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Abstract 
 

This thesis consists of four chapters. The first contains a literature review of the 

isolation, previous total syntheses, biological activity and structure activity relationships 

of lactacystin and its analogues. Chapter two discusses our work towards the total 

synthesis of lactacystin and its analogues starting from three different amino acids. 

Chapter three contains the experimental details of our work, and the final chapter 

contains the details of our work on the biological testing of some of our advanced 

intermediates towards deoxylactacystin. 

 

Our synthetic approach towards lactacystin and its analogues starts from a simple amino 

acid derivative; using different amino acid derivatives as starting material, the C5 

position is easily altered. The starting material is then advanced to a suitable diester for 

Dieckmann cyclization to form the lactam core found in the natural product. 

 

The next key step in our approach follows Mander’s acylation protocol to form the C5 

quaternary centre using methyl cyanoformate to install a methyl ester group in a 

selective manner. This step results in the fully functionalized core of lactacystin. 

 

At this stage we had two possible routes. First, we investigated the reduction of the 

ketone at C6 followed by attempted decarboxylation at C7; this route ultimately proved 

unsuccessful. The second route inverted the reaction order; performing the 

decarboxylation at C7 first followed by attempts to reduce the ketone at C6. The 

reduction was unsuccessful and so a thiomethyl derivative was employed to allow the 

ketone to be successfully reduced followed by removal of the thiomethyl group using 

Raney nickel. 

 

Chapter four has been written as a stand-alone chapter. Four advanced intermediates 

towards deoxylactacystin were chosen to undergo biological testing. Compounds were 

tested for their anti-proliferative effects against the HL-60 cell line using an MTS assay 

and their ability to inhibit the chymotrypsin-like activity in the 20S proteasome. 
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1.0 Introduction  
 

Lactacystin 1 is a microbial metabolite first isolated by Ōmura et al. in 1991 from 

Streptomyces sp. OM-6519.1, 2 The microbial metabolites were screened to determine if 

they could induce differentiation of the Neuro 2A (mouse neuroblastoma) cell line. 

Lactacystin was found to induce neurite outgrowth and inhibit cell proliferation in the 

Neuro 2A cell line as well as inhibiting growth in the osteosarcoma cell line in humans.3 

Its effect on Neuro 2A cell lines was found to mimic the action of neurotrophic factors 

(NTF). NTFs are responsible for the maintenance and survival of nerve cells, without 

which the nervous system cannot function correctly, and nerve-related diseases such as 

Alzheimer’s and Parkinson’s can occur as a result. 

 

 
Figure 1. Lactacystin 

 

In 1994 Fenteany et al. studied the activity of lactacystin analogues to determine which 

structural features were essential for biological activity.3 They found that the activity 

could be greatly affected by the groups on the γ-lactam ring. The groups and 

stereochemistry at the C5, C6 and C7 positions including the configuration of the C9 

carbon are important. Modifications can result in partial or complete loss of activity. In 

contrast the N-acetyl-L-cysteine (NAC) moiety was found to play no part in the activity 

and this group could be changed with no effect on activity. It was also found that the 

inactive compounds do not compete with the action of lactacystin. They observed that 

the analogues that are most active in cell cycle progression and neurite outgrowth all 

have the potential to form β-lactones. 

 

Not long after, Schreiber4 carried out labeling studies to identify the specific cellular 

target of lactacystin. Tritium-labeled lactacystin was used and the 20S proteasome was 

identified as the target. The study tested a series of lactacystin analogues and found that 
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the key to activity was the electrophilic carbonyl group at the C4 position. The C4 

carbonyl group of the thioester in lactacystin and the β-lactone analogue were found to 

be the reactive electrophiles. Hydrolysis of the lactacystin thioester resulted in the 

corresponding acid, a compound which showed no biological activity. 

 

1.1 Mechanistic Studies into the Action of Lactacystin 
 

Dick et al. described the mechanism of proteasome inhibition by lactacystin.5 Following 

the discoveries by Fenteany and Schreiber,3, 4 they were able to show that lactacystin 

underwent hydrolysis in aqueous solution, at pH 8, to form NAC and the dihydroxy acid 

3 through the β-lactone intermediate 2. They discovered that proteasome inhibition is 

not caused by lactacystin but the β-lactone, also known as omuralide, exclusively. At 

pH 6.3, lactacystin is stable but also inactive as a proteasome inhibitor.  

 

Further in vitro studies showed that lactacystin itself cannot permeate through cell 

walls, but the β-lactone derivative can. The efficiency of lactacystin as a proteasome 

inhibitor is thus dependent on its ability to form the β-lactone 2. Once inside the cell the 

β-lactone can undergo several reactions, shown in Scheme 1.6 Hydrolysis can occur to 

form the inactive dihydroxy acid 3, it can react with glutathione (GSH) to form 

lactathione, which is analogous to lactacystin and can reform the β-lactone, and finally 

it can acylate the threonine residue in the proteasome, resulting in inhibition.  
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Scheme 1. Mechanism of action of lactacystin in cells.6 
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1.1.1 The 20S Proteasome 

 

Figure 2. The 20S proteasome. 

 

The 20S proteasome (Figure 2) was found to be the specific cellular target of 

lactacystin and its derivatives.4 Lactacystin was found to inhibit the trypsin-like 

(proteases that cleave peptide bonds in the position following a positively charged 

amino acid such as lysine), chymotrypsin-like (the hydrophobic nature of the S1 pocket 

makes it specific for medium to large hydrophobic residues) and peptidylglutamyl-

peptide hydrolysing (cleavage of peptide bonds in the position following acidic or 

branched-chain amino acids) activity in the enzyme complex.4 The trypsin- and 

chymotrypsin-like activity are both irreversibly inhibited by lactacystin. 

 

The 20S proteasome is a large (~700 kD) protein complex.7 It is cylindrical in shape 

with a hollow center. It is made up of a stack of 4 doughnut-shaped rings, each 

consisting of 7 protein subunits, stacked on top of each other. The two outer rings 

consist of α-type subunits while the inner rings contain β-type subunits. The 20S 

proteasome is capped by 19S proteasomes at either end to make up the whole 26S 

proteasome unit. A crystal structure of the 20S proteasome can be seen below (Figure 

3). 

 

 

 

Thr
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Figure 3. A crystal structure of the 20S proteasome.8 

 

The proteasome is essential in regulating many processes within the cell, including 

cellular function and homeostasis.9 The ubiquitin proteasome pathway (UPP, Figure 4) 

is responsible for the majority of intracellular protein degradation. This is important for 

cell growth and survival, for both healthy and tumour cells. 

 

There are two stages to the UPP. The first stage, ubiquitin tagging, occurs when the 

ubiquitin-activating enzyme E1 covalently binds ubiquitin; the ubiquitin is then 

transferred to the ubiquitin-conjugating enzyme E2. Finally, the E3 ubiquitin ligase 

transfers the ubiquitin to the target protein. The second stage, proteolytic degradation, 

occurs when the ubiquitin-tagged proteins are transported to the proteasome. 

Polyubiquitin chains are produced by conjugation of ubiquitin moieties and act as a 

signal to target the protein for degradation. Different polyubiquitin chain lengths result 

in different functions, one of which is protein degradation. The ubiquitin molecules are 

removed and the protein is fed into the proteasome where it is broken down into small 

peptide units. 
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Figure 4. The ubiquitin proteasome pathway.10  

 

Inhibition of the proteasome stops the process of protein degradation, thereby inducing 

apoptosis.9 If cancer cells can be specifically targeted for proteasome inhibition, these 

cells will undergo apoptosis leaving behind only healthy cells. Proteasome inhibition is 

a key strategy for anti-cancer therapy and is of great interest in current research. 

 

Lactacystin, or rather the β-lactone, acts by acylating the amino terminal threonine 

residue of one of the β-type protein subunits of the 20S proteasome.8 The hydroxyl 

group on the threonine attacks the carbonyl moiety of the lactone, resulting in ring 

opening and the formation of an ester linkage between the proteasome and lactacystin. 

Hydrogen bonding can also be observed between the hydroxyl group formed from the 

lactone ring opening and the amine of the threonine residue, Scheme 2. 
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Scheme 2. Deactivation of the 20S proteasome by acylation of a terminal threonine 

residue.8 

 

1.1.2 Structure Activity Relationship (SAR) Studies 
 

Although early work had touched on the importance of structure and stereochemistry in 

the biological activity of lactacystin, it was Corey who in 1999 completed the most 

comprehensive SAR study to date.11 

 

The relative stereochemistry at the C5 and C6 positions are important for the formation 

of the β-lactone. The C5 hydroxyisobutyl group and the stereochemistry of the hydroxyl 

group at the C9 position are important for binding in the hydrophobic pocket of the 

lactacystin-proteasome complex. This was shown using X-ray crystallography by Groll 

et al.7 As stated above, the NAC moiety is not important to the activity of lactacystin. 

  

In 1998 the Corey group designed a new enantioselective synthesis that would allow 

functionalization of an advanced intermediate enabling the generation of a variety of 

analogues.12 They first studied the effect of replacing the isopropyl moiety at C9 with 

other lipophilic groups, such as ethyl (Scheme 3) and propyl (Scheme 4), while leaving 

the hydroxyl group also at C9 in place.  
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Reagents and Conditions: a) 1. Vinylmagnesium bromide, TMSCl, THF, −40 °C; 2. TFA/H2O (4:1), 50 

°C, 4 h; b) LiOH, THF/H2O (1:1). 23 °C, 0.5 h; c) 1. BOPCl, Et3N, CH2Cl2, 23 °C, 0.5 h; 2. CAN, 

CH3CN/H2O (3:1), 23 °C, 1 h, 35% (5 steps); d) H2, Pd/C (10%), EtOH, 2 h, >99%. 
Scheme 3. 

 

The advanced intermediate 4 was prepared in 6 steps from dimethyl methylmalonate.12 

A Grignard addition onto 4 in tetrahydrofuran in the presence of trimethylsilyl chloride 

followed by desilylation afforded the allylic alcohol 5. Saponification of the methyl 

ester to form the dihydroxy acid followed by β-lactonization using bis(2-oxo-3-

oxazolidinyl)phosphinic chloride (BOPCl) and triethylamine and removal of the p-

methoxybenzyl group using ceric ammonium nitrate (CAN) led to the formation of β-

lactone 7 in 35% yield over 5 steps. The hydrogenation of 7 afforded the corresponding 

C9-ethyl analogue 8 in >99% yield.  

 

The synthesis of analogues 14 and 15 follows a similar route (Scheme 4): a chromium-

catalysed addition of allyl and methylallyl bromide to 4, followed again by a 

saponification reaction, β-lactonization and p-methoxybenzyl group removal, resulted 

in compounds 12 and 13, respectively. The catalytic hydrogenation of 12 and 13 

afforded the corresponding omuralide analogues, 14 and 15. 
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Reagents and Conditions: a) 1. CrCl3(cat.), Mn(0), TMSCl, THF, 23 °C, 12 h, 50%; 2. 5% HF/CH3CN, 

23 °C, 4 h, 96%; 3. LiOH, THF/H2O (1:1). 23 °C, 2 h, 93%; 4. BOPCl, Et3N, CH2Cl2, 23 °C, 1 h, 95%; b) 

CAN, CH3CN/H2O (3:1), 23 °C, 1 h, 65%; c) H2, Pd/C (10%), EtOH, 23 °C, 2 h, 99%. 

Scheme 4.  

 

The synthesis of analogue 16 (R=H, Table 1) was completed by reduction of the 

aldehyde group of 4 to the corresponding alcohol followed by saponification, β-

lactonization and p-methoxybenzyl group removal as described above. The C9-phenyl 

analogue 17 was prepared in a route analogous to the one used to prepare 7 and 8 using 

a Grignard addition to introduce the desired functionality. 

 

In the studies below (Tables 1-3),11 the different analogues’ ability to inhibit the 

proteasome was tested by measuring the rates of inhibition of chymotrypsin-like 

peptidase activity using purified 20S proteasome from a bovine brain. Investigations 

into the effect of functionalization at C9 (Table 1) supported Schrieber’s early work. 

Even subtle changes to the group, using a slightly larger or smaller group than the 

original isopropyl, resulted in great loss of activity. When replaced with a much smaller 

group, for example just a proton (16), the activity was dramatically reduced. When 

replaced with a much larger group, as in the case of the C9-phenyl analogue 17, a 

complete lack of inhibition was observed. 
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Table 1. Kinetics of inhibition by C9 functionalized β-lactone analogues of lactacystin. 

 
Compound Analogue Structure kassoc (M−1s−1) 

2 R = CH(CH3)2 3059 ± 478 
7 R = CH=CH2 188 ± 11 
8 R = C2H5 290 ± 12 
16 R = H 9.7 ± 6.2 
17 R = C6H5 No inhibition 
12 R = CH2CH=CH2 255 ± 40 
13 R = CH2C(CH3)=CH2 64.7 ± 2.2 
14 R = CH2CH2CH3 192 ± 35 
15 R = CH2CH(CH3) 2 17.4 ± 2.4 

 

 

The effect of other substituents at the C5 position was also studied (Table 2). With a 

ketone in place of the C9 hydroxyl moiety in lactacystin, a complete lack of inhibition 

was observed. The importance of the stereochemistry at the C9 position was also 

confirmed: the activity is dramatically reduced when the stereochemistry is inverted. 

Interestingly, in the case of both C9 and C5 functionalization, the inhibition was at its 

highest when lactacystin was used, and no modification led to any improvement. 

 

Table 2. Kinetics of inhibition by C5 functionalized β-lactone analogues of lactacystin. 

 
Compound Analogue Structure kassoc (M−1s−1) 

2 
R =  

3059 ± 478 

18 R = C(O)CH(CH3)2 No inhibition 
19 

R =  
65 ± 9.6 

20 R = CH2CH(CH3)2 235 ± 16 
21 R = CH=C(CH3)2 98 ± 5 
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The importance of the C7 substituent was also investigated in relation to proteasome 

inhibition (Table 3). Scheme 5 shows the synthetic route to a variety of analogues 

where functionalization was achieved by the early addition of different alkenes. 

Reaction of the alkene with the aldehyde of 22 using a magnesium-catalysed anti-aldol 

approach gave 24.13 Hydrogenation of 24 followed by cyclization and deprotection of 

the primary alcohol gave the bicyclic compound 25. The dihydroxy acid 26 was 

prepared over three steps and then converted into the corresponding β-lactone 27 using 

BOPCl. Again, the ability to inhibit the proteasome was tested by measuring the rates of 

inhibition of chymotrypsin-like peptidase activity.  

 

 
Reagents and Conditions: a) 1. MgI2, CH2Cl2, −20 °C – 0 °C; 2. K2CO3, MeOH, 23 °C, 75-80% (2 

steps); b) 1. H2, Pd/C (10%), EtOH, (i-Pr)2NEt (cat.), 23 °C, 30 h; 2. MeOH, 55 °C, 20 h; 3. 5% 

HF/CH3CN, 23 °C, 24 h, 76-84% (3 steps); c) 1. DMSO, (COCl)2, Et3N, CH2Cl2, −78 °C; 2. NaClO2, 

NaH2PO4, t-BuOH/2-Me-2-butene, 23 °C, 0.5 h; 3. HS(CH2)3SH, 2% HCl (g), CF3CH2OH, 50 °C, 7 h, 

65-75% (3 steps); d) BOPCl, Et3N, CH2Cl2, 23 °C, >90%. 
Scheme 5. 

 

In contrast with the already optimized C5 and C9 substituents, variations at the C7 

group have yielded compounds with increased activity. When the methyl group was 

replaced with a proton (compound 29), the activity dropped dramatically. However, 

when three of the analogues where the substituent was larger than a methyl group were 

tested, the inhibitory activity more than doubled. Interestingly, the C7-ethyl substituent 

(compound 28) is found in salinosporamide B, an analogue of another naturally 

occurring proteasome inhibitor that shares the same core structure and mode of action as 

lactacystin.  
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Table 3. Kinetics of inhibition by C7 functionalized β-lactone analogues of lactacystin. 

 
Compound Analogue Structure kassoc (M−1s−1) 

2 R = CH3 3059 ± 478 
28 R = CH2CH3 6679 ± 553 
29 R = H 450 ± 77 
30 R = CH2C6H5 2227 ± 180 
31 R = (CH2)3CH3 7275 ± 466 
32 R = CH(CH3)2 8465 ± 1572 

 

 

In conclusion, it is clear to see that Nature has nearly optimized lactacystin’s structure 

for proteasome inhibition. The combined studies into the functionalization of the C5 

and C9 positions clearly demonstrate this. There is however scope for improvement at 

the C7 position for a novel proteasome inhibitor to be designed to achieve increased 

activity.		
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1.1.3 Previous Syntheses of Lactacystin 
 

1.1.3.1 The Corey Syntheses 
 

Corey and Reichard reported the first total synthesis of lactacystin in 1992.14 

Lactacystin was successfully synthesized in 6% yield over 13 steps from 33 (Scheme 

6).  

 

 
Reagents and Conditions: a) LDA, LiBr, iso-butyraldehyde, THF, −78 °C, 51%; b) MeOH, TfOH, 80 

°C, 91%; c) TBSCl, imidazole, DMF, 23 °C, 97%; d) TsOH, (CH2O)n, benzene, 96%; e) 1. LiBH4/THF, 

MeOH, 23 °C; 2. DMSO, (COCl)2, Et3N, CH2Cl2, −78 °C, 85%; f) LDA, 2,6-dimethylphenylpropionate, 

THF, −78 °C, 48%; g) H2, Pd/C, EtOH, 23 °C, 87%; h) 1. 5% HF/CH3CN, 23 °C, 90%; 2. DMSO, 

(COCl)2, Et3N, CH2Cl2, −78 °C, 73%; 3. NaClO2 NaH2PO4, t-BuOH, 2-methyl-2-butene, 23 °C, >95%; i) 

1,3-propanedithiol, 2% HCl/CF3CH2OH, 50 °C, >95%; j) N-acetylcysteine allyl ester, BOPCl, Et3N, 

CH2Cl2, 23 °C, 79%; k) Pd(Ph3P)4, HCO2H, Et3N, THF, 23 °C, 84%. 

Scheme 6.  
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To begin, N-benzylserine methyl ester was converted into the cis-oxazolidine derivative 

33, which was isolated as a mixture of diastereoisomers in a 9:1 ratio. An aldol 

condensation of 33 with iso-butyraldehyde gave the oxazolidine 34 in excellent 

diastereoisomeric purity (>98%) after recrystallization from pentane. Lithium bromide 

was found to be essential as low yields and poor selectivity were observed in its 

absence. The oxazolidine ring-opening, followed by the silyl protection of the primary 

alcohol, gave compound 36. The formation of a new oxazolidine 37 proceeded using 

formaldehyde in 96% yield. Reduction of the ester moiety followed by a re-oxidation 

gave aldehyde 22. The aldol condensation with 2,6-dimethylphenylpropionate under 

Pirrung-Heathcock anti-aldol conditions15 resulted in the formation of oxazolidine 38 as 

the major diastereoisomer. The bicyclic lactam 39 was obtained by catalytic 

hydrogenation of 38. Desilylation followed by the oxidation of the primary alcohol gave 

the acid 40. The acid-catalysed transfer of methylene to 1,3-propanedithiol was used to 

ring-open the oxazolidine resulting in the dihydroxy acid 3 in 95% yield. The final steps 

included a reaction with N-acetylcysteine to introduce the NAC side chain; deallylation 

of 41 afforded lactacystin. 

 

The attractive feature in this total synthesis, apart from a good overall yield, is how few 

purification steps requiring chromatography are needed. However, as mentioned above, 

the main drawback of this synthesis was the poor selectivity of the aldol condensation 

of 22. During the transition state of the reaction of aldehyde 22 with 2,6-

dimethylphenylpropionate under Pirrung-Heathcock anti-aldol conditions, the benzyl 

and isopropyl groups of the oxazoline ring are cis to each other. The re and si faces are 

not sterically different enough to induce a stereoselective attack of the aldehyde 

carbonyl moiety (Figure 5).16 

 

 
Figure 5.  
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Investigations were then carried out to improve the selectivity. Corey used the 

methodology developed by Braun that utilised a chiral zirconium enolate of 2-siloxy-

1,2,2-triphenylpropionate.17 When the (R)-zirconium enolate was used, aldehyde 22 was 

converted into four diastereoisomeric products in a 32:2:2:1 ratio. The required 

diastereoisomer for the natural product, with a (6S,7R) configuration, was isolated as the 

major diastereoisomer in 80% yield. Using the (S)-enantiomer of the zirconium enolate, 

attack occurred onto the re face giving the (6R,7S)-diastereoisomer as the major 

product. The hydrogenation of 42 followed by diazomethane treatment and, finally, 

cyclization in methanol gave the reported bicyclic lactam 39 (Scheme 7).16 

 

 
Reagents and Conditions: a) THF, −20 °C, 80%; b) 1. H2, Pd/C; 2. CH2N2; 3. MeOH, 64%. 

Scheme 7.  

 

Although the selectivity was improved, long reaction times and the large excess of the 

zirconium enolate required were not desirable. Unhappy with these limitations, the 

Corey group made further improvement to the reaction, this time employing a 

magnesium-catalysed anti-aldol reaction.13 The chelation of a metal to the nitrogen of 

the N-benzyl and the oxygen of the aldehyde enabled a Mukaiyama-type aldol process 

to occur.  
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repeated using the (E)-trimethylsilyl enol ether of methyl propionate (Scheme 8). High 

si selectivity was observed, and the desired anti aldol product 43 was isolated from a 

9:1 mixture of anti/syn diastereoisomers using silica gel chromatography. The 

dihydroxy acid 3 was obtained after oxidation of the primary alcohol followed by acid-

catalysed transfer of methylene to 1,3-propanedithiol to ring-open the oxazolidine. 

 

 
Reagents and Conditions: a) MgI2, CH2Cl2, −20 °C; b) 1. H2, Pd/C, EtOH, DIPEA, 23 °C, 30 h; 2. 

MeOH, 55 °C, 20 h; 3. 5% HF/CH3CN, 23 °C, 24 h, 76%; c) 1. Et3N, DMSO, (COCl)2, CH2Cl2, −78 °C; 

2. NaClO2, NaH2PO4, t-BuOH, 23 °C; 3. 1,3-propanedithiol, HCl, CF3CH2OH, 55 °C, 8 h, 77%. 
Scheme 8.  

 

The selectivity observed could be explained by the low energy transition state that 

resulted from the chelation of MgI+. There is much less steric repulsion in 45 compared 

to other geometries. For example, the antiperiplanar arrangement would show much 

higher steric repulsion (Scheme 9).13 
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Scheme 9. 

 

In 1998, Corey and Nagamitsu reported a different approach to the total synthesis of 

lactacystin.12 The new route was not only shorter but was most impressive due to the 

formation of an advanced intermediate that allowed ready access to various lactacystin 

analogues. The introduction of the isopropyl, or other lipophilic groups, could be 

carried out late in the synthesis. This route employs a blocking group at the C7 position; 

the group chosen was a thiomethyl group: importantly, it is not labile but it is also bulky 

enough to induce stereoselectivity in the hydroxymethylation of 50. 
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Reagents and Conditions: a) 1. PLE, H2O, pH 7.3, 23 °C, 24 h, 97%; 2. Recrystallization of the quinine 

salt, 62%, 95% ee; b) 1. (COCl)2, DMF (cat.), 23 °C, 1 h; 2. PMB-NHCH2CO2Me, Et3N, CH2Cl2, 23 °C, 1 

h, 99%; 3. LDA, THF, −78 °C, 2 h, 93%; c) 1.DBU, THF, −78 °C, then aq. CH2O, −78 °C, 0.5 h, 90%; 2. 

NaBH(OAc)3, HOAc, 23 °C, 1 h, recrystallization, 95%, 99% ee; d) 1. PivCl, pyridine, 23 °C, 10 h, 85%; 

2. TBSOTf, 2,6-lutidine, 23 °C, 12 h, 98%; 3. NaOMe, MeOH, 23 °C, 5 h, 92%; e) 1. Raney Ni, EtOH, 0 

°C, 1 h, 82%; 2. Dess-Martin reagent, CH2Cl2, 23 °C, 1 h, 95%; f) H2C=C(Me)MgBr, TMSCl, THF, −40 

°C, 0.5 h, 97%; g) 1. H2, Pd/C, EtOH, 23 °C, 12 h, 99%; 2. CF3CO2H/H2O (4:1), 50 °C, 4 h, 87%; h) 1. 

LiOH, THF/H2O (1:1), 23 °C, 0.5 h; 2. BOPCl, Et3N, CH2Cl2, 23 °C, 0.5 h, 90%; i) CeIV, CH3CN/H2O 

(3:1), 23 °C, 1 h, 62%. 

Scheme 10.  

 

The achiral thiomethyl derivative 48 was synthesized using dimethyl methylmalonate 

with sodium hydride and MsCl in tetrahydrofuran. The compound 48 was then 

converted to the chiral acid 49 by enantioselective hydrolysis using porcine liver 

MeS

CO2Me

CO2Me

Me

MeS

CO2Me

CO2H

Me N
PMB

O
MeO2C

O Me
SMe

H

N
PMB

O
MeO2C

HO Me
SMe

HO N
PMB

O
MeO2C

TBSO Me
SMe

HO
N
PMB

O
MeO2C

TBSO

OHC

Me

N
PMB

O
MeO2C

TBSO Me

HO N
PMB

O
MeO2C

HO Me

HO N
PMB

O

Me

HO

O
O

N
H

O

Me

HO

O
O

Lactacystin

a b c

d e f

g h i

48 49 50

51 52 4

53 54 55

2



	 	 Introduction	
	

	 19	

esterase, and the acid 49 was obtained in 95% ee after recrystallization. The Dieckmann 

cyclization precursor was prepared after conversion of acid 49 to the corresponding acyl 

chloride using oxalyl chloride followed by coupling to N-p-methoxybenzylglycinate; 

treatment of the newly formed compound with LDA led to the formation of the γ-

lactam product 50 as a 1:1 mixture of diastereoisomers at the C5 position. The 

hydroxymethylation of lactam 50 proceeded with high stereoselectivity (9:1) as hoped. 

A stereospecific ketone reduction gave the dihydroxy lactam 51 in 86% yield over the 

two steps. TBS protection of the secondary hydroxyl moiety was achieved by selective 

esterification of the primary hydroxyl group followed by silylation of the secondary 

hydroxyl moiety; the cleavage of the ester group was then performed to access the 

primary alcohol. The desulfurization of 52 was achieved in high stereoselectivity (10:1) 

by treatment with Raney nickel. A Dess-Martin periodinane oxidation gave aldehyde 4 

in 78% yield over two steps from 52.18 A Grignard addition onto 4 in the presence of 

TMSCl afforded the desired product 53. Use of TMSCl was vital in this reaction; its 

ability to trap the alkoxide ion prevented a rapid retro-aldol cleavage. The 

hydrogenation and desilylation of 53 followed by the saponification of the methyl ester 

resulted in the intermediate needed for the β-lactonization using BOPCl and 

triethylamine. Finally, the removal of the PMB protecting group using CAN gave 

omuralide 2, which can easily be converted to lactacystin upon treatment with N-

acetylcysteine and triethylamine.  

 

With the advanced intermediate 4 in hand, various Grignard additions could be carried 

out to achieve a range of analogues. This is an efficient, stereocontrolled synthesis that 

is both relatively simple and economic in terms of reagents used. 

 

1.1.3.2 The Ōmura Syntheses 
 

Shortly after the first synthesis by Corey, the Ōmura group reported their route to 

lactacystin.19 Using (2R,3S)-β-hydroxyleucine methyl ester 56 as the starting material, 

lactacystin was successfully synthesized in 13% yield over 10 steps (Scheme 11). The 

treatment of the methyl ester 56 with methyl benzimidate gave the trans-oxazoline 57. 

Following Seebach’s protocol,20 an aldol condensation of 57 and formaldehyde was 

performed giving 58 in 98% de and 85% yield. 
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Reagents and Conditions: a) Ph(MeO)C=NH, 72%; b) LiHMDS, formaldehyde, 85%; c) Moffat 

oxidation; d) 1. (E)-crotyldiisopinocampheylborane, THF, −78 °C; 2. OH−, H2O2, 70% (2 steps); e) 1. O3, 

DMS; 2. NaClO2, NaH2PO4, 56% (2 steps); f) 1. Pd, HCO2NH4; 2. 0.1 M NaOH, 82% (2 steps); g) 

BOPCl, Et3N, N-acetyl-L-cysteine allyl ester, 79%; h) (Ph3P)4Pd, 81%. 
Scheme 11.  

 

The next step, oxidation of the primary alcohol, proved challenging. After unsuccessful 

attempts to obtain the aldehyde 59 using the Swern21 and Parikh-Doering22 oxidations, 

pyridinium chlorochromate (PCC),23 and Dess-Martin periodinane,18 the Moffat 

oxidation provided the desired derivative 59.24 A drawback to this methodology was a 

deformylation reaction occurring during aqueous work-up and silica gel 

chromatography; giving the trans-oxazoline 57. To prevent the deformylation, the 

aldehyde was isolated with a non-aqueous work-up and no further purification. 
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In 1986, Brown and co-workers described an allylboration methodology using (E)-

crotyldiisopincampheylborane.25 The high reactivity of organometallic reagents used in 

the allylation of aldehydes often results in poor levels of both regio- and 

stereoselectivity. Brown developed a new regio- and stereoselective preparation of 

optically active (Z)- and (E)-crotylboranes that was used in the allylation of aldehydes. 

 

When the aldehyde 59 was subjected to the Brown conditions, the desired β-methyl 

homoallylic alcohol 60 was obtained as the major product alongside another 

diastereoisomer in 70% yield in a 4:1 ratio. Other methodologies were found to give 

lower selectivity. The use of the (E)-crotylchromium(II) reagent as described by 

Hiyama26 and (E)-crotylpinacol borane as described by Roush27 both gave the alcohol as 

a mixture of diastereoisomers in a 2:1 ratio. Roush was able to increase the ratio to 3:1 

by using (R,R)-(E)-crotyl tartrate borane.28 Conversion of the alkene to the carboxylic 

acid derivative 61 was achieved in one step using ruthenium(III) chloride and sodium 

periodate; however, low yields (11%) were obtained. The yield was improved using a 

two-step procedure consisting of the ozonolysis of 60, with a reductive work-up using 

dimethylsulfide, followed by a selective oxidation, giving 61 in 56% yield.  

 

Formation of the dihydroxy acid 3 proved difficult: both hydrogenolysis (using Pd/C, 

Pd(OH)2, or palladium black with H2 in methanol) and hydrolysis under acidic 

conditions (heating under reflux in 6 M HCl) were unsuccessful. Fortunately, catalytic 

transfer hydrogenation conditions using palladium black, ammonium formate and acetic 

acid under reflux followed, without purification, by ester hydrolysis using sodium 

hydroxide gave the dihydroxy acid 3 in 79% yield. The transformation of 3 to (+)-

lactacystin was carried out as described by Corey.14 

 

Continuing their investigations, the Ōmura group reported improvements to their 

original synthesis.29 This work focused not only on the total synthesis but also on the 

analysis of the biological activity of lactacystin and analogues. Although improvements 

were made to the synthesis of the 3-hydroxyleucine starting material, the majority of the 

synthesis was unchanged.  
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Several approaches to making 3-hydroxyleucine have been reported, but the methods 

were not considered suitable as they either lacked generality, producing only one of the 

four possible diastereoisomers, or required a chiral non-racemic catalyst.30 These 

limitations were undesirable as multigram quantities were needed for biological 

analysis.  

 

 
Reagents and Conditions: a) PhC(Me)2O2H, Ti(O-i-Pr)4, (+)-DIPT, 82%; b) NaH, BnNCO, THF, reflux, 

2 h; c) NaH, THF, reflux; d) Jones oxidation, 100%; e) 1. 2 M KOH; 2. H2, Pd(OH)2, 98% (2 steps); f) 

CH2N2, 87%; g) KOH, EtOH, 96%; h) 1. 2 M KOH; 2. H2, Pd(OH)2, 98% (2 steps). 
Scheme 12.  

 

The method developed by Ōmura was both simple and concise, using commercially 

available starting materials. This method also required little chromatography, as only 63 

and 65 required purification. They employed a catalytic Sharpless epoxidation31 to give 

63, a benzyl isocyanate-induced epoxide ring-opening to give 64, and the epimerization 

of the oxazolidinone ester 67 as the key steps to (2R, 3S) 3-hydroxyleucine 70. 
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With an improved synthesis of 3-hydroxyleucine available, the dihydroxy acid 3 was 

synthesized following the route described above. Lactacystin and two analogues were 

then prepared (Scheme 13).  

 

 
Reagents and Conditions: a) BOPCl, Et3N, CH2Cl2, 85%; b) Et3N, CH2Cl2, 1: 64%, 74: 89%, 75: 77%. 

Scheme 13.  

 

Departing from Corey’s route, an intramolecular coupling using BOPCl was performed 

on dihydroxy acid 3 in the presence of Et3N to form the β-lactone 2 in 85% yield. 

Interestingly, lactone 2 was converted into (+)-lactacystin using N-acetylcysteine, 

instead of N-acetyl-L-cysteine allyl ester, eliminating the need for a deprotection step. 

Using the same procedure, the novel lactacystin analogues 74 and 75 were prepared 

from the condensation of lactone 2 with thiols 72 and 73, respectively. 
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Reagents and Conditions: a) LDA, MeI, THF, −78 °C, 95%; b) LDA, PhSeBr, THF, −78 °C, 79%; c) 

O3, CH2Cl2, −78 °C, pyridine, RT, 87%; d) TBSOTf, 2,6-lutidine, CH2Cl2, RT, 89%; e) i-PrCHO, SnCl4, 

ether, −78 °C, 55%; f) Ac2O, pyridine, RT, 99%; g) OsO4, N-methylmorpholine N-oxide, aq. acetone, RT, 

87%; h) N,N’-thiocarbonyldiimidazole, THF, RT, 91%; i) Bu3SnH, AIBN, toluene, reflux, 94%; j) 2 M 

NaOH/MeOH (1:3), 0-3 °C, 94%; k) H2, Pd/C, HCl, MeOH, RT, 87%; l) Et3SiCl, pyridine, Ac2O, RT, 

89%; m) 40% HF, CH3CN, RT, 91%; n) Jones’ reagent, acetone, 0 °C to RT, 91%; o) 0.2 M NaOH, RT, 

quant.; p) (R)-N-acetylcysteine allyl ester, BOPCl, Et3N, DCM, RT, 60%; q) Pd(PPh3)4, HCO2HNEt3, 

THF, RT, 88%. 

Scheme 14.  
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in 87% yield. Removal of the tertiary hydroxyl was achieved using the Barton-

McCombie deoxygenation reaction through the formation of a thiocarbamate followed 

by radical decarboxylation using Bu3SnH and AIBN as the radical initiator. The method 

was not diastereoselective and resulted in a 1:1 mixture of epimers. Treatment of the 

diastereoisomeric mixture with 0.5 M NaOH in MeOH resulted in removal of the acetyl 

group and epimerization at the C6 position to give the desired syn-isomer 81 (syn:anti, 

73:10). 

 

Hydrogenolysis of 81 resulted in the cleavage of the oxazolidine moiety, giving the key 

lactam core of lactacystin. A sequence of selective protections and deprotections of the 

primary and secondary alcohol groups afforded primary alcohol 82. Using an excess of 

the Jones’ reagent, the primary alcohol was converted to the corresponding carboxylic 

acid. Finally, deprotection of the secondary alcohol groups gave the dihydroxy acid 3 in 

91% yield. In conclusion, the Baldwin group successfully completed the synthesis of 

lactacystin from 76 in 17 steps and 8% overall yield. 

 

1.1.3.4 The Chida Synthesis	
 

In 1995, Chida et al. reported work on the total synthesis of (+)-lactacystin from D-

glucose (Scheme 15).33 3-Deoxy-1,2-O-isopropylidene-3-C-methyl-α-D-allofuranose 

83 was chosen as the starting material. It is a known compound prepared over four steps 

from diacetone-D-glucose.34 

 

Treatment of 83 with dibutyltin oxide and benzyl bromide followed by oxidation of the 

secondary alcohol using Jones’ reagent led to the formation of 84. A Wittig reaction 

was used on 84 to give the corresponding alkene as a 1:1 mixture of diastereoisomers. 

The diastereoisomeric mixture was subjected to a DIBAL reduction to form the allylic 

alcohol in 90% yield. Treatment of the allylic alcohol with trichloroacetonitrile and 

sodium hydride in diethyl ether afforded the trichloroacetimidate 85, which was, 

without purification, heated in toluene at 150 °C for 89 h. Overman rearrangement35 led 

to the formation of product 86 as an inseparable mixture of diastereoisomers in a 4.8:1 

ratio.  
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Reagents and Conditions: a) See ref. 34; b) Bu2SNO, toluene, reflux, then BnBr, CsF, DMF, RT; c) 

Jones’ reagent (CrO3 in dil. H2SO4) acetone, 0 °C; d) Ph3P=CHCO2Et, toluene, 60 °C; e) DIBAL-H, 

CH2Cl2, −15 °C; f) trichloroacetonitrile, NaH (60 mol%), Et2O, RT; g) toluene, heat at 150 °C (in a sealed 

tube), 89 h; h) TFA/H2O (3:2), 0 °C; i) NaIO4, MeOH/H2O (1:1), RT; j) NaBH4, MeOH, 0 °C; k) tert- 

butyldimethylsilyl trifluoromethanesulfonate, 2,6-lutidine, CH2Cl2, RT; l) Na, Liq. NH3-THF, −78 °C; m) 

Me2SO, DCC, TFA, pyridine, benzene, RT; n) iPrMgBr, THF −20 °C to RT; o) TFA/H2O (4:1), 50 °C; p) 

O3, CH2Cl2, −78 °C, then Me2S; q) NaClO2, NaH2PO4, HOSO2NH2, tert-butanol/ H2O, RT. 
Scheme 15.  
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Hydrolysis under acidic conditions of the diastereoisomeric mixture resulted in the 

corresponding lactol in 72% yield after silica gel chromatography. A periodate 

oxidation led to oxidative cleavage followed by cyclization to form the pyrrolidine 87. 

A Jones oxidation to form the corresponding lactam followed by a sodium borohydride 

reduction to remove both the N-trichloroacetyl and O-formyl protecting groups gave 88. 

 

Silyl protection of the secondary alcohol followed by debenzylation gave 89. A Moffat 

oxidation afforded the aldehyde 90, which was then used in the next step without 

purification. Grignard addition using isopropylmagnesium bromide in THF resulted in a 

mixture of diastereoisomers at the C9 position. The desired diastereoisomer 91 was 

isolated in 35% yield. Deprotection of the secondary alcohol of 91 with aqueous 

trifluoroacetic acid gave 92. Formation of the dihydroxy acid 3 was achieved by 

ozonolysis to form an aldehyde moiety followed by selective oxidation to give the 

corresponding carboxylic acid. The synthesis of (+)-lactacystin was then completed 

following Corey’s methodology.14 

 

The main drawback of this route was the poor selectivity of the Grignard addition onto 

aldehyde 90 leading to the formation of alcohol 91 in 35% yield. Indeed, the presence 

of unwanted diastereoisomers is not desirable in total synthesis. However, the oxidation 

of the unwanted diastereoisomer 93 followed by a reduction using triisobutylaluminium 

in CH2Cl2 at 0 °C gave the desired isomer 91 as the major product (70% yield) 

alongside 93 in 7% yield, Scheme 16. 

 

		
Reagents and Conditions: a)Me2SO, DCC, TFA, pyridine, benzene, RT; b) triisobutylaluminium, 

CH2Cl2-hexane, 0 °C, 91: 70%, 93: 7%. 
Scheme 16.  
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1.1.3.5 The Panek Synthesis	
 

The Panek synthesis is similar to that of the Ōmura group.36 Although both syntheses 

share the oxazoline 57 as a common intermediate, their approaches were slightly 

different. Panek and co-workers performed an asymmetric aminohydroxylation of (p-

bromophenyl)-4-methyl-2-pentenoate, 94, under Sharpless conditions followed by 

reaction with CbzNNaCl to give 95 in excellent ee (above 99%) after recrystallization. 

Transesterification to form the methyl ester followed by removal of the Cbz protecting 

group under catalytic hydrogenation conditions afforded 56. The trans-oxazoline 

intermediate 57 was then formed upon treatment of 56 with trimethylorthobenzoate and 

p-toluenesulfonic acid. This is a much shorter and more efficient route to the trans-

oxazoline 57 than that reported by Ōmura.29 The next two steps to intermediate 59 were 

achieved as described above in Scheme 11. 

 

Another key step of the Panek route is the anti-selective crotylation reaction of 59 in the 

presence of TiCl4 to give 97 in high selectivity and yields of 50-60%. Ozonolysis of 97 

in the presence of sodium chlorite led to the formation of known intermediate 61, which 

allowed Panek and co-workers to complete the synthesis of lactacystin employing 

literature procedures.12, 29 
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Reagents and Conditions: a) K2[OsO2(OH)4] (5 mol%), (DHQ)2AQN (5 mol%), CbzNNaCl, nPrOH, 

H2O, RT, 4 h, 60%; b) 1. Ti(OiPr)4, MeOH, RT; 2. H2, 10% Pd/C, MeOH, 100% (2 steps); c) PhC(OMe)3, 

p-TsOH, DME, reflux, 4 h, 85%; d) LiHMDS, formaldehyde, 85%; e) Moffat [O]; f) TiCl4, −78 °C to –35 

°C, 60%; g) 1. O3, DMS; 2. NaClO2, NaH2PO4, 90% (2 steps); h)1. Pd, HCO2NH4; 2. 0.1 M NaOH, 82% 

(2 steps); 3. BOPCl, Et3N, 80% (3 steps); i) N-acetyl-L-cysteine allyl ester, Et3N, CH2Cl2, RT, 70%. 

Scheme 17. 

 
1.1.3.6 The Pattenden Synthesis	
 

Pattenden et al. reported a different route to the total synthesis of lactacystin employing 

a radical-mediated approach to give the lactam core, Scheme 18.37 2-Ethynylpropenol 

was submitted to Sharpless epoxidation conditions,31 and the corresponding chiral 

epoxide 99 was obtained in 66% yield and 86% ee.  Conversion of the epoxide to the 

oxazoline followed by the protection of the primary alcohol using TBSOTf gave 100, 

and its absolute stereochemistry was confirmed using X-ray crystallography. Treatment 

of 100 with 1 M hydrochloric acid resulted in the ring-opening of the oxazoline to give 
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the amino alcohol 101 as the hydrochloride salt. Without purification, 101 was reacted 

with 2-bromopropionyl chloride to give the amide 102 as a mixture of diastereoisomers 

in a 1:1 ratio. The primary alcohol moiety was then converted into the corresponding 

aldehyde using Dess-Martin periodinane followed by further oxidation to the carboxylic 

acid; finally, an esterification reaction using trimethylsilyldiazomethane gave methyl 

ester 103 in 62% yield over three steps. 

 

The radical-mediated 5-exo-dig cyclization was achieved when the bromoamide 103 

was treated with Bu3SnH-AIBN in toluene under reflux.38 The lactam 104 was isolated 

using silica gel chromatography in 60% yield as a mixture of epimers at the C7 position 

in a 2:1 ratio. 

 

Ozonolysis of 104 with a reductive work-up using dimethyl sulfide gave 105 as a 

mixture of diastereoisomers in a 2:1 ratio. Unfortunately, attempts to epimerize the C7 

centre were unsuccessful. The group then decided to employ a strategy reported by 

Corey that made use of a thiomethyl derivative.12 Corey had already shown that Raney 

nickel could be used in desulfurization in a selective manner.  The mixture of epimers 

was treated with S-methyl-p-toluenethiosulfonate to form the thiomethyl derivative 106 

in high diastereoisomeric excess (87:13). The addition was determined to be anti to the 

bulky CH2OTBS group at the C5 position.  

 

Diastereoselective ketone reduction of 106 was achieved using zinc borohydride, giving 

107 in 79% yield. The TBS protection of the resulting secondary alcohol followed by p-

methoxybenzyl protection and selective deprotection of the primary alcohol gave the 

advanced intermediate 52 reported by Corey. 
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Reagents and Conditions: a) L-(+)-DIPT, Ti(OiPr)4, cumene peroxide, CH2Cl2, −10 °C, 66%; b) 

Cl3CCN, DBU, 0 °C, 66%; c) Et2AlCl, CH2Cl2, 0 ° to RT, 78%; d) TBSOTf, 2,6-lutidine, CH2Cl2, 0 °C to 

RT, 97%; e) 1 M HCl, THF, RT; f) CH3CH(Br)COCl, NaHCO3, CH2Cl2, RT, 76% (2 steps); g) Dess-

Martin periodinane, CH2Cl2, 0 °C; h) NaClO4, NaH2PO4, t-BuOH, 2-methyl-2-butene, RT; i) Me3SiCHN2, 

MeOH-benzene, RT, 62%; j) Bu3SnH, AIBN, toluene, reflux, 60%; k) O3, MeOH, −78 °C, 15 min then 

Me2S, −78 °C to RT, 75%; l) p-MeC6H4SO2Me, Et3N, CH2Cl2, RT, 78%; m) Zn(BH4)2, (4.4 M in THF), 0 

°C, 79%; n) TBSOTf, 2,6-lutidine, CH2Cl2, 0 °C to RT, 80%; o) PMBBr, NaH, DMF, 0 °C to RT, 73%; 

p) HF-pyridine, THF, RT to 40 °C, 89%.  
Scheme 18. 
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1.2 Other Proteasome Inhibitors 
 

There are many classes of proteasome inhibitors; these include, but are not limited to, 

flavonoids, triterpenoids, β-lactones, peptides boronates and syrbactins.39 Bortezomib, a 

peptide boronate, was the first proteasome inhibitor to be used in clinical trials for the 

treatment of multiple myeloma and is now fully approved by the Food and Drug 

Administration (FDA) in the USA and the European Medicines Agency (EMA). 

Bortezomib inhibits the chymotrypsin-like activity of the 26S proteasome and binds 

covalently and reversibly to the β5 residue in the core 20S proteasome.40 

 

 
Figure 6. Bortezomib 

 

Lactacystin is one of the β-lactone class of inhibitors (Figure 7). The inhibitors of this 

class also share other structural features similar to those of lactacystin that have shown 

to be important in SAR studies of lactacystin’s ability to inhibit the 20S proteasome. 
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Figure 7. The structures of other β-lactone proteasome inhibitors.  

 

Salinosporamide A 109 has proved a popular synthetic target due to its high potency, 

and is discussed in detail below. PS-519 is a novel proteasome inhibitor with structural 

similarities to both omuralide and salinosporamide.  The cinnabaramides A-G were also 

isolated from a strain of Streptomyces and share the same cyclohexenyl moiety found in 

salinosporamide A.41 Oxazolomycin A, as well as having structural similarities to 

lactacystin, is the parent member of a family of compounds (including KSM-2690 B1) 

showing antibacterial, antiviral and antitumour activity. The first total synthesis of 

oxazolomycin A was reported by the Hatakeyama group in 2011.42 
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1.2.1 The Salinosporamides 
 

After lactacystin, the most commonly studied member of this lactam-based proteasome 

inhibitor family is salinosporamide A. It is a particularly interesting compound as its 

high potency as an anti-cancer agent meant it reached Phase I human clinical trials for 

the treatment of multiple myeloma only three years after its discovery in 2003. 

 

 
Figure 8.  Salinosporamide A 

 

In 2003, Feling and co-workers reported the isolation of salinosporamide A 109 from 

the CNB-392 strain of the bacterium Salinospora tropica.43 Unlike lactacystin, 

salinosporamide A is naturally occurring in its β-lactone form. The key structural 

differences are the cyclohexenyl group that replaces the isopropyl group at C9, the 

replacement of the proton with a methyl group at C6 and the chloroethyl chain replacing 

the methyl group at C7. Salinosporamides A-K have been isolated and all have slightly 

different functional groups around the same core bicyclic ring structure. 

Salinosporamide A binds to the 20S proteasome in a similar way to omuralide but has 

been found to be more effective as a proteasome inhibitor than omuralide.44 

 

 
Scheme 19. The binding of salinosporamide A to the 20S proteasome. 
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1.2.2 Previous Syntheses of Salinosporamide A 
 

1.2.2.1 The Corey Synthesis	
 

There have been many reported syntheses of salinosporamide A. As in the case of 

lactacystin, the first of these was by the Corey group in 2004, Scheme 20.45 

 

 
Reagents and Conditions: a) p-TsOH, toluene, reflux, 12 h, 80%; b) LDA, THF, HMPA, −78 °C, 

ClCH2OBn, 4 h, 69%; c) NaCNBH3, AcOH, 40 °C, 12 h, 90%; d) 1. TMSCl, Et2O, 23 °C, 12 h; 2. 

Acryloyl chloride, i-Pr2Net, CH2Cl2, 1 h, 0 °C, then H+, Et2O, 23 °C, 1 h, 96%; e) Dess-Martin 

periodinane, 23 °C, 1 h, 96%; f) 1. Quinuclidine, DME, 0 °C, 7 d, 90%; 2. BrCH2Si(CH3)2Cl, Et3N, 

DMAP, CH2Cl2, 0 °C, 30 min, 95%; g) Bu3SnH, AIBN, benzene, reflux, 8 h, 89%; h) 1. Pd/C, EtOH, H2 

(1 atm), 18 h, 95%; 2. Dess-Martin periodinane, 23 °C, 1 h, 95%; i) THF, −78 °C, 5 h, 88%; j) KF, 

KHCO3, H2O2, THF/MeOH (1:1), 23 °C, 18 h, 92%; k) CAN, MeCN/H2O (3:1), 0 °C, 1 h, 83%; l) 1. 3 M 

LiOH/THF (3:1), 5 °C, 4 d; 2. BOPCl, pyridine, CH2Cl2, 23 °C, 1 h; 3. Ph3PCl2MeCN, pyridine, 23 °C, 1 

h, 65% (3 steps). 
Scheme 20. 
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Acylation of (S)-threonine methyl ester using 4-methoxybenzoyl chloride afforded the 

amide 110. Cyclization of 110 to form the oxazoline 111 was achieved upon reflux in 

toluene with p-toluenesulfonic acid. Deprotonation of 111 with LDA followed by 

alkylation of the resulting enolate with chloromethyl benzyl ether allowed the formation 

of 112 in 69% yield. The tertiary stereocentre formed in this reaction has the same 

absolute configuration as the natural product. Reduction of 112 with sodium 

cyanoborohydride cleaves the oxazoline, giving 113 in 90% yield. Formation of 114 

was achieved over two steps: alcohol 113 was first converted to the corresponding TMS 

ether using trimethylsilyl chloride and triethylamine; then, N-acylation using acryloyl 

chloride and acidic work-up using aqueous hydrochloric acid to remove the TMS group 

led to the formation of 114. 

 

The formation of the lactam was achieved through a well-designed sequence that also 

established the desired stereochemistry at the C5 and C6 positions. A Dess-Martin 

periodinane oxidation gave the keto amide ester 115, which was then cyclized under 

Baylis-Hillman aldol conditions. Cyclization resulted in a mixture of diastereoisomers 

at the C6 position in a 9:1 ratio. Silylation of the desired diastereoisomer gave 116, 

which was then transformed into the bicyclic compound 117 using a radical-mediated 

cyclization using tributyltin hydride and AIBN. Cleavage of the benzyl ether was 

achieved under standard hydrogenation conditions using Pd/C. A Dess-Martin 

periodinane oxidation was used again, to form the aldehyde 118 in 95% yield. 

 

The introduction of the 2-cyclohexenyl group was achieved by addition of 2-

cyclohexenylzinc chloride 119. Synthesis of 2-cyclohexenylzinc chloride was achieved 

using a palladium-catalysed 1,4-addition of tributyltin hydride to 1,3-cyclohexadiene to 

give 2-cyclohexenyl-tri-n-butyltin which underwent transmetallation using n-

butyllithium and zinc chloride to give the desired 2-cyclohexenylzinc chloride. The 

reaction of 2-cyclohexenylzinc chloride with 118 in THF at –78 °C gave 120 in 88% 

yield. Oxidation of 120 under Tamao-Fleming conditions gave the triol 121 in 92% 

yield. 

 

The next three steps of the synthesis follow literature reported by the Corey group in the 

synthesis of lactacystin. CAN was used to remove the p-methoxybenzyl group, the 
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methyl ester was saponified using lithium hydroxide, and β-lactonization was achieved 

using BOPCl. Finally, the reaction with triphenylphosphine dichloride in acetonitrile-

pyridine gave the natural product salinosporamide A in 14% yield over 17 steps. 

 

1.2.2.2 The Ōmura Synthesis	
 

After Corey, other groups reported the total synthesis of salinosporamide A, including 

the Ōmura group in 2008.46 Unlike Corey and other subsequent researchers, such as 

Romo and Danishefsky, who all install the cyclohexene ring in the same way at a late 

stage in the synthesis,47, 48 Ōmura and co-workers reported a new approach to construct 

the cyclohexene ring in the early stages of their synthesis, Scheme 21. 

 

The aldehyde starting material 122 was converted over multiple steps into the 

carbamate 123. The precursor to the cyclohexene moiety was then introduced at this 

early stage. Simultaneous installation of the C5 and C6 stereogenic centres was 

achieved by an aldol reaction between the aldehyde 123 and cyclohexanone, and the 

reaction quenched with benzoyl chloride. The large diastereoisomeric ratio (20:1) 

observed in 125 was achieved due to formation of the highly chelated intermediate 124. 

This reaction was also attempted using Corey’s methodology: 2-cyclohexenylzinc 

chloride was added to the aldehyde 123; however, low diastereoselectivity was 

observed.45 

 

Conversion of the cyclohexanone moiety to the corresponding cyclohexene proved 

more difficult than the group envisaged. Reduction of an enol triflate using palladium 

chemistry, the Shapiro reaction, and a reduction-dehydration procedure were attempted 

but unsuccessful. Finally, they settled on a method that utilized a cyclic sulfate 

intermediate 126, which, after elimination, gave the required cyclohexene moiety. 

 

The construction of the γ-lactam core was achieved over multiple steps via the bicyclic 

compound 127. Ring-opening of the lactone gave the core lactam ring which was then 

subjected to multiple protection and deprotection reactions, β-lactonization and 

chlorination reactions to give salinosporamide A. Although a relatively long route, the 
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ability to stereoselectively construct the cyclohexene ring at an early stage is the most 

interesting feature of this synthesis. 

 

 
Reagents and Conditions: a) 1. Ph3P+CH3Br−, NaHMDS, THF, RT, 97%; 2. i-TsOH·H2O, MeOH, RT, 

82%; 3. Lipase vinyl acetate, i-Pr2O, RT; 4. TBDPSCl, imidazole, DMF, RT, 94%, 97% ee (2 steps); 5. 

K2CO3, MeOH, RT; 6. MEMCl, i-Pr2Net, CH2Cl2, RT, 94% (2 steps); 7. TBAF, THF, RT; 8. NaH, 

THF/DMF, then PMBCl, RT, 97% (2 steps); 9. OsO4, NMO, acetone/H2O, RT; 10. NaIO4, MeOH/H2O, 

RT, 92% (2 steps); b) LDA, cyclohexanone, THF, −78 °C; c) BzCl, 79%; d) 1. NaBH4, CeCl3·7H2O, 

MeOH, RT; 2. K2CO3, MeOH, RT, 95% (2 steps); 3. SOCl2, pyridine, CH2Cl2, RT; 4. RuCl3, NaIO4, 

MeCN/CCl4/H2O, RT, 94% (2 steps); e) 1. DBU, toluene, 100 °C; 2. TsOH·H2O, dioxane, RT, 97% (2 

steps); 2. NaH, THF/EtOH, RT; 3. (COCl)2, DMSO, Et3N, CH2Cl2, −78 °C, 92% (2 steps); 4. MeMgBr, 

THF, −78 °C; 2. Dess-Martin periodinane, CH2Cl2, RT, 100% (2 steps); 5. CAN, MeCN/H2O, 0 °C, 92%; 

6. LiHMDS, THF, −78 °C, then chloroacetyl chloride, 63%; f) 1. SmI2, LiCl, benzyloxyacetaldehyde, 

THF, −78 °C, 83%; 2. MsCl, Et3N, Me3N·HCl, toluene, RT; 3. NaOH, MeOH/H2O, 0 °C, 81% (2 steps); 

4. LiEt3BH, THF, 0 °C, 77%; g) 1. TESCl, NaI, MeCN, 0 °C, 100%; 2. TESOTf, 2,6-lutidine, CH2Cl2, 

−78 °C, 48%; 3. HF·pyridine, THF, 0 °C, 90%; 4. Dess-Martin periodinane, CH2Cl2, RT; 2. NaClO2, 2-

methyl-2-butene, Na2HPO4, t-BuOH/H2O, RT; 5. Li, NH3, t-BuOH/THF, −78 °C; 6. BOPCl, 

pyridine/CH2Cl2, RT; 7. Ph3PCl2, pyridine/MeCN, RT, 48% (5 steps); 8. HF·pyridine, THF, RT, 84%. 
Scheme 21. 
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1.3 Previous Work in the Page Group 
 

Investigations within the group began focusing on the construction of the lactam core of 

lactacystin. One of the key steps was the use of a Dieckmann cyclization to obtain the 

core. The synthesis of the unprotected cyclization precursor 130 proceeded without 

difficulty; however, the protection of the amide moiety proved challenging, Scheme 

22.49 

 

 
Reagents and Conditions: a) 1. NaOH; 2. Ethyl malonyl chloride, CH2Cl2, 57%; b) potassium ethyl 

malonate, DCC, Et3N, aq. MeCN, 81%; c) Boc2O, Et3N, DMAP, CH2Cl2, 131: 15%, 132: 13%, 133: 11%. 
Scheme 22. 

 

The use of di-tert-butyl dicarbonate resulted in a mixture of both N- and C-Boc products 

131, 132 and 133, in low yields. Compounds 132 and 133 were both subjected to 

Dieckmann cyclization conditions; unfortunately, the desired products were not 

isolated. A possible solution to avoid the formation of the C-Boc product would be the 

introduction of a methyl group at the C7 position prior to the Boc protection, Scheme 

23.  
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Reagents and Conditions: a) 1. KOH, EtOH, 24 h, RT, 87%; 2. glycine ethyl ester, DCC, Et3N, CH2Cl2, 

82%; b) Boc2O, DMAP, MeCN, RT, 136: 60%, 137: 11%. 
Scheme 23. 

 

Compound 135 was prepared over two steps from methylmalonate diethyl ester in 71% 

yield. The use of di-tert-butyl dicarbonate with triethylamine and DMAP as a catalyst in 

dichloromethane gave compounds 136 and 137 in 30% and 18% yields, respectively. 

Changing the solvent to acetonitrile and removing the triethylamine led to the formation 

of the desired N-Boc product 136 as the major compound in 60% yield alongside a 

small amount of 137 (11%). Compounds 135, 136 and 137 were all subjected to a 

number of cyclization conditions: the desired products were not observed and, instead, 

transesterification occurred, complex mixtures were formed and in some cases the 

starting material was recovered. 

 

Cyclization of the unprotected Dieckmann cyclization precursor 130 gave the lactam 

138 in 70% yield, Scheme 24. Compound 138 was insoluble in common organic 

solvents, and attempts were made to further functionalize the amide nitrogen to increase 

solubility. Again, the Boc protection did not proceed as desired and the trisubstituted 

pyrrole 139 was isolated in 14% yield 

 

 
Reagents and Conditions: a) Na/MeOH, toluene, reflux, 70%; b) Boc2O, Et3N, DMAP, MeCN, RT, 

14%. 
Scheme 24. 
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Attempts were then made to alkylate lactam 138 at the C3 position using methyl iodide, 

Scheme 25. The use of tetrabutylammonium fluoride (TBAF) both as a base and phase 

transfer catalyst solved the problem of insolubility mentioned above, and the methylated 

product 140 was obtained in 82% yield. With the presence of the quaternary centre at 

the C3 position preventing aromatization to the pyrrole, the reaction with di-tert-butyl 

dicarbonate and DMAP in acetonitrile gave the N-Boc protected lactam 141 in 76% 

yield alongside trace amounts of 142. 

 

 
Reagents and Conditions: a) TBAF, THF, MeI, RT, 82%; b) Boc2O, DMAP, MeCN, RT, 141: 76%. 

Scheme 25. 

 

Introduction of the functionality at the C5 position was the next step. Acylation was 

investigated using a variety of bases under different conditions (Table 4).49 Although 

most methods proved unsuccessful, the desired product 143 was obtained in 10% yield 

when ethylcyanoformate was used. A possible reason for the low yields observed was 

thought to be the steric hindrance caused by the Boc group. 

 

Table 4. Investigations into the acylation of 141.  
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With multiple problems arising from the use of Boc as a protecting group, 

investigations were then focused on groups which would be both smaller and less likely 

to lead to C-acylation. N-Benzyl glycine ethyl ester 145 was chosen as the starting 

material: it can be easily prepared from the condensation of ethyl bromoacetate and 

benzylamine. 

 

 
Reagents and Conditions: a) pyridine, DMAP, CH2Cl2, RT, 24 h, 148: 91%, 149: 95%; b) For 148; 

Na/MeOH, reflux, 88%; c) For 149; NaH, benzene, 6 h, 63%; d) TBAF, MeI, 24 h, 152: 77%, 153: 70%. 
Scheme 26.  
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of 148 using sodium/methanol under reflux gave 150 in 88% yield. Treatment of 149 

with sodium/benzyl alcohol gave 151 in a low yield of 14%. This methodology was 

improved by using sodium hydride in benzene, which gave 151 in 63% yield.  
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Alkylation of 150 using various electrophiles was then carried out to investigate the 

efficiency of this reaction, Table 5.50 This is also interesting as it suggests this 

methodology could allow access to a variety of lactacystin analogues. 

 

Table 5.  Alkylation of 150 using TBAF (1.2 equiv.) and RI (2 equiv.) in THF. 

 
R Yield (%) 

Me 77 
Et 63 

PhCH2 89 
CH2=CHCH2 60 

PhCH= CHCH2 64 
EtO2 CCH2 46 

 

 

Later work details improvements made to the Dieckmann cyclization step; instead of 

using sodium hydride in benzene as described above, it was found that treatment of 149 

with TBAF in diethyl ether at room temperature gave the tetrabutylammonium salt 155. 

Without purification, treatment of the salt with methyl iodide in THF gave 153 in 73% 

yield from 149, Scheme 27. As well as the desired product, the enol ether regioisomer 

156 was also isolated (153:156, 3.5:1). These milder conditions are much more 

attractive for a synthesis. 

  

 
Reagents and Conditions: a) TBAF, Et2O, RT, 24 h; b) MeI, THF, RT, 24 h, 73%. 

Scheme 27. 
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Another key step in the synthesis is the introduction of the functionality at the C5 

position following Mander’s protocol, Scheme 28. Deprotonation of 153 using lithium 

bis(trimethylsilyl)amide (LiHMDS) in the presence of 1,3-dimethyl-3,4,5,6-tetrahydro-

2(1H)-pyrimidinone (DMPU) generated the corresponding enolate; methyl 

cyanoformate was then added to the solution to give 157 in 75% yield as a 5:1 mixture 

of diastereoisomers. As observed above (Table 4), the use of Mander’s reagent did not 

lead to any competing O-acylation. 

 

 
Reagents and Conditions: a) LiHMDS, DMPU, THF, MeO2CCN, 75%; b) CH3CHCOCl, pyridine, 

CH2Cl2, RT, 24 h, 68%; c) H2, Pd/C, THF, 98%. 
Scheme 28. 
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98% yield. 
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To prevent the O-acylation, the reaction conditions were modified.51 Treatment of 157 

with sodium hydride in DMF followed by the addition of allyl bromide gave 160 in 

44% yield; no O-allylation was observed. When the reaction was repeated using 

methallyl bromide, the analogous compound 161 was prepared in much higher yield 

(75%). 

 

 
Reagents and Conditions: a) NaH, DMF, allyl bromide, RT, 160: 44%; b) NaH, DMF, methallyl 

bromide, RT, 161: 75%; c) H2, Pd/C, THF, 162: 90%. 
Scheme 29. 

 

When 160 was subjected to standard hydrogenation conditions, the decarboxylation of 

the benzyl ester with concomitant reduction of the double bond occurred to give 162 in 

90% yield. This advanced intermediate contains the complete carbon skeleton of clasto-

lactacystin dihydroxyacid and was achieved after only five steps.51 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

N
Bn

O

O

Me
BnO2C

CO2Me N
Bn

O

O

Me
BnO2C

CO2Me

R

N
Bn

O

O
CO2Me

R

Me
a or b c

157 160   R=H
161   R=Me

162   R=H
163   R=Me



	 	 Introduction	
	

	 46	

1.4 References 
 
1. Ōmura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H. 

and Sasaki, Y. J. Antibiotics, 1991, 44, 113-116. 

2. Ōmura, S.; Matsuzaki, K.; Fujimoto, T.; Kosuge, K.; Furuya, T.; Fujita, S. and 

Nakagawa A. J. Antibiotics, 1991, 44, 117-118. 

3. Fenteaney, G.; Standaert, R. F.; Reichard, G. A.; Corey, E. J. and Schreiber, S. 

L. Proc. Natl. Acad. Sci. 1994, 91, 3358-3362. 

4. Fenteaney, G.; Standaert, R. F.; Lane, W. S.; Choi, S.; Corey, E. J. and 

Schreiber, S. L. Science, 1995, 268, 726-731 

5. Dick, L. R.; Cruikshank, A. A.; Destree, A. T.; Grenier, L.; Melandra, F. D.; 

Nunes, S. L. and Stein R.L. J. Bio. Chem. 1996, 271, 7273-7276. 

6. Dick, L. R.; Cruikshank, A. A.; Destree, A.T.; Grenier, L.; McCormakck, T. A.; 

Melandra, F. D.; Nunes, S. L.; Palmbella, V. J.; Parent, L. A.; Plamondon, L. and Stein 

R.L. J. Bio. Chem. 1997, 272, 182-188. 

7. Borissenko, L. and Groll, M. Chem. Rev. 2007, 107, 687-717. 

8. Gräwert, M. A. and Groll, M. Chem. Commun. 2012, 48, 1364-1378. 

9. Crawford, L. J.; Walker B. and Irvine, A. E. J. Cell Commun. Signal, 2011, 5, 

101–110. 

10. http://www.crbm.cnrs.fr/index.php/en/43-recherche/equipes-de-recherche/team-

olivier-coux/226-more#UbPrEN 

11. Corey, E. J.; Li, W.; Nagamitsu, T. and Fenteany, G. Tetrahedron, 1999, 55, 

3305-3316. 

12. Corey, E. J.; Li, W. and Nagamitsu, T. Angew. Chem. Int. Ed. 1998, 37, 1676-

1679. 

13. Corey, E. J.; Li, W. and Reichard, G. A. J. Am. Chem. Soc. 1998, 120, 2330-

2336. 

14. Corey, E. J. and Reichard, G. A. J. Am. Chem. Soc. 1992, 114, 10677-10678. 

15. Pirrung, M. C. and Heathcock, C. H. J. Org. Chem. 1980, 27, 1727-1728. 

16. Corey, E. J.; Reichard, G. A. and Kania, R. Tet Lett. 1993, 34, 6977-6980. 

17. Braun, M. and Sacha, H. Angew. Chem. Int. Ed. Engl. 1991, 10, 1318-1320. 

18. Dess, D. B. and Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156. 



	 	 Introduction	
	

	 47	

19. Sunazuka, T.; Nagamitsu, T.; Matsuzki, K.; Tanaka, H. and Ōmura, S. J. Am. 

Chem. Soc. 1993, 115, 5302. 

20. Seebach, D. and Aebi, J. D. Tet Lett. 1983, 24, 3311-3314. 

21.  (a) Ōmura, K. and Swern, D. Tetrahedron, 1987, 34, 1651-1660. (b) Mancuso, 

A. J.; Huang, S. L. and Swern, D. J. Org. Chem. 1978, 43, 2480- 2482.  

22. Parikh, J. R. and Doering, W. V. E. J. Am. Chem. Soc. 1967, 89, 5505- 5507.� 

23.  Corey, E. J. and Suggs, J. W. Tetrahedron Lett. 1975, 16, 2647-2650. 

24. Pfitzner, K. E. and Moffatt, J. G. J. Am. Chem. Soc. 1965, 87, 5661-5669.� 

25. Brown, H. C. and Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293- 294.  

26. (a) Okuda, Y.; Hirano, S.; Hiyama, T. and Nozaki, H. J. Am. Chem. Soc. 1977, 

99, 3179-3181. (b) Hiyama, T.; Kimura, K. and Nozaki, H. Tetrahedron Lett. 1981, 22, 

1037-1040.  

27. Roush, W. R.; Adam, M. A.; Walts, A. E. and Harris, D. J. J. Am. Chem. Soc. 

1986, 108, 3422-3434.  

28. Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D. and Halterman, R. L. 

J. Am. Chem. Soc. 1990, 112, 6339-6348.  

29. Nagamitsu, T.; Sunazuka, T.; Tanaka, H.; Ōmura, S.; Sprengeler, P. A. and 

Smith, A. B. J. Am. Chem. Soc. 1996, 118, 3584-3590. 

30.  (a) Corey, E. J.; Lee, D.-H. and Choi, S. Tetrahedron Lett. 1992, 33, 6735-

6738. (b) Caldwell, C. G. and Bondy, S. S. Synthesis, 1990, 34-36.  

31. Gao, Y.; Hanson, R.; Klunder, J. M.; Ko, S. Y.; Masamune, H. and Sharpless, K. 

B. J. Am. Chem. Soc. 1987, 109, 5765-5780.  

32. Uno, H.; Baldwin, J. E. and Russell, A. T. J. Am. Chem. Soc. 1994, 116, 2139-

2140. 

33. Chida, N.; Takeoka, J.; Tsutsumi, N. and Ogawa, S. J. Chem. Soc. Chem 

Commmun. 1995, 793-794. 

34. Rosenthal, A. and Sprinzl, M. Can. J. Chem. 1969, 47, 3941. 

35. Overman, L. E. J. Am. Chem. Soc. 1978, 98, 2901. 

36. Panek, J. P. and Masses, C. E. Angew. Chem. Int. Ed. 1999, 38, 1093-1095. 

37. Pattenden, G. and Rescourio, G. Org. Biomol. Chem. 2008, 6, 3428-3438. 

38. Clough, J. M.; Pattenden, G. and Wight, P. G. Tetrahedron Lett. 1989, 30, 469–

7472.  

39. Bettignies, G. and Coux, O. Biochimie, 2010, 92, 1530-1545.  



	 	 Introduction	
	

	 48	

40. Frankland-Searby, S. and Bhaumik, S. R. Biochimica et Biophysica Acta. 2012, 

1825, 64–76. 

41. Stadler, M.; Bitzer, J.; Mayer-Bartschmid, A.; Mu ̈ller, H.; Benet-Buchholz, J.; 

Gantner, F.; Tichy, H-V.;  Reinemer, P. and Bacon, K. P.  J. Nat. Prod. 2007, 70, 246-

252. 

42. Eto, K.; Yoshino, M.; Takahashi, K.; Ishihara, J. and Hatakeyama, S. Org. Lett. 

2011, 13, 5398-5401. 

43. Feling, R. H.; Buchanan, G. O.; T. J. Mincer, T. J.; Kauffman, C. A.; Jensen, P. 

R. and Fenical, W. Angew. Chem. Int. Ed. 2003, 42, 355-357. 

44. Groll, M.; Huber, R. and Potts, B. C. M. J. Am. Chem. Soc. 2006, 128, 5136-

5141. 

45. Reddy, L. R.; Saravanan, P. and Corey, E. J. J. Am. Chem. Soc. 2004, 126, 

6230-6231. 

46. Fukuda, T.; Sugiyama, K.; Arima, S.; Harigaya, Y.; Nagamitsu, T. and Ōmura, 

S. Org. Lett. 2008, 19, 4239-4242. 

47. (a) Ma, G.; Nguyen, H. and Romo, D. Org. Lett. 2007, 11, 2143-2146. (b) Ma, 

G.; Nguyen, H. and Romo, D. Chem. Commun. 2010, 46, 4803–4805. 

48. Endo, A. and Danishefsky, S. J. J. Am. Chem. Soc. 2005, 127, 8298-8299. 

49. (a) Leach, D. C. PhD Thesis, 2004, Loughborough University. (b) Hamzah, A. 

S. PhD Thesis, 2000, Loughborough University. 

50. Page, P. C. B.; Hamzah, A. S.; Leach, D.C.; Allin, S. M.; Andrews, D. M.; 

Rassias, G. A. Org. Lett. 2003, 5, 53–355. 

51. Page, P. C. B.; Leach, D. C.; Hayman, C. M.; Hamzah, A. S.; Allin, S. M.; 

McKee, V. Synlett, 2003, 7, 1025-1027. 



	 	 Results	and	Discussion	
	

	 49	

2.0 Results and Discussion 
 

2.1 Retrosynthetic Analysis of Lactacystin and Analogues 
 

Lactacystin and its analogues share the same substituted lactam core, but differ at the 

C5 and C7 positions, allowing us to consider a common retrosynthetic approach. The 

retrosynthetic analysis below (Scheme 1) shows the key steps required for a synthesis 

of lactacystin and its analogues. Using a commercially available amino acid derivative 

as the starting material, the C5 functionality is present from the start, and the use of 

different amino acids allows variation at this position. Key steps include a Dieckmann 

cyclization and a Mander’s acylation to form the lactam ring and the C5 quaternary 

centre, respectively. The use of a range of alkylating agents during the tandem 

Dieckmann cyclization/alkylation should allow the installation of a C7 group that 

differs between the natural products as well as allowing access to novel structures. A 

decarboxylation at the C7 position and the reduction of the ketone moiety at the C6 

position would then be required to give the fully functionalized core found in this class 

of proteasome inhibitors. 

 

 
Scheme 1. 

 

The work presented below details the use of L-leucine, L-serine and L-valine derivatives 

as the starting materials. Work has mainly been focused on the use of L-leucine (which 

will lead to the formation of deoxylactacystin) as it has the iso-butyl group present from 

the start and shares the closet structural similarity to lactacystin. We hope that by using 

a chiral starting material, in this case L-leucine, we can induce the desired 
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stereochemistry at the C5, C6 and C7 positions throughout the synthesis. Indeed, this β-

lactone class of inhibitors is particularly challenging due to the number of stereocentres 

that need to be generated and controlled during the synthesis. 

 

2.2 Synthesis of the Leucine Analogue 
 

2.2.1 Proposed Synthetic Route Towards Deoxylactacystin 
 

Using L-leucine methyl ester hydrochloride 6 as the starting material, we hoped to 

synthesize the advanced intermediate 11 that was reported by Corey in 19991 using the 

route developed by the Page group as described above (Chapter 1).  

 

 
Scheme 2.  
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product 7 and p-methoxybenzylalcohol. This result indicated that full conversion to the 

imine 13 was vital before introduction of the reducing reagent. Hence, a two-step 

procedure was investigated.  

 

 
Reagents and Conditions: a) 4-methoxybenzaldehyde, Et3N, NaBH4, MeOH, 53%; b) 4-

methoxybenzaldehyde, acetic acid, toluene, reflux, 100%; c) NaBH3CN, acetic acid, MeOH, 93%. 
Scheme 3. 
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Table 1. Investigation into the reduction of compound 13. 

 
Reaction Conditions Reducing Reagent Yield (%) 
AcOH, MeOH, 0 °C to RT NaBH4 53 
AcOH, MeOH, 0 °C to RT NaBH3CN 93 
MeOH, 0 °C to RT NaBH(OAc)3 S.M. 

 

The Dieckmann cyclization precursor 8 was then synthesized using a peptide coupling 

reaction. There are many peptide coupling reagents reported in the literature; these 

include (but are not limited to) phosphonium reagents (for example: BOPCl, first used 

by Corey to form the lactone moiety in omuralide), uronium reagents (for example: 

HATU, a reagent commonly used in the synthesis of macrocycles), carbodiimide 

reagents (for example, EDAC·HCl) and imidazolium reagents (for example, CDI).3 

 

 
Figure 1. Coupling reagents. 

 

The synthesis of potassium benzyloxycarbonyl acetate 16 required for the peptide 

coupling was achieved over two steps from malonic acid in 72% yield (Scheme 4).4 
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Reagents and Conditions: a) benzyl alcohol, p-TsOH, toluene, reflux, overnight; b) KOH in BnOH (1 

M), 72% (2 steps); c) oxalyl chloride, toluene, 34 °C, 24 h. 

Scheme 4.  

 

We chose to use a commercially available carbodiimide coupling reagent, N-(3-

dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDAC·HCl), due to its ease 

of handling and because the by-product formed is easily removed during work-up as it 

is water-soluble under acidic conditions. The treatment of 7 with potassium 

benzyloxycarbonyl acetate 16, EDAC·HCl, 4-(dimethylamino)pyridine (DMAP) and N-

methylmorpholine (NMM) in dichloromethane gave 8 in 72% yield after silica gel 

chromatography purification. 

 

 
Reagents and Conditions: a) potassium benzyloxycarbonyl acetate 16, EDAC·HCl, DMAP, NMM, 

CH2Cl2, 72%.  
Scheme 5.  

 

Room temperature 1H NMR spectrum analysis shows the presence of two rotamers, and 

so a variable-temperature (VT) 1H NMR experiment was carried out in deuteriated 

dimethylsulfoxide (d6-DMSO) at 25, 75 and 100 °C, Figure 2. Analysis of the resulting 

spectra clearly shows the peaks beginning to coalesce as the temperature is increased. 
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Figure 2. Variable temperature 1H NMR spectra of compound 8 at 1: 25 °C, 2: 75 °C 

and 3: 100 °C. 

 

The optimization of this reaction was investigated using methods other than 

carbodiimide coupling. The treatment of potassium benzyloxycarbonyl acetate 16 with 

oxalyl chloride gave the corresponding acid chloride 17 without purification in 

quantitative yield. The addition of the acyl chloride to 7 in the presence of pyridine and 

DMAP gave the Dieckmann precursor 8 in only 58% yield. The coupling reagent 

propane phosphonic acid anhydride, known commercially as T3P®, was also used for 

this reaction.5 The by-products formed from using T3P® are all water-soluble and can be 

easily removed during aqueous work-up, which aids the purification of the desired 

compound. T3P® is also a greener reagent as it is less toxic than the carbodiimide 

reagents. The treatment of 7 with potassium benzyloxycarbonyl acetate 16, N,N-

diisopropylethylamine (DIPEA or Hünig’s base) and T3P® in tetrahydrofuran gave 8 in 

62% yield. 
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Table 2. Synthesis of the Dieckmann cyclization precursor 8 from 7.  

 
Reaction Conditions Coupling Reagent Yield (%) 
16, NMM, DMAP, CH2Cl2 EDAC·HCl 72 
17, pyridine, DMAP, CH2Cl2 None 58 
16, DIPEA, THF` T3P® 62 

 

2.2.3 The Dieckmann Cyclization 
 

The Dieckmann cyclization, also known as the Dieckmann condensation, is a form of 

intramolecular Claisen condensation used to synthesize cyclic β-ketoesters of varying 

ring size. In 1894, Dieckmann reported the reaction of the diesters 18 and 20 with 

sodium in ethanol to give the corresponding cyclic β-ketoesters 19 and 21, 

respectively.6  

 

 
Reagents and Conditions: a) Na, EtOH. 

Scheme 6.  

 

When diester 22 is treated with a base, the ester enolate intermediate 23 is formed 

followed by attack of the enolate onto the other ester moiety to give the cyclic β-

ketoester 25. The rate-determining step of the reaction is the ring formation step, the 

attack of the ester enolate onto the carbonyl of the second ester moiety. 
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Scheme 7. The Dieckmann condensation mechanism.  

 

There are many natural product syntheses in the literature that employ a Dieckmann 

condensation. Grossman and co-workers reported the synthesis of (±)-sacacarin 28 in 

1996 in which a Dieckmann condensation was used to synthesize the second ring 

moiety of the natural product in high yield (90%).7  

 

 
Reagents and Conditions: a) 1. NaOEt, EtOH, reflux; 2. TsOH (cat), EtOH, C6H6-H2O, reflux, 90% (2 

steps). 

Scheme 8. The synthesis of (±)-sacacarin. 

 

In 2003, Covarrubias-Zúñiga reported the synthesis of mycophenolic acid.8 2-Geranyl-

1,3-acetonedicarboxylate 29 was treated with sodium hydride followed by the addition 

of a protected alkynal to form the enolate which then underwent Dieckmann 

condensation to give the substituted aromatic ring of mycophenolic acid 31 in 33% 

yield (Scheme 9). 

 

 
Reagents and Conditions: a) 1. NaH, THF, RT; 2. Protected alkynal, 2 h; 3. HCl 33% (3 steps). 

Scheme 9. The synthesis of mycophenolic acid. 
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As described above (Chapter 1, Scheme 27), the Page group reported a two-step 

process wherein cyclization occurs first using TBAF in diethyl ether to form the 

tetrabutylammonium salt, followed by the methylation step in tetrahydrofuran to install 

the C7 functionality. Methylation occurs through the enolate intermediate 33 resulting 

in the formation of the two diastereoisomers (±)-34 and (±)-9 in 30 and 29% yield, 

respectively (Scheme 10). Unfortunately, diastereoisomers (±)-34 and (±)-9 are difficult 

to separate using silica gel chromatography because of their similar polarity, leading to 

the isolation of a mixture of (±)-34 and (±)-9 (as well as the pure diastereoisomers). 

 

 
Reagents and Conditions: a) TBAF, Et2O, RT, overnight; b) MeI, THF, RT, overnight, (±)-34: 30%, 

(±)-9: 29% (2 steps). 

Scheme 10.  

 

Disappointingly, the reaction did not appear to be diastereoselective. Due to the 

planarity of enolate intermediate 33, the small size of the methyl group and the bulky 

group at C5 being too far away, the addition does not favour either face, resulting in the 

formation of two diastereoisomers in a 1:1 mixture. Furthermore, specific rotation 

measurements show racemization had occurred at this point. 

 

Unfortunately, we were unable to obtain crystals suitable for X-ray crystallography of 

(±)-34 and (±)-9; however, work within the group yielded crystals of the p-nitro benzyl 

analogue of (±)-34 (Figure 3) allowing us to deduce the relative configuration of (±)-34 

and (±)-9. 
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Figure 3. X-ray crystallographic structure of the p-nitro benzyl analogue of (±)-34. 

 

 The cyclization results in the formation of two stereocentres and if the only enolate 

generated was enolate 33, two non-racemic diastereoisomers would be the only 

products formed. There are three possible explanations for the racemization: either the 

racemization occurs before the cyclization (35), or after the cyclization but before the 

methylation (37), or after the methylation (38); it could also possibly occur during more 

than one step. We do not believe racemization occurs before cyclization; indeed, the 

difference in pKa between the enolisable proton of the amino ester (pKa≈25) and the 

malonyl protons (pKa≈13) leads us to believe racemization should not occur at this 

point. Enolization through the C5 position could occur before or after methylation, as 

methoxide is generated during the cyclization step, so deprotonation at C5 would be 

possible. Interestingly, we were unable to observe any products resulting from the 

methylation at C5. Due to the large excess of methyl iodide used, if enolization 

occurred after methylation at C7 to form 38, we would also expect to see methylation at 

C5. However, if enolization occurs first, selective methylation at C7 may be observed 

because the proton at C7 (pKa≈11) is much more acidic than that at C5 (pKa≈25) 

making 33 the thermodynamically more stable enolate form; hence, the equilibrium 

between 33 and 37 is shifted towards 33.  
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Scheme 11. 

 

This result is not unprecedented; racemization during Dieckmann cyclization has been 

reported previously. In 1990, Poncet and co-workers reported the ‘racemisation during 

the synthesis of tetramic acids via Dieckmann cyclisation’.9 In 1964, Lukas reported the 

total synthesis of holomycin in which a key step was the cyclization of 40 with sodium 

ethoxide to form the racemic lactam (±)-41.10 

 

 
Reagents and Conditions: a) diketene, EtOH, RT; b) NaOEt, EtOH, benzene, reflux. 

Scheme 12.  
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A one-pot tandem Dieckmann cyclization/methylation synthesis was also attempted 

with no notable loss in yield. Treatment of 8 with TBAF and methyl iodide in 

tetrahydrofuran gave the diastereoisomers (±)-34 and (±)-9 in 22% and 39% yield, 

respectively (Scheme 13). When diethyl ether was used instead of tetrahydrofuran, no 

reaction was observed and the starting material was recovered. 

 

 
Reagents and Conditions: a) TBAF, MeI, THF, (±)-34: 22%, (±)-9: 39%. 

Scheme 13. 

 

Although (±)-34 and (±)-9 were isolated in different yields, the 1H NMR spectrum 

analysis of the reaction mixture shows the formation of the diastereoisomers in a 1:1 

ratio, as observed in the two-step procedure.  

 

The formation of unwanted diastereoisomers is never an attractive feature in total 

synthesis as only one has the correct relative stereochemistry required thereby reducing 

the yield of usable material. 

 

2.2.4 The Mander’s Acylation 
 

The next step in our synthesis was the introduction of the C5 functionality that will 

eventually be used to form the β-lactone moiety, found to be essential to the inhibitors’ 

ability to bind to the 20S proteasome. 

 

In 1983, Lewis Mander reported the ‘Regioselective synthesis of β-ketoesters from 

lithium enolates and methyl cyanoformate’ in which he described the treatment of a 

range of ketones with lithium diisopropylamine (LDA), hexamethylphosphoramide 

(HMPA) and methyl cyanoformate in tetrahydrofuran at −78 °C to give the 

corresponding β-ketoesters.11 This method was the first of its kind to allow access to 
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these types of compounds in consistently high yields with complete chemoselectivity. 

This reaction can also be carried out using methyl chloroformate instead of methyl 

cyanoformate.12, 13 

 

 
Reagents and Conditions: a) LDA, THF b) HMPA, methyl cyanoformate. 

Scheme 14. 

 

Older methods such as the reaction with acyl halides or anhydrides often lacked 

selectivity and resulted in a mixture of both the C- and O-alkylated products. Acylation 

of the cyclohexanone enolate 45 gives different ratios of C- and O-alkylated products 

depending on the metal cation and solvent used (Table 3).14 

 

Table 3. A comparison between the C- and O-alkylation when reacting with acetic 

anhydride. 

 

 
Metal Cation Solvent Yield of 46 Yield of 47 

Li+ Dimethoxyethane (DME) 49% 16% 
Mg2+ Diethyl ether 25% 43% 

 

With crystallographic data analysis showing that compound (±)-9 has the desired 

relative stereochemistry, the acylation reaction was carried out following a procedure 

similar to Mander’s (Scheme 15). 
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Reagents and Conditions: a) LiHMDS, DMPU, methyl cyanoformate, THF, −78 °C, 86%. 

Scheme 15.  

 

Compound (±)-9 was treated with LiHMDS (freshly prepared from n-butyl lithium and 

hexamethyldisilazane) in tetrahydrofuran at −78 °C and the reaction mixture stirred for 

one hour. 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) and methyl 

cyanoformate were then added. The reaction was stirred at −78 °C for four hours after 

which it was quenched using an aqueous solution of ammonium chloride. The desired 

compound (±)-10 was isolated in 79% yield. Due to the reaction going through an 

enolate intermediate, addition of the methyl ester group could occur from the top or 

bottom face resulting in the formation of diastereoisomers. However, this was not 

observed; analysis of the 1H NMR spectrum confirms that the acylation is 

stereoselective as a single product was observed, and crystallographic data of the 

product obtained from the reduction of the ketone moiety of (±)-10 (Figure 5, 

compound (±)-51) shows that the C5 methyl ester moiety adds to the opposite side of 

the C7 benzyl ester. When we compare the stereochemistry of lactacystin and (±)-10 

(Figure 4) we can see that the correct relative stereochemistry has been achieved. 

 

 
Figure 4. Relative configuration of (±)-10. 

 

Due to the racemization occurring during the Dieckmann cyclization/methylation step 

and the stereoselective nature of the acylation, we thought that the separation of the 

diastereoisomers (±)-34 and (±)-9 might not be necessary. Indeed, (±)-34 and (±)-9 

should lead to the same racemic enolate (±)-38. Then, in theory, if the acylation reaction 
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were not selective, racemic enolate (±)-38 would lead to four possible stereoisomers: 

48, 49, 10 and 50. It is important to note here that compounds 48 and 10, as well as 49 

and 50, are enantiomers, respectively. 

 

 
Scheme 16. Investigation into the Mander’s acylation reaction.  

 

As the acylation is selective, we predicted that compound (±)-34 should behave in the 

same way as (±)-9, and lead to the formation of (±)-10. Indeed, when compound (±)-34 

was subjected to the acylation conditions described above, only compound (±)-10 was 

isolated in 73% yield. NMR and IR spectroscopic and mass spectrometric analysis of 

the product obtained showed the compound isolated from this reaction was the same as 

that isolated from the reaction of (±)-9. To further support this conclusion, the reaction 

was attempted using a mixture of (±)-34 and (±)-9. Unsurprisingly, only one compound 

was isolated from this reaction, compound (±)-10. 

 

When we first started investigating this reaction, the LiHMDS was prepared in situ from 

the reaction of n-butyl lithium and hexamethyldisilazane in tetrahydrofuran at −78 °C 

giving (±)-10 in 79% yield. The yield was increased to 86% when commercially 

available LiHMDS was used. This difference in yield may be due in part to the 

accumulative internal error associated with the preparation of LiHMDS and subsequent 

cannulation of the base into the reaction mixture. In 2013, Pfizer reported the synthesis 

of filibuvir in which they use LiHMDS to perform a Dieckmann cyclization.15 They 

describe how both the source of LiHMDS and the mode of addition of LiHMDS can 

affect the yield of product obtained. They report a difference in yield when using n-
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BuLi or Li metal as the lithium source and a difference in yield when using LiHMDS 

from different suppliers. They stated that they did not know why there was a difference 

and concluded by describing the results as an ‘unexplained LiHMDS source variation’. 

 

Table 4. Investigation into the Mander’s acylation reaction.  

 
Starting Material Base Yield of (±)-10 (%) 

(±)-9 LiHMDS (made in situ) 79 
(±)-34 LiHMDS (made in situ) 73 

Mixture of (±)-9 and (±)-34 LiHMDS (made in situ) 78 
Mixture of (±)-9 and (±)-34 LiHMDS (commercial) 86 

 

 

2.2.5 Steps Towards the Synthesis of (±)-11 
 

At this stage in the synthesis, two routes are possible to obtain the desired intermediate; 

the first possibility involves the reduction of the ketone at C6 followed by 

decarboxylation of the benzyl ester moiety at the C7 position  (Scheme 17, Route A), 

while the second route starts with the decarboxylation of the benzyl ester moiety at the 

C7 position followed by reduction of the ketone at C6 (Scheme 17, Route B). 
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Scheme 17.  

 

2.2.5.1 Route A Towards (±)-11 
 

2.2.5.1.1 Reduction of the Mander’s Reaction Product, (±)-10 
 

 
Reagents and Conditions: a) NaBH4, EtOH, 0 °C to RT, 30 min, 43-57%. 

Scheme 18. 

 

Under standard conditions using sodium borohydride (Scheme 18), compound (±)-51 

was isolated as a single diastereoisomer in yields of 43-57%. Crystallographic studies 

show that the correct relative stereochemistry was achieved when compared to that of 

lactacystin; the hydroxyl moiety, the methyl group and the methyl ester, at the C6, C7 

and C5 positions, respectively, are all on the same side relative to each other. 
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Figure 5. X-ray crystallographic structure of (±)-51.  

 

In an attempt to optimize this reaction, other reducing reagents were screened under 

varying conditions (Table 5).  The use of sodium cyanoborohydride or sodium 

triacetoxyborohyride resulted in full recovery of the starting material. Attempts using 

DIBAL also led to the recovery of the starting material probably due to the bulky nature 

of DIBAL. 

 

The Meerwein-Ponndorf-Verley (MPV) reduction (the reverse reaction, the oxidation of 

the alcohol, is known as the Oppenauer oxidation) is a well-documented reaction that 

uses an excess of aluminium isopropoxide and iso-propyl alcohol to reduce ketones to 

the corresponding alcohols.16 We had hoped to use this reaction as one of its key 

features is its highly diastereoselective nature when applied to rigid cyclic compounds.  

 

 
Scheme 19. The Meerwein-Ponndorf-Verley reduction. 

 

Formation of the aluminium complex occurs at the less hindered face; this then directs 

the subsequent formation of the six-membered transition state and therefore the hydride 

transfer. Unfortunately, this approach was not successful and the starting material was 
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recovered (Table 5, Entries 12 and 13). One of the drawbacks of the MPV reduction is 

that it is greatly affected by steric hindrance; hence, we believe, with a relatively small 

5-membered ring and large groups at the C5 and C7 positions, the steric hindrance was 

too great. 

 

Table 5. Investigation into the reduction of (±)-10. 

 
Entry Reducing Reagent Reactions Conditions Product Yield (%) 

1 NaBH3CN (2 equiv.) Acetic acid, MeOH,  
0 °C – RT, 4 h 

S.M. 100 

2 NaBH3CN (2 equiv.) Acetic acid, MeOH,  
0 °C – RT, 48 h 

S.M. 100 

3 Na(AcO)3BH (10 
equiv.) 

CH2Cl2, 0 °C – RT,  
24 h 

S.M. 100 

4 NaBH4 (2 equiv.) Acetic acid, MeOH,  
0 °C – RT, 4 h 

S.M. 100 

5 NaBH4 (0.7 equiv.) EtOH, −10 °C, 2 h (±)-51  
(±)-52 or (±)-53 
(±)-52 or (±)-53 

42 
29 
10 

6 NaBH4 (2 equiv.) EtOH, 0 °C – RT,  
30 min 

(±)-51 43-57 

7 NaBH4 (0.7 equiv.) EtOH, −20 °C, 1 h (±)-51 51 
8 NaBH4 (0.7 equiv.) EtOH, −10 °C, 1 h (±)-51 54 
9 NaBH4 (0.7 equiv.) EtOH, −10 °C, 30 min S.M. 

(±)-51 
31 
52 

10 DIBAL (1 equiv.) THF, 60 °C, 4 h S.M. 100 
11 DIBAL (2 equiv.) THF, 60 °C, 4 h S.M. 100 

 12 (iPrO)3Al (10 
equiv.) 

i-PrOH, reflux, 24 h S.M. 100 

13 (iPrO)3Al (10 
equiv.) 

i-PrOH, Dean-Stark 
reflux, 24 h 

S.M. 100 
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With all attempts failing when changing the reducing reagent, optimization of the 

reaction conditions using sodium borohydride was carried out. It became clear that both 

reaction time and temperature were significant factors in the success of this reaction. 

 

 
Reagents and Conditions: a) NaBH4, EtOH, −10 °C, 2 h, (±)-51: 42%, (±)-52 or (±)-53: 29%, (±)-52 or 

(±)-53: 10%. 
Scheme 20. 

 

When using sodium borohydride as the reducing reagent at −10 °C for two hours (Table 

5, Entry 5), the desired compound (±)-51 was isolated as the first eluting compound 

after silica gel column chromatography in 42% yield. Two over-reduced products, 

diastereoisomers (±)-52 and (±)-53, were also isolated from the reaction. Although we 

know the structures of (±)-52 and (±)-53, we were unable to determine their relative 

configurations. The second eluting compound was isolated in 29% yield and the third in 

10% yield. As we do not isolate compound (±)-54, we can predict the relative rates of 

the reaction. The formation of (±)-51 must be much faster compared to that of (±)-54; 

however, (±)-54 must then be converted to (±)-53 very quickly (Scheme 20). 

 

 
Reagents and Conditions: a) NaBH4, EtOH, −10 °C, 30 min, (±)-51: 52%, (±)-10: 31%. 

Scheme 21. 
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Optimization of the conditions using sodium borohydride led to the isolation of the 

product (±)-51 in 52% yield as well as the recovery of starting material (±)-10 in 31% 

yield (Table 5, Entry 9). 

 

Fortunately, this reaction was completely stereoselective. The formation of (±)-54 under 

these conditions is so slow that, when left for only 30 minutes, only one diastereoisomer 

was ever isolated and, as described above, no trace of (±)-54 was ever observed.  

Although this is a positive result, as the correct relative stereochemistry in relation to 

lactacystin (Figure 5) has been achieved, this is an interesting result because hydride 

addition occurs from the opposite face to that which one would predict. The crystal 

structure shows the benzyl ester, iso-butyl and PMB groups all occupying space above 

the ring; we can assume this would be the same for the starting material (±)-10. It 

would, therefore, not be unprecedented to expect the hydride to approach from 

underneath, which is the least sterically hindered face, resulting in the hydroxyl group 

being on the same side as the benzyl ester, iso-butyl and PMB groups. When using 

Newman projections to predict the stereochemistry of the product obtained from 

reduction the hydroxyl group would, again, be expected to form on the same side as the 

benzyl ester, iso-butyl and PMB groups.  

 

 
Figure 6.  The Newman projection for the prediction of the stereoselectivity of the 

ketone reduction. 

 

In 2008, Moloney and co-workers reported the ‘equilibration in bicyclic pyroglutamates 

by ring opening-reclosure’ in which the stereoselective ketone reduction of 55 is 

described using NaBH4 in ethanol or LAH in THF to give the corresponding alcohol 56 

(Scheme 22).17 
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Reagents and Conditions: a) NaBH4, EtOH, 0 °C, 1 h; b) LiAlH4, THF, −78 °C, 1 h. 

Scheme 22. 

 

They state that the selectivity is achieved by endo-addition of the small hydride 

nucleophile anti- to the lone pair of the nitrogen. In our case the lone pair on the 

nitrogen is on the bottom face and so the hydride will attack from the top face (the same 

face as the benzyl ester, iso-butyl and PMB groups) resulting in the hydroxyl group 

being on the same side as the methyl ester group at C5 and the methyl group at C7. 

 

2.2.5.1.2 Decarboxylation of Compound (±)-51 
 

 
Reagents and Conditions: a) H2, Pd(OH)2/C, THF, quant. 

Scheme 23. 

 

When (±)-51 was treated under hydrogenolysis conditions using palladium hydroxide 

on carbon and a hydrogen balloon the corresponding carboxylic acid (±)-57 was 

isolated in quantitative yield without purification. We had hoped that the treatment of 

(±)-51 under the hydrogenolysis conditions would proceed with concomitant 

decarboxylation due to the presence of the carbonyl moiety in the β position enabling 

formation of the enolate. This was not the case however, and the corresponding 

carboxylic acid (±)-57 was the only product isolated from this reaction. For 

decarboxylation to occur the intermediate must be stabilized through conjugation, 

usually through the enolate. When the ketone of (±)-10 is reduced to a hydroxyl moiety, 

the enolate can no longer be formed. The carbonyl group at C8 is part of an amide 
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moiety and conjugation between the nitrogen atom lone pair and the carbonyl group is 

possibly too strong to allow enolization to proceed through this position. 

 

A literature search shows that this result is not unprecedented. There are many reports 

of the debenzylation of substituted γ-lactams to form the corresponding carboxylic 

acid.18 In 1994, Leonard and co-workers reported ‘a sulfolene-based intramolecular 

Diels-Alder approach to the synthesis of manzamine A’ in which they subject the benzyl 

ester 59 to hydrogenolysis conditions using H2 and 5% Pd/C in diethyl ether, and the 

product obtained is the corresponding carboxylic acid 60.19 

 

 
Reagents and Conditions: a) 1. (Me3Si)2NLi, THF; 2. PhCH2COCN; b) H2, 5% Pd/C, Et2O. 

Scheme 24. 

 

2.2.5.1.2.1 Radical-Mediated Decarbonylation of the Acyl Selenide 
 

As the hydrogenolysis of (±)-51 yielded the carboxylic acid (±)-57 instead of the 

desired (±)-11, methods to achieve the decarboxylation of (±)-57 were investigated. 

First, we decided to carry out the synthesis of an acyl selenide from the carboxylic acid 

(±)-57 followed by a radical-mediated decarbonylation to give the desired advanced 

intermediate (±)-11. 

 

 
Scheme 25.  
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Selenium compounds have many uses in organic synthesis including in radical reactions 

as precursors. The C-Se and Se-H bonds are considered relatively weak, this along with 

the polarizability of the selenium atom makes organoselenides useful compounds for 

radical chemistry.20 

 

 
Scheme 26.  

 

Tributyltin hydride (Bu3SnH), tributylgermanium hydride (Bu3GeH) and 

tris(trimethylsilyl)silane (TTMSS) are commonly used as radical initiators, where the 

precursor is a halide, for example bromides and iodides. Selenide groups, specifically 

phenylselenenyl (PhSe) groups, have been used to replace the halides, and rate studies 

show that abstraction rates with Bu3Sn�, Bu3Ge�, and primary alkyl (RCH2�) radicals 

are comparable to that of the corresponding bromide, but smaller than the corresponding 

iodide by several orders of magnitude.21 

 

Table 6. Reaction constants for the abstraction of PhSe, Br and I. 

Radical Compound Temperature (°C) Rate Constant (M−1s−1) 
RCH2� PhSe-CH2CO2Et 50 1.0 x 105 

RCH2� Br-CH2CO2Et 50 0.7 x 105 
RCH2� I-CH2CO2Et 50 2.6 x 107 
Bu3Sn� PhSe-CH2CO2Et 25 1.2 x 108 
Bu3Ge� PhSe-CH2CO2Et 25 9.2 x 108 

 

Interestingly, when acyl selenides are used, the abstraction of the phenylselenenyl group 

is faster than when using alkylphenylselenides. The most common reagents for the 

abstraction of the PhSe group from an acyl selenide are Bu3SnH and TTMSS; however, 

Bu3GeH has also been shown to work in the same way. Acyl selenides are easily 

synthesized from the corresponding carboxylic acid. 

 

As well as the abstraction rates, selenenyl groups are a popular choice as they are often 

referred to as ‘radical protective groups’. Indeed, when compared to the halides, they 

Bu3Sn Se
Ph

rad
Bu3Sn Se

Ph
rad

δ δ
Bu3Sn Se

Ph
rad



	 	 Results	and	Discussion	
	

	 73	

can survive many more synthetic transformations, allowing them to be introduced at a 

much earlier stage of the synthesis if necessary. Another advantage of acyl selenides 

compared to acyl halides is their stability: it is often possible to purify acyl selenides 

using silica gel column chromatography. 

 

Acyl selenides are often used to generate acyl radicals that are then cyclized (Scheme 

27).22 The main drawback of this reaction is the unwanted loss of CO; performing the 

reaction under an atmosphere of CO can easily prevent this. In our proposed route this 

is not a problem, as decarbonylation is required to give the desired product. 

 

 
Reagents and Conditions: a) Bu3P, (PhSe)2, CH2Cl2, 24 h; b) Bu3SnH, AIBN, CO, CH3CN. 

Scheme 27. 

 

In 2005, the Allin group reported the synthesis of the indole alkaloid deplancheine by 

employing the radical-mediated decarbonylation of an acyl selenide (Scheme 28).23 The 

alcohol 61 was oxidized to the carboxylic acid 62, which was then treated with 

diphenyldiselenide and tributylphosphine (TBP) in dichloromethane to give the 

corresponding acyl selenide 63. The radical-mediated decarbonylation of 63 was 

achieved upon treatment with n-Bu3SnH and AIBN as the radical initiator in toluene to 

give 64. 
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Reagents and Conditions: a) 1. IBX, DMSO, RT, 24 h, 70%; 2. Et3N, (Boc)2O, DMAP, THF, RT, 4 h, 

98%; 3. NaClO2, NaH2PO4, 1-methyl-1-cyclohexene, CH3CN, t-BuOH, H2O, 0 °C to RT, 18 h, 83%; b) 

(PhSe)2, PBu3, CH2Cl2, 0 °C to RT, 18 h, 83%; c) n-Bu3SnH, AIBN, toluene, 80 °C, 2 h, 73%. 

Scheme 28. 

 

Following the reported procedure, the carboxylic acid (±)-57 was treated with 

diphenyldiselenide and tributylphosphine in anhydrous dichloromethane at room 

temperature overnight.23 Unfortunately, the desired product was not observed and the β-

lactone (±)-66 was the only product isolated from the complex mixture in a 43% yield. 

IR spectrum analysis shows a stretch at 1842 cm−1 which is a characteristic stretch for 

the C=O functionality of the β-lactone. 

 

 
Reagents and Conditions: a) Bu3P, (PhSe)2, CH2Cl2, 24 h, (±)-66: 43%. 

Scheme 29.  
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At first, this result was surprising as the formation of a trans β-lactone is not possible. 

However, with tributylphosphine present in the reaction mixture, a Mitsunobu-like 

reaction could have occurred. The most common conditions for the Mitsunobu reaction 

use triphenylphosphine (TPP) and diethyl azodicarboxylate; however, in 1999 Tsunoda 

and co-workers reported the use of ‘new Mitsunobu reagents in the C-C bond 

formation’ in which new systems using TMAD-TBP and DHTD-TBP were found to be 

more efficient in the N-alkylation of primary alcohols than the original DEAD-TPP 

system (Figure 7).24 

 

 
Figure 7. Azo-type Mitsunobu reagents. 

 

Scheme 30 describes our proposed mechanism for the formation of the β-lactone (±)-

66. The phosphine is activated upon reaction with diphenyldiselenide, and the 

phosphonium selenide is then attacked by the hydroxyl group. An intramolecular 

lactonization occurs resulting in formation of the β-lactone. 

 

 
Scheme 30. 

 

Consideration of the reverse reaction, the hydrolysis of the β-lactone, and the principle 

of microscopic reversibility can help support the theory described above. Ester 
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hydrolysis most commonly occurs through the base-catalysed acyl cleavage (BAC2) 

mechanism; however, there are some reports of the very rare base-catalysed alkyl 

cleavage (BAL2) mechanism (Scheme 31).25 

 

 
Base-catalysed acyl cleavage (BAC2) mechanism. 

 

 
Base-catalysed alkyl cleavage (BAL2) mechanism. 

Scheme 31.  

 

In 1993, Douglas and co-workers reported their study of the hydrolysis of 18O-methyl 

triphenylacetate: even when conditions designed to halt the BAC2 mechanism were used, 

it was still found to be the predominant mechanism and only about 5% of the reaction 

proceeded through the BAL2 mechanism, indicating that the BAL2 mechanism is 

intrinsically unfavourable.25 In 2013, Casado and co-workers reported the calculated 

energy barriers for the neutral hydrolysis of a series of lactones.26 These energies 

suggested that β-lactones are susceptible to neutral hydrolysis and that some favour the 

BAL2 mechanism. 

 

 
Reagents and Conditions: a) Pyridine, mesyl chloride, CH2Cl2, 5 °C for 40 h then 25 °C for 5 h, 98%; b) 

HBr in acetic acid, CH2Cl2, 25 °C for 6 h then −15 °C for 16 h, 71%; c) H2O, NaHCO3, pH 7.5, 45%. 
Scheme 32.  
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hydrogenolysis conditions to give the corresponding carboxylic acid, and finally, an 

intramolecular SN2 reaction initiated by the treatment of the carboxylic acid with base. 

Other groups have since applied this strategic approach to β-lactone formation. In 2006, 

Wu and co-workers employed this methodology in the total synthesis of valilactone 

(Scheme 33).28 

 

 
Reagents and Conditions: a) mesyl chloride, Et3N, CH2Cl2, 0 °C 3 h, 87%; b) Pd(OH)2, H2, 

EtOAc/MeOH, RT, 7 h, 100%; c) K2CO3, THF, RT, 12 h, 71%. 
Scheme 33.  

 

NOESY NMR analysis of compound (±)-66 was performed to support our findings and 

help confirm relative stereochemistry; the NOESY spectrum shows through space 

interactions as opposed to through bond interactions (J-coupling). Through space 

interactions were observed between the methyl group at C7 and the ring proton at C6; 

they are on the same side of the ring, confirming the cis-lactone structure. 

 

 
Figure 8. NOESY spectrum analysis interpretation of (±)-66. 
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2.2.5.1.2.1.1 Silyl Protection 
 

In order to prevent lactonization, protection strategies were investigated. The most 

common reagents for protecting hydroxyl groups are silylating reagents, for example 

triisopropylsilyl chloride (TIPS-Cl) and tert-butyldimethylsilyl chloride (TBDMS-Cl), 

as they are often easily added and removed using fluoride. Under standard conditions, 

treatment of (±)-51 with TIPS-Cl or TBDMS-Cl proved unsuccessful and the starting 

material was recovered. Attempts were made using triisopropylsilyl triflate as it is more 

reactive than its chloride counterpart but the same result was observed. We believe the 

failure of this reaction is due to steric hindrance, the large benzyl ester at C7 and the 

two substituents at C5 prevented the addition of the bulky TIPS and TBDMS groups. 

 

Table 7. Investigation into the protection of the hydroxyl group of (±)-51 and 

subsequent hydrogenolysis. 

 
Protecting Reagent Step 1: Protection Step 2: Hydrogenolysis 

TIPS-Cl Starting material N/A 
TIPS-OTf Starting material N/A 

TBDMS-Cl Starting material N/A 
TMS-Cl (±)-67 (±)-57 
TES-Cl (±)-68 (±)-57 

 

Trimethylsilyl chloride (TMS-Cl) and triethylsilyl chloride (TES-Cl) are not commonly 

used as protecting reagents as the TMS and TES groups are often poorly stable and 

cannot survive other synthetic transformations. As we believed the reason the other silyl 

groups were unsuccessful was due to the groups being too bulky, we decided to test 

both TMS- and TES-Cl. 
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Reagents and Conditions: a) TMSCl, imidazole, DMF, 35 °C, 24 h, quant.; b) TESCl, imidazole, DMF, 

35 °C, 24 h, quant.; c) H2, Pd(OH)2/C, THF, 30 °C. 
Scheme 34.  

 

The use of both the TMS and TES groups was successful and compounds (±)-67 and 

(±)-68 were obtained in quantitative yields without purification. Unfortunately, when 

subjected to the hydrogenolysis conditions, both groups were removed resulting in the 

isolation of compound (±)-57. 

 

In 2008, Stawinski reported work describing hydroxyl protection using N-

methylimidazole and iodine with various silyl chloride protecting groups.29 It was found 

that these conditions not only decreased reaction times but also enabled protection 

where, before, under standard conditions (i.e. not using iodine) protection was 

unsuccessful. This promising work led us to try the Stawinski conditions; however, we 

were only able to recover the starting material. 

 

 
Reagents and Conditions: a) TBDMSCl, imidazole, I2, THF, RT, 24 h. 

Scheme 35.  
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small enough, it did not appear reactive enough under the conditions used and full 

recovery of the starting material was obtained. 

 

 
Reagents and Conditions: a) acetyl chloride, Et3N, DMAP, CH2Cl2, RT, 24 h. 

Scheme 36.  

 

2.2.5.1.2.1.3  Trifluoroacetate Protection 
 

Trifluoroacetic anhydride is a well-documented reagent used in the protection of 

hydroxyl groups.30 Treatment of (±)-51 with trifluoroacetic anhydride and pyridine in 

anhydrous diethyl ether gave the desired compound (±)-70, isolated in 52% yield after 

silica gel column chromatography.  

 

 
Reagents and Conditions: a) (CF3CO)2O, pyridine, Et2O, (±)-70:52%, (±)-71:21%. 

Scheme 37.  

 

Upon purification, a second compound similar in structure to the desired product (±)-70 

was isolated. Compound (±)-71 is the suggested structure for the product isolated as 

supported by 1H NMR, 13C NMR, 19F NMR, IR and MS data. The 1H NMR spectrum of 

the crude product mixture before purification did not show the presence of (±)-71 and 

so this was believed to be a decomposition product caused by the chromatography. To 

prevent this, all subsequent reactions were carried out without purification of (±)-70.  
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Treatment of (±)-70 under hydrogenolysis conditions resulted in the formation of two 

products in a 1.5:1 ratio according to analysis of the 1H NMR spectrum of the crude 

mixture. The first eluting compound was the desired product (±)-72 in 20% yield. (±)-

57 was also isolated from the reaction mixture in 16% yield and was formed by the 

trifluoroacetate protecting group being removed during the reaction. 

 

 
Reagents and Conditions: a) H2, Pd(OH)2/C, THF, 30 °C, (±)-71: 20%, (±)-57: 16%. 

Scheme 38.  

 

Although this route was successful, the yield was unsatisfactory. To improve the route, 

the order of the reactions was inverted to make the carboxylic acid (±)-57 first, and then 

protect the hydroxyl group. Treatment of (±)-57 with trifluoroacetic anhydride gave (±)-

72 in 81% yield (Scheme 39). 

 

 
Reagents and Conditions: a) H2, Pd(OH)2/C, THF, 30 °C, quant.; b) (CF3CO)2O, pyridine, Et2O, 81%. 

Scheme 39.  
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2.2.5.1.2.2 Synthesis of the Acyl Selenide from the Protected 

Carboxylic Acid (±)-72 and Subsequent Radical-Mediated 

Decarbonylation 
 

With (±)-72 in hand, the acyl selenide synthesis was attempted under the conditions 

described above (2.2.5.1.2.1, Scheme 29) in the hope that the protecting group would 

prevent the lactonization reaction.23 This reaction resulted in a complex mixture and, 

although successful, the acyl selenide (±)-65 was isolated in a low yield (31%). The β-

lactone (±)-66 was isolated alongside the desired product in 10% yield. Unfortunately, 

no other products were isolated in significant yield from this reaction and starting 

material was not recovered. 

 

 
Reagents and Conditions: a) Bu3P, (PhSe)2, CH2Cl2, 24 h, (±)-65: 31%, (±)-66: 10%. 

Scheme 40.  

 

Following the procedure reported by Allin in 2005, the acyl selenide (±)-65 was treated 

with tri-n-butyltin hydride and 1,1′-azobis(cyclohexanecarbonitrile) (ABCN) as the 

radical initiator in anhydrous toluene.23 Purification of this product proved extremely 

challenging; 1H NMR analysis of the main fractions isolated after silica gel column 

chromatography showed the extensive presence of tin residues in the samples 

(characteristic peaks due to tin residues were observed from around 0.8-1.7 ppm). 
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Reagents and Conditions: a) n-Bu3SnH, ABCN, toluene, 80 °C, 2 h. 

Scheme 41.  

 

Mixtures containing tin reagents are notoriously hard to purify. The most common 

methodology, partitioning between acetonitrile and hexane, proved unsuccessful in our 

hands. In 2004, Harrowven reported the use of a ‘KF-silica stationary phase for the 

chromatographic removal of tin residues from organic compounds’.31 Although the 

amount of tin residues was significantly reduced using this method, we were unable to 

remove them completely. Other purification methodologies, including stirring the 

mixture with KF overnight before purification, also proved unsuccessful.  

 

With the tin residues causing such problems in purification, tributylgermanium hydride 

and tris(trimethylsilyl)silane were used in the reaction instead of the tributyltin hydride. 

Unfortunately, both methods proved unsuccessful and resulted in complex mixtures, 

neither the desired compound nor starting material being isolated. 

 

The lack of positive results and various problems arising when using the radical-

mediated decarboxylation route led us to investigate alternative decarboxylation 

strategies. 

 

2.2.5.1.2.3 The Barton Decarboxylation 
 

The Barton decarboxylation is another example of a radical-mediated reaction. In 1980, 

Barton reported ‘a new radical decarboxylation reaction for the conversion of 

carboxylic acids into hydrocarbons’ using tributyltin hydride.32 Barton suggested that 

carboxyl radicals could be generated if an efficient alkene-forming radical-mediated 

fragmentation reaction could be achieved (Scheme 42).32  
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Earlier work had shown that, in the steroidal series, the reduction of vicinal 

chlorohydrin esters using tributyltin hydride resulted only in dehalogenation without 

any fragmentation of the intermediate radical. Barton believed that the driving force for 

successful carboxyl radical generation was the formation of a conjugated alkene. 

Decarboxylation would then occur, resulting in another radical species, followed by 

hydrogen atom transfer from tributyltin hydride to give the desired hydrocarbon 

product. 

 

 
Scheme 42. 

 

Later, in 1983, Barton reported ‘new and improved methods for the radical 

decarboxylation of acids’.33 The reaction of N-hydroxypyridine-2-thione with a 

carboxylic acid gives the corresponding ester, which can then undergo a radical 

decarboxylation to form the corresponding alkane upon treatment with tributyltin 

hydride or t-butylmercaptan (Scheme 43). These N-hydroxypyridine-2-thione esters are 

now more commonly referred to as ‘Barton esters’. 

 

 
Scheme 43. 
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There are many natural product syntheses in the literature that employ a Barton 

decarboxylation. (−)-Quinocarcin is an antitumour antibiotic, and, when the Terashima 

group were carrying out structure activity relationship studies, they prepared the 10-

decarboxyquinocarcin analogue employing the Barton decarboxylation methodology 

(Scheme 44).34 The esterification of carboxylic acid 73 was achieved using N-

hydroxypyridine-2-thione with N,N'-dicyclohexylcarbodiimide (DCC) and DMAP in 

benzene. Subjecting the thiohydroxamate ester to Barton radical decarboxylation 

conditions using AIBN and tributyltin hydride resulted in full decarboxylation and 75 

was isolated in 65% yield over the two steps. 

 

 
Reagents and Conditions: a) 2-mercaptopyridine-N-oxide, DCC, DMAP, benzene, reflux; b) n-Bu3SnH, 

AIBN, benzene, reflux, 65% (2 steps); c) 1. 1 M NaOH, MeOH, RT, 98%; 2. AgNO3, MeOH, RT, 81%. 
Scheme 44. 

 

The original method for the Barton decarboxylation employs tributyltin hydride as the 

hydrogen donor and to propagate the radical reaction. Tributylgermanium hydride and 

TTMSS can also be used in the same way. Furthermore, recent methods report the use 

of a photochemical approach. Because of the issues encountered by us when tributyltin- 

and tributylgermanium hydride and TTMSS were used, we decided to employ the 

photochemical approach reported by Ko in 2011 (Scheme 45).35 Ko also reported that 

chloroform could successfully be used as a H-donor instead of tributyltin hydride, 

reducing both the cost and toxicity of such reactions. 
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Scheme 45. 

 

Our approach would involve the conversion of the carboxylic acid into the 

corresponding acyl chloride, followed by addition of 2-mercaptopyridine N-oxide 

sodium salt to form the Barton ester, and finally decarboxylation to give the desired 

intermediate (±)-11 (Scheme 46).  

 

 
Scheme 46. 

 

The carboxylic acid (±)-57 was treated with oxalyl chloride in chloroform and 

dimethylformamide (DMF) to produce the corresponding acyl chloride. The acyl 

chloride solution was then added to a solution of 2-mercaptopyridine N-oxide sodium 

salt in chloroform using a cannula under the irradiation of a UV lamp.  
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Reagents and Conditions: a) (±)-57, oxalyl chloride, 2-mercaptopyridine N-oxide sodium salt, DMF, 

CHCl3; b) (±)-57 or (±)-72, EDAC·HCl, NMM, DMAP, 2-mercaptopyridine N-oxide sodium salt, THF. 

Scheme 47. 

 

Unfortunately, 1H NMR spectrum analysis of the reaction mixture showed the formation 

of the β-lactone (±)-66 as the major product (described above 2.2.5.1.2.1, Scheme 29), 

and the expected signals corresponding to the thiohydroxamate ester were not observed, 

leading us to the believe that the desired product was not formed in the reaction. 

 

Attempts were also made to couple the 2-mercaptopyridine N-oxide sodium salt to the 

carboxylic acid using EDAC·HCl as described in section 2.2.2. This was carried out on 

both the unprotected alcohol (±)-57 and the protected compound (±)-72; however, both 

gave the same result: the major product observed was β-lactone (±)-66. 

 

In the reaction to form the acyl selenide (described above 2.2.5.1.2.1, Scheme 29), we 

suggested that the formation of the β-lactone was due to a Mitsunobu-like reaction 

occurring in the presence of tributylphosphine; however, this is not the case with respect 

to the Barton decarboxylation as there is no phosphine present. In order to form the β-

lactone, the hydroxyl moiety must be converted into a leaving group followed by the 

attack of the carboxylate onto the C6 position to form the lactone moiety (this is still a 

Mitsunobu-like reaction in terms of transformation but not in terms of reagents used).  
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group, the NMM could then act as a base to deprotonate the acid resulting in an 

intramolecular lactonization to form the β-lactone (Scheme 48). In the second reaction, 

when the hydroxyl was protected with a trifluoroacetate group (compound (±)-72), the 

C6 moiety is already a suitable leaving group and so, again, deprotonation of the acid 

could have resulted in an intramolecular lactonization to form the β-lactone. 

 

 
Scheme 48. 

 

The outcome of the reaction of the β-hydroxy acid (±)-57 with oxalyl chloride was at 

first more confusing. However, if we consider that the acyl chloride did not form and 

instead the oxalyl chloride reacted with the hydroxyl group we can apply the same 

reasoning described above. Oxalyl chloride would react with the hydroxyl moiety, 

creating a suitable leaving group at the C6 position (Scheme 49). 

 

 
Scheme 49. 
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showed that the β-lactone (±)-66 had been formed. After silica gel column 

chromatography the β-lactone (±)-66 was isolated in quantitative yield. 

 

 
Reagents and Conditions: a) oxalyl chloride, DMF, CHCl3, RT, 4 h, (±)-66: quant. 

Scheme 50. 

 

2.2.5.1.2.4 The Krapcho Decarboxylation 
 

In 1967, Krapcho reported the use of sodium cyanide and DMSO to achieve the 

decarboxylation of geminal diesters in one step (Table 8).36 Previously, this type of 

transformation could only be carried out in three steps: saponification to the diacid, 

decarboxylation of the diacid, then finally esterification to give the desired ester. Not 

only did Krapcho’s method reduce the number of synthetic steps, but in so doing yields 

were also increased. 

 

Table 8. Decarboxylation of 1,1-diesters with sodium cyanide in DMSO. 
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Since 1967, the scope of this reaction has been thoroughly investigated and the toxic 

sodium cyanide has been replaced by lithium or sodium chloride, now the most 

commonly used reagents for this transformation. An important structural requirement 

for this reaction is the presence of an electron-withdrawing group in the beta position; 

β-ketoesters and malonic esters can both undergo decarboxylation using this method. 

 

The Krapcho decarboxylation has many synthetic applications. Metacycloprodigiosin is 

an immunosuppressive alkaloid, and in 1999, the Fürstner group reported the use of 

Krapcho conditions in their synthesis.37 Treatment of the methyl ester 76 with sodium 

chloride in wet DMSO resulted in the desired decarboxylated product 77 in 91% yield, 

which was then advanced to the desired product, metacycloprodigiosin. 

 

 
Reagents and Conditions: a) NaCl, H2O, DMSO, 180-190 °C, 1.5 h, 91%. 

Scheme 51. 

 

We hoped to use this method to decarboxylate the benzyl ester of (±)-51 at the C7 

position, using the carbonyl group of the amide to form the enolate, and in doing so 

forming benzyl chloride and carbon dioxide as the by-products. One possible problem 

was the presence of the methyl ester group at the C5 position; however, without the 

presence of the β-ketone at C6 we hoped that this group would be left intact. 

 

 
Reagents and Conditions: a) LiCl, DMF, 135 °C, 4 h, (±)-78: 49% and (±)-79: 38%. 

Scheme 52. 
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The β-ketoester (±)-51 was treated with lithium chloride in DMF and heated at 135 °C 

for 4 h.38 After silica gel column chromatography, compounds (±)-78 and (±)-79 were 

isolated in 49% and 38% yield, respectively. 1H NMR spectrum analysis of the crude 

reaction mixture showed that these compounds were formed in a 1:1 ratio. 

Unfortunately, the benzyl and methyl ester and the hydroxyl moiety were removed. 

 

2.2.5.1.2.5 Acid-Catalysed Decarboxylation 
 

As the methods described above were unsuccessful, an acid-catalysed decarboxylation 

was attempted. The mechanism for this reaction can be seen in Scheme 53; the 

intramolecular deprotonation of the carboxylic acid and subsequent loss of CO2 give the 

alkene (±)-80; however, the equilibrium will be shifted towards (±)-11 due to the 

increased stability of the amide, and the acid present in the reaction. 

 

 
Scheme 53. 

 

Treatment of the carboxylic acid (±)-57 with 6 M hydrochloric acid (HCl) and heating 

to reflux resulted in a complex mixture. At first it appeared that the reaction may have 

been successful; IR analysis showed stretches at 1733, 1674 and 3387 cm-1 

corresponding to the carbonyl of the ester and amide, and the hydroxyl moieties (no 

characteristic carboxylic acid stretches were observed), respectively. Mass spectrometry 

data correlates to the desired product (±)-11 with the formula for [M+H]+ as 

[C19H25NO5+H]+ with mass 350.20. Unfortunately, despite multiple purification 

attempts using silica gel column chromatography, we were unable to isolate a single 

product cleanly. 1H NMR spectrum analysis showed at least three compounds had co-

eluted. Without the ability to separate the products, we cannot confirm whether the 

desired product is present. 
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Reagents and Conditions: a) 6 M HCl, H2O, reflux, 4 h. 

Scheme 54. 

 

As the initial results were promising, the reaction was performed with a weaker acid, p-

toluenesulfonic acid (p-TSA), in the hope of preventing any possible decomposition 

caused by using a strong acid such as 6 M HCl. Unfortunately, when this reaction was 

performed under reflux a complex mixture was again formed and no products could be 

isolated; the product described above was not observed in the 1H NMR spectrum of the 

crude mixture. To prevent decomposition, the reaction was repeated under milder 

conditions, at both 80 °C and room temperature; however, in both cases, no reaction 

occurred and the starting material was recovered. 

 

Table 9. Investigation into the acid-catalysed decarboxylation of (±)-57. 

Acid Conditions Result 
6 M HCl Reflux Complex mixture 
p-TSA Reflux Complex mixture 
p-TSA 80 °C Starting material 
p-TSA RT Starting material 
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With the Route A (Scheme 17) proving so challenging, we decided instead to perform 
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of the ketone at C6 (Scheme 17, Route B). 

 

The hydrogenolysis of benzyl β-ketoesters using palladium and a hydride source is a 

well-known reaction that results in the corresponding ketone (Scheme 55). There are 
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many examples of this type of reaction in the literature; the most common reaction 

conditions involve using hydrogen gas as the hydride source and catalytic amounts of 

Pd/C.39 

 

 
Reagents and Conditions: a) Pd0, hydride source. 

Scheme 55.  

 

Following route B, when (±)-10 was treated under hydrogenolysis conditions using 

palladium hydroxide on carbon and a hydrogen balloon, debenzylation and 

decarboxylation occurred, but led to a 1:1 mixture of diastereoisomers at the C7 

position, compounds (±)-81 and (±)-82 (Scheme 56).  

 

 
Reagents and Conditions: a) H2, Pd(OH)2/C, THF, 30 °C, >90%. 

Scheme 56.  

 

As described above, this is, again, due to the planarity of the enolate intermediate 

formed during the reaction. The hydrogenolysis results in the removal of the benzyl 

group, and concomitant loss of CO2 occurs via the enolate. Unfortunately, these 

diastereoisomers were inseparable on silica gel column chromatography. It was also 

found that the product was relatively unstable on both silica gel and alumina, and for 

this reason was used without purification in the following step. 
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were unable to isolate and characterize any product due to the compounds’ instability on 

both silica gel and alumina. When the reaction time was longer than 72 hours, complete 

decomposition occurred. Temperature also played an important role in this reaction; at 

first, the reaction was carried out at room temperature, which led to irreproducible 

results. As room temperature can vary we decided to remove this variable by keeping 

the reaction at 30 °C. Finally, we settled on the optimized conditions described in 

Scheme 56; using Pd(OH)2/C and under a hydrogen atmosphere using a balloon in 

anhydrous THF at 30 °C. 

 

When the benzyl ester group is removed, the resulting proton at the C7 position is 

relatively acidic as the 1,3-keto-amide moiety in the lactam ring has a pKa similar to 

that of a diester (pKa≈11-13). The compounds (±)-81 and (±)-82 can undergo 

enolization as observed in earlier steps of the synthesis, and this may account for the 

unstable nature of this compound.  While the outcome of the decarboxylation step was 

not the desired one, the reduction of the ketone moiety was attempted on the 

diastereoisomeric mixture in the hope that the corresponding products could be 

separated at a later stage.  

 

2.2.5.2.2 Reduction of the Diastereoisomeric Mixture, (±)-81 and 

(±)-82 
 

The reduction of the ketone at the C6 position proved much more challenging than 

expected. Reduction using sodium borohydride, sodium triacetoxyborohydride and 

sodium cyanoborohydride all proved unsuccessful under a variety of reaction 

conditions. These reactions either resulted in the recovery of the starting material, 

decomposition, complex mixtures or isolation of compounds closely related to the 

desired product. 
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Table 10. Investigation into the reduction of (±)-81 and (±)-82. 

 
Reducing Reagent Conditions Result 

NaBH4 EtOH, 0 °C, 30 min Complex mixture 
NaBH3CN MeOH, 0 °C – RT, 2 h S.M. 

NaBH(OAc)3 Acetic acid, RT, 1 h Unidentified product 
LAH THF, 0 °C, 2 h Decomposition 
LAH THF, −78 °C, 1-2 h Complex mixture 

DIBAL THF, 0 °C, 2 h Complex mixture 
DIBAL THF, −78 °C, 1-2 h Complex mixture 
Red-Al® CH2Cl2, −78 °C, 1-2 h Complex mixture 

 
1H NMR spectrum analysis of the starting material (±)-81 and (±)-82 showed the 

required doublet corresponding to the methyl group at C7, and the lack of this doublet 

peak was immediately clear from the 1H NMR spectrum analysis of the reaction 

mixtures that gave related compounds. The presence of a singlet peak corresponding to 

the methyl group indicated that the C7 position was now a quaternary centre again. 

 

Following the reported procedure, the diastereoisomeric mixture of (±)-81 and (±)-82 

was treated with sodium triacetoxyborohydride in acetic acid at room temperature for 

one hour.40 The desired compound was not isolated but a product closely related to the 

staring material was isolated. In an attempt to determine the structure of the product 

isolated, a combination of 1H NMR, 13C NMR, COSY, HSQC, DEPT and IR 

spectroscopic analysis was used. Unfortunately, the mass spectrometry data did not 

correlate to any predicted structure. Figure 9 below shows the 1H NMR spectrum of the 

compound isolated after reduction of (±)-81 and (±)-82 with sodium 

triacetoxyborohydride. 
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Figure 9.  1H NMR spectrum of the compound isolated after reduction of (±)-81 and 

(±)-82 with sodium triacetoxyborohydride.  

 

Analysis of the 1H NMR spectrum shows that the signal corresponding to the methyl 

group at the C7 position is no longer a doublet and is instead a singlet, indicating that 

the C7 carbon is now quaternary. The signals corresponding to the two methoxy groups, 

the iso-butyl group and the PMB group are all present. 

 

 
Reagents and Conditions: a) NaBH(OAc)3, acetic acid, RT, 1 h. 

Scheme 57. 
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At first, we proposed the structure to be (±)-83; all the signals in the 1H NMR spectrum 

appeared to correlate to this structure (Scheme 57). However, upon analysis of the IR 

spectrum, three carbonyl stretches similar to those in the starting material can be seen. 

A stretch at 3363 cm−1 also indicates the presence of a hydroxyl group. We know 

addition of the hydroxyl to the C7 position is not possible but also that if the ketone at 

C6 had been reduced, we would not see the carbonyl stretch in the IR spectrum or the 

ketone signal in the 13C NMR spectrum at 205.2 ppm. The same logic can be applied to 

the amide moiety; the enol (±)-84 cannot be the product as both the stretch in the IR 

spectrum and the peak in the 13C NMR spectrum are present. Unfortunately, the 

accurate mass spectrometry data did not correlate with any of the theorized structures 

and so, without X-ray crystallographic data, we cannot be certain of the structure of this 

compound. 

 

The use of lithium aluminium hydride (LAH) was also investigated. Although LAH is a 

stronger reducing reagent than the borohydrides mentioned above and can be used to 

reduce esters and amides as well as ketones, we hoped to control this by using low 

temperatures and monitoring the reaction by thin layer chromatography. Both LAH 

powder and LAH in solution (1 M in tetrahydrofuran) were used at temperatures of 0 °C 

and −78 °C. Unfortunately, neither resulted in successful isolation of the desired 

compound. Sodium bis(2-methoxyethoxy)aluminium hydride (Red-Al®) is comparable 

in reactivity to LAH and was also used in an attempt to reduce the ketone but proved 

equally unsuccessful. Di-isobutyl aluminium hydride (DIBAL) is most commonly used 

in the reduction of esters to aldehydes; however, as other reagents had failed, the 

reaction was repeated using a DIBAL solution (1 M in tetrahydrofuran). Unfortunately, 

this was again unsuccessful. In both the Red-Al® and DIBAL reactions, analysis of the 
1H NMR spectra of the reaction mixtures showed similarities to the starting material; 

however, we were unable to purify the compound to a sufficient standard to allow 

structure identification. No starting material was recovered from either reaction. 

 

2.2.5.2.3 The Noyori Asymmetric Hydrogenation Reaction 
 

As a final attempt to reduce the ketone, we employed a strategy using the Noyori 

catalyst for asymmetric hydrogenation. Noyori was joint winner of the Nobel Prize in 
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2001 for his work on asymmetric hydrogenation reactions. In 1987, Noyori reported the 

use of a ruthenium catalyst, RuCl2[(R)-BINAP], in the catalytic asymmetric reduction of 

methyl acetoacetate.41 

 

 
Scheme 58. The catalytic cycle for the Noyori asymmetric hydrogenation. 

 

There are many reported uses of the Noyori asymmetric hydrogenation reaction in total 

synthesis. In 1991, Robinson and co-workers reported the synthesis of the antibiotic (+)-

brefeldin A, wherein the β-ketoester 85 was converted to 86 in 96% yield and high 

enantiomeric ratio (99:1) using Noyori’s approach.42 

 

 
Reagents and Conditions: a) RuCl2·cyclooctadiene, BINAP, H2, MeOH, 50 psi, 80 °C, 6 h, 96%.  

Scheme 59. The synthesis of (+)-brefeldin A. 
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Since Noyori’s original report in 1987, the catalyst has been improved.43 We used the 

commercially available RuCl2[(R)−DM−BINAP][(R)−DAIPEN] catalyst (Figure 10). 

Treatment of (±)-81 and (±)-82 with potassium carbonate and 5 mol% of the ruthenium 

catalyst in a 5:1 mixture of iso-propanol and tetrahydrofuran did not yield the desired 

compound. This reaction was carried out under a hydrogen atmosphere using a balloon 

and also under a pressure of 3 bar, but both sets of reaction conditions led to the same 

products. 

 

 
Figure 10. The RuCl2[(R)−DM−BINAP][(R)−DAIPEN] catalyst. 

 

After purification using silica gel column chromatography two compounds were 

isolated. Our proposed structures for the first eluting compound are either (±)-87 or (±)-

88. The proposed structures have been deduced using NMR, IR and MS data analysis as 

we were unable to obtain any crystals suitable for X-ray crystallographic analysis. IR 

spectrum analysis showed two absorptions corresponding to carbonyl stretches; one at 

1758 cm−1, slightly higher than the characteristic ester or ketone stretches, and one at 

1670 cm−1 representing the amide; there was no signal in the hydroxyl region. The mass 

spectrometry data suggest a possible formula for [M+H]+ as [C21H29NO6+H]+ with mass 

392.21. Both the proposed structures (±)-87 and (±)-88 match this data. 
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Reagents and Conditions: a) RuCl2[(R)−DM−BINAP][(R)−DAIPEN] (5 mol%), IPA:THF (5:1), 3-6 

days.  
Scheme 60.  

 

Unfortunately, we are unable to give a definitive mechanism as to how this reaction 

might proceed to give either of the proposed compounds (±)-87 and (±)-88. In both 

suggested structures, it appears first that the ester group at the C5 position has migrated 

to the C6 position, and secondly that the iso-propanol has acted as a nucleophile in 

some way. 1H NMR spectrum analysis (Figure 11) shows that the splitting pattern 

corresponding to the CH2 of the iso-butyl is now two sets of multiplets, this presumably 

arising from coupling with each other, the CH of the iso-butyl and one other proton (the 

new ring proton at the C5 position). Analysis of the COSY H-H spectrum shows a 

correlation between the multiplets corresponding to the methylene proton and a single 

proton at around 4 ppm; the splitting pattern for this proton is a doublet of doublets and 

represents the ring proton at the C5 position. The signal corresponding to the methyl 

ester is not present, and signals corresponding to the two methyl groups (two doublets at 

around 1.25 ppm) and the methine unit (a multiplet at around 5 ppm) of an iso-propoxy 

moiety are now present. 
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Figure 11.  1H NMR spectrum of the first eluting compound isolated after reduction of 

(±)-81 and (±)-82 with the Noyori catalyst. 

 

The second compound isolated from this reaction was an interesting discovery. The data 

greatly resembled those of the compound isolated from the reduction of (±)-81 and (±)-

82 with sodium triacetoxyborohydride, suggesting that the products from these two 

separate reactions could be diastereoisomers. The IR spectrum showed the same three 

carbonyl and hydroxyl signals at similar frequencies, the mass spectrometry data for 

both reactions showed [M+H]+ peaks at 364.17, and both the 13C NMR spectra showed 

a characteristic ketone signal. A comparison of the 1H NMR spectra for both 

compounds (Figure 12) shows just how similar they are, the only significant difference 

is the peak for the methylene of the iso-butyl group (in the region of 1.9 – 2.3 ppm): 

instead of being two clearly separated doublet of doublets peaks, as the product 

obtained from the sodium triacetoxyborohydride reaction, in the compound isolated 

from the Noyori reaction, these peaks have coalesced (highlighted in Figure 12). The 

data do not give us enough information to assign a structure to this compound. 
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Figure 12.  A comparison between the 1H NMR spectrum after reduction of (±)-81 and 

(±)-82 with 1: sodium triacetoxyborohydride and 2: the Noyori catalyst. 

 

 

2.2.5.2.4 Synthesis of the Thiomethyl Derivative 
 

With the reduction of (±)-81 and (±)-82 proving unsuccessful under a range of 

conditions, a new approach was investigated. Both Corey’s and Pattenden’s syntheses 

of lactacystin are reviewed in detail above (Chapter 1): a thiomethyl derivative is 

employed in their synthetic approaches.2, 40 Corey describes the use of a thiomethyl 

group as both a blocking group and a group to induce stereoselectivity in the 

hydroxymethylation of 89 (Scheme 61). Desulfurization of 91 was achieved in high 

stereoselectivity (10:1) by treatment with Raney nickel. 
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Reagents and Conditions: a) 1. DBU, THF, −78 °C, then aq. CH2O, −78 °C, 0.5 h, 90%; 2. 

NaBH(OAc)3, HOAc, 23 °C, 1 h, recrystallization, 95%, 99% ee; b) 1. PivCl, pyridine, 23 °C, 10 h, 85%; 

2. TBSOTf, 2,6-lutidine, 23 °C, 12 h, 98%; 3. NaOMe, MeOH, 23 °C, 5 h, 92%; c) 1. Raney Ni, EtOH, 0 

°C, 1 h, 82%; 2. Dess-Martin reagent, CH2Cl2, 23 °C, 1 h, 95%. 
Scheme 61. 

 

Pattenden reported the isolation of compound 93 as an inseparable mixture of 

diastereoisomers in a 2:1 ratio (Scheme 62). Interestingly, Pattenden does not mention 

if attempts were made to reduce the ketone 93, and instead uses the findings described 

by Corey to improve the diastereoisomeric ratio. 

 

Reagents and Conditions: a) p-MeC6H4SO2Me, Et3N, CH2Cl2, RT, 78%; b) Zn(BH4)2, (4.4 M in THF), 0 

°C, 79%. 
Scheme 62.  

 

In Pattenden’s procedure compound 93 was treated with S-methyl-p-

toluenethiosulfonate 96 and triethylamine resulting in the formation of a mixture of 

diastereoisomers at the C7 position in a 7:1 ratio; compound 94 was isolated as the 

major diastereoisomer after silica gel column chromatography. Compound 94 was 

reduced using zinc borohydride to give 95 as a single diastereoisomer. Then, following 

the procedure reported by Corey, the thiomethyl group was removed in a stereoselective 

manner using Raney nickel. We hoped to employ the same strategy in our synthetic 

route. 
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Reagents and Conditions: a) CH2Cl2, I2, RT, quant. 

Scheme 63.  

 

Thus, S-methyl-p-toluenethiosulfonate 96 was synthesized following Fujiki’s procedure 

(Scheme 63).44 Treatment of the diastereoisomeric mixture of (±)-81 and (±)-82 with 

(S)-methyl-p-toluenethiosulfonate and triethylamine in dichloromethane resulted in the 

isolation of compounds (±)-97 and (±)-98 as an inseparable mixture of diastereoisomers 

in a 2:1 ratio and 47% yield after silica gel column chromatography. Using a NOESY 

NMR spectrum analysis, compound (±)-98 was found to be the major isomer. While 

Pattenden was able to improve the diastereoisomeric ratio from 2:1 to 87:13, we were 

not as fortunate.  

 

 
Reagents and Conditions: a) p-MeC6H4SO2Me, Et3N, CH2Cl2, RT, (±)-97 and (±)-98: 47%. 

Scheme 64. 

 

 
Figure 13. NOESY spectrum analysis interpretation to assign relative stereochemistry 

to the inseparable mixture of (±)-97 and (±)-98. 
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was used. 1H NMR spectrum analysis of the mixture shows a singlet peak at 1.61 ppm 

corresponding to the methyl group at the C7 position, indicating that the C7 carbon is a 

quaternary centre. IR analysis shows absorptions at 3355, 1783, 1747 and 1684 cm-1 

indicating the presences of a hydroxyl group and three carbonyl groups. Unfortunately 

we were unable to assign structures using the data obtain. 

 

2.2.5.2.4.1 Reduction of the Thiomethyl Derivative 
 

Pattenden reported the use of zinc borohydride to reduce the ketone moiety in 94 to give 

the corresponding alcohol 95 in 79% yield (Scheme 62).40 In this case, the 

stereoselectivity is achieved by chelation of the zinc to the oxygen atom of the ketone 

and the sulfur atom of the thiomethyl group resulting in hydride attack from the 

opposite side to the thiomethyl group, i.e. the least hindered face.  

 

Scheme 65 shows how chelation can alter the stereochemistry of the reduction product. 

The chelation of the zinc centre to the oxygen and sulfur atoms causes rotation, and, 

therefore, changes the conformation of the starting material. This conformational 

change means the least hindered face, and so the angle of attack, is now on the opposite 

side with respect to the non-chelated model.  
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Although there are many reports of the use of zinc borohydride for stereoselective 

reduction, it is not a common, commercially available reagent.45 Zinc borohydride is 

prepared from commercially available zinc chloride and sodium borohydride in diethyl 

ether. 

 

In contrast, Corey reported the reduction of ketone 89 (after hydroxymethylation) using 

sodium triacetoxyborohydride in acetic acid to give 90 as a single diastereoisomer in 

95% yield.2 The reduction was selective without the need for zinc borohydride. Indeed, 

chelation control is an important factor in selective reductions for acyclic substrates and 

cyclic substrates with similar sized substituents. In Corey’s case, the substituents’ size 

difference is sufficient to induce the desired outcome. As Corey had shown the 

reduction was selective using sodium triacetoxyborohydride, and zinc borohydride is 

not commercially available, we attempted the ketone reduction of the mixture of (±)-97 

and (±)-98 under optimized reduction conditions described above using sodium 

borohydride in ethanol (section 2.2.5.1.1). 

 

 
Scheme 66. 

 

As the starting material is a mixture of two racemic diastereoisomers, if the reduction is 

not selective, a possible four racemic products could be formed (Scheme 66). 1H NMR 

spectrum analysis of the reaction mixture showed the presence of four compounds, in a 

6:6:4:1 ratio approximately. Fortunately, the reduction was successful, and selective, 

and after silica gel column chromatography, only two reduction products, compounds 

(±)-99 and (±)-100, were isolated in 17% and 25% yield, respectively. The other two 

compounds observed in the 1H NMR spectrum of the reaction mixture were the two 
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starting material diastereoisomers, isolated as an inseparable diastereoisomeric mixture 

of (±)-97 and (±)-98 in 23% yield. 

 

 
Reagents and Conditions: a) NaBH4, EtOH, −10 °C, 30 min, (±)-99: 17%, (±)-100: 25% and (±)-97 and 

(±)-98: 23%. 
Scheme 67. 

 

The ratio of diastereoisomers in the starting material (2:1) compared to the ratio of 

recovered starting material diastereoisomers after the reaction (6:1) gives us information 

on the rate of reduction: the minor diastereoisomer is reacting faster than the major 

diastereoisomer. 

 

 
Figure 14. NOESY spectrum analysis interpretation of (±)-99 and (±)-100. 

 

The relative stereochemistry shown in compounds (±)-99 and (±)-100 was assigned 

from NOESY NMR spectrum analysis (Figure 14). Unfortunately, we were unable to 

obtain crystals of these compounds suitable for X-ray crystallography. 
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2.2.5.2.4.2 Desulfurization of the Thiomethyl Derivative 
 

Corey reported the selective desulfurization of 91 using Raney nickel in ethanol at 0 °C 

to give 92 (Scheme 68).2 The product 92 displays opposite configuration of the methyl 

group at the C7 position to that observed in the starting material. It has been suggested 

that the mechanism for desulfurization using Raney nickel may proceed through a 

radical intermediate. This difference in configuration at the C7 position may be due to 

equilibration during the radical process. Due to the structural and configurational 

similarities between compound (±)-99 and Corey’s compound 91, we hoped that a 

similar equilibration process may occur. 

 

 
Reagents and Conditions: a) 1. Raney Ni, EtOH, 0 °C, 1 h, 82%; 2. Dess-Martin reagent, CH2Cl2, 23 

°C, 1 h, 95%. 
Scheme 68. 

 

Unfortunately, treatment of (±)-99 with Raney nickel in ethanol at 0 °C did not give the 

desired product (±)-11, and the starting material was not recovered either. The 1H NMR 

spectrum showed the peak corresponding to the thiomethyl group at 2.16 ppm still 

present. 

 

 
Reagents and Conditions: a) Raney Ni, EtOH, reflux, 4 h. 

Scheme 69. 
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When (±)-99 was treated with Raney nickel in ethanol and heated under reflux for 4 h, 
1H NMR spectrum analysis of the product isolated after silica gel chromatography 

appeared to show the desired compound (±)-11 alongside diastereoisomer (±)-101 as an 

inseparable mixture. These compounds were observed in a 3:1 ratio; however, we were 

unable to determine which diastereoisomer is the major product. A NOESY NMR 

experiment was attempted to assign relative stereochemistry; however, no correlations 

were observed. The diastereoisomeric ratio is, however, large enough to enable us to 

distinguish between the diastereoisomers and assign the 1H NMR spectrum of the major 

product. We were confident that desulfurization had been successful as the 1H NMR 

spectrum clearly showed the signal corresponding to the methyl group at the C7 

position as a doublet, coupling with the new ring proton at the C7 position. The mass 

spectrometry data correlates to the desired product (±)-11 with the formula for [M+H]+ 

as [C19H25NO5+H]+ with mass 350.20. Using a combination of 1H, COSY, 13C, DEPT 

and HSQC NMR, IR and MS data analyses, we believe the desired compound, Corey’s 

intermediate (±)-11, was successfully synthesized. Unfortunately, we were unable to 

separate the diastereoisomers. Although (±)-11 is an advanced intermediate synthesized 

by Corey, unfortunately, no data for the compound was reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 	 Results	and	Discussion	
	

	 110	

2.3 Synthesis of the Serine Analogue 
 

2.3.1  Proposed Synthetic Route Towards Lactacystin  
 

At the same time as work was being carried out on the leucine analogue, the synthesis 

using a different amino acid starting material, L-serine, was also being investigated. In 

comparison to the leucine derivative, when using serine, the hydroxyl functionality at 

C9 found in lactacystin is present from the beginning. The hydroxyl functionality was 

proven to be very important in structure activity relationship (SAR) studies, and is 

found in many of the lactacystin analogues, for example the salinosporamides and the 

cinnabaramides (Chapter 1). We hoped that, by using serine, our synthetic route would 

allow ready access to these natural products and possible novel analogues with groups 

tailored to give high biological activity. 

 

Using L-serine methyl ester hydrochloride 102 as the starting material, we hoped to 

synthesize the advanced intermediate 90, reported by Corey in 1998, using our route 

developed for the leucine analogue (Scheme 70).2 

 

 
Scheme 70. 
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2.3.2 Synthesis from L-Serine 
 

2.3.2.1 Protection of the Amine with 4-Methoxybenzaldehyde 
 

Esterification of commercially available L-serine with acetyl chloride in methanol gave 

L-serine methyl ester hydrochloride in quantitative yield, without purification. 
 

 
Reagents and Conditions: a) Acetyl chloride, MeOH, reflux, quant.; b) 1. 4-Methoxybenzaldehyde, 

acetic acid, toluene, reflux; 2. NaBH3CN, acetic acid, MeOH. 
Scheme 71. 

 

Using the optimized conditions described above (section 2.2.2), L-serine methyl ester 

hydrochloride was treated with 4-methoxybenzaldehyde and acetic acid in toluene 

under reflux using a Dean-Stark apparatus. Unfortunately, the reaction was not 

successful, decomposition occurred and the imine was not observed when the 1H NMR 

spectrum of the reaction mixture was analysed. L-Serine methyl ester hydrochloride is 

not soluble in toluene and decomposes when heated under reflux in toluene. 

 

 
Reagents and Conditions: a) 4-methoxybenzaldehyde, NaBH3CN, acetic acid, MeOH, 103: 4%. 

Scheme 72. 
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A one-pot procedure was attempted whereby treatment of L-serine methyl ester 

hydrochloride with 4-methoxybenzaldehyde, sodium cyanoborohydride and acetic acid 

in methanol resulted in the formation of three products. The major products observed 

were 4-methoxybenzylalcohol 110 and 1-methoxy-4-(methoxymethyl)benzene 111. The 

desired compound 103 was the minor product, isolated in 4% yield. Unlike the leucine 

derivative, the by-products could be separated from the desired compound 103 using 

silica gel column chromatography. 

 

In 1993, Yoo and co-workers reported the synthesis of PMB protected L-serine methyl 

ester through a one-pot procedure using triethylamine, 4-methoxybenzaldehyde, 

hydrogen and palladium on carbon in methanol.46 Following their procedure, compound 

103 was isolated in 64% yield. As well as increasing the yield of the desired product, 

the only by-product observed in this reaction was 4-methoxybenzylalcohol 110. 

 

 
Reagents and Conditions: a) 4-methoxybenzaldehyde, triethylamine, H2, Pd/C, MeOH, 103: 64%. 

Scheme 73. 

 

Attempts were made to optimize the reaction. The by-product (4-

methoxybenzylalcohol) is formed when full conversion to the imine intermediate is not 

achieved; if full conversion can be achieved (as observed in the case of the leucine 

analogue), the yield of 103 should increase. L-serine methyl ester hydrochloride was 

treated with triethylamine in methanol in the presence of sodium sulfate. After stirring, 

the sodium sulfate was filtered off and the solvent removed under reduced pressure 

before analysis of the resulting material. This reaction was investigated under a range of 

conditions: increasing the reaction time, the use of 4 Å molecular sieves instead of 

sodium sulfate, and changing the solvent to dichloromethane. Under every set of 
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reaction conditions attempted, conversion to the imine was not complete according to 
1H NMR spectrum analysis of the crude reaction mixture. 

 

2.3.2.2 Synthesis of the Dieckmann Cyclization Precursor 
 

2.3.2.2.1 Peptide Coupling to the PMB Protected Amine 
 

Applying the optimized coupling conditions described above (section 2.2.2), compound 

103 was treated with potassium benzyloxycarbonyl acetate 16, EDAC·HCl, DMAP and 

NMM in dichloromethane. Two compounds were isolated from the reaction after silica 

gel column chromatography. The desired compound 104 was isolated in a low yield 

(14%). Compound 112, the result of coupling occurring at both the amine and hydroxyl 

moieties, was isolated as the major product in 31% yield. This result is neither 

unprecedented nor unexpected; there are many reports in the literature of the coupling 

of a carboxylic acid to a hydroxyl moiety in the presence of carbodiimide coupling 

reagents.47 

 

 
Reagents and Conditions: a) potassium benzyloxycarbonyl acetate 16, EDAC·HCl, DMAP, NMM, 

CH2Cl2, 104: 14%, 112: 31%. 
Scheme 74.  

 

To prevent coupling to the hydroxyl moiety, a protection strategy was needed. Previous 

work in the group described the attempt at benzyl protection, however, this was found 

to be unsuccessful, and treatment of 103 with benzylbromide and potassium carbonate 

in DMF resulted in the formation of the tertiary amine as the only product. 
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Reagents and Conditions: a) benzylbromide, potassium carbonate, DMF. 

Scheme 75.  

 

As described above in our work on the leucine analogue, the most common reagents 

used to protect hydroxyl moieties are silyl reagents. A possible problem with this route 

is the use of TBAF during the Dieckmann cyclization step (competing reactions 

between removal of the protecting group and cyclization may occur), but we still felt it 

was a worthwhile route to investigate. 

 

 
Reagents and Conditions: a) TIPS-Cl, imidazole, DMF, reflux, 90%; b) potassium benzyloxycarbonyl 

acetate 16, EDAC·HCl, DMAP, NMM, CH2Cl2, 91%. 
Scheme 76.  

 

Treatment of 103 with TIPS-Cl and imidazole in DMF under reflux gave compound 

113 in 90% yield. Subsequent peptide coupling, under optimized conditions, gave the 

tertiary amide 114 in 91% yield. None of the double-coupled product 112 was observed. 
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2.3.2.2.2 Peptide Coupling to L-Serine Methyl Ester Hydrochloride 
 

 
Reagents and Conditions: a) potassium benzyloxycarbonyl acetate 16, EDAC·HCl, DMAP, NMM, 

CH2Cl2, 115: 8%, 116: 52%. 
Scheme 77.  

 

The coupling of 16 to the unprotected L-serine methyl ester hydrochloride was also 

investigated. When L-serine methyl ester hydrochloride was subjected to optimized 

peptide coupling conditions, compounds 115 and 116 were isolated in 8% and 52% 

yields, respectively. Interestingly, the major product of this reaction is the opposite to 

that observed above. Coupling occurs preferentially to the nitrogen with only small 

amounts of the bis-coupled compound observed; this may be due to the absence of the 

PMB group making the nitrogen atom much more reactive. 

 

2.3.2.3 The Dieckmann Cyclization  
 

  
Reagents and Conditions: a) TBAF, MeI, THF; b) 1. TBAF, Et2O, RT, overnight; 2. MeI, THF, RT, 

overnight. 
Scheme 78. 

 

Subjecting compound 114 to the optimized one-pot conditions for the Dieckmann 
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also attempted under the original two-step conditions reported by Page, however, it was 

again unsuccessful, and no starting material or desired product was isolated from the 

reaction. 

 

2.3.2.4 The Oxazolidine Approach 
 

 
Scheme 79. 

 

In conjunction with the work described above investigation into a route to 

simultaneously protect the amine and hydroxyl moieties was carried out. We hoped that 

forming the oxazolidine intermediate would not only reduce the number of steps in our 

synthetic route but that it might also have an effect on the ratio of diastereoisomers 

formed in the Dieckmann cyclization. 

 

Following the method reported by Siciliano in 2014, compound 102 was treated with 

camphorsulfonic acid (CSA) and 2,2-dimethoxypropane (DMP) in toluene under 

reflux.48 Unfortunately, this reaction proved unsuccessful and the starting material was 

recovered. Compound 116 was subjected to the same conditions and, again, only 

starting material was recovered. It was unclear as to why this reaction was not 

successful- but it may be due to the unstable nature of the oxazolidine. 
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Reagents and Conditions: a) CSA, DMP, toluene, reflux, 117: 97%. 

Scheme 80. 

 

Compound 103 was subjected to the same conditions and, surprisingly, gave 117 in 

97% yield. This compound was not purified due to its instability on silica gel. The 1H 

NMR spectrum is relatively clean for this compound, however, decomposition occurs 

quickly as IR spectrum analysis show stretches corresponding to the starting material as 

well as the product, and mass spectrometry data analysis shows not only the product 

peak for [M+H]+ at 280.15 but also the starting material peak for [M+H]+ at 240.12. 

Although it is interesting that this reaction worked, the product was not of any use in 

our synthetic approach so we did not continue investigations any further. 
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2.3.3 Synthesis from O-Benzyl-L-Serine 

 

2.3.3.1 Protection of the Amine 
 

As we had predicted the possibility of competing reactions during the cyclization of the 

TIPS protected compound 114, we obtained commercially available O-benzyl-L-serine 

to use as the starting material. Esterification of O-benzyl-L-serine 118 with acetyl 

chloride in methanol gave the O-benzyl-L-serine methyl ester hydrochloride salt 119 in 

quantitative yield without purification. 

 

 
Reagents and Conditions: a) Acetyl chloride, MeOH, reflux, quant. 

Scheme 81. 

 

With 119 in hand, protection of the amine moiety was the next step in the synthesis. As 

described above, the O-benzyl-L-serine derivative was also unstable under reflux, and, 

due to the presence of the benzyl group, the protection method reported by Yoon using 

hydrogenation conditions could not be used. 

 

 
Reagents and Conditions: a) 4-Methoxybenzaldehyde, triethylamine, NaBH3CN, MeOH. 

Scheme 82. 
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Treatment of 119 with triethylamine, 4-methoxybenzaldehyde and sodium 

cyanoborohydride in methanol did not afford the desired product. The major product 

isolated from the reaction mixture was p-methoxybenzylalcohol, a by-product formed 

as a result of the reduction of the 4-methoxybenzaldehyde starting material. 

 

 
Reagents and Conditions: a) 4-Methoxybenzyl chloride, potassium carbonate, CH3CN, 45%. 

Scheme 83. 

 

With the protection of the amine group proving much more challenging than expected, 

we decided to investigate a different route. Treatment of 119 with 4-methoxybenzyl 

chloride and potassium carbonate in acetonitrile gave compound 120 in 45% yield. 

Unfortunately, as well as being low yielding, this reaction was not easily reproducible.49 

 

 
Reagents and Conditions: a) 4-Methoxybenzaldehyde, triethylamine, NaBH4, MeOH. 

Scheme 84. 

 

As the PMB protection of 119 was proving difficult, we considered inverting the order 

of the reactions; i.e. attempting the protection before the esterification. Treatment of O-

benzyl-L-serine 118 with 4-methoxybenzaldehyde, triethylamine and sodium 

borohydride in methanol resulted in the formation of a colourless solid. Interestingly, 

this solid was insoluble in all common organic solvents. 
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2.3.3.2 Synthesis of the Dieckmann Cyclization Precursor 
 

 
Reagents and Conditions: a) potassium benzyloxycarbonyl acetate 16, EDAC·HCl, DMAP, NMM, 

CH2Cl2, 69%. 
Scheme 85.  

 

With PMB protection proving so difficult we decided to attempt the peptide coupling 

using O-benzyl-L-serine methyl ester hydrochloride as the starting material. Subjecting 

119 to our optimized conditions gave 121 in 69% yield. 

 

In comparison to the Dieckmann cyclization precursor of the leucine derivative 8, 

rotamers were not observed in compound 121; this is probably due to the lack of the 

PMB group, allowing free rotation around the amide C-N bond. 

 

2.3.3.3 The Dieckmann Cyclization 
 

 
Reagents and Conditions: a) TBAF, MeI, THF, 30%. 

Scheme 86. 
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When the O-benzyl-L-serine derivative 121, without the PMB protecting group, was 

subjected to optimized cyclization conditions, the desired compound was not observed 

and compound 122 was isolated in 30% yield. Deprotonation of the acidic malonyl-type 

protons (pKa≈13) occurs as expected and, instead of the desired intramolecular 

cyclization and alkylation reaction, alkylation at this position occurred twice to give the 

quaternary centre due to the excess of methyl iodide present in the reaction. 

 

This result may be due to reduced reactivity, or it is possible that the sizes of the 

functional groups present are preventing cyclization in that the groups are too big and 

cyclization is not favourable. 
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2.4 Synthesis of the Valine Analogue 

 

2.4.1 Proposed Synthetic Route Towards a Novel Analogue of 

Lactacystin 
 

As one of the aims of this project is to design a synthetic route that allows ready access 

to both natural and novel analogues of lactacystin, L-valine methyl ester hydrochloride 

was also used as a starting material. Valine is similar in structure to leucine; it does not 

have the added hydroxyl functionality that played a significant role in the complications 

in the synthesis of the serine analogue. 

 

 
Scheme 87. 
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2.4.2 Synthesis of the Dieckmann Cyclization Precursor 
 

Esterification of commercially available L-valine with acetyl chloride in methanol gave 

L-valine methyl ester hydrochloride 123 in quantitative yield, without purification. As 

described above, L-valine has a similar structure to L-leucine, and it behaves in a 

chemically similar manner to L-leucine, unlike the serine derivatives. 

 

 
Reagents and Conditions: a) Acetyl chloride, MeOH, reflux, quant.; b) 1. 4-Methoxybenzaldehyde, 

acetic acid, toluene, reflux, quant.; 2. NaBH3CN, acetic acid, MeOH, 74%. 
Scheme 88. 

 

Using the optimized conditions described above in our investigations of the leucine 

analogue (section 2.2.2), L-valine methyl ester hydrochloride 123 was treated with 4-

methoxybenzaldehyde and acetic acid then heated under reflux in toluene using a Dean-

Stark apparatus. Full conversion to the imine was achieved, and reduction was 

performed using sodium cyanoborohydride. The desired compound 124 was isolated in 

74% yield. 

 

 
Reagents and Conditions: a) Potassium benzyloxycarbonyl acetate 16, EDAC·HCl, DMAP, NMM, 

CH2Cl2, 66%. 
Scheme 89.  
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Treatment of 124 with potassium benzyloxycarbonyl acetate 16, EDAC·HCl, DMAP 

and NMM in dichloromethane under optimized conditions gave compound 125 after 

silica gel column chromatography in 66% yield, a comparable yield to that achieved 

when using the leucine derivative (72%). 

 

As was the case with the leucine derivative, room temperature 1H NMR spectrum 

analysis shows the presence of two rotamers. A variable-temperature (VT) 1H NMR 

experiment was carried out in deuteriated dimethylsulfoxide (d6-DMSO) at 25, 75 and 

100 °C (Figure 15). Analysis of the resulting spectra does not show a significant 

difference between the spectra at 25 °C and 75 °C, but at 100 °C the peaks are clearly 

beginning to coalesce. 

 

 
 

Figure 15. Variable temperature 1H NMR spectra of compound 125 at 1: 25 °C, 2: 75 

°C and 3: 100 °C. 
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2.4.3 The Dieckmann Cyclization 
 

 
Reagents and Conditions: a) TBAF, MeI, THF, (±)-132: 25%, (±)-126: 41%. 

Scheme 90. 

 

Subjecting 125 to optimized one-pot tandem Dieckmann cyclization/methylation 

(section 2.2.3) resulted in the formation of two diastereoisomers. Though we fully 

expected racemization to occur at this point and know (due to this racemization) it is not 

necessary to separate the diastereoisomers for the next step in our synthesis, the 

diastereoisomers were separated using silica gel column chromatography for analytical 

purposes. Compounds (±)-132 and (±)-126 were obtained in 25% and 41% yields, 

respectively. 1H NMR spectrum analysis of the reaction mixture before separation 

shows a 2:1 diastereoisomeric ratio; this reaction thus appears to be more 

diastereoselective than that of the leucine derivative. This increased selectivity is 

probably a result of the iso-propyl moiety at C5 in the product; the steric bulk of the iso-

propyl group is closer to the ring than that of the iso-butyl group, therefore increasing 

steric hindrance on the top face. As expected, specific rotation measurements of each 

diastereoisomer confirmed that racemization had occurred at this point. 
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2.5 Conclusion 
 

One of the aims of our work was to design a synthetic approach that can be applied to 

the synthesis of lactacystin and its analogues. We began our synthesis from a 

commercially available amino acid derivative (either from L-leucine, L-serine or L-

valine); key steps in our approach included a tandem Dieckmann cyclization/alkylation 

to form the lactam ring and install the C7 functionality, and a Mander’s acylation to 

form the C5 quaternary centre. 

 

Our work was mainly focused on the use of the L-leucine derivative (L-leucine methyl 

ester hydrochloride) as the starting material, which would lead to the formation of 

deoxylactacystin. The Dieckmann cyclization precursor was synthesized following 

protection of the amine using 4-methoxybenzaldehyde followed by coupling to 

potassium benzyloxycarbonyl acetate using the carbodiimide reagent, N-(3-

dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDAC·HCl). 

 

The lactam core (common throughout the lactacystin analogues) was formed by a 

tandem Dieckmann cyclization/alkylation reaction. Previous work in the Page group 

described a two-step procedure, wherein cyclization occurs first using TBAF in diethyl 

ether to form the tetrabutylammonium salt, followed by the methylation step in 

tetrahydrofuran to install the C7 functionality. We were able to improve on this and 

complete the step as a one-pot procedure with no notable loss in yield. Disappointingly, 

the reaction did not appear to be diastereoselective and it appeared that racemization 

had also occurred during this step. 

 

Formation of the C5 quaternary centre was achieved using a Mander’s acylation by 

treatment of (±)-9 and/or (±)-34 with methylcyanoformate and LiHMDS. This reaction 

is completely stereoselective and addition occurs at the C5 position to the opposite side 

of the C7 benzyl ester. 
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Reagents and Conditions: a) 1. 4-Methoxybenzaldehyde, acetic acid, toluene, reflux, 100%; 2. 

NaBH3CN, acetic acid, MeOH, 93%; b) Potassium benzyloxycarbonyl acetate 16, EDAC·HCl, DMAP, 

NMM, CH2Cl2, 72%; c) TBAF, MeI, THF, (±)-34: 22%, (±)-9: 39%; d) LiHMDS, DMPU, methyl 

cyanoformate, THF, −78 °C, 86%. 
Scheme 91. 

 

At this point, the synthesis could be completed using two possible routes. Route A 

consists of the reduction of the ketone at the C6 position of (±)-10 to give (±)-51, 

followed by decarboxylation of the benzyl ester moiety at the C7 position. When (±)-51 

was treated under hydrogenolysis conditions, debenzylation occurred resulting in the 

carboxylic acid (±)-57. Many attempts were made to remove the carboxylic acid 

moiety, including a radical-mediated approach involving the synthesis of an acyl 

selenide, the Barton decarboxylation, the Krapcho decarboxylation and an acid-

catalysed decarboxylation; unfortunately, none proved successful.  

 

Route B inverted the order of the reactions; decarboxylation under hydrogenolysis 

conditions followed by the reduction of the ketone moiety at the C6 position. Treatment 

of (±)-10 under hydrogenolysis conditions resulted in debenzylation with concomitant 

decarboxylation to give (±)-81 and (±)-82 as a mixture of inseparable diastereoisomers 

in a 1:1 ratio. All the attempts to reduce the ketone moiety at the C6 position proved 

unsuccessful. A strategy using a thiomethyl derivative reported by Corey in 1998 was 

then employed. Following Corey’s method, we successfully synthesized the desired 

advanced intermediate (±)-11, however, it was isolated alongside diastereoisomer (±)-

101 as an inseparable mixture in a 3:1 ratio. 
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Reagents and Conditions: a) NaBH4, EtOH, −10 °C, 30 min, 52%; b) H2, Pd(OH)2/C, THF, quant.; c) 

H2, Pd(OH)2/C, THF, 30 °C, >90%; d) p-MeC6H4SO2Me, Et3N, CH2Cl2, RT, (±)-97 and (±)-98: 47%; e) 

NaBH4, EtOH, −10 °C, 30 min, (±)-99: 17%, (±)-100: 25%; f) Raney Ni, EtOH, reflux, 4 h. 
Scheme 92. 

 

 

 

N

CO2Bn
MeO

PMB

O
MeO2C

(±)-10

N

CO2Bn
MeHO

PMB

O
MeO2C

(±)-51

N

CO2H
MeHO

PMB

O
MeO2C

(±)-57

N

O

PMB

OH
MeO2C

N

O

PMB

O
MeO2C

Me Me

(±)-81 (±)-82

N

O

PMB

O
MeO2C

Me
SMe

N

O

PMB

O
MeO2C

Me
SMe

(±)-97 (±)-98

N

HO

PMB

O
MeO2C

Me
SMe

H

N

HO

PMB

O
MeO2C

Me
SMe

H

+

(±)-99 (±)-100

c

b

a

d

e

f

N

HO

PMB

O
MeO2C

Me

(±)-11
(±)-101



	 	 Results	and	Discussion	
	

	 129	

Using L-serine methyl ester hydrochloride as the starting material proved much more 

challenging. The extra hydroxyl functionality present in serine appears to affect the 

chemical behaviour of this compound. It does not have the same properties as the L-

leucine derivative; for example, it is not soluble in the same solvents and so, from the 

start we had to alter our reaction conditions to compensate for this. We used L-serine 

methyl ester hydrochloride and, because the free hydroxyl group was causing problems, 

O-benzyl-L-serine methyl ester hydrochloride as starting materials. We have not yet 

been able to successfully synthesize the lactam core from the L-serine derivatives. 

 

Fortunately, our preliminary work using L-valine methyl ester hydrochloride as the 

starting material to synthesize a novel lactacystin analogue is proving promising. The L-

valine derivative appears, at present, to behave in a similar way to the L-leucine 

derivative. Following the same protection, coupling and cyclization steps, the 

substituted lactam core has been successfully synthesized. 

 

2.6 Recommended Future Work 
 

Work in the immediate future should focus on the stereoselective desulfurization of 

compound (±)-99. As the reaction was carried out under reflux, we would hope that by 

reducing the temperature, the stereoselectivity could be controlled. Once desulfurization 

is successful the synthetic route should be applied to the L-valine derivative to 

synthesize a novel lactacystin analogue. 

 

As the use of serine as the starting material means the hydroxyl functionality found in 

lactacystin is present from the start; in theory this should reduce the overall number of 

steps require in the total synthesis when compared to using the leucine derivative. 

Cyclization of the serine derivative to form the lactam core should be investigated 

further. 

 

The tandem Dieckmann cyclization/alkylation step could be investigated further still by 

changing the alkylating agent. This would allow ready access to a variety of analogues. 

If cyclization using different alkylating agents can be achieved using the L-leucine 

derivative, and successful cyclization of the serine derivative is achieved, this 
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methodology can then be applied to the L-serine derivative to allow ready access to a 

range of analogues. Scheme 93 details how the use of different alkylating agents results 

in the formation of the lactam core where the functionality at C7 corresponds to 

different analogues, for example by using ethyl iodide, the C7 group is now that found 

in salinosporamide B. 

 

 
Scheme 93. 
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3.0 Experimental 
 

3.1 General Experimental 
 

3.1.1 Preparation of Reagents, Solvents and Glassware 

 

Commercially obtained reagents were used as supplied, without further purification, and 

stored in accordance to the supplier’s recommendations, unless otherwise stated.  

 

Solvents used for reactions and column chromatography were purified as required. 

Petroleum ether 40/60 (the fraction which boils between 40 °C and 60 °C) was distilled 

before use. Tetrahydrofuran and diethyl ether were dried over the sodium/benzophenone 

ketyl radical, then distilled. Dichloromethane was dried over calcium chloride and then 

distilled. Toluene was dried over sodium and then distilled. All other solvents were used 

as supplied from the manufacturer. 

 

For reactions performed under anhydrous conditions, glassware was dried in the oven at 

150 °C before being cooled in a desiccator over silica gel. Glassware was sealed with a 

septum cap before being flushed with nitrogen. Solvents used in anhydrous reactions 

were freshly prepared each time and added using a syringe. 

 

3.1.2 Analysis of Compounds: Spectroscopic Techniques 
 

Proton, carbon, fluorine and selenium NMR experiments (including 2D experiments) 

were carried out on a Bruker Advance III 500 MHz NMR spectrometer at 500, 126, 471 

and 95 MHz, respectively. Samples were dissolved in the specified deuteriated solvents. 

All spectra were processed using MestReNova software, and chemical shifts were 

reported in ppm relative to either tetramethylsilane (TMS) or the residual solvent peak. 

Multiplicities are reported as either singlets (s), doublets (d), apparent doublets (app d) 

doublet of doublets (dd), triplets (t), quartets (q) or multiplets (m). Coupling constants 

(J values) are reported in Hertz (Hz). 
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Melting points were carried out on a Büchi B-545 instrument. All melting points were 

observed manually and are quoted as a range. Literature values are reported where 

available. 

 

Mass spectra were obtained from the EPSRC UK National Mass Spectrometry Facility 

(NMSF) at Swansea University (previously known as the National Mass Spectrometry 

Service Centre, NMSSC). 

 

Infra-Red (IR) spectra were recorded using a Perkin-Elmer Spectrum 100 FT-IR 

spectrometer and processed using Spectrum Express Application software, Version: 

1.02.00.0014. 

 

Specific rotation measurements were recorded using a Bellingham and Stanley ADP-

440 polarimeter operating at the sodium (D) line emission of λ = 589 nm at the 

specified temperature. Solutions used were prepared in a volumetric flask using 

spectrophotometric grade solvents. Literature values are quoted where available. 

 

3.1.3 Chromatographic Techniques 
 

Thin layer chromatography (TLC) was carried out on Merck aluminium backed plates 

coated with 0.2 mm Kiesegel 60 GF254. Individual solvent systems are reported in the 

experimental procedures below. TLC plates were visualised under UV irradiation and/or 

stained using phosphomolybdic acid solution or potassium permanganate solution. 

 

Flash column chromatography was carried out using glass columns packed with 

Kieselgel 40-63 μm silica gel. Individual solvent systems are reported in the 

experimental procedures below. 

 

3.1.4 Numbering System 
The numbering system used to assign 1H and 13C chemical shifts is designed by the 

author to simplify characterization. 
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3.2 Individual Experimental Procedures and Characterization 
 

3.2.1 General Procedures 

 

3.2.1.1 General Procedure for the Esterification of an Amino Acid 
 
Acetyl chloride (3 equiv.) was added slowly to methanol (30 mL/g of amino acid) while 

maintaining the temperature below 0 °C.  After 30 min, the amino acid was added as a 

solid at 0 °C and the reaction mixture stirred for another 30 min. The reaction mixture 

was heated under reflux overnight. The solvent was removed under reduced pressure to 

yield the desired product as a solid without further purification. 

 

3.2.1.2 General Procedure for the Peptide Coupling using 

EDAC·HCl 
 

The amine was dissolved in anhydrous dichloromethane (30 mL/g of amine). NMM 

(1.1-2 equiv.), benzyl malonic half ester (1.1-2 equiv.), EDAC·HCl (1.5-2.5 equiv.) and 

DMAP (0.2 equiv.) were added to the reaction mixture. The reaction mixture was 

stirred under an atmosphere of nitrogen for 20 h.  An aqueous solution of HCl (1 M, 1 

mL/g of amine) was added to the reaction mixture and stirring was continued for a 

further 30 min. The organic layer was separated, washed with water (2 x 30 mL/g of 

amine), dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness 

under reduced pressure. The residue was purified using column chromatography on 

silica gel. 

 

3.2.1.3 General Procedure for the One-pot Dieckmann 

Cyclization 
 

The diester was dissolved in THF (50 mL/g of diester) under an atmosphere of nitrogen, 

and TBAF (1 M in THF, 3.5 equiv.) added. The reaction mixture was allowed to stir for 

30 min at room temperature. The solution was cooled to 0 °C, iodomethane (4 equiv.) 
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added and stirred overnight. Water was added, and the solvents were removed under 

reduced pressure. The residue was dissolved in dichloromethane (50 mL/g of diester) 

and the resulting solution was washed with water (2 x 100 mL/g of diester), brine (2 x 

100 mL/g of diester), dried over anhydrous magnesium sulfate, filtered, and evaporated 

to dryness under reduced pressure. The residue was purified using column 

chromatography on silica gel. 

 

3.2.1.4 General Procedure for the Mander’s Acylation Reaction 
 

Procedure A: Hexamethyldisilazane (3 equiv.) was dissolved in anhydrous THF (10 

mL/g of lactam) and the solution was cooled to –78 °C. n-Butyl lithium (2.5 M solution 

in hexanes, 3 equiv.) was added. The solution was allowed to stir for 30 min and DMPU 

(1.5 equiv.) added. The lactam starting material was dissolved in anhydrous THF (10 

mL/mg of lactam), the resulting solution cooled to –78 °C, and DMPU (1.5 equiv.) 

added. The solution of LiHMDS was added dropwise to the solution of the lactam using 

a cannula. The mixture was stirred at –78 °C for 30 min. Methyl cyanoformate (5 

equiv.) was added and the mixture stirred for a further 4 h at –78 °C. Saturated aqueous 

NH4Cl (1 mL/g of lactam) was added at –78 °C. The mixture was allowed to reach 

room temperature and the solvent removed under reduced pressure. The residue was 

dissolved in ethyl acetate and the resulting solution washed with water (2 x 10 mL/mg 

of lactam) and brine (2 x 10 mL/mg of lactam). The organic layer was dried over 

anhydrous sodium sulfate, filtered, and evaporated to dryness under reduced pressure. 

The residue was purified using column chromatography on silica gel. 

	
	
Procedure B: The lactam starting material was dissolved in anhydrous THF (40 mL/g 

of lactam) and the solution cooled to –78 °C. DPMU (3 equiv.) and LiHMDS (1 M in 

THF, 2 equiv.) were added and the mixture stirred at –78 °C for 30 min. Methyl 

cyanoformate (3 equiv.) was added and the mixture stirred for a further 4 h at –78 °C. 

Saturated aqueous NH4Cl (1 mL/g of lactam) was added at –78 °C. The mixture was 

allowed to reach room temperature and the solvent removed under reduced pressure. 

The residue was dissolved in ethyl acetate and the resulting solution washed with water 

(2 x 40 mL/g of lactam) and brine (2 x 40 mL/g of lactam). The organic layer was dried 
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over anhydrous sodium sulfate, filtered and evaporated to dryness under reduced 

pressure. The residue was purified using column chromatography on silica gel. 

 

3.2.1.5 General Procedure for the Ketone Reduction using NaBH4  

 

The ketone was dissolved in ethanol (50 mL/g of ketone). The mixture was cooled to 

−10 °C followed by the addition of NaBH4 (0.5 equiv.). The reaction mixture was 

stirred at −10 °C for 30-120 min after which it was quenched with water (10 mL/g of 

ketone). The solvent was removed under reduced pressure and the resulting residue re-

dissolved in ethyl acetate (50 mL/g of ketone). The mixture was washed with water (2 x 

50 mL/g of ketone) and then brine (2 x 50 mL/g of ketone). The organic layer was dried 

over anhydrous sodium sulfate, filtered and evaporated to dryness under reduced 

pressure. The residue was purified using column chromatography on silica gel (light 

petroleum ether/ethyl acetate). 

 

3.2.1.6 General Procedure for the Treatment of the Benzyl Ester 

Under Hydrogenolysis Conditions 
  

The benzyl ester was dissolved in anhydrous THF (5 mL/g of ester), to this was added 

Pd(OH)2 / C (50% by weight). The reaction mixture was purged with nitrogen and 

treated with a balloon of hydrogen overnight at room temperature. The reaction mixture 

was filtered through celite and the solvent removed under reduced pressure. 

 

3.2.1.7 General Procedure for the Formation of an Acyl Selenide  
 

The carboxylic acid was dissolved in anhydrous dichloromethane (5 mL/g of carboxylic 

acid) under a nitrogen atmosphere and diphenyldiselenide (1.5 equiv.) added. The 

mixture was cooled to 0 °C and tributylphosphine (2 equiv.) added. The solution was 

warmed to room temperature and stirred overnight. The solution was diluted with 

dichloromethane (10 mL/g of carboxylic acid) and water (10 mL/g of carboxylic acid). 

The aqueous layer was extracted again with dichloromethane (10 mL/g of carboxylic 

acid). The organic fractions were combined, washed with brine (5 mL/g of carboxylic 
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acid), dried over anhydrous magnesium sulfate and evaporated to dryness under reduced 

pressure. The residue was purified using column chromatography on silica gel (light 

petroleum ether/ethyl acetate). 

 

3.2.1.8 General Procedure for the Silyl Protection of the Hydroxyl 

Moiety  
 

The silyl protection reagent (1.2 equiv.) and imidazole (2.5 equiv.) were added to a 

solution of the reduced Mander’s reaction product in DMF (5 mL/g of reduced 

Mander’s reaction product). The reaction mixture was stirred at 35 °C under an 

atmosphere of nitrogen overnight. The reaction was quenched with water (1 mL/g of 

reduced Mander’s reaction product) and the solvent removed under reduced pressure. 

The resulting product was re-dissolved in diethyl ether (5 mL/g of reduced Mander’s 

reaction product) and washed with water (2 x 10 mL/g of reduced Mander’s reaction 

product) and brine (2 x 10 mL/g of reduced Mander’s reaction product). The organic 

layer was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness 

with no further purification. 

 

3.2.1.9 General Procedure for the Protection of the Hydroxyl 

Moiety at C6 using Trifluoroacetic Anhydride 

 

The hydroxyl compound was dissolved in dry diethyl ether (10 mL/g of hydroxyl). The 

mixture was cooled to ca. 0 °C. Pyridine (2.5 equiv.) and trifluoroacetic anhydride (2.5 

equiv.) were added to the reaction mixture. The reaction was monitored using TLC 

(light petroleum ether/ethyl acetate). On completion, pentane (10 mL/g of hydroxyl) 

was added and the mixture filtered through celite to remove the pyridinium 

trifluoroacetate by-product. The solvent was removed under reduced pressure and the 

resulting residue re-dissolved in dichloromethane (10 mL/g of hydroxyl), washed with 

water (2 x 10 mL/g of hydroxyl) and brine (2 x 10 mL/g of hydroxyl). The organic layer 

was dried over anhydrous sodium sulfate, filtered, and evaporated to dryness under 

reduced pressure.  
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3.2.2 Individual Experimental Procedures 
 

3.2.2.1 Synthesis from L-Leucine 
 

R2-{[1-(4-Methoxy-phenyl)-meth-(E)-ylidene]-amino}-4-methyl-pentanoic acid 

methyl ester 13 

 

 
 

L-Leucine methyl ester hydrochloride (10.01 g, 0.06 mol) and 4-methoxybenzaldehyde 

(7.30 mL, 0.06 mmol, 1.1 equiv.) were dissolved in toluene (100 mL). Acetic acid (2 

mL) was added and the reaction mixture heated under reflux using a Dean-Stark 

apparatus overnight. The solvent was evaporated to dryness under reduced pressure. 

The resulting product was obtained as a brown oil (15.82 g, quant.).  

 

νmax (thin film)/cm−1 2956 and 1739. 1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H, H8), 

7.73 (app d, 2H, J = 8.9 Hz, H11 and H13), 6.93 (app d, 2H, J = 8.9 Hz, H10 and H14), 

4.05 (dd, 1H, J = 8.8, 5.6 Hz, H5), 3.85 (s, 3H, H15), 3.74 (s, 3H, H7), 1.87–1.79 (m, 

2H, H4), 1.61–1.54 (m, 1H, H3), 0.94 (d, 3H, J = 6.6 Hz, H1 or H2), 0.89 (d, 3H, J = 

6.6 Hz, H1 or H2). 
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2-(4’-Methoxy-benzylamino)-4-methyl-pentanoic acid methyl ester 71 

 

 
 

Direct synthesis of compound 7: L-Leucine methyl ester hydrochloride (0.99 g 5.45 

mmol) was dissolved in methanol (50 mL). Triethylamine (0.76 mL, 5.45 mmol) and 4-

methoxybenzaldehyde (0.75 mL, 6.81 mmol, 1.25 equiv.) were added and the reaction 

mixture was stirred at room temperature for 90 min. The reaction mixture was cooled to 

0 °C and sodium borohydride (0.38 g, 13.62 mmol, 2 equiv.) added. Stirring was 

continued for a further 30 min. The solvent was removed under reduced pressure and 

the resulting residue re-dissolved in ethyl acetate (75 mL). The organic layer was 

washed with water (2 x 30 mL), brine (2 x 30 mL) and saturated aqueous Na2CO3 (2 x 

30 mL). The organic layer was dried over anhydrous magnesium sulfate, filtered, and 

evaporated to dryness under reduced pressure. The title compound was obtained as a 

yellow/brown oil (0.77 g, 53%).  

 

Synthesis of compound 7 using the Dean-Stark protocol 

 

Procedure A: Compound 13 (15.82 g, 0.06 mol) was dissolved in ethanol (100 mL) 

and sodium borohydride (1.61 g, 0.04 mol, 0.7 equiv.) added slowly in small portions. 

The reaction was monitored by TLC then quenched with water (30 mL). The solvent 

was removed under reduced pressure. The residue was dissolved in dichloromethane 

(50 mL) and the resulting solution was washed with water (2 x 50 mL), brine (2 x 50 

mL) and saturated aqueous Na2CO3 (2 x 50 mL). The organic layer was dried over 

anhydrous magnesium sulfate, filtered, and evaporated to dryness under reduced 

pressure. The title compound was obtained as a yellow/brown oil (8.42 g, 58%). 
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Procedure B: Compound 13 (22.32 g, 0.85 mol) and acetic acid (4.5 mL) were 

dissolved in methanol (200 mL). The reaction mixture was cooled to 0 °C and sodium 

cyanoborohydride (10.66 g, 0.17 mol, 2 equiv.) added slowly in small portions. The 

reaction was stirred for 30 min at 0 °C then allowed to reach room temperature and 

stirred for a further 5 h. Water (20 mL) was added to quench the reaction mixture and 

the solvents were removed under reduced pressure. The residue was dissolved in 

dichloromethane (100 mL), washed with water (2 x 100 mL), brine (2 x 100 mL) and a 

saturated solution of Na2CO3 (2 x 100 mL). The organic layer was dried over anhydrous 

magnesium sulfate, filtered, and evaporated to dryness under reduced pressure. The title 

compound was obtained as a yellow/brown oil (20.89 g, 93%).  

 

Found (NSI): [M+H]+ 266.1755; [C15H23NO3+H]+
 requires 266.1751. νmax (thin 

film)/cm−1 2955 and 1733. [α]D = +7 (c 1.5, CDCl3, 25 °C, lit −31.17, c 1.5, CDCl3, 27 

°C).1 1H NMR (500 MHz, CDCl3) δ 7.23 (app d, 2H, J = 8.6 Hz, H11 and H13), 6.84 

(app d, 2H, J = 8.6 Hz, H10 and H14), 3.77 (d, 3H, J = 0.8 Hz, H15), 3.73 (d, 1H, J = 

12.7 Hz, H8), 3.70 (s, 3H, H7), 3.54 (d, 1H, J = 12.7 Hz, H8), 3.29 (dd, 1H, J = 7.7, 6.8 

Hz, H5), 1.82 – 1.72 (m, 2H, H3 and H16), 1.46 (ddd, 2H, J = 7.4, 6.7, 2.1 Hz, H4), 

0.91 (d, 3H, J = 6.7 Hz, H1 or H2), 0.84 (d, 3H, J = 6.7 Hz, H1 or H2). 13C NMR (126 

MHz, CDCl3) δ 176.5 (C6), 158.7 (C12), 132.0 (C9), 129.4 (C11 and C13), 113.7 (C10 

and C14), 59.1 (C5), 55.2 (C15), 51.6 (C8), 51.5 (C7), 42.8 (C4), 24.9 (C3), 22.8 (C1 or 

C2), 22.2 (C1 or C2).  

 

Potassium benzyloxycarbonyl acetate 162 

 

 
 

Malonic acid (50.10 g, 0.48 mol), benzyl alcohol (105 mL, 1.01 mol, 2.1 equiv.) and p-

TsOH (0.92 g, 4.81 mmol, 0.01 equiv.) were dissolved in toluene (500 mL) and heated 

under reflux using a Dean-Stark apparatus overnight. The solvents were removed under 

reduced pressure and the residue was dissolved in a solution of KOH in BnOH (1 M, 
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26.00 g in 480 mL). A yellow solid precipitated which was then filtered and washed 

with diethyl ether (300 mL). The solid was dried in the vacuum oven overnight yielding 

the title compound as a colourless solid (80.10 g, 72%).  

 

νmax (solid) cm−1 1722 and 1599. mp 199-202 °C, lit mp 201 °C.2 1H NMR (500 MHz, 

D2O) δ 7.40 – 1.35 (m, 5H, H6-10), 5.15 (s, 2H, H4), 3.29 (s, 2H, H2). 13C NMR (126 

MHz, D2O) δ 173.9 (C1 or C3), 171.1 (C1 or C3), 135.6 (C5), 128.6 (C6-10), 67.2 

(C4), 44.6 (C2). 

	
2-{(4-Methoxy-benzyl)-[2-(benzyloxycarbonyl)-acetyl]-amino}-4-methyl-pentanoic 

acid methyl ester 8 

 

 
 

Coupling using EDAC·HCl: Compound 7 (9.84 g, 0.37 mol) was subjected to the 

general procedure for peptide coupling using EDAC·HCl 17.73 g, 0.93 mol, 2.5 equiv.), 

NMM (8.2 mL, 0.75 mol, 2 equiv.), benzyl malonic half ester (17.19 g, 0.75 mol, 2 

equiv.) and DMAP (0.90 g, 0.07 mol, 0.2 equiv.). The residue was purified using 

column chromatography on silica gel (30% ethyl acetate in light petroleum ether).  

Compound 8 was isolated as a yellow oil (11.73 g, 72%). 

 

Coupling using T3P®: Compound 7 (0.22 g, 0.80 mmol) was dissolved in THF (5 mL) 

and benzyl malonic half ester (0.23 g, 0.10 mmol, 1.2 equiv.) was added. The mixture 

was cooled to 0 °C and DIPEA (0.26 mL, 1.49 mmol, 1.8 equiv.), followed by T3P® 

(50% solution in THF, 0.79 g, 1.29 mmol, 1.5 equiv.) were added. The reaction was 

allowed to reach room temperature and then stirred for 20 h. Water (10 mL) was then 

added to the reaction mixture and extracted with ethyl acetate (2 x 10 mL). The organic 

layers were combined, washed with water (2 x 20 mL) and brine (2 x 20 mL), dried 

over anhydrous magnesium sulfate, filtered, and evaporated to dryness under reduced 
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pressure. The residue was purified using column chromatography on silica gel (30% 

ethyl acetate in light petroleum ether) to yield the title compound as a yellow oil (0.23 

g, 62%). 

 

Coupling from the acid chloride of the malonic half ester: Potassium 

benzyloxycarbonyl acetate (0.72 g, 3.08 mmol) was suspended in toluene (5 mL) and 

oxalyl chloride (0.83 mL, 9.87 mmol, 3.2 equiv.) added. The reaction mixture was 

stirred at 34 °C for 24 h. The solvent and excess oxalyl chloride were removed under 

reduced pressure to give the corresponding acyl chloride which was used without 

purification. Compound 7 (1.01 g, 3.70 mmol, 1.2 equiv.) was dissolved in anhydrous 

dichloromethane (20 mL) and the solution cooled to 0 °C. The acyl chloride was 

dissolved in anhydrous dichloromethane (10 mL) and added to the amine solution. 

While maintaining the temperature at 0 °C, pyridine (0.01 mL, 0.03 mmol, 0.01 equiv.) 

and DMAP (0.02 g, 0.15 mmol, 0.05 equiv.) were added. After addition the reaction 

mixture was allowed to reach room temperature and stirred for 4 h. The reaction 

mixture was washed with an aqueous solution of HCl (5%, 20 mL), dried over 

anhydrous magnesium sulfate, filtered, and evaporated to dryness under reduced 

pressure. The residue was purified using column chromatography on silica gel (30% 

ethyl acetate in light petroleum ether) to yield the title compound as a yellow oil (0. 97 

g, 58%).  

 

Found (NSI): [M+H]+ 442.2226; [C25H31NO6+H]+
 requires 442.2224. νmax (thin 

film)/cm−1 2955, 1740 and 1655. [α]D = +12 (c 1, CHCl3, 25 °C). 

 

Major Rotamer: 1H NMR (500 MHz, CDCl3) δ 7.38 – 7.33 (m, 5H, H21-25), 7.15 

(app d, 2H, J = 8.7 Hz, H11 and H13), 6.85 (app d, 2H, J = 8.7 Hz, H10 and H14), 5.16 

(d, 2H, J = 2.4 Hz, H17), 4.82 (dd, 1H, J = 7.4, 6.3 Hz, H5), 4.55 (d, 1H, J = 17.1 Hz, 

H8), 4.42 (d, 1H, J = 17.1 Hz, H8), 3.79 (s, 3H, H15), 3.57 (s, 3H, H7), 3.48 (d, 2H, J = 

3.7 Hz, H19), 1.89 – 1.81 (m, 1H, H4), 1.58 – 1.53 (m, 1H, H4 and H3) 0.88 (d, 3H, J = 

6.3 Hz, H1 or H2), 0.80 (d, 3H, J = 6.3 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 

171.7, 167.2, 159.2, 135.4, 128.6 (Ar), 128.4 (Ar), 128.4 (Ar), 128.1, 127.96 (C11 and 

C13), 114.2 (C10 and C14), 67.2 (C17), 56.1 (C5), 55.3 (C15), 52.0 (C7), 50.0 (C8), 

41.7 (C19), 38.3 (C4), 25.1 (C3), 22.6 (C1 or C2), 22.3(C1 or C2). 
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The Dieckmann Cyclization 
 

 
 
Two-step synthesis: Diester 8 (8.86 g, 0.02 mol) was dissolved in diethyl ether (50 mL) 

under an atmosphere of nitrogen. TBAF (1 M solution in THF, 50 mL, 0.05 mol, 2.5 

equiv.) was added and the reaction mixture was stirred overnight. The solvents were 

removed under reduced pressure and the resulting residue was dissolved in THF (50 

mL) under an atmosphere of nitrogen and the solution was cooled to 0 °C. Iodomethane 

(5.00 mL, 0.08 mol, 4 equiv.) was added and the reaction was stirred overnight. The 

solvent was removed under reduced pressure and the resulting residue was dissolved in 

dichloromethane (50 mL). The solution was washed with water (2 x 50 mL), dried over 

anhydrous magnesium sulfate, filtered, and evaporated to dryness under reduced 

pressure. The resulting residue was purified using column chromatography on silica gel 

(20% ethyl acetate in light petroleum ether). The first eluting diastereoisomer (±)-34 

was obtained as a pale yellow oil (2.59 g, 30%), the second eluting diastereoisomer (±)-

9 was obtained as a darker yellow oil (2.47 g, 29%). 

 

One-pot synthesis: Diester 8 (0.21 g, 0.5 mmol) was subjected to the general procedure 

for the one-pot Dieckmann cyclization using TBAF (1 M in THF, 1.60 mL, 1.6 mmol, 

3.5 equiv.) and iodomethane (0.12 mL, 1.8 mmol, 4 equiv.). The residue was purified 

using column chromatography on silica gel (20% ethyl acetate in light petroleum ether 

as the eluent). The first eluting diastereoisomer (±)-34 was obtained as a pale yellow oil 

(0.044 g, 22%), the second eluting diastereoisomer (±)-9 was obtained as a dark yellow 

oil (0.08 g, 39%). 

 

 

+

76
5 8

9
4

3
1

25

17

2
10

15
14

13

12
11

18
19

24

23
22

21

20

16

N

O

O
O

O

OMe

76
5 8

9
4

3
1

25

17

2
10

15
14

13

12
11

18
19

24

23
22

21

20

16

N

O

O
O

O

OMe

(±)-34 (±)-9

N
PMB

O

OBnO

CO2Me

8



	 	 Experimental	
	

	 146	

(±)-(3S,5S)-N-(4’-Methoxybenzyl)-3-methyl-5-(2’-methylpropyl)-pyrrolidin-2,4-

dione-3-carboxylic acid benzyl ester (±)-34 

Found (NSI): [M+Na]+ 424.2110; [C27H31NO7+Na]+
 requires 424.2118. νmax (thin 

film)/cm−1 2958, 1778, 1747 and 1697. 1H NMR (500 MHz, CDCl3) δ 7.35 (dd, 3H, J = 

5.0, 1.9 Hz, Ar), 7.24 – 7.21 (m, 2H, Ar), 7.02 (app d, 2H, J = 8.6 Hz, H12 and H14), 

6.59 (app d, 2H, J = 8.6 Hz, H11 and H15), 5.42 (d, 1H, J = 15.0 Hz, H9), 5.19 (d, 1H, 

J = 12.3 Hz, H18), 5.09 (d, 1H, J = 12.3 Hz, H18), 3.85 (dd, 1H, J = 7.8, 3.9 Hz, H5), 

3.80 (d, 1H, J = 15.0 Hz, H9), 3.73 (s, 3H, H16), 1.82 – 1.73 (m, 1H, H3), 1.67 – 1.61 

(m, 1H, H4), 1.58 (s, 3H, H25), 1.56 – 1.48 (m, 1H, H4), 0.87 (d, 3H, J = 6.6 Hz, H1 or 

H2), 0.76 (d, 3H, J = 6.6 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 205.9 (C6), 

169.6 (C8), 165.6 (C17), 159.2 (C13), 134.8 (C10 and C19), 129.4 (C12 or C14), 128.7 

(Ar), 128.5 (Ar), 128.2 (Ar), 126.2 (C7), 114.1 (C11 or C15), 68.1 (C18), 62.4 (C5), 

58.6, 55.2 (C16), 43.2 (C9), 37.9 (C4), 24.6 (C3), 23.2 (C1 or C2), 22.4 (C1 or C2), 

16.1 (C25).  

 

(±)-(3R,5S)-N-(4’-Methoxybenzyl)-3-methyl-5-(2’-methylpropyl)-pyrrolidin-2,4-

dione-3-carboxylic acid benzyl ester (±)-9 

Found (NSI): [M+Na]+ 424.2108; [C27H31NO7+Na]+
 requires 424.2118. νmax (thin 

film)/cm−1 2927, 1775, 1746 and 1696. 1H NMR (500 MHz, CDCl3) δ 7.38 – 7.26 (m, 

5H, H20-24), 7.13 (app d, 2H, J = 8.6 Hz, H12 and H14), 6.83 (app d, 2H, J = 8.6 Hz, 

H11 and H15), 5.26 (d, 1H, J = 12.1 Hz, H18), 5.19 (d, 1H, J = 14.9 Hz, H9), 5.08 (d, 

1H, J = 12.1 Hz, H18), 4.01 (d, 1H, J = 14.9 Hz, H9), 3.79 (s, 3H, H16), 3.67 (t, 1H, J = 

6.8 Hz, H5), 1.77 – 1.72 (m, 1H, H3), 1.54 (s, 3H, H25), 1.50 (dd, 2H, J = 7.4, 6.5 Hz, 

H4), 0.73 (d, 3H, J = 6.5 Hz, H1 or H2), 0.70 (d, 3H, J = 6.5 Hz, H1 or H2). 13C NMR 

(126 MHz, CDCl3) δ 205.6 (C6), 169.3 (C8), 165.6 (C17), 159.4 (C13), 134.7 (C10 and 

C19), 129.4 (C12 and C14), 128.7, 128.6, 128.4, 127.1, 114.3 (C11 and C15), 68.2 

(C18), 62.4 (C5), 58.6, 55.30 (C16), 43.5 (C9), 38.9 (C4), 24.4 (C3), 23.0 (C1 or C2), 

21.9 (C1 or C2), 16.6 (C25). 
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(±)-(3R,5R)-N-(4’-Methoxybenzyl)-3-methyl-5-(2’-methylpropyl)-pyrrolidin-2,4-

dione-3,5-dicarboxylic acid-3-benzyl ester-5-methyl ester (±)-10 

 

 
 

Synthesized according to the general procedure for the Mander’s acylation reaction 

(Procedure A) from the first eluting diastereoisomer (±)-34. Compound (±)-34 (0.16 g, 

0.38 mmol), hexamethyldisilazane (0.24 mL, 1.13 mmol, 3 equiv.), n-BuLi (2.5 M in 

THF, 0.46 mL, 1.13 mmol, 3 equiv.), DMPU (0.07 mL, 0.57 mmol, 1.5 equiv.) and 

methyl cyanoformate (0.15 mL, 1.88 mmol, 5 eqiuv.). Compound (±)-10 was isolated as 

an off-white solid (0. 13 g, 73%). 

 

Synthesized according to the general procedure for the Mander’s acylation reaction 

(Procedure A) from the second eluting diastereoisomer (±)-9. Compound (±)-9 (0.22 g, 

0.52 mmol), hexamethyldisilazane (0.32 mL, 1.56 mmol, 3 equiv.), n-BuLi (2.5 M in 

THF, 0.62 mL, 1.56 mmol, 3 equiv.), DMPU (0.06 mL, 0.78 mmol, 1.5 equiv.) and 

methyl cyanoformate (0.20 mL, 2.60 mmol, 5 equiv.). Compound (±)-10 was isolated as 

an off-white solid (0.19 g, 79%). 

 

Synthesized according to the general procedure for the Mander’s acylation reaction 

(Procedure A) from the mixture of diastereoisomers (±)-34 and (±)-9. A mixture of 

compounds (±)-34 and (±)-9 (0.34 g, 0.80 mmol, 3 equiv.), hexamethyldisilazane (0.50 

mL, 2.41 mmol, 3 equiv.), n-BuLi (2.5 M in THF, 0.96 mL, 2.41 mmol, 3 equiv.), 

DMPU (0.15 mL, 1.20 mmol, 1.5 equiv.) and methyl cyanoformate (0.32 mL, 4.01 

mmol, 5 equiv.). Compound (±)-10 was isolated as an off-white solid (0.34 g, 78%). 

 

Synthesized according to the general procedure for the Mander’s acylation reaction 

(Procedure B) from a mixture of diastereoisomers (±)-34 and (±)-9. A mixture of 
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compounds (±)-34 and (±)-9 (0.34 g, 0.8 mmol), DPMU (1.10 mL, 9.19 mmol, 3 

equiv.), LiHMDS (1 M in THF, 6.1 mL, 6.13 mmol, 2 equiv.) and methyl cyanoformate 

(0.78 mL, 9.19 mmol, 3 equiv.). Compound (±)-10 was isolated as an off-white solid 

(1.26 g, 86%). 

 

Found (NSI): [M+Na]+ 504.1979; [C27H31NO7+Na]+
 requires 504.1993. νmax (thin 

film)/cm−1 2958, 1782, 1751 and 1699. mp 79-82 °C. 1H NMR (400 MHz, CDCl3) δ 

7.39 – 7.28 (m, 5H, H20-24), 7.19 (app d, 2H, J = 8.7 Hz, H12 and H14), 6.77 (app d, 

2H, J = 8.7 Hz, H11 and H15), 5.20 (d, 1H, J = 12.1 Hz, H18), 5.14 (d, 1H, J = 12.1 Hz, 

H18), 4.89 (d, 1H, J = 15.0 Hz, H9), 4.15 (d, 1H, J = 15.0 Hz, H9), 3.77 (s, 3H, H16), 

3.23 (s, 3H, H27), 2.15 (dd, 1H, J = 15.2, 5.4 Hz, H4), 1.86 (dd, 1H, J = 15.2, 6.3 Hz, 

H4), 1.72 (s, 3H, H25), 1.47 – 1.41 (m, 1H, H3), 0.65 (d, 3H, J = 6.6 Hz, H1 or H2), 

0.52 (d, 3H, J = 6.6 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 201.8 (C6), 170.8 

(C8), 167.6 (C17 or C26), 165.2 (C17 or C26), 159.23 (C13), 134.5 (C10 and C19), 

130.3 (C12 and C14), 128.7 (Ar), 128.6 (Ar), 128.6 (Ar), 127.6 (C5 or C7), 113.8 (C11 

and C15), 76.1 (C5 or C7), 68.5 (C18), 58.4, 55.3 (C16), 52.9 (C27), 43.9 (C9), 38.7 

(C4), 24.2 (C1 or C2), 23.4 (C1 or C2), 23.1 (C3), 18.9 (C25). 
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Reduction of the Mander’s Acylation Reaction Product (±)-10 

 

 
 

Procedure A: Compound (±)-10 (0.15 g, 0.32 mmol) was subjected to the general 

procedure for ketone reduction using NaBH4 (0.01 g, 0.22 mmol, 0.5 equiv.). The 

reaction was stirred at −10 °C for 2 h. The residue was purified using column 

chromatography on silica gel (light petroleum ether/ethyl acetate, 2:1). Compound (±)-

51 was isolated as a white foam (0.07 g, 42%). Compound (±)-52 or (±)-53 (0.04 g, 

29%). Compound (±)-52 or (±)-53 (0.01 g, 10%). 

 

Procedure B: Compound (±)-10 (0.21 g, 0.44 mmol, 1 equiv.) was subjected to the 

general procedure for ketone reduction using NaBH4 (0.01 g, 0.22 mmol, 0.5 equiv.). 

The reaction was stirred at −10 °C for 30 min. The residue was purified using column 

chromatography on silica gel (light petroleum ether/ethyl acetate, 2:1). Compound (±)-

51 was isolated as a white foam (0.11 g, 52%). Starting material (0.07 g, 31%). 

 

(±)-(3R,4R,5R)-N-(4’-Methoxybenzyl)-3-methyl-4-hydroxy-5-(2’-methylpropyl)-

pyrrolidin-2-one-3,5-dicarboxylic acid-3-benzyl ester-5-methyl ester (±)-51 

Found (NSI): [M+Na]+ 506.2134; [C27H33NO7+Na]+
 requires 506.2149. νmax (thin 

film)/cm−1 3373, 1735 and 1676. 1H NMR (500 MHz, CDCl3) δ 7.41 – 7.33 (m, 5H, 

H20-24), 7.11 (app d, 2H, J = 8.7 Hz, H12 and H14), 6.68 (app d, 2H, J = 8.7 Hz, H11 
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and H15), 5.27 (d, 1H, J = 12.4 Hz, H18), 5.24 (d, 1H, J = 12.4 Hz, H18), 4.94 (d, 1H, J 

= 16.1 Hz, H9), 4.69 (d, 1H, J = 8.4 Hz, H6), 4.39 (d, 1H, J = 16.1 Hz, H9), 3.75 (s, 3H, 

H16), 3.70 (s, 3H, H27), 3.14 (d, 1H J = 8.4 Hz, H28), 1.71 – 1.67 (m, 2H, H4), 1.67 – 

1.62 (m, 1H, H3), 1.48 (s, 3H, H25), 0.83 (d, 3H, J = 6.2 Hz, H1 or H2), 0.70 (d, 3H, J 

= 6.2 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 172.8, 172.18, 170.8, 158.5, 135.1, 

130.3, 128.7 (Ar), 128.4 (Ar), 128.3 (Ar), 127.9 (C12 and C14), 113.8 (C11 and C15), 

77.5 (C6), 72.1, 67.7 (C18), 56.2, 55.3 (C16), 52.5 (C27), 45.1 (C9), 40.3 (C4), 24.1 

(C1 or C2), 24.1 (C3), 23.4 (C1 or C2), 19.2 (C25). 

 

(±)-(3R,4R,5R)-N-(4’-Methoxybenzyl)-3-methyl-3-hydroxymethyl-4-hydroxy-5-(2’-

methylpropyl)-pyrrolidin-2-one-5-carboxylic acid methyl ester (±)-52 

 

(±)-(3R,4S,5R)-N-(4’-Methoxybenzyl)-3-methyl-3-hydroxymethyl-4-hydroxy-5-(2’-

methylpropyl)-pyrrolidin-2-one-5-carboxylic acid methyl ester (±)-53 

 

Compound (±)-52 or (±)-53: Found (NSI): [M+H]+ 380.2065; [C20H29NO6+H]+
 requires 

380.2068. νmax (thin film)/cm−1 3356, 2961, 1735 and 1671. 1H NMR (500 MHz, CDCl3) 

δ 7.15 (app d, 2H, J = 8.6 Hz, H12 and H 14), 6.83 (app d, 2H J = 8.6 Hz, H11 and 

H15), 4.99 (d, 1H, J = 16.2 Hz, H9), 4.70 (d, 1H, J = 7.3 Hz, H6), 4.40 (d, 1H, J = 16.2 

Hz, H9), 4.27 (s, 1H, H21), 3.96 – 3.88 (m, 2H, H17), 3.78 (s, 3H, H16), 3.73 (s, 3H, 

H20), 2.95 (s, 1H, H18), 1.77 (dd, 1H, J = 12.8, 5.7 Hz, H4), 1.74 – 1.69 (m, 1H, H3), 

1.66 (dd, 1H, J = 12.8, 4.9 Hz, H4), 0.99 (s, 3H, H22), 0.91 (d, 3H, J = 6.3 Hz, H1 or 

H2), 0.74 (d, 3H, J = 6.3 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 176.69 (C8), 

173.58 (C19), 158.51 (C13), 130.64 (C10), 127.85 (C12 and C14), 113.91 (C11 and 

C15), 79.03 (C6), 72.87 (C5 or C7), 65.99 (C17), 55.26 (C16), 52.28 (C20), 49.26 (C5 

or C7), 44.96 (C9), 40.38 (C4), 24.14 (C1 or C2), 24.12 (C3), 23.52 (C1 or C2), 18.17 

(C22). 

 

Compound (±)-52 or (±)-53: Found (NSI): [M+H]+ 380.2065; [C20H29NO6+H]+
 requires 

380.2068. νmax (thin film)/cm−1 3393, 2955, 1738 and 1669. 1H NMR (500 MHz, CDCl3) 

δ 7.11 (app d, 2H, J = 8.7 Hz, H12 and H14), 6.82 (app d, 2H, J = 8.7 Hz, H11 and 

H15), 4.59 (d, 1H, J = 15.6 Hz, H9), 4.45 (d, 1H J = 15.6 Hz, H9), 4.43 (d, 1H J = 10.8 

Hz, H6), 3.82 (dd, 1H J = 10.8, 5.3 Hz, H17), 3.78 (s, 3H, H16), 3.56 (dd, 1H, J = 10.8, 
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5.4 Hz, H17), 3.44 (s, 3H, H20), 2.10 (dd, 1H, J = 14.2, 7.3 Hz, H4), 1.98 – 1.92 (m, 

1H, H3), 1.57 (dd, 1H, J = 14.2, 4.8 Hz, H4), 1.14 (s, 3H, H22), 0.87 (d, 3H J = 2.2 Hz, 

H1 or H2), 0.86 (d, 3H, J = 2.2 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 177.56 

(C8 or C19), 158.73 (C8 or C19), 128.60 (C12 and C14), 113.86 (C11 and C15), 74.86 

(C6), 68.14 (C5 or C7), 66.51 (C17), 55.30 (C16), 52.20 (C20), 48.57 (C5 or C7), 44.16 

(C4), 43.67 (C9), 24.46 (C1 or C2), 23.57 (C1 or C2), 23.49 (C3), 13.51 (C22).  

 

(±)-(3R,4R,5R)-N-(4’-Methoxybenzyl)-3-methyl-4-hydroxy-5-(2’-methylpropyl)-

pyrrolidin-2-one-3,5-dicarboxylic acid-5-methyl ester (±)-57 

 

 
 

Compound (±)-51 (1.29 g, 2.7 mmol) was subjected to the general procedure for the 

treatment of the benzyl ester under hydrogenolysis conditions using Pd(OH)2 / C (0.65 

g). The product (±)-57 was obtained as a colourless solid (0.89 g, 86%). No further 

purification was carried out. 

 

Found (NSI): [M-H]- 392.1704; [C20H27NO7-H]-
 requires 392.1715. νmax (thin film)/cm−1 

3343, 1741 and 1673. mp 108-111 °C. 1H NMR (500 MHz, CDCl3) δ 7.14 (app d, 2H, J 

= 8.6 Hz, H12 and H14), 6.85 (app d, 2H, J = 8.6 Hz, H11 and H15), 4.98 (d, 1H, J = 

16.2 Hz, H9), 4.91 (s, 1H, H6), 4.54 (d, 1H, J = 16.2 Hz, H9), 3.79 (s, 3H, H16), 3.77 

(s, 3H, H20), 1.89 – 1.84 (m, 1H, H4), 1.70 – 1.64 (m, 2H, H3 and H4), 1.44 (s, 3H, 

H18), 0.90 (d, 3H, J = 6.3 Hz, H1 or H2), 0.75 (d, 3H, J = 6.3 Hz, H1 or H2). 13C NMR 

(126 MHz, CDCl3) δ 172.2, 158.8, 127.9 (C12 and C14), 114.1 (C11 and C15), 77.2 

(C5 or C7), 74.4 (C6), 72.3 (C5 or C7), 55.3 (C16), 52.7 (C20), 45.4 (C9), 39.5 (C4), 

24.2 (C3), 24.0 (C1 or C2), 23.3 (C1 or C2), 20.9 (C18). 
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(±)-(3R,4S,5R)-N-(4’-Methoxybenzyl)-3-methyl-5-(2’-methylpropyl)-3-

azabicyclo[3.2.0] heptane-2,7-dione-5-carboxylic acid methyl ester (±)-66 

 

 
 

Compound (±)-57 (0.13 g, 0.3 mmol) was subjected to the general procedure for the 

formation of an acyl selenide using diphenyldiselenide (0.16 g, 0.5 mmol, 1.5 equiv.) 

and tributylphosphine (0.16 mL, 0.7 mmol, 2 equiv.). Compound (±)-66 was isolated as 

an off-white solid (0.05 g, 43%).  

 

Found (NSI): [M+H]+ 376.1756; [C20H25NO6+H]+
 requires 376.1755. νmax (thin 

film)/cm−1 1842, 1731 and 1702. mp 104-109 °C 1H NMR (500 MHz, CDCl3) δ 7.12 

(app d, 2H, J = 8.7 Hz, H12 and H13), 6.83 (app d, 2H, J = 8.7 Hz, H11 and H15), 5.15 

(s, 1H, H6), 4.51 (d, 2H, J = 1.8 Hz, H9), 3.78 (s, 3H, H16), 3.52 (s, 3H, H19), 2.11 (dd, 

1H, J = 13.4, 7.7 Hz, H4), 1.77 – 1.71 (m, 1H, H3), 1.67 (s, 3H, H17), 1.62 (dd, 1H, J = 

13.4, 5.5 Hz, H4), 0.93 (d, 3H, J = 6.6 Hz, H1 or H2), 0.86 (d, 3H, J = 6.6 Hz, H1 or 

H2). 13C NMR (126 MHz, CDCl3) δ 169.7, 168.4, 165.8, 159.0, 128.8, 128.8 (C12 and 

C14), 114.0 (C11 and C15), 76.0 (C6), 68.6 (C5 or C7), 64.9 (C5 or C7), 55.3 (C16), 

52.7 (C19), 43.9 (H9), 37.3 (C4), 24.6 (C3), 23.8 (C1 or C2), 22.8 (C1 or C2), 11.7 

(C17). 
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(±)-(3R,4R,5R)-N-(4’-Methoxybenzyl)-3-methyl-4-hydroxy-5-(2’-methylpropyl)-

pyrrolidin-2-one-3-phenylseleno ester-5-carboxylic acid methyl ester (±)-65 

 

 
 

Compound (±)-72 (0.36 g, 0.7 mmol) was subjected to the general procedure for the 

formation of an acyl selenide using diphenyldiselenide (0.35 g, 1.0 mmol, 1.5 equiv.) 

and tributylphosphine (0.36 mL, 0.7 mmol, 2 equiv.). The desired compound (±)-65 was 

isolated as a yellow oil (0.12 g, 31%). Compound (±)-66 was also isolated (0.03 g, 

10%).  

 

νmax (thin film)/cm−1 3423, 1736 and 1690. 1H NMR (500 MHz, CDCl3) δ 7.55 – 7.51 

(m, 2H, H23 and H27), 7.44 – 7.37 (m, 3H, H24-26), 7.22 (app d, 2H, J = 8.6 Hz, H12 

and H14), 6.86 (app d, 2H, J = 8.6 Hz, H11 and H15), 4.98 (d, 1H, J = 16.1 Hz, H9), 

4.84 (d, 1H, J = 5.2 Hz, H6), 4.49 (d, 1H, J = 16.1 Hz, H9), 3.79 (s, 3H, H16), 3.73 (s, 

3H, H20), 2.94 (d, 1H, J = 5.2 Hz, H21), 1.85 – 1.77 (m, 1H, H4), 1.72 – 1.64 (m, 2H, 

H4 and H3), 1.51 (s, 3H, H18), 0.87 (d, 3H, J = 6.4 Hz, H1 or H2), 0.75 (d, 3H, J = 6.4 

Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 204.9, 172.6, 172.5, 158.6, 136.2, 130.2, 

129.3 (Ar), 129.1 (Ar), 128.1 (C12 and C14), 126.6 (Ar), 114.0 (C11 and C12), 77.0 

(C6), 71.5 (C5 or C7), 64.3 (C5 or C7), 55.3 (C16), 52.5 (C20), 45.0 (C9), 40.3 (C4), 

24.1 (C3), 24.1 (C1 or C2), 23.5 (C1 or C2), 21.4 (C18). 77Se NMR (95 MHz, CDCl3) δ 

700.24. 

 

 

 

 

 

N O

PMB

MeO2C

O
Me

O

8
6
5

7

2

4

3
1

18

17

10
9

15
14

13

12
11

19

20

16

N

HO

O
Se

O

MeO

O

OMe

21

22

N

O

PMB

O
MeO2C

Me
CO2H

F3C

O

(±)-72 (±)-65 (±)-66

23 24
25

26
27



	 	 Experimental	
	

	 154	

(±)-(3R,4R,5R)-N-(4’-Methoxybenzyl)-3-methyl-4-(tri-methylsilanyloxy)-5-(2’-

methylpropyl)-pyrrolidin-2-one-3,5-dicarboxylic acid-3-benzyl ester-5-methyl ester 

(±)-67 

 

 
 

Compound (±)-51 (0.41 g, 0.8 mmol) was subjected to the general procedure for the 

silyl protection of the hydroxyl moiety using trimethylsilyl chloride (0.13 mL, 1.0 

mmol, 1.2 equiv.) and imidazole (0.15 g, 2.1 mmol, 2.5 equiv.). No further purification 

was carried out. The product (±)-67 was obtained as a yellow oil (0.48 g, quant.). 

 

Found (NSI): [M+H]+ 556.2728; [C30H41NO7Si+H]+
 requires 556.2725. νmax (thin 

film)/cm−1 2957, 1740 and 1697. 1H NMR (500 MHz, CDCl3) δ 7.47 – 7.43 (m, 5H, 

H20-24), 7.19 (app d, 2H, J = 8.7 Hz, H11 and H15), 6.75 (app d, 2H, J = 8.7 Hz, H12 

and H14), 5.35 (d, 1H, J = 12.2 Hz, H18), 5.18 (d, 1H, J = 12.2 Hz, H18), 4.74 (d, 1H, J 

= 16.0 Hz, H9), 4.65 (d, 1H, J = 16.0 Hz, H9), 4.50 (s, 1H, H6), 3.83 (s, 3H, H16), 3.57 

(s, 3H, H27), 1.97 (dd, 1H, J = 15.1, 8.4 Hz, H4), 1.90 (dd, 1H, J = 15.1, 3.8 Hz, H4), 

1.84 – 1.78 (m, 1H, H3), 1.65 (s, 3H, H25), 0.81 (d, 3H, J = 6.6 Hz, H1 or H2), 0.70 (d, 

3H, J = 6.6 Hz, H1 or H2), 0.22 (s, 9H, H28). 13C NMR (126 MHz, CDCl3) δ 173.3, 

172.8, 169.4, 158.4, 135.4, 129.6, 128.7 (Ar), 128.6 (Ar), 128.3 (Ar), 128.2 (C12 and 

C15), 113.6 (C11 and C15), 81.1 (C6), 71.5 (C5 or C7), 67.4 (C18), 56.6 (C5 or C7), 

55.3 (C16), 52.1 (C27), 46.2 (C9), 40.1 (C4), 24.8 (C1 or C2), 23.63 (C3), 23. (C1 or 

C2), 21.2 (C25), 0.1 (C28). 
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(±)-(3R,4R,5R)-N-(4’-Methoxybenzyl)-3-methyl-4-(tri-ethylsilanyloxy)-5-(2’-

methylpropyl)-pyrrolidin-2-one-3,5-dicarboxylic acid-3-benzyl ester-5-methyl ester 

(±)-68 

 

 
 

Compound (±)-51 (0.11 g, 0.2 mmol) was subjected to the general procedure for the 

silyl protection of the hydroxyl moiety using triethylsilyl chloride (0.05 ml, 0.3 mmol, 

1.2 equiv.) and imidazole (0.04 g, 0.6 mmol, 2.5 equiv.). No further purification was 

carried out. The product (±)-68 was obtained as a yellow oil (0.13 g, quant.).  

 

Found (NSI): [M+H]+ 598.3178; [C33H47NO7Si+H]+
 requires 598.3195. νmax (thin 

film)/cm−1 2957, 1741 and 1697. 1H NMR (500 MHz, CDCl3) δ 7.38 – 7.33 (m, 5H, 

H20-24), 7.08 (app d, 2H, J = 8.6 Hz, H 12 and H14), 6.64 (app d, 2H, J = 8.6 Hz, H11 

and H15), 5.21 (d, 1H, J = 12.2 Hz, H18), 5.12 (d, 1H J = 12.2 Hz, H18), 4.61 (d, 1H J 

= 16.0 Hz, H9), 4.52 (d, 1H, J = 16.0 Hz, H9), 4.38 (s, 1H, H6), 3.73 (s, 3H, H16), 3.46 

(s, 3H, H27), 1.88 (d, 2H, J = 7.3 Hz, H4), 1.78 – 1.70 (m, 1H, H2), 1.56 (s, 3H, H25), 

0.96 (t, 9H, J = 7.9 Hz, H29), 0.69 (d, 3H, J = 6.6 Hz, H1 or H2), 0.63 (q, 6H, J = 8.1 

Hz, H28), 0.59 (d, 3H, J = 6.6 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 173.5, 

172.8, 169.3, 158.4, 135.23, 129.5, 128.7 (Ar), 128.5 (Ar), 128.3 (Ar), 128.2 (C12 and 

C14), 113.6 (C11 and C15), 81.4 (C6), 71.7 (C5 or C7), 67.5 (C18), 56.7 (C5 or C7), 

55.2 (C16), 52.1 (C27), 46.5 (C9), 39.8 (C4), 25.0 (C1 or C2), 23.7 (C3), 22.7 (C1 or 

C2), 21.5 (C25), 6.7 (C29), 4.8 (C28). 
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Protection of the Hydroxyl Moiety at C6 Using Trifluoroacetic Anhydride 

 

 
 

Procedure A: Compound (±)-51 (0.35 g, 0.7 mmol) was subjected to the general 

procedure for the protection of the hydroxyl moiety at C6 using trifluoroacetic 

anhydride (0.25 mL, 1.8 mmol, 2.5 equiv.) and pyridine (0.15 mL, 1.8 mmol, 2.5 

equiv.). Purification using column chromatography on silica gel (light petroleum 

ether/ethyl acetate 1:1) gave compounds (±)-70 (0.22 g, 52%) and (±)-71 (0.08 g, 21%). 

 

Procedure B: Compound (±)-51 (1.21 g, 2.5 mmol) was subjected to the general 

procedure for the protection of the hydroxyl moiety at C6 using trifluoroacetic 

anhydride (0.87 mL, 6.2 mmol, 2.5 equiv.) and pyridine (0.50 mL, 6.2 mmol, 2.5 

equiv.). No further purification was carried out. Compound (±)-70 was isolated as a 

colourless oil (1.45 g, quant.). 

 

(±)-(3R,4R,5S)-N-(4’-Methoxybenzyl)-3-methyl-5-(2’-methylpropyl)-4-

(trifluoroacetoxy)-pyrrolidin-2-one-3,5-dicarboxylic acid-3-benzyl ester-5-methyl 

ester (±)-70 

νmax (thin film)/cm−1 1796, 1742 and 1708. 1H NMR (500 MHz, CDCl3) δ 7.38 – 7.33 

(m, 5H, H20-24), 7.09 (app d, 2H, J = 8.7 Hz, H12 and H14), 6.68 (app d, 2H, J = 8.7 

Hz, H11 and H15), 6.05 (s, 1H, H6), 5.15 (s, 2H, H18), 4.85 (d, 1H, J = 16.1 Hz, H9), 

4.57 (d, 1H, J = 16.1 Hz, H9), 3.75 (s, 3H, H16), 3.65 (s, 3H, H27), 1.72 (qd, 2H, J = 

14.7, 6.0 Hz, H4), 1.62 (s, 3H, H25), 1.55 – 1.47 (m, 1H, H3), 0.70 (d, J = 6.6 Hz, 3H, 

H1 or H2), 0.67 (d, J = 6.6 Hz, 3H, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 171.0, 

171.0, 168.0, 158.7, 134.6, 129.3, 128.7 (Ar), 128.5 (Ar), 128.5 (Ar), 128.0 (C12 and 

C14), 113.9 (C11 and C15), 79.8 (C6), 70.0, 68.2 (C18), 55.5, 55.2 (C16), 53.0 (C27), 
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45.0 (C9), 39.9 (C4), 23.7 (C1 or C2), 23.6 (C3), 23.4 (C1 or C2), 19.9 (C25). 19F NMR 

(471 MHz, CDCl3) δ -74.45. 

 

(±)-(3R,4R,5S)-N-(4’-Methoxybenzyl)-3-methyl-5-(2’-methylpropyl)-4-

(trifluoroacetoxy)-pyrrolidin-2-one-3-carboxylic acid benzyl ester (±)-71 

νmax (thin film)/cm−1 1794, 1746 and 1705. 1H NMR (500 MHz, CDCl3) δ 7.38 – 7.33 

(m, 4H, H20, H21, H23 and H24), 7.24 (dd, 1H, J = 4.0, 2.1 Hz, H22), 7.08 (app d, 2H, 

J = 8.5 Hz, H12 and H14), 6.62 (app d, 2H, J = 8.5 Hz, H11 and H15), 5.26 (d, 1H, J = 

12.2 Hz, H18), 5.18 (d, 1H, J = 15.1 Hz, H9), 5.12 (d, 1H, J = 6.5 Hz, H6), 5.03 (d, 1H, 

J = 12.2 Hz, H18), 3.79 (d, 1H, J = 15.1 Hz, H9), 3.75 (s, 3H, H16), 3.63 (ddd, 1H, J = 

10.4, 6.5, 3.7 Hz, H5), 1.74 – 1.67 (m, 1H, H4), 1.65 (s, 3H, H25), 1.42 – 1.37 (m, 1H, 

H3) 1.30 – 1.28 (m, 1H, H4), 0.88 (d, 3H, J = 6.5 Hz, H1 or H2), 0.65 (d, 3H, J = 6.5 

Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 169.9, 167.6, 159.1, 129.4 (C12 and 

C14), 128.7 (Ar), 128.5 (Ar), 128.4 (Ar), 126.4, 114.0 (C11 and C15), 100.0, 83.3 (C6), 

77.2, 67.9 (C18), 56.1, 56.0 (C5), 55.2 (C16), 43.5 (C9), 41.2 (C4), 29.7, 24.3 (C1 or 

C2), 24.1 (C3), 20.8 (C1 or C2), 19.5 (C25). 19F NMR (471 MHz, CDCl3) δ -75.07. 

 

(±)-(3R,4R,5R)-N-(4’-Methoxybenzyl)-3-methyl-4-(trifluoroacetoxy)-5-(2’-

methylpropyl)-pyrrolidin-2-one-3,5-dicarboxylic acid-5-methyl ester (±)-72 

 

 
 

Compound (±)-70 (1.30 g, 2.6 mmol) was subjected to the general procedure for the 

treatment of the benzyl ester under hydrogenolysis conditions using Pd(OH)2 / C (0.65 

g). Purification using column chromatography on silica gel (light petroleum ether/ethyl 

acetate 2:1, then 10% methanol in dichloromethane) gave the desired product (±)-72 as 

a colourless oil (0.22 g, 20%) and compound (±)-57 (0.14 g, 16%). 
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Compound (±)-57 (0.30 g, 0.80 mmol) was subjected to the general procedure for the 

protection of the hydroxyl moiety at C6 using trifluoroacetic anhydride (0.26 mL, 1.90 

mmol, 2.5 equiv.) and pyridine (0.15 mL, 1.90 mmol, 2.5 equiv.). No further 

purification was carried out. The desired compound (±)-72 was isolated as a yellow oil 

(0.30 g, 81%). 

 

νmax (thin film)/cm−1 1799, 1742, 1707 and 1676. 1H NMR (500 MHz, CDCl3) δ 7.11 

(app d, 2H, J = 8.7 Hz, H12 and H14), 6.87 (app d, 2H, J = 8.7 Hz, H11 and H15), 6.35 

(s, 1H, H6), 5.08 (d, 1H, J = 16.2 Hz, H9), 4.57 (d, 1H, J = 16.2 Hz, H9), 3.82 (s, 3H, 

H16), 3.80 (s, 3H, H21), 1.74 (dd, 1H, J = 14.0, 6.6 Hz, H4), 1.56 (s, 3H, H19), 1.55 – 

1.53 (m, 1H, H3), 1.50 (dd, 1H, J = 14.0, 4.2 Hz, H4), 0.72 (d, 3H, J = 6.4 Hz, H1 or 

H2), 0.68 (d, 3H, J = 6.4 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 175.1, 170.7, 

168.6, 159.1, 128.4, 127.7 (C12 and C14), 114.2 (C11 and C15), 77.9 (C6), 70.9, 55.3 

(C16), 53.8, 53.3 (C21), 45.5 (C9), 40.3 (C4), 23.9 (C1 or C2), 23.3 (C1 or C2), 23.2 

(C3), 21.1 (C19). 19F NMR (471 MHz, CDCl3) δ -74.76. 
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The Barton Decarboxylation 

 
 

Procedure A: Compound (±)-57 (0.10 g, 0.24 mmol) was dissolved in chloroform (5 

mL) with oxalyl chloride (0.03 mL, 0.32 mmol, 1.2 equiv.) and 1 drop of DMF. The 

reaction was stirred for 2 h. In a separate flask, 2-mercaptopyridine N-oxide sodium salt 

(0.06 g, 0.39 mmol, 1.5 equiv.) was dissolved in chloroform (5 mL). The acid chloride 

solution was added to the 2-mercaptopyridine N-oxide sodium salt solution dropwise 

using a cannula whilst irradiating with a UV lamp. The reaction was left under UV 

irradiation for 3 h after which the solvent was removed and the residue was re-dissolved 

in diethyl ether. The organic phase was washed with a solution of HCl (1 M, 3 x 20 

mL), brine (3 x 20 mL), dried over anhydrous magnesium sulfate and evaporated to 

dryness under reduced pressure.  

 

Procedure B: The carboxylic acid starting material was dissolved in anhydrous 

dichloromethane (50 mL/g of carboxylic acid). NMM (2 equiv.), 2-mercaptopyridine N-

oxide sodium salt (2 equiv.), EDAC·HCl (2.5 equiv.) and DMAP (0.2 equiv.) were 

added to the reaction mixture. The reaction mixture was stirred under an atmosphere of 

nitrogen for 20 h.  An aqueous solution of HCl (1 M, 3 mL) was added to the reaction 

mixture and stirring was continued for a further 30 min. The organic layer was 

separated, washed with water (3 x 20 mL), dried over anhydrous magnesium sulfate, 

filtered, and evaporated to dryness under reduced pressure.  

 

Compound (±)-57 (0.10 g, 0.24 mmol) was subjected to the conditions described above 

in procedure B using NMM (0.05 mL, 0.49 mmol, 2 equiv.), 2-mercaptopyridine N-
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oxide sodium salt (0.07 g, 0.49 mmol, 2 equiv.), EDAC·HCl (0.12 g, 0.62 mmol, 2.5 

equiv.) and DMAP (0.01 g, 0.05 mmol, 0.2 equiv.). Compound (±)-66 was isolated. 

 

Compound (±)-72 (0.12 g, 0.25 mmol) was subjected to the conditions described above 

in procedure B using NMM (0.06 mL, 0.50 mmol, 2 equiv.), 2-mercaptopyridine N-

oxide sodium salt (0.08 g, 0.50 mmol, 2 equiv.), EDAC·HCl (0.12 g, 0.62 mmol, 2.5 

equiv.) and DMAP (0.01 g, 0.05 mmol, 0.2 equiv.). Compound (±)-66 was isolated. 

 

The Krapcho Decarboxylation 

 

 
 

Compound (±)-51 (0.18 g, 0.4 mmol) was dissolved in wet DMF (5 mL) and LiCl (0.05 

g, 1.1 mmol, 3 equiv.) added to the mixture. The reaction was heated at 135 °C for 4 h. 

The solution was cooled to room temperature. An aqueous solution of NH4OH (5%) 

was added to the reaction mixture. The aqueous phase was extracted with diethyl ether 

(3 x 10 mL). The organic layers were combined, washed with brine (2 x 10 mL), dried 

over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The crude 

product was purified by silica gel column chromatography using 20% ethyl acetate in 

light petroleum ether to give the first eluting compound (±)-78 as an oil (0.05 g, 49%) 

and the second eluting compound (±)-79 as an oil (0.04 g, 38%). 

 

(±)-N-(4’-Methoxybenzyl)-3-methyl-5-(2’-methylpropyl)-3,4-dehydropyrrolidin-2-

one (±)-78 

νmax (thin film)/cm−1 1713 and 1671. 1H NMR (500 MHz, CDCl3) δ 7.15 (app d, 2H, J = 

8.6 Hz, H12 and H14), 6.82 (app d, 2H, J = 8.6 Hz, H11 and H15), 4.57 (d, 2H, J = 2.0 

Hz, H9), 4.51 (dt, 1H, J = 9.5, 2.2 Hz, H5), 3.78 (s, 3H, H16), 2.91 (ddd, 1H, J = 16.1, 

9.7, 2.0 Hz, H4), 2.72 – 2.61 (m, 1H, H6), 2.39 – 2.31 (m, 1H, H3), 2.22 (ddd, 1H, J = 

N O

OMe

9
10

11
12
13

14
15

1 3 2

4

5

6 7

8

16

17

N O

OMe

9
10

11
12
13

14
15

1 3 2

4

5

6 7

8

16

17

N

CO2Bn
MeHO

PMB

O
MeO2C

(±)-51 (±)-78 (±)-79



	 	 Experimental	
	

	 161	

16.1, 6.3, 2.4 Hz, H4), 1.29 (d, 3H, J = 7.2 Hz, H17), 0.92 (d, 3H, J = 4.9 Hz, H1 or 

H2), 0.91 (d, 3H, J = 4.9 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 178.3, 158.7, 

135.8, 128.70, 128.5 (C12 and C14), 113.8 (C11 and C15), 109.7 (C5), 55.2 (C16), 43.1 

(C9), 35.1 (C6), 30.3 (C4), 26.8 (C3), 23.6 (C1 or C2), 23.5 (C1 or C2), 17.3 (C17). 

 

(±)-N-(4’-Methoxybenzyl)-3-methyl-5-(2’-methylpropyl)-4,5-dehydropyrrolidin-2-

one (±)-79 

νmax (thin film)/cm−1 1675. 1H NMR (500 MHz, CDCl3) δ 7.15 (app d, 2H, J = 8.6 Hz, 

H12 and H14), 6.83 (app d, 2H, J = 8.6 Hz, H11 and H15), 6.70 – 6.66 (m, 1H, H7), 

5.09 (d, 1H, J = 15.0 Hz, H9), 4.01 (d, 1H, J = 15.0 Hz, H9), 3.78 (s, 4H, H16 and H6), 

1.92 (t, 3H, J = 1.7 Hz, H17), 1.68 – 1.60 (m, 1H, H3), 1.65 (d, 1H, J = 9.7 Hz, H4), 

1.25 (d, 1H, J = 9.7 Hz, H4), 0.89 (d, 3H, J = 6.1 Hz, H1 or H2), 0.85 (d, 3H, J = 6.1 

Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 171.7, 158.9, 140.6 (C7), 134.5, 129.9, 

129.3 (C12 and C14), 114.0 (C11 and C15), 58.1 (C6 or C16), 55.3 (C7 or C16), 43.3 

(C9), 39.8 (C4), 25.1 (C3), 23.9 (C1 or C2), 22.3 (C1 or C2), 11.3 (C17). 

 

(±)-(3R,5R)-N-(4’-Methoxybenzyl)-3-methyl-5-(2’-methylpropyl)-pyrrolidin-2-one-

5-carboxylic acid methyl ester (±)-81 and (±)-(3S,5R)-N-(4’-Methoxybenzyl)-3-

methyl-5-(2’-methylpropyl)-pyrrolidin-2-one-5-carboxylic acid methyl ester (±)-82 

 

 
 

Compound (±)-10 (0.33 g, 0.70 mmol) was subjected to the general procedure for the 

treatment of the benzyl ester under hydrogenolysis conditions using Pd(OH)2 / C (0.17 

g). The product was obtained as an inseparable mixture of diastereoisomers (±)-81 and 

(±)-82 in a 1:1 ratio as a colourless oil (0.26 g, quant.). No further purification was 

carried out.  
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Found (NSI): [M+H]+ 348.1806; [C19H25NO5+H]+
 requires 348.1085. νmax (thin 

film)/cm−1 2955, 1743 and 1638. 1H NMR (500 MHz, CDCl3) δ 7.25 (app d, 4H, J = 8.7 

Hz, H12 and H14), 6.82 (app d, 4H, J = 8.7 Hz, H11 and H15), 5.22 (d, 1H, J = 14.8 

Hz, H9), 4.97 (d, 1H, J = 14.8 Hz, H9), 4.02 (d, 1H, J = 14.8 Hz, H9), 3.84 (d, 1H, J = 

14.8 Hz, H9), 3.78 (s, 6H, H16), 3.20 – 3.18 (m, 1H, H7), 3.17 (s, 3H, H19), 3.14 (s, 

3H, H19), 2.89 (q, 1H, J = 7.4 Hz, H7), 2.17 – 2.08 (m, 4H, H4), 1.45 (d, 3H, J = 7.6 

Hz, H17), 1.45 – 1.37 (m, 2H, H3) 1.37 (d, 3H, J = 7.6 Hz, H17), 0.92 (d, 3H, J = 6.8 

Hz, H1 or H2), 0.86 (d, 3H, J = 6.8 Hz, H1 or H2), 0.78 (d, 3H, J = 6.6 Hz, H1 or H2), 

0.76 (d, 3H, J = 6.6 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 207.4, 206.0, 173.6, 

173.2, 167.9, 159.3, 130.8 (C12 and C14), 130.8 (C12 and C14), 127.7, 113.8 (C11 and 

C15), 113.7 (C11 and C15), 75.7, 75.2, 55.3 (C16), 52.8 (C19), 44.5 (C7), 44.2 (C7), 

43.7 (C9), 38.1 (C4), 36.9 (C4), 25.61, 23.9 (C1, C2 or C3), 23.8 (C1, C2 or C3), 23.7 

(C1, C2 or C3), 23.6 (C1, C2 or C3), 23.6 (C1, C2 or C3), 23.5 (C1, C2 or C3), 12.5 

(C17), 10.0 (C17). 

 

The Noyori Asymmetric Hydrogenation Reaction 

 

 
 

Procedure A: The mixture of compounds (±)-81 and (±)-82 (0.15 g, 0.43 mmol) and 

potassium carbonate (0.01 g, 0.25 equiv.) were dissolved in a mixture of 2-propanol and 

THF (5:1, 3 mL). The reaction was flushed with argon for 5 min after which the 

catalyst, RuCl2[(R)−DM−BINAP][(R)−DAIPEN] (0.03 g, 5 mol%), was added and 

flushed with argon for a further 5 min. The argon was replaced with a balloon of 

hydrogen and the reaction mixture left to stir for 6 d. The solvent was removed under 

reduced pressure and the resulting residue re-dissolved in toluene (5 mL) and washed 

with water (2 x 5 mL). The organic layer was dried over anhydrous magnesium sulfate, 
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filtered, and evaporated to dryness under reduced pressure. The residue was purified 

using column chromatography on silica gel (light petroleum ether/ethyl acetate, 3:1). 

Two products were isolated from the reaction mixture, the first with the possible 

structure (±)-87 or (±)-88, the second is unknown. 

 

Procedure B: The mixture of compounds (±)-81 and (±)-82 (0.12 g, 0.38 mmol) and 

potassium carbonate (0.01 g, 0.25 equiv.) were dissolved in a mixture of 2-propanol and 

THF (5:1, 3 mL). The reaction was degassed via nitrogen/vacuum for 5 min after which 

the catalyst, RuCl2[(R)−DM−BINAP][(R)−DAIPEN] (0.02 g, 5 mol%), was added. The 

reaction was hydrogenated at 40 psi for 3 d. The solvent was removed under reduced 

pressure and the resulting residue re-dissolved in toluene (5 mL) and washed with water 

(2 x 5 mL). The organic layer was dried over anhydrous magnesium sulfate, filtered, 

and evaporated to dryness under reduced pressure. The residue was purified using 

column chromatography on silica gel (light petroleum ether/ethyl acetate, 3:1). Two 

products were isolated from the reaction mixture, the first with the possible structure 

(±)-87 or (±)-88, the second is unknown. 

 

(±)-(5R)-3,4-Dehydro-N-(4’-methoxybenzyl)-3-methyl-4-(isopropoxy carbonate)-5-

(2’-methylpropyl)-pyrrolidin-2-one-3,4-oxide (±)-87 or (±)-(5R)-3,4-Dehydro-N-(4’-

methoxybenzyl)-3-methyl-4-isopropoxy-5-(2’-methylpropyl)-pyrrolidin-2-one-3,4-

carbonate (±)-88 

Found (NSI): [M+H]+ 392.2063; [C21H29NO6+H]+
 requires 392.2068. νmax (thin 

film)/cm−1 1758 and 1669. 1H NMR (500 MHz, CDCl3) δ 7.16 (app d, 2H, J = 8.6 Hz, 

H12 and H14), 6.86 (app d, 2H, J = 8.6 Hz, H11 and H15), 5.48 (d, 1H, J = 14.8 Hz, 

H9), 5.06 (p, 1H, J = 6.3 Hz, H21), 4.03 (dd, 1H, J = 8.5, 3.1 Hz, H5), 3.80 (s, 3H, 

H16), 3.74 (d, 1H, J = 14.8 Hz, H9), 1.93 – 1.88 (m, 1H, H4), 1.88 (s, 3H, H17), 1.87 – 

1.82 (m, 1H, H4), 1.82 – 1.76 (m, 1H, H3), 1.25 (d, 3H, J = 1.0 Hz, H19 or H20), 1.24 

(d, 3H, J = 1.0 Hz, H19 or H20), 0.97 (d, 3H, J = 6.1 Hz, H1 or H2), 0.92 (d, 3H, J = 

6.1 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 166.2, 165.6, 163.8, 159.6, 129.5 

(C12 and C14), 126.6, 114.4 (C11 and C15), 83.6, 71.3 (C21), 55.4 (C16), 55.0 (C5), 

45.9 (C9), 41.0 (C4), 24.5 (C3), 23.4 (C1 or C2), 21.7 (C7), 21.6 (C1 or C2), 21.5 (C19 

and C20). 
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Preparation of S-Methyl-p-toluenethiosulfonate 96 

 

 
 

Sodium p-toluenesulfinate (3.23 g, 18.13 mmol, 3.2 equiv.) was dissolved in 

dichloromethane (50 mL) and dimethyl disulfide (0.50 mL, 5.66 mmol) added to the 

solution. Iodine (2.81 g, 11.33 mmol, 2 equiv.) was added to the mixture with vigorous 

stirring. The reaction mixture was stirred and monitored by TLC until the dimethyl 

disulfide was consumed. The mixture was diluted with dichloromethane (30 mL) 

followed by the addition of aqueous Na2S2O3 (1 M) with stirring until the iodine colour 

disappeared. The organic layer was washed with water (2 x 50 mL), dried over 

anhydrous sodium sulfate, filtered, and evaporated to dryness under reduced pressure. 

The product precipitated as an off-white solid (1.15 g, quant.). 

 

νmax (thin film)/cm−1 2926 and 1594. 1H NMR (500 MHz, CDCl3) δ 7.80 (d, 2H, J = 8.3 

Hz), 7.36 (d, 2H, J = 8.3 Hz), 2.50 (s, 3H), 2.46 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 

144.9, 140.9, 129.9, 127.2, 21.7, 18.1. 
 

Synthesis of the Thiomethyl Derivative from (±)-81 and (±)-82 

 

 
 

Triethylamine (0.2 mL, 1 mmol, 1.2 equiv.) and S-methyl-p-toluenethiosulfonate (0.18 

g, 0.8 mmol) were added to a solution of the mixture of (±)-81 and (±)-82 (0.30 g, 0.86 

mmol) in dichloromethane (5 mL) at room temperature under a nitrogen atmosphere. 

S O

O

Na
S SMeO

O
1

3
4

2

5

6
7

8

96

(SMe)2

N

O

O

OMe

MeO

O

+
9

10

11
12
13

14
15

1
3

2

4

5
6 7

8

16

17

18
19 N

O

O

OMe

MeO

O

9

10

11
12
13

14
15

1
3

2

4

5
6 7

8

16

17

18
19

SMe SMe
20 20

N

O

PMB

O
MeO2C

(±)-81 and  (±)-82

Me

(±)-97 (±)-98



	 	 Experimental	
	

	 165	

The mixture was stirred overnight at room temperature. The solvent was removed under 

reduced pressure and the residue purified using column chromatography on silica gel 

(10% ethyl acetate in light petroleum ether) to yield compounds (±)-97 and (±)-98 as an 

inseparable mixture (0.16 g, 47%). 

 

Compounds (±)-97 and (±)-98: Found (NSI): [M+H]+ 394.1682; [C20H27NO5S+H]+
 

requires 394.1683. νmax (thin film)/cm−1 2960, 1769, 1745 and 1698. 

 

(±)-(3R,5R)-N-(4’-Methoxybenzyl)-3-methyl-3-methylsulfanyl-5-(2’-methylpropyl)-

pyrrolidin-2,4-dione-5-carboxylic acid methyl ester (±)-97 
1H NMR (500 MHz, CDCl3) δ 7.27 (app d, 2H, J = 8.7 Hz, H12 and H14), 6.83 (app d, 

2H, J = 8.7 Hz, H11 and H15), 4.80 (d, 1H, J = 15.2 Hz, H9), 4.43 (d, 1H, J = 15.2 Hz, 

H9), 3.78 (s, 3H, H16), 3.45 (s, 3H, H19), 2.25 (dd, 1H, J = 15.2, 6.8 Hz, H4), 2.15 (s, 

3H, H20), 1.96 (dd, 1H, J = 15.2, 5.7 Hz, H4), 1.58 (s, 3H, H17), 1.38 – 1.29 (m, 1H, 

H3), 0.75 (d, 3H, J = 4.5 Hz, H1 or H2), 0.74 (d, 3H, J = 4.5 Hz, H1 or H2). 13C NMR 

(126 MHz, CDCl3) δ 200.2, 171.7, 167.9, 159.0, 129.8 (C12 and C14), 128.5, 113.8 

(C11 and C15), 75.4, 55.3 (C16), 52.9 (C19), 49.3, 44.9 (C9), 40.0 (C4), 23.9 (C3), 23.5 

(C1 and C2), 16.9 (C17), 12.3 (C20). 

 

(±)-(3S,5R)-N-(4’-Methoxybenzyl)-3-methyl-3-methylsulfanyl-5-(2’-methylpropyl)-

pyrrolidin-2,4-dione-5-carboxylic acid methyl ester (±)-98 
1H NMR (500 MHz, CDCl3) δ 7.24 (app d, 2H, J = 8.6 Hz, H12 and H14), 6.82 (app d, 

2H, J = 8.6 Hz, H11 and H15), 4.96 (d, 1H, J = 14.9 Hz, H9), 4.03 (d, 1H, J = 14.9 Hz, 

H9), 3.77 (s, 3H, H16), 3.16 (s, 3H, H19), 2.28 (s, 3H, H20), 2.24 (dd, 1H, J = 15.3, 5.4 

Hz, H4), 1.98 (dd, 1H, J = 15.3, 6.2 Hz, H4), 1.74 (dtd, 1H, J = 13.1, 6.6, 1.2 Hz, H3), 

1.67 (s, 3H, H17), 0.93 (d, 3H, J = 6.6 Hz, H1 or H2), 0.87 (d, 3H, J = 6.6 Hz, H1 or 

H2). 13C NMR (126 MHz, CDCl3) δ 202.6, 172.4, 168.0, 159.3, 130.7 (C12 and C14), 

127.5, 113.8 (C11 and C15), 75.2, 55.3 (C16), 52.8 (C19), 48.2, 43.7 (C9), 38.3 (C4), 

24.6 (C1 or C2), 23.9 (C1 or C2), 23.7 (C3), 18.5 (C17), 11.6 (C20). 
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Reduction of the Thiomethyl Derivative (±)-97 and (±)-98 

 

 
 

The inseparable mixture of compounds (±)-97 and (±)-98 (0.088 g, 0.22 mmol) was 

subjected to the general procedure for ketone reduction using NaBH4 (0.004 g, 0.11 

mmol, 0.5 equiv.). The mixture was stirred at –10 °C for 30 minutes. After quenching 

and subsequent washing the resulting residue was purified using column 

chromatography on silica gel (light petroleum ether/ethyl acetate, 3:1). The first eluting 

diastereoisomer (±)-99 was obtained as a yellow oil (0.015 g, 17%), the second eluting 

diastereoisomer (±)-100 was obtained as a dark yellow oil (0.023 g, 25%). The starting 

material, an inseparable mixture of compounds (±)-97 and (±)-98, was recovered (0.020 

g, 23%). 

 

(±)-(3S,4S,5R)-N-(4’-Methoxybenzyl)-3-methyl-3-methylsulfanyl-4-hydroxy-5-(2’-

methylpropyl)-pyrrolidin-2-one-5-carboxylic acid methyl ester (±)-99 

Found (NSI): [M+H]+ 396.1830; [C20H29NO5S+H]+
 requires 396.1839. νmax (thin 

film)/cm−1 3432, 2957, 2927, 1741 and 1698. 1H NMR (500 MHz, CDCl3) δ 7.15 (app 

d, 2H, J = 8.7 Hz, H12 and H14), 6.82 (app d, 2H, J = 8.7 Hz, H11 and H15), 4.84 (d, 

1H, J = 15.9 Hz, H9), 4.47 (d, 1H, J = 10.0 Hz, H21), 4.36 (d, 1H, J = 15.9 Hz, H9), 

4.03 (d, 1H, J = 10.0 Hz, H6), 3.78 (s, 3H, H16), 3.66 (s, 3H, H19), 2.14 (s, 3H, H20), 

1.85 (dd, 1H, J = 14.5, 6.0 Hz, H4), 1.77 – 1.72 (m, 1H, H3), 1.65 (dd, 1H, J = 14.5, 4.5 

Hz, H4), 1.63 (s, 3H, H17), 0.82 (d, 3H, J = 6.6 Hz, H1 or H2), 0.71 (d, 3H, J = 6.6 Hz, 
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H1 or H2). 13C NMR (126 MHz, CDCl3) δ 174.6, 173.1, 158.7, 130.2, 128.7 (C12 and 

C14), 113.8 (C11 and C15), 81.3 (C6), 67.4, 55.3 (C16), 52.7 (C19), 51.5, 44.8 (C9), 

44.0 (C4), 24.4 (C1 or C2), 23.9 (C1 or C2), 23.5 (C3), 21.8 (C17), 11.5 (C20). 

 

(±)-(3R,4R,5R)-N-(4’-Methoxybenzyl)-3-methyl-3-methylsulfanyl-4-hydroxy-5-(2’-

methylpropyl)-pyrrolidin-2-one-5-carboxylic acid methyl ester (±)-100 

Found (NSI): [M+H]+ 396.1832; [C20H29NO5S+H]+
 requires 396.1839. νmax (thin 

film)/cm−1 3484, 2957, 2928, 1738 and 1682. 1H NMR (500 MHz, CDCl3) δ 7.15 (app 

d, 2H, J = 8.7 Hz, H12 and H14), 6.82 (app d, 2H, J = 8.7 Hz, H11 and H15), 4.89 (d, 

1H, J = 16.0 Hz, H9), 4.47 (d, 1H, J = 3.3 Hz, H6), 4.43 (d, 1H, J = 16.0 Hz, H9), 3.78 

(s, 3H, H16), 3.70 (s, 3H, H19), 3.20 (d, 1H, J = 3.3 Hz, H21), 2.15 (s, 3H, H20), 1.88 

(dd, 1H, J = 13.7, 6.3 Hz, H4), 1.80 (dd, 1H, J = 13.7, 5.3 Hz, H4), 1.76 – 1.71 (m, 1H, 

H3), 1.50 (s, 3H, H17), 0.91 (d, 3H, J = 6.6 Hz, H1 or H2), 0.77 (d, 3H, J = 6.6 Hz, H1 

or H2). 13C NMR (126 MHz, CDCl3) δ 173.2, 173.1, 158.5, 130.5, 128.2 (C12 and 

C14), 113.8 (C11 and C15), 75.9 (C6), 71.6, 57.5, 55.3 (C16), 52.4 (C19), 45.2 (C9), 

40.7 (C4), 24.2 (C3) 24.2 (C1 or C2), 23.5 (C1 or C2), 21.9 (C17), 12.6 (C20). 
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(±)-(3S,4R,5R)-N-(4’-Methoxybenzyl)-3-methyl-4-hydroxy-5-(2’-methylpropyl)-

pyrrolidin-2-one-5-carboxylic acid methyl ester (±)-11 and (±)-(3R,4R,5R)-N-(4’-

Methoxybenzyl)-3-methyl-4-hydroxy-5-(2’-methylpropyl)-pyrrolidin-2-one-5-

carboxylic acid methyl ester (±)-101 

 

 
 

Raney nickel was washed using ethanol and dried under an atmosphere of nitrogen 

before being added to a solution of (±)-99 (0.02 g, 0.05 mmol) in ethanol. The reaction 

mixture was heated under reflux for 4 h. After removal of the Raney nickel by filtration 

the solvent was removed under reduced pressure. The resulting residue was purified 

using column chromatography on silica gel (light petroleum ether/ethyl acetate, 3:1). 

Compounds (±)-11 and (±)-101 were isolated as an inseparable mixture of 

diastereoisomers in a 3:1 ratio. 

 

Found (NSI): [M+H]+ 350.1963; [C19H27NO5+H]+
 requires 350.1962.  

 

Major diastereoisomer: 1H NMR (500 MHz, CDCl3) δ 7.11 (app d, 2H, J = 8.7 Hz, 

H12 and H14), 6.75 (app d, 2H, J = 8.7 Hz, H11 and H15), 4.75 (d, 1H, J = 15.9 Hz, 

H9), 4.65 (dd, 1H, J = 10.8, 5.2 Hz, H6), 4.25 (d, 1H, J = 15.9 Hz, H9), 3.71 (s, 3H, 

H16), 3.58 (s, 3H, H19), 2.71 (qd, 1H, J = 7.3, 4.9 Hz, H7), 1.75 (dd, 1H, J = 13.3, 6.4 

Hz, H4), 1.67 – 1.60 (m, 1H, H3), 1.56 (dd, 1H, J = 13.3, 5.7 Hz, H4), 1.18 (d, 3H, J = 

7.2 Hz, H17), 0.85 (d, 3H, J = 6.6 Hz, H1 or H2), 0.73 (d, 3H, J = 6.6 Hz, H1 or H2). 
13C NMR (126 MHz, CDCl3) δ 175.9, 172.0, 158.5, 131.1, 128.3 (C12 and C14), 113.8 

(C11 and C15), 72.3 (C6), 72.0, 55.3 (C16), 52.1 (C19), 43.8 (C9), 41.1 (C7), 39.2 

(C4), 24.1 (C1 or C2), 24.0 (C3), 23.4 (C1 or C2), 8.6 (C17). 
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3.2.2.2 Synthesis from L-Serine 
 

L-Serine methyl ester hydrochloride 1023 

 

 
 

L-Serine (10.06 g, 0.10 mol) was subjected to the general procedure for the 

esterification of an amino acid using acetyl chloride (20 mL, 0.29 mol, 3 equiv.). The 

product L-serine methyl ester hydrochloride 102 was obtained as off-white solid (14.90 

g, quant.). No further purification was carried out. 

 

Found (APCI): [M+H]+ 120.0653; [C4H9NO3+H]+
 requires 120.0655. mp 159-164 °C, lit 

155-163 °C.3 [α]D = +4 (c 2, MeOH, 25 °C, lit +5, c 2, MeOH, 20 °C).3 1H NMR (500 

MHz, D2O) δ 4.13 (t, 1H, J = 3.5 Hz, H3), 3.96 (dd, 1H, J = 12.9, 4.3 Hz, H2), 3.85 (dd, 

1H, J = 12.9, 3.7 Hz, H2), 3.71 (s, 3H, H5). 13C NMR (126 MHz, D2O) δ 168.9 (C4), 

59.2 (C2), 54.7 (C3), 53.7 (C5). 

 

2-(4’-Methoxy-benzylamino)-3-hydroxy-propanoic acid methyl ester 1034 

 

 
 

L-Serine methyl ester hydrochloride (0.36 g, 2 mmol) was dissolved in methanol (10 

mL) and triethylamine (0.48 mL, 3.4 mmol, 1.5 equiv.) added. The reaction mixture 

was stirred for 1 h. 4-Methoxybenzaldehyde (0.31 mL, 2.5 mmol, 1.1 equiv.) was added 
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and the reaction mixture stirred for a further hour. The reaction mixture was purged 

with nitrogen and Pd/C (10% by weight, 0.04 g) added, the mixture was again purged 

with nitrogen and then treated with hydrogen under balloon pressure overnight at room 

temperature. The reaction mixture was filtered through celite and the solvents removed 

under reduced pressure. The residue was purified using column chromatography on 

silica gel (light petroleum ether/ethyl acetate 1:1) to yield the title compound as a pale 

yellow oil (0.35 g, 64%).  

 

Found (NSI): [M+H]+ 240.1228; [C12H17NO4+H]+
 requires 240.1230. νmax (thin 

film)/cm−1 3321, 2953, and 1736. 1H NMR (500 MHz, CDCl3) δ 7.24 (app d, 2H, J = 

8.7 Hz, H9 and H11), 6.86 (app d, 2H, J = 8.7 Hz, H8 and H12), 3.83 (d, 1H, J = 13.1 

Hz, H6), 3.80 (s, 3H, H13), 3.77 (dd, 1H, J = 10.8, 4.6 Hz, H2), 3.75 (s, 3H, H5), 3.67 

(d, 1H, J = 13.1 Hz, H6), 3.60 (dd, 1H, J = 10.8, 6.5 Hz, H2), 3.43 (dd, 1H, J = 6.5, 4.5 

Hz, H3). 13C NMR (126 MHz, CDCl3) δ 173.5 (C4), 158.9 (C10), 131.4 (C7), 129.5 (C9 

and C11), 113.9 (C8 and C12), 62.4 (C2), 61.6 (C3), 55.3 (C13), 52.2 (C5), 51.5 (C6). 

 

Peptide Coupling 

 

 
 

Compound 103 (0.93 g, 3.9 mmol) was subjected to the general procedure for peptide 

coupling using EDAC·HCl (0.64 g, 9.7 mmol, 2.5 equiv.), NMM (0.85 mL, 7.7 mmol, 2 

equiv.), benzyl malonic half ester (1.80 g, 7.7 mmol, 2 equiv.) and DMAP (0.10 g, 0.8 

mmol, 0.2 equiv.). The residue was purified using column chromatography on silica gel 

(light petroleum ether/ethyl acetate, 2:1). Compound 104 was isolated as a yellow oil 

(0.23 g, 14%). Compound 112 was isolated as a colourless oil (0.42 g, 31%). 
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2-{(4’-Methoxy-benzyl)-[2’-(benzyloxycarbonyl)-acetyl]-amino}-3-hydroxy-

propanoic acid methyl ester 104 

Found (NSI): [M+H]+ 416.1698; [C22H25NO7+H]+
 requires 416.1704. νmax (thin 

film)/cm−1 3456, 2953, 1740 and 1651. 1H NMR (500 MHz, CDCl3) δ 7.29 – 7.25 (m, 

5H, H18-23), 7.14 (app d, 2H, J = 8.5 Hz, H9 and H11), 6.78 (app d, 2H, J = 8.5 Hz, H8 

and H12), 5.13 – 5.04 (m, 2H, H17), 4.51 – 4.38 (m, 2H, H6), 4.04 – 3.97 (m, 2H, H2 

and H3), 3.81 – 3.74 (m, 1H, H2), 3.70 (s, 3H, H13), 3.58 (s, 3H, H5), 3.51 (d, 1H, J = 

15.8 Hz, H15), 3.41 (d, 1H, J = 15.8 Hz, H15). 13C NMR (126 MHz, CDCl3) δ 170.0, 

167.3, 159.5, 135.2 (C10), 128.7 (Ar), 128.5 (Ar), 128.5 (C9 and C11), 127.3 (C7 and 

C18), 114.4 (C8 and C12), 67.5 (C17), 61.5 (C3), 60.7 (C2), 55.3 (C13), 53.2 (C6), 52.3 

(C5), 41.4 (C15). 

 

2-{(4’-Methoxy-benzyl)-[2’-(benzyloxycarbonyl)-acetyl]-amino}-3-(2’-

(benzyloxycarbonyl)-acetyl]-oxy)-propanoic acid methyl ester 112 

Found (NSI): [M+H]+ 592.2171; [C32H33NO10+H]+ requires 592.2177. νmax (thin 

film)/cm−1 2954, 1741 and 1655. [α]D = −33.6 (c 1, CHCl3, 25 °C). 1H NMR (500 MHz, 

CDCl3) δ 7.39 – 7.29 (m, 10H, H19-23 and H29-33), 7.20 (app d, 2H, J = 8.7 Hz, H9 

and H11), 6.85 (app d, 2H, J = 8.7 Hz, H8 and H12), 5.16 (s, 4H, H17 and H27), 4.71 

(dd, 1H, J = 11.7, 4.5 Hz, H2), 4.59 (d, 1H, J = 16.6 Hz, H6), 4.57 (dd, 1H J = 11.7, 8.1 

Hz, H2), 4.43 (d, 1H, J = 16.6 Hz, H6), 4.39 (dd, 1H, J = 8.1, 4.5 Hz, H3), 3.78 (s, 3H, 

H13), 3.65 (s, 3H, H5), 3.56 – 3.45 (m, 2H, H15 or H25), 3.32 (d, 2H J = 2.1 Hz, H15 

or H25). 13C NMR (126 MHz, CDCl3) δ 168.2, 167.1, 166.9, 166.1, 165.9, 159.4, 135.3, 

135.2, 128.6 (Ar), 128.6 (Ar), 128.6 (C9 and C11), 128.5 (Ar), 128.5 (Ar), 128.4 (Ar), 

128.4 (Ar), 127.3, 114.2 (C8 and C12), 67.3 (C17 and C27), 63.2 (C2), 58.3 (C3), 55.3 

(C13), 52.7 (C6), 52.5 (C5), 41.3 (C15 or C25), 41.3 (C15 or C25). 
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2-(4’-Methoxy-benzylamino)-3-(tri-iso-propylsilanyloxy)-propanoic acid methyl 

ester 113 

 

 
 

Compound 103 (2.07 g, 8.7 mmol) was subjected to the general procedure for the silyl 

protection of the hydroxyl moiety using triisopropyl silyl chloride (2.23 mL, 10.4 mmol, 

1.2 equiv.) and imidazole (1.48 g, 21.7 mmol, 2.5 equiv.). The product 113 was 

obtained as a yellow oil (3.10 g, 90%). No further purification was carried out. 

 

Found (NSI): [M+H]+ 396.2558; [C21H37NO4Si+H]+ requires 396.2565. νmax (thin 

film)/cm−1 2943, 2866 and 1743. [α]D = −19.2 (c 1, CHCl3, 25 °C).  1H NMR (500 MHz, 

CDCl3) δ 7.25 (app d, 2H, J = 8.6 Hz, H8 and H12), 6.85 (app d, 2H, J = 8.6 Hz, H9 

and H11), 3.97 (dd, 1H, J = 9.5, 4.8 Hz, H2), 3.90 (dd, 1H, J = 9.5, 5.0 Hz, H2), 3.84 (d, 

1H, J = 12.9 Hz, H6), 3.79 (s, 3H, H13), 3.72 (s, 3H, H5), 3.66 (d, 1H, J = 12.9 Hz, 

H6), 3.41 (t, 1H, J = 4.9 Hz, H3), 1.09 – 0.99 (m, 21H, H1). 13C NMR (126 MHz, 

CDCl3) δ 173.9 (C4), 158.7 (C10), 132.0 (C7), 129.4 (C9 and C11), 113.8 (C8 and 

C12), 65.0 (C2), 62.3 (C3), 55.3 (C13), 51.7 (C5), 51.3 (C6), 17.9 (C1), 11.9 (C1). 
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2-{(4’-Methoxy-benzyl)-[2’-(benzyloxycarbonyl)-acetyl]-amino}-3-(tri-iso-

propylsilanyloxy)-propanoic acid methyl ester 114 

 

 
 

Compound 113 (2.00 g, 5.0 mmol) was subjected to the general procedure for peptide 

coupling using EDAC·HCl (2.42 g, 12.6 mmol, 2.5 equiv.), NMM (1.10 mL, 10.1 

mmol, 2 equiv.), benzyl malonic half ester (2.35 g, 10.1 mmol, 2 equiv.) and DMAP 

(0.12 g, 1.0 mmol, 0.2 equiv.). The residue was purified using column chromatography 

on silica gel (light petroleum ether/ethyl acetate, 2:1). Compound 114 was isolated as a 

yellow oil (2.65 g, 91%). 

 

Found (NSI): [M+H]+ 572.3030; [C31H45NO7Si+H]+ requires 572.3038. νmax (thin 

film)/cm−1 2944, 2866, 1743 and 1659. [α]D = +4.4 (c 1, CHCl3, 25 °C). 1H NMR (500 

MHz, CDCl3) δ 7.36 – 7.32 (m, 5H, H19-23), 7.25 (app d, 2H, J = 9.1 Hz, H8 and 

H12), 6.86 (app d, 2H, J = 9.1 Hz, H9 and H11), 5.14 (s, 2H, H17), 4.74 (s, 2H, H6), 

4.59 (dd, 1H, J = 7.4, 3.7 Hz, H3), 4.26 (dd, 1H, J = 10.7, 7.5 Hz, H2), 4.17 (dd, 1H, J = 

10.7, 3.7 Hz, H2), 3.79 (s, 3H, H13), 3.66 (s, 3H, H5), 3.52 – 3.41 (m, 2H, H15), 1.02 – 

0.98 (m, 21H, H1). 13C NMR (126 MHz, CDCl3) δ 169.4 (C16), 167.2 (C4), 167.0 

(C14), 159.1 (C10), 135.5 (C7 and C18), 128.5 (Ar), 128.3 (Ar), 128.0 (C9 and C11), 

114.2 (C8 and C12), 67.1 (C17), 62.4 (C2), 60.9, (C3) 55.3 (C13), 52.1 (C6), 52.0 (C5), 

41.4 (C15), 17.9, 17.9 (C1), 11.8 (C1). 
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Peptide Coupling 

 

 
 

Compound 102 (0.35 g, 2.2 mmol) was subjected to the general procedure for peptide 

coupling using EDAC·HCl (0.64 g, 3.4 mmol, 1.5 equiv.), NMM (0.27 mL, 2.5 mmol, 

1.1 equiv.), benzyl malonic half ester (0.57 g, 2.5 mmol, 1.1 equiv.) and DMAP (0.05 g, 

0.4 mmol, 0.2 equiv.). The residue was purified using column chromatography on silica 

gel (30% ethyl acetate in light petroleum ether). Two compounds were isolated in a 1:6 

ratio, the first eluting compound 115 (0.08 g, 8%) and the second eluting compound 116 

(0.34 g, 52%). 

 

2-(2’-(benzyloxycarbonyl)-acetyl-amino)-3-(2’-(benzyloxycarbonyl)-acetyl]-oxy)-

propanoic acid methyl ester 115 

Found (NSI): [M+H]+ 472.1593; [C24H25NO9+H]+ requires 472.1602. νmax (thin 

film)/cm−1 3354, 2955, 1739 and 1683. [α]D = +35 (c 1, CHCl3, 25 °C). 1H NMR (500 

MHz, CDCl3) δ 7.75 (d, 1H, J = 7.8 Hz, H6), 7.41 – 7.29 (m, 10H, H12-16 and H22-

26), 5.17 (d, 4H, J = 1.9 Hz, H10 and H20), 4.89 (dt, 1H, J = 7.6, 3.6 Hz, H3), 4.55 (dd, 

1H, J = 11.4, 3.5 Hz, H2), 4.50 (dd, 1H, J = 11.4, 3.7 Hz, H2), 3.75 (s, 3H, H5), 3.42 (s, 

2H, H18), 3.37 (s, 2H, H8). 13C NMR (126 MHz, CDCl3) δ 169.3, 168.5, 166.2, 165.9, 

165.0, 135.1 (C11 or C21), 135.0 (C11 or C21), 128.7 (Ar), 128.6 (Ar), 128.6 (Ar), 

128.4 (Ar), 128.3 (Ar), 67.5 (C10 or C20), 67.4 (C10 or C20), 64.4 (C2), 53.0 (C5), 

51.6 (C3), 41.2 (C8 or C18), 41.1 (C8 or C18). 

 

2-(2’-(benzyloxycarbonyl)-acetyl-amino)-3-hydoxy-propanoic acid methyl ester 116 

Found (NSI): [M+H]+ 296.1127; [C14H17NO6+H]+ requires 296.1129. νmax (thin 

film)/cm−1 3355, 2955, 1740 and 1661. [α]D = +26 (c 1, CHCl3, 25 °C). 1H NMR (500 

MHz, CDCl3) δ 7.80 (d, 1H, J = 7.6 Hz, H6), 7.38 – 7.29 (m, 5H, H12-16), 5.16 (s, 2H, 
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H10), 4.65 (dt, 1H, J = 7.4, 3.6 Hz, H3), 3.95 (dd, 1H, J = 11.4, 3.7 Hz, H2), 3.88 (dd, 

1H, J = 11.4, 3.5 Hz, H2), 3.74 (s, 3H, H5), 3.42 (s, 2H, H8), 3.13 (s, 1H, H1). 13C 

NMR (126 MHz, CDCl3) δ 170.8 (C9), 168.7 (C4), 165.7 (C7), 135.0 (C11), 128.7 

(Ar), 128.6 (Ar), 128.4 (Ar), 67.4 (C10), 62.7 (C2) 54.9 (C3), 52.7 (C5), 41.5 (C8). 

 

N-(4’-Methoxybenzyl)-2,2-dimethyl-1,3-oxazolidine-4-carboxylic acid methyl ester 

117 

 

 
 

PMB protected L-serine methyl ester 103 (0.12 g, 0.5 mmol) and camphorsulfonic acid 

(0.02 g, 0.1 mmol, 0.2 equiv.) were dissolved in toluene (5 mL). 2,2-Dimethoxypropane 

(0.3 g, 0.3 mmol, 0.5 equiv.) was added to the reaction mixture. The reaction mixture 

was heated under reflux for 45 min at which point the reaction was cooled to room 

temperature and the solvent removed under reduced pressure. The residue was re-

dissolved in toluene (5 mL) and another portion of DMP (0.3 g, 0.3 mmol, 0.5 equiv.) 

added. This process was repeated 3 times then the solvent removed and residue re-

dissolved in diethyl ether (5 mL). The solution was then partitioned with aqueous 

NaHCO3 (5%, 15 mL). The aqueous phase was then extracted with diethyl ether (2 x 10 

mL). The organic layers were combined, dried over magnesium sulfate and the solvent 

removed under reduced pressure. The resulting product 117 was isolated as an oil (0.13 

g, 97%).  No further purification was carried out. 

 

Found (NSI): [M+H]+ 280.1538; [C15H21NO4+H]+
 requires 280.1543. νmax (thin 

film)/cm−1 2953 and1737. 1H NMR (500 MHz, CDCl3) δ 7.26 (app d, 2H, J = 8.7 Hz, 

H8 and H12), 6.83 (app d, 2H, J = 8.7 Hz, H9 and H11), 4.11 (dd, 1H, J = 8.4, 7.8 Hz, 

H2), 3.96 (dd, 1H, J = 8.4, 5.4 Hz, H2), 3.89 (d, 1H, J = 13.3 Hz, H6), 3.79 (s, 3H, 
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H13), 3.64 (d, 1H, J = 13.3 Hz, H6), 3.61 (dd, 1H, J = 7.8, 5.5 Hz, H3), 3.45 (s, 3H, 

H5), 1.37 (s, 3H, H15 or H16), 1.29 (s, 3H, H15 or H16). 13C NMR (126 MHz, CDCl3) 

δ 173.1 (C4), 159.1 (C10), 130.9 (C7), 129.7 (C9 and C11), 114.0 (C8 and C12), 66.7 

(C2), 55.3 (C13), 51.7 (C5), 51.4 (C6), 26.7 (C15 or C16), 22.1 (C15 or C16). 

 

3.2.2.3 Synthesis from O-Benzyl-L-Serine 
 

O-Benzyl-L-serine methyl ester hydrochloride5 

 

 
 

O-Benzyl-L-serine (0.21 g, 1.08 mmol) was subjected to the general procedure for the 

esterification of an amino acid using acetyl chloride (0.22 mL, 3.26 mmol, 3 equiv.). 

The product 119 was obtained as off-white solid (0.27 g, quant.). No further purification 

was carried out. 

 

Found (NSI): [M+H]+ 210.1122; [C11H15NO3+H]+
 requires 210.1125. mp 141-145 °C, lit 

165-166 °C.5 [α]D = +9 (c 1, CH3OH, 25 °C, lit +6.9, c 1, CH3OH, 20 °C).5 1H NMR 

(500 MHz, D2O) δ 7.42 – 7.32 (m, 5H, H8-13), 4.60 (d, 1H, J = 12.0 Hz, H7), 4.52 (d, 

1H, J = 12.0 Hz, H7), 4.32 (dd, 1H, J = 4.3, 3.2 Hz, H3), 3.95 (dd, 1H, J = 11.1, 4.3 Hz, 

H2), 3.86 (dd, 1H, J = 11.1, 3.2 Hz, H2), 3.76 (S, 3H, H5). 13C NMR (126 MHz, D2O) δ 

168.68 (C4), 136.73 (C8), 128.75 (Ar), 128.48 (Ar), 128.38 (Ar), 73.11 (C7), 66.35 

(C2), 53.71 (C5), 53.15 (C3). 
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2-(4’-Methoxy-benzylamino)-3-benzyloxy-propanoic acid methyl ester 120 

 

 
 

O-Benzyl-L-serine methyl ester hydrochloride (0.20 g, 0.81 mmol, 1.1 equiv.) was 

dissolved in acetonitrile (5 mL) and 4-methoxybenzyl chloride (0.10 mL, 0.74 mmol) 

and potassium carbonate (0.11 g, 0.81 mmol, 1.1 equiv.) were added. The reaction 

mixture was heated under reflux overnight. The solvent was removed under reduced 

pressure and the residue purified using column chromatography on silica gel (light 

petroleum ether : ethyl acetate, 2:1) to yield the title compound as an oil (0.12 g, 45%).  

 

Found (NSI): [M+H]+ 330.1697; [C19H23NO4+H]+
 requires 330.1700. νmax (thin 

film)/cm−1 1739. [α]D = +14 (c 1, CHCl3, 25 °C). 1H NMR (500 MHz, CDCl3) δ 7.28 – 

7.18 (m, 5H, H9-13), 7.17 (app d, 2H, J = 8.7 Hz, H17 and H19), 6.77 (app d, 2H, J = 

8.7 Hz, H16 and H20), 4.45 (d, 1H, J = 12.2 Hz, H7), 4.41 (d, 1H, J = 12.2 Hz, H7), 

3.75 (d, 1H, J = 12.7 Hz, H14), 3.71 (s, 3H, H21), 3.65 (s, 3H, H5), 3.61 (dd, 2H, J = 

8.7, 4.9 Hz, H2), 3.58 (d, 1H, J = 12.7 Hz, H14), 3.43 (t, 1H, J = 4.9 Hz, H3), 2.10 (s, 

1H, H6). 13C NMR (126 MHz, CDCl3) δ 173.6 (C4), 158.8 (C18), 137.9 (C8), 131.6 

(C15), 129.6 (C17 and C19), 128.4 (Ar), 127.7 (Ar), 127.6 (Ar), 113.8 (C16 and C20), 

73.2 (C7), 71.0 (C2), 60.4 (C3), 55.3 (C21), 52.0 (C5), 51.4 (C14). 
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2-(2’-(Benzyloxycarbonyl)-acetyl-amino)-3-benzyloxy-propanoic acid methyl ester 

121 

 

 
 

O-Benzyl-L-serine methyl ester hydrochloride 119 (0.20 g, 0.82 mmol) was subjected to 

the general procedure for peptide coupling using EDAC·HCl (0.39 g, 2.04 mmol, 2.5 

equiv.), NMM (0.18 mL, 1.63 mmol, 2 equiv.), benzyl malonic half ester (0.21 g, 0.90 

mmol, 2 equiv.), and DMAP (0.02g, 0.16 mmol, 0.2 equiv.). The residue was purified 

using column chromatography on silica gel (light petroleum ether/ethyl acetate, 2:1). 

Compound 121 was isolated as an off-white solid (0.22 g, 69%). 

 

Found (NSI): [M+H]+ 386.1588; [C19H23NO4+H]+
 requires 386.1598. νmax (thin 

film)/cm−1 3353, 1744 and 1679. mp 104-109 °C. [α]D = +24 (c 1, CHCl3, 25 °C). 1H 

NMR (500 MHz, CDCl3) δ 7.74 (d, 1H, J = 7.7 Hz, H6), 7.38 – 7.27 (m, 10H, H9-13 

and H19-23), 5.19 (s, 2H, H17), 4.76 (dt, 1H, J = 7.9, 3.3 Hz, H3), 4.53 (d, 1H, J = 12.2 

Hz, H7), 4.48 (d, 1H, J = 12.2 Hz, H7), 3.89 (dd, 1H, J = 9.6, 3.3 Hz, H2), 3.73 (s, 3H, 

H5), 3.69 (dd, 1H, J = 9.6, 3.3 Hz, H2), 3.39 (d, 2H, J = 2.8 Hz, H15). 13C NMR (126 

MHz, CDCl3) δ 170.4, 168.6, 164.9, 137.5, 135.1, 128.7 (Ar), 128.6 (Ar), 128.5 (Ar), 

128.5 (Ar), 127.9 (Ar), 127.7 (Ar), 73.3 (C7), 69.4 (C2), 67.3 (C17), 52.9 (C3), 52.6 

(C5), 41.3 (C15). 
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The Dieckmann Cyclization 

 

 
 

The diester 121 (0.17 g, 0.43 mmol) was subjected to the general procedure for the one-

pot Dieckmann cyclization using TBAF (1 M in THF, 1.5 mL, 1.5 mmol, 3.5 equiv.) 

and iodomethane (0.1 mL, 1.7 mmol, 4 equiv.). The residue was purified using column 

chromatography on silica gel (light petroleum ether/ethyl acetate, 4:1). Compound 122 

was isolated as a colourless oil (0.05 g, 30%). 

 

2-(2’-(Benzyloxycarbonyl)-2’-methyl-propionyl-amino)-3-benzyloxy-propanoic 

acid methyl ester 

Found (NSI): [M+H]+ 386.1588; [C19H23NO4+H]+
 requires 386.1598. νmax (thin 

film)/cm−1 3353, 1744 and 1679. [α]D = +22 (c 1, CHCl3, 25 °C). 1H NMR (500 MHz, 

CDCl3) δ 7.28 – 7.14 (m, 10H, H9-13 and H19-23), 7.03 (d, 1H, J = 7.6 Hz, H6), 5.10 

(s, 2H, H17), 4.62 (dt, 1H, J = 7.8, 3.2 Hz, H3), 4.43 – 4.34 (m, 2H, H7), 3.78 (dd, 1H, 

J = 9.5, 3.2 Hz, H2), 3.64 (s, 3H, H5), 3.54 (dd, 1H, J = 9.5, 3.3 Hz, H2), 1.43 (s, 3H, 

H24 or H25), 1.41 (s, 3H, H24 or H25). 13C NMR (126 MHz, CDCl3) δ 174.1 (C4), 

171.8 (C16), 170.6 (C14), 137.7 (C18), 135.7 (C8), 128.7 (Ar), 128.6 (Ar), 128.4 (Ar), 

128.1 (Ar), 128.0 (Ar), 127.7 (Ar), 73.3 (C7), 69.4 (C2), 67.3 (C17), 53.0 (C3), 52.6 

(C5), 50.2, 23.6 (C24 or C25), 23.5 (C24 or C25). 
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3.2.2.4 Synthesis from L-Valine 
 

L-Valine methyl ester hydrochloride 1236 

 

 
 

L-valine (10.11 g, 0.09 mol) was subjected to the general procedure for the 

esterification of an amino acid using acetyl chloride (18 mL, 0.26 mol, 3 equiv.). The 

product 123 was obtained as off-white solid (14.46 g, quant.). No further purification 

was carried out. 

 

[α]D = +12 (c 2, H2O , 25 °C, lit +15°, c 2, H2O ).6 mp 170-173 °C, lit 171-173 °C.6 1H 

NMR (500 MHz, D2O) δ 3.98 (d, 1H, J = 4.7 Hz, H4), 3.80 (s, 3H, H6), 2.30 (m, 1H, 

H3), 0.98 (d, 3H, J = 6.8 Hz, H 1 or H2), 0.96 (d, 3H, J = 6.8 Hz, H 1 or H2). 13C NMR 

(126 MHz, D2O) δ 170.4 (C5), 58.4 (C6), 53.4 (C4), 29.3 (C3), 17.3 (C1 or C2), 17.0 

(C1 or C2). 

 
2-(4’-Methoxy-benzylamino)-3-methyl-butanoic acid methyl ester 1247 

 

 
 

L-Valine methyl ester hydrochloride (1.50 g, 8.89 mmol) and 4-methoxybenzaldehyde 

(1.12 mL, 9.77 mmol, 1.1 equiv.) were dissolved in toluene (50 mL) and acetic acid 

(0.25 mL, 4.44 mmol 0.5 equiv.) added. The reaction mixture was heated under reflux 
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using a Dean-Stark apparatus overnight. The solvent was removed under reduced 

pressure and the residue re-dissolved in methanol (50 mL) and acetic acid (0.25 mL, 

4.44 mmol, 0.5 equiv.) added. The reaction mixture was cooled to 0 °C and sodium 

cyanoborohydride (1.12 g, 17.77 mmol, 2 equiv.) was added slowly in small portions. 

The reaction mixture was stirred for 30 min at 0 °C then allowed to warm to room 

temperature and stirred overnight. The reaction was quenched with water (10 mL). The 

solvents were removed under reduced pressure and the residue was dissolved in 

dichloromethane (50 mL) and washed with water (2 x 50 mL), brine (2 x 50 mL) and 

Na2CO3 (2 x 50 mL). The organic layer was dried over anhydrous magnesium sulfate, 

filtered, and evaporated to dryness under reduced pressure. The product 124 was 

obtained as a yellow oil (2.09 g, 94%). No further purification was carried out. 
 

Found (NSI): [M+H]+ 252.1595; [C14H22NO3+H]+
 requires 252.1594. νmax (thin film)/cm-

1 1733. [α]D = +7 (c 1, CHCl3, 25 °C).  1H NMR (500 MHz, CDCl3) δ 7.25 (app d, 2H, J 

= 8.7 Hz, H10 and H12), 6.85 (app d, 2H, J = 8.7 Hz, H9 and H13), 3.79 (s, 3H, H14), 

3.75 (d, 1H, J = 12.9 Hz, H7), 3.71 (s, 3H, H6), 3.52 (d, 1H, J = 12.9 Hz, H7), 3.00 (d, 

1H, J = 6.1 Hz, H4), 1.90 (m, 1H, H3), 0.94 (d, 3H, J = 6.8 Hz, H1 or H2), 0.92 (d, 3H, 

J = 6.8 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 175.8 (C5), 158.7 (C11), 132.2 

(C8), 129.4 (C10 and C12), 113.7 (C9 and C13), 66.5 (C4), 55.3 (C14), 52.0 (C7), 51.4 

(C6), 32.0 (C3), 19.3 (C1 or C2), 18.7 (C1 or C2). 
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2-{(4’-Methoxy-benzyl)-[2’-(benzyloxycarbonyl)-acetyl]-amino}-3-methyl-butanoic 

acid methyl ester 125 

 

 
 

Compound 124 (1.16 g, 6.20 mmol) was subjected to the general procedure for peptide 

coupling using EDAC·HCl (2.99 g, 15.49 mmol, 2.5 equiv.), NMM (1.40 mL, 12.39 

mmol, 2 equiv.), benzyl malonic half ester (3.02 g, 9.30 mmol, 1.5 equiv.) and DMAP 

(0.16 g, 1.24 mmol, 0.2 equiv.). The residue was purified using column chromatography 

on silica gel (light petroleum ether/ethyl acetate, 4:1). Compound 125 was isolated as a 

yellow oil (1.75 g, 66%). 

 

Found (NSI): [M+H]+ 428.2066; [C24H29NO6+H]+
 requires 428.2068. νmax (thin 

film)/cm−11741 and 1655. [α]D = +6 (c 1, CHCl3, 25 °C).  

 

Major rotamer: 1H NMR (500 MHz, CDCl3) δ 7.42 – 7.28 (m, 5H, H20-24), 7.04 (app 

d, 2H, J = 8.6 Hz, H10 and H12), 6.83 (app d, 2H, J = 8.6 Hz, H9 and H13), 5.14 (d, 

2H, J = 2.3 Hz, H18), 4.85 (d, 1H, J = 10.4 Hz, H4), 4.59 (d, 1H, J = 17.5 Hz, H7), 4.53 

(d, 1H, J = 17.5 Hz, H7), 3.77 (s, 3H, H14), 3.48 (d, 1H, J = 15.5 Hz, H16), 3.45 (s, 3H, 

H6), 3.39 (d, 1H, J = 15.5 Hz, H16), 2.32 – 2.26 (m, 1H, H3), 0.96 (d, 3H, J = 6.7 Hz, 

H1 or H2), 0.89 (d, 3H, J = 6.7 Hz, H1 or H2). 

 

Minor rotamer: 1H NMR (500 MHz, CDCl3) δ 7.42 – 7.28 (m, 5H, H20-24), 7.17 (app 

d, 2H, J = 8.6 Hz, H10 and H12), 6.73 (app d, 2H, J = 8.6 Hz, H9 and H13), 5.21 (d, 

2H, J = 2.1 Hz, H18),	4.87 (d, 1H, J = 15.2 Hz, H7), 4.28 (d, 1H, J = 15.2 Hz, H7), 3.82 

(d, 1H, J = 10.9 Hz, H4), 3.75 (s, 3H, H14), 3.69 (d, 2H, J = 2.4 Hz, H16), 3.35 (s, 3H, 
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H6), 2.40 – 2.32 (m, 1H, H3), 0.93 (d, 3H, J = 6.6 Hz, H1 or H2), 0.77 (d, 3H, J = 6.6 

Hz, H1 or H2). 

 
13C NMR (126 MHz, CDCl3) δ 170.7, 169.8, 167.5, 167.3, 167.2, 167.2, 159.0, 158.60, 

135.4, 135.3, 129.4, 128.6, 128.6, 128.4, 128.4, 128.4, 128.2, 127.2, 114.2, 113.5, 67.2, 

66.7, 62.1, 60.4, 55.3, 52.0, 51.7, 48.4, 45.6, 42.1, 41.6, 28.1, 27.6, 19.9, 18.6. 

 

The Dieckmann Cyclization 

 

 
 

The diester 125 (1.74 g, 4.08 mmol) was subjected to the general procedure for the one-

pot Dieckmann cyclization using TBAF (1 M in THF, 14.30 mL, 14.28 mmol, 3.5 

equiv.) and iodomethane (1 mL, 16.32 mmol, 4 equiv.). The residue was purified using 

column chromatography on silica gel (20% ethyl acetate in light petroleum ether). The 

first eluting diastereoisomer (±)-132 was obtained as a yellow oil (0.43 g, 25%) and the 

second eluting diastereoisomer (±)-126 was obtained as an off-white solid (0.68 g, 

41%). 

 

(±)-(3S,5S)-N-(4’-Methoxybenzyl)-3-methyl-5-(1’-methylethyl)-pyrrolidin-2,4-

dione-3-carboxylic acid benzyl ester (±)-132 

Found (NSI): [M+H]+ 427.2225; [C24H27NO5+NH4]+
 requires 427.2227. νmax (thin 

film)/cm-1 2964, 1776, 1748 and 1697. 1H NMR (500 MHz, CDCl3) δ 7.39 – 7.33 (m, 

3H, Ar), 7.25 – 7.22 (m, 2H, Ar), 6.99 (app d, 2H, J = 8.6 Hz, H10 and H14), 6.57 (app 

d, 2H, J = 8.6 Hz, H11 and H13), 5.43 (d, 1H, J = 15.0 Hz, H8), 5.21 (d, 1H, J = 12.3 

Hz, H17), 5.06 (d, 1H, J = 12.3 Hz, H17), 3.77 (d, 1H, J = 15.0 Hz, H8), 3.75 (d, 1H, J 

= 3.4 Hz, H4), 3.72 (s, 3H, H15), 2.18 – 2.14 (m, 1H, H3), 1.53 (s, 3H, H24), 1.05 (d, 

3H, J = 7.1 Hz, H1 or H2), 0.82 (d, 3H, J = 7.1 Hz, H1 or H2). 13C NMR (126 MHz, 

+
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CDCl3) δ 205.5, 170.0, 159.2, 134.8, 129.4 (C11 and C13), 128.8 (Ar), 128.6 (Ar), 

128.3 (Ar), 126.0, 114.2 (C10 and C14), 68.3 (C4), 68.2 (C17), 59.0 (C6), 55.2 (C15), 

42.9 (C8), 27.7 (C3), 18.2 (C1 or C2), 16.4 (C1 or C2), 15.0 (C 24). 

 

(±)-(3R,5S)-N-(4’-Methoxybenzyl)-3-methyl-5-(1’-methylethyl)-)-pyrrolidin-2,4-

dione-3-carboxylic acid benzyl ester (±)-126 

Found (NSI): [M+H]+ 410.1963; [C24H27NO5+H]+
 requires 410.1962. νmax (thin film)/cm-

1 2966, 1773, 1743 and 1695. mp 96-99 °C. 1H NMR (500 MHz, CDCl3) δ 7.36 – 7.28 

(m, 5H, H19-23), 7.13 (app d, 2H, J = 8.6 Hz, H11 and H13), 6.83 (app d, 2H, J = 8.6 

Hz, H10 and H14), 5.25 (d, 1H, J = 14.9 Hz, H8), 5.19 (d, 1H, J = 12.2 Hz, H17), 5.14 

(d, 1H, J = 12.2 Hz, H17), 3.96 (d, 1H, J = 14.9 Hz, H8), 3.78 (s, 3H, H15), 3.63 (d, 1H, 

J = 3.5 Hz, H4), 2.19 – 2.14 (m, 1H, H3), 1.54 (s, 3H, H24), 1.03 (d, 3H, J = 7.1 Hz, H1 

or H2), 0.70 (d, 3H, J = 7.1 Hz, H1 or H2). 13C NMR (126 MHz, CDCl3) δ 205.0, 

170.3, 165.6, 159.4, 134.8, 129.4 (C11 and C13), 128.5 (Ar), 128.5 (Ar), 128.4 (Ar), 

127.1, 114.4 (C10 and C14), 68.0 (C4), 68.0 (C17), 59.0 (C6), 55.3 (C15), 43.4 (C8), 

28.3 (C3), 18.6 (C1 or C2), 18.3 (C24), 16.4 (C1 or C2). 
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4.0 Biological Activity Studies 
 

4.1 Introduction 
 

Proteasome inhibition is a key strategy for anti-cancer therapy and is of great interest in 

current research. The proteasome is essential in regulating many processes within the 

cell, including cellular function and homeostasis.1 The ubiquitin proteasome pathway 

regulates the processes that are important for cell growth and survival, for both healthy 

and tumour cells. Inhibition of the proteasome stops the process of protein degradation, 

thereby inducing apoptosis. If cancer cells can be specifically targeted for proteasome 

inhibition, these cells will undergo apoptosis leaving behind only healthy cells.  

 

 
Figure 1. Bortezomib 

 

Bortezomib was the first proteasome inhibitor to be used in clinical trials for the 

treatment of multiple myeloma and is now fully approved by the Food and Drug 

Administration (FDA) in the USA.2 It was found to be successful at inducing apoptosis 

in cancer cell lines whilst having little cytotoxic effects on healthy cells.3 Unfortunately, 

in many cases, patients either failed to respond to treatment or relapse occurred (when 

using Bortezomib alone or as part of combination therapies).4 This resistance to 

Bortezomib has led to the need for second generation inhibitors. 
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Figure 2.  Structures of lactacystin 1 and its active form, omuralide 2. 

 

Lactacystin 1 is a microbial metabolite isolated from Streptomyces sp. OM-6519.5, 6 It 

has anti-tumor effects in vitro and in vivo. It has been shown to inhibit tumour growth in 

an animal model of malignant glioma,7 and prevent cell proliferation in the human 

Neuro 2A neuroblastoma cell line and the human osteosarcoma cell line.8 Lactacystin 

itself cannot permeate through cell walls, but the β-lactone derivative, also known as 

omuralide 2, can. The efficiency of lactacystin as a proteasome inhibitor is thus 

dependent on its ability to form the β-lactone 2. The 20S proteasome (Figure 3) was 

found to be the specific cellular target of lactacystin and its derivatives.9 

 

 
Figure 3. The 20S proteasome. 

 

In 1994, Fenteany et al. studied the activity of lactacystin analogues to determine which 

structural features were essential for biological activity.8 They found that the activity 

could be greatly affected by the groups on the γ-lactam ring and modifications 

(including changing the groups completely or altering the stereochemistry) at the C5, 

C6, C7 and C9 positions can result in partial or complete loss of activity. The case 

where this does not apply is in the N-acetyl-L-cysteine (NAC) moiety at C5; it was 

found to play no part in the activity and this group could be changed with no effect on 

activity. 
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Lactacystin was found to inhibit the trypsin-like (proteases that cleave peptide bonds in 

the position following a positively charged amino acid such as lysine), chymotrypsin-

like (the hydrophobic nature of the S1 pocket makes it specific for medium to large 

hydrophobic residues) and peptidylglutamyl-peptide hydrolysing (cleavage of peptide 

bonds in the position following acidic or branched-chain amino acids) activities in the 

enzyme complex.9 The trypsin- and chymotrypsin-like activities are both irreversibly 

inhibited by lactacystin. 

 

In this study, four compounds were selected to be tested for biological activity (Figure 

4); including proteasome inhibition and anti proliferative effects. These compounds 

were chosen due to their structural similarities to lactacystin and omuralide in the hope 

that they would exhibit similar biological activity. Each compound was tested to 

determine its IC50 value against the human leukemia HL-60 cell line (using an MTS cell 

viability assay) and its ability to inhibit the 20S proteasome (using an enzyme inhibition 

assay). 

 

 
Figure 4. Structures of the compounds chosen for biological activity studies. 
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4.2 Anti-Proliferative Studies 
 

4.2.1 Introduction 
 

Cell viability assays are used to screen compounds against a specific type of cell to 

determine if the compound shows direct cytotoxic effects, which can lead to cell death, 

or has an effect on cell proliferation. An MTS assay is a colourimetric method used to 

determine cell viability in proliferation or cytotoxicity assays. In living cells, MTS (3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium) is bioreduced to form a formazan product that is red in colour. The 

reduction is believed to require NADH or NADPH. If the cells are killed, reduction of 

the MTS is no longer possible and formazan is not formed (i.e. the red colour of 

formazan is not seen). Cell viability is measured in terms of absorbance; formazan dye 

absorbs at 492 nm. The formation of formazan product is directly proportional to the 

number of viable cells present. 

 

 
Scheme 1. Conversion of MTS to formazan. 

 

An MTS assay is used to determine the IC50 value of a compound against a specific cell 

line. IC50 is defined as the ‘half maximal inhibitory concentration’. It is a measure of 

how effective a compound is at inhibiting a specific biological process. The IC50 value 

can be calculated using the absorbance values of a compound at varying inhibitor 

concentrations. The IC50 value will vary between cell lines; inhibitors show different 

specific effects in different cell types. 
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The HL-60 cell line is often used in cell viability assays. HL-60 cells are human 

promyelocytic leukemia cells established in 1977 from a single patient with acute 

myeloid leukemia. Proliferation of HL-60 cells occurs in suspension culture with a 

doubling time of 20 – 45 h.10 

 

4.2.2 Results and Discussion 
 

In order to confirm that our assay was working and to produce a positive control for our 

studies, we investigated the anti-proliferative activity of omuralide in HL-60 cells. 3 x 

104 cells were seeded in wells of a 96 well plate. The positive control (containing only 

media), negative control (containing only HL-60’s) and the vehicle control (containing 

HL-60’s and DMSO) were set up and the remaining wells treated with omuralide at 

varying concentrations from 0 – 20 μM. After incubation for 72 h at 37 °C, followed by 

addition of MTS and further incubation for 4 h at 37 °C, the absorbance was measured 

at 492 nm. Figure 5 shows the 96 well plate after MTS addition and incubation. An 

obvious colour difference is observed as the concentration of omuralide present 

decreases. 

 

 
Figure 5. Cell viability assay for omuralide after incubation with MTS 
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The red colour, due to the presence of formazan, cannot be seen at concentrations 20, 

10, 5, 2.5 and 1.25 μM. At these concentrations the compounds have decreased cell 

viability and the bioreduction of MTS to formazan does not occur. The change from 

yellow to red gives us an indication of where the IC50 value will be; between 1.25 and 

0.625 μM. Table 1 shows the absorbance readings obtained and from this a graph can 

be plotted. Using this graph the IC50 value for omuralide against the HL-60 cell line was 

calculated to be 1.15 μM. 

 

Table 1. MTS assay results for omuralide	 Figure 6. Determination the IC50 value of 
omuralide using GraphPad Prism	

  

		 
The next step was to test the compounds made in our laboratories to see how they 

compare to omuralide. 3 x 104 cells were seeded in wells of a 96 well plate. The positive 

control (containing only media), negative control (containing only HL-60’s) and the 

vehicle control (containing HL-60’s and DMSO) were set up and the remaining wells 

treated with compounds (±)-10, (±)-51, (±)-57 and (±)-66 at varying concentrations 

from 0 – 1000 μM. After incubation for 72 h at 37 °C, followed by addition of MTS and 

further incubation for 4 h at 37 °C, the absorbance was measured at 492 nm. 

 

Figure 7 shows the 96 well plates after MTS addition and incubation. An obvious 

colour difference is observed as the concentration decreases. In compounds (±)-51 and 

(±)-66 the red colour, due to the presence of formazan, cannot be seen at concentrations 

of 1000, 500 and 100 μM. At these concentrations the compounds have decreased cell 

viability and the bioreduction of MTS to formazan does not occur.  Again, the change 
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0.31 5.49 0.702 
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1.25 6.10 0.320 
2.50 6.40 0.054 
5.00 6.70 0.016 
10.00 7.00 0.010 

IC50 = 1.15 μM	
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from yellow to red gives us an indication of where the IC50 value will be; between 100 

and 50 μM. Compound (±)-57 appears to decrease cell viability at concentrations of 

1000 and 500 μM and compound (±)-10 does not appear to decrease cell viability even 

at a concentration of 1000 μM (i.e. the IC50 value is greater than 1000 μM). The IC50 

values are calculated using a graph of absorbance (at 492 nm) vs. log concentration 

(pM). 

 

 

 
Figure 7. Cell viability assays for compounds (±)-10, (±)-51, (±)-57 and (±)-66 after 

incubation with MTS 
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Table 2. MTS assay results for compound 
(±)-51	

Figure 8. Determination the IC50 value of 
compound (±)-51 using GraphPad Prism	

	

 
 

Table 3. MTS assay results for compound 
(±)-57	

Figure 9. Determination the IC50 value of 
compound (±)-57 using GraphPad Prism	

 

 
 

Table 4. MTS assay results for compound 
(±)-66	

Figure 10. Determination the IC50 value of 
compound (±)-66 using GraphPad Prism	
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12.5 7.09 0.847 
25 7.39 0.831 
50 7.69 0.621 
100 8.00 0.024 
500 8.69 0.024 
1000 9.00 0.024 

Concentration 
(μM) 

Log[pM] Absorbance 
(492 nm) 

6.25 6.79 0.838 
12.5 7.09 0.933 
25 7.39 0.844 
50 7.69 0.515 
100 8.00 0.135 
500 8.69 0.034 
1000 9.00 0.033 

Concentration  
(μM) 

Log[pM] Absorbance 
(492 nm) 

6.25 6.79 0.986 
12.5 7.09 0.878 
25 7.39 0.660 
50 7.69 0.678 
100 8.00 0.571 
500 8.69 0.005 
1000 9.00 0.005 

IC50 = 54.70 μM	

IC50 = 146.22 μM	

IC50 = 53.09 μM	
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Tables 2-4 show the absorbance readings obtained for compounds (±)-51, (±)-57 and 

(±)-66: the absorbance decreases as the compound concentration increases. Looking at 

the absorbance data, and the assay, the IC50 value can be estimated to be between 50 and 

100 μM, 100 and 500 μM and 50 and 100 μM respectively. The data obtained was used 

to plot a graph for each compound from which the IC50 value was calculated to be. The 

calculated IC50 values for compounds (±)-51, (±)-57 and (±)-66 are 54.70 μM, 146.22 

μM and 53.09 μM, respectively. 

 

The results obtained for compound (±)-57 should be viewed with caution; they do not 

give the standard dose-response curve. More data points over a larger range may result 

in data more likely to give the standard dose-response curve. 

 

When we compare the data obtained for our compounds to that obtained for omuralide 

(Table 5) we can see that the IC50 values are considerably higher for our compounds; 

they do not decrease cell viability at the same level. A low IC50 value is an essential 

feature for a compound if it were to be used as a therapeutic drug; this is because the 

dosage of the drug required would also be low. 

 

Table 5. IC50 concentrations for compounds (±)-10 (±)-51, (±)-57 and (±)-66 and 

omuralide. 

Compound LogIC50 [pM] IC50 [μM] 
(±)-51 7.74 54.70 
(±)-57 8.17 146.22 
(±)-66 7.73 53.09 
(±)-10 - > 1000 

Omuralide 6.06 1.15 
 

Compound (±)-66 has a β-lactone moiety (albeit at a different position on the ring) also 

found in the natural product and so we could expect it to have a similar anti-

proliferative effect on HL-60’s as omuralide. Although not as low as omuralide 

compound (±)-66 has an IC50 value closest to that of omuralide. 
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Compound (±)-10 is the least similar in structure to omuralide and the other compounds 

tested; it contains a ketone moiety at the C6 position not found in any of the other 

compounds or the natural product. Structural differences will affect levels of activity. 

 

4.2.3 Conclusion and Future Work 
 

IC50 values were successfully calculated for compounds (±)-51, (±)-57 and (±)-66 

against the HL-60 cell line. Unfortunately, none of these were in the same order of 

magnitude as that calculated for omuralide but all showed anti-proliferative effects in 

the HL-60 cell line. Compound (±)-10 had little effect on cell viability at the 

concentrations tested. 

 

We were unable to find any literature reporting the study of the anti-proliferative effects 

of omuralide on HL-60 cells. This makes the work reported here novel and potentially 

very interesting and worthy of further investigation. Further investigation is also needed 

into structure activity relationships. It is clear from the results that structure plays a key 

role in the observed level of activity; compounds (±)-10 and (±)-66 show vastly 

different anti-proliferative effects. 
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4.2.4 Experimental 
 

4.2.4.1 Chemicals 
 

The human promyelocytic leukemia cells (HL-60’s) were purchased from the European 

Collection of Cell Cultures (ECCC, Porton Down, UK). Foetal calf serum (FCS) was 

purchased from Biosera. RPMI-1640 media and L-glutamine were purchased from 

Invitrogen. MTS was purchased from Promega. 

 

Compounds (±)-10, (±)-51, (±)-57 and (±)-66 were synthesized in our laboratories and 

dissolved in the required volume of DMSO to give a 100 mM stock solution. From the 

stock solution serial dilutions were made (in DMSO) to give 50, 10, 5, 2.5, 1.25, 0.625 

and 3.125 mM stocks to be used in the MTS assay. 

 

4.2.4.2 Cell Culture 
 

The HL-60 cells were cultured in RPMI-1640 media that contained 2mM L-glutamine, 

100 U/mL penicillin, 100 μg/mL streptomycin and 10% FCS. Cells were maintained at 

37 °C in a 5% CO2 atmosphere. HL-60 density in culture was maintained between 1 × 

105 and 9 × 105 cells / mL in 75 cm2 flasks. Every 3.5 days the cultures were split with 

fresh media and used for experimentation until passage 30. HL-60’s were diluted to 1 in 

2 using trypan blue and counted using a Malassez haemocytometer with light 

microscopy. 

 

4.2.4.3 MTS assay 
 

The MTS assays were carried out, following the manufacturer’s instructions, using the 

CellTilter 96® Aqueous One Solution Cell Proliferation Assay kit. The outer wells of a 96 

well plate were filled with 250 μl of water to aid in the prevention of evaporation of 

other wells on the plate. 100 μl of 3 x 104 cells were seeded in each well. Three sets of 

control wells made up; one containing only media (positive control), one containing 

only HL-60 cells (negative control) and one containing HL-60 cells and DMSO (vehicle 
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control). The remaining wells were seeded with HL-60 cells and either compounds (±)-

10, (±)-51, (±)-57 or (±)-66 (at varying concentrations). Each experiment was carried 

out in triplicate. The plate was incubated for 72 h at 37 °C with 5% CO2. After 

incubation 10 μl of MTS assay reagent was added to each well and the plate incubated 

for a further 4 h at 37 °C with 5% CO2. 

 

Absorbance was measured at 492 nm using a BMG Labtech POLARstarOPTIMA 

microplate reader. IC50 values were calculated from a graph of log[pM] vs. absorbance 

(492 nm) using GraphPad Prism Version 6.0. 
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4.3 Enzyme Inhibitor Studies 
 

4.3.1 Basic Enzyme Kinetics 
 

It is important to understand the ‘normal’ action of an enzyme before discussing the 

effect of an inhibitor on enzyme activity. When a substrate binds and is turned over by 

the enzyme the product is produced. This can be represented by the scheme below and 

also illustrated graphically (Figure 11). 

 

 
Scheme 2. General scheme for enzyme catalysed substrate turnover. 

 

The term KM is known as the Michaelis constant and is defined as the ‘concentration of 

substrate leading to half saturation of the enzyme active sites under steady state 

conditions’.10  Upon mixing E + S the initial equilibrium to form the enzyme-substrate 

(ES) complex is rapidly established, usually within μ seconds. The term kcat is defined as 

the rate constant for the slowest ‘rate determining’ step of the steps that then lead to 

product formation.11 

 

 
Figure 11. General graphical illustration for enzyme activity without the presence of an 

inhibitor. 
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The deviation from linearity in the graph illustrates the substrate depletion after time; 

when all the substrate has been turned over by the enzyme, no more product can be 

formed. The rate of product formation is defined as [ES]kcat. As product is formed the 

concentration of substrate decreases so the E + S  ES equilibrium shifts to the left; 

the concentration of ES drops so the rate of product formation gradually decreases until 

all substrate is consumed. 

 

If the initial rate of product formation is measured across a range of different substrate 

concentrations, a plot of the initial rate vs. [S] gives a curve which is described by the 

Michaelis-Menten equation: 

 

! =  !!"#[!]!! + [!]
 

 

From this, it is possible to obtain a value for the term Vmax. When the enzyme is 

saturated with substrate, this is the Vmax and is defined as the maximum velocity (rate) of 

product formation at infinite substrate concentration.11 

 

 
Figure 12. General graphical illustration to determine the rate of product formation. 
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4.3.1.1 The Difference Between Reversible and Time-Dependent 

Covalent Inhibitors 
 

Reversible inhibitors bind to the enzyme through non-covalent forces including, 

hydrophobic and electrostatics forces, hydrogen bonding and van der Waals 

interactions. There are three types of reversible inhibition derived from the equilibrium 

reactions described above; competitive inhibition, non-competitive inhibition and 

uncompetitive inhibition.  

 

Competitive inhibitors are those that bind to the enzyme in place of the substrate, i.e. 

they are mutually exclusive, either the substrate binds or the inhibitor binds. They 

cannot bind at the same time and so formation of the enzyme-substrate (ES) complex is 

affected.  

 

Non-competitive inhibitors are those that show binding affinity for both the free enzyme 

and the ES complex (or subsequent species). They can result in the formation of an 

enzyme-inhibitor (EI) complex and/or an enzyme-substrate-inhibitor (ESI) complex. 

 

Uncompetitive inhibitors are those that show no binding affinity for the free enzyme but 

bind exclusively to the ES complex (or subsequent species). Inhibition can only occur 

after the formation of the enzyme-substrate complex, i.e. the E + S  ES reaction is 

not affected but the ES à ES* reaction is. 

 

Competitive covalent inhibitors bond irreversibly to the enzymes active site and as a 

result, modify the enzyme and activity is permanently reduced. Many irreversible 

inhibitors first bind reversibly to the enzyme forming the EI complex, before covalent 

bonding occurs (EI*). The rate of EI formation is very fast (μ seconds) compared to that 

of EI* formation (seconds/minutes) and so these inhibitors are often referred to as slow 

binding.9 
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Competitive inhibition 

 

 
Competitive covalent inhibition 

Scheme 3. 

 

The initial curve in the presence of a time-dependent covalent inhibitor is similar to that 

of a classical reversible inhibitor (Figure 13). This is because the first (reversible) step 

is very fast and the second (irreversible) step is much slower. When the inhibitor bonds 

irreversibly the substrate is no longer turned over by the enzyme, no product is formed 

and the curve begins to level off. The formation of the EI* complex (the slow step) 

shifts the equilibrium towards EI* and so the concentration of ES drops which in turn 

results in reduced product formation. 

 

 
Figure 13. General graphical illustration to compare product formation over time in the 

presence of no inhibitor, a classical reversible inhibitor and a time-dependent covalent 

inhibitor. 
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4.3.1.2 Proteasome Inhibition by Omuralide 
 

Omuralide acts as a competitive irreversible inhibitor of trypsin- and chymotrypsin-like 

activity in the 20S proteasome.9 Cell apoptosis is induced as a result of this inhibition.12 

Omuralide acts by acylating the amino terminal threonine residue of one of the β-type 

protein subunits of the 20S proteasome, this blocks the active site and stops normal 

working of the proteasome.13 

 

 
Scheme 4. Deactivation of the 20S proteasome by acylation of a terminal threonine 

residue. 8 
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4.3.2 Results and Discussion 
 

As described above, omuralide inhibits the trypsin-like and chymotrypsin-like activity 

in the 20S proteasome. We decided to test our compounds against the chymotrypsin-

like activity using a commercially available assay kit containing the 20S proteasome 

and the chymotrypsin-like substrate (Suc-LLVY-AMC). The AMC (7-amino-4-

methylcoumarin) part of the substrate is a fluorescent tag, when the substrate binds and 

is turned over by the enzyme the AMC tag is released and fluorescence is observed and 

measured. Continuous kinetic readings were performed over 1 h using a microplate 

reader. 

 

 
Figure 14. AMC (7-amino-4-methylcoumarin). 

 

As we know the mechanism of action of omuralide, we can deduce which compounds 

may behave in a similar manner. Compound (±)-66 also has a β-lactone moiety (albeit 

at a different position on the ring) also found in the natural product and so we would 

expect a similar mode of action to omuralide. Esters are also reactive towards 

nucleophiles, although less so than lactones; the ester moiety at C5 present in all 

compounds could also be used in the reaction with threonine. 

 

 
Figure 15. The structures of the compounds being screened. 
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Two standard experiments were run to obtain data that could be used to compare the 

results for compounds (±)-10, (±)-51, (±)-57 and (±)-66. The first standard experiment 

contained only substrate and 20S proteasome, this gives us data to represent the normal 

enzyme activity without the presence of an inhibitor. The second standard was run with 

only the substrate to give a baseline reading. Compounds (±)-10, (±)-51, (±)-57 and (±)-

66 (500 μM) were then screened for inhibition of the 20S proteasome chymotrypsin 

activity, compared to 1 μM of omuralide. 

 

	
Figure 16. A graph of proteasome activity over time with no inhibitor and with 

omuralide. 

 

Figure 16 shows the standard curve obtained from the substrate with no inhibitor 

present (the purple line). Fluorescence increases over time; the substrate binds and is 

being turned over by the enzyme and the fluorescent tag is being released. Deviation 

from linearity occurs after time due to substrate depletion. 

 

In the case of omuralide (Figure 16, the green line), we can see that after about 1000 s 

the line starts to level off; the inhibitor is binding to the enzyme in the place of the 

substrate and so the fluorescent tag is not being released and no further increase in 

fluorescence is observed. Under these assay conditions the initial percentage inhibition 

can be calculated from the line gradients; the initial percentage inhibition for omuralide 

against the chymotrypsin-like activity of the 20S proteasome was calculated to be 47%. 
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Figure 17. A graph of proteasome activity over time in the presence of different 

inhibitors, compounds (±)-10, (±)-51, (±)-57, (±)-66 and omuralide. 

 

Figure 17 shows the results of screening for compounds (±)-10, (±)-51, (±)-57 and (±)-

66 against that of the standard substrate curve and that obtained for the known inhibitor 

omuralide. The curves obtained show similar linearity to that of the substrate standard 

(again with deviation from linearity due to substrate depletion) thereby indicating that 

they are not inhibiting the chymotrypsin-like activity in the 20S proteasome. The curve 

obtained for omuralide is exactly as expected from a time-dependent covalent inhibitor; 

the initial rate is similar to that where no inhibitor is present as the first step is reversible 

however after time it covalently binds to the proteasome and the curve levels off. The 

percentage activity was calculated for each compound (Table 6). 

 

Also evident from this graph is that the initial RFU values for some of the compounds 

being tested is higher than that of the substrate only standard; this is due to the 

compounds themselves fluorescing, this will have no effect on the gradient and so does 

not affect the results obtained. 
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Table 6. Calcualted activites for compounds tested against the chymotrypsin activity of 

the 20S proteasome. 

Inhibitor % Activity Time-Dependent 

None 100 - 

Omuralide 47 ± 2 Yes 

(±)-10 113 ± 2 - 

(±)-51 109 ± 1 - 

(±)-57 106 ± 1 - 

(±)-66 105 ± 2 - 

 

4.3.3 Conclusion and Future Work 

 

Compounds (±)-10, (±)-51, (±)-57 and (±)-66 do not appear to inhibit the chymotrypsin-

like activity of the 20S proteasome as in the case of omuralide. There are many factors 

to consider in what makes a compound a successful inhibitor; the functional groups 

present and the overall size of the compound are both important. The protecting group 

(PMB) present on all the compounds tested is likely to cause the lack of activity, this 

group makes the compounds much larger than the natural product and so they may not 

fit into the active site of the enzyme. It is also possible that the functional groups 

present in compounds (±)-10, (±)-51, (±)-57 and (±)-66 are not optimal for inhibition. 

 

Compound (±)-66 is the most interesting of those tested as it has the lactone motif, 

albeit at the C6-7 position rather than the C5-6 position, found in omuralide. It is 

expected that this would act chemically in the most similar way to the natural product. 

 

Future work should include the deprotection and re-screening of the compounds against 

the chymotrypsin-like activity. To achieve a full set of data the deprotected compounds 

should be screened against the trypsin- and caspase-like activity in the 20S proteasome. 

It is possible for a compound to inhibit one type of activity and not another. 
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4.3.4 Experimental 
 

The proteasome assays were carried out, following the manufacturer’s instructions, 

using the VIVAdetect™ 20S Proteasome Assay Kit PLUS. The kit contained 10x 

VIVAdetect™ proteasome assay buffer, 20S proteasome, Suc-LLVY-AMC 

(chymotrypsin-like substrate), VIVAdetect™ 96 well assay plate and VIVAdetect™ 

AMC standard. Each experiment was performed in duplicate at 25 °C. 

 

AMC standard experiment: AMC standard was diluted with the provided VIVAdetect™ 

proteasome assay buffer to give a final assay concentration of 1.6 μM. 

 

Substrate control experiment: The substrate Suc-LLVY-AMC (chymotrypsin-like 

substrate) was diluted with the provided VIVAdetect™ proteasome assay buffer and 

DMSO to give a final assay concentration of 100 μM. 

 

Substrate plus 20S proteasome control experiment: The substrate Suc-LLVY-AMC 

(chymotrypsin-like substrate) and the 20S proteasome were diluted with the provided 

VIVAdetect™ proteasome assay buffer and DMSO to give a final assay concentration 

of substrate of 100 μM and 20S proteasome of 2.5 nM. 

 

Inhibitor testing experiments: Omuralide and compounds (±)-10, (±)-51, (±)-57 and (±)-

66 were individually tested for their ability to inhibit the 20S proteasome. For each 

experiment the substrate Suc-LLVY-AMC (chymotrypsin-like substrate) and the 20S 

proteasome were diluted with the provided VIVAdetect™ proteasome assay buffer and 

DMSO to give a final assay concentration of substrate of 100 μM and 20S proteasome 

of 2.5 nM. Omuralide was tested at a final assay concentration of 1 μM, and compounds 

(±)-10, (±)-51, (±)-57 and (±)-66 were tested at a final assay concentration of 500 μM. 

The buffer solution, the substrate and the compound being tested were all added 

together then incubated at 25 °C for 15 min before the addition of the 20S proteasome. 

 

The fluorescence (measured in relative fluorescence units) was measured using a BMG 

Labtech POLARstarOPTIMA microplate reader with filters for 340 nm excitation and 

480 nm emission. A continuous kinetic analysis was performed for 1 h. Analysis of the 
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results obtained was performed by plotting graphs of fluorescence (RFU) vs. time (s) 

using GraFit Version 5.0.10. 
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