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We present the results of the symmetric and one-sided Smoothness-Increasing
Accuracy-Conserving (SIAC) filter applied to a discontinuous Galerkin (DG) ap-
proximation for two examples of nonlinear hyperbolic conservation laws. The tra-
ditional symmetric SIAC filter relies on having a translation invariant mesh, peri-
odic boundary conditions and linear equations. However, for practical applications
that are modelled by nonlinear hyperbolic equations, this is not feasible. Instead we
must concentrate on a filter that allows error reduction for nonuniform/unstructured
meshes and non-periodic boundary conditions for nonlinear hyperbolic equations.
This proceedings is an introductory exploration into the feasibility of these require-
ments for efficient filtering of nonlinear equations.

1 Introduction and Motivation

In this article, we consider the usefulness of superconvergence extraction techniques
for discontinuous Galerkin (DG) approximations to nonlinear hyperbolic equations
of the form

ut +
d

∑
i=1

f (u)xi = 0,(x, t) ∈Ω × (0,T ], (1)

u(x,0) = uo(x),x ∈Ω . (2)

The specific extraction technique that we consider is Smoothness-Increasing Accuracy-
Conserving (SIAC) filtering. We consider this technique as it is known for reducing
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the oscillations in the DG error as well as the error itself, while increasing the con-
tinuity of the numerical approximation.

Mathematically, the symmetric SIAC filter relies on having a translation invari-
ant mesh, periodic boundary conditions and a linear equation. However, for prac-
tical applications that are modelled by nonlinear hyperbolic equations, this is not
feasible. Instead we must concentrate on a filter that allows error reduction for
nonuniform/unstructured meshes and non-periodic boundary conditions for nonlin-
ear hyperbolic equations. The question we seek to answer is how feasible are these
requirements for efficient filtering of nonlinear equations.

2 Background

2.1 Discontinuous Galerkin Methods

In this section, we merely summarize the important properties of the discontinu-
ous Galerkin method that are useful in superconvergence extraction. More on these
methods can be found in [2, 3].

The useful properties are:
• An approximation space that consists of piecewise polynomials of degree ≤ k.
• Weak continuity at element interfaces.
• A variational formulation

((uh)t ,ψ)Ω +
d

∑
i=1

(
−( fi(uh),ψxi)Ω +∑

K

∫
∂K

f̂i(uL
h , uR

h )νiψ ds

)
= 0, (3)

where the summation is over all elements in our discretized domain.

These properties allow us to obtain the following error estimates for the DG
solution for linear hyperbolic equations:
• u−uh ∼ O(hk+1) in L2 for sufficiently smooth initial data, u0.
• u−uh ∼ O(h2k+1) in a negative order norm.
We emphasize that these estimates rely on having smooth enough initial data and a
linear equation so that information propagates along characteristics. In the case of
nonlinear hyperbolic equations, the initial data may be smooth enough, but charac-
teristics may intersect, forming a shock.

2.2 Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering

The Smoothness-Increasing Accuracy-Conserving (SIAC) filter is a form of super-
convergence extraction that filters out oscillations in the error. It is performed by
convolving the DG solution with a B-spline kernel at the final time,

u?
h(x) = (K2(k+1),k+1

h ?uh(·,T ))(x). (4)
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Using a SIAC filter on linear hyperbolic equations, one may show that
‖u−K2(k+1),k+1

h ?uh‖0,Ω0 ≤C h2k+1, (5)

for a translation invariant mesh. This is based upon the work [1, 6, 8, 4].
The symmetric convolution kernel is a central B-spline kernel given by

K(r+1,`)(x) =
r

∑
γ=0

c(r+1,`)
γ ψ

(`) (x− xγ

)
, (6)

where K(r+1,`)
H (x)= 1

H K(r+1,`) ( x
H

)
, xγ =− r

2 +γ and generally r = 2k and `= k+1.

We note that ψ(`) is a central B-spline of order `, and H is generally the translation
invariance of the mesh. The weighting coefficients of the B-splines are given by the
linear system K(r+1,`) ? p = p, p = 1,x2, . . . ,xr. (7)

Note that convolving the DG solution with such a kernel produces an approximation
that is a polynomial of degree r+1≤ 2k+1 with continuity of `−2≤ k−1. Further
note that the post-processing stencil width is of length (r + `)H.

2.3 Boundary Filtering

The kernel given in Equation (6) is for post-processing smooth regions, away from
boundaries. However, when near a boundary or discontinuity, this needs to be suffi-
ciently modified to balance accuracy constraints with error reduction and computa-
tional efficiency. It has recently been shown [7] that a suitable modification is given
by

K(r+1,`)(x) =
r

∑
γ=0

c(`)
γ ψ

(`)(x− xγ −λ (x))︸ ︷︷ ︸
Shifted filter

+c(`)
r+1(x− (x̄−1))`−1

χ[x̄−1,x̄]︸ ︷︷ ︸
Special B-spline

. (8)

This kernel uses r + 1 central B-splines that are shifted to accommodate a non-
symmetric support near a boundary or discontinuity along with a general B-spline
that aids in improving computational efficiency and reducing errors in regions where
one-sided filters are necessary.

At the price of computational efficiency and error reduction we have had to give
up the property of superconvergence for `− 1 ≥ 2. In the interior, we achieve su-
perconvergence of order r + 1 ≤ 2k + 1, but still only have convergence of order
`− 1 ≤ k + 1 at the boundaries. However, in the case of linear approximations and
k = 1, we still achieve a global superconvergence order of three, even in the bound-
ary regions. This clearly shifts our focus to error reduction and hence allows us to
more closely examine how the SIAC filter could aid in error reduction for nonlinear
equations whose solution contains a discontinuity.
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3 SIAC Filtering for Nonlinear Hyperbolic Equations

There has been previous work in SIAC filtering for nonlinear hyperbolic equations.
However, the work was restricted to nonlinear equations with a smooth solution. In
[5], the following theorem was given:

Theorem 1. Assume we have a smooth solution to Equation (1) whose DG approx-
imate is given by uh. If | f ′′i | ≤M, then

‖(u−uh)(T )‖−(k+1),Ω ≤Ch2k+m, (9)

where m = 0, 1
2 ,1, depends on the numerical flux and k > d

2 .

As a consequences of this higher order convergence in the negative-order norm, we
then have O(h2k+m) convergence of the post-processed solution in the L2−norm.

4 Numerical examples

Although the theory has been established for smooth solutions, it is interesting to
investigate the application of the SIAC filter to nonsmooth solutions. To demon-
strate the possibilities of the SIAC filtered solution for such solutions, we present
two examples: First, a one-dimensional Burgers equation after the shock has devel-
oped; and lastly, the double Mach reflection problem of the two-dimensional Euler
equations.

The steps of the filtering process are as follows:
• Calculate the DG approximation to the equation at the final time t = T.
• Identify ”troubled cells”, i.e., where there is a discontinuity.
• Calculate the SIAC filtered solution

– Use a symmetric filter in smooth regions, a distance of at least r+`
2 h away

from boundaries or discontinuities.
– In ”troubled cell regions”, use a boundary filter.

4.1 One-dimensional Burgers Equation

For the first example, we consider the equation
ut +uux = 0, u(x,0) = sin(x), x ∈ [0,2π], T = 1. (10)

Note that this equation contains a shock at x = π. We have implemented the sym-
metric filter in smooth regions and the boundary filter in the elements next to the
boundaries and shocks. No filter is implemented in the element that contains the
shock. The results for the errors are presented in Table 1 and Figure 1.
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Table 1 The L2−error of the DG solution and the SIAC filtered DG Solution for P2 and P3 using
the boundary filter in the appropriate regions. Errors are calculated away from the shock.

DG SIAC DG DG SIAC DG
Mesh L2 error order L2 error order L2 error order L2 error order

P2 P3

40 1.02E-05 – 5.28E-06 – 4.89E-08 – 5.18E-08 –
60 3.29E-06 2.80 1.61E-06 2.94 1.07E-08 3.74 1.59E-09 8.60
80 1.46E-06 2.83 6.94E-07 2.92 3.08E-09 4.33 1.61E-10 7.96
100 7.84E-07 2.78 3.63E-07 2.90 1.33E-09 3.76 3.40E-11 6.96

(a) DG Error (b) SIAC DG Error
Fig. 1 Plots of pointwise errors of the DG solution and the SIAC filtered DG Solution for P2 using
the boundary filter in the appropriate regions.

4.2 Two-dimensional double Mach reflection

In this example we apply the SIAC filter, including the boundary filter, to the two
dimensional Euler equations for the double Mach reflection problem. We use the
multiwavelet troubled cell indicator of Vuik [9] and plot the results for a zoomed-
in region of the solution in Figure 2. Note that from the results given for Burgers
equation we expect that the difference when we examine the two solutions will be
small. However, we do observe some reduced oscillations with the SIAC Filtered
DG approximation.

5 Conclusions and Future Work

SIAC filtering holds promise in applications to nonlinear equations, although their
exact usefulness remains unclear. Traditionally, SIAC filtering uses B-splines to in-
duce smoothness on the DG field and enhance accuracy. This traditionally allows or-
der improvement from O(hk+1) to O(h2k+m) for smooth regions. At the boundaries,
order is reduced for improved computational efficiency. For nonlinear equations,
their usefulness depends on the boundedness of the flux function and the chosen
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numerical flux. From our observations, the filtering appears to reduce oscillations in
regions where applied. How exactly it should be applied is the subject of on-going
research.
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finite element methods for hyperbolic equations, Mathematics of Computation, 72, pp.577-
606 (2003).

5. L. Ji, Y. Xu and J.K. Ryan, Negative-order norm estimates for nonlinear hyperbolic conser-
vation laws, Journal of Scientific Computing, 54, 269-310 (2013).

6. M.S. Mock and P.D. Lax, The computation of discontinuous solutions of linear hyperbolic
equations, Communications on Pure and Applied Mathematics, 18, pp. 423-430 (1978).

7. X. Li, R.M. Kirby, J.K. Ryan, C. Vuik, Computationally Efficient Position-Dependent
Smoothness-Increasing Accuracy-Conserving (SIAC) filtering: The uniform mesh case,
preprint (2013).

8. V. Thomée, High order local approximations to derivatives in the finite element method,
Mathematics of Computation, 31, pp. 652–660 (1977).

9. M.J. Vuik, Limiting and shock detection for discontinuous Galerkin solutions using multi-
wavelets, TU Delft MSc Thesis, 2012-08-24.

(a) DG Approximation (b) SIAC Filtered DG
Fig. 2 Results for the DG approximation and SIAC Filtered DG approximation when applied to
the double Mach reflection problem.


