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“Logic is a little tweeting bird, chirping in a meadow. Logic is wreath of
pretty flowers that smell bad. Are you sure your circuits are registering cor-

rectly? Your ears are green!”

— Mr Spock (2268)



Abstract

We generalise the notion of o-scattered to partial orders and prove that some large classes
of o-scattered partial orders are better-quasi-ordered under embeddability. This gener-
alises theorems of Laver, Corominas and Thomassé regarding o-scattered linear orders,
o-scattered trees, countable pseudo-trees and N-free partial orders. In particular, a class
of countable partial orders is better-quasi-ordered whenever the class of indecomposable
subsets of its members satisfies a natural strengthening of better-quasi-order.

We prove that some natural classes of structured o-scattered pseudo-trees are better-
quasi-ordered, strengthening similar results of Kiiz, Corominas and Laver. We then use
this theorem to prove that some large classes of graphs are better-quasi-ordered under the
induced subgraph relation, thus generalising results of Damaschke and Thomassé.

We investigate abstract better-quasi-orders by modifying the normal definition of
better-quasi-order to use an alternative Ramsey space rather than exclusively the Ellen-
tuck space as is usual. We classify the possible notions of well-quasi-order that can arise by
generalising in this way, before proving that the corresponding notion of better-quasi-order
is closed under taking iterated power sets, as happens in the usual case.

We consider Shelah’s notion of better-quasi-orders for uncountable cardinals, and prove
that the corresponding modification of his definition using fronts instead of barriers is
equivalent. This gives rise to a natural version of Simpson’s definition of better-quasi-
order for uncountable cardinals, even in the absence of any Ramsey-theoretic results. We
give a classification of the fronts on [k]“, providing a description of how far away a front

is from being a barrier.
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Chapter 1

Introduction

Mathematical objects come in all shapes and sizes. There is such a variety that in order to
make sense of these objects, it can often be useful to try to compare them according to their
relative complexity. This essentially amounts to putting a quasi-order (i.e. a transitive
reflexive relation) on a class of mathematical objects; one object is below another if it is
of less or equal complexity.

When ranking objects by complexity, the notion of well-order is both natural and
fundamental. Indeed, mathematicians will often give an ordinal ranking for the complexity
of objects in a given class. However for some types of object (for example finite graphs or
partial orders) an ordinal ranking may not be so natural; it may not in fact make sense
for any two objects to be comparable with respect to an intuitive notion of complexity.

So in order to compare complexity of objects, we wish to generalise the notion of
well-order to non-linear quasi-orders. One way to do this could be to simply consider
well-founded quasi-orders, i.e. those with no infinite descending sequences. However this
notion has a slightly different flavour, as we lose the property that there are at most finitely
many minimal elements of any subset of the order. Indeed we could have infinitely many
(non-comparable) least-complex elements.

Another natural way to generalise the notion of well-order is to not only forbid infinite
descending sequences, but also infinite pairwise incomparable subsets or antichains. This

is the definition of a well-quasi-order (wqo). Generalising in this way preserves some
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desirable properties of well-ordering, for example: any subset of a wqo has finitely many
minimal elements; any infinite sequence of distinct elements of a wqo has an infinite strictly
ascending subsequence; and the power set of a wqo is well-founded by the order A < B if
there is a function f : A — B with a < f(a) for all @ € A. For these reasons and more,
well-quasi-order is often a desirable property for a relational notion of complexity. The
well-quasi-order concept was discovered multiple times independently by many different
authors, for a detailed history and motivation of wqo theory see [27].

One useful and interesting property of wqos is that they can be used to construct other
wqos. For example, if () is a quasi-order, then consider the new quasi-order consisting of

the class of finite sequences of elements of @),
Q~={{gi:i<n)inewqeqQ}

ordered by (p; : i <n) < (g; : i < m) iff there is some injective increasing f : n — m such
that for all i <n, p; < gg(;)- A theorem of Higman [20] states that if @ is wqo, then so is
Q<Y (see also [206]).

Well-quasi-order theory alone however is not sufficient for transfinite constructions. If

Q is a quasi-order, then consider the class of transfinite sequences of elements of (),

Q={(gi:i€v):v€0n,qecQ},
ordered by (p; : i € v) < (g; : i € 0) iff there is some injective increasing f : v — § such
that for all i € v, p; < qy(;)- If Q is well-quasi-ordered, then the same does not always
hold for Q Thus for transfinite constructions such as this one to be wqo, we require a
stronger condition on the quasi-order Q).

The required stronger notion is that of a better-quasi-order (bqo). Developed by Nash-
Williams in the 1960s [39], this is a strengthening of well-quasi-order for which many
desired infinite constructions are wqo, when the assumption of wqo alone is insufficient.
As alluded to, a theorem of Nash-Williams [40] states when @ is bqo, so is Q (see also
38, 53]). In fact, Pouzet gives a characterisation of bqo in [45], that Q is bqo iff Q is

wqo. By a theorem of Rado [47], if @ is wqo and Q<% is not wqo, then @ contains
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an isomorphic copy of Rado’s poset R (see Definition 6.2.37 and Figure 6.4). Indeed
the definition of bqo strives to forbid this from happening, as well as similar transfinite
versions (see [38, 15, 42]).

Fortunately the majority of ‘natural’ wqo classes turn out to also be bqo (as noted by
Kruskal in [27]), although the notions are not equivalent (see [47, 31, 38]). At first glance
the definition of bqgo is not necessarily intrinsically beautiful, but it can be seen as an
infinitary strengthening of wqo and is an invaluable tool which can be used to show that
certain classes are wqo. Indeed, it is often much easier to prove that a class is bqo, than it is
to prove the weaker property of wqo directly. The theory of bqos may also be of interest to
the reverse mathematician, with theorems such as Nash-Williams’ on transfinite sequences
[40] requiring strong subsystems of second order arithmetic for their proof [35, 36, 50]. For

some introductory background reading on bqo theory, see [38, 44, 53].

1.1 Constructing better-quasi-orders.

In his 1948 paper [16], Fraissé conjectured that the set of countable linear orders is wqo
under embeddability. That is, for two linear orders L and L', we have L < L’ iff there is a
function f : L — L’ such that for all a,b € L, a < b iff f(a) < f(b). Laver famously proved
this conjecture in [30]. A relatively simple account of one proof of Fraissé’s conjecture is
given by Simpson in [53] and another is given by Pouzet in [44]. Pouzet’s version of this
proof is a prototype example of a more general method of proving that a class is bqo, that
we generally refer to as constructing bqos.

The rough idea behind this proof of Fraissé’s conjecture is as follows. The set of count-
able linear orders can be split into two subsets: the scattered orders (i.e. those linear orders
that do not embed the rational numbers Q) and the linear orders into which Q embeds.
So since every countable linear order embeds into @Q, the quasi-order of countable linear
order types consists of points for every scattered linear order, and infinitely many points

larger than every scattered order which are all order-equivalent’ under the embeddability

'That is a < b and b < a.
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ordering. Thus it only remains to prove that the scattered linear orders are wqo, because
a descending sequence or antichain can only contain at most one point order-equivalent
to Q.

Now a famous theorem of Hausdorff [19] is used. This theorem states that the class of
scattered linear order types, as well as having their external definition (of not embedding
Q) can also be defined internally. Let 4, consist only of the singleton linear order type

and for a > 0, let .7, be the class of all well-founded lexicographic sums
Lo+ Li+..+Lg+.. (B<9)

and converse well-ordered lexicographic sums
o+ Lg+ ...+ L1+ Lo (B <9)

where every Lg is a member of |J.,_, . Then Hausdorft’s theorem states that ./ =

y<a
U, & is precisely the class of scattered linear order types. Thus each element L € . can
be represented by a well-founded tree, labelled by ordinals and reversed ordinals, which
describes how L is built in this hierarchy, by recording the ordinals and reversed ordinals
used in its construction. Furthermore, if the trees embed, then so will the linear orders.
Thus the statement of Fraissé’s conjecture reduces to knowing that these well-founded
trees are wqo. At this point we can invoke a well-known theorem of Kruskal stating that
these trees are indeed wqo [26]. This idea is explained in more detail by Pouzet in [44].

Similar methods were used to expand Fraissé’s conjecture even further. Laver, in his
original proof in [30], not only proved the conjecture for countable order types, but he
also extended it into the transfinite. The full form of his theorem implies that in fact all
o-scattered linear orders form a bqo, these are the countable unions of the scattered orders
defined above.

However, Fraissé’s conjecture has also been expanded in a different direction. Firstly

by Corominas, who proved that the set of all countable pseudo-trees? forms a bqo under

2A partial order T is a countable pseudo-tree if for each ¢t € T, {u € T : u < t} is a countable linear

order.
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embeddability [6]. This was then further expanded by Thomassé, who showed that the
class of countable N-free partial orders® is bqo under embeddability [55].

We will use a similar method to prove that some new classes of partial orders, pseudo-
trees and graphs are bqo, by constructing them internally, using this construction to
show that they are bqo and then characterising them externally in a similar manner to
Hausdorff’s theorem. For our construction, in place of Kruskal’s tree theorem we will use
a more complex bqo theorem on a larger class of trees, due to Kiiz [25].

In particular, the theorem on partial orders (Theorem 3.5.12) will extend Fraissé’s
conjecture even further, giving for each n € w, a transfinite version. When n = 1 we have
Laver’s theorem, when n = 2 we have a transfinite version of Thomassé’s theorem, and in
general as n € w increases we obtain much larger transfinite bqo classes of partial orders.

This would appear to be the ultimate version of Fraissé’s conjecture.

1.2 Colourings, partial orders and structured trees

Some of the most striking theorems in bqo theory are that certain classes of partial orders,
often with colourings, are bqo under embeddability. Indeed, the notion of bqo was first
used by Nash-Williams in order to prove that the class Z of rooted trees of height at most
w is wqo (and bqo) under the embeddability quasi-order [39]. (See also [28] for a proof
that uses more modern terminology.) Laver explored the coloured versions of such trees
in [30], expanding Nash-Williams’ method, he proved that # preserves bgo. (That is to
say that if @) is bqo, then the class of trees of Z coloured by @ is also bqo under a natural
embeddability ordering, see Definition 2.2.7.)

We mention again the contribution from Nash-Williams [40], that if @ is bqo, then
the class Q of transfinite sequences of members of Q is bqo. This theorem can be viewed
as an embeddability result on a class of coloured partial orders; since it is equivalent to
saying that the ordinals preserve bqo. In fact Nash-Williams proved a stronger but more

technical version of this statement, equivalent to saying that the ordinals are well-behaved

3 A partial order is N-free if it does not embed the N partial order, see Definition 2.3.5.
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(see Definition 2.2.8). This is an important strengthening of bqo that will be crucial for
the results of chapters 3, 4 and 5.

Perhaps Laver’s is the most famous result of this type. The full form of his theorem
that proved Fraissé’s conjecture is that the class of o-scattered linear orders preserves bqo
[30]. A few years after his paper on o-scattered linear orders, Laver also showed that the
class .7 of o-scattered* trees preserves bqo [32]. Initially we notice that there should be
some connection between the theorems of o-scattered linear orders and o-scattered trees.
In each, we first take all partial orders of some particular type (linear orders, trees) that
do not embed some particular order (namely Q and 2<“). In both cases, the class of
countable unions of these objects turn out to preserve bqgo. Notice that these are the
minimal elements of the increasing unions of smaller structures.

We prove a general theorem of this type (Theorem 3.5.3) which states that given
well-behaved classes I and P of linear orders and partial orders respectively, the class of
‘generalised o-scattered partial orders’ .Zp will be well-behaved (see definitions 3.2.14 and
3.4.2). Letting L be least class containing I and closed under lexicographic L-sums for all

L € L; we define our ‘scattered’ partial orders to be those orders X such that:

e Every indecomposable subset of X is isomorphic to a member of P. (See Definition

3.2.10.)
e Every linear subset of X is isomorphic to a member of I (See Definition 2.3.10).°
e The partial orders 2<% and —2<“ do not embed into X. (See Definition 3.2.13).°

Our class .Zp is essentially then the class of countable unions of such X (see Definition

3.4.2). We note that in particular, if the class of countable linear order types € is a subset

*A tree T is o-scattered if there are trees T}, (n € w) that do not embed 2<% with T}, C T, 41 for each

n € w, and (Va € Thy1 \ Tn), (Vb € Ty), a £ b, satisfying T = | Thn.

new =N

5In fact our scattered orders will have a more complex but more workable definition which potentially
gives rise to a larger class. We state it in this simpler way for now, since the corresponding class is still

shown to be well-behaved under some modest assumptions on L. See Remark 3.5.5.
5Tn the initial definition of scattered partial orders we will also forbid embeddings of the partial order

25 (see Definition 3.2.13). However this assumption can be removed using Corollary 3.5.2.
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of L, then .///Igr contains all countable partial orders satisfying the first point (Theorem
3.5.8).

Applying this theorem with classes known to be well-behaved yields generalisations of
many other known results in this area. Van Engelen, Miller and Steel proved that the
class .7 of scattered linear orders is well-behaved [14], which in turn was generalised to .#
by Kiiz [25]. Corominas showed that the class of countable pseudo-trees preserves bqo [6]
and Thomassé showed that the class of countable N-free partial orders preserves bqo [55].
We summarise known results as applications of Theorem 3.5.3 in Table 1.1. In each case
Theorem 3.5.3 tells us that the given class is well-behaved.” We mark the limits column
positively if the o-scattered partial orders are necessary and negatively when the scattered

orders will suffice.

Class Description P L Limits
S Scattered linear orders [30] 1, Cy OnuU On* X
M o-scattered linear orders [30] 1, Co On U On* 4

w On Scattered trees [32] 1, Co, Ag On X

g On o-scattered trees [32] 1, Ca, Ag On 4
T Countable pseudo-trees [6] 1, Co, Ay 4 v

611,A2,Co} | Countable N-free partial orders [55] || 1, Ca, Az ¢ v

Table 1.1: Known results as applications of Theorem 3.4.12.

Here Ay and Cs are the antichain and chain of cardinality 2 respectively, On is the
class of ordinals, On* is the class of reversed ordinals and ¥ is the class of countable linear
orders.

Applying Theorem 3.4.12 with the largest known well-behaved classes . and P gives
that some very large classes of partial orders are well-behaved (Theorem 3.5.12). For
example, let P be the set of indecomposable partial orders of cardinality less than some

n € w, and L. = .#. Then for n > 2 the well-behaved class ///H]l# contains the o-scattered

"In the cases of Z°", 7°™ and ¥ the constructed .# is actually a larger class of partial orders.
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linear orders, o-scattered trees, countable pseudo-trees, countable N-free partial orders,
and generalisations of such objects.

Crucial to the ideas in sections 3, 4 and 5 are those of constructing objects with so
called ‘structured trees’. Put simply, these are trees with some extra structure (usually
a partial order) given to the set of successors of each element. Embeddings between
structured trees are then required to induce embeddings of this extra structure.

Theorems on structured trees also appear throughout the literature on bqo theory (cf.
[55, 6, 25, 44, 27, 33]). The rationale for their usefulness is described in the previous
section, and explained in more detail by Pouzet in [44]. As mentioned in Pouzet’s paper,
and as touched on before, Kruskal proved that the set of finite trees structured with w
is bqo [27]. Pouzet’s method is to take a ‘simple’ class of objects (e.g. partial orders)
and a bqo class of multivariate functions sending a list of objects to a new object (so
called ‘operator algebras’). Closing the class under these functions then yields a new
class, which one can prove to be bgo. The crucial step is to show that this construction
can be encoded as a structured tree, contained inside a class which is known to preserve
bgo. Pouzet’s method however was limited in that the structured trees that he used were
only ‘chain-finite’ (i.e. well-founded, or those trees for which every chain is finite).

More recently, larger classes of structured trees have been shown to preserve bqo.
In particular, using a modification of the Minimal Bad Array Lemma (see [53]), Kiiz
managed to prove that if @) is well-behaved then Z¢ (the class of @-structured trees of
., see Definition 2.4.5) is well-behaved [25]. This is the structured tree theorem that we
will use to prove our results of sections 3 and 4.

It is worth noting, that once we have this correspondence between partial orders and
structured trees, we can see why Q and 2<% appear in the definition of o-scattered linear
orders and o-scattered trees respectively; these are respectively the minimal partial orders
that cannot be represented internally by a well-founded tree. Thus a partial order is
externally scattered iff it has a well-founded internal tree representation.

Motivated by the fact that structured trees are extremely useful for constructing bqo

classes, the aim of Section 4 is to expand the class of structured trees known to be well-
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behaved. To this end, we use a similar construction as with the partial orders of Section
3, in order to prove that some large classes of structured pseudo-trees are well-behaved
(Theorem 4.3.4). This expands Kiiz’s structured tree theorem of [25] to certain classes
of o-scattered pseudo-trees, which incorporate both Laver’s o-scattered trees [32] and
Corominas’ countable pseudo-trees [6], generalising all three theorems simultaneously.®

We demonstrate the utility of our new structured tree theorem in Section 5, by proving
Theorem 5.2.6. This is an analogue to graphs of our main theorem on partial orders
(Theorem 3.5.12). We prove that a large transfinite class of ‘generalised o-scattered graphs’
is well-behaved under the induced subgraph relation. This expands results of Damaschke
[8] and Thomassé [55] and furthers the study of the wqo properties of classes of graphs,
examples of which can be found in for example [54, 24, 11, 43, 48, 41].

1.3 Ramsey spaces

A quasi-order @ is defined to be bqo iff there is no ‘bad’ function f : [w]* — Q. Thus
the very definition of better-quasi-order makes use of the space of infinite subsets of the
natural numbers [w]¥. Many of the Ramsey properties of this space, such as the Galvin
and Prikry Theorem [18] are heavily used throughout bqo theory (cf. [46, 53] among many
others). This space is known as the Ellentuck space and is a prototypical example of a
topological Ramsey space, originally described by Silver, Galvin and Prikry and Ellentuck
[52, 18, 13]. In this context it is usually denoted N[>,

Ramsey spaces (R, <,r) are abstract mathematical objects, which generalise the in-
finite dimensional Ramsey theory that can be done on the space N[>l For an excellent
and comprehensive text on this subject, see [56]. Objects such as fronts? and barriers,
that will be familiar to anyone well-versed in bqo theory, have already been studied in

this more abstract setting. Indeed in [56], Todoréevi¢ mentions that the study of infinite

8We consider only the well-branched trees T from Laver and Corominas’ classes, i.e those such that
Vx,y € T theset {t € T : ¢t < z,y} has a maximal element. This is necessary for the definition of structured

pseudo-trees.
9Fronts are also sometimes called blocks, for example in [39].
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dimensional Ramsey theory all began with Nash-Williams’ initiation of bqo theory in [39].
So what happens to the definitions of wqo and bqo when we change this Ramsey space
to a general Ramsey space R? What does it mean to be wqo with respect to an unusual
Ramsey space? Indeed, if bqos are a useful tool for showing that certain classes are wqo,
then can we also generalise bqos and use them to show that classes are R-wqo?
One contentious point here is how to define a shift, which gives some extra structure
to a Ramsey space which is required for an analogous definition of bqo. Indeed, in the

usual case, a continuous'? function f : [w]¥ — @ is defined to be ‘bad’ iff for all X € [w]®,

F(X) £ X\ {min X}).

So, implicit in the definition is a way of shifting a member X of our Ramsey space, to
another member. For the Ellentuck space, the usual shift maps X to X* = X \ {min X}.
The Ramsey theory surrounding the usual shift on the Ellentuck space has been studied
by Di Prisco and Todor¢evié in [10]. In general we must define what we mean by our shift
function -*. We concede that there could be some debate here about which is the ‘correct’
definition of shift to take, so we try to make our definition as general as possible.

Interestingly, although Ramsey spaces themselves vary massively, the range of possible
notions of R-wqo seems relatively narrow. We classify the possibilities into seven types,
and have found examples for three (we note that the majority of ‘natural’ shifts on well-
known examples of Ramsey spaces have their R-wqo equivalent to the usual notion of
wqo). Since more examples appear to be difficult to find, it seems very likely that this
classification can be refined further in the future.

Many of the theorems around the definition of bqo can be lifted to the new correspond-
ing notion of R-bqo. In particular, with one extra assumption relating to the shift map,
we obtain that @ is R-bqo iff P, (Q) is R-wqo for every a € On.'! This theorem allows
us to prove that when two Ramsey spaces have shifts satisfying this added condition, and

have equivalent corresponding notions of wqo, then their corresponding equivalent notions

Giving @ the discrete topology and [w]“ the product topology.
"Here Po(Q) = Q, Pat1(Q) = P(Pa(Q)) UPa(Q) and for limit A € On, PA(Q) = U,y Pa(Q). See

Definition 2.1.11
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of bqo are also equivalent.

1.4 Fronts and barriers on an uncountable cardinal

One of the main variations of better-quasi-orders that can be found in the literature is
Shelah’s notion of k-bqo for an uncountable cardinal . In his paper [49], he generalises
the notion of bqo in such a way that the corresponding notion of wqo is equivalent to the
statement that there are no length x descending sequences and no antichains of cardinality
k. He avoids the difficulties that arise in the absence of any Ramsey-like properties by
further considering more complex bqo notions that have some Ramsey-like properties built
into their definition. By doing this, he ultimately goes on to prove a certain generalisation
of Laver’s theorem on o-scattered linear orders to A-scattered orders'?, as well as showing
that the class #Z preserves his generalised notions of k-bqo, in a similar way to the way
that &Z preserves bqo.

We note that there are two equivalent notions of bqo that could potentially be gen-
eralised to an uncountable cardinal. The first, originally given by Simpson [53], is of a
topological nature. @ is bqo iff there is no continuous ‘bad’ function f : [w]¥ — @, where
Q has the discrete topology and [w]* has the product topology.!?

The second is more combinatorial. First define a front F to be a set of finite subsets

of w, such that:
e for all a,b € F, a is not an initial segment of b,
e and for all X € [w]“, there is an initial segment of X in F.

Then @ is bqo iff there is no ‘bad’ function f : F — @ for any front F. These can be
seen to be equivalent since any continuous function is constant on a set with a fixed initial
segment and the shortest such elements form a front. For a more detailed analogous proof

see Theorem 7.2.11.

12

i.e. those linear orders that are unions of < A\ many scattered linear orders.
13Tn fact, Simpson’s original definition has Borel measurable in place of continuous here but as in [53]

this is still equivalent.
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In the usual (countable) case, instead of a front we can use a barrier, i.e. a front with

the extra property known as the Sperner property:
(Va,b € B),a ¢ b.

This is because, using the Ramsey properties available in the countable case, we can find
a restriction of F that is a barrier (see [38]). This result of Nash-Willaims [40] is often
known as ‘every block contains a barrier’.

In [49], Shelah uses an unusual property to define the barriers which he uses analogously
in his definition of k-bgo. He defines a front on some A C k whose order type is k
w

analogously to the countable case. He then defines a x-barrier B to be a front on [A]

with the extra property:
(Va,b € B),b is not a strict initial segment of @ \ mina.

We refer to this property as the barrier property. It is worth mentioning that this property
is implied by the Sperner property, which is more usually seen in the definition of barriers.
Shelah then defines: @ is k-bqo iff there is no ‘bad’ f : B — @ for a k-barrier B.

We ask if it is possible to give a version of Simpson’s definition for xk-bqo, equivalent
to Shelah’s notion. In order to do so, we need to replace x-barriers with fronts in Shelah’s
definition. So in Chapter 7, we prove that in fact this is possible and the notions are
equivalent, even in the absence of ‘every block contains a barrier’.

Once we have this equivalence, given a bad function f : F — ) we obtain a bad
function g : B — @ for F a front on [k]* and B a k-barrier. However the relationship
between f and ¢ is indirect in the sense that we have no direct method to define g from
f- We would like to ask the question - how ‘close’ is F to being a x-barrier? In order to
attempt to answer this, we investigate the method of extending the elements of a front
F by adding final segments, resulting in a new front F’. Then from any bad function
f+F — @ we can define a bad function f’: F' — @ just by letting f'(a) = f(b) where
b is the initial segment of a contained in F. Thus extending fronts is invariant for bad

functions in this sense.
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In Chapter 8, we investigate the interplay between this method of extending and
the method of restricting. We classify the many possible types of front, depending on
whether or not there is a process of extending and restricting to find a k-barrier. We then
prove some relationships between existence of some such types of front and some negative
partition relations involving x, in order to try to describe the cardinals at which these

types of front exist.

1.5 The stucture of this thesis

The structure of this thesis is as follows:
e In Chapter 2 we give some basic bqo theory, notation, definitions and preliminaries.

e In Chapter 3 we aim to prove our expanded version of Fraissé’s conjecture. We
begin by giving a modified version of Pouzet’s operator algebra construction from
[44], that can be used to show that a constructed class of partial orders is well-
behaved. We then give a specific operator algebra that will construct the desired
scattered partial orders internally. We define intervals and indecomposable orders,
allowing us to give an external definition of the scattered partial orders. We prove an
extension of Hausdorff’s theorem on scattered linear order types [19], which amounts
to saying that the class of internally defined scattered partial orders is the same as
the class of externally defined scattered partial orders. We then externally define our
o-scattered partial orders. Then for each order, we define a structured tree which
describes how this order is built internally. Using a theorem of Kiiz from [25] we
see that these trees are in a well-behaved class, which allows us to prove that our
given class of o-scattered partial orders is well-behaved. We then mention some
implications, showing that some more simply defined classes of countable partial
orders are well-behaved, before finally posing some related questions relating to

future applications.

e In Chapter 4 we aim to expand Kiiz’s structured tree theorem to a large class of
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pseudo-trees. The method of the proof is essentially similar to that of Chapter
3. We give both internal and external definitions, prove their equivalence and use
the internal definition along with Kiiz’s structured tree theorem to prove that our
class of trees is well-behaved. This result also generalises Corominas’ theorem on
pseudo-trees [6] into the transfinite and Laver’s theorem on o-scattered trees [32] to

pseudo-trees.

e In Chapter 5 we apply the new structured pseudo-tree theorem of Chapter 4 to
graphs. We give an external definition of a class of scattered graphs, analogous to
that of the partial orders of Chapter 3. For each externally defined scattered graph,
we define a pseudo-tree that describes an internal construction. We then define
a class of o-scattered graphs. Given a o-scattered graph G, we then construct a
pseudo-tree describing an internal construction G by using the pseudo-trees which
internally characterise the scattered graphs used to define G. This pseudo-tree is
a member of the class constructed in Chapter 4, which allows us to prove that our

class of o-scattered graphs is well-behaved.

e In Chapter 6 we take a different direction. We begin be reviewing some basic defi-
nitions and properties related to topological Ramsey spaces, as well as giving a few
examples. We then define precisely what we mean by a shift map in as general a way
as possible, before defining the notion of R-wqo for a general Ramsey space R. We
attempt to classify the possible types of R-wqo, first looking at the analogues of the
‘no infinite antichains’ condition and then the analogues of ‘no infinite descending
sequences’ condition. This results in a classification of the different potential ver-
sions of R-wqo into seven possible types. We give some examples of these different
types. We then consider the corresponding notion of R-bqo and prove that R-bqos
are closed under iterated power sets, similarly to bqos. We then see that under
a certain extra condition on the shift maps, if two Ramsey spaces have the same

corresponding notion of wqo, then they have the same corresponding notion of bqo.

e In Chapter 7 we consider Shelah’s notion of better-quasi-orders for uncountable
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cardinals [49], and prove that the corresponding modification of his definition using
fronts instead of barriers is equivalent. While this is easy in the countable case by
just applying the Ramsey-theoretic Galvin and Prikry Theorem 2.1.6, it is non-trivial
at an uncountable cardinal. Using this we can define a natural version of Simpson’s
definition of better-quasi-order for uncountable cardinals, even in the absence of any

Ramsey-theoretic results.

Finally in Chapter 8 we give a classification of fronts on [k]“ in an attempt to describe
how far they are from being a x-barrier. We then give a correspondence between
existence of fronts on [k] of a given type in this classifcation and partition relations
that involving k. Thus giving a partial description of the cardinals k at which fronts

of this type can exist.
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Chapter 2

Preliminaries

We will assume that the reader is familiar with basic set theory and its notation. In par-
ticular: the basic definitions and properties of ordinals, cardinals, relations and functions;
as well as basic notions of topology such as the product topology on a space of infinite
sequences; and later on the notion of a Ramsey cardinal. We cite [21] as a reference on

these concepts.

2.1 Basic bqo theory

Definition 2.1.1. If A is an infinite subset of w, let [A]¥ = {X C A : |X| = Ry} and
[A][<¥ = {X C A: |X| < Ng}. We equate X € [A]¥ with the increasing enumeration of

elements of X.

Definition 2.1.2. e A class Q with a binary relation <¢g on @ is called a quasi-order

whenever < is transitive and reflexive.
o If Q is a quasi-order and < is antisymmetric then we call @ a partial order.

e For a,b € Q we write a <g biff a <g b and b £g a. We write a Lg b and call a and
b incomparable iff a £g b and b ¢ a.

o We write a 2¢ biff b <g a and a > biff b <g a.
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C C Q is a chain iff Va,b € C, either a <g b, a >g b or a = b.

e A CQ is an antichain iff Va,b € A, either a Lo b or a = 0.

A quasi-order @ is called well-founded iff there is no sequence (gp)ne, of elements

of @, such that (Vn € w), gn+1 <@ gn- Such a sequence is called descending.

A quasi-order @ is called narrow iff there is no infinite antichain A C Q.

e A quasi-order @) is called a well-quasi-order (wqo) iff @ is well-founded and narrow.

We write <, < and L in place of <@, <g and Ly when the context is clear.

We note that narrow orders are also sometimes known as FAC (finite antichain condi-
tion) orders, and that there are generalisations of Haudorff’s theorem on scattered linear

orders [19] to these orders, see [1, 4].

Definition 2.1.3. If x and y are quasi-orders, then we call x and y isomorphic and write

x = y iff there is some bijection ¢ : © — y such that (Va,b € x),a <z b +— ¢(a) <, ¢(b).

Definition 2.1.4. e A function f : [w]Y — @Q is called a Q-array if f is continuous,

giving [w]¥ the product topology and @ the discrete topology.

e A Q-array f: [w]* — Q is called bad if YX € [w]* we have
F(X) £ f(X\ {min X}).

e A Q-array f: [w]* — Q is called perfect if VX € [w]* we have
J(X) < f(X\ {min X}).

e A quasi-order Q is called a better-quasi-order (bqo) iff there is no bad Q-array.

Remark 2.1.5. We note that we could replace ‘continuous’ in the definition of a @Q-array
with ‘Borel measurable’ and this would make no difference to the definition of bqo (see

[53]). We can also consider arrays with domain [A]* for some A € [w]*.
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We note that the motivation for bad arrays (originally used by Nash-Williams [39]),
comes from contemplating why some transfinite constructions, such as the class of trans-
finite sequences ) can fail to be bqo even when @ is bqo. For a detailed motivation as to
why bad arrays arise naturally, see [42, 38].

The following is a well-known Ramsey-theoretic result due to Galvin and Prikry.

Theorem 2.1.6 (Galvin, Prikry [18]). Given a Borel set B in [w], there exists A € [w]*
such that either [A]Y C B or [A]* N B = .

Proof. See [18] or [53]. O

Theorem 2.1.7 (Nash-Williams [39]). If f is a Q-array, then there is A € [w]* such that
f T[A]¥ is either bad or perfect.

Proof. Let B ={X € [w]*: f(X) < f(X \ {minX})}. If B is Borel, then by Theorem
2.1.6 we will be done. Let S : [w]* — [w]¥ be the function S(X) = X \ {min X}. Then
and let g : [w]* — @ x @ be such that g(X) = (f(X), f o S(X)). Then g is continuous,
since f and S are continuous. We also have that B = ¢~!(<), considering the relation <

as a subset of the discrete space () x (). Therefore B is open and we are done. ]

Definition 2.1.8. Given a quasi-order @, let QQ U{—oc} be a new quasi-order defined by
letting p < ¢ iff p,qg € @ and p < ¢, or p = —o0.

Definition 2.1.9. Let Qp and Q1 be quasi-orders, we define Qo x Q1 = {(go,q1) : qo €

Qo,q1 € Q1} where for (po,p1), (g0, q1) € Qo x Q1 we have
(po,p1) < {qo, 1) iff (po <@, 90) A (P1 <0, ¢1)-

Theorem 2.1.10 (Nash-Williams [39]). If f is a bad Qo X Q1-array, then there is some
A € [w]¥ and g with dom(g) = [A]* such that either:

e g is a bad Qo-array, and g(X) is the first component of f(X) for all X € [A]“.

e orgis a bad Qq-array, and g(X) is the second component of f(X) for all X € [A]“.
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Proof. Define the Qo-array fy and the Qq-array f; so that for every X € [w]“ we have

f(X) = (fo(X), f1(X)).

Now apply Theorem 2.1.7 twice to restrict firstly so that fy is either bad or perfect and
secondly so that fi is either bad or perfect. Then either we are done or the resulting

restrictions of fy and f; are both perfect, which contradicts that f was bad. O

Definition 2.1.11. Let @ be a quasi-order. We quasi-order the power set P(Q) = {4 :
A C Q} by letting A < B iff 3f : A — B such that Va € A, a < f(a).
We now iterate the power set operation on a quasi-order ), defining the sets P, (Q)

for a« € On by recursion on « as follows:
pO(Q) - Qv

Pas1(Q) = P(Pa(Q)) U Pa(Q),
lim(A) = PA(Q) = | P,(Q).

F<A

To aid notation we also define

We will now define the order on P, (Q) by first defining the notion of the transitive
closure of a member of P (Q). If A € Po(Q) then let TCy(A) = A and for n € w define

TCpy1(A) = (TCW(A) N Q) U J(TCh(4)\ Q).

Then we define the transitive closure TC(A) = J,,.,, TC(A).

If & = 0 then the order on P,(Q) is already defined. If « is a limit ordinal, set A < B

new

iff 3y < a such that A <p (o) B. Otherwise, « = 3+ 1 and we let A < B iff either
A, B € Ps(Q) and A <p, () B, or at least one of A, B are in Py (Q) \ P5(Q) and one of

the following occurs:

1. A¢ Q and 3f : A — B such that Vg € A, ¢ <Ps(Q) flg); !

!This is well-defined since A, B C Ps(Q)
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2. B=qgeQand (Vt e TC(A)NQ),t<q;

3. A€ Ps(Q) and A <p,(q) A’ for some A’ € B.

2.2 Concrete categories

Usually we will be interested in quasi-ordering classes of partial orders under embeddabil-
ity, however we can keep the results more general with no extra difficulty by considering
the notion of a concrete category. The idea is to add a little more meat to the notion of
a quasi-order, considering classes of structures quasi-ordered by existence of some kind of
embedding. This allows us to generate more complicated orders by colouring the elements
of these structures with a quasi-order; enforcing that embeddings must increase values of
this colouring. Then we can construct complicated objects from simple objects in a ranked
way by iterating this colouring process, and the notion of well-behaved in a sense allows
us to reduce back down through the ranks. The reader who is unfamiliar with categories
may wish to refer to [34]. We shall now formalise these notions, similar to the definitions

within [25] and [54].
Definition 2.2.1. A concrete category is a pair O = (obj(O), hom(QO)) such that:
1. each v € obj(O) has an associated underlying set Us;

2. for each v, € obj(QO) there are sets of embeddings homp(7y,d) consisting of some

functions from U, to Us;
3. homp(7,7) contains the identity on v for any v € O;
4. for any v,9, € O, if f € homp(7,d) and g € homp (6, 5) then f o g € homo(y, 8);
5. hom(O) = [J{homo(y,9) : 7,6 € obj(O)}.

Elements of obj(O) are called objects and elements of hom(QO) are called O-morphisms or

embeddings. To simplify notation we write v € O for v € obj(O) and equate v with U, .
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Concrete categories are thus categories in the classical sense. They are precisely those
categories with a faithful functor to the category of sets (i.e. send an object to its un-
derlying set). This additional property allows us to think of concrete categories as classes
of sets equipped with some additional structure, and embeddings as structure preserving

functions.

Remark 2.2.2. Similar definitions to 2.2.1 appear within papers on bqo theory in [25], [54]
and [33]. The first two enjoy a more category theoretic description and the last is in terms

of structures and embeddings.

With the following definition, concrete categories will turn into quasi-ordered sets under
embeddability; (3) and (4) of Definition 2.2.1 guaranteeing the reflexivity and transitivity

properties respectively. This allows us to consider the bqo properties of concrete categories.

Definition 2.2.3. For v, € O, we say that
7 <o 8 iff homo (7, 8) # 0

i.e. v <o 0 iff there is an embedding from v to 6. If f € homp(7,d) then we say that f

witnesses v <o 6.

Example 2.2.4. Let obj(?) be the class of partial orders. For any two partial orders z,y,

let:
1. Uy =z,
2. homp(z,y) = {p: 2z = y: (Va,b € x),a <z b p(a) <y (b)},
3. hom(?) = J{homs(p, q) : p,q € obj(?)},
4. ? = (0bj(?), hom(P)).

The category P of partial orders with embeddings is then a quintessential example of a
concrete category and the order <, is the usual embeddability ordering on the class of
partial orders. We keep this example in mind since the majority of concrete categories
used in this thesis are either subclasses of P or are derived from P. We note that all

P-morphisms are injective.

33



Definition 2.2.5. Given a quasi-order () and a concrete category O, we define the concrete

category O(Q) as follows.
e 0bj(O(Q)) ={f:f:7— Q,7€0bj(O)}.
e For f € obj(O(Q)), we let Uy = Udom(f)-

e We define morphisms of O(Q) from f : v — Q to g : 6 — @ to be embeddings

@ : v — J such that for every x € v we have
f(x) <q gop(x).

Remark 2.2.6. We will use the convention of writing 4 € O(Q) when we have 5 : v — Q.

Indeed, if we have 4 € O(Q) then we will use without specific declaration that v € O and
7 = dom().

The category O(Q) is thus a category of Q-colourings of O, where we imagine labelling
the elements of members of O with elements of ). Embeddings must then not only be

embeddings of O, but also increase the value of every label pointwise.
2 6 7 2
VA
' - 2 0
) 3

Figure 2.1: Embeddings between w-coloured partial orders.

We are now ready to define the bqo preservation properties mentioned in Section 1.2,

allowing us to pass from bad O(Q)-arrays to bad Q-arrays.

Definition 2.2.7. Let O be a concrete category, then O preserves bqo iff for every quasi-
order @,
Q@ is abgo — O(Q) is a bqo.
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Unfortunately, this simple definition fails to be particularly useful. Given a bad O(Q)-
array, preservation of bqo ensures the existence of a bad @-array, but no link between
these two arrays is guaranteed. The following definition remedies this situation and is

extremely important within chapters 3, 4 and 5.

Definition 2.2.8. Let O be a concrete category, then O is well-behaved iff for any quasi-
order @ and any bad array f : [w]Y — O(Q), there is an M € [w]¥ and a bad array
g: M —=Q

such that for all X € [M]% there is some v € dom(f(X)) with

We call g a witnessing Q-array for f.

Warning: this notion of well-behaved is the same as from [25]; it is different from the
definition of well-behaved that appears in [54] which is in fact equivalent to Louveau and

Saint-Raymond’s notion of reflecting bad arrays [33].
Proposition 2.2.9. O is well-behaved — O preserves bgo — O is bqo.

Proof. If O is well-behaved then given a bad O(Q)-array f, we have a bad Q-array. If @
were bqo this would give a contradiction and hence there is no such bad array f.

Now let 1 = {0} be the singleton quasi-order, clearly then 1 is bqo. Thus if O preserves
bqgo then O(1) is bqo. Clearly O(1) is order isomorphic to O, therefore O is also bqo. [

Remark 2.2.10. Note that the converse O is bqo — O preserves bqo does not hold. For
a counterexample let Z be the partial order consisting of points z, and y, for n € w;
ordered so that for a,b € Z, we have a < b iff a = b or there is some n € w such that
a € {xn,Tnt1} and b = y,. Then {Z} is clearly bqo since it contains only one element,
but it does not preserve bqo (see Figure 2.2).

It is not known whether or not the other converse holds, i.e. is it the case that
O preserves bqo — O is well-behaved?

This is an interesting technical question, which was asked by Thomas in [54].
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1 0 0 0 1 0 0 0 1
Figure 2.2: An antichain of {Z}(A), where A = {0,1} with 0 L4 1.

Preserving bqos is an important definition historically, however it will not be used from

now on, we opt instead for well-behaved.

Definition 2.2.11. Given a concrete category O, a quasi-order ) and v € obj(O) we
define

Q" ={f:7—=Q}COQ@).
Lemma 2.2.12. Let P be a finite set of finite partial orders, then P is well-behaved.

Proof. Let @ be an arbitrary quasi-order and let f be a bad P(Q)-array. Then since P is
finite, we write P = {Py, ..., P,_1} for n = |P|. Fori < n let B; = Q% C P(Q), then we
can repeatedly apply the Galvin and Prikry Theorem 2.1.6 to each B; (i < n) in turn to
find A € [w]* such that for each X,Y € [A]“, we have that f(X) and f(Y) have the same
underlying finite partial order P = {pg, ..., Dm—1}-

Let f; : [A]Y — @ be given by f;(X) = f(X)(p;) for all X € [A]“. Let Ag = A and
having defined A; (j < m) apply Theorem 2.1.7 to f;, to find some A; 1 € [A;] so that
fj I [Aj+1]% is either a bad array or a perfect array. They cannot all be perfect otherwise
f 1 [Am]¥ is perfect, which contradicts that f is bad. Therefore at least one of these arrays

fi (i <m) is bad, and this is clearly a witnessing array for f. O

2.3 Partial orders

Definition 2.3.1. We define Card as the class of cardinals, On as the class of ordinals
and On* = {a* : @ € On}, where a* is a reversed copy of « for every @ € On. These are

considered as concrete categories whose morphisms are increasing injective maps.

Theorem 2.3.2 (Nash-Williams [40]). On is well-behaved.
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Proof. See [53, 40]. O

Definition 2.3.3. We let 1 = {0} be the partial order consisting of a single point. For
k € Card we let A, = {a : @ < k} be the antichain of size k. For n € w we let C,, be the

chain of length n.

Definition 2.3.4. Let P be a partial order and x € P, we define:
le={yeP:y<za}, ta={yeP:y>ua}

le={yeP:y<z}, Jz={yeP:y>uzx}.

For z,y € P, if it exists, we define the meet x A y to be the supremum of |x N Jy.

Definition 2.3.5. We define the partial order N = {0,1,2,3} as follows. For a,b € N
welet a <biff a =1 and b € {0,2} or a =3 and b = 2 (see Figure 2.3).

Figure 2.3: The partial order N.

Definition 2.3.6.

e A linear order is a partial order L with no incomparable elements.

A linear order L is scattered if Q £ L.

A linear order L is o-scattered iff L can be partitioned into countably many scattered

linear orders.

We denote the class of scattered linear orders as .¥.

We denote the class of o-scattered linear orders as .Z .

We denote the class of countable linear orders as €.
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Theorem 2.3.7 (Kiiz, [25]). 4 is well-behaved.
Proof. See [25]. O

Definition 2.3.8. Given linear orders r and ' and sequences k = (k; : i € r) and
k' = (K :j € r'), we denote by L the initial segment relation, and  the strict initial

segment relation. That is
kC kK iff r Cr" and if j' €7/,j € r,j’ < j then j' € r, furthermore for all j € r k; = k:;

and kK C k' iff k C k' and k # k’. We denote by k™ k' the concatenation of k and k’. We
also define ot(k) = 7.

Definition 2.3.9. Let P be a partial order, and for each p € P, let P, be a partial order.
We define the lexicographical P-sum of the P, denoted by > p P, as the set | |,cp P
ordered by letting a < b iff

e there is some p € P such that a,b € P, and a <p, b, or
e there are p,q € P such that a € P,, b € P, and p <p q.

We consider 3" as a function Y. p : # — @, where 3" ,(P) = > pep P(p).
We note that each Py (¢ € P) embeds into ), p P, in the obvious way. We equate
P, with its image under this embedding, and write P, C Zpé p P, for inclusion as partial

orders.

Definition 2.3.10. If L is a class of linear orders, we define L as the least class containing

L and closed under L-sums for all L € L.
Theorem 2.3.11 (Hausdorff [19]). If L = OnU On* then L = .7.

Proof. See [19, 53]. O

2.4 Structured Trees

Definition 2.4.1. A partial order T is called a tree iff (Vt € T'), |t is a well-order.
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Definition 2.4.2. Let T be a tree, then we define as follows:
e t € T is called a leaf of T if there is no t’ € T such that ¢’ > .
e T is rooted iff T' has a minimal element, denoted root(T").
e T is well-founded iff every chain of T is finite.?
e The height of T is sup,cr{ot(lx)}.

We let # be the class of rooted well-founded trees; and let Z be the class of rooted trees
of height at most w. We also let 7 be the concrete category of all trees, whose morphisms
are partial order embeddings ¢ : T — S such that for all z,y € T, p(x Ay) = p(x) A p(y).

We consider subclasses of .7 to be concrete categories with the same embeddings.

Definition 2.4.3. Given a rooted well-founded tree T', and some ¢t € T we define induc-
tively?
rank(t) = sup{rank(s) +1:¢ <p s}.

We then define the tree rank of T as rank(T") = rank(root(7')).

Definition 2.4.4. If T is a tree and t € T then let succ(t) be the set of successors of t,

i.e. the set of minimal elements of [t. If u € succ(t) then we call ¢ the predecessor of w.

Definition 2.4.5. Let T be a class of trees, and let O be a concrete category. We define
the new concrete category of O-structured trees of T, denoted Ty as follows. The objects

of T consist of pairs (T',17) such that:
e T'cT.
L U(T,ZT> =T.

o T = {IT : v € T}, where for each v € T there is some 7, € obj(O) such that

17" succ(v) — 7, is a bijection.

2Note that every tree is well-founded in the sense of Definition 2.1.2, considered as a quasi-order. Thus

when we use the term ‘well-founded tree’ we always mean well-founded in the sense of Definition 2.4.2.
3For the base case we have that sup(f) = 0.
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If t € Jv \ succ(v) and if ¢’ is the (unique) element of succ(v) such that ¢t > ¢/, then we

will occasionally abuse notation and write [Z(¢) in place of IZ(#).

Figure 2.4: A tree structured by {Ca, As}.

For O-structured trees (T,17) and (T”,1""), we let ¢ : T — T’ be an embedding

whenever:
Loz <y iff o(z) < e(y),
2. p(zAy) =e(@) Aoly),
3. for any v € T, if 6 : range(Il) — range(lgév)) is such that for all « € succ(v)
015 () = L (#(2));
then 6 is an embedding of O.
To simplify notation, we write 7" in place of (T,17) and always use IT = {II : v € T}.

Intuitively, when O is a class of partial orders, T is obtained by taking T" € T and for
each vertex v € T, ordering the successors of v by some order in O as in Figure 2.4. An
embedding for Tp is then a tree embedding that preserves this ordering on the successors
of v for every v € T. For example, in Figure 2.5 the map ¢ : T'— U is a structured tree
embedding because the induced map 6 given by Il (x) ~ 1Y (¢(z)) for z € {b,c} is a

e(a)
partial order embedding.
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Figure 2.5: A structured tree embedding ¢ : T — U.

Definition 2.4.6. Let T be an O-structured tree, with v € T and p € range(I!) then we
define
Plo={teT: (3t €succ(v)),t >t 1) =p}.

It is clear that when T is a class of trees and O is a concrete category, then Ty is a
concrete category and hence we also have defined the @Q-coloured, O-structured trees of T,
denoted Tp(Q). Finally we mention a theorem of Kiiz that is fundamental to the results

of this thesis.

Theorem 2.4.7 (Kiiz, [25]). If O is a well-behaved concrete category with injective mor-
phisms, then Zo is well-behaved.

Proof. See [25]. O

Remark 2.4.8. Louveau and Saint-Raymond proved, using a modification of Nash-Williams’
original method, that if O satisfies a slight weakening of well-behaved that they call refiect-
ing bad arrays (which is stronger than preserving bqo) then %o also reflects bad arrays
[33]. They were unable to attain full well-behavedness and Nash-Williams’ method seems

to be insufficient.
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Chapter 3

Better-quasi-ordering partial

orders

We note that the largest known classes of partial orders that preserve bqo are Laver’s
classes of o-scattered trees and o-scattered linear orders [30, 32] and Thomassé’s class
of countable N-free partial orders [55]. Each of these classes contains objects of a very
different flavour than all of the objects in each of the other classes. It is therefore desirable
to find a natural well-behaved class that incorporates all of these classes, unifying and
expanding upon these very nice results. This is the aim of this section, which culminates
with Theorem 3.5.12; where we prove for each n € w that a class of generalised o-scattered
orders is well-behaved. For n = 1 this class is .#, for n = 2 this class consists of transfinite
N-free partial orders and for larger n the class contains partial orders that, for example,

embed the partial order N (see Figure 3.1).

3.1 Operator construction

In this section we will define an operator algebra construction for partial orders similar to
the one used by Pouzet in [44]. We make some modifications in order to use it to prove

that the resulting class of partial orders is well-behaved, rather than just bqo.
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Figure 3.1: A generalised o-scattered partial order.

Definition 3.1.1. An admissible operator algebra is a triple of the form C = ({1}, F, A),
where A is a class of partial orders’ and F is the class of all functions of the form 3", for
P € A (see Definition 2.3.9).

If fe Fand f=)p then we call P the arity a(f) of f.

Given an admissible operator algebra C, we let C be the least class that contains the
singleton partial order 1 = {0} and is closed under application of functions in F. Thus, C

enjoys the following inductive definition:
e Co={1},
o Cop1={f(@):acciV) feF)?
e Cy =U,<)Cy for limit A,
o C= U'yGOn Cy.

Note also that C C 2 and so C forms a concrete category whose morphisms are morphisms

LConsidered as a concrete category whose morphisms are partial order embeddings
2Here 4 is as from Remark 2.2.6.
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of 2.3 For a € On we let

Cea =€y

<o

Given x € C we also define
rank(z) = min{a : z € Cy }.

Definition 3.1.2. Given a quasi-order () and an admissible operator algebra C = ({1}, F, A)
and & € C(Q), we define T e W A(Q U {—o0}) a decomposition tree for T inductively as
follows.

If # € Co(Q), =1 and T = {t}, T(t) = #(0) then we call T a decomposition tree for

If >0 and & € Cy(Q), then z = f(a) for some f € F and some a € Ci(ojj). Write
x; = a(i) C z for each 7 € a(f) and pick decomposition trees 7} for each of the &; = & | x;,

(i € a(f)). Now let

T={t}u |J T.
ica(f)

Order T so that for s,t € T, we have s < t iff either s = ¢y # ¢ or there is some i € a(f)

such that s,¢ € T; and s <, t. For v € T and k € succ(v), define

(k) tveT;
7 v =to,kEeT;

Finally define 7 : T — Q U {—oc} and for u € T,

In this case we call T’ a decomposition tree for z.

Lemma 3.1.3. If T is a decomposition tree for & € é(Q) then for all t € T, we have

T [ Tt is a decomposition tree for some Z € (?(Q)

3Recall that 2 is the concrete category of partial orders, see Example 2.2.4.
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Proof. By induction on rank(t). If rank(¢) = 0 then ¢ is a leaf of T', so that 1 is a singleton.
Thus T' | ¢ is a decomposition tree for 2 : 1 — {T(t)}

If rank(¢) > 0 then ¢ is not a leaf of T'. For each i € succ(t) we have rank(i) < rank(t)
so by the induction hypothesis, the tree T 1 1iisa decomposition tree for some &; € C (Q).
Furthermore, letting a = {l;(4) : i € succ(t)} we have a € A. Now let f =", a(l¢(i)) =
zi, z = f(a) and for all ¢ € succ(t) and j € z;, let 2(j) = #;(j). By construction then,
T | 1t is a decomposition tree for 2 € C(Q). O

Proposition 3.1.4. Let P be a partial order, then for all P e ®P and alli € P, we have
P(i) <Y (P).
P

Proof. The identity map is an embedding P(i) — ZP(P) O
In fact, Proposition 3.1.4 is implied by the following lemma.

Lemma 3.1.5. Suppose that C = ({1}, F, A) is an admissible operator algebra. Let &,9 €
P(Q) be such that © = f(a) and y = g(b) for some f,g € F and a € P*) b e 220) . In
this case if p : a(f) — a(g) is an embedding such that for all i € a(f),

&1 a(i) <pq) 91 (bowp(i)),
then & < 4.

Proof. Let &, 4, f, g, @ and b be as described. Thus z = Za(f)& and y = S, .\ b.

g? a(g)
Let ¢ : a(f) — a(g) be an embedding and for i € a(f), suppose that ¢; witnesses
2l a(i) <p) 91 (bo (). Now define 9 : & — y so that for all j € a(i) we have
v(j) = wi(j) €bop(i) Cy.
Then for u,v € z we have u < viffu € a(i), v € a(j), i <qa(p) jand (i = j — u <405 V)

iff
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iff ¢p(u) < ¥(v). Thus ¥ is a partial order embedding. Furthermore, if u € x then u € a(

i)
for some i € a(f) so that #(u) < go(u) as witnessed by ¢;. Thus ¢ witnesses < y. [

Lemma 3.1.6. Suppose that C = ({1}, F,A) is an admissible operator algebra. If T, and
Ty are decomposition trees for T,y € C~(Q) respectively and 3t € T, such that T, = Ty I 1,

then & < g.

Proof. Let L(t) € w denote the level of T}, at which t appears, i.e. t € T, has precisely
L(t) predecessors in T;,. We will prove the lemma by induction on L(t). Suppose first that
L(t) = 0, then T, = Ty and therefore since x and y can be constructed by precisely the
same set of functions, and the colours of their leaves will be equal, a simple induction will
show that £ = g.

Suppose now that L(t) = n + 1 for some n € w, and that the lemma holds for all
members t' of a decomposition tree where ¢’ has < n predecessors. Then let ¢y be the root
of Ty, so since T}, is a decomposition tree for ¢, for some f € F with a(f) = range(lz)y)
and some a € P2) we have y = f(a). Let i € range(l;ﬁy) be such that ltTOy (t) = i. Since
Ty is a decomposition tree, we see that *]tg is a decomposition tree for § [ a(i). But ¢ has
precisely n predecessors in ]tg, so by the induction hypothesis, # < | a(i). But since

a(i) C f(a) = y and by Proposition 3.1.4, we have:
E<glali) <yl fla)=g.
O

Theorem 3.1.7. Suppose that C = ({1}, F,.A) is an admissible operator algebra. If T,

and Ty are decomposition trees for ,9 € C~(Q) respectively and Ty, < Ty, then & < 4.

Proof. Suppose C = ({1}, F, A) is as described and that T}, and 7, y are decomposition trees
for &,7 € C(Q) respectively and T, < Zf’y. Let ¢ : T, — T, be an embedding witnessing
T, < Ty. We will prove & < ¢ by induction on rank(z).

If rank(xz) = 0 then z = 1 = {0} and 7T, = {t} is a singleton. Then since ¢ witnesses

A~

T, < Ty, we have

#(0) = To(t) < Ty 0 o(0).
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So since #(0) # —oo, we have T, o ¢(t) # —oo and therefore ¢(t) is a leaf of T,. Now
since Ty is a decomposition tree, by Lemma 3.1.3, it must be that U :Ty I To(t) is a
decomposition tree for some 2 € C(Q), but then U = {¢(t)} so that 2 € Cy(Q). Thus
z=1=xand 2(0) = T, o (t) > #(0), so the trivial embedding gives & < 2. Now we can

apply Lemma 3.1.6 to U and Ty, to see that
r<z2<9.

Now suppose that rank(z) = a > 0. So x = f(a) for some a € Ci(ojf) with a(f) =
range(l1*). Let r = root(T,) and s = root(T},) so by Lemma 3.1.6 we can assume without
loss of generality that ¢(r) = s. So because Ty is a decomposition tree for g, we have
y = g(b) for some g € F, b € #29) with range(lz?zr)) = a(g).

Since ¢ is an embedding of structured trees, it induces an embedding
T,
@, range(117) — range(l@lzr)).

In other words ¢, : a(f) — a(g). Then for each i € a(f), we have that T} | ‘]r is a
decomposition tree for & [ a(i) € C<o(Q), and Ty I #r()1s is a decomposition tree for

g1 (bowr(i)) € C(Q). Now since ¢ is a structured tree embedding we see that
o(11r) € ¥ 1.
Therefore by the induction hypothesis, for each i € a(f), we have that
E1a() <g 1 (boen(0)
But then by Lemma 3.1.5 we have £ < ¢ as required. O

Theorem 3.1.8. Suppose that C = ({1}, F, A) is an admissible operator algebra. If A is
well-behaved then C is well-behaved.

Proof. Suppose we have a bad C (Q)-array f. Define the function g, with the same domain
as f, such that g(X) is a decomposition tree for f(X). By Theorem 3.1.7 we have that
g is a bad #4(Q U {—oo})-array. Theorem 2.4.7 tells us that if A is well-behaved, then
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W4 C %4 is well-behaved; whence there is a bad Q U{—oo}-array h that is witnessing for
g. Using Theorem 2.1.6 with the Borel set h~!(—o00) we can now take a restriction h’ of
h that is a bad Q-array, and A’ is still witnessing for g.

But each leaf of the tree g(X) has the same colour as some element of f(X), and hence
R’ is also witnessing for f. So every bad C (Q)-array admits a witnessing bad Q-array, i.e.

C is well-behaved. O
Corollary 3.1.9. If L is a well-behaved class of linear orders, then L is well-behaved.

Proof. f A=L,F={>, :LelL}andC = ({1}, F, A), then C is an admissible operator
algebra and L = C. So if L is well-behaved, then L is well-behaved by Theorem 3.1.8. [

3.2 Scattered Partial Orders

Our aim is now to show that if we have a class of linear orders L and a class of partial
orders P, then whenever these are well-behaved?, the corresponding scattered partial orders
(with L and PP as parameters) will be well-behaved too. First we will define an operator
algebra which constructs these scattered orders internally, before giving a precise external

description and proving equivalence.

3.2.1 The operator Algebra S;.

We begin by giving some machinery for building nested chains of intervals, for use with

our operator algebra construction.

Definition 3.2.1. Suppose that L is a class of linear orders and P is a class of partial

orders. Recall that Ay = {0, 1} is the antichain of cardinality 2, as in Definition 2.3.3. Let
Ep = {7 € L(P(A2)) : (Vi € 7),[F(i) = & — (3] € ai),a:(j) = 1]}.

We consider Ef as a subcategory of L(P(Ay)).

1Considered as concrete categories with usual partial order embeddings, and with some other modest

assumptions.
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Definition 3.2.2. For # = (a; : i € 1) € E% and ¢ € r, let s; be the unique element of a;
such that a;(s;) = 1. Let S; = 0 if i = maxr and S; = {s;} otherwise. Now define the

partial order

H; = Ll(ai \ Si),

ordered so that for u,v € H, we let v < v iff u € a;, v € a; and one of the following

occurs:
o =7 and u <4, v;
o i < jand u <4, S
e i>jand v >, S;.

(See Figure 3.2.) Let Hy = {H; : # € E}, we consider HE as a concrete category whose

morphisms are partial order embeddings.

GQ\SQ{

al\Sl{

ao \ So

Figure 3.2: The partial order Hy, for # = (N : i € w), where N(z) = 1 iff z = 0.

Definition 3.2.3. Let Q be a quasi-order and H; € HE(Q). Define
O(H;) € L(P(Ag x (QU {—o0}))),

so that if # = (p; : ¢ € r) then
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A

where a; = p; and for each = € a;, we have a;(x) = (pi(z), ¢; ), with

Hi(z) :ai(r)=0ori=maxr
Qi,x =
—oo  :ai(x) =1 and i # maxr

Lemma 3.2.4. For all H;, H; € HE(Q), if O(H;) < ©O(Hy) then H; < Hy.

Proof. Suppose ©(H;) < ©(Hy) and let 7 = (p; =i € ), 4 = (f; : j € u) and O(H;) =
(a; 25 €7), O(Hyg) = (b; : j € u). So for every i € r and j € u we have p; = a; and t; = b;.
Since O(H;), ©(Hy) € L(P(Ay x (QU {—00}))), we have an embedding ¢ : r — u that

A~

witnesses ©(H;) < O(Hy). So for every i € r we have
@i < by

Let ¢; : aj — by(;) be an embedding witnessing this.
Given = € a; and y € bj, let giz,q;,y € @ be such that a;(x) = (pi(z),¢i) and
Bj(y) = (t;(y), gjy)- Therefore p;(x) < fw(i) o p;(x) as witnessed by ¢;, and thus

Pi(x) =ty o i), (3.1)

because these are comparable elements of the antichain As. So by (3.1), if p;(z) = 1 and

i # maxr then ¢; , = () = —0o0; and if pi(z) = 0 or i = maxr then

(i), i
H;i(x) < Hy 0 pi(x). (3.2)

Now let ¢ : Hy — Hy, be such that for all x € Hy C | |;, a; we have ¢ (z) = p;i(x)
whenever x € a;. So if ¥ is an embedding, by (3.2) it will witness H; < H;. Thus it
remains only to check that for w, z € Hy, we have w < z iff ¢¥(w) < ¢(2).

Let s; be the unique element of a; such that p;(s;) = 1, and let s;- be the unique element

of b; such that fj(s;) = 1. Then by (3.1), we have

/

wi(si) = Sy

For ¢,7 € r let w € a;, z € a;. Then by definition of the order on H;, we have:
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o if i = j then w < z iff w <q; 2 iff pi(w) = pi(2) iff Y(w) < P(z), since p; was an

embedding.

e if i <jthen w <z iff w <, i iff @5(w) <p,,) wilsi) = 5:0(1‘) iff Y(w) < P(2).

)

o if i > j then w < z iff 55 <, 2 iff 520( )= Pi(8i) oy, il2) HE P(w) < P(2).
Therefore 1 witnesses fIr < _ﬁﬂ. ]
Lemma 3.2.5. If L and P are well-behaved then ]HI%; 1s well-behaved.

Proof. Suppose there is a bad H%(Q)—array f. Now define the function g with the same
domain as f, such that g(X) = ©(f(X)). Note that if g(X) = (a; : # € r), and for x € q;
we have a;(z) = (v,q) for some v € Ag and ¢ € Q, (i.e. ¢ # —o0) then f(X)(z) = q.
Whence any witnessing Q-array for g will also be witnessing for f.

So by Lemma 3.2.4 we see that ¢ is a bad L(P(As x (Q U {—oc0})))-array. Since both
L. and P are well-behaved and by Corollary 3.1.9, we obtain from g a witnessing bad
Ay x (QU {—o0o})-array. By Theorem 2.1.10, and since Ay is finite and therefore bqo, we
obtain a witnessing bad @ U {—oc}-array, and therefore by Theorem 2.1.6, we can restrict

to find a bad @Q-array, that is witnessing for ¢ and thus for f. O

Definition 3.2.6. Suppose that L is a class of linear orders and P is a class of partial
orders. Let F = {3, : H € H.}, and A = H5. Then let Sp = ({1}, F, A). It is clear

then that S]]f; is an admissible operator algebra.

Theorem 3.2.7. IfIL and P are well-behaved then SI% 15 well-behaved.

Proof. By Lemma 3.2.5 A = H]ﬁ; is well-behaved, hence the result follows by applying
Theorem 3.1.8 to the admissible operator algebra S]]%; . O
3.2.2 Intervals and indecomposable partial orders

We want to define the indecomposable partial orders which will serve as building blocks
for larger partial orders, in order to do so we first require the notion of an interval (Fraissé

[17]).
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Definition 3.2.8. Suppose that a,b,c € x € C. We say that a shares the same relationship
to b and ¢, and write SSR(a; b, ¢) iff for all R € {<,>, L} we have

aRb iff aRc.

Definition 3.2.9. Let P be a partial order and I C P, then we call I # () an interval of
P ifVz,y € I and Vp € P\ I we have SSR(p; z,y).

Figure 3.3: An interval of a partial order.

Definition 3.2.10. Let P be a partial order. Then P is called indecomposable if every

interval of P is either P itself, or a singleton.

LN NN

Figure 3.4: Examples of indecomposable partial orders.

Lemma 3.2.11. Let (I; : j € ) be a chain of intervals of a partial order P under 2.

Then ;.. I; and

ier 1 I are intervals.

jer 77

Proof. Let a € P\ .., I; and b,c € |J;, I;. Then b, c € I; for some i € r, we know that

JET jer

I; is an interval hence SSR(a; b, ¢) as required. The case of intersection is similar. ]

Proposition 3.2.12. Let # = (a; : i € r) € Ek and by, b1,bs € Hy, such that for each

i € {0,1,2} we have b; € aj, for j; € r then

Jo < j1,72 — SSR(bo; b1, b2).
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Proof. Suppose that jo < ji,j2 and b; € aj, for each ¢ € {0,1,2}. Let s be the unique
element of aj, such that aj,(s) = 1. Suppose that by < by, then by definition of H; and
because jo < ji, we have that by < s. But then since we also have jy < jo, we have
that by < by, so in this case SSR(bo; b1, b2). The cases for when by > b; and by L by are

similar. O

Definition 3.2.13. We let 2<% be the binary tree consisting of all finite sequences of
elements of {0,1} ordered by C. We let —2<“ be the partial order obtained by reversing
the order on 2<“. We also define the partial order 25“ with the same underlying set as
2<%, For s,t € 27%, we define s < ¢ iff there is some sequence u such that ™ (0) C s and

u” (1) C t. (See Figure 3.5.)

Figure 3.5: The partial order 27%.
We are now able to define our class of partial orders that will be scattered in some
sense.

Definition 3.2.14 (Scattered partial orders). We define .73 to be the class of non-empty

partial orders X with the following properties.
(i) Every indecomposable subset of X is isomorphic to a member of P.

(ii) For every x € X, there is a maximal chain of non-empty intervals of X with respect

to D, with order type in L that contains {x}.

(iii) 2<%, —2<¢ and 27* do not embed into X.
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We let % be the class of those non-empty X satisfying (i) and (ii).

Remark 3.2.15. Using a result from [23], we have that any indecomposable partial order
with at least three vertices embeds N (see also [55]). Thus for P = {1, Cs, A3}, condition
3.2.14 (i) is precisely that the order X is N-free. Furthermore, it is clear that the only
indecomposable linear orders are 1 and Ca. So similarly for P = {1, Ca}, condition 3.2.14

(i) is precisely that the order X is linear.

3.3 Extending Hausdorff’s theorem

The aim of this section is to prove the following theorem:

Theorem 3.3.1. Let P be a class of indecomposable partial orders that do not embed any
element of {2<%, —2<%, QE“’}, that is closed under taking indecomposable subsets. Let 1L be
a class of linear orders closed under taking subsets and reversing orders, such that On C L.

Then SI% = Y]g‘.

This can be seen to be an extension of Hausdorff’s theorem 2.3.11, in the sense that
it shows that members of a certain class of externally defined partial orders have a well-
founded internal tree representation. Condition 3.2.14 (iii) seems especially reminiscent.
In particular, when P = {1,Cy} and L = On U On*, orders satisfying 3.2.14 (i) are linear
and thus satisfy both (ii) and (iii) automatically of Definition 3.2.14. Therefore by 3.2.14
(ii) the class .73 is precisely L which is in turn equal to the class of scattered linear orders
< by Hausdorff’s theorem 2.3.11.

For the rest of this chapter we will assume that P and IL satisfy the assumptions of
Theorem 3.3.1. The following two subsections contain the proof of Theorem 3.3.1, which
will follow once we prove Theorem 3.3.13 and Theorem 3.3.31, that show each containment.
Thus using Theorem 3.2.7 we will then immediately obtain the following scattered version

of our main result as a corollary.

Theorem 3.3.2. Let P be a class of indecomposable partial orders that do not embed any

element of {25, —2<¥ 27}, that is closed under taking indecomposable subsets. Let L
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be a class of linear orders closed under taking subsets, such that On C L. If L and P are

well-behaved then 5”%‘ 1s well-behaved.

Remark 3.3.3. The closure of I under reversing orders is not used to show that YP]P C 3%,
so this assumption is omitted in the statement of Theorem 3.3.2. However, this assumption
can essentially be taken for free because if LL is well-behaved then its closure under reversing

orders (i.e. LUL*) is easily seen to be well-behaved by Theorem 2.1.6.

3.3.1 Skc.7k

We will show this inclusion by induction on the rank of a member of S'I]g;, by first proving
the induction step for each of the conditions (i), (ii) and (iii) of Definition 3.2.14. In
particular, we wish to show that if we take some orders satisfying one of the conditions
3.2.14 (i), (ii) or (iii); any lexicographic H-sum (for H € HE) of these orders will also

satisfy that condition.

Lemma 3.3.4. IfY =)
satisfies 3.2.14 (i).

ven Yo where H € HE and each Y, satisfies 3.2.14 (i), then' Y

Proof. Suppose H = H;, 7 = (G; : i € r) € E5 and i € r. If A C H is such that elements

of ANa; # 0 and |[ANY > 2, then AN, @] is an interval by Proposition 3.2.12,

j>i 9]
and since it has at least two members, we see that A is not indecomposable. Thus any
indecomposable subset I of H is a subset of a; U a; for some 4,5 € r with ¢ < j and
|7 N a37| < 1. So I has the same order type as a subset of a; € P, which shows that I has
order type in P.

Thus if we take a subset A C Y with at least two points inside a single Y, and at least
one point not in Y, then since ANY, is an interval of A we see that A is not indecomposable.
So if J is an indecomposable subset Y then either J is entirely contained within some Y,
and hence J has order type in IP; or J contains at most one point of each of the Y, that it

intersects, and hence has the same order type as an indecomposable subset of H,. Hence

by the previous paragraph J has order type in PP, which completes the proof. ]
Lemma 3.3.5. Suppose that:
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e U is an indecomposable partial order with |U| > 2;

o P =73 .y Py for some non-empty partial orders P, with v € U;

e I C P is an interval of P with I N Py, # 0 and I N P,, # 0 for some vy # v; € U.
Then I = P.

Proof. First we claim that

J={u:INP,+0}

is an interval of U. To see this, we let v € U\ J, ug,u; € J, a € P, and by € I N P,
by € INP,,. Then a ¢ I (otherwise v € J), so we have SSR(a; b, b1) because I was an
interval. But this implies SSR(v; ug, u1) since P = >, ; Py, hence we have the claim that
J is an interval of U.

Since U was indecomposable, we either have |J| =1 or J = U. If |J| = 1 then this
contradicts our assumption that I N P,, # () and I NP, # 0 for some vy # v; € U. Hence
J="U.

Suppose for contradiction that there is some a € P\ I, then a € P, for some v € U.
For arbitrary ug,u; € U with v ¢ {ug,u1} we have by € IN P,, and by € I N P,,. Since
a € P\ 1, bp,by € I and I is an interval, we then know that SSR(a;bp,b1). So since
P =3 cyPuand v ¢ {ug,u1} we see that SSR(v;ug,u1). But then since ug and u; were
arbitrary, it must be that U \ {v} is an interval. Hence since U was indecomposable we

have |U \ {v}| = 1 which means |U| = 2 which is a contradiction. O

Lemma 3.3.6. Suppose that Y is a partial order that satisfies 8.2.14 (ii), Y =, K;
for some linear order L and Vi € L there are no Wy, W1 C K; such that K; = Zj602 W;.
Then L € L.

Proof. Pick z € Kj for some j € L, and find (using our assumption) a maximal chain
C = (Cj : j € ot(C)) of intervals of Y containing {z}, with order type in L.
So C has a final segment consisting of some maximal chain of intervals of K; and for all

Cj not in this final segment, C; \|J./~ . Cj» = K for some [ € L. In this case let 7(C;) = 1.

3>
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Now let
C'={JeC:K;CJ, andif J' € C,J C J, then 7(J) < 7(J")}.

So by construction C’ has order type equal to the initial segment L' = {j’ € L : j' < j} of
L. Furthermore since C’ is a subset of C' which has order type in L, and since L is closed
under taking subsets, we see that C’ has order type in L, and thus L' € L.

Now choose a cofinal subset S C L in some ordinal order type. So that for each u € S

we have {v € L : v < u} has order type in L. Moreover
Ly={velL: (W eS)u<u—u<v<u}
has order type in L. But then L = > wes Lu and therefore L has order type in L. O

Lemma 3.3.7. Suppose Y =3 Y, = ZjeL K; for some H € H5 and some linear
order L. Suppose also that each Y, (u € H) satisfies 3.2.14 (ii) and that Vi € L there are

no Wy, W1 C K; such that K; = ZjECQ W;. Then L € L.

Proof. Let # = (a; : i € r) € Ek be such that H = H;. For each j € r let s; be the
unique element of a; such that a;(s;) = 1. If j € r is such that a; # Cs then pick = € a;
that is incomparable to s;, which is possible since otherwise either |s;, Ts;, [s; or [s; is
a proper interval of aj, which contradicts that a; € P is indecomposable. Thus for any
j' > j and any v € H Naj we have that any yo € Y, is incomparable to any y; € Y.
Indeed since a; cannot be written as a lexicographic Co-sum of any partial orders (because
it is indecomposable and not equal to Cy), there must be some i € L such that Y, C K;
for each u € a; N H and furthermore,

U U wncrk.

j'>j u€ayNH

Let 7/ T r be longest such that Vj € /, a; = Cy then let
ro={i€r a;={x,s},1<s;}

and

ri={ier a;={x,s}, 8 <z}
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Then 79,71 € 7' C r and thus rg and 7, have order type in L. We let r] be the reversed
order of r1. For i € 7’/ = rg Ury let Y; = Y,, where z; is the unique member of a; \ {s;}.
If ¥/ = r and r has a maximal element, then let Y;, = Y5, .., and w = ro" (ig) " rj. If
r = 1’ and r has no maximal element then let w = ro"rj. If ' C r then let V;, =
Uj,%. Uue%/mH Y, and w = ro” (ig)” r]. Then since H» = Hy Hy = ro” r] and by

Y =3 iy, Yu, we have

Y=Y Y=Y K,

icw jEL

Thus since the K; cannot be partitioned into further lexicographic Ce-sums, we have

for some partition L; (i € w) that
Y=> Y K
i€w jEL;

Furthermore whenever ¢ € w \ {io} we have > ., K; C Y, and therefore by Lemma
3.3.6 we have L; € L. But ZjELiO K; C Uj,>j UuEaij Y, C Kj, for some jp so that
K;, =1 € L. Therefore L = Y,
LelL. O

L;, with w € L and L; € L for each i € w; hence

Lemma 3.3.8. If Y =3 _, Y, where H € Hy and each Y, satisfies 3.2.14 (ii), then Y
satisfies 3.2.14 (ii).

Proof. For some 7 = (a;:i €r) € Elﬁs we have H = H;. For j € r, let
7j=(a; 11 €r,j<i)and

=) Y, CV.
JCGH;«Z,
Then for all j € r, k € Y \ I; and lp,l; € I;, we have by Proposition 3.2.12 that
SSR(k; 1o, 1), and hence I; is an interval of Y.

For i € r let s; be the unique element of a; such that a;(s;) = 1, and when ¢ # maxr,

let
Y. =15
7>t
Note that Y, is already defined for all x € H, so with this definition we have defined Y,

for all z € | ... a;. We will now prove the following claim.

ier
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Claim: If for some i € r and u € a;, we either have X =Y, or X = J._, I;, then there

7>
is a maximal chain under D of intervals of I; that contain X, with order type in L.

Proof of claim: Suppose that J C I; is an interval of Y such that X C J. Then J is an

interval of

L=)_ Y,

TEea;

and so by Lemma 3.3.5, since a; € P is indecomposable, if |a;| > 2 then J = I;; therefore
{X,I;} is a maximal chain of such intervals and satisfies the statement of the claim.
Suppose that |a;| = 2, so a; = {yo, y1} for some yg such that X =Y, and some y1, so
that Y, N J is an interval of Y;,. So for some R € {<,>, L} and forallu € Y, =\ X
and v € X, we have uRv. So for all v/ € I; \ J and for all v' € J we have also v'Rv’.
Suppose that R =1. For some cardinal s, we can let U, for a@ € k be some non-empty
subsets of Y, such that for any o # 3 and u € Uy, v € Ug we have u L v. Moreover,
suppose that these U, are maximal in the sense that for each o € k there are no non-empty

Wo, Wi C Uy with Uy = Y2, W;. Now let

Jo=XU ] Ua.

e}
Then each J, is an interval of Y since any element of Y\ J,, is incomparable to any point
inside J,. We also have that
(Jo € r) (X)
is a maximal chain of intervals that contain X, since if JNU, # () then U, C J (otherwise
Wy = Uy N J and Wy = U, \ J contradict our maximality of U, ). So we have the claim

when R =1, since this chain has ordinal order type and On C L.

Now suppose that R =<. For some linear order L, and some K; C Y, (i € L) we have
Yy, = Z K;.
JjeL
Furthermore we can suppose that for all j € L there are no non-empty Wy, W7 C K such
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X =
Otherwise Yy, = U, Ij = >_,cp Yu for some H € HE, therefore L € L follows by Lemma
3.3.7.

;~i1j then Y, satisfies 3.2.14 (ii) so by Lemma 3.3.6 we see that L € L.

Let J be an interval of I; such that X C J. There can be no y € J and z € I; \ J with
y < z, since Vy' € X we have SSR(z;y,y’) and 2z < 3. Furthermore, if for some j € L we
have J N K; # 0, then K; C J (otherwise Wy = K; \ J and W; = K; N J contradict our
assumption on K;). Hence any such interval J is such that there is some final segment of
L' of L with J = X U ZjeL/ K;.

For j € L, let

Ji=XU ) KpyCI
J'€L,j' 25

Then (J; : j € L) (X) is a maximal chain of intervals of I;, all of which contain X which
has order type L and thus has order type in L.

If R => then the claim holds symmetrically. |

Now let w € Y, then u € Yy, for some z¢g € H. Thus, there is a maximal chain Cy of
intervals of Y;, with respect to O with ot(Cp) € L and {u} € Cy. Since Cp is maximal,
it has largest element Y. Applying the claim now to X = Y,, and ¢ such that z¢ € a;;
there is a maximal chain C of intervals of I; that contain Y, with order type in L. Now
for j € r with j < 1, let CJ’» be the maximal chain of intervals of I; that contain | io>i L
given by the claim. Hence

!
Coucyul 7
Jj<i
is a chain of intervals that contain {u} € Cp. It is maximal since each of its components

were maximal. Moreover this chain has order type

> ot(C)) | Tot(Ch) ot(Co) € L.
jerj<i
Thus we can find a chain of intervals of Y that satisfies the lemma. O
Lemma 3.3.9. If Y =Y _, Y, where 2<%, —2<% 25“ £ H and for each x € H we have
2w, —2<“’,2jw LY, then 2<%, —2<“’,2j°’ LY.
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Proof. Fix X € {2<%,—2<% 27} and suppose that X <Y, with ¢ a witnessing embed-
ding. For s € X, let 7(s) be such that ¢(t) € Yy ().

Let i € H and s € X. We claim that there is some t € X with s C ¢ such that for all
u € X with t C u we have 7(u) # 1.

Suppose for contradiction that for all ¢ € X with s C ¢ there is some 7(t) € X with
t C w(t) and Tom(t) = i. We now define ¢ : X — Y] inductively by letting ¥ (()) = ¢(m(s));
and if we have defined ¥ (t) = ¢(t’) then for m € {0,1} we let

Y(t(m)) = pom(t’™(m)).

Then # is an embedding since ¢ is an embedding, contradicting that X € Y;.

Let F be a finite subset of H, so applying the claim repeatedly for each i € F, we have
that for all s € X there is some sp € y with s C sp and for all 7 € F and all z € X with
sp C z we have 7(z) # i.

Now define u(()) = ¢(()) and suppose inductively that we have defined p on some
sequences t € X so that u(t) = p(t') for some t' € X. Let G be the set of ¢ such that u(t)

is already defined. Let w be the lexicographically least element of
{ye X\G: (V2 e X\G),Jy| < 2]},

now let v € X and m € {0,1} be such that w = v™ (m); so p(v) is already defined. Let
w' = 1" (m) and p(w) = ¢(sg). Thus p is an embedding, and 7 o pu(t) is distinct for

distinct ¢. Therefore 7o : X — H is an embedding, which is a contradiction. O

Proposition 3.3.10. Let Y € {2<%, —2<¥ 2%}, and s,5',t € Y be such that s C s’ and

s and t are incomparable under C. Then —SSR(s;s’,t) and ~SSR(s'; s,t).

Proof. Let Y € {2, —2<% 27} and s, ¢, t be as described. Suppose that ¥ = 2<“, then
since 2<“ is just ordered by C we have s < s’ and s L ¢ hence -SSR(s;s',t). We also
have that s’ L ¢, and therefore =SSR(s’;s,t). If Y = —2<% then we have s > s, s L ¢
and s’ L ¢, and again we can conclude that =SSR(s; s’,¢) and —SSR(s;s,t). If Y = 27%
then we have s | ', and either t > s and t > s’ or t < s and t < s’. Hence again we can

conclude —=SSR(s; ¢/, t) and —=SSR(s'; s, t). O]
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Lemma 3.3.11. Let H € HE then 2<%, —2<% 27% £ H.

Proof. Fix Y € {2, —2<% 27%} with Y < H = H; € HE, let ¢ be a witnessing embed-
ding and 7# = (G; : i € ). Let s; be the unique element of a; such that a;(s;) = 1, and
S; = {s;} if i # maxr, and S; = () if i = maxr. For every u € Y there is some unique

7(u) € 7 such that p(u) € a ) \ Srw)-

Claim: For any finite F' C r and t € Y, there are t C tg,t1 € Y with tg £ t; and t; £ g,
and T(to),T(tl) §Z F.

Proof of claim: Suppose not, then there is some ¢ € Y and some finite F' C r such that
Vtg,t1 € Y with ¢ C tg,t1 and tg £ t1, t1 [Z to, then either 7(¢y) or 7(¢1) is an element of
F.

So for some s € Y such that ¢t C s we have for every s’ € Y with s C s’ that 7(s’) € F.
Let F' = Fy and sg = s. Suppose for k € w that we have defined F}, C F and s, € Y such
that Vu € s, 7(u) € Fj. Pick some j, € Fy. Suppose there is s**1 € Y with s* C s++!

such that for every u € Y with s*+1

C u, there exists some pu(u) € Y with p(u) C u and
7(u(u)) = jr. Then let ¥(()) = p(u(s**1)) and for y € Y, if for some v/ € Y we have

defined ¥ (y) = ¢(y'), then for each n € {0,1}, let

Thus ¢ : Y — aj, is an embedding, which is a contradiction since a;, € P.
So there is some s*T!1 € Y with s C s**! such that for every u € Y with s**1 C u,
we have 7(u) € Fj \ {jx}. So we can let Fi11 = F \ {jr}, and we continue the induction.

But then we have that Fjp| = (), so we have a contradiction which gives the claim. |

By applying the claim to t = () € Y and {7(¢)} C r, we obtain fo,t; € Y with
to £ t; and t; £ tg. We can assume without loss of generality also that 7(ty) #
7(t1) by applying the claim to {7(t),7(to)} C r and tyx € Y. Now apply the claim
to {7(t),7(to), 7(t1)} and to to obtain tgy and tp; and similarly we can assume that

T(too) # 7(to1). Applying the claim one more time to {7({)),7(to), 7(t1), 7(t00), 7(to1)}
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and t1, we obtain t1p and 17 and similarly we can assume 7(t19) # 7(t11). Thus every
element of {7‘(<>), T(to), T(tl), T(too), T(t()l), T(tlo), T(tn)} is distinct.

We now use Proposition 3.2.12 in the following cases:

e 7(to) < 7(t1), 7(too) which implies SSR(¢(t0); ¢(t1), ¢(too)),
e 7(too) < 7(to), 7(t1) which implies SSR(p(t00); ¢ (to), ©(t1)),
e 7(t1) < 7(to), 7(t11) which implies SSR(¢(t1); ¢(to), ¢(t11)),
e 7(t11) < 7(to),7(t1) which implies SSR(¢(t11); ¢ (to), ¢(t1)),

] T(tl) < T(to),T(too) and T(to) < T(tl),’l'(tn) which implies T(to) < T(tl) < T(to)

which is a contradiction.

Now note that any of the first four cases contradict Proposition 3.3.10. So we have a
contradiction in every case, and our assumption that Y < H must have been false. This

gives the lemma. 0

Lemma 3.3.12. IfY =)
Y satisfies 3.2.14 (iii).

vci Yo where H € HE and each Y, satisfies 3.2.14 (iii), then

Proof. By Lemma 3.3.9 and Lemma 3.3.11. 0
Theorem 3.3.13. SI][]; - YPL.

Proof. If Y € SI]EIfo then Y is the singleton partial order, and hence trivially satisfies 3.2.14
(i), (i) and (iii). Now suppose that Sf_, € S and Y € Sf,. Thus Y =Y, Y, for
some H € ]HI%; and Y, € SIIF[;< o+ So by the induction hypothesis, for every x € H we have
Y, satisfies 3.2.14 (i), (ii) and (iii). So using lemmas 3.3.4, 3.3.8 and 3.3.9, we have that
Y satisfies 3.2.14 (i), (ii) and (iii), i.e. Y € .75 O

3.3.2 Sko.7

Our method for this direction will be to show that any partial order that satisfies conditions

3.2.14 (i) and (ii) but is not a member of Sk must fail condition 3.2.14 (iii). To this end

63



we will construct an internal structured tree representation for such an order, show that
this structured tree must embed certain pathological structured trees (or else the order is
a member of 5[]%;), before showing that embeddings of these pathological trees give rise to

embeddings of either 2<¥, —2< or 2T* into the order in question.

Definition 3.3.14. Let X € 2%, we call T € QH%(@]%) a partial interval tree for X iff
1. T has a root to and T'(ty) = X.
2. For all t € T we have T'(t) is an interval of X.
3. If t,s € T with ¢ < s, then T'(t) D T(s).

4. For all t € T, if H = range(I{) € HE and for each u € H if t,, € succ(t) is such that
I7'(t,) = u, then

T(t) =Y T(tw).

ueH
5. Moreover, if H = H; for # = (a; : i € r) € EE, and for j € r we have #; = (a4; : i €

r,i > j), then

<Z T(tu):j6r>

UAEH,;‘].

is a maximal chain of intervals of T'(t).
6. For every leaf t of T we have |T(t)| = 1.

Lemma 3.3.15. If I is an interval of a partial order X that satisfies 3.2.14 (ii), then I
satisfies 3.2.14 (ii).

Proof. Let I be an interval of X and suppose that X satisfies 3.2.14 (ii). Let xg € I and
using that X satisfies 3.2.14 (ii), pick a maximal chain C of non-empty intervals of X
with order type under D in LL that contains {zo}. Thus C’ = {J NI :J € C} is a chain
of intervals of I, and furthermore it contains {z(} and its order type is isomorphic to a
subset of L, i.e. ot(C) € L. If it were not maximal then there is some non-empty interval

K of I such that for all J € C’ we have either J C K or K C J.
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Consider

W=Ku| {JeC:JnIcCK}

We claim that W is an interval of X. Let t € X \W and y e W. If y € | J{J € C :
JNI C K} then SSR(z;y,x0) since J{J € C: JNI C K} is an interval of X by Lemma
3.2.11, and this interval contains xo. If x € X \ I and y,y’ € I then SSR(x;y, z¢) since
I is an interval of X and zy € I. If x € I and y € K then again SSR(x;y, z¢) since K
is an interval of I and z¢p € K. Therefore, for all x € X \ W and all y € W we have
SSR(z;y,x0), and thus for all y' € W we have SSR(z;y,y'), i.e. W is an interval of X.
But we also have that for all J € C either J C W or W C J, which contradicts that C

was maximal. O

Lemma 3.3.16. For every X € &%, there is some H € H5 and some Y,, € 25 foru e H
such that X =" -y Yu. Moreover if:

e C is a marimal chain of intervals of X with order type under O in L that contains

a singleton,
e H=H; fori={(a;:i€r)eEg,
e forj €r we have #; = (a; : i € r,i > j),
then <Zu€Hfj Y,:j€ r> =C.

Proof. Let C = (I; : i € r) be as described, with {z} € C. For i € r, let

P=1\ [ JL\{=)

j>1

Let J be the set of maximal chains of intervals of P; that do not contain x, and
Zi:{UK:Kej}:{Zg:ﬁe%},
where v; = |Z;]. Then for each 8 € ~;, pick some ZZ? € 7%, and let
Qi:{x}u{zg:ﬁe%}gﬂ».

65



Now Ui>j
and Yi(z) = J

I; is an interval and each Zé is an interval, hence if Yi(zé) = Zé for all 8 € v,
i>; I then

L= Y'q)

q€Q;

Claim: (); is indecomposable.

Proof of claim: We first claim that any interval of @); of size at least 2 contains x. If not,
then there is an interval I of (); containing z’ﬂ and zg for some distinct 5,9 € ~;, and such
that = ¢ I. But then Z}; U Z} is an interval of P; that doesnt contain z, which contradicts
either that Zg or Zg was the union of a maximal chain of such intervals.

Thus if I is a proper interval of @; with |I| > 2, then x € I and for some 8 € ~; we
have z% ¢ I. Now let

J=J zuJILcL

dier g
Then using that I; = > . Yi(q), and I is an interval we can see that J C I; is an

interval of I;. Furthermore |J,.,; C J, and therefore C' must not have been maximal

J>i

since J ¢ C. This contradiction gives the claim. |

By the claim then, since ); C X € 3”[%; we have Q; € P. Now define H = (J;, Q: € X.

Then for zf.}, zg € H we have zfg <y zg iff:
e i =j and sz <o, zg or;
° i<jandz}j<Qia:0r;
e i >jand z g, zg.
Additionally, z’B <g ziff 223 <@, v and v <y zf; iff x <g, zf;. Now let
f=(Q:ier)ecEs

where for all i € 7 we have Q; : Q; — A, is such that for ¢ € Q; we have Ql(q) =1iff
q = x. Then we see that H = H;, € HE.
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Now for v € H define

Then we have

X:ZYU.

ueH

Clearly then each Y, (u € H) is an interval of X. So by Lemma 3.3.15 we have Y,
satisfies 3.2.14 (ii). Furthermore since Y,, C X € &%, we have that Y, must satisfy 3.2.14
(i); and hence Y,, € 22%. We also have by construction that <Zu€H Y,:je€ r> =C. O

]

Lemma 3.3.17. For every X € P%, there is a partial interval tree for X.

Proof. Let X € P%. First we define Ty as the singleton tree, and let Ty : Ty — {X}.

Suppose for n € w that we have defined 7}, € ﬂH%(,@I][];) that satisfies properties (1)
to (5). For each leaf t of T}, since T},(t) satisfies 3.2.14 (ii) pick a maximal chain C of
intervals of T}, (t) with order type in L that contains a singleton. Then apply Lemma 3.3.16
to Tp,(t) € 2L so that Tp(t) = >uent Y for some H' € HE and Y,! € &% for u € H'.

We can now define
Tri1 =T U{H" : t is a leaf of T, |Tp(t)] > 1},

where Yu,v € Ty41 \ T), with u # v we let u Lp,, v, and if s € T),, u € H' C T},41 then

+1
let s 27, t and s <7, ., uiff s <7, t.

For t € T we let ;""" = [T whenever ¢ is not a leaf of T), and I;"*" : succ(t) — H'
be such that ltT"“(u) = u for all u € succ(t) = H' whenever t is a leaf of T),,. We also let
Tn—i—l [T, = T, and for u € H! with t a leaf of T},, we let Tn+1(u) =Y.

So by construction, properties (1) to (5) hold for T},41, and we can inductively define

T, for every n € w. Now let

T=|]JT,

new
and T'(t) = T),(t) whenever ¢ € T,. It is clear then that properties (1) to (5) hold for T,

as they are all witnessed by some T;, C T
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It remains to check property (5), so let t € T and thus there is some n € w with t € T;,.
If |T'(t)] = |Tn(t)] # 1, then H' # () and hence we defined some successor of ¢ € T}, 41, i.e.

¢ is not a leaf of T. So T is a partial interval tree for X. O

Lemma 3.3.18. For every X € 321% \ SI]E;, any partial interval tree T for X is such that
T¢w.

Proof. Suppose that X has a partial interval tree T with T € #. We will prove by
induction on rank(7') that X € Sk. Firstly, if rank(T") = 0 then T is the singleton tree,
and thus its only point ty is both a leaf and the root of T'. So by properties (1) and (5),
we have that X = T'(to) = {z}, and hence X € Sk.
Suppose for some a € On that rank(7) = « and whenever Y € L@]]II; has a partial
interval tree T’ with rank(7”) < a we have Y € Sp.
Let to be the root of T', H = range(l{) € Hf and for each u € H let ¢, € succ(t) be
such that I (t,) = u then by properties (1) and (4) we have
X =T(t) = 3 T(ta). (+)
ueH
For each u € H let
T, =T | 1t

Then it is clear from the definition, and since T is a partial interval tree for X, that T, is
a partial interval tree for T'(t,). Moreover, rank(T,) < «, and therefore T, (t,) € Sk. So

using (x) we see that X € Sk. O
Definition 3.3.19. Let X € Z%. We call M e QH%(@]%) a full interval tree for X iff

e There is a tree of transfinite sequences of ordinals Kj; under C, closed under initial

segments.
e For each s € ), there is some interval X, of X, and Xy =X.

e There is a partial interval tree T s for X.
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For all s,s" € Kj; with ' = s7(a) there is some chain ¢ of Ty with order type w,

such that
Xy = ﬂTs(t) 7é 0.

teg

M = UseICM Ts, ordered by t < w iff t € Ty, u € Ty and either s = s’ and t <p, u or

for some o € On, s™ () C ¢/, and there is a maximal chain ¢ of T, such that ¢t € ¢

and X, (o) = Nee Tu(t).

Whenever t € T, we have M(t) = Ty(t) and [M = [I*.

e For any maximal chain & of M whose order type is a limit ordinal, we have

(M(t) =0.

te¢
Lemma 3.3.20. For every X € :@I]g;, there is a full interval tree M for X.

Proof. Let X € 331]%;, let T<> be a partial interval tree for X = X). Suppose we have
defined T for some sequences of ordinals s. Enumerate the maximal chains of T} as 8%
for a < ks € Card. Now define
X5A<a> = Ts<i)a
ie¢y

and whenever X -,y # ) we let Tsﬂ@ be a partial interval tree for X~ ,y. We let Kps be
the set of sequences of ordinals s such that X # ().

We note that for s,s’ € Ky with s # s’, we have X # Xy and X, Xy C X. Hence
if ICps were a proper class, then X would have a proper class of distinct subsets and so X
would be a proper class itself. So KCjs is a set. Moreover Kps is a tree under C.

Now define M = USQ,CM T, ordered so that if x € Ty, y € Ty, then o <,y y iff s = &
and z <7, y, or s () C &' and = € (. If t € T, then we let M : M — P% be such that
M(t) = Ty(t) and set [ = [T, Clearly then M is a full interval tree for X. O
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Definition 3.3.21. Given a chain ¢ and trees T for each i € {, v < k; € Card, we

define the (-tree-sum of the T (see Figure 3.6) as the set

I w=¢cu || &

i€l Y<K 1€C,Y<K4

ordered by letting a < b iff
e a,be ¢ with a <¢ b;
e or for some i € ¢, ¥ < k; we have a,b € T, with a <z~ b;

e orac (andbe T, for some i€ ¢ with a <¢ i and v < ;.

Figure 3.6: A (-tree-sum of the 7).

Lemma 3.3.22. Suppose that X € 9”111; has a full interval tree M where M = Hte(j,’y<m T
for some chain ¢ C M. For allt € ¢ and v < ky, suppose that M (root(T})) € SH]%. Then
X € S

Proof. For each t € ¢, let s; = IM(¢') where ¢ is the unique element of succ(t) N ¢. We

have range(IM) = H;, for some 7, = (a : i € r;) € EE. So since

sy € Hp, C |_| ag,

1ETE

there is some p(t) € ry such that s; € az(t). Now let

r, = (ter i< pt)),

5The role of the k; is to allow multiple trees (i.e. x; many) to be added above each point i € (.
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and

rzg (S

teC
For i € r, whenever i € 1y, let bl = al. If i # p(t) then let lA)ﬁ =a! and if i = p(t) then let
b! : bt — Ay be such that for u € bf, we have bf(u) = 1 iff u = s;. Now define 7 : r — P(Ay)

so that for ¢ € ( and ¢ € r; we have,

Then r has order type

Zot(rt_) eL,

te¢
and hence 7 € E%;. We aim to write X as a lexicographic Hp-sum of partial orders X, € SHH,#.
Let s; be the unique element of az(t) such that a(s}) = 1. Then for i € r;, i < u(t)
we have 7, (i) = bl = af = 74(i).
Let w € H; and then let ¢ € ¢, i € r; be such that u € bl. If u # s}, then either u = s,
and t = max( or u # s; therefore in either case T,, = “[t C M was one of the trees we
used in the ¢-tree-sum and we let X,, = M (root(T,)) € Sk.

Suppose u = s; so that i = u(t). For t € ¢, let
r = (i €ryi
t t.Z>,U,(t>>7

and

= (al:iert) € BE.

Let H(t) = H+ € HE so that H(t) C Hy = range(IM), and for each v € H(t), let

7(v) € succ(t) be the element such that

Now define
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For each v € H(t) we have v € H;, and v # s, therefore 17(v) C M was one of the trees
we used in the (-tree-sum, so M(7(v)) € Sg. Hence X, € Sk since Sf is closed under
sums over elements of HE.

It remains to prove that

X = Z X,

wEH,
First notice that the X,, (u € Hy) partition X, since if x € X then there is a largest ¢, € ¢
such that = € M(t,). For i € ¢, if i = max( then let S; = 0, otherwise let S; = {s;}.
So for some (unique) v € succ(t,) \ S, we have 2 € M(v). Let u = M (v) so that either
u € Hft_r or u € HT; and thus either x € X, or = € XS;Z.

NOW suppose thét x,y € X with x < y. Let u,v € Hy be such that x € X,,, y € X,.
If w = v then z,y € X, which occurs iff z < y in the sum too. Let ¢,j € r’ be such that
u € b, v € bj, if i = j then u <,; v so u <p, v and again this happens iff < y in the

sum. If i < j then u <g,; s}, and if i > j then v <,; s}. So in either case this occurs iff

r <y in the sum, and we conclude that X =3 o, X, € S’I]EI;. O

Definition 3.3.23. Let %) = # U {0}, and for a € On let %,+1 be the class of (-tree-
<A %.,, and

finally set % = U, con %y For T' € % define the scattered rank of T', denoted ranky (T')

sums of trees of %, for some ordinal { > w. For limit A € On we let %, =

as the least ordinal a such that T' € %,. (See Figure 3.7.)

Figure 3.7: Trees of % of increasing scattered rank.

Lemma 3.3.24. If T ¢ % then there is some u € T and some to,t; > w such that
Tto Nty = 0 and Tto, Tty ¢ U .

Proof. Suppose T' ¢ 7% but there is no such v € T. Thus for any maximal chain ( C T
there is some a minimal element ¢ of T'\ (, such that 1t ¢ % (otherwise T' € % ).
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So let (p be a maximal chain of 7" and ¢y be the minimal element of 7"\ ¢y such that
1t ¢ % . Suppose we have defined ¢, as the minimal element of T\ (,, for every a < f3,
and that if o <y < 8 then ¢, < t,. Then let (g be a maximal chain of 1" containing |t,
for every o < f3, and let ¢3 be a minimal element of 7"\ (g such that 1tz ¢ % .

Since tg ¢ (g we cannot have t, > tg for any o < . Suppose that tg L t, for some
a < 3. But then if we let u = tg Aty, tg = tg and t1 = t,, then these satisfy the statement
of the lemma. Otherwise ¢, < tg and we can continue the induction. So the induction
continues for every ordinal. But then we have found proper class many distinct elements

of T', namely t, for « € On. Thus T is a proper class, which is a contradiction. ]
Theorem 3.3.25. T € % iff T € T and 2<% £ T.

Proof. Let T € %, we will define ¢ : 2<% — T by induction on the length of s € 2<%.
Firstly, let ¢(()) be the element u € T given by Lemma 3.3.24. Suppose for s € 2<¥, that
we have defined ¢(s) such that there are to,t1 > ¢(s) such that 1o, 1t1 ¢ % . Then for
i €{0,1}, let o(s™ (i)) be the element u € T given by applying Lemma 3.3.24 to 1¢;. This
inductively defines ¢, which is clearly an embedding.

For the other direction, firstly it is clear that 2<% £ U for any U € #/, since 2<%
contains an infinite branch. Now suppose that 2<% £ U whenever ranky, (U) < «. Then if
ranky (T) = a, we have that T is a (-tree-sum of some lower ranked trees. If 2<% embeds
into 7', then if any point in the range of this embedding is in one of the lower ranked trees,
then 2<% embeds into that tree, which cannot happen. Therefore 2<% embeds into the

chain ¢, which is again impossible, and therefore 2<% £ T. ]

Lemma 3.3.26. For every X € L@]]}I; \ SHH; and every full interval tree M for X, we have
2<wW L M.

Proof. Let X € 2%\ 31][1; and suppose there is a full interval tree M for X such that
2<% £ M. Hence ranky (M) is a well-defined ordinal by Lemma 3.3.25. We will prove the
lemma by induction ranky (M). If ranky (M) =0 then M =T <)>( € #, and hence X € Sf
by Lemma 3.3.18.
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Now suppose that ranky (M) = « and whenever Y € @]]II; has a full interval tree
My with ranky (My) < o then Y € ng;. So there is some chain ¢ of M, such that for
minimal i € (U, suce(Q)) \ ¢ if we let M; = 19 C M then M is a (-tree-sum of the M;,
and rankg M; < «. Thus for each such i we also have that M; is a full interval tree for
M(@i) € 2% and by the induction hypothesis M(z) € 5%. So we can apply Lemma 3.3.22
to see that X € SI]E;. I

Lemma 3.3.27. Suppose that X € 9%; has a full interval tree M. Let 0 2<% — M be

an embedding and for every s € 2<% let Py € {Ag,Ca} be the partial order isomorphic to

range (l%s) I {u € succ(p(s)) 1 u < (s (0)) oru < @(SA<1>)}) :

Then for every s € 2<%, there is some 7(s) € M and distinct us,vs € succ((s)) such that:

o(s) < 7(s); for some t € range(p), us < t; and l%s) I {us,vs} 2 Ps.

Proof. Suppose that the lemma does not hold. So let X € @1% have a full interval tree
M, let ¢ : 2<“ — M be an embedding, such that for some s € 2< and every t € M with
©(s) < t,ifu,v € succ(t) and u # v then either (tuUtv)Nrange(w) = ) or Py = IM | {u,v}.
Without loss of generality, we can assume that s = (). Then in particular Py, = P, for
all sg, 51 € 2<v.

Let H = H; = range(}?) with # = (@; : i € r) and for j € r let #; = (G; : i € r,i > j).
Let P = Py and to = ¢({()). For u € H let t, € succ(tg) be such that Iy (t,) = u and for
i€rlet Hi={u;:j €ryj>i}. By property (5) in the definition of a partial interval

tree, we have that:

C:<ZM(tu):iEr>

ueH;
is a maximal chain of intervals of M (o).
Let vg, v1 be the elements of succ(tp) such that vg < ¢((0)) and v; < ¢((1)). Fori € r,

let

}/i:U ZM(tu)

j>’i UEH]'
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and
Xi=| > M(td) | \ i
ueH,

Let ug = I} (vo) € H and uy = I}’(v1) € H. Since tvy Nrange(p) # 0 and o1 N
range(¢) # (0 we have for every u € H that {ug,u} = P = {uj,u}. Let ip and iy
be least such that H;, 2 ug and H;, 2 w;. Now, ug,u; are either both comparable
or both incomparable to every other element of H. Hence Jy = {uo} UlJ,., H; and
J1 =A{u1} UUj>i1 Hj are intervals of H. Thus Jy = H;, and J; =

J>10
H;, , otherwise for some
w € {0,1} we would have that the interval }_ M(t,) of M(t) contradicts that C' is
maximal. Therefore H;, \ U;~;, H; = {uo} and H; \ U;-,;, H; = {u1}.

Now let 7 = i¢ and suppose without loss of generality that ¢ < 71 so that v; € Y;. Then
since Y; is an interval of X, for every z € X \ 'Y; and every y € Y;, we have SSR(z;v;,y).
Let t.,t, € succ(to) be such that there are ¢}, > ¢, and tj, > t, such that M(t)) = {z}
and M(t;) = {y}. These exist since for any maximal chain ¢ of M we have [ M(t) =10
and therefore {M (t) : t is a leaf of M} is a partition of X; and if ¢ is a leaf of M then
|M(t)| = 1. Therefore we have SSR(IM (te); us, 12 (ty)).

Since ¢((1)) € tvy Nrange(yp) # 0, by our assumption we have {I}/(t;),u1} = P, so
that {1} (t,), 1} (t,)} = P.

Since H; \ U;~; H; = {uo}, we have M(vy) = X;. Let w € succ(vg) be such that
Tw Nrange(y) # 0, thus for all z € succ(vg) \ {w} # O we have {1} (w), 13! (2)} = P. Now:

o If P = A, then let Ky = M(w) and K; = X; \ K.

o If P = Cy, then range(I}') = Wy U W1 U {w}, where for all z € Wy and y € W, we
have z < w < y. For each u € range(I}]), let J(u) = M(t,) where t, € succ(vp) is
such that 07 (t,) = u. If Wi = () then let

Ky = Z J(u) and Ky = Z J(u
ueWoU{w} ueWn

otherwise let

Ko= Y Jwand K1= > J(u).

ueWo ueWrU{w}
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In either case we have some non-empty Ko, K1 C X such that

X;=) K;

JjeEP

Either Y; U Ky or Y; U K; is an interval, since:

e if P=Asand z € X;\ (Y;UK)p), y €Y; then z L y and also z is incomparable to

any element of Kjy;

e if P = Cs then for any kg € Ky, k1 € K1 we have kg < k1, we also either have x < y
or x >y for every x € X;, y € Y; so that in the first case K1 UY; is an interval and

in the second case Ky U Y] is an interval.

But both Y; U Ky and Y; U K are then either proper subsets or proper supersets of every
element of the chain C. One of them is an interval, so this contradicts that C' is maximal.

This contradiction gives the lemma. O

Definition 3.3.28. Let S € .7 be the set of of all finite sequences s = (s; : i < |s|) of

elements of {0,1, 2,3} such that for all i < |s|:
e if i is even, then s; € {2, 3},
e if i is odd, then s; € {0,1},
o if s;, =3 theni=|s| — 1.

Thus S is a tree under C.
We define BT € T(A,,C,) to be the same tree as S, whose labels are defined as follows.

If |s| is even, then we let
1B (s7(3)) = min(Cy) and IB" (s7(2)) = max(Cy).

If |s| is odd, the we let range(IB") = Ay. We define the tree B~ € T As,Co) ID the same

way as BT, with the only difference that
187 (57(3)) = max(Cy) and I8 (s7(2)) = min(Cy).
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We also define the tree C € J4, c,) to have underlying set S. If |s| is even, then we let
range(I$) = Ay. If |s| is odd then we let

1€(s7(0)) = min(Cy) and I$(s7(1)) = max(Cy).

We now define Q € ¢, as a copy of 2<% and for each t € Q we have range(th) = Co.
Finally we define A € (5, as a copy of 25, and for each ¢ € A we have range(If) = As.

T

Figure 3.8: The structured trees BT, B~, C, Q and A.

Intuitively, the trees BT, B~ and C will be decomposition trees for the partial orders
2<%, —2< and 27“ respectively. Then if X € 7} has a full interval tree M with 2<% < M,
then Q or A embed into M. Then, using Lemma 3.3.27 we will be able to find an embedding
of BY, B~ or C, so that X fails 3.2.14 (iii).

Lemma 3.3.29. IfT € 9]}]% 18 such that 2<% < T, then either Q < T or AL T

Proof. Let U C T be the range of the embedding given by 2<% < T'. So for each t € U,
we have |range(IY)| = 2, i.e. range(lY) € {As,Co}. Let U : U — 2 be such that U(t) = 1
iff range(lU) = Ay. Then cither there is a ¢ € U such that U1t = {0} (and thus
Q<< T), or for every t € U there is some u € U with u > ¢ such that U(u) = 1.

In this case, pick ¢, € U such that U (u) = 1. Having defined ¢4 for some sequences
5 € 2<% let t/sA<0> and t’SA<1> be the successors of t5 in U. So there are ¢~ > t’SA<0>
and tg-(1y > t;A<1> such that U(ts~)) = U(ts~1y) = 1. Therefore ¢ : A — U given by
©(s) = ts is an embedding and A < U < T. O
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Lemma 3.3.30. Suppose that X € @I]g; \ 5’[% has a full interval tree M. Then either BT,
B~ or C embed into M.

Proof. Let M be a full interval tree for X € L@%\Sﬂﬂg. By Lemma 3.3.26 we have 2<% < M,
so by Lemma 3.3.29, there is U € {A,Q} such that U < M. Let ¢ be the embedding
witnessing this. We also let P € {Ag, Ca} be such that for ¢t € U, range(lY) = P, and
P e {As,Co}\ {P}.

We will define the following embedding ¢ : S — M by repeatedly using Lemma
3.3.27. First we let ¥({)) = 7(¢({))). Now suppose that for some s € {(}} U {s'" (i) €
S : ¢ € {0,1}}, we have defined ¥(s) = 7(p(t)). We then define ¥(s™(3)) = v, and
P(s7(2)) = p(a) for a € 2<% such that ¢(a) > u; (which exists using Lemma 3.3.27).
Finally suppose we have defined v (s) = ¢(t) when s = s’ (2) for some s’ € S. Then for
i €{0,1}, let ¢(s™ (1)) = T(p(t™ (7).

Thus ¥ is an embedding. We also have for each s € S with last element sg,

P LS80 = 2
{l%s) (u) : u € succ(¥(s)) Nrange()} = ¢ P 5= () or sp € {0,1}
@ S0 = 3

So if P = Cy then 1 witnesses that C < M.

Suppose that P = Ag. Let s € S have last element sy, and suppose either that s = ()
or so € {0,1}. For ¢ € {2,3} let t{ be the element of succ(¢(s)) such that 7 < ¢(s™ ().
Then {l%s) (t3), lﬁs) (t5)} is isomorphic to P’ = Ca.

Let S: S — 3 be defined as follows, when sg is the last element of s € S:

0 :s0€{2,3}
S(s)=¢ 1 : Uhte (83) < 100, (t5)

210 (t8) > 130 (3)

Either there is some u € S such that $"tu = {0,1} (in which case ¥ | tu witnesses
Bt < M); or for every u € S whose last element is not 3, there is some 7(u) > u, such

that S(r(u)) = 2.
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In this case, let ©: S — S be such that u(()) = 7(()), and if we have defined p(s) for

some s, define for s~ (i) € S

a0 sie{2sh
r(u(s) (i) i€ {01}

So that range(S o p) = {0,2}, and 9 oy is an embedding. Therefore 1) o p witnesses

p(s™ (i) =

B™ <M. O

Theorem 3.3.31. S]HP# ) 5”]%
Proof. Let X ¢ ng.# be a partial order. We will show that X fails to satisfy either 3.2.14
(i), (i) or (iii). So suppose that X satisfies 3.2.14 (i) and (ii), i.e. X € P25\ S and we
will show that (iii) fails.

Let M be a full interval tree for X, so by Lemma 3.3.30, for some T' € {B*,B~,C}
we have T' < M. Let ¢ witness this embedding and let S be the set of elements of S

with last element 3. For each s € S, pick some element x, € M(gp(s)) and consider
P ={zs:s€S}. Let u: S — P be such that u(s) = z,.
We claim that P embeds either 2<%, —2<“ or 25“. Let ¢ : 2<% — S be such that
1/}(<7’L(), niy .. nm)) = <25 no, 2a N1, eeey 27 N, 3>
Let s € S be longest such that s C ¢ (x),9(y). For i € {0,1,2,3}, if s (i) € T then let ¢;

be the element of succ(p(s)) such that ¢; < ¢(s™ (i)). We now have three cases:

o If 7= B™* then let z,y € 2<%. If x < y then z C y so ¢(z) = s~ (3) and s~ (2) C
¥(y). So since ¢ is an embedding we have
[0 (t3) < 124 (t2).
Hence any element of the interval M (t3) is below any element of the interval M (ts).
In particular, gopo(x) < poporh(y).
If x L y, then the last element of s is 2. Therefore
M

»(s) (t(]) 1 l%s) (tl)v

and so in particular o po(x) L powo(y). Hence o po1p witnesses 2<% < P.
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e If T = B~ then let z,y € —2<¢¥. If x > y then = C y then ¥(z) = s (3) and

s7(2) C ¢(y). So since ¢ is an embedding we have

l%s) (ts3) > lf;”(s) (t2).

Therefore po @ op(x) > popoh(y).
If z L y, then we proceed exactly the same as in the previous case to see that popot

witnesses —2<% < P.
o If T'= C then let z,y € 27¥. If z < y then there are some sequences sg, z’ and 3/’
such that = = 5o (0) "2’ and y = so” (0)"¢'. Thus s = sp” (2) and therefore
M M
los) (o) <l (t1)-
So in particular, po @ o (z) < o po(y).
If z L y, then either x T y or y C z. In either case
M M
lgo(s) (ts) L l@(s) (t2),
and in particular po@ot(z) L popo(y). Hence po ¢ otp witnesses 25% < P.
Therefore P C X fails 3.2.14 (iii) and hence X ¢ .#3* which completes the proof. O

This completes the proof of Theorem 3.3.1 and Theorem 3.3.2.

3.4 o-scattered partial orders

Definition 3.4.1. Let (X,,)new be a sequence of elements of YP]L. We call (X,,)new a
limiting sequence iff for each n € w and each x € X,,, there are partial orders X} € YP}?

such that

Xnp1= Y XI.
rzeXy

For every limiting sequence (X, )ne, and every n € w, we consider X,, C X,,+1 by identi-

fying every x € X,, with some point 2/ € XZ C X, ;1.

630 {z' :x € X,,} C X,,41 is a partial order isomorphic to X,.
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Definition 3.4.2 (o-scattered partial orders). We define the class .44 so that X € .} iff
X is a partial order and there is some limiting sequence (X, )new such that X = (J, o, Xn.

In this case we call X the limit of (X, )new-
Proposition 3.4.3. Fvery limiting sequence has a limit.

Proof. If (X,)new is a limiting sequence, then we have made some identification between

elements of X,, and X,,11, so that X,, C X,,;; and we have that X, is a limit of this

new

sequence. ]

Lemma 3.4.4. If X € S§ then there is a T € WH%(SI]E;) satisfying properties (1) to (4)
and (5) of Definition 3.3.14 such that whenever s,t € T with s < t then rank(T(s)) >
rank(T(t)).

Proof. Let Ty be a single point and Ty : Ty — {X}. Suppose that we have defined
T, € WH%(S%). For each leaf ¢ € T, we have that T}, € SI][];, so there is a Hy € ]HI%; and
some intervals I}* (u € H;) such that
Tn(t)= > I
ueHy
Now let
Tni1 = TnU{u € Hy : tis a leaf of Ty, | T (t)] > 1}.

For s,t € Ty, 41 we let s < t iff either s,t € T;, and s <t or s € T,, and t € H,. For

t € T,41 and s € succ(t), let

I (s rse T,
=4

s 1 s € Hy

We also let Tyi1 | T), = T}, and if v € H; then let Tn+1(u) =I' Let T =
for all n € w and t € Ty, let T'(t) = T),(¢).

T, and

new

By construction then, 7' satisfies properties (1) to (4). We have that T € #, since if
s < t then rank(7'(s)) > rank(7'(t)). We also have property (5), since a successor of t € T
was defined whenever |T'(t)| > 1. O
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Definition 3.4.5. For X € .4, we call T € ‘%Hﬁ; (M) a regular interval tree for X iff
T satisfies (1) to (4) and (5) of Definition 3.3.14 and additionally it satisfies the following

properties:
7. For every z € X there is some unique leaf ¢, € T" such that T(tw) = {z}.

8. For every chain ¢ C T with ot({) = w, we have
(Z(t) = 0.
te¢

Definition 3.4.6. Let X be the limit of (X,)ne,. So for each n € w we have X, 11 =
> wex, Xp for some partial orders X7, Given n € w and z € Xp, let X0 = X7. Having
defined X;;7"™ C X, 1my1 for some m € w, let
X{f’mﬂ = Z Xﬁ+m+1.
yeXy ™
Therefore (X" )mew is a limiting sequence and we let X" be its limit. We note that

therefore, X =% _ X" See Figure 3.9.

x,1
XO

X5 E
z,0 ’
X
Xo X1 Xo X

Figure 3.9: The subsets X" and X, of a limiting sequence (X, )new-

Lemma 3.4.7. If X € ///E]%‘ and xog € X, then there is some H € H]ﬂ; and some partial

orders Y, € ///Igf for w € H such that X = ZueH Y. and for some ug € H, we have

Yuo = {(L‘()}

Proof. Let X be the limit of (X,,)nen. Now let n € w be least such that ¢y € X,,. Since

X, € YIQ;L we can pick a maximal chain of intervals of X,, with order type in L that
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contains {zo}. Then using Lemma 3.3.16 there is some H,, € H5 and some partial orders
Y, for u € Hy, such that X, =3 -y Y. Therefore,
X=>Y > xp
u€Hy z€Y,D
Since we used Lemma 3.3.16, we also have that if H, = H; with 7, = (4; 17 € 1) € IEE;,
then amaxr, = {ug} and Yo = {zo}.
Now let m > n, and pick a maximal chain of intervals of X° ; that contains {zo}. So

we have again using Lemma 3.3.16 that there is some H,, € H% and some partial orders

Y, for u € Hp, such that X0 | = > - Y™ and therefore

-
X=Xy

u€Hm, TEY'
Furthermore if Hy, = H; , and 7p, = (Gi : @ € ), then amaxr,, = {ug'} and Yim = {z0}.

Now define as follows:

o 7l =ry \ {maxr,} for each m > n;

o r =1, 1. .. (io);
e 7(i) = 7,(1) whenever i € ry;
e 7(ig) = a;, where a;, = {up}, and a;,(up) = 1.
Thus H; € HE since ot(r) is a lexicographic w + 1-sum of order types in L and we have

H; = {UO} U |_| Hp, \ Omax rm,

m>=n
So for u € Hy let Y, =Y, if u € Hy, and Yy, = {xo}. We also let X** = X;;" if z € V"

for some u € Hp, and we let X** = {xg}. Then letting Y, = > .y X** we have

X=>Y Y,

ueH:

and we note that Y, = {xo}. O
Lemma 3.4.8. For every X € ///%‘ there is a regular interval tree for X.
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Proof. Let Ty be the singleton tree and To : To — {X}. Suppose that for n € w we have
defined T}, € L4t (), satisfying properties (1) to (4) of Definition 3.3.14.

For every t € T}, let m(t) € w be least such that Tn(t)ﬂXm(t) £ (0. If |Tn(t)ﬂXm(t)\ > 1
then using Lemma 3.4.4 let U; € WH% (Sk) satisfy properties (1) to (4) and (5) of Definition
3.3.14 for Xy, N Tn(t) € SE. Define U} = U; and for v € U] let

Ui(v) = Z Xty
y€Ui(v)
Therefore U} (root(U})) = Tp,(t) and U/ is a well-founded tree satisfying properties (1) to
(4). We also have that for any leaf u of U/, that U{ (u) contains precisely one point of
Xpno)

If |T;,(t) N Xyl = 1 then let xg be the unique element of this set and use Lemma
3.4.7 to find some H' € HE and partial orders Y} (u € H') such that T),(t) = Yuent Yo
and for some ug € H', Y} = {xo}.

Now define
Wy = J{U: \ (root(T)) : t is a leaf of Ty, [T, (t) N Xy | > 1},
D = J{H" : tis aleaf of Ty, |T(t) N Xyl = 1, [T0(t)| > 1}
and T+1 =T, UW, U D,. For u,v € T11 let u < v iff either
e u,v €T, and u<g, v,
e u,v € U, for some leaf t of T, and u <y, v,
o u €T, u<r, t, for some leaf t of T}, such that either v € U; or v € H.

For ¢t € T,,4+1 and u € succ(t) we define,

1 (u) : t is not a leaf of T,

l?”“(u) _ lgéot(Ut)(u) .t is a leaf of T}, and |T),(t) N Xyl > 1
u€ H' : t is a leaf of T, and ]Tn(t)ﬂXm(t)]:I
ltU” (u) :t € Uy for some leaf t' € T),
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Finally for t € T, let Tpy1(t) = T, (t), for v € Uy, let Tp,41(v) = Ul(v) and for u € HY,
let Tpy1(u) = Y. This defines T},41 € ”//H% (.#) which satisfies properties (1) to (4).
Now let T' = U,c, Tn € Z and T(t) = T,(t) whenever t € T,,. Then T satisfies
properties (1) to (4) with each instance witnessed by some T}, (n € w). We also have that
T satisfies property (5), since if |7'(t)| > 1 then we have defined some successor u € T of
t.

Now in order to show that T satisfies (6), pick some z € X and m € w be least such
that € X,,,. Consider the tree U = {t € T : m(t) < m}. Then U is a well-founded tree.
So by repeatedly using property (4) let u € U be largest such that z € U (u). Then either
T(u) = {z} or the predecessor v € U of u was such that X,, NT(v) = {z} but then there
was a successor t € U of v such that T'(t) = {z}. Clearly then t = u is a leaf of T because
then we defined no successors of ¢ in 7T'.

If s and ¢ are both leaves of T’ such that T'(s) = T'(t) = {z} then s L ¢. But this
contradicts property (4) at s A t, since the point x € X is contained in two parts of a
partition of X. Hence t is unique and 7" satisfies property (6).

Finally suppose there were a chain ¢ if 7" such that J = (¢, T(t) # 0. Then let
z € J C X, and s be the leaf of T such that T(s) = {z}. Since s is a leaf, there
is some t € ¢ with s L ¢. But this contradicts property (4) at s A t, since the point
x € X is contained in two parts of partition of X. This gives property (8) and therefore

T e %Hﬁ; () is a regular interval tree for X. O

Definition 3.4.9. For X € .#%(Q), we call T € QH%(Q U{—o0}) a regular decomposition
tree for X iff there is some regular interval tree 7" € ﬂH%(%Ig‘) such that "= T"; and for

x € X, if t, is the unique element of T such that T'(t,) = {z}, then

() X(x) :t=t, for some z € X
—o00  : otherwise

Proposition 3.4.10. For any X € .///H]lf(Q), there is a regular decomposition tree for X.

Proof. Use Lemma 3.4.8, and then define as in Definition 3.4.9. O
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Theorem 3.4.11. If Tx and Ty are regular decomposition trees for X,Y & ME(Q)

respectively and TX < Ty, then X < Y.

Proof. Let T and Ty be regular decomposition trees for X,V € M (Q) respectively and
let ¢ : T'x — Ty witness TX < Ty. Since TX and 7 y are regular decomposition trees,
there are some regular interval trees T)’( and T}’, used to define Tx and Ty as in Definition
3.4.9.

So for every leaf t € Tx = T%, we have that ¢(t) is a leaf of Ty = TY,, because
o0 # Tx(t) < Ty 0 9(t)

and therefore Ty o o(t) # —oc.

So since T' % is a regular interval tree, for any x € X, there is some ¢, € T% such that
T (t;) = {} and thus since T% is a regular interval tree, we have T4 (¢(t,)) = {y.} for
some y, € Y. So define ¢ : X — Y so that ¢(x) =y, for all x € X.

We claim that 1 (z) is an embedding. For a,b € X, let t,t} € succ(t, A tp) such that

t, < tq and t, < tp. Then using property (4) we have a < b iff

I, (1) < 1%, (8)
iff
T T
(et <10 (1)
iff

T T
Lottayng(tn) (PE) < Lol npie) (P(E)

iff ¢(a) < 1p(b).

We also have

Therefore 1 witnesses X Y. O

Theorem 3.4.12. Let P be a class of indecomposable partial orders that do not embed
any element of {2<%, —2<%, 2?"}, that is closed under taking indecomposable subsets. Let
L be a class of linear orders closed under taking subsets, such that On C L. Then if L and
P are well-behaved then .///H]lf 1s well-behaved.
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Proof. Suppose that f is a bad //l%(@)—array. Then let g have the same domain as f
and let g(X) be a regular decomposition tree for f(X) € .#%(Q). Then g is a bad
QH%(Q U {—o0})-array by Theorem 3.4.11. We note that any witnessing bad @Q-array for
g will be a witnessing bad Q-array for f, since if t € dom(g(X)) and g(X)(f) # —oo then
there is some z € f(X) such that f(X)(z) = g(X)(¢).

Now by Theorem 2.4.7 and Lemma 3.2.5, we have that ﬁHg; is well-behaved and thus
there is a witnessing bad @ U {oo}-array for g, so by Theorem 2.1.6 there is a witnessing

bad Q-array for g, which by the previous paragraph is also witnessing for f. O

3.5 Corollaries and applications

We mention that the statement of Theorem 3.4.12 can be simplified using the following

theorem.

Theorem 3.5.1. If P is a well-behaved class of partial orders, then
P={Yeer:3PcP,Y C P}
is well-behaved.

Proof. Let @ be a quasi-order and f : [w]* — ]fD(Q) be a bad array. Then define g :
[w]* = P(Q U {—o00}) so that f(X) =Y implies g(X) = P for some P € P such that
Y C P, and for z € P we have P(x) = Y () whenever z € Y and P(z) = —oo whenever

w

x ¢ Y. So since P is well-behaved there is some A € [w]* and a witnessing bad array

h : [A]Y — QU {—oc0}. Then by restricting further using Theorem 2.1.6 there is some
B € [A]“ such that h”[B]¥ C Q. Therefore h | [B]* is a witnessing bad array for f. [

Corollary 3.5.2. If P is a class of partial orders and 25* < P € P, then P is not

well-behaved.

Proof. Suppose that 25 < P € P and let ¢ : 27 — P be an embedding. Consider
Z ={¢((0)), £((0,0)), ...} U{e((1)), ¢((1,1)),..} S P.
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We note that then Z is isomorphic to the partial order defined in Remark 2.2.10, thus
similarly we can find an infinite antichain of P(As), so if P were well-behaved this would

contradict Theorem 3.5.1. O
We can then obtain the following simplification of Theorem 3.4.12.

Theorem 3.5.3. Let P be a class of indecomposable partial orders that do not embed 2<%
or —2<% and let IL be a class of linear orders. Then if . and P are well-behaved then ///Ig#

is well-behaved.

Proof. Since P is well-behaved, 2T does not embed into any element of P by Corollary
3.5.2. Now apply Theorem 3.4.12 using PN {P € ®: P is indecomposable} and L UOn
(which are well-behaved by Theorem 3.5.1, Theorem 2.3.2 and Theorem 2.1.6). Then ./

is clearly a sub-class of the obtained well-behaved class, and is thus well-behaved. O

Furthermore, since we know now that under these assumptions YPL will be well-
behaved, we can drop the condition that these orders must not embed 2T* in (iii) of
Definition 3.2.14 by Corollary 3.5.2. We also note that the definition of YE],{J (Definition

3.2.14) can be further simplified by considering the following alternate version of 3.2.14
(ii).”
(ii*) Every linear subset of X is isomorphic to a member of L.

Theorem 3.5.4. If X is a partial order, On C L and L is closed under reversing orders,

then X satisfies (ii*) implies X satisfies 3.2.14 (ii).

Proof. Suppose that X satisfies (ii*) but fails (ii). So there is some z € X such that for
any maximal chain (f; : ¢ € r) of non-empty intervals of X under D that contains {z}, we
have r ¢ L.

Pick such a chain (I; : @ € r), and for each i € r let P, = I; \ U,-, ;. Consider

J>1
Cc={li:i€r,(Jy € P,y <z} then for each I; € Cg, pick y; € P; such that y < x.

Thus since each I; is an interval, we have i < j iff y; < y;, therefore {y; : I; € C<}

"Thus we obtain the simpler characterisation of scattered orders described in the introduction.
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is a linear subset of X and thus is isomorphic to a member of L since X satisfies (ii*).
Therefore, considering C< as a chain of intervals under D, we have ot(C<) € L.

Now whenever I; € Cg, let
Ci:{]j :jET’,(VIk GCg),k‘>i—>I¢ QIJ‘ :)Ik}.

We consider the order rU{—oc} and let C=*° = {I; : j € r, (VI € C<),I; D I;;} and then

for i € {—oo} U{i: I; € C<} we let,
CL={l;eC":(3yeP),y=>ux}

For each I; € C’;, pick y; € P; such that y > x. Thus since each I; is an interval, we have
i < jiff y; > yj;, therefore {y; : I; € C;} is a linear subset of X and thus is isomorphic
to a member of IL since X satisfies (ii*). Therefore ot(C’é) € L since L is closed under
reversing orders.

Now for I; € C’;, let
¢l ={l:ker,(V[€CL),l>j—I; 21 DL}
We also define C7* = {Ij, : k € r,(V[; € CL),I;; D I;}. So we have that if
LI ¢ccucs>u | L
IZ'ECg
then Vy € P;, P;, y L @. So since I;, I; are intervals, if ¢ # j then Vy € P;, Vz € P;, y L 2.
So for each I; € C; or for j = —o0, consider { Py : I € C’i} and enumerate these in some
ordinal order type so that {Py : I}, € C’i} ={P/ 1y < \Cﬂ} We also let Kj = Uy Ik

whenever I; € C4 and K_o = JCS® U C<.
Thus for each I; € C; or for j = —0
D1:< U PrUK;y< \Ci!>
y<a<|C |
is a chain of intervals of X under O, maximal in the sense that there is no other interval

of X that is strictly contained in one of these intervals and not in another (otherwise our

original chain of intervals would fail this property).
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But now, whenever I; € CL or j = —oo, we have ot(Di) € On C L. Furthermore if
T={-oc0}U{i:l;€Cc}and J; ={—o0}U{j: I; € CL} then D = ez Ujes, D’ is a
maximal chain of intervals of X under D, which contains {x}, and its order type is equal
t0 L =3 iconz) 2 jeot() ot(Di). But ot(Z) is equal to a Ca-sum of a single point (i.e.
—o0) and ot(C<) € L, similarly each ot(J;) is equal to a Co-sum of a single point and

ot(CL) € L. Therefore L € L. But then the chain D contradicts that X fails (ii). O

Remark 3.5.5. The assumptions that On C L and that L is closed under reversing orders
can be taken for free. To see this, we have that On is well-behaved by Theorem 2.3.2, so
that if L is well-behaved, then the class obtained by adjoining the ordinals and closing
under reversing orders (L UOn) U (L* UOn™*) can be seen to be well-behaved, by applying
Theorem 2.1.6 twice.

In light of Theorem 3.5.4 we see that under these modest assumptions, (ii) could be
replaced by (ii*) in the definition of .7~ (Definition 3.2.14) with .#; defined analogously.
Then we obtain that this ylg‘ is well-behaved under the same assumptions on . and P as

in Theorem 3.4.12.

We mention the following natural question.

Question 3.5.6. Are there assumptions on I and P under which 5”]?]1“ consists of precisely

the same class whether or not (ii) is replaced in Definition 3.2.14 by (it*)?

Definition 3.5.7. We define %p to be the class of countable partial orders such that every

indecomposable subset is isomorphic to a member of P.
Theorem 3.5.8. If € C L, then €p C //ZI]PI;.

Proof. Let X € ép, we will write X as the limit of some limiting sequence (X,,)ne, that
we will define. Pick an enumeration of X = {z,, : n € w}. Since any chain of intervals
of X must be countable, we have X € L@I][I; . So we can define a partial interval tree T for
X by following the same method as Lemma 3.3.17, except that at each stage if we have

defined T}, for an n € w, then let C be a maximal chain that contains {z,}.®

8In Lemma 3.3.17, C' was an arbitrary maximal chain of intervals that contains a singleton, so this

assumption makes no difference to the construction.
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Therefore, for every n € w there is some leaf ¢, € T with [{¢,| < n + 1, such that
T(tn) = {xn}. Let Xo = {20} and X = X, also let t,, be the root of T.
Suppose that for n € w we have defined X,, C X, and some partial orders Y,7 (z € X,,)

so that:

o X, 65”%‘,

o X = ZxEXn Y’rf?
o z, € Y7INX, ={zy} where m is least such that z,, € Y;, and

e for each = € X,,, there is some ¢ € T with T(t?) = Y.

n

If " = {2} let H, = {u} € HE, t* = 7 and y* = 2. Thus T(t%) = {2} in this case. If
Y,¥ is not a singleton, we have for some H, = range(l%) € HE that if £ € succ(t?) is such
that If (t%) = u then

Yr=1(t) =Y T(t).

’U,E.Hz
For each x € X,, and u € H, let y* = x,, where m is least such that x,, € T(t*). Then
let

Xnt1={yy :x € Xp,u € Hy}.

Then X,,+1 € Y[g‘, since X, € YE}%‘ and X, 41 can be constructed internally using the same
well-founded tree of functions as Xy, applied to »_ g {ys} € SE for each z € X,,.
Now z € X, 41 iff 2 = y% for some 2’ € X,, and u € Hy. So for z € X, 41 with

r=yy, let Y7 | = T(t%) and 2! = t%. Therefore we have

x- Y- ¥ (T iw)- 3
T€Xn z€X, \uc€H, T€X 11
Thus we can inductively define X, for every n € w.
Now for n € w we have X, C X, 11, since every element z,, of X,, is contained in some
Y7, for z € X, and thus m is least such that x,, € Y7 |, i.e. zy, € Xpy1.
Furthermore for each n € w and =z € X, let X! = X,,11 NY,’, then

Xn—i—l = Xn+1 N Z er = Z (Xn+1 ﬂY,f) = Z Xﬁ
zeXn z€Xn zeXn
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Therefore (X, )new is a limiting sequence. For each x € X we have z = x,, for some n € w

and therefore x € X,,. Thus X must be the limit of (X,,)ner which means X € .///H]JI;. O

Corollary 3.5.9. If P is a well-behaved set of countable indecomposable partial orders,

closed under taking indecomposable subsets, then €p is well-behaved.”?
Proof. By Theorems 2.3.7, 3.5.8 and 3.4.12. O

Remark 3.5.10. If P is a set of finite partial orders then let P be the class of countable
partial orders whose every finite restriction is in P. In [44], Pouzet asked: if P preserves
bqo, then is P bqo? As we have seen, well-behaved is a more useful concept than preserving
bqgo, so we modify the question to if P well-behaved. Corollary 3.5.9 brings us closer to
a result of this kind, however fails to account for possible infinite indecomposable subsets
of orders in P. If we could prove that for any infinite indecomposable order X the set of
finite indecomposable subsets of X is not well-behaved, then we would answer this version

of Pouzet’s question positively.

Definition 3.5.11. For n € w let .%, denote the set of indecomposable partial orders

whose cardinality is at most n.
Theorem 3.5.12. For any n € w, the class ///}Z is well-behaved.

Proof. .7, is a finite set of finite partial orders so by Lemma 2.2.12, is well-behaved.
Furthermore, .# is well-behaved by Theorem 2.3.7, so using Theorem 3.4.12 completes
the proof. O

Corollary 3.5.13. For any n € w, the class €4, is well-behaved.
Proof. By Theorems 3.5.8 and 3.5.12. O

Note that J,,c,
Pouzet in [44]. Hence |J

Zn(Ag) contains an antichain as in Figure 3.10, and as described by

new In does not preserve bgo and is certainly not well-behaved.

Thus Theorem 3.5.12 is optimal in some sense.

9This result was obtained independently by Christian Delhommé in as yet unpublished work [9]. The

author thanks him for his private communication.
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0 0 1 0 0 0 0 1
Figure 3.10: An antichain of |, . #n(A2).

necw

In order to improve this result we would like to know the answers to questions such as:

e Is there consistently a well-behaved class of linear orders larger than .Z? E.g. is the

class of Aronszajn lines from [37] well-behaved under PFA?
e [s there an infinite well-behaved class of indecomposable partial orders?
e Is there an infinite indecomposable partial order P such that { P} is well-behaved?

A positive answer to any of these questions would immediately improve Theorem 3.5.12.
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Chapter 4

Better-quasi-ordering structured

pseudo-trees

We will now aim to expand Kiiz’s structured tree theorem to a large class of pseudo-
trees. This will give structured tree versions of both a transfinite analogue of Corominas’
theorem on countable pseudo-trees [6] and a pseudo-tree analogue of Laver’s theorem
on o-scattered trees [32]. The main result of this chapter will prove that a class To
of structured pseudo-trees is well-behaved (Corollary 4.3.5). Indeed this particular T
will contain all well-branched members T' of Laver’s and Corominas’ classes, i.e. those
satisfying (Va,y € T'), x Ay exists. This property is required in order for the definition of
a structured pseudo-trees to make sense. If we wanted to drop this condition then Theorem
3.5.12 already fully generalises Laver’s and Corominas’ results to such trees. The proof
will be reminiscent of the proof of Theorem 3.4.12.

Pseudo-trees have been studied, along with their relationships with interval algebras
in [5]. Applications to bqo theory and related areas can be found in [2, 3].

Throughout this chapter, I will be a class of linear orders closed under taking sub-
sets with On C L. We will also let O be an arbitrary concrete category with injective

morphisms.
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4.1 o-scattered pseudo-trees

Definition 4.1.1. A partial order T is called a pseudo-tree iff (vt € T'), |t is a linear
order and for every =,y € T, we have x Ay exists.! If L is a class of linear orders, we call
a pseudo-tree T a L-tree iff every chain of T has order type in L.

We let & be the class of all pseudo-trees and & be the class of all L-trees. We consider

& and &% as concrete categories whose morphisms are partial order embeddings ¢ such

that p(z Ay) = ¢(x) A (y).

Definition 4.1.2. Let % = {0} and for a € On let %, be the class of (-tree-sums of
pseudo-trees of % for some linear order ¢ € L. For limit A € On we let %" = Uy <a %VH‘,
and finally set % = U). For T € " define the scattered rank of T', denoted
ranky (T) as the least ordinal « such that T € %. (See Figure 3.7.)

v¥€O0n

Lemma 4.1.3. IfT € &%\ %", then there is some t € T such that 1t € &%\ .

Proof. Pick a maximal chain ¢ of T, so that T is a (-tree-sum of some other pseudo-trees
T2 for i € ¢ and « € £; € Card. The chain ¢ has order type in L thus at least one of these
pseudo-trees T,* is not an element of % L since otherwise T € #“.

In accordance with Definition 3.3.21, 4 is incomparable to any = € T;*. If 7 were the
least element of ¢ then this would contradict either that ( is maximal or that z Ai € T.
(Which is the case since T € &%.) Therefore let ¢t < i so that t € ¢ C T is such that
T2 C 1t, therefore 1t € &\ %L dJ

Lemma 4.1.4. If T € &“\%" and ¢ is a mazximal chain of T, then there is somet € T\
such that 1t € &\ w".

Proof. We have that T" is a (-tree-sum of some other pseudo-trees T/ for i € ¢ and
a € k; € Card and ¢ has order type in L. Thus at least one of these trees T is not an
element of ", since otherwise T' € . Using Lemma 4.1.3, there is some t € T such

that 1t € &\ Z". Clearly then t € T'\ (. O

"We consider only well-branched pseudo-trees and so define in this way in order to avoid repetition.
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Lemma 4.1.5. If T € &%\ %" then there is some u € T and some to,t; > u such that

Tto Nty = 0 and Tto, Tt € &L \ wl.

Proof. Let ¢y be a maximal chain of 7' and ¢y be an element of T'\ ¢y such that 1t ¢ % .
Suppose we have defined t,, as an element of T'\ {,, for every a < (3, and that if « <y < 8
then t, < t,. Then let (g3 be a maximal chain of T' containing |, for every a < 3, and
let t5 be an element of T\ (5 such that 1tz € &=\ %, which exists by Lemma 4.1.4.
Since tg ¢ (g we cannot have t, > tg for any o < . Suppose that tg L t, for some
a < (3. But then if we let u = tg Aty, tg = tg and t1 = t,, then these satisfy the statement
of the lemma. Otherwise ¢, < t3, and we can continue the induction. So the induction
continues for every ordinal. But then we have found proper class many distinct elements

of T', namely t,, for & € On, thus T is a proper class, which is a contradiction. O

Theorem 4.1.6. T € %" iff T € &% and 2<¥ £ T.

Proof. Let T € &\ %", we will define ¢ : 2<“ — T by induction on the length of s € 2<%,
Firstly, let ¢(()) be the element u € T given by Lemma 4.1.5. Suppose for s € 2<¥/ that
we have defined ((s) such that there are tg,t; > ¢(s) such that 19, 1t; € &%\ . Then
for ¢ € {0,1}, let ©(s™ (i)) be the element u € T given by applying Lemma 4.1.5 to 1t;.
This inductively defines ¢, which is clearly an embedding.

For the other direction, firstly it is clear that 2<% £ (). Now suppose that 2<% £ U
whenever ranky, (U) < a. Then if ranky (T') = «, we have that T is a (-tree-sum of some
lower ranked trees. If 2<% embeds into T, then if any point in the range of this embedding
is in one of the lower ranked trees, then 2<% embeds into that tree, which cannot happen.
Therefore 2<“ embeds into the chain ¢, which is again impossible, and therefore 2<% £ T.

We have that ot(¢) € L, so any chain 7 of T is such that v = ¢’ U¢ for some ¢’ C ¢ and
some chain £ of one of the lower ranked L-trees. Thus + is order equivalent to ot({")+ot(&)
which is a member of L by the induction hypothesis and since we assumed that L was

closed under taking subsets. We then have that ot(v) € L, so that T € &*. O

Definition 4.1.7. We call a sequence (T}, )new limiting iff for each n € w we have T}, € %",
T, CThy1and (Vt € Ty 1 \Tn)(Vu € T),), t € u. Wecall T =, ., Tp, the limit of (T}, new,

new
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and let 71 be the class of limits of limiting sequences of elements of Z*.

v ) ) ’

Figure 4.1: A limiting sequence of trees whose limit is 2<%.

4.2 Decomposition of structured pseudo-trees

We now extend the definition of structured trees to pseudo-trees.

Definition 4.2.1. Let T be a class of pseudo-trees. We define the new concrete category
of O-structured pseudo-trees of T, denoted Ty as follows. The objects of Ty consist of
pairs (T, 1") such that:

e T'cT.
o Ugyry=T.
o [T ={II": v € T}, where for each v € T there is some 7, € obj(Q) such that
lh i Jv—
and if x,y € T with 2 > y > v then [,(z) = l,(y).

For O-structured trees (T,1T) and (T”,17"), we let ¢ : T — T’ be an embedding

whenever:
1.z <y iff p(z) < p(y),

2. p(z ANy) = p(x) A p(y),
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3. for any v € T, if 0 : range(Il) — range(lggv)) is such that for all x € v

01 (v)) = [0, (());
then 6 is an embedding of O.

To simplify notation, we write 7" in place of (T',1) and always use IZ, (v € T) to denote

the labelling functions.

Definition 4.2.2. We extend Definition 2.4.6 so that if T" is an O-structured pseudo-tree

then for ¢t € T and u € range(l1) we have
“t={veT:v>tIll'(v)=u}.
Definition 4.2.3. If O is a concrete category and L is a class of linear orders then define
FY = {r € L(O(Ay)) : (Vi € r), Az € dom(7(4))), #(i)(x) = 1}.

Definition 4.2.4. Given 7 € IFHé with # = (a; : i € r), for i € r let s; be the unique
element of a; such that a;(s;) = 1. If i # maxr then let S; = {s;} and if i = maxr then
let S; = (). We then define B; € ?/(% as follows. First let
B,::TUUCLi\SZ‘,
€T

we order s < t iff either s,t € rand s <,torse€r,t € a; and i >, s. WeletlZBf 21— a;
so that lff(t) =s;if 3j € r with j > i and t = j or t € aj. If no such j € r exists and
t > i then t € a; and we let 177 (t) = t.

We let IB%H@ ={B;:T € IF'H@} and consider IB%H@ as a concrete category where ¢ : By — By

is an embedding if it is a %/5-morphism and ¢"r C 7.
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Figure 4.2: A structured pseudo-tree B € IB%H@.

We note that we would have (?(j) = s; in Figure 4.2.

Definition 4.2.5. Suppose @) is a quasi-order, B; € IB%H@ and for each v € B; we have
T, € S0(Q), such that T, is a singleton tree whenever u € .2
Then we define the structured tree sum
Z Tu = T € &
uE B

by letting

T:ZTU

u€Bj
and assigning labels so that for v € T}, if u ¢ r then [I = [Iv and if u € r for w € [t with

w € T, we have [T (w) = 157 (u). For each t € T, if t € T}, then let T'(t) = T},(t).

Definition 4.2.6. Given T € F5(Q) we call C € %’B%(ﬂg‘(@)) a construction tree for T
iff:

1. C(root(C)) =T.

2. If range(I¢) = B; and for u € B; if t, € succ(t) is such that ¥ (t,) = u, then

Ct) =Y Cltw).

UEB,;

2This condition ensures that the resultant 7" is a pseudo-tree.
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3. Furthermore, if u € B; is such that u € r then dom(C(t,)) is a singleton tree.

4. If t is a leaf of C' then dom(C(t)) is either a singleton or is empty.

5. For each = € T, there is some unique leaf t, € C such that dom(C(t,)) = {z}.

Lemma 4.2.7. Given T € &5(Q), and some mazimal chain ¢ C T, there is some 7 € Fg,
and some T, € é”(%(Q) for each u € Bp, with T,, C T such that for all i € r then T; is a
T, =C( and

singleton tree, | J,¢,

=1

weB;
Proof. Suppose we have T’ € &5(Q) and some maximal chain ¢ € 7. Let r = ¢ so that
ot(r) € L and for i € r, let a; = range(Il) € O. Now if i # maxr then pick j € r with
j >iand let s; = 7 (j). If i = maxr then pick some s; € a;. Now let a; € O(A3) be such
that a;(z) = 1 iff 2 = s;. Now let # = (G; : i € r) € F%,.

For w € B; \ r we have u € q; for some i € r, soletTu:“IigTandTu T T,

When u € r then let T,, = {u} C (, and again let T,=T|T,.
By construction then, (J,c, Tu = ¢ and if u € r then T}, is a singleton tree. We also

have that 7' = > ueB: T, as required. O
Lemma 4.2.8. For every T’ € T5(Q) there is a construction tree for T.

Proof. Suppose 1" € T5(Q) is such that T is the limit of the limiting sequence (T, )new-
Let Cy be the singleton tree and Cp : Cp — {T}

Suppose that for n € w we have defined some C,, € %’B% (75(Q)) satisfying properties
(1) to (3) of Definition 4.2.6.

Let t be a leaf of C,, such that dom(Cy(t)) C T is neither empty nor a singleton,

~ ~

and let m(t) € w be least such that dom(Cy(t)) N Ty # 0. If dom(Cp(t)) N Ty is

a singleton then let ¢/ = dom(Cy(t)) N Ton(t), otherwise ranky (dom(Cy, (¢)) N Toy) >0

so there is some chain ¢; for which dom(Ci,(t)) N Ty is a (j-tree-sum of pseudo-trees of

lower scattered rank. In either case let {; be a maximal chain of dom(C,,(¢)) that has (J

as an initial segment.
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Now using Lemma 4.2.7 with dom(C,,(t)) and ¢; there is some Bt = B; € Bg, and for

u € By there are T), such that

Cu(t) =Y T

’U‘GB;ﬂ

We also have that if 7 = (a; : ¢ € r) and v € B; Na; with j € r and T; = {z} C ¢, then
T,, = "] and therefore ranky (T, N T}y, (1)) < ranky (dom(Ch(t)) N Tot))-
Now let

Cpy1=CpU U{Bt .t is a leaf of Gy, |[dom(Cp(t))] > 1}.

For t € C,, not a leaf of C,, we let lf”“rl F(1tNCy) = ltC" and for x € [t N Cpi1 \ Cp
we have x € B" for some u < z, so let ltC"“(:U) = Iy (u). If tis a leaf of C, and
|dom(Cl(¢))| > 1 then [t = B! so let "™ (u) = u. Now let Cpyq | Cp = Cp and for
u € B, let Cpi1(u) = T,. Thus C,, 1 satisfies properties (1) to (3) of Definition 4.2.6.

Finally let C = {J, ., Cy and for t € C and u € [t we let I¥(u) = I (u) for n large

new
enough so that lf "(u) is defined. We also let C | C,=C, for every n € w and this is
well-defined.

Therefore C' satisfies properties (1) to (3) of Definition 4.2.6, with each case witnessed
by C,, for some n € w. We also have that C satisfies (4), since if |[dom(C(t))| > 1 then we
defined a successor of ¢ in C.

Now let # € T and let m € w be such that z € T,,. Consider U = {t € C :
C(t) N Ty, # 0}, then this is a well-founded tree since if w, z € U with w < z then either

m(w) < m(z) < m or m(w) =m(z) and
ranky (dom(C/(w)) N T(wy) > ranky (dom(C(2)) N To(z))-

So for some t € U we have z € (/. Therefore either C(t) = {z} or we defined a successor
u € C of t such that C(t) = {x}. If t were not unique then there is some other leaf ¢ such
that C(t') = {x}, but then this contradicts (2) at t At. So we have that C' also satisfies

(5), and therefore C' is a construction tree for 7. O

Definition 4.2.9. Given T' € J5(Q) we call D € 5 (Q U {—o0}) a decomposition tree
for T iff there is some construction tree C' € ,%’BI(LD (75(Q)) for T, such that C = D and
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for t € D we have D(t) = —oco whenever dom(C(t)) is not a singleton and if C(t) = {z}
then

~

D(t) = C(t)(z) € Q.
Proposition 4.2.10. For every T € T5(Q), there is a decomposition tree for T.

Proof. Use Lemma 4.2.8 to find a construction tree for T, then define as in Definition

4.2.9. O

Theorem 4.2.11. If Dy and Dy are decomposition trees for T,U € Zg‘(Q) respectively,
and ﬁT < ﬁU, then T < U.

Proof. Suppose T, U , Drp and ljy are as described. Let O and C’U be corresponding con-
struction trees used to define Dy and Dy respectively. Let ¢ be an embedding witnessing
Dy < Dy.

If € T then there is a unique leaf t, € Cp such that dom(Cr(t,)) = {z}. In particular
this means that Dy (t,) # —oo and therefore Dy o ¢(t,) # —oco since ¢ is an embedding.
Therefore, dom(Cy 0 p(t,)) = {s.} for some s, € U. We now define ¢ : T — U by letting
Y(x) = sy, and we claim that ¢ witnesses T' < U.

Suppose that x,y € T. Then x <7 y iff

lg?ty (ta) < li?ty (ty)

iff

D D

l‘P(liw/\ty) ° SD(tx) < l‘P([iz/\ty) ° gO(ty)
iff

D D

Loftanptty) © PUE) <lo@yngq,) © P (t)
iff () <y ¥(y). So v is a partial order embedding.

Consider t; Aty € Cr and let By = range(lgf\ty) with 7# = (a; : ¢ € r). We have
Or ,
lia, (tz) € {i} Ua

and

C .
lioae, (ty) € {j} U a,
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for some i,j € r. Swapping the names of x and y if necessary, suppose without loss of
generality that ¢ < j. Since Cr is a construction tree, it satisfies property (2) of Definition
4.2.6. We also have that if w,z € By and w € {i} Ua;, z € {j} Ub; with i < j then
w A z = i. Therefore

ltcz\ty (teny) =i = lg.?\ty (tz) A ltCJ\ty (ty)-

Cu

Let By = range(lw(tz)/\@(ty

)) with #/ = (@} : i € ). Suppose that

c |
Lotne(ty) © #lta) € {0} U dy

and

C .
Loltnnetey) © P(ty) € {7} U @

for i’, 5/ € r’. Then since ¢ induces an embedding p : B; — By we have that i’ < 5/, and

thus if v € Cyr is such that dom(Cy (v)) = {8¢(@)Au(y) } then similarly we have

c )
Lot () (@) = 7

Now p is a structured pseudo-tree embedding and therefore for w,z € B; we have

uw(w A z) = p(w) A p(z). Thus
uli) = plE e, (E) N, (8) = pE e, (E)) A (e R, (1))

C C ;
= (1etinpten © #0) A (I pney) o 20)) =7

Since 7' € ' it must be that v is a successor of p(t;) A ¢(t,) and furthermore

{v} ="To(ts) A p(ty).

So since  is induced by ¢ and tya, € *1t, Aty, we have that p(tza,) € “D (L) A p(ty),
i.e. ¢(tzrny) = v. But this means that ¢ (x A y) = ¥ (z) A (y), as required, and thus 7 is
a pseudo-tree embedding.

We will now show that ¢ induces embeddings of the labels, so that i is a structured tree

lU

embedding. Let x € T we want to show that the embedding 6 : range(IZ) — range( w(x))
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induced by 1 is an embedding. So let 6 : range(I1) — range(lg(x)) be such that for all
telx
O (1)) = 1) ($(1))-

If T is a singleton, then the result holds vacuously since [z = (). So suppose that T is
not a singleton, then for z € T, t, € Cr is not the root of Cr and we can let ¢/, € Cp
be the predecessor of t,. Let By = range(lf,f) with 7 = (a; : i € 7). So since t, is a leaf,
we have either that x is a leaf of T" and so the result holds trivially as [z = (), or that
lgT (tz) =i € r C B;. Therefore range(I1) = a; € O, using property (2) of Cr.

Now ¢ induces a structured pseudo-tree embedding p from B; to range(lga; )) = Bj.
Suppose that #/ = (@, : i € 7). So since lgT(tx) € r, we have lg&)(go(tx)) = u(i) € r,
since 1 maps elements of r C By to v/ C Bp. This means that ¢(t;) is a successor of
o(t),). Thus range(lg(x)) = aL(i) € 0.

Now we have that p maps v € a; to the w € aL(i) such that if z € Y]t} then
o(w) € “p(t)). Therefore A(v) = w so # is an embedding induced by the structured
tree embedding .

Finally if € T then Dp(t,) < Dy o ¢(t,) and therefore T'(t) < U o (). So 1

witnesses 7' < U, which gives the theorem. O

4.3 The class foﬂ* of structured pseudo-trees is well-behaved

Definition 4.3.1. If B; € B%(Q), then let ['(B;) € L(O(Ay x Q)) be defined as follows.
Ifr=(a:ier)e IFH@, let s; be the unique element of a; such that a;(s;) = 1. Then

define I'(B;) = (b; : i € r) where a; = b; for each i € r, and

. (0,Bj(u)) :u€a;\{s;} for someier
bz(u) = .
L

(1,B;(i)) :u=s; for somei € r
Lemma 4.3.2. If T'(B;) < T'(By) then By < By.

Proof. Let ¢ : 7 — 1/ witness I'(B;) < ['(Bp) and # = (4; : i € r), #' = (@}, : i € 1').

]

For i € r let s; be the unique element of a; such that d;(s;) = 1 and for j € 7’/ let s;
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be the unique element of @’ such that aj(s}) = 1. We also let ['(B;) = (bi : i € r) and
D(By) = (b, i e 7).

Since ¢ witnesses I'(B;) < T'(Bj), for each i € r there is an embedding ; : b; — bfp (@)
witnessing 13, < ZA);(Z.). If x € By, then either x € r or x € a; for some ¢ € r. If z € r then
let (x) = p(z) € ¥’ C Bp. If x € a; then let p(x) = p;(z). We claim that ¢ witnesses
B: < By

If x <y € By then z € r and y € {j} Ua; for some j € r with j > 2. Thus
P(y) € {e(h)} U a,:o(j) so that ¢(x) < ¥(y) as required. If x 1 y € B; then without loss
of generality « € a; for some ¢ € r and y € {j} Ua; for some j € r. Thus ¢(z) € afp(i)
and ¥(y) € {¢(j)} U a:p(j) so either z | y or 7 = j. But if i = j then 2,y € a; which
means ¥ (z),¥(y) € a; (1) and @ # 1. So since every O-morphism is injective, we have
(x) = wi(x) # @i(y) = ¢(y) and thus P(z) L ¢(y).

Now for each i € r we have range(lf’“) = a; and range(lfja)) = a;(i)
b; < b;(i) and thus since the first components of b;(u) and bfp (i)(goi(u)) must be equal, we

. Now ¢; witnesses

have @;(s;) = s:D ()" Therefore ¢; is precisely the embedding induced by %, which is an
O-morphism as required.

We also have for v € B N a; that ¢; witnesses ¢; : b; — bfp (i) SO by comparing the
second components we find B (u) < By (¢s(u)) = Bw (¢ (u)).

Finally let 2,y € B; be such that € {i} Ua; and y € {j} Ua;. Suppose without
loss of generality that i < j. Then z Ay = i and we have ¥ (x) € {¢(i)} U a, and
¥(y) € {p(i)} Uagy) with ¢(i) < ¢(j), so that ¢¥(z) A(y) = ¥(i) = ¢(i) = ez Ay).
Therefore 1) witnesses 37: < Bf/. O

Theorem 4.3.3. IfIL and O are well-behaved, then IB%H@ is well-behaved.

Proof. Suppose there is a bad B%(Q)-array f. For X € dom(f) let g(X) = I'(f(X)). So
by Lemma 4.3.2 g is a bad L(O(As x Q))-array. So by Corollary 3.1.9 there is a witnessing
bad O(Ay x Q)-array. Since O is well-behaved there is a witnessing bad A x @Q-array,
thus since Ay is bqo and by Theorem 2.1.10 there is a witnessing bad @Q-array. Now by

definition of ', every second component of g(X)(7)(j) is equal to some f(X)(y), therefore
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the bad Q-array that we found is witnessing for f. O

Theorem 4.3.4. Let L be a class of linear orders closed under taking subsets with On C 1L
and let O be a concrete category with injective morphisms. Then if . and O are well-

behaved, then fg‘ is well-behaved.?

Proof. Suppose there is a bad J5(Q)-array f. For X € dom(f) let g(X) be a decom-
position tree for f(X), which exists by Proposition 4.2.10. Thus by Theorem 4.2.11 g is
a bad (Q U {—oc})-array. By Theorem 4.3.3, we have that BY is well-behaved, and
therefore by Theorem 2.4.7, we have %BI(LD is well-behaved. So from g we have a witnessing
bad @ U {—oc}-array, and using Theorem 2.1.6 we can restrict to find a bad Q-array h.
Now for every z € dom(g(X)) with g(X)(z) € @, there is some y € f(X) such that
f(X)(y) = g(X)(x). Therefore h is witnessing for f, and thus any bad .75(Q)-array has

a witnessing bad @Q-array, i.e. 9(% is well-behaved. 0

Corollary 4.3.5. If O is well-behaved and has injective morphisms, then 9@//[ is well-
behaved.

Proof. By theorems 4.3.4 and 2.3.7. O

3This result was obtained independently by Christian Delhommé in as yet unpublished work [9]. The

author thanks him for his private communication.
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Chapter 5

Better-quasi-ordering graphs

Another area in which wqo and bqo theory has been extensively studied is graphs. The
most famous theorem in this area is Robertson and Seymour’s well-known Graph Minor
Theorem, which states that the set of finite graphs is well-quasi-ordered under the minor
relation [48]. Thomas considered versions of this theorem for infinite graphs [54].

Another quasi-order on graphs that has been considered is the induced subgraph re-
lation. Damaschke [8] proved that the set of finite Pj-free! graphs ordered by induced
subgraph is wqo,? which was later extended by Thomassé who proved in [55] that the set
of countable Py-free graphs preserves bqo under this ordering. Furthermore a result of
Nesettil and Ossona de Mendez is that any class of finite graphs with bounded tree depth,
coloured by a wqo @ is wqo under the induced subgraph quasi-order (see Lemma 6.13 in
[41]). Indeed many other classes of (finite) graphs with this ordering have been studied
and shown either to be wqo or not (see [24, 11, 43]). For example Nicholas Korpelainen
and Vadim V. Lozin proved that the Pr-free bipartite graphs are not wqo and the Ps-free
bipartite graphs are wqo under the induced subgraph ordering [24].

In this chapter we will prove an analogue of Theorem 3.4.12 for graphs (Theorem

5.2.6). In particular, a class ¢ of countable graphs (quasi-ordered by the induced sub-

! Also known as N-free or series-parallel.
2For k € w the graph Py is a path of length k. Le. V(P:) = {0,...,k — 1} and for z,y € V(P:),  ~y

iffr+1l=yory+1==x.
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graph relation) is well-behaved whenever the set of indecomposable induced subgraphs of
members of ¢ is well-behaved. This generalises Thomassé’s theorem on countable Py-free
graphs from [55] and shows that many new classes of (transfinite) graphs are wqo under

the induced subgraph relation.

5.1 Scattered Graphs

Definition 5.1.1. A graph G is a pair G = (V(G), E(G)) where V(G) is a set of vertices
and E(G) C V(G) x V(G) is such that (z,y) € E(G) = (y,x) € E(G) i.e. E(G) is a
symmetric binary relation on V(G).

For z,y € V(G) we write z ~¢ y iff (z,y) € E(G) and = ~ y if it is clear that x and y
belong to V(G). We call G a singleton graph if |V (G)| = 1.

We consider the class of graphs as a concrete category. A graph G has underlying set
Ug = V(G) and if G and H are graphs then ¢ : V(G) — V(H) is an embedding iff ¢ is
injective and for all z,y € V(G) we have z ~¢ y iff p(z) ~g ¢(y).

Definition 5.1.2. We call H a subgraph of G iff V(H) C V(G) and E(H) C E(G). We
call H an induced subgraph of G and write H < G if V(H) C V(G) and (z,y) € E(H) iff
x,y € V(H) and (z,y) € E(G). We write H < G if V(H) C V(G) and H < G.

If S C V(G) then we define G[S] = (S, E(G) N (S x S)). Thus G[S] is the induced

subgraph of G whose set of vertices is precisely S.

Remark 5.1.3. The order < on the concrete category of graphs is essentially just the
induced subgraph relation <. Indeed, if ¢ : G — H is an embedding, then H [range(p)] is

isomorphic to G and is an induced subgraph of H.

Definition 5.1.4. If G is a graph then we call I < G an interval of G iff for all x €
V(G)\V(I) and all y,y € V(I) we have x ~¢g y iff z ~g /.

Definition 5.1.5. We call a graph G indecomposable iff the only intervals of G are G
itself, singleton graphs and (.
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Definition 5.1.6. We define Gy = (2<%, E(Gp)) where for s,t € 2<“ we have (s,t) €
E(Gy) iff sCtortCs.

We define G = (2<%, E(Gy)) where for s,t € 2<% we have (s,t) € E(Gy) iff s £ ¢ and
tIZs.

Definition 5.1.7. Suppose that L is a class of linear orders and G is a class of graphs.

Let %@‘ be the class of graphs G such that:
1. Every indecomposable induced subgraph of G is isomorphic to a member of G.

2. For every z € V(G) there is a maximal chain of intervals of G under > that contains

G[{z}] and has order type in L.
3. Gp,G1 £ G.
We also let Z& be the class of graphs satisfying (1) and (2).

For the rest of this chapter we will always let I be a class of linear orders that is closed
under subsets with On C L and G be a class of graphs which do not have Gy or G; as

induced subgraphs, which is closed under indecomposable induced subgraphs.

Definition 5.1.8. Given a collection of graphs G; for i € X whose vertices are pairwise
disjoint, we define

U Gi = <U V(G), U E(Gy)).

i€X i€X i€X
Definition 5.1.9. Given a graph H and graphs J, for each = € V(H) whose vertices are
pairwise disjoint, we define the graph sum

ZJ = U V(Jz), E)

xeH z€V(H)
where for w € J, and z € J, we have (w,z) € E'iff z =y and w ~;, z or z # y and

r~HY.

3That is, V(G:) NV (G,) =0 for i,j € X, i # j.
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Lemma 5.1.10. Let C = (I; : i € r) be a mazimal chain under = of intervals of a graph
G such that C contains a singleton graph. Then for each i € r there is an indecomposable
graph H; < G and for each x € V(H;) there is some graph J* < I; so that V(I;) =
I;.

> wem, Ji - Furthermore, for each i € r there is some x € H; such that J¥ = Uj>l-

Proof. We proceed similarly to Lemma 3.3.16. C' = (I; : ¢ € r) be a maximal chain of

intervals of a graph G under > with G[{z¢}] € C for some zg € V(G). For i € r let

Pi=1; ({zo} U | V(L) \ U V(I;)

J>i
Let J be the set of maximal chains of intervals of P; that do not contain xg, and let

Zi:{U J:KGJ}:{ZE:BGW},
JeK

where v; = |Z;|. For each f € ~; pick some zé € V(Z/g) and let
H; = L;[{zo} U {zfg : B €yl

Now for x € H;, if x = xg let JF =J., I; and if z = z% then let J* = Zé. Therefore we

j>i
have for all i € r and = € H; that J < I; and since J is a union of chains of intervals of
I;, we have that each JJ is an interval. Thus since |J, .y V(J*) = V(I;) we conclude that

for every i € r,

Li=> J

reH;

It remains only to show that H; is indecomposable for every ¢ € r. So fix ¢ € r, and
we claim that any interval of H; of size at least 2 contains zg. If not then there is an
interval I of H; that contains zlﬁ and z} for some distinct 3,4 € ;, with z9 ¢ I. But then
Zé U Zg is an interval of P; that does not contain xg, which contradicts that Zé and Zg
were unions of maximal chains of such intervals.

So if I is a proper interval of H; with |I| > 2 then = € I and for some 3 € 7; we have
zfj ¢ I. But then

Un=<zivJL <1,

J>i ziel J>i
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which contradicts that C' was maximal. This is a contradiction, so for every i € r we have

that H; is indecomposable as required. O

Lemma 5.1.11. If H is an interval of G and G satisfies (2) of Definition 5.1.7, then H

also does.

Proof. Suppose H = G and G satisfies 5.1.7 (2). Given g € V(H) we want to find a
maximal chain of intervals of H that contains G[{z¢}] and has order type in L. We have
zg € V(H) C V(G) so pick a maximal chain C of intervals of G that contains G[{z¢}] and

has order type in L. Now define
C'={GIV()NV(H)]:Ie C}.

We claim that each element of C’ is an interval of H. Let I € C, z € V(H) \ V(I) and
y,y € V(I)NV(H). Then z € V(G)\ V(I) and y,y € V(I), therefore since I is an
interval of G we have x ~¢ y iff x ~¢ /. But H is an induced subgraph of G' so we have
z~gyiff z ~g vy, and indeed G[V(I) NV (H)] is an interval of H.

If C” were not maximal then there is some non-empty interval J of H and Cy, C, C C’
with Cy and C} initial and final segments of C” respectively and C' = Cy U C1, such that
VIy € Cp and VI; € Cy we have I} < J < Iy. Consider the final segment K = {I € C :
V(I)NV(H) € C1} of C and let

J =Ju U I.
IeK

We claim that J' is an interval of G. Let z € V(G) \ V(J') and y,y’ € V(J'). Then

we have the following.

o If y, 9 € Uje I then clearly x ~q y iff x ~g ¢/, since J;cj I is a union of a chain

of intervals of G and hence is an interval of G itself.

o Ifx € V(G)\V(H) and y,y’ € J' then since H is an interval of G we have = ~¢ y

iff v ~qy.

e Ifzc V(H)\V(J)=V(H)\V(J) and y,y" € J then since J is an interval of H

we have z ~g y iff z ~g /.
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Thus since xy € J N UleK I, in every case we have x ~g y iff x ~g z¢ iff x ~¢ 7/, and
therefore J' is an interval of G. But then for all I; € K and all Iy € C'\ K we have

I, < J' < Iy, which contradicts that C' was maximal. O
Definition 5.1.12. Let G € 2%, we call T € EE(DE) a decomposition tree for G iff

1. T has a root to and T'(ty) = G.

2. For all t € T we have T(t) is an interval of G.

3. If t,s € T with ¢ < s, then T(¢) = T(s).

4. For all t € T, if H = range(l}') € G and for each v € H if t, € succ(t) is such that
17'(t,) = u, then

T(t) =Y T(tw).

ueH

5. For every leaf ¢ of T we have |V (T'(t))| = 1.
6. For every x € V(G) there is some unique leaf t, € T such that T'(t,) = G[{z}].

We note that decompositions of graphs and decomposition trees have been studied in

the countable case by Courcelle and Delhommé in [7].
Theorem 5.1.13. For every G € .@% there is a decomposition tree Te € é}% for G.

Proof. Given G € .@& we define T € 5&(.@%) as follows. Enumerate the elements of
V(G) = {zq : @ € |V(G)|}. Let Tp be the singleton tree and Ty : Ty — {G}. Suppose that
for some a € On we have defined T, € &E(ZE) such that for all t € T, we have T(t) < G.

For each leaf ¢ of T, such that |V (T,(t))| > 1, let  be least such that z., € V(T (t)).
Using (2) pick a maximal chain C' = (I; : i € 7'} of non-empty intervals of T'(t) containing
G[{z}] with order type under > in L. Then apply Lemma 5.1.10 to find, for each i € r
an indecomposable graph H; < G, and for each x € V(H;) some J¥ < I; such that

V(@)=Y J

reH;
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For each i € r let s; be the element of V(H;) such that J;* = J,-, [;. Now define

Ut = {€t} U |_|HZ,
S
and for z,y € Uy let < y iff for some j € r, = s; and y = ¢ or y € Hy for some j' > j.

For v =s; € U; and x € [v we define

x rx€H;
L (x) = z
s; :otherwise
Therefore since G satisfies (1) and each H; < G (i € r), we have U; € &5. Now define
U € EE(DE) by letting Uy(x) = I; if © = s; and Us(z) = J¥ if 2 € H; \ {s;}, we also let
Ui(e) = Gl{z,}].
Now let
Tot1 =To U U{Ut .t is a leaf of Ty, [T (t)] > 1}.

For x,y € To41 we let © < y iff either x,y € T, and x <7, y; or there is a leaf ¢ of Tj, with
z,y € Upand x <y, y; or x € Ty, y € Uy and x <7, t. If v € T, we let lg““ | T, = 1=
and for z € Uy we let [,** (z) = 7= (t). If v € Uy then let Io*' = 1Ut. So Toyy € &L

Finally let Ta+1 € é"&(.@%) be such that TQH [ T = T, and for every leaf t of T,, with
1T (t)] > 1, let Toyy [ Uy = Uy

Now suppose we have defined T, for every a < A with A a limit ordinal such that
whenever o < 8 < A we have: T,, C Tj, Tg [ T, = Ta and ZUTB [ Ty = lUTa for all v € T,.
Then let T\ = |JT,; define for v,z € T, with v < x, II>(z) = (= (x); and for all & < \ let
Ty | To = Th.

Since V(G) is not a proper class, there is some least & € On such that To =Tnir. In

this case let T = T}, which is a decomposition tree for G by construction. 0

Lemma 5.1.14. IfT is a decomposition tree for G and 2<% < T then there is an embed-

ding ¢ : 2<% — T such that either for all s € 2<%, we have

L(s) 0 9(s7(0)) ~ IG5y 0 (s (1))
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or for all s € 2<% we have

Loty (57 (0)) £ Ly 0 (5™ (1)).

Proof. Let U C T be the range of the embedding given by 2<¢ < T. Let U : U — 2 be
such that U(gp(s)) = 0 iff lg(s) o @(s7(0)) 4 lg(s) o @(s7(1)). Now proceed similarly to
Lemma 3.3.29. O

Lemma 5.1.15. If T is a decomposition tree for G and ¢ : 2<“ — T is an embedding,
then Vs € 2<%, 37(s),us,vs € T such that p(s) < 7(s) < us,vs; It € range(p) such that

us < t; and

) 0 (s ™{0)) ~ 18y 0 pls™ (1) s IX () £ 12 (v0).

Proof. Let T and ¢ :2<%“ — T be as described. Suppose that the lemma fails, so there is
some s € 2<% such that Va,u,v € T with ¢(s) < & < u,v; either Tu Nrange(y) = () and

tv Nrange(y) = 0; or
L) © (s {0) ~ Ly 0 p(s™ (1)) 4 I (u) ~ I (v).

Consider the graph

H=a U VE®) | uV(Toes(1,0)
ols) <k (s~ (0)

Then if y € V(G) \ V(H) and z € V(H), let t, and t, be the elements of T such that
T(t,) = G[{y}] and T(t,) = G[{z}]. We have that t, At, < u < t, for some u €
{p(57(0)), (s (1,0))} (since otherwise y € V(H)). Therefore by our assumption we
have

lg(s) o p(s7(0)) ~ lg(s) op(s™(1)) «— lZ,/\tz (ty) ~ lg;mz (tz2)-
So by definition of Ty, if W = range(lg‘g,\tz) then T'(t, At,) = > wew Jw for some intervals
Juw (w € W) of G with some distinct d,e € W such that y € V(Jy) and z € V(J.). But

this means that we have

Los) © 9(s7{0)) ~ LGy 0 (s (1)) ¢y ~ 2.
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But this does not depend on z and therefore H is an interval of G.
However the chain {T'(t) : t € T,t < p(s~(0))} is a maximal chain of intervals I of G

that satisfy I < T(¢(s(0))). So there is some a € T with

T(a)=G U V(T(k))

o(s)<k<p(s(0))

and therefore {k € T : a < k < ¢(s)} = 0. However T(a) < H < T o ¢(s), which

contradicts maximality. O
Lemma 5.1.16. If T is a decomposition tree for G and 2<“ < T, then G fails 5.1.7 (3).

Proof. Let T and suppose 2<% < T, so use Lemma 5.1.14 to find an embedding ¢ : 2<% —

T such that either for all s € 2<%, we have

Lo(s) © P(s7{0)) ~ [y 0 (57 (1))

or for all s € 2<% we have

L) ©9(57(0)) o Ly 0 (5™ (1)).

Suppose that we are in the first case and we aim to prove that G; < G, the second case
will follow in precisely the same way with Gg in place of G;.

We define V' C V(G) as follows. Let Vy = 0 and T,, = {¢(())}. For n € w, suppose
that we have defined V,, C V(G) and T,, C range(y). Apply Lemma 5.1.15 to every leaf
©(s) of T, to find 7(s),us,vs € T and ts € range(y) with p(s) < 7(s) < us, vs and us < t
such that

sy (ue) 2 L) (02).

Then ts = ¢(s') for some s’ € 2<“ with ' > s. Let
Trt1 =T, U{p(s (i) : o(s) is a leaf of T},,i € {0,1}}.
Then for each leaf o(s) of T}, choose s € V(T'(vs)) and let
Vit1 = {zs : ©(s) is a leaf of T, }.
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Let V =,,c, Vo and let H = G[V]. We note also that the tree 7" =, ., Tn C T is

necw new

isomorphic to 2<%, and we let u : 2<% — T’ be an isomorphism.

We claim that ¢ : 2<% — H given by ¥(s) = x,) witnesses Gy < H. For u, s € 2<%,

w(s)
we have (s,u) € E(Gy) iff s and u are C-incomparable. Now u and s are C-incomparable

iff p1(s) and p(u) are C-incomparable elements of 7" which implies

T T
Luwynnts) © P ~ Luuyau(s) © #(8),
and therefore () ~H @, (s)-

Now for each s € 2<“ we have u(s) = (k) for some unique k € 2<%, we then
define v(s) = vg. Suppose (s,u) ¢ E(G1), so without loss of generality s C u, and thus
u(s) < p(u). Therefore

l/.l,(s OH( )76 l,u(s ( ( ))7
which means that
Tp(u) 7 Tp(s)

Therefore 1 is an embedding and G; < G. 0

5.2 o-scattered graphs

Definition 5.2.1. Let (G,,)new, be a sequence of elements of jfé‘. We call (G)new a
limiting sequence iff for every n € w and every =z € G, there are graphs G} € %”é‘ such

that

n+1 Z Gx

CCEV( n)
For every limiting sequence (Gp,)new and every n € w we consider G, < Gp4+1 by identi-

fying every z € V(G,,) with some point ' € V(G%) C V(Gpy1).

Definition 5.2.2. Given a limiting sequence (G, )new, we define its limit to be the graph
G = Upeo Gn- We let 4% be the class of limits of limiting sequences in S

Thus V(Gr) € V(Gny1) and Gp = Gri1[V(G)].
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Lemma 5.2.3. If G € %ﬂ;j, then the decomposition tree Tg given by Theorem 5.1.13 is
such that Tg € TX(2g).

Proof. Suppose that G is the limit of the limiting sequence (G, )new. We aim to find a
limiting sequence of trees (T )new such that Tg = |, ¢, Tn- For x € V(G) let ¢, be the
element of Ty such that T(t,) = G[{z}]. Now for each n € w, let T}, = Ueea, ¥tz € T
Then we claim that each 7,, (n € w) is a member of %&‘. Firstly T;, € &% since T), is a
subset of the underlying set of Tz € &%, and L closed under taking subsets.

So it remains to show that 2<% £ T,,. We have T, € %&4 and T,, consists of a copy
of the underlying set of T, with some added chains below each leaf. Thus if 2<% were
to embed into T},, there would be an embedding of 2<“ either entirely into the underlying
set of T, or entirely into some chain; neither of which is possible.

Therefore (T},)new is a limiting sequence of trees and since G = |J G, we have that

new

the underlying set of Ty € c%j is precisely | J, ., T, € 7%, which gives the lemma. O

new

Definition 5.2.4. Given G € Z5(Q) we define T(G) e &E((Ag x Q) U {—o0}) so that
dom(Y(Q)) = Tg

and for x € V(QG) if t; is the leaf of T such that Tg(tz) = G[{z}], then we define
T(G)(ty) = (i, G(x)) where i = 0 iff (z,z) € E(G). If t € T is such that t # t, for any

~

z € V(Q), then let T(G)(t) = —oc.

Theorem 5.2.5. If Y(G) < T(H) then G < H.

Proof. Suppose Y(G) < Y(H) and let ¢ be an embedding witnessing this. To simplify
notation, let 7' = Tz. We have for all z € V(QG) that there is some leaf t, € T' such that
T(t,) = G[{z}]. In this case since ¢ is an embedding we have T(H)(p(t;)) # —oco and
thus Y (H)(p(t,)) is a leaf of T(H) and Y(H)(p(tz)) = G[{y.}] for some y, € V(H).

So let ¢ : V(G) — V(H) be such that ¢(x) = y, for all z € V(G). We claim that v is
an embedding. We have that if x,y € V(G) with  # y then (z,y) € E(G) iff

ltj;c Aty (tz) ~ l?; Nty (ty),
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iff
Lotayne(ty) © (te) ~ L npie,) © #(ty),
iff () ~ ¢(y). Using precisely the same argument we see that, x # y iff ¥(z) # ¥(y)

which shows that 1 is injective.

We have x ~ z iff
iff

it (2) ~ ()

Finally let ¢o € @ be the second component of T(G’)(tx) and q; € @ be the second
component of Y(H) o ¢(t,). Then gy < q1 as witnessed by ¢, therefore G(z) = qo < ¢ =
H o4(z). So we have shown that 1 witnesses G < H. O

Theorem 5.2.6. Let L be a class of linear orders that is closed under subsets with On C L
and let G be a class of graphs which do not have Gg or Gy as induced subgraphs, which is
closed under taking indecomposable induced subgraphs. Then if L and G are well-behaved

then %]l; 1s well-behaved.

Proof. Suppose that f is a bad 9% (Q)-array. Define g(X) = T(f(X)) for all X € dom(f).
Then g is a bad JZ((Az x Q) U {—oc})-array by Lemma 5.2.3 and Theorem 5.2.5. More-
over, for any ¢t € dom(g(X)) such that ¢g(X)(t) # —oo, we have that there is some
y € dom(f(X)) such that f(X)(y) is equal to the second component of g(X)(t).

Now since I and G are well-behaved, we have that ﬂé‘ is well-behaved by Theorem

4.3.4. So using theorems 2.1.6 and 2.1.10, we find a bad @Q-array that is witnessing for
f. O

5.3 Applications

We now apply Theorem 5.2.6 with some specific classes L and G.
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Definition 5.3.1. If G is a class of graphs, let £ be the class of countable graphs G

such that every indecomposable induced subgraph of G is isomorphic to a member of G.
Lemma 5.3.2. If ¢ C L then Jg C 9.

Proof. Suppose that 4 C L, let G € J#; and enumerate the elements of V(G) = {z, :
n € w}. We will define a limiting sequence of graphs (G),)ne, whose limit is G.

First let Go = G[{zo}] and define H;® = G. Now suppose that for some n € w we
have defined some induced subgraph G,, of G and for each z € V(G,,) we have defined H?
an induced subgraph of G such that G =} . Hy.

Let m € w be least such that x,, ¢ V(Gy). Thus there is some y, € V(G,,) such that
T, € HY". Pick a maximal chain (I; : i € r) of intervals of Hy" (under =) that contains
G[{zm}]- This chain must be countable, since otherwise H;," < G is uncountable. Thus r
is a countable linear order.

For each ¢ € r apply Lemma 5.1.10 to find an indecomposable graph J; < G and for
each x € V(J;) some J¥ < I; such that

V(@) =) Jt.

zeJ;

Moreover we have that for each i € r there is some x € H; such that J* = J.., I;. Now

1>1
let
Gra1 =G |(V(G)\{mnH U JV(T)] .

iEr
If 2 € V(Gn) \ {yn} then let Hy ; = Hy and if x € V(J;) \ U;5, V(I;) for some i € r,

then let H;) = J¥. Thus we have defined H;  for every x € V(Gy41). Now we have that
H’rgn = Z 7az:+17
2€GlU;e, Ji]

therefore

G = Z H£+1

z€Gn+1

which completes the induction.
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Now for all n € w and = € Gy, define GI; = Gp41[V(Gpy1) N V(HE)]. Thus

G = GV(Gny) NV(G)] = G | V(Gny1) NV( Z Hy)| = Z Gh-

$€Gn xEGn

Now each G, is a countable induced subgraph of G and therefore is a member of @%.
Thus to see that (G,)new 1S a limiting sequence it remains to see that Gy and G; are not
isomorphic to induced subgraphs of any G,, (n € w).

We show this by induction on n € w. Firstly it is clear that Go, G; € Gp. Suppose
that for n € w, Go,G1 £ G, and B € {Gp,G;} is such that B < Gp41. Thus B <
G[U;e, V(Ji)] since otherwise because G[J
have B < G[V(Gy) \ {yn}] which contradicts the induction hypothesis.

V(J;)]. Suppose that B = Gp and

ier V(Ji)] 2 Hi" and HJ" is an interval we

So let ¢ be an embedding witnessing B < G[|J;¢,
the case for G; will hold analogously (with o in place of ~ and ~ in place of ). For
s € V(B) = 2<%, let is € r be such that ¢(s) € V(J;,).

Suppose that s,t € V(B) and s ¢ t and also suppose that is < i;. Therefore for
all z € Uy, V(Ji) we have ¢(s) # x. So in particular this means for all u € 2<%,
isu < is. But if ig~, < i5 then we have ¢(s”u) ~ ¢(t), which cannot be the case
since s % wu. Therefore i3, = i, which means that B embeds into .J;, which is an
indecomposable induced subgraph of G and therefore is isomorphic to a member of G,
this is a contradiction since we had that Gy and G; do not embed into any member of G.
Therefore whenever s ¢ ¢, it must be that is = i, but then again we have that B < J,_,
which again gives a contradiction.

Therefore (Gp)new is a limiting sequence. Its limit is | J, .. G, and since each G,

new

(n € w) is an induced subgraph of G we have |J . G, C G. Furthermore for each n € w

necw

we have that x, € V(G,). Therefore G C J,¢,, Gn, i.e. G is the limit of the limiting

sequence (Gp)new and therefore G € %}/// . O

Theorem 5.3.3. If G is well-behaved then g is well-behaved.?

5This result was obtained independently by Christian Delhommé in as yet unpublished work [9]. The

author thanks him for his private communication.
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Proof. By Lemma 5.3.2, Theorem 2.3.7 and Theorem 5.2.6. O
Lemma 5.3.4. Any finite set of finite graphs is well-behaved.

Proof. Let % be a finite set of finite graphs and @ be a quasi-order. Suppose that
[ wY — Z(Q) is bad. By applying the Galvin and Prikry Theorem 2.1.6 finitely
many times, there is some A € [w]¥ such that for all X, Y € [A]“, we have f(X) and
f(Y) have the same underlying graph G. Then again applying Theorem 2.1.6 at most |G|
times, we find that for some B € [A]“ and every z € V(G) we have f, : [B]* — @ given
by f.(X) = f(X)(z) is bad (and therefore is a witnessing bad array). This is because
otherwise there is some B € [A]¥ such that f [ [B]¥ is perfect, which contradicts that f
is bad. O

Definition 5.3.5. For n € w let 7, denote the set of indecomposable graphs with at
most n vertices.

We are now ready to give two immediate applications of Theorem 5.2.6. Of course,
other classes could be used in place of G and L to obtain other well-behaved classes of

graphs.
Theorem 5.3.6. For each n € w, 54;{{1/ 1s well-behaved.

Proof. <, is a finite set of finite graphs so by Lemma 5.3.4, is well-behaved. Furthermore,
M is well-behaved by Theorem 2.3.7, so using Theorem 5.2.6 completes the proof. 0

Corollary 5.3.7. For each n € w, J#,, is well-behaved.

Proof. By Lemma 5.3.2 and Theorem 5.3.6. O
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Chapter 6

Abstract well and better

quasi-orders

In this chapter we try to find out what happens when the Ramsey space of infinite se-
quences of natural numbers (the Ellentuck space) is substituted for another Ramsey space
in the definitions of wqo and bqo. Roughly speaking, Ramsey spaces are systems on which
infinite dimensional Ramsey theory can be performed. The way in which we make this
substitution is as follows.

We first consider the Nash-Williams style definition of bqo: @ is bqo iff there is no bad
function from a front F to Q. A front here is a subset of [A]<¥ for some A € [w]¥, such
that any two elements of F are C-incomparable and such that for all X € [A]“, there is
some a € F with a C X. For a,b € F we write a < b iff there is some X € [w]* such that
aC X and bC X\ {minX}. A function f: F — Q is bad iff whenever a < b we have
fla) £ f(0).

Now we note that given a Ramsey space R, an analogous notion of a front F on some
A € R can be defined (see Definition 6.1.10). Fronts on an abstract Ramsey spaces have
already been considered [56]. It is then easy to see how we will define our new version of
bgo with respect to the Ramsey space R. Again, ) is R-bqo iff there is no bad function

from a front F to ). However this time F is a front on some A € R, and a <1 b iff there
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is some X € R such that a — X and b = X; where -7 : R — R is some shift map, which
gives extra structure to the Ramsey space R.

By doing this, firstly we will be able to study Ramsey spaces and their structure
with respect to a given shift. We also generate many alternate, abstract versions of wqo
each with a corresponding notion of bqo which may share some of the transfinite closure
properties of the regular notion of bqo (for example, if @ is R-bqo then P,(Q) is R-bqo
for every ordinal o). The aim of this chapter will be to try to classify the possible types
of R-wqo, before proving that the notion of R-bqo is closed under taking iterated power

sets, a property shared by the standard notion of bqo.

6.1 Ramsey spaces

We recall the notion of a topological Ramsey space (R, <,r) as in [56]. We always let R

be a nonempty set, < be a quasi-order on R and
r:Rxw— AR

be a sequence of “approximations”. We will often refer to a Ramsey space (R, <,r) simply
as R.

We have in mind the example of the Ellentuck space (N>, C 1), where NI* = [w]«.
As before we consider X € N[> as an infinite increasing sequence of elements of w. Here
AR is the set of finite subsets (or finite increasing sequences) of w, and r(X,n) = X [ n,
ie. 7(X,n) is the set consisting of the least n elements of X. Our aim is to define
generalisations R-wqo and R-bqo, this is done essentially by replacing the Ramsey space
Nl in the definitions of wqo and bqo respectively, with a general Ramsey space R. As
such we will have that N[*®l-wqo and NI*®l-bqo coincide precisely with the usual notions

of wqo and bqo respectively.
Definition 6.1.1. We make the following standard definitions as in [56]:

1. We let r,(-) = r(-,n) and AR,, be the range of r,.
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10.

. For a,b € AR, we let a C b iff 3X € R such that for some n,m € w, r,(X) =

a,mm(X) =band n <m. If n < m here we say a C b.
For a € AR and X € R, we say a C X iff a C X iff 3n € w such that a = r,(X).

Fora e AR, A€ R, let [a,A]={X eR:aC X,X < A}

. Fornew,AeR,let [n, A = [r,(A), Al.

We also define a finitisation of <, which we denote <g,, a relation on AR, this will

be defined by axiom A2.
From this, for a € AR, X € R, we define

depthy(a) = min{n : a <g, 7 (X)}

We call (R, <,r) closed if, when we equate all X € R to the corresponding sequence
(To(X), TI(X)a TQ(X)’ >7

then R is closed when considered as a subset of the Tychonov cube AR, where AR

has the discrete topology.

If a € AR, we let |a| = n whenever 3X € R,r,(X) = a. Given axiom Al (3) it is

easy to see that this is well-defined.

For X C AR, we define A* = AR, \ X

Definition 6.1.2. The topology for R given by basic open sets [a, A] is called the natural

(or Ellentuck) topology.

Indeed, the sets [a, A] form a basis of R. To see this, first we have that for any X € R,

we have X € [(), X]. Second, if X € [a, A]N[b, B] either a T b or b C a. Let ¢ be the longer

element of {a,b}. Then since ¢ C X we have X € [¢, X|, furthermore [¢, X] C [a, A]N[b, B].

Definition 6.1.3. For two sets A and B we define the symmetric difference

AAB = (A\ B)U(B\ A).
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We call M C R meagre iff for all [a, X| # () there exists a C b € AR and some YV < X
such that [b,Y] # 0 and [b,Y] N M = (). A subset X of R has the property of Baire if,

giving R the natural topology, X = OAM for some open O C R and meagre M C R.

Definition 6.1.4. A subset X of R is Ramsey if for every [a, A] # ( there is a B € [a, 4]
such that [a, B] C X or [a, B] C XC. A subset X of R is Ramsey null if for every [a, A] # 0
there is a B € [a, A] such that [a, BN X = ().

Definition 6.1.5. A triple (R, <,r) is a topological Ramsey space if every property of

Baire subset of R is Ramsey and if every meagre subset of R is Ramsey null.

Since we will only be considering topological Ramsey spaces, we refer to them simply
as Ramsey spaces.
We give the following axioms as from [56]:
Al. (1) ro(A) =0 for all A€ R.
(2) A # B implies r,(A) # r,(B) for some n.

(3) rn(A) = rp(B) implies n = m and 4 (A) = ri(B) for all k < n.

A2. (1) {a € AR : a <gp b} is finite for all b € AR.
(2) A< Biff (Yn e w)(@m € w),rn(A) <gn rm(B).
(3) (Va,be AR),aCbAb<gy,c— IdLC c,a <gy, d.

A3. (1) If depthp(a) < oo then [a, A] # () for all A € [depthg(a), B].
(2) A < B and [a, A] # 0 imply that there is A" € [depthg(a), B] such that () #

[a, A'] C [a, A].
A4. If depthg(a) < oo, and if O C AR|q/41, then there is A € [depthg(a), B] such that
T\a|+l[a7 A] COor T|a\+1[a7 A] - OE
We then have the following important theorem.

Theorem 6.1.6 (Abstract Ellentuck Theorem [56]). If (R,<,r) is closed, and satisfies
the azioms A.1., A.2., A.3. and A.4., then every property of Baire subset of R is Ramsey

and every meager subset is Ramsey null. In other words, (R,<,r) is a Ramsey space.
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Proof. See [56] chapter 5. O
Theorem 6.1.7 (Abstract Galvin Prikry Theorem [56]). Borel sets are Ramsey.
Proof. See [56] chapter 5. O

We will now give some standard examples of Ramsey spaces that are described by

Todoréevi¢ in [56].
Example 6.1.8 ([56]). Let k be a positive integer, then define
FINg, = {p: N = {0,....,k} : k € range(p), |{n : p(n) # 0}| < w}.

For p € FINy let supp(p) = {n : p(n) # 0}. A block sequence of members of FINj is a
sequence P = (pp)n<|p| With |P| € w+1, such that for all m < n < |P| and a € supp(pm),
b € supp(p,) we have a < b. We let FINLOO] be the collection of infinite block sequences of
members of FIN.

Let for i < k let T% : FIN, — FINj_; be defined by letting

T"(p)(n) = max{p(n) —i,0}.

Given a block sequence P = (pp),<|p| of elements of FINy and some j € w with 1 < j <k,

let
[P]j = {Tio(pno)u...UTil(pnl) EFIN;:0<ng<...<my < |P|,ig,...,11 € {0, ...,k}, (I e w)}

For P,Q € FINy with P = (pp)n<|p| and Q = (qn)n<|q|, We let P < Q if p, € [Q]x for all
n < |P|. If P < Q then we call P a block subsequence of Q. Finally if P = (py),<|p| €
FINE:O}, and m € w, define 7, (P) = (pn)n<m-

Then (FINI[COO}, <, ) is a Ramsey space. For a proof see Theorem 5.22 in [56].

Example 6.1.9 ([56]). Let L = |, Ln be a fixed alphabet, where each L,, is a finite

necw
set. Let v ¢ L be a set that we call a variable. We let W, be the set of variable words
over L, i.e. finite non-empty sequences of elements of L U {v} that contain at least one

instance of v. If X = (25),<|x| for | X| € w is a sequence of elements of W, then we call
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X rapidly increasing iff |x,| > >, |z;| for all n < |L|. We let WEO] be the set of infinite

i<n
rapidly increasing sequences of elements of Wy, .
For x € Wi, and A € LU {v} let z[\] be the sequence obtained by replacing every

occurrence of v in x with A\. Now for X = (2,),<|x| € WEO] define
[X}Lv = {xno [/\o]ﬁ...fxxnk [)\k] S WLU tkew,ng < ...<ng,\ € Lni U {U}(Z < k)}

Then since X is rapidly increasing we have that for every z € [X]r,, the set {ng < ... < ny}
such that

= Tpy[Ao] .. Ty [Ai]
for some choice of \; € Ly, U{v} (i < k) is unique, so we let suppx(z) = {ng, ...,ng}. We

v

then define the order < on WEO] by letting X = (zp)n<w < Y = (Yn)n<w iff 2, € [Y]L
for all n € w, and for n < m and all a € supp(x,), b € supp(y,) we have a < b. Finally if
X = (2n)n<ix| € FINF and m € w, define 7 (X) = (n)nem.

Then a theorem of Carlson is that (WE)O], <,r) is a Ramsey space. For a proof see

Theorem 5.41 in [56].

6.1.1 Fronts

Definition 6.1.10. For a Ramsey space R, we call F C AR Nash- Williams iff it is an
antichain under C. For A € R we call F a front on A iff F is Nash-Williams and for every

B < A there is some n € w such that r,(B) € F.

Definition 6.1.11. Given a front F, let F = {# € AR : (3y € F),x C y}. Then F is a

well-founded tree under C.

Definition 6.1.12. For a front F we define rank(F) as the tree rank F (see Definition
2.4.3). We say call F simple iff rank(F) = 1.

Definition 6.1.13. If F is a front on A € R and B < A, then define

FIB={acF:(3Y < B),aCY}.
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Theorem 6.1.14 (Abstract Nash-Williams Theorem [56]). If (R, <,r) is a Ramsey space,
then for any Nash-Williams F C AR, any partition FoUF, = F and any X € R there is
Y < X and i € {0,1} such that F;|Y = 0.

Proof. See Theorem 5.17 in [56]. O

6.1.2 Shift

We now can begin to generalise the theory of better-quasi-orders to a general Ramsey
space R. In order to define a notion of well and better quasi-orders for a general Ramsey
space R, essential is the notion of a shift. This will be a map that takes an X € R to
some X with X+ < X. This gives us an extra relational structure on fronts, that we
will embed into the complement of a quasi-order relation via bad functions. The usual
example for the Ellentuck space NI*| is X = X\ {min X}; properties and surrounding
Ramsey theory of this shift on this space have been studied by Di Prisco and Todorcevié¢
in [10], and of course this is the standard shift used in bqo theory (see e.g. [53]). We will
also require that our shift has an appropriate finitisation; a version that can be applied to
approximations.

Some precedent has been set with experimenting with unusual shifts on the Ellentuck
space. Pequignot has shown in [42] that given any non-identity injective and increasing

function f : w — w, the map

<n0, ni, > — <nf(0),nf(1), >

is a shift on the Ellentuck space, whose corresponding notion of bqo that turns out to be

equivalent to the usual one. Clearly for any shift defined in this way we have X < X ™.

Definition 6.1.15. Let R be a Ramsey space, we call -+ : RUAR — R U AR a shift
map iff for all X € R:

1. "RCRand -T"AR C AR,

2. X+ <X,
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3. (Vn € w)(Tnx € w), (rn(X))T =r,, (XT)
4. {nx :n € w} is an unbounded subset of w and if n < m then nx < mx.
We also let X(P)° = X and for i € w we let XD = (X ()" +,

Definition 6.1.16. We define the usual shift on the Ellentuck space N[> so that if
X = (9,21, ...) then XT = (x1,29,...). Le. XT =X \ {min X}.

We note that in the case of the Ellentuck space, for any possible shift we can give an
appropriate finitisation: if X+ C X are infinite subsets of w, then given an initial segment
a £ X we can define a™ = a N X, which clearly satisfies conditions 3 and 4. Unless

specifically mentioned otherwise, the shift that we take on NIl will be the usual shift.

Definition 6.1.17. For (pn)ncw € FINEY we let (pn)fcw = (Bntt)ncw. If (Dn)nem is a

new

finite block sequence of members of FINy then let (p,), .

mem = (Pnt1)n<m—1. Therefore

is a shift map for the space FINLOO].
For (zp)new € Wﬁo] we let (xn),J{Ew = (Tn+1)new- I (Tn)n<m is a finite rapidly

increasing sequence of members of W then let (z,), ., = (Tni1)n<m_1. Therefore - T is

n<m
]

a shift map for the space WE’: .

We will use these shifts for the spaces FINLOO] and WEJO] respectively.
From now on we fix a Ramsey space R with a shift map -T.

Definition 6.1.18. Let a,b € AR and X € R, we write a <x biff a C X and bC X .
We write a < b iff (Y € R), a <y b.

Lemma 6.1.19. Ifa<1b thena™ CborbC a™.

Proof. Suppose that a <ix b, i.e. a =rp(X) C X and b C X*. Then at = (r,(X))* =

Tny (X1) s0 at and b are C-comparable as required.
Lemma 6.1.20. Ifa C b then a™ C b™.

Proof. Let X € R be such that a = ro(X) and b = rjp(X). So a® = )y (XT) and

bt = 7| (XF). The result now follows since |a| < [b] implies |a|x < |b]x. O
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Definition 6.1.21. For all a,b € AR such that a <y b let n € w be least such that

ny > |b| and n > |a|. Then define a Uy, b = r,(Y).

Lemma 6.1.22. For all a,b € AR such that a <y b we have that a Uy, b € AR is such
that a U3 bC Y, aCaUy b and bC (a Uy b)™.

Proof. Let n € w be least such that ny > |b] and n > |a|. So a Uy b = rp(Y), thus
aCaUyband b=7rp(Y") Eryy (YY) = (ra(Y)" = (a Uy b) 7. O
Lemma 6.1.23. For all a € AR and any X € R such that a T X we have a = a U a™.

Proof. Suppose that a = r,(X). We then have that a™ = r,,, (X™T) therefore |at| = nx.
Now, a Uy at = rm(X) where m is least such that m > n and mx > nx. In particular

nx = nx so m = n, which implies a = a U% at. O]
Definition 6.1.24. Let F be a front on A € R, then we define
F2={aU{b:a,be F,Y <A a<yb}.

Definition 6.1.25. Define 7o, 71 : F2 — F so that for e € F2 we have 7o (e) is the initial
segment of e in F and my(e) is the initial segment of e™ in F. This is well-defined by

Lemma 6.1.22.
Lemma 6.1.26. Let F be a front on A € R, then

1. F?is a front on A.
2. Va U b e F2, mo(a U} b) = a and m1(a Uy b) = b.

Proof. 1. Suppose that F? is not Nash-Williams, i.e. there are a,b,c,d € F and X,Y €
R such that aU% b C cUj d. Hence a,c C cU3, d and thus a and ¢ are C-comparable.
By Lemma 6.1.20 we have that (a U% b)T C (c U3} d)T. Therefore b,d C (c Uy d)*t
and hence b and d are C-comparable. So since a, b, c,d € F and F is Nash-Williams,

we have ¢ = ¢ and b = d, which contradicts our assumption.

Now in order to see that F?2 is a front, let X < A and we will find an initial segment
in F2. Let a be the initial segment of X in F and b be the initial segment of X+ in

F. Then a <ix b so that for some n € w, 1,(X) = aU% b € F2.
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2. By Lemma 6.1.22 we have a C a U}, b and b C (a U} b)™, furthermore a,b € F, so

mo(a Uy b) = a and mo(a Uy b) = b.

6.2 Abstract well-quasi-orders
From now on we will always let R denote a Ramsey space and - be a shift map on R.
Definition 6.2.1. If F is a front on R then:

o f:F = Qis bad iff Va,b € F with a < b, f(a) £ f(b).

o f:F—Qisbad, iff Va,b € F with a<b, f(a) L f(b).

o [:F — Qis bads iff Va,b € F with a < b, f(a) > f(b).

e If F is a simple front then we call f : F — Q simple.

Definition 6.2.2. o () is R-well-quasi-ordered, or R-wqo iff there is no simple bad

function to Q.
e () is R-wqo iff there is no simple bad | function to Q).

e () is R-wqos iff there is no simple bads function to Q.

Figure 6.1: A simple front on NI* ordered by <.

Example 6.2.3. For any quasi-order @ and k € w, we have Q is N®lwqo iff Q is
FIN/™-wqo.

To see this, let F be a simple front on FINECOO]. Let ¢ : F — w be such that ¢(a) =
max(supp(a)). Then G = {(n) : n € range(y)} is a simple front on range(y) € NI, For

a,be F,a<biff Vn € supp(a), Vm € supp(b) we have n < m. Therefore
a<1b — p(a) < @(b) — (p(a)) < (p(b)).
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[>] are order-

If we have a simple bad function to @, then since any two simple fronts on N
isomorphic when ordered by <i, we have a bad f : G — Q. Therefore fop : F — @Q is
simple and bad, hence FINE:O]-WQO implies NI*l-wqo.

Now suppose that G is a simple front on some A € FINLOO}, and that g : G — @ is bad.
Suppose that A = (@ )mew and let 9 : [w]! — G be such that for each n € w, W((n)) = ay.

Therefore for (n), (m) € [w]! we have

(n) A (m) —n<m-— ap < anp.

[oc]

Therefore g o1 : [w]' — Q is simple and bad, so that NI>-wqo implies FIN,-wqo.

Figure 6.2: A simple front on FIN[loo] ordered by <, each point is labelled by its support.

Note that the fronts on FIN[fO] are isomorphic to the set of finite subsets of w ordered

by domination i.e. X <Y iff (Vo € X)(Vy € Y),z < y, see Figure 6.2.

Example 6.2.4. For any quasi-order Q, we have Q is N*l-wqo iff Q is ngio]—wqo.
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Let F be a simple front on W][j}o}, and let ¢ : F — w be such that p(a) = |al.
Since sequences of WEJO] are rapidly increasing, we have for a,b € F that a <1 b implies
(a) = |a| < |b] = ¢(b). So similarly to the previous example Wﬁo]—wqo implies N*-wqo.

Now suppose that G is a simple front on some A € WEO], and that g : G — @ is bad.
Suppose that A = (a,,)mew and let 1 : [w]' — G be such that for each n € w, ¥({n)) = ay.

Again similarly to the previous example, we can conclude N*®l_wqo implies WEO]—wqo.

av” abca

av” abcv

aa” abcv
ab”abcv

Figure 6.3: A simple front on (v, av, abcv, ...) € WEJO] ordered by <.

6.2.1 Basic results

Proposition 6.2.5. If f : F — Q is bad, then there is X € R such that f | (F|X) is

either bad, or bads.

Proof. Consider the subset B = {a € F2: f(mo(a)) L f(mi(a))} of the front F2. Applying
the Abstract Nash-Williams Theorem 6.1.14 to the set B gives an X € R so that either
F2X C Bor (F})X)N B = (. Therefore f | (F|X) is as required. O

The previous proposition gives us an analogue of the characterisation of the notion of
wqo as ‘well-founded and narrow’. That is to say that if f : F — @) is bad, then we obtain
either an embedding of the digraph (F, <) into (Q,>) or into (Q, L). We will investigate
what can happen in these cases separately in an attempt to classify the possible notions

of R-wqo, for different Ramsey spaces R.
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Theorem 6.2.6. Q is Nl _yq0 iff @ is well-founded and narrow.

Proof. By Proposition 6.2.5, if we have a bad function to ) then we have either a bad
or bads function to ). Clearly then this function enumerates either an infinite antichain
or descending sequence.

If @ has a descending sequence or infinite antichain, then the function enumerating
this sequence composed with the function (n) — n is a bad since (n) < (m) iff n < m.

Furthermore this function has domain equal to the simple front [w]' on w € NI*, O
Lemma 6.2.7. If R is finite, then any quasi-order @) is R-wqo.

Proof. If R is finite then any front G is also finite. By repeated restriction using Theorem
6.1.14, there is a front 7 C G on some X € R with |F| = 1. Therefore r;(X) is the
unique element of this front. Then X < X and therefore X' has an initial segment in
F, hence r(X) = r1(X™T). But since the order on any quasi-order @ is reflexive, we have
f(ri(X)) < f(r (X)) for any function f : G — Q, therefore no such function can be bad,
and hence @ is R-wqo. O

Lemma 6.2.8. For any Ramsey space R, any well-order Q) is R-wqo.

Proof. If @ is not R-wqo, then by Proposition 6.2.5 for some simple front F on A € R,
there is f : F — @ that is either bad, or bads. In the former case considering a € F
with a C X, let b be the initial segment of X in F, then a <1b and thus f(a) L f(b), this
is a contradiction because then f(a) # f(b) and thus @ is not linear.

So suppose f is bads. Pick the least element ¢y of im(f) with respect to the order
on Q. Let a € f~'(qo), and a T X < A, and let b be the initial segment of X+ in F.
Therefore a <1 b and so f(a) > f(b), but this contradicts that gy was the least element of
im(f). O

Lemma 6.2.9. Every finite quasi-order is R-wqo.

Proof. Suppose not, then for some n € w there is a simple bad function f to @, a set of

size n. Considering each element of () in turn, using the Abstract Nash-Williams Theorem
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6.1.14 at most n times, we can find some A € R so that |f”(F|A)| = 1. Then f | (F|A)
is still bad, thus f”(F|A) is not R-wqo, but f”(F|A) is a singleton, thus a well-founded
linear order, and is therefore R-wqo by Lemma 6.2.8. O

6.2.2 Abstract antichains

Definition 6.2.10. Let R be a Ramsey space and F be a front on A € R. We say that

F has loops iff there is an n € w and a, a1, ..., a, € F such that
adar <...<an <a.

In this case we call {a,a,...,a,} a loop. We say that F has no loops if no subset of F is

a loop.
Lemma 6.2.11. If every simple front on R has loops, then every quasi-order Q is R-wqos .

Proof. Suppose there were a simple bads. function f : F — Q. We know that F has a loop
{a,a1,...,a,}, so that f(a) > f(a1) > ... > f(an) > f(a). Clearly this is impossible. [

Definition 6.2.12. For a Ramsey space R we define the class of graphs
S(R) ={(F,<Ur) : Fis a simple front on R}.

Let &(R) be the set of graphs G € §F(R) which have arbitrarily large finite complete

subgraphs but do not have an infinite complete subgraph.!

Lemma 6.2.13. Q is not R-wqo, iff some graph of §(R) is isomorphic to a subgraph of
(@, L).

Proof. Suppose that @) is not R-wqo . Thus there is a simple bad; function f: F — Q.
Consider the graphs (F, <xU ), and

G = (range(f),{(f(a), f(b) : a,b € F,a<1bor b<a}).

Clearly f is an isomorphism between these graphs. Moreover since a <1 b or b < a imply

that f(a) L f(b), we have that G is a subgraph of (Q, L).

'Recall that a graph G is complete iff (Vz,y € V(G)),z ~ y.
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Now suppose that some graph (F, <Ur>) € §(R) is isomorphic to a subgraph of (@, L),
and let f: F — @ be an isomorphism. Thus if a < b we have f(a) L f(b), and thus f is

simple bads. O

Lemma 6.2.14. Suppose that there is some member of F(R) whose complete subgraphs

have size bounded by some n € w, then every quasi-order is R-wqo.

Proof. Suppose that the complete subgraphs of (F, <U) € §(R) are bounded by n € w.
Now apply abstract Nash-Williams Theorem 6.1.14 at most n times to find some A € R
such that (F|A, <Ur>) has complete subgraphs of size at most 1. Therefore for no distinct
a,b € F|A do we have a <1b. However we know that a < at and therefore a = a™ for all
a € F|A. Thus if f : F — @ is bad, we have f(a) £ f(a*) = f(a), which contradicts that

the order on @ is reflexive. O

Lemma 6.2.15. If |[AR;| < Xy and B(R) # 0 then either every quasi-order Q is R-
wqo, or we have that a quasi-order Q is not R-wqo, iff B(R) contains an element that is

isomorphic to a subgraph of (@, L).

Proof. If Q) is a quasi-order then by Lemma 6.2.13 we have that () is not R-wqo iff some
graph G € §(R) is isomorphic to a subgraph of (Q, L).

Suppose that a quasi-order @ is not R-wqo, . Therefore every element of §(R) has
arbitrarily large finite complete subgraphs by Lemma 6.2.14. So if G does not contain an
infinite complete subgraph, then G € &(R). If G contains an infinite complete subgraph,
then so does (@, L). But then since |AR;| < Xy we have that every front is countable, so
every H € &(R) # () is countable. This means there is a subgraph of the infinite complete
subgraph of (Q, L) that is isomorphic to H.

Now if &(R) contains a graph that is isomorphic to a subgraph of (@, L) then §(R)

contains this graph too. Hence @ is not R-wqo, by Lemma 6.2.13. 0
Theorem 6.2.16. For any Ramsey space R such that |[AR1| < N, either:

o () is R-wqo whenever Q) is a quasi-order.
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e B(R) # 0 and Q is R-wqoy iff no element of B(R) is isomorphic to a subgraph of
(@, 1)

e B(R) =0 and Q is R-wqo, iff Q is narrow
Proof. Firstly by Lemma 6.2.15, either: &(R) = ); every quasi-order @ is R-wqo; or &(R)
contains an element that is isomorphic to a subgraph of (@, L).

If &(R) = 0 then by Lemma 6.2.14, every quasi-order @) is R-wqo or every element
of F(R) contains an infinite complete subgraph. In this case, by Lemma 6.2.13 if @ is
R-wqo , then there is some G € F(R) that is isomorphic to a subset of (@, L). Therefore
() contains an infinite antichain, since G contains an infinite complete subgraph.

Finally if @ is not narrow then since |[AR;| < Ry we have that every graph G € F(R)
is countable, therefore isomorphic to a subgraph of (@, L), since this contains a countable

complete subgraph. Thus @ is not R-wqo; by Lemma 6.2.13. O
6.2.3 Abstract descending sequences

Lemma 6.2.17. If Q is well-founded then @ is R-wqos.

Proof. If Q) is not R-wqos then let f : F — @ be simple and bad~. We notice that F
is a front on some A € R which has no loops, otherwise for some b € F we would have

F(b) > f(b). For i € w let a; be the initial segment of A(H)" in F. Therefore
ag <ap <ag < ...

and so
flao) > f(a1) > f(ag) > ...

is an infinite descending chain in ) since F had no loops. O
Definition 6.2.18. For a,b € F, let a <’ b iff a = b or Jxg, 21, ..., , € F such that
adxyg<zy ..z, <b.

If 7 has no loops then <’ is a partial order. Reflexivity and transitivity are immediate

from the definition. For antisymmetry, suppose there were a <’ b and b <’ a with a # b
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then there are a < xp < ... < xp <Ib < yg < ... <ym <a so that F has loops which is a
contradiction.
We let <7 be a linear extension of the reverse order of </, which exists by Zorn’s

lemma. We also let a <z biff a <z band a#b
Proposition 6.2.19. For any F that does not have loops, (F,=<x) is not R-wqos..

Proof. For any a,b € F we have a </ b implies b <r a. Thus the identity map on F is

bads for this ordering. O

Lemma 6.2.20. If f : F — Q is bads then there is some B € R such that F|B well-

founded with respect to <.

Proof. The set {g : p,q € N\ {0}, ged(p,q) = 1} ordered by < is clearly a dense linear
order without end points, thus it is isomorphic to Q so we will use Q to denote this set.

Suppose f : F — Q is bads. Define:

o- { e P2 fmo()) = P, fmi() = P2 and qo > ql} |
q0 q1

By the abstract Nash-Williams theorem 6.1.14, there is a B € R such that F?|B C O
or (F2|B) N O = (). Suppose F?|B C O. If a,b € F|B with a <1b, then when written in
their lowest form,? the denominator of f(b) is at most equal to the denomintor of f(a).
We also know that F does not have loops because otherwise f could not be bads. So for
X <Bandicw, let a; =r (X)) € FIB. Thus (f(a;))icw is a descending sequence
of rationals (Z—;)igw such that (¢;)ic. is also descending. Notice that whenever ¢; = ¢;4+1
we have p; > pi+1, thus either (g;)icw Or (p;i)icw has a strictly descending subsequence.
However these are sequences in the well-founded order N\ {0} so this is impossible.

Therefore (F2|B) N O = ), and thus when a,b € F with a < b, when written in their
lowest form the denominator of f(a) is strictly less than the denominator of f(b). Suppose
there were an infinite <-descending sequence in F|B i.e. ag > aj > ... with each a; € F|B
(i € w). But this means that the sequence of denominators of f(a;) (i € w) is a descending

sequence in N\ {0}. O

2

i.e. when coprime.
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Theorem 6.2.21. If (Q, <) is not R-wqos then there is an ordinal o such that o is not

R-wqos.

Proof. Suppose f : F — Q is bads so by Lemma 6.2.20 we can assume without loss
of generality that F is well-founded with respect to <. Let Fy be the set of <-minimal
elements of F, i.e. d € Fyiff d € F and thereisno e € F such that e<td. We know then that
Fy # (0, otherwise either F = (), F has loops or F has an infinite <1-descending sequence,
none of which are possible. Also notice that no two elements of Fy are comparable under
<. Let 19 = |Fy| and fp : Fo — 70 be a bijection.

Suppose for induction that we have defined F,, C F, 7, an ordinal and f, : |J s<a b —
To for every a < 7. Suppose also that f, [ U/3<5 = fs for all § < «, and for all
a,b € Ug., Fp with a <b we have fo(a) < fo(b). Now define:

sz{ae}"\UFa:(VxE}"),xQQ%:ce UFa}

a<ly a<ly

Notice that F, is pairwise <-incomparable, since if a € F, and < a then z ¢ F,. Let 7,

be the ordinal |, ., 7o + |Fy|, and define f, : Ua@ F, — 74 by letting f, | Uﬁg& = fs for

a<y

every 6 < ~; and f, [ F, be a bijection to 7, \ U
But if for no y < |F|T is F, = 0, then |J

a<y Ta-

a<w, Fo 1s a subset of F of cardinality at least

| F|*™ which is clearly a contradiction. Thus for some v < |F|* we have F,, = 0.

Now for this v we claim that F = |J F,. Sosuppose F, = () and let a € -F\Ua<7 Fo.

a<y

If all ¢ € F with ¢ < a were in |J,_., Fo then a € F, # 0. So there must be some

a<y
bo € F\ Up<, Fa with by < a. But a was an arbitrary element of 7\ |J

conclude there is a by € F\ |

a<y F,, so we can

<y Iy, such that b; <1 by. Similarly we find bg, by, bo, ... € F
such that

a>by>bi>by> ...

and therefore there is either an infinite <-descending sequence or a loop in F, neither of
which are possible, proving the claim.

Therefore if a,b € F = F,, with a <0 b, then for some ordinals o < 3, we have

a<y
a € F, and b € Fg and therefore f(a) < f(b). Therefore by reversing the order on 7, the

same map f witnesses that 77 is not wqos. O
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Theorem 6.2.22. If f : F — quQ Qq s bad, then there is either a bad function to Q) or
there is some P C Q and A € R as well as disjoint F, C F (p € P) with F|A = ,cp Fp,
[ Fp € Qp and for every a € F, and b € Fpy, if a<1b then p =p'.

Proof. Suppose that f : F — quQ Qg is bad and define g : F — @ so that g(a) = ¢

whenever f(a) € Q4. Let
Fi ={aUy be F?: g(a) < g(b)},

and F? = F2?\ F3. So by Lemma 6.1.26 and Theorem 6.1.14 there is some A € []* such
that F2|A C FZ or F2|A C F2. In the second case, we have that g | F|A is a bad function
to Q. In the first case, if a,b € F|A and a < b then g(a) < g(b), suppose that g(a) € Qq
and g(b) € Qp. So g(a) = ¢ < p = g(b) and thus if ¢ # p we have f(a) < f(b) which
contradicts that f is bad. So whenever a,b € F|A and a < b, we have g(a) = ¢(b). Thus
P = range(f) and F, = f~1(Q,) (p € P) satisfies the statement of the lemma. O

Definition 6.2.23. An ordinal v is decomposable iff there are o, 5 < 7 such that v = - a.

An ordinal v is indecomposable iff it is not decomposable.?

Lemma 6.2.24. Let v be a decomposable ordinal. If f : F — ~* bad, then there is an
ordinal a < v and some A € R such that f : F|A — o* bad.

Proof. If v is a decomposable ordinal, let o, < « be such that v = - «. Therefore
Y= icar B where each B = 3;. If v* is not R-wqo, let f : F — +* be bad. Now apply
Theorem 6.2.22. If a* is not R-wqo then we are done. Otherwise there is some 6* C o*
and A € R such that for i € §* there are some F; C F, that partition F|A, and such that
f7F:; € B andif a € F;, b€ Fj and a < b, then i = j. Now every 3] is isomorphic to 3%,
so let g; : B — [* be an isomorphism. Now let h : F|A — B* be such that h(a) = g; o f
whenever f(i) € F;. This is well-defined since the F; (i € §*) form a partition of F|A, and
since f”F; C 37 for each ¢ € 6*. Now if a,b € F|A are such that a < b then a,b € F; for

3These properties are sometimes known as multiplicatively decomposable and multiplicatively indecom-

posable respectively.
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some i € 0%, therefore f(a), f(b) € 5] and f(a) £ f(b), and thus h(a) £ h(b). Therefore h
is bad and B* is not R-wqo. O

Corollary 6.2.25. If a is the least ordinal such that o is not R-wqo, then « is indecom-

posable.
Proof. Follows immediately by Lemma 6.2.24. O

Lemma 6.2.26. Suppose w* is R-wqo, a > w is a countable limit ordinal, f : F — a*
s bads, and Q s a quasi-order that embeds 8* for all B in some unbounded subset of .

Then there is some A € R and a bads function g : F|A — Q.

Proof. Suppose that o > w is a countable limit ordinal and and f : F — «o* is bads.
Since « is a countable limit ordinal, we have that o = » .. f;, and so o = .. . 7.
By Theorem 6.2.22, since w* is R-wqo, there is some A € R such that for i € w* there
are some F; C F, that partition F|A, and such that f”F; C g and if a € F;, b € F; and
a <1b, then i = j.

Let @ be a quasi-order and suppose that for all 5 < a we have §* embeds into @,
letting hg : B* — @ be an embedding. Define g : F|A — @ by letting g(a) = hg, o f(a)

whenever a € F;. Now if a <1 b, then a,b € F; for some i € w*. Therefore

gla) = hg,; o f(a) £ hs, o f(b) = g(b),
so g is bad, and @ is not R-wqo-. O
Lemma 6.2.27 (Cantor). Any countable linear order embeds into Q.

Proof. Let Q U {—00,00} be ordered by extending the order on Q, letting —oco < ¢ < oo
for all ¢ € Q. Let L be a countable linear order, and fix an enumeration L = {z,, : n € w}.
Let ¢ : L — Q be defined by induction on n € w as follows. Having defined ¢(x,,) for all
m < mn, let uo(n) = max({p(zm) : m < n, T, < x,} U{—o00}) and p1(n) = min({p(zy,) :
m < n,Tm > T} U{oo}). Then pick ¢(zy) inside the interval (uo(n), u1(n)) € Q, which

is possible since Q is dense. Clearly then ¢ is an embedding. O
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Definition 6.2.28. For a Ramsey space R such that o > w is the least ordinal such that

o™ is not R-wqo, we define the class of partial orders
H(R) = {(F,<) : F is a simple front on R}.

We say that a quasi-order P can be weakly embedded into a quasi-order P’ iff there is
a function ¢ : P — P’ such that for all a,b € P with a < b we have ¢(a) < ¢(b). In this
case we call ¢ order preserving.

We let B(R) be the set of well-founded partial orders P € $(R) such that:
o P =J;c,, P; for some disjoint partial orders P;.
e For a,b € P, a < b implies a,b € P; for some 7 € w and a <p, b.

e If 3; is the least ordinal such that P; can be weakly embedded into f3;, then v =

Uiew Bi is indecomposable, o < v and (Vi € w), f8; < 7.

Theorem 6.2.29. If |AR1| < Ny and a > w is the least ordinal such that o* is not R-wqo,
then Q is R-wqos iff no element of P(R) weakly embeds into (Q, >).

Proof. Suppose that (F,<') € PB(Q) weakly embeds into (Q,>), so there is some order
preserving f : F — Q. If a,b € F with a < b then a <’ b and a # b so f(a) > f(b), and
thus f is bads.

Now suppose that f : F — @ is bad. Since |[AR;| < Np, we have that range(f) is
countable, so pick a countable linear extension of range(f), and embed this into Q using
Lemma, 6.2.27. Composing embedding then gives a bad g : 7 — Q, and hence by Lemma
6.2.20 there is some A € R such that F|A is well-founded with respect to <.

Thus it is possible to weakly embed (F|A, <) into some least ordinal v. Without loss
of generality (renaming v and A if necessary), let v be least such that there is some B < A
such that (F|B, <) weakly embeds into «. If v < « then the given order preserving map
witnesses that v* is not R-wqo, which contradicts that o was minimal. Now by applying

Lemma 6.2.24 we see that v is indecomposable, since otherwise v would not be least.
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Let f; < (i € w) be such that v = {J,c,, 8i- Since ), 6] embeds every 37 (i € w)
0
and f : F|A — ~* is bad, we have by Lemma 6.2.26 that there is some B < A and a bads

function

g:F|B— Z Br.

iGANO

Partition F|B into maximal disconnected components, i.e. F|B = |J.. F; for some

IS
disjoint F; C F (i € w) such that a,b € F|B and a < b implies a,b € F; for some i € w,
and there is no finer partition satisfying this condition. Let ¢; (i € w) be the least ordinal
such that there is an order preserving map from (F;, <’) into 4;.

Since v was least, there is an order preserving map from F|B to . Thus, either for

some i € w we have §; =« or |, 0; = v with each 6; < v (i € w). However if some §; = 7

€W
then this contradicts that g was bad, since v* does not weakly embed into ;. Ax,g Br.
Therefore, (F|B,<') € PB(R) and finally f : F|B — @ is bad, hence f is an order

preserving map from (F|B, <) into (Q, >). O
Theorem 6.2.30. For any Ramsey space R such that |[AR1]| < Ny, either:

o FEvery simple front on R has loops and every quasi-order is R-wqo.

e There is a simple front on R with no loops and Q is R-wqos iff Q is well-founded.

o There is a simple front on R with no loops and some indecomposable ordinal o > w
least such that o* is not R-wqo. Furthermore, Q is R-wqos iff no element of P(R)

weakly embeds into (Q, >).

Proof. Suppose every simple front F has loops, in which case by Lemma 6.2.11 there are
no simple bads functions to any quasi-order. Hence every quasi-order is R-wqos..

Now suppose there is a simple front F on R with no loops. By Corollary 6.2.19, the
linear order (F,<r) is not R-wqos. Since |AR1| < Ng we also know that F is countable.
Hence by Lemma 6.2.27 there is a bads function to Q. Therefore by Theorem 6.2.21
there is a bad function to some «o*, for some countable ordinal .. Suppose without loss of

generality that « is least such that a* is not R-wqo.
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If Q is a quasi-order that is not R-wqo~ then by Lemma 6.2.17 ) must have an infinite
descending chain. Thus if @ = w then @ is R-wqo~ iff @ is well-founded.

If @ > w then apply Theorem 6.2.29 to see that @ is R-wqo~ iff no element of P(R)
weakly embeds into (Q, >). O

6.2.4 Possible notions of R-wqo

We have thus narrowed down the possible versions of R-wqo for various Ramsey spaces R
that satisfy | AR1| = Ng. Theorems 6.2.16 and 6.2.30 allow us to classify the possibilities

into seven types:
1. Q is R-wqo whenever () is any quasi-order.

2. 8(R) # 0 and Q is R-wqo iff B(R) contains an element that is isomorphic to a
subgraph of (@, L).

3. @ is R-wqo iff () is narrow.

4. B(R) # 0 and Q is R-wqo iff @ is well-founded and &(R) contains an element that
is isomorphic to a subgraph of (@, L).

5. @ is R-wqo iff Q) is well-founded and narrow.

6. B(R) # 0 and there is some indecomposable ordinal o > w least such that o* is not
R-wqo. Furthermore @ is R-wqo iff no element of P(R) weakly embeds into (Q, >)

and B(R) contains an element that is isomorphic to a subgraph of (Q, L).

7. There is some indecomposable ordinal o > w least such that o* is not R-wqo, and

Q is R-wqo iff no element of P(R) weakly embeds into (Q, >) and @ is narrow.

The reasoning that results in this classification is as follows. Fix some arbitrary Ramsey
space R and let @) be a quasi-order. Suppose that every front on R has loops, so by
Lemma 6.2.11 and Proposition 6.2.5 we have that @ is R-wqo iff @) is R-wqo,. Thus
Theorem 6.2.16 gives us cases 1, 2 and 3. Now suppose that there is a simple front on

R with no loops and we note that by Proposition 6.2.5, @) is R-wqo iff @) is R-wqo~ and
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R-wqo, . Suppose that @) is R-wqo~ iff () is well-founded, thus Theorem 6.2.16 gives us
cases 4 and 5. Finally by Theorem 6.2.30, the only remaining case is that there is some
indecomposable ordinal o« > w that is least such that o* is not R-wqo, and Theorem 6.2.16
gives us cases 6 and 7.

Examples of Ramsey spaces R with exotic* R-wqo seem to be hard to find. Indeed, for
all of the examples of topological Ramsey spaces R given in [56] (with a ‘natural’ shift),
we have that R-wqo is equivalent to wqo (i.e. is of type 5). This can be seen similarly to
examples 6.2.3 and 6.2.4.

Thus, it seems likely that this classification can be refined further. In the next subsec-
tion we will see an example of a Ramsey space H, which falls into type 4. However H-wqo
turns out to be equivalent to N[>l-bqo, (see Definition 6.3.1). Similarly for every k € w
we could define Ramsey spaces whose version of wqo is equivalent to NI®l-bqoy,, however

this gives no new functionality and added complexity. Thus we ask the following question.

Question 6.2.31. Is there a Ramsey space R such that R-wqo is neither of type 1 nor

equivalent to NI*!-bqoy, for any k € w?

Furthermore, despite numerous fruitless attempts, we have not found any Ramsey

space of type other than 1, 4 and 5. So we also ask the following question.
Question 6.2.32. Is there a Ramsey space of type other than 1, 4 and 5%

More generally, we ask which further conditions can be added to the definitions of
the sets B(R) and P(R) for different Ramsey spaces R that could give more precise
characterisations of R-wqo.

6.2.5 Examples

We now give some examples to differentiate some of the different cases.

Example 6.2.33. Firstly we consider the most trivial Ramsey space possible. Let X =

(1,1,1,1,...) and 7, be the usual restriction, then ({X},=,r) is a Ramsey space, all of the

1. of a type other than 1 and 5.
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axioms are satisfied trivially. The only choice of shift possible is X+ = X and therefore

Q is R-wqo for every quasi-order ). Hence this extremely trivial Ramsey space falls into

type 1.

Example 6.2.34. The Ellentuck space (N[, C, r) with X+ = X\min(X) and (r,,(X))* =
rn—1(X™) gives the usual notion of wqo by Theorem 6.2.6. Hence this Ramsey space falls

into type 3.

Definition 6.2.35. Let H be the set of sequences of pairs of natural numbers ({(n;, n;11))icw

such that for all i € w, n; < Njy1.

For all ((n;, nit1))icw, ((mi, mit1))icw € H, we let ((ni,ni1))icw < (M4, mig1))icw i
{n; i ew} C{m; i e w}.

We also define
T (((Mis Mit1) )iew) = ((Miy Mit1))i<m.

We define the shift on H as by letting ((ni, n;11)) %

icw = (M1, 1i42))icw and for all m € w,

(i, i 1)) = (i1, nig2) Jicm1-
Theorem 6.2.36. (H,<,r) is a Ramsey space.

Proof. Al and A2 are easily verified. For A3(1), suppose that A € [depthg(a), B]. Let
b= "depth,, (a)(B) now clearly there is an element A’ € R containing only numbers that
are in A but not in b\ a, so that A" € [a, A].

For A3(2), suppose that A < B and [a, A] # (). Let b = "depth , (a) (B) and now consider
the unique sequence A’ in R containing every number in A and b. Then b = A’ < B and
0 # [a, A'] C [a, A] as required.

For A4, suppose that depthp(a) < oo and O C AR, 4. Consider

O = {(n,m) : a” {{(n,m)) € rig41[a, BN O}

and

O% = {{n,m) : a”((n,m)) € r{a11la, BN O%}
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Figure 6.4: Rado’s poset fR.

If (n,m) € OUOL then n must be equal to the last element of the last pair of a, we call this
number ng. Now at least one of the sets M = {m : (ng,m) € O} or M® = {m : (ng,m) €
OE} is infinite. Suppose without loss of generality that M is infinite. Then consider the
unique A € R whose members contain numbers that are either in M or in "depth,, (a)(B).

Thus 7|q41[a, A] = {a” ({no,m)) : m € M} C O as required. O
Definition 6.2.37 (Rado’s poset [47]). Let R be the the partial order consisting of pairs
(n,m) € w x w such that n < m. We order (ng, mg) < (ni,mq) iff either ng = n; and
mo < mp or mg < nj.
Theorem 6.2.38. R is not H-wqo, , yet it has no infinite antichain.
Proof. First observe that (ng,mg) L (ni,my) iff

* ng # N1,

® mgy =Ny,

& M1 = ng.
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Thus R has no infinite antichain since any antichain has only boundedly many possible
first elements by the second two conditions, and therefore only boundedly many elements
by the first condition.

Now let F be a simple front on A € H. Then

F={{n,m)): 3n',m' € w),(n,n') € A, (m,m’) € A,n <m}.

Let f : F — R be defined by f({{n,m))) = (n,m). We claim that f is bad;. Suppose

that ((ng, mo)) < ({(n1,mq)), then my = ny, which implies that (mg,ng) L (mq1,n1). O

Theorem 6.2.39. Q is H-wqo iff there is no bad f : F — Q where F is a front on NI
of rank 2.

Proof. Suppose that @ is not H-wqo, so let f : G — @ be bad with G a simple front on

some A = ({ag,a1), (a1, as),...) € H. Let A’ = (a; : i € w) € N[> 50 that
G ={({n,m)) :n,m e A',n <m}.

Let F = {(n,m) : n,m € A';n < m}, thus F is a front on A" of rank 2. Let g : F — G
be given by g({(n,m)) = ({(n,m)) for all n,m € A’, n < m. Therefore (n,m) < (k,l) iff
g({n,m)) < g((k,1)) and therefore f o g is bad.

Now let f : F — Q where F is a front on A € NI*® of rank 2. Let F’ be the set of
all length 2 increasing sequences of elements of A, then F’ is a rank 2 front on A and
[+ F' — @ so that for all a € F', f'(a) = f(c) where ¢ € F is such that ¢ C a. Now let
G={(a) :a € F}soGisarank 1 front of H. Set g : G — F' such that g((a)) = a, so

since (a) <1 (b) whenever a <1 b, we have that g o f is bad, and @ is not H-wqo. O

We mention that H falls into type 4. To see this, notice that no front on H has loops
and w* is not ‘H-wqo, because f : {(n,m) : n < m < w} — w* given by f((n,m)) =n is
bad. Thus by Theorem 6.2.30, Q is H-wqo~ iff Q) is well-founded. Furthermore, since R
is not H-wqo and has no infinite antichain, thus H is not of type 5, and therefore must be

of type 4.
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6.3 Abstract better-quasi-orders

Definition 6.3.1. @ is R-better-quasi-ordered or R-bgo iff there is no bad function
f:F — @, for any front F on R. Let o be an ordinal, if rank(F) = « then we
call f: F — @ rank a. We say that @) is R-bqo, iff there is no rank « bad function
f:F — Q, for any front F on R.

We now have two aims, firstly we will show that (just as with the usual notion of bqo),
for a general Ramsey space R, the notion of R-bqo is closed under taking iterated power
sets as in Definition 2.1.11. Le. if @ is R-wqo, then P, (Q) is R-wqo for every ordinal .
Secondly, we aim to show that given a Ramsey space R its corresponding notion of R-bqo
is determined by its notion of R-wqo, however for this we require that the shift on R has

an extra property.

Proposition 6.3.2. @ is R-bqo iff for every ordinal o, Q) is R-bqog,.

Proof. This follows easily since rank(F) € On is well-defined for every front F of R. [
Proposition 6.3.3. @ is R-wqo iff Q is R-bqo;.

Proof. This follows trivially since a front F is simple iff rank(F) = 1. O
Proposition 6.3.4. If a < 3 then Q is R-bqog implies Q) is R-bqo,.

Proof. Let F be a front on some A € R such that rank(F) = a. Then by extending of
elements of F we can find a front G such that (Va € G)(3b € F), b C a. This b must be

unique since F is Nash-Williams, so define g(a) = b in this case. Suppose there were a

bad f: F — @, and then let h : G — @Q be such that h = f o g, then h is bad and rank
B. O

Theorem 6.3.5. If Q) is R-bqo, for any ordinal o then it is R-wqo.

Proof. By the two previous propositions. O
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6.3.1 Closure under power sets

Theorem 6.3.6. If () is R-bgo then so is P(Q).

Proof. Suppose P(Q) is not R-bqo. So let f : F — P(Q) be bad, with F a front on some
AeR. If XY € P(Q) are such that X £ Y then there is no function X — Y that
increases every element with respect to the order on ). In other words, there must be an
element z € X such that forally € Y, z £ y.

Let g : P(Q) x P(Q) — Q be any function so that g(X,Y) = « for such an z. So
gX,)Y)eXandVycY, g(X,Y) £y. Let h: F2 = Q be given by

h(a) = g(f(mo(a)), f(mi(a))).

We claim that h is bad. Let s,t € F? with s <I't, so that s = sq Ug s1, t = tog Up g
for some sq, s1,t9,t1 € F. We have that s <t implies either sT C ¢t or t C s* by Lemma
6.1.19. We also know that so T s and ¢; C ¢, thus sy and t; are C-comparable, and
because they are both members of F, we have that so = t;.

We have now that h(t) € h(t1) = h(s2) and for all ¢ € h(s2) we have h(s) € q.
Therefore h(s) € h(t) and thus h is bad since s and ¢ were arbitrary. Therefore @ is not
R-bqo. O

Lemma 6.3.7. Let F be a front on A € R and let C C F. Then define
FC=CU{aUyy:zc F\Ciye F,Z< A x<zy}
Then F€ is a front on A.
Proof. Let a,b € F© and suppose that a C b.
e If a,b € C then a,b € F which contradicts that F is Nash-Williams.

elfacC,be FC \ C then a T by U} by = b, so a and by are C"-comparable and
therefore a = by since both are members of the front . But a € C' and by € F \ C,

which is a contradiction.
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oIfae]:C\C’,bECthenaOEa:aOU}al[bforsomeao,ale}“. But then

ap C b and ag,b € F, contradicts that F is Nash-Williams.

e Ifa,b € FY\C then a contradiction follows by the same argument as for 2, Lemma

6.1.26.

So F¢ is Nash-Williams. Now let S < A. Choose a,b € F such that a — S and b T ST,
which is possible since F is a front. If a € C then a € FC. If not, then we know that a<igb
and so aUgb e F C. Therefore in either case there is an initial segment of S contained in

FC. O

The following proof is essentially due to Shelah [49] but has been modified for use in

this abstract context.
Theorem 6.3.8. If Q is R-bqo, then so is P, (Q) for any ordinal c.

Proof. Suppose that @ is R-bqo and P, (Q) is not. So let f: F — P,(Q) be bad, with F
a front on A € R. We will find a contradiction by constructing a bad function to Q.

We will define by induction on n € w, fronts F,, on A and bad f, : F, = Pa(Q) as
follows. Let Fy = F, fo = f, and for n € w define C,, = {a € F, : fno(z) € Q} and set
Fni1 = FSn. So for a,b € F,, with a <tb and f(a) ¢ Q there is some Z < A such that
a U, b e F,y1. It remains now to define fj41.

Let g : Pa(Q) X Po(Q) — Pu(Q) be such that for U,V € Pn(Q), if U £ V then,
similarly to the proof of Theorem 6.3.6, let g(U, V') be such that g(U,V) € U and either
VeQand gUV)LVorV¢Q and VW € V we have g(U, W) £ V. Now if f,(a) € Q
then let f,11(a) = fn(a), otherwise let

fnr1(aUx b) = g(fn(a), fn(D)).

We assumed that Fy was a front, moreover if F,, is a front then F,, 11 = ]:S" is a front
by Lemma 6.3.7. So for every n € w we have that F,, is a front. We now claim that for
each n € w, f, is bad. Let a,b € F, 1 be such that a < b, thus for some Z < A we have

a <z b. We now have the following cases:
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o If a,b ¢ C, then a = ag Ug a1 and b = by U}, by for some ag,a1,bo,b; € F, and
S, T < A. Then we know that a; C a' and bg C b and that ™ and b are C-
comparable (by Lemma 6.1.19). Therefore a; and by are C-comparable, and hence

a; = bp because both are members of the front F. So fnyi1(a) = g(fn(ao), fn(a1))
and fr11(0) = g(fn(a1), fa(b1)) so fri1(b) € fu(a1) and therefore f11(a) £ fu1(D).

o Ifa ¢ C, and b € C, then a = ag U} a; for some ag,a; € F,, and S < A. We know

that a C Z so a1 C a™ C Z*. Hence as and b are C-comparable and so as = b. So

fn+1(a) = g(fn(GO)vfn(al)) and fn+1(a) £ fn(b) = fn+1(b)'

e Ifa € C, and b ¢ C, then b = by U} by for some by,by € F,, and T' < A. Now
frnti1(a) = fu(a) £ fn(bo) no element of f,(by) can be larger than f,41(a). Therefore

fn+1(a) 7<\ fnJrl(b)'
e Ifa,b € Cy then fri1(a) = fu(a) £ fn(b) = fnr1(D).

So we see that f, is bad for every n € w.
We see from the definitions of F, 11 and f,+1 that for any n < m < w, if x € F, is

such that f,(z) € Q then x € F,, and fi,(x) = fn(x). So we can define
F*={z:(3n cw),z € Fu, fu(z) € Q}.

We also define f*(z) = f,(z) whenever f,(z) € Q. We claim that F* is a front. Suppose
a,b € F* are such that a C b. Then a € F, and b € F,,, and f,(a) € Q, fin(b) € Q so that
a,b € Frax{n,m} and therefore Fp . 1, my is not Nash-Williams. This contradiction shows
that F* is Nash-Williams.

Now let S < A and F,,(S) be the unique initial segment of S contained in F,. If there
were no initial segment of S in F*, then for every k € w we have fi(Fi(S5)) ¢ Q. So we
have that fr+1(Fnt1(S)) = g(fn(a), fn(b)) for a = mo(Fpn11(S)) € Fpn, b € F,. We know
that a C F,,11(5) so that a = F,(S). Now by definition of g, we have that

fn+1(fn+1(s)) € fn(a) - fn(fN(S))
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Hence (fn(Fn(S)))new is a sequence which contradicts the well-foundedness of €. So we
conclude that F* is a front.
Finally we show that f* : F* — @ is bad. Let a,b € F* be such that a < b, so there

are n,m € w such that a € F,, b € Fpy,. Therefore a,b € Faxfn,m) and

f*(a) = fmax{n,m} (CL) £ fmax{n,m} (b) = f*(b)

So indeed f* is bad and clearly the image of f* is contained in Q). So @ is not R-bqo,

which is a contradiction. ]

6.3.2 Strong shifts

Definition 6.3.9. Given a Ramsey space R we say that a shift map -7 is strong iff for
every a,b,c € AR and A € R with |a] < |b], a <x b and b C ¢ < A we have that

aC aUyx b<y c for some Y < A.

Example 6.3.10. The usual shift on N[* is strong. If |a| < |b| and a <1x b then if
X = (zo,71,...) we have a = (2¢, ..., T|g|—1) and b = (w1,...,7p—1). We then have c =
(T1, s T|p|—1, Y05 -+ Yn) for some n € w. So that a Uy b = (zo,...,7p—1) <y ¢ with ¥V =
(T0y s T{p|=1> Y05 +> Yns Yn+1, --) for some choice of yn11 < yny2 < ... from A, which can

be easily found.

Example 6.3.11. Consider the shift on N>/ which removes the second element of any
sequence and leaves the first alone. Then this is not a strong shift since for any a,b € AR

both of length one, we have a <x b iff a = b = (x¢) and therefore a = aU% bso a i aU% b.

Theorem 6.3.12. If the shift on R is strong and if Q is such that Po(Q) is R-wqo for

every ordinal o, then Q) is R-bgo.

Proof. Suppose for every ordinal a, that P,(Q) is R-wqo and the shift on R is strong.
Suppose for contradiction that @ is not R-bqo, so there is a bad f : F — @ for some
front F on A € R. Using the abstract Nash-Williams Theorem 6.1.14, without loss of

generality we can assume that for any a,b € F with a < b we have |a| < |b| (otherwise we
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could restrict so that a <1b implies |a| > |b| and thus the lengths of the initial segments of
A, AT ATT . in F would be an infinite descending sequence of natural numbers).

Now define a function h : F — Puo(Q) recursively by rank as follows. Let h | F = f,
then for all a € F \ F let

h(a) = {h(b) : b€ F,[b| = |a| + 1,a T b}.

Fornewlet F, ={a:(3be F),aC b,la] =n}U{ce F:|c <n}. Now we have
that h | 7 is a map from a front of rank 1 to P,(Q) for some ordinal v.> Thus by our
assumption, h [ Fp is good. So let zg,yo € F1 be such that z¢ <p, yo for some By < A
and h(zg) < h(yo).

Now we will define by induction x,, vy, € F, and B, < A such that:
1. =z, <B, Yn,

2. |xn| < |Ynl,s

3. h(zn) < h(yn).

Suppose that x,, € F \ F. Since the shift on R is strong, for any a,b € AR with a <ix b
we have a C a U% b so we can let zp41 = rpy1(zp U*Bn Yn) which is a member of F since
it is an initial segment of B,, < A and also z,, € F \ F, and |z,,+1| = |z| + 1. Then since

h(zy) < h(yy) either:

1. 3g : h(zy) — h(y,) such that Vg € h(zy,), ¢ < g(q). So let yp41 = goh(xn41), hence

h(zp+1) < h(yn+1) as required.

2. h(yn) € Q and (Vg € TC(h(xy))), ¢ < h(yn). Solet yp+1 = ypn. Thus since x,,41 €

we have h(x,+1) < h(yn41) as required.

3. For some ¢ € h(yn), h(zn) < ¢. So by definition of h we have ¢ = h(a) for some
a € AR with y, C a. Let y,+1 = a, then we have h(z,4+1) € h(z,) and therefore

h(znt1) < h(zpn) < h(Yn+1) as required.

5Since it is a map to P (Q) whose range is a set and is therefore is contained within some P, (Q).
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Now we have |z,| < |y,| and z,, < y, and in each case we have y,, C y,+1 < A therefore
since the shift on R is strong, we have that z, U*Bn Yn <Byi1 Yny1 for some B, < A.
Now since xp+1 E xp Ugn Yn We also have x5, 11 <p,,, Ynt+1 as required.

Now since x,, C zp4+1 we have that h(x,4+1) € h(x,) therefore if « is least such that
h(zy) € Pa(Q) and f is least such that h(z,41) € Pp(Q) then § < o. Therefore we can
let m be least such that h(z,,) € Po(Q) = Q. Thus x,, € F by definition of h, and the
induction stops after m stages.

So we have Z,, <Y, with h(zn) < h(ym), |Tm| < |ym| and h(zy,) € Q. If h(ym) € Q
then y,, € F and hence f(z,,) < f(ym) which contradicts that f was bad. Otherwise since
h(zy) € Q and h(zy,) < h(ym) we can find yp,11 € F with h(xp,) < h(ym+1). Repeating
this process we can find let y € F with y,, C y and h(zm) < h(y). Then 2, Uy ym <y
so that z,, <y, but then f(x,,) = h(x,) < h(y) = f(y), again contradicting that f was
bad. O

Theorem 6.3.13. Suppose that the shift on R s strong. Then the following are equivalent:
e () is R-bqo,
e For every ordinal o, Py (Q) is R-bqo,

e For every ordinal o, Py (Q) is R-wqo.

Proof. By theorems 6.3.8, 6.3.5 and 6.3.12. O

Theorem 6.3.14. Let R and S be Ramsey spaces, suppose that for every quasi-order @,
Q is R-wqo implies Q is S-wqo, and that the shift on S is strong. Then @ is R-bqo implies
Q is S-bqo.

Proof. If @ is R-bqo, then by Theorem 6.3.8, for every ordinal a, P,(Q) is R-bgo. So
Pa(Q) is R-wqo by Theorem 6.3.5 and therefore P, (Q) is S-wqo, by our assumption. So
since the shift on S is strong, by Lemma 6.3.13, @) is S-bqo. O

Corollary 6.3.15. Let R and S be Ramsey spaces, suppose that for every quasi-order @),
Q is R-wqo iff Q is S-wqo, and that the shifts on both R and S are strong. Then for every
quasi-order Q, Q is R-bqo iff Q is S-bqo.

155



Proof. Apply Theorem 6.3.14 twice, in either direction. ]

Example 6.3.16. We claim that Q is NI*®l-bqo iff Q is FINLOO]—bqo. By examples 6.2.3
and 6.3.10 and Corollary 6.3.15, it remains only to show that the shift on FINLOO] is strong.

Let R = FINE:O] and a,b,c € AR be such that |a] < [b],a<xband bC c < A € R.
So there are a, ..., a € FIN such that a = (a;)ic|a; b = (@i+1)i<pp| and ¢ = (@i41)i<||-
Pick an infinite block sequence Y < A of elements of FINy such that (ag) ¢ C Y (clearly
this is possible). Then a C (ao, ..., a;p) = a U b <y c as required. So indeed the shift on

FINP is strong, and @ is NI*®l-hqo iff Q is FINI™-bqo.

Example 6.3.17. We claim that Q is N[*®l-bqo iff Q is WEO]—bqo. By examples 6.2.4
and 6.3.10 and Corollary 6.3.15, it remains only to show that the shift on WEO] is strong,

which can be seen similarly to Example 6.3.16.
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Chapter 7

Better-quasi-orders for

uncountable cardinals

In this chapter we consider Shelah’s notion of k-bqo [49] for an uncountable cardinal .
We aim to simplify his definition and give a version of Simpson’s definition of bqo (as
in [53]) for k-bqo. This is not so straightforward, the main obstacle is that Shelah uses
an unusual property to define his k-barriers which we call the barrier property. We must
somehow remove this property from the definition, even in the absence of any Ramsey

theory at k.

7.1 Fronts on x and k-barriers

Definition 7.1.1. For A C k € Card and A\ < & we define [A]* = {X C A : ot(4) = A}
and [A]<* = {X C A :ot(X) < A\}. We equate X C A with the increasing enumeration
of elements of X. For X € [A]* and n € w we let X [ n be the set containing the least n
elements of X and write

X = (Xo, X1, Xo...).
Definition 7.1.2. Fix a cardinal x and let A € []® and F C [A]<¥. We call F Nash-
Williams if F is an antichain under C. We call F a front on A iff F is Nash-Williams and

for all X € [A]“, there is some a € F such that a C X.
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If F is a front on A € [k]", then we define
F={a€c[A]*¥:(Fbe F),al b}

Thus F is a well-founded tree under C. We define rank(F) as the tree rank of F. If a € F
then we also let rankr(a) be the rank of a considered as an element of the tree F (see
Definition 2.4.3).

If X € [A]Y and F is a front on A then we define F(A) as the unique initial segment
of A that is contained in F. If B € [A]" then define F|B = F N [B]<* and we call F|B a

restriction of F.

Definition 7.1.3. If X € [k|<" then define X* = X \ {min X}. For a,b € [k]<¥ we

define a <1 b iff either bC a™ or a™ C b and mina < min b.

Remark 7.1.4. The relation <1 may seem unusual. Note that in particular it is not transi-
tive: (1,2,3) <(2,3) < (3,4,5), but it is not the case that (1,2,3) < (3,4,5). The notion
of a bad function (and hence of bqo) relies upon traversing infinite sequences by removing
their first member X — X \ {min X'}. Intuitively, < is the corresponding traversal that

is used when defining bqo in terms of finite sequences and fronts.

Definition 7.1.5 (Shelah [49]). We define a x-barrier B to be a front on [A]%, for some

A C k whose order type is k, with the extra property:
(Va,b € B),biZ a™.
We will refer to this property as the barrier property.

It is worth mentioning that the barrier property is implied by the Sperner property,
i.e. (Va,b € B),a ¢ b. This is more usually seen in the definition of barriers [56, 39]. With

this definition, we can now define what it means to be k-bqo.

Definition 7.1.6 (Shelah [49]). A quasi-order @ is called k-bgo iff there is no function
f:B — Q, for B a k-barrier, such that Va,b € B,

a<1b— f(a) £ f(b).
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When k£ = w, k-bqo is equivalent to bqo. One direction follows since any front on
w satisfying the Sperner property also satisfies the barrier property. The other direction
holds since any k-barrier can be restricted so that it satisfies the barrier property, using
the Galvin and Prikry Theorem 2.1.6, and thus the relevant bad functions can be found

by taking their corresponding restriction.

7.2 Simplifying the definition of x-bqo

We now ask the question as to whether or not the barrier property is necessary in this
definition. That is, for an arbitrary quasi-order @, if we have A € [k]", some F a front on
[A]“ and a bad function f : F — @; then does this imply that @ is not k-bqo?

When we are able to use the usual Ramsey techniques (for example when « is a
Ramsey cardinal or when k = w), by taking a restriction of the given front F we could
find some restriction of f whose domain is a barrier, and hence ) is not k-bqgo. This
is because by using Ramsey techniques either we can restrict a front F that satisfies
(Va,b € F),a<tb — b IZ a™ or restrict to a front F that satisfies (Va,b € F),a<tb - bC a™.
In the first case the barrier property holds, since if not then for some a,b € F we have
b C a"; hence a < b and thus b Z a™, a contradiction. In the second case, picking
ag € F and defining a,+1 as the initial segment of @} in F makes (|a,|)new an infinite
descending sequence of natural numbers. So this case cannot happen and we can always
find some restriction satisfying the barrier property. However for general x, we have no
Ramsey theory to work with, and so this method does not work. Thus we will need a
more nuanced argument.

We first define the notion of k-bqo without the barrier property.

Definition 7.2.1. A quasi-order Q is called k-bqo’ iff there is no function f : F — Q, for

F a front on some A € [k]", such that Va,b € B,

a<1b— f(a) £ f(b).

To proceed we need to stratify the levels of k-bqo and k-bqo’ by ranks as follows:
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Definition 7.2.2. A quasi-order Q is called k-bqo,, iff there is no bad function f : B — Q,
for B a k-barrier of rank < a.
A quasi-order @ is called k-bqo’, iff there is no bad function f : F — @, for a front F

on some A € [k]* of rank < .

In order to give a Simpson style definition of k-bqo we first need to remove the barrier

property from our definition of k-bqo. Thus we aim to prove the following theorem.

Theorem 7.2.3. For any cardinal k and any quasi-order ), we have that Q) is k-bqo iff

Q is k-bqo'.

In order to prove this theorem we first we define for an ordinal « > 0,

—1l4+a=
o Tz w

We then in fact aim to prove the following stronger theorem.

Theorem 7.2.4. For any cardinal k, any ordinal o > 0 and any quasi-order Q, the

following are equivalent:
1. Q is k-bqoy,
2. P-144(Q) is k-bgoy,
3. P_14a(Q) is k-bqo'1,
4. Q is k-bqo.,.

We will prove this theorem in a series of lemmas. Firstly we note that 2 implies 3,
since any front of rank 1 trivially satisfies the barrier property, because every element has
length 1. We also see that 4 implies 1 because a bad function witnessing the failure of 1
will also witness the failure of 4. It remains to show that 1 implies 2 and that 3 implies 4.

The proof of Theorem 7.2.4 will rely on constructing bad functions across F for some
front F of rank a. In Figure 7.1 elements of F will correspond accordingly to sets in the

given part of Pso(Q).
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Figure 7.1: The correspondence between elements of F and sets in Pu(Q).

In the next three lemmas we will show that 1 implies 2.
Definition 7.2.5. Let F be a front on A € [£]", and let C' C F then define
FC=CU{zUy:ze F\Cyec F z<y}.

The following lemma is due to Shelah. I present a detailed version of the proof which

is sketched in [49].

Lemma 7.2.6 (Shelah [49]). Let F be a front on A € [k]*, and let C C F. Then FC is
a front on A with rank(FC) < rank(F) + 1. Moreover, if F is a k-barrier, then so is FC.

Proof. If F = {()} then the lemma holds trivially, so suppose that this is not the case.
Let 2,y € F¢ be such that = T y. Then either:

e z,y € C C F, which contradicts that F was a front.

e xe(Cye .7-"C\C, so that y = a U b for some a,b € F. Therefore x C a U b and so
z and a are C-comparable, and hence equal since they’re both members of the front
F. But then since y ¢ C' it must have been that a ¢ C, even though z € C, this is

clearly a contradiction.

erc FY\C,y e C. Then 2 = aUb for some a,b € F. So a C x C y, which

contradicts that F was a front since a,y € F.
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e T,y € fC\C. So there are a,b,c,d € F such that t = aUb, y =cUd, a b and
c<dd. SoaCaUbC cUdand ¢ C cUd, thus a = ¢ since F is Nash-Williams.
We also have 2+ C yT so similarly b,d C (cUd)" and thus b = d. Therefore z = y,

which contradicts z C y.

So F¢ is Nash-Williams. We claim that it is a front on A. So let S C A and z,y € F
be such that « = S and y = StT.! If z € C then = € F so that F¢ contains an initial
segment of S. Otherwise z <y so z Uy € F and = Uy is also an initial segment of S.
Hence FC is a front on A.

To prove rank(F¢) < rank(F) + 1, we will first prove by induction on a € On the

following claim.
Claim: For a,b € F with a < b; if rankz(a), rank 7 (b) < «, then rank zo(a U b) < av.

Proof of claim: If a = 0 then a,b € F so aUb € F? and thus rankz(a Ub) = 0. Now
suppose that « > 0 and the claim holds for all § < «. For all i € A\ max(a U b), let
a; T aUb (i) and b; C (aUb™ (i) T be longest possible so that also a;,b; € F. Now either
rankr(a) > rankr(a;) or a = a; € F and thus rankr(a;) = 0. In either case we have
rankr(a;) < . Similarly we have rankz(b;) < a and furthermore a;,b; € F and a; < b;.

So by the induction hypothesis we have that for all i € A\ max(a U b),
rank o (a; U b;) < max{rankz(a;),rankz(b;)}.

If rankzo(a Ub) = 0 < « then we are done. If rankrg¢(a Ub) > 0 then we have that
aUb (i) € FO for all i € A\ max(aUb). So there are some a’,b € F with o/ <1 and

dUb =aUb (i). Thusa’ CaUb (i) and ' C (aUb (i))" so since a; and b; were the

!Note that is possible to find such z and y since F is a front.
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longest satisfying this, it must be that a; Ub; = a U b~ (i). Therefore,

rank ro (a U b) = U{rankf@(a Ub (i) +1:i€ A\ max(aUb)}
= U{rankf@(ai Ubj)+1:i€ A\max(aUb)}
< U{max{rank]:(ai), rankr(b))} +1:7€ A\ max(aUb)}

= max{rankr(a),rankr(b)} < «
This gives the claim. |

So we have:

rank(FC) < rank(F?)
= rankzo ()
= | J{rankzo((3)) + 1:i € A}
< [ J{max{rankz(()), rankz((i))} +1: i € A}
= rank(F) + 1.

Finally, suppose that F has the barrier property and that there are z,y € F¢ with

x C y". We now have the following cases:
o .y c (C,sox,ye F which contradicts the barrier property for F.

e zcCandyc FO\C, then y = aUb for some a,b € F. But aUb = a or aUb = (j) b
for some j € A. So either  C a™, which contradicts the barrier property for F, or

x C b which contradicts that F is Nash-Williams.

o If x € FC \C and y € C then x = aUb so that a C y*, which contradicts the barrier

property for F.

o z,yc FY\ C. So we have for some a,b,c,d € F that z = aUb and y = cU d. Now
aCaUbC (cUd)t and d C (cUd)", so a and d are C-comparable and therefore
a = d since a,d € F. Now aUb C (cUa)" so it must be that |¢| > |a|. But then

cUa = ¢, and we have a C aUb C ¢', which contradicts the barrier property for F.
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So there are no such z,y € F¢, hence FC satisfies the barrier property. ]

The following lemma is also due to Shelah [49]. I present a version of the proof which

I will extend when proving Theorem 7.2.8.
Lemma 7.2.7 (Shelah [49]). If Q is k-bgo then so is Py(Q) for any ordinal .

Proof. Suppose that P, (Q) is not k-bqo. We will show that @ is not x-bqo, by constructing
a bad function. So let f : B — P,(Q) be bad, with B a x-barrier on some A € [s]".

We will define by induction, s-barriers B,, and bad f,, : B, — P,(Q) as follows. Firstly
By = B and fy = f. Now define

Cn={z€B,: fnlzx) € Q}

and let B,11 = Bg”. So for x,y € B, with x <y and f,(z) ¢ Q we have x Uy € By41.
Let g : Poo(Q) X Poo(Q) = Poo(Q) be such that whenever X £ Y and X ¢ @ we have:

e g(X,Y)e X,
e Y €@ implies g(X,Y) LY,
o Y ¢ (Qimplies (VZ €Y), g(X,Y) £ Z.

To see that such a g(X,Y) always exists, assume that X € Y and X ¢ Q. f Y € @
then X £ Y iff (Vo € X),z £ Y, so we can let g(X,Y) be any element of X. If Y ¢ Q
then either we can find a valid value for g(X,Y’), or for every z € X there is some y, € Y
such that < y,. But then let f(x) = y,, so that f : X — Y witnesses that X <Y, a
contradiction.

So for s € B,41 with s ¢ C,, we have s = x Uy for some x,y € B,. In this case we
define f,11(s) = g(fn(2), fu(y)). If s € Cy, then s € By, so let f,11(s) = fu(s).

By Lemma 7.2.6 we have for every n € w that B, is a x-barrier. We now wish to show
by induction that each f, (n € w) is bad.

So suppose that f, is bad and let a < b with a,b € B,,+1. Suppose that a,b ¢ C,, so

a = apUaj and b = by Ub; for some ag, ay, by, by € F,, with ag<taq, bp<b; and ag, by ¢ C,,.
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Soa; C at, by C band a™ and b are C-comparable. Therefore a; and by are C-comparable
and thus a1 = bg since they are both members of B,.

Now fni1(a) = g(fn(a0), fu(ar)) and fni1(b) = g(fu(ar), fu(b1)) s0 fri1(b) € fular)
and Vq € fn(a1), fn+1(a) € ¢q. So indeed fr1+1(0) € fnt+1(a) whenever a <1 b, i.e. fry1 is
bad.

We also note that if z € B,, and f,(z) € Q then z € B, and f,,(z) = fn(x) for every

m > n; this is clear by the definitions of B,, and f,. Using this we can define
B*={x:(3Incw),z e F,A fnlz) € Q},

and f*: B* — @ by setting f*(x) = f,(x) whenever f,(z) € Q.

We claim that B* is a k-barrier. If a,b € B* then we can choose n € w large enough
so that a,b € B,. So we see that for any such a,b we cannot have a C b or a C bT.
Now let S C A, and denote by B,(S) the unique initial segment of S in 5,. Suppose
that there is no initial segment of S in B*, then f,(B,(5)) ¢ Q for every n € w. Thus
frr1(Bnt1(S)) = g(fula), fn(d)) for a,b € B, with a Ub = B,4+1(S). So a C B,4+1(5)
which means that a = B,(S). But by the definition of g we have that

fot1(Bn41(S5)) € Bn(a) = fn(Bn(9)).

But then (f,,(B,(S5)))new is a descending €-sequence, which contradicts well-foundedness
of €. So we conclude that B* is a k-barrier on A.

It remains to show that f* is bad. If a,b € B* then let n € w be large enough so that
a,b € B,. Thus f*(a) = fn(a) € fn(b) = f*(b), and so f* is bad, and @ is not k-bqo. [

Shelah mentions in [49] that it should be possible to compute some y : On — On
so that if Q is k-bqoy(,) then Pu(Q) is k-bqoi. However he never actually made the

computation. We do this in the next theorem.
Theorem 7.2.8. If Q is k-bqo, then P_114(Q) is k-bgoy.

Proof. We follow the same proof as Theorem 7.2.7, keeping the same notation, but with

the extra assumptions; rank(B) = 1 and v = —14«. So assuming P_;4,(Q) is not x-bqoy,
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we obtain a bad function f* : B* — Q and we have {(i) : (i) C x € B*} = [A]'! = B. Tt
now suffices to show that rank(B*) = «. To simplify notation, we will write rank(a) in
place of rankp-(a), and P(3) in place of Pg(Q).

We define ¢ : B* — P(v) by induction on rank(a). If rank(a) = 0 then a € B*, so set
c | B* = f*. Otherwise set

c(a) = {c(b) : b€ B*,|b] = |a| + 1,a C b}.

This is well-defined since if a C b then necessarily rank(a) > rank(b).
Now let A : P(y) — v+ 1 be such that A(A) is the least 4 such that A € P(J).

Claim:

Aoc(a) = =1+ rank(a) + 1.

Proof of claim: We will prove the claim by induction on rank(a). For the base case, if
rank(a) = 0 then a € B* so ¢(a) € Q@ = P(—1+0+1). Clearly § = 0 is the least possible,
so A oc(a) =0 here.

Suppose that rank(a) > 0. If b € B*, |b| = |a| + 1 and a C b, then by the induction

hypothesis we have
c(b) € P(—1+ rank(b) + 1) C P(—1 + rank(a)).

So ¢(a) € P(—1+rank(a)), i.e. ¢(a) € P(—1+ rank(a) + 1) and thus Aoc(a) < -1+
rank(a) + 1.

We now show by induction that Aoc(a) > —1+rank(a)+1, i.e. c(a) ¢ P(—1+rank(a)).
Suppose that rank(a’) < S implies ¢(a’) ¢ P(—1 + rank(a’)). If rank(a) = 8+ 1 and
A € c(a), then by the induction hypothesis we have A ¢ P(—1+ (). But if we had
c(a) € P(—=1+ B +1) then some A’ € ¢(a) is in P(—1 + ), which is a contradiction.

Now suppose that —1 + rank(a) = rank(a) = A for some limit ordinal A. Then for
some p € On and i € p there are ¢(b;) € c(a) such that rank(b;) = 6; < A and ¢, 6 = A.
So by the induction hypothesis ¢(b;) € P(—1+ d; + 1) and ¢(b;) ¢ P(—1 + ;). Suppose
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that c(a) € P(A). Then it must be that c(a) C P(d) for some § < A. But ¢(b;) ¢ P(9)
whenever ¢; > J, and hence c(a) € P(9) since ¢(b;) € c(a). This is a contradiction, so

c(a) ¢ P(\) = P(—1 + rank(a)). [ |

We notice that

U B. =5,

new

since By = B consists only of length 1 elements, and in general if x € B, and f,(z) ¢ Q
then B, 1 contains every length |x| + 1 extension of z that is in B*.

We now define h : B* — Puo(Q) so that h(a) = f,(a) whenever a € B,. In order to
see that this is well-defined; notice that if a € B,, and f,(a) ¢ @Q then a ¢ B, for any
m > n, moreover if f,(a) ¢ Q then f,/(a') ¢ Q for any o’ C a with o’ € B,,;. Hence any
a € B, N By, is such that f,(a) € Q and therefore f,(a) € Q.2 From here it follows that

the functions f, and f,, agree on B, N B,,, and therefore h is well-defined.

Claim: For any a € B*,
Aoh(a) = Aoc(a).

Proof of claim: This is clearly the case when rank(a) = 0 since then h(a) = f*(a) = c¢(a).
Assume for induction that A o h(a) > A o c(a) for every a with rank(a) < . If a b and
la| +1 = |b| then h(a) € h(b) by the definition of f;. So using the induction hypothesis we
have

Aoh(a) > Aoh(b) = Aoch)

The definition of ¢ gives that
Aoc(a) = U Aoc(b)+1
be{z:aCz,|z|=|a|+1}
So if Aoc(a) = £ + 1 then there is some b € B* with a T b and |b| = |a| + 1 such that
Ao c(b) = & Therefore A o h(b) > & by the induction hypothesis, which means that
Aoh(a)> €&, ie. Aoh(a) =&+ 1= Aoc(a) as required.

2This was proved in Lemma 7.2.7.
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If Aoc(a) = X for a limit ordinal A then there are b; (i < \) with a T b; and

|bi| = |a| + 1 such that A o ¢(b;) = §; for some §; < A\ with |J._, d; = A\. So Ao h(b;) > 6;

i<
by the induction hypothesis. But also h(b;) € h(a) for every ¢ < A, so Ao h(a) > ¢; for
every ¢ < A. Therefore

Aoh(a) > Udi =A=Aoc(a).
1<
This completes the induction and gives the claim. |
Now if a € By then h(a) = f(a) € P(7), hence Ao h(a) < . We also note that by

definition,

rank(B*) = U (rank(a) + 1).
la]=1

So if rank(B*) = ¢ + 1 then there is some b € By such that rank(b) = ¢. Using the two

claims we see that
—14+C¢+1=Aoc(b) <Aoh(b) <yv=-1+a.

Therefore indeed, rank(B*) < a whenever rank(B*) is a successor ordinal. Finally if
rank(B*) is a limit ordinal, then since for any a € By we have rank(a) < rank(8*). Thus
by the two claims, it follows that

rank(B*) = U (rank(a) + 1)
ac[A]}

= U (—1 4 rank(a) + 1)

Therefore rank(B*) < «, as required. O

We now aim to prove that 3 implies 4 in Theorem 7.2.4. The following is a modified

version of the method used by Shelah [49], which works in the absence of the barrier

property.
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Lemma 7.2.9. If P_114(Q) is k-bqo'1, then Q is k-bqd .

Proof. Assume that @ is not x-bqo, we aim to show that P_11,(Q) is not k-bqo’;. So
suppose F is a front on A € []® with rank(F) < a, and f : F — @ is bad.
To simplify notation, we will again write rank(a) in place of rankp«(a), and P(3) in

place of Pg(Q).
Claim: For any a € F\ F and b € F, if a < b and |a| = |b| then aUb € F.

Proof of claim: For such a and b we have that a™ £ b. Now because |a| = |b| we have

aUb=a" (i) for some i € A. So since a € F \ F, we have aUb € F. [ |

Now for any a € [k]<¥ let g(a) = —1 4 rank(a) + 1. Then g(a) = 0 iff rank(a) = 0.
Define ¢ : F — P (Q) by induction on rank(a). If rank(a) = 0 then a € F, so set
c [ F = f. Otherwise set

c(a) ={c(b) : b€ F,|b| = |a] + 1,a C b}.
This is well-defined since if a C b then necessarily rank(a) > rank(b).
Claim: For any a € F we have c(a) € P(g(a)).

Proof of claim: We prove the claim by induction, when rank(a) = 0 we have c¢(a) € P(0) =
P(g(a)). If rank(a) > 0, and assuming the claim holds for any b with a C b, then it follows
that

c(b) € P(g(b)) C P(—1 + rank(a)).

Hence c(a) € P(—1 + rank(a)) follows from the definition of ¢. Therefore

c(a) € P(—1+rank(a) + 1) = P(g(a)).

For a € [k]! we have

g(a) = =1 +rank(a) + 1 < —1 +rank(F) < -1+«
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hence by the second claim, ¢(a) € P(—1 + «). So in order to show that P(—1 + «) is not

k-bqo’y it suffices to show that r : [A]! — P(—1+ «) given by r(a) = c(a) is bad.
Suppose for contradiction that r is good, i.e. there are ag,by € [A]' such that ag <1 bg

and r(ag) < 7(bp). We will define inductively on i € w, elements a;,b; € F such that for

every ¢ € w:
e a; b,
o c(ai) < c(bi),
o a;| = |bi| =i+1,
® a; C a;+1 and b; C bjyq.

Thus ag and by suffice for the base case. Suppose 0 < i € w and we have defined a; and b;.
By the induction hypothesis we have a; < b;, if a; € F \ F, we can define a;+1 = a; Ub; so
that a;11 € F by the first claim. Then a; C a;41 and |a;41| = |a;| + 1 =i + 2 as required.

Now since c(a;) < ¢(b;) either:

e Jh: c(a;) — ¢(b;) such that for all ¢ € ¢(a;), ¢ < h(g). In this case let bj11 be such

that ¢(bj+1) = hoc(ait1), hence c¢(a;1+1) < ¢(bi+1) as required.

e For some ¢ € ¢(b;) we have c(a;) < ¢. Then by definition of ¢ we have ¢ = ¢(x) for
some z € F with |z| = |b;| +1 and b; C 2. Now set b;,1 = x so since c(a;11) € c(a;),

we have c¢(a;+1) < ¢(a;) < ¢(biy1) as required.
e ¢(b;) € @, which implies that b; € F.

Now in the first two cases, we also have that |bj+1| = |b;| + 1 and b; C b;1+1, whence it
follows that a;+1 <1 b; 11, and we can continue the induction.

So now we have that the induction stops at n € w, when either a, € F or b, € F.
Suppose that a,, € F, then since c(ay) < ¢(by,) there is some element ¢ € QQ N TC(c(by,))
such that ¢(a,) < g. So by definition of ¢, there is some b € F with b, C b such that

¢(b) = q. But then since |a,| = |b,| and b, C b we have a,, < b. Furthermore,
flan) = clan) < c(b) = f(b)
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which contradicts that f was bad.

So it must have been the case that a,, € F\ F and the induction stops because b, € F.
But then since c¢(a,) < ¢(b,) we have that every ¢ € Q@ NTC(c(ay,)) is such that ¢ < ¢(by).
Pick a € F such that a, Ub, C a. Then a < b, and furthermore c(a) € @ N TC(c(an))

which implies that

again contradicting that f was bad.
Hence we have obtained a contradiction of our assumption that r was good, which

completes the proof. O

This completes the proof of Theorem 7.2.4, from which Theorem 7.2.3 follows. Now
Theorem 7.2.3 gives rise to a version of Simpson’s definition of bqo for xk-bqos (similar to

Definition 2.1.4, and that originally found in [53]) as follows.

Definition 7.2.10. For a cardinal x, a quasi-order @ is called k-bqo iff for any A € [k]*
there is no continuous bad function f : [A]¥ — @, giving [A]“ the product topology and
Q the discrete topology.

Theorem 7.2.11. The two definitions of k-bqo are equivalent.

Proof. Suppose that there is a bad function f : F — @ for some F a front on A € [k]".
Then define g : [A]“ — Q so that g(X) = f(F(X)). Then if r C X and y C X we have
that @ <y, therefore if also z,y € F, we have g(X) = f(z) < f(y) = g(X ™) and therefore
g is bad. Moreover g is continuous since if X,Y € [A]“ are such that F(X) = F(Y) then
9(X) = g(Y).

Now suppose that there is a continuous bad function f : [A]* — Q. Since f is
continuous, for each X € [A]¥, there is some x T X such that |f([z,A])] = 1. Let
h : [A]Y — [A]<¥ be given by h(X) = z whenever z is shortest such that  C X and
|f(Jx, A])] = 1. Let F = range(h) and we claim that F is a front. Firstly, F is Nash-
Williams since if # C y with z,y € F, then y = h(Y") for some Y € [A]“. However, we can
see that x C— y C Y and |f([x, A])| = 1 so by definition of h we have in fact that h(Y') = z,
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which is clearly a contradiction. Now clearly for any X € [A]* we have h(X) € F and
h(X) C X. So indeed F is a front.

Now let g : F — @ be defined by g(z) = f(X) for any X € [z, A]. This is well-defined
since = € range(h) so by definition of h we had that |f([z, A])| = 1. We have that g is bad
because if z,y € F with <<y then we can let X be such that z © X and y C X, and
thus

g(x) = f(X) £ f(XT) = g(y).

The conclusion of the theorem now follows from Theorem 7.2.3. O
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Chapter 8

Classitying fronts on k.

We will now somewhat depart from Shelah’s bqo theory at uncountable x, and consider
the combinatorics of the barrier property. We have seen that if ) is a quasi-order and
there is some bad f : F — @ with F a front on some A € []®, then there is in fact
a bad g : B — Q with B a k-barrier. Indeed, Theorem 7.2.4 implies that we can even
assume that F and B have the same rank. However the relationship between the two bad
functions f and g is rather indirect. More specifically, we would like to ask the question -

how ‘close’ is F to being a k-barrier?

8.1 Extending fronts to barriers

Suppose that we have two fronts F,G on A € [k]", such that for every a € G there is some
b € F such that b C a. Then whenever we have a bad function f : F — Q, we can define
a new function g : G — @ by letting g(a) = f(b) whenever b C a. Then the function g will
also be bad. In fact, the corresponding functions f’: [A]* — @ and ¢’ : [A]* — @ given
by the alternative Simpson style definition (defined as in the proof of Theorem 7.2.11) will
be equal, and so in a sense f and g are equivalent.

In this way we can consider any operation that extends elements of a fronts as somehow
invariant for bad functions. That is to say that if we take a front F, and extend some

of its elements to generate another front G then any bad function with domain F will
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be equivalent in this sense to a bad function with domain G. In a similar way, when we
restrict a front F on A to some F|B for B € [A]" we have that f [ (F|B) is equivalent to
part of f.

8.1.1 Stars and U

So we have two methods of obtaining a x-barrier from a general front F. Restriction to
a k-barrier, which is not always possible for uncountable k, and extension of F into a

k-barrier which we will investigate in this chapter. For example, consider the front

F={M}U (P \{(1) 0 ae s\ {0, 11},

Then F is not a k-barrier since (1) C (0, 1,2)" witnesses the failure of the barrier property.

However, every element of F is an initial segment of an element of [k]3, which is a k-barrier.

Example 8.1.1. Indeed, for some specific cardinals x there are fronts F on « which
cannot be restricted to a k-barrier, but can be extended to one.

Let < be the lexicographic ordering of 2, ie. for z,y : K — 2, z < y iff z(a) <
y(a) where « is least such that z(«) # y(«). Enumerate "2 as {z, : @ < 27}, and let
f i [s1]? — 2 be such that f({a,8)) = 0 iff x4 < z5. We call f the Sierpiriski function
(see Proposition 7.5 in [22], originally [51, 29]). Sierpinski showed that this f satisfies the
following property:

(VA € [T, f7[A]? = 2. (8.1)

Now let
F={a"(X2f(a):ac [} X c[s"\ (maxa)“}.

Then it is simple to check that F is a front. Let A € [s*]*" and suppose that F|A satisfies
the barrier property. So there are no a,b € F|A with a C b thus for every X € [A]¥ we
have | F(X)| < |F(X )|, and therefore for any z,y,z € A such that x < y < z, we have

f({z,y) < f({y, 2)).
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Since f7[A]? = 2, there is some (z,y) € [A]? such that f((z,y)) = 1. Now for any

20,21 € A with y < 29 < z1 we have

1= f({z, ) < f({y;20)) < f((20,21)) < 1.

It follows that for any B € [A\ y]? we have f(B) = 1. But this contradicts property 8.1.

Therefore F|A does not satisfy the barrier property for any A € [/<L+]”‘+. However

4

since the length of elements of F is bounded above by 4, we have [k]* is an extension of

F, which is clearly a x-barrier.

The most direct way of extending elements of a front in order to attempt to find a

k-barrier is the following.

Definition 8.1.2. Given a front F on A € [k]", define
OF={(aX)|ne[A¥:a€cF,
n=sup({la]} U{|p| —1:be F, (I« € [x]"),bC x a"X})}.
We also define U°F = F and UM F = U(U"F) for all n € w.

Now we notice that for the front F in Example 8.1.1, GF is a k-barrier. However OF

will not always be a front. The problem is that there could be some a € F such that
sup({la|} U{|p| —1:be F,3xc [k]),bC * 0" X}) = w.

When this happens we call F inextensible, and if this never happens we call F extensible.

The operator U tries to improve an extensible front F by extending its elements to form
a new front but meanwhile removing cases where the barrier property fails. So as before,
any bad function from F will induce the same bad function in our version of Simpson’s

definition as its extended counterpart from UF.
Definition 8.1.3. For a,b € [5]<%, if a T b" then we call b a x-extension of a.

So b is a x-extension of a when b consists of an extension of @ with an element adjoined

to the beginning (see Figure 8.1).
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b= (x)"(ag, a1, az, ...,an, bo, b1, ...by)
a= (ag,a1,az, ..., an)

Figure 8.1: A x-extension b of a.

Lemma 8.1.4. If F is an extensible front on A € [k]", then OF is a front.

Proof. Suppose that there are (¢~ X) [ n,(b"Y) | m € OF with
(@ X)nC (b7Y) [ m.
Therefore a = b and n < m, moreover since F is extensible, for some *, ¥ € [k]' we have
¥ (a"X)n, ¥ (a7Y)|m €F.

But then
(e X) InC ¥ (a7Y) [ m.

But since F is a front this means that for some n’ > n we have
(@™ (X \a)) | n €F.

But n was the supremum of a set which contains n’, so that n’ > n, clearly this is a
contradiction. Hence we conclude that OF is Nash-Williams.

Now let X € [A]“. Let a be the initial segment of X in F. Now either a € UX in
which case we are done, or (a~ X) [ n € OF for some n < w since F is extensible. So we

conclude that OF is a front. O

We note however that OF may not be a s-barrier, since some of the extended elements
may cause new failures of the barrier property. If this is the case then perhaps iterating

O can generate a x-barrier. This intuition gives rise to the following definition.

Definition 8.1.5. A front F on A € [k]" is said to have U-rank k € w, iff k is least such
that OFF = U*t1F. We say that F has U-rank oo if there is no such k.
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Notice that UFF = Uk F iff GFF is a k-barrier. This follows from Lemma 8.1.4, and

since UF = UF1 iff for every a € F and X € [A]*,
sup{|b| = 1:b€ F,(3x € [s]'),b T+ a” X} < g

which is equivalent to saying that a has no x-extensions. So the U-rank of F is the least
number of iterations of U required to apply to F so that the result will be a s-barrier.

Now consider some front F of U-rank k£ € w. We want work out what makes it have U-
rank k, or more precisely, which are the elements of F that mean that k is least such that
UOFF is a k-barrier. For example, in our original example, the elements (1) and (0,1, 2)
cause F to have U-rank 1.

If F has U-rank k > 0, then there must be an element a € OFF that is not in U1 F.
In order for this to happen, U¥"'F must contain both a proper initial segment a’ of a
and a *-extension b of this initial segment, with |b| = |a| + 1. Now since a ¢ UF~1F,
it must be that b ¢ U¥~2F, and so there are similar implications for b as there were for
a, i.e. UF"2F contains an initial segment of b and a *-extension of this initial segment.
Ultimately, using an inductive argument, the fact that a € U*F but a ¢ U*~'F implies
existence of a certain system of x-extensions and initial segments that are contained in
F = U'F. Initial segments are easily found since applying U cannot reduce the length
of elements, so we need only worry about iterated x-extensions. This gives rise to the

following definition.

Definition 8.1.6. Given X € [«]" and k,n € w, we call a ¢ € F (k,n, X)-critical iff either

there is some finite sequence * € [x]* such that
c=+ (X [n).

Given a (k,n, X)-critical ¢ € F, we say that c is (k,n, X)-mazimal in F if there is no
(I,m, X)-critical element of F for | < n and m > n with at least one of these inequalities

strict.

Lemma 8.1.7. If a front F has a (k,n, X)-critical element, then X | n' € OFF for some

n > n.
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Proof. Let ¢ € F be (k,n, X)-critical. We will prove the lemma by induction on k € w. If
k =0 then ¢ = X [ n and hence clearly the lemma holds.

Suppose that £ > 0 and the lemma holds for £ — 1. Then ¢ = %" (X [ n) for some * €
[k]F. Let o € [k]*~! and *; € []' be such that * = %o "*1. Then cis (k—1,n+1,%~X)-
critical, so by the induction hypothesis (x17X) | ng € U*LF for some ng > n. Now
UOF~1F also contains X | m for some m € w + 1. Therefore, by definition of U, we have

that X | n’ € UFF where n’ > max{m,no} = n. Which completes the induction. O

Theorem 8.1.8. For X € [x]® and k,n € w, with k > 0 suppose that OFF is a front.
Then we have that X | n € OFF and X | n ¢ OF ' F iff F has a (k,n, X)-mazimal
element.

Proof. (—)

We will first prove that there is some (k,n, X)-critical element by induction on k € w.
Clearly it holds when k = 0 since then X | n € F is the only possible (k,n, X)-critical
element.

Suppose that the lemma holds for all £ < r. Now assume that X [ n € O"F and
X |'n ¢ U""LF. So since elements of a front can only be extended after applying U we
have that X | ng € O""LF for some ng < n + 1. Furthermore, by definition of U, we see
that n = sup{|b| —1:b € F,(3Ix € [x]'),b C + X}, and thus since U¥F is a front we have

n € w so there is some * € [k]! such that
« (X |n)cULF.

If K =1 then this element is (k, n, X)-critical. Now if k£ > 1 then suppose that
(X | n) e Ur2F.

But then by definition of U, we have that ng > n, which is a contradiction. So
X ) g UT2F,

which means we can apply the induction hypothesis here, which gives a (r—1,14n, %o~ X)-
critical element ¢ = %1~ ((x9” X) | 1 +n) (for some x; € [k]"~!). Then c is also (r,n, X)-

critical, as required.
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It remains to show that ¢ is maximal. Suppose not, then there is some (r/,n', X)-
critical subset for v < r and n’ > n with at least one of these strict. So by Lemma
8.1.7, this means that X | n” € U"F, where n” > n’. If n” > n then this contradicts
that X | n € OFF. But if ¥ < k and n” = n then either X [ n € UO""LF which is
a contradiction of our original assumption, or X [ [ € U™ 'F for some | > n, which
contradicts that X [ n € O"F.

(<)

Now assume there is a (k,n, X )-maximal element ¢ € F. Then by Lemma 8.1.7 we
have X [ n' € OFF for some n' > n. If n’ > n then let k&’ < k be least such that there
is some m > n with X | m € UOF F. Therefore (—>) implies that there is a (K, m, X)-
maximal element, but we know that ¥’ < k and m > n so since ¢ was (k, n, X)-maximal,
we have that &’ = k and m = n. But this means that s [ n € U*F and k is least such that
this occurs, i.e. s [ n ¢ UFF. O

Corollary 8.1.9. If the lengths of elements of F are bounded, then F has finite O-rank.

Proof. Suppose that F has infinite U-rank, so by Theorem 8.1.8, F contains (k,n, X)-
maximal elements for arbitrarily large &, and some n € w, X € [k]*. But if cis (k,n, X)-

maximal then |c| = k + n, and therefore F contains arbitrarily long elements. O

8.1.2 Classifying fronts by extensibility

K

Now that we have seen how U can behave on fronts on A € [k]*, we will classify such

fronts by their behaviour when U is applied repeatedly.
Definition 8.1.10. Let F be a front on A € [k]”. Then define:
o Fis U if r € w is least such that O"F = UO't1F and U"F is a front.

o F is U iff there is some X € [A]* and for each i € w there are k;, n; € w such that

F contains a (k;, n;, X)-critical element, k; < kj+1, n; < nj+1 and U'F is a front.

o Fis US®iff U"F is a front for every r € w, but F is not U or UF for any k € w.
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e F is Uy iff OF is not a front.
o Fis UF iff r is least such that O"F is not a front.

For T € {U", 0, 0,0, 0%}, we call T the type of F and say that F is of type I iff F
is I

Proposition 8.1.11. Every front on A € [k]" is precisely one of the following: U, U,

U< or U, for somer € w.

Proof. Suppose that U"F is a front for every r € w. Then F is either %, U=* or U7,
for some r € w. If it exists, let r € w be least such that O"F = U" F, so that F is U".
Otherwise F is either U or 3=°°. By definition if it is U then it cannot be U<*°. Now
the only other case is if U"F is not a front for some r € w. Thus we can let r be least such

that this happens, so that F is U7. 0

We will now give some examples of each type.
Example 8.1.12. Any x-barrier is U°. For example [x]" for n € w.
Example 8.1.13. Let
F={{0,1)"a:ac [x)\{0,1}]?}
U{()"azae s\ {0,1}]"}
U{(0)"azaex\{0,1}]"} U s\ {0, 1}]".

Then F is a front on k. Furthermore let X = (2,3,4,5,...) € [k]¥, then the element
(0,1,2,3) is (2,2, X)-critical. Any other (2,n, X)-critical element has length 4 and there-
fore n = 2. Any (1, n, X)-critical element has length 1 or 2 and hence n < 2. Furthermore
(2) is the only (0,n,X)-critical element for any n € w. Hence (0,1,2,3) is (2,2, X)-
maximal.

Now if for some Y € [k]* there were a (3,n,Y)-maximal element a then n > 1 since
there is an initial segment of Y in F of at least length 1 (and otherwise this element would
contradict that a is (3,n,Y)-maximal. Therefore |a| = 3 4+ n > 4, but every element of F

has length at most 4. Therefore no such a exists.
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Therefore OF # U2F = U3F. Clearly the length of every element of U2F is bounded
above by 4, hence U2 F is a front, and therefore F is U2.

By introducing (k, n, X)-critical elements for & > 2 we could also give examples of UF
fronts. If we introduce such elements for different X and arbitrarily large k, then we could

make a U< front.
Example 8.1.14. Let
F={n)"a:ncwac[k\w"}U{{n,m):n<m<whU[r\w]"
Then F is Uy since if a = (w) and X = (w+ 1,w + 2, ...) then
sup{[b| —1: b€ F,(Fx € [r]),b T+ a" X} = w.
Example 8.1.15. For some r € w, let
F={(noy.c,np—1) a:mg < ... <nyp_1 <w,a € [k\w]" 1 U

W™ u{a"b:a €W, be [k\w]'}.

Then F is a front. Notice that if » > 1 then F does not contain arbitrarily long *-extensions
of any element, and that then UF contains some a” b such that a € [w]"~! and the b are
arbitrarily long. Whence we see that U" ' F contains arbitrarily long *-extensions of an

element, so that U"F is not a front. This means that F is U7,.
Example 8.1.16. Let F{ consist of the elements:
{w),
(1l,w,w+1),
(2,3, w,w+ Lw+2), (3, w,w+1),

(4,5,6,w,w+ 1w+ 2,w+3),({5,6,w,w+1,w+2),(6,ww+1),
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For X € [x]", if there is no a € Fj such that a C X, then let bx be the shortest initial
segment of X such that no a’ € Fy is E-comparable with by, otherwise let bx be the initial
segment of X in Fy. For example, if the first element of X is a > w, then bx = (a). If
(4,5,6,w,a) C X for v # w+1, thenlet by = (4,5,6,w,a). Thenlet F = {bx : X € [x]"}.
It is simple to check that F is a front on k and Fy C F.

Set Y = (w,w+1,...). Then (w), (l,w,w+1),(2,3,w,w+1,w+2),{4,5,6,w,w+1,w+
2,w+ 3),... are (k,k+ 1,Y)-maximal, for K = 0,1,2,3, ..., because they each contain the
longest part of Y for each given k.

We also see that no element has arbitrarily large x-extensions and that this property

will be preserved when applying G. So F is U°.

Now we want to be able to describe the relationships between these types of front,

with respect to extendibility.

Definition 8.1.17. Given two fronts F and G, we say that G is an extension of F iff for

any a € G there is some b € F such that b C a.

Definition 8.1.18. For two types T,I' € {U",0%°,0°*°,0,0% : r € w} we say that
T C I iff for any front F of type T there is a front G of type I' such that G is an extension
of F.

Proposition 8.1.19. For every r € w, U™ C 0" and UL C U7,

Proof. If F is U7*! then UF is an extension of F, and it is O7. Similarly if F is U7

then OF is an extension of F, and it is U7 . O]

Theorem 8.1.20. U° T U" for any r € w.

Proof. Let B be a r-barrier which is (without loss of generality) a front on x, and 0 < r € w.
The theorem holds if we can find an extension of B that is U".

Let X = (w,w+ 1,w+ 2,...), let  be the initial segment of X in B, and let y be
the initial segment of (0,1,2,...,7 — 1)” X in B. We also let z € [w]<“ be such that if
yC (0,1,2,...,7r — 1) then ¥~z =(0,1,2,...,r — 1), otherwise let z = (). Then set

F=B\{yHu{y v a:wCz zla=1u alfz z}.
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Then F is a front, and we will show that it has an extension that is O". Let b be the initial
segment of (0,1,2,...,7r — 1) X in F. Then b is (r,|z| + 1, X )-critical, and we claim that
it is (r,|z| + 1, X )-maximal.

Let ¢ = (X [ n) € F be (k,n, X)-critical, so * € [s]¥. If * is not C-comparable with
y then ¢ € B, so by Lemma 8.1.7 we have that X [ n’ € U¥B for some n’ > n. But we
have that B is a s-barrier and therefore OB = B, which gives that n’ = |z|. So in this
case we have n < |z| 4+ 1 so ¢ cannot contradict that b is (r, |z| + 1, X )-maximal. Now if
% is C-comparable with y, then by definition of F, we either have x C (0,1,...,7 — 1) and
n =1 < |z| + 1 or we have ¢ = b, neither of which can contradict that b is (r,|z| + 1, X)-
maximal. Therefore b is indeed (r, || + 1, X)-maximal and therefore U"~'F # U"F by
Theorem 8.1.8. So it remains only to check that F is not U%, 15>, <> or 0" for any
ke€wandr >r.

Now since the elements of F \ B have bounded length, we must not have added any
(k,mn,Y)-critical elements for arbitrarily large n and k and Y € [x]* (since such elements
have length n + k). So since there were not any such critical elements in B we have that
F is not U%, U°° or U<®°. Therefore it must be that F is U for some ' > r, so that

U7 T F is U O
Theorem 8.1.21. <> C 1.

Proof. Let F be a U<* front on . It suffices to find an extension of F which is a x-barrier.

Since F is U< we have that U’F is defined for every i € w. Define
U®F ={a € [5]<¥ : a € B'F for infinitely many i € w}.

Clearly then U%°F is an extension of F. We claim that it is a x-barrier, and we begin by
showing it is a front.

Let X € [k]“ be such that there is no initial segment of X in U°°F. This means that
there are infinitely many i,n € w such that X [ n € O°F and X [ n ¢ U~ F. But then
by Theorem 8.1.8, for each such i,n there is a (i,n, X )-maximal element of F. But this

implies that F is U, which is a contradiction.
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Now if a € U®F, then there is some k € w such that a € U/ F for every j > k. This
is because if a € U*F and a ¢ U*1F then a ¢ U/F for any j > k, which means that
{i:a € UB'F} is finite so a ¢ U®F. So if a,b € U°F with a C b, then let k,I € w be such
that a € U/ F for every j > k, and b € U F for every r > I. Then a,b € U™kl F which
contradicts that 5™k} F is a front.

Therefore U°F is a front. It remains to check that it is a x-barrier. So suppose that
a,b € U®F are such that a C b". Then similarly there is some & € w be such that
a,b € UJF for every j > k. But then b is a *-extension of a and therefore a ¢ UF+1F,

which is a contradiction. Hence O%°F is a k-barrier. O

Theorem 8.1.22. For any r € w and Y € {U",05°,0°°,0,,0% : n € w,m > r}, we

have T T U7,
Proof. Let r € w and F be a front on x of type
T € {U",0°°,0%°,04,07 :ne€w,m>r}

In particular, note that O"F is a front. It suffices to find an extension G of F such that
U"G is not a front and U™ 1G is a front. First, by extending if necessary, suppose without
loss of generality that all elements of F are at least length r + 1.
Let F(Y') be the initial segment of Y in F, and for Y € [s]“, let Y = (Yp, Y1, ..., Yo 1, ..0).
Now define:
W= {5 Z:be [, Z € [x\ w]),

Go={aceF: (VWY eW),alZ Y},
Gi={Y[m:Y eWm=max{|F(Y)|,r+Y._1}},

and

G =GyUdGr.

We claim that G is a front. If X € [k]“ then either X ¢ W in which case there is an initial
segment of X in Gy, otherwise X € W so there is an initial segment of X in G;. Now if

a,b € G with a C b then we have the following cases:
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e a,b € Gy which contradicts that F is a front.

e a € Gy, b € Gy, but then there is some Y € W with « ©— b C Y which contradicts

a € Gp.

e a € Gy, b e Gy, so that the first 7+ 1 elements of b are elements of w, yet the r + 1th

element of a not an element of w, which is a contradiction.

e a,bc Gi,sowehavea =A | mand b= B | m for some A,B € W. First, we
must have that A,_1 = B,_1. Now since a C b, and F is a front, it must be that

F(A) = F(B). Hence m = m/, contradicting that a C b.

So G is indeed a front.

It remains to show that G is U7 . First we will show that U™ 1G is a front. If not,
then for some I < r — 1 there is some t € U'G with arbitrarily long *-extensions in Ulg.
Without loss of generality let | be the least such that this occurs. Then since [ is least,
these *-extensions are not contained in Ul_lg, and hence by Theorem 8.1.8 there are
(I,n, X)-maximal elements of G for each of these x-extensions, for some X € [k]* and
some unbounded set of possible n, with the length such an element equal to [ + n. Let
C C G be the set of these (I,n, X )-maximal elements. If some subset of C' with arbitrarily
long members was a subset of F, then since G is an extension of F the elements of C are
still maximal, so using Theorem 8.1.8 we can see that ' F is not a front, which contradicts
that U"F is a front.

So C'N(G\ F)=CnNGg contains (I,n, X)-maximal elements for G for some X € [x]*

and unbounded n. But since the length of an element Y [ m € Gy is
max{|F(Y)|,r + Y,_1},
and U1 F is a front, we have for any ¢ € C'N G which is (I,n, X)-critical, that
lef=r+c_1=1+n

where ¢ = (cg, ..., ¢|¢—1). So therefore since there were such (I, n, X)-maximal elements of

C N G for arbitrarily large n € w we have that {¢,—1 : ¢ € C NG} is unbounded in w.
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But since [ < r — 1 we have ¢,_1 is fixed, so this cannot be the case, and we conclude that
U 1G is a front.

Now consider A = (w,w + 1,w + 2,...) € [k]“. Let for n > r, let
cn =G(0,1,...,mr—2,n)" A).

Then since |c,| = n we have {|c,| : n € w} is unbounded. Now ¢, is a (r — 1,|c,| — r +
1, (n)" A)-critical subset of G. Hence Lemma 8.1.7 implies that U"~'G contains (n) (A |
n') for some n’ > |c,| —r+ 1. But then since {|¢,| : n € w} is unbounded, this means that
{n’ :n € w} is unbounded, so if a is the initial segment of A in U"1F and a~ X = A, we

have

sup{|b| = 1: b€ U™ ' F,(3x € [x])'),b T+ a" X} =sup{n’ :n € w} = w.
Hence UG is not a front and r is least such that this is the case, i.e. G is U%. O
Theorem 8.1.23. % C U<®

Proof. Let B be a k-barrier, i.e. Bis a front on & of type U°. It suffices to find an extension

of B that is U<*°. For n € w, define as follows:
Xp = (nw,nw + 1,nw + 2, ...),

an = (% n?+1,.,n*+n—-1),

let x,, be the initial segment of X, in B and let y, be the initial segment of a,,” X,, in B.
Now let
F=1{yeB: (¥new),y+ya U

{yn/\u“w S [/i]<w “Yn wE an T,y U w .zz ap” Tp, "U}’ = 1}

Then F is a front on x and it remains to show that F is U<*°. First we show that F is

not U" for any r € w. For n € w consider
cn=an, (X, ||z|+1)€eF,
and notice that ¢, is (n,|z,| + 1, X,,)-critical.
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We claim that ¢, is (n, |x,| + 1, X, )-maximal. Suppose there is a (n’, m, X,,)-critical
¢, € Fforn' <nand m > |z, + 1. If ¢, € B, then by Lemma 8.1.7 we have that m is
at most equal to the length of the initial segment of X,, in U" B. But since B is U9 we
have that U™ B = B and thus m < |z,| < |z,| + 1 which is a contradiction. So the longer
element ¢/, must be in F \ B, and therefore for some i € w we have y; C ¢/,. However since
each X, (n € w) has a different first element and ¢}, was (n’, m, X,,)-critical, it must be
that ¢ = n. Now considering the length of the longest possible extensions of y, in F we
have

|an| + |zp] +1 > || =m+n'.

But then since ¢, is (n’,m, X,)-critical, n’ is equal to the number of elements in the
sequence ¢, that are less than the first element of X,,, i.e. n’ = n. This implies that
m < |z,| + 1 and so m = |z,| + 1. Thus ¢, is indeed (n, |z, |+ 1, X;,)-maximal. Therefore
by Theorem 8.1.8, U"F # U™t F for all r € w, which implies that F is not U" for any
rEw.

If we were to have the correct critical elements s,, that make F is U or U’ for some

r € w, then these are of form s, = *,” ()" b, for some *, € [k]<¥

, some o € k and
some by, € [k]<¥ with |b,| < |bp+1|. We note that « is fixed since if s, is (k,[,Y)-critical
then « is the first element of Y. Since B is a k-barrier, infinitely many must be in F \ B
(otherwise B would be U or U’ ) so assume without loss of generality that s, € F\ B
for every n € w. Now « is an element of each s, (n € w) and therefore by definition
of F, this is either the last element of s, (and hence |b,| = 0 so n = 0 because the b,
have increasing length); or there is some fixed j € w such that y; is an initial segment
of this s,. So y; is an initial segment of s, for every n > 0. But the length of possible
extensions of y; is bounded by |a;|+|z;|+ 1, which contradicts that the lengths of b, were

unbounded. Therefore such critical elements s,, for n € w cannot exist, which implies that

F is U<, O

Theorem 8.1.24. UY C U
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Proof. Let B be a k-barrier. It suffices to find an extension of B that is 0. Let
X =(w,w+1,..),

an = (n?n*+1,...,n°+n—1),

let  be the initial segment of X in B, let y,, be the initial segment of a,,” X in B, and let
xn = X | (Jz| + n). Now define

F={yeB:(vnecw),y#uy U

{yn v we K]y uC an T yn uw I an” iy, lw| =1}

Then F is a front and it remains to show that F is 0. Let ¢, = a,,” (X | |zp|+1) then ¢,
is a (n, |x|+n+1, X)-critical element of . Then since n < n+1 and |z|+n+1 < |z|+n+2
it remains only to check that U'F is defined for every i € w.

If O'F is not a front for some i € w, then by Theorem 8.1.8 there are (i — 1,s;,Y)-
maximal elements c;- of F for some i € w and s; € w unbounded for j € w. Then for any
J € w, the j + 1th element of c; is equal to the first element of Y. Now since at most
finitely many c; were subsets of B (else B is not a x-barrier), we can assume without loss
of generality that C;’ € F\ B for every j € w. Suppose that the first element of Y is less
than w, then for some n € w and every j € w, we have y, C c;-, but the length of possible

elements of F with initial segment yy, is bounded by |a,| + |z,| + 1, but then
|an| + |zn| +1 > || =i — 14 ;.

Hence {s; : j € w} is bounded which is a contradiction.
So the first element of Y is at least w. Since ¢j € F \ B, for each j € w either n; =1

or there is some n € w such that a,, C c;-. But the number of elements of c;- that are less

than the first element of Y is precisely ¢ — 1. So since |a,| = n, and a,, € [w]<*, we have
{an : (3j €w),an C &} < w.

But then the lengths of these ¢ is bounded by |am| + |zm| + 1 where

m = max{|a,| : (3j € w),an E c}}.
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This means that {s; : j € w} is again bounded which is a contradiction and therefore G'F

is defined, hence F is UO°. O
NN L. B U U
q
e
U<oo U

Figure 8.2: The digraph of the relation C on the set {U0", U< U, 0% : n € w}.

8.1.3 Other extensions

We know that for r € w we can extend U" fronts to k-barriers by repeatedly applying O.
We also know that we can extend U< fronts to s-barriers by applying 0> as in Theorem
8.1.21. We know that U cannot however extend U or U7, to k-barriers. However U is
just one possible type of extension, so we ask if there is any method of extending O and
U, fronts to x barriers. Le. is U7 C UY and is 0% C U°? We answer both of these

questions negatively.
Lemma 8.1.25. If B is a k-barrier, then for all X € [k]* and all * € [k]<¥, we have that
IB(X)| = B+ X)| — [ *].

Proof. Let X € [k]¥ and | = |G(X)|. We will prove by induction on k¥ € w that [ >
|G(+~X)| — k for all * € [k]*. Firstly, I = |G(X)| so we have the base case.
Let * € [k]**! be such that ¥~ X € [x]“. Then since G satisfies the barrier property,

we have that

GH"X)TCGgH"TX).

But ** € [k]*, so comparing lengths and by the induction hypothesis we have
GG X)| -1 -k<GGHT"X)—k <L

So the induction holds. O
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Theorem 8.1.26. For any U front F there is no k-barrier G such that G is an extension

of F.

Proof. Let F be a U front on x and suppose that F has an extension G which is a
k-barrier. Since F is U there is some X € [k]¥ and for each ¢ € w there are k;,n; € w
such that F has a (k;, n;, X)-critical element ¢; and furthermore k; < k; 11 and n; < n;41.

But then ¢; = #; (X | n;) for some * € [x]¥. Thus by Lemma 8.1.25 we have
But the n; were unbounded and therefore [ > w, which is a contradiction. O

Theorem 8.1.27. For any r € w and any O front F there is no k-barrier G such that

G is an extension of F.

Proof. Let F be a U7, front on s and suppose that F has an extension G which is a «-
barrier. Since F is U’ there is some X € [x]* and for each i € w there are n; € w such
that F has a (r — 1, n;, X)-maximal element ¢; and n; < n;4.

But then ¢; = *; (X | n;) for some * € [s]"~!. Thus by Lemma 8.1.25 we have
L2 ]G0 X)| —r+1=leif —r+1=ni

But the n; were unbounded and therefore [ > w, which is a contradiction. ]

8.1.4 Combining restriction and extension

Of course, if we want to answer the question ‘how close is a front F on A € [k]" to being a
barrier?’ we should not neglect the standard way of moving from fronts to barriers. That is
to say, that when k = w and we have Ramsey methods available to us, it is always possible
to find some B € [A]", so that F N [B]<¥ is a k-barrier. For an uncountable cardinal s
this is not so clear, so now we will classify fronts by whether or not some repeated (but
finite) iteration of extensions and restrictions will allow us to move from said front to a
k-barrier.

So we will be concerned with fronts F which are one of the types U7, U<, U or U’

(r € w) in every restriction.

190



Definition 8.1.28. Let F be a front on A € [x]", and r € w then:
o Fis U iff (VB € [A]%), F|B is U'.
o Fis U< iff (VB € [A]F), F|B is U<>.

F is 0> iff (VB € [A4]), F|B is U™.

o Fis U iff (VB € [A]%), F|B is UL,.
o Fis O™ iff (VB e [A]%), (3k € w), F|B is Uk

Fis O iff (VB € [A]F), (3l < r), F|Bis U

o Fis O iff (VB e [A]%), (3l > r), F|B is U
o Fis O iff (VB € [A]%), (3L < r), F|B is U.,.

Fis O iff (VB e [A]%), (3l > r), F|Bis U.,.

o Fis O iff F is 0" and (3B € [A]F), F|B is U™
o Fis B7" iff Fis 0>" and (3B € [A]F), F|B is U".
o Fis O iff Fis 0 and (3B € [A]%), F|B is U

Fis 027 iff F is 02" and (3B € [A]%), F|B is UL

Fortunately we will be able to eliminate most of these cases through restriction or

extension!

Lemma 8.1.29. Suppose that F contains the critical and mazximal elements required to

be one of the following types:

O« Ui Ui U < Ui U%( UE)(

then F is not any of the types further right of that type.
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Proof. For r € w, if a front F contains the maximal elements for a U} front, then O"F is
not a front, hence F cannot be U, U< or U™ for any n € w.

If F has the critical elements for a U front, then by definition F is not 3<°°. Further-
more, either for some r € w we have U"F is not a front, or we have that O"F # U"t1F
for every n € w, and hence F is not " for any n € w.

If F has the maximal elements to be U<, then either for some r € w we have O"F
is not a front, or we have that O"F # U"TLF for every n € w, and hence F is not U" for
any n € w.

Finaly if F has the maximal elements to be a U" front, then either for some i € w O'F

is not a front, or we have that "1 F # " F, and hence F is not U" for any n < r. [

Lemma 8.1.30. If F is a 6§T front on A € [k]® for some r € w, then there is some
B € [A]® such that F|B is U7.

Proof. If F is as described then by definition there is some B € [A]* such that F|B is U7,.
But then for any C' € [B]* we have F|C is GF for some I < r. But if for any such C' we
had [ < r, then we have that F|C contains the maximal elements required for F|C' to be
U for i < I. But then these maximal elements are also in F|B so by Lemma 8.1.29, F|B

cannot be U7, contradicting our assumption. O

Corollary 8.1.31. If F is a UY" front on A € [K]" for some r € w, then there is some

B € [A]" and | < r such that F|B is G, .

Proof. If F is O then either there is a restriction that is U so F is 6§T and we can
apply the previous lemma; or not, in which case F is Ui“l. The corollary thus follows

inductively. O

Lemma 8.1.32. If F is a Ger front on A € [k]® for some r € w, then there is some

B € [A]® such that F|B is 0.
Proof. Similar to Lemma 8.1.30. O

Corollary 8.1.33. If F is a U>" front on A € [k]" for some r € w, then there is some
B € [A]" and | > r such that F|B is O'.
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Proof. Since F is a ZAPT, either there is a restriction of F to a U" front and we can apply
the Lemma 8.1.32; or F is 0>+, We continue this inductively, but the process must stop

at some point since F itself is U! for some I € w. O

Corollary 8.1.34. If F is a Osr front on A € [K]" for some r € w, then there is some

B € [A]* and | < r such that F|B is U'.

Proof. Since every restriction of F is U! for some | € w, pick a restriction that gives the
least possible [. So this restriction is $>! and hence by Lemma 8.1.32 we can restrict to a

0! front. ]

Lemma 8.1.35. If F is a O2" front on A € []" for some r € w, then there is a B € [A]"

such that F|B is either U', for somel € w, | =1 or F is (5?‘”

Proof. If F is a @ir front on A € [k]", then suppose that F is not 6?0" Therefore there is
some B € [A]" such that F|B is U for some n > r and furthermore no further restriction
of F|B is U for any m > n. Hence F|B is 6§" So by 8.1.30 we can restrict further to

a ZAVX front for some [ < n. But then also [ > r otherwise F is not Gir OJ

Theorem 8.1.36. For every front F on A € [k]", there is some B € [A]" such that F|B

is either U7, 5<°°, 5°°, U7, or BG$>® (for some r € w).

Proof. Let F be a front on A € [k]*. If there is some r € w such that for every B € [A]"®
we have that U7 (F|B) is not a front, then F is U§" which by Lemma 8.1.31 means that
F has a U, restriction for some [ < r.

Otherwise, for every r € w there is B € [A]" such that U"(F|B) is a front. Now
suppose there is no C € [B]" such that U"(F|C) is defined for every n € w. Thus F|B is
07" and therefore by Lemma 8.1.35 F|B is either U7 for some m € w or F is 05™.

Now suppose there is some C € [B]* such that 0" (F|C) is defined for every n € w.

Now if for every D € [C]" and every i € w, we have

U'(FID) # UH(FID),
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then every such F|D is either 3% or U<*°. If for some E € [C]" we have F|E is U<* then
no further restriction of F|E can be U, since then F|E contains the critical elements
required for F|E to be °°, which contradicts that F|E was U<°°. Hence F|E is 0<%. If
no such E exists, then F|D is 0.

So either we are done or there is some H € [C]" and some i € w such that
O'(F|H) # CHH(F|H),
and therefore F|H is U7 for some j < i. ]

Theorem 8.1.37. For any front F on A € []", there is some B € [A]" such that F|B

can either be extended to a barrier or is U, U™ or U% for some r € w.

Proof. By Theorem 8.1.36, Theorem 8.1.21 and Proposition 8.1.19. 0

8.1.5 Extending before restricting

Theorems 8.1.27 and 8.1.26 tell us that blocks of type U and U%, for r € w do not have
any k-barrier extensions. It follows that any restriction of a U7, 5S> or 0™ front cannot
be extended to a k-barrier. But what if we extend first? Is there a process of extending
and restricting of such a front, that will yield a x-barrier? For fronts of types 67;, 6§°°

or U™, we answer this question negatively.

Lemma 8.1.38. Suppose that F is a front on A € [k]® of type 0. Then for any front
G on A which is an extension of F, and any B € [A]®, we have that G|B is either U or

0% for somer € w.

Proof. Let F and G be fronts on A € [k]" such that G is an extension of F and F is G,
If B € [A]", then F|B is U, and hence for some X € [B]* and for each i € w, there are
ni, ki € w and (k;, n;, X)-critical elements ¢; € F|B with n; < n;41 and k; < k1. Let
¢, =G((c | ki)”X). Then ¢; C ¢ since G is an extension of F and we also have that ¢} is

a (k;,nl, X)-critical element of G|B. The lemma now follows by Lemma 8.1.29. O

77
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Lemma 8.1.39. Suppose that F is a front on A € [k]" of type 6§°° or 6’; for some
k € w. Then for any front G on A which is an extension of F and any B € [A]*, we have

that G|B is U, for some r € w.

Proof. Let F and G be fronts on A € [k]" such that G is an extension of F and F is either
05> or OF for some k € w. If B € [A]* then F|B is U% for some k € w, and hence for
some X € [B]¥ and for each i € w, there are n;,r € w and (k,n;, X)-critical elements
¢ € F|B, with n; < nj41. Let ¢ = G((c | k)~ X). Then ¢; C ¢ since G is an extension of
F and we also have that ¢, is a (k,n}, X)-critical element of G|B. The lemma now follows

by Lemma 8.1.29. O

Theorem 8.1.40. Let Fy be a front on A € [k]" of type 0, BS>® or Ok for k € w. Then
for every n € w there are no Fi, Fo, ..., Fn such that for each i < n, F;11 is an extension

of Fi or Fiz1 = F;|B for some B € [A]" where F,, is a k-barrier.

Proof. If such F; for ¢ < n € w existed, then each is a restriction of an extension of a 0>
or 6’; front. Thus by Lemma 8.1.38 or Lemma 8.1.39, we have that F,, is either 3> or

O%, for some r € w. Therefore F,, is not a x-barrier. O]

8.2 Existence of badly behaved fronts on x

So by Theorem 8.1.37, a front on k is either essentially equivalent to a x-barrier, or it
is one of the types 0%, ZA5§°° or 6’; for some k € w. By Theorem 8.1.40 we can never
obtain a k-barrier from such a front by a process of extending and restricting. Thus we
are interested in knowing for which cardinals x do these types of front exist.

In the introduction of [49], Shelah claims without proof that for ‘every block contains
a barrier’! to hold at s, then x has to be Ramsey. In fact, the following partition relation
classifies precisely when this occurs, and is implied when « is Ramsey. Thus for a Ramsey

cardinal s, no U7, U<, U, U, or U5 fronts on A € [k]" can exist for any r € w.

!By this we mean that for every front A € []* there is B € [A]" such that F|B is a k-barrier.
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Definition 8.2.1. For cardinals A,y and , define

kS (V2

iff for all f : [k]“ — ~ such that f is continuous with respect to the product topology on
[k]“ and the discrete topology on «, there exists A € [£]* such that |f”[A]¥| = 1.
We also define
k2R @I £ 228 (V).

Lemma 8.2.2. x 2% ()\);u iff for every front F on k and every f : F — 7y, there exists

A € [k]* such that |f”(F|A)| = 1.

Proof. (—) If f : F — ~ then similarly to the proof of Theorem 7.2.11, there is a
continuous function g : [k]* — =, such that g(X) = f(F(X)) for every X € [k]“. Hence
for some A € []" we have that |¢”[A]“| = 1, which means that |f”(F|A)| = 1 as required.

(<) If g : [k]¥ — 7 is continuous, then similarly to the proof of Theorem 7.2.11 there
is a front F on « and a function f : F — ~ such that g(X) = f(F(X)) for every X € [r]“.
Hence for some A € [k]" we have that |f”(F|A)| = 1, which means that |¢”[A]“| =1 as

required. O

Theorem 8.2.3. Let k > w be a cardinal, then the following are equivalent:

1. For every front F on A € [k|", there is some B € [A]" such that the elements of

F|B all have the same length.
2. For every front F on A € [k]", there is some B € [A]® such that F|B is a k-barrier.

3. k2L (k)

open

4. k& — (k)% for any v < k.

Proof. (1 — 2). This is trivial since if every element of a front F|B is the same length
then F|B is a k-barrier.

(2 —> 3). Suppose that k 2= (k)* fails. So there is a front F on  and some f : F — 2
such that VA € [k]",

[f7(FIA)| = 2.
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Now assuming 3. there is some B € [k]" such that F|B is a k-barrier. Now define:
G={aeFIB: f(a) =0} U{X | n: X € [B], f(F(X))=1,n=|F(X")|+2}.

We claim that G is a front. Firstly, for any X € [B], either f(F (X)) = 0 hence F(X) € G,
or f(F(X))=1hence X | (|F(X1)|+2)€g.

Now if a,b € G with a C b. Since G is an extension of F, if b € F, then there is some
a' € F with a’ C a C b, a contradiction. Hence there are some a’,b’ € F witha' T a, b T b
and f(b') = 1. But since a C b we have that o’ and V' are C-comparable and therefore
equal. So f(a’) =1, and thus a ¢ F.

Therefore a = X | (|F(XT)|+2) and b=Y | (|[F(Y )|+ 2) for some X,Y € [B]“.

Thus since a C b, for some z,y € [k]' we have,
FXT) z=a" bt =FY )y

Therefore F(X ) = F(Y ") which contradicts that F is a front and from this we conclude
that G is a front on B.

Now if X € [B]“ is such that f(F(X)) = 1 but f(F(XT)) = 0, then |G(X)| =
|F(XT)|+2and G(XT)=F(XT). But then we see that

G =G(XT)[+2,

and therefore
G(XH)cgx)*,

i.e. G fails the barrier property.

Using 3. we have that there is some C' € [B]" such that G|B is a k-barrier. Therefore
for every X € [C]“, if f(F(X)) =1 then f(F(XT))=1.

Now we know that |f”(F|C)| = 2, so there is some Y € [C]¥ such that f(F(Y)) = 1.
Let Z € [C]¥ be such that min Z > max F(Y) and let W = F(Y)"Z € [C]“. So

L= f(FY) = f(FW)) = F(FWT)) = F(FWTT)) = ... = f(F(2)).
In other words, for D = C'\ (max F(Y')) we have that if Z € [D] then f(F(Z)) =1, i.e.
f(FID) = {1}.
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But this is a contradiction since we had |f”(F|D)| = 2.
(3 — 4) The following is a modified version of Proposition 7.14 (c) in [22]. We use the
characterisation of these partition relations given by Lemma 8.2.2. Suppose k —— (k)“,

let v < k and f : F — « for some front F on . Define:
G={a"b:a,be F,maxa < minb}.

Then we claim that G is a front on x. First, for any X € [k]¥ we have that F(X)”F(X \
(max F(X))) C X is a member of G. Now if a” ¢ C b~ d with a,b,c,d € F, then a and
b are C-comparable and hence equal, which means that b and d are C-comparable and
hence equal, so that a” ¢ = b d, and indeed G is a front.

Now let g : G — 2 be given by g(a"b) = 1 iff f(a) = f(b). Using k == (k) there is
some H € [k]" such that |¢”(G|H)| = 1. Now since v < k there are a,b € F|H such that

maxa < minb and f(a) = f(b). Hence by homogeneity

g7 (G1H)| = {1}.

Now let ¢,d € F|H and pick e € F|H with mine > max ¢, maxd. Then

g(cTe)=1=g(d"e),

and therefore

We thus conclude that |f”(F|H)| = 1.
(4 — 1) Let F be a front on A € [x]". Now let f : F — w be given by f(a) = |a|. So
using our partition relation, we can find B € [A]" such that |f”(F|B)| = 1 and therefore

every element of F|B has the same length. O
Theorem 8.2.4. If k is Ramsey then rk 2= (1)<,

Proof. If k is Ramsey then kK — (k)5“. Let F be a front on A € [k]". Now define

f i [AY — w by f(a) = |b] if b € F is such that b C a, and f(a) = 0 if no such b

exists. Thus since x is Ramsey, there is some B € [A]* such that for each n € w, we
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have |f”[B]"| = 1. Therefore every element of F|B has the same length. We can then use
Theorem 8.2.3. O

Question 8.2.5. If k 2% (k)“ holds then is Kk Ramsey?

We now attempt to find a necessary condition for there to be no 0%, front for some

1€ w.
Definition 8.2.6. For A, k, v cardinals and r € w we say that

K= A} <y

iff for every f : [k]" — v there is some A € [k]* such that |f"[A]<7] < 7.

Theorem 8.2.7. Suppose that for some i < r € w there are no lAVX fronts. Then k —

(Al < for every A < k.

Proof. Suppose for some i < 7 € w there are no 0%, fronts and that & # [)] for some

o<
A < K. So there is some f : [k]" — w such that for every A € [x]} we have |f”[A]<“| = w.
Let

F={a" (X1 f(a)€[r:acs],X s}

Then clearly F contains an initial segment of every Y € [k]“. If a,b € F are such that
a C b then the first r elements of a and b are equal, hence |a| = |b| because their length is
determined by the first r elements, so a [Z b, which implies that F is a front.

Now, a (X [ f(a)) is (r, f(a), X)-critical. Hence for all A € []", since |f”[A]<¥]| = w
we have that F|A contains (r,n, X )-critical elements for an unbounded set of n € w. Thus
Fis Gir and therefore by Corollary 8.1.31 we see that F|A can be restricted to some ZASZX

front for 7 < r. ]
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Chapter 9

Questions and conclusions

Many open questions and areas of possible future interest have been posed within this

thesis. We will collect and summarise them here.

9.1 Constructing better-quasi-orders

9.1.1 Partial orders

We first mention again the question reguarding when (ii*) can be fully used in place of
(ii) in Definition 3.2.14. A positive answer would likely simplify the statement of the full
form of Theorem 3.4.12. For a minimum assumption we would require that every member

of P satisfies (ii*).

Question 9.1.1. Are there assumptions on I and P under which 5”]}]}‘ consists of precisely

the same class whether or not 3.2.14 (i) is replaced in its definition by (ii*)?

Theorem 3.5.12 tells us that some of the largest classes' of partial orders known already
to preserve bqo are also well-behaved. Thus well-behaved classes of partial orders seem
to be just as ubiquitous as classes that preserve bqo. This observation motivates again

the question of whether or not these two notions are equivalent, a positive answer to

!Such as the class of countable N-free partial orders [55] and the class of o-scattered linear orders [30].
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this question would also imply they are both equivalent to Louveau and Saint-Raymond’s

notion of reflecting bad arrays [33].

Question 9.1.2 (Thomas [54]). Suppose that O is a concrete category. If O preserves
bgo, then is O well-behaved?

We now reiterate some questions that were mentioned in section 3.5, elaborating first
on Remark 3.5.10. For a finite set of partial orders PP, let P be the class of countable partial
orders whose every finite subset (with the restricted ordering) is isomorphic to a member

of P. Pouzet then asked the following question.
Question 9.1.3 (Pouzet [44]). If P preserves bqo, then is P bgo?

Since well-behavedness is much more useful than preservation of bqos, in the absence

of an answer to Question 9.1.2, we modify Pouzet’s question to the following.
Question 9.1.4. If P is well-behaved, then is P bgo?

Corollary 3.5.9 bring us substantially closer to a solution of this challenging question.
The problem here is that P could contain a partial order with an infinite indecomposable
subset. Indeed if no element of P contains an infinite indecomposable subset then we
have P C 5, since every indecomposable subset of P is finite and thus is a member of P.
Therefore in this case Corollary 3.5.9 answers this question positively.

So what is required is a study of the possible infinite indecomposable partial orders,
in particular whether or not they are well-behaved. We note that by the argument of the
previous paragraph, a negative solution to the following question (mentioned in section

3.5) would solve Pouzet’s question positively.

Question 9.1.5. Is there an infinite indecomposable partial order P such that {P} is

well-behaved?

Figure 9.1: An infinite indecomposable partial order P such that {P} is not well-behaved.
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If the answer to Question 9.1.5 is positive, Pouzet’s question is reduced by Corollary

3.5.9 to the following question.

Question 9.1.6. Suppose that X is a set of countably infinite, indecomposable partial

orders. Is X well-behaved whenever
Xo={Q C P:PeX|Q| < Ny,Q is indecomposable}
18 well-behaved?

To see this, assume that Question 9.1.6 has been answered positively and let P be a
well-behaved set of finite partial orders. Then let X be the class of infinite, indecomposable
subsets of members of P. Thus P = %pux and Xq C P. Therefore Xq is well-behaved, so
by our assumption X is well-behaved. Then by a simple application of the Galvin and
Prikry Theorem 2.1.6, we have that P U X is well-behaved, so by Corollary 3.5.9 we have
that pux = P is indeed well-behaved.

A study of the well-behavedness of infinite indecomposable partial orders could not
only move us towards an answer of Pouzet’s question however. Theorem 3.5.12 is the best
we can do so far, however if we can answer either Question 9.1.5 or any of the following
questions positively, then by then applying Theorem 3.4.12 with even larger classes of
indecomposable partial orders or linear orders, we can improve Theorem 3.5.12 and hence

extend Fraissé’s conjecture even further.
Question 9.1.7. Is there an infinite well-behaved class of indecomposable partial orders?
Question 9.1.8. Is there a well-behaved class of linear orders larger than 4 ¢

In answering these questions it is likely that we will come up against the bounds of
what is provable with the axioms of ZFC alone, so we are also curious about consistent
answers of the previous two questions.

There are consistently larger bgo classes of linear orders than .#, for example .# U A,
where % is the class of Borel linear orders that embed into the lexicographic ordering of

2¢™ for some n € w. The class & is proved to be bqo under projective determinacy by
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Louveau and Saint-Raymond in [33]. However as stated in this paper, assuming the axiom
of choice, the class Z does not preserve bqo and so it is certainly not well-behaved.

One hope could be to further investigate the result of Martinez-Ranero [37], that the
class of Aronszajn lines is bqo under PFA. This motivates the following question, a positive
answer to which would consistently extend Theorem 3.5.12 substantially, just by applying
Theorem 3.4.12.

Question 9.1.9. Is the class of Aronszajn lines well-behaved under PFA?

9.1.2 2-structures

In chapters 3, 4 and 5 we constructed some very large transfinite classes of objects. In
particular, the main results of chapters 3 and 5 had a lot in common. The definitions of the
two classes ///H]lr and %((H;j were indeed very similar and both classes share a similar theorem
stating that they will be well-behaved when their parameters are too (i.e. Theorem 3.4.12
and Theorem 5.2.6). This seems to suggest that there is a possible generalisation to more
abstract objects.

The correct notion here seems to be that of 2-structures. These are essentially binary
relational structures, with a given labelling, that serves to give extra structure similarly
to the labellings for structured trees. For a given class A of labels, a A-2-structure is a
pair (V1) where [ : V2 — A is a A-colouring of the set V2 = {(z,y) € V x V : x # y}.
For different A, the class of A-2-structures can be isomorphic to for example, the class of
partial orders or the class of graphs, among many others. For a comprehensive reference
on 2-structures see [12].

Indeed, if A is quasi-order then the class of A-2-structures has a notion of embedding,
where embeddings must increase the values of labels. This class then a forms a concrete
category and thus can be quasi-ordered as usual under embeddability (similarly to partial
orders and graphs). One can then generalise the notions of a sub-A-2-strucutre, an interval
of a A-2-strucutre and an indecomposable A-2-strucutre. The bqo theory of classes of 2-
structures has been studied independently by Christian Delhommé in as yet unpublished

work. In private communication, he kindly shared with the author an early version of a
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paper in this area [9], in which he proved the following theorem.

Theorem 9.1.10 (Delhommé, [9]). Let A be a quasi-ordered class of labels and Z~ be a
class of countable A-2-structures such that 2  contains all of its sub-A-2-structures. Then

Z is well-behaved whenever the class of its indecomposable members is well-behaved.

This is a generalisation of Corollary 3.5.9 to 2-structures. Indeed it seems extremely
likely that with the correct Hausdorff type theorem as in Section 3.3, we could obtain a
similar generalisation of Theorem 3.4.12, that also generalises Delhommé’s result into the
transfinite. It is more than likely that a method similar to that of Chapter 5 would give

a proof.

9.2 Abstract wqo and bqo

While our classification given in Section 6.2.4 narrows down the possible situations signif-
icantly, we still feel that this result can be improved upon in the future. Either by refining
the classification or by finding examples of Ramsey spaces of each of the different types.

We mention again the questions that were posed in this section.

Question 9.2.1. Is there a Ramsey space R such that R-wqo is neither of type 1 nor

equivalent to NIl -bgoy, for any k € w?
Question 9.2.2. [s there a Ramsey space of type other than 1, 4 and 5%
The following is of particular interest.

Question 9.2.3. Is there a Ramsey space R and some a > w least such that o* is not

R-wqo?

The least « for which this is possible is w* (ordinal exponentiation), which can be seen
by Corollary 6.2.25. We hope that at least that this motivation could inspire the discovery
of new and interesting Ramsey spaces, with the results of Section 6.2 helping to narrow

down the possibilities.
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[oc]

While most natural shifts seem to be strong shifts, (such as those of Nl FIN; ™ and
WEJO]) it is not difficult to find shifts even on these spaces that are not strong. We note
that Pequignot has shown in [42] that there are many shifts on the Ellentuck space, whose
corresponding notion of bqo is equivalent to the usual one, many of which are not strong.
One such shift is that from Example 6.3.11.

This hints towards one possible future direction. It may be possible to find a weakening
of the notion of strong shift,? such that for a fixed Ramsey space R, any such shift on R
results an equivalent notion of R-bqo. Afterwards, one could attempt to prove that there
is always one strong shift for each Ramsey space R. If this is the case, then by Theorem
6.3.13 every notion of R-bqo with respect to a shift satisfying the weaker property depends
only on the notion of R-wqo with respect to the strong shift. Furthermore, by Corollary
6.3.15, any two Ramsey spaces with shifts satisfying the weaker property would have
equivalent notions of bqo, as soon as their respective wqo notions with their respective

strong shifts are equivalent.

9.3 Fronts and barriers on an uncountable cardinal

In Chapter 8 we found that for any front F on some A € [k]", either there is a finite
process of restriction and extension, the result of which is a x-barrier, in which case F is
of type 0>, 6?00 or ZAYX (Theorem 8.1.37) in which case there is no such process (Theorem
8.1.40).

This makes types 6"0, 6§°° and 6’; the most interesting. Motivating the follow-
ing general question, an answer to which would characterise the fronts which contain an

extension to a k-barrier.
Question 9.3.1. For which cardinals k > w are there fronts of type U, B> or U, ?

Theorems 7.2.4 and 8.2.7 give initial results towards an answer to this question: none
of these types of fronts on an A € [k]* can exist when x == (A\)¥; and if there is no 07,

front on any A € [k]", then k — [A], ., for every A < k. We are curious about possible

2An ideal result would be just for any shift.
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analogues of Theorem 8.2.7 to the types 0> and ZA5§°° It also seems likely that these
results can be strengthened, giving a more precise description of the uncountable cardinals
at which these types of front exist.

Our interest is also sparked by Shelah’s comment in the introduction of [49] - that if
‘every block contains a barrier’ holds at k, then x ‘has to be Ramsey’. He could simply
have meant that the method of the original proof requires £ to be Ramsey (indeed, it
does). But we ask the following question which would settle whether or not it is possible

for every block to contain a barrier at non-Ramsey cardinal (by Theorem 7.2.4).

Question 9.3.2. If x 2% (k)“ holds then is k Ramsey?
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