Multiwavelets and Jumps in DG Approximations

Vuik, Mathea and Ryan, Jennifer (2015) Multiwavelets and Jumps in DG Approximations. In: Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering, 106 . Springer, pp. 503-511. ISBN 978-3-319-19799-9

Full text not available from this repository.

Abstract

In general, solutions of nonlinear hyperbolic PDEs contain shocks or develop discontinuities. One option for improving the numerical treatment of the spurious oscillations that occur near these artifacts is through the application of a limiter. The cells where such treatment is necessary are referred to as troubled cells. In this article, we discuss the multiwavelet troubled-cell indicator that was introduced by Vuik and Ryan (J Comput Phys 270:138–160, 2014). We focus on the relation between the highest-level multiwavelet coefficients and jumps in (derivatives of) the DG approximation. Based on this information, we slightly modify the original multiwavelet troubled-cell indicator. Furthermore, we show one-dimensional test cases using the modified multiwavelet troubled-cell indicator.

Item Type: Book Section
Uncontrolled Keywords: discontinuous galerkin ,multi-wavelets,hyperbolic equations,discontinuity detection
Faculty \ School: Faculty of Science > School of Mathematics
Depositing User: Pure Connector
Date Deposited: 05 Feb 2016 13:01
Last Modified: 22 Apr 2020 10:54
URI: https://ueaeprints.uea.ac.uk/id/eprint/56967
DOI:

Actions (login required)

View Item View Item