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Dickkopf-3 is upregulated in osteoarthritis and has a
chondroprotective role
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Objective: Dickkopf-3 (Dkk3) is a non-canonical member of the Dkk family of Wnt antagonists and its
upregulation has been reported in microarray analysis of cartilage from mouse models of osteoarthritis
(OA). In this study we assessed Dkk3 expression in human OA cartilage to ascertain its potential role in
chondrocyte signaling and cartilage maintenance.
Methods: Dkk3 expression was analysed in human adult OA cartilage and synovial tissues and during
chondrogenesis of ATDC5 and human mesenchymal stem cells. The role of Dkk3 in cartilage maintenance
was analysed by incubation of bovine and human cartilage explants with interleukin-1b (IL1b) and
oncostatin-M (OSM). Dkk3 expression was measured in cartilage following murine hip avulsion.
Whether Dkk3 influenced Wnt, TGFb and activin cell signaling was assessed in primary human chon-
drocytes and SW1353 chondrosarcoma cells using RT-qPCR and luminescence assays.
Results: Increased gene and protein levels of Dkk3 were detected in human OA cartilage, synovial tissue
and synovial fluid. DKK3 expression was decreased during chondrogenesis of both ATDC5 cells and
humans MSCs. Dkk3 inhibited IL1b and OSM-mediated proteoglycan loss from human and bovine
cartilage explants and collagen loss from bovine cartilage explants. Cartilage DKK3 expression was
decreased following hip avulsion injury. TGFb signaling was enhanced by Dkk3 and Wnt3a and activin
signaling were inhibited.
Conclusions: We provide evidence that Dkk3 is upregulated in OA and may have a protective effect on
cartilage integrity by preventing proteoglycan loss and helping to restore OA-relevant signaling pathway
activity. Targeting Dkk3 may be a novel approach in the treatment of OA.

© 2015 Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International.
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Introduction

Osteoarthritis (OA) is characterized by loss of articular cartilage,
joint pain and instability. The mechanisms regulating disease
pathogenesis remain elusive with a combination of genetic, in-
flammatory, mechanical and metabolic factors implicated1e3.
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Chondrocytes from OA cartilage exhibit a disrupted phenotype,
hallmarks of which include; altered synthesis of extracellular ma-
trix (ECM) and ECM-degrading enzymes, altered cell signaling ac-
tivity and increased proliferation4. Dysregulation of cell signaling
pathways likely contributes to OA pathogenesis by reducing the
chondrocyte's ability to maintain cartilage integrity, leading to or
exacerbating the phenotypic shift associated with OA. TheWnt and
TGFb signaling pathways have been strongly implicated in OA
pathogenesis5,6.

Dickkopf-3 (Dkk3) is a structurally and functionally divergent
member of the Dkk family of Wnt antagonists. Dkk3 activates or
inhibitsWnt signaling in a tissue-dependentmanner and its impact
on cartilage Wnt signaling is unknown7e9. Dkk3 is a tumour
y International.
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suppressor that inhibits proliferation of cancer cells and is down-
regulated in several types of human cancer8e10. It can modulate
inflammatory cell activity, maintain tissue organisation via TGFb
signaling and can protect against myocardial infarction-induced
fibrosis11e14.

The function of Dkk3 in other tissues suggests it could be an
important mediator of chondrocyte homeostasis and maintenance
of cartilage integrity. Several studies using animal models of OA
have reported increased Dkk3 in diseased cartilage15e17. However
Dkk3 expression has not been well characterized in human OA
tissue nor has its role in chondrocyte biology been explored. Our
aim was to assess whether Dkk3 shows aberrant expression in
human OA and to establish whether it can regulate chondrocyte
behaviour and OA-associated cartilage degradation in vitro.

Materials and methods

Primary tissue

Primary human OA cartilage and synovium were obtained from
age-matched individuals undergoing hip replacement for OA and
control cartilage and synovium obtained upon hip replacement for
neck-of-femur fracture (NOF); cartilage OA n ¼ 13, NOF n ¼ 12, OA
synovium n ¼ 8; NOF synovium n ¼ 11. Anteromedial OA (AMG)
specimens were obtained from patients undergoing uni-
compartmental knee replacement (UKR) for OA. Primary human
chondrocytes (HAC) were obtained from macroscopically normal
regions of the tibial plateau of OA patients undergoing total knee
replacement (TKR) and collagenase digested following standard
protocols. Explants of cartilage were used for proteoglycan and
collagen release assays (DMMB and hydroxyproline respectively).
Synovial fluid was collected from individuals undergoing TKR
(n ¼ 3), UKR (n ¼ 3), arthroscopy for cartilage lesions (n ¼ 5),
matrix-assisted chondrocyte implantation (MACI, n ¼ 7) or control
patients (n ¼ 3) with no cartilage lesion but meniscal tears.

Ethical approval (09/H0606/11 and 2005ORTHO7L) was granted
by Oxfordshire Research Ethics Committee and East Norfolk and
Waveney Research Governance Committee. Informed consent was
obtained from all patients.

Cell culture

SW1353 chondrosarcoma cells (ATCC) and primary HAC were
cultured in DMEM þ 10% (v/v) FCS. ATDC5 cells were cultured in
DMEM/F12 (Lonza, UK) containing 5% (v/v) FCS, 2 mM glutamine,
10 ug/ml apotransferrin (Sigma) and 30 nM sodium selenite.
Confluent ATDC5 cells were stimulated to undergo chondrogenesis
by addition of 10 ug/ml insulin (Sigma). Human MSCs (Lonza) were
expanded in Mesenchymal Stem Cell Growth Medium (Lonza)
supplemented with 5 ng/ml fibroblast growth factor-2 (R&D Sys-
tems) before high density transwell culture as described18,19.
Micromass cultures were established as described20 before treat-
ment with 100 ng/ml Wnt3a for 4 days.

Cartilage explant assays

Bovine nasal septum and human articular cartilage were
dissected and 2 mm cartilage discs explanted and equilibrated for
24 h before treatment with interleukin-1b (IL1b) (0.5 ng/ml),
oncostatin-M (OSM) (5 ng/ml) plus Dkk3 (50, 125 and 250 ng/ml).
Treatments were refreshed every 2e3 days and collected for GAG
and collagen release assays. Remaining cartilage was harvested at
14 days for papain digestion and DMMB and hydroxyproline as-
says21. Control and IL1/OSM-treated explants were collected
throughout the time course for RNA extraction (Trizol, Invitrogen,
Please cite this article in press as: Snelling SJB, et al., Dickkopf-3 is upregul
and Cartilage (2015), http://dx.doi.org/10.1016/j.joca.2015.11.021
UK), subsequent cDNA synthesis (Superscript, Invitrogen UK) ac-
cording to manufacturer's instructions prior to RT-qPCR. Three
intra-experimental replicates were carried out for each treatment
condition.
Hip avulsion assay

The hip joint from 5 to 6 week old C57BL/6J mice was dislocated
at the femur and the femoral cap avulsed using forceps as previ-
ously described22. Hip joint cartilage was cultured for 1e48 h in
serum-free medium before RNA extraction using Trizol (Invitrogen,
UK). cDNA synthesis using Superscript (Invitrogen, UK) was per-
formed prior to RT-qPCR.
Immunohistochemistry

Specimens were fixed in 10% (v/v) formalin for 12 h before
decalcification in 5 M HNO3, paraffin embedding and cutting into
5 mM sections. Following deparaffinisation and antigen retrieval
with 0.2% (v/v) Triton-X 100, sections were blocked and incubated
at 4�C overnight in primary antibody (DKK3, R&D Systems,
Abingdon, UK) before visualisation using Vectastain ABC (Vector
laboratories) with Diaminobenzidine (DAB) and Haematoxylin QS
(Vector laboratories).
ELISA

Dkk3 level in synovial fluid was measured using Dkk3 ELISA
(R&D Systems, UK) according to manufacturer's instructions.
Cytokine treatments

Cells were serum starved overnight and treated with recombi-
nant IL1b (5 ng/ml) and/or OSM (10 ng/ml) for 24 h or pre-treated
for 1 h with recombinant Dkk3 (250 ng/ml unless otherwise stated)
or carrier alone (R&D Systems) before addition of recombinant
Wnt3a (100 ng/ml, 10 h), activin (20 ng/ml, 6 h) or TGFb1 (4 ng/ml,
6 h) (R&D Systems). Three intra-experimental replicates were
carried out per cytokine treatment.

Following cytokine treatment cDNA was synthesized using
MMLV from DNase-treated cell lysates harvested in Cells-to-cDNA
lysis buffer (Ambion) according to manufacturer's instructions.
RT-qPCR

Expression of genes was measured by RT-qPCR on a ViiA7
(Applied Biosystems). Relative quantification is expressed as 2�DCt ,
where DCt is Ct(gene of interest) � Ct(18S rRNA). Samples which
gave a Ct reading þ 1.5Ct greater or less than the median for 18S
were excluded from further analyses.
Luciferase assays

SW1353 chondrosarcoma cells were used for plasmid trans-
fections using Lipofectamine 2000 with the Smad-responsive re-
porter (CAGA)12-luc, Wnt-responsive 8xTCF/LEF binding site
(TOPFlash) and mutant TCF/LEF site control FOPFlash and b-galac-
tosidase transfection control plasmid23,24. Cells were treated with
Wnt3a (100 ng/ml) for 10 h or TGFb (4 ng/ml) or activin (20 ng/ml)
for 3 h with and without 1 h Dkk3 pre-incubation before mea-
surement of luciferase activity using the Luciferase and Beta-Glo
assay systems (Promega).
ated in osteoarthritis and has a chondroprotective role, Osteoarthritis



Fig. 1. Dkk3 levels are altered in OA and during chondrogenesis. (A) DKK3 expression is elevated in OA cartilage and synovium from patients undergoing total hip arthroplasty. OA
cartilage ¼ COA, n ¼ 13, NOF control cartilage (CN, n ¼ 11), OA synovium (SOA, n ¼ 8) and NOF control synovium (SN, n ¼ 11). DKK3 gene (B) and protein (C) levels were elevated in
damaged compared to undamaged cartilage from individuals with AMG (n ¼ 5), IHC scale bar ¼ 20 mM. (D) Dkk3 protein measured by ELISA of synovial fluid was increased in
individuals undergoing TKR for OA, n ¼ 3. Levels were also measured in individuals with no cartilage lesions (control, n ¼ 3), undergoing arthroplasty for cartilage lesions (lesion,
n ¼ 5), MACI (n ¼ 7) following arthroscopy, or UKR (n ¼ 3) for AMG. (A, B) analysed by t test, (D) by ANOVAwith Tukey post-test, three technical replicates per patient with the mean
of these used in statistical analysis and represented as a dot (biological replicate) on each graph.
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siRNA

Cells (HAC and SW1353) were transfected with 2.5 nM of siRNA
against Dkk3 (Qiagen) or Allstars non-targeting negative control
(Qiagen) using Dharmafect (Thermoscientific, UK) according to
manufacturers instructions. Cells were transfected 48 h prior to
cytokine treatment.
Fig. 2. Dkk3 is regulated by inflammatory cytokines and injury and during chondrogenesi
showed a reduction in DKK3 expression (n ¼ 8 mice). (B) 24 h treatment with IL1b and IL1b/O
replicates per condition), this was partially inhibited by 10 mM of the p38 MAPK inhibitor S
induced MMP13 and MMP1 expression was inhibited by Dkk3 (n ¼ 4 patients, four techni
ATDC5 cells (microarray) and human MSCs (RT-qPCR, n ¼ 2e3 biological replicates) (E & F)
biological replicates.

Please cite this article in press as: Snelling SJB, et al., Dickkopf-3 is upregul
and Cartilage (2015), http://dx.doi.org/10.1016/j.joca.2015.11.021
Statistical analysis

Analyses were carried out using Graphpad Prism 6.0. Student's t
test was used to test differences between two samples whilst
ANOVA with either Dunnett's or Tukey post-test was used for
multiple samples. Normality was tested using the ShapiroeWilk
test. P < 0.05 was considered statistically significant. *�0.05,
s. (A) RT-qPCR of RNA extracted from murine hip cartilage following ex vivo avulsion
SM reduced DKK3 expression in primary monolayer HAC (n ¼ 4 patients, four technical
B202190 (SB) (n ¼ 4 patients, four technical replicates per condition) (C). (D) IL1/OSM-
cal replicates per condition). DKK3 expression was reduced during chondrogenesis of
. (AeD) and (F) ANOVA with Dunnett's post-test. All statistical analysis carried out on
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**�0.01, ***�0.001. Graphs show mean ± 95% confidence intervals
of biological (patient or cell) replicates.

Results

Dkk3 expression is upregulated in OA tissue

Expression of DKK3 mRNA was increased >10-fold (P < 0.0001)
in OA cartilage compared to NOF control [Fig. 1(A)]. Analysis of
synovium from OA patients and NOF controls showed a 3.2-fold
(P ¼ 0.0235) increase in DKK3 mRNA in diseased tissue. DKK3
mRNA expression [Fig. 1(B)] was 2.1-fold (P ¼ 0.019) higher in
damaged cartilage from patients with AMG. Our previous work
shows reduced MMP and FRZB mRNA expression in damaged
compared to undamaged cartilage25. Immunohistochemistry in
AMG patients also showed significant Dkk3 staining in the super-
ficial zone of damaged but not undamaged cartilage [Fig. 1(C)].
Dkk3 protein [Fig. 1(D)] in synovial fluid was 2.1-fold higher
(P ¼ 0.0002) in patients undergoing TKR for OA compared to con-
trol individuals, those with cartilage lesions (4.33-fold, P < 0.0001)
or patients undergoing UKR (2.83-fold, P¼ 0.0016). Matrix-induced
autologous chondrocyte implantation (MACI) is performed 4e6
weeks following initial assessment of cartilage lesions by arthros-
copy. Dkk3 levels at the time of MACI were significantly higher than
at arthroscopy (i.e., lesion) (2.3-fold, P ¼ 0.0029).
Fig. 3. Dkk3 inhibits ex vivo cartilage degradation. (A) Dkk3 reduced IL1/OSM-induced collag
three technical replicates per condition). (B) BNC (n ¼ 4) and (C) human knee (n ¼ 4) cartilag
in the presence of Dkk3 compared to IL1/OSM treatment alone, three technical replicates p
OSM treatment and increased from day 5 onwards. (A), (B) and (C) ANOVA with Dunnett's
O ¼ IL1/OSM. All statistical analysis carried out on biological replicates (each biological rep

Please cite this article in press as: Snelling SJB, et al., Dickkopf-3 is upregul
and Cartilage (2015), http://dx.doi.org/10.1016/j.joca.2015.11.021
DKK3 expression is downregulated following cartilage injury and
during chondrogenesis

The OA phenotype includes reinitiation of development26, thus
establishing Dkk3 regulation in chondrogenesis is important.
ATDC5 differentiation is an established model of chondrogenesis.
Following chondrogenic differentiation, microarray analysis
showed Dkk3 expression decreased relative to non-induced control
cultures [Fig. 2(A)]. Expression of chondrogenicmarkers Col2a1 and
Agc1 (data not shown) were increased across these time points23.
Human MSCs in high density transwell cultures also showed a
significant 1.3e21-fold reduction (P < 0.01) in DKK3 expression
throughout chondrogenic differentiation into cartilage discs
[Fig. 2(B)], with increases in COL2A1 and ACAN across the time
course18.

Joint injury is associated with secondary OA therefore Dkk3
regulation during injury or in response to inflammatory mediators
of injury was investigated. Dkk3 expression in murine cartilage was
decreased 1.8-fold (P ¼ 0.0005) immediately (1 h) following hip
avulsion injury and remained low (3.54-fold reduction, P < 0.0001)
48 h after injury [Fig. 2(C)]. Treatment of HAC for 72 h with IL1b or
the combination IL1b/OSM reduced DKK3 expression (2.4-fold,
P ¼ 0.0086 and 5.25-fold, P ¼ 0.0009) [Fig. 2(D)], this was partially
inhibited by inhibition of p38 MAPK activity [Fig. 2(E)]. IL1b/OSM
treatment of HAC inducedMMP13 andMMP1 expression [Fig. 2(F)],
en degradation (hydroxyproline release) from BNC explants (n ¼ 4 biological replicates,
e explants showed a reduction in proteoglycan degradation (GAG release, DMMB assay)
er condition. DKK3 expression was significantly reduced in BNC (n ¼ 3) at day 1 of IL1/
post-test relative to IL1/OSM alone (D) t test relative to untreated timepoint control. I/
licate the mean of technical replicates for that sample).
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this was inhibited by Dkk3 (1.9-fold, P < 0.0001 and 3.9-fold,
P < 0.0001), suggesting Dkk3 inhibits IL1/OSM-induced cartilage
degradation via modulation of MMP levels.
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Dkk3 prevents cartilage degradation in vitro

OA is characterized by loss of proteoglycan and collagen from
cartilage ECM. Bovine nasal cartilage (BNC) explants were treated
with IL1b/OSM ± recombinant Dkk3. Cytokine-induced collagen
loss [Fig. 3(A)] at day 14 was dose-dependently inhibited by addi-
tion of 50, 125 or 250 ng/ml Dkk3 (2.0-, 3.6- and 5.6-fold reduction,
P < 0.001) IL1b/OSM-induced proteoglycan loss from BNC explants
was also dose-dependently inhibited by 250 ng/ml Dkk3 [1.1-fold,
P¼ 0.0049, Fig. 3(B)]. Human explants cannot be induced to release
collagen however they showed [Fig. 3(C)] significant dose-
dependent inhibition of cytokine-induced proteoglycan loss in
the presence of 125 ng/ml and 250 ng/ml Dkk3 (1.6- and 1.5-fold,
P ¼ 0.003 and P ¼ 0.0008, respectively). DKK3 expression was
decreased 1 day after IL1/OSM treatment of BNC explants before
increased expression from day 3 onwards [Fig. 3(D)]. No toxicity
was detected (LDH assay) during 14 days treatment with Dkk3
(data not shown).
Fig. 4. Dkk3 inhibits Wnt signaling in chondrocytes. (A) HAC (n ¼ 4 patients, three technical
expression was reduced in the presence of Dkk3. (B) SW1353 cells were transfected with the
treatment with Wnt3a, Dkk3 or the combination of Wnt3a and Dkk3. Dkk3 reduced Wnt3a-
proteoglycan production of HAC grown in micromass culture (n ¼ 4) as measured by alcian b
or negative control siRNA. In the absence of Dkk3 there was a relative increase in Wnt3a-indu
comparisons of Wnt3a to Wnt3a þ Dkk3, (C) significance shown for comparisons of Wnt3a_
technical replicates per condition for luciferase assays and four technical replicates per c
replicates.

Please cite this article in press as: Snelling SJB, et al., Dickkopf-3 is upregul
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Dkk3 inhibits Wnt signaling

Dkk3 is a non-canonical member of the Dkk family of Wnt an-
tagonists with tissue-dependent effects onWnt signaling activity. To
determine whether Dkk3 did regulate Wnt signaling in cartilage we
treated HAC with Dkk3 and Wnt3a. The Wnt3a-induced increase of
the Wnt target gene AXIN2 [Fig. 4(A)] was decreased in HAC by co-
incubation with Wnt3a and 125, 250 or 500 ng/ml Dkk3 (1.6-, 2.2-
and 2.5-fold, P ¼ 0.0050, <0.0001, <0.0001 respectively) compared
to Wnt3a alone. Furthermore the activity of the Wnt-responsive
TOPFlash reporter was reduced by the addition of Dkk3 (1.7-fold,
P ¼ 0.0010) [Fig. 4(B)] compared to Wnt3a alone. Knockdown of
Dkk3 in HAC increasedWnt3a-induced AXIN2 expression compared
to a non-targeting siRNA control [Fig. 4(C)]. Micromass cultures of
HAC show significant reduction in proteoglycan production
followingWnt3a treatment for 4 days [Fig. 4(D)]. Proteoglycan levels
were restored by addition of Dkk3 demonstrating inhibition of
Wnt3a-mediated effects on proteoglycan synthesis.
Dkk3 regulates TGFb signaling

TGFb signaling responsiveness is reduced in ageing and OA.
Expression of the TGFb-responsive gene, TIMP327, was dose-
replicates per condition) were treated with Wnt3a with 0e500 ng/ml Dkk3 and AXIN2
TOPFlash reporter plasmid and FOPFlash control. Luminescence was assessed following
induced luciferase activity (n ¼ 8). (C) Dkk3 inhibited the Wnt3a-induced reduction in
lue staining, mean ± SD. (D) Primary HAC (n ¼ 4) were treated with siRNA against Dkk3
ced AXIN2 expression. ANOVAwith Dunnett's post-test, (A, B, D) significance shown for
siRNAcontrol to Wnt3siRNADkk3. n represents biological replicates (the mean of three
ondition for gene expression assays). All statistical analysis carried out on biological
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dependently enhanced in HAC treated with TGFb plus 250 and
500 ng/ml Dkk3 compared to TGFb alone (2.1- and 2.2-fold,
P < 0.001) [Fig. 5(A)]. TGFb-responsive PAI1 [Supplementary
Fig. 2(A)] and ADAM12 (data not shown) were also enhanced
whilst MMP13 expression was decreased by TGFb in combination
with 250 ng/ml Dkk3 [Fig. 5(C)] compared to TGFb alone (2.6-fold,
P < 0.001). 250 ng/ml Dkk3 also increased activity of the TGFb-
responsive (CAGA)12-luciferase reporter in SW1353 cells relative to
TGFb alone (2.8-fold, P < 0.0001) [Fig. 5(B)]. No effect of Dkk3 alone
was seen on TIMP3, PAI1 or ADAM12 gene expression or CAGA-luc
induction. The extent of TGFb induction of TIMP3 [Fig. 5(D)], PAI1
[Supplementary Fig. 1(B)] and ADAM12 (data not shown) expres-
sion and CAGA-luc [Fig. 5(E)] activity was decreased by Dkk3
knockdown. Knockdown of Dkk3 partially repressed the TGFb-
induced decrease of MMP13 in primary HAC [Fig. 5(F)]. p38 MAPK-
mediated stabilization of Smad4 has been described in Xenopus
laevis28, therefore we inhibited p38 MAPK. The induction of TGFb-
induced TIMP3 [Fig. 5(G)] and PAI1 [Supplementary Fig. 2(B)]
expression by Dkk3 was abrogated following p38 inhibition in HAC
[Fig. 5(G)].

Activin is a member of the TGFb superfamily that also signals via
Smad2/3. To assess whether Dkk3 impacted other Smad2/3-related
signaling pathways, HAC and SW1353 were treated with
activin ±Dkk3. Activin-induced TIMP3 expression and (CAGA)12-luc
activity whilst co-incubation with Dkk3 caused a dose-dependent
reduction in both of these outputs [Fig. 6(A and B)]. Knockdown
of Dkk3 enhanced activin-induced TIMP3 expression and CAGA-luc
Fig. 5. Dkk3 enhances TGFb signaling response. (A) HAC (n ¼ 4) treated with TGFb showed
responsive (CAGA)12-luciferase activity in SW1353 cells (n ¼ 8) was also enhanced by Dkk
luciferase activity (D, n ¼ 8) was reduced following knockdown of Dkk3. (E) Inhibition of
induced enhancement of TIMP3 expression following TGFb treatment (n ¼ 3). (F) Dkk3
(n ¼ 4) and siRNA against Dkk3 partially inhibited the TGFb-induced reduction in MMP13 ex
for comparison between TGFb alone and TGFb þ Dkk3 (AeC) and for TGFb þ siControl to TG
of TGFb þ Dkk3 to TGFb alone for with and without SB202190. n represents biological replic
technical replicates per condition for gene expression assays). All statistical analysis carried

Please cite this article in press as: Snelling SJB, et al., Dickkopf-3 is upregul
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activity suggesting endogenous Dkk3 may act to reduce cellular
activin-induced responses [Fig. 6(C and D)]. There was no repres-
sion of HAC TIMP3 expression when p38 MAPK activity was
inhibited [Fig. 6(E)]. Activin-induced PAI1 expression followed the
same trends as TIMP3 [Supplementary Fig. 3(AeC)].

Discussion

Altered expression of cytokines and consequent disruption of
cell signaling is associated with OA pathogenesis. Dkk3 is a non-
canonical member of the Dkk family of Wnt antagonists that has
not been explored in cartilage biology despite numerous studies
noting its increased expression in models of OA. In this study we
demonstrate that Dkk3 is upregulated in adult human OA cartilage
and synovial tissue but is decreased during chondrogenesis. Dkk3
protects against in vitro cartilage degradation and its expression is
regulated by both injury and inflammatory cytokines. Wnt and
activin signaling are both inhibited by Dkk3whilst TGFb signaling is
enhanced. The upregulation of Dkk3 in OA may be a protective
mechanism to limit cartilage damage and to regulate aberrant cell
signaling associated with disease.

OA is a complex disease affecting multiple joint tissues, with a
unique combination of factors likely to regulate pathogenesis
within each tissue and across different joint locations. We show
that Dkk3 is upregulated in both hip and knee OA and in both sy-
novial tissue and cartilage from diseased joints. Dkk3 upregulation
is also reported in OA subchondral bone from patients undergoing
increased TIMP3 expression in the presence Dkk3 compared to TGFb alone. (B) TGFb-
3 compared to TGFb alone. TGFb-induced TIMP3 expression (C, n ¼ 4) and (CAGA)12-
HAC p38 MAPK activity by treatment with 10 mM SB202190 (SB) abolished the Dkk3-
treatment decreased MMP13 expression in HAC compared to TGFb treatment alone
pression in HAC (n ¼ 4) (G). (AeF) ANOVA with Dunnett's post-test, significance shown
Fb þ siDkk3 (DeF). (G) ANOVA plus Tukey post-test, significance shown for comparison
ates (the mean of three technical replicates per condition for luciferase assays and four
out on biological replicates.
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Fig. 6. Dkk3 inhibits activin signaling response. (A) HAC (n ¼ 4) treated with activin showed increased TIMP3 expression in the presence Dkk3 compared to Activin alone. (B)
(CAGA)12-luciferase activity in SW1353 cells (n ¼ 8) was also reduced in the presence of Dkk3 compared to activin alone. Activin-induced TIMP3 expression (C, n ¼ 4) and (CAGA)12-
luciferase activity (D, n ¼ 4) was increased following knockdown of Dkk3. (E) Inhibition of HAC p38 MAPK activity by treatment with 10 mM SB202190 (SB) abolished the Dkk3
(250 ng/ml)-induced reduction in TIMP3 expression following Activin treatment (n ¼ 4). (AeD) ANOVAwith Dunnett's post-test, significance shown for comparison between Activin
and Activin þ Dkk3 (A, B) and between Activin_siControl and Activin_siDkk3 (C, D). (E) ANOVA with Tukey post-test, significance shown for comparison between Activin alone and
Activin þ Dkk3 in the absence and presence of SB202190. n represents biological replicates (the mean of three technical replicates per condition for luciferase assays and four
technical replicates per condition for gene expression assays). All statistical analysis carried out on biological replicates.
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TKR29. This suggests Dkk3 is relevant to whole joint biology in two
common sites of disease. The increased Dkk3 in synovial fluid of
patients with tricompartmental OA may implicate Dkk3 as a
biomarker distinguishing end-stage disease. Further studies of
Dkk3 as a circulating biomarker are warranted.

Dysregulation of Wnt and TGFb family members has been
strongly implicated in experimental and human OA5,6. An imbal-
ance in Wnt signaling leads to OA development in murine models,
and Wnt antagonists DKK1 and FRZB have been reported as
downregulated in human OA30e32. Wnts and activin are also
released following cartilage injury33,34. TGFb signaling and
responsiveness decrease with age and OA development whilst
increased activin has been detected in OA tissues34,35. Dkk3 has
both agonistic and antagonistic effects on the Wnt pathway
dependent on tissue of expression and thus investigation of its
impact on Wnt signaling in cartilage was investigated in our
study7e9. Opposing regulatory roles of Dkk3 on TGFb signaling in
Xenopus and prostate cancer13,28 have been reported but its func-
tion in musculoskeletal tissue has not been studied.

In adult HAC we have shown that Dkk3 antagonized Wnt
signaling and protected against Wnt-induced proteoglycan reduc-
tion. Dkk3 enhanced TGFb signaling in chondrocytes and interest-
ingly was necessary for TGFb-induced reduction of MMP13
expression. Dkk3 may mediate protective effects on cartilage
Please cite this article in press as: Snelling SJB, et al., Dickkopf-3 is upregul
and Cartilage (2015), http://dx.doi.org/10.1016/j.joca.2015.11.021
partially through upregulation of TGFb signaling and inhibition of
Wnt signaling. Surprisingly, Dkk3 inhibited activin signaling in
cartilage despite both activin and TGFb commonly signaling
through Smad2/3. Inhibition of p38 MAPK signaling abrogated the
effects of Dkk3 on both TGFb and activin signaling which shows
Dkk3 action here is p38 MAPK dependent. A previous study
demonstrated Dkk3-dependent Smad4-stabilization by p38 MAPK
and this requires further investigation in chondrocytes36. Our data
may indicate that Dkk3 effects on TGFb require p38 MAPK for
stabilization of Smad4. The effect of Dkk3 on activin signaling is
also p38MAPK dependent but may operate through a pathway that
does not use Smad4. The mechanism by which differential regu-
lation of activin and TGFb can occur is currently unknown and
beyond the scope of this study.

Injury to the joint commonly leads to OA development. To
model cartilage injury ex vivo the murine hip was avulsed and Dkk3
levels found to be decreased within 1 h. Decreased Dkk3 protein
was also shown in pilot data from an ex vivo porcine explant
model37 following cutting injury (data not shown). Treatment with
IL1b/OSM also led to a reduction in Dkk3 expression that was
partially p38 MAPK dependent. In contrast, previous reports on
murine OA15e17 and our data in human tissue show an increase in
Dkk3 expression in established disease. Dkk3 may be regulated in a
temporal manner during disease pathogenesis. This is supported by
ated in osteoarthritis and has a chondroprotective role, Osteoarthritis



Q6

Q7,8

S.J.B. Snelling et al. / Osteoarthritis and Cartilage xxx (2015) 1e98

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

YJOCA3642_proof ■ 24 December 2015 ■ 8/9
our BNC data that shows an initial decrease in DKK3 expression
followed by an increase as cartilage degradation occurs. It is also of
note that synovial fluid Dkk3 levels were lower at the time of
arthroscopy than 4e6 weeks later when MACI was performed. This
may indicate that injury to the joint capsule leads to significant
Dkk3 release from other joint tissues that overcomes any decrease
due to cartilage injury. The sources of Dkk3 in the joint require
further investigation. Any initial injury response leading to
decreased Dkk3may have been completed at MACI and Dkk3 levels
are consequently increased in the ensuing repair attempt.

Paralleling the potential roles of the Wnt and TGFb pathways in
OA pathogenesis, chondrogenesis and articular cartilage develop-
ment require TGFb signaling as well as regulation of Wnt
signaling5,38. Given the reversion of OA chondrocytes to a
developmental-like phenotype39 our data showing decreased Dkk3
during chondrogenesis, shows a potential role for Dkk3 in chon-
drogenesis, and also suggests that the immediate downregulation
of Dkk3 in injury may be an early repair response.

Strikingly, Dkk3 protected against IL1b/OSM-stimulated carti-
lage degradation. The increase in Dkk3 in OA may be a protective
mechanism to minimize cartilage degradation and the OA-
associated shift in chondrocyte phenotype. This is supported by
the reduction in cartilage-degrading MMP13 expression by Dkk3 in
the presence of IL1b/OSM. Microarray analysis of HAC treated with
siRNA against Dkk3 did not reveal pathways of Dkk3 action on
unstimulated cells (data not shown), thus future analysis will use
cytokine-stimulated. However siRNA treatment did increase
MMP13 expression in TGFb-treated cells suggesting that Dkk3 may
limit cartilage damage partially through reduction of both IL1b/
OSM and TGFb-effects on MMP13.

Overall Dkk3 upregulation in disease may be a defence mech-
anism to counteract disease-related dysregulation of cell signaling
pathways; inhibiting inflammatory cytokine effects on cartilage
degradation and enhancing TGFb signaling whilst maintaining
regulation of Wnt signaling in an attempt to counteract disease-
associated changes in these pathways. Supplementation with
Dkk3 at an early stage of disease or post-injury may therefore be
therapeutically beneficial.

Further investigation of Dkk3 in murine models of OA is
necessary to ascertain its contribution to cartilage homeostasis and
disease pathogenesis. Although the Dkk3 null mouse40does not
have an overt musculoskeletal phenotype our preliminary analysis
suggests increased knee OA in 3- and 6-month old animals, we are
currently investigating injury-models of OA. Dkk3 gene therapy is
in clinical trial for prostate cancer with promising results41, but
further preclinical evaluation is necessary alongside more detailed
investigation of the role of Dkk3 in other tissues of the healthy and
OA joint.

In summary we have demonstrated that Dkk3 is upregulated in
human OA and reduces cartilage degradation. These findings may
have clinical implications as treatment with Dkk3 may prevent
cartilage degeneration in OA and early intervention with Dkk3-
based therapy may slow OA progression.
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