that the
ability of the motor (whether plus or minus end-directed) to form asters was dependent on the
residence time at the microtubule end; longer times meant a greater likelihood of aster
formation. This work also presented evidence of an unusual network organisation, whereby
microtubules were arranged in large parallel bundles in mixtures of both plus end- and minus
end-directed motors; at one end of the bundle would be a concentration of plus end-directed
motors, and at the other end, minus end-directed motors.

In addition to demonstrating that large-scale patterns can be generated by just a few
components, these studies demonstrate that changes to a simple kinetic parameter, in this case
the characteristic residence time of a motor protein at the end of a microtubule, can effect
large-scale changes in network organisation, (a theme expanded upon by Huber and Kas
(2011)).

c. Microtubules and forces

As microtubules grow, they can in theory generate force if this growth takes place against
some form of barrier. On the other hand, if microtubules are attached in some way to a
structure of some sort, then their shrinkage could potentially generate a pulling force.
Vignaud et al. (2012) call these “spatial boundary conditions” (SBCs). Furthermore, if a
microtubule motor is attached to some kind of substrate away from its microtubule-binding
parts, then by walking on the microtubule, the motor could generate a pulling force. Many
minimal systems, often complemented by theoretical analyses, have addressed the issue of
microtubule forces generation in the organisation of microtubule networks.

Since a microtubule aster in vivo generally has minus ends clustered at its centre, the most
commonly addressed mode of motor-mediated force generation is that by the minus end-
directed motor dynein, as, by walking towards the aster centre along a microtubule, it could
in theory exert a force on the aster.

Microtubule asters that were formed in micro-fabricated chambers were used to demonstrate
that the aster will centre itself by the pushing forces generated by microtubule polymerisation
against the chamber border (Holy et al., 1997). In a related study, addition of dynein to the
system, where it was anchored at the borders of the chamber, leads to more stable aster
centring, so long as the micro-fabricated chamber dimensions are smaller than microtubule
lengths, allow interaction of microtubules around the chamber perimeter (Laan et al., 2012).
Indeed, in the former study, dimensions are also important, so as to allow isotropic
interaction of microtubules and the SBC, if centring is to occur. This is an excellent example
of the basic network organisational properties conferred by inherent microtubule dynamics
and how interaction with appropriately-positioned microtubule motors re-enforces this.
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Aster off-centring, or so-called symmetry-breaking, can arise from a certain type of
microtubule-SBC interaction (Vignaud et al., 2012). In this case, in vitro systems that do not
permit force-generation by microtubules at the SBC have been used to demonstrate that
microtubule sliding along the SBC results in off-centring of the aster (Cosentino
Lagomarsino et al., 2007; Pinot et al., 2009). As with the previous example, the exact
outcome depends on the relative dimensions of the microtubules and the SBC: if the SBC is
large, centring is still observed; the smaller the SBC, the further off-centre the aster becomes
(see Vignaud et al. (2012), for a review). Eventually, as microtubules slip along the SBC, the
network can become arranged as a ring, with microtubules running parallel to the SBC. Thus,
as a result of energy minimisation (i.e. microtubules becoming as straight as the SBC
permits), the network takes on a specific type of organisation.

d. Microtubule interaction with actin

One interaction that is commonly acknowledged to be an underlying contributor in many
cellular functions is that between microtubules and actin (Rodriguez et al., 2003), yet it
remains somewhat neglected in the domain of in vitro reconstituted systems. Recently,
however, Lopez et al. (2014) addressed the effects of each cytoskeletal system on the other.
In this study, a minimal version of the microtubule and actin binding protein ACF7 was
created, named “TipAct”, consisting of an N-terminal GFP, an F-actin binding domain, and a
C-terminal SxIP motif allowing binding of EB proteins.

The authors found that TipAct could capture and guide microtubule growth along actin
bundles, whereas in the absence of TipAct, initially-redirected microtubules often “snapped”
off the actin tracks; this forced and continual alignment was found to be due to the presence
of TipAct along actin bundles, and subsequent redistribution of EB proteins to the lattice of
aligned microtubules. Moreover, initially disorganised microtubule arrays were found to
gradually co-align with actin bundle orientation to a greater extent in the presence of TipAct
than without it. Note, however, that just mechanical interactions between microtubule plus
tips and actin bundles could redirect microtubule growth in the 2-dimensional system under
study. When microtubules and non-bundled actin filaments were studied, it was found that
microtubules could transport and reshape the actin filaments; thus the two cytoskeletal
systems can influence the organisation of one another.

I1. Microtubules in vivo
a. From minimal systems to the cell

The studies of purified components in controlled conditions described above have contributed
to our understanding of what such minimal systems are capable of in terms of organisation;
they set a reference against which the organisation of the microtubule network in the complex
environment of the cell can be compared. In many cases, the actual patterns formed in vivo
are similar to the set of organisations that have been described in vitro (Dogterom and Surrey,
2013); as Nedelec et al. (1997) pointed out, those types of experiments serve to catalogue the
“vocabulary” of microtubule organisation.
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The many types of microtubule-MAP associations, microtubule PTMs etc. may indeed have
their own set of self-organising properties when isolated with microtubules in a minimal
system. Further studies of that kind will determine whether certain organisations emerge
from simple combinations of microtubules and other associated proteins and processes yet to
be fully investigated; it is likely that the use of patterning molecules at specific locations
within fabricated microchambers (e.g. Laan et al. (2012)), will enable further investigation of
the influence of one or a few molecules at a time on the mechanisms of organisation of the
microtubule network. Below, some of the plethora of modifications to the simple pattern-
forming systems behaviours described previously are described; the specific examples are
chosen with the aim of highlighting the more pertinent factors of in vivo microtubule
organisation in general, and also to be relevant to the material presented in subsequent
chapters.

b. Microtubule nucleation and anchorage

Unlike the microtubule asters in Nedelec et al. (1997) and Surrey et al. (2001), the
microtubule asters in animal cells are based around the centrosome. In undifferentiated cells
with a radial array, microtubule anchorage is confined to the centrosome, and disruption of
anchorage by depletion of anchoring proteins, including ninein, a prominent minus end-
anchoring protein (Delgehyr et al., 2005; Mogensen et al., 2000) leads to a change in
organisation, or rather, disorganisation, of the microtubule array (Dammermann and Merdes,
2002). Generally, microtubules remain anchored at the centrosome, though release from the
centrosome, again under the control of ninein, has been documented in migrating cells (Abal
etal., 2002).

Deviations from the basic radial array often involve changes in the location of microtubule
anchorage, and thus, microtubule anchorage is a major determinant of microtubule
organisation. For example, in differentiated columnar epithelial cells, ninein is redistributed
to apical sites associated with cell-cell junctions, where microtubule minus ends terminate
(Mogensen et al., 2000; Moss et al., 2007).

c. Selective microtubule stabilisation by cortical factors

After discovering dynamic instability, in their typically prescient manner, Kirschner and
Mitchison (1986) proposed that selective stabilisation of microtubules in certain locations
within the cell could be one means of regulating microtubule organisation. As Li and
Gundersen (2008) point out, in animal cells, microtubules are generally first nucleated and
anchored at the centrosome, and specialisation in organisation follows, thus, re-organisations
that depend on stabilising a select population of microtubules are perhaps best effected at the
location of the plus tips: the cortex. Moreover, this also confers localisation proximal to
external signals. Thus, the idea that microtubule could search cellular space and be
selectively stabilised or captured (Mimori-Kiyosue and Tsukita, 2003) took shape, and indeed,
re-organisation of the microtubule cytoskeleton by selective stabilisation, mediated by
cortical factors, is an acknowledged feature of cellular microtubule organisation.
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The common theme behind most instances of microtubule stabilisation at the cortex is a
reduction of the dynamicity of the microtubule and an increase in occurrence of the pausing
phase (Li and Gundersen, 2008). This is mediated by various +TIPs and specialised clusters
of molecules at the cortex, so-called “cortical platforms”. These platforms contain a
phosphatidylinositol-3,4,5-triphosphate (PIP3) binding protein, LL5p, and ELKSs (Lansbergen
et al., 2006), while the +TIP CLASP proteins mediate capture of microtubules at the cortex
(Mimori-Kiyosue et al., 2005) and are also found within these platforms through interaction
with LL5B (Lansbergen et al., 2006). LL5B knockdown was found to alter microtubule
dynamics so that there was an increased tendency to transit from the pausing state and a
decreased tendency to transit towards it (Lansbergen et al., 2006) and this resulted in a
decreased density of microtubule plus ends at the cortex; CLASP knockdown had a similar
but more pronounced effect (Mimori-Kiyosue et al., 2005).

The regulation of microtubule dynamics at the periphery of the cell so as to allow cortical
capture appears to be in a delicate balance. For example, the protein 4.1R, which contains a
FERM domain, was recently found to contribute to the capture of microtubule plus ends by
the LLSP/ELKS platforms (Ruiz-Saenz et al., 2013). Upon knockdown of 4.1R,
microtubules exhibited lower catastrophe frequency, and longer times in growth to the
detriment of time spent in shrinkage and pausing, relative to control microtubules.

Indeed, further evidence for this balance of effectors of microtubule dynamic instability at the
cortex is provided by the recently discovered role of the kinesin-4 KIF21A in inhibition of
microtubule growth at the cortex, and in vitro, KIF21A also suppressed catastrophe (van der
Vaart et al., 2013). It was proposed that growth inhibition at the cortex contributes to cortical
capture and correct microtubule organisation at the cortex.

The modulation of microtubule dynamics at the cortex is also mediated by many other +TIPs.
One example is CLIP-170, which, in conjunction with IQGAP, is involved in cortical
targeting of microtubules to distinct sites marked by Rac1/Cdc42 (Fukata et al., 2002); this is
expanded upon in the next chapter. Interestingly, protein 4.1 has been shown to be involved
in recruitment of IQGAP to distinct cortical sites in migrating cells (Ruiz-Saenz et al., 2011).
Microtubules have been shown to be selectively stabilised downstream of signalling by Rho
GTPase in response to lysophosphatidic acid (Cook et al., 1998), a component of serum, and
that this is mediated by an interaction between diaphanous formins, mDia, and +TIPs EB1
and APC (Palazzo et al., 2001; Wen et al., 2004).

The mechanisms discussed above are located downstream of particular signalling cascades,
though a full elucidation of the interplay between various signalling cascades and the cortical
microtubule interacting proteins is yet to be availed. A comprehensive discussion of these
signalling systems is beyond the scope of this thesis; suffice to say that microtubule
organisation is responsive to external signals (Gundersen and Cook, 1999), the PIP3-binding
activity of LL5B and the FERM domain of protein 4.1R are examples of the capability of
these molecules to respond to external signals.
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d. Microtubule guidance

In two studies that utilised micropatterned substrates to control cell shape, Thery et al. (2006)
and Huda et al. (2012) investigated whether microtubule growth was guided within the cell.
In cells with anisotropic substrate adhesion, the former study demonstrated that upon
reaching a non-adhesive cell boundary, microtubules continued to grow along the boundary
and accumulated at adhesive sections; interestingly the accumulation coincided with
accumulation of APC (Thery et al., 2006). Huda et al. (2012) showed that microtubule
growth was guided by actin bundles toward adhesive vertices of the cell. Notably, such
guidance was dependent upon focal adhesions; on a substrate that promoted focal adhesion-
independent substrate adhesion, microtubule guidance was no longer in effect (Huda et al.,
2012).

Before the micropatterning studies, it was observed that microtubules persistently targeted
focal adhesions (Kaverina et al., 1998), and that these adhesions could capture and stabilise
microtubules. This association with focal adhesions only occurred for growing microtubules,
and indeed occurred at high precision (Krylyshkina et al., 2003), suggesting some mechanism
of non-random, i.e. guided, microtubule growth. However, initially, it was not found to be
dependent upon actin, or indeed intermediate filaments (Kaverina et al., 1998), and
apparently not re-tested in subsequent studies. Interestingly, repeated targeting of
microtubules to focal adhesions results in their disassembly (Kaverina et al., 1999),
contributing to adhesion turnover.

An apparent departure from the trend of guidance to and subsequent stabilisation of
microtubules at particular cellular landmarks (i.e. focal adhesions, localised signalling
cascades) has been described by Stehbens et al. (2006). Here, dynamic microtubules were
observed growing toward E-cadherin puncta at cell-cell adhesions. Indeed, reduction of
dynamicity with low doses of the microtubule-depolymerising drug nocodazole lead to
reduced targeting of microtubule plus ends to these puncta. In another study, septins were
found to have a microtubule-guiding role in polarising epithelial cells, and this involved
suppressing catastrophe frequency and promoting growth (Bowen et al., 2011). These studies
highlight the balance between the relative degrees of dynamicity and guidance: in an
unguided system, a more dynamic microtubule should search space better (Holy and Leibler,
1994), whereas, in a guided system, persistent growth will permit better targeting.

Finally, an interesting potential system for microtubule guidance must be interaction with the
actin cytoskeleton, given the findings described above in in vitro studies. The actin
cytoskeleton is organised in a variety of ways within the cell, depending on the activity of a
number of interacting proteins that modulate the assembly dynamics of actin filaments
(Blanchoin et al., 2014). The actin cortex is a thin layer (approximately 190 nm) underlying
the plasma membrane (Clark et al., 2013), while, in migratory cells, a network of branched
and cross-linked filaments is found in the lamella, a thin, almost 2-dimensional region at the
front of the cell, and in filopodia, protrusions resembling cell “fingers” at the front of the cell,
the actin cortex is organised into bundles (Blanchoin et al., 2014).
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Microtubules are known to affect the organisation of actin. For example, it has been shown
that microtubule growth into lamellipodial regions promotes actin polymerisation through
activation of the small GTPase Racl (Waterman-Storer et al., 1999). Here, clever use of the
microtubule-affecting drugs nocodazole and taxol demonstrated that it was indeed
microtubule growth, and not dynamics per se, that induced actin polymerisation. Indeed,
Racl appears to be important in regulating both cytoskeletal systems; it has been shown that
its activation can promote microtubule growth into lamellipodial areas, while a dominant
negative Racl has the opposite effect (Wittmann et al., 2003), suggesting some sort of
positive feedback mechanism is at work to promote growth of microtubules and actin
together. Exactly how these in vivo findings relate to those documented in vitro remains to
be determined. Notably, these studies were conducted in motile cells; Racl and its effect on
microtubule growth at the cortex in non-migrating cells is investigated in chapter 3.

e. Forces on microtubules

One of the most obvious features of undifferentiated, non-motile cells in culture is the
approximately central location of the centrosome. Centrosome positioning has the potential
to influence microtubule organisation, but forces generated by microtubules may also
influence centrosome positioning. In any case, centrosome relocation can be taken as a re-
organisation of the microtubule network. Does centrosome positioning occur as a result of
the centring mechanisms described in minimal systems?

The additional regulation of microtubule dynamics at the cell cortex suggest that the
principles of centring that are based on microtubule pushing when polymerising against or
slipping on a barrier are modified; in the cell, it is unlikely that there will be many surfaces or
spatial boundary conditions that are so inert as to allow microtubule slipping along it.

Even in physical terms, the cell is far more complex than the minimal systems already
considered; there are many SBCs here, for example the nucleus excludes microtubules from a
large part of the cell volume, and given the association between the centrosome and nucleus,
this introduces an asymmetry in the microtubule network (Bornens, 2012). Other organelles
must have a similar SBC effect, though these may be more uniformly distributed. The
pushing effect of microtubules growing against cytosol components has been postulated as a
potential contributing mechanism for centring of the microtubule network (Zhu et al., 2010),
but has not been investigated.

Rather than pushing forces generated by microtubules growing against a barrier, pulling
forces have been demonstrated in the Caenorhabditis elegans embryo spindle (Grill et al.,
2001; Grill and Hyman, 2005). Indeed, reliance on pushing force becomes problematic when
microtubules become long, because longer microtubules will buckle more readily than shorter
microtubules (Dogterom et al., 2005). Indeed, there is evidence that dynein pulls on
microtubules to organise the network (Burakov et al., 2003; Koonce et al., 1999).

The organisation of the microtubule network is not simply a case of default centring. In a cell
with an asymmetric microtubule network, the centrosome can maintain its central position
(Vignaud et al., 2012). When adhesive micropatterns have been used to produce particular
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cell shapes, the consistency of centrosome positioning in many cells of the same shape
(Thery et al., 2006) suggests this is an integral part of cellular organisation, and centrosome
positioning is predictable, given cell type and behaviour, for example in the wound healing
response, where centrosomes localise between the nucleus and the leading edge of migrating
cells (reviewed in Tang and Marshall (2012)), but the extent to which microtubule-mediated
forces play a role in this is not clear.

In a comprehensive modelling study by Zhu et al. (2010), it is suggested that fine-tuning
between forces generated by microtubules and actin can reliably off-centre the network, and
this is a possibility. Indeed, in some cases of microtubule network re-organisation,
modulation of microtubule dynamics is required, for example in centrosome relocation to the
immunological synapse, where casein kinase 16 promotes microtubule growth through EB1
(Zyss et al., 2011). In a different system, cellular polarisation after making cell-cell contacts,
both actin and microtubules have been shown to have a role in centrosome relocation (Desai
et al., 2009; Dupin et al., 2009; Vignaud et al., 2012).

To summarise, it is likely that forces on and generated by microtubules play an important role
in microtubule organisation in vivo, but the complexity of the cell and the sheer number of
potential force-mediated processes, and the fact that they are in operation at the same time as
biochemical regulation, means that they are yet to be fully elucidated. As the study of
mechanics within cells in general catches up with the more traditional biochemical and
molecular focus, these processes should become clearer.

C. SUMMARY

Overall, the literature reviewed here shows that microtubules are fascinating cellular
structures, and although there is a great deal known about their dynamics, we are a long way
from understanding how microtubule dynamics are controlled within the cell to generate
various organisations. Moreover, in many cases, other factors, such as physical interactions
between microtubules and other cellular components, can contribute to microtubule network
organisation, and this further complicates the issue. In subsequent chapters, the ways in
which some of these phenomena contribute to microtubule organisation are addressed.
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Chapter 3

Measuring microtubule dynamics in a radial array
A. INTRODUCTION
I. Microtubule dynamics and organisation in cells

a. Dynamics and organisation

The aim of this thesis is to better understand microtubule organisation in animal and plant
cells. As chapter 2 made clear, one of the main contributing factors to any type of
microtubule organisation is their dynamics. There are a great number of MAPs and other
processes that function to modulate microtubule dynamics in some way, and microtubule
organisation changes as a result of the activity of these many factors in order to serve some
cellular function. Making sense of at least some of the relationships between dynamics and
organisation is the focus of this chapter, wherein the results of extensive processing of time-
lapse recordings of microtubule dynamics are presented.

b. Microtubule organisation as a system property

One important question which generally remains unanswered is: how is the microtubule array
maintained? To put the question another way, we might ask: what are the factors that
contribute to the homeostasis of the microtubule network? Taking the radial array, for
example, it is fascinating that the microtubules, which are of course extremely dynamic and
constantly changing, are part of this network which, at a macroscopic level, does not change.
How delicate, or sensitive, is this unchanging state? Indeed, an alternative premise might be
that microtubule dynamics can change a great deal and the organisation of the network does
not change, i.e. that the network organisation is robust, to use systems terminology; in this
view, the stasis of the network is not so remarkable.

However, it is possible to disrupt the organisation of the network, as thousands of
experiments have demonstrated, and of which we will see more below. Therefore, if we take
microtubule network organisation being the manifestation of a precise balance of contributing
homeostatic processes as a given, a systems biology-type view of microtubule organisation
emerges. Here, a number of processes contribute to the properties of the network; these
properties, collectively referred to under the umbrella term organisation, can vary, depending
on the type of array. For example, in the radial array, a pertinent property might be what has
been termed “radiality” (van der Vaart et al., 2013), i.e. the proportion of microtubules that
point away from the centrosome; here, the array is characterised by microtubules that are
relatively straight and extend to the cortex, and stop there. In mitotic cells, a pertinent
organisational property might be the length distribution (and perhaps bias in orientation, e.g.
Wollman et al. (2005)) of microtubules which is important for proper capture of
chromosomes (Hill, 1985; Holy and Leibler, 1994).

In this systems view of the microtubule network, it is clear from chapter 2 that a lot of work
has been dedicated to understanding how the microtubule network becomes asymmetrically
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organised (reviewed in Sugioka and Sawa (2012)), which often assume a symmetric starting
point. Such asymmetries are important in cell polarisation and migration, for example. In
addition to symmetry breaking, a lot of attention has been dedicated to understanding the
maintenance of any given state. Here, | consider the maintenance of the radial array,
characteristic of undifferentiated cells. To do this, | analyse time-lapse recordings of
microtubule dynamics in normal cells, and also in cells where the system has been perturbed,
this is the subject of the next section.

I1. Perturbing the system
a. Pertinent processes

What are the candidate processes for a role in radial array maintenance? Clearly, there are
some system components that are requisite. Nucleation of microtubules must balance loss of
microtubules by extinction. After this, we might want to know how it is that the radiality of
the system is maintained. The systems view of radial array maintenance is depicted in figure
1. There are two explanations: first, that microtubule dynamics are tuned so that the steady-
state length is appropriate for the size of the cell, so that on average, microtubules are of the
length equal to the distance between the centrosome and the cortex of the cell. The second
explanation is that microtubule dynamics within the cell and at the cortex are different, so
that microtubules reach the cortex, and stay there.

The first explanation for radiality suffers from one main weakness: first of all, assuming the
centrosome is at the centre of the cell, then in any cell that is not circular, the centrosome-
cortex distance is not constant, so in some areas, microtubules would be too long, and in
others, too short. The second radiality explanation has some empirical support from van der
Vaart et al. (2013), who find that the kinesin-4 KIF21A acts to inhibit microtubule growth at
the cortex. Some complementary modelling based on their experimental data demonstrated
that certain differences in dynamics between central and peripheral regions of the cell could
produce radiality.

In addition to growth inhibition in peripheral regions of the cell, microtubules can be
“captured” at the cortex. This involves +TIP proteins, and other proteins at the cortex and
still other that act to link between the two (see chapter 2; and also reviewed in Gundersen et
al. (2004)). What is the nature of these microtubule-cortex interactions? In chapter 2, we
saw that there are a number of types of interaction, and various proteins that mediate them.
In vitro experiments have elucidated that boundary-bound dynein, the microtubule minus end
motor, can bind to microtubule plus ends and, by walking toward the minus end, pull on the
microtubule (Laan et al., 2012). Moreover, it was shown before that, again in vitro, that
pushing forces are also produced at boundaries when microtubules grow into them (Holy et
al., 1997). Proteins such as CLASPs, CLIPs, IQGAP, 4.1R, and APC, all mediate “capture”
of microtubule plus ends at the cortex, resulting in their stabilisation there.

Thus, we have a picture of microtubule-cortex interactions where microtubules are capable of
continuation of growth into a barrier, producing force, though whether this is the case in vivo
is not clear, where there are mediators of this growth. Furthermore, it is possible that growth
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rate may be reduced whilst growing against a barrier, reducing the size of the GTP cap,
destabilising the microtubule and resulting in catastrophe. Previously, a simple model of
microtubule dynamics in the context of cell growth found that it was necessary to have an
increased catastrophe rate at the cell periphery in order to explain observed cell growth
(Picone et al., 2010), while the notion of cortex-induced catastrophe is supported by an
analysis of the microtubule “life cycle” throughout the cell, finding intracellular catastrophe
is low compared to boundary catastrophe (Komarova et al., 2002).

Thus, one of the main determinants of microtubule radiality is microtubule-cortex
interactions. Here, | use image processing of time-lapse recordings of the +TIP protein
CLIP-170, introduced in chapter 2, to characterise the dynamics of microtubules in ordinary
cells, and in cells in which Racl, a protein involved in microtubule-cortex interactions, has
been inhibited. In the next section, | summarise what is known about Racl, and why it is of
interest here.

b. Racl and microtubule organisation

Racl is a member of the Rho family of small GTPases, along with many other members,
including the well-studied Cdc42 and Rho proteins (A, B and C) (Hall, 2012). They act as
molecular switches, cycling between inactive GDP-bound and active GTP-bound states, and
are involved in a variety of cellular processes by regulating downstream “effector” molecules
(Hall, 2012). One of the most prominent cellular activities that the Rho GTPases are
involved in is cell migration (Ridley, 2001), where Rho proteins promote formation of
contractile actin structures, “stress fibres”, in response to lysophosphatidic acid (Ridley and
Hall, 1992), while Racl causes membrane ruffles (Ridley et al., 1992) by promotion of
branched actin filament formation by the Arp2/3 complex (Eden et al., 2002). Cdc42 is
involved in formation of cellular protrusions rich in actin, known as filopodia (Hall, 2012)

Previously, Racl was also found to be involved with not only actin but also microtubules in
migrating cells (Fukata et al., 2002), through one of its effector molecules, 1Q motif
containing GTPase-activating-like protein (IQGAP). This protein was originally identified as
a potential Ras GTPase activating protein (GAP) (Weissbach et al., 1994), hence its name.
However, rather than possessing GAP activity, instead, IQGAP binds Racl and Cdc42 in
their activated GTP-bound forms (Kuroda et al., 1996). IQGAP is also an intermediary
between Racl and Cdc42 and actin (Bashour et al., 1997; Hart et al., 1996). When IQGAP is
bound to active Racl or indeed Cdc42, it binds via its C-terminus to the +TIP protein CLIP-
170 (Fukata et al., 2002).
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Fukata et al. (2002) found that a constitutively-active (CA) form of Racl (Rac''?) caused
EGFP-CLIP-170 comets to remain relatively immobile compared to the control condition
(displacement of < 0.5 um over 24 seconds), while a C-terminal fragment of IQGAP caused a
change in localisation of EGFP-CLIP-170 from microtubule plus ends to diffuse in the
cytoplasm. They also found that a mutant IQGAP that cannot bind to Racl (or Cdc42)
induced formation of multiple leading edges in migratory cells (Fukata et al., 2002),
suggesting that, in an analogous manner to the role of the yeast CLIP-170 homologue tiplp,
which produces a polarised microtubule morphology by modulating microtubule behaviour at
the cortex (Brunner and Nurse, 2000), CLIP-170 may permit the “safe passage” of
microtubules along the cortex until they reach appropriate locations, which would be
indicated by the presence of IQGAP and Rac1/Cdc42 (Brunner, 2002).

An ongoing investigation in the Mogensen laboratory is the mechanism of re-organisation of
the microtubule population from a radial array to the apico-basal array characteristic of
differentiated epithelial cells (Bacallao et al., 1989). In the apico-basal array, microtubules
are no longer anchored at the centrosome but at apical sites instead (Mogensen et al., 2000),
and, rather than being nucleated there, a “release and capture” model has been proposed,
whereby microtubules are originally nucleated at the centrosome and relocate to the apical
sites, where they are subsequently anchored (Bellett et al., 2009; Mogensen, 1999).

One of the main anchoring molecules is the protein ninein, an acidic coiled-coil protein
which localises to the centrosome (Bouckson-Castaing et al., 1996). Depletion of ninein
causes disorganisation of the microtubule radial array (Dammermann and Merdes, 2002), and
its overexpression prevents the release of microtubules from the centrosome in migrating
cells (Abal et al.,, 2002). Furthermore, ninein can also affect nucleation through its
interaction with microtubule nucleating machinery (Delgehyr et al., 2005; Stillwell et al.,
2004). Ninein has been shown to mimic the movement of microtubule from centrosomal
anchorage to apical anchorage in supporting epithelial cells of the mouse cochlea (Mogensen
et al., 2000), and it is transported along microtubules, in both a plus end- and minus end-
directed fashion, during the polarisation process (Moss et al., 2007). The apical sites at
which the microtubules are anchored is apparently associated with adherens junctions (Moss
et al., 2007), although ninein and another anchoring molecule, nezha, which has been found
at adherens junctions, do not co-localise (Meng et al., 2008).

These data suggest that efficient redeployment of ninein to the junctions would require
targeting of microtubule plus ends to those sites. Since IQGAP localises to cell-cell junctions
(Kuroda et al., 1996), the mechanisms outlined above that control microtubule behaviour at
the cortex in migrating cells may also contribute to microtubule capture, and thus facilitate
ninein redeployment and later, formation of the apico-basal array and epithelieal polarisation.

Since Racl regulates the positioning of IQGAP-based CLIP-170 interaction, one of the first
questions to be answered is: how does Racl affect microtubule behaviour at the cortex in
cells with a radial array? One such cell line is the retinal pigment epithelial (ARPE-19) cell
in an undifferentiated state (as in fig. 2). When grown in culture to confluence, these cells
make contacts with one another, with the localisation of f-catenin to these sites indicative of
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adherens junctions. Racl has been observed to localise to the adherens junctions in these
cells; thus, ARPE-19 cells will make a good study system for the effects of Racl on
microtubule behaviour at the cortex, and of course elsewhere in the cell.

It is clear that Racl inhibition has a major effect on the organisation of the microtubule
cytoskeleton (compare figs. 2 and 3), and as it is localised to adherens junctions and is
involved in microtubule-cortex interactions in other cell types, the disorganised phenotype
may be a consequence of disrupted microtubule-cortex dynamics. Previously, it has been
shown that a dominant negative (DN)-Rac1 reduced the abundance of “pioneer” microtubules,
which grow into lamellipodia, and made microtubule dynamics similar to those of more
centrally-located microtubules (Wittmann et al., 2003). Here, it might be expected that Racl-
inhibited cells and cells with a DN-Racl might have similar microtubule organisation. In that
study, the analysis was performed in the PtK1 cells, a marsupial kidney epithelial cell line,
and indeed, the lack of these pioneer microtubules produces a more compact array; however,
many microtubules do apparently reach the border of the cell at a perpendicular angle,
contrary to the appearance of the Racl-inhibited cells (Nishimura et al., 2012). However, in
this system, cells were migrating, without forming junctions with one another.

Interestingly, CA-Racl has been shown to induce microtubule organisation more similar to
that shown in figure 3 than that of DN-Rac1 cells (Nishimura et al., 2012). In that case, both
the DN- and CA-Racl were introduced (separately) into human U2-OS oteosarcoma cells,
and indeed, the CA-Racl, but not the DN-Rac1, produced a microtubule organisation similar
to that shown in figure 3, where microtubules tend to be parallel to the cell edge, often
forming bundles there. The discrepancies between the studies of a DN-Racl and the Racl
inhibition in the Mogensen lab may be to do with the fact that the mechanisms of interfering
with Racl function are different; indeed, it could be the case that the two strategies of
interfering with Racl affect its interaction with IQGAP differently. Alternatively, the source
of the differences could be due to the different cell lines used, or the fact that the other studies
were interested in migrating cells, rather than cells at confluence that had formed junctions
with one another. Ultimately, the differences will be better addressed once the CA-, DN-
Racl and inhibition are conducted in the same cell line, in the same lab.

In any case, the Racl-inhibited microtubule organisation phenotype is reproducible in the
Mogensen lab, and the fact that it has been shown to have an active role in cortical capture of
microtubules supports the notion that inhibiting Racl will lead to microtubule disorganisation.
Thus, inhibition of Racl will be taken here as a model for disrupted microtubule-cortex
interaction. Of course, given the involvement of Racl in organisation of the actin
cytoskeleton as well as microtubules, it is probable that inhibition of Racl will interfere with
actin cytoskeleton organisation. Given the cross-talk between the two cytoskeletal systems, it
is therefore also probable that the documented roles, here and elsewhere, of Racl in the
organisation of either system, is a result of interplay between microtubules and actin, and
Racl in organising both of them. The argument taken here is that while this may be the case,
Racl inhibition still leads to disrupted microtubule organisation, especially at the cortex.
Such disorganisation may operate through actin, or be direct, or indeed both; mechanisms at
this level are not the focus of this work, instead, here we are interested in understanding how
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microtubule dynamics differ between central and peripheral regions of the cell and how that
affects dynamics in unperturbed and Racl-inhibited cells.

To better understand the role of microtubule cortex interactions in organisation of the
microtubule network, | process time-lapse recordings of CLIP-170-GFP in ARPE-19 cells,
with and without inhibition of Racl. CLIP-170, as discussed already, labels growing
microtubule plus ends (Perez et al., 1999), and thus, can be used to measure microtubule
dynamics, as has been done before (Komarova et al., 2002). Of course, other +TIP proteins
(discussed in chapter 2) labelled with fluorescent proteins could be used for a similar purpose.
To date, no extensive investigation into whether these are equivalent, or somehow bias
measurements of microtubule dynamics by labelling only a subset of microtubules, has been
made, and is beyond the scope of this work. Tracking is done with the aid of the tracking
software “plusTipTracker” (Applegate et al., 2011), and further analysis to fully characterise
microtubule dynamics in this system. The software, and subsequent processing, which makes
use of directional statistics and computational geometry, are described in the next sections.
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B. METHODOLOGY
I. Comet tracking
a. plusTipTracker

plusTipTracker takes input films as series of TIFF file images. Method pertaining to
maintenance and preparation of cells are in appendix (section F). Time-lapse recordings of
CLIP-170-GFP comets of 60 frames, 2.5 seconds apart (see appendix | for wet lab
methodology), were passed to plusTipTracker, which was run with its default tracking
parameters. Note that cells were analysed when confluent, so they were not migrating, as in
figures 2-3. Although +TIP comets only mark microtubule growth phases, plusTipTracker
infers the other two states by linking growth tracks together (Applegate et al., 2011).

The following description of the analysis of microtubule dynamics, based on the output of
plusTipTracker, warrants a short summary of what this output is exactly, so that it will be
clear what the data are and where they are coming from. All of the matrices and structures
discussed below are the basis for both the processing of data carried out within
plusTipTracker itself, or my subsequent analysis of microtubule dynamics.

The main output of plusTipTracker is an index of “sub-tracks”: these are the detected comets
that have been linked across frames to make microtubule trajectories. These trajectories may
be growth, pause or shrinkage phases, and depending on whether a sub-track has been linked
to another sub-track to make a “compound” track, the sub-tracks may have the same index.
Thus, the sub-track matrix is an array with m, rows, where my is the number of sub-tracks
before reclassification (see below), and the columns contain information about the track:

Compound track index

Start frame

End frame

Growth rate (um mint)

Track type (i.e., growth, shrinkage, pausing, unclassified)
Lifetime (frames)

Displacement (pixels)

No ook owdE

The compound track index indicates which row to refer to in the co-ordinate matrices; these,
one for x- and another for y-co-ordinates, are of size n-by-f, where n is the number of
compound tracks, and f is the number of film frames. Thus, the co-ordinates of any sub-track
can be obtained using the compound track index as the row, and the start and end frames as
the first and last column, respectively, in the co-ordinate matrices.

There are two more matrices of which we should be aware; they are the “reclassified matrix”
and the “statistics matrix”: the former is the same as the sub-track matrix, but after
reclassification of sub-tracks that were initially determined to be pausing as growth, and those
that were considered to be shrinking as pause. If a sub-track is reclassified as growth from
pause, then it is merged with the growth tracks that were adjacent to it (a pause, by definition,
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must be flanked by growth); thus, the reclassified matrix tends to have fewer rows than the
sub-track matrix, designated m. The reclassified matrix has some other differences to the
sub-track matrix; first, sub-track lifetime is now in seconds, not frames, and displacement is
in microns, not pixels. Moreover, the reclassified matrix contains additional information in
three extra columns:

8. A logical (i.e., “yes” or “no”) for nucleation, i.e., whether this is the first instance of the
compound track or not

9. Only relevant for growth tracks, it indicates the event that resulted in the growth track
ending (i.e., “termination”, pause, shrinkage, or unclassified)

10. A logical for whether the sub-track is part of a compound track or not

The statistics matrix is called so because it contains the data that plusTipTracker uses for its
statistics calculations. So as not to bias some of these statistics, for example nucleation rate,
the sub-tracks that were detected in the first frame, and the first linked pause or shrinkage
track, are removed, as are the sub-tracks that were present in the last frame, along with the
last linked pause or shrinkage track. Therefore, it contains ms rows, reduced from m, while
the columns remain the same as in the reclassified matrix.

b. Sub-cellular analysis

In order to easily measure dynamics in central and peripheral areas, | designed an interactive
tool in Matlab, called “analysetracks”, that allows the user to delineate the areas, and then the
tracks (so defined by plusTipTracker) in each area are then analysed. The algorithm runs
thus:

1. User input: the first frame of the image, and the projData structure from
plusTipTracker (this contains the matrices described above). Check that the image
and projData structure match by plotting all tracks on the image and asking the user to
verify they are correct (fig. 4).

2. Obtain original data from projData; among these are the pixel size, the number of and
time between frames, and the sub-track, reclassified and statistics matrices described
above.

3. Display the first frame and ask user to define the border of the cell by clicking on the
image with the mouse at positions along the border. Clicks must be in a clockwise
direction (since later parts of the process require that the direction of the points is
known; see 6), and terminated with a click on the first point (fig. 4).

4. Ask the user to define a relevant cell axis by clicking on the first frame images, and
then to enter a value for the “relative border size”, the percentage of the length of the
defined cell axis that will determine the “thickness” of the border region (fig. 5A).

5. Based on the cell axis and relative border size, the outer and inner borders are plotted
on the image, and the user is asked to verify that they are happy with them (fig. 5B).
The inner border is found by moving the specified distance from each vertex of the
outer border, in the resultant direction of the edges adjacent to each vertex. Where
two outer vertices are close together and the inner vertices result in crossed lines for
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the inner border, the offending inner vertices are removed and replaced by the point at
which the crossed lines intersect.

Original Tracked

1
i > o
4

Figure 4. Example image and time-lapse. All tracks (red) and user-defined border (purple)
plotted on left panel; tracks located outside border are coloured yellow. Scenes from frames
(right panel, frames indicated by numbers) of a time-lapse film, showing untracked (left column)

and tracked (cyan, right column) comets. Scale bar 10 ym. Image courtesy of Debbie Goldspink,
Mogensen lab. Note that cell is in confluent culture, and not migrating.
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Figure 5. Defining the “inner border”. The user defines a relevant cell axis (A, cyan) by
clicking on the image with the outer border plotted (A, red), and these are then processed to
produce the inner border (B, cyan), which, together with the outer border (B, red), defines a
border region of the cell. Scale bar 10 um. Images courtesy of Debbie Goldspink, Mogensen lab.
Note that cell is in confluent culture, and not migrating.

6. Next, in order to identify which tracks, or which parts of a track, are in a given area, |
use an algorithm based on defining the area by the midpoints of its edges and vectors
that are orthogonal to each edge (fig. 6A). Here, for each co-ordinate of a track, the
vectors from each midpoint to that co-ordinate are calculated, and the dot product of
each of these with the corresponding orthogonal is found. If the co-ordinate is within
the area, all of these dot products are positive, since the vectors from each edge
midpoint point in the same direction as the edge orthogonal vectors, whereas if the co-
ordinate is outside the area, then at least one of the dot products will be negative (fig.
6A). However, this algorithm only works for areas that are convex; thus, if the outer
and inner regions are not convex already, they must be converted into a set of convex
shapes. My algorithm for splitting the area into a set of convex shapes, based on a
common “triangulation” method, is contained in the function “makeconvex”. Briefly,
it relies on the fact that the co-ordinates that define each area have been given in a
clockwise direction. In fact, it does not matter whether it is clockwise or anti-
clockwise, as long as the direction is always the same, and, just to confuse the issue,
the directions are actually reversed in an image, since the y-axis runs in the other
direction (i.e. y = 0 is at top-left). In Cartesian space, to identify a concave shape, we
use the fact that in a convex shape, every angle between adjacent edges is always less
than 180° in the anticlockwise direction. To convert the concave shape into a set of
convex shapes, one draws a line from the right-turn to the next-but-one vertex (fig.
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6A), so long as the next turn is not a right turn; if the next turn is a right turn, then the
current right turn is abandoned until the next right turn is no longer a right turn by
having made that sub-shape convex. Doing this iteratively gives the set of convex
shapes (fig. 6B).

Now, for every track co-ordinate, the orthogonal dot-product test is conducted to
determine if it lies within the area. This is done for the whole area, and the inner area
alone. Those that are exclusive to the outer area are defined by being in the first set
and not the second. Thus, there is now a set of arrays of tracks that lie within the
defined areas.

Point 7 can produce tracks of a single point, if a track started in an area and then had
left by the next frame, or moved into an area in its final frame, or indeed, briefly
entered an area and then left by the next frame. These are removed.

The tracks are plotted in their areas and the user is asked to verify that they have been
allocated to the correct area (fig. 7A).

Information about each set of tracks is collected. Such information includes the
descriptive statistics regarding growth and shrinkage etc., much like the output of
plusTipTracker, the orientations of each track at each frame, and the relative
orientation between a comet trajectory and the nearest cell edge (fig 7B). For each
track in a given area, its speed, displacement, lifetime, etc., are found by searching the
reclassified matrix with the row and column indices of the co-ordinates of the track in
that area; the statistics are based on these. The orientation of each track is found
using the co-ordinates, which are defined in co-ordinate matrix described above,
while the nearest edge is found by taking the edge with the minimum perpendicular
distance to the co-ordinate.
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Figure 6. Convex shapes and the “orthogonal dot-product” method. A shape (A) is defined
by its edge midpoints (red asterisks) and orthogonal vectors (green lines). If a point is inside the
shape (blue plus), the dot products of each of the orthogonal vectors and the vectors from the
midpoints to the point will be positive (example midpoint-point vector shown in dark grey dash-
dot line to plus). If a point is outside the shape (blue cross), then at least one of the dot products
of the orthogonal vectors and the vectors from the midpoints to the point will be negative
(example negative midpoint-point vector shown in dark grey dash-dot line to cross). This
algorithm requires convex shapes, so shapes with “left-turns” (in the clockwise case, shown here
with magenta asterisks) must be split into convex sub-shapes (light grey dotted lines). An
example image (B) is shown with outer (red) and inner (cyan) areas split into convex shapes.
Scale bar 10 ym, images courtesy of Debbie Goldspink. Note that cell is in confluent culture,
and not migrating.

Figure 7. Area tracks and track-edge coupling. Tracks exclusive to the inner area (A, cyan)
and outer area (A, magenta) are displayed, while the outer area tracks are colour-coded to
indicate their closest edge (B, and enlarged area in white in inset). Scale bar 10 ym, images
courtesy of Debbie Goldspink, Mogensen lab. Note that cell is in confluent culture, and not
migrating.
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I1. Statistics and calculations
a. Microtubule dynamics

The data obtained from plusTipTracker and the subsequent processing as described in the
previous sub-section can be used to make estimates of parameters used in traditional
descriptions of microtubule dynamics, i.e. growth and shrinkage rates, and transition
frequencies. A diagram of microtubule dynamics is shown in figure 8, with adjustments
made to indicate the extent of information available from +TIP protein tracking.

F cat

' N,
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Figure 8. Microtubule dynamics parameters from plusTipTracker. Microtubules transit
between the 3 phases shown in black capitals, with frequencies denoted by F. Nucleation
frequency (Fnuc), microtubule number (N) and microtubule bending (bending) also affect
organisation of the network. As with any labelled +Tip protein, plusTipTracker can only infer the
characteristics of shrinkage and pausing (indicated by dashed black crosses), and thus, nothing
can be said of the transitions between these states (indicated by dashed red crosses).

Growth and shrinkage rates are immediately obtainable; however, transition frequencies are
estimated based upon the number of occurrences of a given transition, and the time spent in
the phase it transits from:

Firans = Ntrans/tphase' €Y

where Fians and Nians are the frequency and total occurrences of a transition, respectively,
and tonase 1S the time spent in the phase that the transition moves away from. With the
plusTipTracker data, as with any data set based on observation of +TIPs, where direct
information concerning microtubule behaviour is only available for the growth phase, the
estimation is subject to potential bias. This is because, e.g. both catastrophes that result in
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extinction of the microtubule and those that are followed by rescue or a transition to the
paused state, only catastrophes that are followed by a rescue event can be detected, where the
+TIP protein re-labels the now growing end. This is in contrast to live recordings of labelled
microtubules, where all phases can be observed directly, but it is not as easy to discriminate
individual microtubules.

Thus, the catastrophe events that lead to extinction are lost; the catastrophe events that are
followed by a transition to a pause event have two possible fates: either they will be lost, if
the paused microtubule undergoes another catastrophe and then goes extinct, or they may be
detected, if the pause event is followed by a rescue, or subsequent catastrophes and pauses
are followed at some point by a rescue event. In the latter case, the shrinkage to pause and
potential pause to shrinkage transitions, Fszp and Fp2s, respectively, are never detected, and at
the level of the plusTipTracker analysis, all that is recorded is one catastrophe event, a
shrinkage rate with inaccuracy affected by the length of any pausing events, and one rescue
event. Therefore, the estimated catastrophe frequency is affected by the rescue frequency,
since it is rescue events that allow us to infer shrinkage and the preceding catastrophe, and so
any estimate of catastrophe frequency based on this type of data is likely to be an
underestimate.

While the estimation of catastrophe frequency is subject to inaccuracy because of inability to
observe the true number of events, in theory, every rescue event should be observable.
However, the estimate of rescue frequency is affected by a related problem: while for
catastrophe, we can be fairly confident that we know the total time in the growth phase that
we substitute into eq. 1, for Fres, we do not know the total time in the shrinking phase.
Assuming that every rescue event is detected, i.e., the preceding growth and shrinkage phases
were observed and inferred, respectively, estimates of rescue frequency based on these data
are likely to be overestimates.

The same arguments apply to the growth to pause, and the reverse, transition, Fg2p and Fpag,
respectively, where, here, Fpg estimation suffers from the same problems as those in
estimating Fecat, and Fpog is affected by similar problems for estimating Fres.

Therefore, when calculating transition frequency estimates with eqg. 1, when based on this
type of data, these caveats must be kept in mind. A means of addressing the discrepancies
between catastrophe and rescue (or grow to pause and pause to grow) frequency estimates,
i.e., the tendency to underestimate the former, and overestimate the latter, is to use only the
growth or shrinkage times preceding the catastrophe (or grow to pause) or rescue (or pause to
grow). In absolute terms, these estimates are still inaccurate, because the times of growth or
shrinkage in eq. 1 will not the total time; rather, just the time of a subset of tracks, and
estimates of both transition frequencies will be liable to overestimation. However, in relative
terms, the transition frequencies are now more comparable, since the catastrophe frequency is
based now only on the time preceding it, as is the estimate of rescue frequency. Indeed, these
types of estimates may be more valid for calculations of drift (see below), etc. Both types of
estimate will be calculated and presented in the results.
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Transition frequencies calculated according to eq. 1 can be used to obtain a probability
distribution for the transition in question, as long as it is assumed that the probability of that
transition is the same through the lifetime of a microtubule (see the next chapter for a
thorough discussion of this). However, it is also possible, if the distribution of microtubule
lifetimes prior to a particular transition is considered, to obtain such a probability distribution
directly. In this case, rather than making assumptions about the type of distribution
describing the lifetimes before transition, we could fit a distribution to the lifetimes. Such an
approach is potentially possible with the methods outlined in the previous sub-section.
However, as reported in the results section below, there were not enough data recorded for
such an analysis.

b. Track and edge relative orientation

The relative orientation of track segments, i.e. the difference in orientation between segments,
was found by first calculating orientations based on the x- and y-coordinates of tracks, and
then finding the absolute difference between adjacent segments. The relative orientation
between a track and its nearest edge was found in a similar manner.

For generation of the “straight” track data, tracks were split where a relative orientation was
greater than a given threshold. To avoid extensive data manipulation, the co-ordinate
matrices were not altered, i.e., upon track splitting, the compound track remains the same, but
the start and end frame references change in the sub-track matrix. Relative orientations are
only valid for growth tracks, so velocities, lifetimes and distances of only growing tracks are
re-calculated. Entries in the new sub-track matrix that are only one frame long are removed.

Unfortunately, splitting tracks in this manner means they can no longer be linked to pausing
and shrinking tracks, and thus, the straight data is intended purely as a means of ascertaining
whether the growth properties of tracks with low relative orientations differ to the original
growth properties.

Fitting of probability distributions to the relative orientation data was conducted in Matlab,
making use of the interactive distribution-fitting tool, “dfittool”. Visual analysis in the
interactive tool was used to determine that all available parametric distributions excluding the
generalised pareto and exponential were not good fits; subsequent analyses of these
distributions are reported in the results. The non-parametric kernel-based approach was also
used: here, to obtain a relatively smooth probability distribution, the empirical data is
smoothed by a kernel with a given “bandwidth”; the bandwidth value can be set or
determined according to which produces the best fit; here, the latter approach was used. A
higher bandwidth produces a smoother function, but potentially at the expense of worse
representation of the empirical data.



58

C. RESULTS
I. Track orientation
a. Straight vs. bendy tracks

The aim of this section is to characterise the “orientation behaviour” of microtubules, i.e.
essentially to answer the question: how bendy are growing microtubules? This question is
applied to both experimental conditions, all tracks, and inner and outer areas. After post-
processing of data obtained from plusTipTracker (see methodology), the total numbers of
tracks analysed here were 16,205 and 14,548 in the control condition, for original and
“straight” tracks, respectively, and 15,155 and 13,341 in the Racl-inhibited condition for
original and “straight” tracks respectively.

Figure 9 shows histograms of the relative orientation between adjacent segments of tracks for
all tracks, and tracks from outer and inner areas. Here, the data for each experimental
condition has been pooled. Evident in the histograms in figure 9 is the fact that a higher
proportion of relative orientations are lower for control data, and in the Racl-inhibited cells,
there is a greater proportion of larger relative orientations. This is true for all areas, so
control tracks are generally straighter than Racl-inhibited tracks.

There is an increase, in both experimental conditions in all areas, in proportions of relative
orientations from about 120° to 180°. This is unusual, since these are very large angles for a
microtubule to subtend in a short length segment. For example, an average growth of 12.67
um min? over a frame length of 2.5 s, gives a distance of ~0.5 um. Of course this distance,
which is the direct route between two points of growth, may not truly represent the length of
the microtubule in question, since the microtubule can bend, and does not have to go directly
between the two points. Therefore, if we assume that any two orientations in a track define 3
points on a circle joined by two chords of length 0.5 pum, the radius of this circle is the radius
of curvature required of a microtubule to pass through these points. A relative orientation of
120° would require a radius of curvature of ~0.3 pum, half the value at which microtubules
have been observed to break (Waterman-Storer and Salmon, 1997). Faster-growing
microtubules require a lower radius of curvature for any given relative orientation, e.g., a
growth speed of 20 pm min giving a distance of ~0.8 um, could pass through the same 3
points with a radius of curvature of ~0.5 pm. Incidentally, these large relative orientations
are greater than the threshold value specified in plusTipTracker. The source of this apparent
error is unclear.

Do overly deviating tracks influence microtubule dynamics? An extensive presentation of
the dynamics results is given in the next sub-section; however, efforts were made here to
address this question by splitting tracks (see methodology) at points where the relative
orientation was above a threshold of 60°. This value was chosen because, although the
relative orientation that satisfies the constraints discussed in the paragraph above at the
average speed of 12.67 um min™! is approximately 30°, the above discussion is very much an
approximate account of relative orientation constraints, and moreover, although much of the
data is below 30°, still a lot of the data would be discarded, and the intermediate relative
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orientations between 30° and 60° may represent true trajectories. The original and “straight”
data are compared in figure 10 and tables I-111.

All tracks
0.4

0.35 1

Proportion

0 30 60 g0 120 150 180
Relative orientation

0 Outer tracks T : - :

0.35 7

0.3 1

0.2 . [IcControl
Bl Nsc

Proportion

0 30 60 90 120 150 180
Relative orientation

0,4! T T T Ll T
Inner tracks

0.3 .

0.25 .

Proportion
(o]
[x%)

o

—

[,
.

0 30 60 90 120 150 180
Relative orientation

Figure 9. Histograms of relative orientation. The proportion of all data is given for differences
between adjacent track segments, in bins of 10°, for all (A), outer (B) and inner (C) control and
Racl-inhibited (NSC) tracks.
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inhibited (NSC, right panels) cells. Lines are median values, boxes extend to 25" and 75®
percentiles (q1 and g3, respectively), whiskers to q1 — 1.5(g3 — gq1) g3 + 1.5(g3 — ql).



61

Table I. Growth speed of original and straight tracks. Median values and the inter-quartile
range (IQR) for each area in each experimental condition (control and NSC), before (original)
and after splitting of overly deviating tracks (straight), are shown.

All Outer Inner
Original Straight Original Straight Original Straight
Control
Median 12.09 11.98 11.89 11.78 12.57 12.50
IQR 9.61 10.72 9.51 10.03 9.92 11.04
NSC
Median 4.80 4.50 4.26 4.00 5.00 4.70
IQR 4.65 5.22 3.59 4.06 4.98 5.66

Table Il. Growth time of original and straight tracks. Median values and the inter-quartile
range (IQR) for each area in each experimental condition, before (original) and after splitting of
overly deviating tracks (straight), are shown.

All Outer
Original Straight Original Straight Original Straight
Control
Median 7.50 5.00 7.50 5.00 7.50 5.00
IQR 10.00 7.50 7.50 7.50 7.50 7.50
NSC
Median 7.50 2.50 7.50 2.50 7.50 2.50
IQR 7.50 2.50 7.50 2.50 5.00 2.50
Table Ill. Growth distance of original and straight tracks. Median values and the inter-

guartile range (IQR) for each area in each experimental condition, before (original) and after
splitting of overly deviating tracks (straight), are shown.

All Outer
Original Straight Original Straight Original Straight
Control
Median 1.65 1.02 1.50 1.00 1.60 1.01
IQR 2.36 2.05 1.90 1.80 2.27 1.96
NSC
Median 0.69 0.28 0.60 0.28 0.70 0.28
IQR 0.84 0.51 0.76 0.48 0.85 0.51
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As figure 10 and tables I-111 show, there is a consistent decrease in median values for growth
speed, time and distance in the straight tracks compared to the original tracks. This is true for
both experimental conditions. As is the case with the original data, the straight data was not
normally distributed (Chi-squared test, p < 0.05). The differences between the original and
straight data were significant for time and distance (Wilcoxon rank sum test, p < 0.01).

Therefore, tracks with lower intra-segment relative orientation grow more slowly, for less
time and distance, than tracks with greater intra-segment relative orientation. The decrease in
time and distance was expected due to the splitting of tracks between segments with high
relative orientation. The decrease in average speed must result from exclusion from the
straight data of faster parts of tracks; exclusion can result either from the splitting, whereby
the portion of the track between two frames that have now been put into different tracks is no
longer considered, or from removal of serial segments that have high relative orientation.

As the straight growth tracks cannot be linked with tracks allocated to other phases, nothing
can be said of the characteristics of pausing and shrinkage in straight tracks. Additionally,
the trajectories of pausing and shrinkage tracks are of course inferred from flanking growth
tracks, so it does not make a great deal of sense to commit these phases to the same kind of
analysis as above.

b. Orientation distribution

To quantitatively describe the relative orientation of each experimental condition and
intracellular area, selected probability distributions were fit to the data. To avoid overtly
complex probability models, only relative orientation data up to 60° were considered. Also,
it was found that all completely straight adjacent segments (i.e. 0° relative orientation) were
attributable to those tracks that were originally allocated as pausing tracks but re-assigned to
growing tracks (see methodology for plusTipTracker data description) by plusTipTracker;
thus, all zero relative orientation data were removed.

For each experimental condition or area, the proportions of relative orientations in bins of 5°
were found; this type of data is analogous to a probability density function. These data are
shown in figures 11 and 12 for control and Racl-inhibited conditions, respectively. In
finding an appropriate probability distribution, visual inspection of the probability density
distributions, which decreased rapidly and then levelled off with increasing relative
orientation, suggested that an exponential distribution might be a good representative model.
Further analysis (see methods) suggested that a generalised Pareto distribution may also be an
appropriate fit. Random numbers (n = 20,000) taken from these distributions were plotted as
proportions over the probability densities (figs. 11 & 12 Ai & Bi), or in cumulative
distributions (figs. 11 & 12 Aii & Bii). Although in many cases, both of these distributions
appeared to the fit the data quite well, they were both found to be significantly different from
the empirical data in all cases (2-sample Kolmogorov-Smirnov test, p < 0.05).

Other standard distributions also did not fit the data well (methods), and so a non-parametric,
smoothing kernel-based approach was adopted (again, see methods for details). Bandwidth
values for the best-fitting distributions are shown in table IV. The kernel probability
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distribution fits are also shown in figures 11Ci-ii and 12Ci-ii. Visual inspection of these
distributions suggests that they provide better fits of the data, and indeed, they were
significantly similar to the data in every case (2-sample Kolmogorov-Smirnov test, p > 0.05).
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Figure 11. Control proportions and cumulative distribution functions. For all tracks (A) and
outer (B) and inner (C) areas, empirical proportions sampled distributions (i) and empirical and
modelled cumulative distribution functions (ii) are shown.
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Figure 12. Racl-inhibited proportions and cumulative distribution functions. For all tracks
(A) and outer (B) and inner (C) areas, empirical proportions sampled distributions (i) and
empirical and modelled cumulative distribution functions (ii) are shown.

Table IV. Bandwidth values for kernel-based probability distributions. Values for control
and Rac1-inhibited (NSC) conditions for each area, so determined by best fitting.

Condition All Outer Inner

Control 0.186 0.232 0.206
NSC 0.232 0.284 0.255
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It makes sense to test only the relative orientations of control and Racl-inhibited tracks in
inner and all tracks groups; these are not normally distributed (Kolmogorov-Smirnov test, p <
0.05), and differ significantly (2-sample Kolmogorov-Smirnov test, p < 0.001). The
proportions of relative orientations in bins of 5° show that there is little difference (fig. 13)
between intracellular areas: the relative orientation data are not significantly different
between areas (2-sample Kolmogorov-Smirnov test, p > 0.05).
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Figure 13. Proportions and cumulative distribution functions by area. For control (i) and
Racl-inhibited (ii) conditions, the proportions (A), empirical (B) and modelled (C) cumulative
distribution functions are shown for outer and inner areas.
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c. Cortical approach orientation

In this section, the orientation of comet tracks relative to the cell edges is considered. As
with the previous analyses of orientation, tracks were split according to the relative
orientation between adjacent segments. Since these tracks are close to the cell edge, a greater
allowance was made for microtubule bending, and the threshold was set at 90°.

First of all, the edge-relative orientation as a function of the distance between a comet and the
edge is considered. Here, the depth of each outer area was normalised so as to allow pooling
of the data for each condition; thus, a value of 1 is the farthest point from the edge, and 0 is
right upon the edge. The distribution of comets was found for discrete groups: distance was
split into 10 groups of size 0.1 — “normalised groups”, and relative orientation was split into
18 groups of size 10°. For each of these groups, the number of comets, or rather, instances of
a comet (i.e. the appearance of a comet in one frame) was found, and normalised to the
maximum count.

Heat maps of the comet counts are shown in figure 14A & B for control and Racl-inhibited,
respectively. Here we see that the greatest number of comets occurs at approximately 0°, i.e.
parallel to the edge. In the control condition, this maximum is shifted closer to the edge
relative to the other condition. There are more comets in both conditions on the positive
orientation side, indicating that more microtubules do grow toward the edge rather than away
from it, and again, in the control condition, these higher values are shifted closer to the edge
relative to the other condition.

Another way of representing the data is to express the counts relative to the maximum value
in each discrete distance bin. This reveals the distribution of comets at each distance (fig. 14
C & D). In this case, the heat maps differ to a greater extent; we see that at greater distances
in the control condition, there are the highest numbers of comets at high positive angles,
indicating that microtubules grow predominantly perpendicular to the edge up until around
the 0.5 distance mark. In the Racl-inhibited condition, however, although there are more
comets at high positive orientations at greater distances than negative orientations, the
maxima occur closer to the 0° mark, indicating that in this condition, microtubules tend to
grow predominantly parallel to the edge even at greater distances.

Finding the resultant relative direction at each discrete distance supports the conclusions
made above (fig. 15A). Here, the resultant direction of control comets relative to the edge is
towards the cell edge more than in the Racl-inhibited condition, and this difference is marked
for the first 5 distance groups, i.e. 0.5 — 1.0 in normalised distance.



67

A Control

c c
° 0
© ®
c c
L 2
G (5]
o QL
= =
& ©
L p
g g Max
=] o
L L
1 0.5 0 1 0.5 0
Edge distance Edge distance
C Control D NSC

90
| = c
.2 3]
© ®
5 5 Min

0 2 2
L o
o )
[@)] [®)]
o =]
w w

90

1 0.5 0 1 0.5
Edge distance Edge distance

Figure 14. Heat maps of comet orientation relative to cell edge (previous page). Colours
indicate the numbers of comets relative to the maximum (refer to colour bar) for all orientation
and distance bins (A & B, for control and Racl-inhibited conditions respectively), and for each
distance bin (C & D, for control and Racl-inhibited conditions respectively), i.e. the top row
colours depend on the ratio of comets in a given bin compared to the bin with the highest number
of comets overall, while the bottom row colours depend only on ratios compared to the bin with
highest number of comets in a given distance bin. The concentration of “hot” colours around 0°
in D indicates that Racl-inhibited cells take shallower approach angles that control comets (C).
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Forgetting the distance groups and taking the proportion of comets in each orientation group,
there is a higher proportion of comets with edge-relative orientations in the region of 90°-60°
than in the Racl-inhibited group (fig. 15B). For many of the other orientation groups,
proportions are similar between the conditions; however, the proportion of comets in the
control condition that are oriented at -90° to -30° is much less than in the other condition.
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Figure 15. Resultant edge-relative comet orientations. The resultant direction at each
distance bin, from 1 to 0 in bins of size 0.1, for control (blue) and Racl-inhibited (red) conditions
(A), and the proportion of comets in each direction bin for control (blue) and Racl-inhibited (red)
(B). Units in B are degrees.

Histograms of the edge-relative orientation for all edge distances, and for the closest and
farthest 5 bins, demonstrate further the differences and similarities between treatments seen
in the preceding figures (fig. 16). Here, for all edge distances, proportions of comets are
similar between conditions apart from the high positive relative orientations (fig. 16A),
whereas for the furthest distances (bins 1 — 0.5), the conditions have an entirely different
distribution (fig. 16B), and in the closest distances (bins 0.5 — 0), the conditions again have
similar distributions, perhaps more so than for all distances (fig. 16C). Despite the
similarities in some cases, the differences in edge-relative orientations were significant
(Wilcoxon rank sum test, p < 0.001), after establishing non-normality (Chi-squared test, p <
0.05). Therefore, control condition microtubules generally grow at greater angles relative to
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the cell edge, and this difference is accentuated at the farthest distance away from the cell
edge, within the outer areas.
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Figure 16. Edge-relative comet orientation histograms. The relative orientation of comets for
each experimental condition, for all edge distances (A), the farthest 5 distance bins (B) and the
closest 5 bins (C).
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Another means of quantifying the edge-relative comet orientation is to take the proportion of
comet tracks that point toward the cell edge; this measure is similar to the radiality measure
discussed above. Figure 17 shows the cumulative sums of the proportions of comets in each
orientation bin of size 10°. Here, the steeper slopes indicate greater accumulation of tracks,
and thus, a higher propotion. Thus, the Racl-inhibited condition has a greater proportion
between -90° and approximately -30°, while the steeper slope in the control condition above
45° indicates that there are a higher proportion of tracks there. The radiality, based on
varying levels of threshold edge-relative orientations, is shown in table V. This shows that
the control treatment has consistently higher radiality scores than the Racl-inhibited
condition.
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90 45 0 45 90
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Figure 17. Cumulative sums of edge-relative orientation. Shown for control (blue) and
Rac1-inhibited (red). Dashed lines correspond to thresholds shown in table V.

Table V. Radiality of outer area comets. Proportions of comets oriented relative to the cell
edge above threshold values, 8, are shown for control and Rac1-inhibited (NSC) conditions.

Proportion
Edge-relative orientation Control NSC
6 > -45° 0.9505 0.9034
6>0° 0.7189 0.6261

0 >45° 0.2350 0.1574
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I1. Microtubule dynamics
a. Whole-cell microtubule properties

In this section, microtubule properties over the whole cell are considered. Although in the
previous section, the orientation data showed that a small proportion of the tracks appear to
deviate by a rather great extent, there is no thorough means of dealing with these overly-
deviating tracks when it comes to the analysis of microtubule dynamics. Since shrinking and
pausing phases are inferred between episodes of growth, splitting tracks according to relative
orientation criteria effectively disconnects these tracks, and the pausing and shrinking phases
are lost. Therefore, the subsequent analysis is based on all of the data.

First, the speeds, times and distances for each microtubule phase are considered. The data for
all similar areas were pooled, i.e. for each treatment, all data for the inner tracks were put
together, as were those for the outer tracks, and all tracks. The mean values for each
treatment (i.e. using the pooled data) are shown in table VI and figure 18. All data sets were
found to be non-normally distributed (Chi-squared test, p < 0.01). Note that, despite this non-
normality, the mean values are reported because the mean is reported in the literature.
Growth speed, time and distance and pause time (see terms list) were significantly decreased
in the Racl-inhibited condition (Wilcoxon rank sum test, p < 0.01).
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Figure 18. Average values of speed, distance and time for pooled data. All tracks data
were used to calculate mean values for applicable phases for control and Racl-inhibited (NSC)
cells. Error bars are standard deviation.
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Table VI. Average values of speed, distance and time for pooled data. The mean values,
for applicable phases, of data from all tracks for control and Racl-inhibited (NSC) cells, + the
standard deviation. Units are ym min (speed), s (time) and um (distance).

Control NSC

Grow

Speed 12.67 + 6.47 6.12 + 4.64

Time 11.63 +9.18 9.98 +7.87
Distance 2.63+2.80 0.93 +£0.82

Shrink

Speed 22.76 £ 4.50 -

Time 5.08 £ 0.46 -
Distance 1.93+0.40 -

Pause

Time 8.26 £ 2.78 7.77+2.76

b. Microtubule properties by area

The same properties, for each area in both experimental conditions, are shown in table VII
and figure 19. The all track data is repeated for ease of comparison with the inner and outer
track data. The difference between experimental conditions found in the all track data is also
evident in the area data, where the values for similar areas are all greater in the control
condition than those for the Racl-inhibited condition.

Comparing within-treatment values, in the control condition, the inner area growth speed,
distance and time are all greater than in the outer area, as is the pausing time, while the speed
of shrinkage is greater in the outer area, and although shrinkage time is reduced in the outer
area, the distance is narrowly greater there. For the Racl-inhibited data, we see that growth
speed and distance are greater for the inner area, while growth time is greater for the outer
area. As in the control cells, pause time is greater in the inner area.

The results presented in table VII were subject to statistical testing. Upon tests for normality,
all data sets were either found to be non-normal (Chi-squared test, p < 0.05) or had too few
entries (the shrinkage data sets for control cells) to conduct a proper normality test. The
collected data, i.e., all areas for each experimental condition for a single measure, e.g.,
growth time (except shrinkage data, which was not assessed for Racl-inhibited cells) was
then non-parametrically tested for significant differences. The data for growth speed, time
and distance, and pause time were found to have a significant difference (Kruskal-Wallis test,
p < 0.05), while none of the shrinkage properties were found to be significantly different
(Kruskal-Wallis test, p > 0.05). Next, intra-data comparisons were conducted for the growth
and pause data; these were: 1. all tracks, control vs. Racl-inhibited, 2. outer tracks, control vs.
Racl-inhibited, 3. inner tracks, control vs. Racl-inhibited, 4. control cells, inner vs. outer
tracks, and 5. Racl-inhibited cells, inner vs. outer tracks.
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Table VII. Average area values of speed, distance and time. The average values, + the
standard deviation are shown for growing, shrinking and pausing tracks for each cell area for
control and Racl-inhibited (NSC) cells. Units are ym min! (speed), s (time) and um (distance).

Control NSC
All Outer Inner All Outer Inner
Grow
Speed 12.67 12.46 13.13 6.12 5.32 6.37
P +6.47 +6.43 +6.68 +4.64 +4.00 +4.86
Time 11.63 10.10 10.86 0.98 10.19 + 9.65
+0.18 +7.55 +8.37 +7.87 8.36 +7.52
Distance 2.63 2.13 2.49 0.93 0.83 0.94
+2.80 +2.04 +2.54 +0.82 +0.75 +0.82
Shrink
22.76 24.46 22.34
Speed +4.50 +5.91 +4.12 - - -
. 5.08 458 5.00
Time +0.46 +1.02 +0.74 - - -
. 1.93 1.92 1.87
Distance "5 40 +0.71 +0.44 - - -
Pause
Time 8.26 7.84 8.16 7.77 7.53 7.83
+2.78 +2.91 +2.86 +2.76 +2.68 +2.83

To limit the chance of falsely detecting a significant result, the level taken for significance
was adjusted according to the Bonferroni method. Here, the original p value for the collected
data is divided by the number of intra-data comparisons, thus p = 0.05/5 = 0.01. In the first
three comparisons, i.e. those between similar areas of different experimental conditions, all
data were found to be significantly different (Wilcoxon rank sum test, p < 0.01) apart from
growth time for outer areas, and pause time for outer and inner areas (Wilcoxon rank sum test,
p > 0.01). Thus, in general, growth properties are significantly greater in control versus
Racl-inhibited cells, while pause time is only significantly elevated in the all track data.

For the within-treatment comparisons, in the control cells, inner and outer tracks were found
to be significantly different from one another in all growth properties (Wilcoxon rank sum
test, p < 0.01), while pause time was not significantly different (Wilcoxon rank sum test, p >
0.01). Therefore, all growth properties are significantly greater in inner areas in control cells,
while pause time is not. In the Racl-inhibited cells, growth speed and distance were
significantly different (Wilcoxon rank sum test, p < 0.01), while growth and pause time were
not (Wilcoxon rank sum test, p > 0.01). Thus, Racl-inhibited cells, though they exhibit
significantly lower growth speeds and distances, show the same relationship between growth
speed and distance (significant) and pause (not significant) time between inner and outer
areas as control cells, with greater values for the inner area. The opposite is true for growth
time, however, which is greater for outer areas in Racl-inhibited cells, but not significantly
s0. These statistical results are summarised in table VIII.
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Table VIII. Summary of significance tests on comparisons of areas. Similar areas (“all’,
“outer” and “inner”) are compared between treatments (“‘control vs. NSC”) and inner areas are
compared with outer areas within each treatment (“‘within treatment”). A tick indicates
significance at the level given by the Bonferroni correction (original significance: p < 0.05), while
a cross indicates a non-significant result.

Within treatment

Control vs. NSC Inner vs. outer
All Outer Inner Control NSC

Grow

Speed v v v v

Time 4 X v v X
Distance v v v v v

Pause

Time 4 X X X X

The data can also be considered in terms of percentages of the total time or distance of track
observation. These are shown in table IX. Here, we see that in inner areas in control and
Racl-inhibited cells, growth accounts for proportionately more time than in outer areas, and
there is a proportionately longer time in pause in outer areas than in inner areas for both
control and Racl-inhibited cells. Inner areas have twice the percentage of observation time
in shrinking than outer areas. In proportion to all track data, in control and Racl-inhibited
cells, inner and outer areas have an increased and decreased percentage, respectively, time in
growth, and a decreased and increased percentage, respectively, time in pausing. The data for
distance percentage hold little information for the Racl-inhibited cells, while for control cells,
inner areas have greater percentage distance in shrinking than outer areas, and decreased
percentage in growth. These data are summarised in figure 20.

Table IX. Percentages of total time and distance in applicable phases. The percentages of
total time or distance for each treatment, in each area, are shown.

Control NSC
All Outer Inner All Outer Inner

% time

Growing 91.11 90.72 91.29 95.31 94.87 95.47
Shrinking 0.12 0.07 0.13 0.00 0.00 0.00

Pausing 8.78 9.21 8.58 4.69 5.13 453
% distance

Growing 99.78 99.85 99.76 100.00 100.00 100.00

Shrinking 0.22 0.15 0.24 0.00 0.00 0.00
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Figure 20. Percentage times and distances in applicable phases. For each area in each
condition, the percentage times in growth (A) and in pause (B), and percentage distance in
growth (C) are shown. For the shrinking phase, only control data are applicable, for which the
percentage distance and time (D & E) are shown.

c. Estimating dynamics parameters

As figure 8 showed, the parameters available for estimation based on the data obtained with
plusTipTracker are limited to transition frequencies from growth to pausing and shrinkage
and back again, the rate of growth and an inferred rate of shrinkage. Thus, because we
cannot directly observe shrinkage and pausing with this method, we cannot know the values
of the transition frequencies between these states. See the methodological details in the
previous sub-section for a discussion of the inherent biases in making estimations of
transitions frequencies based on data obtained with observation of a +Tip proteins.

The two estimates based on the “biased” and corrected” approaches (again, see methodology)
of the transition frequencies are shown in table X, along with growth and shrinkage rates and
numbers of pausing and shrinking tracks. The calculations of dynamics are based on pooled
data for each condition. The growth and shrinkage rates are as presented above, as are the
numbers of tracks; they are shown again here for the completeness of dynamics parameters
and to show the numbers involved in making the transition frequency calculations according
toeq. 1.
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Table X. Dynamics parameters. For each area in control and Racl-inhibited (NSC) conditions,
the mean and median (as indicated) phase speeds, transition frequencies and numbers of
pausing and shrinking events are shown. Where the biased and corrected values differ, there
are two values for a transition frequency (in the order indicated); otherwise, just one value is
shown. See terms list for definitions of terms.

Control NSC
All Outer Inner All Outer Inner
Vg
Mean 12.67 12.46 13.13 6.12 5.32 6.37
Median 12.09 11.89 12.57 4.80 4.26 5.00
Vs
Mean 22.76 24.46 22.34 - - -
Median 22.59 25.63 22.59 - - -
Fcat
Biased 0.02 0.01 0.02
Corrected 5.45 5.33 6.62 0.00 0.00 0.00
Fres
Biased 11.80 13.09 12.00 0.00 0.00 0.00
Corrected ' ' ' ' ’ )
Fg2p
Biased 0.70 0.78 0.69 0.38 0.43 0.36
Corrected 4.96 6.07 5.32 6.37 5.89 6.82
Fp2g
Biased 7.26 7.66 7.35 7.72 7.97 7.67
Corrected
Number 1383 466 935 605 192 414
pause
Number 30 6 24 0 0 0
shrink

Since there were no shrinkage events detected in the Racl-inhibited cells, Fcar and Fres in
these cells is zero, which, as was touched upon above, is likely to be inaccurate since
microtubules without these dynamics would be unusual, given that the “dynamicity” of
microtubules in cells is highly documented. In the control condition, Feat is increased in the
inner area relative to the outer area. This is true for the biased and corrected methods. Fres
decreases in the inner area relative to the outer area. In the control condition, both Fg, and
Fp2g decrease in the inner area relative to the outer area, while in the Racl-inhibited condition,
this is true only for Fpog and the biased calculation of Fgop; the corrected Fqop is increased in
the inner area. Thus, there is a disagreement between the two methods here.

Comparing experimental conditions, there is a greater corrected Fqop in the Racl-inhibited
condition for all and inner areas, but not for outer areas, while the biased Fg2p is lower for
each area in the Racl-inhibited condition. So, again, there is disagreement between the two
types of calculation. Values for Fpog are greater in the Racl-inhibited condition, for all areas,
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and both conditions show a similar small decrease in inner areas relative to outer areas for
this transition frequency.

To clarify the relationships between outer and inner transition frequencies, we can consider
the ratios between them; these are shown in table XI. Here, in the control condition, only Fcat
is smaller in the outer areas relative to inner areas, by both methods; all other transition
frequencies are greater in the outer area relative to the inner. For the Racl-inhibited
condition, only the corrected value of Fgp is smaller in the outer area relative to the inner
area; here, the disagreement between methods described for Racl-inhibited Fgp is more
clearly seen, since the biased value indicates that there is a greater value for this transition
frequency in outer areas relative to inner areas.

Table XI. Ratios of transition frequencies in outer to inner areas for pooled data. For
pooled control and Racl-inhibited (NSC) condition data, the ratios of outer:inner for the indicated
transition frequencies are shown. Thus, a value greater than one indicates an increase in the
outer area relative to the inner area, and values below one: vice versa.

Control NSC
Biased Corrected Biased Corrected
Feat 0.56 0.81 - -
Fres 1.09 1.09 - -
Fg2p 1.13 1.14 1.18 0.86
Fp2g 1.04 1.04 1.04 1.04

The ratios of Fgp in outer to inner areas in both experimental conditions are identical to the
precision shown, while the biased values for the Fp2g outer to inner area ratio is greater in the
Racl-inhibited condition, but the corrected value ratio is smaller than the control condition.
Therefore, in general, outer areas exhibit greater tendency to undergo a transition in all cases
but catastrophe, and, according to the corrected method, in growth to pausing transitions in
the Racl-inhibited condition.

Next, we can consider the ratio of “opposing” transition frequencies within areas. Here, the
two transition frequencies that move to and from two given phases are compared with one
another (table XII). In this case, we have the pairs of Fcat and Fres, and Fg2p and Fpog. In
finding these ratios, the corrected values were used, since, as discussed in the methodology,
these are more comparable, not only in terms of magnitude but also in the methods of their
calculation.

Table Xll. Transition frequency ratios in pooled data. For both control and Racl-inhibited
(NSC) conditions, the indicated ratios are given, using “corrected” frequencies.

Control NSC
All Outer Inner All Outer Inner
Fecat:Fres 0.46 0.41 0.55 - - -

Fa2p:Fpag 0.68 0.79 0.72 0.83 0.74 0.89
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The trend here is smaller values for those transition frequencies that move away from the
growing phase, compared to those that move toward the growing phase. Although this trend
is also present in the Racl-inhibited condition, the ratios are greater for the all track and inner
area data, indicating that in these groups, there is an increased tendency toward growth to
pause transitions than in similar groups in the control condition.

Finally, the dynamics of the different areas and different treatments are summarised
qualitatively in figure 21. Presentation in this way helps understand where the differences
between areas and treatments lie. The most obvious difference is that, since no shrinkage
events were detected in the Racl-inhibited condition, there are zero values for catastrophe
and rescue frequencies, and for shrinkage speed. If these are accurate and not due to false
negatives, then we can expect the Racl-inhibited condition to have microtubules that are
much more prone to growth.

Vg Vs F cat F res F g2p F p2g9 Vg Vs F, cat F, res i F, 92p : F, p2g
OQuter Slower Faster Lower Higher Higher | Higher Slower - Zero Zero Lower Higher
Inner Faster Slower Higher Lower Lower | Lower Faster - Zero Zero | Higher Lower

Control Rac1-inhibited

Figure 21. Summary of microtubule dynamics within inner and outer areas, between
experimental conditions. Qualitative descriptions are given as to the relationship between
dynamics parameters in each area.

Apart from these differences, the only other qualitative difference between the cell areas in
the two treatments is for Fgop; here, there is a higher frequency in the outer area compared to
the inner in the control condition, but the opposite is true in the Racl-inhibited condition.
Added to this the fact that Fp2g is higher in outer areas compared to inner areas in the Racl-
inhibited condition, we can expect that microtubule growth in the outer areas of this condition
dominates more than in the outer areas in the control condition.
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D. DISCUSSION
I. Microtubule characteristics in unperturbed and Racl-inhibited cells
a. Microtubule dynamics throughout the cell

Tracking of a labelled microtubule +TIP protein CLIP-170 has allowed measurement of
certain microtubule characteristics, including times, distances, and speeds in the different
microtubule phases. Conducting this analysis in control and Racl-inhibited cells has
permitted comparison of the dynamics in these different conditions.

In the control treatment, microtubules were found to grow faster than in the Racl-inhibited
treatment, and microtubules spent more time and covered more distance in this phase in the
control condition too. In accordance with the disagreement between microtubule
organisation in Racl-inhibited cells from the Mogensen lab and in the presence of DN-Racl,
the dynamics also differ relative to the respective controls. In Wittmann et al. (2003), DN-
Racl actually elevated microtubule growth speed slightly, whereas here, inhibition of Racl
was found to decrease growth speed by over half. In addition, Nishimura et al. (2012) found
that DN-Racl increased growth speed, but in agreement with the results here, they found that
DN-Racl decreased time spent in growth. An analysis of dynamics with all means of
interfering with Racl function is necessary to clarify the differences between these studies.

The dynamics reported are based on two different calculations: one that used total growth and
(inferred) shrinkage times, the biased method, and one that used only the times in each phase
that preceded a given transition; the corrected method. The corrected method was used in
comparisons of transition frequencies between conditions and subcellular areas because it is
possible to find values for all transition frequencies based on this method, and therefore
compare them. Thus, there is of course an element of inaccuracy and doubt here, but this is
true of all dynamics measurements. For example, Shelden and Wadsworth (1993)
demonstrated that microtubule dynamics measurements vary with the time interval between
film frames. As Applegate et al. (2011) suggest, the dynamics measured with plusTipTracker
have their own set of confounding factors.

Unusually, there were no shrinkage events detected in the Racl-inhibited condition in this
study, although the efficacy of this is doubtful, and the potential interference with tracking of
overly-deviating microtubule tracks aside, there are three possible scenarios to explain this
unlikely result: 1) both Fcat and Fres are not zero but very low, hindering their detection, 2)
Feat is low and Fres is high, and shrinking events are missed as a result of infrequent
transitions to and frequent transitions from the state, and 3) Fca is high and Fres is low, and
shrinking events are missed because they are rarely rescued but result in extinction instead.
Distinguishing between these scenarios could be achieved by recording labelled microtubule
dynamics, rather than using a +TIP protein, or alternatively, modelling could be used. The
next two chapters address the latter approach.
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Values for transitions between pausing and shrinking states were not obtainable with the
methods employed here. Estimating values for Fp2s and Fspp by comparing microtubule
network properties will also be topics in the next two chapters.

b. Microtubule dynamics in subcellular areas

In this study, the development of tools to semi-automatically segment cells into inner and
outer areas, and to allocate tracks to these areas, has allowed further comparison of
microtubule dynamics between the subcellular areas and experimental conditions.

Using just the corrected dynamics values, in the control condition, Vg was decreased and Vs
increased in outer areas relative to inner areas; Fcat Was lower and Fres was higher in outer
areas, and Fg2p was high and Fpzg was slightly higher in outer areas. In the Racl-inhibited
condition, Vg was also decreased in outer areas relative to inner areas, as was Fgzp; Fpg,
however, was higher in outer areas. Are these dynamics sufficient to explain the
organisations seen in each condition? Also, do the differences between conditions explain
the differences in organisation? These are difficult questions to answer, and as with
exploration of the undetermined parameters, discussed above, they will be addressed in the
next two chapters, which make use of comparisons of the results here with previously-
reported microtubule dynamics (chapter 5), and modelling too (chapters 4 and 5).

However, the results do suggest possible mechanisms. Considering the phase time
percentages now, microtubules spend more time in pause in the control condition, and within
this condition, this time is greater in outer areas. In addition, microtubules grow more slowly
in control outer areas, and spend less time in shrinkage. Perhaps the higher occurrence of
pausing is indicative of, or indeed a mechanism of, capture of microtubules at the cortex.
Indeed, higher incidence of pausing at the cell periphery has been reported (Mimori-Kiyosue
et al., 2005).

Interestingly, the relationship between outer and inner areas for time spent in growth and
pausing is maintained in the Racl-inhibited condition, except here, there is an increase in
growth time compared to the control condition. Perhaps the increase in percentage time in
growth in the Racl-inhibited condition is again a manifestation, a cause or a consequence, of
defective cortical capture.

Since the dynamics parameters are based only on a subset of times in growth and shrinkage
phases, correspondence between them and the phase times, both absolute and as percentages,
should not be assumed. This is explored further in chapter 5. The fact that in the control
condition, Fgzp is higher in the outer area, but in the Racl-inhibited condition, it is lower in
the outer area, taken with the phase time percentages, suggests that there is a fundamental
difference in tendency to pause between microtubules of each condition.

A potentially interfering factor in this analysis is that the dynamics measurements were made
with GFP-labelled CLIP-170. As CLIP-170 is a +Tip protein and is involved in microtubule-
cortex interaction through interaction at its C-terminus and N-terminus with microtubules and
IQGAP, respectively, labelling CLIP-170 with GFP could interfere with these interactions
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and confuse the conclusions made above. Moreover, if microtubules are stabilised at the
cortex, these would not be observed using this methodology. Further work might address this
by combining methods of measuring microtubule dynamics.

c. Microtubule bending

The analysis of adjacent segment relative orientation revealed that in some cases, microtubule
tracks created by plusTipTracker were potentially unrealistically deviating. Since it was not
possible to locate the source of allowance of these overly-deviating tracks within
plusTipTracker, the issue of these bending tracks could not be addressed earlier than the point
at which comets are linked into tracks. As a result, the analysis of microtubule dynamics had
to include these highly-bending tracks. The extent to which these influenced the dynamics
measurements is difficult to evaluate, for example, we saw that there were significant
differences in microtubule dynamics between straight and bendy tracks. However, in favour
of the notion that these tracks would have a small rather than large effect, the proportion of
tracks that were bendy was low, and furthermore, it should be noted that most of these tracks
were not consistently high in relative orientation, rather, they contained one or a few
segments that were deviating and thus, by the criteria set, required splitting.

d. Microtubule orientation relative to the cell edge

The orientations of microtubule tracks relative to the periphery of the cell were also assessed.
These results indicated that microtubules in Racl-inhibited cells grow at shallower angles,
and even away from the cortex, to a greater extent than control microtubules. This is
consistent with the appearance of Racl-inhibited cells, since, as was described, they have
relatively low radiality. The mechanisms of radiality are addressed further in the next two
chapters.

I1. Microtubule organisation
a. Organisation as a systems property

Clearly, there are differences in the organisation of unperturbed and Racl-inhibited
microtubule networks. Similarly, there are differences between the dynamics of microtubules
in unperturbed and Racl-inhibited cells. Moreover, there is not just one simple difference
between the conditions, belying the possibility of an easily-identifiable mechanism to link
microtubule dynamics and their organisation; this is a common feature of systems, where the
outcome is difficult to predict from the components.

To elaborate, this study has established that Racl-inhibited microtubules grow more slowly,
bend to a greater extent, and take shallower angles relative to the cell edge. Furthermore,
there are probably differences in microtubule shrinkage rate, and Fcat and Fres; the results
found zero values for the latter two, and, by extension, a non-existent shrinkage rate. As has
been discussed, these values are unlikely, and a number of scenarios have been posited for
these results. In any event, there are differences in the organisation of cells subject to these
experimental conditions: to what extent can differences in their dynamics explain this?
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These results hint at possible mechanisms for the differences in organisation of the
microtubule array between control and Racl-inhibited conditions: microtubules may grow
more slowly in the Racl-inhibited condition, but do not transition to the shrinking phase and
thus grow more persistently than in the control condition. Moreover, in outer areas, this
persistence is increased since microtubules transition to the pausing phase less here, relative
to inner areas. However, recall from chapter 2 that in some cases, for example where
microtubule growth is guided by some mechanism, persistent growth might make for a better
cortical targeting strategy. Of course, this analysis is based on zero shrinking events in the
Racl-inhbited condition, limiting its validity. The zero Fca and Fres notwithstanding, the
difference in conditions in the frequency of their transitions to and from pausing might
contribute to the differences in organisation.

b. Mechanisms of organisation

Here, the inhibition of Racl was used as a model for disrupted microtubule-cortex interaction,
based on previous results in migratory cells (Fukata et al., 2002), and on the disorganised
microtubule phenotype seen upon Racl inhibition in the Mogensen laboratory, where
microtubules oriented at predominantly parallel angles relative to the cell border suggested
interference with microtubule-cortex interactions. The data presented here suggest that Racl
does indeed function to promote perpendicular microtubule-cortex targeting: microtubules in
Racl-inhibited cells grow at shallow angles relative to the cortex in comparison to control
cells.

It should be kept in mind, however, that microtubule dynamics were altered in inner areas as
well as outer areas of the cell in the Racl-inhibited cells. In inner areas, Racl-inhibited
microtubules spent a higher percentage of the time in growth relative to inner control areas,
but actually covered under half the distance of control microtubules due to the slower growth
rate in this condition. Furthermore, Racl-inhibited tracks had greater relative orientation,
indicating more bendy microtubules, or perhaps aberrant guidance of microtubules,
throughout the cell. These differences that are not outer area-specific are important; they
suggest that Racl inhibition affects not only microtubule dynamics at regions of the cortex
where junctions are located, but elsewhere too.

Although undifferentiated ARPE-19 cells are quite flat in culture, and Racl is localised to
cell junctions which are at the borders of the cell (when viewing from above or below with a
microscope), a potential explanation for the altered dynamics in inner areas might be that
Racl is involved in microtubule-cortex interactions elsewhere in the cell, and not just at the
junctions. However, there were significant differences between growth speed and distance
between Racl-inhibited areas, where microtubules grow more slowly and for shorter
distances, but for longer times (this was not a significant difference); perhaps the mechanism
lies here. In support of this, control outer microtubules spend less time growing than inner
areas, the opposite of Racl-inhibited outer microtubules. Also, control outer microtubules
spend less time in absolute and in percentage terms than Racl-inhibited outer microtubules,
although this difference was not significant.
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In summary, microtubule dynamics in unperturbed and Racl-inhibited cells have been
measured in inner and outer areas of cells, with a view to explaining how microtubule
dynamics contribute to radiality. To what extent can the estimated dynamics parameters
account for the differences in organisation between the two conditions? It is difficult to
attribute with complete certainty any organisational difference to the differences in dynamics,
but it is clear that there are differences between the two experimental conditions that could
lead to the differences in organisation. Ultimately, these mechanisms will be better
understood if they are subject to rigorous analysis with a model; this is the focus of the next
two chapters.

E. APPENDIX: MATERIALS AND METHODS
Cell culture, drug treatment and transfection

Human retinal pigment epithelial cells (ARPE-19) cells were maintained at 37° in 5% CO..
Cells were cultured in DMEM/F12, containing 5 mM Hepes and 2.5 mM L-glutamine,
supplemented with 5% FBS.

Racl inhibition experiments were performed by treating cells with 250 uM NSC 23766 for
24 hours.

For CLIP-170 transfection, 2 pg of CLIP-170-GFP was delivered using JetPrime (Polyplus).
Microscopy

After plating and growing to confluence, transfected cells were imaged using a Zeiss
Axiovert 200M (widefield).
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Chapter 4

Modelling microtubules and radiality
A. AMODEL FOR RADIALITY
I. Generation of radiality

a. Mechanisms of radiality

Previously in this thesis, the generation and maintenance of radiality, i.e. perpendicular
microtubule-cortex relative orientation, has been discussed. We saw in chapter 3 that an
otherwise radial array is perturbed upon inhibition of Racl, and that this is accompanied by a
change in microtubule dynamics. Indeed, radiality is a common feature of microtubule arrays
in undifferentiated cells, the large proportion of which exhibit the classic radial array
microtubule organisation.

Generally, implicit in discussions of microtubule organisation, in radial arrays and also in
other types of organisation, is the assumption that microtubule dynamics are modulated in
some way at the periphery of the cell in order to generate radiality. Yet, few studies have
addressed this either by experimental or theoretical means. Exceptions include Komarova et
al. (2002), who found that microtubules grow persistently in central regions of the cell, but
undergo a change in dynamics upon reaching the periphery that gives rise to a tendency to
shrink more. van der Vaart et al. (2013) have also addressed the generation of radiality,
finding that a growth inhibitor located at the cortex contributes to radiality.

The differences between inner and outer area dynamics were assessed in chapter 3; there,
differences were found between inner and outer areas within both control and Rac1-inhibited
cells, and also between experimental conditions. However, it is difficult to assign
organisational differences to differences in dynamics, and modelling can help. In this and the
next chapter, the basic mechanisms of radiality are first addressed, the focus of this chapter,
and then in the next chapter, the results of the previous chapter are considered in terms of
generation of radiality.

b. Addressing radiality with a model

The aim of this chapter is to elucidate the ways in which radiality is generated. | take a
modelling approach here, simplifying the system to a 1-dimensional problem wherein the
contribution of different sets of dynamics in inner and outer areas to radiality is assessed by
the competence of these dynamics in accurately attaining the target length, i.e. the distance to
the border of the cell.

1. Why model?
a. Rationale

The purpose of a model is to serve almost as a formal thought experiment; one specifies the
framework of the model: the parameters, i.e. the components of the system, their relationship
to one another, and the values they will take. By doing this, we can test our ideas rigorously;
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unlike a qualitative, or conceptual model, whereby we might display our thoughts of how a
system works in the form of a diagram, a quantitative model allows us to actually assess
whether these thoughts make sense. For example, in this chapter, we will ask: can these two
sets of dynamics, one for an inner area and one for an outer area, produce a proper radial
array? It would be difficult to answer this with an experiment, and thus a model is a
complementary tool; we know enough about microtubule dynamics to create a model of the
phenomenon, and use it to test our ideas on how radiality is generated. In the succeeding
sub-sections, | will briefly outline some more of the nuances of modelling, and review
previous models of microtubule dynamics.

b. Modelling as a tool

In chapter 2, we saw that microtubule dynamic instability is used and modified in cells to
give rise to various types of organisation, depending on the requirements of the cell. In trying
to define the relationships between microtubule dynamics and organisation, researchers have
used predominantly microscopic imaging and modelling. Continual progress in microscopy
and elegant experimental manipulations (e.g. Schek et al. (2007)) have permitted ever-more
detailed descriptions of microtubule behaviour, and various image processing algorithms (e.g.
Applegate et al. (2011)) have made dynamics measurements more accessible. With these
advances, modelling has become ever more useful, complementing traditional (although
modelling has been around for a long time, e.g. the model by Hodgkin and Huxley (1952) of
action potential propagation, which is over 60 years old, it is generally not practised by the
majority of investigators) means of experimentation by testing the findings of those
experiments within the stringent confines of mathematical language.

c. The modelling process

As in imaging, modelling approaches have been varied, ranging from fine-grain models at the
level of the tubulin heterodimer, to coarse-grain and phenomenological models based on
approximations of whole-microtubule behaviour, and even population-level features (for a
good short review, see Karsenti et al. (2006)). The diversity of approaches reflects an
important point: that one model for one set of experiments may be valid, but it may not be
applicable to another set; models must be created with experiments and applications decided
upon a priori. One model may turn out to be applicable to another set of experiments, but we
should not assume that it will be; we are not aiming for a universal model (for the time
being): as Mogilner et al. (2012) put it, there is no modelling “Road to Valhalla”, i.e. it may
be better to switch between types and scopes of models, rather than dedicate heroic effort
toward making a “whole-cell” model. Indeed, as the oft-cited observation that “all models
are wrong, but some are useful” (Box and Draper, 1987) is true, so it is also true that some
models are more useful for one application than another. Thus, part of a good modelling
study is to identify the type and scope of the model that is most appropriate.

To identify the relevant scope and type of model, one must match the model to the data that is
available; the information obtained from experiments must be able to act as inputs to the
model. Furthermore, the outputs of the model should be comparable in some way to the
reality; in essence, the model and experiments must be compatible. This dialogue works even
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better when some perturbation can be made, in both model and experiment. In this way, one
can test mechanisms suspected to be in operation in reality with the model.

So, why model? Modelling is a useful tool to help understand biology, by the fact that
models can help test our interpretations of experiments, and also suggest new ones.
However, in order to make the most of a model, we must choose how we go about
constructing it carefully. This chapter addresses both the appropriate construction of a model
and its use to answer a real biological question; this is elaborated on in the next sub-section.

I11. Survey of microtubule models
a. Modelling methods

The means of creating and using a model are no different in studies of microtubules, indeed,
in all biology, to those methods used elsewhere in science. As was briefly mentioned, all
models require that their workings be specified explicitly, and this specification usually
comes in mathematical form. It is the exact mathematical form the specifications take that
determines the type of model, which in turn affects the information that is compatible with
the model and the subsequent analysis of the model.

The most basic distinction one can make is between models that are deterministic or
stochastic. The former type of model is based on differential equations; these can be so-
called ordinary differential equations (ODE), or partial differential equations (PDE). ODEs
simply express the change of a variable, usually over time, as a function of the variable,
whereas PDEs include not only the change of a variable in time, but also space. Parameters
in these types of models will usually be rate constants of reactions. Generally, one will have
a system of ODEs or PDEs, meaning that there will be one equation per variable in the
system; variables might be, e.g. concentrations of the molecules in a particular system. The
analysis of a model based on ODEs and PDEs centres on finding solutions to the system of
equations: by solving a system of ODEs, e.g. one can find the variation in concentrations of
the components of the system over time. A clear advantage of PDEs over ODEs is that,
because space is represented in a PDE, one can include, e.g. variations in concentration in
space; however, PDEs are more difficult to solve.

Deterministic models are so-called because, given the same parameters, the result will always
be the same. This is not the case with stochastic models, which are probabilistic in nature.
For example, a deterministic model might specify the rate of change of a variable as a
function of its concentration, perhaps also the concentration of another variable, and a rate
constant. In a stochastic model, the change of the same variable will be the result of the
probability that it will undergo a reaction; the probability will have a distribution obtained
from some empirical data, or some prior knowledge of the mechanisms that underlie the
particular reaction. Because stochastic models are based on probabilities, there is uncertainty
in the way in which the system will progress: there can be more than one outcome, unlike
deterministic models.

Stochastic models can be approached in a number of ways. Generally, the different
approaches refer to the way in which the model is “simulated”. Simulation simply means the
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advancement of the model through time; probabilities are assessed either at discrete time
steps, as in a so-called “Monte Carlo” simulation, while finding the time to the next change in
the system is an approach sometimes referred to as “Gillespie” simulation.

Other types of models are used in biology, such as Boolean and agent-based models, but
discussions of these are beyond the scope of this chapter. For an excellent introduction to the
various modelling approaches available to a biologist and examples of how they have been
used, see Mogilner et al. (2012).

b. Microtubule problems addressed with models

Generally, microtubule models fall into two groups. There are those models that address the
mechanism of dynamic instability, and there are those that consider how dynamic instability
affects microtubule population organisation. Models created to understand the mechanisms
of dynamic instability are generally based on information regarding tubulin dimers: rate
constants of association and disassociation, etc., whereas models focussed on understanding
how dynamic instability relates to array organisation are usually based on information on
whole-microtubule dynamics: growth and shrinking speeds, transitions frequencies, etc.

Consequently, microtubule models generally accede to the principle of an appropriate level of
abstraction; it would be unnecessary to use tubulin biochemical data in a model of
microtubule population dynamics, while a model of dynamic instability based solely on
growth rates and transition frequencies would tell us nothing new about dynamic instability.
Often, the properties that “emerge” from a given level, e.g. growth/shrinkage rates and
transition frequencies that emerge from the biochemistry of tubulin, can be used in a model
that seeks to explain phenomena at a higher level; thus, the growth and shrinkage rates and
transition frequencies will be applicable for a model with the goal of understanding
microtubule array organisation.

The first applications of modelling to microtubule-oriented problems were carried out in
order to explain the existence of discrete phases of microtubule polymerisation. Since it had
become evident that a population of microtubules could consist of individuals in different
phases at the same time (Mitchison and Kirschner, 1984a; Mitchison and Kirschner, 1984b),
which was contrary to established theory on polymer dynamics (Oosawa and Asakura, 1975)
because of the coupling between polymerisation and GTP (or ATP) hydrolysis, Hill and
Carlier (1983) and Hill and Chen (1984) sought to better-understand the processes of these
phase changes with a model. Their model is stochastic and based at the level of tubulin units
in a polymer with unit width (i.e. analogous to modelling a single protofilament). Each unit
is GTP- or GDP-bound, and the probabilities of changing nucleotide state are calculated
based on rate constants derived from experimental data; GDP-bound units cannot go back to
GTP-bound, and upon each iteration of the model, the nucleotide state of each GTP-bound
unit is tested for change by comparing a uniform random number against the probability of
changing (Chen and Hill, 1983). They found that when they did not average results over
large times (Hill and Carlier, 1983), the modelled microtubules exhibited discrete states
whereby all units were GDP-bound or GTP-bound (Hill and Chen, 1984), supporting the
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experimental findings of Mitchison and Kirschner (1984a) and Mitchison and Kirschner
(1984b).

Many more studies dedicated to furthering understanding of dynamic instability with
modelling have since appeared, some combining deterministic and stochastic approaches
(Ranjith et al., 2009), while others combining mechanical modelling of the microtubule plus
end with a stochastic approach (VanBuren et al., 2005). An interesting, more abstract take on
the mechanism of just catastrophe is provided by Brun et al. (2009). These authors use a
stochastic model of a set of protofilaments where catastrophe occurs if a given number N of
terminal tubulin units in one protofilament become GDP-bound and that protofilament does
not encounter a GTP-bound unit in an adjacent protofilament as it shrinks, and they find that
N = 2 best reproduces experimental results. Of course, since this model is more abstract, i.e.
it is phenomenological, it is more difficult to interpret the result. Brun et al. (2009) suggest
that it might reflect dependencies of catastrophe on mechanical properties of the microtubule
in addition to kinetic processes.

Moving on to models that consider microtubule dynamics and organisation, these started with
the work of Verde et al. (1992) and Dogterom and Leibler (1993). In this case, microtubule
dynamics are no longer considered in terms of associations and disassociation of tubulin units
and hydrolysis of GTP; instead, they are modelled purely in terms of transition frequencies
and growth and shrinkage rates. Such models are often described as “mesoscopic” or
“phenomenological”. As with the mechanistic models of dynamic instability, they are
amenable to deterministic and stochastic analysis.

Stochastic simulations have been used to investigate the efficiency of proposed “search and
capture” mechanisms, for a general target (Holy and Leibler, 1994), and in the location of
chromosomes by microtubules (Wollman et al., 2005). In Wollman et al. (2005), the authors
found that a spatial bias in catastrophe frequency was required for microtubules to locate
chromosomes in observed times. Meanwhile, a deterministic approach was taken by Green et
al. (2005) to find the average length of microtubules, given experimentally determined phase
transitions and growth rates. Here, the authors perturbed the function of APC and measured
dynamics with EB1. To find the mean length, they had to derive solutions for their set of
ODEs; assuming steady-state allowed them to do this.

One study notable for being an exception to the trend of microtubule population models being
based on a phenomenological treatment of microtubule dynamics is that of Gregoretti et al.
(2006). In this study, the authors explore the effects of limited tubulin concentration and
limited space in which to grow, with the aims of establishing principles of microtubule
growth “in a cell-like environment”. The model is similar to that of Hill and Chen (1984), in
that it is stochastic and that tubulin units are modelled, with given probabilities of association
and disassociation, but instead of just one microtubule, many microtubules are modelled, and
there is a finite amount of free tubulin in solution. Of course, they also specify concentration
dependence in these rates. There is also a finite microtubule length, intended to mimic the
effects of growing against the boundaries of the cell.
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Because the authors of this study update the free tubulin concentration upon each iteration of
the simulation, they can explore the interplay between confined growth and tubulin
concentration. They find that, with permissive model parameters, microtubules grow
persistently in the cell interior, and generally only exhibit catastrophe at the cell border. This
behaviour has been documented in real cells by Komarova et al. (2002), and Gregoretti et al.
(2006) suggest that this behaviour arises because the increase in catastrophe that would not
occur if there were no cell borders serves to increase the soluble tubulin to a level similar to
that which would occur for higher total tubulin concentrations (again with no border). Thus,
their results can be interpreted thus: boundaries act to effectively increase the total tubulin
pool, in terms of microtubule behaviour, and this is why microtubules often grow persistently
against cell borders.

IV. A rationale for modelling in this chapter
a. Setting the problem

The above discussion and review makes it clear that it is good practice in any modelling
study to set the problem that the model is to address before the type of model and other
particulars can be decided. This and the next chapter address two closely related problems:
the mechanisms of generation of radiality, addressed here, and the role of Racl in
microtubule organisation, addressed in chapter 5. The problems are related by the fact that
one phenotype of Racl inhibition is loss of radiality; thus, as the general problem of
establishing radiality is addressed with a model here, in the next chapter, the mechanism
behind loss of radiality upon inhibition of Racl can be considered. Therefore, the model
must be made to address the general mechanisms of radiality.

b. Model reasoning

A point previously made by van der Vaart et al. (2013) is that, as microtubules are flexible
and can bend upon growing into a barrier, then when a growing microtubule reaches the cell
cortex, there is no reason to expect that it should stop growing there and be oriented
perpendicularly to the edge of the cell; it could indeed bend, and continue to grow
unimpeded. Therefore, there must be one or more mechanisms by which microtubule growth
is halted at the cortex.

So, following this rationale, radiality ensues from a process or processes by which
microtubules are accurately targeted to the correct length. One way in which this could occur
is a change in microtubule dynamics at the cell periphery, and there are also likely to be
other, non-exclusive ways in which microtubule properties are modulated so that a target
length, and thus radiality, can be achieved. For example, work from Gardner et al. (2011) has
shown that microtubule catastrophe can be regulated so that it is a multi-step process,
conferring a lower chance of catastrophe upon younger microtubules. This type of
mechanism could be used to tune microtubule length, creating areas of the cell, toward the
periphery, where catastrophe frequencies are elevated relative to the rest of the cell (Gardner
et al., 2013). Moreover, a more basic mechanism could be capture and stabilisation of
microtubules at the cortex; in this case, a captured microtubule would be withdrawn from the
dynamic pool of microtubules and remain fixed in length. The discussion of selective
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stabilisation in chapter 2 makes it clear that such events are possible. Notably, such
microtubules would not be detected by the methods used in chapter 3.

The true situation is likely to be a balance of these factors; the microtubule-inherent and
cortex-mediated dynamics changes can both contribute to tuning of microtubule length to a
target magnitude, while, although contributing to radiality themselves, these mechanisms will
also contribute to cortical capture, by virtue of fine-tuning microtubule length and thus
allowing a plus end to remain, on average, in the same place.

Here, | investigate the cortex-mediated dynamics changes that are posited to contribute to the
generation of radiality. Because radiality follows from accurate tuning of microtubule length
to a target magnitude, then a simplified model is justified. In this model, a microtubule
grows in one dimension, i.e. it is straight, and is subject to two sets of dynamics. The first set
is that of the inner area, and up to a given length that specifies the start of the cell periphery,
these are the relevant dynamics. Once the periphery length has been exceeded, the second
dynamics set, that of the outer area, is employed. The aim of using this model is to establish
which combinations of dynamics produce accurate microtubule length targeting, and thus,
radiality.

B. METHODOLOGY
I. Abstract measures of microtubule dynamics
a. The purpose of abstract measures

Where there are a number of parameters in a system, reducing the complexity of the system
by some form of abstraction can be helpful for comparing sets of parameters. This applies to
microtubule dynamics, where, even in the two-state model, there are four parameters, and it is
difficult to compare different sets of these four values. These abstract measures include
microtubule drift, average length, length randomness, and phase proportions. Below, |
discuss each of these measures in more detail. These measures use shorthand notation for the
dynamics parameters, so please refer to the terms list for definitions.

b. Microtubule drift

Microtubule drift, first employed by Verde et al. (1992) and Dogterom and Leibler (1993), is
based on the treatment of microtubule dynamics as a one-dimensional random walk. A
random walk, where in one dimension, the walker takes one step per unit time along a line,
usually has equal probability of going in either direction. However, they can be biased, and
in this case, have a drift term that indicates the direction and extent of the bias by its sign and
magnitude, respectively (fig. 1). Thus, the tendency of a microtubule to grow or shrink, and
how quickly it does either, are indicated by the drift; a positive value indicates continual
growth, while a negative value indicates shrinking on average. Verde et al. (1992) and
Dogterom and Leibler (1993) find the drift, V, in terms of the dynamics parameters:

V= VgE’es - Vchat
Fres + Fear

, (D).
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Where drift is positive, there is “unbounded” growth, and where drift is negative, “bounded”
growth (Dogterom and Leibler, 1993). When the drift is zero, there is neither net growth nor
shrinking. In unbounded growth, the average microtubule length (see below) is not defined;
microtubules grow indefinitely, and therefore the average length increases indefinitely. To
recap, the dynamics parameters are shown in the diagram in figure 2.

-ve displacement  +ve displacement

< >
MT DOMAIN
>
Growth >
< Shrinkage

RANDOM WALK

@t DRIFT, v

! ! N

| R

: ! 1. Decreased (L)

! [T 1 !

A

I | I I 2. Increased D
D (L)

Figure 1. Random walk analogy of microtubule dynamics. Microtubule dynamics can be
treated as a biased one-dimensional random walk, whereby the drift, V, indicates the directional
bias of the random walk. If V is negative, then the average length (L) is defined. The diffusion
coefficient, D, indicates the extent to which lengths will vary. Note that discrepancies between
the theory and microtubule properties can arise because the random walk can take on both
positive and negative displacement, whereas microtubules only have positive displacement (i.e.
their length). In case 1, decreasing (L) with constant D will give greater (i.e. more negative) V,
and empirical measures of variation in length will be expected to decrease. In case 2, increasing
D with constant (L) will also give greater (again, more negative) V, and empirical measures of
length variation will be expected to increase, but will be limited by the fact that an increased D
and V mean more of the random walk will be obscured in negative displacement.
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N,
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F a2p F p2s
F p2g F s2p
PAUSE

Figure 2. Microtubule model parameters. Microtubules can transition between 3 states (grow,
pause and shrink) with given frequencies (boxes next to arrows; see text for details on notation).
Nucleation creates new microtubules in the growth state with a given frequency (Fnuc), While
there is also a total number of microtubules in the system (N) and microtubules have some kind
of orientation behaviour (bending). Microtubules in the growth state grow with rate Vg, and those
in the shrinking state shrink with rate Vs. Red boxes denote parameters

How does V respond to the dynamics parameters? Increasing Vs or Fca means that a
microtubule will be more prone to shrinkage, and increasing Vg or Fres Will push the balance
toward growth; this is fairly intuitive. Note that V is sensitive to the absolute difference
between Vg and Vs, and the ratio of Fcat:Fres. Thus, increasing Fcat and Fres, but maintaining
Fcat:Fres Will produce the same values of V. Another feature of the drift is that it is, of course,
bounded by Vg4 and Vs: a microtubule cannot grow more quickly than Vg, and cannot shrink

faster than Vs. The units of drift are those of velocity: pm min™.

In the three-state case, the random walk analogy is not strictly valid anymore, since by
definition, a random walker takes a step at each time increment. With no allowance for
remaining in one place, the random walk is not technically applicable. However, there is a
threshold value, Vi determined by Green et al. (2005) and Allard et al. (2010):

(FgZprZS + F Fng + FcatFpZS) ( ZgEﬂes + F 2gF52p + FszE‘es)' (Za),

which, like equation 1, indicates the direction and extent of bias by its sign and magnitude.
Arranged as it is, equation 2a indicates infinite and finite growth with negative and positive
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values respectively, vice versa to the two-state V in equation 2. Thus, the equation can be re-
arranged so that the sign of V¢ indicates a similar result to the two-state case:

( ngF;'es + p2gF52p + FszE’es) ( g2pr25 + F F p2g + FcatFpZS) (Zb)-

This threshold quantity, unlike V, is not bound by Vg and Vs, which can hinder making
inferences about a set of dynamics based on it. Instead, it can be put in a form similar to V:

Vy(FpagFres + FoagFszp + FpasFres) — Ve(FyapFpas + FeacFpag + FeatFpas)
( ZgFres + F, ZgFSZp + FszE‘es) + ( g2p p25 + FcatFp2g + FcatFpZS)

So, as with V, we can make Vs bound by Vg and Vs if we divide by the sum of the terms that
multiply Vg and Vs. As stated, the random walk analogy for the three-state has limited
applicability. Indeed, V3 is not responsive to increased pause time percentage (see below),
i.e. a proxy for the percentage of time spent in the pausing state, since a set of dynamics that
have a predicted pausing time of 0.96% has the same drift as another set of dynamics with
0.04% predicted pausing time percentage. However, the particular dynamics sets referred to
have equal transitions from the pausing state, and the transitions to the pausing state are also
equal; in this case, the balance, so to speak, of the growth and shrinking phases is equal.

V=

(3).

Although V3 does not accurately reflect the percentage of time spent in pause, it does respond
to the balance between growth and shrinkage: changing the ratio Fp2q:Fp2s changes the value
of V3, as does changing the ratio Fgop:Fs2p. This is a manifestation of the complex systems
nature of microtubule dynamics: by changing the flux of microtubules towards or away from
pause or in the direction of growth or shrinkage, the drift, V3, will change. Thus, Vs is still of
some use, but it must be used with caution; presumably, the sign of V3 is still valid as an
indicator of the direction of drift in three states, but the magnitude must be modulated by the
pausing proportion; thus, taking Vs with pausing proportion should indicate to what extent V3
is valid.

In either case, the drift is intended as a metric for understanding the effect of a combination
of dynamics parameters; in many cases, it is not exact. Indeed, it accurately describes the
growth of a microtubule that at no point shrinks to extinction (Verde et al., 1992), and this is
a manifestation of the discrepancy between theory and reality highlighted in figure 1.
Furthermore, where sets of dynamics parameters that produce negative drift are concerned,
microtubules are only persistent in this case because of re-nucleation (Verde et al., 1992). If
there were no re-nucleation in a microtubule population with negative drift, we would not
observe any microtubules.

c. Average length

The average length of the microtubule population is defined only in cases where the drift is
negative. This is intuitive since a microtubule population with positive drift will continue to
grow indefinitely, and the average length increases continually too. As with drift, Verde et
al. (1992) and Dogterom and Leibler (1993) have found the average length in terms of the
dynamics parameters:
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(L) =

where (L) is the average length. In the three-state case, Green et al. (2005) and Allard et al.
(2010) have derived the appropriate equation for the mean length:

Vng(FpZQ + Fsz)
Vs(FgZprZS + FcatFpZQ + FcatFpZS) - Vg(FpZQE‘es + FngFSZp + FszEﬂes)

(L) = (5).
In both cases, the distribution of lengths decreases exponentially. It is important to note that
the mean equation ignores nucleation and microtubules with zero length. Thus, if an
empirical microtubule average length is to be compared directly with a theoretical prediction,
the mean length must be calculated for only those microtubules with non-zero length.
However, (L) is best used as a theoretical indicator of microtubule growth properties

d. Length randomness

The next measure to consider is that of the tendency of a microtubule, or indeed a population
of microtubules, to fluctuate about the average length. There are a few related ways of
quantifying this. Firstly, continuing with the random walk analogy, Mirny and Needleman
(2010) use the effective diffusion coefficient, D, as a measure of the extent to which the
length of a microtubule will fluctuate. The use of the diffusion coefficient comes from the
similarities between a random walk and diffusion; here, D indicates the extent to which we
can expect lengths to deviate from the average. It is an indirect measure of velocity, in that it
indicates how quickly a diffusible object (in this case, this is the plus end of the microtubule)
will explore space, and it has units of um? min't. Mirny and Needleman (2010) find D in
terms of the dynamic parameters:

AA

D= _—%"—
F‘;"ES+FCClt

(6).

This interpretation of the randomness of microtubule growth is good for its ease of
understanding. We can see from equation 6 that the randomness is simply a ratio between the
product of the growth and shrinkage rates and the sum of the transition frequencies.
Increasing Vg or Vs, or decreasing the transitions between them, increases the randomness of
lengths. This is because, as microtubules will transit between phases less frequently, or if
they grow or shrink more quickly, they will be able to undergo larger unchecked excursions
of growth or shrinkage than if Fres or Fcat Were greater, or if Vg or Vs were smaller.

Note that, as with the drift, the diffusion coefficient is not intended to give an exact measure
of microtubule length randomness; rather, its magnitude indicates how much we can expect
length to vary, and indeed, a dynamics set with a larger D will have a wider spread of
microtubule lengths than another set with a smaller D. The reason that it is not exact is
because a random walker can go in both directions; the displacement can be negative,
whereas a microtubule will not have a negative length (fig. 1). Thus, D is not accurate, but it
is a good theoretical measure of the spread of microtubule lengths.
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One other point of note is the case where one of the transitions is zero. If Fca is zero, then D
is not appropriate, because, as all microtubules initiate in the growing state, there will be no
transitions to the shrinking phase, and there will be no deviation in lengths: the dynamics are
essentially deterministic in this case; all microtubules will be the same. If Fres is zero, D is
still valid.

Related to the concept of the diffusion coefficient of a given set of dynamics is the total
displacement of a microtubule over a given time. This type of measure is similar to the
mean-squared displacement, commonly employed in random walk theory. The mean-squared
displacement actually depends on the diffusion coefficient:

(x%) =2Dt, (7),

where (x2?) is the mean-squared displacement, and t is time. This relationship is quite
intuitive, since the diffusion coefficient quantifies how much space a diffusive particle will
explore, the average displacement would be dependent on this and time; the 2 at the
beginning of the right-hand-side is a constant that depends on dimensionality (for one
dimension, the constant is 2).

The mean-squared displacement, at least in the standard form in equation 7, is again not an
exact measure of microtubule dynamics due to the same issue discussed above, i.e. that this is
a relationship based on a true random walk, not microtubule dynamics. However, there are
two related concepts: first is one that is quite often employed in the literature and is generally
referred to as dynamicity (e.g. Rusan et al. (2001)), and the second is the range of
microtubule lengths.

Dynamicity is the total length change per unit time as a result of growth and shrinkage, and
can be used as a measure of microtubule length randomness, the rationale being that
microtubules that change length more quickly are more random. The calculation for
dynamicity is similar to the mean-squared displacement because it involves making growth
and shrinking episodes of the same sign by squaring; generally, dynamicity is not reported in
units of pm? min, just pm min, therefore the sum of the square root of the square of the
growth and shrinking distances is used:

d=) Va2, (®,

where d is dynamicity, and x is the displacement of a microtubule plus end. The dynamicity
is not exactly comparable to the mean-squared displacement of the diffusion coefficient
because for high values of D, one must have low transition frequencies, and although such a
dynamics set could also give rise to high dynamicity values, a dynamics set with high
transition frequencies could also lead to high dynamicity. Dynamicity is still a useful
measure, however, and it is also a good indicator of the time spent in pause, where a low
dynamicity would indicate long times in pause.

The second measure related to the mean-squared displacement and D is the length range.
Although difficult to measure in vivo, such a measure could be used in conjunction with the
modelling in this chapter. The rationale behind this measure being an indicator of length
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randomness is quite simple: dynamics sets that have greater D should have a larger range in
length, because microtubules will be more prone to undergo significant episodes of growth
and shrinkage. The last two measures discussed here are more heuristic than the preceding
measures that are backed by theory, and below, the theoretical measure D will be used more
often to compare dynamics; however, for empirical comparison of simulations, both
dynamicity and length range will be used.

e. Drift, average length and diffusion coefficient relationship

The three theoretical measures introduced above are united by the relationship:

D
(Ly
where |V| indicates the modulus (the absolute value) of the drift. Note that, since the average
length, (L), is only valid when there is negative drift, as V becomes more negative, the
average length is shorter, while a larger diffusion coefficient, D, will increase the average
length for similar values of V. These relationships provide a quite basic insight to the
workings of a microtubule population: in the bounded growth regime, the average length is a
balance of the randomness of length and the drift that is working to shorten microtubules, so
larger randomness in length can effectively work to overcome the bounds of a negative drift,
making average length larger. Likewise, when length randomness is small compared to the
drift, the drift dominates, and average length is reduced.

Vi= 9,

f. Phase time percentages
Another useful set of measures is the expected proportion of time spent in each phase:

E‘estZQ + E’estZS + FngFSZp

T, = ,  (10a),
g ZTphase
T, = Feaclyas + I;;szg * Fpasligzn, (10b),
phase
FoopnFsop + FoopFres + Fop F,
Tp — g2pts2p Zg;p res s2p cat’ (10C),
phase

where Tg4, Ts and T, are the percentages of time in growing, shrinking and pausing,
respectively, and Tpnase denotes the total of the numerators in the three equations. The
numerators in the formulae for Tq and Ts are actually used in the calculation of the three-state
drift, where they are multiplied by V4 and Vs, respectively. The above formulae, rather than
giving an absolute number for phase times, which would depend on the time of observation,
give the percentages of time spent in each phase. Only the three-state equations are given,
since in two states, the drift is a good measure of the balance between the two phases.
Therefore, this measure is particularly useful as an indicator of the prominence of the pausing
state in any dynamics set.

As with many of the other measures discussed, these phase proportions are not exact in all
cases. One of the main complicating factors that affects the accuracy of these measures is
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extinction and re-nucleation. Nucleation is not taken into account in any of the measures so
far discussed, and in this case, by removing shrinking microtubules and substituting them, at
some point, by growing microtubules, this process especially affects Tq and Ts, making them
greater and lower, respectively, than predicted. Ty is not affected on the same scale as Tg and
Ts by nucleation, but the extent to which it is affected will depend on the relative sizes of
transitions to and from the pausing phase. Knowing this, we can see that the accuracy of the
phase proportions will be increased for greater average lengths, where nucleation should have
less of an affect by allowing more representative times in growth and shrinkage, and the
accuracy should also be increased for dynamics sets that are not as random in length, since it
is these fluctuations (fig. 1), specifically those in shrinking, that lead to extinction and re-
nucleation.

I1. Modelling approach
a. Outline

This section is essentially the methodology section, describing the workings of the model.
Having reviewed previous instances of use of modelling in microtubule biology, and
formulated the question that is to be addressed in this chapter, | now summarise the
requirements of a model that will be used to investigate these problems, and set forth how it
will be implemented.

The model is phenomenological, at the level of individual microtubules, their behaviour
described by the transition frequencies and growth and shrink rates obtained with light or
fluorescence microscopy of microtubules in real cells, and not by association/dissociation
reaction rates for tubulin, generally obtained in vitro. This level of abstraction is chosen
since it is effectively just below that in which we are interested, the organisation of the
microtubule population. Previous models have shown that specifying tubulin interactions,
modelling at the level below that chosen here, produces the features of dynamic instability at
our level (Gregoretti et al., 2006). To model at a lower level here would be to introduce
unnecessary model complexity.

In the model, there will be an inner and outer area, each with its own set of dynamics.
Furthermore, the model will be implemented in two- and three-state versions; thus, depending
on this, there are four or eight parameters to describe the dynamics within each area.
Nucleation is instant, i.e. as soon as a microtubule is extinct, it grows again in the next
iteration; this is justifiable because it is the mechanisms of microtubule radiality that are of
interest, not the balance of microtubule numbers, or polymer level. Although the model is
based on individual microtubule dynamics, the abstract parameters just described will be used
extensively too, so as to aid in understanding the effect of changing various parameters.
Employing these measures as a read-out for the effect of combinations of dynamics
parameters also assists in comparisons of inner and outer area dynamics.

Microtubule models at this level of abstraction are amenable to stochastic and deterministic
approaches. In fact, the average length calculation described in the previous section is based
on deterministic considerations of microtubules at this level. Here, I implement a stochastic,
Monte-Carlo type approach, the methodology for which is described below. First, the model
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is introduced, then the parameters and implementation are specified. A diagram of the model
is shown in figure 3.

Figure 3. Microtubule model. In the model, the inner and outer boundaries are marked by light
and dark grey dashed lines, respectively. Microtubules are modelled in 1-dimension; they do not
bend, and are subject to inner dynamics (blue microtubule) and outer dynamics (green
microtubule), and can also grow past the outer border (red microtubule). The microtubules have
differing levels of accuracy; the green microtubule has accurately targeted the outer area, while
the blue and red microtubule are inaccurate.

b. Model details

The model is designed specifically to investigate the mechanism of accurately regulating
microtubule length in order to produce proper cortical targeting. It will answer the question:
what are the combinations of dynamics in inner and outer areas that target microtubules to the
outer area? Microtubules here are straight, and all grow in one dimension (fig. 3). Since the
model is one-dimensional, the inner and outer areas are represented by lengths: when a
microtubule reaches a given length, it obeys outer dynamics, and before that, inner dynamics.

As the model is intended to answer the question of outer area, or cortical, targeting, there is
no maximum length imposed, and microtubules are free to grow past the outer boundary.
This is because we want to know here how inner and outer dynamics can combine to produce
microtubules of the appropriate length.

c. Dynamics parameters

Microtubule dynamic instability can be defined by either four or eight parameters, depending
on whether a two- or three-state model is used. The former case neglects the pause phase,
and here, both dynamics models will be used (fig. 2).
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I11. Implementation

a. Parameter values

It is very well having the growth and shrink rates expressed in um min™ or um s, since, if

we assume that growth and shrinkage is uniform with microtubule length, i.e., that there is no
length-dependence in these rates, then the increase in length over unit time is simply
proportional to the time. According to the specifications set out in section BIl, we can use
these values as our growth and shrink rates, and scale them according to the time step in the
simulation, more of which is discussed below. However, the situation is not so clear-cut with
the phase transitions. Commonly, the frequency of a particular transition is calculated by
dividing the number of occurrences of that transition by the total time spent in the phase that
the transition leaves (e.g. Rusan et al. (2001)):

Firans = Ntrans/tphase' (11).

For example, to calculate the frequency of catastrophe, Fca, the number of catastrophes is
divided by the total time spent in the growing phase, t;. Depending on the units, we may
have transition frequency expressed in s or min?; the latter is more common. Refer to
section BIl in chapter 3 for a discussion of the various ways of calculating transition
frequencies.

Our model specification requires that we have some kind of probability for each transition
that determines what a microtubule will do at each time step. Since these transitions are
recorded as frequencies based on long observation times of many microtubules, with units
mint or s, how do they fit into a simulation? To answer this, we need to cover some of the
basics of probability, and this is discussed in the next section.

b. On probability

Thus far, we have established that our qualitative model specifications regarding transition
frequency do not immediately correspond to measurements that are commonly reported. The
problem is this: given that an accurate simulation of microtubule dynamics will require a time
step on the order of a second or smaller, how do we handle the transition frequencies reported
in the literature so that we have meaningful probabilities in the simulation? Here, | cover
some of the relevant aspects of probability theory with the aim of making the quantitative
features of the model the best approximation of reality that is possible.

Probability theory, in what is known as the “frequentist” approach, states that, as we observe
a process, or repeat an experiment, the longer or the more times for which we do this, the
frequency of an observed event approaches the probability of that event (Ross, 2006). To
illustrate, a common example is rolling two dice. The “sample space” is the various
combinations of numbers on the dice, and each of these is said to be an “event”. The sum of
the probabilities of each event is 1; it is never more than one. The more times we roll the
dice, the frequency with which these combinations occur approaches their probability; this is
often described as the “relative frequency”. In this case, the relative frequencies of the events
should all be equal at /3, assuming fair dice. So, in our case, the longer we watch
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microtubules for, the frequency of transitions is a truer representation of microtubule
behaviour.

However, this still does not solve the problem of how to model a transition probability; yes,
we have a relative transition frequency, but can we just scale this frequency with time step?
Firstly, is it appropriate to say, for example, that a transition frequency of 10 min* is the
same as 5 every 30 seconds? And, given this frequency, is it appropriate to suppose that we
can expect a transition every 6 seconds? It makes intuitive sense that this is the case, but this
is still not a probability, since it is greater than 1, and we know that a probability cannot be
so. Of course, it could be easy to make this mistake when using a smaller time step that
reduces the relative frequency to a value smaller than 1.

To obtain probabilities of microtubule phase transitions, we require some kind of probability
model, but what is a probability model, and which would be appropriate for microtubule
transitions? A probability model is simply the way in which we expect a variable, in this case
transition frequency, to behave probabilistically. As we might expect given the frequentist
interpretation of probability, such a model is based on the results of a number of experiments;
it has a distribution, and can tell us the probability of a given event occurring.

So what is the appropriate probability model for microtubule transitions? Rather than an
average number for each transition frequency, the distribution of transition time would
indicate what type of model would be appropriate. Unfortunately, very few have addressed
this question empirically; pioneering work from Odde et al. (1995) is a notable exception.

Previous modelling work does not make the problem much clearer: methodological details
being somewhat scarce, some have treated transition probabilities as uniform random
numbers between 0 and 1, others use an “exponential random number” for transition
probability, while perhaps the clearest account of microtubule modelling method at this scale
comes from Gardner and Odde (2010). In this case, the authors describe how they find the
transition probability using the cumulative exponential function:

p=1-—e7#, (12),

where p is a transition probability, i is the exponential parameter, and 7 is the time step of the
simulation. In this case, p is the observed frequency of the transition in question, measured
as described above. However, these authors did not state the reasons for their methodology,
and thus leave us still without a full understanding of transition probabilities.

Fortunately, the situation can be clarified by taking an alternative approach. Instead of basing
a probability model on empirical observation, i.e., on population data, it can be based on what
is known, or at least, what is assumed, about the process in question at the individual, small-
time scale. With regard to microtubule catastrophe and rescue (and transitions to and from
pause), the consensus is that the probability of a transition is the same regardless of
microtubule age, length, etc. Thus, given a length of time, the probability that a transition
will occur in that window is the same as the probability in the next time window, and the
window after that, and so on. Recent in vitro work (Gardner et al., 2011), and that work
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mentioned above from (Odde et al., 1995), has suggested that the situation may not be as
simple as this, but we will continue with it for now, the reason for this becoming clear later.

There is a probability model that applies to this problem. Firstly, bearing in mind that we are
assuming a constant chance of an event, in this case a transition occurring, per time
increment, we will set the problem. The task is to record the time for each event; that is,
upon starting the experiment, the clock starts, and upon an occurrence of an event, we reset
the clock, and start counting again. This is a form of what is known as a counting process,
known as a “Poisson” process.

The premises of a Poisson process are that the number of events counted in any given interval
of time are independent of the number of events occurring in another time interval; this is
called “independent increments”, and furthermore, that the numbers, n, of events in any given
time interval, t, are Poisson distributed (Ross, 2006). These premises essentially state that the
Poisson process is stochastic; each event is independent of other events. Given that we are
assuming that the probability of a transition occurring within any given time window is the
same as that of another equivalent time window, we can model the counting of transitions as
a Poisson process. Forgetting time for a moment, the Poisson distribution, with rate
parameter A, is thus:
/1i
p() =Px=i}= e‘AF , i=01.. (13),

where x is the random variable, and i is any of the integer values x may take. The rate
parameter A must be greater than zero. In our case, X would be the number of events of a
given transition, and thus, the Poisson distribution would give the probability of counting a
given number, i, of those transitions.

Of course, from a modelling perspective, the quantity that is really of interest here is not the
probability of a given number of events occurring, but the time before each transition, i.e. the
time between events. The inverse of the time between events gives the frequency; this is the
same as dividing the number of events by the total time of observation, the common method
of calculating transition frequencies. The problem of finding the probability of times
between events in a Poisson process is known as the “inter-arrival” time problem; in other
words: given that we are counting events that obey a Poisson process, what is the distribution
of the times that we wait for each event?

If we say that the time between the n™ and n-1" events is Ty (if it is the first event, Ty is the
time before the first event) then Ty, for all values of n, gives the distribution of inter-arrival
times (Ross, 2006). What is the distribution? Starting with the first event, T1, we can say that
the event occurs only if no events have occurred prior to it, in the time interval [0,t], where t
is the length of time just before T1 occurs (square brackets denote 0 < x >t). Thus, we want
to know the probability that Ty is greater than t, i.e. P{T1 > t}. Taking time into account in
the Poisson process just involves the time interval, t, multiplying the rate parameter A (ROSS,
2006).
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o

P{T; >t} =P{N(t) =0} =e™* o

P{N(t) =0} = e ™™, (14),

where P{N(t) = O} is just restating the question; it simply means the probability of events
occurring in time t, N(t), being zero. e is an exponential distribution; thus, the distribution
of times, T1, before the first event, is exponential. How are the times between the first and
second events distributed? In this case, for the second event to occur, the first event must
already have occurred. If we denote the time at which the first event occurred as s, and the
time elapsed from the first event just up to the occurrence of the second event as t, the
probability for the second inter-arrival time is a conditional probability; we ask: what is the
probability that T» is greater than t, given that T1 occurred at time s, i.e. P{T> >t |T1 = s},
where | denotes the condition that Ty = s, thus:

P{T, > t|T; = s} = P{0 events in (s,s + t]|Ty = s},

= P{0 events in (s,s + t]},

;e AD)°
a o’
=e M, (14)

where, as above, a square bracket indicates a closed interval and a circular bracket indicates
an open interval, i.e. (s, s + t] = s <x >t. The conditional statement in the first line can be
discounted because of independent increments as described above: the probability of events
occurring in any interval is independent of the probability of events occurring in other
intervals, thus, the problem is reduced to finding the probability that the numbers of events
occurring within a given time interval is equal to zero; the same problem as with Ti.
Therefore, T» follows the same exponential distribution as T1, and this is true for any Tp, n =
1,2, ...

Thus, a Poisson process, where an event has an equal (and independent) chance of occurrence
every time increment, gives rise to an exponential distribution of so-called inter-arrival times.
We can verify this experimentally. Figure 4 shows the distribution of inter-arrival times for
an event with rate parameter A of 0.1 every time increment, t, of one. The probability and
time increment are academic here; the point is that this process, whatever the probability or
waiting time, produces a distribution with this shape. An exponential distribution can be
fitted to the inter-arrival times, and indeed, random data shown in figure 4 that are generated
from the fitted exponential distribution are not significantly different from the original data
(2-sample Kolmogorov-Smirnov test, p > 0.05).
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Figure 4. Inter-arrival times in a Poisson process. The simulated data, which are the inter-
arrival times between an event occurring with equal chance per time step, are closely matched
by random numbers generated from the expected distribution; the mean of the distribution is also
shown (refer to legend)

How does this bear on our initial problem of finding transition probabilities, given their
frequencies? The exponential distribution has a very helpful property in this regard. The
expected value, or mean, of the distribution is equal to 1/A; figure 4 shows the mean value of
the inter-arrival times. Here, the rate A is 0.1; thus we would expect the mean to be 1/0.1 =
10, and indeed, the experimental mean is close to this value at 10.06. Therefore, the average
value of the inter-arrival times is the inverse of the rate parameter of the Poisson process that
gives rise to those times. This is the underlying assumption in calculation of microtubule
transition frequencies, which are taken as the inverse of the observed frequency of transitions.
Therefore, since the rate parameters of microtubule phases transitions are easily calculated,
we can find the probability of a transition occurring in a given time step using the exponential
distribution.  Specifically, the exponential cumulative distribution probability function is
used:

Fla)=1—e™, a >0, (15).

The cumulative distribution function gives the probability of finding a value in the
exponential distribution with rate parameter A that is less than or equal to the value of a. In
this case, the variable a is a length of time; we substitute for a the time step of the simulation,
and ask: what is the probability of the time before a transition being less than or equal to the
time step? Although this is exactly what we are asking, the question is more intuitively stated
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thus: over this length of time, what is the probability of observing a transition? Thus, all
transition frequencies will be treated this way in the model.

c. Simulation

As the model is a stochastic model, it will be simulated with all microtubules in the model
being updated at each iteration. The time of the simulation is updated according to a discrete
time step of 0.1 seconds. Therefore, at each advance of 0.1 seconds, all microtubules will be
tested for a phase transition, and their lengths updated accordingly. To get a good
appreciation of the effects of the two areas, simulations will be run with two area, the “two-
area” model, and with only one set of dynamics, in an “area-free” model.

d. Microtubule dynamics

In the model, each microtubule has a state, a length, and a “region”. The region property is
simply a logical for whether the plus end of the microtubule is located in the inner (false) or
outer (true) area. For a quicker simulation, the microtubule dynamics are implemented in
parallel: thus, states, lengths and regions are stored in column vectors of length N, where N is
the total number of microtubules in the model.

The model simulation begins with all microtubules in the “extinct” state, having zero length,
and, of course, being in the inner area. All minus ends are located at the centrosome, the
location of which is specified in 2-dimensional Cartesian co-ordinates. For simplicity, the
location of the centrosome is kept at (0, 0), and microtubules grow in the positive x-direction,
i.e. to the right. At each iteration, it is determined whether a microtubule will undergo a
phase transition or not. The particular phase transitions possible depend of course on the
state of the microtubule. Thus, those in growth can either undergo catastrophe or growth to
pause, or stay in growth, and so on for the other states. As discussed, all transition
frequencies are assumed to be constant, and thus the probability of each phase transition is
obtained using the exponential cumulative distribution function with the appropriate rate (i.e.
the particular transition frequency) and time step (0.1 seconds).

In order to determine whether a transition will occur, a uniform random number between zero
and one is generated using the Matlab command “rand”. This number is compared to the
transition probability: if it is less than the transition probability, the transition occurs, and if it
is greater than the probability, the transition does not occur. This is a standard method of
simulating probabilities, and is documented for microtubules in Gardner and Odde (2010)
(note that, in this paper, it is stated that the probability must be less than the uniform random
number for a transition to occur, but this is erroneous, and a correction is in the process of
being submitted at time of writing, D. Odde, pers. comm.).

In the three-state model, there are two potential transitions available, and so the probabilities
for each transition must use discrete intervals between zero and one. This is handled by
assigning one transition value between zero and its probability, and the other transition values
between the probability of the first transition and its probability added to the probability of
the first transition. For example, for the pause state, a transition to growth might occur with
probability 0.2, and a transition to shrinking might occur with probability 0.1; the transition
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to growth will occur if the uniform random number x lies on the interval 0 < x > 0.2, and the
transition to shrinking will occur if the uniform random number X lies on the interval 0.2 < x
> 0.2 + 0.1 =0.3. It does not matter which way around this is done; the transitions will still
occur with the appropriate probability.

Once it has been determined whether a transition will occur, the state of the microtubule is
updated if necessary, as is the length. If the microtubule is to grow, then it is assumed that
the growth rate is constant; thus the length added is the growth length in a minute multiplied
by the time step. At a time step of 0.1 seconds, this is a small increment of growth. The
same principles are applied to the shrinking rate if the microtubule is to shrink

C. PARAMETER VALUES
I. Dynamics combinations
a. Two-state dynamics

As is discussed in the results below, the drift and average length were varied in initial
simulation of the model so as to investigate cortical targeting accuracy. The change in drift
here was implemented by changing the Fcat:Fres ratio. However, the diffusion coefficient, D,
which indicates the randomness in microtubule lengths, was required to remain constant so as
not to bias the results in any way, for example, changing the Fcat: Fres ratio by increasing Fecat
while holding Fres constant changes not only the drift and average length, but also D. This
effect arises because D is sensitive to the sum of the transition frequencies. Therefore, the
concept of a target transition frequency sum was introduced: in each dynamics combination,
the sum of Fcar and Fres is the same, so D is constant. For full details of the dynamics values,
see the appendix tables (section F). All dynamics parameter values were chosen with
reference to values reported in the literature; these are documented further in chapter 5.

In the second set of experiments, only outer dynamics were varied, and inner dynamics
remained at high positive drift. Two more dynamics sets were created; here, in set 4, the
diffusion coefficient was held constant while the theoretical average length was varied, and in
set 5, the theoretical average length was held constant while the diffusion coefficient was
varied. In each set, the drift varied with the parameter that was being varied for that set.
Again, for details of the dynamics, see the appendix tables (section F).

b. Three-state dynamics

In these experiments, there were 5 dynamics sets, and as with the second set of experiments
in two states, only outer dynamics were changed; inner dynamics remained at high and
positive drift. Within each set, the abstract parameters were held constant, and the pausing
time percentage was varied. Between sets, drift and average length were varied; for values,
see the appendix tables.
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D. RESULTS
I. Two-state dynamics

a. Model efficacy

Firstly, the two-state version of the model was tested. The area-free and two-area simulations
were both examined, and both types of simulation reproduced the specified dynamics well.
In the area-free simulation, results were similar, with good agreement between the specified
and observed transition frequencies indicated by high correlation coefficients. In fact, the
Pearson’s linear correlation coefficients here were all 1.00 for each dynamics set (from
hereon, all correlations will be Pearson’s linear). The specified and observed transition
frequencies in the area-free and two-area simulations are plotted in figures 5 and 6,
respectively. In the two-area simulation, the correlation between the specified and observed
transition frequencies in both areas in the first simulation type was also high (table I).

A B
Fcat FI'QS
16 20
14 18
16
12
14
10
- - 12
g g + Set1
g 8 10 o . Set2
8 6 8 Set 3
6
6
4 ot
0
4 vy
2 2 ,v"
0 0
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 18 20
Specified Specified

Figure 5. Specified and observed transition frequencies for 2-state model 1 in area-free
simulations. The specified and observed values are plotted for Fcar (A) and Fres (B) for each
dynamics set (refer to legend). Transition frequency units are min.
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Figure 6. Specified and observed transition frequencies for 2-state model 1 in two-area
simulations. The specified and observed values are plotted for Fca in the inner (A) and outer (B)
areas and for Fes in the inner (C) and outer (D) areas, for each dynamics set (refer to legend).
Transition frequency units are min.

Table I. Correlation between specified and observed transition frequencies in the two-
area simulation. The correlation coefficient for each transition frequency in each area, for each
dynamics set, is shown.

Inner area Outer area
Set Feat Fres Feat Fres
1 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00
3 1.00 0.99 1.00 0.99

b. Population measures

Where in the previous section, both two-area and area-free simulations were used to test the
model efficacy, here, only the area-free simulations are used. This is because simulating a
single set of dynamics simplifies the complexity of the system a great deal, and it is easier to
determine if a given set of dynamics reproduce theoretical predictions. Recall that the aim of
these sections, where simulated and theoretical population measures are compared, is not to
test model efficacy; rather, it is to establish the population properties of a given set of
dynamics, and to understand whether theory agrees with these.

Firstly, to investigate how the average microtubule length varied in response to changing
dynamics parameters, the observed length was found by averaging microtubule lengths over
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the final 10 minutes of a 60-minute simulation for each dynamics set. The observed lengths
are plotted against the theoretical length in figure 7. For all but the greatest of the theoretical
lengths in each set, the observed lengths are similar to their predicted counterparts; the
relationship falls off somewhat at the largest predicted value, with the observed value lower
than predicted. Nevertheless, the predicted and observed lengths are very well-correlated
(table 1), indicating that the dynamics sets behave as predicted. Furthermore, the mean-
squared error between the predicted and observed lengths is fairly low, and if the predicted
and observed lengths at the smallest magnitude negative drift are omitted, the mean-squared
error is very low (table II), indicating that the dynamics produce the expected theoretical
population characteristics.

Note that increasing the simulation time has little effect on the average length, so
explanations of the discrepancy between the predicted and observed average lengths at the
smallest negative drift that are based on the population not yet having reached steady state are
unlikely. Moreover, at the lowest negative drift, theory suggests that the population should
shrink less on average, thus presumably reaching a steady state sooner than those with greater
negative drift. However, since the lengths are exponentially distributed, to achieve a large
average length, some individual microtubules would need to be very long; the fact that some
microtubules may not yet have reached these large lengths may contribute to the lower
average. In any case, in the subsequent section, these drift values are found to produce low
accuracy, and longer simulation time would worsen this accuracy by allowing an increase in
(L). Thus, it is not relevant to accuracy, and is not considered further in this section.
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Figure 7. Theoretical and observed length in area-free model 1, two-state. The theoretical
average length, (L), is plotted against the observed average length for each dynamics set (refer
to legend). Length units are ym.
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Next, the diffusion coefficient was considered. In dynamics sets 1-3, the diffusion coefficient
is held constant within each set, but it varies between sets; in set 1, it is 33 um? min; in set 2,
it is 16.5 um? min, while in set 3, it is 8.25 pm? min* (appendix). Recall that these are not
exact measures, but they do indicate that the expected length randomness should be similar
within sets, and be twice as large in set 1 as in set 2, and again twice as large in set 2 as in set
3. The diffusion coefficient as it is defined by theory (see chapter 4) is not a measurable
property, and so as a measure of length randomness, the average of the range in length over
the final 10 minutes of the simulation was taken for each negative drift value in each set
(table 111).

The first premise of the theory that the randomness should remain similar within each
dynamics set is not supported by the data. Within each dynamics set, the average range in
length decreases with increasingly large negative drift. The reason for this lies in the
inconsistencies between the random walk model and real microtubule biology (fig. 1), which
were discussed in chapter 4. Because microtubules cannot take on negative length, those
dynamics sets that have large negative drift, and thus a small average length, are likely to be
suppressed in terms of length randomness when compared to theory, because the theory
allows for the random walker to have negative displacement. Therefore, where there are
small average lengths, the deviation in lengths is more limited than at large average lengths,
explaining the decrease in length range as negative drift becomes larger.
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Table Il. Predicted and observed average lengths for dynamics sets 1-3. For each set, the
predicted and observed lengths are shown (units um) for increasing large values of negative drift.
The correlation and mean-squared error (MSE), the latter with and without the values for the
smallest negative drift, are also shown.

Drift Set 1 Set 2 Set 3
(negative) Predicted Observed Predicted Observed Predicted Observed

Low 47.14 31.81 +0.63 37.50 23.26 + 0.55 18.75 14,18 £0.42
18.97 17.99+0.41 11.15 11.02 £ 0.33 5.57 549+0.11
11.87 11.90+0.34 6.55 6.54 +0.14 3.11 3.08 + 0.06

8.64 8.57+0.21 4.63 4.62 +0.08 2.24 2.22 +0.03

5
(o]
§ 679  678+009 359  359+007 174  1.73+0.02
‘c‘?l 559  556+009  2.80  279+003 143  1.42+001
al 476 476 £008 238  237+003 121  1.20+0.01
414  411+006 207  207+002 103  1.03+001
366  366+004 183  183+001 091  0.91+0.01
High 328  326+004 164  163+00lL 082  0.82+0.00
Correlation 0.99 0.98 1.00
MSE
Withd:r‘;‘t’veSt 23.59 20.27 2.09
Iozvvggtog:iﬁ 0.11 0.00 0.00

Although the first premise of the diffusion analogy to microtubule dynamics is not met, the
second, stating that lengths should be progressively less random moving from set 1 to 3, is
supported by the results. The ratios of the ranges at each negative drift value are shown in
table I11. As with the average length, the ratios between length ranges are remarkably similar
to that predicted by theory, roughly at 2, apart from those for the smallest negative drift,
where the ratio is smaller. This relationship is clearly visible in figure 8.

The fact that the range ratio at the smallest negative drift is not as large as expected provides
an explanation for the average lengths in this case not being as large as predicted. Here, the
lengths being not as random as predicted suggests that they have not explored space to the
extent required to achieve the predicted average length.
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Table Ill. Ranges of microtubule lengths and their ratios in dynamics sets 1-3. For
increasingly large negative values of drift, the average range in length (units, um) for each
dynamics set is shown. Also shown are the ratios between sets 1 and 2 (1:2) and 2 and 3 (2:3).

Drift Range Range ratio
(negative) Set1 Set2 Set3 1:2 2:3
Low 166.21 121.38 78.43 1.37 1.55
123.86 75.99 41.69 1.63 1.82
86.71 47.40 22.38 1.83 212
g 65.30 34.01 17.24 1.92 1.97
g 49.26 26.35 13.19 1.87 2.00
é 40.92 20.67 10.65 1.98 1.94
= 37.21 17.85 8.87 2.08 2.01
30.42 15.78 7.63 1.93 2.07
27.20 13.62 6.74 2.00 2.02
High 24.05 12.15 6.20 1.98 1.96

To further explore the relationships between the dynamics parameterisations and empirical
measures of microtubule properties, the dynamicity was also found for sets 1-3 and the length
range and dynamicity was found for dynamics sets 4-5. Using both of these measures as
indicators of variation in length will allow further comparison of the theory with reality, and
also establish the utility of the measures. The dynamicity for sets 1-3 is plotted with the
length range in figure 8, and the length range and dynamicity for sets 4-5 is plotted in figure
9. Note that D is fixed in set 4, and (L) is fixed in set 5.

The results in figures 8-9 are consistent with the assessment of the correspondence of the
theory and reality given in figure 1. There, it was suggested that increased theoretical length
should produce greater values of empirical measures of variation in length. As figure 8
shows, this is the case for length range, and also for dynamicity. The fact that dynamicity
levels of for all dynamics sets 1-3 as a function of theoretical length is explained by the
theory in that increasing theoretical average length should not increase dynamicity per se, but
move the random walk space further into positive displacement, and thus allow microtubules
to reach levels of dynamicity that more accurately reflect the diffusion coefficient. Because
the magnitude of drift increases with decreasing theoretical average length, the dynamicity
and length range are small at large negative drift, and increase as drift approaches zero (fig.
8). The theory is also supported by the fact that the sets are ordered in both length range and
dynamicity by their diffusion coefficients; with the greatest diffusion coefficient having the
greatest values of these measures.
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Dynamics set 4, in which the theoretical average length is varied while D is held constant,
behaves in a similar manner to dynamics sets 1-3, which also had varying (L) (fig. 9A).
Dynamicity and length range both increase with increasing theoretical average length, with
the dynamicity levelling off as in sets 1-3. The dynamicity and length range also display a
similar relationship with drift to sets 1-3 (fig. 9C).

In set 5, the situation is different, because here, D varies and (L) is fixed. However, it is still
consistent with the assessment of the theory in figure 1. Here we see that an increase in the
diffusion coefficient brings about an increase in dynamicity and also initially in length range;
the latter quickly levels off and remains at similar levels for increasing D. Because
theoretical average length is fixed here, an increase in D is limited in its effect on length
range, because as D increases, the drift becomes larger (negative), and more of the random
walk space becomes inaccessible to a microtubule, being moved into negative displacement.
This can explain the steep rise and quick levelling of the length range. The rate of increase of
dynamicity is also slowed as D becomes greater, and this is also for the same reason that
length range cannot increase; however, the effect is more marked for length range because re-
nucleation serves to decrease the length range, but has less of an effect on dynamicity.
Because the magnitude of drift increases with increasing D, dynamicity is high for large
negative drift, and length range undergoes a sharp decrease as drift approaches zero.

To summarise this section, the results indicate that the dynamics sets produce the expected
population characteristics in general, with some interesting population properties emerging
from the differences between the theoretical treatment and microtubule biology. Firstly,
average length behaves as expected, but the variation in length, rather than being absolute,
depends on the theoretical diffusion coefficient (because set 1 is still more random than sets 2
and 3), but also on the average length, or indeed the drift (because high negative drift and
small average length is less random than low negative drift and large average length).
Moreover, we have seen from sets 4 and 5 that for similar drift values, microtubule growth
properties can be quite different. Next, the applicability of these dynamics sets for cortical
targeting is assessed.

c. Cortical targeting in two states

In the first instance, the effects of combinations of inner and outer dynamics in two states on
the accuracy of cortical targeting are considered. The first question addressed with the model
was: what are the effects of particular combinations of inner and outer area dynamics on the
accuracy of cortical targeting? Dynamics sets 1-3 were assessed first, for which only the
theoretical average length was chosen to vary with drift, and to control for the potential
effects of a changing diffusion coefficient with decreasing drift and average length, the
dynamics sets were created in a way so that the diffusion coefficient remained constant (see
section C).

The three dynamics sets have drift from -10.06 pm min™? to 10.22 pm min®. The drift
between these extremes is evenly spaced, and in total there are 20 dynamics combinations.
Each of these is assigned to an area, giving 202 = 400 simulations, and over 3 dynamics sets,
1,200. The diffusion coefficient, though fixed in each dynamics set, was changed for each: in
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set 1, it was 33 um? min’; set 2, 16.5 pm? min™, and set 3, 8.25 um? min™. The drift and
theoretical average length varied within sets, but between the sets, because the diffusion
coefficients had different values, these theoretical average lengths differed. Thus, in set 1,
the theoretical average lengths (once in negative drift) ranged from 47.14 pm to 3.28 pm; in
set 2, from 37.50 um to 1.64 um, and in set 3, from 18.75 um to 0.82 um.

Each simulation was run for 50 simulation minutes before results were recorded; first, the
accuracy of each dynamics combination was found. The measure of accuracy used here is
simply the proportion of microtubule plus ends within the target cortical area. Thus, the
accuracy was measured starting from 50 minutes, and average over the final 10 minutes of
simulation time. As there were two sets of dynamics operating in these simulations, one for
each area, and thus two drift values per simulation, the accuracy for each dynamics set is
plotted as a surface, where the accuracy determines the height, or z co-ordinate, and x and y
are the inner and outer drift, respectively (fig. 10).

The plots in figure 10 show that, while accuracy depends on the drift in both areas, the sign of
the outer area drift is a major influence on accuracy; where there is positive outer area drift,
accuracy is always low regardless of inner area drift. It is evident that to achieve good levels
of accuracy, the negative outer area drift is best combined with positive inner area drift;
however, compared to outer area drift, the accuracy does not fall off so steeply as inner area
drift decreases, indicating that the accuracy is tolerant to negative inner drift values to a
greater extent than it is to positive outer drift. Thus, the first conclusion here is that positive
inner drift and negative outer drift produce the greatest accuracy in cortical targeting.

These observations can be reconciled with the average lengths in each dynamics set (fig. 11),
because average length is effectively an indicator of accuracy. Again plotted as a surface
with area drifts on the x- and y- axes, we can see that average length increases with
increasing drift in both areas, but that the effect is more marked with increases in outer area
drift. We can also see that at drift combinations that gave the greatest accuracy, the average
length is close to the target area distance, indicated by the red shading. The average length
here is actually just below the target length in set 3, but above it in set 1, consistent the
accuracy results.

Interestingly, the plots in figures 11 reveal that the low accuracy at large negative inner drift
and large positive outer drift arises for fundamentally different reasons in different sets. In
sets 2 and 3, the average length is low at these drift combinations, indicating that the low
accuracy here is due to microtubules not reaching the target area, while in set 1, the average
length at these drift combinations is large, indicating that the low accuracy here is due to
microtubules overshooting the target area. Therefore, although these dynamics sets have
similar accuracy results for those drift combinations, the differences between them in their
diffusion coefficient and theoretical average length mean that these similarities are reached
via different mechanisms.
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It is also interesting to note that, although negative drift in the outer area generally produces
accurate cortical targeting when combined with large positive inner drift, this is not always
the case. At small negative outer drift, accuracy is low, and this is true regardless of the sign
of the inner drift (fig. 10). Considering the average lengths as a function of area drift, we can
see that the average length at these drift combinations is very large in comparison to the
target length, only reducing when the inner drift reach values of around -5 pm min™?. Thus,
the small magnitude of the outer drift cannot balance the tendency toward growth of the inner
area; indeed, the average lengths at these low magnitude, albeit negative, outer area drift
values are on the order of tens of microns (appendix), thus it appears that there is a point at
which the negative drift in the outer area becomes too small to allow accurate cortical
targeting.

To demonstrate the effect of drift combinations on microtubule lengths, two example
histograms are plotted in figure 12. Here we see that for the drift combination that produced
the greatest accuracy in each dynamics set, i.e. maximum inner drift, minimum outer drift,
the lengths, on the order of tens of microns, are distributed around the target length (fig.
12A), while in a drift combination that gives low accuracy, i.e. maximum inner and outer
drift, the lengths, now on the order of thousands of microns, are distributed a long way from
the target length (fig. 12B), which now appears more as a thin line than an area, far to the left
of the histogram.

One of the most striking features of the plots in figure 10 is the fact that accuracy increases as
the dynamics sets change: set 3 has the greatest accuracy, and set 1 the worst. Thus, for
similar values of drift, the dynamics combinations in set 3 will generally give more accurate
cortical targeting than those in sets 1 or 2. Recall that the differences between these
dynamics sets is in their diffusion coefficients: set 1 has the greatest D, and set 3 the lowest
D. Note also that within each dynamics set, since D remains constant while the drift changes,
the theoretical average length, (L), must also change. The difference in accuracy between the
sets must therefore arise from these differences.

To clarify the issue, the accuracy of dynamics sets 1-3 is plotted in figure 13 as a function of
(L) for two inner drift values: 10.22 pm min, the maximum, and 5.02 pm min?, and mid-
range value for positive drift. Here, we see that contrary to the impression of the surface
plots, dynamics set 1 actually produces the greatest accuracy for any given (L). Indeed, the
reason that sets 2 and 3 produce greater accuracy is because they attain smaller (L) than set 1.
Therefore, we can conclude that although similar area drift combinations produce good
accuracy between the dynamics sets, the magnitude of this effect of drift is affected by the
theoretical average length. This is of course a manifestation of the relationship in equation 9:

VI = 9,

D

(Ly
so for similar drift values, a decrease in D must be accompanied by a decrease in (L),
explaining the results; setting drift equal between the dynamics sets while reducing D means
that sets with smaller D will have smaller (L). To conclude, drift per se is not an absolute
determinant of accuracy, and for any negative drift value, decreasing both D and (L) will give
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greater accuracy. Or indeed, (L) per se is not an absolute determinant of accuracy, since, for
any given (L), a greater D, and thus drift, will give greater accuracy.
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Figure 12. Example histograms of microtubule lengths. In the maximum inner drift,
minimum outer drift combination (A), lengths are distributed around the target area (indicated by
red shading), while for maximum drift in both areas (B), lengths are distributed far from the target
area. Length units are ym.
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Figure 13. Accuracy and theoretical average length in the outer area, dynamics sets 1-3.
Accuracy is plotted against theoretical average length for an inner drift of 10.22 ym min-* (A) and
5.02 ym min* (B) for each dynamics set (refer to legend). Theoretical average length units are

um.

Note that increases in accuracy as a result of decreasing (L) is relevant only to the outer area;
in the inner area, the situation is apparently reversed. Here, for any given (L), a smaller D,
and thus smaller (a small negative) drift, will give greater accuracy here, as the plots in figure
14 demonstrate; because D is smaller in set 3 compared to sets 1 and 2, and again smaller in 2
than in 1, for each (L), the drift is smaller in set 3 than in sets 2 or 1, and accuracy is greater.
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Figure 14. Accuracy and theoretical average length in the inner area, dynamics sets 1-3.
Accuracy is plotted against theoretical average length for an outer drift of -10.06 um min* (A) and
-5.90 (sets 1-2) and -5.77 (set 3) um mint (B) for each dynamics set (refer to legend).
Theoretical average length units are ym.
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These results lead to a rationale for accurate cortical targeting: we can say that for good
accuracy in targeting microtubule plus ends to an area, positive drift in the inner area
combined with negative drift in the target area produce the best results, whatever the
theoretical average length or diffusion coefficient of the particular dynamics sets. Secondary
to this, combinations of negative drift in both areas can produce good accuracy in targeting,
as long as the negative inner drift is not too great. Within these both-area-negative-drift
combinations, inner area dynamics sets that have a greater theoretical average length for any
drift value in the inner area will produce greater accuracy. Least successful in cortical
targeting are the combinations that involve positive drift in the outer area, regardless of the
sign or magnitude of drift in the inner area, though in some cases the mechanisms leading to
poor accuracy are different.

This cortical targeting rationale is displayed diagrammatically in figure 15. It provides a
convenient means of thinking about cortical targeting in terms of area drift. Indeed, the
success of cortical targeting, i.e. accuracy, can be considered in terms of “drift space”,
whereby the combinations of drift in each area are split into discrete regions based on their
sign (fig. 15). Thus, drift combinations in region 4 of drift space will tend to produce
accurate cortical targeting, while drift combinations in region 1 will be poor at cortical
targeting.

Note that this is a general framework, and only indicates potential for successful targeting;
the discussion of low accuracy at small negative drift in the outer area serves as one example
where these general rules do not hold. Moreover, the actual accuracy cannot be determined
from the drift space, since it is clear that, although drift combinations are major determinants
of accuracy in cortical targeting, the theoretical average length and diffusion coefficient
modulate this relationship. However, it does serve as a heuristic guide as to the plausibility
of any given dynamics combinations as means of accurate cortical targeting.
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Figure 15. Accuracy and “drift space”. The combinations of drift in each area can be split into
discrete regions based on the signs of the drift (A & B). Quadrants 1 and 2, where outer drift is
positive with either negative or positive inner drift (B) have low potential for accurate cortical
targeting (A), while quadrant 3, with negative outer and inner drift (B) has better accuracy
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potential (A), and quadrant 4, with negative outer and positive inner drift (B) has the best
accuracy potential. Units in A for drift are pm min.

With it being apparent that the best combinations of drift for accurate cortical targeting in
model 1 are positive inner drift and negative outer drift, dynamics sets that satisfied this
condition were used to investigate further the effect of changing the theoretical average
length and diffusion coefficient in the outer area. Two dynamics sets, 4 and 5, are used here,
each with the same single set of dynamics parameters for the inner area, specified so as to
give high positive drift, at 12 pm min™. Thus, any variation in accuracy in dynamics sets 4
and 5 will be due to the variation in outer area dynamics, simplifying the problem. The outer
area dynamics in sets 4 and 5 are specified so that they both vary in drift, but so that set 4
varies in average length with a fixed diffusion coefficient, while set 5 has a variable diffusion
coefficient, but a fixed average length. Therefore, these dynamics sets will allow further
exploration of how the theoretical average length and diffusion coefficient affect the accuracy
of cortical targeting.

The results, shown in figure 16, demonstrate that both the average length and diffusion
coefficient affect the accuracy of cortical targeting, and that each one of the parameters can
indeed remain fixed while the other varies and with it determines accuracy (fig. 16A & B).
In set 4, where the theoretical average length was varied and the diffusion coefficient held
constant, the accuracy is very low as length decreases from the maximum, until around 4 pm,
where the accuracy increases steeply with decreasing average length (fig. 16A & C). This
makes intuitive sense, since we might expect that low average lengths in a target area will
yield more plus ends within that area, and it is also consistent with the previous results.

Note that the theoretical average length below which accuracy starts to rise is on the order of
the size of the target area (4 um), which could lead to the conclusion that theoretical average
length must be smaller than or equal to the dimension of the target area; however, the
previous results showed that, although theoretical average length yield greater accuracy when
it is smaller, in the high D dynamics set (set 1), accuracy began to increase before 4 um was
reached.

The results are not so intuitive in dynamics set 5, where the accuracy increases with an
increasing diffusion coefficient (fig. 16B & C). Although this is consistent with the previous
results, where dynamics sets with greater D (i.e. set 1) produced greater accuracy for any
given theoretical average length, the more explicit result shown in figure 16 raises the
question of how a greater D, which should indicate greater randomness in length, leads to
greater accuracy.

The result can again be explained by reference to equation 9, which shows that as D
increases, so must the magnitude of the drift, |V|. Since we are considering a negative drift
regime in the outer area, the larger D produces a larger negative drift in the outer area, which
we have seen contributes to greater accuracy. Because negative drift indicates dominance of
shrinkage over growth, D in this instance indicates the extent to which microtubules will
undergo large excursions, which will generally be in the shrinking state. Thus, increased
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accuracy as D increases results from microtubules being more likely to undergo larger
episodes of shrinkage.
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Figure 16. Accuracy, average length, diffusion coefficient and drift in dynamics sets 4-5.
Accuracy is plotted as a function of average length (A; length units, um), diffusion coefficient (B;
diffusion units, pm? min't) and drift (C; drift units, ym mint) for each dynamics set (see legend).
In C, the average length and diffusion coefficient are also plotted as a function of drift (dotted
lines, right y-axis; units as in A and B).
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Are there common microtubule properties behind the accurate targeting at low (L) and high
D? The previous experiments have already established that good accuracy is essentially an
indicator of an average length around the target area, so other properties were investigated.
The range of microtubule lengths and microtubule dynamicity were determined for each
dynamics set. Where the length range reveals the extent to which microtubule lengths vary,
the dynamicity indicates the extent to which microtubules change their length.

In set 4, with decreasing (L), the length range at first stays relatively constant, and then
decreases quite rapidly. The dynamicity in set 4 behaves differently with decreasing (L); it
also decreases at first but then increases at smaller (L) (fig 17A). In set 5, as the diffusion
coefficient increases, so does the dynamicity (fig. 17B). The length range behaves differently
here, at first increasing with the diffusion coefficient and then decreasing. Thus, dynamicity
in set 4 and length range in set 5 both have a qualitative switch in their relationship with
either decreasing (L) or increasing D, respectively.

This qualitative reversal in length range and dynamicity is brought about by the systems
effects of decreasing drift in the outer area with a constant positive drift in the inner area. For
comparison, the area-free simulations in the previous sub-section showed that length range
and dynamicity increase with increasing theoretical average length in set 4, with the
dynamicity levelling off, and so both measures increase as drift approaches zero. In set 5, the
dynamicity and length range also increased, but the latter only very steeply and quickly, after
which it remained relatively constant with increasing diffusion coefficient. Thus, set 4
reproduces the area-free behaviour for length range but not dynamicity, and set 5 mimics the
area-free simulations for dynamicity but not for length range.

However, the area-free behaviours are reproduced for some of the changes in either (L) or D;
at large (L), dynamicity is similar in these simulations for set 4 as it was in the area-free
simulations, while in set 5, at small D, length range is similar here to the area-free
simulations. The fact that both changes in the relationships occur at similar outer area drift
values suggests that they are a consequence of the systems nature of these simulations; as
microtubules in the outer area experience dynamics sets that cause them to shrink more, they
will be returned to the inner area, upon which they will experience dynamics sets that cause
them to grow more, and they will return to the outer area. Thus, the length range reduces, but
the dynamicity increases; as outer negative drift becomes large, microtubules range less in
length but cover greater distance. It is interesting that this common mechanism, which
produces good accuracy, is manifest purely from the combinations of area dynamics, and
indeed, causes deviations from the microtubule growth behaviour that would otherwise occur.

To conclude, in two-state dynamics, the combination of drift in the two areas is a vital
determinant of accuracy, and this arises from a common mechanism of reducing length range
while total distance covered increases, regardless of whether theoretical average length or the
diffusion coefficient is varied to bring about changes in drift. Having elucidated the
mechanisms behind accurate targeting of microtubules in two-state dynamics regimes, the
influence of the third state will be considered next.
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I1. Three-state dynamics
a. Model efficacy

In the simulations of three-state model 1, only two transition frequencies were varied within
each dynamics set; these were Fpog and Fp2s. The purpose of varying just these transition
frequencies was so that the time percentage for the pausing phase varied, but other system
properties did not. Therefore, to establish the efficacy of model in three-state simulations, the
correlation between specified and observed Fp2g and Fpzs will be a useful measure, and the
mean-squared error for all observed transition frequencies will also be used to test that these
were close to their specified values.

The correlation coefficients for Fpog and Fpos for each dynamics set were high (table 1V), in
both the area-free and two-area simulations. These correlations are easy to see in the plots in
figure 18. For all transition frequencies, the mean-squared error was low (table V-VI). These
results indicate that the 3-state version of model 1 reproduced the specified behaviour well.

Table IV. Correlation coefficients for varied transitions frequencies in dynamics sets 6-10.
The correlation between specified and observed transition frequencies in both simulations types
is shown.

Set Fpag Fpas

Area-free Two-area Area-free Two-area
6 1.00 1.00 1.00 1.00
7 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00

Table V. Mean-squared error for transition frequencies in dynamics sets 6-10, area-free
simulations. The error between specified and observed transition frequencies is shown.

Set Feat Fres Fozp Fpzg Fezp Fpzs
6 0.01 0.01 0.00 0.00 0.00 0.00
7 0.01 0.01 0.00 0.00 0.00 0.00
8 0.01 0.00 0.00 0.00 0.00 0.00
9 0.02 0.00 0.00 0.00 0.00 0.00

10 0.04 0.00 0.00 0.00 0.00 0.00
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Table VI. Mean-squared error for transition frequencies in dynamics sets 6-10, two-area
simulations. The error between specified and observed transition frequencies is shown.

Fcat Fres FgZp Fp29 FsZp Fp25
In Out In Out In Out In Out In Out In Out

Set

6 0.00 0.01 o0.00 001 0.00 0.00 0.00 0.01 o0.00 0.00 0.00 o0.00
7 0.00 0.01 o0.00 001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o0.00
8 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o0.00
9 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o0.00

10 000 0.04 000 000 000 0.00 0.00 0.00 0.00 0.00 0.00 o0.00
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Figure 18. Specified and observed transition frequencies for dynamics sets 6-10 in area-
free and two-area simulations. The observed transition frequencies, as indicated, for area-free
(A, C) and two-area (B, D) simulations are plotted against the specified values for each dynamics
set (refer to legend). Transition frequency units are min-t.
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b. Population measures

Next, certain population properties of model 1 in 3 states are considered. As with the two-
state version of model 1, these measures are conducted on the area-free simulations only;
similar measures will be considered for the two-area simulation in the subsequent section.
Firstly, although dynamics sets 6-10 were created so that the pause time percentage varied
while drift, length and the diffusion coefficient were fixed within each, the percentage time in
pause is strictly a population parameter, and is a predicted feature of the simulations. The
same is true of the predicted time percentages in the other phases. Indeed, it is possible that
the observed times deviate from the predicted values due to certain systems properties, one of
which is favouring of the growth phase due to re-nucleation. Since the effect of this process
is marked at shorter average lengths, deviation of the phase times may well differ here, where
the average length ranges from 3.84 um to 0.92 um.

The observed phase time percentages are plotted in figure 19. In each of the individual set
plots (fig. 19A-E), the pausing time percentage is evidently behaves as expected, since there
is an essentially linear relationship between the predicted and observed values. This linear
relationship is not as strong as we go through the dynamics sets; thus, since the average
length decreases with the dynamics sets, there is evidence of the aforementioned deviation
from expected phase time percentages at short average lengths. Indeed, this trend is more
marked for the other phases; observed growth time percentage becomes greater than
predicted as the average length decreases, and the opposite is true of shrinking time
percentage. Again, this is consistent with the predictions made above. Comparing the phase
times between dynamics sets (fig. 19F-H), these effects are clearer. Therefore, although
predicted phase times do differ from the observed phase times, we can understand why, and
moreover, the observed pause time deviates from the predicted values less than the other
phases, and it is pause time percentage that we are particularly interested in here. Also, there
is good correlation between the predicted and observed phase time percentages (table VII).

Table VII. Correlation between predicted and observed phase time percentages for
dynamics sets 6-10, area-free simulation. For each dynamics set, the correlation between
predicted and observed phase time percentages is shown.

Dynamics set Pause Grow Shrink
6 1.00 1.00 1.00
7 1.00 1.00 1.00
8 1.00 1.00 1.00
9 1.00 1.00 1.00

10 1.00 1.00 1.00
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Previously in the two-state version of model 1, the length range was found to decrease with
larger outer area negative drift and this was concurrent with increased cortical targeting
accuracy. Therefore, the length range in the three-state version of model 1 was found as a
function of pausing time percentage. In general, the pausing time percentage has little effect
on the length range (fig. 20), but in dynamics set 6, and to a certain extent dynamics set 7, the
length range does fall as pausing time percentage reaches its greatest values (fig. 20). Note
also that although pausing time percentage has little effect on the length range within each
dynamics set, the length range is consistently different between the dynamics sets. Since
when D is fixed in the two-state version of model 1, length range was found to decrease with
more negative values of drift, it is likely that the decreasing (i.e. more negative) drift from set
6 to set 10 is the source of these differences in length range. Added to this is the differences
between sets in average length; this decreases concomitantly with drift from set 6 to set 10,
and a shorter average length combined with a larger negative drift will produce smaller length
ranges, as we have seen previously.
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Figure 20. Length range and pausing time percentage in dynamics sets 6-10, area-free
simulations. The length range is plotted against predicted (A) and observed (B) pause time
percentage for each dynamics set (refer to legend). Length range units are ym.
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Finally, the average length in the area-free, three-state version of model 1 was determined for
each dynamics set. As average length was held constant within each dynamics set, the mean-
squared error for the observed average lengths against the specified average length was
found. The result of this are shown in table VIII. The low mean-squared error for each
dynamics set indicates that the predicted average length is similar to the observed average
length in the area-free simulations.

Table VIIl. The mean-squared error average length in area-free simulations of dynamics
sets 6-10. For each dynamics set, the mean-squared error (MSE) for the difference between
observed and theoretical average length is shown.

Dynamics set MSE
6 0.04
7 0.01
8 0.00
9 0.00
10 0.00

c. Cortical targeting in three states

Having introduced the third microtubule state into the two-area simulations, the immediate
matter is verification of the observed pausing time percentages; are they similar to the
specified pausing percentage times, or does the system change this property? Figure 21
shows a plot of the specified and observed pausing time percentages for dynamics sets 6-10.
The specified and observed pausing time percentage for these two-area simulations was
highly positively correlated as in the area-free simulations, at 1.00 for all dynamics sets.
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Figure 21. Specified and observed pausing time percentage in two-area simulations of

dynamics sets 6-10. For each set (refer to legend), the specified and observed pausing time
percentages are plotted.
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Having verified that there are no emergent systems processes whereby the observed and
specified pausing time percentages differ, the next issue is whether pause time percentage
affects the accuracy of cortical targeting. The results are plotted in figure 22. The accuracy
of cortical targeting is clearly affected by pausing time percentage; in all dynamics sets,
accuracy increases with pausing time percentage, and this increase becomes greater with
large pausing time percentages (fig. 22A). Given the introduction of drift space in the two-
state model 1 earlier, and the finding that increasing negative drift in the outer area produces
better accuracy, it is not surprising that, although accuracy responds to pausing time
percentage in a similar fashion between dynamics sets, the absolute level of accuracy changes
between these sets, which of course differ in their outer area drift values. Thus, it is useful to
consider accuracy as a function of both outer area drift and pausing time percentage (fig.
22B). Plotted as a surface, we can see that accuracy is most responsive to increases in
pausing time percentage when outer area drift is more negative. Therefore, we can conclude
that increasing pausing time percentage increases accuracy, but the extent to which it does so
is modulated by the magnitude of the outer area negative drift.

It is interesting to note that, although the effect of pausing time percentage is modulated by
outer area drift, introducing the third state into the simulations produces greater accuracy at
smaller negative drift compared to the two-state model. Set 6 represents the smallest outer
area drift value here, and the most comparable dynamics set used in the two-state model is set
3. At similar outer area drift and average length values, accuracy was almost zero in set 3,
whereas in set 6, it is greater than 0.2. Note that the inner area drift in dynamics set 3 was
slightly lower than in set 6, 10.22 um min™ at the maximum, and this may have a small effect
on the accuracy there.

What is the mechanism by which increases in pausing time percentage increase accuracy? To
investigate, various microtubule growth characteristics were analysed. In the two-state
simulations, it was found that larger negative drift in the outer area, when combined with
positive inner drift, resulted in decreased length range and increased dynamicity, regardless
of whether the changes in outer drift was brought about by changing theoretical average
length or the diffusion coefficient. Thus, the length range and dynamicity were investigated
for sets 6-10. In the area-free simulations, it was found that increased pausing time
percentage had little effect on the length range until large T, was reached, upon which length
range decreased in the sets with small negative drift (i.e. sets 6 and 7). Here, the moving
average of the length range was taken so that the results were easier to interpret; this and the
dynamicity are plotted against the specified Tp in figure 23. As with the area-free
simulations, the length range remains relatively constant for a large portion of Ty, but as Ty
becomes large, the length range decreases quickly. In this case, this rapid decrease in length
range at high T, occurs in all dynamics sets. The dynamicity decreases with increasing Tp;
this follows simple reasoning that larger proportions of time spent in the pausing phase
should give rise to lower absolute change in length.
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Previously, it was found that both length range and dynamicity increase with theoretical
average length in area-free two-state simulations, but that in two-area, two-state simulations
at low (L), the trend was reversed and dynamicity decreased with increasing (L). Since (L)
was varied between dynamics sets here, the length range and dynamicity were determined for
each dynamics set, i.e. as functions of (L). The averages of the length range and dynamicity
for each set, i.e. over the variable Ty, are shown in figure 24A & C, while the averages over
discrete 20% portions of T, are shown in figure 24B & D. Here, we see that the relationship
between length range and (L) found in two-state simulations still holds here (fig. 24A), and
that as Tp becomes large, the length range increases with (L) at a slower rate (fig. 24B).
Thus, for any given (L), increasing Tp to very high values makes length range smaller.
Dynamicity also decreases, albeit slowly, with increasing (L), consistent with the earlier
findings. As with the length range, increasing T, decreases dynamicity for any given (L), but
here, the effect is more marked than for length range.
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Figure 24. Length range and dynamicity as functions of theoretical average length,
dynamics sets 6-10. Theoretical average length varies between sets 6-10, with set 6 having the
largest value, and set 10, the smallest. Thus, length range and dynamicity are plotted as
functions of these theoretical average lengths: the average values are shown in A and C, and the
averages of discrete intervals of T, (see colour bar) are shown in B and D. Length range and
theoretical average length units are um; dynamicity units are um min-1.

As each dynamics set has a constant drift value, the length range and dynamicity can be
plotted as against outer area drift (fig. 25). Since drift becomes smaller with increasing (L),
the length range and dynamicity behave in a similar manner here, both for average (fig. 25B)
and discrete T, averages (fig. 25C); accuracy is quite consistent relative to the two-state
model (fig. 25A).
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Finally, the fact that on average, accuracy does not increase with larger negative outer drift
warrants a discussion of the response of accuracy to changing drift and Tp. Firstly, notice that
the average accuracy in figure 25A is actually lower at the largest negative drift compared to
the intermediate negative drifts. However, the first set of results showed that accuracy is
greatest at the largest negative drift. The situation can be clarified by considering in a bit
more detail how accuracy responds to the combinations of drift and Tp. In figure 26A, the
accuracy is plotted with drift, colour-coded for T,. Note that the range in accuracy values
increases with larger negative drift; these are plotted in figure 26B. The low accuracy values
for small T, evidently lower the average accuracy in figure 25A.

What is the link between a small T, and non-increasing accuracy with larger negative drift?
Firstly, it is relevant that the introduction of pausing elevates accuracy for lower negative
drift values, regardless of the value of Tp; in two-state simulations, accuracy was always very
low at outer drift value of -2 um min, whereas here it is greater than 0.2 um min*; this was
discussed above. Secondly, and more fundamentally, introduction of pausing means that
dynamicity does not vary to the same extent with drift as it does in the two-state simulations.
Thus, Tp modulates dynamicity almost independently of drift; there is a small decrease in
dynamicity as drift approaches zero, as discussed.

However, the introduction of pausing does not alter length range to the same extent as it does
dynamicity; here, it still increases as drift approaches zero. This means that for small
negative drift regimes where the length range is large, the reduction in dynamicity afforded
by increases in T, has a small effect, as large Ty values do yield greater accuracy here, but this
effect is not as great as when length range is small at large negative drift values. Here,
reducing dynamicity by increasing Tp can have a stronger effect because the length range is
not limiting; it is small. This explains the increase in accuracy range as negative drift
becomes larger.

These results suggest that in the two-state case, the increase in dynamicity with decreasing
length range seen in dynamics set 4 is limiting further increases in accuracy. Similarly, in the
two-state dynamics set 5 where D varied and dynamicity increased with increasing D and
larger negative drift, i.e. dynamicity was effectively “forced”, length range reduced and
accuracy increased; in two states, accuracy is achieved by decreasing length range but there is
concomitant increase in dynamicity. In three states, these are (almost) uncoupled, allowing
greater accuracy by reducing dynamicity at low length ranges.

To conclude this section, the findings presented above demonstrate that the systems
behaviour found in the two-state model is still applicable in general; greater accuracy is
associated with a decrease in length range and a very slight increase in dynamicity, but that
pausing contributes to greater accuracy by permitting decreases in dynamicity that would
otherwise be unattainable. As with two states, pausing effectively focusses plus ends to the
target area, but without concomitant increases in dynamicity. This means higher accuracy is
attainable at smaller outer negative drift than in two-states, and for any drift value, larger Ty
means more accurate targeting.
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E. DISCUSSION
I. Mechanisms of radiality
a. Evaluation of investigation rationale

In this chapter, the general principles of accurate cortical targeting have been deduced by
coarsening the model of microtubule dynamics into just three parameters: drift, V, diffusion
coefficient, D, and theoretical average length, (L) (though note that only two are ever needed
because they are related by eq. 4). Therefore, even though in the model, the full complement
of dynamics parameters were specified, i.e. Vg, Vs, Fcat and Fres in two states, and the
transitions to and from the pausing state added to these to make eight parameters for the three
state case, considering the area dynamics in terms of these parameters borrowed from the
theory of random walks helped to elucidate the characteristics of area dynamics regimes that
will give rise to accurate targeting of microtubules to the cortex.

Here, the framework for the modelling, where one-dimensional microtubules grew in two
areas with particular dynamics regimes, followed from the rationale that radiality must
necessarily follow from control of microtubule length, and that one mechanism to do this is
cell periphery-specific changes in microtubule dynamics relative to the more central areas of
the cell. Indeed, it was postulated at the beginning of this chapter that this may not be an
exclusive mechanism for radiality, and that other processes, particularly microtubule-intrinsic
length control and cortical capture of microtubules, would contribute to radiality.

b. General principles of accurate cortical targeting

In the first simulations of the model in two state (sets 1-3), it is interesting to note that the
effect of (L) is opposite between the areas: in outer areas, decreases in (L) produce more
accurate targeting, while in inner areas, increases in (L) give better accuracy. How can this
be rationalised? In inner areas in a negative drift regime, a greater (L) will mean that
microtubules will be more likely to reach the target area, whereas in outer areas, lower (L)
will be beneficial by the fact that microtubules will effectively be contained better within the
target area, giving greater accuracy.

The effect of D is less intuitive compared to (L), since increases in D, essentially an indicator
of the randomness of microtubule lengths, produce better cortical targeting. How can this be?
As discussed in the results, we can rationalise this by the fact that in a negative drift regime,
larger D means larger negative drift, and thus the randomness, as such, is better thought of as
an increased tendency for microtubules to undergo large excursions in the shrinking phase.
Of course, in a two-area model, once the microtubules have shrunk sufficiently, they will
experience the dynamics allocated to the inner area. Therefore, when inner area dynamics
permit, i.e. when they have large and positive drift, large D in the outer area and high
accuracy is reasonable.

The switching back and forth between areas that must arise when outer area dynamics
produce large negative drift and the inner area dynamics have large positive drift is indicated
by the increase in dynamicity as outer area negative drift got larger in sets 4 and 5; this is
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especially true of set 4, where D was fixed, because in area-free simulations, the trend in
dynamicity went against this, decreasing with larger negative drift.

When pausing in the outer area was introduced into the simulations, it increased accuracy
when it was increased in the outer area. We saw that for large negative outer area drift, Tp
had more of a modulatory effect than at small negative outer area drift, suggesting that at
these drift combinations (i.e. large negative outer, large positive inner), dynamicity was
limiting, whereas at small negative outer, large positive inner drift, the smaller modulatory
role of pausing suggests that here, length range may be the limiting factor.

These observations can be condensed into a unifying theory of cortical targeting: that the
accuracy of any targeting strategy depends on the extent to which the inner area promotes
transit of microtubules to the outer area, and the extent to which the outer area maintains
these microtubules, or, failing that, returns them to the inner area.

c. General principles compared to measured dynamics

In the cell, it is generally assumed that where there is negative drift, the system is maintained
by a complementary nucleation rate, and where there is positive drift, the confines of the cell
somehow act to limit this tendency toward growth; very few studies have considered this
experimentally, although Komarova et al. (2002), Mimori-Kiyosue et al. (2005) and
Komarova et al. (2009) are good exceptions.

In those studies, microtubule dynamics were found to be different near the cell periphery
compared to more central areas of the cell. In summary, the dynamics at the cell periphery
differed in such a way that at the periphery, microtubules were found to be in negative drift
(Komarova et al., 2002), have increased incidence of transitions between states (Komarova et
al., 2009; Komarova et al., 2002; Mimori-Kiyosue et al., 2005), and increased incidence of
pausing (Mimori-Kiyosue et al., 2005). These experimental findings are all consistent with
the results of the modelling in this chapter, and thus, the “general mechanisms” outlined
above may be able to account for good cortical targeting in some cases, without the need for
subsequent capture to be invoked to produce better accuracy.

Whether these indeed are general mechanisms in vivo and cells do not rely on the
contribution of other mechanisms, such as the cortical capture and stabilisation of
microtubules, will require further experiments that address differences in microtubule
dynamics between central and peripheral areas.

d. Future experiments

As discussed earlier in the chapter, the hallmark of a good model is that it will not only test
our notions of reality, it will also hint at possible future experiments. What can the model
suggest for future experiments? The fact that, in a low or no-pausing dynamics regime, good
accuracy in cortical targeting is concomitant with increased dynamicity, indicates that
microtubules need not necessarily be less dynamic as they approach the cell periphery.
Indeed, as some studies posit an increase in rescue (e.g. Komarova et al. (2009)) at or near
the cell periphery, repeated cycles of growth, collision with the cell border, shrinkage, and
subsequent rescue may well increase dynamicity relative to other areas of the cell. Therefore,
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a future experiment might address dynamicity and the extent of radiality. Doing such an
experiment in conjunction with interfering with the function of various MAPs and potential
cortical stabilising factors, which were discussed in chapter 2, would be interesting.

Other experiments might include an assessment of cortical stabilisation. Indeed, although
there have been many good studies of selective stabilisation, it would be interesting to further
characterise dynamics at the periphery and stabilisation. For example, we might characterise
microtubule dynamics at the same time as implementation of an assay of selective
stabilisation, and thus obtain cortical selective stabilisation as a function of microtubule
dynamics. Such an experiment could be conducted in conjunction with a certain model
extension described below.

I1. Modelling for radiality
a. Model evaluation

In the discussion of the modelling process near the beginning of this chapter, the point was
made that models are best when designed for specific purposes with particular
complementary experiments. Here, the model was designed with the methodology of chapter
3 in mind; there, microtubule dynamics were measured in central and peripheral areas of the
cell; here, microtubules were modelled with two sets of dynamics: one for inner areas and
one for outer areas. The complementary experiments are examined in a bit more detail in the
next chapter; the purpose here was to really understand what makes for a good microtubule
cortical targeting strategy, and indeed, this has been possible with the simple one-dimensional
model that was used. Of course, the model can be extended, and thus be more complex, and
this is discussed below. However, models need not be complex for the sake of complexity,
and the model used here was appropriate for the questions at hand.

b. Comparison with other models

Theoretically, Gregoretti et al. (2006) and Vorobjev and Maly (2008) have given attention to
the effects of a boundary on microtubule dynamics. The former study found that microtubule
dynamics could be modulated by the effect of increasing soluble tubulin concentration at the
cell periphery upon growth being limited by a barrier. To elaborate, as microtubules grew
against the cell border, their subsequent transition to the shrinking phase lead to an increase
in soluble tubulin concentration, and thus an elevated rescue frequency (which was
concentration-dependent in their model), and thus, microtubules grew again and appropriate
length was achieved. This makes for an appealing self-organising mechanism, and is not
exclusive; it is compatible with the mechanisms discussed here and also with cortical capture.

The model of Vorobjev and Maly (2008) found that if microtubule length was limited, for
example by a cell boundary, then positive drift dynamics could produce a radial array.
Without bending microtubules, this makes sense, since microtubules will grow persistently
up to a target length, and then stop. If capture is immediate, then this positive drift could be
the maximum (i.e. the growth rate) and microtubules would form a radial array. In some
ways, the model here builds upon that work by allowing microtubules to continue to grow
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past a target length, and asking what the appropriate dynamics parameters are if they are to be
accurately targeted to that length.

Finally, in a similar model in a predominantly experimental paper, van der Vaart et al. (2013)
addressed how microtubule growth might be regulated at the cell periphery. They found that
the increased rescue frequency found at the cell periphery required a decrease in microtubule
growth rate if the microtubules were to be radially-organised. Since decreases in growth rate
would cause decreases in drift, their findings are consistent with those presented here, and
again, increased rescue can also be explained if dynamics in the inner area are in positive
drift.

c. Model extensions

An obvious extension to the model that has not been addressed here is inner area pausing.
The reason it was omitted here is because its effects on accuracy of cortical targeting are
evaluated in the next chapter; however, as we will see, this is only for dynamics regimes in
quadrant 3 of drift space. Therefore, one part of the two-area model to be implemented in the
future is inner area pausing in dynamics regimes located in quadrant 4 of drift space.

Note that, although this model was designed to investigate the potential for cell periphery-
specific modulation of microtubule dynamcis, it may also be applicable as a very coarse
model of microtubule-intrinsic length control. Indeed, although the term intrinsic is used
here to indicate mechanisms distinct from those based on cortex-located processes, this
intrinsic length control can be modulated by microtubule-extrinsic agents, for example
various kinesins (Gardner et al., 2011). Thus, discrete areas of dynamics could be applied to
test age- or length-dependent microtubule dynamics modulation.

Further extensions to the model could include an investigation of the effect of microtubule
length control as investigated here on the rate of microtubule capture. To elaborate, a simple
hypothesis that extends from the idea that a number of processes contribute to radiality is that
accurate cortical targeting, as determined by the modelling here, contributes to radiality by
making microtubules available to capture. In this view, a microtubule that is more accurately
targeted to the cortical area will by definition spend more time in that area; capturing a
microtubule should proceed more successfully if the microtubule is near the capture site more
often, as it would be if it is more accurately targeted. Thus, a model whereby microtubules
are captured with a given frequency and are subsequently stabilised and removed from the
dynamic pool of microtubules, would be applicable for this type of problem. Such a model is
not a significant extension from that used here.

Related to the evaluation of the model given above, it is apparent that in future modelling
studies, including cell dimensions may be applicable; indeed, it is likely that the mechanisms
postulated to contribute to radiality above, and probably many others, are tuned so that they
are applicable to cell dimensions. As discussed, it is apparent that the inner-outer changes in
dynamics here may not, in many cases, be comprehensive for radiality. Therefore, we could
expect a cell system whereby the cortex mediated dynamics play a role in the generation of
radiality, but that this is a role in a large ensemble of other processes that are tuned by the cell
to produce appropriate microtubule dynamics, and thus length, and subsequent radiality.



146

Such tuning might include concentrations of various molecules that contribute to the
microtubule-intrinsic mechanisms, and localisation of cortical molecules for modulation of
dynamics and also capture and subsequent stabilisation of microtubules.

To conclude, in this chapter, the general mechanisms for accurate cortical targeting have been
characterised, and abstraction of the many dynamics parameters into just a few parameters
has helped in doing this. The modelling should inform future studies of cortical microtubule
behaviour, and there are also a number of extensions to the model that will be interesting to
explore. In the next chapter, the model is carried forward and we revisit the dynamics
measurements made in the previous chapter, and together with modelling of dynamics sets
similar to those of chapter 3, a small survey of literature-reported microtubule dynamics is
conducted so as to be able to better understand where the measured dynamics and the
dynamics sets used in this chapter relate to dynamics recorded by other researchers.
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F. APPENDICES
I. Two-state dynamics

Table IX. Dynamics set 1. Dynamics parameters, Vg, Vs, Fcat and Fres are shown, together with
the Fca:Fres ratio, and abstract measures theoretical average length, (L), drift, V, and diffusion
coefficient, D. Units: Vg, Vs, V, um min?, Fca, Fres, mint, (L), um, and D, ym? min't. Each row
was assigned in turn to one of the model areas.

Vg Vs Fecat Fres Fecat: Fres (L) \% D
11 15 0.15 4.85 0.03 - 10.22 33
11 15 0.35 4.65 0.08 - 9.18 33
11 15 0.55 4.45 0.12 - 8.14 33
11 15 0.75 4.25 0.18 - 7.10 33
11 15 0.95 4.05 0.23 - 6.06 33
11 15 1.15 3.85 0.30 - 5.02 33
11 15 1.35 3.65 0.37 - 3.98 33
11 15 1.55 3.45 0.45 - 2.94 33
11 15 1.75 3.25 0.54 - 1.90 33
11 15 1.95 3.05 0.64 - 0.86 33
11 15 2.25 2.75 0.82 47.14 -0.70 33
11 15 2.45 2.55 0.96 18.97 -1.74 33
11 15 2.65 2.35 1.13 11.87 -2.78 33
11 15 2.85 2.15 1.33 8.64 -3.82 33
11 15 3.05 1.95 1.56 6.79 -4.86 33
11 15 3.25 1.75 1.86 5.59 -5.90 33
11 15 3.45 1.55 2.23 4.76 -6.94 33
11 15 3.65 1.35 2.70 4.14 -7.98 33
11 15 3.85 1.15 3.35 3.66 -9.02 33

11 15 4.05 0.95 4.26 3.28 -10.06 33
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Table X. Dynamics set 2. Dynamics parameters, Vg, Vs, Fcar and Fres are shown, together with
the Fca:Fres ratio, and abstract measures theoretical average length, (L), drift, V, and diffusion
coefficient, D. Units: Vg, Vs, V, um min?, Fca, Fres, mint, (L), um, and D, ym? min'l. Each row
was assigned in turn to one of the model areas.

Vg Vs Fecat Fres Fecat: Fres (L) \% D

11 15 0.3 9.7 0.03 - 10.22 16.5
11 15 0.7 9.3 0.08 - 9.18 16.5
11 15 1.1 8.9 0.12 - 8.14 16.5
11 15 15 8.5 0.18 - 7.10 16.5
11 15 1.9 8.1 0.23 - 6.06 16.5
11 15 2.4 7.6 0.32 - 4.76 16.5
11 15 2.8 7.2 0.39 - 3.72 16.5
11 15 3.2 6.8 0.47 - 2.68 16.5
11 15 3.6 6.4 0.56 - 1.64 16.5
11 15 4 6 0.67 - 0.60 16.5
11 15 4.4 5.6 0.79 37.50 -0.44 16.5
11 15 4.8 5.2 0.92 11.15 -1.48 16.5
11 15 5.2 4.8 1.08 6.55 -2.52 16.5
11 15 5.6 4.4 1.27 4.63 -3.56 16.5
11 15 6 4 1.50 3.59 -4.60 16.5
11 15 6.5 3.5 1.86 2.80 -5.90 16.5
11 15 6.9 3.1 2.23 2.38 -6.94 16.5
11 15 7.3 2.7 2.70 2.07 -7.98 16.5
11 15 7.7 2.3 3.35 1.83 -9.02 16.5

11 15 8.1 1.9 4.26 1.64 -10.06 16.5
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Table XI. Dynamics set 3. Dynamics parameters, Vg, Vs, Fcat and Fres are shown, together with
the Fca:Fres ratio, and abstract measures theoretical average length, (L), drift, V, and diffusion
coefficient, D. Units: Vg, Vs, V, um min?, Fca, Fres, mint, (L), um, and D, ym? min'l. Each row
was assigned in turn to one of the model areas.

Vg Vs Fecat Fres Fecat: Fres (L) \% D

11 15 0.6 194 0.03 - 10.22 8.25
11 15 14 18.6 0.08 - 9.18 8.25
11 15 2.2 17.8 0.12 - 8.14 8.25
11 15 3.1 16.9 0.18 - 6.97 8.25
11 15 3.9 16.1 0.24 - 5.93 8.25
11 15 4.7 15.3 0.31 - 4.89 8.25
11 15 55 14.5 0.38 - 3.85 8.25
11 15 6.3 13.7 0.46 - 2.81 8.25
11 15 7.2 12.8 0.56 - 1.64 8.25
11 15 8 12 0.67 - 0.60 8.25
11 15 8.8 11.2 0.79 18.75 -0.44 8.25
11 15 9.6 10.4 0.92 5.57 -1.48 8.25
11 15 10.5 9.5 1.11 3.11 -2.65 8.25
11 15 11.3 8.7 1.30 2.24 -3.69 8.25
11 15 12.1 7.9 1.53 1.74 -4.73 8.25
11 15 12.9 7.1 1.82 1.43 -5.77 8.25
11 15 13.7 6.3 2.17 1.21 -6.81 8.25
11 15 14.6 5.4 2.70 1.03 -7.98 8.25
11 15 154 4.6 3.35 0.91 -9.02 8.25

11 15 16.2 3.8 4.26 0.82 -10.06 8.25
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Table XlI. Dynamics set 4. Dynamics parameters, Vg, Vs, Fcar and Fres are shown, together with
the abstract measures theoretical average length, (L), drift, V, and diffusion coefficient, D. Units:
Vg, Vs, V, um min, Fear, Fres, min, (L), um, and D, ym? mint. Here, the single dynamics set for
the inner area is shown, and the outer area parameters are summarised.

Vg Vs Fcat Fres (L) V D
Inner
12 15 0 5 - 12 36
Outer
6.67 8.33 19.8 -0.56
11 15 to to to to 11
12.12 2.88 1.1 -10

Table XlIl. Dynamics set 5. Dynamics parameters, Vg, Vs, Fcat and Fres are shown, together with
the abstract measures theoretical average length, (L), drift, V, and diffusion coefficient, D. Units:
Vg, Vs, V, um min, Fear, Fres, min, (L), um, and D, ym? mint. Here, the single dynamics set for
the inner area is shown, and the outer area parameters are summarised.

Vg Vs Feat Fres (L) v D
Inner
12 15 0 5 - 12 36
Outer
44 55 -0.56 1.67
11 15 to to 3 to to
4.44 1.06 -10 30
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I1. Three-state dynamics

Table XIV. Dynamics set 6. Dynamics parameters, Vg, Vs, Fcart0o Fpos are shown, together with
the abstract measures theoretical average length, (L), drift, V, diffusion coefficient, D and
pausing time percentage, Tp. Units: Vg, Vs, V, um min-1, all transition frequencies, min, (L), ym,
and D, um? min'l. Here, the single dynamics set for the inner area is shown, and the outer area
parameters are summarised.

Vg Vs Fcat Fres FgZp szg FsZp FpZS \Y (L) D TP

Inner
12 15 0 5 0 0 0 0 12 - - 0
Outer
0.01 0.01 98.68
11 15 10 10 1.50 to 1.50 to -2.00 3.84 7.67 to
24.25 24.25 3.00

Table XV. Dynamics set 7. Dynamics parameters, Vg, Vs, Fcar t0o Fpos are shown, together with
the abstract measures theoretical average length, (L), drift, V, diffusion coefficient, D and
pausing time percentage, Tp. Units: Vg, Vs, V, ym min, all transition frequencies, min-t, (L), um,
and D, um? mint. Here, the single dynamics set for the inner area is shown, and the outer area
parameters are summarised.

Vg Vs I:cat I:res FgZp FpZQ FsZp Fp2$ \Y (L) D Tp
Inner
12 15 0 5 0 0 0 0 12 - - 0
Outer
0.01 0.01 98.55

11 15 10.91 9.09 1.50 to 1.50 to -3.18  2.43 7.67 to
22.04 22.04 3.00
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Table XVI. Dynamics set 8. Dynamics parameters, Vg, Vs, Fcatrto Fpos are shown, together with
the abstract measures theoretical average length, (L), drift, V, diffusion coefficient, D and
pausing time percentage, Tp. Units: Vg, Vs, V, um min, all transition frequencies, min't, (L), um,
and D, um? mint. Here, the single dynamics set for the inner area is shown, and the outer area
parameters are summarised.

Vg Vs Fcat Fres FgZp Fp29 FsZp Fp23 \% (L) D Tp
Inner
12 15 0 5 0 0 0 0 12 - - 0
Outer
0.01 0.01 98.42
11 15 11.67 8.33 1.50 to 1.50 to -4.17 1.86 7.67 to
20.20 20.20 3.00

Table XVII. Dynamics set 9. Dynamics parameters, Vy, Vs, Fcarto Fp2s are shown, together with
the abstract measures theoretical average length, (L), drift, V, diffusion coefficient, D and
pausing time percentage, Tp. Units: Vg, Vs, V, um min-1, all transition frequencies, min-, (L), ym,
and D, um? min'l. Here, the single dynamics set for the inner area is shown, and the outer area
parameters are summarised.

Vg Vs Feat Fres Fg2p Fp2g FSZp FpZS \ (L) D TP

Inner

12 15 0 5 0 0 0 0 12 - - 0

Outer

0.01 0.01 98.04
11 15 13.33  6.67 1.50 to 1.50 to -6.33 1.23 7.67 to
16.16 16.16 3.00
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Table XVIIl. Dynamics set 10. Dynamics parameters, Vg, Vs, Fcat 10 Fpos are shown, together
with the abstract measures theoretical average length, (L), drift, V, diffusion coefficient, D and
pausing time percentage, Tp. Units: Vg, Vs, V, um min, all transition frequencies, min't, (L), um,
and D, um? mint. Here, the single dynamics set for the inner area is shown, and the outer area
parameters are summarised.

Vg Vs Fcat Fres FgZp Fp29 FsZp Fp25 \% (L) D TP
Inner
12 15 0 5 0 0 0 0 12 - - 0
Outer
0.01 0.01 97.40
11 15 15 5 1.50 to 1.50 to -850 0.92 7.67 to
12.12 12.12 3.00
REFERENCES

Allard, J.F., G.O. Wasteneys, and E.N. Cytrynbaum. 2010. Mechanisms of self-organization of
cortical microtubules in plants revealed by computational simulations. Molecular biology of
the cell. 21:278-286.

Applegate, K.T., S. Besson, A. Matov, M.H. Bagonis, K. Jagaman, and G. Danuser. 2011.
plusTipTracker: Quantitative image analysis software for the measurement of microtubule
dynamics. Journal of structural biology. 176:168-184.

Box, G.E.P., and N.R. Draper. 1987. Empirical model-building and response surfaces. Wiley.

Brun, L., B. Rupp, J.J. Ward, and F. Nedelec. 2009. A theory of microtubule catastrophes and their
regulation. Proceedings of the National Academy of Sciences of the United States of America.
106:21173-21178.

Chen, Y., and T.L. Hill. 1983. Use of Monte Carlo calculations in the study of microtubule subunit
kinetics. Proceedings of the National Academy of Sciences of the United States of America.
80:7520-7523.

Dogterom, M., and S. Leibler. 1993. Physical aspects of the growth and regulation of microtubule
structures. Physical review letters. 70:1347-1350.

Gardner, M.K., and D.J. Odde. 2010. Stochastic simulation and graphic visualization of mitotic
processes. Methods (San Diego, Calif.). 51:251-256.

Gardner, M.K., M. Zanic, C. Gell, V. Bormuth, and J. Howard. 2011. Depolymerizing kinesins Kip3
and MCAK shape cellular microtubule architecture by differential control of catastrophe.
Cell. 147:1092-1103.

Gardner, M.K., M. Zanic, and J. Howard. 2013. Microtubule catastrophe and rescue. Current opinion
in cell biology. 25:14-22.

Green, R.A., R. Wollman, and K.B. Kaplan. 2005. APC and EB1 function together in mitosis to
regulate spindle dynamics and chromosome alignment. Molecular biology of the cell.
16:4609-4622.

Gregoretti, 1.V., G. Margolin, M.S. Alber, and H.V. Goodson. 2006. Insights into cytoskeletal
behavior from computational modeling of dynamic microtubules in a cell-like environment.
Journal of cell science. 119:4781-4788.

Hill, T.L., and M.F. Carlier. 1983. Steady-state theory of the interference of GTP hydrolysis in the
mechanism of microtubule assembly. Proceedings of the National Academy of Sciences of the
United States of America. 80:7234-7238.



154

Hill, T.L., and Y. Chen. 1984. Phase changes at the end of a microtubule with a GTP cap.
Proceedings of the National Academy of Sciences of the United States of America. 81:5772-
5776.

Hodgkin, A.L., and A.F. Huxley. 1952. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology. 117:500-544.

Holy, T.E., and S. Leibler. 1994. Dynamic instability of microtubules as an efficient way to search in
space. Proceedings of the National Academy of Sciences of the United States of America.
91:5682-5685.

Karsenti, E., F. Nedelec, and T. Surrey. 2006. Modelling microtubule patterns. Nature cell biology.
8:1204-1211.

Komarova, Y., C.O. De Groot, I. Grigoriev, S.M. Gouveia, E.L. Munteanu, J.M. Schober, S.
Honnappa, R.M. Buey, C.C. Hoogenraad, M. Dogterom, G.G. Borisy, M.O. Steinmetz, and
A. Akhmanova. 2009. Mammalian end binding proteins control persistent microtubule
growth. The Journal of cell biology. 184:691-706.

Komarova, Y.A., l.A. Vorobjev, and G.G. Borisy. 2002. Life cycle of MTs: persistent growth in the
cell interior, asymmetric transition frequencies and effects of the cell boundary. Journal of
cell science. 115:3527-3539.

Mimori-Kiyosue, Y., I. Grigoriev, G. Lansbergen, H. Sasaki, C. Matsui, F. Severin, N. Galjart, F.
Grosveld, 1. Vorobjev, S. Tsukita, and A. Akhmanova. 2005. CLASP1 and CLASP2 bind to
EB1 and regulate microtubule plus-end dynamics at the cell cortex. The Journal of cell
biology. 168:141-153.

Mirny, L.A., and D.J. Needleman. 2010. Quantitative characterization of filament dynamics by single-
molecule lifetime measurements. Methods in cell biology. 95:583-600.

Mitchison, T., and M. Kirschner. 1984a. Dynamic instability of microtubule growth. Nature. 312:237-
242.

Mitchison, T., and M. Kirschner. 1984b. Microtubule assembly nucleated by isolated centrosomes.
Nature. 312:232-237.

Mogilner, A., J. Allard, and R. Wollman. 2012. Cell polarity: quantitative modeling as a tool in cell
biology. Science (New York, N.Y.). 336:175-179.

Odde, D.J., L. Cassimeris, and H.M. Buettner. 1995. Kinetics of microtubule catastrophe assessed by
probabilistic analysis. Biophysical journal. 69:796-802.

Oosawa, F., and S. Asakura. 1975. Thermodynamics of the polymerization of protein. Academic
Press.

Ranjith, P., D. Lacoste, K. Mallick, and J.F. Joanny. 2009. Nonequilibrium self-assembly of a
filament coupled to ATP/GTP hydrolysis. Biophysical journal. 96:2146-2159.

Ross, S.M. 2006. Introduction to Probability Models. Elsevier Science.

Rusan, N.M., C.J. Fagerstrom, A.M. Yvon, and P. Wadsworth. 2001. Cell cycle-dependent changes in
microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin.
Molecular biology of the cell. 12:971-980.

Schek, H.T., 3rd, M.K. Gardner, J. Cheng, D.J. Odde, and A.J. Hunt. 2007. Microtubule assembly
dynamics at the nanoscale. Current biology : CB. 17:1445-1455.

van der Vaart, B., W.E. van Riel, H. Doodhi, J.T. Kevenaar, E.A. Katrukha, L. Gumy, B.P. Bouchet,
I. Grigoriev, S.A. Spangler, K.L. Yu, P.S. Wulf, J. Wu, G. Lansbergen, E.Y. van Battum, R.J.
Pasterkamp, Y. Mimori-Kiyosue, J. Demmers, N. Olieric, I.VV. Maly, C.C. Hoogenraad, and
A. Akhmanova. 2013. CFEOMZ1-associated kinesin KIF21A is a cortical microtubule growth
inhibitor. Developmental cell. 27:145-160.

VanBuren, V., L. Cassimeris, and D.J. Odde. 2005. Mechanochemical model of microtubule structure
and self-assembly kinetics. Biophysical journal. 89:2911-2926.

Verde, F., M. Dogterom, E. Stelzer, E. Karsenti, and S. Leibler. 1992. Control of microtubule
dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts.
The Journal of cell biology. 118:1097-1108.

Vorobjev, I.LA., and LV. Maly. 2008. Microtubule length and dynamics: Boundary effect and
properties of extended radial array. Cell Tiss. Biol. 2:272-281.



155

Wollman, R., E.N. Cytrynbaum, J.T. Jones, T. Meyer, J.M. Scholey, and A. Mogilner. 2005. Efficient
chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle
assembly. Current biology : CB. 15:828-832.



156

Chapter 5

Comparing and modelling microtubule dynamics
A. INTRODUCTION

I. Chapter aims

The first aim of this chapter is to put the results of chapter 3 into context by comparing them
with previously reported measurements of microtubule dynamics. This will reveal the extent
to which the dynamics reported in chapter 3 differ or are similar to other measurements of
dynamics, and it will also indicate the degree to which microtubule dynamics differ across
various cell lines, types, etc. In order to be able to compare sets of microtubule dynamics, the
abstract measures used in the previous chapter are again employed to reduce the complexity
of the task and to allow an understanding of how changing certain dynamics parameters, or
the relationships between them, influence the population-level characteristics of the network.

In the discussion at the end of chapter 3, it was apparent that in many cases, the results
suggest mechanisms to explain the organisation, and in the systems view of microtubule
organisation proposed in that chapter, those results would indeed be taken as the components
of the system, from which the organisation emerges. However, another fact in evidence in
that discussion was that it is difficult to truly establish those results as causes of the
organisation seen. Therefore, the second aim of this chapter is to begin to establish a
rationale for explaining the maintenance of organisation in the radial array. This will be
carried out in light of the survey and comparison of microtubule dynamics and the modelling
results from the previous chapter. Indeed, the aim is to identify common principles between
the surveyed dynamics and those reported in the chapter 3, in the hope that these might be the
important components of the radial array system. This is then carried forward into the second
part of this chapter, where the proposals are evaluated with the model used in chapter 4.

B. METHODOLOGY
I. Survey of dynamics

Literature searches were carried out using standard databases. To limit the extent of the
survey, firstly, only reports of microtubule dynamics in vivo were kept, and secondly, of
those, only reports of dynamics in animal cells were retained. In every case, the values for
dynamics parameters were obtained from the report, and all measurements were adjusted so
that they were in similar units. This last step was taken so that values were more easily
compared. Where there were more than one instance of a set of dynamics, even if some of
the measurements were the same between sets, two entries were made into the results table.
Examples where this type of thing occurred include repeated experiments, and different cell
lines, etc. Average values reported in the literature are not always explicitly stated as being
the mean average; it is assumed here that this is the case. Only the average values were
surveyed here; no efforts were made to obtain information as to the distribution of speeds,
times, etc. Thus, there are no * standard deviations/standard errors in the results table.
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I1. Modelling of measured dynamics

The model used in chapter 4 is used again here, so refer to the methodology of that chapter
for a detailed discussion of the model and issues pertaining to it. In this chapter, different
dynamics sets were used; the tables documenting them are in the appendix, and here, a brief
description of the rationale for the choice of parameters is given.

In light of the location in drift space of the measured dynamics from chapter 3, presented
below in the results, the dynamics combinations here were chosen so as to be able to
investigate how the abstract parameterisations affected accuracy when imposed on a
dynamics background from quadrant 3 of drift space. Thus, where quadrant 4 of drift space
was investigated in the majority of the previous chapter, in this chapter, dynamics sets
produce area dynamics combinations that are in quadrant 3 of drift space, i.e. negative inner
and outer drift.

As stated, the aim was to investigate the effect of changing the parameterisations of
dynamics, including Tp. To this end, there were three “principal” dynamics sets, and three
variations on each principal set. To avoid confusion when comparing these dynamics sets
with the sets from the previous chapter, these 3 sets of 3 dynamics sets are numbered from
11-19. The defining feature of a principal set is the drift of the inner area; the principal
dynamics sets have inner area drifts of -0.56 um min? (sets 11, 14 and 17), -2.00 pm min*
(sets 12, 15 and 18), and -4.17 pm min™ (sets 13, 16 and 19). The variation between the sets
with similar inner area drift is the outer area drift: these are: -10.06 pum min (sets 11-13), -
5.38 um min™* (sets 14-16) and -0.96 pm min* (sets 17-19).

Within each of these sets, there are subsets that have different (L) and D, and within each of
these subsets, there are 5 sets with Ty values of 10, 20, 40, 60 and 80. In sets 11 and 12, and
the corresponding sets with similar inner area drift, there are four subsets. In these, (L) is
described qualitatively: there is a “high”, “equal”, “mid” and “low” value, and since drift is
fixed within each set, D varies with (L); small (L), small D. The qualitative values, or rather,
relative (L), indicate the value of (L) in relation to the target length. So, the high (L) is
greater than the average length, equal (L) is around the target length, mid (L) is just under
half the target length, and low (L) is approximately half of the mid value. For the actual
values of (L), see the appendix tables (section E).

In the sets with the largest magnitude inner area drift (sets 13, 16 and 19), the high (L) is not
achievable, since the large negative drift prevents reaching such values of (L); therefore, in
those sets, there are only 3 subsets, with relative (L) of equal, mid and low. Note that even
for the equal relative (L) in sets 13, 16 and 19, the value of (L) is not as great as for sets 11-
12 and their corresponding sets (i.e, 14-15, and 17-18).

Recall that for each subset, there are 5 different values of Tp; thus, for the four-subset sets,
there are 20 parameter combinations, and for the three-subset sets, 15. In examination of
results, it is probably easiest to forget which set each dynamics combination comes from, and
rather, bear in mind that each relevant parameter has been systematically varied; to place too
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much emphasis on where each sub-set lies in terms of drift space and accuracy will only
cause confusion.

C. RESULTS
I. Dynamics survey

Values for dynamics parameters were obtained from the literature and sorted according to
magnitude (table 1). For ease of comparison, the dynamics parameters found in chapter 3 are
also in table I, highlighted. Reports of transitions to and from pausing are scarce, and are
discussed in the text rather than entered into table 1. Dynamics parameters definitions can be
found in the terms list.

Table I. Values for dynamics parameters in the literature. Mean values for each parameter
of microtubule dynamics are shown, sorted by increasing magnitude. Refer to key below table
for details of notation. Highlighted values are results of previous chapter; the mean value for Vg
and Vs is shown.

Parameter Value Cell/system Methodology Reference

Growth 3.6 F,1 Microinjection 1

rate, 451 E, 2 Microinjection 8

Vg 4.9 E,2 DIC 7
um min-t 5.32 E, 7 GFP-CLIP-170 NSC, outer
6.37 E,7 GFP-CLIP-170 NSC, inner

6.8 E, 2 Microinjection 8

7.057 X Added tubulin 5

7.2 E, 2 DIC 2

7.9 E, 2 DIC 4

9.2 F,1 Microinjection 7

9.3 X Added tubulin 3

115 E,5 Microinjection 9

115 E,5 Stable GFP 9

11.9 E, 3 Microinjection 6
12.46 E,7 GFP-CLIP-170 Ctrl, outer
13.13 E, 7 GFP-CLIP-170 Ctrl, inner

15.8 El, 6 Microinjection, enucleation 10

16.5 El, 6 GFP-CLIP-170 10

17.8 El, 6 Microinjection, photobleach 10

18.3 El, 6 GFP-CLIP-170, enucleation 10

18.5 El, 6 Microinjection 11

19.7 F, 4 Microinjection
21.2¢% F, 4 Microinjection

24.3 El, 6 YFP-CLIP-170 11
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Parameter Value Cell/system Methodology Reference
Shrink rate, 5.2 E, 2 Microinjection 8
Ve 7.6 E,2 Microinjection 8
um min-t 9357 X Added tubulin 5
12.4 F1 Microinjection 7
12.8 X Added tubulin 3
13.1 E,5 Stable GFP 9
14.3 E, 2 DIC 7
14.8 E,5 Microinjection 9
17.3 E, 2 DIC 2
19.8 E,3 Microinjection 6
21.1% F, 4 Microinjection 6
22.34 E, 7 GFP-CLIP-170 Ctrl, inner
24.46 E, 7 GFP-CLIP-170 Ctrl, outer
28.8 El, 6 Microinjection 10
30 El, 6 YFP-CLIP-170, microinjection 11
32.2 F,4 Microinjection 6
Catastrophe 0 E, 7 GFP-CLIP-170 NSC
frequency, 0.2 El, 6 Microinjection 12
Feat 0.3 *o1 El 6 Microinjection, photobleach, 10
i enucleation
0.3 El, 6 YFP-CLIP-170 11
0.6 *¢1 X Added tubulin 3
0.61 E, 2 Microinjection 8
0.66 *€2 X Added tubulin 5
0.72 *¢2 X Added tubulin 5
0.84 * E, 2 DIC 2
0.96 * E, 2 DIC 7
1.57 E, 2 Microinjection 8
16* E,5 Stable GFP 9
1.9 *¢1 X Added tubulin 3
1.91*% F, 4 Microinjection 6
1.98 * F 1 Microinjection 7
2.1* E,5 Microinjection 9
3.246 * E, 3 Microinjection 6
3.636 * F, 4 Microinjection 6
4.8 g2 El 6 M|cr0|nJZ(;t:?Cr?é§tfi1§rt]obleach, 10
5.33 E, 7 GFP-CLIP-170 Ctrl, outer
6.62 E, 7 GFP-CLIP-170 Ctrl, inner
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Parameter Value Cell/system Methodology Reference
Rescue 0 E,7 GFP-CLIP-170 NSC
frequency, 0.5 *¢1 X Added tubulin 3
Fres 0.96 *¢1 X Added tubulin 3
mint 0.96 *¢2 X Added tubulin 5
1.27*82 X Added tubulin 5
2.31 E, 2 Microinjection 8
2.59 E, 2 Microinjection 8
2.6* E, 2 DIC 2
3.12* E,2 DIC 7
6* F,1 Microinjection 7
7.2* El, 6 Microinjection 10
7.794 * F,4 Microinjection
822"t F,4 Microinjection
10 El, 6 YFP-CLIP-170, microinjection 11
10.5* E,5 Stable GFP 9
11.77* E,3 Microinjection 6
12.00 E, 7 GFP-CLIP-170 Ctrl, inner
13.09 E, 7 GFP-CLIP-170 Ctrl, outer
General key:

T = stable microtubule population
T = my average of experiment repeats
* = frequency recalculated to mint

¢ = Minimum and maximum values from experiment repeats (numbers denote

experiments)

“ =“as above”

T = Values for microtubules perpendicular (11) and parallel (12) to cell edge
¢ = Values for cell interior (¢1) and periphery (¢2)

“Cell/system” key:
E: epithelial cell

F: fibroblast cell

X: Xenopus extract
El: epithelial-like

. African Green Monkey (Cercopithecus aethiops) kidney (BSC1)

: Newt (Taricha granulosa) lung

: Rat Kangaroo (Potorous tridactylis) kidney (PtK1)

: Chinese Hamster (Cricetulus griseus) ovary (CHO)

: Pig (Sus scrofa) kidney (LLCPK-1)

: Chinese Hamster (Cricetulus griseus) ovary sub-clone (CHO-K1)
: Human retinal pigment epithelium (ARPE-19)

~NoO o~ WDNRE



161

Table references:

Schulze and Kirschner (1986)
Cassimeris et al. (1988)
Belmont et al. (1990)

Hayden et al. (1990)

Verde et al. (1992)

Shelden and Wadsworth (1993)
Vasquez et al. (1997)
Waterman-Storer and Salmon (1997)
. Rusan et al. (2001)

10. Komarova et al. (2002)

11. Komarova et al. (2009)

©ooNoORWDNE

The values in the control condition for Vg, at 12.46 um min™? (mean) and 11.89 pum min
(median) for outer areas, and 13.13 um min? (mean) and 12.57 um min? (median) for inner
areas, are comparable to those reported in the literature, being positioned approximately at
the median position and above within the data. The Racl-inhibited Vg is low in comparison;
at 5.32 um min?! (mean) and 4.26 um min? (median) for outer areas, and 6.37 um min?
(mean) and 5.00 um min (median) for inner areas, it is closest to the values reported for
microtubules in Newt lung epithelial cells that were measured throughout the cell (4.9 um
mint) (Vasquez et al., 1997) or just for those growing perpendicular to the cell edge (4.5 pm

min) or parallel (6.8 um min™) (Waterman-Storer and Salmon, 1997).

Vs for the Racl-inhibition is not comparable to any reported in the literature; it is undefined in
this condition. As was discussed in chapter 3, it is not probable that there really are no
shrinking events in the Racl-inhibited condition, and the effect of introducing shrinking
episodes in the dynamics set for the Racl-inhibited condition is explored below. However, in
the control condition, values for Vs, at 24.46 um min™ (mean) and 25.63 pm min* (median)
for outer areas and 22.34 um min! (mean) and 22.59 um min? (median) for inner areas, are
toward the high end of reported values, with only shrinkage speeds in the Chinese Hamster
ovary (CHO) cell line, between 28.8 um min (Komarova et al., 2002) and 32.2 pm min?
(Shelden and Wadsworth, 1993) exceeding them.

The zero values for Fcat and Fres in the Racl-inhibited condition are of course the lowest of
all; no other zero values have been reported. The lowest values in the literature for Fcat are
for microtubules in the inner areas of cells, at 0.2 min™* (Komarova et al., 2009) and 0.3 min
(Komarova et al., 2009; Komarova et al., 2002). The lowest values in the literature for Fres
are found in the Xenopus extract system; these range from 0.5 min*! (Belmont et al., 1990) to
1.2 mint (Verde et al., 1992). Therefore, very low values of Feat and Fres have been reported,
but none so low as those found in the Racl-inihibited condition. As mentioned, it may be
that Fcat and Fres are not truly zero, and could indeed be just very low as in the Xenopus
studies, and the low frequencies, combined with higher relative orientation between track
segments, has hindered detection of shrinking events, and thus catastrophe and rescue, in
plusTipTracker. Alternatively, these transitions could have values heavily in favour of one
over the other; this is explored further below.
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In the control condition, the values for Fea;, at 5.33 min™ and 6.62 min™ for outer and inner
areas, respectively, and Fres, at 13.09 mint and 12.00 min? for outer and inner areas,
respectively, are higher than any of those reported in the literature. As discussed in the
methodology section, the “corrected” values (those which are quoted above) are likely to be
an overestimate; however, these values will have to be used from a practical standpoint,
because “biased” values for Fres (and also Fpog) are the same as the corrected values.
Moreover, it is likely that the biased values are an underestimate, so both figures have
limitations.

Mimori-Kiyosue et al. (2005) have measured transitions to and from pausing in central and
peripheral regions of the cell. The results of that study and the values determined for the
transition frequencies Fgp and Fpzg in chapter 3, i.e. the two that are obtainable with
plusTipTracker, are shown in table 11.

Table Il. Transitions to and from pause compared. The dynamics measured in chapter 3 are
compared to those of another study, (Mimori-Kiyosue et al., 2005).

Mimori-Kiyosue et al.

Transition Chapter 3 (2005)
min-1 Control NSC
Outer Inner Outer Inner Outer Inner
Fg2p 6.07 5.32 5.89 6.82 24.1 14.3
Fp2g 7.66 7.35 7.97 7.67 0.960 3.20
Fsop - - - - 16.5 12.8
Fp2s - - - - 1.56 2.28

Comparing these transition frequencies, we see that those estimated for Fgp by Mimori-
Kiyosue et al. (2005) are large relative to those determined in chapter 3, for both areas in both
conditions. The trend between areas is the same between that study and the control
condition, however, with the outer area Fq2p being greater than that of the inner area; this is
not the case for the Racl-inhibited condition. For Fpyg, the values in Mimori-Kiyosue et al.
(2005) are much more different between outer and inner areas compared to the values of
chapter 3. In fact, the relationship between areas is reversed here for both conditions in the
chapter 3 dynamics compared to Mimori-Kiyosue et al. (2005), with Fp2g being greater for the
outer area in chapter 3 dynamics.

The values for Fspp and Fp2s could not be determined with the methodology of chapter 3;
however, for Mimori-Kiyosue et al. (2005), table Il shows that Fsop is elevated in outer areas
relative to inner areas, and Fpzs is decreased in outer areas relative to inner areas. These area
relationships preserve the relationships between areas for Fq2p and Fpos reported by Mimori-
Kiyosue et al. (2005): the transitions to pause are larger in outer areas compared to inner
areas, and also greater than the transitions away from pause in the outer areas, which are both
smaller for outer areas compared to inner areas.
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I1. Population measures
a. Two-state drift, average length and diffusion coefficient

To make comparison of microtubule dynamics easier, the drift, average length and diffusion
coefficient were found for the dynamics sets reported in table I. In addition to these, as was
done in chapter 3, the Fcat:Fres ratio can also be considered as an easy means of establishing
the balance between the two. In order to compare the dynamics measured in the previous
chapter with the literature, the two-state versions of the drift, average length and diffusion
coefficient were calculated for these dynamics.

To compare literature dynamics with the Racl-inhibited condition, where no catastrophes or
rescues were detected, some values had to be specified for these transitions, and also for the
shrinkage rate. Commonly, as table | shows, the shrinkage rate, Vs, is greater than the growth
rate, Vg, and so, in this case, values for Vs were specified for each area in the Racl-inhibited
condition that gave the same Vy:Vs ratio of the same area in the control condition. Thus, in
the Racl-inhibited condition, Vs for outer areas was 9.18 um min™ and 8.99 um min? for
inner areas. These values are used for this condition hereafter. The three possibilities
proposed for the values Fcat and Fres in this condition were encapsulated in three parameter
sets (table I11), where both are equal and low, and then each is alternately much greater than
the other. Here, values were chosen that gave Fcat:Fres ratios of 0.1 (low Fcat, parameter set 2)
and 10 (high Fcat, parameter set 3).

Table Ill. Values for Fcar and Fres in the Racl-inhibited condition. Three different sets of
values for these transition frequencies are tested.

Parameter set Feat mint Fres min? Feat:Fres
A 0.1 0.1 1
B 1 10 0.1
C 10 1 10

The Fcat and Fres ratio, drift, average length and diffusion coefficient are presented in table
IV. Predominantly, drift values are positive in the surveyed dynamics, indicating that in the
majority of cases, microtubules are in the unbounded growth regime, continually increasing
their length. In the cell, this presumably means that microtubules grow to the periphery of
the cell, and then undergo some sort of cortex-mediated behaviour as modelled in the
previous chapter, since we rarely observe microtubules that simply continue growing along
the cortex; the role of Racl in this behaviour is of course a theme of this and other chapters.

On the matter of cortex-specific behaviour, the outer area in the control condition has greater
positive drift than the control inner area, at 1.03 pm min™ to 0.07 um min*, which is perhaps
contrary to what might be expected if it were the case that microtubule dynamics are
modulated at the cell periphery to effectively stop microtubules and contribute to radiality, as
the model in the previous chapter suggested would be required. The fact that this is a two-
state simplification of a three-state dynamic set might bear upon this problem, and is
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investigated in the next sub-section. With regard to area differences in the Racl-inhibited
condition, there is in fact much-reduced difference between areas relative to the control
condition. This is true for the three dynamics sets (tables I11-1V), so is probably not due to
domination of the population measures by one particular dynamics parameter. Again, the
role of simplification of this parameter set to two states is not clear.

Although the drift is sensitive to all of the two-state dynamics parameters, the role of the
Feat:Fres ratio in its contribution to drift is particularly well-demonstrated in table IV. Indeed,
the drift increases from its most negative value of -7.96 um min™ in the outer area of the
Racl-inhibited condition (parameter set 3) at an Fcat:Fres ratio of 10, up to its maximum value
of 22.72 um min? in the inner areas of Chinese hamster ovary sub-clone cells (CHO-K1)
(Komarova et al., 2009), at an Fcat:Fres ratio of 0.03; between these, the increases in drift and
Fcat:Fres ratio are generally associated. Further evidence of the significant contribution of the
Feat:Fres ratio to drift is seen in the Racl-inhibited parameter sets. The largest ratio
(parameter set 3) provides the most negative drift, the intermediate ratio (set 1) a greater drift,
and the smallest ratio (set 2) a positive drift.

Note that average length does not always increase with increasing drift. Certainly, the
relationship between average length, drift and diffusion coefficient as discussed in chapter 4,
is in evidence in table IVV. For example, in the dynamics sets reported for the Xenopus extract
(Belmont et al., 1990), we see that the average lengths do not increase with increasing drift;
instead, of the three reported dynamics sets, the set with the intermediate drift has the greatest
average length. This is reconciled by considering the diffusion coefficient; it is greatest for
this intermediate set, at 123.77 pm? min? compared to 59.83 um? min™ (lowest drift) and
80.14 um? min' (greatest drift), so the average length is greater as a result. What contributes
to the increased length randomness in this particular case? Inspection of the dynamics
parameters indicates that the set with the largest diffusion coefficient also has the greatest
shrinkage rate, and although it has the lowest growth rate, it also has the lowest Fcat and joint-
lowest Fres; the large Vs and small Feat and Fres produce the greater D. The effect of lower
transition frequencies on D is further illustrated by the Racl-inhibited dynamics parameter
sets; the lowest Fca and Fres values (set 1) produce the greatest D.
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b. Three-state drift, average length and diffusion coefficient

Calculation of the three-state drift and average length requires that we have values for Fs2p
and Fp2s, which were not obtainable with plusTipTracker. Earlier, the values for transitions
to and from pause from another study were shown (Mimori-Kiyosue et al., 2005). Those
values, for Fg2p and Fp2g, were found to be larger than those determined in chapter 3. It is
difficult to estimate values for undetermined transition frequencies, however, pause time
percentage, introduced in the previous chapter, can be compared between chapter 3 dynamics
and literature-reported values. Therefore, by comparing the percentage time spent in pause
and the other phases in the experiments to the times given in the literature, we can estimate
values for these transition frequencies.

To elaborate, we can consider how the transition frequencies affect the times spent in the
different phases. A diagram of this framework is shown in figure 1. Here, by comparing the
proportion of time spent in each phase, we arrive at an idea of what values Fszp and Fpos might
take. This rationale makes the assumption that pause time proportion will be similar between
the experiments in the previous chapter and those being compared from the literature, which
may not be valid in every case. However, this means of estimating values for the remaining
dynamics parameters should at least provide an idea of how these transitions between the
pausing and shrinking state affect the phase proportions, and also how these transition
frequencies affect the population measures (investigated later).

In this view, we now consider the transition frequencies in relation to the phase time
percentages. Note that these percentages, as the name suggests, refer to the total percentage
of time spent in a phase, and not the average absolute time in a phase; the two measures can
be very different. They are calculated according to equations in chapter 4. Each transition
frequency appears twice in figure 1; each serves to increase one phase time and decrease
another. Those which are unknown in the current situation have antagonistic effects on the
time in shrinkage and in pause.

The phase time percentage values reported in the literature, along with the values found in the
experiments of chapter 3, are shown in table V. Microtubules in both experimental
conditions consistently spent less time in pause than previously reported pause times. The
same is true for the time spent in the shrinking phase, while the growth phase proportion is
over two-times greater than the average of literature values.

What do these differences mean for the dynamics parameters found with plusTipTracker in
the chapter 3? Three questions become apparent; first of all, two related questions are: 1) is
the discrepancy between phase proportions real? And 2) if so, what is the source of this
discrepancy? The third question asks: what values must Fszp and Fp2s take to correct these
discrepancies?

Focussing on the first two questions, it is plausible that there is overestimation of time spent
in the growth phase using plusTipTracker, because, as was touched upon in chapter 3,
catastrophes are only recorded if they are followed by a rescue event, and growth to pause



events are only recorded if they are followed by a pause to grow event. Thus,

overestimate time in the growth phase, and underestimate shrinking and pausing time.

Increasing SYSTEM PROPERTIES Decreasing

Fres : Feat

Growth time ca
Fp2g Fg2p
Feat Shrink time Fres
Fp2s Fs2p
Fgop . F.

Pause time p<g
Fs2p Fp2s
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we

Figure 1. Diagram of relationship between transition frequencies and phase times. Phase
time can be considered a “system property”, emerging from the combination of transition
frequencies, which either act to increase or decrease certain phase times. Transition

frequencies shown in red are those that are unknown.

Table V. Phase time percentages for experimental and literature microtubule dynamics.

The experimentally-determined and literature-reported proportions for each phase are shown.

Study Grow Shrink Pause
Experimental
Control outer 90.72 0.07 9.21
Control inner 91.29 0.13 8.58
NSC outer 94.87 0 5.13
NSC inner 95.47 0 4.53
Surveyed
6 - - 46.3
8 35.7 24.2 40.1
8 75.6 17.7 6.7
9 16.7 12.8 70.5
9 15 115 73.5
Average of surveyed 36.35 19.92 43.72

Table references:

6. Shelden and Wadsworth (1993)

8. Waterman-Storer and Salmon (1997)
9. Rusan et al. (2001)
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However, it is also true that the calculation of the “corrected” transition frequencies is based
only on the times in the growing phase where an event subsequently occurred. The
estimation of transition frequencies is based only upon portions of the total time in a given
phase. For transitions between growth and shrinkage, we use the time in growth preceding a
catastrophe or the time in shrinkage preceding a rescue. For transitions between growth and
pause, we use the time in growth preceding a growth to pause transition, or the time in pause
preceding a pause to growth transition. Since these calculations are based only on intervals
of the total phase times, it is likely that they are overestimated.

The fact that the dynamics parameters are calculated using only a portion of the time in
growth, which is also only a portion of the time in that phase, and thus only a portion of the
growth phase proportion reported in table V, complicates the issue. This is because it is
likely that the measured proportion of time in growth will not correspond to the same
measure calculated according to equations 10a-c, which are based on the dynamics
parameters. Thus, although the discrepancy is real by the fact that there is a difference
between the experimentally-measured value and those reported in the literature, it is likely
that this value has been overestimated by the particular experimental methodology; this is the
probable source of the discrepancy. Calculating the phase proportions by equations 10a-c
will elucidate the matter, but the third question above, the matter of the choice of values for
Fp2s and Fszp, must be answered before this is done; a number of rationales are employed:

Fs2p and Fpos are equal, and are small compared to other transition frequencies.

Fs2p and Fpos are equal, and are of similar magnitude to other transition frequencies.

Fs2p and Fpos are equal, and are large compared to other transition frequencies.

Fs2p and Fpos take values equal to the transitions that go towards the phase that they

leave, from the phase that they do not go towards; thus, Fsop = Fcat, and Fpzs = Fgop.

5. Fs2p and Fpos take values equal to the transitions that go away from the phase they also
go away from; thus, Fs2p = Fres, and Fpas = Fpag.

6. Fs2p and Fpos take values equal to the transitions that go away from the phase they go

to, to the phase they do not come from; thus, Fszp = Fp2g, and Fpas = Fres.

o

The different dynamics regimes produced following the rationales above are chosen so as to
be able to study the effects of the systems nature of the microtubule dynamics sets. In this
respect, it is important to bear in mind the relative values of the transition frequencies; it is
this that drives the systemic nature of microtubule dynamics sets. Evidence of this is seen
below.

In table VI, the predicted phase time percentages for the control condition are reported.
These values are quite different to the measured phase proportions, and more similar to those
reported in the literature. However, Tq is still larger and Tp smaller than the literature-
reported average phase proportions. Ts, however, is now much more similar to the literature
values; indeed, there is a dramatic increase in Ts when calculated according to equation 10b
in comparison to the measured value. As a result of this increase, Ts is now actually
generally greater than the average of the literature values, with the exception of the outer area
dynamics in regime 5.
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Because each transition frequency affects more than one system property (fig. 1) and these
effectively emerge from the combination of transition frequencies, it is difficult to predict
how changes in the transition frequencies will affect the phase time percentages. This is
borne out by the fact that increasing and equal values of Fsyp and Fpos produce increased time
in shrinkage, and decreased time in pause. Why do increased and equal transitions to
different phases not produce increased time in both? It is a manifestation of system
dynamics: the differences in the other transition frequencies mean that similar increases
between Fszp and Fp2s will not have the same effect on the phases which they go towards.

It is also difficult to predict how changing Fp2s and Fszp will affect the population properties.
The drift and theoretical length are also given in table VI, and here, we can see that over the
first 3 regimes, where Fszp and Fp2s are equal but increase relative to the other transition
frequencies, there is a decrease in the drift values for both areas. This being so, the
theoretical average length also reduces. Interestingly, there is a qualitative change in the
relationship between outer and inner areas as values of Fspp and Fpos increase in the first 3
regimes: first, the drift in outer areas is greater than inner areas, and is even unbounded where
the inner area is bounded. The relationship remains the same at intermediate values of Fszp
and Fpos, although the outer area is also now bounded, while in regime 3, the drift in the outer
area is now less than that of the inner area, and the theoretical length is also. This is an
example of how the system dynamics can produce effects that would be difficult to predict.

An important related note here is that the values for the undetermined transition frequencies
have been kept the same here, so as just to study the effect of changing their value on the
abstract measures. In the second part of this chapter, the effect of changing pausing time
percentage in the inner area is investigated.

In the regimes where Fs2p and Fpos use values of other transition frequencies, we see that
regime 4 produces negative drift for both areas, but the theoretical length for the inner area is
very large. This occurs without a large change in the phase times relative to the outer area;
indeed, Tg is less in regime 4 for the inner area than the outer area. Regime 5 gives positive
drift for both areas, with increased Tq in the outer area relative to the inner area, and regime 6
produces the greatest negative drift for both areas. Consequently, the theoretical lengths are
the shortest here, too. In the outer area in regime 6, this large negative drift occurs with the
highest growth phase time; however, there is also the lowest pause time percentage here, and
indeed, regime 6 has the two greatest shrinking phase time percentages.

Incidentally, the data in table VI demonstrate the point made earlier that changing just Fszp
and Fp2s has the biggest effect on Ts and Ty, and little effect on Tg; changing these transition
frequencies influences the times spent in Ts and T, directly, but only influence Tg indirectly
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Analysis like this helps to assess both the implications of the measured dynamics parameters,
but it also helps to choose appropriate values for undetermined parameters. In table VI, there
are some instances of combinations of parameters that produce theoretical lengths that would
appear quite short, when compared to the dimensions of a cell; this is true for regime 6. The
issue of theoretical average length in the inner area is addressed in the second part of this
chapter. There are other cases where the theoretical average length is either undefined, due to
unbounded growth, or the theoretical average length is very great. However, unbounded
growth is often reported in the literature, as table IV showed, and an ever-growing
microtubule array is usually posited to be “contained” by the cell.

The fact that, in a few cases, the outer area drift is larger than the inner area, suggests that
these parameter values may not be appropriate for good cortical targeting in light of the
results from the previous chapter. Furthermore, the phase time percentages, although
different to the average of the surveyed data, are in the range of the values surveyed. As
mentioned, the effect of pausing in the inner area is investigated later; in the previous chapter,
we saw that greater pausing time percentage in the outer area produced better accuracy; at the
values in table VI, accuracy increased relatively modestly (the largest increases in accuracy
were at mch higher values of Tp).

Next, we must explore the parameters in the Racl-inhibited condition. Recall that there are
three proposed possibilities to account for the zero shrinking events in this condition: A) Fcat
and Fres are both very small; B) Fcat is small relative to Fres, and C) Fcat is large relative to
Fres. These possibilities can be assessed with similar means as those used for the control
condition. First, using the same system of choosing Fszp and Fp2s as in the control condition,
the drift, theoretical length and phase times were found for the three different sets of values
for Fcat and Fres (tables VII-1X).

In all cases in the Racl-inhibited set A, drift is negative. In this set, while drift is relatively
constant for Al-3, the theoretical average length decreases, and phase time percentages
remain relatively similar between areas. However, in sets 4 and 5, the drift has much greater
magnitude in both areas, and theoretical average length is small. In set 6, drift is at its
smallest magnitude for both areas, and the difference between the area drifts is greatest here.
In all case in the Racl-inhibited set B, drift is positive, and thus the theoretical average length
is undefined. In these sets, growth would be unbounded, and in light of the results from the
previous chapter, we could expect very low accuracy in cortical targeting here. Thus, it is
unlikely that these parameter values, where Fres is much greater than Fcat, are realistic. In
Racl-inhibited set C, again, drift is negative as in set A for all areas. However, theoretical
average length is very low for all sets, as is Tg in comparison to some of the values in Racl-
inhibited A.
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Thus far, the dynamics obtained in chapter 3 have been compared to some of the dynamics
reported in the literature, and various values have been proposed for the undetermined
parameters based on these comparisons. Examination of how these parameters alter the
abstract population measures for the measured dynamics sets has demonstrated that there is
not a great difference between inner and outer areas, which, according to the previous
chapter, is requisite for accurate cortical targeting. However, in chapter 3, the differences in
microtubule organisation between unperturbed and Racl-inhibited cells was presented, and
there clearly is a difference in radiality between these microtubule networks. Aberrant
modulation of microtubule dynamics at the cell periphery was put forward as a potential
cause for this, but so far, it has been difficult to attribute the differences in organisation to any
of the differences in dynamics between treatments and between areas within treatments. To
better understand how the dynamics measured in chapter 3 affect cortical targeting accuracy,
the rest of this chapter returns to a model.

I11. A model of measured dynamics
a. Cortical targeting with measured dynamics

In the previous chapter, we saw that drift space is a large part of attaining good accuracy (fig.
2), and within quadrant 4 of drift space, where outer drift is negative and inner drift is
positive, the two drift regimes combine to reduce the range in microtubule length, and this is
concurrent with an increase in dynamicity. When pausing is introduced into the outer area
with these dynamics combinations, the length range reduces as in the two-state simulations,
but dynamicity is also reduced, and greater accuracy over the two state dynamics regimes is
achieved.

Quadrant accuracy:
1. P
% 4 1 oor
= 2. Poor
g 3. Intermediate
c
£ 4. Good
0 3 2
-ve +ve

Outer drift

Figure 2. Drift space recap. Drift space is the combination of inner and outer drift, with
numbered quadrants defining the particular combination. In chapter 4, the accuracy potential of
each quadrant was determined.
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In this section, the relevance of the findings with the model from chapter 4 to the dynamics
measured in chapter 3 is considered. Firstly, in the control condition, the dynamics
combinations that were specified in table VI earlier, where various values for the transitions
to and from the pausing state where specified, are plotted in drift space in figure (3A).
Similarly, the Racl-inhibited condition dynamics (tables VII-1X) are plotted in drift space in
figure (3B-D). The experimental dynamics for both the control and Racl-inhibited condition
are located in either quadrant 1 or 3 of drift space, with the exception of set 1 in the control
condition, which is in quadrant 2. As discussed, quadrants 1 and 2 yield little or no accuracy
in cortical targeting at all; however, quadrant 3 of drift space can produce increased levels of
accuracy relative to quadrant 1; thus, dynamics combinations in quadrant 3 are investigated
further here.

Although quadrant 3 was investigated in the first set of experiments, the effect of pausing in
the inner area was not. If the applicability of experimentally-measured dynamics for cortical
targeting are to be assessed, then an investigation of the effect of pausing in the inner area is
necessary. However, the situation is complicated when there is negative inner area drift by
the fact that (L) and D can both vary for the same drift value. For example, if drift is -5, D
and (L) can be 25 pm?min* and 5 pm or 100 um? mint and 20 um.
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The particular combinations of (L) and D for any given drift value are likely to be important
because in a negative drift regime in the inner area, one could hypothesise that greater (L),
and thus D, could be advantageous for cortical targeting because it might give the
microtubules in the inner area more chance to reach the outer area. The fact that in the first
set of experiments with dynamics sets 1-3, larger (L) gave rise to greater accuracy supports
this notion.

For this reason, it would be difficult to investigate the dynamics sets from chapter 3 directly,
since the theoretical average length is likely to be important in its relative magnitude
compared to the cell size, or indeed, target length. Instead, the inner area negative drift, (L),
and Tp can be systematically varied to determine how T, and (L) affect cortical targeting
accuracy for inner area negative drift regimes.

In these experiments, there are 3 principal dynamics sets, sets 11-13, which have inner area
drifts of -0.56 um min? (11), -2 um min? (12), and -4.17 um min? (13). Within these sets,
(L) is varied in terms of its relative magnitude to the model cell size: in set 11, (L) starts at
80.54 um and is lowest at 7.88 um; in set 12, maximum (L) is 51.56 um and minimum, 7.86
um; in set 13, the greatest (L) is 30.56 um and the smallest (L) is 7.79 um. The reasoning for
these values of (L) are that the greatest value is larger than the target length, the second value
is similar to the target length, and the third and fourth values are progressively smaller. In
sets 12 and 13, the greatest value of (L) cannot reach that attained in set 11, and in set 13, the
largest (L) attainable is still smaller than the target length. This is due to the progressively
larger negative drift in these sets. However, particular (L) values will still be comparable
between the sets, allowing an investigation of the effect of negative drift. This relative length
will be referred to as the relative theoretical average length, or relative (L).

Note that, because drift increases from set 11 to 13, for the values of (L) that are similar
between sets, D is greater in the sets with larger negative drift. In addition to this, each (L)
value in each set is run for five simulations with differing pause time percentage values: 10,
20, 40, 60 and 80. Moreover, each single combination of drift, (L) and Tp is repeated three
times. Finally, outer drift is also varied to allow better exploration of drift space within
quadrant 3, meaning that there are 2 more sets of 3 dynamics: sets 11-13 have an outer drift
of -10.06 pm min™; sets 14-16 correspond to 11-13, but have an outer drift of -5.38 um min,
and sets 17-19 again correspond to 11-13, but have an outer drift of -0.96 um min?. Again,
for a more detailed explanation of these dynamics sets, refer to section Bll and the appendix
tables (section E).

Firstly, we can consider how the theoretical average length of the inner area affects the
accuracy of cortical targeting, in the different inner and outer area drift backgrounds; the
results are plotted in figure 4. Here we see that for all negative inner area drift, increases in
inner area (L) increase accuracy, as was hypothesised. Furthermore, increases in inner area
Tp decrease accuracy for all inner and outer area drift combinations. The relationship
between theoretical average length and accuracy is remarkably similar for all inner and outer
area drift combinations, though note that at the combinations of the smallest inner and outer
area negative drift values (fig. 4G), the accuracy levels off between the two largest values of
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(L), which does not occur for the larger inner area negative drift dynamics sets at this outer
area drift (fig. 4H and 1).
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The effect of Tp is more evident in figure 5. Here, we can see that for any combination of
inner and outer area negative drift, and indeed for any (L), an increase in T, results in a
decrease in accuracy. Therefore, pausing in the inner area in a negative drift regime is
adverse for accurate cortical targeting.

Having found that increased (L) and decreased T, in a negative inner area drift regime
produce more accurate cortical targeting, we can now consider more explicitly the effects of
the magnitude of the negative inner and outer area drift on accuracy. Investigating this
properly requires that the effects of Tp and (L) are taken into account. In figure 6, the
accuracy is plotted as function of inner area drift, with each line corresponding to a particular
(L) and rows and columns corresponding to outer area drift and T, respectively. Here we see
that for any (L), T, and outer area drift, changes in the inner area drift have very little effect
on the accuracy of cortical targeting. Thus, where T, and (L) have a clearly discernable effect
on accuracy, inner area drift has very little influence on the accuracy.

Does outer area drift influence the accuracy? Shown in figure 7 is the accuracy plotted as a
function of outer area drift, with each line again corresponding to a particular (L) and each
column a particular Tp. Since outer area drift is now on the x-axis, inner area drift changes
with the rows in figure 7. Unlike inner area drift, the outer area drift has a more interesting
relationship with accuracy. At lower T, values (up to and including T, = 40) and equal to
high relative (L), cortical targeting accuracy is at its greatest here for intermediate outer area
drift. For higher Ty values and smaller relative (L), accuracy does not behave in a similar
manner; instead, there is either a modest increase or similar values between intermediate and
low magnitude outer area drift. In all cases, an intermediate outer area drift produces greater
accuracy than the greatest magnitude outer area drift. This relationship between accuracy and
outer area drift differs to the case in quadrant 4 of drift space, where accuracy increased with
greater magnitude outer area negative drift.

That fact that the increase in accuracy as a function of outer area drift was marked for larger
relative (L) than the smaller relative (L) suggested that a similar mechanism to that behind
the poor accuracy in quadrants 3 and 4 in the first set of experiments with dynamics sets 1-3
was at work, where low magnitude negative outer drift effectively could not contain
microtubules in the target area. To test this idea, the average lengths for the lowest Ty for
each inner and outer area drift and relative (L) were found (fig. 8). Indeed, here we see that
for all relative (L) and all inner area drift values, the average length undergoes a marked
increase from the intermediate outer area drift value to the smallest magnitude outer area drift
value. This increase, as would be expected, is greater for the high and equal relative (L) than
for the mid and low relative (L). Therefore, the large increase in average length at low
magnitude negative outer area drift is likely to be the reason that accuracy is lower at this
outer area drift value compared to the intermediate outer area drift value; again, the low
magnitude outer area drift cannot contain microtubules sufficiently.
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Figure 8. Average length for outer area drift regimes. For common relative theoretical
lengths (rel. (L), i.e. high (A), equal (B), mid (C) and low (D) from different dynamics sets with
different inner area drift values (indicated by colour; see colour bar) and different outer area drift
values (plotted on the x-axis), the average length is shown. Average length units: uym; drift units,
um min-t,

The results from negative inner and outer drift simulations indicate that accurate cortical
targeting depends on the relative magnitude of the theoretical average length of the inner area
compared to the size of the cell, and that the magnitude of the outer area drift also has an
important role in determining accuracy. Interestingly, the magnitude of the inner area drift
has little effect on accuracy; rather, theoretical average length and pausing time percentage
are important determinants here. Note that, even though outer area drift can hinder accuracte
targeting at high relative (L) for inner areas, the accuracy is always greater for higher relative
(L) than for lower relative (L).

With these results in mind, we can discuss further the potential for accurate cortical targeting
of the experimentally-measured dynamics sets. In figure 9, the inner area theoretical average
lengths for the control and Racl-inhibited conditions are shown. Of these, we see that the
control dynamics condition has greater (L) in general, compared to the other condition sets.
Sets 1 and 4 in the control condition have particularly large (L), while all sets in the Racl-
inhibited C condition (fig. 9C) have very low (L). Racl-inhibited A sets have intermediate
(L). In light of the model results, we can expect that higher accuracy could be achieved in the
control sets compared to the Racl-inhibited sets as a result of the larger (L).
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However, as the modelling made clear, although (L) has an important role in dynamics
regimes in quadrant 3 of drift space, the magnitude of the outer area negative drift is also
important. The drift values for both areas are plotted as bar plots in figure 9D-F. Although
control dynamics sets 1 and 4 had (L) values found to be good for cortical targeting in the
model, these sets have positive outer drift (thus, it is not plotted in figure 9D) and low
magnitude outer drift, respectively. As a result, cortical targeting accuracy is likely to be low
in these cases, as it was found that negative outer drift of similar magnitude cannot maintain a
low average length. In fact, all dynamics sets in the control condition have low magnitude
outer area drift, apart from set 6 that has intermediate drift magnitude in both areas.
However, this set may still yield low accuracy as a result of its low inner area theoretical
average length of 7.44 um (fig. 9A).

In the Racl-inhibited condition, the combinations of inner area (L) and outer area drift
magnitude generally are those found to be poor for cortical targeting accuracy. In Racl-
inhibited A, we see that for those sets that produce greater (L) in the inner area (fig. 9B), thus
holding potential for good targeting, have low magnitude outer area drift (fig. 9E). Those
sets that have high magnitude outer are drift have low (L) in the inner area. In Racl-inhibited
C, all inner area (L) are very small, but the drift magnitude in the outer area here are large.

Finally, the modelling suggested that pausing time is a significant factor of accurate cortical
targeting. In the control dynamics sets, pausing time percentages are all quite similar, with
set 6, which so far has the dynamics combinations most likely to produce accurate cortical
targeting in light of the modelling, having the lowest values for both inner and outer areas.
Indeed, earlier modelling suggested that increased Tp in the outer area was desirable for
accurate cortical targeting, while the modelling in this chapter shows that decreased Tp in the
inner area are better for accuracy. However, in the control condition, there are only small
differences in the pausing time percentages. This may of course be an artefact of the fact that
the two undetermined transition frequencies in chapter 3 both pertained to the pausing state.

As in the control condition, in the Racl-inhibited condition A and C dynamics sets, inner and
outer T, are similar within each set. However, there is greater deviation between dynamics
sets here in Tp, and again, this is likely to be an artefact of the undetermined transitions
frequencies; in Racl-inhibited A sets, both Fcat and Fres are low in comparison to the other
transition frequencies, even when Fps and Fspp are varied in magnitude but equal to each
other (i.e. sets 1-3). Thus, in this case, variations in the latter two transition frequencies are
unlikely to affect T, to a great extent because they are always large; they do not affect the
systems movement of microtubules through the three states. In sets 4 and 5, Fszp takes on
values of Fcat and Fres, respectively, and so Tp will be smaller here as a result of the small
values of Fcat and Fres. Again, this is in evidence in set 5 of Racl-inhibited C sets, where Fcat
is large compared to Fres; here, in set 5 where Fsop is equal to Fres, Tp is small.

Without a great difference in Ty between inner and outer dynamics sets, it is unlikely that
pausing would play an instrumental role in targeting accuracy; it would hinder accuracy in
the inner area and promote it in the outer area. However, note that in the control condition,
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where theoretical average length was large, i.e. sets 1 and 4, and especially in set 4, where
outer area negative drift is also relatively large, higher T, here may aid targeting accuracy.

D. DISCUSSION
I. Chapter 3 dynamics in context

a. Comparisons of dynamics

The first part of this chapter was concerned with comparing microtubule dynamics, both as
they are traditionally measured, i.e. in terms of transition frequencies and growth and
shrinkage speeds, and by the abstract parameters used in chapter 4. The aim of this was to
obtain an idea of how the measured dynamics compared with previous reports of microtubule
dynamics. With the exception of the shrinking speed and Fres and Fcat in the Racl-inhibited
condition, the measured dynamics were comparable to previously-reported measurements of
microtubule dynamics. The control condition Fcat and Fres were in fact the largest values of
the survey, with the inner area Fcat being largest, and the outer area Fres being greatest. As
was discussed in chapter 3, these values may be slightly overestimated, and thus the extent to
which conclusive comparisons can be made here is limited. However, it is important that
these transition frequencies were not so large as to appear unrealistic.

The surveyed dynamics were then compared by finding their abstract measures. There, most
of the surveyed dynamics had positive drift, while the control condition, albeit with estimated
Fpos and Fsp, had predominantly negative drift, and the Racl-inhibited condition had
negative drift for sets A and C, where Fcat Was equal to and ten times greater than Fres,
respectively, whereas Racl-inhibited set B, where Fres was ten times greater than Fcat, had
positive drift values more comparable to the surveyed dynamics. How can the differences in
drift be explained? Just a glance at the drift values for the surveyed and measured dynamics
shows that they are quite variable, but where many are positive and the measured sets are
generally negative, a fundamental difference in the growth properties is evident. One
difference between the measured and surveyed dynamics is the methodology; although some
of the surveyed dynamics were based on tracking of +TIP proteins, none used
plusTipTracker. In future work, comparisons of dynamics measured in this way will
elucidate this matter. Other than methodology, reasons for the differences in drift are not
clear.

b. Surveyed dynamics and microtubule organisation

To what extent can the comparisons described above contribute to our understanding of
microtubule organisation? The rationale here is that changes in microtubule dynamics should
underlie changes in microtubule organisation. With the exception of the Xenopus extract
system (Belmont et al., 1990) and dynamics measured specifically at the cell periphery
(Komarova et al., 2002), the drift was found to be positive for all surveyed dynamics.
Although the drift values do vary from 0.38 um min™ (Vasquez et al., 1997) to 22.72 um min’
! (Komarova et al., 2009), any positive drift value indicates continual growth. It can be
argued that the consensus between microtubule growth characteristics is an indicator that
microtubule arrays have similar systems properties, despite variations in cell type, cell line,
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and dynamics measurement (which necessarily involves interfering with the cell in some
way).

However, the question remains as to how radiality is attained in a microtubule dynamics
regime where microtubules will on average grow continually. In this respect, the previous
studies of microtubule dynamics at the cell periphery and in central areas are informative;
these studies (Komarova et al., 2009; Komarova et al., 2002; Mimori-Kiyosue et al., 2005;
van der Vaart et al., 2013) found that peripheral dynamics did differ to central dynamics, and
the results of these four studies collectively suggest that microtubules are more likely to
switch between states at a higher rate, grow more slowly, and spend more time in pausing at
the cell periphery.

These results are consistent with the findings of the model in the previous chapter, but how
do they compare to the results of chapter 3? The results of chapter 3 have been extensively
analysed. If one takes the measured, not predicted, pausing time percentage that was
originally reported in chapter 3 and is reproduced in table V, those times, at 9.21 and 8.58 for
control outer and inner areas, respectively, and 5.13 and 4.53 for Racl-inhibited outer and
inner areas, respectively, are low compared to the surveyed times and also (for the outer area)
the model predictions from the previous chapter. However, they do have the appropriate
relationship between areas; the outer area is greater than the inner area, and although this is
also true for the Racl-inhibited condition, the values are both lower than the control
condition, and this suggests that one way in which Racl-inhibited cells lose the radiality of
their microtubules because they pause less frequently at the periphery.

The predicted pausing time percentages, however, do not generally differ by such an extent.
One reason for this is that in order to calculate these values, the values of the two
undetermined transition frequencies, Fsop and Fpos, had to be estimated based on comparison
with other reports. With the exception of a few parameter values, the values chosen for Fszp
and Fp2s gave greater values of T, that were more comparable to the reported values. Two
points are of note following this: first, that the values for Fsop and Fp2s were often of similar
magnitude between the inner and outer areas, and secondly, although T, with these Fs2p and
Fpos values were comparable to the literature, they were consistently lower. Therefore,
perhaps further differences between the inner and outer area dynamics sets in the control and
Racl-inibited conditions lie in differences for these undetermined transition frequencies.
Further experimental work to measure these is a future project.

I1. Mechanisms of radiality

a. Comparison to previous modelling

In the previous chapter, it was noted that the accuracy of cortical targeting in quadrant 4 of
drift space is better when (L) is small and large in outer and inner areas respectively, and this
was explained by the fact that a smaller (L) will confine microtubules in a target area more
effectively than a larger (L) for outer areas, and in inner areas, a larger (L) produces more
microtubules that grow to the outer area. This explanation is supported by the results of this
chapter where the three-state simulations in which negative inner drift regimes were explored
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(i.e. sets 11-19). In these simulations, in the different negative inner drift regimes, the sub-
sets of dynamics with a greater D and (L) always produced greater accuracy, regardless of the
drift in either area.

Another interesting finding in this chapter is the fact that inner area drift had little effect on
the accuracy of cortical targeting, and indeed, (L), Tp and outer area drift were found to have
more of an effect on cortical targeting accuracy than inner area drift, which is not what might
have been expected given the results of the previous chapter, where drift, albeit more for the
outer area, was found to be so important. This is not to say that drift space is rendered
invalid; rather, it still represents a useful framework for considering dynamics combinations
between areas, and as stated when it was introduced, it is a guide, and actual accuracy is
determined by the specific combination of the abstract parameters.

b. Radiality for measured dynamics

The model has been used to identify the mechanisms of cortical targeting, but is it able to
explain the differences in the organisation of control and Racl-inibited cells that were
documented at the beginning of chapter 3? Control, unperturbed cells have good radiality;
microtubules generally approach the cell cortex at perpendicular relative orientations, and in
Racl-inhibited cells, this radiality is lost. Both experimental conditions have dynamics
regimes located in similar quadrants of drift space. Because two of these quadrants were
found to produce poor accuracy, they were not investigated further, but the quadrant where
both inner and outer drift are negative was found to produce reasonable accuracy, so the
dynamics sets that were located there were investigated.

It is apparent that the control condition certainly has more suitable dynamics regimes in terms
of theoretical average length; model simulations found that for high and equal relative
theoretical average length in the inner area, accuracy was improved, so long as this was
accompanied by negative outer drift of appropriate magnitude. Only one of the control
dynamics sets had outer drift of an appropriate magnitude, but in this set, inner theoretical
average length was quite low.

Related to this is the fact that in the Racl-inhibited condition, all theoretical average lengths
were found to be small in the set that gave most relevant drift combinations, set A, but that
Racl-inhibited cells are in general smaller than unperturbed cells. Previously, a link between
microtubule dynamics and cell size has been postulated by Picone et al. (2010), so further
investigation here might prove fruitful. Of course, this would probably require use of
micropatterning technology as in Picone et al. (2010) to control for variations in cell shape.

Perhaps one of the most interesting features of the analysis of the experimentally-determined
dynamics is that the control condition dynamics sets generally had a greater difference
between the magnitude of inner and outer area negative drift. Indeed, the mean absolute
difference between the inner and outer area drift values for dynamics sets was 0.29 pm min™
compared to 0.20 pm min™ and 0.15 pm min? for Racl-inhibited condition A and C sets.
Although some of the differences in inner and outer area drift are what could be considered
the wrong way around in light of the modelling, i.e. positive outer drift and negative inner
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drift, the fact that there is a greater difference between the two areas in the Racl-inhibited
condition hints that Racl could function to co-ordinate dynamics between inner and outer
areas.

I11. Modelling for measured dynamics
a. Model evaluation

After testing general mechanisms for targeting, the experimentally-measured dynamics were
examined. Because it was apparent that average theoretical length in the inner area may have
had a role in cortical targeting, and modelling verified this, the experimentally-measured
dynamics sets could not be directly modelled. However, dynamics sets that were similar to
these, but for which the theoretical average length was controlled, were used to investigate
cortical targeting accuracy in dynamics regimes similar to that of the experimentally-
measured dynamics. Thus, this is a legitimate methodology; controlling for otherwise
undetermined but important parameters of the model.

b. Model extensions

As discussed in the previous chapter, an interesting extension of the model would be to
consider the effect of the residence time of a microtubule in the target area on cortical
capture. Following on from this, it may be that the accuracy values found in simulations of
dynamics regimes in quadrant 3 of drift space, which seem low if this type of mechanism was
to contribute to radiality with these dynamics regimes, might actually generate reasonable
accuracy if it were combined with other mechanisms, such as cortical capture. Another
interesting experiment would therefore be determination of the relative times spent in target
areas for the different regimes.
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E. APPENDICES

Table X. Dynamics sets 11-19. Each sub-set within each dynamics set is shown, denoted by
the letters in the “set” column. For each set, the outer area drift is also shown. The abstract
measures theoretical average length, (L), drift, V, diffusion coefficient, D are shown for each
dynamics sub-set. Note that they repeat, so, for example, the only difference between sets 11
and 14 is the outer area drift. Also note that for each dynamics sub-set (i.e. each table row), five
values for the pausing time percentage were used: 10, 20, 40, 60 and 80. Thus each row
represents 5 different parameter sets. Units: V, ym min, (L), ym, and D, gm? min2,

Set V (L) D
Set 11, outer area drift =-10.06

a -0.56 80.54 44.75
b -0.56 38.63 21.46
c -0.56 15.09 8.38
d 0.56 7.88 4.38

Set 12, outer area drift =-10.06

a -2 51.56 103.13
b -2 38.37 76.74
c -2 15.00 30.00
d -2 7.86 15.71

Set 13, outer area drift =-10.06

a -4.17 30.56 127.34
b -4.17 1531 63.81
c -4.17 7.79 32.44

Set 14, outer area drift = -5.38

a -0.56 80.54 44.75
b -0.56 38.63 21.46
c -0.56 15.09 8.38
d 0.56 7.88 4.38

Set 15, outer area drift = -5.38

a -2 51.56 103.13
b -2 38.37 76.74
c -2 15.00 30.00

d -2 7.86 15.71



Table X, contd.

Set 16, outer area drift = -5.38
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a -4.17 30.56 127.34
b -4.17 15.31 63.81
(o -4.17 7.79 32.44
Set 17, outer area drift = -0.96
a -0.56 80.54 44,75
b -0.56 38.63 21.46
c -0.56 15.09 8.38
d 0.56 7.88 4.38
Set 18, outer area drift = -0.96
a -2 51.56 103.13
b -2 38.37 76.74
c -2 15.00 30.00
d -2 7.86 15.71
Set 19, outer area drift = -0.96
a -4.17 30.56 127.34
b -4.17 15.31 63.81
c -4.17 7.79 32.44
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Chapter 6
Frequency-based quantification of microtubule organisation

A. FREQUENCY-BASED ORGANISATION QUANTIFICATION: WHAT FOR?
I. Rationale
a. Organisational features hitherto unquantified

Since the microtubule cytoskeleton is so important for cellular organisation, its organisation,
in turn, is also very important. Thus it comes as no surprise that there are a vast number of
ways in which the organisation of the microtubule network can be modulated in the cell, as
discussed in chapter 2. Previously in this thesis, we saw that changing microtubule dynamics
parameters influenced the organisation of the network, and that other factors, such as cell
boundaries, also influence the organisation of the array. Thus it is clear that microtubule
dynamics, which by definition determine microtubule behaviour through time and space, are
a major determinant of the organisation of the array. In some cases, however, microtubule
organisation is dependent on more than just the length distribution of its individuals. Such
cases include certain spatial properties, such as the orientation, alignment, and bending of
microtubules. Indeed, chapter 3 established that there is a difference in microtubule bending
between control and Racl-inhibited cells. The diagrams in figure 1 demonstrate these
concepts, and they are expanded upon in table I, which gives the “parameters” of the different
features of organisation. Some of these parameters will be used later on in this chapter.

A means of quantitatively describing the organisation of the microtubule cytoskeleton in
other terms, that reflect these organisational features, should be helpful. In this chapter, I
address this problem for two of these: orientation and alignment. Before proposing a method
for quantification of these types of organisational features, | will first elaborate on why these
organisation features have important functional consequences for the cell, and why they
might make useful organisational metrics. Where applicable, I will also review previous
attempts at quantification.

Table I. Features of microtubule organisation. Various important properties of microtubule
organisation are shown, with details and parameters. Shaded areas are those investigated here.

Feature Details Parameter(s)
Length Distribution of microtubule lengths _Type of dls_t_nbutlon
Distribution-specific parameters
_ Distribution of orientations of Normally distributed  Uniformly distributed
Alignment Mean

individual microtubules Orientation range

Standard deviation
Predominant orientation of

Orientation X . Circular mean of orientation
microtubule population
Spacin Distance between principal axes Mean distance
P 9 of individual microtubules Variance of distance
Bending Mode(s) of bending of Number of modes

individual microtubules Amplitudes of modes
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Length
distribution

Orientation
bias

Alignment

Bending | , Py e

Figure 1. Microtubule organisation properties. Microtubule organisation can be considered
in relation to the features shown; variations in each are shown in corresponding panels.

b. Microtubule orientation

Microtubule orientation is clearly an important feature of microtubule network organisation.
The most obvious case to demonstrate this is the radial array in undifferentiated animal cells,
whereby the distribution of orientations of the component microtubules is uniform on the
interval [1°, 360°], perhaps the main functional consequence of which is proper transport
throughout the cell. Moreover, as was discussed in chapters 2, and will be elaborated on in
the next chapter, the orientation of plant cortical microtubules is a major determinant of plant
morphology (Wasteneys and Ambrose, 2009), and in fission yeast cells, microtubules are
oriented so that they run parallel with the principal axis of the cell, and this is an important
factor in yeast cell growth and shape (Brunner and Nurse, 2000).
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Microtubules can also re-orientate or fine-tune their orientation according to certain cues.
For example, in plants, the predominant orientation of the cortical array can change in
response to blue light (Lindeboom et al., 2013). In animal cells grown on micro-patterned
substrates, it has been shown that microtubules target areas of cell-substrate adhesion, even
though nucleation orientation is isotropic (Thery et al.,, 2006). Making use of micro-
patterning again, in cells grown on thin, long substrates; microtubules have been shown to
orientate parallel to the principal axis of the cell, in a similar manner to yeast microtubules
(Picone et al., 2010). In some cases, biases in microtubule orientations are quite subtle. For
example, in the Drosophila oocyte, a very slight but significant bias in microtubule
orientation has been demonstrated, and this has important developmental functions (Parton et
al., 2011). These studies make it clear that microtubule orientations can be indicative of
important cellular processes.

How are microtubule orientations measured? One of the most thorough attempts of
microtubule orientation quantification has been in the last study discussed above. Here, with
images of plus tip protein EB1 labelled with GFP in the Drosophila oocyte, Parton et al.
(2011) used a probabilistic threshold to assign a probability to each pixel that it “belonged” to
an EB1-GFP particle. The probability was based on finding the intensity of the background
at each pixel, and an estimation of the variation in intensity as a result of noise. The former
was found using the median of the intensity over a number, n, of film frames before and after
the current frame, this number being the time it takes an EB1-GFP particle to move from one
pixel to another. The variation in intensity was defined as the mean of the standard
deviations of intensity of the n frames before and after the current frame.

Finding the probability that a pixel is a “foreground” pixel (i.e. an EBI-GFP particle)
involves subtracting the background intensity and variation (multiplied by some constant)
and dividing by the background variation. Next, the probability images were segmented, and
particles were linked into tracks using a previous method (Shalzarini and Koumoutsakos,
2005). Once tracks are created, orientations can be determined, as was carried out in chapter
3 with plusTipTracker-created microtubule tracks. This probability-based method differs
from that of Picone et al. (2010), where a conventional threshold was used to segment
labelled microtubules from the background. Unfortunately, very few methodological details
are provided, but after segmentation, presumably orientations were calculated according to
gradients in the binary images.

Boudaoud et al. (2014) have implemented their method of quantifying microtubule
orientation (and also alignment — see next sub-section) in “FibrilTool”, an Imagel/FIJI
(Schindelin et al., 2012; Schneider et al., 2012) plugin. Based on gradients in pixel intensities,
it gives the predominant orientation in an image, and it has previously been deployed in
analysis of microtubule organisation the plant cortical array (Uyttewaal et al., 2012). In this
method, images of labelled microtubules are subject to a pixel-by-pixel analysis of intensity;
for each pixel, the gradient in intensity between it and those around it is found, giving a local
gradient direction. The local gradients across the image are averaged, and this gives the
predominant orientation.
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Another method, developed by Lichtenstein et al. (2003) and also independently by
Lindeboom et al. (2013), involves a rotating filter that resembles a microtubule or any
filamentous structure. The microtubule-like filter is a line of given width, length and
orientation, and by varying the orientation, one can determine the preferred orientation about
the central pixel. Lindeboom et al. (2013) use summation of the intensities underneath the
rotating kernel as a measure of preferential alignment, while Lichtenstein et al. (2003) take
the correlation with the kernel. Both methods then employ a threshold step on the subsequent
intensity or correlation to segment the stronger orientations from the background. The
method of Lindeboom et al. (2013) is incorporated into the ImagelJ plugin “LOCO”, and has
been used to measure orientation in the plant cortical array (Lindeboom et al., 2013).

In summary, the orientation of microtubules is an important factor in cell, and there have also
been some good attempts at quantifying it, which have been varied in their methodology.
Some involve segmentation, and in one case, use a probabilistic threshold, while others are
based on the raw image, and others employ a filter-based approach. The FibrilTool method
(Boudaoud et al., 2014) can be distinguished from the others by the fact that this requires
absolutely no kind of threshold to delineate microtubules from the background; all others,
whether it is the first step based on intensity (Picone et al., 2010), or a later step based on, e.g.
probabilities (Parton et al., 2011) or correlation (Lichtenstein et al., 2003), set a point at
which the signal is recognised over the background. Boudaoud et al. (2014) simply take the
average image gradient direction to determine orientation; the method presented here will
also not require any threshold or pre-processing step.

c. Microtubule alignment

The alignment in a network of microtubules goes hand-in-hand with orientation; the extent of
alignment can be thought of as the extent of anisotropy in the orientation. Furthermore, the
predominant orientation of a network of microtubules loses its relevance when there is no
alignment; thus, an alignment score of some kind can be thought of as a proxy for the
efficacy of the orientation estimate.

The alignment in microtubule networks varies between cell type and cycle stage,
developmental stage, between organisms, and in response to environmental cues. For
example, in plants, the anisotropy of orientations in the cortical microtubule array is a
predictor of the extent of anisotropy in cell growth (Wasteneys and Ambrose, 2009); through
its association with cellulose deposition in the cell wall (Paredez et al., 2006). Here, the so-
called “growth continuum” paradigm posits that control of the organisation of the plant
cytoskeleton is the main factor in the generation of diverse plant cell shapes; microtubule
alignment is one such organisational property that is an important and highly modulated
factor within this framework (Wasteneys and Galway, 2003).

In a theoretical study, it has been shown that the degree of alignment of a network is a major
determinant of cargo transport, modulated by the extent of coupling between active transport
and resulting cytoplasmic advection (Khuc Trong et al., 2012). Indeed, returning to the
Drosophila oocyte, the slight bias in microtubule orientation is responsible for the correct
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localisation of mMRNA and protein with important developmental functions (Parton et al.,
2011), and the theory in Khuc Trong et al. (2012) serves to elucidate why the microtubule
network in the oocyte is not anisotropic to the extent one might expect in cases where
unidirectional intracellular transport of various molecules is required: depending on the
degree of coupling between active transport and the consequent advection, a weakly-biased
network can actually localise molecules to a given target better than a strongly-biased
network.

FibrilTool (Boudaoud et al., 2014) also quantifies the extent of alignment. Whereas the
orientation is estimated as the circular average of the gradients in the image, the alignment, or
orientation anisotropy, is taken to be the circular variance of the gradients in the image (see
Mardia and Jupp (1999), for a good introduction to circular/directional statistics).

FibrilTool is a good example of user-friendly software to quantify alignment; indeed, other
approaches at assessing alignment do not have such utility. For example, in a fascinating
study of the effects of the protein Spiral 2 on the organisation of the plant cortical array,
Wightman et al. (2013) use a statistical test (the type of which is not indicated) to
discriminate between orientation distributions in different experimental conditions. Of
course, this serves the purpose of being able to determine whether one condition is more or
less aligned than another, but it does not permit comparison of many conditions, or different
experiments.

The alignment of the microtubule network is also clearly an important factor in many
instances. This feature of organisation is perhaps better-studied in plant biology, wherein it
plays an essential part in development. However, there are cases in animal biology, for
example the Drosophila oocyte, where microtubule alignment comes to the fore as a major
force in development, but the extent to which it is involved in the proper functioning of
animal cells is not clear; however, it is clear that, in theory, microtubule alignment can have a
major effect on transport of molecules, which is one of the main functions of the microtubule
network in animal cells. Moreover, previous work in the Mogensen laboratory has indicated
that microtubule alignment is affected by the +Tip protein EB2, where its depletion caused an
increase in microtubule alignment, and subsequent defects in cell differentiation (Goldspink
et al., 2013). Thus, it is likely that there are at least certain cases where microtubule
alignment is important in animal, as well as plant, cells. Next, I will introduce the concept of
quantifying microtubule orientation and alignment based on the frequencies in an image.

d. The Fourier transform for microtubule organisation quantification

Here, | propose that the Fourier Transform (FT) of images of the microtubule network is
ideally suited to quantify the orientation and alignment of microtubule networks. The FT is
used commonly in image processing and elsewhere; it effectively transforms a signal (here,
images are the signals) into its component frequencies. These frequencies are represented by
complex exponential sinusoids, the magnitudes of which indicate the prominence of each
frequency in the original signal.
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When dealing with a two-dimensional image, the FT is taken in each direction, i.e., the result
is 2-dimensional. In order to demonstrate the potential applicability of this method, an
example image of the microtubule array is shown in figure 2 with its corresponding FT
(specifically, it is the power spectrum that is shown; this is covered in the next section). In
figure 2, the lowest frequencies are at the centre of the image, and the higher intensities at the
borders. Immediately, it is possible to see that the greater intensities in the FT, indicated by
brighter values, are generally located in a region that is oriented perpendicularly to the
predominant direction of the microtubules in the original image. This is because the
frequencies that are most prominent in the image are those that are perpendicular to the
microtubules.

As an analogy, imagine walking over the original image, where the greater the intensity, the
greater the altitude. Walking perpendicular to the microtubules means there will be a lot of
ups-and-downs; plotting altitude as a function of position when walking this way will yield a
signal that changes a lot. The FT can decompose this signal into a collection of sinusoids, of
which there will be many contributing to the FT power spectrum in this direction. Walking
parallel to the microtubules, however, and making the same plot, will yield a signal that does
not change a great deal, because there will not be the same up-and-down profile as before.
Thus, when decomposed by the FT, there will not be much contribution to the power
spectrum in this direction.

Figure 2. The Fourier transform (FT) of a microtubule image. An original image (left) and its
FT power spectrum (right) are shown, with the highest intensities in the power spectrum in a
region oriented perpendicularly to the prominent orientation of microtubules in the original image
(indicated by the red line). Spatial information (x and y) is converted to frequency information (u
and v), the latter of which is displayed so that the lowest frequencies are central.

These principles are the essence of all the work presented in this chapter. The next step in the
process is to analyse the FT power spectrum and find the direction of the greatest intensities,
and how spread these intensities are; these measures will indicate the predominant orientation
and extent of alignment, respectively, of the microtubules. The purpose of this chapter is to
establish the best means of analysing the power spectrum to quantify orientation and
alignment in microtubule images, to test the method in a biologically-relevant situation, and
further, to use the method to derive new information regarding the organisation of the
microtubule network. Before | present these analyses, | will first summarise the principles of
the FT and review its previous uses in biomedical image processing.
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I1. The Fourier transform
a. Principles

The Fourier transform originates with the man after whom it is named: Jean Baptiste Joseph
Fourier, whose work on heat transfer lead to his theory that any periodic function can be
expressed as a sum of sinusoids with different frequencies and amplitudes, and this concept is
extendable to non-periodic functions, too; the former is known as a Fourier series, and the
latter is known as the Fourier transform. Thus, any signal is converted into a collection of the
frequencies that contribute to it, and what is more, this frequency domain information can be
converted back again using the inverse Fourier transform. The formula for the Fourier
transform in 2-dimensions is shown in equation 1:

M-1N-1

Faw) = Y ) faye ™ v, @,

x=0 y=0

where u and v are the frequency variables, and f(x,y) is the image of size M-by-N. Since
Fourier’s ideas were published in the 19" century, applications of his ideas have become
widespread. The types of signals to which it is applied are usually those which vary in time
or space, and as mentioned, in images the FT is 2-dimensional: one FT in the direction of
each axis. Generally, analysis of signals with the FT involves the power spectrum,
encountered in figure 2, the formula for which is below:

P(u,v) = |[Fy,v)|?3, (2).

Thus, the power spectrum is the magnitude of the Fourier transform, squared. All of the
work in this chapter is based on the power spectrum. As was shown in figure 1, the power
spectrum is usually shifted so that the lowest frequency is at the centre, and frequencies
increase toward the borders of the spectrum. As a result, the power spectrum is symmetrical
about the two principal axes.

The range of frequencies, Q, in the power spectrum is dependent upon the rate at which the
original function has been sampled, i.e. the sampling interval, AT:

Q = 1/AT, (3).

The sampling interval in images obtained from a microscope will be dependent firstly on the
resolution obtainable with the microscope, and secondly, on the manner in which the
continuous, optical image formed by the microscope is handled and converted into a digital
image. Focussing on the former first, in microscopy, theory tells us that the resolution,
commonly defined as the smallest resolvable distance between two objects, is a function of
the numerical aperture (N.A.) of the microscope system (i.e. including the N.A. of the
objective lens and the condenser; in epi-illumination systems, the objective also acts as the
condenser), and the wavelength of the light being used to create the image. The smallest
resolvable distance, d, is found like so:
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d = 0.611/N.A., (4),

where 1 is the wavelength of the light used to create the image. Generally, for systems with
magnification of 60x, N.A. can approach 1, and thus, for light at median wavelength (550
nm), d is about 0.3 um, while for 100x systems, N.A. can reach 1.4, which, for similar light,
gives values of d around 0.2 um. Such calculations should be used as a guide; imperfect
optics in the light path and fluorophores with different excitation and emission spectra will
alter the resolution.

Moreover, the above equation is not all, since it applies to optical images, which are
continuous functions in space, yet digital images are not continuous, but are instead
represented by discrete elements, known as pixels. Hence, we arrive at the second issue
mentioned above. The sampling interval is also determined by the area we choose to
designate to each element in the camera attached to the microscope (which, in turn, gives us
the area each pixel represents). Since pixels are square, we only need one figure to define the
sampling rate. It is good practice in any signal processing, of which this analysis can be
deemed an example, to sample at what is known as the Nyquist rate or criterion:

AT = 2F,0x,  (5),

where Fmax is the maximum frequency, or likewise, the minimum resolvable distance, in the
continuous signal (here, the optical image). The Nyquist criterion tells us simply that we
must sample our continuous function, in this case the light emitted from fluorophores in the
sample, at twice the greatest frequency in the function; abiding by this specification means
that the highest frequencies in optical image will be represented in the digital image. In our
case, this is 0.1 um at best. Using the maximum expected frequency of 0.2 um from
calculations of d, and eq. 3, we can calculate the FT frequency range:

N =1/0.2=5cyclesuym™, (6).

This makes intuitive sense: the highest frequency in the FT will correspond to a signal that is
varying at 5 cycles um, which, in the continuous optical signal, corresponds to 0.2 um, for
which the required sampling interval, according to eq. 5, for the digitised signal, is half that at
0.1 um. Thus, the calculations agree, and in the frequency spectrum obtained from the FT,
there will be a range from zero to 5 cycles um™. Of course, as is clear by now, this changes
according to the resolution of the microscope system.

Another pertinent factor is the resolution, or spacing, Au, in the FT. This is dependent upon
the total space sampled, T (in one dimension):

Au=1/T, (7).

In microscopy images, T will typically vary between a sub-sample of a cell, on the order of
microns, to a total cell, on the order of tens of microns:
T =2 um,

Au = 0.5 cyclesyum™, (7a),
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T =50 um,
Au = 0.02 cycles um™1, (7b).

We can see that the greater the space sampled, the smaller spacing we have in the FT, which
means greater frequency resolution. Depending on the application, analyses of images are
influenced by T and AT to varying extents. In this application, there is not the possibility of
improving 4T, since this is imposed by the physics of the imaging process, but T can be
easily changed by changing the size of the image to be analysed. The extent to which
frequency resolution matters for this particular application is debatable, since it is the
direction(s) in which higher intensities in the power spectrum are positioned, rather than
differences in frequencies. If the application was, e.g. an analysis of characteristic distances
between microtubules, then T and 4T might be more important.

Furthermore, there is essentially a trade-off between getting better frequency resolution and
the heuristic use of the power spectrum. Although Au decreases with increasing T, and thus
resolution improves as T gets bigger, it may become more difficult to understand the
correspondence between the frequencies resulting from the FT and the spatial distribution of
intensities in the image. With smaller images, it is relatively easy to understand which parts
of the image are represented by which parts of the FT; this becomes harder as T increases.
Thus, any gains in frequency resolution resulting from increasing T are offset by the loss in
understanding what the frequencies correspond to in the image. Later, in section B, this point
is demonstrated.

One of the pitfalls of using the FT in image analysis is that the FT (and the inverse FT) are
infinitely periodic (Gonzalez and Woods, 2006). This means that taking the FT of an image
is analogous to assessing the frequencies in an infinitely-sized 2-dimensional tiled array of
that image (fig. 3). Clearly, where the tiles meet, there is generally a large step, i.e. a
discontinuity in most frequencies; the effect of this is to create a large signal, at every
frequency, at these positions. Thus, in the power spectrum, there are high values at
orientation corresponding to the principal axes, to which the tile edges are parallel. This is
called an “edge effect”, and analysis based on the FT must take measures to reduce them,;
without dealing with edge effects, there will be strong maxima in the FT along the principal
axes, and this will hinder the identification of a principal orientation and calculation of
alignment.

Once edge effects have been eliminated, an appropriate method of analysing the power
spectrum must be chosen. The manner in which the power spectrum changes with orientation
can be found with the following formula, which splits the power spectrum into radial sections
(i.e. like the sections of a pie chart) and sums intensities in each (Gonzalez and Woods, 2006):

179°

5= ) S, (®),
6=0°
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where r is the radius of the circle from which the sections, oriented at 0, are taken. Hereafter,
I refer to this function as the “orientation magnitude”.

Figure 3. Edge effects. The FT treats images as being infinitely-tiled (A; original image in
yellow square), leading to truncation of signals in the image (white lines in A; black lines in B) at
the edges of the tiles. Where the signals are not continuous at the edges (asterisks at dotted line
in B), a large signal is created at the same orientation as the tile edge in the power spectrum
(black box in C). This example is for the y-axis; the same is true for the x-axis.
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Here, | have discussed the principles of the FT and the pertinent image parameters that affect
the analysis. But how can the power spectrum be analysed to quantify microtubule
organisation? This is discussed later; before then, in the next section, | review cases where
the FT has been used in similar situations, whether this has been for processing of biomedical
images or an application from a different field.

b. Relevant applications of the FT

The aim of this section is to inform the next sub-section, where | assess the applicability of
the FT for microtubule organisation quantification. In addition to being well-used in signal
processing, the FT has been used extensively for diverse image processing applications.
Many of these are not related to this application, and so reviewing them here would be
superfluous; this only reflects the sheer applicability of the FT. Thus, | focus below on
applications in analysis of filamentous structures; here, some of the applications are quite
different to the one in this chapter, but similar methods of analysis justify their inclusion.

The principle of analysing frequencies using the power spectrum to derive information
regarding the predominant orientation and the alignment in that orientation is not new. For
example, Bayan et al. (2009) analysed the power spectra of images of collagen fibres with
and without fibroblasts by taking the intensities of each orientation in the spectrum. Ayres et
al. (2008) have used the FT in an analysis of scaffolds for tissue engineering generated by
“electrospinning”. In these scaffolds, the orientation and anisotropy of orientation of their
constituent fibres are important in determining their material properties. Returning to
collagen matrix organisation, Schriefl et al. (2013) used a similar approach to Bayan et al.
(2009), summing power spectrum intensities at discrete orientations, to assess collagen fibre
orientations in human abdominal aortas. The FT has also been used to detect structural
changes in skin biopsies of patients diagnosed with Sjorgen-Larsson syndrome (SLS); here,
histological staining of the biopsies was determined to be different between SLS sufferers
and control patients in frequency components (Auada et al., 2006).

To determine the alignment in an image, some groups have defined a measure based on the
“support” of the dominant orientation from the other orientations, i.e. the extent to which
greater power spectrum intensities were at similar orientations to that which was determined
to be dominant (Bayan et al., 2009). This type of method has the advantage that it includes
all of the data; some other methods that use the maximum value in the orientation magnitude
as an indicator of alignment (Ayres et al., 2008) (also the indicator of orientation, and
dependent on the normalisation method — see below) effectively ignore all other data.

In a method related to the dominant angle support approach, Auada et al. (2006) calculated
the resultant vector of the power spectrum. This group took frequency bands (i.e. annular
sections of the spectrum) and, weighting vectors to each pixel by the intensity of that pixel,
found the magnitude of the resultant vector for that frequency band. Thus, at discrete
frequency bands, Auada et al. (2006) could use the magnitude of the resultant vector as an
indicator of anisotropy; greater magnitude, greater anisotropy. Of course, since the power
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spectrum is symmetrical, this method, and that of Bayan et al. (2009), requires that only half
of the spectrum is used (it does not matter which half).

Moreover, with calculations of this kind, different spectrum halves have to be considered for
each of the principal axes. This is because, e.g. a resultant vector calculated just for the
interval of [90°, -89°], will always be positive for the x-axis direction, as all vectors are
positive for x. The same can be said for the y-axis direction if the resultant is calculated over
the interval [0°, 179°]. The fact that the power spectrum is symmetrical means that this type
of manipulation is legitimate because the y-positive and x-positive areas correspond, so long
as the “correspondence” is correct, e.g. an intensity at -80° will be the same as 100°. This
will be expanded upon in a later section.

Another interesting method of quantifying alignment is that of Schriefl et al. (2013), who,
after smoothing the orientation magnitude data, fit linear lines to the cumulative probability
distribution of the orientation magnitude. Because isotropic orientation magnitude will have
a linear cumulative distribution, those distributions that were not fit well by a linear line,
defined according to a threshold R? value, were taken to be anisotropic (Schriefl et al., 2013).

“Benchmarking” is a common theme in analyses based on the FT; the idea is that some kind
of “ground truth” is established, where the true characteristics of the image are known, to
verify the accuracy of the method. Bayan et al. (2009) made efforts to benchmark their
analysis based on synthetic image data, for which they knew the true dominant orientation
and alignment, and Marquez (2006) has conducted a thorough analysis of the effect of fibre
aspect ratio on detection of orientation using synthetic images. In that study, the FT-based
quantification was found to work best for thin fibres.

In another study which compared methods to quantify orientation and alignment, in which,
incidentally, the FT was found to be most reliable and quickest, synthetic images of “fibres”
were created with varying numbers, predominant orientation and “anisotropy index” (i.e.
some measure of anisotropy) (Sander and Barocas, 2009). This type of synthetic analysis is
attractive since it allows exploration of a number of organisation parameters.

Where others have used synthetic images to benchmark their analysis, Ayres et al. (2008) use
spaghetti. Here, spaghetti that was either left uncooked or had been cooked (5 min, al dente)
for increased flexibility was arranged into various orientations and degrees of alignment.
Importantly, cooked spaghetti was found to have a decreased alignment relative to uncooked
spaghetti when arranged in similar orientations, verifying the efficacy of the method.

In some cases, benchmarking methods are based not on synthetic data or spaghetti, but on
pre-assessment of the images to be analysed. For example, in their analysis of collagen
organisation in human aortas, Schriefl et al. (2013) chose the threshold R? value in the fitting
of linear lines to cumulative orientation magnitude probability distributions by labelling the
images as isotropic or anisotropic first, and then chose the R? value that was in accordance
with these labels.
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Removal of edge effects is of course another important feature of FT analysis. In attempting
to eliminate edge effects, Ayres et al. (2008) have used a circular window, where the image
values outside the largest circle that fits into the image dimensions are set to increase from
some given value at the borders of the images, to some unspecified higher value at the border
of the image and circle window; other groups have employed similar methods (Schriefl et al.,
2013). This method is similar to the windowing approaches employed in one-dimensional FT
analysis, for which there are a number of functions to alter the image intensities so that edge
effects are removed, each with slightly different characteristics.

Finally, to properly compare orientation magnitude plots, it is useful to normalise data in
some way. Various approaches have been implemented, including seemingly ad hoc
methods based on selection of one of the data points to subsequently divide the rest of the
data by (Ayres et al., 2008), to “area normalisation”, whereby the data is divided by the area
so that the area under the data is equal to one (Bayan et al., 2009).

c. Suitability for quantifying microtubule organisation

The review above certainly contains promising indicators that the proposed method will be
suitable for quantifying microtubule organisation, as there are a number of studies that have
used similar methods to quantify the organisation of fibrillar structures, that are similar in
appearance to microtubules. In particular, the analyses of electrospun scaffolds (Ayres et al.,
2008), and of collagen matrices (Bayan et al., 2009; Schriefl et al., 2013) were carried out
with aims similar to those here. Other cases, for example in the skin classification (Auada et
al., 2006), suggest that FT analysis may also be useful for classifying cells based on the
organisation of their microtubule cytoskeletons.

The review also highlights some methodological details that will be useful in this analysis.
Firstly, it will be desirable to establish the applicability of ways to quantify orientation and
alignment with some type of ground truth. Second, edge effect removal will need to be
implemented. Third, to aid in comparison of data, a means of normalising the data will be
required.

Another important point to come out of the above review is that there is generally not a
consensus regarding ways to deal with the above points, i.e. orientation and alignment
quantification, edge effect removal, and normalisation. Different groups have implemented
their own methods, some overlap, and some are quite unique. Thus, appropriate methods for
these will have to be determined; in this respect, ground truth data will be a useful tool.

Although some have made efforts to analyse not only orientation but also variations in
frequency, given an orientation (i.e. the “frequency magnitude” as opposed to the orientation
magnitude) (Auada et al., 2006), it is apparent that in most cases, only orientation information
is taken into account, i.e. only pie-sections of the power spectra, and not annular sections, are
considered. Thus, it will be sufficient to take a similar approach in this study.

In section B, these issues will be addressed in a preliminary analysis, involving ground truth
images and some real microtubule images.
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B. PRELIMINARY ANALYSES
I. Synthetic images
a. The need for synthetic images

By the end of section I, | will have carried out a thorough analysis of the FTs of synthetic
images. The aim of doing this will be to have a benchmark against which to compare FTs of
real cells. First, though, I briefly demonstrate why synthetic images are essential.

Figure 4 shows an image of fixed human retinal pigment epithelial, or ARPE-19, cells,
visualised using similar parameters to all of fixed specimens under study throughout this
thesis. We can see that the arrangement of the microtubule cytoskeleton varies between the
cells, and within each cell. Some have well-aligned regions, while others are fairly
disorganised, and some areas are well-aligned but bending. The power spectrum in figure 4b
is for the whole image in figure 4a, while the power spectra of sections of the image are also
shown in figure 4c.

Here, two important points become apparent. First, how can we be sure that certain features
in the spatial domain relate to a given set of frequencies in the FT? Second, how do we go
about quantifying the information in the FTs so as to enable us to compare microtubule
networks? In relation to the first point, going backwards from the frequency information to
the spatial domain can be informative: e.g. the power spectra for sections 2-4 show prominent
frequencies oriented roughly perpendicular to the predominant orientation of the
microtubules in the images. Thus, where there is a reasonable degree of alignment, it is quite
simple to interpret the power spectrum; in cases where there is low alignment, or indeed a
large image has been analysed, the power spectrum is more difficult to understand.

In relation to the second point, although it is easier to understand the power spectrum in
smaller sections of an image, to do this for many images manually would be tedious and
unfeasibly time-consuming. Hence, an automated method will be required, yet, one has to be
sure that such a method behaves as it should; to establish a good automated method,
candidate procedures can be tested on synthetic data, or compared against expert-labelled real
data. Both approaches have been used previously, and here, | employ the former approach.

In summary, the argument for generation of synthetic data runs thus: thorough analysis of
real images will require automation, but automation will require a method that we have
confidence in. To do this, various approaches can be tested on data for which we know the
parameters of interest: orientation and alignment, and we can then use them as a comparison
when we look at real images.
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b. Construction of synthetic images

How do we go about constructing these images, and what are the parameters we will vary?
In a similar manner to Sander and Barocas (2009), I create a set of binary images with “fibres”
with normally-distributed orientations with a given mean, p, and standard deviation, o (fig. 5).
From here on, the mean and standard deviation in the synthetic images will be referred to as
the “synthetic mean”, or just predominant orientation, and the “synthetic standard deviation™.
For each combination of p and o, there are 20 images.
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Figure 5. Summary of synthetic image set. Synthetic “fibres” are created, imitating
microtubule images, with varying principal orientation, y, and standard deviation, o, about the
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c. Obtaining the orientation magnitude

The orientation magnitude, touched upon earlier, and found with the following formula:

179°

5= ) S, (®),
6=0°



212

is an appropriate way of analysing how the power spectrum changes with orientation, and
hence, the orientations present in the image. Keeping r fixed means that this can be omitted
from the formula:

179°

S = z Se, (8b),
6=0°

and thus, “orientation magnitude” and “S” will be used interchangeably hereafter.

The orientation magnitude is a one-dimensional function, for which taking statistical
measures, such as the circular mean and standard deviation, allows us to quantify the
characteristics of the FTs (Gonzalez and Woods, 2006). The question | aim to answer in this
sub-section is: what is the best way of obtaining the orientation magnitude?

In carrying out the summation in eq. 8, there are some preliminary considerations. First, it is
clear that, due to the symmetry of the power spectrum, we only need analyse half of it (this is
why 6 goes from 0° to 179°, and not 359°, in eq. 8). Note that the issue mentioned earlier in
determining the predominant orientation and extent of alignment by resultant vectors or
dominant angle approaches is discussed further in section BIf. Second, the sums could be
made over discrete ranges of 0, or, instead, they could run continuously, with a “window” of
specified size centred at each orientation. Important parameters here are the number of
groups for the “discrete” method, and the window size for the “continuous” method. Figure
6 depicts both the discrete and continuous approaches on the power spectrum of an example
synthetic image.

From here onwards, | will specify whether the method was continuous or discrete. Figure 7
shows three example synthetic images, and plots of the orientation magnitude obtained with
both methods; it also shows two different pre-processing methods, which are discussed in the
next sub-section. It is clear that, while the discrete method produces step-like changes in the
orientation magnitude, the continuous method, as might be expected, tends to produce
“smoother” data. Reassuringly, both methods agree on the locations of maximum
orientations. In this section, both methods will be used, with the aim of coming to a
conclusion as to which is better for subsequent analysis.

In terms of subsequent analysis, even a brief look at the orientation magnitude plots in figure
7 suggests that values such as the mean of the distribution might not be quite what we are
after; here, we are interested in the anisotropy of the distribution of the orientation magnitude:
high anisotropy should indicate strong alignment, while low anisotropy should indicate weak
alignment. Thus, we want to calculate how the power spectra of the synthetic control images
vary with orientation (eq. 8) and compare the values for each orientation with one another,
i.e., the intra-data set differences. However, before we address this problem, we must first
consider how we will pre-process the orientation magnitude data.
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Figure 6. Methods of obtaining the orientation magnitude. The power spectrum of the
synthetic image in A is analysed for orientation magnitude according to the “discrete” method (B)
and the “continuous” method (C). In the discrete method, the areas analysed, from 90° to -90°,
are depicted in black, and in the continuous method, the orientation at the centre of each area
analysed is also shown in black (Ci). Cii depicts the first (green) and last (red) areas analysed as
the central orientation sweeps from 90° to -89° (as indicated by the arrow).
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images with varying standard deviations and principal orientations, respectively: 0, - 60° (Ai), 5, -
30° (Aii), and 20, -90° (Aiii), the orientation magnitudes are shown for the discrete (Bi-iii) and
continuous (Ci-iii) methods, after pre-processing by either rescaling (blue lines) or normalisation

(green lines).
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d. Data pre-processing

A problem that arises in analysis of the orientation magnitude is that all of the data are very
large values, and differences between them, may be small in comparison to their magnitude,
making it difficult to detect any differences. Hence, some kind of pre-processing of the data
should be required before any analysis. Furthermore, once we have compared values within
single data sets, pre-processing should allow better comparison between data sets, since the
results will not be affected by differences in magnitude between different sets. One form of
pre-processing is to rescale the data so that all points are on the interval [0,1]. This is
achieved with the following formula:
X' = M, 9),

Xmax — Xmin
where, for each data point x, x” is the rescaled value, while Xmin and Xmax are the minimum and
maximum values of the original data set, respectively.

Another form of pre-processing data is to normalise so that the area underneath a graph of the
data is equal to one. This is achieved like so:

X
xl = (10)1
a

where, again, for each data point x, x’ is the normalised value, and a is the area underneath
the plot of the original data. This is the same method as that used by Bayan et al. (2009).

In figure 7, we can see that for the example synthetic images, both pre-processing methods,
as with the different orientation magnitude methods, agree on where maxima are located in
the data. Due to the differences in the two methods, we would of course expect quite
different values, and this is indeed what we see, but both have similar shapes.

However, one concern with the rescaling method is that, because the maximum value takes
the new value of one and the minimum takes the new value of zero, it might accentuate intra-
data differences if the original distribution does not have a large maximum. Likewise, as
figure 7 shows, the normalisation method appears to have smaller peaks at the predominant
orientations relative to the other data; are either of these concerns valid? A simple analysis
based on data with a clear maximum (“peaky” data) (fig. 8A) and another set with no clear
maximum (“flat” data) (fig. 8D), can clear up the issue. Figure 8 shows that rescaling
perfectly reproduces the shape of the original peaky data (fig. 8B), while normalisation tends
to reduce the maximum slightly (fig. 8C). However, in the flat data, even though it appears
that both rescaling and normalisation preserve the shape of the original data, comparison of
the two appears to indicate differences between resultant data (fig. 8E-G).
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Figure 8. Further tests for pre-processing method efficacy. Data with a clear maximum
(“peaked”) (A) were tested with both rescaling and normalisation pre-processing, the results of
which are presented in B and C, respectively, with both plotted with the original data. Relatively
flat data (D) were also subject to the same analysis (E and F), and the results of rescaling and
normalisation are also plotted together in G.

To better understand this, the ratios of the minimum to maximum, and mean to maximum,
values of the data before pre-processing, and after pre-processing with both rescaling and
normalisation, were calculated. Here, the aim was to quantify, to some extent, the shape of
the data. The ratios are shown in table II, and as expected, rescaling deals well with the
peaky data with both ratios, but so too does normalisation; perhaps the plotting process and
axis scales used obscured the relationships within the data. The ratios for the flat data
suggest that rescaling does indeed accentuate intra-data differences in situations where the
original data was relatively uniform; the minimum to maximum ratio is zero, as would be
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expected given that rescaling assigns zero to the former and one to the latter, whereas for the
original and normalised data, this ratio is 0.919. The mean to maximum ratio is also
misrepresented after rescaling the flat data: here, the value is 0.530, while for the original and
normalised data, it is 0.962. Thus, caution should be exercised when using the rescaling
method of pre-processing since it has the potential to change intra-data relationships.
However, for the analysis of synthetic images, | will continue to employ both methods, where
| can be sure that there is indeed a peak in the data at the predominant orientation.

Table Il. Data metrics before and after pre-processing. Ratios of minimum to maximum
value, and of the mean to the maximum value, are shown for original, rescaled, and normalised
data. The discrepancies between the rescaled and original data are highlighted in grey.

Original Rescaled Normalised
Peaked data:
Min/max 0 0 0
Mean/max 0.141 0.141 0.141
Flat data:
Min/max 0.919 0 0.919
Mean/max 0.962 0.530 0.962

e. Eliminating edge effects

Edge effects, and the various means that have been proposed to deal with them, were covered
in section All. Here, | investigate a number of potential means of reducing the effects of
edge. The first way is to simply ignore them, and exclude the data at the principal axes from
the analysis. This is not entirely satisfactory since, in the case that there is true strong
alignment along one of the principal axes, it will not be detected. By taking into account that
there are usually high values at these orientations, and including them if the values here are
unusually high, is a possibility, and has been employed previously (Ayres et al., 2008).
Another way would be to look at the power spectrum in all other directions, and if there are
maxima here, it is likely the principal axes maxima are only edge effects; in essence, we are
asking: is there information elsewhere in the FT, and if so, we will ignore the principal axes.
However, this could be quite a complex and time-expensive analysis.

Another way to determine whether it is an edge effect or a real result from the information in
the image is to take the FT and analyse it, then rotate the original image by a known amount
and take the FT again. In this approach, if the principal axes maxima represent real
information, there will now be maxima at the orientation of the angle the image has been
rotated by. If they were edge effects, there will not be a new maximum at this orientation.
This is a promising method, but as before, it could lead to a lengthy time of analysis, since it
will double the number of images to analyse.

Although the above practises provide means of identifying edge effects and eliminating them
from subsequent analyses, better approaches might aim to remove edge effects earlier, at the
image stage, so they do not need to be identified. In this way, we would not risk removing
legitimate data when trying to rid the analysis of edge effects. In signal processing, where the
FT is used extensively, a process called windowing is employed to negate the effects of sub-
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sampling sections of a 1-dimensional signal. This could be an option here, but it is only
compatible with certain types of analysis; namely, those that are filter-based, and centre a
window of some size on each pixel of the image. This type of method is described in a bit
more detail in the full analysis; suffice to say that it is not the method of choice here, and so
windowing cannot be considered.

A better-established method in image processing to eliminate edge effects before taking the
FT is to pad the image. Here, the image is surrounded, or padded, by more sections of image.
The idea of padding is to negate the effect of effectively abruptly truncating the wavelengths
in the image at the image borders (demonstrated in fig. 3). The padding sections produce an
area that softens this abrupt stop, and thus decreases the signal created by it in the FT.

There are a few options as to the positioning and content of these extra padding sections of
image; here, | analyse zero, mean, and reflection padding. These approaches are summarised
in figure 9. Zero padding consists of positioning rectangular sections of zeros around the
image (fig. 9B). Whether padding at the top or bottom of the image or left and right, one of
the dimensions of these sections clearly depends on the size of the image, while the other
dimension that determines how “deep” the section is, is up to the user to decide. Generally,
this dimension will correspond to the size of the image in some way; it might be the same
size as the image, or it might be half the size. Another option is mean-padding. Here, instead
of zeros, the image is padded with its mean value (fig. 9C). In some cases, this might be
preferable because it could soften the transition at the border of the image to a greater extent
than zero-padding. In addition to zero- and mean-padding, we can fill the padding sections
with a reflection of the image (fig. 9D). We might expect that this approach is the best choice
since the image is now more periodic; the FT algorithm expects periodic input; thus, it might
perform better with a reflection-padded image.

The choice between these three approaches will usually be based on assessment of their
corresponding FTs. It is to some extent a decision based on preliminary data rather than there
being a definitive method. Later, we will examine these different approaches with a
preliminary study to establish which is best-suited to our system of study.

There is an extension to the padding approaches described above, and this involves changing
the shape of the image that is surrounded by padding sections (fig. 9). Here, the idea is that
by removing the edges present in a square image, we should reduce the spurious signal
created by these edges. Hence, instead of padding around a square image, we first remove
sections of the image so that it is now in a circle. Of course, we will not want to make this
circle too small, since we will start losing real signal from our image; good practice will be to
use a circle of diameter similar to that of the smallest dimension of the image. As above, the
choice as to whether padding is zero, mean or reflected is based on preliminary analysis;
however, it is unlikely that reflection will be appropriate here, where there are no straight
image borders.
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Figure 9. Padding approaches. A synthetic image (A) is padded either with zeros (B), the
mean value of the circular “windowed” image (C), or reflected (D).

To determine which of these methods works best for this application, | carried out an analysis
on the synthetic images, with data obtained using the discrete method and rescaling for pre-
processing. In this analysis, for each types of padding, the mean orientation magnitude at the
principal axes was found for synthetic images where the signal here would be expected to be
low (i.e., predominant orientations -30° and -60°) and those where principal axis signal
would be expected to be high (i.e., predominant orientations 0° and -90°). Finally, | then
rotated the latter set of images by 45°, and found the mean orientation magnitude at the
principal axes. A good padding approach should therefore give low signal in the first group,
high signal in the second group, and low signal in the third. The results are plotted in figure
10.

It is clear to see from figure 10 that some padding approaches perform better than others. For
example, zero and reflection padding increase the signal relative to non-padded images at the
principal axes in the first group, which suggests enhancement of edge effects in some way,
while mean padding decrease the signal for this group. All padding approaches conserve the
signal in the second group, which is good, while, in the rotated set, mean padding reduces the
signal best relative to the non-padded data. Thus, mean padding performs best in this
analysis, and will be used hereafter to eliminate edge effects.
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f.  Analysis of the orientation magnitude

In this sub-section, | propose various methods to predict the predominant orientation from the
orientation magnitude data, and also to quantify the anisotropy in the data, and after
discussing their advantages and disadvantages, | test some of the more promising methods.

To recap, so far, we have seen that two methods of obtaining the orientation magnitude, the
discrete and continuous approaches, are applicable, while we also have two methods to pre-
process the orientation magnitude, rescaling and normalisation, albeit with some reservations
as to the efficacy of the former. We have also seen that the most appropriate method for
elimination of edge effects in the FT of the synthetic images is mean padding. Therefore, all
analyses in this sub-section will be based upon images that have been mean padded prior to
calculation of the FT, and both methods for obtaining the orientation magnitude and pre-
processing will be used.

To predict the predominant orientation in an image, there are three potential methods:

1. Take the orientation at which the maximum magnitude occurs
2. Calculate the mean orientation of the data
3. Calculate the “dominant” orientation

These methods are summarised in table I1l. In many cases, these methods may give similar
results; however, the latter two may be better means of estimating the predominant
orientation because it takes into account all of the data. For example, if there is one outlying
value that is a maximum, while there are many slightly lower magnitudes clustered elsewhere,
then the mean orientation would indicate the predominant orientation better than simply
taking the maximum value. Calling this the mean value can be misleading, since at first, one
might think that, in any case, a mean value will not be a good indicator of where maxima are
located in the data. However, it is not the mean value of the orientation magnitude, rather, it
is the mean value of the orientations analysed, weighted by the orientation magnitudes.
Hence, it is analogous to angle of the resultant vector, the magnitude of which is discussed as
a means of quantifying alignment below. See Mardia and Jupp (1999) for a thorough guide
on descriptive statistics for data that are collections of angles (i.e. “circular” data).

The second method suffers from a problem that is commonly encountered in analyses of
circular data (Mardia and Jupp, 1999); what I call the “transition problem”, in that, since the
orientation magnitude is defined on an interval of 90° to -89°, if a peak were located across
these angles, then the resultant vector would be small where it should be large, because the
set of vectors, some clustered around +90° and some around -89°, would oppose one another.
Thus, the second method is prone to giving spurious results, depending on where the
principal orientation lies.

The third method maximises a function used to find what has been called the dominant
orientation (Allard et al., 2010; Baulin et al., 2007), it is also used again, below, in one of the
measures proposed to quantify alignment. Briefly, it is the orientation for which the
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projection of all of the data in that direction, minus the projection of all of the data in the
orthogonal direction, is at a maximum.

It may be the case that the third method is best suited to orientation magnitude data obtained
by the continuous method, because, as table Il outlines, it is calculated by maximising a
function that has continuous input values of o, which is a set of angles from 0° to 179°; this
can also be -89° to 90°. However, the third method will be tested with discrete orientation
magnitude data; the particular combinations of methods is shown in table IV.

The third method does not suffer from the same problem as the second method, because,
firstly, only the cosine of the difference between the input value o and a given angle 6 is
found, and it is squared; thus, os(a) is at its minimum when 0 is perpendicular to o, and it
increases from this minimum for both differences less than and greater than 90°. Therefore,
“opposing” angles such as 90° and -89° actually give the same value as “similar” angles, i.e.
90° and 89°.

Next, the measures that will be used to quantify the extent of alignment, or rather, the
anisotropy in the orientation magnitude, will be defined. There are a number of measures
that may be useful:

1. Take the proportion of the integral around the maximum value to the integral of the
rest of the data

Subtract the proportion of the second biggest integral to the maximum integral from
one

Subtract the proportion of the mean value to the maximum integral from one

Measure the kurtosis, or “peakedness” of the data

Find magnitude of resultant vector of data

Calculate an “order” parameter

N

©o ok~ w

The measures, and how they are calculated, are also summarised in table I1l. In some cases,
as with the principal orientation prediction measures, it is clear that a particular measure is
better suited to the discrete or continuous orientation magnitude approaches. For example,
measures 1-3, that take the ratios of the integrals around the maximum value to the integrals
of rest of the data (measure 1) and the second-highest value (measure 2), and the ratio of the
integral around the maximum value to the mean value (measure 3), will be better suited to
data obtained by the discrete method, since the smoothness of the continuous data, where
many points make up a maximum, will likely make these measures obsolete. Again, the
combinations of methods can be found in table IV.

Kurtosis is a standard descriptor of distributions; it is designed to indicate the extent to which
data are peaked. There are variations on how kurtosis is calculated; the method used here is
the built-in Matlab command, and with this method, distributions that are more likely to
contain outliers, or rather, distributions where more of the area under the curve is
concentrated in a peaked area, have a higher kurtosis. The normal distribution, according to
the formula in table, has a kurtosis of 3; thus, values above 3 indicate that the data are more
peaked than the normal distribution, and values below, less peaked data.
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The fifth method suffers from the same transition problem as the direction of the resultant
vector (method 2 for principal orientation prediction) suffers from. Here, a peak straddling
the orientations of -89° to 90° will produce a small resultant vector where it should be large,
again because the vectors oppose one another. Thus, the magnitude of the resultant vector is
prone to giving spurious results, depending on where the principal orientation lies, and so will
not be ideal for this analysis.

The sixth method is related to method 3 for principal orientation prediction. Again, this is
based on work in Baulin et al. (2007) and Allard et al. (2010), and it quantifies the relative
difference between the projections of the data in the principal orientation and the orthogonal
direction. It takes values between 0 and 1, with 1 being perfect alignment, and 0, complete
disorder.

To reiterate, the aim of using many methods with the synthetic is to obtain some idea as to
which set of methods works best, and we can be confident that we can identify which is best
as we know the ground truth; once we have determined which set of methods works best, we
can then use just that set on real images. It has been clear that some of the methods proposed
will not be suitable, thus, only some will be tested; these are shaded in grey in table Il1.
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Table Ill. Summary of measures used to predict the principal orientation and to quantify
the anisotropy of orientation magnitude data. For orientation prediction, measures 1-3
indicate the orientation at which the maximum value occurs, the mean orientation, and the
“‘dominant” orientation, respectively. For anisotropy, measures 1-3 indicate the ratio of the
maximum integral to the rest of the data integrated, the ratio of the second-largest integral to the
maximum integral taken from one, and the ratio of the mean value to the maximum integral taken
from one, respectively. Measure 4 is the kurtosis, or “peakedness” of the data, while measure 5
is the resultant vector of the data, and measure 6 is an order parameter indicating the extent of
alignment in the data.

Measure Formula Notes

Principal orientation prediction

1 Omax = Max(S(6))
2 o= tan™}(V/X) if X20 X =% cos(d))
tan"}(Y/X)+m if X <O 7 =13" sin(6)

Orientation magnitude anisotropy

>
I

1yn
=).j=1€0s(8;)
5 R=(X2+7»)'"2 n

~l
Il

1 .
= }‘=1 sin(6;)
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Table IV. Summary of combinations of methods and measures in synthetic image
analysis. Both discrete and continuous methods of obtaining the orientation magnitude are
combined with both recalling and normalisation, while particular sets of measures for principal
orientation prediction and orientation magnitude anisotropy are used.

Orientation
Orientation Principal orientation magnitude
magnitude Pre-processing prediction anisotropy
Discrete Resc.a"”g 3 1-4,6
Normalisation
Continuous Rescaling 3 4,6

Normalisation

Later, when these measures are taken of real images of the microtubule cytoskeleton, it will
be a simpler task to compare data sets, which would, in this case, be different cells, images,
or parts of an image. In this case, the analysis will be based on relative data. However, it
might also be useful to have some kind of absolute measure of alignment. Applying the
measures in table 111 to the synthetic images will enable this; the values obtained from real
image can be compared to those obtained from synthetic images for which we know the true
alignment parameters, as summarised in figure 5.

Now that the combinations of methods to obtain the orientation magnitude, and means of
estimating the principal orientation and quantifying the extent of alignment have been
decided, they can be put to the test. Firstly, the accuracy of each combination of orientation
magnitude data and pre-processing was assessed using the mean squared error of the
predictions of principal orientation in the synthetic images. Remember, the orientations in
the synthetic images are 0°, -30°, -60°, and -90°. Thus, the principal orientation in the
magnitude data should be perpendicular to these, at 90°, 60°, 30°, and 0°. Table V shows the
mean squared error for each combination and figure 11 has plots of the real orientation and
the prediction of each combination for each synthetic standard deviation. Table V and figure
11 show that the continuous orientation magnitude, whether combined with rescaling or
normalisation, has greater accuracy in principal orientation prediction than the discrete
method.

Table V. Mean squared error of principal orientation prediction. For each orientation
magnitude and pre-processing method, i.e., discrete (D), continuous (C), and rescaling (R), and
normalisation (N), the mean squared error (MSE) in principal orientation prediction is shown; n =
400 for each combination.

Method

D/R D/N C/R C/N
MSE 2.25 2.25 0.35 0.35
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Figure 11. Principal orientation prediction for method combinations. For the discrete (d)
and continuous (c) methods, combined with rescaling (r) and normalisation (n), the predicted
principal orientation is plotted for each standard deviation and orientation (A), and enlarged for
each orientation (B-E) with the real orientation (dashed line) also plotted; n = 80 for each point.
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Next, we can consider how the alignment measures vary with the method combinations. For
the order measure p, rescaling for pre-processing with both discrete and continuous produces
greater values than the normalised counterparts (fig. 12A; table VI). However, all curves are
similar in their trajectories, all indicating decreasing alignment with increasing synthetic
standard deviation.

Table VI. Mean order, p, for synthetic images with different standard deviations. For each
combination of treatment, i.e., discrete (D), continuous (C) and rescaling (R) and normalisation
(N), the mean value, £ SD, for each standard deviation is shown; n = 80 for each treatment.

Standard deviation

Method 0 2 5 10 20
D/R 0.95 +0.02 0.94 +0.02 0.91 £0.04 0.88 £0.03 0.75 £ 0.07
D/N 0.91 £0.04 0.90 £ 0.04 0.86 =+ 0.05 0.82 £0.04 0.68 + 0.07
C/IR 0.93+0.01 0.92 £0.01 0.90 £ 0.01 0.86 £0.02 0.74 £ 0.06
CI/N 0.89£0.02 0.88 £0.02 0.85+0.02 0.80 £0.02 0.67 £0.06

Kurtosis, which actually gave identical values for rescaling and normalisation in each type of
orientation magnitude data, is heavily affected by changes in method combinations. Here, the
discrete orientation magnitude produces a plot similar to that of p, with decreasing kurtosis as
synthetic standard deviation increases (fig. 12B; table VII). The continuous orientation
magnitude is very different to this, actually increasing slightly from standard deviation of
zero to two, and thereafter decreasing, albeit at a slow rate (table VII). The cause of this
difference is most likely to be the fact that the discrete orientation magnitude is generally
more peaked (fig. 7), and the continuous data gives smoother peaks, and thus could result in a
lower kurtosis.

Table VII. Mean kurtosis for synthetic images with different standard deviations. The
values for both rescaled and normalised data are the same for either discrete (D) or continuous
(C) orientation magnitude, so only one set of values for each is shown. Values are + SD, and n =
80 for each treatment.

Standard deviation

Method 0 2 5 10 20
D 13.65 + 3.58 12.51 + 3.40 9.48 +2.05 6.18 + 2.16 3.85+1.40
C 4.26 +0.06 4.27 £0.04 4.20 £ 0.06 3.57+0.29 1.40 +0.45

Measures 1-3, which were only used with discrete orientation magnitude data, gave varying
responses to increasing synthetic standard deviation (fig. 12 C-E). First, measure 1, the ratio
of the maximum integral to that of the rest of the data, follows a similar trajectory to p,
decreasing with increasing standard deviation (fig. 12C). Here, rescaling and normalisation
give similar results, with rescaling actually producing greater values (table VI1II). Measure 2,
the ratio of the second biggest integral to the maximum, taken from 1, is highly variable for
each synthetic standard deviation, as indicated by the error bars on the plot (fig. 12D).
Moreover, it does not behave as might be expected as synthetic standard deviation increases;
first, it increases between standard deviations 0 and 5, and then decreases between 5 and 20
(table VII1). As the ratio of the second biggest integral to the maximum, taken from one, we
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might expect this measure to high (i.e., close to one) with low synthetic standard deviation,
and thereafter, decrease. However, this is not the case, and its variability and trajectory most
likely render it and unsuitable measure of alignment. Both rescaling and normalisation
produce similar results here. Measure 3, the ratio of the maximum integral to the mean value,
taken from one, behaves in a similar manner to measure 1, but is apparently less sensitive at
the lower synthetic standard deviations (fig. 12E, table VIII). Again, rescaling and
normalisation produce similar results.
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Figure 12. Mean alignment measures for method combinations. For discrete (d) and
continuous (c) orientation magnitude data with rescaling (r) and normalisation (n) for pre-
processing, the average values (mean + SD, n = 80) for each synthetic standard deviation are
shown for p (a), kurtosis (B) and measures 1-3 (C-E). For kurtosis, the values for both rescaling
and normalisation were the same in each orientation magnitude data set, so only two curves are
shown (B). The measures 1-3 were carried out only on discrete data, so only two curves, for
rescaling and normalisation, are shown there (C-E). Refer to table Il to recap each measure.
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Mean values for measures 1-3 for synthetic images with different standard
These measures were only conducted with the discrete orientation magnitude

method, but both pre-processing methods of rescaling (R) and normalisation (N) were used.
Values are = SD, and n = 80 for each treatment.

Measure/Method Standard deviation
Measure 1 0 2 5 10 20
R 0.83 +0.07 0.79 + 0.07 0.66 +0.10 0.42 +0.09 0.24 + 0.05
N 0.78 £0.09 0.74 £0.09 0.62 +0.10 0.39 +0.08 0.22 + 0.05
Measure 2
R 0.24 +0.17 0.26 +0.16 0.29+0.12 0.17 +0.09 0.12 + 0.09
N 0.24 £0.17 0.26 £0.15 0.29+£0.12 0.17 £0.09 0.11 £0.09
Measure 3
R 0.89 +0.01 0.89 +0.01 0.87 +£0.01 0.83 +0.03 0.73 +0.04
N 0.89 +0.01 0.88 + 0.01 0.87 £0.01 0.82 +0.03 0.71+£0.05

The plots in figure 12 and data in tables VI-VI1II show how each measure tested behaves, and
whether its behaviour is changed when the type of orientation magnitude data or pre-
processing is changed. They also give an indication as to which combinations are likely to
make useful measures later on in the analysis of real cells. For example, kurtosis with the
continuous method looks unsuitable, as does measure 2, while measures 1 and 3, and p, look
promising, as does kurtosis combined with the discrete orientation magnitude. However, to
obtain a quantitative understanding of how these measures perform, we need a statistical
measure of how well they perform in terms of distinguishing different synthetic standard
deviations. Thus, for each set of method and measures, we need to assess the extent to which
the data for each standard deviation differ from one another.

The results of this analysis are presented in tables IX-XI. For each combination of methods
and measures, the analysis runs thus:

1. Establish whether the variances of the standard deviation data sets are similar with
Levene’s test; if so, a parametric test can be employed (if the data also satisfy
normality criteria), and if not, a non-parametric test must be used.

2. In every case, the data were found to have unequal variances. Thus, the non-
parametric equivalent of an analysis of variance, the Kruskal-Wallis test, is used to
determine if there is significant difference between the standard deviation data.

3. In every case, there was a significant difference between the standard deviation data.
Therefore, the non-parametric equivalent of a student’s t-test, the Wilcoxon rank sum
test, is used to compare adjacent standard deviation data (i.e., 0 is compared with 2; 2
with 5; 5 with 10; 10 with 20), giving four comparisons.

4. Because multi-comparison procedures like this are prone to statistical error (type 1
error), an adjustment is made to the significance level for which the p-value is judged
to be significant. Here, the Bonferroni adjustment is used, which determines the new
significance level by dividing the previous level by the number of comparisons; thus,
here, it is 0.01/4 = 0.0025.
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Table IX. Statistics for synthetic alignment quantified by order measure p. In each
combination of methods, i.e., discrete (D), continuous (C) and rescaling (R) and normalisation
(N), the data for each synthetic standard deviation were tested for homoscedasticity with
Levene’s test. A significant p-value (v') indicates heteroscedasticity. A Kruskall-Wallis test was
then conducted to test for significant (v') differences between all standard deviation data.
Individual standard deviation sets (SD#) were then compared with one another using a Wilcoxon
rank sum test, with significance (no = x; yes = v) being tested against a p-value defined by the
Bonferroni correction.

Method
Measure D/R D/N C/IR C/N
Levene p 1.12 x10°8 5.55 x107 4.50 x1015 3.35 x10YY
p<0.01 v v v v
Kruskal-Wallis p 2.86 x106° 1.26 x1058 6.31 x10°78 8.79 x10"1
p <0.01 v v v v
Wilcoxon rank
sum
SD#
p < Bonferroni
Ovs?2 0.01 0.01 1.39 x1014 2.52 x10°
X X v v
2vs5 7.04 x107 2.82 x10°¢ 5.02 x1023 1.39 x1010
v v v v
5vs 10 2.87 x1011 1.52 x1010 4.03 x10%7 7.85 x1024
v v v v
10 vs 20 5.64 x10% 1.03 x10%4 1.84 x10%7 1.27 x10%7
v v v v

For p, the only non-significant results were for the comparison of synthetic standard deviation
0 and 2 for both rescaling and normalisation with discrete data (table 1X). Thus, p performs
better when used with continuous data; there is not much to choose between rescaling and
normalisation here, although rescaling does produce smaller p-values.

In all comparisons of synthetic standard deviations 0 and 2, kurtosis did not show a
significant difference (table X). Therefore, the increase in kurtosis with the continuous data
between standard deviations 0 and 2 is not a significant increase, and the large decrease for
kurtosis with the discrete data is not also not significant; this is supported by the fact that
these mean values have large standard deviations (fig. 12B, table VII). Thereafter, all
standard deviations with both types of data are statistically distinguishable. In fact, although
the differences between synthetic standard deviations for kurtosis with continuous data
appeared to be indistinguishable in the plots (fig. 12B), these actually have smaller p-values
than kurtosis based on the discrete data (table X).
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Table X. Statistics for synthetic alignment quantified by Kurtosis. In each combination of
methods, i.e., discrete (D), continuous (C) and rescaling (R) and normalisation (N), the data for
each synthetic standard deviation were tested for homoscedasticity with Levene’s test. A
significant p-value (v') indicates heteroscedasticity. A Kruskall-Wallis test was then conducted to
test for significant (v) differences between all standard deviation data. Individual standard
deviation sets (SD#) were then compared with one another using a Wilcoxon rank sum test, with
significance (no = x; yes = v) being tested against a p-value defined by the Bonferroni correction.

Method
Measure D/R D/N C/IR C/N
Levene p 7.11E-19 7.11E-19 1.96E-23 1.96E-23
p <0.01 v v v v
Kruskal-Wallis p 6.25E-61 6.25E-61 3.85E-68 3.85E-68
p<0.01 v v 4 v
Wilcoxon rank
sum
SD#
p < Bonferroni
Ovs?2 8.33E-02 8.33E-02 2.10E-02 2.10E-02
X X X X
2vs5h 4.79E-09 4.79E-09 2.03E-10 2.03E-10
v v v v
5vs 10 1.55E-17 1.55E-17 2.39E-27 2.39E-27
v v v v
10 vs 20 2.10E-13 2.10E-13 6.54E-26 6.54E-26
v v v v

The analysis of measures 1-3 supports the previous conclusion that measure 2 is not ideally
suited to quantifying alignment, since the first two comparisons, for synthetic standard
deviations 0 and 2, and 2 and 5, were not significant (table XI). The low sensitivity of
measure 3 at lower standard deviations is supported by the non-significant result between 0
and 2, but significant differences elsewhere. Measure 1 also has a non-significant difference
between synthetic standard deviations of 0 and 2, but significant differences between all other
groups. For every measure, these results are the same for rescaled and normalised data.
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Table XI. Statistics for synthetic alignment quantified by measures 1-3. For only discrete
orientation magnitude data, rescaled (R) and normalised (N) data for each synthetic standard
deviation were tested for homoscedasticity with Levene’s test. A significant p-value (v') indicates
heteroscedasticity. A Kruskall-Wallis test was then conducted to test for significant (v)
differences between all standard deviation data. Individual standard deviation sets (SD#) were
then compared with one another using a Wilcoxon rank sum test, with significance (no = x; yes =
v') being tested against a p-value defined by the Bonferroni correction.

Method

Measure 1 R N
Levene p 9.44E-07 2.06E-07

p <0.01 4 v
Kruskal-Wallis p 2.42E-71 3.67E-70

p <0.01 4 4

Wilcoxon rank sum
SD#
p < Bonferroni

Ovs2 4.69E-03 6.98E-03

X X
2vs5 4.45E-14 1.72E-12

v v
5vs 10 2.16E-24 8.71E-24

v v
10 vs 20 1.37E-24 2.16E-24

v v

Measure 2

Levene p 2.55E-15 9.37E-16

p <0.01 v 4
Kruskal-Wallis p 1.30E-16 5.42E-17

p <0.01 v 4

Wilcoxon rank sum
SD#
p < Bonferroni

Ovs?2 3.20E-01 3.54E-01

X X
2vs5 3.89E-01 4.08E-01

X X
5vs 10 1.52E-10 1.39E-10

v v
10vs 20 2.92E-04 1.83E-04

v v
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Table Xl, contd.

Measure 3
Levene p 5.34E-27 1.55E-26
p <0.01 4 v
Kruskal-Wallis p 2.42E-71 3.67E-70
p <0.01 4 4
Wilcoxon rank sum
SD#
p < Bonferroni
Ovs2 0.005 0.007
X X
2vs5 4.45E-14 1.72E-12
v v
5vs 10 2.16E-24 8.71E-24
v v
10 vs 20 1.37E-24 2.16E-24
v v

Clearly, the lower synthetic standard deviations, 0 and 2, are the most difficult to distinguish
with the measures proposed here; indeed, they are more similar than any other of the standard
deviations. The only measure that distinguishes between these data is p, with continuous data.
Furthermore, p is a good candidate for the alignment measure since it can also distinguish
every other synthetic standard deviation. Thus, it performs better than any other measure
tested. In addition to this, its best performance is with continuous data, which also gives the
best orientation prediction accuracy (table V), and the formula for p is also calculated using
Q, the means of estimating principal orientation. Thus, continuous data and p are methods of
choice, but we must distinguish between rescaling and normalisation for the pre-processing
step. Since there is very little to choose between them in the analysis here, we can return to
the previous analysis of these methods, where it was found that normalisation reproduced
characteristics of the original data better than rescaling; thus, normalisation will be used for
pre-processing form hereon.

g. Window size in the continuous orientation magnitude

The continuous method of obtaining the orientation magnitude was found to be preferable in
the last sub-section, and, although the order measure p was determined to be preferable, the
other available measure for continuous orientation magnitude data, kurtosis, will also be used
here, to check whether it improves in its utility in this analysis. One facet of the continuous
method that was briefly mentioned above but discussed no further was the size of the
“window” used. The easiest measure for window size is just the size of the angle that it
covers; for example, in the previous sub-section, the window size was 30°, meaning that the
area that contributed to one point in the orientation magnitude data was the sum of an area of
the FT that spanned 30°. As yet, we have no idea as to how, if at all, the window size affects
the orientation magnitude data and subsequent analyses; thus, the focus of this sub-section is
to investigate window size.
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The window sizes analysed here are: 5°, 10°, 20°, 30° and 40°. Data were generated as
before, using the synthetic images and normalisation as the pre-processing method. Table
XIl shows how changing window size affects the accuracy of orientation prediction,
quantified by the mean squared error. The smallest window size of 5° degrees achieves total
accuracy for the synthetic images with zero standard deviation, yet, this window size and that
of 10° are less accurate than the larger windows when synthetic images with larger standard
deviations are tested. Overall, taking the mean squared error of all predictions over all
standard deviations indicates that the window size of 30° is the best all-rounder. Thus, the
sacrifice of increased accuracy at smaller synthetic standard deviations for better predictions
at greater standard deviations produces a better overall score. Moreover, the likelihood that,
in real images, we are unlikely to encounter perfect alignment, as in the zero standard
deviation case, supports the choice window sizes 20° - 40°, which perform better at
intermediate and large synthetic standard deviations.

Table XIl. Mean squared error of principal orientation prediction for each synthetic image
standard deviation and overall, for each window size. The mean squared error of orientation
prediction is given for each combination of synthetic image standard deviation (SD) and window
size, as well as the overall value for each window size. For each mean value, n = 80.

Window size (°)

SD 5 10 20 30 40

0 0.0000 0.0125 0.0125 0.0125 0.0125

2 0.2500 0.3125 0.3125 0.3000 0.3125

5 1.5750 1.4875 1.5000 1.5000 1.5125

10 4.2625 4.1375 4.1125 4.2250 4.1375

20 19.0125 19.1000 18.6875 18.5500 18.6250
Overall 5.0200 5.0100 4.9250 49175 4.9200

How does changing window size affect alignment scores? Figure 13 shows the orientation
magnitude for these different window sizes, plotted in groups of synthetic image standard
deviation, for the synthetic images with a principal orientation of -60°. Remember, according
to the rule that the maxima in the FT are perpendicular to the direction of best alignment in
the image, the peaks in the orientation magnitude are at approximately 30° in figure 13. For
each synthetic image standard deviation group, there is an example orientation magnitude
plot, taken from one instance of the 80 repeats for each, and the mean orientation magnitude.

The most striking feature of the plots at lower standard deviations is how much more peaked
the data are for smaller window sizes, for both the single examples and averages. Thus,
decreasing window size increases the size of peaks in the orientation magnitude at lower
standard deviations. This is to be expected, since where there is a tightly localised maximum
in the FT, the orientation magnitude will elicit a greater response at smaller window values,
which do not decrease the intensity of the maximum through averaging with adjacent, lower
values.
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The increased peak size is consistent with the findings in table XII that the smallest window
size of 5° has excellent accuracy at lower standard deviations, since this is probably a result
of unambiguous localisation of the peak, due to its size. However, again in agreement with
the data in table XIlI, the peaks for smaller window sizes are quickly diminished as the
standard deviation increases. In both the single and average cases, the smallest window size
is still responsible for the greatest orientation magnitude at the larger standard deviations, but
those of larger window sizes approach much closer here, especially in the average cases.

Furthermore, as we might expect, where smaller window sizes produced larger orientation
magnitudes from less averaging in the lower standard deviations, at the larger standard
deviations, the lower amount of averaging makes the orientation magnitude plot more
“noisy”, since it will now be more sensitive to variations in the FT. In all cases, the width of
the peaks in orientation magnitude increase with increasing standard deviation.

To test whether these differences in orientation magnitude across the window sizes has an
effect on the quantification of alignment, the mean values of order, p, and kurtosis were
found for each synthetic standard deviation and window size combination. | re-examine
kurtosis here, even though it performed poorly with continuous data in the previous analysis,
simply to determine if changing window size affects the performance of this measure. The
data are plotted in figure 14.

For the order measure p, the values behave in a similar manner with increasing standard
deviation for each window size; the effect of increasing window size is to shift the data so
that each value for p is greater (fig. 14, table XIII). This agrees with the orientation
magnitude plots (fig. 13), where smaller window size produced larger peaks. Thus, for p,
although changing window size has a quantitative effect on absolute scores of alignment, it
does not change the relationship between synthetic image standard deviation and alignment
quantification.

The same is not true of kurtosis, where decreasing window size not only quantitatively affects
the result, but qualitatively changes the relationship between standard deviation and
alignment quantification (fig. 14, table XIIl). Again, the increase in kurtosis with smaller
window size will be a result of the more peaked orientation magnitude data, though the origin
of the qualitative relationship change is not immediately clear; it may be related to the
problem of apparently reduced anisotropy when the peak spans the -89°-90° transition,
briefly discussed earlier. This is an issue from which some of the other alignment measures,
such as the resultant vector, suffer, and it results and decreased alignment score, because the
peak is effectively split within the data. The reason it could contribute less when window
size is small is because these data have narrower peaks; narrower peaks are less likely to span
the -89°-90° transition, and so the data will not present the same problem. The fact that the
kurtosis scores are so dramatically enhanced for lower standard deviations supports this
notion, since, in these cases, peaks are even narrower than their higher standard deviation
counterparts. Moreover, the kurtosis value for window size 5° and standard deviation of 20
are of a similar magnitude to those of larger window size.
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Figure 13. Orientation magnitude depends on synthetic standard deviation and window
size (previous page). Plots of single data sets (“example”; left panels) and averages (“average”;
right panels, n = 80) for synthetic images with varying standard deviation (SD) and principal
orientation -60°, for each window size.



237

03575 2 5 10 20 % 2 5 10 20
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Figure 14. Mean order, p, and kurtosis for each synthetic image standard deviation and
window size. Left and right panels show average values of p and kurtosis, respectively, as
synthetic standard deviation increases, colour coded by window size.

Table XIll. Mean order, p, and kurtosis for synthetic images with different standard
deviations for each window size. The mean order, p, and kurtosis for orientation magnitude is
given for each combination of synthetic image standard deviation (SD) and window size. Values
are * standard deviation, and n = 80 for each.

Window size (°)

5 10 20 30 40
o]
SD
0 0.93 +0.03 0.93+0.03 0.91 +0.03 0.89 +0.02 0.86 + 0.02
2 0.92 +0.02 0.91 +0.02 0.90 + 0.02 0.88 + 0.02 0.85+0.02
5 0.89 + 0.02 0.89 +0.02 0.87 +0.02 0.85+0.02 0.82 £0.02
10 0.84 +0.02 0.84 + 0.02 0.82 +0.02 0.80 +0.02 0.78 + 0.02
20 0.70 + 0.06 0.70 + 0.06 0.69 + 0.06 0.67 £ 0.06 0.65 + 0.06
Kurtosis
SD
0 30.72 £ 0.97 15.91 £ 0.67 7.19 £0.15 4.26 +0.06 2.84 +£0.03
2 2291 +2.15 14.60 £ 0.59 7.10+0.11 4.27 £0.04 2.86 £0.02
5 12.68 + 2.77 10.22 +1.46 6.52 +0.29 4,20 £ 0.06 2.88 +0.02
10 7.35+2.53 5.97 £1.59 459+0.72 3.57+0.29 2.74+£0.10
20 5.21+2.33 3.83+1.31 2.75+0.67 2.34 £0.45 2.08 £0.29

Given the principal orientation prediction and alignment data, how do we evaluate which
window size is best? Clearly, some window sizes are better at predicting principal
orientations than others, depending on the standard deviation in the synthetic image (table
XI1I). The alignment measures show that some window sizes may not be suitable if we wish
to persevere with both alignment measures, i.e., a window size of 40° may yield kurtosis
quite unhelpful to discriminate grades of alignment (fig. 14). On the other hand, the kurtosis
values appear to be remarkably reproducible, with low standard deviation (table XIII).
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To better grasp the utility of each window size and the complementary alignment measures,
we can turn to an analysis similar to that of the previous sub-section. Here, for each window
size, if all of the data are found to be significantly different in some way with an analysis of
variance, then the data for standard deviation are compared with the data for adjacent
standard deviations, testing for significant difference between them with a t-test or non-
parametric equivalent. The aim is to establish which combination of window size and
alignment measure is best, taking “best” to be that which distinguishes adjacent standard
deviation data with statistical significance.

The results of this analysis are shown in table XIV. For each measure and for every window
size, it was found that the data for each standard deviation did not have equal variance
(Levene’s test, p < 0.01), and that there were significant differences between them (Kruskal-
Wallis, p < 0.01). Hence, adjacent data sets were tested against one another, with all but one
comparison being significantly different at the level of Bonferroni adjustment for multi-
comparison statistics (Wilcoxon rank sum test, p < 0.01/4). The two sets of data that were
not significantly different were those previously determined to not be different, for kurtosis
with window size 30°, standard deviations 0 and 2.

The significant differences between data sets for kutosis at all window sizes apart from that
mentioned is quite surprising, given that, in figure 14 and table XIII, they appear, in many
cases, to be quite similar. However, as already mentioned, those values have very small
standard deviations, and that is consistent with the statistical findings here.

Continuing with kurtosis, although there is significant difference between standard deviation
data for window sizes of 30° and 40°, it is unlikely that this window size and alignment
measure combination will be useful in the analysis of real images, since the kurtosis actually
increases before decreasing, as synthetic image standard deviation increases. Two things are
of note here: first, that, although there are significant differences at the synthetic standard
deviations tested, in real images, levels of disorder that are intermediates of the synthetic
standard deviation may prove indistinguishable, and second, in order to limit the number of
comparisons in the multi-comparison statistical tests, only adjacent data were tested against
one another; we do not know if distant groups are statistically different from one another or
not.

For p, it would be difficult to choose between window sizes based on the analysis in table
XIV. Indeed, the p-values are similar for each adjacent data set across the window sizes
tested. This is consistent with the plot of p in figure 14, where the data followed similar
trajectories, the only difference being the position on the y-axis.

To conclude this section and fix the last variable in the pipeline of analysis, the average
accuracy of orientation prediction afforded by window sizes of 20°-40° certainly makes those
sizes more attractive. Moreover, although smaller window sizes allow excellent orientation
prediction at smaller synthetic standard deviation, such high degrees of order are unlikely to
be encountered in real images. However, choosing window sizes of this size will prohibit the
use of kurtosis as an alignment measure, though p performs just as well as kurtosis, so the
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need for two measures is negated somewhat. In terms of p, since there is nothing to choose
between window sizes for distinction of synthetic standard deviations (table X1V), then the
choice is dictated by orientation prediction (table XII), for which window size 30° performs
best, particularly at the greatest standard deviation, which may well be representative of a
similar level of disorder found in real cells. Thus, for the preliminary analysis of real cells in
the next section, orientation magnitude will be obtained by the continuous method with a
window size of 30°, normalised, and subsequently analysed for anisotropy using only the
order measure p.
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Table XIV. Statistics for synthetic alignment for window sizes quantified by p and kurtosis.
For each window size, the data for each synthetic standard deviation were tested for
homoscedasticity with Levene’s test. A significant p-value (v) indicates heteroscedasticity. A
Kruskall-Wallis test was then conducted to test for significant (v) differences between all
standard deviation data. Individual standard deviation sets (SD#) were then compared with one
another using a Wilcoxon rank sum test, with significance (no = x; yes = v) being tested against
a p-value defined by the Bonferroni correction.

Window size (°)

5 10 20 30 40
p
Levene p 9.50E-17 8.29E-17 7.44E-17 3.35E-17 1.29E-17
p<0.01 v v v v v
Kruskal-Wallisp  4.43E-70 4.71E-70 3.15E-70 8.79E-71 1.97E-71
p<0.01 v v v v v
Wilcoxon rank
sum
SD#
p < Bonferroni
Ovs2 9.37E-06 9.82E-06 1.20E-05 2.52E-05 9.66E-05
v v v v v
2vs5 3.90E-09 5.76E-09 2.18E-09 1.39E-10 2.94E-12
v v v v v
5vs 10 6.82E-23 7.81E-23 3.82E-23 7.85E-24 1.23E-24
v v v v v
10vs 20 1.32E-27 1.32E-27 1.32E-27 1.27E-27 1.27E-27
v v v v v
Kurtosis
Levene p 9.91E-04 1.75E-09 2.54E-26 1.96E-23 3.53E-33
p<0.01 v v v v v
Kruskal-Wallisp  9.83E-77 4.27E-78 1.17E-76 3.85E-68 5.43E-64
p<0.01 v v v v v
Wilcoxon rank
sum
SD#
p < Bonferroni
Ovs2 9.75E-28 4.34E-22 1.85E-04 2.10E-02 1.81E-08
v v v X v
2vs5 1.42E-27 1.32E-27 1.13E-25 2.03E-10 2.76E-10
v v v v v
5vs 10 1.26E-20 2.48E-24 2.99E-27 2.39E-27 4.72E-25
v v v v v
10vs 20 1.36E-10 1.27E-15 1.81E-24 6.54E-26 3.28E-26

v v v v v
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I1. Real images: introducing “MtFT”
a. The data

The extensive analysis of the various components of the FT-based analysis to derive
microtubule organisation can now be put together in an analysis of real microtubule images.
This analysis pipeline, consisting of image mean-padding, taking the FT, analysing the power
spectrum to obtain the orientation magnitude using the “continuous” method with a window
size of 30°, and quantifying orientation and alignment using the dominant angle, Q, and the
order parameter, p, is encompassed in what will be referred to as “MtFT”, for Microtubule
Fourier Transform.

Here, | analysed sections taken randomly from images of the microtubule cytoskeleton in
cells depleted of the plus-tip protein EB2, discussed in the introductory chapter, and
compared them to control, scramble-siRNA cells (analysis of full images is discussed in
section C). Here, EB2 is depleted with siRNA, and the control cells are treated with scramble
SiRNA; methods are detailed in the appendix (section E). Previously in the Mogensen lab,
depletion of EB2 has been shown to give rise to straighter, better-aligned and perhaps more
bundled microtubules (Goldspink et al., 2013). In that study, microtubule alignment was
quantified by manually counting the number of occurrences of microtubules crossing each
other (fig. 15).

Mt crossovers

Microtubule crossovers
25 - ke

20
15

10 Straight Mts

No. Mt crossovers

Control Scramble EB2 Rescue

siRNA :‘. :— .

Figure 15. Previous analysis of EB2-siRNA microtubule organisation. EB2 depleted cells
(bottom right) were found to have significantly better-aligned microtubules than control cells (top-
right), quantified by numbers of microtubule crossover events (left). From Goldspink et al. (2013).

Using images that have previously been shown to differ in microtubule organisation means
that we already have some idea that there are differences in microtubule alignment, otherwise
it will be difficult to assert that the alignment measures are effective, and that MtFT is useful.
Rather than try to quantify organisation in the whole of each image, for this preliminary
analysis, | will take a section from each image.
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b. Quantifying microtubule organisation

Both experimental treatments were subject to the same analysis: first, the FT was taken of
each region, and the orientation magnitude was found using the continuous approach with a
window size of 30°, and normalisation as the choice of pre-processing. Then, the principal
orientation was predicted using the dominant angle and the anisotropy of the orientation
magnitudes was quantified using the order measure, p. This analysis pipeline is summarised
in figures 16 and 17 for the control and EB2-depleted regions, respectively.

A general inspection of the FTs and orientation magnitude plots in figures 16-17 suggests that
there is indeed a difference between the two treatments: first, the FTs in the control regions
tend not to have any discernable maxima in a specific direction, agreeing with the region
images, while those for the EB2-depleted regions appear to have higher intensities in the FTs
at particular locations that correspond to the apparent principal orientations in the images.
Second, these observations are borne out in the orientation magnitude plots, where the
absolute values of data tend to be lower in the control treatment than in the EB2-depleted
treatment, and, furthermore, the shapes of the control orientation magnitude do indeed appear
to be more isotropic than those of the EB2-depleted regions.

On this note, the choice of normalisation for pre-processing finds support from the fact that
some of the orientation magnitude plots for the control condition (fig. 16) resemble the “flat”
data used earlier (fig. 8); there, it was found that rescaling did not reproduce some
characteristics of this type of data as well as normalisation (table I1).

The values in figures 16-17, for p, serve to justify the initial conclusions that were made upon
inspection of the FTs and orientation magnitudes of each treatment. We can see that the
values for control regions are consistently lower than those for control cells; indeed, the
maximum value for the control regions, 0.28, is still 0.15, over half its value, lower than the
minimum, 0.43, for the EB2-depleted regions. The individual p values are collected in table
XV, with the mean value also shown. A one-sample Kolmogorov-Smirnov test for both the
control and EB2-depleted conditions, against a standard normal distribution, verified that
they satisfied normality (null hypothesis of normality, p > 0.01 for both treatments), and the
data were found to have equal variances with both a Bartlett’s and Levene’s test (null
hypothesis of equal variances, p >> 0.01). The non-significant value for the Bartlett’s test
also supports the result of the Kolmogorov-Smirnov test, since Bartlett’s test can return
significant p-values if used with non-normal data. Thus, as the data satisfied the normality
and equal variance requirements of the t-test, a two-sample, two-tailed t-test was used to test
for a difference between the conditions. The p values for control and EB2-depleted regions
were found to be significantly different (p < 0.001).
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Figure 16. Preliminary analysis of real cells, scramble treatment. Regions of control,
scramble cells (left panels), their FTs (middle left panels) and corresponding orientation
magnitude plot (middle right panels), and order, p, and predicted principal orientation (8p).
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Figure 17. Preliminary analysis of real cells, EB2-siRNA treatment. Regions of EB2-siRNA
cells (left panels), their FTs (middle left panels) and corresponding orientation magnitude plot
(middle right panels), and order, p, and predicted principal orientation (8p).
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Table XV. Microtubule alignment and orientation in real scramble and EB2-depleted cells,
quantified by order, p. The orientation magnitudes in regions 1-5 in figures () and () were
quantified for anisotropy with p, and the mean value was also determined.

Treatment
Region Scramble EB2-siRNA
Alignment
1 0.03 0.57
2 0.28 0.58
3 0.19 0.43
4 0.17 0.43
5 0.24 0.62
Mean 0.18 0.53
Orientation
Original Adjusted Original Adjusted
1 52 -38 -79 11
2 88 -2 32 -58
3 87 -3 -15 75
4 13 =77 -79 11
5 -89 1 -76 14

The significant difference in microtubule alignment between control and EB2-depleted
regions supports the efficacy of the method presented in this chapter, providing strong
evidence that it is applicable to quantification of the organisation of the microtubule
cytoskeleton, since the cells used for this preliminary analysis were previously found to have
differences in alignment using a different method. To further evaluate the method, the next
sub-section describes comparison with a previously-published method to quantify
microtubule orientation and alignment.

c. Comparison with an established method

To further evaluate the efficacy of MtFT, | compare it here to the method developed by
Boudaoud et al. (2014), who created “FibrilTool” to quantify microtubule, or any other
fibrillar structure, orientation and alignment. FibrilTool was used on the same images as in
the previous sub-section (figs. 16-18) and the results are shown in table XVI, with the values
from my method repeated for ease of comparison. The tool required that a region-of-interest
(ROI) is first defined, and the enclosed area is analysed. Thus, ROIs were created that
encompassed the majority of each image (fig. 18).



246

Scramble

I
EB2 siRNA ‘ g

Figure 18. Analysis of preliminary images with “FibrilTool”. ROIs (yellow) were defined that
covered most of each image (1-5) in each treatment. FibrilTool plots a line on the image that is
oriented in the direction of the principal orientation (blue), with length according to the degree of
alignment in this direction. Scramble indicates the scramble siRNA-treated cells, and FibrilTool
is explained in the text.

The alignment scores from FibrilTool also satisfy normality and equal-variance criteria (2-
sample F-test, p > 0.05). While the alignment scores from each method for the scramble
condition were not significantly different from one another (2-sample t-test, p > 0.05), they
were in the EB2-depleted condition (2-sample t-test, p < 0.05). However, FibrilTool
alignment scores for the two conditions were significantly different from one another (2-
sample t-test, p < 0.05).

The results from FibrilTool and MtFT thus agree qualitatively on the difference in alignment
between the two conditions. Quantitatively, this agreement is stronger for the scramble
condition, where both methods report low alignment scores. MtFT returns a lower average
value for the scramble condition and higher average value for the EB2-depleted condition,
hence MtFT finds a greater difference between the two. In terms of orientation prediction,
the two methods estimate similar values in situations where the alignment is stronger; in the
EB2-depleted condition, therefore, the orientation predictions are close to one another.
However, in the scramble condition, the two image regions that visually look most difficult to
interpret (numbers 1 and 3) are those that yield the greatest disagreement between the two
methods. In the other three cases, where a predominant orientation is perhaps more easily
identified by visual inspection, orientation predictions are not as similar as in the EB2-
depleted condition, but they are more similar than image regions 1 and 3.
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Table XVI. Comparison of FibrilTool and MtFT for orientation prediction and alignment.
For each experimental condition, the alignment scores and orientation predictions from each
method are shown.

Region Alignment Orientation
FibrilTool MtFT FibrilTool MtFT
Scramble
1 0.17 0.03 -85.92 -38
2 0.39 0.28 1.3 -2
3 0.18 0.19 81.43 -3
4 0.29 0.17 -81.17 =77
5 0.25 0.24 25.76 1
Mean 0.26 0.18
EB2-siRNA
1 0.38 0.57 14.52 11
2 0.52 0.58 -57.08 -58
3 0.37 0.43 83.51 75
4 0.32 0.43 14.64 11
5 0.41 0.62 17.43 14
Mean 0.40 0.53

In this sub-section, only a low number of regions of these cells have been analysed, and,
although these were selected from similar intracellular locations and that they also returned a
statistically significant difference, it will be important to analyse whole cells to further
validate the method, and moreover, to look for interesting differences between the two
treatments, and within cells. Moreover, images of cells where further experimental
manipulations have been made will also be subject to analysis by MtFT. This is the focus of
the next section.
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C. FULL ANALYSIS
I. Approaches to whole-image MtFT analysis

Here, | now look to analyse whole images of the cells subject to preliminary analysis in the
previous section. Previously, only selected regions were analysed for principal orientation
and alignment, so means of dealing with a large image was not an issue. Here, we have this
problem: how should we deal with an entire image? Should the FT be taken of the whole
image, or just parts of it? Or should a filter-based approach be implemented with an FT for
each pixel of the image?

Recalling the introduction to this chapter, we know that we obtain better frequency resolution
in the FT if the image is larger (eq. 7). However, it was also noted that we sacrifice the
ability to understand where certain frequency components have originated if the image is big,
so there is a trade-off between frequency resolution and diagnostic power, so to speak. For
the sake of estimating principal orientations and alignment, however, the frequency
resolution is not as important to us as if we wanted to pinpoint a scale of alignment. This is
demonstrated by the nature of the analysis up to this point: we have not considered the power
spectrum as a function of frequency, only orientation (eqg. 8); thus, analogous to “orientation
magnitude”, we do not obtain the “frequency magnitude”. Therefore, our choice of how to
implement this method with whole images should be dictated less by frequency resolution
constraints, and more so by the need to locate the parts of the microtubule cytoskeleton that
produce certain principal orientation and alignment values.

There are also practical considerations. Briefly mentioned above was a filter-like approach,
where, for each pixel in the image, an area of given size is centred on it, and the FT is taken
of that area. This continues for every pixel in the image, and the output would be arrays of
principal orientation and alignment scores the same size as the input image. However, with
this “filter” approach, for images with dimensions on the order of hundreds to thousands of
pixels, it is clear that this approach might be costly in terms of computation time; for one
image of 1,000-by-1,000 pixels, we would have 1,000,000 FTs! Add to this the question of
whether there would be much to gain in terms of localising information, since areas for
adjacent pixels would have a large overlap, and it is clear that this approach has some
disadvantages.

Another way is to take the FT of distinct areas of the image. In image compression, such as
with the JPEG file format, images are split into regions, usually eight of equal size, and the
FTs are taken of these (Gonzalez and Woods, 2006). This “blocked” method allows
localisation of frequency information, since we know it has originated from a specific image
sub-section. A similar method can be applied to the images under analysis here. As with the
filter method, this approach also has disadvantages, for example, certain regions of interest in
an image may be partitioned into separate areas, thus making it difficult to localise
characteristics to that region.

So each potential method has good and bad points; here, | opt to use the blocked method, as,
since this is less computationally expensive, it is a good starting point; the filter method can
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be tested at a later date. Furthermore, there is still some degree of sub-cellular analysis
permitted with the blocked method, and this will be demonstrated in the results (next section).

1. EB2-depleted cells

For the whole-image MtFT analysis, 5 images of the control (scramble siRNA) and EB2-
depleted cells were used; in each condition, images were similar and thus chosen at random.
Notable, EB2-depleted cells are generally larger, and this may affect the extent to which
conclusions can be made in any analysis of differences within cells. However, the main aim
here is to test MtFT on two sets of cells treated differently, and the “blocked” analysis uses
blocks smaller than a cell to limit such effects regardless. Examples of these images are
shown in figure 19. Each image was subject to the blocked analysis, as described above.
Furthermore, images of cells where the small GTPase Racl had been inhibited (with inhibitor
NSC), in the backgrounds of scramble and EB2 siRNA, were analysed, and these images, of
which there were again 5, are also shown in figure 19.

Figure 19. Examples of images used. Control (scramble siRNA, A), EB2-depleted (B), Racl-
inhibited (C) and EB2-depleted, Racl-inhibited (D) cells were used. For each experimental
condition, 5 images were used. Images courtesy of Debbie Goldspink, Mogensen lab; scale bar
20 ym.
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The blocked analysis runs thus:

1. An area dimension “range” is decided upon. This is simply the permissible
dimensions, in pixels, of the blocks.

2. To choose block dimensions from this range, the smallest value in the range that
gives the smallest remainder when it is divided into the image dimension is
identified as the best choice. This is done for both x and y dimensions.

3. The minimum size of the mean padding area to be positioned around the image is
half of the maximum block dimension, while it is increased in the direction of the
minimum block dimension so as to produce a square image; this gives a better MtFT
analysis, since the orientation magnitude is programmed to extend the same distance
in all directions (i.e., it is semi-circular), and the radius of the semi-circle it defines is
limited by the smallest dimension of the FT; thus, with a square image, more of the
FT is surveyed.

4. The FT is taken of the mean-padded block, and the orientation magnitude is found,
and the principal orientation and alignment is determined as in the preliminary
analysis of these cells.

For this analysis, the range was chosen to be from 80 to 120 pixels; the reason for point
number 1 is to try not to miss edges of the image. By specifying a range of acceptable block
sizes, we can survey more of an image, while the FTs and resulting orientation magnitude,
etc., should not be overtly affected by small changes in block sizes of this order. An example
of an image split into blocks is shown in figure 20.

It is evident from the example in figure 20 that there are regions of the image that we may not
want to include in the analysis. The most obvious of these is the space where there are no
cells. To allow this, I created a simple interactive tool in Matlab whereby the image, with all
blocks plotted, is displayed, and the user chooses which are to be analysed simply by clicking
in the blocks of choice. Figure 21 shows an example of an image with only blocks selected
that are positioned over cells.

To assist in visual inspection, the images can be displayed with blocks colour-coded
according to the principal orientation estimate for that area, or for the value of p for that area.
Examples of both of these are shown in figure 22. For the orientation prediction, the angles
have been converted to predict the actual orientation now, rather than that of the orientation
magnitude, which is situated perpendicular to the real image. The angles are also now on the
interval 0° to 180° to make visual inspection simpler.

The example orientation plot in figure 22 demonstrates that this type of display will be useful
to analyse microtubule orientations in cells. Further analysis could include calculation of
dominant angles within a cell, or, orientation relative to intra- or extracellular features/cues,
such as the centrosome or the edge of the cell.
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Figure 20. Example of a “blocked” image. Here, each block, or area, is analysed, thus, first,
the FT is taken, then the orientation magnitude found with the continuous method, then the data
is normalised, and then the principal orientation is estimated and the alignment measured. The
algorithm for fitting blocks is based on a range of acceptable block dimensions, so that the size
that leaves the least area at the bottom and right sides of the image can be chosen from the
range. Image courtesy of Debbie Goldspink, Mogensen lab; scale bar 20 uym.

The results of this blocked analysis are shown in table XVII. The mean and median (due to
non-normality, see below) alignment for each image was found, while the mean for all blocks,
i.e., the mean for every single block measured, was also determined. To exclude possible
effects of the blank spaces in images, the mean alignment in only the blocks positioned over
cells (as in fig. 21) was also found; the results of this cell block-only analysis are shown in
figure 23.

As table XVII shows, the results of the full analysis agree with the preliminary analysis; EB2
depletion generally increases microtubule alignment. Only one image (number 5) scored
lower for alignment than images of scramble cells. The mean of all blocks analysed is also
greater for EB2 depleted cells. Furthermore, although elimination of blank spaces in the
image increases the mean alignment in both of these conditions, the increase is greater in EB2
depleted cells.
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Figure 21. Block selection. Here, only blocks that are positioned over cells have been
selected. Image courtesy of Debbie Goldspink, Mogensen lab; scale bar 20 um.

Table XVII also shows the results for the other two treatments. Racl inhibition generally
decreased microtubule alignment, as evidenced by the block and cell means, all of which are
lower than the scramble cells. Only two images are greater than the lowest-scoring image in
the scramble cells. Again, the omission of black spaces increased the alignment score in all
treatments, as the cells value is greater than the blocks value.

Interestingly, the treatment where both EB2 was depleted and Racl was inhibited scored the
highest for alignment. The reduction, just discussed, in alignment in the Racl-inhibited cells
makes this a surprising result because now, in combination with depletion of EB2, it has
seemingly contributed to the opposite result.
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Figure 22. Blocks according to principal orientation prediction and alignment. Each block
is colour-coded according to the principal orientation prediction (A) or alignment score (B) for that
area. Images courtesy of Debbie Goldspink, Mogensen lab; scale bar um.
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Table XVIl. Mean and median alignment values, p, for the different experimental
conditions. The mean value, + the standard deviation, for scramble, EB2-depleted, Racl-
inhibited (NSC) and EB2-depleted and Racl-inhibited cells are shown for each image (1-5), for
all blocks analysed (Blocks), and for only the blocks positioned over cells (Cells). The median
and inter-quartile range (IQR) are also shown for blocks over cells. n = number of blocks.

Scramble EB2 siRNA NSC EB2 siRNA + NSC
Image
1 0.3781 +0.16 0.4128 +0.14 0.3467 +0.13 0.4275 +0.15
2 0.3534 +0.14 0.3945 +0.17 0.3265 +0.14 0.4235+0.14
3 0.3360 +0.13 0.4087 +0.15 0.3161 +0.17 0.4151 +0.18
4 0.3609 +0.13 0.4008 + 0.15 0.2736 +0.17 0.4110+0.14
5 0.3840 + 0.15 0.3761 +0.14 0.3484 + 0.15 0.4496 +0.16
Blocks
Mean 0.3625 +0.14 0.3993 +0.15 0.3232 +0.15 0.4260 + 0.15
n 910 882 826 871
Cells
Mean 0.3638 +0.14 0.4051 +0.15 0.3323 +0.15 0.4265 +0.15
Median 0.3735 0.4194 0.3528 0.4374
IOR 0.21 0.21 0.21 0.22
n 857 793 601 777

The data for each condition were found to be non-normally distributed for both the blocks
and cells analysis (chi-square goodness-of-fit test, p < 0.01), so non-parametric tests were
employed. There was a significant difference between all groups (Kruskal-Wallis test, p <
0.01), and four groups were then individually compared with each other: scramble vs all other
groups (3 comparisons) and EB2 siRNA vs EB2 siRNA + NSC. As before, the Bonferroni
correction was employed to make the multi-comparisons more stringent. The three non-
control groups differed significantly (Wilcoxon rank sum test, p < 0.01/4), while the EB2
siRNA + NSC group was not significantly different from the EB2 siRNA group at the most
stringent significance level (Wilcoxon rank sum test, p > 0.01/4), but was so at a reduced
significance level (Wilcoxon rank sum test, p < 0.05/4).

The method developed in this chapter, MtFT, has thus been able to detect, at a statistically
significant level, differences in microtubule alignment between control and EB2-depleted
cells, and this is in agreement with the previously published analysis of EB2 depletion and
microtubule organisation (Goldspink et al., 2013). In addition, the method has also revealed
an effect of Racl inhibition on microtubule organisation, where microtubules are apparently
less well-aligned than control cells, and fascinatingly, a reversal of the effect of Racl
inhibition on microtubule organisation when combined with EB2 depletion. In the latter
scenario, microtubule alignment was also increased to a greater extent than in the EB2
depleted only condition.
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Figure 23. Mean (A) and median (B) microtubule alignment for blocks over cells. Values
are + standard deviation (A), and boxes extend to 25th and 75th percentiles (g1 and g3,
respectively), whiskers to q1 — 1.5(g3 — gq1) g3 + 1.5(g3 — q1).
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I11. Formin inhibition in EB2-depleted cells

Thus far, MtFT has been used to verify the effect of EB2 depletion on microtubule alignment,
previously quantified by counting the number of microtubule crossovers by Goldspink et al.
(2013). Furthermore, a potentially interesting interplay between EB2 depletion and Racl has
been uncovered, since microtubule alignment was found to be significantly increased when
Racl was inhibited in EB2-depleted cells.

In the previous study of EB2 depletion and microtubule organisation, it was found that
depletion of EB2 not only increased microtubule alignment, but also induced re-organisation
of the actin cytoskeleton, and co-alignment of microtubules and actin filaments (Goldspink et
al., 2013). In their investigation into the processes involved in this phenotype, Goldspink et
al. (2013) considered formins, which are a group of highly conserved proteins that are
involved in remodelling both the actin and microtubule cytoskeleton (Wallar and Alberts,
2003), and “crosstalk” between these two systems (Bartolini and Gundersen, 2010).
Goldspink et al. (2013) inhibited formins with SMIFH2 (Rizvi et al., 2009), and again
quantified microtubule alignment by counting the number of crossovers (fig. 24). It was
found that the inhibition of formins rescued the EB2-depleted phenotype, returning
microtubules back to their less-aligned organisation.

Microtubule crossovers

Scramble EB2 siRNA EB2 siRNA
+ DMSO + DMSO + SMIFH2
S _— -

A

-

it

T *EE
—r—

No. of Mt

Scramble EBZ siRNA EB2 siRNA +
(DMSO) (DMSO) SMIFH2

Figure 24. Microtubule alignment is rescued upon formin inhibition. In the EB2-depleted
cells, formin inhibition produced less-aligned microtubules, similar to scramble, non-inhibited
cells. From Goldspink et al. (2013).

To further assess the capability of MtFT, the same “blocked” analysis as before was carried
out on images of four experimental conditions: 1) scramble, 2) formin-inhibited (SMIFH2), 3)
EB2-depleted, and 4) EB2-depleted and SMIFH2. In this case, only the blocks over cells
were analysed, as in the latter part of the previous analysis. The results are shown in table
XVIII and in figure 25.
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Table XVIIl. Mean and median alignment values, p, for the different experimental
conditions. The mean value, + the standard deviation, median and inter-quartile range (IQR) for
scramble, formin-inhibited (SMIFH2), EB2-depleted, and EB2-depleted and SMIFH2 cells are
shown for only the blocks positioned over cells. n = number of blocks.

Scramble SMIFH2 EB2 siRNA EBSZI;‘I'EHZA
Mean 0.3047 + 0.14 0.3087 + 0.15 0.3745 + 0.14 0.3223+0.13
Median 0.3116 0.3154 0.3909 0.3322
IOR 0.21 0.24 0.19 0.19
n 533 502 733 385

Again, the depletion of EB2 in this set of experiments was found to result in increased
microtubule alignment, and, in agreement with previous work, formin inhibition in EB2-
depleted cells reduced the microtubule alignment. As in the previous analysis, the data for
each condition were found to be non-normally distributed (chi-square goodness-of-fit test, p
< 0.01), and there was a significant difference between all groups (Kruskal-Wallis test, p <
0.01). In this analysis, five comparisons were made: the scramble treatment was compared to
all other treatments (3 comparisons), the SMIFH2 treatment was compared to the EB2 siRNA
treatment, and the EB2 siRNA treatment was compared to the EB2 siRNA + SMIFH2
treatment. In a similar manner to the previous analysis, the Bonferroni correction was
employed to make the multi-comparisons more stringent.

Here, the differences between the scramble condition and SMIFH2 and the EB2 siRNA +
SMIFH2 treatments were not significant even at the non-corrected p-value (Wilcoxon rank
sum test, p > 0.05). The EB2 siRNA condition was significantly different to the scramble
condition (Wilcoxon rank sum test, p < 0.001). In the other two comparisons, the SMIFH2
and EB2 siRNA + SMIFH2 treatments were not significantly different, and again, this was
even the case at the non-corrected p-value (Wilcoxon rank sum test, p > 0.05). Importantly,
the EB2 siRNA + SMIFH2 condition was significantly different to the EB2 siRNA only
treatment (Wilcoxon rank sum test, p < 0.001), supporting previous findings.

There, MtFT, has again been able to detect, at a statistically significant level, differences in
microtubule alignment between control and EB2-depleted cells, and EB2-depleted only and
EB2-depleted and formin-inhibited cells. These findings are again supported by previously
published analyses on these experiments (Goldspink et al., 2013).
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Figure 25. Mean (A) and median (B) microtubule alignment for blocks over cells. Values
are + standard deviation (A), and boxes extend to 25th and 75th percentiles (q1 and g3,
respectively), whiskers to q1 — 1.5(q3 — q1) g3 + 1.5(g3 — q1).
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IV. Microtubule alignment in plant cells

Finally, MtFT can be used in the analysis of plant microtubule organisation. As has been
described already, plant microtubules exist in what is essentially a 2-dimensional system,
known as the “cortical array”, and the alignment of microtubules in this array is a major
determinant of plant cell growth. Since microtubule alignment is such an important feature
of plant development, it has received a lot of attention, and methods, including “FibrilTool”
described and compared with MtFT earlier, have been developed to quantify it. Here, | am
interested in whether MtFT can be used to detect differences in plant cortical microtubule
organisation.

Images to be analysed here are kindly provided by the Turner laboratory at the University of
Manchester; relevant methods are discussed in the appendix (section E). The Turner lab is
interested in the mechanisms of plant cortical microtubule organisation, particularly the role
of microtubule severing by the protein katanin, and modulation of its activity by spiral 2. The
set consists of six images: 3 of pavement cells, and 3 of petiole cells; in each of these, there is
an image for wild-type (WT), a katanin mutant (bot1-7) and a spiral 2 mutant (sprl1-2) (fig.
26). As with earlier analyses, although cell shapes and sizes differ, blocks of sizes smaller
than cells will be used to limit possible effects.

To recap, the wild-type organisation in pavement and petiole cells differs: in the former,
microtubule organisation is more “net-like”, while in the latter, microtubule are much more
aligned. Katanin mutants have previously been shown to exhibit these net-like microtubule
arrays, and in both pavement and petiole cells, this is the case (fig. 26). There is strong
evidence to support the fact that katanin activity is somehow modulated by spr2 since, in spr2
plants, cortical arrays are well-aligned, in both pavement and petiole cells. Although the
biochemical mechanism is currently unknown, spr2 appears to prevent severing of
microtubule crossovers, protecting these from severing by katanin, thus permitting formation
of net-like arrays.

Here, | use MtFT to quantify the extent of alignment in the cortical microtubule arrays in the
images in figure 26. Since these images have many cells and there is thus less image for each
cell, the acceptable block range is reduced for this analysis from 80-120 pixels, as before, to
60-80 pixels. Only blocks over cells were analysed.

The blocked MtFT analysis is shown colour-coded for alignment in figure 27. The most
striking difference is that of the spr2 cells; here, the presence of many yellow boxes indicates
greater values of p. After this, it is difficult to ascertain the differences, if any, between the
other conditions. Table XIX shows the mean and median values for each condition; here we
see that in WT, petiole cells have better-aligned cortical arrays, while in botl-7, petiole
cortical array alignment is reduced to a much greater extent than in pavement cells. As
suggested in figure 27, the spr2-1 plants have higher levels of microtubule alignment than
any of the other conditions. Here, the spr2-1 petiole cells have much greater alignment than
the pavement cells, supporting the notion of Wightman et al. (2013) that these cortical arrays
are “hyper-aligned”.
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Figure 26. Plant microtubules in indicated cell types and mutant lines. Images courtesy of
Ray Wightman, Turner lab (see text). Scale bar 50 pm.
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Figure 27. Alignment in plant microtubule arrays. Block colours indicate extent of alignment,

guantified by MtFT. Only blocks positioned over cells were analysed, but all are shown here.
Images courtesy of Ray Wightman, Turner lab (see text).
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Table XIX. Mean and median alignment values, p, for the different experimental
conditions. The mean value, + the standard deviation, median and inter-quartile range (IQR) for
wild-type (WT), mutant katanin (botl1-7) and mutant spiral (spr2-1) are shown for only the blocks
positioned over cells. n = number of blocks.

WT bot1-7 spr2-1
Pavement Petiole Pavement Petiole Pavement Petiole
Mean 0.2493 0.3127 0.2486 0.2583 0.3598 0.4480
+0.12 +0.15 +0.13 +0.11 +0.19 +0.17
Median 0.2456 0.3210 0.2322 0.2567 0.3853 0.4672
IQR 0.16 0.23 0.19 0.16 0.27 0.27
n 224 227 249 247 221 244

Although some of the alignment values were normally distributed, not all were (chi-square
goodness-of-fit test, p < 0.01), so again, non-parametric tests were used. There were found to
be significant differences between alignment values (Kruskal-Wallis test, p < 0.001), so
comparisons were made between individual treatments, following the same statistical
procedures as before. Here, the difference between WT pavement and petiole microtubule
alignment was significant, as was the difference between spr2-1 pavement and petiole
alignment (Wilcoxon rank sum test, p < 0.001), while there was no significant difference
between pavement and petiole microtubule alignment in the bot1-7 condition (Wilcoxon rank
sum test, p > 0.05).

Now comparing WT cells with the other two conditions, the difference between WT and
bot1-7 was significant only for petiole cells (Wilcoxon rank sum test, p < 0.001), and not for
pavement cells (Wilcoxon rank sum test, p > 0.05). Between WT and spr2-1, both cell types
had significantly increased alignment (Wilcoxon rank sum test, p < 0.001). Therefore, loss of
spr2-1 functionality clearly has great consequences for the organisation of the cortical
microtubule array. Indeed, the increased alignment in spr2-1 in pavement cells was
significantly increased compared to the WT petiole cell (Wilcoxon rank sum test, p < 0.01).

Again, microtubule alignment has been successfully measured with MtFT. Previously, this
has only been measured by comparing orientation distributions (Wightman et al., 2013); thus,
MtFT may assist further analyses in this respect.
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D. DISCUSSION
I. Summary of MtFT
a. Development of MtFT

In this chapter, a new method for quantification of microtubule organisation, specifically, the
orientation and alignment of microtubules, has been developed. Although there are previous
instances of image processing methods based on the FT, none of these have been applied to
microtubules, and have generally been confined to quantification of the properties of
biological matrices, for example collagen fibres (Bayan et al., 2009; Schriefl et al., 2013).

The new method was then applied to real biological problems, for which there were previous
results against which to benchmark the method to evaluate its efficacy, and in some cases, the
particular problem was new.

b. Benchmarking of MtFT

The verification that MtFT worked as it should involved extensive analysis based on
synthetic images for which the parameters of interest, i.e. orientation and alignment, were
known. This approach has been used previously in the development of another FT-based
image processing method (Bayan et al., 2009; Sander and Barocas, 2009), and it proved
useful here, showing that MtFT could predict the image parameters, and that the accuracy of
prediction depended on a number of variables of the processing algorithm, allowing
appropriate parameters and the values of those parameters to be chosen.

Further benchmarking included comparison with another published method to quantify
microtubule orientation and alignment. Here, the lower alignment scores for the scramble
siRNA condition and higher alignment scores for the EB2-depleted condition when using
MtFT suggests that it may be more sensitive to microtubule alignment than FibrilTool
(Boudaoud et al., 2014), which is an exciting result. To be sure of this, further comparison
will help, and perhaps use of synthetic data too.

In fact, this touches on a general point: there are many methods for quantification of
microtubule alignment and orientation, but as yet, they have not been compared thoroughly
on the same data. This will be a task for the future.

c. Extensions to MtFT

The most obvious extension to the method developed in this chapter is an analysis of the
scale of alignment. Here, rather than taking the arc segments of the FT that were used to
obtain the orientation magnitude, the analogous “scale magnitude” could be obtained by
taking circumferential segments of the FT. Analysis of such a scale magnitude should allow
quantification of the scale of the alignment, i.e. it could answer the question: how far apart
are these aligned microtubules? And: is the spacing between these microtubules consistent,
or does it vary? These would be interesting problems to investigate. Such analysis would
also be applicable to other filamentous agents, for example, the actin cytoskeleton.
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Additionally, the control synthetic images used in the benchmarking should also give us the
opportunity to explore the effects of non-biological factors, i.e., noise, blurring, and the
dimensions of the area being analysed. Noise is inherent to all microscopic imaging, for
which there are a few potential sources, and blurring could be used to imitate defocussing,
which may occur in these images since they have been taken using a widefield microscope
and have a height, albeit not a very great one. It may also imitate the result of the fact that
microtubules are smaller than the resolution of the microscope.

On this note, deconvolution has the potential to improve alignment quantification by re-
assigning out-of-focus light, and thus allow the FT of the image to better represent the
microtubule organisation. Moreover, confocal images may also have this attribute, but their
use in anything other than almost 2-dimensional images will warrant development of MtFT
for three dimensions, if it is to be truly applicable to data acquired as a set of slices in a stack.

We saw in the discussion of the principles of the FT that the size of the “window” being
analysed is a determinant of the frequency resolution of the FT. An analysis of this type
would be requisite for the extension of MtFT to quantify scales of alignment, since frequency
resolution would be limiting in quantification of scale.

Finally, the blocked analysis implemented here could be improved on. Firstly, we should be
able to identify areas of the image where there is not any information, i.e., where the cell is
not. In these areas, we can abandon the sequential divisions of the image, which will help to
speed up the analysis too. Secondly, areas that match one another in orientation or alignment
could be kept together, and those that are different, separated. An output of such an analysis
would be a map of areas of similar local alignment or orientation.

I1. Mechanisms of microtubule alignment
a. Inanimal cells

The findings in this chapter, some of which were previously described by Goldspink et al.
(2013) with different methods, suggest some interesting parallels between the mechanisms of
microtubule alignment in vivo and in vitro actin-mediated organisation of microtubules, as
described by Lopez et al. (2014). There, actin bundles were observed persistently redirecting
the growth of microtubules to match their orientation, and this depended on the presence of a
specially-engineered minimal version of ACF7, which bound along the lattice of
microtubules and actin so as to maintain the redirected orientation of the microtubule.

In cells, the situation appears to follow similar principles. Upon depletion of EB2, EB1 is
observed along the microtubules (Goldspink et al., 2013) and microtubules are more aligned
and furthermore, co-aligned, at least by eye, with actin filaments. In Racl-inhibited cells,
microtubules are less aligned, but when Racl is inhibited and EB2 is depleted as well, the
microtubules are aligned to a greater extent than in an EB2-depleted background alone. As
Racl can mediate microtubule-actin interaction, for example through IQGAP, a mechanism
presents itself: microtubule-actin interactions, mediated or inhibited in some way by Racl
and EB2, and promoted by formins and EB1, lead to greater microtubule alignment. EB2
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must lie downstream to Racl in this proposed process, since inhibition of Racl leads to lower
microtubule alignment; the precise mechanism for this is not clear; it may involve other Racl
functions that mediate microtubule-actin interactions but are not dependent on EB2. Thus,
when EB2 is depleted, EB1 can redistribute along the length of the microtubule and promote
interactions with actin, while inhibition of Racl makes this phenotype stronger.

b. In plant cells

Previously, the organisation of the plant cortical microtubule array has been considered either
by comparison of histogram distributions (Wightman et al., 2013) or by image processing
techniques based on spatial (Lindeboom et al., 2013; Uyttewaal et al., 2012), rather than
frequency, information. The contribution of the protein spr2 and the severing protein katanin
to microtubule alignment was assessed here.

In the wild-type background, petiole cells have better-aligned microtubules compared to
pavement cells, and this was verified here with MtFT. In the katanin mutant botl-7, this
alignment was nearly completely abolished, indicating that indeed, katanin does have a role
in cortical microtubule alignment. Furthermore, in the spr2 mutant, alignment was increased
relative to wild-type in both cell types, to the extent that the pavement cell alignment in spr2-
1 was significantly greater than in wild-type petiole cells. Therefore, spr2 also has a role in
microtubule alignment. Though the biochemistry of the mechanism is yet to be determined,
it is probably given the localisation of spr2 to microtubule crossovers, that spr2 protects these
sites from severing by katanin.

The facts that in both spr2-1 petiole and pavement cells, microtubule alignment was
significantly increased over WT petiole cells suggests that spr2 still has some activity in
petiole cells.

I11. Biological significance of microtubule alignment
a. Inanimal cells

In animal cells, microtubule alignment has been investigated to a lesser extent than in plant
cells. One of the main reasons for this is likely to be that in plants, microtubule alignment
plays a pivotal role in the development of the plant. The extent to which microtubule
alignment is a factor in development of animals in general, or in particular cases of cell
differentiation, is an unknown entity. However, the theoretical study of Khuc Trong et al.
(2012) served to demonstrate firstly that the alignment of a microtubule network is important
for transport of a molecule and furthermore, that the interplay between the active transport
and advection in the array can lead to unexpected results.

Theory aside, these potential effects of microtubule alignment have not really been addressed,
but there are indications that it is important. For example, subtle orientation biases in the
Drosophila oocyte described in Parton et al. (2011) are involved in correct segregation of fate
determinants within the cell. Furthermore, the expression of EB2, which was also addressed
here, changes with cell differentiation state in epithelial cells of the inner ear and intestinal
crypt (Goldspink et al., 2013).
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Interestingly, the less-aligned microtubule phenotype seen upon Racl inhibition in this
chapter is consistent with the quantification of microtubule bending based on the
plusTipTracker data in chapter 3. There, it was found that Racl-inhibited microtubules
produced growth tracks with greater relative orientation between track segments, indicating
that their growth was more circuitous than a control microtubule. The modelling of chapter 5
was implemented with the aim of determining whether the Racl-inhibited phenotype, in
which microtubules have lost their radiality, is a result of aberrant microtubule dynamics
modulation at the cell periphery. Thus, bending was not included, but the results in chapter 3
and those presented here that Racl-inhibited microtubules are apparently more flexible, or
not guided in the same manner as control microtubules, is worth investigating further. This
will be another focus of future work.

b. In plant cells

The general significance of plant cortical microtubule alignment has already been briefly
discussed above. The alignment of microtubules is thought to be important for the
mechanical properties of the cell because proteins that deposit cellulose into the cell wall co-
localise with microtubules (Paredez et al., 2006), and thus, the organisation of microtubules
affects the organisation of the cell wall. In turn, the organisation of the cell wall affects how
the cell behaves under pressure, and because plant cells are highly pressurised, with turgor
pressure exerting outward forces on the cell wall, this is an important part of plant biology.
Indeed, the mechanical properties of the cell determine its shape, and thus how development
will proceed. Therefore, the activity of both katanin and spr2 is an important determinant of
plant development; through the mediated severing of microtubules, these proteins can form
different organisations, and consequently, control the physical properties of the cell.

In summary, the new method, MtFT, developed here, can quantify microtubule organisation
in terms of alignment and orientation, and it has been used to address real biological
problems, providing insight into mechanisms of microtubule alignment in animals and plants.

E. APPENDIX: MATERIALS AND METHODS
Cell culture, drug treatment and transfection

ARPE-19 human retinal pigment epithelial cells were maintained at 37° C in 5% CO,, and passaged
two times per week. Cells were cultured in DMEM/F12 containing 5mM Hepes and 2.5mM L-
glutamine (Invitrogen), supplemented with 5% FBS.

Racl inhibition was carried out as described in the methodology section (appendix 1) of chapter 3.
To inhibit formins, cells were treated with 10uM of the formin inhibitor SMIFH2 (Sigma) for 40
minutes. In control treatments, cells were treated with DMSO.

Cells were fixed, and subsequently immunolabelled as described in Bellet et al. (2009). Rabbit
polyclonal antibodies against o-tubulin (ab15246, Abcam) were used to label microtubules.
Secondary antibodies, conjugated to either AlexaFluor 488, 568, or 647 (Invitrogen) were used at a
dilution of 1:1000.
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Cells were treated with 27nM of siRNA (Qiagen), delivered by Oligofectamine (Invitrogen) as per
manufacturers protocol twice, at 0 hours (the initial transfection) and 48 hours. For negative controls
Allstar scramble siRNA sequence (Qiagen) was used. Human EB2 siRNA target sequences; EB2
SiRNA (a) CAGCAGGTGCAGCTAAARCAA, EB2 siRNA (b) AACGCAGGTCATACAGCTTAA,
EB2 SiRNA (c) GACCTTATTAATAGGAGCATA, EB2 SIRNA (d)
CTCGATAACCCAAGAGACTAT. Any one of these four sequences were used, as all resulted in
complete knockdown of EB2 at 96 hours post-initial transfection.

Microscopy

After fixation and immunolabelled, cells were imaged on a widefield Zeiss Axiovert 200M
microscope.

Plant experiments

All wet lab work pertaining to the plant experiments was carried out in the Turner laboratory
(University of Manchester), and methods can be found in Wightman et al. (2013).
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Chapter 7

Summary discussion and conclusions
A. SUMMARY OF THESIS
I. Overview of work

In this thesis, the mechanisms governing the organisation of the microtubule cytoskeleton, and
means of quantifying it, were addressed. This work centred on one of the most common
microtubule network organisations, the radial array, for which the dynamics of microtubule
within it were measured, the contribution of a proposed two-area dynamics model to the radial
array was assessed, and various associated processes contributing to the alignment of the
microtubules within the network were examined.

The work has been interdisciplinary, involving biological experiments, image processing and
computational modelling. These various approaches have been united in their application for
understanding how the organisation of the microtubule network is determined.

The microtubule network within the cell is immensely complex; even our understanding of the
basic mechanisms of microtubule dynamic instability is being updated by new work. Add to
this the modulation by the vast number of MAPs, PTMs, motor proteins, and other components
of the cell, including other cytoskeletal systems and signalling cascades, and we see that a full
understanding of how the microtubule network is organised is quite incomplete. However, in
this work, genuine progress has been made towards understanding common principles of how
dynamics can be modulated to produce a radial array, and this allowed an assessment of how
the dynamics in chapter 3 could explain the differences in organisation between unperturbed
and Racl-inhibited cells.

Additionally, the image processing developed in chapter 6, “MtFT”, has been comprehensively
characterised and benchmarked, which has allowed deployment of this frequency-based
method that has been used in various settings but not for the microtubule cytoskeleton, and
never standardised for this purpose, to quantify orientation and alignment in the microtubule
network. Thus, the extensive work to understand how the frequency-based measurements
behave with synthetic data has allowed use of MtFT to answer legitimate biological questions.
There, the effects of the lesser-studied EB protein, EB2, Racl and formins on microtubule
alignment, were assessed. Furthermore, its application to a plant cell biology problem
demonstrates its generality, and also permitted quantitative comparison of cortical microtubule
array organisation, so important in plant development, in various mutant lines.

Overall, we know more now about the organisation of the mechanisms of microtubule network
organisation than we did at the beginning of this thesis; modulation of dynamics at the cell
periphery can be a major factor in microtubule radiality, and microtubule alignment within the
cell is affected by various associated proteins.
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I1. Putting the work into context
a. Main findings

In relation to the topics discussed at the beginning of this thesis in chapter 2, perhaps the most
pertinent findings of the subsequent work are the general mechanisms identified as being
important for microtubule radiality, and potential role for microtubule-actin interactions in the
alignment of microtubules within the array.

b. Mechanisms of radiality

Firstly, the thorough examination of the dynamics regimes required in order to target
microtubules accurately to a certain length, and thus a target area, with a model has allowed
explicit statement of the modulation of dynamics that is needed for radiality. As was discussed
in chapter 4, it is often assumed that microtubule dynamics are altered in some way at the
periphery of the cell so as to assist in cortical capture of microtubules, but cases in which this
notion has been explicitly tested are few. The introduction of the simple, 1-dimensional model
allowed proper exploration of cortical targeting mechanisms, finding that dynamics that
produce strong negative drift in an outer area, combined with dynamics that give rise to strong
positive drift in the inner area produce most accurate cortical targeting, and in the model,
pausing helped to increase accuracy when in the outer area, but was detrimental to accurate
targeting when in the inner area. This provides a framework for future studies of microtubule
dynamics and the role of modulators of dynamics in generation and maintenance of radiality
in the radial array.

After the general mechanisms of good cortical targeting were elucidated in chapter 4, chapter
5 showed that the measured dynamics from chapter 3 were in some ways similar to previously
reported dynamics from the literature, and in some cases, different. The experimental
methodology probably played a part in some of the differences there. The experimental
dynamics were modelled so as to assess their contribution to radiality, and to establish whether
the differences in dynamics could explain the differences in organisation between unperturbed
and Racl-inhibited cells within this cortical modulation of dynamics framework. The majority
of the measured dynamics were found to be in a quadrant of drift space that can give
intermediate levels of accuracy, and the modelling verified that accuracy is lower for dynamics
sets that were similar to the measured dynamics when compared to dynamics regimes that were
in optimal locations of drift space. The fact that other processes contribute to microtubule
radiality, for example cortical capture and subsequent stabilisation of microtubules, was posited
as an explaining factor for the lower-than-optimal measured dynamics sets.

c. Mechanisms of microtubule alignment

Development of MtFT allowed quantification of microtubule organisation in cells depleted of
EB2, finding that, in agreement with a previous quantification of microtubule alignment in
these cells, microtubules were better-aligned when EB2 was depleted relative to scramble
siRNA-treated cells. A new finding in chapter 6 was that Racl-inhibited cells had significantly
less-aligned microtubules, but when Racl was inhibited in conjunction with depletion of EB2,
microtubules were actually better-aligned than in scramble siRNA cells. Again in agreement
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with previous results, microtubule alignment quantified by MtFT was decreased back to normal
levels, similar to scramble siRNA-treated microtubules when formins were inhibited in EB2-
depleted cells.

Therefore, the previous results verified by MtFT, and the new results pertaining to Racl
inhibition, and the fact that previously, EB1 was shown to redistribute along microtubules when
EB2 was depleted and microtubules were co-aligned with actin filaments (Goldspink et al.,
2013), suggests that microtubule-actin interactions are operating in vivo to control microtubule
alignment. The potential mechanisms of this interaction were expanded upon in chapter 6, and
indeed, these findings are consistent with the in vitro characterisation of microtubule-actin
interactions. Since expression levels of EB2 are associated with changes in microtubule
organisation during cell differentiation in situ (Goldspink et al., 2013), this suggests and
exciting interplay between these two cytoskeletal systems, whereby they influence one
another’s organisation as cells undergo their differentiation programme.

B. FUTURE WORK

There are a number of ways in which the work in this thesis could be extended, and as such,
they form part of a series of experiments, modelling and image processing studies that will
contribute to our understanding of the organisation of the microtubule array. Future work has
been proposed in the individual discussions in each of the research chapters, and below is a
short summary of these proposals.

Perhaps the most obvious of these extensions is further measurements of microtubule dynamics
in the radial array. Although the methods used, based on analysis of data obtained with the
software plusTipTracker, are of course valid, there are a number of ways in which those
measurements could be complemented. For example, the dynamics could be further
characterised by obtaining values for the transition frequencies between the shrinking and
pausing phases. The transitions were not observable with plusTipTracker, and instead, results
were compared with the literature to obtain estimates of their value. In order to characterise
these transitions, labelling of tubulin with a fluorescent protein would allow observation of the
pausing and shrinking phases.

Aside from this, another avenue of future research is extensions to the modelling in chapters 4
and 5. Here, a model of cortical capture as a function of plus end residence time within a target
area, i.e. near the cortex, would allow testing of the hypothesis that modulation of dynamics at
the cell periphery contribute to radiality by making microtubule plus ends available more often
to capture by cortical protein complexes. Another extension to the model that would go hand-
in-hand with the first extension is to model a cell boundary, whereby microtubules can no
longer grow beyond the outer area, and implement microtubule bending. The bending
parameters determined in chapter 3 could then be used in such a model.

The image processing in chapter 6 can also be taken further. In terms of characterisation of the
method, it was already discussed that some image properties could be addressed, such as
blurring and noise. Furthermore, potential uneven illumination, and variations in intensity
between images could be investigated further.
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In terms of the utility of MtFT, it was discussed that it could be modified so that areas with no
information, whether because there is not a cell within it or there is low anisotropy, are
automatically recognised and subsequently discarded. Such a method would speed up
analyses, and this might allow the pixel-by-pixel approach that was discussed in chapter 6.
Building on this, a means of automatically “joining up” areas with similar anisotropy or
orientations could be implemented, allowing the study of discrete areas of alignment and
orientation. Finally, another extension discussed was to use the method to analyse scales of
alignment.

C. CONCLUSION

The microtubule cytoskeleton is a fascinating example of persistent organisation emerging
from the chaotic nature of the cell interior. Here, in the context of millions of molecules being
bombarded by thermal forces, colliding and interacting with one another, tubulin subunits
associate and dissociate, coupled with changes in their biochemistry, giving rise to the
microtubule phases that have been the focus of this thesis. These phases in turn, though the
transitions between them are essentially stochastic, are regulated by the cell in a multitude of
ways so that the microtubule network organisation that we see when looking down a
microscope appears remarkably static, yet ready to respond to any relevant cue to re-organise.
The image processing and modelling in this thesis have helped to better understand certain
instances of this regulation, and thus contribute to our understanding of dynamics-organisation
relationships in the microtubule cytoskeleton. Hopefully, the future work summarised above
will continue to further our understanding of this complex and beautiful biology.
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