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Abstract

Steady and unsteady two-dimensional free surface flows subjected to one or multiple dis-
turbances are considered. Flow configurations involving either a single fluid or two layers
of fluid of different but constant densities, are examined. Both the effects of gravity and
surface tension are included. Fully nonlinear boundary integral equation techniques based
on Cauchy’s integral formula are used to derive integro-differential equations to model
the problem. The integro-differential equations are discretised and solved iteratively us-
ing Newton’s method.

Both forced solitary waves and critical flow solutions, where the flow upstream is
subcritical and downstream is supercritical, are obtained. The behaviour of the forced
wave is determined by the Froude and Bond numbers and the orientation of the distur-
bance. When a second disturbance is placed upstream in the pure gravity critical case,
trapped waves have been found between the disturbances. However, when surface ten-
sion is included, trapped waves are shown only to exist for very small values of the Bond
number. Instead, it is shown that the disturbance must be placed downstream in the
gravity-capillary case to see trapped waves. The stability of these critical hydraulic fall
solutions is examined. It is shown that the hydraulic fall is stable, but the trapped wave
solutions are only stable in the pure gravity case.

Critical, flexural-gravity flows, where a thin sheet of ice rests on top of the fluid are
then considered. The flows in the flexural-gravity and gravity-capillary cases are shown
to be similar. These similarities are investigated, and the physical significance of both
configurations, examined.

When two fluids are considered, the situation is more complex. The rigid lid ap-
proximation is assumed, and four types of critical flow are investigated. Trapped wave
solutions are found to exist in some cases, depending on the Froude number in the lower

layer.
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CHAPTER ONE

INTRODUCTION

Fluid mechanics is a vastly researched branch of continuum mechanics. It concerns the
study of continuous materials which flow in the presence of a deforming force. These
materials do not support shear stresses and so, when at rest, are defined by the shape of
their retaining container. The study of fluid mechanics is so extensive partially because
of the substantial range of industrial fields it has applications to: from aerodynamics in
economising wind farms, to the flow of oil through pipes in the ocean. Jets, waves and
wakes are all of interest under this broad field.

It is well known that interest in fluid mechanics goes back a long way. Even before
200BC, the Greek mathematician Archimedes was laying the foundations of modern day
hydrostatics. In 1687 Isaac Newton determined the three laws of motion for classical
mechanics, which were then also applied to fluid mechanics. Following this pioneering
work, Leonard Euler [47] discovered the famous Euler equations describing the conser-
vation of mass and momentum in an inviscid fluid. Claude-Louis Navier [86] and George
Stokes [112] then added the effects of viscosity to the Euler equations, introducing the
Navier-Stokes equations. The well known Bernoulli equation relating the pressure in a
fluid to its velocity, was discovered by Daniel Bernoulli [15]. It shows that the pressure
of an inviscid fluid, or the potential energy in thr fluid, will increase when the speed of the

fluid decreases. The work presented in this thesis relies on these pioneering discoveries.

1.1 Free surface flows

Free-boundary problems describe the range of problems in which an unknown function
is sought in some unknown region €2, with unknown boundary 6§2. The boundary is
‘free’ and so must be sought as part of the solution. Free-boundaries are found in many

everyday situations; waves on the beach at the seaside, oil spillages in the ocean, ice cubes



2 Introduction

in a drink (or glaciers in the ocean), water in a bath, or simply on a flying kite. The free-
boundary is the interface between the water and the air in the first and fourth examples,
the two liquids of different densities in the second example, the melting surface of the
ice-cube (or glacier) and the water-air interface in the third example, and the surface of
the kite in the final example. All these scenarios therefore involve a free-boundary and so
can be modelled as a free-boundary problem.

Free surface problems are a subset of the free-boundary problems. They consist of
the problems in which the boundary describes the unknown surface or interface bounding
a fluid. The surface can move with the fluid and so must be found as part of the solution.
Examples include (i) the interface between two different liquids such as oil settled on
top of water, (i1) the interface between a liquid and a gas (such as where the atmosphere
meets the sea), and (iii) a change of state, for example melting ice.

Free surfaces are sometimes classified according to whether they have an intersection
with a rigid surface or not. A ship moving through the ocean is the classical example
of such an intersection. The free surface intersects the hull of the ship. Other examples
include flow under a sluice gate and flow past a groyne at the seaside. Free surfaces
which do not intersect a rigid surface include flows over submerged obstacles; where the
obstacle is either on the bottom of the channel (for example, the flow over rocks on the
seabed) or moving through the fluid (for example, a submarine), flows past a localised
pressure distribution (for example, due to meteorological conditions), and pure solitary
waves.

The study of free surface flows consequently has a wide range of practical applica-
tions, both in industrial and scientific settings, as well as in every-day situations. One
tries to determine how the unknown free surface moves and changes position with time,

subject to numerous boundary conditions.

1.2 Surface Tension

Surface tension is a force which is caused by the interaction of molecules on a free sur-
face. A molecule in a fluid is attracted to neighbouring molecules of the same type by a
cohesive force. However, for those molecules which are on the free surface, surrounding
molecules of the same type do not exist on all sides. Therefore, a molecule on the free
surface is attracted to its neighbouring molecules on the free surface much more strongly.
This creates a ‘film” on the free surface, and surface tension is then the force required to
break the film. Surface tension is thus dependent on the molecules in the fluid, and so
is dependent on the temperature (which affects the movement/energy of the molecules),
as well as on the fluid itself. On a plane horizontal free surface, the surface tension will

therefore act horizontally. However, when the free surface is curved, the curvature means
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0s

Figure 1.1: Small segment of the free surface of length §s. The magnitude of the surface tension
is given by o, acting in the directions indicated. The pressures in the two fluids separated by the
free surface are denoted by P; and P.

that the surface tension acts tangentially to the free surface. See for example de Gennes,
Brochard-Wyart and Quere [34]. In the diagram shown in figure 1.1, the angle between
the direction of the surface tension ¢ and the horizontal, is denoted by d6.

The surface tension is commonly described in terms of the pressure jump across the
free surface. Here we consider a two-dimensional small segment ds of a free surface
separating two fluids. The pressure in one fluid is denoted by P, and the pressure in the
other by P,, as shown in figure 1.1. We therefore want to obtain a relationship between
Py and P,. This relationship is determined by the shape of the free surface, and so we take
R to represent the principal radius of the curvature of the free surface. Next, we balance
the forces across the segment of the free surface. We consider the triangle formed by the
direction of the surface tension and the horizontal, shown in figure 1.2(a), to obtain the
magnitude of the forcing action normal to the free surface. This gives z = o sin(d6).

Thus, in the normal direction we obtain
20 8in(00) + Pyds = Pyds. (1.2.1)

As we consider a small segment of the free surface, 06 is small, so sin(df) ~ 6. Thus,
equation (1.2.1) becomes
2000 = (P, — Py)ds. (1.2.2)

Now we consider the triangle approximated by the principal radius R and half of the free
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Figure 1.2: Enlarged triangular segments from the free surface segment és, shown in figure 1.1

surface segment shown in figure 1.2(b). We see that, under the assumption that 46 is

small,
1 :
553 = Rsin(4660), (1.2.3)
1
:>§5s ~ Ro0, (1.2.4)
00 1
— . 1.2.
~ d0s 2R (125)
Then, dividing (1.2.2) by s and substituting into (1.2.5) we find that
7 (P -P) (1.2.6)
R\ 1) L

Now we need to find R.
To proceed, we denote the free surface by y = n(x) and consider the small segment
ds in Cartesian coordinates. We then approximate s with a straight line so that we can

consider the triangle formed by ds, dx and dy, shown in figure 1.3. Thus,

(62)% + (0y)* = (ds)?, (1.2.7)

(5_y = tan a, (1.2.8)
ox
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Figure 1.3: Free surface segment §s, shown on the Cartesian plane.

where we define o to be the angle between the tangent to the free surface and the hori-
zontal dz. Dividing (1.2.7) by (dz)?, taking the limit as dx — 0, and then rearranging for
ds/dx gives

2
ds _ 14 (d—") — /1 + tan2a = seca, (1.2.9)

dr dx

having used (1.2.8). Next, we differentiate (1.2.8) with respect to = to obtain

d*n , da dn\?*\ do

where we have used (1.2.9).
Using (1.2.9) and (1.2.10), we know that

_3
doo  dadr  d*n dn\*\ °
— =——=—11 — . 1.2.11
ds drds dx? < * (dw) ( )

Now we examine do/ds. We consider the diagram shown in figure 1.3. The angle «

decreases by 206 over the small segment, so the change in « is given by
dav = —260. (1.2.12)

Dividing by Js, substituting in §6/ds from (1.2.5), and taking the limit as 6s — 0 gives

do 1
—_— = 1.2.13
ds R ( )

-1 d*n dn 2\
N . 1.2.14
R d? ( N (d:c) (1.2.14)

Thus, (1.2.11) becomes
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Finally, substituting (1.2.14) into (1.2.6) gives

d*n dn\*\
P—-—P=-0—11 — . 1.2.1
2 1 O 2 ( + <da:) ( 5)

We can write this more succinctly in terms of the outward unit normal n to the free

N|w

surface. If we define f(x,y) = y—n(x) to describe the free surface, then, using subscripts

to denote partial derivatives, we find that

IVl (p2+1)z
and then,
—1) n2n
VTl Tt (210
- ﬁ (1.2.18)
Equation (1.2.15) therefore becomes
P,— P =0V -n=ok. (1.2.19)

It is known as the Young-Laplace equation, and describes the pressure difference as some
multiple of the surface tension coefficient o. The multiple x is known as the curvature

term, describing the shape of the free surface y = 7(x). In two-dimensions it is given by

o= (1.2.20)

(1+n2)2

see for example Vanden-Broeck [124].

1.3 Waves

A progressive wave is a disturbance or signal travelling in some medium, transferring
energy from one point to another. The medium may undergo some oscillation as the
wave passes, but the particles in the medium will return to their initial state in the linear
case; they will not travel with the wave. There are numerous types and shapes of waves,
which can be generated in many different ways. Waves are found in the scientific world
and in everyday situations, and can also occur in nature. Examples include sinusoidal
waves modelling simple harmonic motion (e.g. light, sound and water waves), stationary

waves which stay in the same horizontal position over time, rogue (or freak) waves which
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are found in the ocean and are significantly steeper than the other waves close-by, and
tsunamis (or tidal waves) which have a significantly longer wavelength than normal ocean
waves. In this thesis we are interested in water waves, which can be modelled using free
surface fluid mechanics.

Through experimental work on the Union Canal near Edinburgh in 1834, John Scott

Russell [103] accidentally discovered the solitary wave.

“I was observing the motion of a boat which was rapidly drawn along a nar-
row channel by a pair of horses, when the boat suddenly stopped - not so
the mass of water in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of
form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in height. Its height
gradually diminished, and after a chase of one or two miles I lost it in the
windings of the channel. Such, in the month of August 1834, was my first
chance interview with that singular and beautiful phenomenon which I have

called the Wave of Translation.”

The ‘Wave of Translation’ or solitary wave, is a stable wave which has an amplitude
that decays to zero both far up and downstream of the wave peak. As Russell observed,
solitary waves are waves of permanent form. They can travel great distances without
changing speed or shape. Unlike other waves, due to the balancing of the nonlinear and
dispersive effects on the wave, solitary waves are also able to pass through each other
without merging or changing form. They are then known as solitons and possess the
property that a small amplitude wave will be overtaken by a larger wave. Solitary waves
and solitons can occur on the free surface of a canal or riverbed (as observed by John
Scott Russell), or in the atmosphere (such as the Morning Glory wave cloud, observable
in Northern Australia), or as internal waves under the sea.

Due to the complexity of the fully nonlinear wave problem, many studies use a range
of simplifying assumptions. The classic assumptions of potential flow theory, assuming
that the fluid is incompressible and inviscid, and the flow irrotational, provide a common
simplification. The effects of gravity and/or surface tension may also be neglected, and
waves are thus classifiable accordingly. Pure gravity waves are governed by the influences
of gravity alone. The effects of surface tension are neglected, so that when a wave particle

is displaced from its equilibrium, gravity alone acts as the restoring force, trying to return
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the particle to equilibrium. Stokes [112, 113] found that such waves have slightly broader
troughs than crests, with the sharpness of the crest increasing with the amplitude of the
wave. Stokes further conjectured that as the velocity of the wave increases, the amplitude
of the crest approaches a limiting configuration with an angle of 120°. This was proved
almost a century later by Toland [117] and Amick, Fraenkel and Toland [3].

When gravity is neglected so that only the effects of surface tension on the free surface
are considered, the resulting waves are typically of very small wavelength and are known
as pure capillary waves. The ripples found when a rain droplet falls into a puddle are
a classical example of such waves. Waves dominated by capillarity have broader crests
than troughs, and thus, are easily distinguishable from pure gravity waves. In 1957,
Crapper [33] found unique exact nonlinear solutions for pure capillary waves in water of
infinite depth. He showed that for a given wavenumber k, as the steepness of the waves
increases, a limiting configuration is approached, where the trough touches itself and a
small trapped bubble is formed.

When both the effects of gravity and surface tension are considered, the waves are
classified as gravity-capillary waves.

Another type of wave that will be considered in this research are flexural-gravity
waves. Such waves can occur on the interface between a fluid and a (thin) layer of ice
floating on top of the fluid. The ice plate is approximated as a thin elastic shell, and so the
restoring forces in such circumstances are the gravitational acceleration and the flexural
elasticity of the ice.

In the following chapters, the free surface fluid mechanics problem in which a fluid
flows past some form of disturbance, is studied. Most of the work focuses on the gravity-
capillary problem, but where appropriate, previously found pure gravity solutions are also
discussed, alongside the presentation of some new results. The complexity of some of
the problems is then increased by considering comparable solutions in the flexural-gravity
problem of a fluid under a floating ice plate. Furthermore, a second disturbance is added
to the flow configuration to allow for a much wider range of new solutions. The text is
arranged as follows.

In chapter 2 a review of the extensive existing literature is presented. Both weakly
nonlinear and fully nonlinear solutions are discussed.

Chapter 3 uses a fully nonlinear method to investigate subcritical gravity-capillary
solitary wave solutions. Many of the results in this chapter have been published by the
author and coworkers [91].

In chapter 4, critical flow (hydraulic fall) solutions are discussed in detail, using fully
nonlinear methods, supported by the linear and weakly nonlinear theory. Several new
results and ideas are presented, most of which have been published by the author and

coworkers [88].
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In chapter 5 the effect of a thin continuous ice sheet floating on top of the fluid is
investigated. Critical flow flexural-gravity solutions are sought and comparisons are made
with the gravity-capillary solutions found in chapter 4. The key findings presented in this
chapter have been published by the author and Dr Parau [89].

A two-layer flow is studied in chapter 6, where the upper fluid is bounded above and
the lower fluid is bounded below, by horizontal rigid walls. The chapter focuses on the
critical flow case, with the solutions presented being much richer than those found in the
single layer case discussed in chapter 4. There are several avenues of possible future
work left open in this chapter.

The stability of forced solitary waves and the critical flow results presented in chapter
4 are investigated in chapter 7. The fully time dependent problem is therefore considered
here, and the steady wave solutions are followed forward in time in order to deduce their
stability. The main results in this chapter have been published by the author and Dr Parau
[90].

Finally, in chapter 8 a conclusion is presented, drawing together all the new free
surface flows results obtained in chapters 3-7 for flow past one or multiple disturbances
in a channel of finite depth. A brief insight into possible avenues of future work stemming

from this research is given.






CHAPTER TwO

LITERATURE REVIEW/BACKGROUND

A classical area of free surface fluid mechanics is the study of flows past disturbances in a
channel of finite depth. There are many naturally occurring physical situations that such
a problem can model, as the disturbance can take one of many different forms: a fully
submerged obstacle on the channel bottom (for example the flow generated by a rock on
the river bed), a submerged body not touching the bottom of the channel (for example
a submarine under water), a surface piercing obstruction such as a ship sailing in the
water, or even a localised applied pressure distribution on the free surface (for example
an atmospheric disturbance caused by a storm or high winds). The free surface flows
resulting from these disturbances are qualitatively similar, so just one form generally
needs to be considered. The history of the work in this area is vast and so whilst a
brief summary of some of the important results are given in this chapter, the interested
reader may also be referred to the monographs of Baines [9] and Vanden-Broeck [124]
for example.

Both weakly nonlinear model equations and fully nonlinear numerical schemes have

been studied and extensively developed, in order to solve this type of problem.

2.1 The Korteweg-de Vries equation

The Korteweg-de Vries (KdV) equation,

3 /g cH? T
x . e T 1__> rxx — Y, 2.1.1
n: + cn +2 7'M +—6 ( 3 )7 0 ( )

was derived by Diederik Korteweg and Gustav de Vries [74] in 1895 to model waves on
the free surface of shallow water. Here )(z, t) is the surface elevation, g is the acceleration
due to gravity, H is the height of the channel downstream as © — —oo, ¢ = y/gH 1is the

wave speed, and 7 is the dimensionless Bond number defining the ratio of surface tension
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forces to gravitational forces. It is given by

o

= — 2.1.2
e 2.12)

T

where p is the fluid density and o is the surface tension coefficient.

The KdV equation is a nonlinear partial differential equation which balances the ef-
fects of weak dispersion (from the 7,,, term) with those of weak nonlinearity (from the
nn, term). If we choose a frame of reference moving with the wave (i.e. with speed c),
then after some rescaling (see for example Whitham [128]), one can obtain the classical

nondimensional KdV equation;

This equation can be solved exactly to give a weakly nonlinear model for small amplitude
waves on the free surface, valid in the long-wave regime. It admits both periodic cnoidal

wave train solutions and solitary wave solutions of the form
u = Asech® (k(z — vt)), (2.1.4)

where k oc Az. The form of the solitary wave was found independently in 1876 by Lord
Rayleigh [101] and in 1871 by Boussinesq [21]. It has the property that the speed, v, of
the wave is proportional to the wave amplitude, A. Thus, one can deduce that tall thin
waves travel faster than broader shorter waves. Therefore, as solitary waves are capable
of colliding and passing through each other without changing form, a large wave will
inevitably overtake a small wave, without merging into it.

In 1967, Gardner, Greene, Kruskal and Miura [56] discovered that the KdV equation
is integrable via the inverse scattering transform method, and so it became understood
that the solitary wave is a key feature in describing long weakly nonlinear waves.

In 1984, Akylas [1] derived the forced KdV (fKdV) equation,

1 3

1
x = Lllzxx T S S Vzs 21
N + An 677 5 b (2.1.5)

to model the free surface of a flow subjected to a localised pressure distribution. Here,
the effects of surface tension have been neglected, and the parameter )\ is proportional to
F — 1, where I is the dimensionless Froude number defining the ratio of flow speed to

the linear shallow water wave speed ¢ = \/gH. It is given by
F=—_ (2.1.6)

where g is the acceleration due to gravity, U is the downstream velocity of the fluid, and
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H 1is the constant downstream fluid depth.

The fKdV equation includes the balancing effects of weak nonlinearity and disper-
sion, as well as the effects of forcing (for example, by some underlying topography b(x)
or some applied pressure distribution p(x)). Further derivations of the fKdV equation
have since been given for a more general underlying topographic forcing, for example,
see Grimshaw and Smyth [65] and Shen [108]. In the absence of forcing, i.e. with
b(x) = 0, the equation reduces to the classical KdV equation.

An extensive amount of research has been devoted to the stationary fKdV equation

(sfKdV), given by
\ 1 3 B

where the free surface is independent of time.

1
by, 2.1.7
5 ( )

The literature surrounding this rich topic is vast. Pratt [95] conducted experiments
on the flow over two submerged obstacles. The height and lengths of the obstacles were
chosen so that the flow would take the form of long waves, so he was able to interpret his
results in terms of the weakly nonlinear KdV model equation. Shen, Shen and Sun [105]
modelled the flow over a semi-circular obstruction using the sfKdV equation, and Shen
[106] used the sfKdV equation to find a free surface flowing over a channel of arbitrary
cross section, subjected to an externally applied pressure distribution.

The validity of the sfKdV equation, as a model for the free surface flow past a distur-
bance, has been studied by Shen [108]. He compared the results of the stKdV model with
those of computational and experimental work, and concluded that the sfKdV equation is
an accurate model for the problem under certain assumptions; the amplitude of the forc-
ing must be small (i.e. less than half of the depth of the fluid upstream), and the length
of the forcing must be less than twice the amplitude of forcing. Furthermore, in order
to simplify the problem, it has been shown that it is possible to approximate the forcing
using a Dirac delta function. If the forcing is centred around = = z, then the forcing term
F(z) can be described by

F(z) = Qi(z,), (2.1.8)

where () is a constant describing the area of the shape of the forcing.

Dias and Vanden-Broeck [38] used the sfKdV equation to determine the number of
independent parameters required for a new form of free surface flow solution over a semi-
circular obstruction: the generalised hydraulic fall, described later in section 2.3. They
then confirmed their fully nonlinear results with those of the weakly nonlinear model.
This solution is not physically relevant, as discussed in more detail in section 2.3, but
they [41] later gave a physically relevant form of this new solution in a regime involving
two obstructions on the bottom of the channel, and justified it using the sfKdV analysis.

Binder, Dias and Vanden-Broeck [18, 16, 17] contrasted the weakly nonlinear sfKdV
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model with a fully numerical scheme in order to determine the free surface profile sub-
jected to various forcings, including; two different sized submerged triangular obstruc-
tions, a semi-infinite step on the bottom of the channel, and a sluice gate.

Bernard, Grimshaw, Zhang and Chow [14] used the sfKdV equation to examine the
case of a forcing with negative polarity; a hole. They investigated the effects of changing
the width of the hole and obtained solutions with a wave train trapped solely in the region
of the hole.

Chardard, Dias, Nguyen and Vanden-Broeck [27] and Donahue and Shen [45] studied
the stability of solutions to the fKdV equation. Chardard et al. focused on the case
of a free surface flow over two submerged obstructions, and found that solutions with
two localised bumps over the obstacles are stable whilst table-top solutions are unstable.
Furthermore, they viewed this table-top solution as the superposition of two conjugate
flows and postulated that the trapped wave solutions obtained by Dias and Vanden-Broeck
[41] are unstable. Donahue and Shen perturbed their initial solutions with white noise,
and then evolved the free surface profile in time. They found that the white noise in
the pure gravity hydraulic fall solution dissipates, and concluded that the free surface

therefore appears to be stable.

2.2 Numerical Methods

The Korteweg-de Vries and Nonlinear Schrodinger (discussed in section 2.4) model equa-
tions only provide an approximation to the solution to the problem. Therefore, numerical
methods have also been developed to provide solutions of the fully nonlinear equations.
A boundary integral equation method is commonly used. The idea behind such a method
is to calculate the unknowns at just the boundaries of the problem, in order to deter-
mine the behaviour of the fluid as a whole. This reduces the dimension of the problem
by one, and so the two-dimensional problem becomes one-dimensional; it is only nec-
essary to consider what happens at the free surface. Fewer calculations are therefore
required to solve the problem. Using a conformal mapping, the problem is mapped into
an inverse (hodograph) plane where the velocity potential and the stream function are
independent variables. The free surface and channel bottom are then represented by con-
stant streamlines, and so the geometry of the problem is greatly simplified. The evident
advantage of this is that the previously unknown free surface is now a known stream-
line. Integro-differential equations can then be derived by applying Green’s theorem or
Cauchy’s integral formula to a function in this new region. Mesh points are placed on
the free surface, and a system of nonlinear equations is then obtained by discretising the
integro-differential equations. The system of equations can then be solved iteratively to
find the free surface profile, using Newton’s method.
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This numerical scheme is widely utilised. King and Bloor [73] used such a scheme to
find the free surface of a flow over a semi-infinite step and Forbes and Schwartz [54] and
Grandison and Vanden-Broeck [59] used it to find the free surface over a semi-circular
obstruction. However, in order to remove the singularities on the bottom where the semi-
circle meets the undisturbed channel bottom, they used the Joukowski transformation to
first map the problem into a plane in which the semi-circular obstacle becomes part of a
constant streamline. The scheme has been adapted to allow for arbitrarily shaped obsta-
cles on the channel bottom, see for example Belward [11] and Dias and Vanden-Broeck
[41].

Other numerical schemes such as those using a series truncation technique have also
been utilised for this problem, for example, see Vanden-Broeck and Dias [37] who used
a series truncation technique to study the free surface flow over a submerged triangular
obstacle.

Both steady and unsteady free surface solution profiles which are subjected to some
form of forcing, are known to exist. Grimshaw and Smyth [65] studied an unsteady
stratified flow over some underlying topography, and obtained both supercritical and sub-
critical solutions (defined in section 2.3).

The content of this research is restricted to the steady case in chapters 3-6 however,
and so unless otherwise stated, the free surface is taken to be dependent on position only.
In chapter 7 the time evolution of some of the steady solutions presented in chapter 4 is

examined, so here the free surface depends on position and time.

2.3 Pure gravity waves

We restrict the work in this thesis to the study of ideal fluids- incompressible, inviscid
fluids with irrotational flow. In the case where there exists a single disturbance in the
channel (here, without loss of generality, we assume that the disturbance takes the form
of a submerged obstruction), when the effects of surface tension are neglected so that the
waves on the free surface are pure gravity waves, four different types of basic solution
are known to exist. The solutions depend on the Froude number F' defined in equation
(2.1.6). When F' > 1 the flow is said to be supercritical, and when F' < 1 it is said to be

subcritical. It is also necessary to introduce the upstream Froude number F,;;

v
Vb’

where V' is the upstream velocity of the fluid, and A is the upstream fluid depth.

F,, = (2.3.1)

The first type of basic solution is sketched in figure 2.1(a) and is classified as having

uniform supercritical flow both up and downstream (/' > 1, Iy, > 1). A forced solitary
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(a) Type 1 basic solution; F' > 1. A forced (b) Type 2 basic solution; F' < 1. A train
solitary wave is found over the obstacle of gravity waves appears downstream of the
obstacle

[ U

—L—/p

(c) Type 3 basic solution; F,, < 1 and F' > (d) Type 4 basic solution; F;,;, < 1 and F' >
1. A hydraulic fall is found over the obstacle 1. A generalised hydraulic fall is found over
the obstacle.

Figure 2.1: The four types of basic pure gravity wave solutions for flow over an obstacle in a
channel.

wave exists over the obstruction. If the obstacle has vertical symmetry about its centre,
the free surface will then also be symmetrical about the obstacle.

The second type of basic classical flow, sketched in figure 2.1(b), is subcritical both up
and downstream (/' < 1, F,, < 1). A train of waves is found downstream of the obstacle,
whilst the flow upstream is uniform. In order for the flow to be physically realistic the
radiation condition, which requires that there is no energy coming from infinity, must be
satisfied. This means that any waves must appear behind the obstacle (downstream), so
that the free surface remains flat upstream, as * — —oo. Or equivalently, the energy in
the wave train must be travelling to the right if the waves appear downstream as x — oo,
and to the left if the waves are upstream as z — —oo. More details regarding this concept
can be found in chapter 4.

For both these first two types of classical solution the mean depth of the fluid in the
linearised theory is uniform up and downstream. (Although, the nonlinearity of the waves
in the second type of solution would actually cause a change in the mean depth of the
flow.) Forbes and Schwartz [54] used a boundary integral technique to obtain both types

of solution for flow over a semi-circular obstruction. Vanden-Broeck [122] then found



2.3 Pure gravity waves 17

that flows of type one are not unique. There exist two solutions for particular values of
the Froude number; a perturbation from a pure solitary wave, and a perturbation from the
uniform stream.

The last two types of flow; the hydraulic fall and the generalised hydraulic fall, are
critical. They are forced conjugate flows, which means that the depth of the fluid differs
up and downstream. Sketches of their flow configurations are given in figures 2.1(c)
and 2.1(d) respectively. The hydraulic fall has a subcritical uniform flow upstream. The
Froude number gradually increases over the obstacle, resulting in supercritical uniform
flow downstream. The change in the Froude number from subcritical to supercritical
means that the depth of the fluid decreases over the obstacle. Forbes [51] computed a
hydraulic fall over a semi-circular obstacle using boundary integral equation techniques,
and Dias and Vanden-Broeck [37] used a series truncation method to obtain solutions
over a triangular obstacle. It was shown that as the size of the obstacle increases, the
downstream Froude number increases whilst the upstream Froude number tends to zero.

Generalised hydraulic falls were first computed numerically by Dias and Vanden-
Broeck [38] in 2002. The generalised hydraulic fall is similar to the hydraulic fall but has
the addition of a train of waves upstream of the disturbance, as + — —o0. However, as the
the wave train, which is formed of pure gravity waves, occurs upstream of the obstruction,
the radiation condition is violated. So, this fourth type of basic solution is unphysical
when considered as the free surface flowing over a single obstruction. Hydraulic falls
have only been observed with subcritical flow upstream, see for example Viollet ef al.
[127]. Therefore, it is not possible to simply change the direction of the flow, so that
the wave train occurs in the subcritical regime downstream with the flow upstream being
uniform and supercritical, in order to satisfy the radiation condition. In a regime in which
just one locally applied forcing is present, the generalised hydraulic fall therefore has
limited physical validity.

However, Dias and Vanden-Broeck [41] have shown that this flow can become phys-
ically relevant when it is considered as the localised flow over an obstacle, in a config-
uration which involves at least one other disturbance further upstream. They used an
argument based on the weakly nonlinear theory to show that, in the limit, as the distance
between the two obstacles approaches infinity, the flow local to the disturbance furthest
downstream approaches a generalised hydraulic fall, whilst the flow local to the upstream
disturbance approaches the second type of basic subcritical solution which has waves be-
hind the obstacle. Thus, one can think of this free surface solution as a ‘hybrid’ flow. It
is the superposition of the type two and type four basic flows. The ‘hybrid’ flow has a
uniform flow upstream, and so satisfies the radiation condition; thus, it has more physi-
cal relevance than the type four basic flow. In fact, such flows over multiple submerged

obstructions have been observed experimentally, for example see Pratt [95].
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Pratt considered the flow regime over two submerged obstructions where the flow up-
stream of the first obstacle was subcritical and uniform, and the flow downstream of the
second obstacle was supercritical and uniform. He observed different types of steady so-
lutions including hydraulic falls and the solutions obtained by Dias and Vanden-Broeck
[41], with a train of waves trapped solely between the two obstacles. By varying the
height and position of the obstruction furthest upstream in this trapped wave configu-
ration, he found that increasing the distance between the obstructions only changed the
number of trapped waves, and not their actual form (i.e. the amplitude and length). Fur-
thermore, varying the shape of the obstacles did not change the character of the flow.
Only the amplitude and length of the resulting waves changed. Dias and Vanden-Broeck
[41] similarly found that increasing the distance between the obstructions in their numer-
ical analysis, only changed the number of trapped waves- the amplitude and wavelength
of the waves remained the same.

Bernard et al. [14] used a stationary fKdV equation to contrast the flow over two
submerged obstructions in the channel, with that of a single depression in the bed of
‘sufficiently’ large width. They obtained solutions with a train of trapped waves over the
depression. In their stability analysis, Chardard et al. [27], whilst not actually computing
trapped wave solutions, suggested that this type of solution is unstable.

In these multi-disturbance configurations, when the hydraulic fall occurs over the first
obstruction, so that the flow local to the second obstruction is supercritical, there are no
trapped waves between the obstacles. Instead, Belward [11] has shown that a solitary
type wave, locally similar to the type one solution, appears downstream of the hydraulic

fall over the second obstruction.

2.4 Gravity-capillary waves

In 1883, Rayleigh [102] studied the problem of a free surface flow past a disturbance in a

channel. He considered the waves generated by a fishing line in water.

“When a small obstacle, such as a fishing line, is moved forward slowly
through still water, or (which of course comes to the same thing) is held
stationary in moving water, the surface is covered with a beautiful wave-
pattern, fixed relatively to the obstacle. On the up-stream side, the wave-
length is short, and [...] the force governing the vibrations is principally
cohesion. On the down-stream side the waves are longer, and are governed

principally by gravity.”

The effects of surface tension were thus included in his workings through the cohesive

force. He describes the waves observed upstream of the disturbance as capillary waves
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and those observed downstream, as gravity waves. He simplified this scenario to the ap-
plication of a localised pressure on the free surface, and then, using a linearised theory,
sought solutions with a train of waves both up and downstream of the forcing. He discov-
ered some important results regarding the relationship between the Froude number and
the surface tension; the linear dispersion relation determines the connection between the
angular frequency and the wavenumber (or wavelength) of the waves, and thus describes
the effects of dispersion on the waves. The dimensionless linear dispersion relation for

gravity-capillary waves is now well known, and is given by

1
2 — (E + Tk’) tanh (k), (24.1)
where F' is the Froude number, £ is the wavenumber of the waves non-dimensionalised
with respect to the fluid depth H, and 7 is the Bond number defined in (2.1.2). Writing
tanh (k) in terms of its Taylor series, (2.4.1) becomes

F? = (% - Tk> (k; — %k?’ + O(k4)) (2.4.2)
=1+k <r - %) + O(k*) (2.4.3)

At order one we see that F? = 1, giving the critical Froude number that solutions bifur-
cate from. At O(k?) we have that 7 — 1/3 = 0. Therefore, the linear theory shows that
there also exists a critical value of the Bond number, 7 = 1/3.

Ifr< %, Rayleigh showed that there exists a critical value of the Froude number, £,
satisfying dF./dk = 0. At F' = F, the dispersion curve possesses a minimum. If the
flow is subcritical with /' > F, (so that 1 < F' < F), there exist two trains of waves: a
gravity wave train with wavenumber k;, where dF'/dk; < 0, and a capillary wave train
with wavenumber ks, satisfying dF'/dks > 0. An example linear dispersion relation for
weak surface tension, 7 < %, is sketched in figure 2.2(a), where the wavenumbers k;
and k5 are indicated for a particular value of the Froude number. These solutions to the
linearised theory are not unique as another wave train can simply be added to an existing
solution. However, Rayleigh noted that a unique solution can be obtained by satisfying
the radiation condition. This means that the gravity wave train must occur downstream
of the disturbance with wavenumber k;, whilst the capillary wave train can be found
upstream with wavenumber k5. The wavenumbers satisfy k; < ky and so the wavelength
of the capillary waves is smaller than that of the gravity waves, as described in Rayleigh’s
observations of the fishing line problem.

If the Froude number is less than F., the linear theory does not predict a wave train.
Instead, subcritical localised disturbances which decay in the far field both up and down-

stream are predicted e.g. solitary waves.
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Figure 2.2: Gravity-capillary linear dispersion relations for strong and weak capillarity.

1
3 b
sketch in figure 2.2(b). The linear theory then predicts that solitary wave solutions exist
for subcritical flows (F' < 1).

However, the linear theory starts to fail when F° — F, or when F' — 1, and so a

If 7 > =, the linear dispersion curve increases monotonically, as can be seen in the

weakly nonlinear or fully nonlinear scheme is required. There are fewer studies of non-
linear gravity-capillary than pure gravity waves. This may be partly due to the difficulty
in dealing with the potential resonant wave interactions caused when gravity and capillary
wave trains of the same wavenumber and angular frequency interact.

In 1915, Wilton [129] conducted a pioneering study on nonlinear gravity-capillary
waves and found that waves with particular critical wavelengths may possess small dim-
ples in either the crests or the troughs of a downstream wave train. These waves differ
from the linear solutions found by Rayleigh [102]. They have become known as Wilton
ripples and are thought to be due resonant interactions. Vanden-Broeck [123] used a
boundary-integral equation method to solve the fully nonlinear problem and investigate
Wilton ripples in the presence of a localised pressure distribution, in water of infinite
depth. He obtained Wilton ripples for particular values of the Bond number, and con-
trasted these results with the linear wave trains predicted by Rayleigh.

Forbes [49] calculated fully numerical gravity-capillary solutions for flow over a
semi-circular obstacle. He classified his solutions into three different types. The first
type consists of subcritical solutions with a train of waves both up and downstream, i.e.
the solutions predicted by Rayleigh’s linear theory with /. < F' < 1. However, due
to having to truncate the flow domain both up and downstream at x = —B and z = A
respectively (for positive constants A, B) in the numerical scheme, the mean-depth of the
downstream waves decreases in his solutions as one travels further downstream. Grandi-
son and Vanden-Broeck [59] addressed this problem, and were able to remove the inaccu-

racies in the solutions. They approximated the upstream wave train, for —oco < z < —B,
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by a linear train of waves and the downstream wave train, for A < = < oo, by a peri-
odic train of waves, obtained by repeating the waves for 0 < x < A. The second type
of Forbes’ solutions are subcritical forced solitary depression waves, perturbed from the
uniform stream. These correspond to the localised disturbances predicted by the linear
theory for values of the Froude number satisfying /' < F.. Finally, the third type of
solution is a supercritical (£’ > 1) forced elevation solitary wave. Forbes compared these
solutions with the pure gravity supercritical solitary wave solutions. As F' > 1, the linear
dispersion relation predicts the presence of a capillary wave train upstream of the distur-
bance in the gravity-capillary case. However, the solutions obtained by Forbes showed
no evidence of this.

The effects of surface tension can be included in the derivation of the stationary fKdV
equation, to give a weakly nonlinear model for the gravity-capillary problem of a free
surface flowing over a disturbance. It can be written in the form

3 1 1 1

(F - 1)771‘ — 3 + _(7— - _)nmca: -

. 51— 3 by (). (2.4.4)

Korteweg and de Vries [74] showed that the solitary waves admitted by the sKdV equa-
tion ((2.4.4) with b(x) = 0) are of elevation if 7 < % and F' > 1, and of depression if
T > % and F' < 1. They are of the form

B ) 34 2
n = Asech ((m) T, (245)

where A > 0, and are thus unbounded as 7 — 3 and undefined at 7 = 3. The KdV
solitary wave solution is therefore invalid in the neighbourhood of 7 = % This is because
the dispersive effects (from the 7,,, term) in the KdV equation (2.4.4) disappear when
T = %, and so the equation fails to maintain the balance between dispersion and non-
linearity. Hunter and Vanden-Broeck [70] addressed this problem in their research, and
derived a new equation;

1

1
( Jile = 3z + (1 = )11 5" 0 (2.4.6)

The equation is known as the fifth-order Korteweg-de Vries equation. It is valid near

1
3°

was later derived by Hunter and Scheurle [69].

T = %, and includes a higher-order dispersive effect. The unsteady form of the equation

Hunter and Vanden-Broeck [70] also compared the solutions of the sKdV equation

with those of a fully nonlinear scheme, and found that the sKdV equation is not valid

in the region 0 < 7 < % The fully nonlinear solutions in this regime were found to

have a train of periodic ripples in the far field both up and downstream. They are called
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generalised solitary waves, and are thus distinguishable from solitary waves which are
flat as © — +o00. The sfKdV equation does not describe these ripples, and therefore only
provides an accurate model for the free surface flowing over a disturbance when 7 = 0
(as described in section 2.1), or when 7 > %

Maleewong, Asavanant and Grimshaw [77] added a localised applied pressure distri-
bution to the free surface and studied steady gravity-capillary solitary wave solutions to
the sfKdV equation with 7 > % They compared their results with both the linear solu-
tions, and those of a fully nonlinear scheme. As previously discussed, if 7 > % the flow
must be subcritical (F' < 1), in order to obtain solitary wave solutions. In this case, when
the forcing is positive, Maleewong et al. showed that there exist three different cases.
First, there are two families of solutions if the Froude number F’ lies between two critical
values of the Froude number, F™* and F**, which are dependent on the size of the forcing.
Secondly, when 0 < F' < F™ there exists a unique solution: a depression solitary wave
bifurcating from the uniform stream. Finally, if F** < F' < 1, then there is no solution.
In the critical region F™* < F' < [**, a depression wave bifurcating from the uniform
stream is found, but as F' increases towards the critical value F**, which represents a
turning point in the ' — y(0) plane (where y(0) is the amplitude of the solitary wave), the
solution changes from being a bifurcation from the uniform stream, to being a bifurca-
tion from a pure solitary wave (a solitary wave sustained in the absence of forcing). The
Froude number then begins to decrease, whilst the amplitude of the depression solitary
wave continues to increase. Thus, there exist two possible depression solitary waves over
the site of forcing, for the same value of the Froude number and the same Bond number.

When the forcing is of negative polarity, Maleewong et al. [77] showed that the
bifurcation from the uniform stream is an elevation wave, and suggested that the solution
is obtainable for the whole range 0 < F' < 1. Furthermore, they obtained a branch of
forced depression solitary waves bifurcating from a pure depression solitary wave. At a
critical value of the Froude number, F*** < 1, they showed that there exists a turning
point in the F' — y(0) plane, after which, the forced depression solitary wave begins to
develop a dimple in the trough. Thus, it is possible to obtain three different solutions
with the same values of the Froude and Bond numbers and the same pressure forcing:
an elevation wave bifurcating from the uniform stream, a forced depression solitary wave
bifurcating from a pure solitary wave, and a forced depression solitary wave with a dimple
in its trough, also bifurcating from the pure solitary wave.

Grimshaw, Maleewong and Asavanant [62] studied the stability of these solutions
using both the fully nonlinear unsteady equations and the unsteady fKdV equation. They
found that the positively forced depression wave bifurcating from the uniform stream
is stable, but the second family of forced depression solitary wave solutions bifurcating

from the solitary wave, are unstable. Similarly, the negatively forced elevation waves
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bifurcating from the uniform stream were found to be stable, but the negatively forced
depression waves bifurcating from the pure solitary wave, were unstable.

When the effects of surface tension are weak (7 < %), the behaviour of the flow is
more complex. Solutions take the form of envelope solitary waves, and the appropriate
model for the weakly nonlinear analysis is no longer the KdV equation, as shown for
example, by Hunter and Vanden-Broeck [70].

In 1968, Zakharov [132] showed that the nonlinear Schrodinger (NLS) equation,

iAy + Y| APA+ A =0, (2.4.7)

can approximately model pure gravity two-dimensional waves in deep water. The equa-
tion describes wave packets on the free surface where a wave envelope encases damped
decaying oscillating waves. Here, A is the envelope function describing the evolution of
the wave packet with wavenumber k, and y and 3 are defined parameters. Solitary wave
solutions of the form

A = asech(a(x — vt))ehe==) (2.4.8)

are admitted in the focusing case; v > 0. In 1972, Zakharov and Shabat [133] showed
that the NLS equation is integrable via the inverse scattering transform method, and
twelve years later Akylas [2] added the effects of forcing due to an applied pressure
distribution to obtain the forced nonlinear Schrodinger (fNLS) equation. Kawahara [72]
included the effects of surface tension in the NLS equation, and several authors, including
for example Parau and Dias [96], Calvo and Akylas [23] and Maleewong, Grimshaw and
Asavanant [78], combined the ideas of Kawahara and Akylas and considered the focusing

fNLS equation. It can be written in the form
. 2 WmPm

where the effects of surface tension have been included. Here, the forcing takes the
form of the J-function, where p,, is the Fourier transform of the pressure function at
wavenumber k,,,. Parau and Dias showed that the unsteady version of this equation can

be used to model the problem of a free surface flow subjected to a localised pressure

distribution, when the effects of surface tension are small and such that 7 < % Calvo

and Akylas [23] and Maleewong et al. [78] considered the unsteady case, and showed
that there was generally good agreement between the fNLS model solutions and the fully
nonlinear results.

In contrast to the strong surface tension case with 7 > %
showed that in the weak surface tension case with 7 < %, both elevation and depres-

sion forced solitary waves exist for both positive and negative polarity pressure forcings.

Maleewong et al. [78]

When the forcing is negatively orientated, critical Froude numbers F3 and F3™ exist in
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the same manner as for the strong surface tension solutions; so that there are no solutions
for F3* < Fy < 1, two families of depression wave solutions for /5 < Fy < F5*, and a
unique depression wave solution for 0 < F, < F. However, the small amplitude waves
here resemble wave packets so there exist small decaying oscillations in the tails of the
forced depression envelope solitary waves. Forced elevation solitary waves also exist,
and these waves bifurcate from a pure solitary wave.

When the forcing is negatively orientated, a forced depression (envelope) solitary
wave bifurcates from the pure (envelope) depression solitary wave, as in the case with
T > % Again, elevation waves bifurcating from the uniform stream exist, but here,
unlike in the stronger surface tension case where it was conjectured that solutions exist
for the entire range 0 < F < 1, there exists a turning point in the £ — y(0) plane.
Therefore, a branch of forced elevation envelope solitary waves bifurcating from a pure
solitary wave is also obtained in this weaker surface tension case. Therefore, whatever the
orientation of the disturbance, in the weak surface tension case there exist two families
of solutions for some critical region of the Froude number. When the Froude number is
greater than this critical region, there are no solutions and when the Froude number is
below the region, there is a single unique solution.

Maleewong et al. [78] also discovered new ‘two-hump’ solutions. These solutions
have a two-peaked trough, and as the Froude number increases, the distance between the
undisturbed stream and the peak in the trough increases. The weaker surface tension case
is therefore richer than the stronger tension case, having more potential solutions.

Guayjarernpanishk and Asavanant [66] considered the problem of a free surface flow
over an isosceles triangular obstacle, using both a fully numerical method based on
Cauchy integral formula, and a weakly numerical analysis using the sfKdV equation.
They obtained critical gravity-capillary hydraulic fall solutions, with subcritical flow up-
stream of the obstacle and supercritical flow downstream. They found that there exists a
critical obstacle height, such that, for obstacles below this height, no hydraulic fall solu-
tion can be found. If the obstacle height is decreased towards the critical height, with the
upstream surface tension held fixed, the free surface immediately before the hydraulic fall
develops a slight elevation. Similarly, for an obstacle of fixed height, as the Bond num-
ber is decreased towards some critical value, the slight elevation immediately before the
hydraulic fall increases. Furthermore, they showed that if the obstacle is of negative ori-
entation, so that it is a dip in the channel, an elevation wave appears over the disturbance
before the uniform depth of the flow decreases downstream.

The solutions can be summarised in the parameter space (£',7) shown in figure 2.3
(see for example Dias and Iooss [36] and Trinh and Chapman [118]). The curve I repre-
sents the points at which the linear dispersion curve has a minimum, so that the two roots

of the linear dispersion relation (2.4.1) merge into one double root. This means that, on
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Figure 2.3: Parameter space (F',7) showing the regions where different forced gravity-capillary
solutions exist. The regions are separated by the vertical and horizontal lines F' = 1, 7 = % and
the curve I" of points on the minimum of the linear dispersion relation. Note that only the lines
givenby FF' = land 7 = % and the curve I' are boundaries of classification. Furthermore note
that region (4) extends beyond the 7 = % boundary.

the curve, the phase velocity ¢ must equal the group velocity c¢,. We know that w = ck

and

dw d(ck) dc
_ dw _ de 2.4.1
ak = ak ar ¢ (2.4.10)

Cq

So, ¢ = ¢, requires that dc/dk = 0. Following Dias and Iooss [36], the linear dispersion

relation can be written in the form

Gk) = (% + Tk:Q) tanh(k) — k = 0, (2.4.11)

where 7T is the Weber number defined by

o
T=—. 24.12
he? ( )
Rearranging (2.4.11) for F? we obtain
1 h(k
1 peosh®) e (2.4.13)

F2  "sinh(k)
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We require dG(k)/dk = 0 in order to obtain the double roots of G(k), corresponding to

the minimum of the linear dispersion relation. Thus,

sinh (k) 1 9 9
2Tk — + Tk h“k—1=0. 2.4.14
cosh (k) * (F2 + > bec ¥ ( )

Substituting (2.4.13) into (2.4.14) we obtain

2Tk

sinh (k) N (kcosh(k)

— Tk?> + Tk? h2k—1=0 2.4.15
cosh (k) sinh (k) * ) vee ’ ( )

and so the Weber number 7" can be written in terms of %k by

cosh(k)sinh(k) — k

T = 24.16
2k sinh? (k) ( )
Substituting (2.4.16) into (2.4.13) we obtain F' in terms of k:
2 sinh? (k)

2= : 2.4.17
k cosh(k) sinh(k) + k2 ( )

We plot the curve I' in the /' — 7 plane, so we use the relationship

o o gh T

= = = == 24.18
phc?2  pgh? 2 F?’ ( )

between the Weber number and the Bond number, in order to write the Bond number in

terms of k as

S cosh(k) sinh(k) — k
k2 cosh(k)sinh(k) + k3

(2.4.19)

Equations (2.4.17) and (2.4.19) now describe the I' curve parametrically. However, in the
long (kK — 0) and short (k — oo) wave limits we approximate F' and 7 analytically. It

is easier to do this by considering the long wave limit of 1/F? and 7. Using the Taylor

expansions
1 kK 2k
th(k) == 4+ = — — + ¢ 2.4.20
coth(h) =z +3 -5 tom (2.4.20)
1 k7K 31K
h?(k) == — = + — — 2.4.21
cosech™(k) =7 = &+ 360 ~ Tp120 T ( )
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we see that in the long wave limit the inverse of (2.4.17) becomes

1 k/1 k K K2 /1 k7K 31k° 2
Sl TN TN N I 2.4.22
F2 2<k+3 5 >+2<k 6 7360 15120 T ) ( )

1 1 1 1 7
=1 —— —— e — 4+ — Kt 2.4.23
+(6 6) +(90+72+360) * ( )
1
—1 4 —kr 4 2.4.24
+45k + ( )

1 /1 k k8 1/1 k& 7k\?
2%k (k 3 45) 2 <k: 6 360) (24.25)
1 2k?

=S+ (2.4.26)

The long wave limits of F' and 7 are therefore F' — 1 and 7 — 1/3 as k — 0. In the
short wave limit, F? — 2/k and 7 — (k — 1)/(k* + k*) — 1/k* as k — oo. We now

summarise the solutions in the (F, 7) parameter space.

e Inregion (1) the flow is subcritical (/' < 1) and the surface tension is weak (7 < %).
The solutions are below the curve I', and take the form of the two wave trains (a
train of capillary waves upstream of the disturbance, and a train of gravity waves
downstream), observed by Rayleigh [102] and studied for example by Forbes [49]
and Grandison and Vanden-Broeck [59]. Vanden-Broeck [123] has shown that so-
lutions where the downstream gravity wave train takes the form of Wilton ripples,

are also found in this region.

e In region (2) the flow is subcritical with strong surface tension (7 > %). The
solutions correspond to the solitary wave solutions with sech? type profiles, studied
for example by Maleewong, Asavanant and Grimshaw [77]. As the Froude number
is decreased towards F' = 0, the trapped bubble limiting configuration, as first

discovered by Crapper [33], is found.

e In region (3) the flow is subcritical and the surface tension is weak. The solutions
are above the curve I" and as the curve is approached, they correspond to the solu-
tions which take the form of wave packets. Decaying oscillations therefore appear
in the tails of the envelope solitary waves. Solutions in this regime were stud-
ied by Forbes [49] (away from the ['-curve), and by Maleewong, Asavanant and
Grimshaw [78].

e In region (4) the flow is supercritical (/' > 1) with either 7 < % orT > % Forbes
[49] found elevation solitary type wave solutions here, but remarked that the lin-

earised theory predicts a train of capillary waves upstream, and indeed, as region
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(6) is approached (where the flow is supercritical and surface tension is weak but
in the neighbourhood of 7 = %), the unforced generalised solitary waves obtained

by Hunter and Vanden-Broeck [70] using a fifth-order KdV equation are found.

e Finally, in region (5), Trinh and Chapman [118, 119] have recently conjectured the
possibility of six different families of wavy solutions. The waves here are expo-
nentially small and thus invisible to regular asymptotics. So, following the method
used by Chapman and Vanden-Broeck ([25] in the capillary case and [26] in the
pure gravity case), they used exponential asymptotics to justify these solutions.
They found their six regions of different solutions by examining the Stokes lines
associated with the singularities in the underlying geometry of the problem. These
singularities cause a divergence in the asymptotic expansion, and thus Stokes’
Phenomenon occurs whereby the asymptotic solution can cross one of the criti-
cal Stokes lines. This causes the switching on of a small exponential, resulting in

gravity or capillary waves.

2.5 Flexural-gravity waves

In the colder regions of the world, such as the Arctic and Antarctic regions, the ocean,
rivers and lakes are frozen over during the winter. This results in vast continuous ice
plates that cover the water, the study of which is very important as the plates of ice make
a platform for many human activities. For example, they are used as transportation links
in the form of railway lines for trains in permanent areas of ice, as well as airline runways
and roads. For communities relying on ferries across the water most of the year, without
these alternative means of transportation in the remainder of the year, communications
and the quality of life would be significantly affected. The safety of the ice crossing
is therefore of concern. Crucially, the interaction of the deformable ice plate and the
underlying water can lead to fatal results. In their book concerning moving loads on
ice plates, Squire ef al. [111] describe numerous ice crossings that have taken place
throughout history. Methods to break the ice are also of concern, for example, in order
to keep harbours clear, and to initiate the breakup of river ice. Air cushioned vehicles are
often used to break the ice (see chapter 9 Ashton 1986 [7]).

The study of this hydroelastic problem has recently been receiving renewed interest.
This is partially because the effects of global warming are having a significant effect
on sea-ice conditions. In some regions warmer summers cause faster melting of the
ice, and thus rougher sea conditions. In other areas ice is being found in increasingly
wider regions. The desire for more renewable sources of energy also means that the
practicalities of floating wind turbine farms in these colder regions is a current area of
research (see Barker et al. 2005 [10], Gravesen et al. 2005 [60]). Similarly the feasibility
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of oil rigs is of interest.

A moving load on an ice plate forces waves to propagate through the fluid. The ice
plates have large area and are thin compared to the depth of the water below them, so
the wavelength of the waves is much greater than the thickness of the plate. The flexural
vibrations within the ice are therefore significant. The deformations in the ice are thus
determined by the elasticity of the ice, rather than rigid body motions. The study of a
floating ice plate is therefore a hydroelastic problem. It concerns the interaction between
a deformable body and a moving fluid. The waves are known as flexural-gravity waves as
the two restoring forces present are the flexural elasticity of the ice sheet, and gravitational
acceleration acting on the fluid.

A number of experiments have been done concerning a moving load on an ice plate
floating on top of a river or lake. Eyre [48] performed experiments in the freshwater
lake Diefenbaker in Southern Saskatchewan in Canada. A variety of vehicles, moving
at different speeds, were used as the moving load. The response of the ice plate was
investigated, and ultimately, propositions were made regarding the safety of vehicles on
ice. Eyre’s experiments promoted further investigations and experiments into the effects
of a moving load on an ice plate. For example, Takizawa [115, 116] used a snowmobile
as the moving load in Lake Saroma in Hokkaid in Japan.

Modelling the ice is not easy. Linear theories, such as the Euler-Bernoulli model, have
been used to study flexural-gravity waves when the amplitude of the water wave and the
deformations in the ice are small (see Squire [111]). However, the linear theory fails when
the load speed is near critical. Furthermore, the rougher sea conditions resulting from
climate change (see Squire [110]) mean that nonlinear theories are becoming increasingly
important.

Previously, many nonlinear studies used Kirchoff-Love plate theory to formulate the
problem. For example, Forbes [50, 52] used the Kirchoff-Love model to study periodic
waves. Pdrdu and Dias [98] found flexural-gravity solitary waves with decaying oscil-
lations in their tails, when the wave speed is near critical. They compared their results
with those of a forced nonlinear Schrédinger equation. Vanden-Broeck and Pardu [125]
obtained generalised solitary waves, and Milewski et al. [82] obtained pure hydroelastic
solitary waves in deep water. These solitary waves become generalised solitary waves
if the speed of the forcing becomes greater than the minimum of the linear dispersion
relation.

The nonlinearity in the Kirchoftf-Love model is included in the elastic term, by defin-
ing the pressure of the ice at the free surface as

d*k

P=D—. (2.5.1)

dz?

Here,  is the curvature of the free surface, and D is the flexural rigidity of the ice. The
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latter comes from thin plate theory (see Fung [55] pages 456-463) and is defined by

EhR3
D= ——- 252
12(1 — v?)’ ( )
where E' is Young’s modulus, v is Poisson’s ratio, and h is the thickness of the ice. The

dynamic condition on the ice plate then becomes

1 Naw
5P(0% + ;) + pgn + DI, (W) =0 (2.5.3)

where p is the density of the fluid, g is gravitational acceleration, 7(x) is the deformation
of the ice sheet, and ¢, and ¢, are the horizontal and vertical components of the fluid
velocity respectively.

However, the Kirchoff-Love model does not have a conservative form; elastic poten-
tial energy is not conserved. Plotnikov and Toland [93] have therefore recently considered
the ice plate as a thin elastic shell. Using the special Cosserat theory of hyperelastic shells,
satisfying Kirchoff’s hypothesis, they were able to study the interactions between the ice
plate and an infinite ocean. Guyenne and Pardu [67] have used the Cosserat formulation
to look for pure solitary wave solutions for near critical wave speeds (i.e. for speeds near
the minimum of the phase velocity) in both infinite and finite depth. They compared their
results with weakly nonlinear solutions of a forced Nonlinear Schrédinger equation.

As the special Cosserat theory is conservative, we use this model for the ice plate in
the work presented in this thesis. This means that we describe the position of the elastic
shell using Lagrangian coordinates, along with a single directional vector field on the
surface, in order to satisfy Kirchoff’s hypothesis. The directional vector field is taken to
be the unit vector normal to the surface. This means that the thickness of the ice plate
will remain constant. Furthermore, we assume that the plate does not shear.

The thin elastic shell supports the external load or disturbance, and deforms from its
stable state due to stresses on the shell. If the bending and twisting moments of the shell
are negligible, the membrane theory of shells can be applied. The theory neglects all
moments. This state of stress is then known as the membrane state of stress. One way to
justify this is to assume that the curvature and twisting at the centre of the free surface are
small. It can therefore be assumed that the moments can be neglected, although a load
could still be supported in bending.

A completely flexible shell cannot support stresses as a compressive force will cause
a loss of stability of the equilibrium state. So, any load or disturbance in the shell must
be sustained by tensions. Therefore, we can replace the stresses on the elastic plate with
tensions. See Ventsel and Krauthammer [126] for more details.

We consider the deformed segment of length §s shown in figure 2.4. The deformation
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is sustained by the tangential tensions 7(s) and the shear tensions ¢(s) shown in the figure,
along with the bending moments which we denote by m(s). Here, s is the arclength along
the shell segment, and p in the figure represents the forcing term on the shell. The force

is due to gravity and the pressure jump across the shell.

n
_g(s)n q(s +ds)n
—7(s)t 7(s + ds)t
Figure 2.4: Elastic shell segment
The total tension exerted on the shell segment is then
T = 7(s)t + ¢(s)n, (2.5.4)

where t is the tangential unit vector and n is the outward unit normal. Then balancing

the forces across the segment gives
—q(s)n(s)+q(s+ds)n(s+ds)—7(s)t(s) +7(s+ds)t(s+ds)+pdsn(s) = 0. (2.5.5)

Dividing by ds we can rewrite (2.5.5) as

q(s+ ds)n(s +ds) — q(s)n(s + ds) N q(s)n(s + 0s) — q(s)n(s)

s s
+T(S +ds)t(s + 5;‘2 — 7(s)t(s + ds) N 7(s)t(s + 6;2 — 7(s)t(s)
+pn(s) = 0. (2.5.6)

Taking the limit as s — 0 this becomes

dq dn dr dt
gn(s) + e + Et + T +pn = 0. (2.5.7)
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Now we need to find dt/ds and dn/ds. In Cartesian coordinates we define a point para-
metrically by x(s)i + y(s)j. The tangent to a small segment of the shell is then given
by

de, dy
t=—i+—7j 2.5.8
and the normal component by
dy, dx
=——i+ —j. 259
" ds t ds‘] ( )
Differentiating with respect to s gives
dt  d’x, d%y
— =—i4+—] 2.5.10
ds  ds® i sV ( )
d d? d?
h_ 4y e 2.5.11)

We can now find i by multiplying (2.5.8) by dx/ds and (2.5.9) by —dy/ds. Adding the

results gives

doy dy defde dy dy (Cdy,do
ds ds  ds \ds ds'] ds ds ds‘]
dz\ 2. dx dy dy 2 dx dy .

= (E) H_EE‘H_(E) I_EE‘] (2.5.12)

=1i.

Similarly, we obtain j by multiplying (2.5.8) by dy/ds and (2.5.9) by dx/ds, and adding
the results. We find that

t— — =]. 2.5.1
ds + nds J (2.5.13)
Now, substituting i and j from (2.5.12) and (2.5.13) into (2.5.10) and (2.5.11), we obtain
dt d*x (dx dy >y (dy  dx
o2 Y A e 2.5.14
ds  ds? <d$ ds n) T s (ds s n) ’ ( )
dn d*y (dx.  dy d*r (dy, dx
— = —t-—= — | 2t+-—n). 2.5.15
ds ds? (ds ds n> * ds? (ds * ds n) ( )

Next, we rewrite these as

dt  (drde  dyd Pyde  dxd
:( R y)t+( yor o7 y>n, (2.5.16)

ds  \ds?ds ' ds?ds ds? ds  ds®ds
dn d*ydr  d*xdy d*ydy  d*xdx
M _(GYer, ST (Y 2T 2.5.17
ds ( ds? ds * ds? ds) * <d52 ds * ds? ds> " ( )
We know that P d Pud
e Al A (2.5.18)

a2 ds T dstds
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because parameterising x and y with the arclength s means that the parametric equation

2 2
<Z_§) N (%) 1 (2.5.19)

must be satisfied. Differentiating with respect to s then gives

>z dx  d*ydy
o L2777 ) . 252
2(d52 ds+d52ds> 0 2:5:20)

We also know that

el AN Al 2.5.21
ds?ds ds?ds r ( )

because the curvature of the shell K = |dt/ds| by definition. Therefore, (2.5.16) and
(2.5.17) become

@ = —Kn, (2.5.22)
ds

d

o (2.5.23)
ds

Here, x may also be defined by x = da/ds, where « is the angle between the horizontal
and the tangent to the shell segment. Substituting (2.5.23) and (2.5.22) into (2.5.7) gives

dq

dr
gn(s) + grt(s) + Et(s) — 7kn(s) + pn(s) = 0. (2.5.24)

The tangential and normal components are thus given by

d
T gk =0, (2.5.25)
ds

d

M _r = —p, (2.5.26)
ds

respectively. Then rearranging (2.5.26) for 7 and substituting this into (2.5.25) gives

1
L I (2.5.27)
ds |k \ ds

Now we consider the shear stress moment on the small segment of the elastic shell. We
balance the momentum over the small shell segment so that the rate of momentum en-
tering and exiting the shell plus the total shear stress on the shell (given by ¢ds) is zero.
Thus,

—m(s) —q(s)ds +m(s+ ds) = 0. (2.5.28)
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Dividing by s and taking the limit as ds — 0 gives

d
g="= (2.5.29)
ds
We introduce the linear constitutive equation
m = Dk, (2.5.30)

where D is defined by (2.5.2). A justification for using this equation is given in [94].
Eliminating m using (2.5.29) and (2.5.30) we obtain

d
q= —(Dr). (2.5.31)

Then substituting into (2.5.27) and assuming that D is constant, gives

d% E (%’ n %)} n “fz_/; — 0 (2.5.32)
N d% E (%j n % . %,ﬁ)] _o (2.5.33)
Finally, integrating with respect to s gives
% (% + % + %HS) +C=0 (2.5.34)
= W % + %Ff’ +Cr=0 (2.5.35)
= p=-D("+ 1/13 + Ck), (2.5.36)

2

where the prime denotes a derivative with respect to s, and C' is the constant of integra-
tion. Blyth, Pardu and Vanden-Broeck [20] explain that one can think of the constant of
integration as a form of pre-stressing on the elastic shell, before any deformation. There-
fore, if we assume that there is no tension in the ice plate, so that it is not pre-stressed, we
can take C' = 0.

In Cartesian coordinates
dk B dr dx

ds — dvds’

where dz/ds can be obtained by considering a small shell segment of length ds. Using

(2.5.37)

Pythagoras’ theorem we obtain ds®> = dz? + dy?, and thus

2
ds _ 14 (d—y) L e (2.5.38)

de dx ds */14'77%.
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Then,

de drdzx dk 1
_ A E—— 2.5.39
ds der ds dz (,/14-77925) ( )

Differentiating again with respect to s gives
Prd (de 1 _d [de 1 dx (2.5.40)
ds?  ds dr /14 n? - dx dr \/1+n2 ) ds e
1 d 1 d Nex
= —— _— , (2541
V1+n2dz <«/1+77 dﬂ?(l—i—%g)) ( :

so0 (2.5.36) becomes

(NI

3
p=-D — S e
V14 n2de <\/1+n 2 dx ( (1+72) 3)) 2 ((Hni) )
(2.5.42)
The dynamic condition on the ice plate then becomes

1 1
§p(¢§ +02) + pgn + D(Kss + 5/{3) — 0, (2.5.43)

for example, see Plotnikov and Toland [93], and Blyth and Pozrikidis [19].

2.6 Two-layer flows

The study of free surface flows past disturbances in a two-layer channel configuration of
finite depth is also of interest. In order to model flows over an obstacle (such as a moun-
tain) in an atmospheric or oceanographic situation, a multi-layered flow configuration is
required as the densities of the ocean and the atmosphere are each continuously stratified.
The density distribution can be approximated by the simpler situation of two fluids of
different but constant densities, flowing one on top of the other. The same simplifying
assumptions as in the single layer model are made; the fluids in the two layers are as-
sumed to be inviscid and incompressible, and the flows irrotational. The key differences
between the fluids is in their densities and depths. When two fluids of different densities
lie one on top of the other, an instability may occur on the interface. If the denser fluid
lies on top of the less dense fluid (e.g. water on top of oil), the instability is known as the
Rayleigh-Taylor instability. However, we assume that the density in the top-layer fluid is
less than (or equal to) the density of the bottom-layer fluid. The potential instability in this
case is the Kelvin-Helmholtz instability. It is more well-known than the Rayleigh-Taylor
instability as it can be seen in clouds and the ocean. Vincent van Gogh even captured the

instability in his painting ‘La Nuit Etoilée’. The instability occurs when there exists a



36 Literature Review/Background

velocity shear between the two fluids of different densities. This leads to vorticity at the
interface and thus results in a transition to turbulent flow, with a rolling up of the interface
and a mixing of the fluids.

Both the upper surface and the interface between the two-fluids are ‘free surfaces’
and must be found as part of the solution. Therefore, as one might expect, the two-layer
flow configuration allows for a much wider variety of flows than the single-layer case.
Therefore, there is extra complexity in this problem due to the fact there are now two
modes: an external (fast) mode and an internal (slow) mode. Furthermore, there is also

additional complexity due to the existence of a critical thickness ratio:
D =R, (2.6.1)

where D is the depth ratio given by D = hy/h; and R is the density ratio given by
R = py/p1. Here, h; and p; for i = 1,2, are the depths and densities of the lower and
upper fluids, respectively.

The importance of understanding two-layer fluid flows is also demonstrated by the
dead-water phenomenon. The phenomenon was observed in 1893 by Norwegian explorer

Fridtjof Nansen [85] who was on an expedition to the North Pole in his ship ‘Fram’;

“ When caught in dead water, Fram appeared to be held back, as if by some
mysterious force [...] Fram was capable of 6 to 7 knots. When in dead water
she was unable to make 1.5 knots. We made loops in our course, turned
sometimes right around, tried all sorts of antics to get clear of it, but to very
little purpose. ”

The phenomenon occurs when a layer of fresh water lies on-top of a layer of (much
denser) salt water. The propeller, or some other form of underwater thrust used to move
a ship forward, may start to generate internal waves (or turbulence) on the interface be-
tween the two fluids of different densities, instead of using the energy created to move
forward. The upper surface does not change form, and so a ship travelling in such water
meets some resistance and slows down, for no apparent reason. This can be a big problem
for ships and occurs for example, near melting glaciers. Ekman [46] reported Nansen’s
observations in 1904, and conducted further experiments in order to try and explain the
phenomenon. Mercier, Vasseur and Dauxois [79] have also recently reproduced and gen-
eralised (including considering the case of a three-layer fluid) these effects in laboratory
studies. Woolfenden and Parau [130] noted that the effects of both interfacial and surface
tensions play a major role in the experiments by Mercier et al. [79] due to the shallow
depths they used. This therefore helps to demonstrate the importance of understanding

the influence of both surface and interfacial tensions, in two-layer flow configurations.



2.6 Two-layer flows 37

2.6.1 Rigid-lid approximation

The problem of interfacial waves in a two-fluid regime, where the upper and lower fluids
are bounded above and below by a rigid surface respectively, has received extensive study.
This case is known as the rigid-lid approximation, and as there is just a single free surface
here, the complexities in dealing with the nonlinear effects of an upper free surface on
the interfacial waves are absent.

Baines [8] conducted experiments where an obstacle was towed along the upper free
surface of a two-layer fluid configuration consisting of a thin layer of kerosene on top of
a layer of water. The towing speed and fluid depths were chosen in order to model the
rigid-lid approximation, and then particular attention paid to the interfacial free surface
(the internal mode). Baines found that when the upper-layer is thin (so that D << 1), the
interfacial flow is very similar to the free surface flow in the single-layer configuration.
However, when the fluids are of more comparable depths (D ~ %), different behaviour is
seen. Both supercritical and subcritical interfacial solitary waves were observed, and in
addition, hydraulic falls, bores (moving hydraulic falls), and rarefactions were found.

In the absence of any forcing, interfacial solitary waves have been studied, for exam-
ple, by Amick and Turner [4, 5] and Laget and Dias [75]. In the rigid-lid approximation,
gravity solitary wave solutions bifurcate from a uniform stream at the critical Froude

number

D(1 - R)
D+R

In this two-layer configuration, a flow is said to be subcritical if ' < Fp;; and super-

Foi = (2.6.2)

critical if /' > Fy;;. The nature of the solitary waves depends on the critical depth ratio
2.6.1).If D > V'R, the solitary waves are pure elevation solitary waves, and if D < VR,
they are pure depression solitary waves. The solution branches of these solitary waves
have been followed in order to find their limiting configurations. Both infinite broaden-
ing of the solitary waves (e.g. see Turner and Vanden-Broeck [120]), and overhanging
waves (e.g. see Grimshaw and Pullin [64]) have been seen. (Overhanging waves can be
identified as waves with a mushroom-shaped structure.)

Sha and Vanden-Broeck [104] included the effects of forcing and used an integro-
differential equation formulation to study symmetric interfacial gravity solitary waves
over a semi-circular obstruction on the bottom of the channel. The rigid-lid approx-
imation was assumed, and waves perturbating from both the uniform stream, and the
branches of the pure solitary waves were obtained. Both the infinite broadening and the
overhanging limiting configurations were found here, but in the case of the broadening of
the forced solitary waves, a small bump was found to exist at the centre of the broad wave.
This bump was shown to be a perturbation from the uniform stream if it occurred on the

forced elevation solitary wave. If it was on the forced depression solitary wave, it could
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either be a small bump perturbing a uniform stream, or a much larger bump perturbing a
pure solitary wave.

Belward and Forbes [12] used a two-layer flow theory to model the atmospheric situ-
ation associated with a thunderstorm, where cool dense air is expelled under warmer less
dense air. In most studies previously considered, the exact geometry of the topography
was used to simplify the problem. However, Belward and Forbes developed a boundary
integral formulation in which the channel bottom can be an arbitrary function of position.
They used this fully numerical method to model lee waves (atmospheric standing waves)
over a mountain range. They obtained solutions with a waveless uniform region upstream
of the mountain, and periodic waves downstream. Belward and Forbes [13] later modi-
fied this numerical method to look for critical interfacial flow solutions, where the mean
depth of the interface decreases over the mountain, i.e. hydraulic fall solutions.

The effects of interfacial tension in the rigid-lid case in the absence of any forcing
has been studied, for example, by Laget and Dias [75]. Pure solitary waves bifurcating
from the uniform stream at critical Froude number Fy;¢, given by (2.6.2), can be found,
as in the pure gravity case. However, if the Bond number is less than some critical value,
these solitary waves become generalised solitary waves and possess ripples in their tails.
As in the pure gravity case, the orientation of these solitary waves depends on the critical
depth ratio. The orientation of the gravity-capillary interfacial solitary waves is the exact
opposite to that of the pure gravity waves: if D > /R, the waves are pure depression
solitary waves, and if D < /R, they are pure elevation solitary waves.

When the depth ratio is near critical, (i.e. D? ~ R), small amplitude fronts have been
found to exist (e.g. see Amick and Turner [5]). A front describes the unforced hydraulic
fall, i.e. it is a conjugate flow which connects two uniform flows of different heights.

The stfKdV equation has been used to model waves on the interface of a two-layer
fluid. However, when the ratio of layer depths is near critical, the coefficient of the
nonlinear term in the sfKdV equation vanishes, so that the effects of nonlinearity vanish
and the sfKdV ceases to provide an accurate model for the flow. Instead, by changing
the order of the scaling in the long-wave analysis, a stationary forced modified KdV
(stmKdV) equation is derived. The sfmKdV equation includes an additional cubic term,
n*n,, and has been derived, for example, by Choi, Sun and Shen [29] using a unified

asymptotic method. It can be written in the form

where A;, ;—; 23 are constant coefficients. Choi et al. studied solutions to the sfmKdV
equation for a two-layer flow in the rigid-lid approximation. An obstruction was placed
on each horizontal rigid boundary, and gravity-capillary solutions were obtained for two

different regimes; 7 > 7. and 7 < 7., where T, is the critical value of the Bond number at
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which the coefficient of the dispersive term in the sfmKdV equation vanishes:

_1-RD

5 (2.6.4)

Te

For strong tension, 7 > 7., Choi et al. found three different types of solutions: (i)
four symmetric solitary wave solutions, of which three are single peaked waves, and
one is two-crested, (ii) a non-symmetric solution consisting of part of a solitary wave
behind the obstacle, with a periodic wave train ahead of the obstacle, (iii) a uniform
stream upstream of the obstacle, with a periodic wave train downstream. For weaker
surface tension, 7 < 7., hydraulic fall solutions and multi-crest solutions were obtained
for particular values of the Froude number in the subcritical regime.

Dias and Vanden-Broeck [39] also used a weakly nonlinear analysis for the rigid-
lid approximation problem in the Boussinesq limit (where the two fluids have almost
identical density) with R ~ 1. They used the sfKdV equation in the absence of interfacial

tension in the form
1 " 3 B 1
677111 277771 MMy = 9

where u = F — Fy¢ (Fyp 1s the critical value of the Froude number, from which the

b, (2.6.5)

solitary waves bifurcate, defined by (2.6.2)). The plus sign is chosen in the case of a
‘thick upper layer’ (D > v/R), and the minus sign for the ‘thick bottom layer’ (D <
v/R). They examined the noncritical case, i.e. where the ratio of layer depths is far from
critical, and considered four different cases: subcritical flows with a thick upper layer,
subcritical flows with a thick bottom layer, supercritical flows with a thick upper layer,
and supercritical flows with a thick bottom layer. Using a phase-plane analysis they
showed that the thick upper layer cases are just an extension of the single-layer flows.
Hydraulic falls which are subcritical upstream and supercritical downstream are found,
as well as the two classical forced supercritical solitary wave solutions and the subcritical
solutions with a wave train downstream of the obstacle. In addition, generalised hydraulic
falls with supercritical flow upstream and subcritical flow downstream were obtained.

In the case of the thick bottom layer, solutions in the absence of forcing have been
shown to be qualitatively similar to those for the case of a thick upper layer, and thus, the
single-layer flow configuration. However, when forcing is introduced to the problem, this
is not so. The depth of the lower fluid in the subcritical hydraulic fall solution decreases
directly over the obstacle as predicted by the single-fluid configuration, but it then in-
creases to a larger depth downstream. The main difference for this case however, is with
the supercritical forced solitary wave solutions. Three symmetric solitary wave solutions
exist here; two of which are depression waves (as obtained by Sha and Vanden-Broeck
[104]), and the third is an elevation wave. The elevation wave can be found at values of

the Froude number for which no solution existed in the thick upper layer case; it exists
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for all F' > Fy;r. The generalised hydraulic fall solution found in the thick upper layer
case also exists here, but now the depth of the lower fluid decreases downstream of the
obstacle. Dias and Vanden-Broeck confirmed their solutions with the results obtained
when solving the full nonlinear equations.

Dias and Vanden-Broeck [42] then extended their phase plane analysis to study the
critical case where D ~ /R, using a stationary forced extended KdV (sfeKdV) equation
of the form

1 3 3,

glawe + 5 AN — 0" Ne — 1 = —ba, (2.6.6)
where j = F'— Fy,;; and A is a constant measuring the distance from the critical thickness.
This differs from the sftmKdV equation obtained by Choi et al. [29] due to the inclusion
of the nonlinear 77, term. This enables solutions close to the critical thickness to be
examined. The constant A vanishes at the point D = /R. In this work, Dias and
Vanden-Broeck found a third critical value of the Froude number, F,,,., representing the
maximum Froude number for hydraulic falls. They used this Froude number alongside
the critical values [, (defined in (2.6.2)) and F't,,,,; (defined below in (2.6.7)), to provide
a full picture of pure gravity hydraulic falls in the two-layer rigid-lid approximation.

The branches of subcritical hydraulic falls obtained in the ‘far from critical’ case
extend into the critical case. However, in the ‘near critical’ and thick bottom layer case,
a new subcritical hydraulic fall is found due to the cubic nonlinearity in the sfeKdV
equation. The ‘near critical’ thick upper layer supercritical case is also more complex.
The hydraulic fall solution branch in the ‘far from critical’ case stops at the new critical
value of the Froude number F},,,,. New types of hydraulic fall, requiring four independent
parameters to characterise them (rather than the usual three), are also found in the range
Frront < I < Fiq,. Vanden-Broeck and Dias showed that there can be as many as three
different falls for the same values of these four parameters. Similarly, in the ‘near critical’
thick bottom layer supercritical case, the hydraulic fall solution branch in the ‘far from
critical’ case stops at the critical value of the Froude number FY,,,;. New hydraulic fall
solutions in the region Fy;y < F' < I,y again requiring four independent parameters
to characterise them, may be found.

The critical Froude number %, is the value of the Froude number at which a front

_ [+ D)1~ VR)
Ffront — \/ 14 \/E s (267)

see for example Laget and Dias [75] and Dias and Vanden-Broeck [40]. The front con-

exists. It is given by

serves the mass, the total momentum and the total energy in both fluid layers. When
D = v R we see that I, s = Ff,0nt, 0 no front exists. Much of the evidence for fronts
has already been discussed because the broad solitary wave, introduced with respect to

the limiting configuration of pure solitary waves, can be viewed as a superposition of
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two fronts. In a similar manner to the pure solitary waves, the orientation of a front is
therefore also determined by the critical thickness ratio i.e. if D < \/E the front is a ‘de-
pression’, and if D > VR, it is an ‘elevation’. Dias and Vanden-Broeck [40] have shown
that depression fronts exist for all 0 < D < v/R. They obtained a limiting configuration
wherein the interfacial surface touches the fixed horizontal rigid-lid. Elevation fronts on
the other hand exist only in the range VR < D < D,,q,, and overhanging develops as
one approaches the limiting configuration.

The linear dispersion relation for gravity-capillary interfacial waves, in the rigid lid

approximation with finite depth, can be written in the form

(1 — R+ 77k?) tanh (£) tanh (k)
k(Rtanh (%) + tanh (k))

F*(k) = (2.6.8)

where 77 is the interfacial Bond number (see for example Laget and Dias [75] and Parau
and Woolfenden [100]).

2.6.2 Free surface boundary conditions

When the upper fluid is not bounded above, so instead it is governed by a free surface,
the situation is far more complex. The presence of two modes (a fast ‘external’ mode
and a slow ‘internal’ mode, both of which are governed by two distinct linear disper-
sion relations), and the potential nonlinear interactions between them, make the problem
much more difficult than its rigid-lid approximation counterpart. Peters and Stoker [92]
and Kakutani and Yamasaki [71] modelled pure gravity solitary waves on both the free
surface and the interface, using coupled KdV equations. They showed that whilst the fast
mode can always be modelled with the KdV equation itself, the slow mode needs cubic
nonlinearity when the depth of the fluids are such that one is near the critical depth ra-
tio. Modified and extended KdV equations are therefore required. Peters and Stoker, and
Kakutani and Yamasaki showed that the free surface and interfacial waves are in-phase
in the case of the fast mode, and 180° out-of-phase for the slow mode. Moni and King
[84] used a fully nonlinear technique, involving a generalised Schwartz-Christoffel trans-
formation, to provide fully nonlinear external pure gravity solitary wave solutions in this
two-layer flow configuration.

In the single layer configuration, generalised solitary waves are only obtainable using
the fifth order KdV equation (2.4.6) in the neighbourhood of 7 = %; so only in the gravity-
capillary configuration. In contrast, in the two-layer configuration, generalised solitary
waves can also be obtained in the pure gravity case. They can be caused by the resonant
interactions between the two modes of the dispersion curve. Michallet and Dias [80], and
Pirdu and Dias [97] studied the resonant interactions between the two modes in order to

calculate periodic interfacial waves of permanent form. The resonance can be explained
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in terms of the linear dispersion relation. When a periodic wave with wavenumber & # 0,
has the same linear phase velocity c(k) as the long-wave with wavenumber & = 0, a
resonance occurs between the periodic wave train and the solitary long-wave. Therefore,
when a long internal mode interacts with a short external mode, solitary waves (long
waves) which have periodic ripples (short waves) in their tails, are obtained on both the
interface and the free surface. These waves are called generalised solitary waves, and
whilst the solitary pulses are out-of-phase, the short-wave ripples are in-phase. This type
of resonance is known as 1 : M resonance, where M € N is large.

These generalised solitary waves were not obtained by Kakutani and Yamasaki [71]
as they cannot be modelled by the classical KdV equation. Dias and II’ichev [35] used
coupled extended KdV equations to derive a weakly nonlinear model capable of including
resonant effects. They were able to obtain generalised solitary waves. Furthermore, they
modified their model so that it was valid when the fluid depths are at the critical thickness
ratio, by including cubic nonlinearity. They then obtained fronts with ripples in their
tails- generalised fronts.

There have been far fewer studies into this two-layer configuration, when the effects
of surface tension are included either on the free surface, on the interface, or even on
both. Woolfenden and Pardu [130] studied gravity-capillary solitary waves in the two-
fluid system using a fully nonlinear boundary integral equation method. They explained

their results in terms of the linear dispersion relation, given by

) b)) — a(h)e(h)
2ka(k) ’

Fy(k) (2.6.9)

where a(k), b(k) and c(k) are functions of the wavenumber k;

a(k) =1+ Rtanh(%) tanh(k),
b(k) = tanh(%) + tanh(k) + k2 (7‘1 tanh(%) + TR (R tanh(%) + tanh(k‘))) ,
c(k) = (1 — R+ 7/k*)(1 + 7pk?) tanh(£%) tanh(k).

(2.6.10)
Here, 7; and 75 are the Bond numbers on the interface and the free surface respectively.
The fast mode takes the positive root of (2.6.9) and is defined by F',(k), and the slow
mode the negative root, defined by F'_(k).

Woolfenden and Pardau showed that in this two-layer configuration there exist two
critical values of both the free surface and interfacial Bond numbers, 7» = 7, and
71 = 7., Which determine the behaviour of the dispersion relations. They included
surface tension either on the upper free surface, on the interface (Pardu and Woolfenden
[100]), or on both the free surfaces, to look for pure solitary waves. These waves occur

at values of the Froude number in the spectral gap between the two dispersion curves (if
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such a gap exists), i.e. for values of the Froude number where resonant interactions with a
linear wave train are not possible. Solitary wave solutions with sech? type profiles (similar
to the KdV equation solutions) and solitary waves with damped decaying oscillations in
their tails (similar to the NLS equation solutions), were obtained. Furthermore, as in the
rigid-lid approximation, limiting configurations taking the form of either an increasingly
sharp wave, or a broadening wave, were approached as F' was increased towards F'f,qp:.

In the rigid-lid configuration, the orientation of the interfacial wave was shown to
depend on the critical depth ratio (2.6.1). In the presence of an upper free surface,
Woolfenden and Pardu showed that when surface tension is included only on the up-
per free surface (i.e. 7w # 0, 7; = 0), solutions bifurcating from the critical value of the
fast mode F’, (0) are in-phase depression solitary waves, whereas those bifurcating from
the critical value of the slow mode are out-of-phase waves which change their orientation
dependent on the critical depth ratio. If D > /R, the surface wave is a depression, and
the interfacial wave an elevation, and vice versa if D < v/R. When surface tension is
included on both the upper free surface and the interface, Woolfenden and Parau also
showed that the solitary waves on the two free surfaces are of opposite orientation, but
the exact orientation can be either way round for the same given parameters.

When only interfacial tension is considered, Parau and Woolfenden [100] showed that
the slow mode possesses a maximum and the fast mode a minimum, so, the spectral gap
between the two modes can be made very small. The waves in this regime have damped
oscillations in their tails and are out-of-phase if they bifurcate from the critical value of
the slow mode, and in-phase if bifurcating from the critical value of the fast mode. This
is in agreement with the case where surface tension is only present on the upper free
surface.

The forced problem in this two-layer flow configuration has also received attention.
Forbes [53] extended his work on critical free surface flows over a semi-circular obstruc-
tion in a single-layer of fluid, to critical two-layer flows. He solved the fully nonlinear
equations in both layers and looked for pure gravity hydraulic falls on both the interface
and the free surface. The mean levels of the upper free surface and the interface therefore
decrease over the obstruction. Forbes allowed for different flow velocities upstream, by
introducing the parameter v to define the ratio of the upstream flow velocities. Many of
the results discussed here so far assumed that the upstream velocities were the same in
both fluids. This reduced the number of independent variables, and is a required condi-
tion when dealing with wave trains of permanent form travelling through fluids at rest. In
such solutions, a wave train could not appear stationary in both fluids if v # 1. However,
there is no such requirement when dealing with hydraulic falls and solitary waves. The
flow speed is then such that the dispersion relation has no real & solution and thus, there

can be no waves to govern the flow.
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In the context of the shallow water approximation, the combination Froude number
fe» given by
fe=f+f-FiE+R (2.6.11)

can be used to describe two-layer critical flows, and has been derived, for example, by
Armi [6] and Forbes [53]. Here, f; and f, are the local Froude numbers in the lower and
upper layers respectively, defined by fZ = u?/g(n,—b(x)) and f3 = u3/g(n2—n:), where
u; for i = 1,2 and 7;(z) and n(z) define the horizontal velocity components and the
surface of the lower and upper fluids, respectively. The local Froude numbers therefore
vary along the channel (and approach their corresponding upstream Froude numbers as
x — —00). The combination Froude number will satisfy f. = 1 over the obstacle where
the flow is critical. Furthermore, it will satisfy f. > 1 and f. < 1 far up and downstream
respectively. However, Forbes [53] showed that the combination Froude number ceases
to describe the flow when the obstacle size becomes large.

Furthermore, Forbes showed that when the density ratio R is reduced to zero, the
lower fluid and its free surface behave like the single layer flow. In this situation, the
upper layer has zero weight and so does not influence the lower fluid. However, the free
surface solution for the upper-layer is not unique: first, there exists a solution in which the
Froude number in the upper layer is supercritical throughout the flow (the Froude number
increases to a greater supercritical flow downstream of the obstruction). Secondly, there
is a solution in which the Froude number is subcritical upstream of the obstruction and
supercritical downstream. Forbes attempted to obtain this second type of solution for
different values of the density ratio, but was only able to continue the solutions into some
small neighbourhood of R = 0.

Forbes conjectured the possibility of far more complex solutions to this problem, such
as critical flow in the lower-layer with downstream waves in the upper-layer. However,
Shen [107] derived decoupled pure gravity fKdV equations to model the interface and
free surface far from the critical depth ratio. He found a linear relationship between the
first order elevations of the upper free surface and the interface (and indicated that the fast
mode is in-phase, whilst the slow mode is out-of-phase). Consequently, this suggests that
critical flow in one-layer with wavy flow in the other, as conjectured by Forbes [53], is
not possible. Shen [107] also showed that the hydraulic fall solutions obtained by Forbes
[53], were valid only for the fast mode. Furthermore, he found that there are twice as
many solitary wave and hydraulic fall solutions in the two-layer case, than in the single-
layer case. However, as in the rigid-lid approximation, the sfKdV equation does not
adequately describe the nonlinearity in the neighbourhood of the critical thickness ratio,
so stmKdV equations are required for the weakly nonlinear analysis.

When both capillarity and an underlying forcing are considered, the published record

of research again grows thin. Woolfenden and Pérdu [130] obtained their gravity-capillary
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pure solitary wave solutions by including a pressure forcing on the interface. Then, us-
ing parameter continuation on the amplitude of the resulting forced solitary wave, they
obtained forced solitary waves bifurcating from a pure solitary wave. They then simply
removed the forcing to obtain the pure solitary wave. This shows that multiple forced
solitary wave solutions exist, with the same parameters, on both the upper free surface
and the interfacial surface, in a similar manner to the multiple solutions in the single layer
case, as shown for example by Maleewong et al. [77].

The problem has also been studied using a weakly nonlinear analysis. Choi, Sun and
Shen [30] derived a sfeKdV equation to model interfacial waves of near critical speed
over a small obstruction. As in the rigid-lid case, they found a relationship between the
upper free surface and the interfacial surface. Four supercritical solitary type waves were
also found to exist. Furthermore, solutions were seen which are flat upstream, or form
part of a solitary wave upstream, with a periodic wave train ahead of the obstacle. It
was shown that a hydraulic fall is also obtained as the limiting configuration of the flat

upstream-wavy downstream subcritical solution.

2.7 Stability

The stability discussed in this work refers to the time evolution of the numerical solution
to an initial value problem. Stability or lack of stability is deduced according to the
change in shape of the free surface as an initially steady solution evolves in time. Stability
here therefore does not refer to the more rigorous case involving solving the eigenvalue
problem to determine the attracting or repelling nature of the equilibrium points.

There are many numerical methods which use boundary integral equation techniques
to determine the motion of pure gravity water waves. As in the steady case, this has the
advantage of reducing the dimension, and thus the number of unknowns, of the prob-
lem. The kinematic and dynamic boundary conditions are computed as before, but this
time in their unsteady form. They are then expressed in terms of the rate of change of
the velocity potential ¢ and the coordinates of the free surface following a fluid particle.
The derivative of the velocity potential with respect to time, ¢;, can then be obtained
from the dynamic condition, once ¢, and ¢, are known. These velocity components
are obtained after determining the tangential and normal components of velocity. The
tangential component is obtainable simply by differentiating ¢ with respect to arclength,
using adjacent fluid particles, but the normal component can only be obtained using, for
example, a Cauchy integral equation. Longuet-Higgins and Cokelet [76] developed a nu-
merical method to compute periodic gravity waves and steep and overturning waves, in

deep water. They transformed the coordinates of their flow configuration so that the fluid
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was contained within a simple closed contour. The boundary of the contour then rep-
resented the free surface of the fluid. Adams-Bashforth-Moulton scheme was then used
for the time stepping. Dold and Peregrine [44] developed a different method to compute
unsteady pure gravity free surface flows. They explicitly calculated the time derivatives
of ¢ and the free surface using Laplace’s equation along with the dynamic boundary con-
dition and the knowledge that the derivatives of ¢ must also satisfy Laplace’s equation.
Truncated Taylor series were then used to perform the time stepping explicitly.

Cooker, Peregrine, Vidal and Dold [32] followed the method developed by Dold and
Peregrine [44] to study a pure gravity solitary wave propagating over a submerged semi-
circular obstruction. They noted that this configuration may be used to model ocean
waves causing damage to coastal structures. Using a conformal map, they mapped the
submerged obstruction into a flat-bedded plane, and then showed that when the obstacle
is relatively small, the solitary wave is not perturbed much with time, but small dispersive
waves appear behind the solitary wave, along with a train of reflected waves. When the
obstacle is larger however, they found that there exist a few different flow possibilities,
dependent on the exact size of the obstruction. The free surface may develop another
crest which propagates away from the obstruction or different forms of wave breaking
may occur. They supported these findings with experimental results.

Dold [43] also applied the method developed by Dold and Peregrine [44] to unsteady
pure gravity waves. He commented that using conformal mapping techniques, such as
those used by Cooker et al., limits the ability of the scheme to obtain steep free surface
profiles, without having many extra free surface mesh points. He also investigated the
stability of the method using test runs and a model stability analysis, and noted that three

instabilities exist:

1. A strong instability appears if the time step is excessively large,

2. A weak instability appears if quadratic or cubic backward differencing is used in

the time stepping,

3. A steep-wave, sawtooth instability appears for any size time step. The steeper the

wave, the smaller the time-scale over which the instability grows.

He therefore modified the numerical method to remove the instabilities by resolving the
issues generating them. He noted that an appropriately small time step and higher order
backward differencing are needed to resolve the first two issues, and smoothing tech-
niques are required to remove the third instability.

Much of the previous work on the stability of gravity and gravity-capillary waves
past some form of disturbance in the channel has focused on the cases where the flow
is uniform, with the same constant mean depth up and downstream. For example, as

previously discussed, Grimshaw, Maleewong and Asavanant [62] considered the stability
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of gravity-capillary solitary waves. Grimshaw and Maleewong [61] also showed that in
the pure gravity case the subcritical flow solutions, which have a train of waves down-
stream of the disturbance, are stable. They also showed that the supercritical solitary
wave solutions were stable if they bifurcated from the uniform stream and unstable if
they bifurcated from a pure solitary wave. Milewski and Vanden-Broeck [81] computed
unsteady gravity-capillary solutions where the effects of gravity and surface tension were
equally important, i.e. 7 &~ 1/3, using a fifth order fKdV equation. They obtained Wilton
ripples and solitary waves with decaying and non-decaying oscillations in their tails.

Fewer studies have considered the stability of conjugate flow solutions i.e. hydraulic
falls and generalised hydraulic falls. The work that has been done on the stability of
hydraulic falls has used a weakly nonlinear analysis to investigate just the pure gravity
case. Chardard et al. [27] showed that the fKdV equation suggests that the pure gravity
hydraulic fall generated over a moving obstacle is stable. Furthermore, they showed that
if one did consider a reversed hydraulic ‘fall’, i.e. with supercritical flow upstream and
subcritical flow downstream, so that the free surface rises over the disturbance, the weakly
nonlinear analysis suggests that it is unstable. This would explain why such hydraulic
‘rises’ are not observed in nature (see Viollet ef al. [127]).

Chardard et al. also considered the stability of supercritical pure gravity solitary wave
solutions past two disturbances. Starting with a steady wave solution, they perturbed
the solution slightly and then followed it in time to assess the stability. They showed
that, as in the case of a single disturbance in the channel, unless the disturbances were
too close together, bifurcations from the uniform stream are stable whereas bifurcations
from a pure elevation solitary wave are unstable. However, they showed that the solution
with a solitary wave bifurcating from the uniform stream followed by a solitary wave
bifurcating from a pure solitary wave, is unstable. In fact they showed that if these waves
were perturbed so that they were larger than the original steady state, the two solitary
waves would interact and generate a new solitary type wave.

Donahue and Shen [45] also showed that the fKdV equation suggests that the pure
gravity hydraulic fall is stable. They considered a submerged obstacle flowing through a
fluid at rest. They perturbed an initial stationary hydraulic fall solution with white noise
and then demonstrated that as time evolves the white noise dissipates and the solution
returns to the shape of the initial hydraulic fall. Physically, when a submerged obstruction
moves through a fluid at rest, one would require that any disturbances should decay to
zero far up and downstream. However, a hydraulic fall is a conjugate flow solution, and so
requires that the fluid depth far up and downstream of the moving obstruction should be
of different. Therefore, this creates a discontinuity in the flow in the numerical scheme,
either far up or far downstream. However, Donahue and Shen simulated the effect of

the upstream discontinuity and showed that, provided the domain was large enough, the
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discontinuity did not locally affect the results.

2.8 Research rationale

There is scope for further work in this vast area, particularly into the effects of surface
tension in both the single and multi-layered fluid flow configurations of finite depth, over
one or more disturbances in the channel. Certainly, following the work of Binder et
al. [18] on single layer pure gravity flows over two triangular obstructions for example,
one would expect to be able to find many more types of flow over multiple submerged
obstructions, both in a single layered configuration, which includes capillarity, and in the
two-layer configuration.

In this research, the papers of Maleewong et al. [77] and Binder et al. [18] are fol-
lowed and extended in order to find gravity-capillary solutions in a single-layered ideal
fluid, subjected to multiple localised pressure distributions. A fully nonlinear boundary
integral equation method is utilised to obtain solutions to the full Euler equations, and the
solutions are then explained in the context of the linear dispersion relation. Furthermore,
the pure gravity critical flow solutions obtained by Forbes [51] in the case of a single
disturbance in the channel, and by Belward [11] in the presence of an additional distur-
bance further downstream, are considered. The effects of capillarity are then included
in the formulation, and the resulting solutions examined. The ‘trapped wave’ solutions
discovered by Dias and Vanden-Broeck [41] consisting of critical flow over a central
disturbance, with a train of waves trapped between the central obstruction and a second
submerged obstruction further upstream, are obtained. The effects of surface tension on
these trapped waves is then investigated, and further critical gravity-capillary solutions
are sought. Again, solutions are explained in the context of the gravity-capillary linear
dispersion relation.

A thin ice plate floating on top of a fluid of constant density is then examined, and the
current research on flexural-gravity waves under an ice plate is extended by considering
the critical regime, where the depth of the fluid under the ice sheet changes. The exist-
ing research on flexural-gravity periodic waves (Forbes [50]), elevation and depression
solitary waves with decaying oscillations in their tails (Pardu and Dias [98]), generalised
solitary waves (Vanden-Broeck and Pardau [125]), and solitary waves in infinite depth
(Guyenne and Pdrdu [67]) for example, is thus extended to include flexural-gravity hy-
draulic fall solutions. Furthermore, ‘trapped wave’ solutions, similar to the pure gravity
solutions obtained by Dias and Vanden-Broeck [41], are sought in this flexural-gravity
regime. Solutions in this case are explained in the context of the flexural-gravity linear
dispersion relation, and comparisons between the gravity-capillary and flexural-gravity

critical flow solutions are drawn.
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The research then goes on to model two-layer flow in a channel of finite depth in
the rigid-lid configuration. In contrast to much of the previous work on two-layer flows
discussed in this chapter, both the effects of gravity and capillarity are included in our
formulation, so that gravity-capillary interfacial waves are sought. By manipulating the
shape and positions of the submerged obstructions or pressure forcing, it is anticipated
that one should be able to obtain the solutions obtained in the case of a single layer
(see for example Binder et al.), with the addition of several new flows. Here, critical
flows are focused on, where the depth of the fluid in both layers changes as one travels
past a disturbance. The pure gravity interfacial hydraulic fall solutions obtained by Dias
and Vanden-Broeck [39, 42] are obtained and analysed, and then the effects of capil-
larity added. Again, solutions with a train of waves trapped between two disturbances
are sought. A second submerged obstruction is therefore added to the pure gravity for-
mulation presented by Dias and Vanden-Broeck, and also to the gravity-capillary case
presented here for the first time.

Finally, we examine the issue of the stability of the hydraulic fall. We have discussed
how the pure gravity hydraulic fall has been shown to be stable using a weakly nonlinear
analysis, by Chardard et al. [27] and Donahue and Shen [45]. We confirm these findings
using a fully nonlinear scheme, and then extend this work on stability by considering the
conjugate solution profiles over two obstructions, and the stability of gravity-capillary

hydraulic falls.






CHAPTER THREE

FREE SURFACE FLOWS GENERATED BY
AN APPLIED PRESSURE DISTRIBUTION

3.1 Introduction

We consider the problem of a single-layer fluid, flowing in a channel of finite depth,
which is subjected to localised applied pressure distributions on the free surface. Both
the effects of gravity and surface tension are included, and the steady flow problem is
solved using the boundary integral equation techniques discussed in chapter 2. The aim
in this chapter is to extend and combine the work of Maleewong et al. [77], who included
the effects of capillarity and considered a single disturbance in the channel, with the
work of Binder et al. [18], who considered pure gravity waves with two disturbances in
the channel. Therefore, in this chapter we seek gravity-capillary solitary wave solutions
where two localised pressure distributions are applied to the free surface.

The fully numerical problem is formulated in section 3.2, the numerical method is
described in full in section 3.3 and the numerical results are presented and discussed in

section 3.4. Finally, in section 3.5 we conclude with a summary of our results.

3.2 Formulation

We consider the steady two-dimensional flow of an incompressible, inviscid fluid of con-
stant density p, bounded below by a horizontal impermeable bed at y* = —H. We
introduce dimensional Cartesian coordinates (z*, y*) such that the z*-axis is aligned on
the undisturbed free surface, parallel to the bottom of the channel. The influences of both
gravity and surface tension are taken into account, where g is gravitational acceleration

acting in the negative y*-direction, and o is the constant coefficient of surface tension on
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y'=—H

Figure 3.1: Physical flow domain showing the pressure distribution P*(z*) applied to the uniform
stream of constant depth H and constant velocity U.

the free surface. We then define the free surface by y* = n*(z*) and subject it to two lo-
calised applied pressure distributions, given by the function P*(x*). The flow is assumed
steady, so that *(z*) is independent of time. We choose a frame of reference travelling
with the pressure distributions, and far from the pressure distributions (as z* — 400) we
assume that the flow becomes a uniform stream with constant velocity U and constant
depth H. A sketch of the flow configuration can be seen in figure 3.1.

The fluid is assumed to be incompressible so that V - u* = 0, i.e.

ou* n ov*
or*  Oy*

0, (3.2.1)

where u* = (u*,v*). The velocity field u*(x*,y*) is assumed to be irrotational so that

V xu*=0,i.e.
ou*  ov*
oy Ox*

This means that we can introduce the velocity potential function ¢*(z*, y*), such that

(3.2.2)

do* 0¢*
= Y= 2.
u" =Vo (63:*’ 8y*> : (3.2.3)
where ¢*(z*, y*) satisfies Laplace’s equation;
V3p* = 0. (3.2.4)

Next, we impose two boundary conditions on the free surface. First, the kinematic
condition, which ensures that a particle that starts on the free surface remains on the free

surface. This means that if the free surface is given by f(z*,y*) = y* — n*(z*) = 0, we
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require that the material derivative D f /Dt vanishes at the free surface:

Df of .o,
E = E +u Vf = 0,
N LU MY (3.2.5)
ox*

on y* = n*(z*). We also apply a kinematic condition on the bottom of the channel,

meaning we require
do*
oy

0, (3.2.6)

ony* =—H.

Secondly, we impose the dynamic boundary condition, which ensures the continuity
of the pressure across the fluid-air interface in the absence of surface tension. When
surface tension is present this condition relates the pressure jump across the interface
between the two fluid. As we have assumed that the flow is steady and irrotational, the

steady Bernoulli equation must be satisfied everywhere in the fluid:
1
§p(u*2 +0*?) + p* + pgy* = B, (3.2.7)

where p*(z*, y*) is the pressure on the liquid side of the free surface and B is the Bernoulli
constant at the free surface streamline, obtained by examining the flow far downstream.
As z* — oo we know that u*(z*, y*) — (U, 0),n* — 0, and at the free surface, p* — P.;
the constant pressure at the free surface far downstream. Then substituting the variables
far downstream into (3.2.7), gives

1
B= §pU2 + P, (3.2.8)
and thus, at the free surface, (3.2.7) becomes

1 1
Py + P*(z%) + §p(U*2 +0™) + pgy” = P + épU2,

P*(x* Poo_Pa 1 2 2
P + o v U+ gyt =0,
p p 2
P*(z* 1
= ;x Ly %V (0" = UP) gy =0, (3.2.9)

on y* = n*(z*). Here, p*(z*,n*) = P, + P*(z*), where P, denotes the atmospheric
pressure, and n denotes the unit normal pointing out of the fluid. We have utilised the
Young-Laplace equation (1.2.19) in the form Py, — P, = —cV - n. In the absence of any

curvature of the free surface, P, = P, and the second term in (3.2.9) disappears.
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If the free surface is given by y* = n*(x*), then the unit outward normal is given by

n= —V("* - y*) Y e , (3.2.10)
V(= y*)] (2 +1)2 (22 +1)

N[

and in section 1.2 we showed that

*

* *2 _

n = + —
e +1)z (i + )2 (g +1):

Substituting into (3.2.9) we obtain:

P*(:E*) . z 77;*95* +

(w + v —U?) +gy* = 0. (3.2.12)
p p (s +1)2

N | —

This is the dynamic condition on the free surface y* = n*(z*).
The problem is now simplified by non-dimensionalising the variables using // and U

as unit length and unit velocity respectively. We introduce the scalings

u* v*

u = — v = —

U’ U’
= — = = = — 3.2.13
= Y=g e ( )

and on substituting them into Laplace’s equation (3.2.4) and the boundary conditions
(3.2.5), (3.2.6) and (3.2.12), we obtain the dimensionless form of the problem:

V3 =0, (3.2.14)
in the fluid,
Oy = O, (3.2.15)
LB+ =B Pla) (32.16)
2T TR gt
on the free surface y = n(z), and
¢y, =0, (3.2.17)
on the channel bottom y = —1. Here 3 = 7/F? where F and 7 are the dimensionless

Froude and Bond numbers defined by equations (2.1.6) and (2.1.2) respectively. The
pressure is scaled so that P*(z*) = pU?P(x).

In the far field, as * — 4-00, away from the pressure disturbances, the flow is required
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to become that of a uniform stream. Therefore, we impose the conditions
¢ —1,n—0 as |z] = 0. (3.2.18)

The problem is now fully defined. We must find the unknown functions ¢(z,y) and
n(x) which satisfy the Laplace equation (3.2.14) in the fluid, the kinematic (3.2.15) and
dynamic (3.2.16) boundary conditions on the free surface y = 7(x), the kinematic con-
dition (3.2.17) on the channel bottom y = —1, and the far-field uniform flow conditions
(3.2.18).

3.3 Numerical Scheme

In order to solve the problem numerically we reformulate it as a system of integro-
differential equations, using the method briefly outlined in section 2.2.

First, it is necessary to introduce the stream function 1(z, y), see for example Naylor
[87]. We know that P(z,y)dx + Q(x,y)dy is a perfect differential if and only if

orP  0Q
—_— == 3.3.1
oy  Ox ( )
Due to the incompressibility of the fluid we know that
J(—v) Ou
= — 332
and so, udy — vdr— = du is a perfect differential. Therefore, as dv is perfect, it must
satisfy
0 0
dip = —¢5:c + —¢6y. (3.3.3)
ox oy
Then we can easily see that
0 0
W __ W _ (3.3.4)

or ay_“

So, we can define the stream function by writing u = V x 9, where u = (u,v,0) and
¥ = (0,0,). This then ensures the incompressibility of the fluid and so significantly

simplifies the problem. Instead of having the two dependent variables; u and v, just one
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dependent variable is now required; ©. As the flow is irrotational (3.2.2) implies that

o (o o ( o\
ay <a—y) e (‘%) =9, (3.3.5)
821/1 8% B
N 5t t 3z =0 (3.3.6)

so provided that the flow is incompressible and irrotational, the stream function also
satisfies the Laplace equation.

A relationship between the stream function ¢ and the velocity potential ¢ can now be
established by combining equation (3.3.4) with equation (3.2.3). It follows that

_9_oy _0¢_ 9

= = = ) 3.7
YT o oy’ v oy Ox (3:37

These are the Cauchy-Riemann equations. They imply that we can introduce an analytic

function,
w(z) = d(x,y) + i (z,y), (3.3.8)

of z = x+iy in the flow domain, where i = v/—1. This function is known as the complex
potential function.

The problem can now be mapped into the inverse (hodograph) plane so that ¢ and ¥
become the independent variables. The stream function v (z, y) possesses the property
that it is constant along the streamlines. This provides the convenient simplification in
mapping the flow into the inverse plane, as both the free surface and the channel bottom
are then described by given, straight, streamlines. The unknown free surface is therefore
mapped to a known boundary. Without loss of generality, we can choose ¢ = 0 at x = 0,
as upon integrating (3.3.4) and (3.2.3), both ¢ and v are defined only up to some constant.
The fluid may then be mapped into the infinite strip —oo < ¢ < 0o, —1 < ¥ < 0 in the
complex w-plane, shown in figure 3.2. The streamline ¢» = 0 describes the free surface,
whilst ¢) = —1 describes the channel bottom.

We introduce the conjugate complex velocity, given by

dw .
= bu — iy, (3.3.9)

and because w is an analytic function of z, its derivative, the conjugate complex velocity,

is also an analytic function of z. Furthermore, the function
g(w) = x4 — iy, (3.3.10)

is analytic in our flow domain if we assume that there is no stagnation point within the
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Figure 3.2: Flow configuration in the complex w-plane.

domain, i.e. that there is no point at which u = 0. Therefore, under the same assumption,
h(w) = x4 — 1+ iy, 3.3.11)

is an analytic function of w.

The kinematic condition (3.2.17), requiring that there is zero velocity component nor-
mal to the impermeable bottom, can be satisfied by using the method of images. This
method involves adding an image of the flow to the opposite side of the rigid bottom
boundary. The resulting flow is then symmetric about the boundary, and thus satisfies
u - n = 0 on the boundary. Therefore, the flow domain here is reflected in the streamline
1 = —1, in order to satisfy the kinematic condition.

The problem can now be reformulated as a system of integro-differential equations
by applying Cauchy’s integral formula in principal value form to the complex analytic
function h(w) given by (3.3.11), around the contour C shown in figure 3.3. The contour
consists of the free surface, its reflection in the channel bottom, and vertical lines joining
them at ¢ = £, in the limit as . — oo. The contour is transversed in the anti-clockwise

direction. Letting w, represent the evaluation point on the free surface, we obtain

1 j{de _ %h(wo). (3.3.12)

21, w — w,

We know that ¢/ = 0 on the free surface, and denote ¢ = ¢, on the free surface so that
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Figure 3.3: The path of integration around the contour C.

(3.3.12) becomes

w — W,

T h(w) i
—j{—w A6 + i),

wih(u,) = §

+ Z¢) - Qbo
 [hw)(v—i6-0)
= mh(w,) _fi R (¢ + iv)). (3.3.13)

The contribution to the integral from the vertical lines becomes zero because h(w) — 0
as ¢ — Foo. Thus, on taking the real part of the equation and noting that on the image
of the free surface ¢ = —2 and h(w) = h(¢ — i) = x4 — 1 — iy, due to the symmetry

implying that h(w) is an odd function, one obtains

+oo +o00 B B B
7o) =1 == - d¢+l/ 2<%(¢1—)¢ >(f+ 4¢0)

Ys
= By - do, (3.3.14)

where the contour C has been traversed in the positive (anti-clockwise) sense as indicated
in figure 3.3 with L — oo. The first integral in (3.3.14) is evaluated as a Cauchy Principal
Value. The integral equation therefore satisfies the kinematic condition (3.2.17) on the
bottom of the channel, and provides a relationship between x4 and y, on the free surface.

The dynamic boundary condition (3.2.16) must also be mapped into the complex

plane. The velocity components v and v are thus written in terms of x4 and y,. We
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differentiate

x = x(o(z,y), ¥ (x,y)), (3.3.15)

with respect to both x and ¥, to obtain

1= s + Tytla, (3.3.17)
0 = Zoy + Ty, (3.3.18)
1= Yoy + Yutly, (3.3.19)
0= Ystu + Yutla, (3.3.20)

respectively. Using the Cauchy-Riemann equations (3.3.7) in (3.3.18) and (3.3.20) one

obtains

v u
Ty = —.I'(pa and Yy = y¢;, (3321)

and substituting into (3.3.17) and (3.3.19),

U v
Hence,
1 )
— = u —w, (3.3.23)
Ty + 1Yy
and so
w= —° and  v=—22 (3.3.24)
T+ s 5+ v

The curvature in the dynamic condition must also be mapped into the (¢,v) plane, so 7,
must be found in terms of y, and 4. Using the kinematic boundary condition on the free
surface (3.2.15), one obtains

= v _ Yo (33.25)
¢x xqﬁ

having substituted ¢, and ¢, from (3.3.24). Then, 7,, on the free surface is

0 (@) _ YosTo — TooYo (3.3.26)

Nza = 3 )
Or \zg Ty

having used (3.3.17) with ¢ = 0.
Using (3.3.24), (3.3.25) and (3.3.26), the dynamic boundary condition (3.2.16) on the
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free surface becomes

1 1 1 YppLo — LpplYg
1|+ =n=pFe "I _p (3.3.27)
s )

The reformulation of the problem as a system of integro-differential equations is now
complete. Equations (3.3.14) and (3.3.27) must be solved iteratively using Newton’s
method, to find x4 and y, on the free surface, subject to the far-field uniform conditions
(3.2.18).

Next, to solve the problem numerically, the potential function ¢ is discretised by
introducing N equally spaced mesh points on the free surface, separated by a constant
interval e;

N
b = —get (i—1)e, i=1,..,N. (3.3.28)

Then, ¢; and ¢ correspond to ¢ at —oo and co. The variables x, and ¥, can be evaluated
at each mesh point, and thus, the system of integro-differential equations can be solved
at each point. However, the first integral in the integral equation (3.3.14) is a Cauchy
Principal Value. If one were to evaluate the integral at each mesh point, a singularity

would occur whenever ¢; = ¢,. Therefore, the N — 1 mesh midpoints,
¢;ﬂ:¢i+g, i=1,..,N—1, (3.3.29)

are introduced. The integrals are then truncated at ¢; and ¢y, and evaluated at the mesh
midpoints using the trapezoidal rule, with summation over the mesh points. Due to the
symmetry in the way in which the singularity now occurs (i.e. directly between two
mesh points), the singularity in the Cauchy Principal Value can be ignored and the inte-
gral evaluated as if it were a non-singular integral (see for example Monacella [83] and
Vanden-Broeck [124]).
The integral equation (3.3.14) can now be written in matrix form (see for example
Woolfenden and Parau [130]);
Qx =b. (3.3.30)

Here, x and b are (N — 1) x 1 column vectors with entries

z(1) = z4(9]") — 1, (3.3.31)
oL ul) ) (8 — o)
e az—; 4 (qu —op (-0 + 4) ’ (3332

respectively (: = 1,...N — 1), where the notation y4(j) = y4(¢;) has been employed.
The (N — 1) x (N — 1) matrix Q is the matrix (I — M), where I'is the (N —1) x (N —1)
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identity matrix, and M is a (V. — 1) x (N — 1) matrix with elements

2

= ij=1,..,N—-1 3.3.33
((Zﬁj—(lﬁ;n’)—i—llj Z?j Y Y ( )

1
M;; = —

The elements of the matrix M are constant coefficients which can be computed di-
rectly from the discretisation of ¢. Given an initial set of values for y4, the column vector
b can also be computed. Using LU decomposition one can then solve this system to
obtain the vector X, and thus, the values of x, at the mesh midpoints.

A four-point dyadic interpolation scheme (where points half-way between two ex-
isting points are sought) is employed to obtain the values of x4 at the mesh points. As
the points in the neighbourhood of the sought after mesh point are always in the same
place (the midpoints), a Deslauriers-Dubuc interpolation is used. The four-point scheme
is given by

rali) = 1 @07) + wo(00) = 16 (wa(OT) + oG (G334

The values of x at the free surface are obtained by numerically integrating x, using the
midpoint rule

o7
x(i) =z(i— 1)+ / ryde = (i — 1) + 24(9;" 4 e (3.3.35)

m
i—1

The remaining unknowns in the problem are the values of ¥, at the N mesh points.
We therefore require /V equations to solve the problem, of which, N — 2 are obtained by
satisfying the dynamic condition (3.3.27) at the mesh points (3.3.28) fori = 2,...,n — 1.
So, we must first obtain the derivatives y4, and 44 by numerically differentiating x, and

Y, using two-point centred finite differences of the form

Yp(i+1) —yg(i — 1)
2¢ ’
zo(¢7") — wo(di%1)

e

Tgp(1) = (3.3.37)

Here, the second equation is obtained by combining the finite difference with the two

point interpolation

o
x$i2$¢(z+2 10} (3.3.38)

in order to obtain x4 at the mesh points from x4 at the mesh midpoints. The values of y
are obtained from y, by setting y(1) = 0 and evaluating the integral

Dit+1
/ ysdo, (3.3.39)

i
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numerically using the trapezoidal rule. We obtain

Yoli) +yp(i+1)

5 (3.3.40)

y(i+1) = y() +

All the variables required to satisfy the dynamic boundary condition (3.3.27) have thus

been obtained. The remaining two equations come from enforcing
Ys(1) = y(N) =0, (3.3.41)

which forces the free surface to become flat and settle to a uniform stream as x — £o0,
i.e. it enforces a zero mean level, and satisfies the far-field conditions (3.2.18). The
system of N equations (3.3.27) and (3.3.41) is then solved iteratively using Newton’s
method to find the /N unknowns; y,(i), fori =1, ..., V.

Newton’s method is used to solve a system of equations of the form F(x) = 0, where
F is a column vector of the N equations to be solved and x is the column vector of N
unknowns upon which the equations in F depend. Denoting y; = y,(i) fori = 1,..., N,
the vector x becomes x = (y}, v, ..., ¥x)?, and the problem is thus written in the form
F(y,, 95, ..., yx)T = 0, where F is the vector of functions obtained from the dynamic
boundary condition (3.3.27) at the N — 2 mesh points (3.3.28) for+ = 2,..N — 1, and
the equations (3.3.41). An initial guess for the vector, X, of unknowns is required. The
idea of Newton’s method is then to update this initial guess, moving closer to a solution
on each iteration. A correction vector Ax must therefore be obtained.

If f were a single variable function, on applying Newton’s method one would obtain
the next estimate x,,,; to the root of the function f by

Tptl = Tp — m, (3.3.42)

where n is the number of iterations. When F is multi-variable the derivative of every

function with respect to every unknown variable is required. This produces the Jacobian

J(x) = <g§> : (3.3.43)
J

matrix

and thus Newton’s method becomes
Xni1 = X, — J(x,) TTF(X,,). (3.3.44)

The correction vector Ax is thus defined by —J(x,,) "'F(x,,) and is found by solving the
linear system of equations
JAX = —F(x,). (3.3.45)
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The derivatives in the Jacobian matrix are obtained numerically using forward finite dif-

ferences in the form
OF; _ Fi(y(¢;) +h) — Fi(y(¢;))
&Uj h

The linear system of equations (3.3.45) is then solved using LU-decomposition. Finally,

. (3.3.46)

the now known correction vector Ax is added to the initial guess
X1 = X, + AX, (3.3.47)

to produce a new improved estimate to the solution. At each stage the error in the solution
is also calculated. The system being solved is of the form F(x) = 0, and so summing the
squares of each entity in F provides a good estimation to the error. The Newton method
is then continued iteratively until the error is less than some pre-defined value; 1 x 10715,

However, in order to decrease the computing time required to obtain the solutions, a
modified Newton’s method is used here. The Jacobian matrix is only calculated once at
the start of the iterative scheme, and this single calculated matrix is then used in every
subsequent iteration as well.

To obtain solitary type wave perturbations from the uniform stream an initial guess of
ys(i) = 0 fori = 1,..., N is sufficient. However, to obtain the perturbations from pure
solitary waves one must first obtain a wave profile perturbating from the uniform stream,
using the scheme as described above. Then, by using parameter continuation on the
amplitude of the peak of one of the waves (increasing the amplitude of the wave, whilst
allowing the value of F'to become part of the solution), one can follow the solution branch
in the F' — Y4, plane (where v,,.. 1s the amplitude of the peak of the wave). A critical
value of the Froude number is eventually reached where the branch possesses a turning
point. At this point, the perturbations from the uniform stream become perturbations
from a pure solitary wave. Indeed, by decreasing the pressure forcing to zero beyond the
turning point, pure solitary waves are obtained.

In some cases, when considering symmetric solutions, we can improve the computa-
tional efficiency of our code by modifying it to specifically look for symmetric solutions.
Only half the number of mesh points are then required on the free surface, and the dis-

cretisation of ¢ for the NV equally spaced mesh points (3.3.28), becomes

The integral equation (3.3.14) also changes as the contour C now only includes the free

surface and channel bottom when ¢ > 0. Therefore, on the symmetric domain (3.3.14)
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becomes

R Y s Yo
oo 1=~ | Q_%+¢+%)w

l = 2(1,‘(75 B 1) - (¢ - ¢o)y¢ 2($¢ - 1) - (Qb + gbo)yqﬁ
wA ( @02+ d | @t erid )W“

(3.3.49)

which we evaluate where ¢, is at the mesh midpoints, with summation over the mesh
points. The problem is then solved in the same manner as above, with the variables
coming from numerical integration using the trapezoidal rule, numerical differentiation
using finite centred differences and from a dyadic interpolation. When integrating y4 to
obtain y however, we must set y(1) = yo, where yy is the amplitude of the free surface at
x = 0, rather than y(1) = 0. At the point of symmetry we will have that y4, = 0 which

we can then use to solve the dynamic boundary condition at = 0.

3.4 Results

The results in this section are computed using the method described in section 3.3, with

a pressure distribution of the form

elexp<(¢_al)2_1> —1<|p—a| <1,
Ple)={eep ()  —1<lo-bl<1, (3.4.1)
0 otherwise.

Here, ¢ = a and ¢ = b are the centres of the forcings on the ¢-axis, and ¢; and €5
describe the strength of the forcings. In the modified symmetric code, we take e; = 0 so
that p(z) describes two pressure distributions symmetric about x = 0, centred at x = a
and r = —a.

To ensure that the results obtained are numerically accurate we computed the same
solutions on meshes of different densities and lengths L. We varied the number of mesh
points on the free surface between N = 400 and N = 801 for a given fixed domain. The
mesh spacing was also varied between e = 0.05 and e = 0.1. To aid in the computation
on meshes of different densities, we use a numerical scheme which reads the values of
Yo from a mesh of lower density. These values of y, at each mesh point are stored in
alternative spaces in an array of twice the length. Using Deslauriers-Dubuc interpolation,
values of y, at the remaining array spaces are computed. This then gives a likely result for
Y» on a domain that is twice as dense. Using this set of values for y, as the initial guess

in our numerical scheme defined in section 3.3, provided that the scheme converges, we
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(a) (b)

Figure 3.4: Linear dispersion relations in the cases of (a) strong surface tension and (b) weak
surface tension.

can compare the results on this mesh with the results on the initial mesh to ensure that
the density of the mesh does not affect the result. Similarly, we check that solutions on
domains of different length also agree.

The solutions are restricted to the case of subcritical flow (/' < 1). Sketches of
typical linear dispersion relations in both the strong surface tension and weak surface
tension regimes are shown in figure 3.4. The solitary waves that we seek bifurcate from
the long wave limit (k = 0) when the surface tension is strong, and from the minimum of
the linear dispersion relation, when the surface tension is weak. Values for the parameters
€1, €2, 3 and F’ are set, and the distance 24 = |b — a| between the pressure distributions is
fixed.

When ¢; = ¢, = 0.05, z4 = 6, § = 0.49, and F' = 0.92, 7 = 0.414 and a typical
forced solitary type wave free surface profile is shown in figure 3.5(a). This result is sim-
ilar to the wave profile found by Binder, Vanden-Broeck and Dias [18] for supercritical
flow in the absence of surface tension, over two submerged triangular obstructions. The
gravity-capillary waves obtained here are depression waves however, whereas the gravity
waves obtained by Binder et al. were elevation waves. The result is also similar to the
classical gravity-capillary solitary wave profile over a single disturbance in the flow. As
€1 — 0, e — 0 the broken curve solution in 3.5(b) reduces to a uniform stream.

Only depression waves are found when the pressure forcings are positive (e; > 0,
€ > 0). By gradually increasing the amplitude of one of the troughs in such solutions,
and allowing the Froude number to be found as part of the solution, we are able to follow
the solution branch in the y(0) — F plane, see figure 3.7(a). At some critical value of the
Froude number £, a turning point is obtained. When F' > F™, no solitary wave solutions
are found, and if F' < F™**, where F** is some other critical value of the Froude number,

just one family of solutions is found; perturbations from a uniform stream. However, if
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Figure 3.5: Typical fully nonlinear free surface profiles for ¢; = e3 = 0.05, x4 = 6, 8 = 0.49,

and F' = 0.92. The pressures are centred at « = 3 and b = —3. (a) A perturbation from a uniform
stream with maximum depression —0.056. (b) The solid curve is a perturbation from a depression
solitary wave solution, and has maximum amplitude —0.118. The dashed curve is the solution
shown in (a). The phase portraits for the solid line solutions in (a) and (b) are shown in (c¢) and (d)
respectively. It should be noted that the phase curves are actually continuous. The discontinuity
present in the figures is an artefact of the numerical scheme.
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Figure 3.6: (a) Pure depression solitary wave solution profile with £’ = 0.99 and 8 = 0.49. The
phase portrait of the solution given in (a) is shown in (b).
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Figure 3.7: Solution branches in the F' — y(0) plane for (a) a forced solitary type wave solution
profile with e; = e = 0.05, and (b) the pure solitary wave solution shown in figure 3.6. In (a),
y(0) is the amplitude of the free surface between the two depressions, whereas in (b), y(0) is the
amplitude of the pure solitary wave.

< F' < F*, two families of solitary wave solutions may be found; perturbations from
the uniform stream, and perturbations from a pure solitary wave. Both solution branches
determine depression waves. These three regions in the y(0) — F' plane are in agreement
with the findings of Maleewong, Asavanant and Grimshaw [77] for flow disturbed by a
single localised pressure distribution, as discussed in section 2.4. The solid curve solution
in figure 3.5(b) is a perturbation from a pure solitary wave. As ¢; — 0 and e, — 0, the
free surface profile tends to the pure solitary wave solution shown in figure 3.6. So the
two-wave forced depression solitary wave bifurcates from a single pure solitary wave.
In figure 3.7(b) we plot part of the pure solitary wave solution branch, from which our
forced two-trough solution bifurcates, in the F' — y(0) plane.

Next, we look for negatively forced profiles, where €; < 0 and €5 < 0. The associated
depression waves are obtained by firstly using parameter continuation on the amplitude
of a positively forced depression wave perturbating from the uniform stream, as discussed
previously. After the turning point in the F' — v, plane, the coefficients €; and €5 on the
pressure distributions are gradually decreased to zero to give a pure depression solitary
wave. The coefficients can then be reduced further to obtain another depression wave
bifurcating from the pure solitary wave solution, but with ¢; < 0 and €5 < 0. Parameter
continuation can then be used on the amplitude of one of the troughs in this solution,
to move along the negatively forced solution branch. In figure 3.8(a) we show a typical
solution profile with pressures determined by €; = €, = ¢ = —0.05, centred at ¢ = +£3.
The corresponding phase portrait is shown in figure 3.8(b). Despite the presence of two
separate localised pressures, the solution profile here consists of a single large trough,
with slight elevations just before the depression. Negatively forced elevation waves can

also be obtained. They are bifurcations from the uniform stream, so are of much smaller
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Figure 3.8: (a) Typical solitary wave solution profile with ¢; = €2 = —0.05, bifurcating from a
pure depression solitary wave. The two pressures are centred at a = 3, b = —3. The correspond-

ing phase portrait is shown in (b).

amplitude than the associated depression waves. A typical solution profile is shown in
figure 3.9.

As the distance z, between the obstacles decreases, the wave (with either € > 0 or
e < 0) bifurcating from the pure depression solitary waves reduces to the classical free
surface profile obtained for flow over a single disturbance; see the solid curve in figure
3.10 and the broken curve in figure 3.9(a). These solution profiles bifurcate from a single
pure solitary wave. Conversely, as the distance z, increases, the wave profile becomes
that of two classical solutions over two separate disturbances; the depression waves made
by the localised pressure distributions do not appear to influence one another. So next
we ask the question, how far apart must we move the two pressure distributions in order
for the larger amplitude solution to bifurcate from two pure solitary waves rather than
just the one? In answer to this question, we keep [ fixed, and find that we can actually
obtain solutions bifurcating from two solitary waves when x; = 6, where the pressures
are located at ¢ = 3. However, previously we showed a solution with pressures at
¢ = =3, where the larger solution bifurcated from a single pure solitary wave. The
difference is in the parameter continuation. We find that in order to obtain a solution
bifurcating from a two-peaked solitary wave, one must manipulate the amplitude of one
(or both) of the troughs, rather than y(0). A typical solution profile bifurcating from a
two-troughed wave is shown in figure 3.11. Here, the localised pressures are centred
at ¢ = =£5 and one can see that the minimum of the troughs does not occur exactly
under the pressure distribution. This phenomenon is similar to that seen by Binder et al.
[18] for pure gravity flow past two submerged obstructions. When x is reduced so that
the pressures are located at ¢ = £2.5 the solutions in both cases, whether we perform
parameter continuation on the amplitude of the troughs or on y(0), bifurcate from just a

single solitary wave. The critical value of x4 therefore appears to be between z; = 5 and
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Figure 3.9: (a) Solution profiles past two negatively orientated pressure distributions (¢; = €5 =
—0.05) with F' = 0.94 and 5 = 0.49. The solid profile is a solution bifurcating from the uniform
stream, and the dashed profile is the solution bifurcating from a pure solitary wave, shown in
figure 3.8. The phase portrait corresponding to the bifurcation from the uniform stream is shown
in (b). The solution branches in the F' — |ymq.| for the depression and elevation waves are shown
in figures (c) and (d) respectively.

rg = 0.

When e; < 0and e5 < 0, as /' — 1 the amplitude of the peak between the two troughs
increases, and a flat region between the troughs can be approached. This is illustrated
by the solution profiles in figure 3.12, and the solution branches in figure 3.13. If we
gradually increase the distance x, between the two pressure distributions, the free surface
between the two troughs steepens and eventually approaches the level of the undisturbed
flat stream far upstream. Conversely, as we gradually decrease x4, the region between the
troughs flattens more quickly, and the amplitude of the region gradually increases.

We also obtain solutions with €; = €, < 0, which, when F' — 1, have a dimple on
the region of the free surface between two troughs. A typical solution profile can be seen
in figure 3.14(a), where the pressures are centred at ¢ = +3. If we continue to decrease
the amplitude of one of the troughs, the Froude number increases further towards one,

and the amplitude of the ‘dimple’ becomes of similar amplitude to the two troughs. The
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Figure 3.10: Fully nonlinear wave profiles for e; = e = 0.05, z4 = 2.4, = 0.49, and
F' = 0.78. The pressures are centred at @ = 1.2 and b = —1.2. The broken curve is a perturbation
from a uniform stream and the solid curve a perturbation from a pure depression solitary wave.
The respective phase portraits are shown in (b).

solution therefore takes the form of one large depression wave, with smaller waves in its
trough, as can be seen in figure 3.14(c). In figure 3.15 we show the branch of solutions
with e; = ¢ = —0.01 and [ = 0.49, with pressure distributions centred at ¢ = =£3.

We can obtain an interesting result now by starting with the solution shown in figure
3.14(c), and increasing the amplitude of the dimple; y(0). This results in the amplitude of
the middle wave increasing beyond the amplitude of the two original troughs, as shown
in figure 3.16(a). It may be possible to continue increasing this amplitude much further
so that we obtain three distinct depression waves. When attempting this, we see that
the location of the two original troughs changes; they move away from the third trough
centred at y(0). However, the distance they move appears to change with grids of different
densities, and so we are unable to confirm that such a solution really does exist.

So far, all the results presented, whether computed using a symmetric version of the
numerical method or not, have been symmetric about x = 0. A nonsymmetric solution
can be found by taking €; # €2. By setting ¢; > 0 and €5 < 0 we obtain a depression wave
near the positively forced pressure distribution, and an elevation wave near the negatively
forced distribution, see figure 3.17. This solution is similar, but of opposite orientation,
to the solution obtained by Binder et al. [18] for pure gravity flow over a triangular dip
and a triangular obstruction at the bottom of the channel. Using parameter continuation
on the amplitude of the depression wave, we find a turning point in the y,,.x — F plane.
Figure 3.18(a) shows such a typical solution branch in the F' — y,,.x plane, where 1,5 1S
the maximum amplitude of the depression wave. The amplitude of the elevation wave is
found as part of the solution, and in figure 3.18(b) we plot the maximum of this elevation,
against the Froude number, to see how it changes with the change in the depression wave.

Next, we use parameter continuation on the amplitude of the elevation wave, but find that
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Figure 3.11: (a) Typical solution profiles for flow past two localised pressure distributions centred
at a = 5, b = —5 for the parameters /' = 0.91 and § = 0.49. The solid line solution is a
bifurcation from the uniform stream, whereas the dashed line solution bifurcates from the pure
solitary wave solution shown in (c). The branch of solutions in the F'— ¥4, plane for the pressure
distributions used in (a), 5 fixed, is shown in (b). In (d) we plot the phase portraits of the solution
bifurcating from the uniform stream in (a) (the thick solid line), the solution bifurcating from a
pure solitary wave solution in (a) (the broken line), and the pure wave solution in (c) (the thin
solid line).

we simply obtain the same solution branches as those obtained when using the depression
wave; i.e. the branches in figure 3.18.

These nonsymmetric solution profiles are therefore also multivalued for some partic-
ular values of the Froude number. The wave profile given by the broken curve in figure
3.17(b) is a perturbation from the uniform stream. The solid curve solution in figure
3.17(b) is more complex. After the turning point on the solution branch is reached, de-
creasing/increasing the pressure forcings to zero reduces the amplitude of the elevation to
zero, but the depression wave reduces to a pure depression solitary wave. The elevation
is therefore a perturbation from the uniform stream, but the depression is a perturbation
from a pure depression solitary wave. This is in agreement with the gravity-capillary

results obtained by Maleewong et al. [77] in the case of flow past a single forcing; any
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Figure 3.12: Negatively forced fully nonlinear free surface profiles bifurcating from a pure soli-
tary wave. Here, e; = €2 = —0.01, x4 = 8 and 5 = 0.49. The pressures are centred at a = 4 and
b = —4. The Froude number is given by (a) F' = 0.9558, (c) F' = 0.9579 and (e) F' = 0.9581.
Figures (b), (d) and (f) show the phase portraits of the solutions in (a), (c) and (e) respectively.
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Figure 3.13: Negatively forced solution branches in the F' — ¥4, plane. The pressures are
centred at a = 4, b = —4 where ¢; = e = —0.01 and 5 = 0.49 are fixed. (b) shows a close up
of (a). The points marked by the +, x and * symbols represent where figures 3.12(a), 3.12(c) and

3.12(e) respectively, appear on the solution branch.
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Figure 3.14: Free surface solution profiles subject to two localised negatively orientated pressures
with €; = eg = —0.01. The Froude number is given by (a) F' = 0.961, (¢) F' = 0.969, and in each
case B = 0.49. The phase portraits for figures (a) and (c) are shown in (b) and (d) respectively.
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Figure 3.15: Negatively forced solution branches in the F' — y,,4, plane. The pressures are
centred at a = 3, b = —3, where €; = e = —0.01 and 8 = 0.49 are fixed. (b) shows a close up
of (a). The points marked by the 4+ and x symbols represent where figures 3.14(a) and 3.14(c)
respectively, appear on the solution branch.
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Figure 3.16: Free surface solution profiles subject to two localised negatively orientated pressures
with € = e2 = —0.01. The Froude number is given by F' = 0.977 and 8 = 0.49.

elevation solitary wave in a flow configuration where F' < 1 and 7 > % must be a pertur-
bation from the uniform stream and not a pure solitary elevation wave.

So far, in all the results presented, the Weber number has been fixed at 5 = 0.49.
We now investigate the effects of changing 3. So we modify the numerical scheme to
fix the Froude number and the amplitude of the waves, and allow [ to come as part of
the solution. Using parameter continuation on the amplitude of one of the troughs, we
can then obtain a solution branch in the 5 — |y,q.| plane to see how the Weber number
changes with the amplitude of the waves. We fix the Froude number F', and consider
both the solutions with €; = €5 > 0, and those with €; = ¢; < 0, and sketch the solution
branches in figure 3.19. In figure 3.19(a) we see that a turning point exists on the solution

branch for ¢ = e, > 0, at some small value of 5. When the maximum amplitude
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Figure 3.17: Fully nonlinear wave profiles for e; = 0.05,e2 = —0.05, x4 = 8, § = 0.49, and
F = 0.91. The pressures are centred at a = 4 and b = —4. (a) shows the solution perturbating
from a uniform stream and has maximum depression amplitude —0.043 and maximum elevation
0.033. (b) shows the solution where the depression wave on the solid curve is a perturbation from
a pure depression solitary wave and has maximum amplitude —0.14. The elevation wave is a
perturbation from the uniform stream, with maximum elevation 0.035. The dashed curve is the
solution perturbating from the uniform stream, shown in (a). The phase portraits for the dashed
and solid line solutions shown in (b) are shown in figures (c) and (d) respectively.

of the solution is small, we see that if we decrease the surface tension, the maximum
amplitude will increase. After the turning point however, decreasing the surface tension
will cause the maximum amplitude to decrease. As in the case of the solution branches in
the ' — Y, plane, the turning point represents the point at which the solutions cease to
bifurcate from the uniform stream, and instead bifurcate from a pure depression solitary
wave. In figure 3.19(b) we see that when €; = €5 < 0, decreasing the surface tension
will increase the amplitude of the elevation bifurcating from the uniform stream, but will
decrease the amplitude of the depression wave bifurcating from a pure solitary wave.
Sketches of solutions with different values of 3 are shown in figures 3.20 and 3.21.
One can see that as the surface tension decreases, decaying oscillations begin to appear

in the tails of the forced solitary waves. Similar behaviour is seen in the case of flow
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the maximum amplitude of (a) the depression wave and (b) the elevation wave.
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Figure 3.19: Solution branches in the 3 — || plane. In (a) €, = €2 > 0 and the points marked
by o, B, O, +, x and * represent the points at which the sketches in figures 3.20(a), 3.20(c)
and 3.20(e) occur respectively, bifurcating from both the uniform flow and the pure solitary wave
accordingly. In (b) ¢; = €2 < 0 and the points marked by W, o, e, 4, X and * represent the points
at which the sketches in figures 3.21(a), 3.21(c) and 3.21(e) occur respectively, bifurcating from
both the uniform flow and the pure solitary wave accordingly.

past a single disturbance with weak surface tension, studied for example by Maleewong
et al. [78]. When 3 < 1/3, the linear dispersion relation possesses a minimum, see for
example Dias and Iooss [36], and so there exists a minimum Froude number F};, and
a corresponding minimum wavenumber k,;,. Solitary wave solutions are computed in
the region in which the Froude number does not intersect the linear dispersion relation.
Therefore, when there exists a minimum F,;, < 1, the solitary waves can only exist for
a smaller range of Froude numbers F' < Fi,;;;, < 1. In chapter 2 we discussed how in
this region of weak surface tension, the solitary wave solutions take the form of envelope

solitary waves. There exist more points of inflection in the solution as one approaches
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the minimum of the linear dispersion relation, resulting in more decaying oscillations
appearing on the free surface. So, the smaller the value of 3, the more oscillations that
appear on the free surface. This is clearly shown in figures 3.20 and 3.21. The increasing
number of inflection points on the free surface makes the solutions harder and harder to
compute as one approaches the minimum Froude number, with the calculations becoming
formidable when F' is near F,;,. More and more mesh points are therefore required on

the free surface in order to produce accurate solutions.

3.5 Conclusions

We have examined the free surface of a fluid subjected to two distinct localised pressure
distributions, in the subcritical flow regime. Fully nonlinear numerical results, calculated
using a boundary integral equation method based on Cauchy’s integral formula, have
been presented. We have shown that, as in the case of gravity-capillary solitary waves
subject to a single disturbance in the channel (Maleewong et al. [77]), multiple families
of solutions exist for particular values of the Froude number. In the case of positively
orientated pressure distributions, depression solitary waves bifurcate from the uniform
stream or from either one or two pure depression solitary waves, depending on the dis-
tance between the two pressure distributions. We have shown that elevation waves only
exist when the pressure distribution is negatively forced. They are always perturbations
from the uniform stream. Our findings are thus in agreement with those of Maleewong et
al. [77].

Following the ideas of Binder et al. [18] in the pure gravity case, we went on to show
that other, new types of solution can be obtained in the gravity-capillary regime by the
inclusion of a second pressure distribution. These solutions included, for example, one
large depression wave with additional waves in its trough, and a nonsymmetric profile
with a depression wave bifurcating from a pure depression solitary wave upstream and an
elevation wave bifurcating from the uniform stream downstream.

Finally, we presented solution profiles with weaker surface tension, which take the
form of wave packets; solitary waves with decaying oscillations in their tails.

We also briefly examined the effects of restricting the scope of the surface tension
acting on the free surface. The aim was to restrict the surface tension to just the central
part of the domain, local to a single pressure distribution. To achieve this, we used two
different methods. Firstly, we, somewhat naively, introduced an additional parameter to
the numerical scheme which was set to one if the surface tension was present and zero
otherwise. This parameter then allowed us to turn on and off the influence of surface
tension at different points, simply by multiplying it by the Weber number. Secondly, we

removed the abrupt changes from full surface tension to no surface tension, by writing
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Figure 3.20: Sketches of typical solution profiles with corresponding phase portraits, for € =
€2 > 0. The value of F' is fixed in each figure, and 3 is given by (a) 8 ~ 0.57, (¢) 5 ~ 0.22,
(e) 5 ~ 0.18. In each figure the solid curve is a sketch of a solution bifurcating from the uniform
stream and the broken curve, a solution bifurcating from a pure depression solitary wave.
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Figure 3.21: Sketches of typical solution profiles with corresponding phase portraits, for €; =
€2 < 0. The value of F' is fixed in each figure, and 3 is given by (a) 8 ~ 0.81, (¢) 5 ~ 0.25,
(e) 5 ~ 0.17. In each figure the solid curve is a sketch of a solution bifurcating from the uniform
stream and the broken curve, a solution bifurcating from a pure depression solitary wave.
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the surface tension as a smooth function of position.

After restricting the surface tension, the force of gravity alone is present far up and
downstream, so we continue to require y(1) = y(2) = 0 to satisfy the radiation condition.
However, we are no longer looking for a solitary wave in the pure gravity regime, so we
can relax the condition which ensures that the free surface is flat downstream. We found
that this resulted in a subcritical gravity-capillary orientated solitary wave local to the
disturbance (as in Maleewong et al. [77]), but with wave trains of different amplitudes
up and downstream in the pure gravity regime. We know that for a subcritical pure
gravity flow, gravity waves occur downstream of a forcing (see the second classical type
of solution). The turning off of the surface tension may act as such a forcing, so waves
may indeed be predicted downstream here. The upstream waves are clearly unphysical
however, as they violate the radiation condition. It also appears that many more mesh
points are required on the free surface to accurately describe the existence of any gravity
waves. On some meshes of the free surface for example, we were able to remove the
gravity waves completely, so the existence of such waves is even questionable. However,
this may be due to the lack of a condition that 7., = 0 at the point at which the surface
tension disappears. At this point, we have that n(z) = 0 from the solitary wave upstream,
and we must have that 7)., = 0 to satisfy the Bernoulli condition (3.3.27) continuously. In
order to obtain waves after the surface tension is switched off we would therefore require
that 7, # 0 at this point. Theoretically this is possible (e.g. 7 = sin(x) at z = 7), but
as the free surface is flat upstream of this point due to the solitary wave, it may not be
possible, and is certainly not easy, to obtain a match between a wavy solution downstream
and the solitary wave.

To improve the accuracy of our solutions with waves, we briefly examined the use
of a variable mesh on the free surface. We concentrate the mesh points around the area
of interest by changing e, the distance between the mesh points, so that it is no longer
constant. As well as the obvious changes in the numerical scheme requiring that we
replace e with ¢, 1 — ¢;, we also have to recompute the finite differences. Therefore we

consider the Taylor series expansion of ¢ about the 7;;, mesh point:

h2
biv1 = Gi + hindi + —70] + .o (3.5.1)
2

h?
Gi1 = ¢; — i1, + %H;s;’ + .. (3.5.2)

where h;, 1 and h;_; represent the two different mesh spacings and the prime here denotes

the derivative, with respect to x for example. Multiplying (3.5.1) by k2 ; and (3.5.2) by
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—h?,, and adding the result gives

hi i1 — hZdioy = hi @i + hip b2 ¢, — b2 i + hE jhiadh+ ... (3.5.3)
= o~ hi1Ginr + (hip — hi)gi — hzz+1¢i—1' (3.5.4)
! hivihi—1(hi1 + hiy1)
Letting o = h;y1/h;_1 and dividing through by h? |, we obtain
¢ ~ hiy1 + (0 — 1)¢; — 042057;71’ (3.5.5)

hiyi(1+ )

(see Sundqvist and Veronis [114] for more details). These ideas, whilst not used to obtain
the results presented in this thesis, provide possible means for computing further solution

profiles in future work.






CHAPTER FOUR

CRITICAL FREE SURFACE FLOWS AND
TRAPPED WAVE SOLUTIONS

4.1 Introduction

A single layer of fluid flowing in a channel of finite depth is considered as in chapter 3,
but this time the disturbances are in the form of submerged obstructions on the bottom
of the channel. Both the effects of gravity and surface tension are included, and the
problem is solved using a modified version of the boundary integral equation method
discussed in section 2.2. Critical flow solutions, where the flow is subcritical upstream
and supercritical downstream, are sought. Multiple disturbances on the bottom of the
channel are utilized to look for ‘trapped wave’ solutions. In the case of pure gravity flows,
the addition of a second obstacle further upstream results in trapped waves appearing
between the two obstacles. The wavetrain is thus found in the subcritical regime upstream
of a hydraulic fall. Further upstream of the additional obstruction, as * — —oo, the flow
is uniform. Such solutions were found by Dias and Vanden-Broeck [41]. The aim in
this chapter is to extend this work by considering the effects of surface tension on the
solutions. Critical flows over a single submerged obstruction are studied, and then trapped
waves are sought by including an additional obstruction further up or downstream of the
hydraulic fall.

The fully nonlinear problem is formulated in section 4.2. Section 4.3 then describes
the numerical scheme, and the results are presented in section 4.4. Finally, in section 4.5

a summary of the results is provided, and conclusions are drawn.
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4.2 Formulation

The two-dimensional free surface of an inviscid fluid flowing along a channel of finite
depth is considered. The flow is assumed to be steady and is subjected to multiple distur-
bances in the form of obstructions on the bottom of the channel. Cartesian coordinates
(z*,y*) are introduced and the x*-axis is aligned so that it is parallel to the channel bot-
tom in the absence of an obstruction. The y*-axis is directed vertically upwards through
one of the obstructions. Both the effects of gravitational acceleration g in the negative y*
direction and capillarity are included, where ¢ is the coefficient of surface tension on the
free surface. The fluid is assumed to be incompressible with constant density p, and the
flow irrotational. Equations (3.2.1) and (3.2.2) defined in section 3.2 are therefore satis-
fied. Thus, there exists a velocity potential ¢*(z*, y*) and a stream function ¢*(z*, y*)
satisfying (3.2.3) and (3.3.4), such that

Vit =0, 4.2.1)

is satisfied in the fluid domain.

We denote the free surface by y*(z*) = H + n*(x*), and the function describing the
bottom of the channel by y* = B*(x*). The flow is assumed to be uniform in the far field
as z* — Fo0, with constant depth A and constant velocity U downstream, and constant
depth h and constant velocity V' upstream.

The dimensionless downstream Froude and Bond numbers are given by equations
(2.1.6) and (2.1.2) respectively. The upstream Froude number is given by equation
(2.3.1), and here it is also necessary to introduce the upstream Bond number which, we

define as
o

~ pgh?
Hydraulic fall solutions are sought, which are critical flow solutions where the flow up-

4.2.2)

Tup

stream of an obstacle is subcritical and uniform, and downstream of the obstacle is su-
percritical and uniform. The change in the Froude number from subcritical (F,, < 1)
to supercritical (F' > 1) implies that the depth of the fluid must decrease as one travels
downstream past the obstruction (i.e. we require h > H).

The kinematic boundary conditions on the free surface y*(x*) = H + n*(z*) and the

channel bottom y* = B*(z*) are given by

do* o 09"
d¢* OB* ¢
“or o T oy =0, (4.2.4)

respectively.
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The dynamic boundary condition on the free surface comes from satisfying Bernoulli’s
equation (3.2.7) everywhere in the fluid. As * — oo we require that u*(z*, y*) — (U, 0)
and y* — H. The Bernoulli constant B is therefore defined by

1
B= 5pU2 + P + pgH, (4.2.5)

where P is the pressure in the fluid at the free surface. Substituting B into the Bernoulli

equation at the free surface, we obtain

1 1
Pot 5p(u™ +07) + pgy” = 5pU” + P+ pgH,

2
1 |
:>;(Pa —P)+ §(u*2 + 02 = U*)+g(y* — H) =0,
- 1
= Tgv S 0T = U) +gly’ - H) =0, (4.2.6)

where we have used the Young Laplace equation (1.2.19) in the form P — P, = oV - n.

The mass of the fluid must be conserved up and downstream, so we obtain
UH =Vh. 4.2.7)

Next, we non-dimensionalise the problem by taking U as the unit velocity scale and H
as the unit height. Then, we define the the upstream non-dimensional flow velocity ~ by
v = V/U. From (4.2.7) we can then obtain the non-dimensional upstream depth, 1/7. A
sketch of the dimensionless flow configuration is shown in figure 4.1.

v

B

2 =
R
N
I
—_
_|_
3
—~
8
N~—

y 1

L 1yZB’(fIC)

X

Figure 4.1: Dimensionless flow configuration over an arbitrary obstacle on the bottom of the
channel.

Non-starred variables are now understood to be dimensionless. The Laplace equation
(4.2.1) and the boundary conditions (4.2.3), (4.2.6) and (4.2.4) then become
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Vi =0 B(z) <y < 1+n(), (4.2.8)
Gy — PaMz =0 ony =1+n(x), (4.2.9)
2 2 2
¢y — 9B, =0 ony = B(x), 4.2.11)

respectively, where x = 1),, /(1 + 12)? is the curvature of the free surface y = 1 + 1(x).
In the far field away from the disturbance the flow must be uniform. We therefore

impose the conditions

¢ — 1, ylx) > 1 as x — oo, (4.2.12)
1

¢z — 7, y(xr) > — as x — —oo. (4.2.13)
Y

A further condition relating the Froude number F' to the upstream flow velocity -y is
obtained by applying Bernoulli’s equation in the far field both up and downstream. In

dimensional form we obtain

1 2 1 2

5\/ +gh = §U +gH. (4.2.14)
Non-dimensionalising (4.2.14) and using the non-dimensionalised conservation of mass

(4.2.7), we can rewrite (4.2.14) as

1 1, 1 1

Z_Z i —Y 4.2.15
2 2 TRy (4.2.15)

Following Forbes [51], the Froude number F' can be written in the form

2
F2= - _ (4.2.16)
Yy +1)

and a relationship between the upstream and downstream Froude numbers, in terms of

the non-dimensionalised upstream velocity, can be found;

Fyp = Fy? =

(4.2.17)

A relationship between the upstream and downstream Bond numbers is similarly given
by
Tup = T7°. (4.2.18)
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The relation (4.2.15) is a cubic equation in v so there exist three possible flows. So-
lutions with v = 1 have the same constant mean depth up and downstream. These are
non-critical flow solutions, and include for example the solitary wave profiles discussed
in chapter 3. Solutions with a drop in the mean depth of the flow are critical. They corre-
spond to solutions with y = (=1 + /1 + £ )/2. Here, hydraulic falls flowing from left
to right are considered, and so the positive root for v must be taken.

The problem is now fully defined; we seek ¢(z,y) and n(z) satisfying Laplace’s
equation (4.2.8), and the kinematic and dynamic boundary conditions (4.2.9) - (4.2.11),
subject to the far-field flow conditions (4.2.12) and (4.2.13), and the relation (4.2.15).

4.3 Numerical Scheme

Following Belward and Forbes [12, 13], Belward [11], and Dias and Vanden-Broeck [41],
we reformulate the problem as a system of integro-differential equations. The system
can then be solved for the unknown free surface y = 1 + n(z), over arbitrarily shaped
obstructions of finite support on the bottom of the channel.

One method to solve the problem is to use a a potentially complicated conformal
map to map the exact geometry of an arbitrarily shaped underlying channel bottom to the
complex plane. Instead, we choose to simplify the boundary conditions by parameterising
the free surface. We therefore introduce an arclength s, and write z = X (s), y = Y (s).

We must then satisfy the parametric equation

(d);'is)>2+ (di;is))Q . 4.3.1)

In order to satisfy the dynamic boundary condition (4.2.10), we must first rewrite the

velocity components in parametric form. Using the chain rule to differentiate gg(:c) =

¢(z,n(x)) on the free surface, the velocity component « can be written as

d _ 90 900

der  Or Oyox’ (4.32)

We can then eliminate ¢, using the kinematic condition (4.2.9) on the free surface. Sub-

stituting ¢,, into (4.3.2) we obtain

dp _ 09 | 09 0non
dr  Ox + Oz Ox O (4.3.3)

The chain rule is similarly used to parametrise v = Z—f, where ¢(z) = ¢(z,n(z)) =
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P(X(s),Y(s)) = ¢(s), giving

d&__d&dst' d¢ ds
dr  dsdX dv  dsdX’ (4.34)

By equating equations (4.3.3) and (4.3.4) we obtain

%+w%%_%@

Or  O0x0xrdr dsdX’
8(b d(b ds 1
azc ds Xm + (d_n)2

_dp X havi g _Y

S ds X2 Y7 e et g T X7
dp dX

:fd having used (4.3.1).
S as

Here, we differentiated Y (s) = 1(X(s)) + 1 using the chain rule, to obtain Y’ = g—;lX !
The prime denotes the derivative with respect to s. We now drop the ~ and similarly
parametrise v so that the velocity components on the free surface in parametric form can

be written as:
dp dX dng dY

=—=— V=
ds ds’ ds ds
To parametrise 7),, we first obtain

(4.3.5)

d
y' =D xr (4.3.6)
dx

by differentiating Y'(s) as above. Differentiating again gives

dn !
Yl/ — _X/
(&)

_dn dn
X// X/
R (dx)

_ dn d*n
X// X/ X/
Cdx * dz?
Y’ d*n
— _X// 4 X/2
X' dx?
Y//X/ _ X//Y/x

G (4.3.7)

=Nz =

The dynamic condition is now easily parameterised by substituting (4.3.5) and (4.3.7)
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into (4.2.10) to obtain;

9 2’Y"X! — X"Y! 9
FXV + (Y 4 =Y (s) = o
X+ Y Y6 = et
2 2T
= O+ Y (s) - 1) = HE"X' - X"Y) +1, (4.3.8)

where the parametric equation (4.3.1) has been used to simplify the condition.

The problem is now reformulated as a system of integro-differential equations by
using Cauchy’s integral formula. The complex variable z = z + 7y and the complex
potential w(z) = ¢(z,y) + i) (x,y) are introduced, where 1) (x, y) is the stream function

satisfying (3.3.4). Cauchy’s integral formula is applied to the analytic, complex function

dw

h(z) = == =7 = 6. =7 — ity (4.3.9)

around a contour C. The method of images used in chapter 3 cannot be used in this case
because of the obstruction on the channel bottom. So instead, the contour C is taken to
consist of the free surface, the channel bottom itself and two vertical lines © = L in the
limit as L. — +o0, and is shown in figure 4.2. Now, letting s represent the evaluation
point on the contour C, we obtain

1 h(z) 1
5 4 z——Z(s)dz = §h(Z(s)). (4.3.10)

Letting & be the arclength in the integrand: z(6) = x(6) + iy(&) on the contour, and

—I - L

Figure 4.2: The contour C of integration. When the evaluation point s is on the free surface,
a semicircle of infinitesimally small radius is added to the contour, around the point z(s), as
depicted in the figure.

placing z(s) on the free surface, (4.3.10) becomes

MO))  ysyas i N
7{2(5—)_2(5) (&)d W(Z(s)) = mi(du(s) — 7 — idy(s)), 43.11)
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oz
e e oy 100~ 7~ i6,E) () + i)
7i(6(5)X'(s) — 7 — id/(5)Y"(5)) 74 P e G
-/ (6:(6) = 1)(5) + 6,(6)0/(3) +i(=0,(0)2(5) + (6x(5) ~)W'(3)) .
: (@(6) — X(s)) + i(y(@) — Y (3)) ’
_ [AGN((6) ~ X(s) — ily(6) = Y(s) .
‘7€ (@(6) - X)) + (o) - V()2 " (312

having used (4.3.5) and set A(¢) = (¢,(6) —v)2'(6) + ¢, (6)y'(6) + i(—¢y(6)2'(6) +
(¢.(6) —¥)y'(6)). When z(5) is on the free surface we see that

A(6) = Ai(6) = ¢/ (6)(X'(6)° + Y'(6)°) — 4 X'(6) — inY(6). (4.3.13)
When & is on the channel bottom z'(6) = 1 and 3/ () = B,(6), so

A(6) = Az(6) = ¢2(6) — v + ¢y(6)B:(6) + i(=0y(0) + (¢2(6) — 7)B:(5))-
(4.3.14)

Using the kinematic condition (4.2.11) on the channel bottom, we can eliminate ¢, to

obtain
As(6) = ¢,(6)(1 + B,(6)?) — v — ivB.(6). (4.3.15)

We are now able to ignore the contributions to the integrals on the lines y = +L.
Upstream, this is simply because as L — —oo we have that h(z) — v—~ = 0. However,
downstream h(z) does not vanish, as ¢, — 1. Instead, we show that this contribution
from the integrals with L. — oo is bounded. Then, using the estimation lemma, we see

that the integral over x = L goes to zero. Our integrals over x = L are of the form

' h(z)
/0 e , dz, (4.3.16)

which we can approximate by

LY
o L+iQ

dQ. (4.3.17)

where M is the bound of /(z) given by

M = max |¢,(2) =7 — iy (2)]- (4.3.18)
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Then,
1 M 1
—dQ)| < — | dQ, 4.3.19
o L+1iQ Q'_/O L+2Q‘ ¢ ( )
by the absolute value inequality for integrals, and
/1 M ‘alQ</1 M dQ < M (4.3.20)
o |L+1iQ “Jo IIL[=1QI T T L -1 o

by the estimation lemma. As |L| — oo we have that M/(|L| — 1) — 0, and thus, the

contribution to the integral goes to zero. We therefore obtain

Yo / N —id (5)Y(s)) = — OOA1<5-)(X(OA-)_XS)_Z<Y(& _Y(S))) Py
il ()X (5) =7 =0/ (V') = - | SO S D
* Ay(0)(6 — X(s) — i(B(9) = Y(s))) ..
Wt e
(4.3.21)
Then, taking the imaginary part of (4.3.21), we obtain the integro-differential equation
m(¢'(5)X'(s) =)
_ /"O (¢'(6) =y X'(6)) (¥ (s) — Y(5)) —1¥"(6)(X(5) — X(5)) ..
oo (X(6) — X(s))2+ (Y(6) =Y (s))? (4.3.22)

where the horizontal velocity of the fluid on the bottom of the channel, which depends on
the arclength, is given by u(a, B(¢)) = u(a).
Similarly, by placing the evaluation point x on the channel bottom, we obtain the

integro-differential equation

[ @0) X)) (B) ~ Y (5) ~ Y (@)X(@) ~a) .
m(@(®) =7) = /_oo (X(6) — 2 1 (Y(6) — B(x))? a
* (B(5) + B(x))((6)(1 + Ba(6)?) — 7) — yBo(6) (6 — 7) ..
* /_oo 622 1 (B(@) - Bl)? 0.
(4.3.23)

Equations (4.3.22) and (4.3.23) have Cauchy principal value singularities at 6 = s
and 6 = z in the first and second integrals respectively, but their net contributions to the
integrals are both zero. By performing the integrations numerically using the trapezoidal
rule as in chapter 3, these singularities can be ignored and the integrals treated as non-
singular integrals (see Monacella [83]).
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The two integral equations (4.3.22) and (4.3.23), together with the dynamic condi-
tion (4.3.8), and the parametric equation (4.3.1), complete the reformulation of the prob-
lem and provide the system of integro-differential equations to be solved via Newton’s
method.

To solve the system of equations numerically, the work of Dias and Vanden-Broeck
[41] is followed. We introduce N equally spaced mesh points, separated by an interval e,

on the free surface;

N -1

S; — —

et+e(i—1), i=1,..,N, (4.3.24)
together with the /N —1 mesh midpoints s]* = %(si+si+1), fori =1,..., N—1. Similarly,
M equally spaced mesh points

M-1
2

T, = — h+h(i—1), i=1,.,M (4.3.25)
separated by the interval h, are introduced on the channel bottom with their corresponding
mesh midpoints & = 3(z; + x41), fori =1,..., M — 1.

To obtain a critical flow, just two independent dimensionless parameters are needed to
uniquely determine a solution. These are taken to be the obstacle size and the downstream
Bond number 7. Therefore, the downstream Froude number /' and the depth of the
channel upstream, are found as part of the solution. Thus, 3N + M + 2 unknowns;
Y'(i) = Y'(s), X' (1) = X'(s1),¢0' (i) = ¢'(s;), fori = 1,...,N,u(i) = u(z;), for
t=1,...,M,vand F are sought.

However, given a set of values for Y’ (i), we can reduce the number of unknowns in
the problem by obtaining X'(i) from the parametric equation (4.3.1). We then use the
upstream condition X (1) = s; and the downstream condition Y(N) = 1 to integrate
Y’(i) and X'(7) numerically, using the trapezoidal rule. So we now know Y () and X (7)
at the free surface mesh points, s; for ¢ = 1,..., N. Next, centred finite differences are
used to differentiate X'(i) and Y”(7) numerically. A further reduction in the number
of unknowns is then possible by rearranging the dynamic condition (4.3.8) to find ¢'(7)
on the free surface. This leaves a set of N + M + 2 unknowns; Y'(i) = Y'(s;), for
i=1,...,N,u(i) = u(x;) fori =1,..., M,y and F.

The initial set of values for Y’(i), where ¢ = 1, ..., N, come from approximating the
free surface by an initial guess in the form of a hydraulic fall, with heights y = 1/~

upstream, and y = 1 downstream. This form is given by

1 a1
V(i) = 5-(1 =) tanh (%) ta (i), (4.3.26)

and we then differentiate (4.3.26) numerically to find Y’ (7).
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The two integro-differential equations (4.3.22) and (4.3.23) are evaluated at the mesh
midpoints s7 and 27" respectively. The integrals from —oo to oo are truncated at — A and
B, where A and B are large positive constants. They are then approximated numerically
using the trapezoidal rule, with summation over the mesh points s; and z; respectively.
Solutions in which the depth of the channel changes up and downstream are sought, and
so it is necessary to consider the integrals from —oo to —A, and B to oo, in order to
minimise the truncation error and thus improve the accuracy of the solutions. Following
Dias and Vanden-Broeck [41] this is done by approximating the integrals analytically. As
6 — —oo, we require that ¢'(6) — v,Y(6) — %,Y’(&) — 0,X'(6) - 1,B(6) = 0
and u(¢) — . The integrals from —oo to — A therefore approximate to zero and thus, the
contributions from these integrals can be neglected. As ¢ — oo, the integrals are non-zero
and so are determined analytically by approximating the unknowns ¢'(¢), X'(5),Y ()
and B(d) by their values at the last mesh point on the free surface and channel bottom
respectively. We must also set (d) = 1,Y’(6) = 0 and B,(¢) = 0. Far upstream, for

x > B, the first integral equation (4.3.22) becomes

(4.3.27)

The truncation correction 7} to the integral equation (4.3.22) is then found to be

T =— (WN )X_,(]”V))( ) ) (j:g — arctan <§Ex; - ;(((j:)) )) (4.3.28)

oo (e ()

The choice of + in the first term is the same as the sign of (Y (N) — Y (s*). f Y(N) =

Y (s") the first term is neglected completely. Similarly, the correction term 75 to the

second integral equation (4.3.23), is found to be

T — (aﬁ’(N)X—/(]vV))(’(N)) (g — arctan (Yi(]\(fév z;f;nm))) (4.3.29)

] e =]

()

The sign in the second term is the same as the sign of (B(M) — B(z!")). If B(M) =
B(z!™) the second term is neglected completely.

So we now have N — 1 equations from the first integral equation (4.3.22) together
with its truncation correction 77, and M — 1 equations from the second integral equation

(4.3.23) together with its truncation correction 75. A further four equations are required.
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These equations come from defining the flow in the far field. Therefore, we impose
Y'(1) =Y'(2) =0, (4.3.30)

to ensure that the free surface is flat far upstream as * — —oo and to satisty the radiation
condition. Furthermore, we fix
(M) =1 (4.3.31)

to ensure that the flow is uniform downstream as x — oco. We must also satisfy the
relation between the Froude number and +y (the undisturbed velocity upstream), given by
equation (4.2.15). This gives a system of N + M + 2 equations for the N + M + 2
unknowns, to be solved iteratively using Newton iterations, as described in section 3.3.
To ensure that the results obtained are numerically accurate, the same solutions are
computed on meshes of different densities and sizes. We vary the number of mesh points
on the free surface between N = 401,601,801 and 1601, and on the channel bottom,
between M = 201, 301, and 401 for a given fixed domain. The mesh spacings e and h are
also varied between e = 0.025,0.05, and 0.1 and A = 0.05, 0.1, and 0.2, respectively. We
are then able to ascertain that the solutions are independent of the mesh for small enough
e and h. Fewer points are needed to describe the channel bottom accurately than required
on the free surface. Furthermore, results are computed for different length domains of the
same mesh density, to ensure that any errors caused by truncating the integrals, do not

impact on the solution.

4.4 Results

The results in this section were computed using the method described in section 4.3. Fol-
lowing Dias and Vanden-Broeck [41] we use a cosine squared profile for the submerged

obstructions, of the form

24, cos® (”%%f”) —Ly <z —1x4< Ly,
B(z) = ¢ 2A, cos? (%) —Ly < 2 < Lo, (4.4.1)
0 otherwise.

The heights of the obstacles are therefore given by 2A; and 2A,, and the half-lengths of
the two obstacles, by L; and L, respectively. The obstacle of height A, has been chosen
so that it is centred at the origin and is a distance x4 from the other obstacle. We take A

to be zero when considering a flow over just a single submerged obstruction.
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4.4.1 Hydraulic Falls

Firstly, we consider the case where y = B(x) describes a uniform channel bottom with
a single obstruction. Therefore, we set A; = 0, Ay > 0 and fix L,. Pure gravity (7 =
0) hydraulic fall solutions where the flow upstream is subcritical and uniform, and the
flow downstream is supercritical and uniform, were previously computed by Dias and
Vanden-Broeck [41]. We compute these solutions and show a typical hydraulic fall profile
in figure 4.3. Forbes [51] showed that as the height of the obstacle is increased, the
speed of the flow downstream increases and thus, the height of the channel upstream
increases. We obtain similar results here; we are able to obtain solutions over very tall
obstructions, which allows for very fast flows downstream. The relationship between the
Froude number and the height of an obstruction with half-width L, = 3.2 is shown by the
solid line in figure 4.4. Very small amplitude waves begin to appear upstream on the free
surface as the obstacle height is increased. Such waves have previously been discussed
by Forbes and Schwartz [54]. They claim that the waves are a result of the numerical

scheme requiring the flow to be uniform at the first mesh point upstream, rather than at

xr = —0OQ.

1.6 — 0.02
1.4 1 0 1
1.2 ] —0.02 1
1 —0.04 |
y 08 - ne —0.06 1
0.6 - —0.08 |
0.4 1 —0.1 |
0.2 ] —0.12 1

0 N — —0.14 S

—20-15-10 =5 0 5 10 15 20 09 1 1.1 1.2 13 14 15 1.6

T

(a)

U
(b)

Figure 4.3: (a) Hydraulic fall solution, in the absence of surface tension, 7 = 0, over a single
submerged obstruction of height 24, = 0.1 and half-width Ly = 3.2. The Froude number,
F' = 1.345, is found as part of the solution. The phase portrait of the solution profile is shown in

(b).

Next, we include the effects of surface tension, and find similar hydraulic fall profiles
with subcritical uniform flow upstream and supercritical uniform flow downstream. Fig-
ure 4.5 shows typical solution profiles for an obstruction with A, = 0.05 and L, = 3.2,
and three different values of the Bond number; weak surface tension both up and down-
stream (7 = 0.32), strong surface tension downstream with weak surface tension up-
stream (7 = 0.6), and strong surface tension both up and downstream (7 = 0.9).

For 0 < 7 < 7%, where 7* is some critical value of the Bond number, increasing
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Figure 4.4: Relationship between the downstream Froude number F', and the half-height As of
the submerged obstacle of half-width Ly = 3.2. The solid curve represents the relationship for
7 = 0, the dotted curve is the relationship for 7 = 0.2, and the dashed broken curve is the
relationship for 7 = 0.5. In (b) we show a close-up of (a).
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Figure 4.5: (a) Gravity-capillary hydraulic fall solution profiles. The single submerged obstruc-
tion is characterised by Ay = 0.05 and Lo = 3.2. The solid line is the solution with 7 = 0.9
and F' = 1.393, the dashed line the solution with 7 = 0.6 and F' = 1.375 and the dotted line the
solution with 7 = 0.32 and F' = 1.361. In each case the Froude number was found as part of the
solution. The respective phase portraits of the solution profiles are shown in (b).

the strength of the surface tension increases the Froude number F' and thus, increases
the height of the channel upstream. We see that the gradient of the hydraulic fall also
increases with the surface tension. The relationship between the downstream Froude
number and the downstream Bond number, for 0.175 < 7 < 5, where A, = 0.05 and
Ly = 3.2, can be seen in figure 4.6. At the critical Bond number F™* ~ 1.403, with
corresponding 7% ~ 1.397, there exists a turning point in the ' — 7 plane, and thus, it
is possible to obtain more than one solution with the same value of the Froude number
F, over the same obstruction, but with different values of the Bond number. Figure

4.7 shows an example of this. We plot two hydraulic fall solution profiles which have
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the same underlying obstruction and the same Froude number F' = 1.398, but different
values of the Bond number; 7 = 1.024 and 7 = 2. Furthermore, we find that there exists
a gravity-capillary hydraulic fall which has the same Froude number as the pure gravity
case and the same upstream depth, but a steeper fall.

2-5 T T T T
2t i
1.5
Tup L | T
0.5

0 1 1 I 1 1 1 1 1
0.69 0.7 0.71 0.72 0.73 0.74 335 1.35 1.365 1.38 1.395 1.41

Fup F

(a) Upstream (b) Downstream
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Figure 4.6: Relationship between the Bond and Froude numbers both up and downstream for a
single submerged obstacle characterised by As = 0.05, Lo = 3.2.
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Figure 4.7: (a) Gravity-capillary hydraulic fall solution profiles over a single submerged obstruc-
tion characterised by Ao = 0.05 and Lo = 3.2, with Froude number F' = 1.398. The solid line
is the solution with 7 = 1.024, and the broken line is the solution with 7 = 2. In both cases the
Froude number was found as part of the solution. The respective phase portraits of the solution
profiles are shown in (b).

These multiple solutions for a particular value of the Froude number can be explained
by considering the linear theory. By substituting a linear periodic wave function of the
form ¢(x,y) = E(y)e'™*Y and n(z) = Ge'K?=“Y); where G is constant, K is the

wavenumber of the waves and w the angular frequency, into the governing equations
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(4.2.8),(4.2.9), (4.2.10), and (4.2.11) (with B(x) = 0), we obtain the dispersion relations

k
P2 = <1 + @k;) tanh (-) , (4.4.2)
kv v

F? = (% + m) tanh(k), (4.4.3)

upstream and downstream respectively, where & = K H. For a particular value of the
Froude number F, there is one corresponding dispersion curve in the pure gravity case,
given by equation (4.4.3) with 7 = 0. However, when surface tension is included we are
free to change the value of the Bond number for any given Froude number. This means
that multiple dispersion curves can exist for the same fixed value of F', but with different
values of 7 and k. This can therefore explain the existence of more than one solution for
a give Froude number.

When 7 is small, small numerical oscillations appear on the solution branch in the
F' — 7 plane. More mesh points are then needed on the free surface to obtain the required
degree of accuracy. However, the computational cost then starts to become prohibitive.
When 7 is chosen such that 7,,, < 1 /3, there exists a minimum in the upstream linear
dispersion relation. As 7 is decreased, the upstream Froude number [, approaches this
minimum. In figure 4.6 the branch in the /' — 7 plane ends at 7 = 0.175, where F,,;, is just
above the minimum. Below the minimum the linear theory suggests the presence of some
capillary waves upstream. However, in the numerical scheme we imposed the condition
that the flow upstream is uniform. This therefore eliminates the possibility of capillary
waves upstream. Unfortunately, we have to impose such a condition to prevent gravity
waves occurring upstream, which would violate the radiation condition. It is not known
what condition could be imposed to prevent gravity waves upstream whilst allowing for
capillary waves.

Similar solution branches can be obtained in the /' — 7 plane for different sized ob-
stacles. Figure 4.8 shows the solution branches for underlying obstacles with A, = 0.01,
Ay, = 0.05and Ay, = 0.1, and Ly, = 3.2, for 7* < 7 < 10. The value of the critical
Bond number 7* increases with A,, so that, for an obstacle of height A, = 0.1 for ex-
ample, 7** ~ 2.894 and the corresponding value of the downstream Froude number is
F* ~ 1.606.

When 7 is increased enough, small numerical oscillations begin to appear on the
solution branch. Such oscillations can be seen on the Ay = 0.01 branch in figure 4.8.
Here, more points on both the free surface and the channel bottom would be needed to
obtain an improved degree of accuracy, but again the computational costs start to become
prohibitive.

As we increase the height of the obstacle for a given flow, the downstream Froude

number increases, whilst the upstream Froude number decreases. This is comparable to
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Figure 4.8: Relationship between the downstream Bond and Froude numbers for a single sub-
merged obstacle with Ls = 3.2. The dotted line shows the branch with As = 0.01, the solid line
the branch with A, = 0.05 and the dashed line the branch with A5 = 0.1.

the findings of Forbes [51] for the pure gravity case. The relationship between F' and A,,
for 7 = 0.2 and 7 = 0.5, can be seen in figure 4.4.

Guayjarernpanishk and Asavanant [66] found that for obstacles below some critical
height, gravity-capillary critical flow solutions do not exist. Furthermore, they found that
as the height of the obstacle decreases towards the critical height for some fixed 7y,
the free surface develops a slight elevation immediately in front of the hydraulic fall.
Similarly, for an obstacle of fixed height, as the Bond number is decreased towards some
critical value, the slight elevation immediately in front of the hydraulic fall, increases in
amplitude.

When 7, is weak (7, < %), the upstream dispersion curve possesses a minimum
F,

UPmin

< 1. As we decrease Aj, the upstream Froude number F,, increases towards F' =
1, and thus approaches the minimum of the dispersion curve. We obtain similar results
to Guayjarernpanishk and Asavanant and find that for F,, near I, ., the free surface
immediately in front of the hydraulic fall develops a slight elevation. As A, is decreased
further, the amplitude of the slight elevation increases, and solutions where the elevation
becomes part of a small train of decaying waves immediately in front of the hydraulic fall
are found. An example free surface profile is shown in figure 4.9 with 7 = 0.2 and F' =
1.198. At some critical value of A,, the Froude number intersects the dispersion curve
and the numerical method ceases to provide accurate solutions. Numerically generated

waves start to appear on the free surface. For stronger surface tension, 7,, > %, the

3>
upstream dispersion curve increases monotonically. As we decrease A,, F),, increases
towards F' = 1, and the depth of the fluid upstream decreases. We continue to obtain
hydraulic fall solutions until the upstream depth reduces to the same depth as downstream,
resulting in a uniform stream. This is in conflict with the findings of Guayjarernpanishk
and Asavanant [66].

The maximum height of the obstacle for which we find solutions is also determined by
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7. In the pure gravity case (7 = 0) the maximum height is quite large, but on introducing

a little surface tension it reduces rapidly. As 7 increases the maximum obstacle height

increases.
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Figure 4.9: (a) Hydraulic fall solution over a single submerged obstruction characterised by Ay =
0.015, Ly = 3.2. Weak surface tension acts on the free surface; 7 = 0.2. A small train of decaying
waves immediately before the hydraulic fall can be seen. The Froude number ' = 1.198 is found
as part of the solution. The phase portrait of the solution profile is shown in (b).

4.4.2 Generalised Hydraulic Falls

Following the work of Dias and Vanden-Broeck [41], the scheme in section 4.3 is modi-
fied to look for generalised hydraulic falls. In the pure gravity case such a flow requires
three independent parameters to uniquely define a solution. These parameters are taken to
be the Froude number F', the obstacle size (A5 and L), and for convenience, the height of
the channel at the first mesh point. Equations (4.3.30) (which ensure that the free surface

is flat far upstream), are relaxed to allow for a wave train upstream, with the condition
Y(1)=9¢ (4.4.4)

is imposed, for some given constant §. We then fix the value of F'. By varying ¢ different
pure gravity generalised hydraulic falls can be computed, as in [41]. Typical generalised
hydraulic fall profiles with Ay = 0.05 and L, = 3.2 are shown in figure 4.10 for three
different values of 9. However, following this scheme we were only able to obtain gravity-
capillary generalised hydraulic falls when the surface tension was very weak.

This result can be explained in the context of the linear dispersion relations both up
and downstream, given by equations (4.4.2) and (4.4.3). In figure 4.11 we plot the up-
stream and downstream linear dispersion relations in the pure gravity case 4.11(a) and

a gravity-capillary case 4.11(b). We also mark the up and downstream Froude numbers
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Figure 4.10: (a) Generalised hydraulic fall solutions, over a single submerged obstruction, in the
absence of surface tension. The obstacle is of height 24> = 0.1, and width 2L, = 6.4. The
Froude number I’ = 1.345 is fixed. The phase portrait of the solution profile given by the solid
line in (a) is shown in (b).

for the given solution with 24, = 0.1 and 2L, = 6.4 with horizontal lines. In the pure
gravity case we see that the upstream linear dispersion relation (dashed curve) intersects
the horizontal dashed line marking the upstream Froude number. The downstream linear
dispersion relation (solid curve) does not intersect the downstream Froude number (hor-
izontal solid line). This means that the linear theory predicts a train of waves upstream
of the obstruction, with wavenumber k;,,40rscct, and a uniform stream downstream. When
surface tension is included in the configuration, unless it is very small (as discussed be-
low), the downstream Froude number intersects the downstream linear dispersion relation
and figure 4.11(b) shows that the situation is reversed. The linear theory now predicts a
train of waves downstream of the fall, with the flow remaining uniform upstream.
Motivated by this prediction, we modified the scheme in section 4.3 to look for a
train of waves downstream of the hydraulic fall. We still require that the flow is uniform
upstream, so we need to keep the equations (4.3.30). We want to manipulate any waves
downstream, so instead of satisfying the downstream condition Y (V) = 1 in the numeri-
cal integration of Y, we impose the condition Y () = 4, for some given constant . We
can then compute different solutions for a particular obstacle by varying ¢. Solutions with
subcritical uniform flow upstream and a supercritical wave train downstream are obtained
and we show a typical solution profile in figure 4.12. The wavelength of the downstream
waves appears to be roughly in agreement with the linear theory. In figure 4.12 the wave-
lengths appear to have length A\ ~ 13.73 — 11.35 = 2.38. The Froude number intersects
the linear dispersion curve at k ~ 2.43 implying that A = 27/k ~ 2.59. However, the
free surface in such solutions appears to be subject to some form of numerical error as
the supercritical mean level flow is not constant. The depth of the fluid appears to de-

crease as we travel downstream. Furthermore, the profile is found to be influenced by the
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(a) Pure gravity case, 7 = 0. (b) Gravity-capillary case, 7 = 0.5.

Figure 4.11: Linear dispersion relations. The solid curves represent the dispersion relation down-
stream, and the solid horizontal lines give the downstream value of the Froude number F' for a
submerged obstacle classified by Ay = 0.05, Lo = 3.2. The broken curves represent the dis-
persion relation upstream, and the broken horizontal lines give the upstream value of the Froude
number Fy,, for the same obstacle.

truncation of the flow domain up and downstream. If we vary the length of the channel
in the numerical scheme, the mean level of the flow changes, and so the position of the

downstream wave train is altered.
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Figure 4.12: Computed solution over a single submerged obstruction of height 245 = 0.1 and
half-width Lo = 3.2, with surface tension 7 = 0.6. The Froude number ' = 1.358 is found as
part of the solution. The phase portrait of the solution profile in (a) is shown in (b).

Therefore, we also sought these solutions by changing the numerical scheme in sec-
tion 4.3 so that the upstream depth is fixed at y = 1, i.e. we non-dimensionalised the
governing equations with respect to the upstream variables V' and h instead of the down-
stream variables U and H. The downstream depth is then sought as part of the solution.
However, we found that we could not obtain these generalised type hydraulic fall solu-

tions, where the wave train occurs downstream, at all in this manner.
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Regardless of whether this type of solution does actually exist numerically, in the
absence of a further obstacle downstream, the physical relevance of any such solution is
questionable. Any waves downstream of the hydraulic fall would correspond to the waves
predicted by the linear theory on the increasing part of the linear dispersion relation, i.e.
where dF/dk > 0, see figure 4.11(b). This means that the group velocity ¢, (the velocity
at which the energy of linear waves travels) is greater than the phase velocity c (the
velocity at which the waves travel) because w = ck,

dw(k) dc

T (4.4.5)

and dF'/dk > 0 <= dc/dk > 0. However, we have selected a frame of reference
which moves with the submerged obstructions. This means that the waves in our case
do not move and the energy in the waves instead travels upstream with velocity ¢, — c.
Furthermore, we know that in order to satisfy the radiation condition we cannot have
energy coming from infinity. This means that the energy in any wave train that exists
upstream of an obstacle (as + — —o0), must be travelling upstream. The obstacle is
then responsible for the waves. Thus, ¢, — ¢ > 0 so ¢, > c. Similarly, the energy in
any wave train that exists downstream of an obstacle (as z — 00), must be travelling
downstream. Thus, ¢, — ¢ < 0 s0 ¢; < c. (See Vanden-Broeck [124] for more details).
However, this contradicts our earlier observations that we must have ¢, > c in the case of
the downstream wave train for the gravity-capillary generalised hydraulic fall. We would
expect the waves that appear to be in front of, rather than behind the obstacle. So the
generalised type gravity-capillary hydraulic fall appears to lack physical relevance in a
configuration involving just a single obstacle.

When the surface tension is such that 7, < %, the upstream dispersion curve pos-
sesses a minimum. We define F,,;, _ to be the critical value of the Froude number corre-
sponding to this minimum. The Froude number £, may intersect the dispersion curve if
itis such that F,, =~ < Fy, < 1. This means that a train of upstream capillary dominated

waves of wavelength k exist for a critical range of Froude numbers. Generalised

UPintersect
gravity-capillary hydraulic falls therefore do exist when the upstream surface tension is
small. We find that the actual values of 7,,, for which we obtain solutions are actually
much less than one third. This is because these solutions also require that 7 < 1/3, but
the upstream Bond number 7, is much smaller than the downstream Bond number 7
because T,, = 77* (see equation (4.2.18)) and v < 1. In figure 4.13 we show such a
solution profile with 7 = 0.01. This corresponds to 7, = 3.34 x 1073, Again, by varying

J, upstream wave trains of different amplitudes may be obtained.
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Figure 4.13: Gravity-capillary generalised hydraulic fall solution over a single submerged ob-
struction of height 245 = 0.2 and half-width Lo = 3. The downstream Froude and Bond numbers
are given by F' = 1.358 and 7 = 0.01 respectively. The phase portrait of the solution profile in
(a) is shown in (b).

4.4.3 Trapped Waves

When surface tension is neglected (7 = 0) and a second positively orientated obstruction
is included further upstream (x; < 0 with A; > 0), a train of waves appears between
the two obstacles. The flow is uniform upstream of the first obstacle (as + — —o0)
and downstream after the fall (as + — oco). Figure 4.14 shows a typical free surface
profile, with trapped waves between two obstructions characterised by A; = 0.04, L; =
3.2 and A, = 0.05, Ly = 3.2. We can see in the figure that the waves have slightly
broader troughs than crests meaning that the only restoring force on the particles in the
flow is gravity (see Stokes [112, 113]). Such solutions were found by Dias and Vanden-
Broeck [41]. They used an argument based on weakly nonlinear theory to show that as the
distance between the two obstructions increases, the flow over the obstacle centred at x =
0 approaches that of a generalised hydraulic fall past a single disturbance. As there are no
waves in the far field the radiation condition is satisfied. Thus, the unphysical generalised
hydraulic fall becomes physically relevant when it is considered as the localised flow over
an obstacle in a configuration which involves a second obstruction further upstream.
When A; < 0, the hydraulic fall is preceded by a dip in the channel. We find that
a train of trapped waves also exists between the obstacles here. However, the behaviour
of the free surface above the upstream, negatively orientated disturbance is different to
that over the positively orientated one. We see an elevation over the negatively orientated
obstruction, before the train of waves. For a wide enough obstruction we find that this
elevation wave can be multi-peaked. We show typical free surface profiles with single

and multi-peaked elevations over the obstruction in figure 4.15.
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Figure 4.14: (a) Free surface profile past two obstacles on the bottom of the channel. The first
of which is characterised by A; = 0.04, L; = 3.2 and is centred upstream at x = —15, and
the second by Ay = 0.05, Ly = 3.2. Waves appear trapped between the obstacles. The Froude
number F' = 1.345 is found as part of the solution. The phase portrait of the solution profile in
(a) is shown in (b).
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Figure 4.15: Free surface profile past two disturbances on the bottom of the channel. The first
disturbance represents a dip in the channel, and is given by (a) Ay = —0.05,L1 = 3.2, (b)
Ay = —0.3, L1 = 3.2, centred upstream at x = —15, and the second is an obstacle characterised

by A = 0.05, Ly = 3.2. Waves appear trapped between the obstacles. In (a) F' = 1.348 and an
elevation wave is found over the dip. In (b) F' = 1.364 and a two-peaked elevation wave is found
over the dip. In both cases, the Froude number was found as part of the solution.
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Next, we add the effects of surface tension to the flow configuration over two obstruc-
tions. We find that including a second obstacle further upstream does not result in trapped
waves between the obstacles, unless the upstream Bond number is very small. Dias and
Vanden-Broeck [41] have shown that upstream trapped wave solutions are hybrid solu-
tions between a generalised hydraulic fall, which, as discussed in section 4.4.2, are not
obtained in the gravity-capillary case unless 7 is very small, and type two basic solution
discussed in chapter 3. It is therefore no surprise that we do not obtain solutions with
trapped waves upstream for most gravity-capillary flows.

When the surface tension is very weak so that 7,,, < 1/3 and the upstream dispersion
curve possesses a minimum, if the upstream Froude number [, intersects the upstream

linear dispersion curve (i.e. F < Fyp, where F;, is the value of the Froude num-

Prnin
ber corresponding to the minimum of the dispersion curve), trapped wave solutions are
obtainable. Figure 4.16 shows a typical free surface profile, with trapped waves between
the hydraulic fall and an obstacle further upstream. The Bond number used in the figure
is 7 = 0.1, and the Froude number is found to be F' = 1.497. The upstream Bond number
is thus extremely small, and is given by 7, ~ 0.032. The linear theory now predicts a
train of gravity dominated waves trapped between the obstacles and a train of capillary
dominated waves upstream as x — —oo. The capillary wave train is not captured by our
numerical scheme, as the scheme ensures that the free surface is flat upstream in order to
satisfy the radiation condition. A train of very small amplitude spurious waves with the

same wavelength as the downstream wave train is sometimes found though.
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Figure 4.16: (a) Free surface profile past two obstacles on the bottom of the channel, with weak
surface tension 7 = 0.1. The first obstacle is characterised by Ay = 0.02, L; = 3.2 and is centred
upstream at x = —15, and the second by As = 0.1, Ls = 3.2. Small amplitude waves appear
trapped between the obstacles. The Froude number F' = 1.497 is found as part of the solution.
The phase portrait of the solution profile in (a) is shown in (b).

In terms of the upstream linear dispersion relation, if we gradually increase the sur-

face tension, Fy;, — approaches one. This means that the Froude number for the given
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fixed submerged obstruction approaches the minimum; F,, .. At some point near the

Prnin
minimum, the calculations fail to provide solutions with the required degree of accuracy.
If we increase I, . further, so that F,, < F,, < 1, the Froude number ceases to
intersect the dispersion curve, so the trapped waves disappear. The solutions obtained in
this case are discussed in section 4.4.4.

Figure 4.17 shows upstream trapped wave solutions for the gravity wave case 7, = 0
and for the gravity-capillary case with 7,,, = 0.04 (corresponding to 7 = 0.1). We see that
the wavelength of the trapped waves in the gravity-capillary solution is smaller than the
wavelength of the pure gravity waves. The linear dispersion relations for both the pure
gravity case and the gravity-capillary case, with 7,,, = 0.04, are shown in figure 4.18.
From the figure, we see that the gravity dispersion curve intersects the Froude number at
a smaller value of % than the decreasing part of the gravity-capillary curve. This means
the wavenumber of the gravity-capillary waves is greater than that of the pure gravity

waves, and so this is in agreement with our fully nonlinear results.
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Figure 4.17: Free surface profile past two obstacles on the bottom of the channel, characterised
by As = 0.05, Lo = 3.2 and A; = 0.01, L1 = 3.2. The solid curve represents the solution with
7 = 0.1 and F' = 1.350. The broken curve represents the pure gravity solution with 7 = 0 and
F =1.334.

In the case of stronger surface tension, we place the second obstacle downstream of
the hydraulic fall where the flow is supercritical. As might be expected from the linear
theory, we find a train of waves trapped between the obstacles. Further downstream in
the far field beyond the obstacles, the flow is uniform and supercritical. Upstream of the
first obstacle the flow is uniform and subcritical. We find that unlike the other trapped
wave free surface profiles, an elevation wave appears over the downstream obstruction.
We show a typical solution profile with 7 = 0.6 with Ay = 0.05, Ly = 3.2 in figure 4.19.

The number of waves trapped between the two submerged obstructions increases as
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Figure 4.18: Upstream linear dispersion relations. The solid curves represent the dispersion

relation with 7 = 0.1 and the upstream value of the Froude number F,;, for submerged obstacles

characterised by As = 0.05, Lo = 3.2 and A; = 0.01,L; = 3.2. The broken curves are the

dispersion relation with 7 = 0 and the upstream value of the Froude number for the same channel
bottom configuration.
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Figure 4.19: (a) Free surface profile past two obstacles on the bottom of the channel, with surface
tension 7 = 0.6. The first obstacle is characterised by A = 0.05, Ly = 3.2 and the second by
Ay = 0.04, L1 = 3.2, centred downstream at x = 15. Trapped waves appear between the two
obstacles. The Froude number F' = 1.372 is found as part of the solution. The phase portrait of
the solution profile in (a) is shown in (b).

we increase the distance x4 between the obstructions. However, the amplitude and wave-
length of the waves remains roughly constant. This is similar to the results of the exper-
iments by Pratt [95], where pure gravity trapped waves were obtained upstream between
two submerged obstacles. Pratt found that the amplitude and wavelength of the waves
remained the same when the position of the obstacles was altered, but the number of
trapped waves changed.

We investigate the effects of the downstream obstruction on the free surface by chang-
ing the height A, whilst keeping L, 7, Ay and L, fixed. We find that decreasing the
obstacle height decreases the amplitude of the trapped waves. When A; is small com-

pared to As, the amplitude of the waves becomes so small that the trapped waves cease
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to be visible between the obstructions. The free surface profile thus appears to take the
form of a hydraulic fall with an elevation solitary type wave over the downstream ob-
struction. Figure 4.20 shows a typical solution profile over obstacles characterised by
Ay = 0.1, Ly = 3.2, and A; = 0.02, L; = 3.2. This type of solution is similar to the
pure gravity wave solution obtained by Belward [11] for flow over two successive obsta-
cles. Belward found a hydraulic fall over the first obstacle and a near symmetric elevation
wave, in the supercritical flow regime, over the second. He found that by increasing the
height of the first obstacle, the maximum possible height of the second obstacle for which
solutions exist, increases. Furthermore, he showed that the value of the Froude number
for hydraulic falls is almost entirely determined by the height of the first obstacle. In-
creasing the height of this obstacle increases the Froude number. In the gravity-capillary
case we find similar relationships between the Froude number and the obstacle heights
Ay and A;. The difference between the pure gravity and the gravity-capillary cases is that
in the gravity-capillary case very small amplitude trapped waves still exist between the
obstructions, with the waves becoming visible upon much closer examination of the free

surface.
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Figure 4.20: Free surface profile past two obstacles on the bottom of the channel, with surface
tension 7 = 0.4. The first obstacle is characterised by As = 0.1, Ly = 3.2, and the second by
Ay = 0.02, L1 = 3.2, centred downstream at = 15. The free surface appears to be uniform
between the obstacles. The Froude number I’ = 1.512 is found as part of the solution.

We find that the gravity-capillary trapped wave solutions are much richer than the
pure gravity solutions. Not only is it possible to obtain trapped wave solutions both up
and downstream as shown, but most importantly, the downstream trapped wave solutions
are not unique. For a given channel bottom configuration, multiple families of trapped
wave solutions, which all have the same value of the Froude number, exist. In figure 4.21
we show the solution branches in the F'—7 and F,, — 7, planes for the flow configuration
classified by A, = 0.1, A; = 0.05 and L; = L, = 3.2. One can easily see that there are

several different turning points on the branches, resulting in the multiple solution families
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for particular values of the Froude number.
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Figure 4.21: Trapped wave solution branches in the /' — 7 and F,,;, — 7, plane for flow past two
submerged obstacles classified by Ao = 0.1, A1 = 0.05 and L1 = Lo = 3.2.

To give an example of the multiple solutions that can be obtained, we fix the Froude
number F' = 1.535 and see that seven different solutions can be obtained for the different
values 7 = 0.8,1.21,1.54,1.74,2.97,4.45 and 14.65 of the Bond number. In figures 4.22
and 4.23 we plot six of these solutions. One can see that as 7 increases, with F' fixed,
the wavelength and amplitude of the trapped waves increases. We also conclude that
the gradient of the hydraulic fall is determined by the Bond number. The smaller the
Bond number, the steeper the fall. As we increase the Bond number, the gradient of the
associated gravity-capillary linear dispersion relation increases (i.e. the Froude number
increases more quickly with the wavenumber k). This means that for some given Froude
number, the linear dispersion relation will intersect the Froude number for smaller and
smaller values of the wavenumber, as 7 increases. Therefore, the linear theory predicts
that the wavelength of the trapped waves should increase as the surface tension increases.
This is in agreement with our observations, and the results shown in figures 4.22 and
4.23, and thus helps to validate our results.

The effects of capillarity on the waves appear to be more important than the effects
of gravity. The nonlinearity can be seen in the waves as the wavetrain is not sinusoidal;
the waves have slightly more rounded crests than troughs. This means that the waves
are dominated by the effects of capillarity. We show this clearly in figure 4.24. The
wavelength of the trapped waves is close to the wavelength predicted by the linear theory
for such gravity-capillary waves. The downstream dispersion relation with 7 = 0.9,
shown in figure 4.24(b), predicts waves with a wavenumber of k£ ~ 1.68 for /' = 1.4.
The waves seen in figure 4.24 are thus expected to have wavelength A ~ 3.74. We find
that the numerical results are in good agreement with this. Between obstacles centred at

x = 0 and x = 15, both of half-width 3.2, the numerical method finds approximately 2.3
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Figure 4.22: Free surface profiles past two obstacles on the bottom of the channel, characterised
by Ao = 0.1, Lo = 3.2, centred at z = 0 and A; = 0.02, L; = 3.2, centred downstream at
x = 15. All the solutions have the same value of the Froude number: ' = 1.535. On the right,
the phase portraits of the associated solution profile is plotted.
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Figure 4.23: Free surface profiles past two obstacles on the bottom of the channel, characterised
by As = 0.1, Ly = 3.2, centred at x = 0 and A; = 0.02, L; = 3.2, centred downstream at z =
15. As in figure 4.22 the solutions all have the same value of the Froude number: ' = 1.5345.
On the right, the phase portraits of the associated solution profile is plotted.
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waves of wavelength \ ~ 3.74, as predicted.
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Figure 4.24: Free surface profile past two submerged obstructions on the bottom of the channel,
with surface tension 7 = 0.9. High amplitude trapped waves are found between the obstacles
characterised by As = 0.05, A; = 0.04 and Ly = Lo = 3.2 with 4 = 15. The Froude number
F' = 1.41s found as part of the solution. One can see that the crests of the waves are slightly more
rounded than the troughs. (b) Linear downstream dispersion relation with 7 = 0.9. The horizontal
line F' = 1.4 intersects the dispersion curve at k ~ 1.68.

Next, hydraulic fall profiles with an additional downstream disturbance of negative
orientation (A; < 0) are considered. Again, waves are trapped between the two distur-
bances. Their wavelength is approximately that predicted by linear theory. Instead of an
elevation wave over the second obstruction, a near symmetric depression wave is found.
The trapped waves have smaller amplitude when A; < 0 than when A; > 0. For rela-
tively weak surface tension, or when the height of the first obstacle is large (so that the
downstream Froude number F' is also large), the free surface resembles a hydraulic fall
over the first obstacle, with a depression wave over the downstream obstacle. The ampli-
tude of any trapped waves is so small that the free surface between the hydraulic fall and
the depression wave appears to be uniform. Figure 4.25 shows the trapped waves when
Ay =0.05,A; = —0.09,L; = Ly, = 3.2, FF = 1.368 and 7 = 0.6. Solutions can be com-
puted for much greater |A;| when A; < 0, than for the positive case A; > 0. However,
when the amplitude of the downstream obstacle becomes large, very small amplitude

numerically generated waves appear downstream of the second disturbance.

4.4.4 Hydraulic falls with a solitary type wave

If we neglect the effects of surface tension and set z; > 0 and A; > 0, then we obtain
solutions with a hydraulic fall over the obstacle, centred at x = 0, and a supercritical
solitary type elevation wave over the second obstacle further downstream. Such solutions
have previously been studied by Belward [11], and were discussed briefly in section 4.4.3.

We showed that in a comparable flow configuration in which the effects of surface tension
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Figure 4.25: (a) Free surface profile past two submerged obstructions on the bottom of the chan-
nel, with surface tension 7 = 0.6. Trapped waves are found between the obstacles characterised
by A2 = 0.05, A1 = —0.09 and L1 = Ls = 3.2 with 24 = 15. The Froude number F' = 1.368 is
found as part of the solution. The phase portrait of the solution profile in (a) is shown in (b).

are included, so long as the tension is strong enough, and the obstacle height A; not too
small, a train of trapped waves is visible between the obstacles. However, in the pure
gravity case (as with the weaker surface tension cases discussed in section 4.4.3), the
flow between the obstacles appears to be uniform. Figure 4.26 shows a typical pure
gravity free surface profile (dashed curve) alongside the corresponding gravity-capillary

free surface profile (solid curve), with 7 = 0.6.
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Figure 4.26: Free surface profile past two submerged obstructions on the bottom of the channel,
characterised by As = 0.05,4; = 0.04 and L; = Ly = 3.2 with 4 = 15. The solid line
is the solution with 7 = 0.6 and F' = 1.372. Trapped waves are found between the obstacles.
The broken curve is the gravity solution with 7 = 0 and F' = 1.345. The flow appears uniform
between the obstacles.

We find that in a gravity-capillary configuration, solutions with uniform flow between
a solitary type wave and a hydraulic fall can be obtained by setting x4 < 0, so that the

second obstacle occurs upstream where the flow is subcritical. If the surface tension is
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so small that £, > F\, solitary type waves exist upstream before the hydraulic fall.
Solutions with Fy, .~ < Fy, < 1 have trapped waves between the obstacles, and were
discussed in section 4.4.3.

We find a depression solitary type wave over the upstream obstacle when A; > 0 and
an elevation solitary type wave when A; < 0. Typical free surface profiles are shown
in figure 4.27. The flow near the upstream obstruction is subcritical and is comparable
to subcritical gravity-capillary solutions over a single obstacle. See for example Forbes
[49] and Maleewong, Asavanant and Grimshaw [77, 78]. When the surface tension is
strong (7 > %), Maleewong et al. [77] obtained a depression solitary wave on a free
surface which was subjected to a single positively orientated localised pressure distribu-
tion, and an elevation solitary wave for a negatively orientated distribution. As F' — 1,
they found that the amplitude of the elevation wave increases. Here, the upstream Froude
number is determined predominantly by the height of the obstacle centred at x = 0. By
decreasing the obstacle height, with 7, > %, the upstream Froude number is increased,
and we see that the amplitude of the elevation increases. So this appears to be in agree-
ment with Maleewong et al’s results. Similarly, Maleewong et al. found that as F' is
increased from zero up to some critical value of F' = F'*, the amplitude of the depression
solitary wave increases. At F' = F™* their solution branch in the /' — y(0) plane, where
y(0) is the amplitude of the solitary wave, possesses a turning point and the solutions
change from perturbations of a uniform stream to perturbations of a pure solitary wave.
Here, we obtain similar results to the results corresponding to perturbations from the uni-
form stream; by increasing F,,;,, we increase the amplitude of the depression solitary type
wave. The hydraulic fall requires an extra independent parameter than the solitary wave
solutions, and so we found obtaining an upstream solitary type wave perturbating from
a pure solitary wave much harder. In chapter 3 we discussed how we obtained solitary
waves bifurcating from a pure solitary wave. We used parameter continuation on the am-
plitude of the solitary wave, and let the Froude number come as part of the solution. In
the critical flow solutions, the Froude number already comes as part of the solution and
is determined predominantly by the hydraulic fall over the first obstruction. Therefore,
although we could in theory force the amplitude of the upstream wave to increase, the
Froude number cannot change. In fact, the only parameters that may change in the so-
lution are A; and L1, but this just changes the solution branch we are on, as opposed to
moving along it.

When the surface tension is weak, the situation is more complicated because, when
the wave amplitude is small, the forced solitary type wave solutions resemble envelope
solitary waves. Maleewong et al. [78] found turning points in the F' — y(0) plane for

1

both the elevation and depression solitary waves when 7 < 3. They showed that if the

forcing is positive and the Froude number is increased from zero such that F' < F™*, the
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amplitude of the depression solitary wave increases, as in the case with 7 > % If the
forcing is negative and the Froude number is increased from zero with F' < ™, where
F** is the turning point in the F' — y(0) plane, the amplitude of the elevation solitary
waves increases. The solutions in these cases are perturbations from a uniform stream.
In our results, if we decrease the height of the obstacle centred at = 0, the upstream
Froude number F},, increases, and the amplitude of the elevation wave when A; < 0,
or the depression wave when A; > 0, increases. Again, this appears to be in agreement
with Maleewong et al’s results. Figure 4.28 shows a typical free surface profile with the
solitary type wave appearing upstream before a hydraulic fall. Small oscillations can be
seen in the tails of the upstream solitary type waves. As I, increases and as 7 decreases,
F.p approaches the minimum of the upstream linear dispersion curve, and the amplitude
and number of waves in the oscillatory tail increases. Immediately before the hydraulic
fall in figure 4.28, we see a slight elevation in the free surface. This is in agreement with

the findings of Guayjarernpanishk and Asavanant [66], discussed in section 4.4.1.
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Figure 4.27: Free surface profile past two submerged obstructions on the bottom of the channel,
with 7 = 0.6. An elevation wave appears over the upstream obstacle characterised by A; =
40.04, L1 = 3.2 and z4 = —10. The hydraulic fall occurs further downstream over the obstacle
characterised by Ay = 0.05, Lo = 3.2. The value of the Froude number F' = 1.375 is found as
part of the solution.

4.5 Conclusions

We have computed critical flow, gravity-capillary solutions past a single submerged ob-
struction on the bottom of a channel, using a fully nonlinear boundary integral equation
method. We have shown that multiple families of hydraulic fall solutions exist for particu-
lar values of the Froude number. Furthermore, we have presented new hydraulic fall solu-
tions which possess a small train of decaying oscillations upstream of the submerged ob-

struction. Using an argument based on the linear theory we showed that gravity-capillary
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Figure 4.28: (a) Free surface profile past two submerged obstructions on the bottom of the
channel, with 7 = 0.19. The obstacles are characterised by A; = —0.03, As = 0.03 and
L1 = Ly = 3.2. An elevation solitary wave with damped oscillations appears over the dip before
the hydraulic fall. The Froude number F' = 1.277 is found as part of the solution. The phase
portrait of the solution profile in (a) is shown in (b).

generalised hydraulic falls can only be obtained when the surface tension is very small.
However, we have investigated the possibility of a different type of generalised hydraulic
fall solution for gravity-capillary flows, where the wavetrain occurs downstream of the
hydraulic fall, in the supercritical regime. Again, such solutions violate the radiation
condition so lack physical relevance in a flow configuration involving just one obstacle.
However, we speculate that such a solution is physically relevant when it is considered as
the localised flow over an obstacle in a flow configuration involving another submerged
obstruction further downstream.

We therefore considered the case of two submerged obstructions and showed that
the pure gravity trapped wave solutions found upstream of the hydraulic fall cease to
exist in the gravity-capillary case, unless the surface tension is very small. Instead, in
order to obtain trapped wave solutions in this case we showed that (as speculated from
looking at the generalised hydraulic fall analysis), the second obstacle must be placed
downstream of the hydraulic fall. As in the pure gravity case studied by Dias and Vanden-
Broeck [41] we therefore postulate that this gravity-capillary solution with trapped waves
downstream can be viewed as some sort of hybrid solution. The solution would then
have to be the composition of the gravity-capillary generalised hydraulic fall, which has
a wavetrain downstream, and a supercritical solution consisting of a wavetrain upstream
with an elevation solitary type wave over the submerged obstruction and a uniform stream
downstream of the obstruction.

In the pure gravity case, Dias and Vanden-Broeck [41] used a weakly nonlinear anal-
ysis to show that the flow near the central obstruction at x = 0 approaches that of the gen-
eralised hydraulic fall. They observed that the fKdV equation can describe such a flow
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in the long wave/small amplitude limit (see for example Dias and Vanden-Broeck [38]).
The presence of the two underlying forcings/obstructions then means that there must be
two jumps in 7 in the  — 7, plane. The solution must then satisfy the unforced KdV
equation away from the obstructions and a jump condition at each obstruction. Bounded,
continuous solutions of the KdV equation correspond to cnoidal wave solutions and soli-
tary waves. The type-two basic solution, which is uniform upstream and has a wave-
train downstream (see figure 2.1(b)), corresponds to a solution which starts at the origin
17 = 1, = 0 of the phase plane, and then jumps to a cnoidal wave solution at the ob-
struction. The generalised hydraulic fall corresponds to the solution starting on a cnoidal
wave orbit and then jumping to the solitary wave homoclinic orbit at the obstruction.
Dias and Vanden-Broeck showed that when there are two obstructions, the solution starts
at the origin ) = 7,, = 0 then jumps to the cnoidal wave solution at the first obstruction
(so locally over the first obstruction is a type-two basic solution) and then at the second
obstruction, jumps to the solitary wave homoclinic orbit, giving a generalised hydraulic
fall above the second obstruction.

We use a similar argument in the gravity-capillary case. The fKdV equation can again
be used to describe the flow in the gravity-capillary case. The unsteady fKdV equation

can be written as

1/1 3 1
e wzz + =MMe — (Fup — 1)Ne = —= B, 4.5.1
5 (3 T) Nawe + 5 = (Fup = 1)1 5 4.5.1)
A Dirac delta function can then be used to approximate the channel bottom, so that the

unsteady KdV equation

(% - T) Nea + gnz —2(Fyp —1)n=0 (4.5.2)
must be satisfied away from the obstructions, alongside a jump condition at each sub-
merged obstruction. More details on the derivation of the jump condition are given in
chapter 6. The subcritical gravity-capillary phase portrait of the unforced KdV equation
is sketched in figure 4.29(a). In the case of a single obstruction for the new gravity-
capillary type of generalised hydraulic fall, the solution starts at the equilibrium point
on the homoclinic orbit and then follows the solitary wave trajectory before jumping up-
wards onto a cnoidal wave trajectory at the obstruction. Figure 4.12(b) shows a fully
nonlinear version of this phase portrait. The second type of solution needed to form our
hybrid solution is the supercritical solution described above. The supercritical gravity-
capillary phase portrait of the unforced KdV equation is sketched in figure 4.29(b). The
solution must start on a cnoidal wave trajectory around the origin, and then jump upwards
onto the equilibrium point at the origin. However, this solution does not display the ele-

vation directly over the obstruction. It is thought that this is due to using the Dirac delta
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Figure 4.29: Sketches of the phase portraits of the gravity-capillary KdV equation.

function to approximate the obstruction on the channel bottom.

As in the pure gravity case, we expect two jumps in 7 to appear in the two-obstruction
configuration. Therefore, we speculate that the solution will start at the equilibrium point
on the homoclinic orbit and then follow the solitary wave trajectory. At the first sub-
merged obstruction the solution will jump upwards onto a cnoidal wave trajectory (so,
locally over the first obstruction is the new type of gravity-capillary generalised hydraulic
fall). Then, at the second submerged obstruction, the solution will jump upwards onto the
equilibrium point at the origin, meaning that a solution which has waves upstream but is
uniform downstream, occurs locally over the second obstruction.

In section 4.4.3 we showed the existence of multiple families of these gravity-capillary
trapped wave solutions, where a wavetrain occurs between the two submerged obstruc-
tions.

We have therefore shown that, although unphysical, generalised hydraulic falls can
be obtained in the traditional sense, i.e. with waves occurring upstream, when there is
very weak surface tension. We have also shown that when surface tension is present,
a new type of generalised hydraulic fall exists where the wavetrain occurs downstream,
straight after the change of depth. We can thus speculate that there may exist gravity-
capillary solutions which have a train of waves both up and downstream of the change in
depth. As the surface tension is required to be so small however, the downstream waves
may not be easily visible. This leads onto another question: what happens to the flow
if we add a third or fourth obstacle to the channel bottom? In the same manner as the
generalised hydraulic falls, can we place one obstruction upstream of the hydraulic fall
and one downstream, and then obtain two trains of trapped waves (one upstream and one
downstream) between the obstacles? Again, we would require that the surface tension
be very small, and so careful manipulation of the central and downstream obstruction
heights would be required to obtain visible waves downstream. Although no results are

shown here, we also briefly investigated including two obstructions downstream of the
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hydraulic fall. We saw that two trains of trapped waves then appeared between the first
and second, and second and third obstructions. A solitary type elevation wave appeared
over both the downstream obstructions.

The stability of pure gravity critical flows was considered by Chardard et al. [27] and
Donahue and Shen [45]. It was suggested that the hydraulic fall is stable. However these
studies used a weakly nonlinear analysis, in the form of a fKdV model. In chapter 7 we
use a fully nonlinear scheme to investigate the stability of the gravity and gravity-capillary

solutions presented in this chapter.



CHAPTER FIVE

HYDROELASTIC CRITICAL FLOWS
AND TRAPPED WAVE SOLUTIONS

5.1 Introduction

As in the previous two chapters, a single layer of fluid flowing in a channel of finite
depth is considered. Here however, a thin sheet of ice is assumed to cover the fluid. The
restoring forces in this case are therefore the gravitational acceleration on the fluid, and
the flexural elasticity of the ice sheet. Critical flexural-gravity solutions, where the flow
is subcritical upstream and supercritical downstream, over an obstacle are sought using a
similar numerical scheme to that described in chapter 4. The ice plate is first modelled
using Cosserat theory and then the boundary integral equation techniques are employed to
solve the problem. If the gradient of the hydraulic fall is very steep, the model becomes
unphysical as one would then expect the ice to break. This issue of wave breaking is
examined, and thus the relevant physical applications of our findings are addressed.

As in the gravity-capillary case in section 4, an additional obstacle is utilised to ob-
tain flexural-gravity trapped waves between two obstacles. The similarities between the
gravity-capillary case and the flexural-gravity case are highlighted.

The fully nonlinear problem is formulated in sections 5.2 and 5.3, the results are then
presented in section 5.4 along with a discussion concerning the physical relevance of the

results. Finally, in section 5.5, we conclude with a summary of the findings.

5.2 Formulation

The steady two-dimensional flow of an inviscid, incompressible fluid is considered. The

flow is assumed to be irrotational, and flows along a channel, in which, one or multiple
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submerged obstructions lie on the bottom. The Laplace equation,
VZ¢* =0, (5.2.1)

must therefore be satisfied in the fluid domain, as in the previous two chapters. The fluid
is covered by a thin continuous sheet of ice. It is assumed that there are no cavities in the
ice so that the entire surface of the fluid coincides with the ice plate. Hydroelastic prob-
lems, in contrast to pure gravity and gravity-capillary problems which are geometrically
invariant, require a particular parametrisation of the free surface. However, by neglecting
any inertia in the ice and assuming that the deformation of the free surface is smooth, the
hydroelastic system also becomes geometrically invariant. The inertia in the ice can be
neglected as it is much smaller than the inertia of the fluid, see Squire et al. [111]. It
can further be assumed that the ice is not pre-stressed. Any stretching in the plate is also
neglected, as one can assume that the ice sheet floats freely, so that the bending moment
is zero. Cartesian coordinates x*, y* are introduced, such that the z*-axis is aligned along
the undisturbed channel bottom as z* — £o00. The y*-axis is directed vertically upwards
through an obstacle, so that gravitational acceleration g acts in the negative y* direction.
The density of the fluid is denoted by p.

The flow is assumed to be uniform in the far field as * — Foo with constant depth
H, and constant velocity U downstream, and constant depth i and constant velocity V'
upstream. The deformation of the ice plate is defined by y* = H + n*(z*), and the
rigid channel bed by y* = B*(z*). The dimensionless upstream and downstream Froude
numbers are given by equations (2.3.1) and (2.1.6) respectively. Critical flow solutions
are sought, and so it is required that h > H and V' < U (see chapter 4).

The kinematic conditions of the free surface and the channel bottom are given by

ooy 9y _ 00" 0B"  0¢" _

— — 2.2
Ox* Ox*  Oy* Ox* Ox* * oy 0 (5-2.2)

respectively.
The dynamic condition on the free surface comes from satisfying Bernoulli’s equation

(3.2.7) everywhere in the fluid. The Bernoulli constant B is defined, as in chapter 4, by

1
B= épUQ + P+ pgH. (5.2.3)
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Thus, we obtain

1 1
P, + 3P (" +0"?) + pgy* = 5'0U2 + P+ pgH, (5.2.4)
1 1
S (Fa=P)+3 (u?+0v?=U?) +g(y" — H) =0, (5:2.5)

= —%Pa + % (w2 + v =U?) +g(y* — H) =0, (5.2.6)
where P, is given by (2.5.42).

Next, we non-dimensionalise the equations by taking U as unit velocity and / as unit
length. Non-starred variables are thus now understood to be dimensionless. Furthermore,
following the work in section 4.3, we introduce the arclength s to parametrise the free
surface. This also has the advantage of simplifying P, in (5.2.6). Then (5.2.6) becomes

2
2 (e o) + 5 (62— 1)+ 96 = 1) =0,

p \H? 2
pH3U? (Hss * 2“3) " % (05 -1) + %_I—;f wls) =1 =0,
pHQUzg_Z (“ss + %HS) * %WQ -+ %(y@) —b=0

25, (mss + —/<;3> +¢? -1+ —(y(s) —1) =0, (5.2.7)

where we have introduced the parameter

D

By = ——
b ng47

(5.2.8)
with D given by (2.5.2). The system of equations to solve is therefore

V=0 Bx)<y<1l+n(z), (529)
Gulle — by =0 on  y=1+n(x), (5.2.10)

2F, 1
F—;’ (%SS + 553) +¢? -1+ = (y(s)—1)=0  on =1+n(z), (5.2.11)

¢:Bs—dy=0 on  y=DB(zx). (5212

As in chapter 4, we define the dimensionless upstream flow velocity by ~ so that

by considering the conservation of the mass of the fluid, we see that the dimensionless
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Figure 5.1: The dimensionless flow configuration over a single obstruction on the bottom of the
channel.

upstream depth is given by 1/+. The dimensionless flow configuration is shown in figure
5.1. The far field conditions are thus written as

¢ = 1, y(x) > 1 as x — oo, (5.2.13)
1

br — 7, y(xr) = = as x — —o0, (5.2.14)
0

and following our work in chapter 4 we have one further equation which provides the
relationship between the Froude number and the upstream flow velocity. Again, this
equation is given by

1—EVQJFL—L:O. (5.2.15)
This then completes the reformulation of the problem; we need to find the unknown
functions ¢(z, y) and n(x) satisfying the Laplace equation (5.2.9), and the kinematic and
dynamic boundary conditions (5.2.10) - (5.2.12), subject to the far field flow conditions
(5.2.13) and (5.2.14), and the relation (5.2.15). We can see that the problem formulation
is similar to that for gravity-capillary waves, except for the pressure term in the dynamic

boundary condition (5.2.11).

5.3 Numerical scheme

Following our work in chapter 4, we reformulate the problem as a system of integro-
differential equations. The system can then be solved for the unknown free surface y =
1 + n(z), over arbitrarily shaped obstructions on the bottom of the channel.

The dynamic boundary condition (5.2.11) has already been parametrised, so we just
need to simplify the rest of the formulation by considering the parametrisation of the free
surface with the arclength s; x = X (s), y = Y(s). We must then satisfy the parametric
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equation

<d)§is)>2 N (di;is))g _1 (5.3.1)

Using the kinematic boundary condition (5.2.10), we write the velocity components

in parametric form, as in chapter 4, as

 dpdx dg dY

sds’ T dsds (5.32)

The complex variable z = x+iy and the complex potential w(z) = ¢(z, y)+iv(z,y),
where ¢(z, y) is the stream function satisfying (3.3.4), are introduced. Cauchy’s integral

formula is then applied to the analytic, complex function

dw

around a contour C, consisting of the fluid surface, the channel bottom, and vertical lines
joining them at x = 4L, in the limit as L — oo. Now, letting s represent the evaluation
point on the contour C, and o the value of the arclength at the varying point z(c) =
z(o) + iy(o) on the contour, we obtain the same two integro-differential equations as in

the gravity-capillary case in chapter 4;

(¢ ()X (s) =) =
(¢

/w #(0) X (DY (s) ~ Y(0)) Y '(0)(X(0) ~ X(s)
. X(0) —X(&)2 + (Y(0) - V() (5.3.4)
* (a(0)(1 1 Bo(0)2) — (¥ () — B(0)) — 1Bu(0)(o — X())
* / . (0 —X(s)? + (B(o) ~ Y (5))? 1.
and

[T (00 X () (Bla) ~ Y(0)) ~ W (o)X (o) )
m(@(z) =7) = - /_OO X(0) — )2 + (Y(0) - B@))? !

(
i [ B BN L BloY) ) 1B = o),
: .

(5.3.5)

The horizontal fluid velocity component on the channel bottom is defined by u (o, B(0)) =
(o).

The two integral equations (5.3.4) and (5.3.5), together with the parametrised dynamic
condition (5.2.11) and the parametric equation (5.3.1) provide the system of integro-
differential equations to be solved iteratively via Newton’s method, for the unknown
variables Y”(s), X'(s), ¢'(s) on the fluid-ice interface, and @(x) on the channel bottom.

The free surface is discretised with /V equally spaced mesh points, separated by an
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interval e, on the free surface, and M equally spaced mesh points, separated by an interval
h, on the channel bottom. This time, we choose the two independent parameters needed to
uniquely determine a solution, as the obstacle size and the flexural rigidity of the ice, Ej.
The Froude number and the upstream fluid depth are then found as part of the solution.
We have 3N + M + 2 unknowns; Y'(i) = Y'(s;), X' (1) = X'(s;), ¢ (i) = ¢'(s;), for
i=1,...,N,u(i) = u(x;), fori = 1,..., M,~ and F. However, following our work in
chapter 4, given an initial set of values for Y’(7), we obtain X’(¢) from the parametric
equation (5.3.1) and ¢'(7) on the free surface from the dynamic condition (5.2.11). The
number of unknowns is thus reduced by 2/V.

The two integro-differential equations (5.3.4) and (5.3.5) are evaluated at the mesh
midpoints, using the trapezoidal rule with summation over the mesh points. Therefore,
integro-differential equation (5.3.4) provides N — 1 equations and (5.3.5) provides M —
1 equations. The analytical truncation corrections 7} and 75, defined by (4.3.28) and
(4.3.29) respectively, are added to the numerical solutions of the truncated versions of the
integrals. So, we have N + M — 2 equations for the N + M + 2 unknowns. The remaining
four equations are those imposed in the numerical scheme in chapter 4 to define the flow

in the far field, as well as the relationship between the Froude number F' and the upstream

flow speed ;
Y'(1) =Y'(2) =0, (5.3.6)
w(M) =1, (5.3.7)
1 1 1 1
- — _72 4+ = — = O (5.3.8)

5.4 Results

5.4.1 Linear theory

We linearise the time dependent dimensional form of the problem (5.2.9) - (5§.2.12) in a
fixed frame of reference, after considering the Taylor expansions about y = H. In the

absence of forcing, and reverting to the original Cartesian variables, we obtain

Gue + Oy =0  0<y<H, (5.4.1)
¢,=mn ~on y=H, (5.4.2)
D
¢ + ;nwmm +gn=0 on y=H, (5.4.3)

¢,=0 on  y=0. (5.4.4)
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We seek linear sinusoidal wave functions of the form

d(x,y) = a(y)e' ™, (5.4.5)
n(z) = ae'*r=t), (5.4.6)

for some constant a. Substituting (5.4.5) into (5.4.1) gives
—a(y)k* +a"(y) =0, (5.4.7)
= a(y) = cre® + cpe™, (5.4.8)
= ¢ = (cre" 4 cpe)eilkz—wt) (5.4.9)

where ¢, and ¢, are arbitrary constants. Then, substituting (5.4.9) into (5.4.4) we obtain

Clk’ — Cgk‘ = 0,

= €1 = ca,
and thus,
¢ = 2¢; cosh(ky)e' k=t
Now substituting (5.4.12) and (5.4.6) into (5.4.2) gives
—atw = 2c1ksinh kH ,

—aiw

Doy = ¥
= 2T L sinh(kH)

Next, substituting (5.4.6) and (5.4.12) into (5.4.3) we obtain

D
—2ciwicoshkH + —k*a+ ga = 0.
p

Finally, eliminating 2¢; from (5.4.15) using (5.4.14) gives

_,cosh(kH) D , B
Fsinh(kH) ¢ T9e=0
2
D
“ tanh ™ (kH) + g+ —k* =0,
p

=

Then, we know that w = ck, so the phase speed c is given by

D
ke = (gk‘ + ;k‘r’) tanh (kH),

(5.4.10)
(5.4.11)

(5.4.12)

(5.4.13)

(5.4.14)

(5.4.15)

(5.4.16)

(5.4.17)

(5.4.18)
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or in dimensionless form;

1
F? = (? + EbK3> tanh(K), (5.4.19)
where K = kH is the dimensionless wavenumber. One important property of the

flexural-gravity linear dispersion relation, (5.4.19), is that we can show that there is al-
ways a point at which the phase velocity equals the group velocity, i.e. there is always a

minimum wavenumber k,,;,. Differentiating (5.4.19) we obtain

2FF' =(—K %4 3E,K?)tanh(K) + (K + E,K?)(1 — tanh*(K)),  (5.4.20)

1 2
~(—K?+ 3E,K?) (K —-K*+ K’ + )

3 15
—1 3 1 3 2 5 ?
(KT BEY) (1 (K =K+ 2K ) ), (5.4.21)
2 8 3 5
= K HAE ) K+ O(K), (5.4.22)

where we have approximated tanh(K) by its Taylor expansion tanh(K) ~ K —1/3K3+
%K %+ ... Here, the prime denotes a derivative with respect to K. Assuming K is small,

at first order we see that
F' <0, (5.4.23)

which is true for all values of Ej. We also know that as K — oo, I%im (tanh(K)) — 1.
—00

Therefore, (5.4.19) tells us that as X' — oo we must have /' — oco. So, there must exist

a minimum in the linear dispersion relation in order for the gradient of the curve to start

decreasing for small K, but then increase for larger K.

5.4.2 Physical validity of the fully nonlinear model

For the solutions found in this section, when the amplitude is large, it is possible that
modelling the ice plate as a thin elastic shell becomes an unrealistic assumption. In order
to ensure physical realism, Brocklehurst, Korobkin and Péardu [22] describe how the strain
of the ice plate needs to be less than the yield strain of ice. Otherwise, at such high strains,
the behaviour of the plate becomes plastic and so one would expect the ice to fracture or
break. The strain of the ice is proportional to the curvature of the free surface. It may be

calculated by

KR = (5.4.24)
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where h is the thickness of the ice, and x* is the dimensional curvature of the ice plate
(see for example Ugural [121], Brocklehurst et al. [22] and Squire [109]). For short
waves the increase of the curvature in the deformation of the ice plate therefore causes
greater strain in the plate.

Goodman, Wadhams and Squire [58] describe how a swell-induced failure of the ice is
aresult of cracks propagating through the ice. They claim that a crack will propagate if the
intensity of the stress near the crack reaches some critical value. Through experimental
work, Goodman [57] determined that this critical stress in pure ice can be represented by
the value 115KN m~3/2. The critical strain of the ice is then calculated by considering
the length of the crack and this critical stress. Goodman found this critical strain to be
€er = 2.14 x 10~*. However, in the ocean salt can creep into the cracks so that the critical
stress near the crack reduces. It is therefore much easier for a crack to propagate in the
ocean/salt water. Salt creeps into the crack so the crack is much less likely to refreeze.
So, the critical strain is approximated by a smaller value, and Goodman estimated this to
be €., = 4.3 x 10~°. Furthermore, Goodman et al. [58] went on to find a critical wave
height which would cause cracks to propagate.

Both physically realistic results, where the ice is not expected to fracture, and less
physical results are presented in this chapter. Whilst some results may be unphysical
in ice (although there may be other applications), it is interesting to compare them to
the gravity-capillary results in chapter 4. Furthermore, one can extrapolate the results to
flows of different depths or flows over less steep obstructions, where the strain of the ice
is much smaller. Plots of the strain given by (5.4.24) are therefore shown alongside the

plots of the free surface profiles.

5.4.3 Previous experimental results

In order to help to determine the physical situations which the results presented in this
chapter represent, we analyse the findings with respect to representative parameters found
during experiments in Lake Diefenbaker in Canada (by Eyre [48]) and Lake Saroma in
Japan (by Takizawa [115, 116]). The parameters we use are defined in table 5.1.

We classify our solutions according to the value of the dimensionless parameter FEj,
defined by (5.2.8). This depends directly on the water depth /, gravitational acceleration
(which we take to be ¢ = 9.8ms~2), the density of the water, and the flexural rigidity of
the ice, D given by (2.5.2). We assume that the water density and gravitational accelera-
tion are fixed for all water flows. The flexural rigidity depends on the Young’s modulus
and Poisson’s ratio, which we assume are fixed, and on the thickness of the ice /. There-
fore, we can interpret our results in terms of F by determining either the value of H for
which the flow must exist (given that h is fixed), or the value of h (given that H is fixed).

In most of the results presented in the following sections we fix & and find H.
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Lake Diefenbaker Lake Saroma

Water depth 35m 6.8m

Ice thickness A 0.73m 0.17m

Young’s modulus F | 13 x 10° Nms™2 | 5.1 x 10° Nms ™2

Poisson’s ratio v 0.33 0.33

Flexural rigidity D 4.73 x 10® Nm 2.34 x 10> Nm

Water density p 1026 kg m™3 1026 kg m™3

Table 5.1: Some of the physical parameters used in experiments performed in Lake Diefenbaker
and Lake Saroma.

5.4.4 Hydraulic falls

We assume that B(z) is given by (4.4.1) and then begin by considering the case where the
function y = B(x) describes a uniform channel bottom along which a single obstruction
lies. Therefore, we set A; = 0, Ay > 0, and fix the value of Ly. We seek hydraulic
fall solutions with subcritical flow upstream (F,, < 1) and supercritical flow (/" > 1)
downstream. Typical hydraulic fall solution profiles obtained using the scheme described
in section 5.3 are shown in figure 5.2(a), where three different values are used for the
dimensionless parameter Fy; E, = 0.5, F = 0.2 and F}, = 0.1. Immediately before the
hydraulic fall, we see that there exists a slight elevation in the ice plate deformation. A
similar phenomenon was observed in chapter 4 for weak gravity-capillary (i.e. 7 < %)
hydraulic falls found in the neighbourhood of the minimum of the upstream gravity-
capillary linear dispersion relation.

To calculate the strain on the ice plate in these solutions, we first obtain the physical

depth of the fluid downstream using (5.2.8):

D \i
H = . 5.4.25)
(PgEb> (

Then, using (5.4.24) and (4.3.7) we compute the strain € on the free surface:

(Y//X/ _ X”Y’)
2XBH

(i) =h (5.4.26)
Here we use & = 0.73m, corresponding to the depth of the ice in Lake Diefenbaker. It
should be noted that in Lake Saroma the depth of the ice and the flexural rigidity of the
ice was slightly smaller, meaning that the strain in such solutions is slightly greater. The
maximum strain in the hydraulic fall solutions occurs at the beginning and the end of the

falls. As we decrease the value of F), (corresponding to deeper water depths), the strain
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Figure 5.2: (a) Hydraulic fall profiles over a submerged obstruction of height 242 = 0.1 with
lengths 2L, = 6. An elevation appears immediately before the fall for the parameters £y, = 0.5,
F = 1.367, F,, = 0.715 (solid line), E}, = 0.2, F' = 1.356, Iy, = 0.721 (dashed line), and
Ey, = 0.1, F = 1.345, F,p = 0.728 (dotted line). (b) Strain present in the profiles shown in (a),
when considered with the parameters of Lake Diefenbaker.

in the solution decreases. Figure 5.2(b) shows the strains of the solutions given in figure
5.2(a). We see that the maximum strain is of order 1 x 1073, and so according to the
analysis in section 5.4.2 we would expect the ice to break for an ice depth comparable to
the Lake Diefenbaker experiments. For physically realistic solutions with these values of
£y, we would require a thicker ice plate with a higher flexural rigidity.

By decreasing either the value of the parameter £, or the height of the obstruction,
the upstream Froude number approaches the minimum of the upstream linear dispersion
relation, and the small upstream elevation eventually becomes part of a train of decay-
ing waves before the fall. A similar result has been seen in the critical solutions for the
gravity-capillary case in chapter 4. However, the waves found here in the flexural-gravity
cases are more pronounced and extend further upstream. In order to minimise any trun-
cation problems, we had to use a longer domain, truncating at z = +60. Figure 5.3(a)
shows such a train of waves immediately before a fall when £, = 0.1 and ' = 1.159.
The computed upstream Froude number is then F,,, = 0.858, which is near the minimum
of the upstream linear dispersion relation F,, .~ 0.86, with corresponding wavenum-
ber kyin =~ 1.2. The strain of the ice is much smaller in this solution, being of the order
1 x 10~*. This solution is therefore much more likely to be physically realistic for the ice
plate experimented with in Lake Diefenbaker (although in Lake Saroma, we would still
expect the ice to break).

Next we try to compute flows for smaller values of Ej, in order to obtain solutions
valid in deeper fluids. This is difficult however, as such solutions occur close to the
minimum of the upstream linear dispersion relation. Reducing E;, with the size of the

obstacle fixed, increases the upstream Froude number, so that it approaches F} In

Pmin *
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Figure 5.3: (a) Hydraulic fall profile over a submerged obstruction of height 245 = 0.02 with
length 2L, = 6.4. For the parameters Ej, = 0.1, F' = 1.159 and F},, = 0.858, upstream, a train of
decaying waves before the fall can be seen. The Froude number was found as part of the solution.
(b) The strain present in the solution profile shown in (a), when considered with the parameters of
Lake Diefenbaker.

the pure gravity case we have seen that, when the upstream Froude number intersects the
upstream linear dispersion relation, generalised hydraulic falls may be obtained (Dias and
Vanden-Broeck [38]). When the Froude number intersects the upstream flexural-gravity
linear dispersion relation, unless the Froude number is exactly at the minimum, it will
intersect the dispersion relation twice. Therefore, we expect generalised hydroelastic
hydraulic falls to exist in this regime. A resonance occurs between the two modes in
a similar manner to the gravity-capillary case. So, waves of two different wavelengths
travelling at the same speed can appear on the upstream part of the solution (see Vanden-
Broeck and Pardu [125]). Therefore, one might expect that some solutions, at greater
depths in Lake Saroma and Lake Diefenbaker, over a fixed obstacle, will take the form
of, for example, Wilton ripples upstream of the fall (see Vanden-Broeck [123]) whilst
being uniform downstream, i.e. generalised type solutions. However, such solutions are
of course unphysical as they violate the radiation condition, as discussed in the gravity-
capillary case in chapter 4.

Alternatively, we find that if we increase the height and/or width of the underlying ob-
struction, the upstream Froude number F,,;, decreases so that, with [, fixed, the difference
between [, and F, . increases. Then, we see that I}, may be reduced further before
F,p intersects the upstream linear dispersion relation. Therefore, for a ‘large enough’
obstacle, the hydraulic falls found in the deeper lakes Saroma and Diefenbaker may be
uniform both up and downstream. A solution with £, = 0.02 over an obstacle of height
2A5 = 0.35 and width 2L, = 35 is shown in figure 5.4(a). The slope of the fall in this
solution is clearly less steep than that for solutions over a narrower and smaller obstacle.

Here we see that the strain of the solution is always less than 2.5 x 10—, which is much
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Figure 5.4: (a) Hydraulic fall profile over a submerged obstruction of height 245 = 0.35 with
length 2L, = 35. No elevation is seen before the fall. We set £, = 0.02 and found the Froude
number to be F' = 1.74 (b) Strain present in the solution profile shown in (a), when considered
with the parameters of Lake Diefenbaker.

smaller than in the solutions presented in figure 5.2(a). The ice is therefore much less
likely to fracture in such flow configurations.

As in the gravity-capillary case, small amplitude spurious periodic waves are some-
times found downstream of the hydraulic fall, where the flow is supercritical. In this
region the downstream Froude number intersects the downstream linear dispersion curve
(see figure 5.5 for the linear dispersion relation corresponding to figure 5.3(a)), and so
(short) flexural waves, ahead of the forcing, are indeed predicted by the linear theory.
There is no obstacle to generate these waves in this downstream region, but the down-
stream truncation can act as a form of artificial forcing, ahead of which waves can form.
However, by manipulating the far field conditions downstream it is possible to reduce the
amplitude of the spurious waves so much that we obtain negligible waves downstream,
and thus physically relevant solutions. In the gravity-capillary case examined in chapter
4, we discussed the possibility of a form of generalised hydraulic falls where the flow is
uniform upstream, and has periodic waves downstream. Such solutions may also occur
in the flexural-gravity case. However, without a second disturbance further downstream,
such solutions would also lack physical relevance in this regime.

In figure 5.6(a) we plot the solution branch in the ' — Ej plane, for 0.08 < Ej, < 5,
with a submerged obstacle for which A; = 0.05 and L, = 3. The figure shows that
the Froude number increases with £, up to some critical value, £;. Conversely, as £,
decreases (towards Fj, = 0.08), the minimum of the upstream linear dispersion relation
is approached, and small amplitude numerical oscillations begin to appear on the branch.
A longer domain, with more mesh points on the free surface, is required to produce
accurate solutions. Due to computational limitations we therefore truncate the lower end

of the branch at £}, = 0.08, before getting too close to the minimum. If we were able to
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Figure 5.5: Linear dispersion relations downstream (solid line) and upstream (broken line) for
figure 5.3(a). The constant solid/broken lines correspond to the downstream/upstream value of
the Froude number found in figure 5.3(a) respectively.

reduce F, further, then more turning points may be found on the branch.

At E} a turning point exists in the /' — E plane, after which the Froude number
decreases monotonically as I is increased. The existence of this turning point means that
for a critical range of Froude numbers, there exist two solutions over the same underlying
obstruction, with the same value of the Froude number, but with different values of £,
Two such solutions are shown in figure 5.7 for F' = 1.36. The two values of FEj are
E, = 1.5 and £}, = 0.33. It should be noted that for such solutions, the density p, the
gravitational acceleration g, and the flexural rigidity of the ice D are fixed. Therefore,
having different values of £}, must correspond to having different values of H, and thus
different downstream fluid depths. However, the downstream Froude number is also fixed
in both solutions. As the gravitational acceleration is fixed but the fluid depth differs, the
downstream fluid speeds in the two solutions must also change in order to keep F’ fixed.
The phenomenon here is therefore not bi-stability in the traditional sense; the flows are
different.

Figure 5.6(b) shows the solution branches in the F' — Ej plane for three different
underlying obstacles. We see that the downstream Froude number and the critical value
E} at which the turning point exists, increase with obstacle size. Similar behaviour was
found for the 7 — F’ branches in the gravity-capillary case. However, the critical range of
Froude numbers for which there exist two solutions (with the same value of the Froude
number, but different values of 7), is wider than the corresponding critical range in the
flexural-gravity case for two different values of Fj,. A rough sketch of the comparison

between the flexural-gravity and the gravity-capillary cases is shown in figure 5.8.
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Figure 5.6: Solution branches in the I’ — Ej, plane downstream, for flow over a single submerged
obstruction characterised by (a) As = 0.05, Lo = 3, and by (b) Ay = 0.01, Lo = 3.2 (solid line),
Ay = 0.05, Ly = 3 (dashed line) and A5 = 0.1, Lo = 3.2 (dotted line).
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Figure 5.7: Hydraulic fall solution profiles over a submerged obstacle of height 245 = 0.1 and
width 2Ly = 6. The Froude number in both cases is found to be ' = 1.36. The solid curve is the
solution with £ = 1.5 and the broken curve is the solution with £ = 0.33.
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Figure 5.8: Rough sketch of solution branches in the F' — Ej, plane (dashed line) and the F' — 7
plane (solid line) over an obstacle characterised by As = 0.05 and Lo = 3.
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Figure 5.9: (a) Hydraulic fall profile over a submerged obstacle of height 245 = 0.2 and width
2Ls = 6.4, with an additional obstacle characterised by 24; = 0.16, 2L, = 6.4 with z4 = 20,
downstream. A train of trapped waves exists between the obstacles. The Froude number F' = 1.54
is found as part of the solution, and F;, = 0.5 is given. (b) The strain of the free surface profile
given in (a).

5.4.5 Trapped waves

In the absence of a thin ice sheet covering the fluid, in chapter 4, we discussed how
placing an additional obstruction upstream of the hydraulic fall in the pure gravity case
has the effect of producing a train of trapped waves between the two obstacles before the
hydraulic fall (see Dias and Vanden-Broeck [41] for numerical solutions, and Pratt [95]
for experimental results). Furthermore, we showed that in the gravity-capillary problem,
unless the surface tension is very small (so that the upstream Froude number intersects
the upstream gravity-capillary linear dispersion relation), the additional obstacle must
be placed downstream of the hydraulic fall in order to obtain a train of trapped waves
between the two obstacles.

We have seen that the flexural-gravity problem has similarities with the gravity-capillary
problem. As the linear dispersion relation in the flexural-gravity case acts in a similar
manner to the linear dispersion relation in the weak surface tension (7 < %) case, i.e.
they both have a minimum before the Froude number increases monotonically with the
wavenumber K, unless £, is very small so that the upstream Froude number intersects the
upstream linear dispersion relation, we expect to place the additional obstruction down-
stream of the hydraulic fall, in order to obtain trapped wave solutions. A typical profile
with the additional obstacle centred at z = 20 is shown in figure 5.9(a). A train of
supercritical waves exists between the two underlying obstructions, with a higher ampli-
tude elevation wave occurring over the second obstruction. A small elevation appears
upstream immediately before the fall, over the first obstruction.

The wavelength of the trapped waves can be inferred from the linear theory. The

downstream Froude number for the solution in figure 5.9(a) intersects the downstream
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Figure 5.10: Linear dispersion relations for £, = 0.5. The solid curve gives the downstream
linear dispersion relation, and the solid line for constant F' gives the downstream value of the
Froude number for a channel bottom configuration classified by Ao = 0.1, A; = 0.08, L1 =
Ly = 3.2, and x4 = 20. The broken curve gives the upstream linear dispersion relation, and the
upstream Froude number for the same configuration.

linear dispersion relation at wavenumber K =~ 1.573. The corresponding upstream
and downstream linear dispersion relations are shown in figure 5.10. A wave train of
wavelength A = 27/1.573 ~ 4.002 (see solid line) is therefore expected in the down-
stream region of the free surface. The waves found in figure 5.9(a) are of wavelength
A~ 12.83 — 8.85 = 3.98 which is very close to the wavelength predicted by the linear
theory.

We found that reducing the amplitude of the additional obstacle or reducing the pa-
rameter ), reduces the amplitude of the trapped waves. As in the gravity-capillary case,
we plotted the solution branch in the Ej, — F' plane. The branch for the fixed channel
bottom configuration characterised by A, = 0.1, A; = 0.05, L; = 3.2, 7 = 1,2 is shown
in figure 5.11(a). Multiple turning points are found on this branch, showing that for a
critical range of Froude numbers, the trapped wave solution for a given underlying chan-
nel bottom configuration is not unique. This is comparable to our findings in chapter
4 for gravity-capillary trapped wave solutions. In figure 5.11(b) we show a comparison
between the gravity-capillary and the flexural-gravity cases for a given fixed channel bot-
tom. The solid curve shows the gravity-capillary trapped wave solution branch in the
7 — I’ plane, and the broken curve shows the flexural-gravity branch in the £}, — F' plane.
There are many more turning points on the gravity-capillary branch than the flexural-
gravity branch. This suggests that there may be more solutions for a particular value of
the Froude number in the gravity-capillary case than in the flexural-gravity case. There
may be even more turning points on these branches that we were unable to obtain due
to computational limitations. As in the gravity-capillary case, we were able to continue

following the solution branch in figure 5.11(a) for much greater values of FEj, with F
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Figure 5.11: (a) The trapped wave solution branch in the Fj-F' plane for flow past two fixed
submerged obstructions characterised by Ao = 0.1, Ay = 0.05 and L; = 3.2, i = 1,2, with
xq = 15. (b) Gravity-capillary (solid line) and flexural-gravity (broken line) trapped wave solution
branches in the 7 — F' and Ej, — F' planes respectively, for the fixed channel bottom configuration
given in (a).

increasing monotonically with Ej, corresponding to smaller and smaller channel depths.
Of course, the strain of the ice in such solutions grows as Fj increases, so as we move
along the branch, the solutions become more and more unphysical.

In figure 5.12 we show five different solutions for the different values of Ej, when
F = 1.51; By = 0.28,0.43,0.54,1.17 and 5.51, corresponding to water depths 3.02m,
2.71m, 2.56m, 2.11m and 1.43m respectively for the physical parameters used for the ex-
periments in Lake Saroma in Japan, and water depths 20.25m, 18.19m, 17.18m, 14.16m
and 9.61m respectively for the physical parameters in the experiments in Lake Diefen-
baker in Canada. The amplitude and wavelength of the trapped waves increase with
increasing [,. This result is predicted by the flexural-gravity linear dispersion relation.
As one increases F, the gradient of the downstream dispersion curve increases so that the
fixed Froude number intersects the curve at a smaller wavenumber, and thus the waves
have a greater wavelength. In figures 5.12(c) and 5.12(d) we plot the corresponding strain
for the solutions in figures 5.12(a) and 5.12(b). One can see that the strain has increased
for the larger values of Ej,.

We calculated solutions for obstacles of different heights and widths, and found sim-
ilar behaviours to the particular results described here. A solution with A; > A, is
shown in figure 5.13(a). The height of the elevation over the obstacle downstream of the
hydraulic fall may increase so much that it is of the same height as the upstream flow.
However, figure 5.13(c) shows that the strain in this solution is also significantly greater
than the strain for the solutions in figure 5.12. In order to prevent the ice from breaking
in such solutions, a thicker ice and/or water depth is therefore required. Similarly, when

A; < 0, trapped wave solutions may be found, see for example figure 5.13(b). Then a
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Figure 5.12: (a) and (b): Trapped wave solutions for flow past two fixed submerged obstructions
characterised by Ao = 0.1, Ay = 0.05and L; = 3.2, = 1,2, with 45 = 15. The Froude number
in each case is found to be F' = 1.51. The parameter F} is given by (a) Ep = 0.28 (solid line),
Ep = 0.43 (dashed line), and (b) Fp = 0.54 (solid line), F, = 1.17 (dashed line), £, = 5.51
(dotted line). (c) and (d) show the strain on the free surface in the corresponding solutions in (a)
and (b), respectively.

depression wave, instead of an elevation wave, appears over the additional obstruction

downstream.

5.4.6 Hydraulic falls with a solitary type wave

Next, we place the additional obstacle upstream of the hydraulic fall and consider solu-
tions with F,,;, less than the minimum of the upstream linear dispersion relation. As in the
gravity-capillary case, a forced solitary type wave with small decaying oscillations in its
tail is obtained over the obstruction. It is worth noting that in shallow water, for F' ~ 1,
a fifth order KdV equation was derived by Guyenne and Pdrau [68] and Xia and Shen
[131]. It is well known that this equation admits solitary waves with decaying oscilla-
tions as solutions with I, < F,;, ., see for example Grimshaw, Malomed and Benilov

[63]. Forced waves with decaying oscillations for a fifth order fKdV equation have also
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Figure 5.13: Hydraulic fall profiles over a submerged obstacle of height (a) 242 = 0.2 (b)
24,5 = 0.1, and width 2L, = 6.4, with an additional obstacle characterised by (a) 24; = 0.6,
(b) 247 = —0.2, with 2L = 6.4 and x4 = 20 downstream. A train of waves exists between the
obstacles. The Froude numbers (a) F' = 1.8 and (b) ' = 1.42 are found as part of the solution,
and Fy = 0.5 is given. (c) and (d) show the strain in figures (a) and (b), respectively.

been computed by Cho and Akylas [28]. We obtain a depression wave if A; > 0 and an
elevation wave if A; < 0. Example solution profiles are shown in figure 5.14. Decreasing
E}, so that the upstream Froude number approaches the minimum of the upstream linear
dispersion relation, increases the number of decaying oscillations in the tails of these

forced solitary type waves.

5.5 Conclusions

We have computed fully nonlinear critical flow solutions under an ice plate using the
same boundary integral equation method as presented in chapter 4. The ice plate was
modelled as a thin elastic shell using Cosserat theory, and due to the cubic nonlinearity in
the flexural elasticity term in the dynamic boundary conditions, the solutions presented

in this chapter are more complex than the comparative solutions in the gravity-capillary



5.5 Conclusions 141

1.7 1.6
1.6 1.5 1
1.5 1.4 .
1-;1 1.3 1
Y . Y
19 1.2 :
1.1 1.1 -
1 Lr
09 I I I I I 09 I I I I I
-30 =20 —-10 O 10 20 30 -30 =20 —-10 O 10 20 30
T T

(a) (b)

Figure 5.14: Hydraulic fall profiles over a submerged obstruction of height 245 = 0.1, and width
2Ly = 6, with an additional obstacle upstream at x = —15, characterised by (a) A; = —0.1,
Ly = 3 and (b) A; = 0.05, L1 = 3. The Froude numbers F' = 1.34 and F' = 1.37 respectively,
are found as part of the solution, and the parameters £y, = 0.1 and E;, = 0.5 are given.

regime.

Flexural-gravity hydraulic fall solutions are new, and we have shown that, as in the
gravity-capillary case, they are not unique. For particular values of the Froude number,
there exists more than one solution, which have different values of the dimensionless
flexural rigidity parameter £;,. We have shown that if the obstacle is small enough, either
a slight elevation before the hydraulic fall, or a train of decaying waves upstream of the
fall exists in the solutions. Although a similar phenomenon was observed in chapter 4 for
the gravity-capillary hydraulic falls, the phenomenon here is much more pronounced and
is apparent in the majority of solutions. In the gravity-capillary case the upstream Froude
number had to be very close to the minimum of the upstream linear dispersion relation to
observe these results.

We then placed a second obstruction downstream of the hydraulic fall and showed
that there then exists a train of waves trapped between the obstacles. As in the gravity-
capillary case, these downstream trapped wave solutions are not unique. Although we
found fewer turning points on the flexural-gravity trapped wave solution branch than
on the gravity-capillary branch, it is possible that there exist many more turning points
which we were unable to obtain due to the computational limitations that we meet near
the minimum of the upstream linear dispersion relation. However, we did show that the
range of Froude numbers for which multiple solutions exist, appears to be smaller in the
flexural-gravity than the gravity-capillary case.

Although we did not show any computed generalised hydroelastic hydraulic falls we
did speculate about the existence of such solutions. As in the gravity-capillary case, gen-

eralised hydraulic falls should exist in a flow regime where the upstream Froude number



142 Hydroelastic critical flows and trapped wave solutions

intersects the upstream linear dispersion relation, i.e. F,, > F,, . . However, the res-
onance that then occurs between the two modes of the linear dispersion relation appears
to be stronger than the resonance in the gravity-capillary case, and so the solutions are
harder to compute accurately. We speculated that generalised hydroelastic hydraulic falls
may therefore have, for example, Wilton type ripples upstream rather than a simple wave
train. A similar problem arose in placing the second obstacle upstream of the hydraulic
fall. If 1 < F,p < Fyp,,, one would expect a train of trapped waves to exist between
the two obstructions, as in the gravity-capillary case. Indeed, if we obtain a pure gravity
trapped wave critical flow solution (as computed by Dias and Vanden-Broeck [41]), and
then increase £, by a small amount, so that £, = 0.001, we obtain trapped waves of sim-
ilar wavelength and amplitude to the gravity solution. However, when we attempted to
increase F, further in order to obtain a noticeable difference between the pure gravity and
flexural-gravity upstream trapped wave solutions, the resonance between the two modes
of the linear dispersion relation became too strong to compute solutions feasibly.

When the flexural rigidity is greater, so that F,,, < F,p, .., we showed that there
exist forced solitary type waves (with small decaying oscillations in their tails) over the
additional upstream obstruction. Again, such solutions look like those in the gravity-
capillary flow regime.

It should be noted that the values of £} used in our results are relatively large, and
so the results presented correspond to shallow water applications, e.g. lakes and fjords,
rather than deeper oceanographic situations. We have shown computed solutions for
Ey, = 0.02 to B, = 5. Using all the parameters excluding the fluid depth given in table
5.1, one finds that such solutions would be physically relevant for Lake Saroma between
depths 5.84m and 1.47m, and for Lake Diefenbaker between depths 39.16m and 9.85m.
The mean depth of Lake Diefenbaker / = 35m, is included within this range, but the
mean depth of Lake Saroma H = 6.8m is not. For our results to be valid in Lake Saroma,
the depth of the lake would need to decrease further, or the thickness and/or flexural-

rigidity of the ice there, would need to increase.



CHAPTER SIX

CRITICAL FLOWS AND TRAPPED WAVE
SOLUTIONS IN THE RIGID LID
APPROXIMATION

6.1 Introduction

In this chapter, we consider the problem involving a steady two-layer ideal fluid medium
flowing in a channel of finite depth. An arbitrary submerged obstruction lies on the
bottom of the channel, and the upper fluid is bounded above by a rigid lid. The effects
of both gravity and surface tension are considered, and the fully nonlinear problem is
solved using boundary integral equation techniques based on Cauchy’s integral formula.
As in the single layer case presented in chapter 4, critical flow solutions are sought so
that the depths of the fluids in both layers change over the obstruction. We use a second
submerged obstruction to look for ‘trapped wave’ solutions, where a train of waves exists,
trapped between the two obstructions. These solutions are sought in both the pure gravity
and the gravity-capillary regimes.

The fully nonlinear problem is formulated in section 6.2. Section 6.3 describes the
numerical scheme for the rigid-lid approximation, and the linear theory is examined in
section 6.4. Some results are then presented in section 6.6, and in section 6.7, the chapter

ends with a summary of the findings and a concluding discussion.

6.2 Formulation

The interface of a two-dimensional, two-layer fluid medium flowing along a channel of
finite depth is considered. The fluids in the two layers have constant densities p; and p,,
such that po < p;. Consequently, the fluid of density p, lies on top of the fluid of density
p1, in order to suppress the Kelvin-Helmholtz instability, see chapter 2. The upper fluid is
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bounded above by a horizontal rigid lid; the so called rigid-lid approximation. The fluids
in both layers are assumed to be incompressible and inviscid, and the flows, steady and
irrotational. We introduce Cartesian coordinates (z*, y*) such that the x*-axis is aligned
along the horizontal undisturbed channel bottom far from the obstacle, and the y*-axis
is directed vertically upwards through a submerged obstruction. The origin is on the
undisturbed bed. Gravitational acceleration g is taken to act in the negative y* direction,
and we define the surface tension on the interface between the two fluids by o;.

Next, we introduce the velocity potentials ¢;(z*, y*) and ¢5(z*, y*), and the stream
functions ¢} (x*, y*) and ¢} (z*, y*), in the lower and upper fluid layers respectively. As
the fluids in both layers are incompressible, and their flows irrotational, Laplace’s equa-

tion is satisfied in the two domains;

V*2¢* =0 in the lower layer, (6.2.1)
V*2¢5 =0 in the upper layer. (6.2.2)

As we seek hydraulic fall solutions, far upstream of the submerged obstruction(s), as
x* — —o0, the flow in both layers is assumed to be uniform. We therefore impose the
condition that the fluids have constant depths /; and hs, and constant velocities V/; and V5,
in the lower and upper layers, respectively. Similarly, the flows are assumed to be uniform
far downstream, as * — oo, with constant depths /; and H>, and constant velocities U
and Us, in the lower and upper layers respectively. A conjugate flow therefore requires
hy # H, and hy # H,. The rigid lid is then described by

y*(z*) = hy + ho = Hy + H,. (6.2.3)

The free surface at the interface between the two fluids is given by y*(x*) = hy +n*(z*),
and the channel bottom, along which the arbitrary submerged obstructions lie, is given
by y*(z*) = B*(x*). In figure 6.1 we give a sketch of the flow domain.
The dimensionless Froude numbers in the lower and upper layers are defined by
Vi Va

F, = and F, = upstream, (6.2.4)
ghl gh?

=
:

Fig =

and Fo,=
VgH, - gH,

respectively. The dimensionless Bond numbers on the interface are defined by

downstream, (6.2.5)

0;

B plgh%

P19H12’

and Ty (6.2.6)

T

upstream and downstream, respectively. We introduce the depth ratio D = hy/h; and the
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Figure 6.1: Dimensional critical flow configuration in the rigid-lid approximation, over an arbi-
trary obstacle on the bottom of the channel.

density ratio R = py/p;. The critical depth ratio is then given by

D =+R. (6.2.7)

The steady kinematic boundary conditions on the rigid lid, the interface between the

two fluids, and the channel bottom are given by

Ghye =0 on y* = hy + hy, (6.2.8)
Qe = Pogetlye 0N Y" = hy +0"(27), (6.2.9)
Ply = Plowlpe 0N Y" = hy + 1" (z7), (6.2.10)
¢t = 01 Bie  on Yyt = B*(z"), (6.2.11)

see for example, Dias and Vanden-Broeck [39].

The dynamic condition on the interface is found by applying Bernoulli’s equation to
each fluid at the interface y*(z*) = hy +n*(z*). In the far field, as z* — —oo, we require
that y* — hy, uf — V;and v} — 0,47 = 1,2, where w;* = (w;*, v;*). Thus, the Bernoulli
constants BB; are found to be

1
B; = P + iinf + pigha, (6.2.12)

for ¢+ = 1, 2, in the lower and upper fluids respectively. Here, P, are the pressures in the
lower and upper layers of fluid as ¥ — —oo. The physical boundary condition is that

P = P> on the flat interface. Then, Bernoulli’s equation tells us that, for all points
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on the interface y* = hy + n*(z*),

P+ 5011112 + P9y — 501‘/12 — p1gh1 = P + §p2u22 + P29y — §P2V22 — p2ghy,

1 1
= p—(P1 —P) + 5(u>{2 — Ru}> = V2 + RVY) + g(y* — hy — Ry* + Rhy) = 0,
1
ag; %

1 * * * * *
:>_,0_1K + ) (( 13* + ¢1;2/*) — R( 2:25* + ¢2§) - (‘/12 - RVQZ)) +9(y* —hi)(1—-R) =0,

(6.2.13)

where k* is the curvature on the interface and we have utilised the Young Laplace equa-
tion (1.2.19) in the form P, — P, = —0;(V - n).

By considering the conservation of mass in both layers, we can also write

Vihy = Uy Hy, (6.2.14)
Vohgy = Uy H,. (6.2.15)

Next, we non-dimensionalise the problem by taking V; as unit velocity and A; as unit
length. The upstream fluid velocity in the upper layer is defined by v = 5/}, and
the depth of the upstream fluid in dimensionless variables is given by the depth ratio
D. We also define v, = U;/V; and v, = U,/V,. The downstream fluid velocities in
the lower and upper layers are then given by v; and 7, respectively. A sketch of the
dimensionless flow configuration is shown in figure 6.2. We can now obtain relationships
between the different Froude numbers (6.2.4) and (6.2.5) and write them all in terms of

F, the upstream Froude number in the lower layer;

o~

Fy = ﬁﬂ, (6.2.16)
3
Fiqg =7 1, (6.2.17)
3
2
Foy= 12 p. (6.2.18)

vD

Similarly, we can write 74, defined in (6.2.6), in terms of 7,
T4 =T (6.2.19)

So, providing that we know ~, 71, 72 and D, the only dimensionless Froude and Bond

numbers that we need to consider are [ and 7 respectively.
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Figure 6.2: Dimensionless critical flow configuration in the rigid-lid approximation, over an

arbitrary obstacle on the bottom of the channel.

We now denote dimensionless variables by non-starred variables, and write the di-

mensionless form of the problem as

¢1mm + leyy = 07 (6.2.20)
¢2xm + ¢2yy = 07 (6221)

subject to the dimensionless boundary conditions. The kinematic boundary conditions
(6.2.8)-(6.2.11) become

G2y =0 ony=1+D, (6.2.22)
b1y = G1an:  ony =1+1n(x), (6.2.23)
Py = P2aMe  OnY =1+ 1n(x), (6.2.24)
¢1y = ¢1.B, ony= B(x), (6.2.25)

on the rigid lid, the interface, and the channel bottom respectively. The dynamic boundary

condition (6.2.13) on the interface y = 1 + n(z) becomes

1 1
(62, + 62,) — R(¢3, + 62,) — (1 — Ry%)) — F—+ F =Ry = (1-B) =0
(6.2.26)

DN —

In the far field the flow must be uniform. Hence

Oz =1, o1y = 0, oy — 7, ¢oy — 0 and n(x) -0, as v — —oo  (6.2.27)
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upstream, and

¢1x—>%:’ylv ¢1y—>07
¢2$ — % =772, ¢2y — 07 as T — o9, (6228)
n(z) =3t —1=1-1,

downstream.
Following Forbes [53], a further condition is obtained by substituting the downstream

far field conditions (6.2.28) into the dynamic condition (6.2.26) on the interface, giving

1, 5 ) 1 1 1
— (42— —(1— —(1-R— - —=—(1-R) = 22
p = ROM2) — (=) + (1= R)— = (1= /) =0, (6229)

1 1 1
= 3 5372(1—7§)+5 2y - 1)+ (1 - R) (%—1) = 0. (6.2.30)

The problem is now fully defined. We seek ¢1(x,y), ¢o(z,y) and n(x), satisfying
Laplace’s equation in both layers, and the kinematic and dynamic boundary conditions
(6.2.22) - (6.2.26), subject to the far field conditions (6.2.27) and (6.2.28), and the relation
(6.2.30).

6.3 Numerical scheme

The problem is solved numerically, in a similar manner to the single layer case, by fol-
lowing the scheme used by Belward and Forbes [12] and Dias and Vanden-Broeck [42].
We reformulate the problem as a system of integro-differential equations, to be solved for
the unknown interface over arbitrarily shaped obstructions on the bottom of the channel.

We parametrise the interface by introducing the arclength s and writing x = X (s),

y = n(x) = Y (s). The parametric equation,

(d)cflis))2 N (dﬂ;is))Q _1 6.3.1)

must then be satisfied on the interface. The dynamic boundary condition (6.2.26) on the

interface is rewritten as

1 1
20 = R& — (1= Ry) = for+ (=Y () -1 =0, (632)
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Figure 6.3: The contour C, taken anticlockwise, consisting of the fluid interface, its image in the
rigid lid, and the vertical lines joining them at x = +L.

having first parametrised the velocity components by

do; dX
i == ) 6.3.3
¢ ds ds ( )
do; dY
biy = I ds (6.3.4)

for i = 1,2, as in chapter 4. Here, x = Y, X; — XY is the parametrised curvature on
the interface, as derived in chapter 4.

Next, we derive the integro-differential equations. Following Belward and Forbes
[12], we reflect the upper fluid in the horizontal rigid lid at y = 1 + D to obtain an image
fluid region, bounded above by an image interface (see figure 6.3). The requirement that
there is no flow through the rigid lid, given by equation (6.2.22), means that vy(x,1 +

D) = 0, and so we must satisfy the reflection condition,
vo(z,y) = —vo(x,2 4+ 2D — y), (6.3.5)

in the image fluid. We apply Cauchy’s integral formula to the function

dUJQ

=< _ 6.3.6
X1="—="7 ( )

around a contour C, shown in figure 6.3. Here, dw,/dz = ¢o, — iy, is the complex
velocity and ws(z) = ¢o(x,y) + 1ha(x,y) is the complex potential in the upper fluid.
The path C consists of the interface, the image interface, and the vertical lines z = +L in
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the limit as L — oo, as shown in figure 6.3. We obtain the integral equation

/c z(Xal)(Z—(Uz)()S)Z/(U)dU = mi(x1(2(5))) = mi(Paz(s) — 7 — ichy(s)), (6.3.7)
where o is the arclength at integration point z(0) = x(o) + iy(o) on the contour C.

Placing the evaluation point s = s; on the interface, (6.3.7) becomes

| | ($2:(0) — 7 — iy (0)) ((0) + iy ()
rilbar(s0) = —igmton)) = [
_ [ alenie) =1~ alolulolodo) ino)at),
: (2(0) —2(1))? + (y(o) — y())? ’
) /<¢2s<a><xs<a>2+ys< 0)?) — S
; (o) —a(s))? T E

where we have used (6.3.3) and (6.3.4), and have let A(0) = (z(0) — x(s1)) — i(y(o) —

y(s1)). As L — oo, the contribution to the integrals from the vertical lines tends to zero,

Y

(o )))A<U)da, (6.3.8)

(
(

zs(0) + 1y
o) —y(s1)

see chapter 4 for details. Taking the imaginary part of (6.3.8), and noting that on the
image interface y(o) = 2 + 2D — Y (o) and 2(0) = X (o) so that y(o)' = —Y'(0),
(6.3.8) becomes

T(das(51) Xs(81) —7) =
/°° —(¢25(0) = 7X,(0)) (Y (0) — V(1)) —1¥s(0)(X(0) — X(s1)) , -
o (X(0) = X(s1))* + (Y(0) = Y(s1))?
[ ) 21l E 2D Vo) Y o) LI = K
o (X(0) = X(s1))* + (242D = Y(0) = Y(s1))?

For clarity, we let ¢ = o if the value of the arclength at the varying point z(c), on the
contour C, is on the interface. The integral equation for the upper layer is therefore given
by

(P2s(s1) Xs(51) —7) =
B /OO (¢25(01) — ¥ Xs(01)) (Y (01) = Y (s1)) + 7Ys(01) (X (1) — X(s1))
—o0 ) — X(s1))* + (Y(o1) = Y(s1))?
B /oo (¢25(01) — ¥ Xs(01)) (Y (01) + Y (s1) — 2 = 2D) + 7¥(01)(X(01) — X (51))
o (X(01) = X(51))2+ (242D =Y (01) — Y(s1))?

dO’l

dO'l.
(6.3.9)
As in the single-layer case, discussed in chapter 4, there are two integral equations for

the bottom layer. This is because the evaluation point s must be placed on both the inter-

face and the arbitrary channel bottom. The equations are obtained by applying Cauchy’s
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integral formula to the function
dw1

dz

around a contour I' consisting of the free surface, the channel bottom, and the vertical

X2 = (6.3.10)

lines x = L in the limit as L — oo. Here, wy(2) = ¢1(z,y) + ith1(x, y) is the complex
potential in the lower fluid. Following the derivation of the two integral equations in the

single-layer case, we obtain the integral equation

) Y i51))? Xy, 6.3.11)

]
)+ o)Xl = Xie),
( 1

|
I
8
=
2
—
+
UU ~—
>~ 8
Q
=
|
=
Sy
2
|
i
+
Sy
€

when the evaluation point s = s; is on the interface. When the evaluation point s = x

lies on the channel bottom, we obtain

o m<wwu+Baw>—nu%>—Bw»+B<>w—x»0

(i) === [ (o — 27 + (Blo) — B(z)) !
* (¢(01) = X'(01))(Y(01) = B(x)) + Y(01)(X(01) — )

*fm (X(o1) — 22 + (Y(01) — B(x))? Ao

(6.3.12)

where 4(o) = u(o, B(0)) is the horizontal velocity of the lower fluid on the bottom
of the channel. These two equations (6.3.11) and (6.3.12) are similar to the equations
(4.3.22) and (4.3.23) obtained in chapter 4, with the exception that v in (4.3.22) and
(4.3.23) has been set equal to one, as the flow velocity upstream in the single layer case
was v but in the lower layer in the case presented here, is one. There exist singularities
in all the Cauchy principal value integral equations, but these can be neglected, as in the
previous chapters, by performing the integrations numerically using the trapezoidal rule
(see Monacella [83]). This completes the reformulation of the problem. The three integral
equations (6.3.9), (6.3.11) and (6.3.12), together with the dynamic condition (6.3.2) and
the parametric condition (6.3.1), provide the system of integro-differential equations to
be solved iteratively via Newton’s method.

We introduce M equally spaced mesh points s;, for ¢« = 1,..., M, on the interface,
separated by an interval e, alongside the M/ — 1 mesh midpoints s}, for: = 1,..., M — 1.
Similarly, ¢ equally spaced mesh points z;, for « = 1, ..., ¢ on the channel bottom, sepa-
rated by an interval h, are introduced with their correspondlng mesh midpoints z", for
i = 1,...,q — 1. We then seek the 4M + ¢ + 3 unknowns; Y'(i) = Y'(s;), X' (i) =
X'(51), 91(1) = ¢(s0), ph(1) = Phy(s;) fori = 1,..., M, u(i) = u(z;) fori = 1,...,q, 71,

72 and F;. However, given an initial set of values for Y”(7), we can reduce the number of
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unknowns by obtaining X’(7) from the parametric equation (6.3.1), as in chapter 4. The
rigid lid condition requires that the total depth of the fluids upstream is equal to the total

depth of the fluids downstream, i.e. the rigid lid is fixed. So, we must have

1+p=241 (63.13)
20N
As D is known, (6.3.13) can be used to obtain 7, from ;. Furthermore, we can obtain
~ by enforcing 1 = 1/y(M) to satisfy the downstream far field condition. There are
then 3M + ¢ + 1 unknowns remaining; Y’ (i) = Y'(s;), #1(1) = @ (s:), 95(i) = ¢h(s:)
fori=1,..., M, u(i) = u(z;) fori =1, ...,q and F3.

Following the work of Dias and Vanden-Broeck [42], the integrals in the integro-
differential equations are truncated at o = —A and ¢ = B, where A and B are large
positive constants. As in the single layer case in chapter 4, the integrals can then be
approximated numerically at the mesh midpoints, using the trapezoidal rule with sum-
mation over the mesh points. The neglected part of the integrals, from —oo to —A and
from B to oo, are approximated analytically to improve the accuracy of the solutions. As
o — —oo we have that ¢ (0) — 1, ¢4(0) — v, X'(0) = 1,Y'(0) — 0, B(c) — 0 and
u(o) — 1. The integrals from —oo to — A therefore all approximate to zero, and so their
contributions to the integro-differential equations can be neglected. As 0 — oo the inte-
grals are non-zero, and thus, are determined analytically by approximating the unknowns
X'(0),Y(0),d)(0),d5(c),u(c) and B(o) by their values at the last mesh midpoint on
the fluid interface and channel bottom, respectively. We can also set Y’(0) = 0 and
B,(0) = 0.

The truncation corrections to the first integral equation (6.3.9) come from the approx-

1mations
[T B0 XA - Vo) o
5 (X(o0) = X(s0)? + (Y (M) — Y(51))? dX
[T @D KD 4 Vo) 2-2D) d
5 (X(o1) = X(s1))?+(2+2D-Y (M) —-Y(s1))?dX

to the two integrals, respectively. The downstream truncation corrections to the integral

(6.3.14)
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equations (6.3.9), (6.3.11) and (6.3.12) are then found to be

e SO (S
¢(M) =y X{(M) (7 X (M) — X(s™)
X{(M) (§—arctan (2+2D—Y(M)—Y(s§”))> , (6.3.15)

1 -0t~ (- wen (252000 )

$(M)-X'(M) (= X(M) — X(s7")
+ X(0) (:|:§ — arctan <Y(M) Y (s )) , (6.3.16)

Bh=- “f@ 1 (fg -t (B(f)q—_ g?xm) )m
a5 (wan 2 s0r7)) (©317

respectively. The corrections 75 and 73 are just the same as (4.3.28) and (4.3.29) in the

— — arctan

* 2

single layer case, with «y set equal to one, and the explicit one in (4.3.28) and (4.3.29),
representing the velocity far downstream, replaced by u(q). Due to the different scales
used for the non-dimensionalisation in this chapter, u(q) # 71 # 1. The positive sign is
taken in (6.3.15) and (6.3.16) if Y, (M) > Yi(s!"), the negative sign if Y1 (M) < Yi(sI"),
and the first and last terms in (6.3.15) and (6.3.16) respectively are neglected completely
if Y1(M) = Yi(s). In (6.3.17), the positive sign is taken if B(q) > B(x!"), the negative
sign if B(q) < B(x!"), and the first term is neglected completely if B(q) = B(z]").

The integral equations (6.3.9) and (6.3.11), together with their truncation corrections
(6.3.15) and (6.3.16), provide 2(M — 1) equations. A further ¢ — 1 equations are provided
by the third integral equation (6.3.12), together with its truncation correction (6.3.17).
The dynamic condition on the interface (6.3.2) provides an additional M equations. This
gives a system of 3M + g — 3 equations. A further four equations are therefore required
to complete the system. These come from the relation (6.2.30), and three conditions to
describe the flow in the far field. We find that exactly which three far-field equations
to use depends on the type of result we are looking for (see section 6.4 below). As an

example, we set

Y'(1) =0, (6.3.18)
u(l) =1, (6.3.19)
Po(1) = 7. (6.3.20)

So, we now have a system of 3M + ¢ + 1 equations for the 3M + g + 1 unknowns, which

we can solve iteratively using Newton’s method.
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6.4 Linear theory

We firstly consider the linear theory. In a single layered flow configuration, wave trains
move with the flow speed U and are governed by the linear dispersion relation. There are
no wave trains in solitary wave and hydraulic fall solutions. In a two-layer configuration,
with velocities U; and Us in the lower and upper fluids respectively, if waves move with
speed U; they will be steady in the lower fluid. When viewed in a frame of reference
moving with the upper fluid however, the waves will no longer be steady. Therefore,
when a solution includes a train of waves, the velocities of the two layers must be equal.
However, due to their lack of a wave train, there is no such problem with hydraulic fall
and solitary wave solutions.

In a flow regime where h; = H;, the mean fluid depth of each layer in the far field is
the same up and downstream. In this regime, in the absence of a forcing, the steady-flow

governing equations are

Plprgs + Pl =0 in 0 <y <hy+7", (6.4.1)

The kinematic boundary conditions are then

¢r =0 on y* =0, (6.4.3)
B3y =0 on y*=hy+ ho, (6.4.4)
1o+ = Q1 O y" = hy +n"(z7), (6.4.5)
Goplye = P ON Y" = hy + 0" (27), (6.4.6)

on the channel bottom, the rigid-lid, and the interface between the two fluids, respectively.

The dynamic boundary condition on the interface is

—Eaz’/‘é +§( 1§*+¢132;*_V12)_§( bee 0 = V5 )+ g(1=R)(y" —h1) = 0. (6.4.7)

Dropping the stars, we add a small amplitude perturbation to the flow, by writing

o1 = Vix + ¢y (z,y), (6.4.8)
P2 = Vaz + ¢h(x,y). (6.4.9)
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Then substituting (6.4.8) and (6.4.9) into the governing equations (6.4.1)-(6.4.7), we ob-

tain

¢/1mc + ¢/1yy =0
(ﬁéxm + (bl2yy =0

in 0<y<h+n,
in hy+n<y<hy+ hy,

¢, =0 on y=0,
¢, =0 on y=hy+ hy,
Vine + ¢iune = ¢4, on y=hi+n,
Vol 4+ @ne = ¢h, on y =hy +,
andony = hy + 7,
g
st (it b + 01,0 W)
P1
R
~5 (Va4 00 + 6,° = Vi) + 91 = Ry — ) = 0.

(6.4.10)
(6.4.11)
(6.4.12)
(6.4.13)
(6.4.14)
(6.4.15)

(6.4.16)

By considering the Taylor expansions of ¢; and ¢, about y = hy, dropping the primes

and linearising the equations, we obtain

¢1x:c + ¢1yy =0
¢21:r + ¢2yy =0

¢1y =0

P2y =0
Vine = ¢1y
Vo, = ¢2y

and on y = hyq,

in 0<y<hy,

in h1<y<h2—|—h1,

on y=0,
on y = hy+ hs,
on y = hy,
on y = hy,

0
1

Next, we seek linear sinusoidal (periodic) wave functions of the form

¢1(z,y) = 0A1 (y)e’™,
Go(,y) = 0As(y)e’™,
n(z) = 6B1e™*,

(6.4.17)
(6.4.18)
(6.4.19)
(6.4.20)
(6.4.21)
(6.4.22)

(6.4.23)

(6.4.24)
(6.4.25)
(6.4.26)

with wavenumber k. Here, ¢ is an arbitrarily small constant to remind us that the functions

here are all small.
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Substituting the wave function (6.4.24) into Laplace’s equation (6.4.17) gives

—k*Ay + A =0,
= Ay = c1e + o™, (6.4.27)

where ¢; and ¢, are arbitrary constants. Then, from the kinematic condition on the chan-
nel bottom, (6.4.19), we find that

Clk — Cgk = O,
N . (6.4.28)

and so

Ay = 2¢q cosh(ky),
= ¢ = 2¢,0 cosh(ky)e*™, (6.4.29)

Then, from the kinematic condition on the interface in the lower fluid, (6.4.21), we obtain

the relationship

%Bllk = 2]€C1 Sinh(k'hq),

_ 2kcy sinh(khy)

B; = 6.4.30
= 1 v ( )

Also, substituting the wave function (6.4.25) into Laplace’s equation (6.4.18) gives
By = 0(cse™ 4 cpe™) et (6.4.31)

where c3 and ¢4 are arbitrary constants. Then, from the kinematic condition on the inter-

face in the upper fluid, (6.4.22), we obtain the relationship
(cske™ — cyke M) §e™™ = Viyik By et (6.4.32)

Now substituting B; from equation (6.4.30) into (6.4.32), we obtain

kV;
cske!™ — cyke M = oke, Sinh(khﬂzk—vja
= cg = e M 4 9c vy sinh(khy e R (6.4.33)

Thus,

¢2 = 6 (2cse cosh(k(y — hi)) + 2c1 sinh(khl)ek(y’hl)) ek (6.4.34)
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Using the kinematic condition on the rigid lid, (6.4.20), and our expression for ¢,
(6.4.34), we find that

2cse” ¥ | sinh(khy) + 2¢17y sinh(khy ) ke = 0,

—c sinh(khy )yeFhithe)
= ¢y4. 4.
~ sinh(khs) “ (6.4.35)

Therefore, (6.4.34) becomes

— sinh(kh, )eh?
sinh(khs)

¢y = 02¢17y ( cosh(k(y — hi)) + sinh(k;hl)ek(y_hl)) e*r . (6.4.36)

In order that our expressions (6.4.29) and (6.4.36) satisfy the dynamic boundary con-
dition, (6.4.23), we require

g;

P1
| _ sinh(kh ekhz
— RV32c19(ik) ( Sin}f(kli)

+g(1 — R)Be™™™ = 0.

(ik)?Be™™ + V1 2¢, (ik) cosh(khy )e™*®

Thus,
o 2¢q sinh(khy)
Tk 4 g(1— R ) 2y sinh(khy)
(m 9( ) v

. . sinh(kh
+i2¢1kV; cosh(khy) + iRVa2eyvk (W) =0,

(6.4.38)

which, multiplying by V1 k tanh(khs)/2cq cosh(khy), implies that

—i (ﬁk? +g(1- R)) k tanh(khy ) tanh(khs)
1

+ ik*V 2 tanh(khy) + i RVoVivk? tanh(khy) = 0.

(6.4.39)

Rearranging, the dispersion relation (6.4.39) becomes

_ < Ti g2 4 (1— R)) tanh(khy) tanh(khs)
P19 (6.4.40)

2
y
+ k% tanh(khs) + vagw

ktanh(kh,) = 0.

Then, non-dimensionalising by taking h; as the unit length scale, and denoting K = kh;
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as the dimensionless wavenumber, we obtain

FYK tanh(K D) + RF{y*K tanh(K) — (7K* 4 (1 — R)) tanh(K) tanh(K D) = 0.
(6.4.41)
In the special case v = 1, corresponding to the case that the (constant) velocities upstream

are the same (V; = V5 = V'), we obtain

FYK tanh(K D) + RFYK tanh(K) — (K® + (1 — R)) tanh(K) tanh(K D) = 0.
(6.4.42)
Now we consider the long wave limit, X — 0, in order to obtain the critical Froude
number Fi;;. This is the Froude number at which the transition between subcritical and
supercritical solutions occurs. If F' < Fy;, real values of the wavenumber K can be
obtained. Solitary waves bifurcate from the uniform stream at this critical Froude number.

As K — 0, tanh(K') can be approximated by the Taylor expansion

1 2
tanh(K) ~ K — 5K3 + 1—5K5 - ...~ K. (6.4.43)

Thus, the dispersion relation (6.4.41) becomes

FIK?D + RF?*K? —7K'D — (1 - R)K*D = 0,

= F?D+ RF}y* — (1 - R)D =~ 0,
D(1-R)
F2 =—_"" 6.4.44
= bif D+R’72 ( )

The critical value of the interfacial tension can also be obtained by considering the linear
dispersion relation at the next order. Letting tanh(K D) ~ K D—3 K*D? and tanh(K) ~
K — %K 3, the dispersion relation (6.4.41) becomes

K? (F{D + RF{v* — (1- R)D)
1 1 1
+K* <—§F12D — gRFfAyQ — 7D + g(l — R)D(D* + 1)) (6.4.45)

+O(K®) = 0.
We satisfy this expression by letting /| = Fj;¢, and setting

1 1 1
—gFfD?’ - gRny2 — 7D+ 3(1 — R)D(D*+1) =0.
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Then,
1 1
D = ;D1 - R)(1+ D?) — gngf(D?’ + Ry,
1 1 (1-R)
= 7=-(1-R(1+D* - -———L(D*+Ry*
7=3( )(1+ D7) 3DHW( + Rv7),
Lo 11-R)(1+ D*(D + Ry?) — (1 — R)(D® + R+?)
D + Ry? ’
1D(1— R)(1+ RD~?)
=z . 6.4.46
— 773 D+ Ry? (6.4.46)

When R = 0 and D = 1, which represents the free surface of a single-layer of fluid,
(6.4.46) becomes T = % as we would expect.
The downstream dispersion relation is similarly obtained. We find that

(U1k)? tanh(k Hy)+R(Usk)? tanh(kHy ) — (%k?’ + gk(1 — R)) tanh(kH,) tanh(kHy) = 0.
1
(6.4.47)

In the case of a hydraulic fall, downstream we will have that U; # Us,. Dividing (6.4.47)
through by kg, we obtain

U? H, h U2 H
“Lktanh (khl—Q—Q) + RZ2ktanh (k:hl—l)
g ho hy g hq

i H ho H
_ ( A R) tanh (kh1—1> tanh (kh1—2—2> —0. (6.4.48)
P19 hl h1 h2

Now, non-dimensionalising and defining the dimensionless wavenumber as before, (6.4.48)

becomes

2 )
U—th tanh <K2) + REK tanh (5>

gh V2 gh gl
i K KD
~ ( K41 - R) tanh (-) tanh (—> — 0, (6.4.49)
p19hi M 72
K KD 2~2 K
= F},—tanh (—> + RKFfd%z tanh (—)
il Y2 "N 71
K? K KD
— (Td—2 +1-— R) tanh (—) tanh (—) =0, (6.4.50)
71 M V2

where we have used that U2 /U7 = (U3 /VE)(VE/VE)(VE/U?) = v3+*/~3i. Again, by
expanding tanh x as a Maclaurin expansion and considering the first order of the linear
dispersion relation, we can obtain F,.

So, using (6.4.41) and (6.4.50) the upstream and downstream dispersion relations can
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be written in the form

(1 — R+ 7K?)tanh(K) tanh(K D)

F? = 6.4.51
! K (tanh(K D) + Ry?tanh(K)) ’ ( )
(1= R+ ™) tanh(£) tanh(XL2)
Fiy = — P P (6.4.52)
’Tl tanh(T) —I— %Y—in, tanh(,y—l)

respectively. The upstream and downstream critical values of the Froude number are

D(1 - R)

Fiiie = DL R2 Ry? (6.4.53)
1— R)D~3

> _ (- R)Dy (6.4.54)

D+ Ry

If Fy > Fip, the flow in the lower layer is said to be supercritical (upstream), and if
Fy < Fiye, the flow is said to be subcritical (upstream). When looking for critical, con-
jugate flow solutions there are thus four cases that we need to consider (see for example

Dias and Vanden-Broeck [39]). These flow regimes are defined by:
1. Supercritical flow upstream (£} > Fiy;¢) with a thick upper layer (D > \/}_%),
2. Subcritical flow upstream (F; < Fiyi) with a thick upper layer (D > \/}_%),
3. Supercritical flow upstream (F7 > Fi;¢) with a thick bottom layer (D < \/}_2),

4. Subcritical flow upstream (F; < Fiyir) with a thick bottom layer (D < \/E).

6.5 Weakly nonlinear analysis

In order to choose an appropriate set of initial values for Y, we use a weakly nonlin-
ear analysis to determine the type of hydraulic fall sought in each of the four regimes
described at the end of section 6.4.

Dias and Vanden-Broeck [39] considered the pure gravity stationary fKdV equation,
which is valid far from the critical depth ratio D = VR, in the rigid lid approximation.
Using an appropriate choice of scaling, they showed that the classical fKdV equation in

the rigid lid configuration transforms into the equation

1 3 1
= xzxi_ x x:__Bxa S.1
i 5 = 1] 2 (6.5.1)

where R = 1. Here y = B(x) is the equation governing the channel bottom, 7(x) is
the interfacial elevation, and € = F' — 1, where € is a small parameter with order of the

square root of the height of the submerged obstruction; i.e. \/As. Therefore, the flow is
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supercritical if ¢ > 0 and subcritical if < 0. The plus sign in equation (6.5.1) is used in
the case of a thick upper layer, D > /R, and the minus sign in the case of a thick bottom
layer, D < VR.

Following Dias and Vanden-Broeck, we integrate the fKdV equation (6.5.1) with re-

spect to z, to obtain

9
New &+ 511° = 6 = =3Q08(x), (6.5.2)

where the channel bottom y = B(x) has been approximated by the Dirac delta function;

B(z) = Qo(x). (6.5.3)

Then integrating (6.5.2) between —e and ¢, in the limit as e — 0, gives

/6 Nezdr = —3Q) /6 d(x)dz, (6.5.4)

=1,(07) = 1,(07) = =3Q. (6.5.5)

This is known as the jump condition, and must be satisfied alongside the unforced KdV
equation, (6.5.2) with ) = 0, i.e.

9
Nz = 4:5772 + 6pn). (6.5.6)

The KdV equation has an equilibrium point x = ¢ when

Thus, we see that ¢ = 0 and ¢ = :l:% (1 are the only equilibrium points. Next, we multiply
(6.5.6) by 27, and integrate once to obtain

ny = F3n° + 6un’ + C, (6.5.8)

for some arbitrary constant C. We can now plot the phase portraits in the (7,7, ) plane
for the unforced solution trajectories. We sketch typical solution trajectories for the four
different cases in figure 6.4. To obtain hydraulic falls we consider the continuous bounded
solutions which satisfy the jump condition (6.5.5).

Dias and Vanden-Broeck analysed these phase portraits, to determine the behaviour
of the pure gravity hydraulic fall solutions. The phase portrait in figure 6.4(a) shows that
in the subcritical case with a thick upper layer, as the solution is required to be uniform
upstream with 77 = 0, the solution trajectory must start at the fixed point = 0,7, = 0.
At z = 0, there is then a downwards jump onto the elevation solitary wave trajectory, to
satisfy the jump condition (6.5.5). The depth of the fluid in the lower layer is therefore
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(a) Subcritical flow upstream with a thick upper layer. (b) Supercritical flow upstream with a thick upper layer.
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(c) Subcritical flow upstream with a thick lower layer. (d) Supercritical flow upstream with a thick lower layer.

Figure 6.4: Phase plane representations of the hydraulic fall solutions to the unforced pure gravity
KdV equation. The hydraulic fall path in each case is shown by the thick solid line.

expected to decrease over the obstruction.

In the second case, with supercritical flow upstream and a thick upper layer, the phase
portrait in figure 6.4(b) shows that, as the flow is required to be uniform upstream for
2 < 0, the solution must initially follow the elevation solitary wave trajectory. At x = 0
the jump condition is satisfied, so, provided that the obstacle is of the required size, the
solution jumps downwards to the fixed point with 7, = 0. The depth of the lower layer is
therefore expected to increase over the obstruction. Dias and Vanden-Broeck noted that
a generalised hydraulic fall of the same orientation may be obtained if the solution jumps
onto a cnoidal wave trajectory, rather than to the fixed point.

When the flow upstream is subcritical, with a thick lower layer, the situation is more
interesting. Figure 6.4(c) shows that, as the flow is required to be uniform upstream, the
solution must start from the fixed point 1 = 0, 1, = 0. To satisfy the jump condition the
solution must jump downwards onto the depression solitary wave branch. This occurs
before the solitary wave has passed its trough. The trough is therefore expected to appear
on the interface over the obstruction, before the level of the lower layer increases.

Finally, when the flow is supercritical upstream with a thick lower layer, figure 6.4(d)
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shows that the requirement of uniform flow upstream means that initially the flow must
follow the depression solitary wave branch. To satisfy the jump condition the solution
must jump downwards at x = 0, to the fixed point with n,, = 0. This downward jump oc-
curs after the solitary wave has reached its trough, and so a trough is expected to appear
over the obstruction before the depth of the lower fluid decreases. Dias and Vanden-
Broeck note that in order to obtain this solution the obstacle must be of the exact required
size. Otherwise, the solution jumps to a cnoidal wave trajectory, and a generalised hy-
draulic fall with waves downstream of the obstacle is predicted.

This weakly nonlinear analysis in the pure gravity case is not new (see Dias and
Vanden-Broeck [39]), but is included here for completeness. We now apply the same
method to the gravity-capillary fKdV equation. Following Laget and Dias [75] we obtain
the KdV equation. Then, following Dias and Vanden-Broeck [39], it can be transformed
into the gravity-capillary stationary fKdV equation given by

1 3 1
(" — + S, — e = —= By 5.
5 (7" = T) e 5 = 1 5Be (6.5.9)

Here, 7 corresponds to the critical value of the Bond number, given by (6.4.46). By
introducing some positive constant «, with strong interfacial tension, 7 > 7%, we rewrite
(6.5.9) as

o 3 1

§aae F 5Ma + pile = 5 Ba (6.5.10)

Integrating (6.5.10) with respect to x, we obtain

9
ONpw F 5172 + 6un = 3Q6(x). (6.5.11)

We can then determine that the stationary points of the unforced KdV equation, ) = 0,
areatn = Oand n = :Fg,u. Integrating again, we then find that the jump condition

becomes

3
17:(07) —1,(07) = ~Q. (6.5.12)

A positive, upwards jump is therefore required in the gravity-capillary cases. We sketch
the solution trajectories for the four different cases in figure 6.5. As in the pure gravity
case, we seek continuous, bounded solutions which satisfy the jump condition (6.5.12).
For subcritical flow with D > /R, the phase portrait 6.5(a) shows that, as the flow
is uniform upstream, with 1 = 0, the solution must follow the depression solitary wave
trajectory for x < 0. The solution must jump upwards to satisfy the jump condition. Pro-
vided that the obstacle is of the required size, the solution jumps to the other equilibrium
point and a hydraulic fall is obtained. The depth of the lower fluid in this case is therefore

expected to decrease over the obstacle. If, instead, the obstacle is such that the solution
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Figure 6.5: Phase plane representations of the hydraulic fall solutions to the unforced gravity-
capillary KdV equation. The hydraulic fall path in each case is shown by the thick solid line.

jumps to a cnoidal wave solution, then we predict generalised hydraulic falls with waves
downstream of the obstacle.

When the flow upstream is supercritical with D > /R, the phase portrait 6.5(b)
shows that, as we require the flow to be uniform upstream (with = 0), the solution must
stay at the equilibrium point = 0, 1, = 0 for x < 0. To satisfy the jump condition the
solution jumps upwards onto the depression solitary wave solution at x = 0, and moves
to the saddle point. The depth of the lower fluid is therefore expected to increase over the
obstacle.

In the case of subcritical flow upstream with D < /R, the phase portrait 6.5(c) shows
that, as the flow is required to be uniform upstream with = 0, the solution must follow
the elevation solitary wave trajectory for x < 0. To satisfy the jump condition the solution
must jump upwards, and so the peak of the solitary wave is passed before the solution
jumps to the other equilibrium point at z = 0. Hydraulic falls in this case are therefore
expected to have a peak over the obstacle, with the depth of the lower fluid being greater
downstream than upstream. If the obstacle is not of the required size the solution may

jump onto a cnoidal wave trajectory instead, resulting in a generalised hydraulic fall.
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Finally, when the flow upstream is supercritical with D < /R, the phase portrait
6.5(d) shows that, as the flow must be uniform upstream with 1 = 0, the solution stays
at the equilibrium point = 0, n, = 0 for x < 0. To satisfy the jump condition the
solution jumps upwards onto the elevation solitary wave trajectory at z = 0. This happens
before the peak in the solitary wave is reached, and so the hydraulic falls in this case are
expected to have a peak over the obstruction before the depth of the lower fluid decreases
downstream.

In each case, we now know, from the weakly nonlinear analysis, whether the depth of
the lower fluid should increase or decrease over the obstacle. An appropriate set of initial

values for Y’ can thus be chosen accordingly.

6.6 Results

The results in this section were computed using the method described in section 6.3. We
begin by setting v = 1 so that we consider examples where the two upstream flow ve-
locities are the same. We use the same cosine squared channel bottom configuration as
presented in the previous chapters, see (4.4.1), so that the heights and lengths of the ob-
stacles are given by 2A; and 2L;, for i = 1, 2, respectively. As before, when considering
flow over a single obstruction, we set A; = 0.

6.6.1 Pure gravity solutions

In the case of a single obstacle, the pure gravity hydraulic fall solutions in the rigid lid
configuration have previously been obtained by Dias and Vanden-Broeck [39], and by
Dias and Vanden-Broeck [40] in the critical region D ~ v/R. Typical solution profiles in
each of the four cases described in section 6.4 are shown in figure 6.6. We find that the
solutions are very sensitive to the initial conditions we choose. An appropriate initial set
of values for Y” is chosen by considering the weakly nonlinear analysis of section 6.5, but
we have to manipulate the initial values of -y, 75 and F carefully, in order for our code
to converge. In region one, with subcritical flow upstream and a thick upper layer, we set
R =0.6 and D = 2, so that Fy;s =~ 0.55. The weakly nonlinear analysis then tells us that
we require 7; > 1 and 2 < 1. Therefore, we initially set v; = 2, v = 0.5, 7 = 0.4 and
obtain the initial set of values for Y’ by defining

1 1

Y =— (1 - —> (— tanh(ao)), (6.6.1)
2 gt

and differentiating numerically. Here « is a constant, which we take to be a = 0.05 in

this region. The three additional far field equations in this regime are given by (6.3.18)-

(6.3.20). In region two, with supercritical flow upstream and a thick upper layer, the
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weakly nonlinear analysis tells us that v; < 1 and 7, > 1. Therefore, initially we set
v1 = 0.85, 75 = 1.2, F; = 0.55 and we obtain the set of values for Y’ by setting o = 0.5
in (6.6.1). The three additional far field equations (6.3.18)-(6.3.20) defined in section 6.3

are replaced with the equations

u(l) =1, (6.6.2)
Y'(M) =0, (6.6.3)
Y'(M —1) =0, (6.6.4)

to ensure that the interfacial surface is uniform far downstream.

The remaining two cases are harder to determine. The flow configurations have a
thick lower layer, so we choose i = 0.6 and D = 0.5. Then, we find that Fy;; ~ 0.43. In
region three, with subcritical flow upstream, we know from the weakly nonlinear analysis
that we need 7y; < 1 and 7, > 1. However, this time, we also require that there exists a
depression in the free surface before the change in fluid depths occurs. We obtain such
a solution by initially setting 7, = 0.85, 72 = 1.2, F; = 0.5 and a = 0.5. The three
additional far field equations (6.3.18)-(6.3.20) defined in section 6.3 are replaced with

the equations

u(l) =1, (6.6.5)
Y'(1) =0, (6.6.6)
Y'(2) =0, (6.6.7)

to ensure that the interfacial surface is uniform far upstream. In region four, the flow
upstream is supercritical and the weakly nonlinear analysis tells us that we need 7, > 1
and 72 < 1. We also require a depression on the free surface immediately after the
hydraulic fall. We have found that this case is extremely sensitive to its initial conditions.
We use 77, = 2.5 and v, = 0.5, F; = 0.48 and o = 0.45 initially, and take the far field

equations to be

(1) =1, (6.6.8)
Y'(1) =0, (6.6.9)
Y'(2) =0. (6.6.10)

We do not obtain a solution under these circumstances using our numerical scheme, but
we do see that, after two Newton iterations, the free surface appears to be taking the
desired form. The free surface is not uniform downstream as it should be, but the depres-

sion in the free surface after the hydraulic fall is shown clearly. Dias and Vanden-Broeck
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Figure 6.6: Interfacial hydraulic fall profiles over an obstacle. The Froude number is found to be
(a) F1 = 0.52, (b) F1 = 0.58, (¢) F1 = 0.4 respectively. The free surface profile in (d) is not a
solution, but demonstrates the form of the expected solution from the weakly nonlinear analysis.

[42] show this solution in figure 18 of their paper. However, even there the solution is a
generalised hydraulic fall and not a pure hydraulic fall. There are small amplitude waves
downstream of the fall.

When there is just a single layer of fluid in the pure gravity case, and a second obstacle
is included further upstream of the hydraulic fall, where the flow is subcritical, a train of
trapped waves is found between the obstacles (Dias and Vanden-Broeck [41]). This train
of waves is predicted by the linear dispersion relation, with the wavelength of the trapped
waves being in rough agreement with the wavelength predicted by the linear theory. In
the gravity-capillary case, unless the surface tension is very small, the additional obstacle
is placed downstream of the hydraulic fall to get trapped waves to appear between the
obstacles (see chapter 4).

By examining the linear dispersion relation in the four cases in the rigid lid approxi-
mation, we extend the work of Dias and Vanden-Broeck [41], by including an additional
obstruction in the flow configuration, and looking for solutions with a train of waves

trapped between the two obstacles.
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When the flow upstream is subcritical, with a thick upper layer, the phase portrait in
figure 6.4(a) shows that the solution is similar to the pure gravity single layer case. The
linear theory predicts that the obstacle must be placed upstream of the hydraulic fall to
obtain trapped waves. The upstream Froude number in the lower layer then intersects the
lower-layer upstream linear dispersion relation, thus predicting a train of waves following
the additional obstacle. Such a solution profile is shown in figure 6.7, alongside the cor-
responding upstream and downstream lower-layer linear dispersion relations. A train of
waves, with a wavelength of A\ ~ 6.35, can be seen upstream between the two obstacles.
This is in good agreement with the linear theory. The solid lines in figure 6.7(c) show
that the upstream Froude number £ intersects the upstream linear dispersion relation
at K ~ 0.99. The linear theory therefore suggests that a train of waves of wavelength
A =27 /K = 6.35 exists upstream.

Increasing the height of the additional obstacle increases the amplitude of the trapped
waves whilst keeping the Froude number, and thus the wavelength, roughly the same.
Similarly, moving the additional obstacle further upstream changes the Froude number,
and thus the wavelength of the trapped waves, very little. The position of the additional
obstacle therefore affects the number of waves trapped between the obstacles, but has
little effect on the amplitude and wavelength of the waves. This is comparable with the
results of the single layer case. See Vanden-Broeck and Dias [41] for the fully nonlinear
solutions, and Pratt [95] for experimental results.

In the second case, where the flow upstream is supercritical and the fluids are such
that there is a thick upper layer, the linear theory suggests that trapped waves may be
obtained downstream where the flow is subcritical. We therefore place the additional
obstacle downstream of the hydraulic fall and, as expected, a train of waves is found
between the obstacles. A typical solution profile is shown in figure 6.8(a). The trapped
waves in this case have a greater wavelength than those in the first case, and so a longer
domain is required. The waves in figure 6.8(a) are of wavelength A\ ~ 16.35. This is
in rough agreement with the linear theory. The broken lines in the downstream linear
dispersion relation in figure 6.8(c) show that, for the flow configuration of figure 6.8(a),
the linear theory predicts waves with wavenumber K ~ 0.3965, and thus wavelength
A=271/K ~ 15.85.

When the flow upstream is subcritical and the flow configuration is such that there is a
thick bottom layer, we find that the trapped waves are obtained upstream of the hydraulic
fall. A typical solution profile is shown in figure 6.9(a), with waves of wavelength \ ~
3.6. Immediately after the train of trapped waves, a trough in the interface is found
before the level of the lower fluid rises downstream of the obstacle. The linear dispersion
relations for the solution in figure 6.9(a) are plotted in figure 6.9(c). The solid lines show

that the wavelength of the trapped waves upstream is in good agreement with the linear
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Figure 6.7: (a) Interfacial hydraulic fall profile (D = 2, VR = 0.6, D > VR). Waves are
found trapped between the obstacles characterised by Ao = 0.05, A; = 0.01, L; = Lo = 1 and
xq = 15. The Froude number F; = 0.46 is found as part of the solution. The fully nonlinear
phase portrait of the solution in (a) is shown in (b). In (c) we plot the upstream linear dispersion
relation (curved solid line) alongside the upstream value of the Froude number Fj (horizontal
solid line) for the channel bottom configuration in (a). The broken curve is the downstream linear
dispersion relation, and the broken horizontal line shows the downstream Froude number for the
same bottom configuration as in (a).

theory. We see that the Froude number for the given flow configuration intersects the
upstream dispersion relation at K ~ 1.75, corresponding to a wavelength of A ~ 3.59.
In the fourth region, where the flow upstream is supercritical and the lower layer
is thick, we would expect any trapped waves to be found downstream of the hydraulic
fall, after a depression on the free surface. So, the second obstruction should be placed
downstream. The downstream Froude number in this case would then be expected to
intersect the downstream linear relation, resulting in waves on the free surface. Upstream,
the Froude number is greater than F7y;¢, as the flow is supercritical, so the Froude number

will not intersect the linear dispersion and no waves will appear on the free surface.
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Figure 6.8: (a) Interfacial hydraulic fall profile (D = 2, VR = 0.6, D > \/R). Waves are
found trapped between the obstacles characterised by Ay = 0.01, Ay = 0.01, L1 = Ly =1
and x4 = —30. The Froude number F; = 0.59 is found as part of the solution. The fully
nonlinear phase portrait of the solution in (a) is shown in (b). In (c) we plot the upstream linear
dispersion relation (solid curved line) alongside the upstream value of the Froude number F7 (solid
horizontal line) for the channel bottom configuration in (a). The broken curve is the downstream
linear dispersion relation, and the broken straight line shows the downstream Froude number for
the same bottom configuration in (a).

Next, we briefly examine the cases where the additional, positively orientated, obsta-
cle is placed in the opposite region to the trapped waves, i.e. in the supercritical regions.
So, in cases one and three (the flow configurations with subcritical flow upstream), the
additional obstruction is now placed downstream. In figure 6.10 we show typical solu-
tion profiles. We can see, that as might be expected from considering the single layer
case in chapter 4, an elevation solitary type wave is found over the additional obstruction
downstream.

In the second and fourth cases, which have supercritical flow upstream, the additional
obstruction must be placed upstream. In figure 6.11 we show a typical solution profile

for the second case, alongside the fully nonlinear phase portrait of the solution. Again, a
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Figure 6.9: (a) Interfacial hydraulic fall profile (D = 0.5, R = 0.6, D < v/R). Waves are
found trapped between the obstacles characterised by Ao = 0.05, A; = 0.01, L; = Lo = 1 and
xq = 15. The Froude number F} = 0.35 is found as part of the solution. (c) In (c) we plot the
upstream linear dispersion relation (solid curved line) alongside the upstream value of the Froude
number F7 (solid horizontal line) for the channel bottom configuration in in (a). The broken curve
is the downstream linear dispersion relation, and the broken horizontal line is the downstream
Froude number for the same bottom configuration in (a).

forced solitary type elevation wave appears over the additional obstruction. This solution
profile shown in figure 6.11(a) is actually a type of generalised hydraulic fall as there are
waves downstream, meaning that, in the phase plane, we jumped onto a cnoidal wave

orbit rather than the equilibrium point.

6.6.2 Gravity-capillary solutions: Case 1

The solutions in this section were obtained using the numerical scheme described in sec-
tion 6.3, with equations (6.3.18)-(6.3.20) replaced by appropriate far field conditions to
obtain the required jump in the interface. The effects of interfacial tension are now in-

cluded in the flow configuration.
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Figure 6.10: (a) and (c) show typical interfacial hydraulic fall profiles where the flow upstream
is subcritical. In (a), D > VR (D = 2, R = 0.6), and in (¢), D < VR (D = 0.5, R = 0.6).
Two obstructions lie on the channel bottom, and are given by As = 0.05 L1 = Lo = 1 and in
(a) A1 = 0.2, 1in (c) A7 = 0.04. In each case, a solitary type wave is found over the additional
obstruction, and the Froude number (a) 1 = 0.35 and (c) F1 = 0.46 is found as part of the
solution. The corresponding phase portraits for the solution profiles in (a) and (c) are shown in
(b) and (d) respectively.

The solutions in the first case, with subcritical flow upstream and a thick upper layer,
roughly correspond to the solutions in the single layer case, discussed in chapter 4. We
therefore require that v; > 1 and v, < 1, so initially we set vy = 1.2, 75 = 0.5,
Fy = 0.45 and o = 0.3 in (6.6.1). We replace the far field equations (6.3.18)-(6.3.20)

with the equations

u(q) =, 6.6.11)
Y'(M) =0, (6.6.12)
Y'(M —1) =0, (6.6.13)

to ensure that the free surface is uniform far downstream. Typical solution profiles for
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Figure 6.11: (a) shows a typical interfacial hydraulic fall profiles where the flow upstream is
supercritical. In (a), D > VR, (D = 2 and R = 0.6). Two obstructions lie on the channel
bottom, and are given by A = 0.05, A; = 0.01 and L; = Ly = 1. A solitary type wave is found
over the additional obstruction, and the Froude number F; = 0.58 is found as part of the solution.
The corresponding phase portraits for the solution profiles in (a) is shown in (b).

7 = 0.3,0.4 and 0.7 are shown in figure 6.12, alongside their fully nonlinear phase por-
traits. As the interfacial tension increases, we see that the steepness of the hydraulic fall
decreases, so that, the change in depth of the interface begins further upstream. There-
fore, as 7 is increased further, a longer domain becomes necessary to obtain accurate
solutions. Specifically, to ensure that the effects of truncating the domain, do not influ-
ence the solution. We sketch the upstream and downstream linear dispersion relations
in figures 6.12(c) and 6.12(d) respectively. The horizontal lines represent the upstream
and downstream Froude numbers in the lower layer in the solutions presented in fig-
ure (6.12(a)). We see that upstream, these horizontal lines do not intersect the linear
dispersion relations, but downstream they do. Downstream of the hydraulic fall, small
amplitude, numerical, spurious waves are sometimes found. Surprisingly, we find the
wavelength of these spurious waves roughly corresponds to the wavelength that would be
predicted by the linear dispersion relation. It is possible that truncating the integral equa-
tions far downstream, instead of calculating them for the infinite domain, has resulted in
a form of artificial forcing downstream, which is causing these waves (see chapter 5 for
further details). Our choice of far field equations (6.6.11)-(6.6.13) was chosen in order to
try and minimise these spurious effects.

In figure 6.13 we show hydraulic fall profiles for smaller values of 7. As the interfacial
tension is reduced, we see that a small elevation develops on the interface, immediately
before the hydraulic fall. As the interfacial tension is reduced further, so that the Froude
number F; approaches the minimum of the linear dispersion relation, the small elevation
is seen to become part of a small train of decaying waves immediately before the fall.

The solution branch in the /' — 7 plane is plotted in figure 6.14(a) for a given channel
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Figure 6.12: (a) Gravity-capillary hydraulic fall profiles for 7 = 0.3, F1 = 0.51 (dotted line),
7= 0.4, F} = 0.52 (solid line), and 7 = 0.7, F1 = 0.54 (dashed line) over a submerged obstacle
with As = 0.01, Ly = 1. (b) Fully nonlinear phase portraits corresponding to the solution
profiles in (a). The corresponding upstream and downstream linear dispersion relations for each
of the solution profiles in (a) are sketched in (c) and (d) respectively.

bottom configuration. As a longer domain is needed for increasing strengths of interfacial
tension, the branch is only followed up to 7 = 1.5. By this point, on the domain given by
x € [—40, 40], the flow has ceased to be uniform upstream, with the slope in the interface
beginning even further upstream. The decrease in the steepness of the hydraulic fall as
the interfacial tension increases, can clearly be seen in the hydraulic fall profiles in figure
6.14.

In the case of the free surface of a single layer of fluid, discussed in chapter 4, a turning
point was found to exist on the F' — 7 branches of hydraulic fall solutions. It is possible
that, if the domain were long enough, a turning point may also exist on the hydraulic fall
solution branch, at a higher value of 7, in the case of the interface between two fluids.
In such an event, two solutions with the same value of the Froude number, but different
strengths of interfacial tension may exist, with one solution having a very gradual slope

in the interface and the other being much steeper. Due to our current computational
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Figure 6.13: Hydraulic fall profiles over a submerged obstruction characterised by A, = 0.1,
Lo = 1 with (a) 7 = 0.15, F; = 0.4997 and (c) 7 = 0.115, F} = 0.4995. The corresponding
fully nonlinear phase portraits are shown in (b) and (d), respectively.

limitations we have not managed to explore this possibility further, but as the results in
this region are comparable to the single layer case in chapter 4, we speculate that such a
turning point should exist.

Next, we seek interfacial solution profiles in this depth regime, over two submerged
obstructions. Looking at the linear dispersion relations shown in figure 6.12(c) and
6.12(d), and considering the results of the single layer case presented in chapter 4, as
the Froude number intersects the linear gravity-capillary dispersion relation downstream,
we expect trapped waves to be obtained if we place the additional obstruction down-
stream. Unless the interfacial tension is very small, so that the upstream Froude number
intersects the upstream linear dispersion relation, we will expect to find a solitary type
wave over any additional obstruction upstream. In figure 6.15 we show a typical trapped
wave solution, alongside the corresponding phase portrait and linear dispersion relation.
Here, the additional obstruction downstream is centred at x = 10, and waves can be seen
appearing between this obstruction and the hydraulic fall. We can see that the wavelength

of these trapped waves is roughly A\ ~ 6.5 — 2.3 = 4.2. In figure 6.15(c) we sketch the
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Figure 6.14: (a) Hydraulic fall solution branch in the F; — 7 plane, over a submerged obstruction
characterised by As = 0.01, Lo = 1. The points marked by the +, O and * correspond to the
hydraulic fall profiles in (b)-(d), which from left to right correspond to 7 = 0.15, 7 = 0.6 and
T =1.5.

linear dispersion relation alongside the Froude number for the solution in 6.15(a). This
shows us that the downstream Froude number intersects the downstream linear dispersion
relation at K ~ 1.54. The linear theory therefore predicts that we should see waves with
a wavelength of A\ ~ 4.08 downstream. This is very close to the wavelength of the waves
that we compute, and thus the linear theory supports our results.

Downstream of the second obstruction, it is clear that the interface is not actually
uniform as we would expect, but a train of spurious waves exists. Again, the wavelength
of these waves is in rough agreement with the linear theory; we see that the wavelength
of these waves is approximately A = 27.20 — 23.28 = 3.99 which is very close to the
A = 4.08 predicted by the linear theory.

As in the single layer case presented in chapter 4, we move the obstruction further
downstream to see what effect this has on the solution profile. When there was just a
single layer of fluid, we saw that only the number of waves trapped between the obstruc-
tions changed. The amplitude and wavelength of the waves remained consistent, and so
the Froude number of the solution was shown to depend primarily on the obstruction un-

der the hydraulic fall. We would expect to find similar phenomena here. However, upon
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Figure 6.15: (a) Interfacial hydraulic fall profile with a train of trapped waves downstream. The
interfacial tension is given by 7 = 0.2, and the two submerged obstructions are characterised by
A; =0.01, L; = 1 (¢« = 1,2). The Froude number F; = 0.49 is found as part of the solution.
The density and depth ratios are given by R = 0.6 and D = 2 respectively. (b) shows the
corresponding solution in the phase plane, and in (c) the linear dispersion relation both upstream
(dashed lines) and downstream (solid lines) is shown.

moving the additional obstruction downstream, we see that Fj increases. Therefore, the
depth of the lower layer of fluid increases downstream, and the wavelength of the waves
changes with the position of the second obstruction. Similarly, we found that in this rigid
lid configuration, increasing the height of the second obstruction decreases the Froude
number £, and thus, decreases the depth of the lower fluid downstream. Again, this is
different to the single layer case in chapter 4, where the Froude number was dependent
almost solely on the obstruction under the hydraulic fall. In figure 6.16 we show an exam-
ple of this phenomenon for the case with 7 = 0.4. The linear dispersion relation in figure
6.16(b) shows that the downstream Froude number intersects the downstream dispersion
relation at a smaller wavenumber when A; is increased, which will result in a greater

wavelength. Similarly, when the second disturbance is moved further downstream, the
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downstream Froude number intersects the linear dispersion relation at a larger wavenum-
ber, resulting in waves with a smaller wavelength. However, we see that the difference in
the wavelength is actually very small. In fact, just the addition of the second obstruction
changes the Froude number. In the absence of an additional obstruction it can be shown
that the flow in this configuration, with 7 = 0.4, has a Froude number of F; = 0.519,
which is larger than the three different Froude numbers we have found for the different
additional obstructions. The depth of the lower fluid downstream is therefore greater
when there is just the one obstruction, over which the hydraulic fall occurs. The addition

of the second obstruction has resulted in a larger fall, with a steeper gradient.
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Figure 6.16: (a) Interfacial hydraulic fall profiles with trapped waves downstream. The interfacial
tension is given by 7 = 0.4, and the two submerged obstructions are characterised by A; = 0.01
(solid and dashed lines), A; = 0.05 (dotted line) and Ay = 0.01, L; = 1 (z = 1,2). The
downstream obstruction is centred at x = 10 in the solid and dotted line solutions, and at x = 15
in the dashed line solution. The upstream Froude numbers F; = 0.496 (solid line), F; = 0.40
(dotted line) and F; = 0.51 (dashed line) are found as part of the solution. The density and depth
ratios are given by R = 0.6 and D = 2 respectively. In (b) the corresponding downstream linear
dispersion relations for the solution profiles in (a) are shown.

At this point in the single layer case in chapter 4, we went on to consider the trapped
wave solution branches in the 7 — F' plane, to determine that the trapped wave solutions
were not in fact unique. We find that computing the solution branches in the 7 — F}
plane in the rigid lid configuration is much harder. However, we have managed to find
evidence that different solutions with the same value of the Froude number, I} and the
same channel bottom configuration, but with different values of the Bond number 7, exist,
as in the single layer case. We see that the solution profiles that we obtain are dependent
on whether we compute the solution directly (i.e. we use an existing hydraulic fall profile
with the same Bond number, and then simply add the additional obstacle to the channel
bottom) or whether we iterate to the solution, using parameter continuation on the Bond
number, from a different hydraulic fall solution profile. In figure 6.17 we sketch part

of the solution branch in the F; — 7 plane. The sketch is incomplete due to the current
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computational limitations in obtaining solutions for larger values of 7. However, it does
serve to show that a similar phenomenon to that observed for trapped waves in the single
fluid flow configuration occurs. In figure 6.18 we show three solution profiles which have
the same Bond number and the same underlying obstructions, but different values of the
Froude number and different interfacial surfaces. It should be noted that there are small
amplitude waves on the free surface downstream of the second obstruction, so these are

actually generalised hydraulic fall solutions.
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Figure 6.17: Trapped wave solutions in the F; — 7 plane. The two submerged obstructions are
characterised by A; = 0.01, L; = 1 (i = 1,2), where the additional obstruction is centred at
x = 15. The density and depth ratios are given by R = 0.6 and D = 2 respectively, and the
Froude number is such that /' < Fjs.
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Figure 6.18: (a) Interfacial hydraulic fall profiles with trapped waves downstream. The interfacial
tension is given by 7 = 0.4, and the two submerged obstructions are characterised by A; = 0.01
and L; = 1 (¢ = 1, 2). The downstream obstruction is centred at x = 10, and the Froude numbers
F1 = 0.488 (solid line), F; = 0.5035 (dotted line) and F; = 0.5059 (dashed line) are found as
part of the solution. The density and depth ratios are given by R = 0.6 and D = 2 respectively.
In (b) the corresponding phase portraits for the solution profiles in (a) are shown.

Next, we add the additional obstacle to the flow configuration upstream. In figure 6.19
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we show that, in this case, a solitary type depression wave appears over the additional
obstruction. This is in agreement with the results presented in the single layer case in
chapter 4. Interestingly, we see that, this time, the change in the Froude number from
the single obstruction hydraulic fall solution to this two obstruction solution, is minimal.
When the additional obstruction is placed upstream, we do not see much change in the
downstream fluid depths. In terms of the linear analysis, the dispersion relation in figure
6.19(c) shows us that the upstream Froude number does not intersect the upstream linear
dispersion relation in this case. However, we would expect that if the Froude number was
to intersect the dispersion relation, a train of waves would appear upstream between the

two obstructions, as we discovered in the single layer case.
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Figure 6.19: (a) Interfacial hydraulic fall profile with a depression wave upstream over a second
obstruction. The interfacial tension is given by 7 = 0.4, and the two submerged obstructions
are characterised by 4; = 0.01 and L; = 1 (¢ = 1,2). The upstream obstruction is centred at
x = —30, and the Froude numbers F7 = 0.519 is found as part of the solution. The density and
depth ratios are given by R = 0.6 and D = 2 respectively. In (b) the phase portrait corresponding
to the solution in (a) is shown, and in (c) the upstream (solid line) and downstream (broken line)
linear dispersion relations are shown alongside the upstream and downstream Froude numbers for
the solution in (a).
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6.6.3 Gravity-capillary solutions: Case 2

The hydraulic fall solution profile in the second case, where the flow upstream is super-
critical and there exists a thick upper layer, is expected to be similar to the pure gravity
interfacial solutions in this region. So, we require that 73 < 1 and v, > 1. Initially,
we set 7, = 0.9, 1o = 1.2, F} = 0.55 and o = 0.5. We replace the far field equations
(6.3.18)-(6.3.20) with the equations

u(1) =1, (6.6.14)
Y'(M) =0, (6.6.15)
Y'(M —1) =0, (6.6.16)

to ensure that the interface is uniform downstream. Then, indeed, we find solutions where
the depth of the lower layer of fluid increases over the obstruction on the bottom of the
channel. A typical solution profile is shown in figure 6.20(a), alongside its corresponding
phase portrait in figure 6.20(b). However, as the interfacial tension is reduced, the Froude
number F) approaches the minimum of the downstream linear dispersion relation, and
a small train of decaying waves immediately after the increase in the lower fluid depth,
is found. We show a typical solution profile and its corresponding fully nonlinear phase
portrait in figures 6.20(c) and 6.20(d) respectively. In figure 6.21 we sketch the upstream
and downstream linear dispersion relations for the solution profile in figure 6.20(a). One
can see that upstream, the Froude number intersects the linear dispersion relation.

The solution branch in the F; — 7 plane is plotted in figure 6.22(a). It shows that
the Froude number increases as the interfacial tension decreases. As in the first case,
increasing the interfacial tension decreases the steepness of the fall (see figures 6.22(b)-
6.22(d)). We therefore require a longer domain in order to continue following the solution
branch for higher values of the interfacial tension. Due to computational limitations,
the solution branch here is only followed up to 7 = 1 for a domain in the region x €
[—40,40]. The other end of the branch is followed down to 7 = 0.19, at which point
the downstream Froude number is very close to the minimum of the linear dispersion
relation.

Small numerical oscillations can be seen on the solution branch, for the larger values
of 7, in figure 6.22(a). These waves are most likely due to the presence of the small
numerical waves that sometimes appear upstream on the interface between the two fluids.
As in the first case discussed in the previous section, where the numerical waves occurred
downstream, these waves may be due to the truncation of the domain far upstream. This
suggests that in order to remove or minimise the waves, our far field conditions (6.6.14)-
(6.6.16) should actually include the conditions Y'(1) = Y’(2) = 0, to force the flow to

be uniform upstream. However, we found that when we used such conditions, they did
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Figure 6.20: Hydraulic fall profiles over a submerged obstruction characterised by As = 0.01,
Ly =1with (@) 7 = 04, F1 = 0.59 and (¢c) 7 = 0.19, F1 = 0.6. The corresponding fully
nonlinear phase portraits are shown in (b) and (d), respectively.
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Figure 6.21: Upstream (broken curved line) and downstream (solid curved line) linear dispersion
relations for the hydraulic fall profile shown in figure 6.20(a). The horizontal lines represent the
values of the Froude number upstream (broken line) and downstream (solid line) in the solution

profile.
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Figure 6.22: (a) Hydraulic fall solution branch in the F; — 7 plane, over a submerged obstruction
characterised by As = 0.01, Lo = 1. The points marked by + O and * correspond to the hydraulic
fall profiles in (b)-(d), which from left to right correspond to 7 = 0.2, 7 = 0.5 and 7 = 1.

not always lead to a converged solution. It is possible that using a longer domain could
also help to remove these waves, both on the solution branch shown in figure 6.22(a) and
in the solution profiles, for example, shown in 6.22(d).

Next, we include an additional obstruction upstream of the hydraulic fall. The lin-
ear dispersion relation in figure 6.21(a) shows us that upstream, the Froude number F}
intersects the upstream linear dispersion relation. Therefore, we would expect a train of
trapped waves to appear between the two obstructions in this case. In figure 6.23 we show
that this is indeed the case. Here, the additional obstacle is centred at x = —30. We find
that the wavelength of these trapped waves is approximately A = 21 — 14.22 = 6.78.
In figure 6.23(c) we sketch the linear dispersion relations alongside the Froude numbers
found for the solution in figure 6.23(a). The upstream dispersion relation shows that the
upstream Froude number intersects the upstream linear dispersion relation at /' ~ 0.97.
The linear theory therefore predicts that upstream waves should have a wavelength of
A =~ 6.48. Again, this is very close to the wavelength that we observe in the solutions,
and so the linear theory helps to support the existence of these upstream trapped waves.

As in the previous case, we have found evidence that there exist multiple trapped wave

solutions, with the same value of the Froude number F) but different values of the Bond



184 Critical flows and trapped wave solutions in the rigid lid approximation

1.25 T T T T T T T
1.2
1.15
1.1
Y 105
1 ]
0.95 ]
09 I I I I I I I
—40-30—20—10 0 10 20 30 40
X
(a)
0.08 14
0.06 + , ig - i
004 r T 11 | —
0.02 | ] ol ]
e 0t 1 F, 09} 1
~0.02 ] 08 | ]
—0.04 + E 0:6
—0.06 | : 05 E ,
—0.08 ‘ ‘ ‘ ‘ ‘ ‘ 04— T
09 095 1 1.056 1.1 1.15 1.2 1.25 0 2 4 6 8 10
n K
(b) (c)

Figure 6.23: (a) Interfacial hydraulic fall solution profile with a train of trapped waves upstream.
The interfacial tension is given by 7 = 0.3 and the two submerged obstructions are characterised
by A; = 0.01, L; = 1 (i = 1, 2). The Froude number F} = 0.599 is found as part of the solution.
The density and depth ratios are & = 0.6 and D = 2, respectively. In (b) the same solution is
drawn in the phase plane, and in (c), the linear dispersion relations both upstream (solid curve)
and downstream (broken curve) are shown alongside the corresponding upstream and downstream
Froude numbers for the solution profile shown in (a).

number 7. In figure 6.24 we sketch part of the solution branch in the F; — 7 plane. Our
current computational limitations mean that the sketch is incomplete and the accuracy of
parts of the solution branches may need refining. Even so, the importance of the sketch
in showing that the trapped wave solutions in this regime are not unique, is evident.

We now examine the effects of changing the size and position of the additional ob-
struction. We consider solutions where we place the additional obstruction used in figure
6.23(a) at z = —15 and x = —12.5 upstream, and a solution with the additional ob-
struction at x = —12.5 but with the obstruction height three times larger than the other
two solutions. The solution profile in each case is plotted in 6.25(a). We see that again,
the Froude number changes in each solution. This time, increasing the height of the ad-

ditional obstruction increases the Froude number £}, and thus, the depth of the lower
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Figure 6.24: Trapped wave solutions in the F; — 7 plane. The two submerged obstructions
are characterised by A; = 0.01, L; = 1 (4 = 1, 2), where the additional obstruction is centred at
x = —15. The density and depth ratios are R = 0.6 and D = 2, and the Froude number F' > Fjs.

fluid downstream. This is the opposite to the phenomena observed in the first case with
supercritical flow upstream and a thick upper layer, where increasing the obstacle height
decreased the Froude number F). The increase in the Froude number here means that,
as shown in figure 6.25(b), the linear theory predicts that the waves will have a greater
wavenumber and thus a smaller wavelength for taller obstacles. We also see that changing
the position of this additional obstruction has a small change on the Froude number £,
resulting in a small change to the wavelength of the waves. In the same flow configuration
in the absence of an additional obstruction, the Froude number is found to be F; = 0.592
which is smaller than the Froude numbers found in the trapped wave solutions. Although
the difference in the Froude number is relatively small, it is large enough that the depth
of the lower fluid downstream is significantly smaller. The second obstruction therefore
appears to play an important role in determining the exact free surface profile obtained
locally over the central submerged obstructions.

As the downstream Froude number does not intersect the downstream gravity-capillary
linear dispersion relation in this regime, for example see figure 6.23(c), we expect that
placing the additional obstruction downstream will result in a solitary type wave appear-
ing over the additional obstruction. As the flow in the lower layer downstream is subcrit-
ical, we would expect that this solitary type wave is a wave of depression. In figure 6.26
we give a typical solution profile, where the additional obstruction is centred at x = 12.5,
which shows that the result is as expected. However, it should be noted that, if the in-
terfacial tension was small enough so that the downstream Froude number intersects the
downstream linear dispersion relation, we would expect to find trapped waves between

the two submerged obstructions.
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Figure 6.25: (a) Interfacial hydraulic fall solution profile with a train of trapped waves upstream.
The interfacial tension is given by 7 = 0.3 and the central obstruction by As = 0.01, L; = 1
(¢ = 1,2). The additional obstruction upstream is centred at = —15 with A; = 0.01 (dashed
line), at x = —12.5 with A; = 0.01 (solid line), and at x = —15 with A; = 0.03 (dotted line).
The Froude numbers F; = 0.599 (solid line), F; = 0.602 (dashed line) and F} = 0.621 (dotted
line) are found as part of the solution. The density and depth ratios are R = 0.6 and D = 2. In
(b) the upstream linear dispersion relation is plotted (solid curve), alongside the three values of
the Froude number corresponding to the solutions in (a).

6.7 Conclusion

We have computed gravity and gravity-capillary critical flow solutions in the rigid-lid
flow configuration, with a single submerged obstruction on the bottom of the channel.
The four different types of pure gravity solutions, in either the thick upper layer or thick
lower layer configurations, were already known (and computed by Dias and Vanden-
Broeck [39]), but the gravity-capillary solutions are new. Where we have not computed
a solution using the fully nonlinear boundary integral equation techniques, we have used
a weakly nonlinear analysis, based on the fKdV equation, to show the possible interface
in the given flow configuration. Solutions in the thick lower layer configuration proved
to be much more difficult to compute than those with the thick upper layer, and so in the
gravity-capillary case we restricted our study to the thick upper layer cases, leaving the
remaining cases for future work.

We have shown that, if the interfacial tension is small enough, the gravity-capillary
critical flow solutions have a small train of decaying waves on the interface immediately
before (case one) or immediately following (case two) the change in fluid depths. Fur-
thermore, we have speculated on the possibility that these critical gravity-capillary flows
may not be unique. Unfortunately, due to our current computational limitations, we have
been unable to investigate this possibility further.

We proceeded to present numerous pure gravity and gravity-capillary critical flow

solutions in this two-layer, rigid-lid, flow configuration, with the addition of a second
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Figure 6.26: (a) Interfacial hydraulic fall solution profile with a solitary depression type wave
downstream. The interfacial tension is given by 7 = 0.3 and the submerged obstructions are
characterised by A; = 0.01, L; = 1 (¢ = 1,2). The Froude numbers F; = 0.59 is found as
part of the solution. Here, R = 0.6 and D = 2. In (b) the same solution is drawn in the phase
plane, and in (c) the upstream linear dispersion relation is plotted (solid curve), alongside the line
F = F; =0.59.

submerged obstruction on the bottom of the channel. The solutions, with and without
surface tension, are new in this case. Using the ideas presented in chapter 4 we looked
for trapped wave solutions by considering the lower fluid linear dispersion relations both
up and downstream.

As shown by Dias and Vanden-Broeck in the pure gravity case, there may be further
types of gravity-capillary hydraulic falls, requiring four independent parameters to char-
acterise them. Dias and Vanden-Broeck showed that in the pure gravity, near critical case
(.e. D = \/ﬁ), a stationary forced extended KdV equation was required for the weakly
nonlinear analysis. This led to the derivation of a new critical value of the Froude num-
ber; Fl,.x. To provide a full picture of gravity-capillary hydraulic falls in the two-layer
rigid lid approximation, the ‘near critical’ case would similarly have to be examined. As

in the pure gravity case, we would expect to find new and different types of hydraulic fall
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in this regime, and so the work presented in this chapter opens up this avenue for future

research.



CHAPTER SEVEN

STABILITY OF HYDRAULIC FALLS

7.1 Introduction

In this chapter we consider the unsteady version of the problem presented in chapter 4.
So, a single layer of ideal fluid in a channel of finite depth is considered, where both the
effects of gravity and surface tension are taken into account. The submerged obstruc-
tion(s) on the bottom of the channel are assumed to move with time. The stability of
forced solitary waves and conjugate flow solutions, which have subcritical flow upstream
of the disturbance and supercritical flow downstream, are investigated. Initially, a steady
solution is computed using the method outlined in chapter 4. This solution is then ad-
vanced forward in time using another modified version of the fully nonlinear boundary
integral equation method discussed in chapter 3, alongside an Adams-Bashforth-Moulton
scheme and a fourth-order Runge-Kutta algorithm. The evolution of the pure gravity
solitary wave over a single submerged obstruction is examined with regard to the already
known results, in order to ensure the accuracy of the time-stepping scheme employed in
the conjugate flow case. Both the pure gravity and gravity-capillary hydraulic fall so-
lutions obtained in chapter 4 are evolved in time, and conjectures then made as to their
stability. Small perturbations to the initial steady solutions are utilised to further test these
conjectures.

The fully nonlinear problem is formulated in section 7.2. Section 7.3 then describes
the numerical scheme, and the results are presented in section 7.4. Finally, in section 7.5

a summary of the chapter is provided, and conclusions are drawn.
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7.2 Formulation

An incompressible, inviscid, two-dimensional fluid in a channel of finite depth is consid-
ered. On the bottom of the channel one or more arbitrarily shaped submerged obstacles
move to the left with speed U. Fixed Cartesian coordinates (z*,y*) are introduced and
the x*-axis is aligned with the flat channel bottom in the absence of the obstructions. The
y*-axis is directed vertically upwards. The origin is the initial position of one of the ob-
structions at time ¢ = 0. The influences of gravitational acceleration g in the negative y*
direction and capillarity are included, where ¢ is the coefficient of surface tension on the
free surface. The flow is assumed to be irrotational so that equations (3.2.1) and (3.2.2)
are satisfied. Thus, there exists a velocity potential ¢*(x*, y*,¢*) and a stream function
*(x*, y*, t*) satisfying (3.2.3), (3.3.4) and

V2p* =0, (7.2.1)

in the fluid domain. The positions of the free surface and channel bottom are y* = H +

n*(x*, t*) and y* = B*(z*,t*), respectively. The time-dependent governing equations

are
Bj. + ¢ By = &y on y*=B"(z",t"), (7.2.2)
Wt imi =0l on Y = H4n'aht),  (123)
O + 5(%2 + Qﬁy%) +9y" — ;a/@ =0 on y'=H+n"(a"t). (1.24)

Physically, when a submerged obstruction moves through a fluid at rest, one requires
that as ** — 400, any disturbances decay to zero and the fluid should be at rest. How-
ever, hydraulic fall solutions require that, locally, the depth and speed of the fluid are
different far upstream and downstream. We define the constant fluid depth upstream by
h and the constant upstream velocity by V' — U. Downstream the constant fluid depth
is H < h and the fluid is at rest. In order to overcome this discontinuity in the flow,
either up or downstream, we consider the work of Donahue and Shen [45]. Using a fKdV
equation and the domain —W < x* < W, where W is some constant, they let their
stationary hydraulic fall solution lie in the region —W /2 < x* < W/2. In order to satisfy
the physical boundary condition that the flow is uniform and at rest as x* — +00, a jump
must occur somewhere up or downstream in the flow. This jump must occur at +11//2.
Donahue and Shen simulated the discontinuity created at the jump and found that this led
to a disturbance propagating in both directions. However, provided W was large enough,
they showed that this disturbance can be ignored when considering just the flow near the
obstruction. We therefore assume that the interval —W/2 < z* < W/2 is infinite, and

let the additional jump and discontinuity start at * = —oco. At 2* = +o0o we can then
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impose the hydraulic fall boundary conditions, and examine the flow near the obstacle.
Physically, one could choose to view the problem as a moving submerged obstacle push-
ing a bulk of fluid upstream (with speed V' — U) in a fluid otherwise at rest. One could
then assume that there exists a sink at +* = —o0o, from which this bulk of fluid could exit
the system.

Next, we non-dimensionalise the equations by taking U as unit speed and H as unit

length. Then, we see that the scaling for the time ¢ is given by
H
tr — —t. 7.2.5
i (71.2.5)

Unstarred variables are thus now understood to be dimensionless. The dimensionless
flow configuration is sketched in figure 7.1. One can see that the dimensionless upstream
flow velocity is given by (V — U)/U = ~ — 1. Following the method applied in chapter

4, conservation of mass then tells us that the upstream fluid depth must be 1/7.

1 el y=1+n(zt)

y 1
1
B — Lx 1y:B(ac,t)

Figure 7.1: Dimensionless unsteady flow configuration over an arbitrary obstacle on the bottom
of the channel.

To proceed, we follow the approaches of Longuet-Higgins and Cokelet [76] and
Cooker et al. [32], who used mixed Eulerian-Lagrangian methods. We therefore write
(z,y) = (z,14n(z,1)) = (X(&,1), Y (§, 1)) and (x, 1+n(x, 1), 1) := (X (£, 1), Y (&, 1), 1) :=
®(s,t) on the free surface, where ¢ is the fluid particle label. The coordinates on the chan-
nel bottom can be denoted (z(t),y(t)) = (x(t), B(x,t)). The kinematic and dynamic
conditions on the free surface are then expressed in Lagrangian form as

DX  d¢
Dt " ar (7.2.6)
DY 96
Dr = 3y (7.2.7)

Do P [ (09\* (06’
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where D/Dt = 0/0t + V¢ - V is the material derivative, « is the curvature of the free
surface defined by (1.2.20), and the dimensionless Froude number /' and Bond number 7
are those defined in (2.1.6) and (2.1.2) respectively. On the channel bottom we have the

dimensionless kinematic boundary condition
Bi+ ¢,B, = ¢, ony = B(z,t). (7.2.9)

Thus, we have three equations (7.2.6)-(7.2.8) which provide a means to advance a solu-
tion forward in time. Firstly however, the partial derivatives ¢, and ¢, on the free surface
must be rewritten in terms of the tangential and normal velocity derivatives. Therefore,

we write
u=ui+vj= @i+ ¢,j = st + un, (7.2.10)

where t and n are the unit vectors in the tangential and normal (out of the fluid) directions
respectively. We parametrise the free surface by writing z = X (£),y = Y (£), so that the

tangential and normal unit vectors become

/ /
t= ( X , Y > , (7.2.11)
\/X’2+Y’2 \/X’2+Y’2
! /
n= ( Y , X ) , (7.2.12)
\/X/Q—l—Y’Q \/X’Q—l—Y/Q

where the ’ denotes the derivative with respect to £&. Thus, substituting (7.2.11) and
(7.2.12) into (7.2.10) we obtain

_ X’ Yl _ —Y/ X/
RS <\/X’2 RN, G Y’ZJ) o (\/X'2 NG G Y@J) '
(7.2.13)

Here, ¢, denotes the derivative of ¢ with respect to the arclength of the free surface.

Therefore, using (7.2.10) we must have

_ (5le B anyl o ésyl + (EnX/
bn = ey d ¢, = Wk (7.2.14)

Multiplying (7.2.14) by X’ and Y’ respectively and adding the results implies that

(7.2.15)

X'¢,+Y'¢, = ¢ (X/2+Y,2>
T y — ¥s 3
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and thus,
- X'¢,+Y'¢,
Similarly, we can find that
3 —y! . X'
Gy = Ot X0, (7.2.17)

/X2 1Y ’

Next, we define the scaled derivatives in the tangential and normal directions by

¢s = s VX2 +Y? and ¢, = ¢, VX?+Y" (7.2.18)

respectively. Then, substituting (7.2.18) into (7.2.14), (7.2.16) and (7.2.17) we obtain

quX/ B ¢nY/ Qbsy/ + ¢nX/
¢x = —X,Q Tyr and Qby = W’ (7219)
¢s = 0. X'+ ¢, Y and ¢, =, X' —¢,Y". (7.2.20)

If we define ¢(£) = ¢(X(€),Y(€)), so that ¢¢ = ¢, X' + ¢,Y”. Then, using (7.2.20) we
see that gEg = @s.
As we seek hydraulic falls, the flow must be uniform in the far field away from the

obstructions. We must therefore also impose the conditions

Vo —0 as T — 00, (7.2.21)
Vo —-~v—1as x— —o. (7.2.22)

This completes the formulation of the problem. We need to find the unknown functions
¢(z,y,t) and n(z,y,1).

7.3 Numerical Scheme

To solve the system of nonlinear equations numerically, we employ a modified form of
the boundary integral scheme used by Cooker et al. [32], Grimshaw, Maleewong and
Asavanant [62] and Grimshaw and Maleewong [61].

At time t = 0 we begin by computing a steady, fully nonlinear hydraulic fall solution,
using the scheme outlined in chapter 4, where the channel bottom is fixed and the fluid
flows past the obstacle from left to right. We then consider the relationship between the
variables in the steady and unsteady cases in order to obtain the unsteady variables X, Y

and ¢, on the free surface at £ = 0, and an initial guess for ¢, on the channel bottom. We
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denote variables in the steady case with a hat ("), so that in dimensional form,

~

ot ="+ Uz, i =a*+Ut, B*(i*)=B'(a"t). (7.3.1)

Then,
Gh = + U, ¢ = hit. — Uil = U(dh — U), (7.3.2)
Bi. =B*,., B =DB.LU. (7.3.3)

In the far field, as x* — —oo, we have that ¢f; — U and ¢%. — 0 on the free surface,
and QAS; = 4" — U and ¢;. = u — 0 on the channel bottom. Therefore, after non-

dimensionalising with respect to U, we obtain the relations
s =¢s—1 and u=1a—1. (7.3.4)
Using (7.2.18), we can therefore obtain ¢4 from ggs;
65 = (6, — WWXZ LY. (7.3.5)

On the channel bottom we obtain ngSx from the steady solution, so we need to find ¢, in
terms of gzgm But this is just equation (7.3.4).
Next, using the dimensionless form of (7.3.3), the kinematic equation (7.2.9) on the

channel bottom can be rewritten so that

B + ¢.B: = ¢y, (7.3.6)
= ¢, = B:(1+ ¢,) = Bsgy = By, (7.3.7)

and using B; = B,,
Gy = Bo(1+ ¢a). (7.3.8)

At time ¢t = 0 we know Y X , $§, @ and B from the steady solution. We can then
obtain the corresponding unsteady variables using equations (7.3.1) and (7.3.5) to find
X and ¢ on the free surface, and (7.3.4) to find an initial guess for ¢, on the channel
bottom. We also have that Y = Y and B = B initially. By numerically integrating ¢,
using the trapezoidal rule, we obtain ¢ on the free surface at ¢ = 0. The variables B,, X',
X"”,Y"and Y" att = 0 are obtained by numerical differentiation.

The remaining unknowns at ¢ = ( are ¢,, on the free surface and ¢, on the channel
bottom. We find them by deriving two integral differential equations. We let the eval-

uation point z = X(s,t) + 1Y (s,t) be on the free surface, and z* = z* + iy* be the
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varying point on the contour C, consisting of the free surface, the channel bottom, and
lines joining them at x = £L in the limit as L — oo. Note that here, the starred variables
are not dimensional variables. Thus, z* = X (s*,t) +iY (s*,t) = X* + Y™ on the free
surface, and 2* = z* 4+ iB(z*) = x* 4+ iB* on the channel bottom. Cauchy’s integral

formula in principal value form is applied to the function

W iy, (7.3.9)

X_E_

around the contour C, where w(z,t) = ¢(x,y,t) + itp(x,y,t) is the complex potential
and v (z, y, t) is the stream function. Using (7.2.19) we know that

((ble - ¢nY’) - Z'(QZ)SYV + ¢nX/)

X = X2 1ye , (7.3.10)

on the free surface. We obtain:
w(z) —% /c %dz*, (7.3.11)
= (s — i%)% :% /C - _u()ﬁfl e (7.3.12)

Next, we multiply (7.3.12) by i(X’ + iY”) to obtain

. 1 fw() (X YY)
wﬁsﬂzﬁn—;/c (X117 dz", (7.3.13)
= _lll + lf2, (7.3.14)
m m
where
(@ —ign) (X — Y (X Y )(X Y
I = /OO (X"2 4+ V" 2)(X* +iV* — (X +iV)) ds”, (7.3.15)
[ — i) (X Y ) (X = X) —i(Yr=Y)
_ /Oo X vy ds*,  (13.16)
and
(@ — o) (X YY)
I _/_OO i - (7.3.17)
[ D =iy ) (X Y ) (27 = X) —i(y" = Y))(1 +1iB}.)
_ /OO NG Yy da*,  (13.18)
[T (95 =B (L4 ¢7.))A(e", y") (L +4By.) |
_/OO (2" — X)2 4 (y* — V)2 dz”, (7.3.19)
(% ((¢5-(L+ B3?) + B) — B Az, y") |,
B /—oo (x* = X)2 4+ (y* = Y)? dr”. (7.3.20)
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Here, A(z*,y*) = (X'(z* = X)+Y'(y* = Y)) +i(Y'(z* — X) — X'(y* — Y)) and we
have used equation (7.3.8) at a given time, and the fact that dz* = (X"* +iY"*)ds* on the
free surface, and dz* = (1 + iBZ.)dx* on the channel bottom. We take the real part of
(7.3.14) in order to find ¢,,, and note that y* = B* on the channel bottom. The integral

equation is therefore given by

:__/ P (X X)+Y'(Y* — ))+¢;§*(Y'(X*—X)—X'(Y*—Y))ds*
(X — X2+ (Y —Y)
(6% (14 B2) + B2)(X'(z* — X) + Y'(B* = Y)) + D(a",y") | .
+7r/oo o — X+ (B -V du
(7.3.21)

where D(z*,y*) = B5.(Y'(2* — X) — X'(B* = Y)).
We can similarly obtain a second integral equation by applying Cauchy’s integral
formula to the complex velocity potential around the contour C, but this time letting

2z = x + 1y be on the channel bottom. We obtain

I=w(z) = ¢ —igy = /wd?:*, (7.3.22)
), 2 —z
= _ijl + i—72, (7.3.23)
™
where,
[T (@ —idn ) (X —x) —i(Y" = B)) |
B /oo (X* —x)2+ (Y* — B)? ds”, (7.3.25)
[ ) B) B (X )
- (X*—xz)?+ (Y* = B)? ’
(7.3.26)
and
. © (pF, — ng;)(l +1iB3.)
Ig—/oo (" —2)+i(B" —B) T (7.3.27)

[ (¢ —iBL(1+ ¢%)) (1 +iBL)((z* — ) —i(B* = B)) , ,
_ / i Rt o —B] dz*  (7.3.28)
[ (@5 (14 B2) + B2)(a* — x) — BL(B* — B) —iE(x",y") .

_ / i ey de*  (7.3.29)

where E(z*,y*) = Bi(z* — z) + (¢%. (1 + B:?) + B:?)(B* — B). Taking the real part
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of the integral equation, we obtain
= (¢ (X" —x) — ¢5.(Y" — B))
=m(1 e) By = — ) . ds*
o, =ss b= | ey

n /°° (¢r.(1+ B:2) + B:?)(z* — z) — BL.(B* — B)dx*
N (@ =)+ (B~ B |

(7.3.30)

or alternatively, taking the imaginary part:
oo [[EL B ),
X*—z)2+ (Y*— B)?

“ (o — ) + (¢5.(1+ B2) + B2)(B* — B)
B /;oo (1:* — ;L’)2 4 (B* _ B)2 dz”. (7.3.31)

We choose to use (7.3.31) as our second integral equation. We should point out that in
deriving the integro-differential equations, as in the steady case, we have used the fact
that the contribution to the integrals from the horizontal lines + = +L, in the limit as
L — oo tends to zero.

The integro-differential equations (7.3.21) and (7.3.31) are solved numerically using
Newton’s method. As in the steady case we discretise the free surface and the channel
bottom using N and M equally spaced mesh points respectively. We then have N + M
unknowns; ¢, (i) fori = 1,..., N and ¢, (i) for, i = 1, ..., M. Here, ¢, (i) represents the

values of ¢,, at grid point 7 on the free surface, and s1m11arly ¢ (1) represents the values
of ¢, at grid point ¢ on the channel bottom. As in the previous chapters, we must then
truncate the integro-differential equations at x* = s* = —A and z* = s* = B, where
A and B are large positive constants. The integral equations are then evaluated at the
N + M — 2 mesh midpoints using the trapezoidal rule with summation over the mesh
points. We can thus ignore the singularities in the first and second integrals in (7.3.21)
and (7.3.31) respectively.

Following Dias and Vanden-Broeck [42] and our work in chapter 4, we minimise the
truncation error by considering the ignored part of the integrals from —oo to —A and B
to co. As we have no flow and no disturbance downstream as x — oo, the integrals from
B to oo are negligible. The integrals from —oo to —A are non-zero however, and so must
be evaluated analytically by approximating the unknowns by their values at the first mesh
point on the free surface and the channel bottom respectively. We also have that ¢). — 0

far upstream when z > A (i.e. as s*, 2* — —00). The integrals far upstream in the first
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integral equation (7.3.21) are then approximated by

/ ton( —X) YY) - Y)
—X)2+( (1) -Y)?
(¢;-(1 )( (2 — X)+Y'(B*(1) = Y))
+/oo (z* — X)2+ (B*(1) = Y)? dx” (7.3.32)

_ |:—%¢:*(1)X/ log((X* . X)2 + (Y*(l) . Y)2> _ ¢:*(1)Y’ arctan (%)} _Oo

¥ E@;mx' log((&" — X)? + (B*(1) ~ Y)?) + 62 (1) arctan (%)} _

(7.5.0:;}3)
We then obtain the correction 77 to the integral equation (7.3.21)
T =— %cbs(l)X'(i) log ((X(1) = X(2))* + (Y(1) = Y(9))?)
— 6y(1)Y"(i) arctan (%)
+ %%(UX/(Z') log ((z(1) — X (4))* + (B(1) = Y (4))?)
+ 6,(1)Y"(i) arctan (%)
~ lim |=(y—1)X'log % Yo vie), 33
i o | 7

where

0 if Y(1)<Y(i)
C=qr if Y(1)=Y(i) (7.3.35)
o if Y(1) > Y (i),

and we have used the fact that far upstream as s*,2* — —oo we have that ¢} — v — 1
on the free surface and ¢} — ~ — 1 on the channel bottom. In the limit as M — —oo the
expression in the square brackets tends to zero. Similarly, we obtain the correction

B (e (=) )
—¢.(1) (arctan (%) + 2) , (7.3.36)
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to the truncated version of the integro-differential equation (7.3.31), where

—r if B(1) < B(i)
D=40 if B(1) = B(i) - (7.3.37)
™ if B(1) > B(:)

The first integral equation (7.3.21), together with its truncation correction (7.3.34),
gives N — 1 equations, evaluated at the mesh midpoints, and the second integral equation
(7.3.31), together with its truncation correction (7.3.36), gives a further M — 1 equations.
The remaining two equations come from defining the flow in the far field, and are given
by

¢.(1)=7—1 on y= B(z), (7.3.38)
Pn(N) =0 on y=1+n(z). (7.3.39)

The equations (7.3.21), (7.3.31), (7.3.38) and (7.3.39) are then solved numerically at a
given time to find the N + M unknowns, ¢,, and ¢, on the free surface and the channel
bottom respectively.

Using equations (7.2.19) we then obtain ¢, and ¢, on the free surface, and can thus
march the solution forward in time using the Adams-Bashforth-Moulton scheme to solve
the equations (7.2.6)-(7.2.8). This is a fourth-order predictor-corrector scheme which

approximates equations of the form

dy
— = f(t,y). 7.3.40
The predicted solution is given by
At
Yip = Yo + 5(551”0 —59f 1 +37f_2—9f_3), (7.3.41)

and the corrected solution, at the next time step, by

At
Yie = Yo + ﬂ(gflp +19fo = 5f-1+ [-2), (7.3.42)

where f1, = f(t+At, y1,). See for example Longuet-Higgins and Cokelet [76]. Here, At
is the given time step. So, this fourth-order method only requires two evaluations of the
function at each time step. We apply this method to each of the equations (7.2.6)-(7.2.8).
However, the scheme requires information from the three previous time steps. Therefore,
we use the single step multi-variable fourth-order Runge-Kutta algorithm to obtain the
first three time steps from the initial steady solution. The solution to (7.2.6)-(7.2.7) at the
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next time step is therefore approximated by

1 1 1 1
il = Ty + =k —k —k —ky,
Tni1 $+61+32+33+64

= +1l—|—1l+1l+1l
Un+1 = Yn 61 32 33 64’
1

1 1 1
¢n+1 = an + aml + gmg + §m3 + 6m4,

where

kl - Atgbx(xm Yn, an’ tn>’
ll - Atgby(mm Yn, Cbna tn)a
my = AtD(ZEn, Yn, Cbn; tn)7

1 1 1 1
k :At T n Sl Yn a1y Pn a s bn —A
2 ¢ <SE + 2/{71 Y + 2l1 ¢ + 2m1 t, + 9 t

1 1 1 1
n _k7 n _l7 n a 7tn _At
T —|—2 1,Y +21¢ —|—2m1 —|—2

2 2 2 2

1 1 1 1
mo = AtD (In + _kh Yn + _lly gbn + _mbtn + _At>

1 1 1 1
Tn + _k2>yn + _l27 (bn + _m27tn + _At

(v gt St i
(

1 1 1 1

1 1 1 1
mg = AtD (l’n + Sk, Yn + 5lo, On + Syt + —At)

2 2 2 2

k4 - Atgbx (:En + k3ayn + l3a ¢n + m37tn + At) )
l4 = Atgby (xn + kSyyn + l37 ¢n + m37tn + At) )
ma = AtD (2, + kg, yn + I3, o + mg, 1, + Al) .

)

Y
Y

Y

Y
Y

(7.3.43)
(7.3.44)

(7.3.45)

(7.3.46)
(7.3.47)
(7.3.48)

(7.3.49)

(7.3.50)

(7.3.51)

(7.3.52)

(7.3.53)

(7.3.54)

(7.3.55)
(7.3.56)
(7.3.57)

Here, D = %(gbi + gbz) —y/F?+ 7/ F? and the subscripts represent the nth and n + 1th

time steps (rather than the normal derivatives). This algorithm therefore requires four

evaluations of the function at each time step, so is not as efficient as Adams-Bashforth-

Moulton scheme.

Following Dold [43] and Longuet-Higgins and Cokelet [76], we apply a smoothing

algorithm to our results in order to attempt to remove the sawtooth instability from our
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solutions. This means that we apply

1
T; = E(_Ii—Q +4x; 1 + 10x; + 401 — xi02), (7.3.58)
1
Ui = 1—6(—yi_2 + 4yi—1 + 10y; + 4Yir1 — Yiga), (7.3.59)
- 1
i = E(—@—g +4¢i—1 + 10¢; + 4diy1 — dita), (7.3.60)

each time we solve the integral equations. Longuet-Higgins and Cokelet describe this
procedure in depth, and derived the five point smoothing formulae given in (7.3.58)-
(7.3.60).

We can now write the algorithm used to solve the problem as follows:

1. Obtain an initial steady solution using the scheme described in chapter 4 and by
Dias and Vanden-Broeck [41].

2. Read (]gg, X , Y, qgw and B from the known steady solution. Hence, we obtain ¢y,
X, Y and B att = 0 for the unsteady problem, and initialise ¢,, = ¢, = 0.

3. Approximate X', X" Y’ Y" ¢, and their midpoints using X, Y and ¢, finite dif-

ferences and a four-point dyadic interpolation scheme.
4. Initialise the midpoints of ¢,, and ¢, to zero.

5. Solve the integro-differential equations (7.3.21) and (7.3.31) using Newton’s method,
to find ¢,, on the free surface and ¢, on the bed.

6. Find ¢, and ¢, on the free surface from (7.2.19), and calculate ~ at ¢ = 0 using
(4.3.6) and (4.3.7).

So now we have ¢/, X, X', X", Y, Y". YY", B, By, ¢n, ¢z, ¢y, ¥, and k att = 0.

7. Advance X, Y and ¢ forward in time using (7.2.6)-(7.2.8) and either the fourth or-
der Runge-Kutta method (for the first three time steps) or Adams-Bashforth Moul-
ton scheme, using the smoothing formulae given in (7.3.58)-(7.3.60) after each time

step that the integral equations are solved.

8. Numerically differentiate X, Y, and ¢ using finite differences to obtain X', X",
Y',Y" and ¢4 at t = t + At. Analytically differentiate B, att =t + At.

9. Calculate the midpoints of X, X', Y, Y’ att = t + At using a four-point dyadic

interpolation scheme. Calculate the midpoints of ¢,, and ¢, at time ¢.

10. Obtain ¢,, and ¢, at t = t + At by solving the integral equations (7.3.21) and
(7.3.31). Apply the smoothing formulae given in (7.3.58)-(7.3.60).
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11. Using ¢,, and ¢, at t = t + At and (7.2.19), calculate ¢, and ¢, att = ¢ + At on
the free surface. Calculate x at t = t + At.

12. Repeat from step 7 for each time step.

To ensure that the results obtained are numerically accurate, the same solutions are
computed on meshes of different densities and sizes, using different time steps. We vary
the number of mesh points on the free surface between N = 401, 801, 1601 and 2401, and
on the channel bottom, between M = 201,401, 801, and 1201 for a given fixed domain.
The mesh spacings e and h are also varied between 0.05 and 0.1, and ~ = 0.1 and 0.2,
respectively. We vary the time step between At = 0.1,0.05,0.025,0.01,0.005 and 0.001

to ensure that the results presented are independent of the size of the time step.

7.4 Results

The results in this section were computed using the method described in section 7.3.
Following Dias and Vanden-Broeck [41] and our work in chapter 4, we use the same

cosine squared profile to describe the submerged obstructions. Therefore, we write

2A, cos? (%@) Ly <x—x9+1t< Ly,
B, 1) = § 245 cos® (220 —Ly<az+t< Ly, (7.4.1)
0 otherwise,

so that the heights and widths of the obstructions are given by 2A; and 2L;, fori = 1,2
respectively. The obstacle with height A, has been chosen so that initially, at time ¢ = 0,
it is centred at the origin and is a distance x4 from the other obstacle. The separation con-
stant x4 is fixed for all time. In the case of solutions over a single submerged obstruction,

we set A; = 0.

7.4.1 Solitary waves

In order to ensure that our numerical scheme is accurate, we first modify our scheme in
section 7.3 so that we can look for unsteady pure gravity forced solitary waves. Therefore,
in the far field as + — 400, we require that there is no flow and no disturbance to the
free surface. The corrections to the integro-differential equations (7.3.21) and (7.3.21)
therefore both decay to zero as + — oo and can be neglected. We can thus remove the
truncation corrections (7.3.34) and (7.3.36) from the numerical scheme. Furthermore,

we must modify the far field conditions (7.3.38) so that there is no flow upstream as
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T — Fo0;
¢:(1) =0 ony = B(x). (7.4.2)

As previously discussed, steady forced solitary wave solutions are not unique. Vanden-
Broeck [122] showed that for a particular range of Froude numbers there exist two so-
lutions with the same value of F'; a small amplitude wave bifurcating from the uniform
stream and a large amplitude wave bifurcating from the pure solitary wave. Grimshaw
and Maleewong [61] used a moving pressure distribution as a forcing to show that, in
the pure gravity case, the forced solitary waves bifurcating from the uniform stream are
stable whilst those bifurcating from a pure solitary wave are unstable. We now attempt to
reach these same conclusions for our submerged obstruction.

We consider pure gravity solutions over a single small obstruction characterised by
Ay = 0.001, Ly = 2. The steady forced solution branches in the /' — y(0) plane are
well known, and were discussed in chapter 3 in the case of gravity-capillary free surface
flows past multiple pressure distributions. In figure 7.2 we show the solution branch for
the pure gravity case for our given submerged obstruction. As in chapter 3, the lower
part of the branch, before the turning point, corresponds to solutions bifurcating from
the uniform stream. The upper part of the branch corresponds to forced solitary waves

bifurcating from a pure solitary wave solution.

1.8
1.7
1.6
1.5
) 1
1.2
1.1

1 F

09— .
1 1.1 1.2 1.3 14 1.5

Figure 7.2: Pure gravity forced wave solution branch. The underlying obstacle is characterised
by Ay = 0.001, Ly = 2.

Firstly, we obtain two initial steady solutions on the lower part of the branch, with
F =1.1and F' = 1.32, and advance them forward in time using the modifications to the
numerical scheme, discussed above. As expected, we find that the forced wave is stable
in each case. It moves upstream with the submerged obstruction without changing form.
We show the solution profiles in figure 7.3. It should be noted that here, we have defined

‘stable’ to mean that despite the small numerical errors due to the discretisation of the
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problem in the numerical scheme used, the solution does not change form. Our findings
are in agreement with Grimshaw and Maleewong’s [61] results and thus help to start to

confirm our solutions and methodology.
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Figure 7.3: Time evolution of pure gravity waves with F' ~ 1.1 and F' ~ 1.3. Initially, a steady
wave bifurcating from the uniform stream is utilised (the lowest profile). The vertical axis is then
moved upwards by 0.005 for each plot shown, such that ¢,, = 5n for plots n = 0, ..., 10.

Next, we start with initial steady solutions on the upper part of the solution branch in
figure 7.2, with F' = 1.20 and ' = 1.29. We find that in each case, the forced solitary
wave is unstable. When F’ is close to one we see that the forced solitary wave starts to
move upstream away from the obstacle. For larger F', the amplitude of the solitary wave
sharpens very quickly, until the solution breaks at an early time. The evolution of the free
surface in each case, is shown in figure 7.4. Although it is hard to see in the figure, the so-
lution profile at ¢ = 50 in figure 7.4(a) has moved a distance of = ~ 0.14 upstream of the
submerged obstruction. Grimshaw and Maleewong [61] observed similar phenomenon
for their fully nonlinear numerical simulations of flows past a pressure distribution.

Now we try a different approach to check the stability and instability observed using
the basic time evolution method. Following the ideas of Chardard et al. [27], we add a

small perturbation to the initial steady solution. Here, we use a perturbation of the form

y=(1—a)y + a, (7.4.3)

where —0.1 < a < 0.15 and vy is the initial solution. We consider a larger obstacle than
before, taking A, = 0.05 and L, = 3.2.

When the steady solution bifurcating from the uniform stream is perturbed, for every
value of o we tried, we found that the forced wave recovered its original state and moved
upstream with the obstruction. In figure 7.5 we show the evolution of a typical free
surface profile, with /' = 1.5 for an @ < 0 and an o > 0. So again, we observe that this

forced wave is stable, although transient waves appear downstream. This is in agreement



7.4 Results 205

N e T e e
O NWERE U000 N

09 I I I I I I 0 I I I I I I I
—80 —60 —40 —20 0 20 40 60 -20-15-10 =5 0 5 10 15 20
X X
(a) F=1.20 (b) F=1.29

Figure 7.4: Time evolution of pure gravity forced solitary waves with F' ~ 1.2 and F' ~ 1.3.
Initially, a steady forced solitary wave profile bifurcating from a pure solitary wave is utilised (the
lowest profile). The vertical axis is then moved upwards by (a) 0.005 for each plot shown, such
that ¢,, = 5n for plots n = 0, ..., 10., and (b) 0.01 for each plot shown, such that ¢, = n for plots
n=20,..,4.
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Figure 7.5: Time evolution of pure gravity forced waves with F' = 1.5. Initially, a steady forced
wave bifurcating from the uniform stream, perturbed by (7.4.3), is utilised. The bold solution
shows the initial wave. The dashed line is the perturbed solution when (a) « = 0.1 and (b)
a = —0.1. The vertical axis is moved upwards by 0.01 for for each plot shown, such that¢,, = 10n
for plotsn =0, ..., 7.

with the findings of Chardard er al. who used a fKdV model to study the effect of their
perturbation on an initial steady solution.

Next we add the perturbation to the initial solution bifurcating from the pure solitary
wave. When o > 0, so that the amplitude of the perturbed solution is less than the ampli-
tude of the initial steady state solution, we find that the amplitude of the forced solitary
wave decreases with time. Figure 7.6(a) shows a typical example of this behaviour for a
solution with ' = 1.3. When o < 0, so that the amplitude of the perturbed solution is

greater than the amplitude of the initial steady state solution, we find that the amplitude
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Figure 7.6: Time evolution of perturbed pure gravity forced solitary waves with F' = 1.3. Ini-
tially, a steady, forced solitary wave bifurcating from a pure solitary wave, perturbed by (7.4.3),
is utilised. The bold solution shows the initial solitary wave. The dashed line is the perturbed
solution when (a) a = 0.15 and (b) @« = —0.1.. The vertical axis is moved upwards by 0.01 for
each plot shown, such that ¢, = 10n for plots n = 0, ..., 5, 5.6.

of the forced solitary wave increases with time. The crest of the wave sharpens until
eventually the wave breaks. A typical example of the free surface evolution with /' = 1.3
is shown in figure 7.6(b). Chardard et al.[27] observed similar phenomenon using their
weakly nonlinear analysis. However, in the case where the perturbed solution is of greater
amplitude than the initial steady state solution, their scheme was unable to predict wave
breaking. Instead, in their solutions the large solitary wave propagated upstream away
from the obstruction, leaving behind a solitary wave bifurcating from the uniform stream.

In this section we have shown that the types of solution produced in our fully nonlin-
ear scheme for flow over a moving submerged obstruction, are in good agreement with
the types of solutions obtained by Grimshaw and Maleewong [61] in the case of flow
past a moving localised pressure distribution, and those in the weakly nonlinear case by
Chardard et al. for flow over a moving submerged obstruction. This suggests that the
numerical scheme presented in section 7.3 is a valid method to study unsteady free sur-
face flows subjected to a moving obstruction on the bottom of the channel. We can now
proceed to use the scheme to investigate the stability of hydraulic fall solutions, in the

next section.

7.4.2 Hydraulic falls

In this section, we examine the stability of the pure gravity hydraulic fall solutions dis-
cussed in chapter 4. We therefore set 7 = 0, A; = 0, and take Ay > 0 so thaty = B(x, t)
describes a channel bottom along which a single submerged obstruction moves to the left.

In figure 7.7 we show the evolution of a hydraulic fall with F' = 1.34, over an ob-

struction characterised by A; = 0.05, Ly = 3.2. We see that the hydraulic fall moves
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Figure 7.7: (a) Evolution in time of a pure gravity hydraulic fall with ' = 1.34. Initially, a steady
free surface is utilised (the lowest profile). The vertical axis is then moved upwards by 0.01 for
each curve drawn, so that t,, = 5n for plots n = 0, ..., 12. (b): A close-up of the downstream free
surface evolution.

upstream with the submerged obstruction, whilst maintaining its shape. This suggests
that the pure gravity hydraulic fall is stable. Downstream of the fall a small decaying
wave train is generated and this initial transient propagates away downstream as time
progresses. As time continues, more waves are shed downstream from the foot of the
fall. These waves propagate slowly upstream of the initial hydraulic fall. The evolution
of the downstream profiles can be seen in figure 7.7(b). It is likely that these waves are
the result of implicitly perturbing the solution at ¢ = 0, due to the fact that the initial so-
lution is actually approximated because of the numerical methods involved in the scheme
outlined in section 7.3.

Next, following the structure used in the unsteady solitary wave analysis in the previ-
ous section, we add a perturbation to the initial steady flow over the fall, and evolve the

solution in time, to see what happens. We take this perturbation to be of the form
z 2
Y =1Ys (1 + Acos(pa)e(3) ) (7.4.4)

where A < 0.1 and ¢ < 10 are positive constants, and y; is the initial steady state
solution. Donahue and Shen [45] had a similar approach when using a weakly nonlinear
analysis, but they perturbed their initial steady solution with white noise. Our perturbation
only effects the part of the initial solution in which the gradient of the free surface is
non-zero, i.e. the actual fall itself and not the uniform flows up and downstream. We
find that as we advance the solution forward in time the perturbation decays and the
solution moves with the underlying obstruction, and settles to the shape of the steady
state hydraulic fall solution. However, a small amplitude wave train, which propagates

very slowly downstream, is generated after the fall. As we evolve the solution further in
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Figure 7.8: (a) Evolution in time of a pure gravity hydraulic fall with F' ~ 1.34. Initially, a steady
free surface is perturbed (the lowest profile). The vertical axis is then moved upwards by 0.01 for
each plot shown, such that ¢,, = 5n for plots n = 0, ..., 9. (b): A close-up of the downstream free
surface.

time, another wave train is shed from the foot of the hydraulic fall. It propagates very
slowly upstream. In figures 7.8 and 7.9 we show the evolution of the hydraulic fall with
F = 1.344, over an obstruction classified by Ay = 0.05, Ly = 3.2. Figure 7.9 shows the
free surface, at times t = 0,5, 17.5 and 35. This clearly demonstrates the propagation of
the waves downstream of the hydraulic fall. Locally over the obstruction, the free surface
attime t = 35 is plotted in figure 7.9(d), and shows that the solution has become that of a
classical hydraulic fall in the absence of a perturbation. Explicitly perturbing the solution
has increased the disturbances shed from the hydraulic fall.

Therefore, all our results suggest that the pure gravity classical hydraulic fall is sta-
ble. This agrees with Chardard et al. [27] and Donahue and Shen [45] where a weakly
nonlinear analysis was used.

Next, we add surface tension to our model and compute results for different values of
the Bond number. Initially, we compute a steady gravity-capillary hydraulic fall solution
using the method outlined in chapter 4. As in chapter 4, small amplitude waves (caused by
truncating the domain downstream at some large positive constant instead of at infinity),
appear downstream of the fall.

We advance forward in time, different gravity-capillary initial steady state solutions,
and see that the hydraulic falls maintain their shape and move upstream with the sub-
merged obstruction. As in the pure gravity case, a wave is shed from the fall and moves
downstream away from the obstruction. The wave advances with the hydraulic fall so that
far downstream, much later, the free surface appears to be uniform, without disturbances
shed from the hydraulic fall. In figure 7.10 we show an advancing free surface profile
with /' = 1.36 and 7 = 0.3. One can see that at first, a depression wave is shed from the

fall, which propagates downstream. As time progresses an elevation wave then starts to
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Figure 7.9: Free surface profiles of an initially perturbed pure gravity hydraulic fall with F' ~
1.34, at different time steps; (a) t = 0, (b) t = 5, (c) t = 17.5, and (d) t = 35.

emerge, which propagates steadily upstream with the fall.

When we increase the Bond number so that 7 = 0.6 with /' = 1.37 we see wavetrains
emerge, which are roughly symmetrical about x = 0. One wavetrain propagates upstream
of the fall, whilst the other propagates downstream. In all the cases that we considered
for 0.1 < 7 < 0.9 (whether a depression wave, an elevation wave or multiple wave trains
appeared after the fall), we saw that locally, over the submerged obstruction, the hydraulic
fall maintained its shape over time. This suggests that the gravity-capillary hydraulic falls
are also stable.

In chapter 4 we saw that the gravity-capillary hydraulic fall solutions were richer than
the pure gravity solutions. Indeed, we showed that when the surface tension is weak, the
upstream dispersion relation possesses a minimum. As the upstream Froude number of
the hydraulic fall solution is increased towards this minimum, a small decaying wavetrain
appears on the free surface, immediately before the hydraulic fall. Now we use such a
free surface elevation as initial data, and watch it evolve with time. We see that the
upstream wave train does not appear to change form as time increases. This can be seen

for example in figure 7.11 where the solution with 7 = 0.2 and F' = 1.2 is advanced in



210 Stability of hydraulic falls

(a) (b)

Figure 7.10: (a) Time evolution of gravity-capillary hydraulic fall profiles with 7 = 0.3. Initially,
a steady free surface profile is utilised (the lowest profile). The vertical axis is then moved upwards
by 0.01 for each plot shown, such that ¢,, = 5n,n =0, ..., 15. (b): A close-up of the downstream
free surface evolution.

4—-
1.35 | ]
1.3 | .
1.25 | .
1.2 | ]
1.15 | ]
1.1} ]
1.05 ===
1L —X,
095 L— v v
—50—40—30—20—10 0 10 20 30 40
X

Figure 7.11: Time evolution of a gravity-capillary hydraulic fall profile with 7 = 0.2, F' = 1.2,
past an obstruction characterised by As = 0.015, Lo = 3.2. Initially, a steady free surface
profile is utilised (the lowest profile). The vertical axis is then moved upwards by 0.01 for each
plot shown, such that ¢, = 5n for plots n = 0, ..., 7. A small decaying wave train can be seen
upstream of the hydraulic fall.

time. The solution profile maintains its shape, suggesting that this solution is also stable.

Next, we add the perturbation in the form given by (7.4.4) to the gravity-capillary
initial steady state solutions. As the solutions advance in time the initial perturbation
spreads out and radiates away very quickly, so that the local solution over the obstruction
settles very quickly to the shape of the classical gravity-capillary hydraulic fall. In figure
7.12 we demonstrate this for two solution profiles, for 7 = 0.1 and 7 = 0.6. As in the pure
gravity case, waves are shed downstream of the hydraulic fall. However, it appears that
the capillarity dampens the waves; they are much less prominent in the gravity-capillary

cases than in the pure gravity case.
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Figure 7.12: Time evolution of gravity-capillary hydraulic fall profiles; (a) 7 = 0.1, (b) 7 = 0.6.
Initially, a steady perturbed free surface profile is utilised (the lowest profile). The vertical axis is
then moved upwards by 0.01 for each plot shown, such that ¢,, = 5n forn =0, ..., 12.

So both methods that we have used to study the problem suggest that including surface
tension does not change the stability of the hydraulic fall. The hydraulic fall is stable.

7.4.3 Trapped waves

Next, we consider the cases where a second obstruction is placed in the flow config-
uration, i.e. A; # 0. We have previously discussed how Dias and Vanden-Broeck [41]
showed that in order to obtain a train of gravity waves trapped between the submerged ob-
struction, this additional obstruction must be placed upstream. Starting with such a steady
state solution as our initial free surface profile, we see that as time evolves, the amplitude
and the wavelength of the trapped waves appears to remain constant. We demonstrate this
in figure 7.13 for a flow configuration with /' = 1.33. Here, it can be seen that the free
surface profile clearly maintains its shape. This suggests that the pure gravity trapped
wave solutions are stable. Indeed, this is supported by the experimental work of Pratt
[95] who actually observed these solutions, meaning that one would indeed expect these
solutions to be stable. This is a physically realistic result.

Downstream of the hydraulic fall in figure 7.13, we see a small amplitude wave train.
As time progresses the length of the flow domain which is effected by the downstream
disturbances grows. The waves downstream can be seen more clearly in the close up in
figure 7.13(b). A second wave train is shed from the foot of the hydraulic fall, as in the
single obstruction results. This second wave train propagates upstream with the hydraulic
fall.

In chapter 4 we showed that in order to obtain gravity-capillary solutions with a train
of trapped waves between the two obstructions, unless the surface tension is very small,

the second obstruction must be placed downstream of the hydraulic fall. Now we use
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Figure 7.13: (a) Time evolution of a pure gravity hydraulic fall profile, F' = 1.33, with a train
of waves trapped between two obstructions. Initially, a steady state free surface profile is utilised
(the lowest profile). The vertical axis is then moved upwards by 0.04 for each plot shown, such
that ¢,, = 20n for plots n = 0, ..., 3. A close-up of the downstream free surface evolution in (a) is
shown in (b).

the steady state solutions obtained in chapter 4 as the initial free surface profiles for our
numerical scheme here, so that we can advance the solutions in time. In figure 7.14 we
show a typical solution profile with /' = 1.38, for a strong surface tension; 7 = 0.7.
We see that although trapped waves continue to appear on the free surface, the amplitude
of the waves decreases with time. In figure 7.14(b) we show the initial solution at time
t = 0 (the solid line), superimposed with the solution at time ¢ = 14 (the dashed line) to
demonstrate this point. This suggests that the trapped waves between the two obstructions
are unstable. However, we do see that the hydraulic fall over the first obstruction and the
elevation wave over the second obstruction appear to maintain their shape, and thus, those
parts of the solution appear to be stable. Here, we have defined ‘unstable’ to mean that
the solution does not maintain its shape when it is subjected to the small numerical errors
caused by our scheme, as time increases. We speculate that, if we were not subjected to
our current computational limitations, and if the solution was to be evolved even further
in time, then the wave train between the submerged obstructions might vanish, resulting
in a solution without waves, which is then stable.

In chapter 4, we showed that if the surface tension is weaker and the height of the
downstream obstruction small enough, any trapped waves that may exist between the
two obstructions, are not clearly visible. The amplitude of the waves is so small, that one
would have to zoom very closely in on the downstream part of the free surface to see them.
In figure 7.15 we follow a typical solution profile, with /' = 1.36 and 7 = 0.3, forward in
time. The solution profile appears to maintain its shape, suggesting it is stable. However,
we would expect that any trapped waves found to occur between the two obstructions,

would still decay with time. This is just much harder to observe because of their very
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Figure 7.14: Time evolution of a gravity-capillary hydraulic fall profile with 7 = 0.7, F' = 1.38,
past two obstructions characterised by As = 0.05, Lo = 3.2 and A; = 0.02, L; = 3.2 with
xq = 20. Initially, a steady free surface profile is utilised (the lowest profile in (a)). In (a) the
vertical axis is then moved upwards by 0.01 for each plot shown, such that t, = 2n for plots
n =0,...,7. In (b) the solution profiles are this time viewed in a frame of reference moving with
the obstructions. The solid line shows part of the solution at ¢ = 0, and the dashed line part of the
solution at ¢t = 14.
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Figure 7.15: Time evolution of a gravity-capillary hydraulic fall profile with 7 = 0.3, F' = 1.36,
past two obstructions characterised by Ay = 0.05, Lo = 3.2 and A; = 0.02, L; = 3.2 with
xq = 20. Initially, a steady free surface profile is utilised. The vertical axis is then moved
upwards by 0.01 for each plot shown, such that ¢,, = 10n for plots n =0, ..., 7.

small amplitude.

In chapter 4, we showed that when the surface tension is so small that the upstream
Froude number intersects the upstream linear dispersion relation, gravity-capillary trapped
waves could also be obtained by placing the second obstruction upstream of the hydraulic
fall. We use this steady state solution as initial data in our numerical scheme, and evolve
it in time. Figure 7.16 contains a typical solution profile with F' = 1.35, for the weak
surface tension case; 7 = 0.1. We obtain similar results here to the results for the down-

stream gravity-capillary trapped waves; the amplitude of the trapped waves decreases
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Figure 7.16: Time evolution of a gravity-capillary hydraulic fall profile with 7 = 0.1, F' = 1.35,
past two obstructions characterised by As = 0.05, Lo = 3.2 and A; = 0.01, L; = 3.2 with
xq = —20. Initially, a steady free surface profile is utilised (the lowest profile in (a)). In (a) the
vertical axis is then moved upwards by 0.05 for each plot shown, such that ¢, = 6n for plots
n = 0,...,6. In (b) the solution profiles are this time viewed in a frame of reference moving with
the obstructions. The solid line shows part of the solution at ¢ = 0, and the dashed line part of the
solution at ¢t = 20.

with time. Again, we demonstrate this in figure 7.16(b) by superimposing the initial so-
lution at time ¢ = 0 (the solid line) with the solution at ¢ = 20 (the dashed line). The
amplitude of the trapped waves at ¢ = 20 is clearly smaller than those at ¢ = 0. So, this
suggests that this type of solution is also unstable.

It therefore appears that gravity-capillary trapped wave solutions may be unstable.
The amplitude of the waves, whether they occur upstream or downstream, appears to

decrease with time.

7.4.4 Hydraulic falls with a solitary type wave

Now we consider the solutions which have a solitary type wave over the additional sub-
merged obstruction, but with no trapped waves between the two obstructions. We use
the results obtained by Belward [11] in the pure gravity case as our initial steady state
profile. Here, the second obstruction is found downstream of the hydraulic fall. In figure
7.17 we follow a typical solution profile with /' = 1.35 forward in time. We see that
both the hydraulic fall and the solitary type wave move downstream with the submerged
obstructions, suggesting that this solution is stable. The solitary wave bifurcates from
the uniform stream, and we have shown in section 7.4.1 that such solutions are stable.
We have shown in section 7.4.2 that the pure gravity hydraulic fall is stable, and so one
could indeed expect that the hybrid solution of the pure gravity hydraulic fall followed
by the solitary wave is stable, as found. Downstream of the hydraulic fall we see that a

small disturbance develops. The width of this disturbance grows slowly as it advances
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Figure 7.17: (a) Time evolution of a pure gravity hydraulic fall profile, ' = 1.35, with a solitary
type wave downstream of the fall. Initially, a steady free surface profile is utilised (the lowest
profile). The vertical axis is then moved upwards by 0.01 for each plot shown, such that ¢,, = 5n
for plotsn = 0, ..., 10. A close-up of the downstream free surface evolution in (a) is shown in (b).

downstream past the solitary type wave.

We have shown in chapter 4, for the gravity-capillary case, if the Bond number is not
so small that the upstream Froude number intersects the upstream linear dispersion rela-
tion, then solitary type waves can be obtained over the additional obstruction when it is
placed upstream of the hydraulic fall. A depression wave is obtained over a positively ori-
entated obstacle, and in figure 7.18 we follow such a solution in time, with 7 = 0.7. We
see that the depression wave and the hydraulic fall maintain their shape, whilst moving
with the underlying obstructions. This suggests that this solution is stable. As in the pure
gravity case, the solitary type wave is bifurcating from the uniform stream. Grimshaw,
Maleewong and Asavanant [62] have shown that such gravity-capillary solutions are sta-
ble. In section 7.4.2 we showed that the gravity-capillary hydraulic fall is stable, and so
again, it is feasible that the hybrid solution of the gravity-capillary solitary type wave and
the hydraulic fall would be stable, as found.

When the surface tension is weak there exists a minimum in the upstream linear dis-
persion relation. In chapter 4, we saw that if the Froude number is close to this minimum,
the solitary type wave in the steady solution has small decaying oscillations in its tail.
We follow such solutions in time, where the additional upstream obstruction is negatively
orientated. Figure 7.19 shows the time evolution of the free surface with 7 = 0.19 and
F = 1.38, and we see that the solitary wave itself appears to maintain its shape as time
evolves, but the decaying oscillations in the tail of the wave, decrease in amplitude over
time. This is clearly demonstrated in the close-up of the free surface upstream at time

t = 0 superimposed with time ¢ = 19, shown in figure 7.19(b).
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Figure 7.18: Time evolution a of gravity-capillary hydraulic fall profile. Initially, a steady free
surface profile over two obstructions is utilised. The second obstruction is placed upstream of the
hydraulic fall. The vertical axis is then moved upwards by 0.01 for each plot shown, such that
t, = 2n for plotsn =0, ..., 16.
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Figure 7.19: Time evolution of a gravity-capillary hydraulic fall profile with 7 = 0.19, F' = 1.38,
past two obstructions characterised by Ao = 0.03, Ly = 3.2 and A; = —0.03, L1 = 3.2 with
xq = —20. Initially, a steady free surface profile is utilised (the lowest profile in (a)). In (a) the
vertical axis is then moved upwards by 0.01 for each plot shown, such that ¢,, = 2n for plots
n = 0,...,12. In (b) the solution profiles are viewed in a frame of reference moving with the
obstructions. The solid line shows part of the solution at £ = 0, and the dashed line part of the
solution at ¢t = 19.
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7.5 Conclusion

We have computed unsteady, forced, critical flow solutions using a fully nonlinear bound-
ary integral equation technique, in the pure gravity and the gravity-capillary cases. Ini-
tially we used a steady state solution and then evolved the solution in time in order to
assess the stability of the critical flows presented in chapter 4. We then added a small
perturbation to the steady state solution which we then evolved in time and assessed what
happened to the perturbation. Using these methods we showed that the pure gravity and
the gravity-capillary hydraulic falls are both stable, and supported our findings in the
pure gravity case by considering the weakly nonlinear findings of Chardard et al. [27]
and Donahue and Shen [45].

In the case of two submerged obstructions moving at the same speed on the channel
bottom, we showed that the pure gravity steady state trapped wave solutions found by
Dias and Vanden-Broeck [41], which have a train of trapped waves upstream between the
two obstructions, are stable. Furthermore, it was shown that the gravity-capillary trapped
wave solutions appear to be unstable. This was the case whether the trapped waves ap-
peared upstream or downstream. The amplitude of the waves decreased with time, and so
in the absence of computational restraints, it would be of interest to follow these trapped
wave solutions even further in time to see if the amplitude of the waves between the sub-
merged obstructions decreases so much that the waves disappear completely. In chapter
4 we showed that there exist multiple families of gravity-capillary downstream trapped
wave solutions. Here we have only considered the stability of one of these types of solu-
tion. It may therefore be of interest to perform a similar study on the stability of the other
types of solution.

When the free surface over the additional obstruction takes the form of a solitary type
wave, we showed that the gravity solution appears to be stable. In the gravity-capillary
case, we saw that the solution also appeared to be stable unless the upstream Froude
number was very close to the minimum of the upstream linear dispersion relation. In such
an event, the decaying oscillations in the tail of the solitary wave appeared to decrease in
amplitude as time evolved.

Due to their unphysical nature, we did not attempt to determine the stability of the
generalised hydraulic fall solutions discussed in chapter 4. We could however speculate
that the pure gravity solutions may be stable, because the associated trapped wave solu-
tions are stable. Indeed, we have discussed how Dias and Vanden-Broeck [41] showed
that the pure gravity trapped wave solution is a hybrid solution between the generalised
hydraulic fall and the subcritical flow, which is uniform upstream with a train of gravity
waves downstream of the solution. Grimshaw and Maleewong [61] showed that the sub-
critical flow is stable, so to obtain stable trapped wave solutions, we may also require that

the generalised hydraulic fall is stable. Following a similar line of reasoning, we could
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then speculate that both the gravity-capillary types of generalised hydraulic falls (with
the waves either occurring up or downstream) are unstable, as the trapped wave solutions
are unstable.

Of course, it should be noted that due to the computational limitations associated
with solving such a fully nonlinear problem, we were only able to follow the free surface
profiles so far in time. If we were able to advance the solutions much further in time, we
might discover that some of the ‘stable’ solutions presented in this chapter do in fact later
develop instabilities. A more rigorous analysis based on solving the eigenvalue problem
would be required to absolutely determine stability.

It may be possible to remove (or reduce) the numerical oscillations visible on the
free surface in some of the solutions by introducing some form of artificial damping; an
absorbing beach. The principle here is that a damping layer is introduced in order to
dissipate the wave energy, and thus damp any outgoing waves, before an open (artificial)
boundary is reached. This method has been used for example by Cao, Beck and Schultz
[24] and Parau, Vanden-Broeck and Cooker [99]. There is no internal friction in an ideal
fluid so one can only absorb energy through the boundary of the fluid domain. Therefore,
damping terms must be added to the free surface dynamic and/or kinematic boundary

conditions. We could thus rewrite the dynamic boundary condition as

D 1
P =2

or = 3 2+ ¢2) — — + — + D, (7.5.1)

where D is some additional term which vanishes outside of the absorbing layer. Cao et
al. [24] describe how this additional term can be just an additional pressure acting on the
free surface, and the energy transmission is then due to the work done by the fluid against

this pressure. Cao et al. [24] took
D=vg¢, (7.5.2)

where v = v(z), so that the beach always absorbs energy. Other authors, such as Cointe,
Geyer, King, Molin and Tramoni [31] have used D = v¢, but have then noted that if
the damping is too strong the rate of energy absorption becomes negative, so some of the
energy may be reflected back into the damping zone. Using (7.5.2) this problem should
be avoided (see Cao et al. [24] for further details). The choice of v(z) is still important
however in determining the performance of the beach. Cao ef al. showed that v may be

chosen to be

. o) —2 () )
V(]):V0<(N_1)€_x( 1)> (7.5.3)

4

where the beach lies in the first quarter of the domain. Here, z((/N — 1)/4) refers to the
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mesh point at which the beach turns off. Outside of this damping zone, one would set
v(j) = 0. Similarly, the beach may lie in the last quarter of the domain, so in the region
x — oo downstream. The constant 1 effects the strength of the beach.

Applying the beach to the flow in the steady case, as discussed in chapter 4, may have
helped to reduce the numerical oscillations on the free surface. Then, ensuring that the
beach moves with time so that it always remained next to the artificial boundary, it could
be applied to the time dependent scheme discussed in this chapter. This would hope-
fully reduce the numerical oscillations on some of the unsteady solutions, and may even
allow one to compute the free surface further in time, within the current computational

limitations.






CHAPTER EIGHT

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The free surface of an inviscid, incompressible fluid flowing along a channel of finite
depth, past one or multiple disturbances in the form of localised pressure distributions or
submerged obstructions on the bottom of the channel, has been studied. The effects of
capillarity have been considered throughout this work, and the gravity-capillary solutions
obtained have been contrasted with the known pure gravity solutions. In some cases (for
example the two-layer flows over multiple obstructions) no known pure gravity solutions
are available and so we have computed the simpler pure gravity solutions in such cases
first, before adding capillarity to the problem.

A fully numerical method was used to solve the problem. It consisted of mapping
the flow into a complex plane, and then applying Cauchy’s integral equation formula
to an analytic complex function around a contour enclosing the complex flow domain.
This resulted in an integro-differential equation, which we solve at equally spaced mesh
points on the free surface. This system of nonlinear equations, together with the dynamic
boundary condition and any specific equations required for the particular flow configura-
tion, were solved iteratively using a modified Newton’s method.

However, when the forcing was in the form of an arbitrarily shaped submerged ob-
struction on the bottom of the channel, the free surface was first parametrised in order
to avoid the need for a complex conformal map to remove any singularities. The chan-
nel bottom was then also discretised (along with the free surface), so that an additional
integro-differential equation, to be solved at each mesh point on the channel bottom, was
obtained. Again, the resulting system of nonlinear equations was solved using a modified
Newton’s method.

Forced, gravity-capillary solutions on a channel subjected to two localised pressure
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distributions are new, and were found for the subcritical case, /' < 1, with strong sur-
1

face tension, 7 > 3, in chapter 3. Multiple families of solution were found to exist for
particular values of the Froude number, with solutions bifurcating from either the uni-
form stream or a pure solitary wave. Both non-symmetrical and symmetrical solutions
about the centre of the fluid domain, x = 0, were obtained. The solutions were compared
with the gravity-capillary waves considered by Maleewong et al. [77], where the forcing
took the form of a single applied pressure distribution, and with the pure gravity waves
considered by Binder et al. [18], where the forcing took the form of two submerged
obstructions.

In chapter 4, gravity-capillary critical flow solutions, where the upstream flow is sub-
critical and downstream flow is supercritical, were found. Unlike in the pure gravity case,
it was shown that multiple families of solution exist for particular values of the Froude
number. The gradient of the hydraulic fall in such solutions was found to change with the
surface tension 7. The case with weak surface tension, where the upstream Froude num-
ber is close to the minimum of the upstream dispersion curve [, . was discussed, and
new hydraulic falls with small decaying oscillations in front of the obstacle were found
in the neighbourhood of F,, . .

A new type of generalised hydraulic fall was discussed in the gravity-capillary case,
where the wavetrain is found downstream of the fall rather than upstream as in the known
pure gravity generalised hydraulic falls. Although the appearance of the downstream
wave train is supported by the linear theory, it was shown that, as in the case of the pure
gravity generalised hydraulic falls, such solutions violate the radiation condition and so
lack physical relevance.

Gravity-capillary solutions with a train of trapped waves between two submerged ob-
structions are new. It was found that in contrast to the pure gravity case (see Dias and
Vanden-Broeck [41]), unless the surface tension is very weak, the second obstruction
should be placed downstream of the hydraulic fall in order to obtain trapped wave so-
lutions. The solutions and the wavelength of the individual waves were confirmed by
the linear theory. Placing the second obstacle downstream of the hydraulic fall in the
pure gravity case, resulted in a solitary wave over the obstacle, with a uniform stream
between the obstructions (Belward [11]). It was shown that the downstream gravity-
capillary trapped wave solutions are not unique. Multiple families of solutions exist for
particular values of the Froude number, where the trapped waves have different ampli-
tudes and wavelengths dependent on the strength of the surface tension. It is not known
if all the possible solutions were obtained in this case. The solution branch in the 7 — F
plane could have many more turning points for example, that were not found here due to
computational limitations.

In chapter 5 the more complex flexural-gravity case was studied for the flow regime in
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which a thin, massless sheet of ice, modelled as an elastic plate, was placed on top of the
fluid. The flexural-rigidity of the ice was used alongside the Froude number to determine
the nature of the solutions. Critical solutions were sought in a similar manner to the
gravity-capillary critical flow solutions, and comparisons drawn between the findings for
the different flow configurations. As in the gravity-capillary case of flow past a single
submerged obstruction, multiple families of solutions were seen to exist for the flexural-
gravity hydraulic falls. Similarly, multiple families of solution were found in the flexural-
gravity case of flow over two submerged obstructions, where trapped waves appeared
between the obstacles. The physical depths at which such solutions may realistically
exist was discussed in relation to existing experimental work. Furthermore, the strain on
the ice was computed for the solutions presented and whether the ice would break was
discussed.

We then extended our numerical scheme to investigate critical flow solutions in a
two-layer fluid under the rigid lid approximation. Extensive work has already considered
the case of pure gravity hydraulic falls over a single obstruction. However, in chapter
6 we extended the work on these known solutions, by utilising a second obstruction to
consider trapped wave solutions in this two-layer flow regime. We were able to show that
the solutions in this case are richer than the counterpart solutions in the single fluid flow
regime. Dependent on the parameters of the flow configuration, the pure gravity trapped
waves here may exist either up or downstream.

The gravity-capillary hydraulic falls presented in chapter 6 are new. As in the single-
layer case, we showed that the gravity-capillary solutions appear to be richer than those
in a pure gravity flow regime. For example, solutions with a small train of waves imme-
diately before the change in fluid depth were presented. Again, trapped wave solutions
were obtainable by using a second submerged obstruction, and we presented evidence
that these solutions are not unique.

Finally, in chapter 7 we considered the stability of the critical flow solutions presented
in chapter 4. The stability of the pure gravity hydraulic fall had previously been consid-
ered by evolving a solution in time, in a weakly nonlinear regime. We extended this work
and considered the time evolution of a pure gravity solution in the fully nonlinear regime,
and showed that our results agreed with those using the weakly nonlinear theory. We
extended this work further by considering the stability of the trapped wave solutions over
two submerged obstructions. We showed that such solutions appear to be stable.

The work on the stability of the gravity-capillary hydraulic falls is new. We concluded
that the gravity-capillary hydraulic fall is stable, but the solutions with trapped waves
between two submerged obstructions in this regime, are unstable.

In the next section, we present possible avenues of future research stemming from

this work. In particular, possible future work on two layer flows without the rigid lid
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approximation, and flow over a step, is examined in more detail.

8.2 Future Work

There are many avenues of possible future work stemming from the work presented in
this thesis. For example, we assessed the stability of the gravity-capillary flows in a
single fluid, but the stability of the flexural-gravity flows presented in chapter 5 has yet
to be researched. Similarly, the stability of the hydraulic fall solutions in the two-layer
rigid lid approximation, in both the pure gravity and the gravity-capillary cases, is also
of interest. The work on the time dependent critical flows could then be extended further
by considering what happens in the case of two submerged obstructions, when the two
obstacles move at different speeds. This may provide a much richer set of flows.

Guayjarernpanishk and Asavanant [66] and Binder, Dias and Vanden-Broeck [17]
obtained pure gravity critical hydraulic falls over negative obstructions, and showed that
an elevation wave appears over the disturbance before the depth of the fluid decreases.
In figure 8.1 we show a typical free surface profile in such circumstances, alongside a
solution profile in which we have included another obstacle further upstream. The free
surface profiles were computed using the numerical scheme described in chapter 4. Three
elevation waves of different amplitudes can be seen on the free surface between the two
submerged obstructions in figure 8.1(c). In chapter 4 we showed that in the case with
positively orientated obstructions, trapped waves were obtained on the free surface, but
there were no additional waves directly over the obstructions. Here however, the first
and the third elevation waves occur directly over the obstructions. It is thought that the
second wave would form part of a train of trapped waves if the distance between the two
submerged obstructions was greater. This case with negatively orientated disturbances
may therefore require further work, to see if the change in polarity of the obstruction
makes any further changes to the character of the flow when multiple obstructions lie on
the bottom of the channel. Furthermore, we have not investigated the case of a gravity-
capillary critical flow over a negatively orientated obstruction. It is thought that the nature
of the flow directly over the obstruction may also change. The effect of such a change
on the solutions with a small elevation or a small train of decaying waves immediately
before the fall is then also of interest.

In the case of two layer flows we have only considered flows in which v = 1, i.e.
where the flows upstream in the upper and lower layers have the same velocity. It would
be of much interest to be able to investigate hydraulic fall solutions where the flows were
not equal upstream. In theory, this could be achieved using the scheme outlined in chapter
6, but of course, the different flow velocities would create a velocity shear between the

two layers, and thus, a greater potential for the Kelvin-Helmholtz instability.
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Figure 8.1: (a) Free surface profile over a negatively orientated obstruction characterised by
Ay = —0.02, Ly = 1. The Froude number F' = 1.11 is found as part of the solution. (c)
Free surface profile over two negatively orientated obstructions characterised by A; = —0.05,
L; = 3.2 for v« = 1,2. The obstructions are centred at x = 0 and x = —15, and the Froude

number F' = 1.13 is found as part of the solution. The phase portraits of the solutions in (a) and
(c) are shown in (b) and (d) respectively.

Dias and Vanden-Broeck [42] showed that the critical depth ratio plays an important
role in the formation of hydraulic falls in the rigid-lid approximation. More hydraulic
fall solutions are found near the critical depth ratio, and Dias and Vanden-Broeck have
shown that there exists a critical value of the Froude number, F), .., determining the
maximum Froude number of hydraulic falls. The effect of this critical depth ratio on
the gravity-capillary hydraulic falls is therefore of interest. Following the work of Dias
and Vanden-Broeck, it is thought that one should be able to determine all the currently
obtained gravity-capillary hydraulic falls in this critical region. However, we would also
expect the solutions here to be richer than the solutions we have presented in chapter 6,
as shown by Dias and Vanden-Broeck in the pure gravity case. Whenever the Froude
number intersects the linear dispersion relation in these new critical regime solutions,

we would expect that by including an additional obstruction in the corresponding flow
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regime, a train of trapped waves may be found on the interface. Investigating gravity-
capillary critical flows within the critical depth regime is therefore a possible avenue of

future research, as we would expect to be able to find many rich solutions.

8.2.1 Two layer flow with an unbounded upper free surface

In chapter 2, we discussed the existing literature concerning the problem of a steady two-
layer irrotational flow with a free upper boundary. The fluids were assumed to be ideal,
with constant densities, lying one on top of the other. We discussed the pure gravity crit-
ical flow solutions that have previously been computed in this flow regime, for example,
by Forbes [53]. Furthermore, we discussed some of the gravity-capillary solitary type
wave results that have been computed, see for example Woolfenden and Parau [130].
However, none of the research so far considers pure gravity critical flows over multi-
ple obstructions, or gravity-capillary critical flow solutions over one or more submerged
obstructions. This is the obvious next steps to the research we have presented here.

As explained in chapter 2, the range of solutions possible in this flow regime should
be much richer than those in the rigid lid approximation presented in chapter 6. Due to
the existence of two free surfaces; the upper fluid boundary and the interface between
the two fluids, there exist two modes which are governed by distinct linear dispersion
relations. Therefore, for each critical flow solution, there are four different dispersion
relations to examine; the upstream and downstream internal mode and the upstream and
downstream external mode. Furthermore, when considering the gravity-capillary solu-
tions, the surface tension can be placed on either the interface, the upper free surface, or
on both free surfaces.

The problem is formulated in the same manner as in the rigid lid approximation, but
instead of having a rigid lid at y* = hy; + ho, we now have the second free surface
y* = hy + he + n5(z*). In figure 8.2 we give a sketch of the flow configuration. One
must then solve the Laplace equations (6.2.1) and (6.2.2), the kinematic boundary condi-
tions (6.2.9)-(6.2.11) on the interface and channel bottom respectively, and the dynamic
boundary condition on the interface (6.2.13), from the rigid lid formulation in chapter 6.
There are then two additional equations relating to the upper free surface; a kinematic
and a dynamic boundary condition. The kinematic boundary condition on the upper free

surface y*(2*) = y5 = h1 + ho + 15 (x*) is given by

qb;y* = QS;J,‘* 77;a;*7 (82.1)

and the dynamic boundary condition is found by applying Bernoulli’s equation to the
upper layer. As the flow is assumed to be steady and irrotational, the steady Bernoulli
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Figure 8.2: Dimensional two layer critical flow configuration with an upper free surface.
equation is satisfied everywhere in the upper fluid,

]' * * * *
§p2(u22 +v3?) + p* + pagys = B, (8.2.2)

where B is the Bernoulli constant obtained by examining the flow far upstream. As
x* — —oo we know that u5 — Vo, v3 — 0, y5 — hq + ho, and p* — P.,. We therefore

obtain )
B = 5paV5 + Poo + pag(hi + ha), (8.2.3)
and so (8.2.2) becomes
1 1
5P boe + O3oe) + Po + pagys = 5,02‘/22 + Py + pag(h1 + ha), (8.2.4)
1 1
= 5( Sae O3 — Vi) + p—(P2 — Py) +g(ys — hy — hy) =0, (8.2.5)
2

where P is the pressure in the upper fluid.

The problem is non-dimensionalised in the same manner as the rigid lid case; i.e. by
taking V; as unit velocity and A; as unit length. It is now to be understood that non-starred
variables are dimensionless. We introduce the upstream interfacial and upper free surface

Bond numbers 7; and 7, which we define by

or
=2 (8.2.6)
! plgh%
S (8.2.7)

 pagh3’
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respectively, so that downstream we obtain

or gr h% 9
T own = = —5 = T 7 9 (82.8)
fa pgH? — prgh HE 1
h2
or or N _ a2, (8.2.9)

TF own = - T2
U pagHE paghl HE

where o; and o are the coefficients of surface tension on the interface and upper free

surface respectively. The problem therefore becomes that of satisfying

¢1mm + leyy - 07 (8210)
¢2acac + ¢2yy = O> (8211)

in the lower and upper fluids respectively,

¢y — P1oB, =0 on y=B(x), (8.2.12)
Poy — P22z =0  on y=1+vy+n(x), (8.2.13)
b1y — P12z =0  on y=1+n(x), (8.2.14)
Poy — P2az =0  on y=1+n(z), (8.2.15)
and the two dynamic boundary conditions
Lo 2 2 2 2 I 1
3 (1, + 1)) — R(¢5, + ¢3,) — (1 = Ry?)) = it (= R)(1 =),
i i
(8.2.16)

1, . a1 D? 1 D
- 4 — + =Yy = Tp—Ky + — + — 8.2.17
2 (¢2x ¢2y g ) F12 Y2 TF F12 K2 F12 F12 ) ( )

on the interfacial and upper free surfaces respectively.
In the far field the flow is required to be uniform, so we impose the conditions (6.2.27)
and (6.2.28) from the rigid lid approximation in chapter 6, alongside the additional con-

straints that

yo(z) > 1+ D as z — —o0, (8.2.18)
H, Hy hy 1

D
+ == "4+ as x— oo. (8.2.19)

xr) — —
y2( ) hy hy he §a! 72

In the rigid lid approximation we obtained a further equation (6.2.30), relating the
Froude number F7 to the downstream flow velocities y; and y7,. This equation remains
valid in this flow regime. However, following Forbes [53] we obtain yet another addi-

tional equation in this case, by this time substituting the downstream far field conditions
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into the dynamic condition (8.2.17) on the upper free surface. We find that

1 4, o 1,1 D 1 D
S (4242 — e W 8.2.20

1 5oy s 1 D
= - —1)=———-"4+1+D, (8.2.21)
5 Ty (%) ) n
20+D -1 -2
= F? = ( —— ”2). (8.2.22)
(7 — 1)

The problem is thus defined by the system of equations (8.2.10)-(8.2.17) along with the
far field conditions (6.2.28), (6.2.27), (8.2.18) and (8.2.19), and the two relations (6.2.30)
and (8.2.22).

The numerical method is then very similar to that of the rigid lid approximation, but
this time we must parametrise both the interface between the two fluids, and the upper
free surface. So, we write + = X;(s1) and y = Y;(s1) on the interface, where s; is the
arclength on the interface, and x = X,(sy) and y = Y5(s2) on the upper free surface,

with arclength sy. Therefore the parametric equations

dX,;\°> [dv;\?
1 —1) =1 8.2.23
( d81 ) + (dSl ) ’ ( )
2 2
X2\, (42 _ (8.2.24)
dSQ dSQ

on the interface and the upper free surface respectively, must be satisfied.
Next, the dynamic boundary conditions (8.2.16) and (8.2.17) on the interface and the
upper free surface respectively, are parametrised using the horizontal and vertical velocity

components on the interface and the upper free surface in the form

0P doy dY; Dy dpy dYs
and

— = 8.2.25
ay d81 d81 8y d52 d82, ( )
Opr  deprdX, Opy  doo dXy

= d = ) 8.2.26
ox ds; dsy an ox dss dss ( )

The parametrised dynamic condition on the interface is given by (6.3.2), with 7 = 77 and
Y (s) = Yi(s1), where & = k1 = Y5, X1s; — X1s,5, Y1s, 1S the parametrised curvature
on the interface. On the upper free surface we obtain

1, 1 D? 1 D 1

— —Y; =Tr— — 4 =+ 8.2.27

2¢232 + F12 2(82) TFF12/€2 + F12 + F12 + 2’}/ ) ( )
where Ko = Yos,s, Xos, — Xos,s, Yos, 1S the parametrised curvature on the upper free
surface.

We are now able to derive the integro-differential equations for this free boundary
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two layer case. The equations for the lower fluid are those obtained in the single layer
and rigid lid cases, given by (6.3.11) and (6.3.12) with X = X; and Y = Y. The third
equation in the rigid lid approximation was obtained by reflecting the upper fluid in the
horizontal rigid boundary. As we now have an upper unknown boundary we are unable
to use this method in this case. We therefore follow the work of Forbes [53] and apply

Cauchy’s integral formula to the equation

d
X2 = —;UQ —, (8.2.28)
zZ

around a contour I's consisting of the interface, the upper free surface, and vertical lines
at = £L in the limit as L — oo. Here, dwy/dz = ¢9, — i¢hy, is the complex velocity.
Letting o denote the value of the arclength at the varying point z(o) = X;(0;) + Y;(0;),

for 7 = 1,2, on the contour I'; and letting s denote the evaluation point we obtain

. _ xz2(z(0)) o ug(o;) —iva(oy) — 7y 8
milxa(2(s)) = /F (o) — 2(5)" /F (Xi(o0) £ iYi(on) — (X(5) £V () =

(8.2.29)

where the subscript i = 1 if the varying point z(o) is on the interface, and i = 2 if it is
on the upper free surface. Placing the evaluation point s = s, on the upper free surface

this becomes

: : (ug(0;) — ivg(0;) — )(X[ (o) + Y] (03))
ritou(er) =~ iowled) = [ S S
:/ (ua(03) — 1w2(03) — 7)(Xi(0i) + ¥/ (03)) Ail03) ,

r,  (Xi(oy) — Xa(s2))? + (Yi(oi) — Ya(s2))? v

dai;

(8.2.30)

where A;(0;) = (X;(0;) — Xa(s2) —i(Yi(0;) — Ya(s2))), and a prime is used to denote the

derivative with respect to the appropriate arclength. Taking the imaginary part we obtain

(Yi(oi) = Ya(s2))Ci(o3) + (Xi(o:) — Xa(s2))Di(04)

oo =) = [ ) v o
(8.2.31)
where
Ci(o;) = —(ua(0y) —7) X (0:) — va(0;) Y] (), (8.2.32)

D;(0;) = —va(0y) X[ (07) + (ua(c;) — 7)Y (7). (8.2.33)
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Then, using (8.2.25) and (8.2.26), we see that

Ci(0:) = —(dy(0) Xi(03) — 1) Xi(0:) — ¢5(00)Y] (0:)Y] (05) = —¢5(04) + 7 Xi(03),
(8.2.34)

Di(0;) = =¢4(03)Y] (0:) X[ (07) + (¢5(04) X[ (03) — 7)Y] (05) = =Y (04).  (8.2.35)

Thus, (8.2.31) becomes

(P (52) X5(s2) —7) =

_/°° (95(01) — ¥ X1(01))(Ya(01) — Ya(s2)) + Y7 (00) (Xu( do,
— (Xi(01) = Xa(s2))? + (Yi(on) — Ya(s2))?
+/°° (#2(02) = ¥X3(02)) (Ya(02) — Ya(s2)) + 7¥3(02) (Xalon) = Xa(s)) ,
—o (Xa(02) — X5(s2))? + (Ya(o2) — Ya(s2))?
(8.2.36)

Similarly, if the evaluation point s = s; is placed on the interface, we obtain the

second integral equation

T(P5(s1) X1 (51) —7) =
Xi(s1))

_/oo (¢5(01) — ¥ Xi(01))(Yi(o1) — Yi(s1)) + 7Y (01)(Xa(o1) — do,
oo (X1(o1) — X1(s1))? + (Yi(o1) — Ya(s1))?
+/°O (¢5(02) — v X5(02))(Ya(o2) — Yi(s1)) + 7Y5(02)(X2(02) —X1(81))d02.
o (Xa(o2) — X1(51))? + (Ya(02) — Yi(s1))?
(8.2.37)

There are thus four integro-differential equations in this two-layer case; (8.2.36) and
(8.2.37) in the upper fluid, and (6.3.11) and (6.3.12) in the lower fluid. Truncation cor-
rections to the integro-differential equations may be made by approximating the integrals
numerically using the trapezoidal rule as in the previous chapters. Then, the integral
equations, together with the parametrised dynamic boundary conditions on the interface
(6.3.2) and the free surface (8.2.27), the two parametric conditions (8.2.24) and (8.2.23),
and the relations (6.2.30) and (8.2.22), complete the reformulation of the problem. We
then seek the unknown functions ¢1s,, @as, ,P2s,, U, X1, Xo, Y7 and Y5.

The upper free surface, the interface, and the channel bottom are discretised using N
mesh points on the upper free surface; so;, fori = 1,... N, M mesh points on the interface;
s14, for ¢ = 1,...M, and ¢ mesh points on the channel bottom; z;, for « = 1,...,q. The
respective constant mesh spacings are given by es, e; and . We now employ notation
similar to that used in the previous chapters, so that, for example, X (i) represents the
value of X at the ¢th grid point on the interface.

There are thus 40V + 3N + ¢ + 2 unknowns; ¢15, (i), ¢as, (2), Y1(7) and X (i) for
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i =1,.., M, ¢a5,(7), Ya(i) and X5(i) fori = 1,...,N, u(i) fori = 1,...,q, F} and D.
Given an initial set of values for Y; and Y5, we use the parametric equations (8.2.23) and
(8.2.24) to obtain X and XJ. Integrating numerically we obtain X; and X, and thus, we
reduce the number of unknowns by N + M. The Froude number F} is also obtainable
from (8.2.22), and ¢4, is obtainable from the dynamic condition on the upper free surface
(8.2.27). This leaves 3M + N + g + 1 unknowns.

Due to the computational limitations we encountered in the rigid lid approximation,
it would be useful to be able to reduce these unknowns further. So following the idea
used, for example, by Belward and Forbes [13], we use the second integral equation on
the upper free surface (8.2.37) to find ¢, on the interface.

We rewrite the equation in the form

/OO ¢5(01)(Yi(o1) — Yi(s1))

Pa(s1) = — oo X (51) (X1 (01) — X1(51))2 + (Yi(o1) — Yi(s1))?)

d0'1 + B(Sl),

(8.2.38)
where B(s) is given by

mX1(s1)B(s1) =y
_/OO —Xi(o1)(Yi(o1) = Yi(s1)) + 7Y (01)(Xi(o1) — Xi(s1))
oo (Xi1(o1) — Xi(s1))? + (Yi(o1) — Yi(s1))?
+/°o (¢5(02) — v X5(02)) (Ya(o2) — Yi(s1)) +7Y5(02)(Xa(02) — Xi(s1))
o (Xa(02) — Xi(s1))? + (Ya(o2) — Yi(s1))?

d0'1

dUg.
(8.2.39)

The integral is evaluated at the midpoints with summation over the mesh points, so in

matrix form, this becomes

Py (515) = My(s15) + Bn(514), (8.2.40)

where the subscript m denotes the value of the variable at the midpoint, and the matrix

M is given by

o (Yi(5) — Yin(0)
YT X O(X0) — Xim (@) + (i0) — Vi (0)P)

As ¢}, (s1;) represents the values of ¢/, at the mesh midpoints on the interface, it forms

er. (8.2.41)

a vector of size 1 x (M — 1). On the other hand, ¢, (s1;) forms a vector of size 1 x M.

We need a square matrix in order to be able to find the values of ¢, on the interface, so



8.2 Future Work 233

we determine ¢, (s1) as a function of ¢,(s1), by writing
G (515) = Ay (s1;). (8.2.42)

Here, A is a matrix obtained by noting that

/ ) / )
%wm:%@ﬂngmﬂm”:LwM_L (8.2.43)

o (S1(01-1)) + Py (S101)
: .

(8.2.44)

¢2(31M)

S0, @b, (s101) = 205 (s101) — Pom(S1000-1)) = SPh(s10) — 55(s1(a1-1)). Therefore, the
matrix A is given by

1 . . . . .
3 if =741 and j,2 <m
1 . s .
3 if j=1#m
Aj=q—-3 ifi=mandj=m-—1 (8.2.45)
3 . s e
5 if j=i=m
\O otherwise.

The matrix form of the integral equation, (8.2.40), then becomes

A¢/2(51j) = M5 (s1;) + B (s11), (8.2.46)
=(A — M)@y(s15) = Bm(s1)- (8.2.47)

The vector B,,(s;) is evaluated at the midpoints and is given by

By ($13) X1 (0) =y
M

_Zbij(—VX{(')(Y( ) = Yim(8) + 1Y) (X1(5) = Xim (D))

€1

(3520) — X @) + (40) — Vom0
. P (G () - X, ()
(M) (i2 t ( Yo(M) — Yo () ))
3 (o) =2 X050) ~ Yinli) + 1)) ~ Xom),
(%200) — Xm0 + (V203) — Yo ()2
G X)) (7 X(V) — Xl

Xi() (2 ‘ ((yg(m—mm(z‘))))’ (8:249)

where we have truncated the integrals in the integro-differential equation and then ap-
proximated the integrals far downstream analytically. The coefficients b;; are determined

by evaluating the integrals using the trapezoidal rule. The values of B,,(sy;) therefore
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form a vector with dimension 1 x (M — 1). In order to multiply the vector of B,,(s1;)
values by the inverse of the matrix (A — M) we require B,,(s1;) to have dimension
1 x M. Therefore, we obtain an additional equation for B,,(s15s) by introducing the
artificial points X,,(M), X7,,(M) and Y;,,,(M). We write

Xim(M) = 2X1 (M) — Xym(M — 1) (8.2.49)
92X, (M) — %(XI(M) + X0 (M = 1)) (8.2.50)
- gXl(M) - %Xl(M ~1) (8.2.51)
Similarly,
X! (M) = SX{(M) - %X{(M — 1), (8.2.52)
Vim(M) = SYA(M) = 2Vi(M ~ 1) (8.2.53)

and so (8.2.48) can be satisfied for s = 1, ..., M. Thus, (8.2.47) becomes
$(7) = (A = M) ™' Bu(j), (8.2.54)

from which, we may obtain ¢, .

We are now left with a system of 2M + N + ¢ + 1 equations for the unknowns
15, (1), Y1(2) fori = 1,..., M, Ya(i) fori = 1,..., N, u(i) fori = 1, ...,q, and D, which
can be solved iteratively as in chapter 6 using a modified version of Newton’s method.
The computational efficiency in obtaining ¢)(s;) from the integro-differential equation
however is questionable. In computing ¢, (sy;) for each i = 1, ..., M, one must invert the
M x M matrix A — M for each unknown. This results in 2M + N + ¢ + 1 inversions of
an M x M matrix for every Newton iteration, and one inversion of the (2M + N + ¢ +
1) X (2M + N + g+ 1) Jacobian matrix at each iteration. Alternatively, finding ¢4 (sy;) as
an unknown in the Newton iterations requires inverting the (3M + N + ¢+ 1) x (3M +
N + g+ 1) Jacobian matrix at each iteration. We tried a similar technique in the rigid lid
approximation, and obtained ¢/, at the interface from the integral equation (6.3.9). This
reduced the number of unknowns in chapter 6 to 2M + ¢ + 1. However, we found that
inverting an M x M matrix 2M + ¢+ 1 times and a (2M +q+1) X (2M 4 g+ 1) Jacobian
matrix was less cost effective than inverting the full (3M +¢+1) x (3M + g+ 1) Jacobian
matrix. So in order to gain anything from obtaining ¢} (s;) before the Newton iterations in
this upper free boundary scheme, one would need to avoid computing the M x M matrix
for every unknown. Instead, it can be computed once for each iteration, for say the first
unknown, and then that same matrix used for the other unknowns on that iteration. The
problem is then reduced to inverting an M x M anda (2M +N+q+1)x (2M+N+q+1)
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matrix for each iteration, rather than inverting the full (3M + ¢ + 1) x (3M + ¢+ 1)
Jacobian matrix at each iteration.

By manipulating the far field conditions, this numerical scheme can be modified and
tested by looking for the known solitary wave solutions and contrasting the results with
the work of, for example, Woolfenden and Parau [130] in the case of a single disturbance
in the channel. In the case of critical flow, if the surface tension coefficients are set equal
to zero, the results obtained by Forbes [53] can be used to provide further tests for the
method. The scheme may then be used to further our knowledge in the area of critical
flow solutions over one or multiple submerged obstructions. Trapped wave solutions can
be looked for in the same manner as in the rigid lid approximation, by considering where
any of the Froude numbers associated with the problem, intersect the associated linear
dispersion relation.

The use of a weakly nonlinear theory, as in the rigid lid approximation (see for exam-
ple Dias and Vanden-Broeck [39] in the case of the pure gravity critical flows and chapter
6 in the case of gravity capillary critical flows), may help to determine the shapes of both
the interface and the upper free surfaces in the four different cases outlined in chapter 6.

This would then aid in the selection of appropriate initial sets of values for Y and Y.

8.2.2 Flow over a step

The steady problem associated with a free surface flow over a rectangular semi-infinite
step on the bottom of the channel has also received much attention. As one might ex-
pect that a change in the height of the underlying topography will result in a change in
the depth of the fluid flowing over the topography, considering the gravity-capillary free
surface flow over a step may be an obvious next step in the study of gravity-capillary
hydraulic falls.

King and Bloor [73] showed that the pure gravity solution obtained in such a flow
configuration depends on whether the flow upstream is supercritical or subcritical. If the
upstream flow is supercritical, the free surface level rises over the step. If on the other
hand the upstream flow is subcritical, the free surface level decreases near the step, and a
wavetrain forms on the downstream surface.

In chapter 2 we briefly discussed the six different families of solutions conjectured
by Trinh and Chapman [118, 119] in region five of the (F, 7)- parameter space shown
in figure 2.3. Here, both the Froude number and the Bond number are small. These
solutions were conjectured in the regime of flow over a step where multiple singularities
(i.e. the corners of the step) occur on the underlying geometry. These singularities lead
to divergence of the asymptotic expansion.

Chapman and Vanden-Broeck [26] considered the exponential asymptotics for gravity

waves over a step. They showed that the important singularity is then the one generated by
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the top corner of the step. The resultant truncation of the diverging asymptotic expansion
results in a small error, and causes the Stokes phenomenon to occur. When the asymptotic
solutions crosses a Stokes line, exponentially small corrections switch on, resulting in
exponentially small gravity waves on the solution.

Following the exponential asymptotic techniques used by Chapman and Vanden-
Broeck [25] (for pure capillary waves) and Chapman and Vanden-Broeck [26] (for pure
gravity waves), Trinh and Chapman considered the exponential asymptotics for gravity-
capillary flows. In this case they showed that the multiple singularities on the step caused
multiple Stokes lines. Furthermore, the point at which the gravity and capillary waves
are of equal magnitude generates a Stokes line. Each singularity can cause the switching
on of exponentially small gravity and capillary waves. These waves can then interact to
cause further exponentially small waves due to the secondary switchings and potentially
the crossing of Stokes lines.

The physical flow domain is shown in figure 8.3(a). Here, s defines the height of the
step on the channel bottom, so that far upstream we have that I = y(oo) — 5. After

introducing the velocity potential ¢, one must satisfy

V26 =0 in the fluid, (8.2.55)
d
d_fb =0 on the boundaries, (8.2.56)
1 dp\®  (do\’
—p _¢ + —¢ +p+ pgy = B on the free surface, (8.2.57)
2 dx dy

where, as usual, p and p define the density and pressure in the fluid respectively and B is
the Bernoulli constant defined by considering the flow in the far field. Non-dimensionalising
using the fluid depth upstream divided by 7 as unit length, and the fluid velocity upstream

as unit velocity, (8.2.57) becomes
Lo 2
§F (Vo) —1)+y=1+7k, (8.2.58)

where 7F2 and 77 are the upstream dimensionless Froude and Bond numbers respec-
tively.

The complex potential w = ¢ + 72 is introduced, as in our previous work, where 9 is
the stream function chosen so that ¢» = 0 on the free surface and ¢V = —m on the channel
bottom. One can then map the physical Cartesian plane to the complex potential plane,
so that the fluid is defined in the strip —7 < ¥ < 0, —00 < ¢ < o0, as shown in figure
8.3(b). The complex velocity
(8.2.59)

— =u—1 =qe

dz
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Figure 8.3

is also introduced, where ¢ is the flow speed and 6 is the angle that the streamlines make

with the z-axis. We also introduce the arclength s so that

dzx dy :
= = oos 9, 2, —sin 0. (8.2.60)

Following Trinh and Chapman [119], the complex potential plane is then mapped to
the upper half (-plane, where ¢ = £ + 7, as shown in figure 8.3(c). Then, differentiating

the dynamic condition (8.2.58) on the free surface with respect to the arclength we obtain

d d
P22 4 ging = 725, (8.2.61)
ds ds

In chapter 4 we showed that x can be written as

k=Y"X"-X"Y" (8.2.62)
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where the prime denotes differentiation with respect to s. Therefore, we see that
K=Y"X"—X"Y" (8.2.63)

The dynamic condition (8.2.61) then becomes

dq dq do o d*0
F?¢*— +sinf =1 ( +¢— |, (8.2.64)
do d¢ do de?
where we have used
d do d d

¢ _we ¢ (8.2.65)

Now we apply Cauchy’s integral formula to the function

f(0) = log @—f) = log(qe™), (8.2.66)

around the contour defined by the £-axis and a semi-circle of radius R, as R — oo. Using
the estimation lemma, the part of the integral along the semi-circular part of the contour
can be shown to contribute nothing to the integral, and so we obtain

rifloga(éo) —i0(6) = [ ) bgqf)__gom@

dé. (8.2.67)

The integral in (8.2.67) is a Cauchy Principal Value. As in the previous chapters, the sin-
gularity here can be ignored by evaluating the integral at mesh midpoints on the contour,

using the trapezoidal rule. Taking the imaginary part of (8.2.67) gives

log q(&) = . / N ge(géodg (8.2.68)

This is now a real integral and so to analyse the problem using the known properties
for complex functions, the real function is complexified by analytically continuing the
function in the upper half ¢-plane. This leads to the generation of Stokes lines at the

singularities in the problem. The integral equation (8.2.68) becomes

170 L[ 6(S)
loggq —i0 = —;/_OO mcﬁ— ;/0 Qdﬁ, (8.2.69)

where ¢ has been complexified and is thus now written as (. In a similar manner, we

write the complexification of # as w so that the dynamic boundary condition on the free
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surface (8.2.64) becomes

— 2.7
qdwdw 1 dw? (8.2.70)

d dq do d*0
F2q2—q+sin9:7'< 17 4 2 )
dw
The exponential asymptotics carried out by Trinh and Chapman [119] then go on to

solve (8.2.69) and (8.2.70) for complex # and ¢ using the asymptotic expansions

[e.e]

0=> "6, (8.2.71)

n=0
oo

=Y € (8.2.72)

n=0

where the Froude number squared and the Bond number are both of order €2, such that
F? = Be and 7 = [$Be%. These expansions are truncated optimally in order to see
the switching on of exponentially small waves across the Stokes lines by smoothing the
Stokes discontinuity. By analysing their results, this method allowed Trinh and Chapman
to predict the existence of six different types of solution in the small Froude number,
small Bond number limit.

It would be of interest to study this problem using fully numerical techniques, to see
if any of the additional predicted solutions by Trinh and Chapman actually exist numer-
ically. Specifically, to see if we could get different hydraulic fall solutions, i.e. with
different waves on the free surface, to those that we presented in chapter 4. We follow
the numerical scheme used by Chapman and Vanden-Broeck [26] for pure gravity waves.
Therefore, we want to solve the integro-differential equation

o + b) 1 [ 08

1
logg=-log| —— | — — —=d¢, 8.2.73
=g (E57) -5 ) o (®273

where —a and —b define the images of the corners of the step in the (-plane, and the

dynamic condition
L o o
5F (¢ —1)4+y=1+7k, (8.2.74)

for the unknowns 6 and ¢. After truncating and discretising the domain, log ¢ can be
obtained at the mesh midpoints by integrating the integral in (8.2.73) using the trapezoidal
rule with summation over the mesh points. Then, after some numerical manipulation and
interpolation, (8.2.74) can be solved using Newton’s method to find the values of § at the
mesh midpoints.

Using the full nonlinear boundary integral technique, one could investigate the differ-

ent flows over a step, and look for further critical flow solutions.
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