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Abstract 

Diet may aid osteoporosis and fracture prevention as it is modifiable, but limited evidence for a 

role of vitamin K1, vitamin C and iron exists, despite suggestions of potential underlying 

mechanisms. Positive associations between these nutrients and bone health have been reported 

in population studies; however, evidence is scarce in men, in British populations, for nutrient 

status and for fracture risk. Combining measures of dietary intake with biomarkers may limit 

errors associated with establishing population intakes, but no such studies exist in bone health. 

Therefore, this thesis aimed to investigate micronutrient intakes and blood measures and i) their 

cross-sectional associations with heel ultrasound and ii) their prospective associations with 

fracture risk in a sub-set of EPIC-Norfolk participants. An additional aim was to explore means of 

limiting the impact of measurement errors on the association between vitamin C and bone 

health. The main results showed significant associations between higher intakes of vitamin K1 

and C and 0.6-5.5% higher heel ultrasound in both sexes, and additionally with total and plant-

based iron intakes in women (0.4-5.8%). Moreover, upper versus lower quintiles of plasma 

vitamin C concentrations in men showed significant associations with reduced fracture risk at 

the hip (HR:0.35, 95%CI:0.16-0.80) and spine (HR:0.26, 95%CI:0.10-0.69). In women, upper 

versus lower quintiles of vitamin K1 intake (HR:0.47, 95%CI:0.24-0.91), total iron intake (HR:0.41, 

95%CI:0.21-0.79), animal-based iron intake (HR:0.44, 95%CI:0.24-0.82) and serum ferritin 

concentrations (HR:0.30, 95%CI:0.14-0.64) were significantly inversely associated with spine 

fracture risk.  In contrast, upper versus lower quintiles of animal iron intake in men was 

significantly associated with higher hip fracture risk (HR:2.29, 95%CI:1.11-4.73). . In further 

investigations, combining vitamin C intake and plasma status strengthened the associations with 

bone health in men, but not in women. In conclusion, this thesis provides novel insights into the 

role of diet in osteoporosis and fracture prevention. 
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1.1 Introduction 

The pathology of osteoporosis and osteoporotic fractures is still not fully understood (1). 

Consequently, specific recommendations regarding the reduction in risk are limited (2). Diet is an 

important lifestyle factor which may modify risk and thus provide a useful strategy in the 

prevention of osteoporosis and fractures. To date, associations between specific dietary 

compounds and bone health are limited (3-6) and further investigations are warranted. 

Micronutrients including iron (from animal- and plant-based food sources) and vitamin C might 

exert beneficial effects on bone through their role in the formation and maintenance of bone 

collagen (7-10); and vitamin K1 through the γ-carboxylation of osteocalcin in bone (11). Thus, higher 

dietary intakes of iron and the vitamins C and K1 could provide a strategy for the prevention of 

osteoporosis and associated fractures. 

 

1.2 Osteoporosis 

1.2.1 Bone biology 

The skeleton is the vital supporting framework of the human body to which other organs and 

muscles connect. It is a rigid supporting structure as bones are almost as strong as cast iron 

despite being approximately ten times more flexible and three times lighter(12). The skeletal 

system is also crucial for the protection of vital organs including the brain through the skull, and 

the heart and lungs through the rib cage. It works in tight conjunction with the muscular system 

to allow for movement and the circulatory system to enable nutrient exchange and the synthesis 

of blood cells including erythrocytes, leukocytes and thrombocytes. Bone is comprised of the 

inorganic phase (65%), which is predominantly associated with its strength and stiffness, the 

organic phase (25%), which contributes to its strength and is pre-dominantly composed of type I 

collagen, and water (10%) (12, 13). 

 

1.2.2 Bone remodeling 

The skeleton is a very metabolically active organ with a continuous turnover of bone material. 

This remodeling process is essential to overall bone health as it allows for repairing damaged 

bone, responding to variation in metabolic demands (such as maintaining blood calcium 

concentrations) and adapting to changes in mechanical load and strain (14, 15). Bone remodeling is 

characterised by the degradation of bone by osteoclasts (bone resorption) and the synthesis of 

new bone tissue by osteoblasts (bone formation) (Figure 1.1). Initially, osteoclasts create cavities 

on the surface of bone. The maturation of osteoclast precursors and activation of mature cells is 

partly governed by the signalling pathway of receptor activator of nuclear factor kappa-B and its 

ligand (RANK/RANKL). RANKL, produced by the bone forming osteoblasts, stimulates 
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osteoclastogenesis by binding to its receptor RANK located on the osteoclast precursors and 

mature cells (16). Osteoblasts are attracted to the newly formed cavities and then start depositing 

bone extracellular matrix which involves synthesising and secreting type I collagen, as well as 

mineralising newly formed bone tissue (17). Osteoblast differentiation may partly be mediated by 

the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), an essential 

transcription factor in adipogenesis (18). The process of bone remodeling at any one site may take 

between three and six months, and most of this time represents the synthesis of bone (19, 20). 

 

1.2.3 Changes in bone mass over a lifetime 

Bone remodeling is a continuous lifelong process of bone repair and growth (Figure 1.2), and is 

highly dependent on physiological demands. In early and pubertal life, bone remodeling is at an 

imbalance in favour of bone formation. This is in response to growth spurts associated with 

childhood and adolescence and is crucial for the elongation of bones. Between the ages of 25-40 

years, there is equilibrium between bone formation and bone resorption. Age-related bone loss 

starts at around 40 years of age, possibly as a result of an increased bone resorption rate, and is 

an ongoing process until death. Decreased bone mass is associated with significantly greater 

fracture risk of varying degree depending on the bone site (21). Consequently, the risk of 

developing osteoporosis and associated fractures increases with age and is greatest in the 

elderly population (22). The average rate of bone loss is approximately 0.7-0.8% per year (23-25), 

except during the female menopausal transition where the low oestrogen levels result in an 

accelerated loss of bone mass of up to 2% per year (26). Menopausal bone loss, as well as the fact 

that women have lower bone mass than men throughout life due to their smaller body size, 

infers great sex differences in bone health, with women having a higher risk of developing 

osteoporosis and fractures than men (27).  
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Figure 1.1: Bone remodeling. 

 

 
From Kapinas & Delany (2011) (28). 
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Figure 1.2: Simulation of the changes in bone mass over a lifetime by sex. 

 

Adapted from Compston (1990) 
(29)

. 

 

0               10               20               30               40               50               60               70 

Age (years) 

B
on

e 
m

as
s 

 Men 

 Women 



 

Page | 23  
 

1.2.4 Osteoporosis and its underlying mechanisms  

Age-related loss of bone mass is not reversible and has previously been associated with lower 

levels of bone mineral density (BMD) (30, 31). These changes make bone thin, porous and brittle 

and may eventually lead to osteoporosis in old age. Osteoporosis is characterised by a reduction 

in the amount of bone tissue and structural changes in the bone matrix, such as a lesser degree 

of mineralisation (Figure 1.3). These changes are not associated with any signs or symptoms, and 

consequently the disease often progresses for prolonged periods of time without the individual 

noticing. The age at which low bone density reaches the diagnostic threshold for osteoporosis 

differs between individuals, but most commonly occurs in later life.  

  

Figure 1.3: A comparison of healthy bone (left) with osteoporotic bone (right). 

 
Adapted from National Osteoporosis Society, UK. 

 

The underlying mechanisms of osteoporosis are complex and not yet fully understood. It is 

thought that a number of risk factors including increasing age may influence the natural balance 

of bone remodeling towards greater bone resorption, possibly via interfering with calcium 

homeostasis, natural hormone concentrations and increasing oxidative stress. In previous 

experimental studies, free radicals were shown to be involved in osteoblastogenesis, apoptosis 

of osteoblasts and osteoclastogenesis (32-34). For example, an in vitro study showed that the 

formation of osteoblasts was inhibited by free radicals, although the underlying mechanisms are 

not yet fully understood (35). Furthermore, findings from an in vivo study in mice found that free 

radicals increase bone resorption through the activation of nuclear factor-κB (36), a transcription 

factor for genes involved in the survival, differentiation, inflammation and growth of cells (37). 

Previous experimental studies have also shown that osteoclasts naturally produce reactive 

oxygen species to facilitate the destruction of calcified tissue during bone resorption, hence 

playing an important role in bone remodeling (38, 39). The exposure to risk factors may shift the 
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natural equilibrium between oxidants and antioxidants leading to excessive bone loss and a 

consequent increased risk for osteoporosis and fractures (40).  

Another suggested underlying mechanism for the development of osteoporosis is the 

modification of the OPG/RANKL pathway through its interaction with factors such hormones, 

cytokines, growth factors and vitamins (16). Naturally, these modulators are involved in 

osteoclastogenesis and bone remodeling via tightly regulating the balance of RANKL/RANK and 

osteoprotegerin (OPG). However, modifications of modulators such as age-related changes in 

oestrogen levels in women may lead to increased expression of RANKL and reduced OPG 

secretion and consequent reduction in BMD (16). 

In the past few decades, a link between systemic inflammation, which is commonly 

present at low levels in older age (41, 42), and a higher rate of bone turnover and decreased bone 

mass was suggested (43). In any inflammatory state, circulating levels of pro-inflammatory 

cytokines including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) are elevated (44), 

and this has previously been associated with increased bone resorption and greater bone loss (45-

48). For example, IL-6 has been shown to increase osteoclast activity by suppressing osteoclast 

apoptosis (49). Moreover, circulating levels of C-reactive protein (CRP), a sensitive marker of 

systemic inflammation, were associated with low BMD (50). In a cross-sectional study of 4693 pre- 

and postmenopausal women, CRP levels were higher in osteoporotic patients compared to 

normal subjects, and the odds ratio for osteoporosis in postmenopausal women was 1.54 (95%CI 

1.10-2.53) for those in the top compared to the bottom quintile of CRP levels (51). Similarly, in a 

prospective study of 2985 older men and women, inflammatory markers measured at baseline 

were significantly higher in participants who subsequently experienced a fracture after the 6-

year follow-up, and the relative risk of a fracture was 2.65 (95%CI 1.44-4.89) in subjects with 

three or more compared to no elevated inflammatory markers (52).  

 Another study suggested underlying mechanism in osteoporosis relates to disruptions in 

Wnt signalling which is the genetic encoding of a number of proteins such as glycoproteins that 

mediate a diverse range of processes including embryogenesis and tumorigenesis (53). Such 

disruptions have previously been linked to a reduction in bone mass (54). Under normal 

circumstances, Wnt proteins activate specific pathways leading to an increase in bone mass 

through stimulation of preosteoblast replication, induction of osteoblastogenesis and inhibition 

of osteoblast apoptosis (55). Recently, a number of Wnt antagonists have been identified, 

including secreted frizzled related proteins (56), dickkopfs (57) and Sclerostin (58), which have been 

shown to inhibit a number of Wnt pathways, thus interfering with bone formation.  
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1.2.5 The assessment of osteoporosis 

In 1994, the World Health Organization (WHO) defined osteoporosis as a BMD (g/cm2) at the hip 

or spine of 2.5 standard deviations or more below the sex-specific young adult mean (59). Dual-

energy x-ray absorptiometry (DXA) is the gold standard for estimating BMD and is thus the most 

commonly used technique. It determines the average amount of bone mineral of the scanned 

area in a two dimensional format by measuring the difference in tissue attenuation between two 

X-ray beams of differing energy levels (60). The exposure to radiation is very low and is 

comparable to one sixth of a chest radiation or one thirteenth of a conventional mammogram (61, 

62). The measurement of BMD in older adults is important for the early detection of osteoporosis, 

which otherwise tends to remain unexposed until a fracture occurs.  

Other comparatively inexpensive, portable and radiation-free techniques for quantifying 

bone mass include the use quantitative ultrasound, although measurements are less precise 

than those using DXA. Ultrasound yields the parameters broadband ultrasound attenuation 

(BUA; in dB/MHz) and velocity of sound (VOS; in m/s). BUA measures bone density as well as its 

structural organisation by passing a short burst of ultrasound through the bone, typically the 

heel (63). For this, it uses the attenuation of several frequencies of acoustic waves above the 

audible frequency range (typically defined as 20 kHz) (62). VOS is a measure of both bone density 

and bone stiffness and takes into account the distance between the two transducers used during 

the measurement and the transit time of the signal between them (63). Higher values for both 

BUA and VOS indicate greater bone quality. Although VOS has not been widely studied, it has 

previously been shown to have a relatively low coefficient of variation (CV) of 0.3-0.5% (64, 65), 

indicating a relatively high precision of measurement. In contrast, the CV of BUA has previously 

been shown to range between 2.0 - 4.0 % (65, 66) which is higher than that of DXA of 0.8 – 2.2 % 

(61), thus making it less precise than the X-ray technique. Despite these differences in 

measurement precision, ultrasound has previously been shown to be capable of distinguishing 

bone densities of subjects with and without osteoporosis (67), and age-related bone loss has also 

been demonstrated (64). Moreover, several studies have indicated that ultrasound measurements 

predict the risk of osteoporotic fractures as well as DXA measurements (68-71). However, 

ultrasound is currently not used as a diagnostic tool for osteoporosis, and thus the detection of 

low bone density using ultrasound must be followed up by further measurements using DXA.  

 Skeletal status may also be assessed using various biochemical markers of bone 

formation and bone resorption found in serum, plasma and urine (72). Bone formation markers 

may indicate different stages of bone formation and individual aspects of osteoblast function 

and include bone-specific alkaline phosphatase (BSALP), osteocalcin (OC) and procollagen type I 

propeptides (PINP, PICP). Markers of bone resorption may be degradation products of collagen 

present in bone, bone proteins or enzymes including pyridinium crosslinks of collagen (PYD, 

DPD) and collagen type I telopeptides (CTx, NTx). However, bone turnover markers may only 
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indicate short-term changes in bone homeostasis and are prone to high levels of within-subject 

variability (73). They are currently not used for the diagnosis of osteoporosis. 

 

1.2.6 The prevalence of osteoporosis 

Osteoporosis is a major cause of illness and death in the elderly population. It is a very prevalent 

condition in older people, particularly older women, and has been estimated to affect 75 million 

people in Europe, Japan and the United States (74). In the UK alone, almost three million people 

are estimated to have osteoporosis (75). Given the ongoing increase in life expectancy (76) and 

subsequent prolonged age-related bone loss, an increasing number of individuals are likely to 

reach the diagnostic threshold for osteoporosis in later life. Moreover, as the world’s population 

aged 60 and 80 years and over is estimated to increase three and seven fold by 2100, 

respectively (76), osteoporosis will become an increasingly bigger health burden worldwide. 

Currently, strategies focusing on the prevention of the condition are scarce, and thus further 

understanding of its risk factors is urgently needed for the development of more strategies 

which could potentially minimise the increasing health burden associated with osteoporosis in 

the near future.  

 

1.2.7 Risk factors for osteoporosis 

Although still not fully understood, it has previously been established that the underlying 

mechanisms of osteoporosis are multifactorial with genetic, biological and environmental risk 

factors all contributing to the development of the condition. The importance of genetics as a risk 

factor for osteoporosis was highlighted by findings of a UK study that reported the heritability of 

lumbar spine and femoral neck BMD of around 78% and 84%, respectively (77). Moreover, recent 

experimental data has identified a number of single nucleotide polymorphisms that have been 

associated with a 20-30% increased risk for osteoporosis (78). Currently well-established biological 

factors associated with an increased risk of developing osteoporosis include increasing age (30, 31), 

being female (27), undergoing the menopausal transition or being post-menopausal (79, 80), having 

a family history of osteoporosis (81, 82) and being Caucasian (83). Similarly, a number of lifestyle 

factors have also been shown to increase the risk of osteoporosis and those include low body 

mass index (BMI) (27, 84, 85), current or former smoking (27, 79), low physical activity (79, 86) and the use 

of some medications including anti-diabetic drugs (87) and steroids (88). Dietary factors associated 

with an increased osteoporosis risk include low dietary intakes of calcium, protein and fruit and 

vegetables (89-91). Other dietary factors, including high alcohol and caffeine intake, may also 

contribute to an increased osteoporosis risk, although current evidence is not convincing (92-95). 

In contrast, there are a number of beneficial factors which may delay the onset of osteoporosis, 

possibly through decreasing bone resorption and enhancing bone formation. Examples of these 
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include hormone replacement therapy (HRT) (27), weight-bearing exercise (96) and the use of 

dietary supplements including  calcium and vitamin D (97-99). 

 

1.3 Osteoporotic fractures 

1.3.1 Definition and underlying mechanisms 

The thin and porous bones associated with the progression of osteoporosis may eventually be 

unable to withstand even minimal impact, often during routine daily activities, causing them to 

fracture. Osteoporotic fractures are the clinical consequences of osteoporosis. They differ from 

non-osteoporotic fractures in that the bone collapses, i.e. it shatters and falls in on itself, causing 

pain, fragility and immobilisation for the individual. They may affect any bone, but the most 

common sites include the hip, the spine and the wrists.  

 The underlying mechanisms of fractures are complex, but are predominantly linked to 

the loss of bone in osteoporosis. For example, it has been shown that a 1 SD reduction in bone 

density from the mean value for an age-specific population was associated with an approximate 

2-3 fold increase in long-term fracture risk (21, 100). Moreover, the recent development of FRAXTM 

by the WHO, a fracture risk assessment tool designed to determine an individual’s 10-year 

probability of a hip or major osteoporotic fracture, showed that fracture risk prediction was 

enhanced when BMD was included in the prediction model (101). It has been suggested that the 

predictive ability of bone density for the risk of fracture is comparable to that of a 1 SD increase 

in diastolic blood pressure for stroke risk for a similar age-specific population (21).  

 

1.3.2 The prevalence of osteoporotic fractures 

Osteoporotic fractures are a global health issue with an annual prevalence of 8.9 million 

fractures worldwide (102). As with osteoporosis, the risk for fracture is much higher in women 

compared to men. For example, it is estimated that in Britain, one in two women and one in five 

men over the age of 50 years will most likely suffer a fracture as a result of osteoporosis (103). At 

specific ages, the risk even outweighs that of other chronic diseases, with women aged 50 years 

having a greater lifetime risk of osteoporotic fractures than the risk of developing breast cancer 

and cardiovascular disease (63). In the UK, there are more than 60,000 hip fractures, 50,000 wrist 

fractures and, most commonly, 120,000 fractures of the spine each year (103-105). Hip fractures 

alone are estimated to account for an annual financial burden of approximately £2.3 billion to 

the British National Health Service (NHS) for the subsequent hospital and social care (75). Hence, 

it is the high prevalence as well as the significant personal and economic burden (106, 107) of those 

osteoporotic fractures that makes osteoporosis such an important health issue. With the 

continuing increase in the number of older people and their higher life expectancy, fractures 
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along with osteoporosis will become an even greater economic health burden over the next few 

decades. 

 Fracture rates differ by geographical region by up to 10 fold (Figure 1.4) (108). For 

example, the age-standardised hip fracture incidence in men and women combined is estimated 

to be 55/100,000 in Ecuador, 119/100,000 in Indonesia, 172/100,000 in Romania and 

250/100,000 in the UK (108). Differences in lifestyle behaviour, including the composition of diet, 

may partly be responsible for the discrepancies between countries.  

 

1.3.3 Risk factors for fractures 

With fractures being the clinical endpoint of osteoporosis, risk factors associated with 

developing the latter are thus equally relevant to fracture risk. Those include genetic factors (78), 

increasing age (109, 110), being female (103, 111), menopausal status  and years since menopause (79), 

being Caucasian (83), low BMI (112), smoking (113) , low physical activity (109), a number of 

medications including steroids (114) and dietary factors including low calcium intakes (115). 

Additional factors which are thought to increase fracture risk include a family history of hip 

fracture (116), a prior fragility fracture (117), a high prevalence of falls (118), as well as high dietary 

alcohol intakes (119). In contrast to these risk-increasing factors, beneficial factors which have 

been associated with a decrease in fracture risk include HRT (79) and the use of dietary 

supplements including calcium (120) and vitamin D (121). 
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Figure 1.4: The global geographic distribution of hip fracture risk for men and women. 

 
Annual hip fracture incidence by country: >250/100,000 (red), 150-250/100,000 (orange), <150/100,000 (green), no data available (grey).  

From Kanis et al. 2012 (108). 
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1.4 Diet, osteoporosis and fractures 

Currently, the underlying pathology of osteoporosis and osteoporotic fractures is not fully 

understood; thus the understanding of potentially preventative mechanisms of the condition is 

limited. As previously discussed, a number of risk factors may contribute to the development of 

osteoporosis and fractures by influencing the underlying pathology of the condition. Lifestyle 

factors including diet are modifiable in contrast to most biological factors (e.g. increasing age, 

being female), and their modifiability may be a useful approach in preventing osteoporosis and 

subsequent fracture development. For example, it might be possible to reduce age-related bone 

loss or modify changes in BMD occurring as a result of other non-modifiable risk factors, such as 

being female, through the use of diet. There are a number of dietary factors thought to be 

important for the prevention of osteoporosis and fractures, including calcium with and without 

vitamin D (120, 122), total protein (123) and plant-based foods such as fruits and vegetables (90, 124). 

However, a number of other micronutrients, including vitamin K1, vitamin C and iron may have 

equally important roles in bone health through specific underlying mechanisms (7-11). The 

potential importance of these modifiable dietary factors in reducing osteoporosis and fracture 

risk will be discussed in this section.   

 

1.4.1 Calcium and vitamin D 

To date, the main focus of research relating to diet, osteoporosis and fracture prevention has 

been on calcium and vitamin D sufficiency. This is because 99% of the body’s calcium is found in 

bone and teeth, providing strength and stability; and vitamin D is involved in maintaining calcium 

homeostasis (125). Dietary calcium intakes of >500 mg/d have previously been associated with 

higher BMD (91, 126) and lower fracture risk (127); whereas intakes of <700 mg/d were associated 

with an increased risk of hip and any-type fracture (115). Furthermore, there is evidence from 

RCTs and observational studies that the use of calcium supplements reduces bone loss, 

particularly at low calcium baseline levels (99), and may decrease fracture risk by 25-70% (120). 

Vitamin D sufficiency has primarily been studied using supplemental intakes rather than intakes 

from foods, as the body’s main source is from sun exposure and much less from foods (128). The 

use of 400 IU/d of vitamin D supplements has been shown to increase BMD of the femoral neck 

(97) and reduce bone loss at the spine (98). Moreover, a meta-analysis of double blind RCTs 

showed that supplementation with 700-800 IU/d, but not 400 IU/d, for 12-60 months was 

associated with a reduction in hip and any non-vertebral fracture risk by 26% and 23%, 

respectively (121). 
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1.4.2 Protein 

Protein has also been a major nutrient of interest for bone due to its potentially negative effects 

at low and high intakes. Low protein intakes may result in decreased intestinal calcium 

absorption and increased levels of parathyroid hormone, leading to the release of calcium from 

bone (89). In contrast, higher protein intakes have previously been associated with increased 

urinary calcium excretion and subsequent negative calcium balance (129). A recent systematic 

review and meta-analysis showed positive effects of protein supplementation on spine BMD 

(weighted mean difference 0.02, 95%CI 0.00-0.04; P=0.04), although these beneficial effects 

were not found in the long-term with hip fracture risk (highest vs. lowest quantile: RR 0.75, 

95%CI 0.47-1.21; P=0.24) (6). There is also inconsistent evidence for the effects of different 

protein sources on bone, with the overall consensus being that animal protein is neither more 

beneficial nor detrimental to bone than is plant protein (89, 130). In addition to the overall effects 

of total protein intake on bone, individual amino acids may have differing underlying 

mechanisms so that some may be more relevant to overall bone health than others. For 

example, the amino acids proline and lysine are required for adequate collagen formation and 

maintenance (9), and thus may potentially be important for bone health. 

 

1.4.3 Fruit and vegetables, potassium and magnesium 

Findings from a systematic review showed that the link between fruit and vegetable 

consumption and markers of bone turnover, BMD and fractures is not yet well defined (5). 

However, a higher dietary intake of fruit and vegetables has previously been associated with 

greater BMD and reduced BMD loss in a number of observational studies (90, 131-133). Moreover, in 

a recent prospective study of 75,591 Swedish men and women aged 45-83 years, participants 

with ≤ one serving of fruit and vegetable per day had significantly higher hip fracture risk 

compared to those subjects consuming five servings per day (HR 1.88, 95%CI 1.53-2.32 and HR 

1.35, 95%CI 1.21-1.58, respectively) (134). Although the potentially underlying mechanisms are 

still unclear, it has been suggested that fruit and vegetables may exert beneficial effects on bone 

health by providing a number of compounds which are involved in bone metabolism (135). For 

example, fruit and vegetables contain micronutrients including potassium, magnesium and 

vitamin C, which are essential to the synthesis of bone tissue (136) and which may lower the acid 

load of the diet, thus reducing the necessity for bone to act as an alkaline buffer (90, 137). 

Moreover, phytochemicals, antioxidants and other bioactive compounds may mediate bone 

metabolism by reducing inflammation and oxidative stress (138-140). 

 Both potassium and magnesium have been extensively studied as individual explanatory 

nutrients for the beneficial associations between fruit and vegetable intakes and bone health (90, 

133, 141-144). Fruits and vegetables have very high potassium contents (145), and potassium is known 
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to be important for maintaining both renal calcium retention and the tightly-controlled acid-

base balance (pH 7.35-7.45) (90, 141). In previous cross-sectional studies, higher potassium intakes 

were significantly associated with greater BMD at multiple bone sites in both men and women 

(90, 133, 142). Moreover, the results from a recent meta-analysis of 14 studies showed that the 

potassium bicarbonate and potassium citrate supplementation was associated with significantly 

lower urinary calcium excretion and the bone resorption marker NTx, although there were no 

effects on BMD and bone formation markers (146). Magnesium is predominantly found in green 

leafy vegetables (145) and may exert beneficial effects on bone via its involvement in regulating 

calcium homeostasis and its incorporation into the bone matrix and subsequent importance for 

the structural integrity of bone (90, 124, 143, 147, 148). A number of observational studies have shown 

positive associations between magnesium intake and BMD at different sites in both men and 

women (90, 133, 143, 144, 149). Moreover, short-term beneficial effects of magnesium supplementation 

in the form of magnesium citrate (1830 mg/d) were reported in an intervention study of 20 

postmenopausal women, where markers of bone turnover were suppressed following 30 days of 

treatment (147). Furthermore, findings from an RCT (n=54) showed that the supplementation with 

magnesium hydroxide (250-750 mg/d) for 6-24 months significantly increased trabecular BMD in 

postmenopausal women with osteoporosis compared to osteoporotic controls (148).  

 

1.4.4 Vitamin K1 

Vitamin K1 is predominantly found in fruit and vegetables, yet its role in bone health has been 

less well studied. Vitamin K1 acts as a cofactor in the γ-carboxylation of osteocalcin, the most 

abundant non-collagenous protein in bone, which is crucial for its ability to bind calcium (11). As 

previously discussed, calcium is an important structural element to bone, providing both 

strength and stability (125). Vitamin K1 has also been associated with the down-regulation of IL-6 

expression in osteoclastogenesis, and subsequent reduced bone-related inflammation (150, 151). 

There is evidence from RCTs in women to show that vitamin K1 supplementation of 100 µg/d for 

12 months resulted in 1.1-1.35% higher BMD at multiple sites compared to baseline (152); and 

1000 µg/d for three years were associated with 1.7% reduced BMD loss compared to the control 

group (153). In previous epidemiological studies, higher dietary vitamin K1 intakes were associated 

with higher BMD (no effect sizes shown) (154, 155); and every 100 µg/d increment in intake was 

associated with an 0.96 dB/MHz increase in BUA and a 1.13 m/s increase in SOS (156). Moreover, 

prospective and longitudinal studies have almost consistently shown that higher dietary vitamin 

K1 intakes are associated with a lower risk for hip fracture (157-159). For example, hip fracture risk 

was up to 65% lower in men and women with median dietary vitamin K1 intakes of 254 µg/d 

compared to 56 µg/d after 7-years of follow-up (158); and every 10 µg/d increment in dietary 

vitamin K1 intake was significantly associated with a 2% reduction in hip fracture risk (157). 

However, to date, epidemiological evidence in men for a potential beneficial role of vitamin K1 in 
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bone health is scarce (155-158). Moreover, data from British cohorts is limited to only one previous 

study of early post-menopausal women (154), despite previously reported differences in dietary 

vitamin K1 intakes between populations (158-160). 

 

1.4.5 Vitamin C 

Vitamin C is exclusively found in fruit and vegetables, but evidence for a potential role in bone 

health is limited. Vitamin C is crucial for bone collagen synthesis and maintenance via acting as a 

cofactor in the hydroxylation of proline and lysine residues within collagen fibres (9), thereby 

contributing to the adequate formation of collagen cross-links and subsequent stronger collagen 

(136). In bone, collagen is predominantly present in around 98% of the organic phase of bone (13). 

Additionally, vitamin C has been suggested to be involved in osteoclastogenesis and 

osteoblastogenesis, potentially via mediating RANKL expression and PPAR-γ expression, 

respectively (161-164). In previous epidemiological studies, higher intakes of dietary vitamin C were 

associated with 3-5% higher BMD in women (133); and women who reported the use of vitamin C 

supplements (70-5000 mg/d) compared to non-users have been shown to have 4% higher BMD 

(165). Moreover, in prospective studies, BMD loss after 2-5 years of follow-up was 54% reduced in 

men and women with higher compared to lower dietary intakes of vitamin C (166); and the use of 

vitamin C supplements (mean: 260 mg/d compared to 0 mg/d) was associated with a 44% 

reduction in hip fracture risk after 15-17 years of follow-up (167). However, my recent review of 

the literature on vitamin C and bone health (168) highlighted that data on plasma or serum 

concentrations is scarce (166, 169) which have the benefit of eliminating human recall error in 

contrast to estimations of dietary intake (170). Evidence of a role of vitamin C in bone health is 

particularly scarce for men despite fractures becoming an increasing health problem in both 

sexes (171). Furthermore, there is only limited data from British populations and of those studies, 

all had studied less than 1,000 participants (124, 133, 166). Finally, studies investigating vitamin C 

intake with fracture risk as the clinical endpoint of osteoporosis have currently only been 

reported from two US studies (167, 169). 

 

1.4.6 Iron 

Iron is also a crucial cofactor in hydroxylation reactions in bone collagen synthesis, where it 

undergoes a cyclic oxidation and reduction (9). Moreover, iron is involved in converting vitamin D 

into its active form (1,25-dihydroxycholecalciferol) via acting as a cofactor to the reaction-

specific enzyme 25-hydroxycholecalciferol 1-hydroxylase (172). Vitamin D is an important 

mediator of the homeostasis of calcium, and the latter is an important structural element to 

bone (125). A number of animal studies have previously reported lower bone mass and 

mechanical strength in iron deficient and severely iron deficient rats (173-176), as well as decreased 
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bone formation and increased bone resorption (174, 177). However, evidence from human studies is 

limited. Although evidence from RCTs has shown that the rate of bone resorption was 

significantly higher in anaemic participants compared to healthy controls (178), published 

intervention studies were small and were only conducted in women (178-180). In observational 

studies, dietary iron intake was significantly associated with greater BMD at multiple sites in 

women, for example 4-14% higher BMD for the highest vs. lowest intake (181) or β 0.214-0.426 

g/cm3 (P≤0.05) (142). However, these studies had small sample sizes (n=242-244) and 

epidemiological investigations of iron intake in men are completely lacking. There is also some 

evidence for a beneficial role of higher iron status in bone health (182-184). For example, higher 

serum ferritin levels in men were significantly associated with higher BMD at multiple sites (β 

0.008-0.018 g/cm2, P≤0.049) (182). To date, the potential role for iron in the prevention of 

fractures has only been investigated in one prospective study, which reported a five-fold 

increase in fracture risk with higher iron status (OR 5.27, 95%CI 1.12-24.94) (185), possibly due to 

the short follow-up period of three years and the known detrimental effects of increasing age on 

bone health (30, 31). Finally, there is data from only one British study of 32 women, which showed 

that higher dietary iron intakes were significantly associated with reduced spinal BMD loss (β 

0.141 g/cm/year, P<0.0001) (186); and thus data from British populations is needed.  

 To date, the role of iron in bone health has only been studied independent of the food 

source (142, 181, 186). However, the dietary intake of iron provides no information on its 

bioavailability which differs between its two different forms: i) haem iron, a derivative of 

haemoglobin and myoglobin found in animal-based products, and ii) non-haem iron, which is 

present as iron salts in both animal- and plant-based foods (187). The two forms differ in their 

level of intestinal absorption, with haem iron being more efficiently absorbed than non-haem 

iron (15-40% vs. 1-15%) (188-192). In our diet, haem iron is the greater contributor towards the 

body’s iron pool resulting from its higher level of absorption, despite non-haem iron making out 

a greater percentage of total dietary iron intake (193). It is unclear whether or not iron from plant- 

and animal-based sources may vary in their underlying mechanisms in collagen synthesis (9) and 

vitamin D synthesis (172), and thus the consequences of this for bone health are not known. To 

the best of my knowledge, no studies have explored potential differences in iron sources in their 

role in bone health, therefore such investigations are warranted and are completely novel. 

 

1.5 Deriving the dietary intake of individuals and populations 

The overarching aim of nutritional research is to record daily actual intake, also referred to as 

true intake, i.e. the exact types and quantities of foods and drinks consumed at any one time at 

the individual or population level (194). There are a range of methods used in nutritional 

epidemiology to quantitatively assess food and nutrient intakes on the individual and population 
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level (195). They mainly differ in the type of intake they assess (habitual or recent intake), the 

accuracy of intake assessment and their practicability. The most commonly used methods are 

the 7-day diet diary (7dDD), food frequency questionnaire (FFQ), 24-hour recall (24hR), 16-day 

weighed record as well as biological markers of dietary intake. However, as studies are 

undertaken in humans and are subject to practical and ethical constraints, it is generally 

accepted that no measure of dietary assessment can completely capture true intake (194). The 

following section will give a more detailed account of the different types of dietary assessment 

methods and their strengths and limitations.  

 Dietary records such as the weighed record and the 7dDD require individuals to record 

all foods and beverages as they are being consumed, as well as their amounts, for a specified 

period of time, usually three to seven days (195). Weighed records and 7dDDs differ in that the 

former requires the participant to weigh each food item using scales, whereas the latter is based 

on portion size estimates. Dietary records provide a relatively accurate indication of usual intake 

due to the nature of keeping a diary. Moreover, as food and drinks are recorded as they are 

being consumed, the reliance on long-term memory is not an issue. However, dietary records, 

especially weighed records, are expensive and their practicability for studies with large sample 

sizes is small due to the nature of recording and processing diaries. Moreover, they are prone to 

under-reporting resulting from behaviour modification, meaning that participants may i) alter 

their habitual food intake as a result of the recording situation or ii) chose not to record food 

items despite having consumed them. 

 FFQs are designed to estimate habitual food intake. They contain a checklist of limited 

foods and beverages with a frequency category and sometimes also a quantity response section 

which estimate how often individuals consume each item over a specified period of time, usually 

the past 12 months (195). They are relatively inexpensive and quick to administer, and thus are 

more practical for use in larger population studies, where the ranking of participants into 

categories is preferred. However, FFQs are less precise in estimating dietary intakes than 7dDDs 

as they are restricted to a chosen number of listed food items, do not derive detailed 

information on food preparation methods and rely heavily on an individual’s long-term memory 

(196). Moreover, over-estimation of dietary intakes is a common issue with FFQs and is directly 

related to the length of the FFQ food list (197). FFQs may overestimate dietary intakes 

proportionally for the whole study population, although the extent to which this may affect the 

association between FFQ and disease needs to be clarified. 

 The 24hR provides a quick and detailed description of an individual’s most recent dietary 

intake. They are a popular choice amongst studies with larger sample sizes due to their low cost 

and quick administration. The 24hR is usually conducted by an interviewer and requires 

individuals to report all foods and beverages and their quantities consumed in the past day (195). 

It is thus prone to inaccurate dietary intake reporting by the individual due to the interview 
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situation. Moreover, the assessment relies on short-term memory recall and cannot account for 

episodic foods as well as day to day and seasonal variation in dietary intake. However, the 24hR 

is less likely to be affected by behaviour modification resulting in changes in usual food intake as 

it is completed the day after the food has been consumed.  

 Biological markers, that are sensitive to dietary intakes, are typically measured in blood 

or urine. They are useful for validating other dietary assessment methods and for determining 

changes in dietary intake behaviour over a specified period of time as they eliminate reporting 

bias (195). However, it is generally accepted that biomarkers are not a true reflection of dietary 

intake due to homeostatic mechanisms influencing biological processes including nutrient 

absorption and excretion. Thus, a low level of agreement between nutrient intake and 

biomarker does not necessarily infer inaccuracy of the dietary measure. Moreover, biological 

assessments are time-consuming, often invasive to the participant and expensive to perform, 

and are thus not commonly used in studies with large sample sizes (198). They also tend to relate 

to only a very limited range of nutrients such as urinary nitrogen for protein intake and plasma 

or serum vitamin C for vitamin C intake.  

 In summary, written dietary assessment methods and biomarkers are inaccurate 

estimates of the habitual dietary intake. The choice of assessment usually depends on the 

sample size of the study population, the practicality of the assessment and evaluation of intake 

and the subsequent costs involved. Moreover, the methods differ in their accuracy in assessing 

specific nutrients and may be used based on their suitability in estimating the nutrient of choice. 

 

1.5.1 Measurement error in dietary assessments 

In nutritional epidemiology, measurement error refers to the difference between the dietary 

intake that was recorded and the true intake. The presence of measurement error in all 

nutritional epidemiological studies is an important issue as it reduces the statistical power to 

detect diet-disease associations (198-200). To date, dietary assessment methods, which are 

completely free from measurement error, have not been established. Currently available 

methods are self-reported and are based on a compromise between speed and accuracy of 

performing the dietary assessment and evaluating food intake (195). Consequently, recorded 

dietary intake is an approximate estimate rather than a true reflection of intake. Moreover, food 

intake varies daily, weekly and by season (194). As it is impractical to record food consumption 

continuously, an average habitual intake must be derived over a specified number of days, 

aiming to reflect true intake most accurately. The assessment of dietary intake introduces 

different levels of measurement error which may relate to the recording of food intake, the 

specific assessment method used, as well as data entry and analysis programmes. For example, 

the recording situation in itself often makes participants feel exposed and judged, resulting in 

behaviour modification and subsequent misreporting of habitual dietary intake, usually towards 
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a healthier intake during the period of assessment (195). In concordance with this, underreporting 

(particularly of snack foods) and sometimes overreporting (of fruit and vegetables) are well-

known issues of dietary assessment (201-204). Measurement error may also arise from the specific 

dietary assessment techniques which differ in the type of intake they assess (habitual or recent 

intake), their accuracy and their practicability, the latter of which may affect the level of 

commitment by the individual (195). Some methods use trained interviewers to perform the 

assessment which introduces additional interviewer bias. Once the assessment has been 

completed, the data entry may also be subject to error, for example resulting from data entry 

errors or subjective assumptions of food intake and portion sizes by the investigator. Moreover, 

the use of nutrient analysis programmes, which convert the foods eaten into quantities of 

specific nutrient intakes, introduce error depending on how these food-to-nutrient conversions 

were derived and the size of the food and portion size databases (195). The extent to which 

measurement error may be present in nutritional epidemiological studies is unknown, but is 

likely to vary by study, as it is dependent on a number of factors including the type of dietary 

assessment, the data entry procedures and the derivation of food-to-nutrient conversions.  

 To date, statistical techniques, which completely eliminate all measurement error, do 

not exist. Previous studies aiming to address the methodological issues of dietary assessments 

have suggested that combining the data for food intake and serum status in a population may 

somewhat reduce the measurement error in the subsequent diet-disease associations (205, 206). 

This is because dietary intake does not directly translate into nutrient status in the body, as the 

latter accounts for individual differences in a number of biological processes including 

absorption, metabolism and excretion (207). To the best of my knowledge, this approach has not 

previously been used in epidemiological studies investigating diet and bone health associations. 

However, it could provide a new strategy for improving the methodology of such studies in the 

future, thereby determining potentially more accurate associations between diet and bone 

health. 
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1.6 Research gaps 

To date, a number of nutrients including calcium, vitamin D, total protein, potassium and 

magnesium have been extensively studied in relation to osteoporosis and fracture risk. However, 

despite potentially important underlying mechanisms, there has been limited data on vitamin K1, 

vitamin C and iron. Further population-based studies are required as current evidence is scarce 

and lacks consistency. Moreover, potential associations between different dietary sources of 

iron with bone health are completely lacking. These investigations are crucial for establishing 

optimal nutrient intakes and for developing more specific dietary strategies regarding 

osteoporosis and fracture prevention.  

 Despite nutritional research aiming to record true food intake, it is commonly accepted 

that there are no measurements of dietary intake which are free from measurement error. 

Previous validation studies have suggested that measurement error of diet-disease associations 

may be reduced by combining the food intake with nutrient biomarkers within a population. 

Thus, diet-disease associations, which are based on a combined value for food intake and 

nutrient status, may be more accurate than those relying on separate measurements. However, 

this approach has not previously been used in epidemiological studies on diet and bone health, 

but this may be an important strategy for improving the methodology of such future studies.  

 

The present thesis will address these research gaps by investigating associations between 

habitual dietary intakes and nutrient status in blood with heel ultrasound and fracture risk in a 

population-based study of older men and women. The thesis will also contribute to the 

understanding of how different dietary assessment methods and biomarkers impact on 

epidemiological associations between diet and bone health. 

 



 

Page | 39  
 

1.7 Thesis aims and hypotheses 

The overall aim of this thesis was to investigate and compare the associations between habitual 

dietary intakes and nutrient status in blood with heel ultrasound and fracture risk in older British 

men and women of the Norfolk-based European Prospective Investigation into Cancer and 

Nutrition (EPIC-Norfolk) cohort. The EPIC-Norfolk cohort is an ongoing prospective study which is 

part of the larger EPIC study (over 500,000 participants in total) and which examines behavioural 

markers such as dietary intake and multiple disease endpoints including osteoporosis and 

fractures in British men and women based in Norfolk. A more detailed account of this cohort 

follows in Chapter 2 (page 40). It was hypothesised that higher dietary intakes as well as 

biological markers of nutrient status are i) positively associated with heel ultrasound and ii) 

inversely associated with the risk of fracture. Additionally, it was hypothesised that the 

combination of dietary intake with markers of nutrient status in blood would strengthen these 

associations.   

 

1.8 Objectives 

i) To examine potential cross-sectional associations between a number of 

micronutrients (vitamin K1, vitamin C and iron) as well as nutrient status levels in 

blood (plasma vitamin C and serum ferritin) with measures of heel ultrasound. 

ii) To investigate whether these micronutrient intakes and nutrient status are 

prospectively associated with fracture risk at three common fracture sites (hip, spine 

and wrist). 

iii) To contribute to the development of an iron database of foods within the EPIC-

Norfolk food database, which identifies the animal and plant source contributions of 

iron, before investigating potential cross-sectional and prospective associations 

between animal and plant-based iron intake with measures of heel ultrasound and 

fracture risk, respectively.  

iv) To investigate whether combining different dietary assessment methods may 

strengthen diet-disease associations compared to using single measurements at the 

example of vitamin C and its relationship with bone health. 
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CHAPTER 2 

 

METHODOLOGY 

 

 

2. 2 
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2.1 Introduction 

The present observational investigations used data previously collected from the EPIC-Norfolk 

study of 25,639 participants aged 39-79 years at baseline. The main analyses consisted of a 

cross-sectional study that assessed associations between bone density, using heel ultrasound 

measurements, and nutrient intake and nutrient status in 2341 participants of a random sub-

cohort (n=4000) of EPIC-Norfolk. Secondly, a prospective study of fracture risk with a median 

follow-up of 12.6 years was undertaken in a case-cohort subset of EPIC-Norfolk of 5319 

participants to investigate potential associations with nutrient intakes and status. The data from 

both studies were also used to investigate whether the addition of a biomarker to a dietary 

intake estimate would improve the detection and strength of the diet-disease association, using 

the association between vitamin C intake and status with heel ultrasound and fracture risk as an 

example.  

 

2.2 The EPIC-Norfolk Cohort 

EPIC is a prospective cohort study of more than half a million participants (521,000) initiated in 

1989 with collaborations set up between 23 centres in 10 European countries to establish the 

relationship between diet and the risk of developing common cancers (Figure 2.1). EPIC-Norfolk 

is one of the UK sub-cohorts of this prospective investigation based in Cambridge and has 

additionally defined causes of disability and death in mid-aged and older people. Recruitment 

was undertaken in 35 general practices in inner-city, sub-urban and rural areas of Norfolk. A 

total of 25,639 mainly Caucasian men and women aged 39-79 years attended the first health 

check between 1993 and 1997. The data collection included the following:  

 

i) a health and lifestyle questionnaire with questions on smoking, alcohol 

consumption, exercise, socio-economic status, social class, occupational history, 

medical status, family history of main diseases and reproductive history (for 

women);  

ii) a questionnaire on major depressive disorder and generalised anxiety disorder;  

iii) a health check at baseline with examinations and samples taken for respiratory 

function, anthropometry, blood pressure, urine testing, and with additional 

examinations of body composition and quantitative ultrasound of the heel bone at 

follow-up every 18 months;  

iv) and dietary assessments including a food frequency questionnaire (FFQ), a 24-h 

recall and a 7-day diet diary (7dDD). 
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Figure 2.1: Centres of the EPIC cohort study.  

 
The map includes the coordinating centre of EPIC, Imperial College London (ICL). 

 

EPIC-Norfolk participants were invited to attend follow-up clinic visits in 1997-2000 and 2006-

2011. The whole cohort is still being followed-up to date for different health points including 

cancer incidence through cancer registration, mortality by cause through death certification, and 

by means of posted questionnaires and health record linkage. All participants gave an informed 

consent at the beginning of the study. The study was approved by the Norwich District Health 

Authority ethics committee and was conducted according to the Declaration of Helsinki.  
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2.3 The Dataset 

For the present study, data from the whole cohort (n=25,639) was unavailable for analysis. The 

cross-sectional study of heel ultrasound was based on a random sub-cohort of 4000 participants, 

representative of those participants who had attended the first health check between 1993 and 

1997 (Figure 2.2). The smaller representative dataset was used for all analyses to ensure that no 

selection bias was introduced into the present study because data entry as well as data cleaning 

and processing were not yet complete at the time of writing. The prospective investigations of 

fracture risk used data collected up to 31st March 2009 and were based on a case-cohort design 

of the same subset of 4000 participants and a set of 1502 participants who had experienced a 

fracture. Accounting for the overlap between the sub-cohort and the fracture cases, the total 

number of participants of the prospective study was 5319 men and women, representing 21% of 

the full cohort. 
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Figure 2.2: The structure of the present random sub-cohort and the case-cohort sample from the EPIC-
Norfolk study. 
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2.3.1 Non-dietary exposure assessment  

Age, family history of osteoporosis, smoking (current, former and never), physical activity (208) 

(active, moderately active, moderately inactive and inactive), menopausal status in women 

(premenopausal, early perimenopausal [<1 year], late perimenopausal [1-5 years] and 

postmenopausal [>5 years]), HRT use in women (current, former and never) and medication use 

including steroid medication were derived from a health and lifestyle questionnaire 

administered at each health check (209). Weight and height, measured to the nearest 0.2 kg with a 

digital scale (Salter) and to the nearest 0.1 cm with a free-standing stadiometer, respectively, 

were taken on participants dressed in light clothing and without shoes. BMI was calculated as 

weight in kilograms divided by height in meters squared. 

 

2.3.2 Dietary exposure assessment 

EPIC-Norfolk used several different dietary assessment methods to record average food intake at 

baseline. Firstly, a semi-quantitative food frequency questionnaire (FFQ) and a self-reported 24-

h recall  (24hR) were both completed before the initial health check. Secondly, a 7-day diet diary 

(7dDD) was completed immediately after this health check (209). The latter was an A5 booklet (210) 

(Figure 2.3) which was based on the diary used in the National Survey of Health and 

Development (211). It contained seventeen colour-print photographs of foods to aid portion size 

estimation, four pages for recording the foods and drinks consumed each day, a recipe notation, 

a checklist of commonly consumed foods as well as a short questionnaire regarding the types of 

milk, bread and spread consumed. The first day of the 7dDD was an interviewed 24-h recall 

conducted on-site by a nurse according to a standardised protocol (212). At home, participants 

were requested to report all foods and drinks consumed for the remaining 6 days.  

 Previous validation studies on this cohort have shown that the estimated 7dDDs were 

most comparable to weighed food records for the majority of nutrients (202, 204). For example, 

vitamin C intake estimated from a weighed food record correlated better with intake measured 

from the 7dDD (r=0.70) compared to the FFQ and the self-reported 24-h recall (both r=0.54). The 

conversion of participant reported text into quantitative food data was previously undertaken 

with the in-house data-entry program Data into Nutrients for Epidemiological Research (DINER), 

which is based on more than 11,000 food items and almost 600 portions (212). Responses 

regarding supplement intake were entered into the vitamin and mineral supplement database 

(ViMiS) (213). The estimation of dietary vitamin K1 intake from 7dDDs was based on a previously 

published database (214). However, as the food content of vitamin K1 was still largely incomplete, 

the database had been developed further by EPIC-Norfolk nutritionists who added 

predominantly British food items (160, 215). 
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Figure 2.3: Example of one day of a 7dDD used in the EPIC-Norfolk study. 
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 Nutrient data from these previously completed 7dDDs were available for the present 

cross-sectional and prospective studies, hence providing relatively accurate estimates of nutrient 

intakes. For the sub-study, which combined intake and biomarker measurements of vitamin C to 

investigate the association with heel ultrasound and fracture risk, data for vitamin C intake 

estimated from both a 7dDD and a FFQ were available for analysis, in addition to plasma vitamin 

C concentrations.    

 

2.3.3 Biological markers of nutrient status 

2.3.3.1 Plasma vitamin C 

Plasma vitamin C, as an indicator of vitamin C status, was previously measured in participants 

from non-fasting blood samples taken at baseline. Blood was drawn into citrate bottles and 

refrigerated overnight at 4-7°C in dark boxes before being centrifuged at 2100g for 15 minutes 

the following day (216). Plasma was stored at -70°C following its stabilization with a standardized 

volume of metaphosphoric acid. Plasma vitamin C concentration was estimated within one week 

of blood sampling using a fluorometric assay (217). The coefficient of variation was 6.2% and 2.7% 

at the lower and upper end of the range, respectively. 

 

2.3.3.2 Serum ferritin 

Serum ferritin, as an indicator of body iron stores, was previously measured in 18,432 

participants using blood stored at baseline. Levels were estimated using an AutoDELFIA ferritin 

kit (Wallace Oy, Turku, Finland) for the two-step time-resolved fluoroimmunoassay (218). The 

coefficient of variation between batches was 5.8% at 4.6 µg/l and 6.7% at 355 µg/l. 

 

 

2.3.4 Heel ultrasound measurements 

In EPIC-Norfolk, estimates of heel ultrasound had previously been undertaken in subjects 

attending the second health check in 1997-2000. Measurements were performed with a CUBA 

Clinical Ultrasonometer (McCue Ultrasonics, Winchester, UK) (Figure 2.4) at least twice on each 

heel and the mean value of the left and right measure were calculated for the ultrasound 

parameters BUA (in dB/MHz) and VOS (in m/s). Ultrasound was chosen over DXA based on lower 

cost and the portability of the equipment in the large sample size of EPIC-Norfolk. BUA measures 

bone density as well as its structural organisation; whereas VOS is a measure of both bone 

density and bone stiffness (62, 63). Higher values for both heel ultrasound parameters are an 

indication of greater bone quality. 
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Figure 2.4: The measurement of BUA and VOS at the heel bone using ultrasound. 

 
CUBA Clinical Ultrasonometer, McCue Ultrasonics, Winchester, UK. 

 

2.3.5 DXA measurements 

BMD measurements of the total hip region using DXA had previously been performed in a small 

sub-sample of the full EPIC-Norfolk cohort (n=1511) on the same day as the heel ultrasound 

measurements (68), and those data were used in the sub-study of combining vitamin C intake and 

status measurements (Chapter 8, page 212). DXA determines the average amount of bone 

mineral of the scanned area in a two dimensional format (60), and it is considered the gold 

standard measurement of bone density for the diagnosis of osteoporosis (63). All hip BMD 

measurements (in g/cm2) were completed by the same operator using a Hologic 1000 W bone 

densitometer (Hologic, Bedford, MA, USA), and all scans were reviewed by an independent 

operator to ensure consistency (219). 

 

2.3.6 Fractures 

EPIC-Norfolk is linked to the East Norfolk health authority database (ENCORE) (68) which records 

all hospital contacts throughout England and Wales via the unique NHS number. Using ENCORE, 

diagnostic codes had previously been used to identify osteoporotic fractures by site which had 

been occurring in the cohort in March 1997-2009. For the present prospective study, data for 

fractures at the hip, spine and wrist were available for analysis. The combined total number of 

fractures at these three sites was also derived and will hereafter be referred to as total fractures.  
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2.4 Statistical Analyses 

2.4.1 Covariates 

As discussed in Chapter 1 (pages 26-28), there are numerous factors which may have 

detrimental effects on bone health. Depending on both the evidence in the literature and the 

availability of data in the EPIC-Norfolk cohort, a number of risk factors were identified to 

potentially impact on bone health, and those were chosen as covariates in the following cross-

sectional and prospective diet-bone investigations. The following covariate models were 

developed: 

 

 Unadjusted. 

 Model 1 - Biological and lifestyle factors: age, family history of osteoporosis, BMI, 

smoking, physical activity, steroid medication, menopausal status (women), HRT 

(women). 

 Model 2 - Dietary factors: Model 1 + total energy intake, dietary calcium intake, use of 

calcium and/or vitamin D supplements. 

 

At first, all analyses were performed unadjusted in order to obtain the crude relationships 

between exposure and outcome measures. Then, a model containing important biological and 

lifestyle covariates was applied to the sex-specific analyses (Model 1), before dietary exposures 

were added to the model (Model 2).  

 Age, BMI and the intake of energy and calcium from foods were considered a continuous 

variable. Binary variables with “Yes” and “No” options were family history of osteoporosis, 

steroid medication and the use of calcium and vitamin D supplements. Smoking status was 

defined as “current”, “former” and “never smoking” and physical activity was defined as 

“active”, “moderately active”, “moderately inactive”, and “inactive”. Women were classed into 

categories of menopausal status as “pre-menopausal”, “early peri-menopausal” (less than one 

year), “late peri-menopausal” (1-5 years) and “postmenopausal” (more than five years). HRT use 

in women was defined as “current”, “former” and “never” categories. Several confounding 

factors, including previous fragility fractures and a family history of fracture, were not available 

from the current dataset and hence could not be included in the present prospective 

investigations. Race was not considered to be a confounder as the EPIC-Norfolk cohort 

comprises almost exclusively Caucasian men and women.  

 

2.4.2 Investigating associations between diet and heel ultrasound 

To explore potential cross-sectional associations between nutrient intakes and nutrient status in 

blood with heel ultrasound, Pearson correlation coefficients were calculated. The dependent 
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variables BUA and VOS were plotted against quintiles of each independent nutrient variable of 

interest. For this, mean (±SE) BUA and VOS were stratified by sex-specific quintiles of nutrient 

intake and status using multiple regression and were adjusted for confounding factors, as 

discussed above. Differences in adjusted mean BUA and VOS between extreme quintiles of 

nutrients referent to the lowest quintile were determined unless stated otherwise. A test for a 

linear trend gave an indication of the strength of the associations. The use of specific quantiles 

(tertiles, quartiles or quintiles) depended on the distribution of the data. Quintiles were chosen 

where possible because it gave a finer discrimination of the nutrient intakes. All statistical 

analyses were stratified by sex as significant sex differences in bone health have previously been 

established (220). In order to be able to put the present findings in to context, a sample size 

calculation was performed post-hoc for the study of vitamin K1 intake and heel ultrasound 

(Chapter 4). These analyses were chosen because the heel ultrasound study was based on a 

smaller dataset than the fracture study and the additional exclusion of participants with missing 

aspirin data in this chapter resulted in the smallest dataset compared to the other nutrient 

chapters. 

 

 

2.4.3 Investigating associations between diet and fracture risk  

To investigate potential associations between nutrient intakes and nutrient status in blood with 

fracture risk, mean nutrient intake and status were calculated for fracture and non-fracture 

participants stratified by sex and fracture site. An unpaired t-test was used to test for differences 

in nutrient intake and status between the two groups. Numbers and percentages of fractures 

(hip, spine, wrist and the combined total) were tabulated by quintiles of each nutrient. Then, Cox 

proportional hazard ratios of fracture risk with 95% confidence intervals were calculated for 

unadjusted and adjusted means, as discussed above. The Cox model used a Prentice-weighted 

approach as this allowed to account for the case-cohort design of the present prospective study 

(221). Differences between extreme quintiles of nutrient intake and status were determined 

unless stated otherwise. The linearity of the associations was indicated using P for trends. All 

statistical analyses were stratified by sex as previously discussed. 

 

2.4.4 Investigating associations in the sub-study 

The sub-study combined intake and biomarker measurements of vitamin C to investigate the 

association with heel ultrasound and fracture risk (Chapter 8). For this, standardised measures of 

BUA, VOS and DXA were calculated in order to compare the regression coefficients by dividing 

the bone measures by their standard deviation. Participants were ranked according to their 

vitamin C intake and status measures, before those were combined (222). Due to a smaller sample 
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size, quartiles of vitamin C were determined, and those fitted the data better than tertile and 

quintile groups. Adjusted linear regression analyses were performed for quartiles of vitamin C 

intake from the 7dDD and the FFQ, plasma vitamin C concentrations and their respective 

combinations with the standardised bone measures. Moreover, adjusted Prentice-weighted Cox 

proportional hazards of total fracture risk were calculated for quartiles of vitamin C intake from 

the 7dDD and the FFQ, plasma vitamin C concentrations and their respective combinations. The 

adjusted regression coefficients and hazard ratios were compared for the linear trend across all 

quartiles and for differences between the higher quartiles with the lowest quartile. All statistical 

analyses were stratified by sex as previously discussed, with the exception of the DXA analyses in 

Chapter 8 (pages 222-223) which were undertaken in the combined sample of men and women 

but adjusted for sex due to the small sample size. 

 

All statistical analyses were performed using STATA (Statistical Software: Release 11; 2009, 

StataCorp LP). A P value of <0.05 was considered statistically significant in all analyses. 
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CHAPTER 3 

 

THE DERIVATION OF THE DATASET, 

BASIC DESCRIPTIVES OF THE COHORT 

AND THE RELATIONSHIP BETWEEN  

THE COVARIATES AND FRUIT AND 

VEGETABLE INTAKES WITH BONE 

HEALTH IN THE EPIC-NORFOLK STUDY 

 

 

3. 3
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3.1 Overview of the chapter rationale and methodology 

This chapter includes information on four different aspects of the EPIC-Norfolk sub-cohort 

datasets. It aims to i) provide information on the derivation of the two datasets, ii) determine 

how representative the EPIC-Norfolk sub-cohort is of the general UK population and how it 

compares to other studies, iii) investigate how the covariates chosen in Chapter 2 are related to 

bone health in this cohort, and iv) explore the associations between dietary intakes of fruit and 

vegetables with bone health for comparison reasons with the following chapters.  

 First, the derivation of two EPIC-Norfolk sub-cohort datasets is described. As discussed in 

Chapter 2, two different datasets were created to accommodate the two different types of 

studies: i) the cross-sectional investigation of heel ultrasound undertaken in a random sub-

cohort of 4000 subjects, and ii) the prospective investigations of fracture risk undertaken in a 

case-cohort of 5319 participants. The present chapter describes the derivation of the final 

number of men and women in each dataset, which were subsequently used for the analyses in 

the following chapters, and highlights the number of missing values at each stage of the 

derivation process. 

 Next, the baseline characteristics, including dietary variables, of the EPIC-Norfolk case-

cohort study were assessed. All analyses were stratified by sex in order to ensure they were 

consistent with the sex-specific bone health analyses. As variables were normally distributed, the 

mean and standard deviation was calculated for continuous variables of the first health check 

including age, BMI, heel ultrasound (second health check), concentrations of plasma vitamin C 

and serum ferritin, energy intake, as well as intakes of the macronutrients and a selection of 

micronutrients. Differences in these characteristics between men and women were determined 

using an unpaired t-test. For binary and categorical variables, the frequencies and proportions 

were determined for first health check data including the number of completed days of the 

7dDD, smoking, physical activity, menopausal status and HRT use in women, a family history of 

osteoporosis, the use of steroid medication, calcium and vitamin D supplements and the 

occurrence of fractures during follow-up. Chi square tests were used to determine differences in 

these binary and categorical variables between men and women, except for menopausal status 

and HRT use in women which was assessed for differences between the different groups of each 

variable. Similar to determining baseline differences between men and women, unpaired t-tests 

and chi square tests were also used to investigate differences in descriptive variables between 

participants who had experienced a fracture during the follow-up period and those who 

remained free from fractures. Moreover, as the number of men and women in the fractured and 

non-fractured groups were uneven, baseline differences between the two groups were also 

determined using regression analyses adjusted for sex. 
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 Following the determination of baseline characteristics, the EPIC-Norfolk sub-cohort was 

compared to the general UK population as well as other populations as reported in the 

literature. For this, predominantly data from the National Diet and Nutrition Survey (NDNS) 

published in 1998 were used for comparing dietary intakes as well as nutrient status 

measurements (223). Despite more recent national data being available, the comparative data 

from 1998 was chosen due to the initial recruitment time of EPIC-Norfolk participants in 1993-

1997. However, the data were also evaluated in relation to the latest NDNS survey to assess 

comparability to current UK intakes (224). Nutrient intakes were also compared to national 

recommendations using Dietary Reference Values (225). 

 Next, this chapter aimed to explore the relationship between risk factors for 

osteoporosis and bone health in this population. As discussed in Chapter 1 (pages 26-28), 

previous studies have highlighted many risk factors for the development of osteoporosis and 

fractures (27, 30, 31, 79-82, 84-86, 88, 97-99, 126). Based on the evidence in the literature and the availability 

of data in the EPIC-Norfolk cohort study, a number of important risk factors were decided on to 

include as covariates in the present investigations of diet and bone health; and these included: 

age, family history of osteoporosis, BMI, smoking, physical activity, steroid medication, 

menopausal status and HRT in women, total energy intake, dietary calcium intake, calcium 

supplements and vitamin D supplements. In this chapter, the relationship between these 

covariates with both heel ultrasound measurements and with fractures was explored in the 

present EPIC-Norfolk sub-cohort. For this, regression analyses were used to determine 

associations between the covariates and heel ultrasound measurements, where the P-trend was 

indicative of the linearity of the relationship. Moreover, associations between the covariates and 

total fractures were investigated using chi square tests. All investigations were conducted for 

men and women separately as previous studies have reported bone-specific sex differences (27). 

 Finally, this chapter also investigated potential associations between dietary intakes of 

fruit and vegetables with bone health for comparison reasons with the following chapters, which 

will explore nutrient-bone relationships of predominantly plant-based nutrients. Linear 

regression analyses were used to determine the cross-sectional association between fruit intake, 

vegetable intake and their combined intake (F&V) with heel ultrasound measurements; whereas 

Prentice-weighted Cox proportional hazards of fracture risk (hip, spine, wrist and total) were 

used in the prospective study. All analyses were adjusted for age, family history of osteoporosis, 

BMI, smoking, physical activity, steroid medication, menopausal status and HRT in women, total 

energy intake, dietary calcium intake, calcium supplements and vitamin D supplements. 
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3.2 Derivation of the dataset 

3.2.1 Cross-sectional heel ultrasound study 

The cross-sectional study of heel ultrasound aimed to determine potential associations between 

dietary intakes and nutrient status with measures of heel ultrasound. It was based on a random 

sub-cohort of 4000 participants which was representative of the 25,639 participants who had 

attended the initial health check in 1993-1997. The smaller representative dataset was used for 

all analyses to ensure that no selection bias was introduced into the present study because data 

entry as well as data cleaning and processing were not yet complete at the time of writing. As 

shown in Figure 3.1, those with missing 7dDD data from the first health check and with missing 

heel ultrasound and covariate information from the second health check (1997-2000) were 

identified. Participants who did not attend the second health check, and thus had missing heel 

ultrasound measurements, were excluded (n=1659). Those with missing responses for smoking 

status at the second health check were recoded to the current smoking category (n=11), as these 

participants were likely smokers who only smoked occasionally and were unsure about 

answering this question in the lifestyle questionnaire. Women with missing menopausal status 

responses were recoded to the post-menopausal category if they were at least 55 years of age, 

as most women have reached menopause at this age, or if they were current or former users of 

HRT at the second health check (n=34). A further seven women, who were younger than 50 

years and had never used HRT, were recoded to the pre-menopausal category. Four participants 

with missing baseline 7dDD and participants with missing second health check data for BMI 

(n=3), HRT use (n=3) and menopausal status (n=3) were also excluded from the analyses. Hence, 

a total of 2327 participants (968 men and 1360 women) remained for the present cross-sectional 

investigations of nutrient intakes and heel ultrasound. 
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Figure 3.1: Flow chart showing the number of participants of the randomly selected EPIC-Norfolk sub-
cohort included in the cross-sectional study to determine potential diet and heel ultrasound associations. 

 
Abbreviations: 1HC, first health check (1993-1997); 2HC second health check (1997-2000). 

 



 

Page | 57  
 

3.2.2 Prospective fracture risk investigations 

Figure 3.2 illustrates the number of participants of the EPIC-Norfolk cohort included in the 

present prospective case-cohort fracture risk investigations. The case-cohort rather than the full 

EPIC-Norfolk cohort was used in these investigations due to the limited availability of the data. 

The initial case-cohort sub-sample contained data for a total of 5319 participants (2135 men and 

3184 women), representing 21% of the full cohort. The dataset was searched for missing 1HC 

covariate data and recoding of these was undertaken where appropriate. Participants with 

missing information for smoking were recoded to the current smoking category (n=52), for the 

same reasons mentioned above. Women with unknown menopausal status were recoded to 

post-menopausal if they were at least 55 years of age or were current or former users of HRT 

(n=3). Next, subjects were excluded from this study if they had missing 1HC data for one or more 

of the following variables: 7dDD (n=285; 5.4%), BMI (n=19; 0.4%) and HRT in women (n=2; 

<0.01%). The dataset was also screened for potential outliers and one participant with a very low 

energy intake (322 kcal/d) was removed from the dataset, leaving a case-cohort sample of 5012 

participants (2052 men and 2960 women). For the fracture-site-specific analyses, participants 

were excluded from the study if they had sustained a fracture at a different site and were not 

part of the random sub-cohort. Hence, investigations of hip fractures were conducted in 4368 

participants, spine fractures in 4143 participants, wrist fractures in 4216 participants and the 

combined total fractures of these three sites in 4712 participants. 
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Figure 3.2: Flow chart showing the number of EPIC-Norfolk participants included in the case-cohort study of fracture risk. 

 
Abbreviations: 1HC, first health check (1993-1997). Total fractures are the number of fractures at the hip, spine and wrist combined. The numbers excluded for the case-cohort differ 

between the different fracture sites as participants were excluded from the study if they had suffered a fracture at a different site and were not part of the random sub-cohort. 
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3.3 Baseline characteristics and representativeness of the EPIC-
Norfolk case-cohort with other populations 

In the full EPIC-Norfolk cohort of 25,639 participants who had attended the first health check, a 

total of 1083 fractures (294 in men, 789 in women) had been recorded at the hip, spine and 

wrist between March 1997 and March 2009. This gave a cumulative incidence of 4.2% over the 

median follow-up of 12.6 years. Following the exclusion of participants with missing data, the 

present EPIC-Norfolk case-cohort sample included 5012 participants, 60% of which were women. 

Their baseline characteristics are shown in Table 3.1. The mean±SD age was 60±10 years in both 

men and women at baseline. BMI differed significantly between men and women (26.5±3.3 

kg/m2 vs. 26.2±4.3 kg/m2, P=0.005), and the mean BMI values were comparable with those of 

the national population at the time of recruitment (226). Less than 1% of the population were 

underweight (BMI<18.5 kg/m2), whereas 60% were either overweight or obese (BMI ≥ 25 kg/m2). 

In those men and women with heel ultrasound measurements, there was a strong correlation of 

0.74 between BUA and VOS (P<0.05). Mean heel ultrasound measurements were significantly 

lower in women (BUA: 70±17 dB/MHz; VOS: 1620±41 m/s) than in men (BUA: 89±18 dB/MHz; 

VOS: 1642±41 m/s; P<0.001). Women were more likely to experience a total fracture than men 

(21% vs. 12%, P<0.001). Fifteen percent and 65% of women were pre-menopausal and post-

menopausal, respectively. Seventeen percent of women were current users of HRT, although 

most (71%) had never previously received HRT. Only 12% of participants were current smokers, 

and 33% of men and 56% of women indicated that they had never smoked. Early work on the 

EPIC-Norfolk cohort (209) reported that this study population had a much lower proportion of 

current smokers across different age groups compared to the general population of England at 

the time of recruitment (men: 10-15% vs. 20-28%; women: 8-14% vs. 18-27%) (226).  
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Table 3.1: Baseline characteristics of the EPIC-Norfolk case-cohort sample. 

  Men 
n=2052 

 Women 
n=2960 

  

  Mean (SD)  Mean (SD)  P 

Age (yrs)   60 (10)  60  (10)  P=0.52 
BMI (kg/m2)  26.5 (3.3)  26.2  (4.3)  P=0.005 
BUA (dB/MHz) *  89 (18)  70 (17)  P<0.001 
VOS (m/s) *  1642 (41)  1620 (41)  P<0.001 
Plasma vitamin C (µmol/l)†  46.4 (18.1)  58.1 (20.0)  P<0.001 
Serum ferritin (ng/ml)‡  115.6 (85.2)  64.7 (52.8)  P<0.001 
         
  (n) %  (n) %   

Prevalence of fractures         
Total (hip, spine and wrist)  (248) 12.1  (616) 20.8  P<0.001 
Hip  (112) 5.5  (339) 11.5  P<0.001 
Spine  (78) 3.8  (124) 4.2  P=0.49 
Wrist  (70) 3.4  (218) 7.4  P<0.001 

Smoking history        P<0.001 
Current smoker  (248) 12.1  (369) 12.5   
Former smoker  (1137) 55.4  (948) 32.0   
Never smoked  (667) 32.5  (1643) 55.5   

Physical activity        P<0.001 
Inactive  (640) 31.2  (981) 33.1   
Moderately inactive  (500) 24.4  (941) 31.8   
Moderately active  (454) 22.1  (613) 20.7   
Active  (458) 22.3  (425) 14.4   

Menopausal status        P=N/A 
Pre-menopausal  - -  (433) 14.6   
Peri-menopausal (<1 yr)  - -  (140) 4.7   
Peri-menopausal (1-5 yrs)  - -  (473) 16.0   
Post-menopausal  - -  (1914) 64.7   

Hormone replacement therapy        P=N/A 
Current user  - -  (508) 17.2   
Former user  - -  (347) 11.7   
Never used  - -  (2105) 71.1   

Family history of osteoporosis  (60) 2.9  (165) 5.6  P<0.001 
Use of steroids  (73) 3.6  (129) 4.4  P=0.16 
Use of calcium supplements  (26) 1.3  (168) 5.7  P<0.001 
Use of vitamin D supplements  (445) 21.7  (930) 31.4  P<0.001 
Completed days of 7dDD        P=0.003 

1-2  (176) 8.6  (180) 6.1   
3-6  (31) 1.5  (62) 2.1   
7  (1845) 89.9  (2718) 91.8   

Abbreviations: N/A, not applicable.Values are means (standard deviations) or frequencies. P-values were 
determined using unpaired t-tests for continuous variables and chi square tests for binary and categorical 
variables. 

* n=1130 men and n=1752 women. 
† n=1842 men and n=2554 women. 
‡ n=1450 men and n=1963 women. 
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Women were less physically active than men, with 44% of men, but only 35% of women, being 

active or moderately active (P<0.001). More women (5.6%) than men (2.9%) reported a family 

history of osteoporosis (P<0.001) and 4% of the population reported current use of steroid 

medication. 

 Most participants (91%) completed the full seven days of the diet diary, and a 

preliminary analysis showed that there were no differences in dietary intake compared to diaries 

completed for fewer days. Data from the 7dDDs showed that more women than men used 

calcium supplements (5.7% vs. 1.3%; P<0.001) and vitamin D supplements (31.4% vs. 21.7%; 

P<0.001). Measurements of nutrient status in blood were available for a smaller number of 

participants than the dietary intakes in the EPIC-Norfolk case-cohort. In this population, men had 

significantly higher serum ferritin levels than women (116±85 vs. 65±53 ng/ml; P<0.001; 

n=3413); and compared to the general UK population of free-living individuals older than 65 

years at the time of recruitment (men: 122±126 ng/ml; women: 80±79 ng/ml), mean serum 

ferritin concentrations were lower in the present study population (223). Mean plasma vitamin C 

concentrations (n=4396) in the EPIC-Norfolk sub-cohort were significantly lower in men than in 

women (46±18 vs. 58±20 µmol/l; P<0.001), and this is in agreement with previous studies (227). 

Mean plasma vitamin C concentrations were higher in this population compared to the national 

population average (men: 39±22 µmol/l; women: 49±26 µmol/l) (223). 

 The dietary intakes of the EPIC-Norfolk case-cohort study population are shown in Table 

3.2. Total energy intake was significantly higher for men (2244±514 kcal/d) than for women 

(1679±389 kcal/d; P<0.001). Mean energy intakes were within range of the estimated average 

requirement (EAR) for the UK population aged 19 years and over for men (2100-2550 kcal/d) and 

slightly below the EAR for women (1810-1940 kcal/d) (225). Intakes of carbohydrate, protein and 

fat, respectively, provided 49%, 15% and 34% of total energy intake in men and 50%, 15% and 

34% in women. This was comparable to the national guideline of 47%, 15% and 33%, 

respectively (225). In the EPIC-Norfolk sub-cohort, the mean daily combined fruit and vegetable 

consumption was 250±164 g in men and 284±169 g in women, which is equivalent to around 

three servings per day. However, less than one fifth (17%) of the study population followed the 

current international guideline of eating at least five portions (400g) of fruit and vegetables per 

day (228). When fruit and vegetable intakes were investigated separately, it was found that 

women consumed significantly more fruit (175±135 vs. 143±132 mg/d; P<0.001) but not 

vegetables (110±71 vs. 107±74 mg/d; P=0.20) than men. 
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Table 3.2: Dietary intakes of the EPIC-Norfolk case-cohort sample at baseline. 

  Men 
n=2052 

 Women 
n=2960 

  

  Mean (SD)  Mean (SD)  P 

Fruit and vegetables (g/d)  250 (164)  284 (169)  P<0.001 
Fruit (g/d)  143 (132)  175 (135)  P<0.001 
Vegetables (g/d)  107 (74)  110 (71)  P=0.20 
Energy (kcal/d)  2244 (514)  1679 (389)  P<0.001 
Carbohydrates (g/d)  273 (73)  211 (54)  P<0.001 
Protein (g/d)  82 (18)  65 (14)  P<0.001 
Fat (g/d)  86 (26)  64 (21)  P<0.001 
Alcohol (g/d)  17 (22)  8 (12)  P<0.001 
Fibre (g/d)  16 (6)  14 (5)  P<0.001 
Calcium (mg/d)  915 (296)  760 (253)  P<0.001 
Magnesium (mg/d)  322 (93)  265 (73)  P<0.001 
Iron (mg/d)  13 (4)  11 (3)  P<0.001 
Potassium (mg/d)  3449 (821)  2964 (689)  P<0.001 
Vitamin C (mg/d)  86 (52)  89 (51)  P=0.020 
Vitamin K1 (µg/d)  95 (59)  87 (52)  P<0.001 

P-values were determined using unpaired t-tests. 

 

In line with men having higher energy intakes than women, dietary intakes for all macro- and 

micronutrients were also greater in men than women (P<0.001), except for dietary vitamin C 

(Table 3.2). Mean vitamin C intake was significantly higher in women than in men (89±51 vs. 

86±52 mg/d; P<0.020), and this was in line with women having significantly higher plasma 

vitamin C levels (58±20 vs. 46±18 µmol/l; P<0.001). Most participants (87%) had intakes greater 

than the UK Reference Nutrient Intake (RNI) of 40 mg/d and only a very small percentage of men 

and women (0.4%) had vitamin C intakes below the lower RNI (LRNI) of 10 mg/d (225). However, 

mean intakes were lower in this cohort than in most previous studies in UK, US and Japanese 

populations using FFQs to assess intake (91, 133, 229, 230). Similarly, mean dietary vitamin K1 intakes 

were consistently lower in the EPIC-Norfolk cohort compared to previous publications of US, UK 

and other European populations (154-156). Moreover, intake ranges were lower in the EPIC-Norfolk 

men than in US men (155), although intake ranges in women were comparable with previous 

studies in UK and US women (154, 155). In the EPIC-Norfolk sub-cohort, 91% of men had adequate 

dietary iron intakes (≥8.7 mg/d) and only three men had iron intakes below the LRNI of 4.7 mg/d 

(225). In contrast to men, dietary iron intake recommendations of 8.7 mg/d for women aged 50 

years and older and 14.8 mg/d for menstruating women up to the age of 50 years were only met 

by 51% and 13%, respectively. Only very few older women (1%) had dietary iron intakes below 

the LRNI guideline of 4.7 mg/d, whereas 14% of younger women did not meet the LRNI of 8 

mg/d. Higher dietary iron intakes in men compared to women were also reflected by men having 

significantly higher serum ferritin levels than women (116±85 vs. 65±53 ng/ml; P<0.001). In 

comparison to the general UK population at the time of recruitment, mean dietary iron intakes 
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were slightly higher in participants of the EPIC-Norfolk cohort (men: 11 vs. 13 mg/d; women: 9 

vs. 11 mg/d) (223).  

 These results are still relevant to current dietary intakes as the data are still comparable 

to more recent data for people older than 65 years from the National Diet and Nutrition Survey 

(NDNS) Rolling Programme (2008/2009 – 2009/2010) (224). For example, the dietary iron intake of 

the general UK population was similar between the NDNS survey in 1994-1995 (223) and 2008-

2010 (224) (men: 11.0 vs. 11.3 mg/d; women: 8.6 vs. 9.5 mg/d), and intakes remained slightly 

lower than that of the EPIC-Norfolk participants (men: 13 mg/d; women: 11 mg/d). 

 

3.4 Characteristics of participants with and without fractures 

Table 3.3 shows a comparison of those baseline demographics between fracture and non-

fracture subjects which were used as covariates in further analyses. Participants with a fracture 

at the hip, spine or wrist over a median follow-up of 12.6 years were significantly older than non-

fracture subjects (65±8 vs. 59±9 years, P<0.001). Fracture subjects had significantly lower BUA 

(68±19 vs. 80±19 dB/MHz) and VOS (1607±42 vs. 1634±41 m/s) compared to participants who 

remained free from fractures (all P<0.001). Although BMI did not differ between the two groups, 

total energy intake was significantly lower in fracture subjects (1799±521 kcal/d) than in those 

without fractures (1940±517 kcal/d; P<0.001). Fracture subjects were also more likely to be 

inactive and report the use steroid medication (P≤0.001). As the number of fractured 

participants varied by sex, the comparison of baseline demographics between those who had a 

fracture and those who did not was also undertaken with the adjustment for sex in the chi 

square tests. The results were comparable to the non-adjusted analyses, except for total energy 

intake. The unadjusted mean difference in energy intake between the two groups (141 kcal/d), 

with non-fracture subjects having significantly higher intake (P<0.001), were smaller when sex 

differences were accounted for (54 kcal/d). 
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Table 3.3: Characteristics of participants with and without a total fracture 1. 

  Non-fracture subjects 
(n=3848) 

(1709 men, 2139 women) 

 Fracture subjects 
(n=864) 

(248 men, 616 women) 

 

P 

Sex-
adjusted 

P 
     Sex-adjusted     Sex-adjusted  
  Mean (SD)  Mean (SD)  Mean (SD)  Mean (SD)  

Age (yrs)   59 (9)  59 (9)  65 (8)  65 (9)  P<0.001 P<0.001 
BMI (kg/m

2
)  26.3 (3.9)  26.3 (3.9)  26.1 (4.2)  26.2 (4.0)  P=0.17 P=0.31 

BUA (dB/MHz) †  80 (19)  80 (22)  68 (19)  70 (23)  P<0.001 P<0.001 
VOS (m/s) †  1634 (41)  1634 (52)  1607 (42)  1609 (55)  P<0.001 P<0.001 
Total energy intake (kcal/d)  1940 (517)  1924 (442)  1799 (521)  1870 (445)  P<0.001 P=0.001 
                
  % (n)     % (n)       

Smoking history              P=0.47  
Current smoker  12.4 (476)     12.1 (105)       
Former smoker  42.2 (1624)     40.2 (347)       
Never smoked  45.4 (1748)     47.7 (412)       

Physical activity              P<0.001  
Inactive  30.0 (1155)     42.5 (367)       
Moderately inactive  28.8 (1108)     27.8 (240)       
Moderately active  22.6 (869)     16.7 (144)       
Active  18.6 (716)     13.1 (113)       

Family history of osteoporosis  4.5 (172)     4.6 (40)     P=0.84  
Use of steroids  3.4 (131)     5.9 (51)     P=0.001  
Use of calcium supplements  3.9 (150)     3.5 (30)     P=0.56  
Use of vitamin D supplements  27.2 (1047)     29.9 (258)     P=0.12  

Values are means (standard deviations) or frequencies. P-values were determined using unpaired t-tests for continuous variables and chi square test 
for binary and categorical variables. 

1 The sample size of 4712 is the number of participants included in the analysis of total fractures. 
† Data for a smaller number of participants were available for analysis: 453 fracture subjects and 2256 non-fracture subjects.  
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3.5 The covariates and their relation to bone health 

As previously discussed (Chapter 1, pages 26-28), a number of important risk factors for bone 

health were identified and those were included as covariates in the present investigations of diet 

and bone health (Figure 3.3). 

 

3.5.1 Heel ultrasound 

Age was assessed as a categorical variable in 10-year intervals (<50 years, ≥50 to <60 years, ≥60 

to <70 years, and ≥70 years), as a 10-year age increase and decrease in BMD has been associated 

with the risk of developing a fracture (110). In the randomly selected EPIC-Norfolk sub-cohort, an 

increase in age by approximately 10 years was significantly associated with lower BUA (β±SE:      

β -1.7±0.6 dB/MHz, P=0.002) and VOS (β -5.4±1.3 m/s, P<0.001) in men, and more with lower 

BUA (β -7.9±0.4 dB/MHz, P<0.001) and VOS (β -20.2±0.9, P<0.001) in women (Figure 3.4). Men 

with a family history of osteoporosis compared to those without had significantly lower BUA 

(83±2.9 vs. 89±0.5± dB/MHz, P=0.040) and VOS (1622±6.7 vs. 1643±1.2 m/s, P=0.002) after age 

adjustment. A family history of osteoporosis was not associated with lower heel ultrasound in 

women. Categories of BMI were defined as: normal weight (<25 kg/m2), overweight (25 – 29.9 

kg/m2) and obese (>30 kg/m2). Increasing BMI was significantly associated with higher age-

adjusted BUA in women (β 5.7±0.5 dB/MHz, P<0.001), and the associations were almost 

significant in men (β 1.4±0.8 dB/MHz, P=0.068). VOS was also positively associated with higher 

BMI in women (β 4.4±1.2 m/s, P<0.001), but unexpected significant associations between higher 

BMI and decreasing VOS were observed in men (β -8.5±1.8 m/s, P<0.001). Current female 

smokers had significantly lower mean BUA (67.2±1.2 dB/MHz) compared to former smokers 

(70.8±0.6 dB/MHz, P=0.007) and never smokers (70.4±0.5 dB/MHz, P=0.011), after adjustment 

for age. Similarly, current male smokers had almost significantly lower VOS compared to never 

smokers (1636±4.2 vs. 1645±2.0 m/s, P=0.054). Higher levels of physical activity were 

significantly associated with higher age-adjusted BUA (β 1.2±0.5 dB/MHz, P=0.012) and VOS (β 

4.6±1.1 m/s, P<0.001) in men, but not in women. Both menopausal status and HRT were 

significantly associated with heel ultrasound in women. Measurements of VOS decreased by 4.6 

m/s across categories of menopausal status (defined as pre-menopausal, early peri-menopausal, 

late peri-menopausal and postmenopausal) after adjustment for age and HRT use (P=0.003). 

Moreover, current users of HRT had significantly higher BUA and VOS compared to former users 

(BUA β -4.0±1.2 dB/MHz, P=0.001; VOS β -11.9±2.9 m/s, P<0.001) and never users (BUA β -

6.9±1.0 dB/MHz, P<0.001; VOS β -16.3±2.3 m/s, P<0.001) of HRT. The use of steroid medication, 

calcium supplements as well as vitamin D supplements was not associated with age-adjusted 

heel ultrasound in either sex. Moreover, dietary calcium intake was not found to be associated 

with BUA and VOS in this population, after adjustment for age and energy intake. 
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Figure 3.3: Confounding factors in the relationship between diet and bone health. 

 

Confounders were colour-coded according to their modifiability: non-modifiable biological factors are shown in grey and modifiable lifestyle factors appear in blue. 
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Figure 3.4: The effects of age on mean BUA (A) and VOS (B) in the EPIC-Norfolk case-cohort sample.  

 
Sex-specific associations between increasing age and heel ultrasound were determined 
from regression analyses. The relationship was linear in both men (BUA P-trend=0.002; 

VOS P-trend<0.001) and women (all P-trend < 0.001). n=2328. 
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3.5.2 Fractures 

In order to determine the effects of increasing age on the risk of fractures in this cohort, age was 

divided in to categories as a 10-year increase in age has previously been shown to be associated 

with a two times greater risk of hip fracture (110). As illustrated in Figure 3.5, in the case-cohort, 

the percentage of fractures at the hip, spine and wrist combined (total fractures) for the age 

categories 39-49 years, 50-59 years, 60-69 years and 70-78 years were 6%, 10%, 12% and 22% in 

men, respectively, and 5%, 13%, 24% and 41% in women. Older men and women were more 

likely to suffer a fracture at the hip, spine or wrist (total fracture) over the median follow-up of 

12.6 years (P<0.001).  

 

Figure 3.5: The effects of age on total fractures in the EPIC-Norfolk case-cohort sample. 

 
Sex-specific chi square tests indicated that the number of fractures differed significantly 

between age groups in both sexes (P<0.001). n=5012. 

 

Men who were classed as being physically “inactive” or “moderately inactivate” were more likely 

to experience a fracture than those who were “moderately active” or “active” (percentage 

fractures: 13% and 15% vs. 9% and 10%, respectively, P=0.051). Similarly, physically inactive 

women had higher fracture rates compared to more active women (percentage fractures: 29% 

vs. 16-18%, P<0.001). The use of steroid medication was also associated with higher fractures in 

women (31% vs. 20%, P=0.004), but not in men. In women, being postmenopausal was 

associated with much higher fracture rates (27%) compared to being early or late peri-

menopausal (10-11%) and being pre-menopausal (5%, all P<0.001). Moreover, women who had 

never used HRT were more likely to suffer a fracture than women who were former and current 

users (24% vs. 16% and 12%, respectively, P<0.001). Percentage fractures did not differ for the 

remaining covariates including family history of osteoporosis, BMI, smoking, dietary calcium 

intake, and the use of calcium and vitamin D supplements in either sex. 
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3.6 Associations between intakes of fruit and vegetables with bone 
health 

This chapter also investigated potential associations between dietary intakes of fruit and 

vegetables with bone health for comparison reasons with the following chapters, which will 

explore nutrient-bone relationships of predominantly plant-based nutrients. 

 

3.6.1 Heel ultrasound 

Cross-sectional associations between fruit intake, vegetable intake and the combined total 

intake of fruit and vegetables (F&V) with heel ultrasound measures are shown in Figure 3.6 for 

men and in Figure 3.7 for women. In men, vegetable intake was significantly positively 

associated with both BUA (β 0.89 dB/MHz per quintile, P-trend=0.027) and VOS (β 1.89 m/s per 

quintile, P-trend=0.037). Moreover, men in the top vs. the lowest quintile of vegetable intake 

had 5.0% higher BUA and 0.7% higher VOS (P≤0.014). Intakes of fruit and F&V were not 

associated with measures of heel ultrasound in men. In women, there were significant positive 

associations between BUA and intakes of fruit (β 0.74 dB/MHz per quintile, P-trend=0.008), 

vegetables (β 1.13 dB/MHz per quintile, P-trend<0.001) and F&V (β 1.10 dB/MHz per quintile, P-

trend<0.001). Moreover, women in the top vs. the lowest quintile of fruit, vegetable and F&V 

intake had 5.1%, 7.3% and 7.1% higher BUA, respectively (P≤0.004). Higher vegetable intake was 

also significantly associated with 0.4% higher VOS in women (β 1.64 m/s per quintile, P-

trend=0.017), but there were no associations between fruit and F&V with VOS in women. 

 

3.6.2 Fracture risk 

There were no differences in fruit and vegetable intakes in participants with and without a 

fracture (Table 3.4). When subjects were grouped into quintiles of intake (Table 3.5), hip 

fracture risk in men was significantly inversely associated with fruit intake (HR 0.81, 95%CI 0.69-

0.96; P-trend=0.014) and with F&V intake (HR 0.85, 95%CI 0.72-0.99; P-trend=0.043), and those 

men in quintile 4 compared to quintile 1 had significantly lower hip fracture risk (fruit intake: HR 

0.31, 95%CI 0.15-0.65; P=0.002; F&V intake: HR 0.43, 95%CI 0.22-0.87; P=0.018). There were no 

associations between fruit and vegetable intakes and the risk of spine or wrist fracture in men. In 

women, there was a marginally significant association between fruit intake and spine fracture 

risk (HR 0.86, 95%CI 0.74-1.00; P-trend=0.046), and spine fracture risk was significantly lower in 

women with higher vs. lower fruit intakes (Q4 vs. Q1: HR 0.54, 95%CI 0.31-0.94; P=0.029; Q5 vs. 

Q1: HR 0.56, 95%CI 0.32-0.98; P=0.041). There were no associations between fruit and vegetable 

intakes and the risk of hip or wrist fracture in women. 
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Figure 3.6: Associations between intakes of fruit and vegetables with mean BUA (A) and VOS (B) in men. 

 

 
Mean dietary intakes for quintile 1 and 5 ranged from 17-361 g/d for fruit intake, 32-221 g/d for vegetable 
intake and 84-521 g/d for the combined fruit and vegetable intake (F&V). Standard error of the mean (SE) 
was 1.2-1.3 dB/MHz for BUA and 2.8-2.9 m/s for VOS. The analysis used EPIC-Norfolk data from the second 
health check and was based on a multivariate-adjusted linear regression analysis. Differences between the 
two upper quintiles referent to quintile 1 were significant at *P<0.05 and **P<0.01. n=968. 
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Figure 3.7: Associations between intakes of fruit and vegetables with mean BUA (A) and VOS (B) in 
women. 

 

 
Mean dietary intakes for quintile 1 and 5 ranged from 38-384 g/d for fruit intake, 39-221 g/d for vegetable 
intake and 110-541 g/d for the combined fruit and vegetable intake (F&V). Standard error of the mean (SE) 
was 0.9 dB/MHz for BUA and 2.1-2.4 m/s for VOS. The analysis used EPIC-Norfolk data from the second 
health check and was based on a multivariate-adjusted linear regression analysis. Differences between the 
two upper quintiles referent to quintile 1 were significant at *P<0.05, **P<0.01 and ***P<0.001. n=1360. 
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Table 3.4: Fruit and vegetable intakes in subjects with and without a total fracture. 

  Subjects without a fracture  Subjects with a fracture   

Dietary intake (g/d)  n Mean (SD) [Range]  n Mean (SD) [Range]    P 

Men             
Fruit and vegetables  1709 249.4 (164.2) [0; 2143]  248 242.2 (155.3) [0; 1086]  0.52 
Fruit  1709 143.1 (131.3) [0; 1603]  248 137.2 (134.0) [0; 1013]  0.51 
Vegetables  1709 106.3 (73.3) [0; 626]  248 105.0 (69.9) [0; 432]  0.80 
             
Women             
Fruit and vegetables  2139 284.2 (167.4) [0; 2375]  616 284.0 (167.5) [0; 1135]  0.98 
Fruit  2139 174.8 (134.1) [0; 1624]  616 172.3 (131.0) [0; 936]  0.68 
Vegetables  2139 109.4 (69.3) [0; 787]  616 111.6 (73.5) [0; 506]  0.48 
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Table 3.5: Associations between quintiles of fruit and vegetable intakes and fracture risk. 

 
 Men  Women 
 n  cases/ 

non-cases 
Q4 vs. Q1 Q5 vs. Q1 Linear trend  

n  cases/ 
non-cases 

Q4 vs. Q1 Q5 vs. Q1 Linear trend 

Total fracture           
Fruit and vegetables  248/1709 HR 0.85; P=0.48 

(95%CI 0.55-1.33) 
HR 0.74; P=0.19 
(95%CI 0.47-1.16) 

HR 0.94; P=0.24 
(95%CI 0.85-1.04) 

 616/2139 HR 1.01; P=0.95 
(95%CI 0.74-1.37) 

HR 0.98; P=0.90 
(95%CI 0.71-1.35) 

HR 1.01; P=0.85 
(95%CI 0.94-1.08) 

Fruit  248/1709 HR 0.73; P=0.18 
(95%CI 0.47-1.15) 

HR 0.66; P=0.07 
(95%CI 0.42-1.04) 

HR 0.91; P=0.06 
(95%CI 0.82-1.00) 

 616/2139 HR 0.92; P=0.62 
(95%CI 0.68-1.26) 

HR 0.98; P=0.26 
(95%CI 0.61-1.15) 

HR 0.98; P=0.62 
(95%CI 0.91-1.06) 

Vegetables  248/1709 HR 0.83; P=0.39 
(95%CI 0.53-1.28) 

HR 0.91; P=0.68 
(95%CI 0.60-1.40) 

HR 0.99; P=0.90 
(95%CI 0.90-1.10) 

 616/2139 HR 1.00; P=1.00 
(95%CI 0.73-1.37) 

HR 1.01; P=0.95 
(95%CI 0.74-1.37) 

HR 1.02; P=0.57 
(95%CI 0.95-1.10) 

Hip fracture           
Fruit and vegetables  112/1730 HR 0.43; P=0.018 

(95%CI 0.22-0.87) 
HR 0.63; P=0.16 
(95%CI 0.33-1.20) 

HR 0.85; P=0.043 
(95%CI 0.72-0.99) 

 339/2187 HR 1.12; P=0.56 
(95%CI 0.76-1.66) 

HR 0.92; P=0.71 
(95%CI 0.61-1.40) 

HR 1.02; P=0.72 
(95%CI 0.92-1.12) 

Fruit  112/1730 HR 0.31; P=0.002 
(95%CI 0.15-0.65) 

HR 0.53; P=0.06 
(95%CI 0.28-1.02) 

HR 0.81; P=0.014 
(95%CI 0.69-0.96) 

 339/2187 HR 1.07; P=0.76 
(95%CI 0.71-1.59) 

HR 0.92; P=0.69 
(95%CI 0.61-1.39) 

HR 1.03; P=0.58 
(95%CI 0.94-1.13) 

Vegetables  112/1730 HR 0.96; P=0.89 
(95%CI 0.51-1.79) 

HR 0.77; P=0.43 
(95%CI 0.40-1.49) 

HR 1.00; P=0.97 
(95%CI 0.86-1.16) 

 339/2187 HR 1.05; P=0.83 
(95%CI 0.69-1.58) 

HR 0.92; P=0.69 
(95%CI 0.61-1.39) 

HR 1.00; P=0.94 
(95%CI 0.91-1.09) 

Spinal fracture           
Fruit and vegetables  78/1730 HR 1.28; P=0.49 

(95%CI 0.63-2.62) 
HR 0.82; P=0.61 
(95%CI 0.38-1.76) 

HR 1.02; P=0.82 
(95%CI 0.87-1.20) 

 124/2211 HR 0.68; P=0.23 
(95%CI 0.37-1.26) 

HR 1.06; P=0.83 
(95%CI 0.60-1.88) 

HR 0.93; P=0.29 
(95%CI 0.80-1.07) 

Fruit  78/1730 HR 1.14; P=0.70 
(95%CI 0.57-2.29) 

HR 0.67; P=0.30 
(95%CI 0.31-1.42) 

HR 0.98; P=0.78 
(95%CI 0.82-1.16) 

 124/2211 HR 0.54; P=0.029 
(95%CI 0.31-0.94) 

HR 0.56; P=0.041 
(95%CI 0.32-0.98) 

HR 0.86; P=0.046 
(95%CI 0.74-1.00) 

Vegetables  78/1730 HR 0.79; P=0.51 
(95%CI 0.39-1.58) 

HR 0.76; P=0.43 
(95%CI 0.38-1.50) 

HR 0.98; P=0.81 
(95%CI 0.82-1.17) 

 124/2211 HR 0.85; P=0.58 
(95%CI 0.48-1.52) 

HR 0.97; P=0.92 
(95%CI 0.57-1.66) 

HR 1.02; P=0.81 
(95%CI 0.89-1.16) 

Wrist fracture           
Fruit and vegetables  70/1736 HR 1.54; P=0.28 

(95%CI 0.70-3.38) 
HR 1.06; P=0.90 
(95%CI 0.46-2.45) 

HR 1.06; P=0.46 
(95%CI 0.91-1.24) 

 218/2192 HR 0.85; P=0.46 
(95%CI 0.55-1.31) 

HR 0.81; P=0.36 
(95%CI 0.52-1.27) 

HR 0.98; P=0.66 
(95%CI 0.88-1.09) 

Fruit  70/1736 HR 1.19; P=0.69 
(95%CI 0.52-2.71) 

HR 0.93; P=0.87 
(95%CI 0.40-2.16) 

HR 0.99; P=0.91 
(95%CI 0.85-1.16) 

 218/2192 HR 0.76; P=0.24 
(95%CI 0.48-1.20) 

HR 0.76; P=0.24 
(95%CI 0.48-1.20) 

HR 0.94; P=0.26 
(95%CI 0.84-1.05) 

Vegetables  70/1736 HR 0.49; P=0.14 
(95%CI 0.19-1.26) 

HR 1.43; P=0.34 
(95%CI 0.69-2.95) 

HR 1.01; P=0.95 
(95%CI 0.83-1.22) 

 218/2192 HR 0.99; P=0.96 
(95%CI 0.63-1.55) 

HR 1.06; P=0.80 
(95%CI 0.68-1.63) 

HR 1.04; P=0.42 
(95%CI 0.94-1.15) 

Values are adjusted Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first 
health check. 
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3.7 Summary 

In summary, this case-cohort sample of the EPIC-Norfolk study was a large sub-sample of over 

5000 healthy participants aged between 39 and 79 years at baseline, 60% of which were women. 

This study had a very low proportion of current smokers compared to the general population of 

England at the time of recruitment. Diet was as expected, with men having a higher total energy 

intake and subsequent higher intake of most nutrients compared to women. Dietary intakes of 

both vitamin C and vitamin K1 were slightly lower in this population compared to the general 

population, and iron intake was slightly higher, possibly due to the use of different dietary 

assessment methods.  

 Participants with a fracture at the hip, spine or wrist compared to those without were 

significantly older, less active, more likely to take steroid medication, and had a higher total 

energy intake. Moreover, further preliminary analyses showed that increasing age, a family 

history of osteoporosis, low BMI, current smoking, low levels of physical activity, the use of 

steroid medication, and in women, postmenopausal status and no HRT use, were significantly 

associated with lower heel ultrasound or an increased risk for fracture. These preliminary results 

highlight the necessity for adjusting for confounding factors, which are associated with measures 

of heel ultrasound and the risk of fractures in this population, and therefore the analyses of the 

next chapters included multivariate adjustments. 

 For comparison reasons with the results from the next chapters, the relationship 

between fruit and vegetable intake and bone health were determined in preliminary analyses. 

The results showed that, in cross-sectional analyses, heel ultrasound measures were significantly 

positively associated with vegetable intake in men and with all measures of fruit and vegetable 

intake in women. In prospective investigations, intakes of fruit and F&V were significantly 

inversely associated with hip fracture risk in men, and fruit intake with spine fracture risk in 

women. 

 

In the following chapters, the role of diet in osteoporosis and fracture prevention in older age 

will be explored by investiagting dietary relationships with markers of bone health. Then, 

strategies of dealing with issues arising from the measurement of dietary behaviour will be 

explored by combining estimates of dietary intake and nutrient status in blood.  
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CHAPTER 4 

 

VITAMIN K1 AND BONE HEALTH 

 

 

Cross-sectional and prospective 

investigations of vitamin K1 intake with 

heel ultrasound and fracture risk 

 

4. 4 
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4.1 Abstract 

Vitamin K1 may play a role in reducing bone-related inflammation and it is crucial to the calcium-

binding ability of osteocalcin, the most abundant non-collagenous protein in bone. Previous 

epidemiological studies have shown significant associations between higher dietary vitamin K1 

intakes and markers of blood status with higher bone density and lower risk of hip fracture. 

However, epidemiological evidence in men is scarce, and data from British cohorts is limited to 

only one previous study despite population differences in dietary intakes of vitamin K1. 

Therefore, this study aimed to explore i) potential cross-sectional associations between dietary 

vitamin K1 intake and measures of heel ultrasound and ii) potential prospective associations with 

fracture risk in a sub-set of the 25,639 EPIC-Norfolk men and women aged 39-79 years at 

baseline. The results from the present cross-sectional study showed that vitamin K1 intake was 

significantly associated with 0.6% higher VOS in men and with 5.5% higher BUA in women. The 

largest difference in mean vitamin K1 intake between the highest and lowest group was 133 µg/d 

in men and 121 µg/d in women, and this is achievable through the usual diet. In the prospective 

study, vitamin K1 intake was not a significant predictor of fracture risk at any site in men, 

although a significant association between higher vitamin K1 intake and a 53% reduction in spine 

fracture risk was found in women. The present cross-sectional and prospective investigations 

addressed previous limitations regarding the scarcity of data in men and from British 

populations. Our findings highlight the importance green leafy vegetables as the main source of 

vitamin K1 in our diet, and these may have significant implications in maintaining higher levels of 

bone density. Future studies should conduct long-term RCTs to investigate the effects of vitamin 

K1 supplementation and fracture risk as this has not been conducted before. 
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4.2 Introduction 

Vitamin K1 is exclusively found in plant-based foods (214) and has been suggested to play a role in 

reducing bone-related inflammation (150, 151, 231), a process associated with upregulated bone 

resorption (232). Furthermore, it acts as a cofactor in the γ-carboxylation of osteocalcin, the most 

abundant non-collagenous protein in bone, which is crucial for its ability to bind calcium (11). The 

proportion of osteocalcin in blood that is not carboxylated (undercarboxylated osteocalcin, 

ucOC) is a sensitive marker of vitamin K status and has previously been shown to be an 

independent predictor of low BMD and fracture risk (233-237).  

 

Vitamin K, a class of fat-soluble organic compounds, may be classified into two naturally 

occurring groups (K1 and K2) according to the synthesising medium, but also exist as a number of 

synthetic forms (214, 238-240). The underlying mechanisms of vitamin K in various processes in the 

body may not be dependent on its molecular forms because the latter share a common 

methylated naphthoquinone ring structure. Their differences lie in the side chain which is 

attached to this ring. Vitamin K1 has a phytyl side chain and vitamin K2 has varying numbers of 

isoprenoid residues depending on its molecular form. As the methylated naphthoquinone ring is 

thought to be the functional group of vitamin K, the different forms are likely to act similarly. 

 A number of vitamins and medications are thought to alter normal vitamin K absorption 

and metabolism. For example, very high vitamin A intakes may interfere with vitamin K 

absorption (241); whereas high vitamin E intakes may alter vitamin K metabolism (242) and lead to a 

decrease in vitamin K status (243, 244). Moreover, anticoagulants, such as warfarin, have been 

shown to inhibit vitamin K epoxide reductases (245), and aspirin may interfere with vitamin K 

metabolism via the inhibition of quinone reductases (246). The use of aspirin has also been 

associated with reduced fracture healing in rats (247). Following intestinal absorption, the 

transport of vitamin K to the liver, where it is stored, occurs in the form of triglyceride-rich 

lipoproteins (248). Unlike those of other fat-soluble vitamins, the onset of vitamin K deficiency 

may be rapid as vitamin K stores are quickly depleted (249).  

 Despite our current knowledge of vitamin K absorption, metabolism and storage, 

investigations of its requirements in humans are limited, and thus a UK RNI for vitamin K has not 

been established yet. However, dietary intakes of 1 µg/kg/d in adults have been proposed as 

safe intakes for the UK population (225). This reflects average daily intakes of vitamin K of 60-90 

µg/d as estimated in several British and American studies (160, 250, 251) and is slightly lower than the 

US Adequate Intake recommendations of 90-120 µg/d (252). Mean dietary intakes appear to be 

lower in British populations (men: 70 µg/d; women: 61 µg/d) (160) compared to those in the US 

(men: 143 µg/d; women: 163 µg/d; or median 163 µg/d) (158, 159), possibly in part due to 

differences in dietary assessments. 
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Figure 4.1: The structure of vitamin K1 (phylloquinone). 

 
Adapted from Berkner (2005) 

(253)
. 

 

Vitamin K1 (Figure 4.1), also referred to as phylloquinone, is exclusively synthesised by green 

plants and plays a key role in photosynthesis. For this reason, it is predominantly found in the 

photosynthesis-active parts of plants such as spinach and kale, and in much smaller quantities in 

the roots and fruits of plants as well as some vegetable oils and margarines (214). The 

bioavailability of vitamin K1 is relatively low because the vitamin is tightly bound to the 

chloroplast membrane in the photosynthetic-active parts of plants, thereby limiting intestinal 

absorption (254). Moreover, due to the fat-soluble properties, its absorption in the human 

intestine is dependent on the solubilisation and emulsification of its lipophilic compounds by 

pancreatic enzymes and bile salts. 

 In the last few decades, a range of other vitamin K-dependent proteins have been 

identified, including osteocalcin and matrix Gla protein, which are involved in bone metabolism 

(255). Hence, a potential role for vitamin K in osteoporosis and fracture prevention was proposed 

and epidemiologic evidence confirmed this with reports of significant positive associations 

between, for example, higher vitamin K1 intakes and reduced fracture risk (154, 158, 159). However, 

epidemiological evidence in men is scarce, and data from British cohorts is limited despite 

population differences in dietary intakes of vitamin K1 (158-160). 

 

4.2.1 The potential role of vitamin K1 in bone health 

Since the structures of vitamin K1 and K2 are very similar and because a still undefined 

proportion of vitamin K1 is converted into K2 in the body, previous experimental studies have 

mainly evaluated and reported the underlying mechanisms on bone for compounds with vitamin 

K-activity. Hence, the following section will focus on the latter with respect to bone rather than 

the specific mechanisms of action of vitamin K1 alone.  
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4.2.1.1 The γ-carboxylation of osteocalcin 

To date, the vitamin K-dependent γ-carboxylation of osteocalcin and its subsequent ability to 

bind calcium is the primary underlying mechanism for the hypothesised beneficial effects of 

vitamin K on bone (11). Osteocalcin is the most abundant non-collagenous protein in bone, 

accounting for around 10-20% of the non-collagenous proteins and approximately 1% of all bone 

protein (256). It is synthesised by osteoblasts during bone formation (257, 258) and is mainly involved 

in the mineralisation of chondrocytes, found in bone cartilage. Osteocalcin requires calcium in 

order to maintain its structural integrity, with each osteocalcin molecule binding five calcium 

ions via its three glutamate residues. However, this process requires γ-carboxylation (259), and 

this is vitamin K-dependent (253) (Figure 4.2). Vitamin K acts as a cofactor in the post-translational 

γ-carboxylation of glutamic acid to γ-carboxyglutamic acid in osteocalcin. The latter has a strong 

binding affinity with calcium, and this enables a protein-calcium-phopholipid interaction (260). In 

the absence of vitamin K, γ-carboxylation does not occur, and osteocalcin lacks structural 

integrity and remains biologically inactive. The fraction of osteocalcin, which is unable to bind to 

calcium due to the absence of the γ-carboxylation process, is referred to as ucOC. Serum levels 

of ucOC, when expressed as a fraction of total osteocalcin, are considered to be a sensitive 

marker of vitamin K status (261), and high circulating ucOC levels may be an indicator of low 

dietary intakes of vitamin K (262).  

 

Figure 4.2: The γ-carboxylation of glutamic acid residues in osteocalcin. 

 
Abbreviations: OC, osteocalcin; ucOC, undercarboxylated osteocalcin.  

Adapted from Tie et al. (2011) 
(263)

. 

 

Besides osteocalcin, matrix Gla protein and protein S have also been identified as vitamin K-

dependent proteins of bone matrix (264, 265); however, their role in bone health is not yet fully 

understood. Matrix Gla protein contains five Gla residues and is found in bone and cartilage in 

high levels (266, 267). Protein S has also been shown to be present in bone matrix and is synthesised 

by osteoblasts (268). 
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4.2.1.2 The modulation of pro-inflammatory cytokines 

Another potential role of vitamin K in bone health relates to its ability to reduce bone-related 

inflammation. For example, one animal study in rats found that following the induction of 

inflammation, vitamin K1 supplementation suppressed inflammation (150). It has been suggested 

that the underlying mechanisms for this might be that vitamin K1 has the ability to suppress IL-6 

expression (150, 151). IL-6 is a pro-inflammatory cytokine which stimulates osteoclastogenesis; 

hence it is involved in bone resorption (232). In fact, in a recent cross-sectional study of 662 older 

participants, those subjects in the top quartile compared to the bottom quartile of serum 

phylloquinone concentration had significantly lower levels of circulating IL-6 (adjusted mean ± 

SEM: 1.22±0.07 pmol/l vs. 1.45±0.07 pmol/l, P-trend<0.01) (231). This suggests that vitamin K may 

be beneficial to bone by reducing inflammation, which has previously been shown to partly 

contribute to the development of osteoporosis (49, 269), through the down-regulation of IL-6 

expression in osteoclastogenesis.  

 

4.2.2 Associations between vitamin K1 and bone health in previous studies 

To date, there is evidence from RCTs and epidemiological studies for a potential beneficial role 

of vitamin K1 in osteoporosis and fracture risk, although the evidence is inconsistent. In these 

studies, bone health was investigated as i) fracture incidence as the best indicator of bone 

health, ii) BMD using DXA as the gold standard method or other measurements including 

quantitative ultrasound, and iii) biochemical markers of bone formation including BSALP, OC, 

PINP and PICP, as well as markers of bone resorption including PYD, DPD, CTx and NTx. The 

following section will review previously published studies which investigated potential 

associations between vitamin K1 and bone health. RCTs as the best indicator of causality will be 

discussed first, and this will be followed by observational studies in hierarchical order of 

decreasing ability to determine causality.   

 

4.2.2.1 Randomised controlled trials 

RCTs are the best studies for inferring causality and for determining which factors influence 

disease. Thus, they are the gold standard as they limit both selection biases and confounding. A 

recent meta-analysis of RCTs by Fang et al. (270) assessed the impact of vitamin K 

supplementation on BMD at the spine and femoral neck measured via DXA by extrapolating data 

from 16 intervention studies in 20-599 participants published between 1999 and 2010. They 

reported beneficial effects of vitamin K supplementation on BMD at the spine but not the 

femoral neck (percentage change in BMD: 1.27% at the spine, P=0.002; and 0.17% at the femoral 

neck, P=0.38). However, these findings were no longer significant after the exclusion of low-

quality studies which had been classified as ≤3 points on the Jadad scale, a scale with a 
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maximum score of five assessing the quality of randomisation, blinding, and withdrawals and 

drop-outs (271). Moreover, the results of this meta-analysis included both phylloquinone (K1) and 

menaquinones (K2) studies, with the majority of studies supplementing with vitamin K2 and only 

five of sixteen studies investigating vitamin K1. A summary of those vitamin K1 studies can be 

found in Appendix 1, Table A1.1.  

Additional subgroup analysis by Fang et al. (270), using data from the two vitamin K1 

studies that focused on absolute effects of lumbar spine BMD (272, 273), did not find a significant 

beneficial effect. Differences in population characteristics (age: 68 vs. 25-50 years; sex: men and 

postmenopausal women vs. pre- and postmenopausal women), duration of study (36 vs. 6 

months), supplementation dose (500 vs. 600 µg of phylloquinone) and concurrent treatment 

(calcium and vitamin D vs. no concurrent treatment) may explain why the subgroup analysis as 

part of the meta-analysis did not find a significant overall effect of vitamin K1 supplementation 

on spine BMD. The inclusion of previous study outcomes at other bone sites in addition to those 

of the spine may have given a different result. This is because a well-designed RCT in healthy 

women reported that those receiving a vitamin K1 supplement for three years had up to 1.7% 

less BMD loss at the femoral neck compared to those that did not receive vitamin K1 (153). 

Moreover, there is also evidence from more recent data published after the meta-analysis and a 

summary of these studies can be found in Appendix 1, Table A1.2. For example, one study also 

reported beneficial effects of vitamin K1 on different BMD sites (152). In this study, vitamin K1 

supplementation of 100 µg/d for 12 months resulted in 1.1% and 1.35% higher BMD at the 

whole body and the spine respectively compared to baseline. In contrast, the control group 

experienced whole body and spinal BMD losses of 0.1% and 2.9%, respectively. The 

supplementation dose of 100 µg/d used in this study would be easily achievable in the diet, as 

mean dietary vitamin K1 intakes of 97-171 µg/d have previously been reported for different 

population groups in large scale epidemiological studies (154, 155, 157). 

 Furthermore, the meta-analysis by Fang et al. only focused on the effects of vitamin K1 

on changes in BMD (270). However, a large number of studies, including those already included in 

the meta-analysis, additionally investigated the effects of vitamin K1 on a range of markers of 

bone metabolism. Although findings were contradictory, intervention studies consistently 

reported beneficial effects of vitamin K1 supplementation on levels of undercarboxylated 

osteocalcin (ucOC), an indicator of low vitamin K status (261). Vitamin K1 supplementation, ranging 

from 80 to 1000 µg/d, resulted in a decrease in ucOC concentrations of 31-50% compared to 

baseline values; and decreases in ucOC levels of 40-68% were reported in comparison to the 

control groups (274-277). Where different doses were given, a dose-response relationship was 

observed with higher vitamin K1 supplementation doses resulting in greater reduction of ucOC 

concentrations (276). Similarly, studies reporting results for undercarboxylated osteocalcin as a 

percentage of total osteocalcin (%ucOC) showed significant decreases in %ucOC of 33-54% 
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compared to baseline values (152, 272, 275, 278). Other markers of bone turnover shown to be 

beneficially affected by vitamin K1 include BSALP (279), PINP (277), CTx (277) and DPD (152, 279). For 

example, BSALP increased by 30% and PINP, CTx and DPD decreased by 15%, 30% and 10%, 

respectively, compared to baseline as a result of vitamin K1 supplementation (80-10000 µg/d) for 

4-29 months. However, a number of studies did not find any significant effects of vitamin K1 

supplementation on these bone turnover markers (153, 274-276, 280), possibly due to differences in 

study duration, doses and composition of the vitamin K1 supplements, and the overall health of 

the study population. There is also great controversy regarding the effects of vitamin K1 on OC 

concentrations. Previous intervention studies have reported an increase (276), decrease (274, 277, 279, 

280) or no significant changes (152, 153, 272, 273, 278) in OC concentrations as a result of vitamin K1 

supplementation. It has previously been suggested that the use of different antibodies during OC 

analysis may be an explanation for these discrepancies, resulting from the antibodies’ differing 

affinity for the carboxylated form of osteocalcin (261).    

 Although a number of RCTs have investigated the effects of vitamin K1 on changes in 

BMD or markers of bone turnover, most RCTs were conducted in female populations only. Only 

two of the eleven identified RCTs included men in their study populations (272, 278); and findings 

indicated beneficial effects of vitamin K1 supplementation on %ucOC, but not on changes in 

BMD. Hence, the effects of vitamin K1 supplementation on bone remain to be explored further in 

men.  

Higher ucOC concentrations have previously been determined as an independent risk 

factor for osteoporotic fractures (OR 2.0, 95%CI 1.2-3.2) (235). Considering that all RCTs discussed 

in this literature review have reported beneficial effects of vitamin K1 on ucOC concentrations, it 

is likely that vitamin K1 would also have beneficial effects on fracture risk, possibly through the 

reduction of ucOC concentrations. In fact, there is epidemiological evidence that high ucOC 

concentrations may be a marker of fracture risk (235). However, to date, no experimental studies 

have investigated the effects of vitamin K1 on fracture risk and thus further research is needed to 

confirm this hypothesis. 

 There is evidence to suggest that vitamin K1 supplementation may be beneficial to bone 

health. Previous RCTs have reported beneficial effects of on BMD as well as on various markers 

of bone turnover, particularly ucOC as an indicator of vitamin K status. However, previous 

findings remain inconsistent, possibly due to differences in follow-up, study durations, study 

populations and supplementation doses. Furthermore, the long-term effects of vitamin K1 

supplementation on bone health are not yet fully understood as studies were of short duration 

(3 years or less) and data on fracture risk are still lacking.   
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4.2.2.2 Prospective studies 

Prospective cohort studies may be used to investigate the aetiology of a disease as the exposure 

is measured prior to the condition occurring, making data less prone to recall bias than case-

control studies. Furthermore, as cases and controls are drawn from the same population, there 

is less selection bias. A summary table of prospective studies investigating potential associations 

between vitamin K1 and bone density can be found in Appendix 1, Table A1.3.  

 Previous prospective studies on dietary intakes of the nutrient have reported no 

associations. The only four published studies to date were undertaken in US, Chinese, Spanish 

and Danish populations of 200-2217 older participants. They used measurements of BMD (158, 281, 

282) or ultrasound (156); however, no significant associations between vitamin K1 intake and any 

one of these bone measures were found. Potential explanations for this might be issues around 

small sample sizes, high mean vitamin K1 intakes with limited variance in intakes, and a short 

follow-up period. For example, two prospective studies investigated associations in small cohorts 

of under 1000 participants (156, 158). Moreover, in one study, vitamin K1 intakes were very high 

(156), with mean intakes of 334 µg/d in men and 300 µg/d in women compared to 59-82 µg/d as 

estimated for the general US population (250). This may have been due to the use of a FFQ which 

tends to overestimate dietary intakes including fruit and vegetable intake (202, 204) and 

subsequently introduces measurement error. To date, no prospective studies have investigated 

vitamin K1 and bone relationships in British populations, despite the latter having lower dietary 

intakes than US populations (158-160), as previously discussed.  

 In contrast, prospective and longitudinal studies have almost consistently shown that 

higher vitamin K1 intakes are associated with a lower risk for hip fracture (157-159). For example, in 

888 US men and women (mean age = 75 years), those with median dietary vitamin K1 intakes of 

254 µg/d had a up to 65% lower risk of hip fracture than those with intakes of 56 µg/d after a 7-

year follow-up period (158). Similarly, every 10 µg/d increment in dietary vitamin K1 intake was 

significantly associated with a 2% risk reduction in hip fracture in 2807 Norwegian men and 

women (mean age = 72 years) (157). Only one prospective study in 2944 Chinese men and women 

(mean age = 74 years) did not find any associations (283), possibly due to the population’s high 

dietary intakes of vitamin K1 (range: 155-362 µg/d in men and 162-408 µg/d in women), which 

may limited the study’s ability to detect a potential discrimination in fractures at the extreme 

ends of vitamin K1 intake. Prospective studies also reported a link between vitamin K1 status and 

fractures. For example, the relative risk of vertebral fractures was 3.58 (95%CI, 3.26-3.93) for 

subjects with lower plasma K1 levels than the median (2.67 nmol/l) compared to those with 

plasma vitamin K1 levels above the median in a population of 379 Japanese women (mean age = 

63 years) (284). Another prospective study in less than 200 French women aged 70-97 years also 

showed that serum ucOC concentrations were significantly higher in subjects who sustained a 

hip fracture compared to those who did not (ucOC: 1.47 ng/ml vs. 0.89 ng/ml, P<0.05) (236). In 
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contrast, another prospective study did not find an association between ucOC levels and the 

incidence of vertebral fractures (284); however, this study did not adjust for any confounding 

factors. Future prospective studies investigating potential associations between ucOC and 

vertebral fractures should therefore adjust for relevant covariates.  

 

4.2.2.3 Case-control studies 

Case-control studies are used to examine specific exposures as potential risk factors of a disease 

in people with and without the condition. The exposures preceded the disease outcome, and 

thus case-control studies are prone to recall bias where case subjects tend to have a better 

recollection of specific exposures than the controls. Moreover, selection bias is an issue as both 

the exposure and the disease outcome are pre-defined. Results from seven previous case-

control studies provide further evidence for a link between dietary vitamin K1 intake and bone 

health (Appendix 1, Table A1.4). Studies have consistently reported that cases with osteopenia, 

low BMD or hip fractures had significantly lower serum or plasma vitamin K1 levels than controls 

(cases: serum 0.24-0.41 ng/ml; plasma 0.27-0.46 ng/ml; controls: serum 0.55-0.64 ng/ml; plasma 

0.39-0.77 ng/ml) (285-289). Fracture cases were also shown to have significantly lower BMD at 

different measurement sites compared to controls (cases: hip BMD 0.758 g/cm2; spine BMD 

0.981 g/cm2; controls: hip BMD 0.795 g/cm2; spine BMD 1.033 g/cm2) (281). To date, no previous 

study compared dietary intakes of vitamin K1 between cases and controls. Two case-control 

studies investigated associations between vitamin K1 and the risk of hip fracture (281, 285). The 

results showed that serum vitamin K1 levels were a significant predictor of hip fracture risk (OR 

0.07, 95%CI 0.02-0.32; P=0.001) (285), although hip fracture risk according to dietary intakes of 

vitamin K1 did not differ between cases and controls (281), possibly due to the young age and 

narrow age range of the studied population (48-52 years).  

 

4.2.2.4 Cross-sectional studies 

Cross-sectional studies are used to report the prevalence of a disease in a defined population at 

a specific point in time. Whether the exposure predated the disease or not cannot be 

determined. To date, positive associations between vitamin K1 intake or blood concentrations 

and bone health have also been shown in a number of cross-sectional studies (Appendix 1, Table 

A1.5). For example, higher dietary vitamin K1 intakes were associated with higher BMD (no effect 

sizes shown) (154, 155); and lower intakes were significantly associated with a higher risk of having 

low BMD (P-trend=0.007) (157). Moreover, every 100 µg/d increment in dietary vitamin K1 intake 

was associated with an 0.96 dB/MHz increase in BUA and a 1.13 m/s increase in SOS (156). For 

blood concentrations, each 1 nmol/l increase in plasma concentrations of phylloquinone in men 

was significantly associated with an increase in BUA of 1.13 dB/MHz and in SOS of 1.6 m/s (290). 



 

Page | 85  
 

Moreover, women with higher circulating levels of ucOC had significantly lower BMD at multiple 

sites (for example spine BMD: β±SE -0.008±0.003 g/cm2, P=0.008) (233). However, the potentially 

beneficial associations between vitamin K1 and BMD were not reported in all cross-sectional 

studies, possibly in part due to small sample sizes (<900 men and women) (158) and differences in 

dietary assessment methods (4dDD or 7dDD vs. FFQ) (158, 281, 290). Although markers of bone 

formation have not previously been shown to be associated with intakes of vitamin K1, possibly 

partly due to small sample sizes (154, 156), free pyridinoline cross-links relative to creatinine 

(PYD/Cr) and free deoxypyridinoline cross-links relative to creatinine (DPD/Cr), which are 

markers of bone resorption, were found to be significantly associated with intakes of the vitamin 

(154). In this instance, those women with lower vitamin K1 intakes (59 µg/d vs. 162 µg/d) had 

higher levels of these bone resorption markers (PYD/Cr: 5.4 vs. 5.1 nmol/mmol; DPD/Cr: 19.8 vs. 

18.7 nmol/mmol).  

 Interestingly, previous cross-sectional studies undertaken in men and women have failed 

to show an association between vitamin K1 intake and bone health separately in men. Although 

one study found potentially beneficial effects, the reported findings represented data from a 

combined sample of men and women (156). In contrast, studies that performed their analyses 

separately for men and women did not report any significant associations in men (155, 157, 158). Sex-

specific differences in the effects of vitamin K on bone have been suggested as a potential 

explanation for these findings, although previous metabolic studies investigating the effects of 

vitamin K depletion and supplementation on vitamin K status and markers of bone turnover did 

not support such a hypothesis (155).  

 To date, a much larger body of cross-sectional evidence regarding potential associations 

between vitamin K1 intake or blood concentrations and bone health exists for women compared 

to men, and thus more studies in men are needed. Moreover, data from British populations is 

scarce, with only one previous cross-sectional study investigating potential associations between 

vitamin K1 intake and BMD and markers of bone turnover in a British cohort of only early post-

menopausal women (154), despite previously reported differences in dietary vitamin K1 intakes 

between populations (158-160). 

 

4.2.2.5 Conclusion of previously published studies 

To date, eleven RCTs have examined the effects of vitamin K1 supplementation on changes in 

BMD and markers of bone turnover, and reported contradictory findings. Differences in study 

populations, study durations as well as vitamin K1 supplementation doses and composition may 

have affected the diversity of study results. Future studies should consider longer duration of 

supplementation when looking at changes in BMD as positive effects of vitamin K1 have 

previously been found after supplementation periods of 12-36 months. Furthermore, long-term 

data on the effects of vitamin K1 supplementation on fracture risk is lacking. 
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 Previous epidemiological studies have shown a positive association between dietary 

intakes of vitamin K1 as well as markers of vitamin K1 status and bone health. However, findings 

have been contradictory, possibly due to differences in sample sizes, age ranges, sex, mean 

vitamin K1 intakes and dietary intake measures. Moreover, epidemiological evidence in men is 

scarce, and data from British cohorts is limited to only one previous study despite population 

differences in dietary intakes of vitamin K1. This limits the extent to which the potential 

relationship between vitamin K1 on bone can be interpreted and understood, and thus more 

epidemiological studies in the general population are needed to address some of these 

limitations. 

 

4.2.3 Chapter aims and objectives 

In order to address some of these limitations, this chapter aimed to: 

i) Investigate potential cross-sectional associations between dietary vitamin K1 intake 

estimated from a 7dDD and the heel ultrasound parameters BUA and VOS. 

ii) Examine potential prospective associations between dietary vitamin K1 intake and 

the risk of fracture at the hip, spine and wrist in a British population of men and 

women aged between 39 and 79 years at baseline.  

 

These investigations will provide more evidence for potential associations in men in particular, 

but also for British populations which tend to have lower dietary intakes of vitamin K1 than US 

populations (158-160). Moreover, this study will be based on using more accurate dietary intake 

information (7dDD) compared to the majority of previous studies (FFQs), as FFQs tend to 

overestimate dietary intakes including those of fruit and vegetables (202, 204). It was hypothesised 

that dietary intakes of vitamin K1 are positively associated with measures of bone density and 

inversely associated with the risk of fracture. 
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4.3 Methods 

As discussed in Chapter 2 (page 40), two studies were performed on a randomly selected sample 

of men and women of the EPIC-Norfolk prospective cohort study. Briefly, the cross-sectional 

study of heel ultrasound was based on a random sub-cohort of 4000 participants who had 

attended the first health check, and the prospective investigations of fracture risk were based on 

a case-cohort design using the same subset of 4000 participants and a set of 1502 participants 

who had experienced a fracture up to 31st March 2009. For both types of studies, analyses using 

dietary intakes of vitamin K1 estimated from a 7dDD as the predictor variable were performed 

using quintiles of intake. In the first study, multiple regression with multivariate adjustment was 

used to assess the cross-sectional relation of quintiles of vitamin K1 intake to BUA and VOS. Both 

BUA and VOS are measures of heel ultrasound, but BUA is an indicator of the structural 

organisation of bone, whereas VOS determines bone stiffness (63). In the second study, Kaplan-

Meier survival curves alongside log-rank tests of equality were computed to evaluate differences 

in crude total fracture incidence over the median 12.6-year follow-up between the quintile 

groups. Then, Prentice-weighted Cox proportional hazard ratios (221) were used to assess the 

prospective relations of quintiles of vitamin K1 to fracture risk for three important fracture sites 

(hip, spine and wrist) as well as total fractures. In both studies, potential associations between 

the top two quintiles referent to the lowest quintile of vitamin K1 intake were investigated. As 

previously discussed, all analyses were stratified by sex and adjusted for relevant confounders 

using an unadjusted and two multivariate models (Chapter 2, page 49). The final model included 

age, family history of osteoporosis, BMI, smoking, physical activity, steroid medication, 

menopausal status and HRT in women, total energy intake, dietary calcium intake, calcium 

supplements and vitamin D supplements. Moreover, the procedures for dealing with missing 

data and the number of exclusions in each study are described in detail in Chapter 3 (pages 55-

57). For the purpose of this chapter, participants were also excluded from the cross-sectional 

study of heel ultrasound if they had missing data at the second health check for the use of 

aspirin medication (n=326), leaving 2002 participants (854 men and 1148 women) for analysis. In 

the fracture risk study, there were no participants with missing aspirin data from the first health 

check. However, three men with very high dietary intakes of vitamin K1 (>550 µg/d), which had 

been estimated from only one completed day of the 7dDD, were also excluded from the 

subsequent prospective analyses, thus leaving 4709 (1954 men and 2755 women) in the fracture 

study. In order to be able to put the present findings in to context, in this chapter, a sample size 

calculation was performed post-hoc for the associations between BUA and VOS with the top 

quintile referent to the lowest quintile of vitamin K1 intake. The present chapter was chosen 

because the exclusion of participants with missing aspirin data resulted in the smallest dataset 

compared to the other nutrient chapters. Moreover, the sample size calculations were 
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undertaken for the heel ultrasound study as this was a smaller dataset than the fracture study. 

The sample size calculations for BUA and VOS in men and women were based on the method by 

Charan & Biswas (291) which accounts for the epidemiological nature of the present study:  

 

Sample size = (2*(SD^2) * ((Z[a/2]+Z[b])^2) / (d^2) 

 

Where:   Z(a/2) = a constant at type I error of 5% = 1.96 

  Z(b) = a constant at 80% power = 0.842 

  d = effect size (Q5 versus Q1). 
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4.4 Results 

4.4.1 Descriptive statistics stratified by quintiles of vitamin K1 intake 

The characteristics of the 4709 participants of the EPIC-Norfolk the case-cohort sample (59% 

women) stratified by quintiles of vitamin K1 intake are shown in Table 4.1. In the 1954 men, 

mean±SD dietary vitamin K1 intake for the quintile groups were as follows: Q1 43.5±9.2 µg/d, Q2 

64.1±5.2 µg/d, Q3 82.5±5.6 µg/d, Q4 105.7±8.4 µg/d and Q5 172.5±59.3 µg/d. The mean dietary 

vitamin K1 intake for each quintile was slightly lower in the 2755 women than in men: Q1 

38.4±9.4 µg/d, Q2 59.1±4.8 µg/d, Q3 76.3±5.7 µg/d, Q4 99.9±8.4 µg/d and Q5 164.1±63.3 µg/d. 

Age did not differ across quintiles of vitamin K1 intake in both sexes, but there was a small but 

significant decrease in BMI with increasing vitamin K1 intakes in women (P=0.004). Men in the 

upper quintiles were more likely to have a family history of osteoporosis (P=0.031), and were 

less likely to be current smokers (P=0.023). The latter was also found in women (P=0.024), and 

women in the upper quintiles were also more active compared to those in the lowest quintile 

(P<0.001). Moreover, the use of aspirin medication significantly decreased across quintiles of 

vitamin K1 intake and the use of calcium and vitamin D supplements significantly increased in 

women only (P≤0.020). 

 

4.4.2 Associations between vitamin K1 intake and heel ultrasound 

Associations between the bone density parameters BUA (in dB/MHz) and VOS (in m/s) with 

dietary vitamin K1 intake are presented in Figure 4.3. The results are discussed in detail below. 

Briefly, we found that dietary vitamin K1 intake was significantly positively associated with VOS in 

men and with BUA in women. 

 In the 854 men and 1148 women, dietary vitamin K1 intake did not correlate with 

measurements of heel ultrasound (men: BUA and VOS r=0.06, P>0.05; women: BUA r=0.03 and 

VOS r=0.00, P>0.05). In linear regression analyses in men, higher vitamin K1 intake was 

marginally significantly associated with higher VOS (β 2.0±1.0 m/s per quintile, P-trend=0.045), 

even after adjustment for age, family history of osteoporosis, BMI, smoking, physical activity, 

steroid medication, aspirin medication, total energy intake, dietary calcium intake, calcium 

supplements and vitamin D supplements. Moreover, men in the highest quintile of vitamin K1 

intake had 0.56 % higher adjusted VOS compared to those men with the lowest dietary intakes 

(P=0.039). No such associations were found with BUA in men. In women, dietary intakes of 

vitamin K1 were significantly and positively associated with BUA following the adjustment for 

confounding factors (β 0.81±0.31 dB/MHz per quintile, P-trend=0.009). Moreover, women in the 

top quintile had 5.5% higher adjusted BUA compared to those women in the lowest quintile of 

intake (P=0.004), and the 3.8% difference between quintile 4 and quintile 1 was almost 

significant (P=0.052). There were no associations between vitamin K1 intake and VOS in women. 
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 The post-hoc sample size calculations showed that associations between vitamin K1 

intake and heel ultrasound were significant despite small quintile sample sizes. For example, the 

association between quintile 5 referent to quintile 1 and VOS in men was significant with a 

quintile sample size of 170 participants despite the calculation of 303 subjects to detect this 

significant difference at 80% power. Similarly in women, 284 participants per quintile would 

have been required to detect the difference in extreme quintiles of vitamin K1 intake and BUA, 

but these associations were detected with a smaller number of women per quintile in the 

present study (n=230). As previously discussed, there were no associations between vitamin K1 

intake and BUA in men and VOS in women, possibly due to small quintile sample sizes. The 

number of participants required for each quintile to detect these effect sizes was 825 men and 

4749 women compared to 170 men and 230 women in the present study, respectively. 
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Table 4.1: Baseline characteristics of the 1954 men and 2755 women of the EPIC-Norfolk case-cohort by quintiles of vitamin K1 intake. 

 Men   Women  

Vitamin K1 intake  
(µg/d) 

Quintile 1 
10.3 – 55.2 

n = 391 

Quintile 2 
55.3 – 73.3 

n = 391 

Quintile 3 
73.4 – 92.3 

n = 391 

Quintile 4 
92.4 – 120.6 

n = 391 

Quintile 5 
120.7 - 459.2 

n = 390 P-trend 

 Quintile 1 
5.0 – 50.7 

n = 551 

Quintile 2 
50.8 – 67.0 

n = 551 

Quintile 3 
67.1 – 86.3 

n = 551 

Quintile 4 
86.4 – 116.4 

n = 551 

Quintile 5 
116.5 – 611.5 

n = 551 P-trend 

Mean (SD)                        
Age (years) 59.5 (9.8) 59.5 (9.6) 59.6 (9.4) 59.5 (9.5) 60.7 (9.5) P=0.10  60.5 (10.0) 59.4 (9.7) 59.5 (9.9) 59.4 (9.2) 60.2 (8.9) P=0.65 
BMI (kg/m

2
) 26.7 (3.4) 26.5 (3.3) 26.5 (3.2) 26.5 (3.3) 26.3 (3.4) P=0.23  26.8 (4.7) 26.0 (4.3) 26.0 (4.3) 26.1 (4.0) 25.9 (4.3) P=0.004 

n (%)                        
Menopausal Status                       P=0.031 

Pre-mp - - - - - - - - - -   81 (14.7) 93 (16.9) 93 (16.9) 79 (14.4) 68 (12.3)  
Peri-mp (<1 yr) - - - - - - - - - -   15 (2.7) 28 (5.1) 31 (5.6) 26 (4.7) 27 (4.9)  
Peri-mp (1-5 yrs) - - - - - - - - - -   102 (18.5) 80 (14.5) 85 (15.4) 106 (19.2) 75 (13.6)  
Post-mp - - - - - - - - - -   353 (64.1) 350 (63.5) 342 (62.1) 340 (61.7) 381 (69.2)  

HRT                       P=0.048 
Current User - - - - - - - - - -   107 (19.4) 93 (16.9) 94 (17.1) 97 (17.6) 81 (14.7)  
Former User - - - - - - - - - -   74 (13.4) 46 (8.4) 60 (10.9) 75 (13.6) 69 (12.5)  
Never Used - - - - - - - - - -   370 (67.2) 412 (74.7) 397 (72.0) 379 (68.8) 401 (72.8)  

Smoking           P=0.023            P=0.024 
Current smoker 64 (16.4) 55 (14.1) 47 (12.0) 41 (10.5) 31 (8.0)   88 (16.0) 69 (12.5) 67 (12.2) 54 (9.8) 65 (11.8)  
Former smoker 213 (54.5) 205 (52.4) 214 (54.7) 228 (58.3) 220 (56.4)   180 (32.7) 155 (28.1) 189 (34.3) 177 (32.1) 189 (34.3)  
Never smoked 114 (29.1) 131 (33.5) 130 (33.3) 122 (31.2) 139 (35.6)   283 (51.3) 327 (59.4) 295 (53.5) 320 (58.1) 297 (53.9)  

Physical activity           P=0.68            P<0.001 
Inactive 137 (35.0) 114 (29.2) 127 (32.5) 118 (30.2) 116 (29.7)   228 (41.4) 195 (35.4) 175 (31.7) 163 (29.6) 147 (26.7)  
Mod. inactive 94 (24.1) 100 (25.6) 92 (23.5) 93 (23.8) 92 (23.6)   172 (31.2) 158 (28.7) 168 (30.5) 188 (34.1) 191 (34.6)  
Mod. active 90 (23.0) 88 (22.5) 83 (21.2) 91 (23.3) 83 (21.3)   87 (15.8) 123 (22.3) 125 (22.7) 112 (20.3) 130 (23.6)  
Active 70 (17.9) 89 (22.8) 89 (22.8) 89 (22.7) 99 (25.4)   64 (11.6) 75 (13.6) 83 (15.1) 88 (16.0) 83 (15.1)  

Family history of OP 8 (2.1) 11 (2.8) 5 (1.3) 14 (3.6) 19 (4.9) P=0.031  29 (5.3) 32 (5.8) 24 (4.4) 35 (6.4) 34 (6.2) P=0.61 
Steroids 15 (3.8) 10 (2.6) 13 (3.3) 14 (3.6) 16 (4.1) P=0.80  25 (4.5) 21 (3.8) 28 (5.1) 20 (3.6) 20 (3.6) P=0.68 
Aspirin 32 (8.2) 48 (12.3) 34 (8.7) 48 (12.3) 34 (8.7) P=0.12  47 (8.5) 34 (6.2) 27 (4.9) 23 (4.2) 28 (5.1) P=0.020 
Calcium supp. 7 (1.8) 6 (1.5) 3 (0.8) 5 (1.3) 4 (1.0) P=0.73  19 (3.5) 24 (4.4) 29 (5.3) 42 (7.6) 41 (7.4) P=0.006 
Vitamin D supp. 71 (18.2) 88 (22.5) 93 (23.8) 82 (21.0) 96 (24.6) P=0.20  143 (26.0) 180 (32.7) 160 (29.0) 193 (35.0) 199 (36.1) P=0.001 

Values are means (standard deviations) or numbers (frequencies). Abbreviations: Mp, menopausal; Family history of OP, family history of osteoporosis; Supp., supplements.
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Figure 4.3: Associations between vitamin K1 intake and mean BUA (A) and VOS (B). 

 

Mean vitamin K1 intake for quintile 1 and 5 ranged from 45.9-178.8 µg/d in men and 42.8-163.7 µg/d in 
women. The analysis used EPIC-Norfolk data from the second health check and was based on a 
multivariate-adjusted linear regression analysis. Differences between the two upper quintiles referent to 
quintile 1 were significant at *P<0.05 and **P<0.01. n=854 men and n=1148 women. 

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 P-trend 

Men 89.43 89.76 88.66 90.94 91.8 0.18 

Women 69.9 72.22 72.53 72.55 73.77 0.009 
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4.4.3 Associations between vitamin K1 intake and fracture risk 

In the 4709 case-cohort sample of EPIC-Norfolk participants, there were 112 hip fractures, 77 

spine fractures and 70 wrist fractures in men, and 339 hip fractures, 124 spine fractures and 218 

wrist fractures in women. In the case-cohort that investigated participants with a fracture at any 

of these three fracture sites (total fracture), there were 247 and 616 fractures in men and 

women, respectively. The results of the calculation of hazard ratios of fracture risk according to 

dietary vitamin K1 intake are discussed below in detail. Briefly, vitamin K1 was not associated 

with fracture risk at any site in either sex, except for a significant inverse association between 

women with higher compared to lower vitamin K1 intakes and spine fracture risk.  

 

4.4.3.1 Vitamin K1 intake in participants with or without a fracture 

Mean dietary vitamin K1 intake did not differ significantly between participants who had 

experienced a total fracture and those who stayed free from fractures over the median 12.6-

year follow-up (Table 4.2). 

 

4.4.3.1 Vitamin K1 intake and fracture risk 

In men, the Kaplan Meier plot showed that there was both overlap and cross-over between the 

five quintiles of dietary vitamin K1 intake and no one quintile diverged significantly from the 

others (Figure 4.4). In concordance with these findings, the results from the Prentice-weighted 

Cox proportional hazard ratios showed that dietary vitamin K1 intake was not associated with 

fracture risk at any site in men (Table 4.3), even after adjustment for age, family history of 

osteoporosis, BMI, smoking, physical activity, use of steroid medication or aspirin medication, 

energy intake, dietary calcium intake and the use of calcium and vitamin D supplements. 

 In women, there was both overlap and cross-over between the five quintiles of dietary 

vitamin K1 intake (Figure 4.5), but the log-rank test for equality showed that total fracture 

incidence differed between the five quintile groups (P=0.038). The results from the Prentice-

weighted Cox proportional hazard ratios showed that dietary vitamin K1 intake was not 

associated with fracture risk at any site (Table 4.4). However, there was a significant 53% 

reduction in spine fracture risk in women in quintile 4 compared to quintile 1 of vitamin K1 intake 

(HR 0.47, 95%CI 0.24-0.91; P=0.026), and this was significant before and after the adjustment for 

important confounding factors. 
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Table 4.2: Differences in vitamin K1 intake between participants with or without a total fracture. 

  Vitamin K1 intake (µg/d)    
  in subjects without a fracture  in subjects with a fracture   

  n Mean (SD) [Range]  n Mean (SD) [Range]    P 

             
Men  1707 93.7 (52.3) [10.3; 459.2]  247 93.2 (50.8) [17.2; 354.1]  0.88 
Women  2139 88.1 (51.9) [5.0; 611.5]  616 85.8 (53.0) [7.1; 533.5]  0.35 



 

Page | 95  
 

Figure 4.4: Kaplan-Meier plot of total fractures by quintiles of vitamin K1 intake in men. 

 
There were no significant differences between the quintile groups of vitamin K1 intake according to the log-

rank test for equality (P=0.52). n=1954. 
 
 
 

Figure 4.5: Kaplan-Meier plot of total fractures by quintiles of vitamin K1 intake in women. 

 
The quintile groups of vitamin K1 intake differed significantly according to the log-rank test for equality 

(P=0.038). n=2755. 
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Table 4.3: Associations between vitamin K1 intake and fracture risk in men of the EPIC-Norfolk case-cohort.  

  Dietary vitamin K1 intake (µg/d)  

 

 Quintile 1 
10.3 – 55.2 

n = 391 

Quintile 2 
55.3 – 73.3 

n = 391 

Quintile 3 
73.4 – 92.3 

n = 391 

Quintile 4 
92.4 – 120.6 

n = 391 

Quintile 5 
120.7 - 459.2 

n = 390 
 

  HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture [Events] [51]  [51]  [52]  [37]  [56]  
 Unadjusted 1.00 1.00 (0.66-1.54) 0.95 (0.62-1.46) 0.73 (0.47-1.16) 1.05 (0.69-1.59) P=0.74 

 Model 1 1.00 1.02 (0.66-1.58) 0.97 (0.63-1.49) 0.75 (0.47-1.19) 1.06 (0.69-1.63) P=0.79 
 Model 2 1.00 1.00 (0.64-1.56) 0.93 (0.60-1.44) 0.71 (0.44-1.14) 1.02 (0.66-1.57) P=0.62 
            

Hip fracture [Events] [23]  [23]  [23]  [15]  [28]  
 Unadjusted 1.00 0.99 (0.54-1.84) 0.90 (0.48-1.67) 0.67 (0.34-1.34) 1.09 (0.60-1.99) P=0.90 
 Model 1 1.00 1.01 (0.52-1.95) 0.91 (0.48-1.73) 0.70 (0.35-1.42) 1.11 (0.60-2.03) P=0.95 

 Model 2 1.00 1.03 (0.53-2.01) 0.89 (0.46-1.72) 0.70 (0.34-1.46) 1.19 (0.63-2.22) P=0.93 
            

Spinal fracture [Events] [18]  [15]  [16]  [12]  [16]  
 Unadjusted 1.00 0.84 (0.42-1.70) 0.82 (0.41-1.65) 0.69 (0.33-1.46) 0.81 (0.41-1.61) P=0.46 
 Model 1 1.00 0.82 (0.40-1.70) 0.83 (0.41-1.68) 0.68 (0.32-1.44) 0.80 (0.39-1.61) P=0.45 
 Model 2 1.00 0.79 (0.38-1.65) 0.80 (0.39-1.64) 0.63 (0.29-1.38) 0.73 (0.36-1.50) P=0.34 
            
Wrist fracture [Events] [12]  [14]  [15]  [10]  [19]  
 Unadjusted 1.00 1.19 (0.55-2.60) 1.23 (0.57-2.65) 0.86 (0.37-2.00) 1.65 (0.80-3.41) P=0.36 
 Model 1 1.00 1.23 (0.56-2.71) 1.23 (0.57-2.67) 0.88 (0.37-2.07) 1.73 (0.83-3.57) P=0.32 
 Model 2 1.00 1.11 (0.50-2.47) 1.07 (0.49-2.33) 0.73 (0.31-1.71) 1.40 (0.66-2.96) P=0.67 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first health 
check. No significant differences between the two upper quintiles referent to the lowest quintile. Model 1 adjusted for age, family history of osteoporosis, BMI, smoking, physical 
activity, use of steroids or aspirin. Model 2 additionally adjusted for energy intake, dietary calcium intake, use of calcium supplements and use of vitamin D supplements. n 1954 
for total fracture, n 1840 for hip fracture, n 1805 for spine fracture, n 1804 for wrist fracture. 
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Table 4.4: Associations between vitamin K1 intake and fracture risk in women of the EPIC-Norfolk case-cohort. 

  Dietary vitamin K1 intake (µg/d)  

 

 Quintile 1 
5.0 – 50.7 

n = 551 

Quintile 2 
50.8 – 67.0 

n = 551 

Quintile 3 
67.1 – 86.3 

n = 551 

Quintile 4 
86.4 – 116.4 

n = 551 

Quintile 5 
116.5 – 611.5 

n = 551 
 

  HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture [Events] [135]  [115]  [144]  [106]  [116]  
 Unadjusted 1.00 0.92 (0.68-1.25) 1.16 (0.86-1.56) 0.80 (0.59-1.09) 0.87 (0.64-1.18) P=0.24 

 Model 1 1.00 0.90 (0.66-1.22) 1.16 (0.86-1.57) 0.81 (0.59-1.11) 0.90 (0.66-1.23) P=0.41 
 Model 2 1.00 0.91 (0.67-1.25) 1.19 (0.88-1.61) 0.85 (0.62-1.17) 0.94 (0.69-1.29) P=0.63 
            

Hip fracture [Events] [75]  [59]  [79]  [60]  [66]  
 Unadjusted 1.00 0.89 (0.60-1.33) 1.14 (0.78-1.66) 0.88 (0.59-1.31) 0.95 (0.64-1.39) P=0.78 
 Model 1 1.00 0.89 (0.60-1.33) 1.16 (0.79-1.70) 0.89 (0.59-1.34) 1.00 (0.67-1.49) P=0.99 

 Model 2 1.00 0.91 (0.60-1.36) 1.18 (0.80-1.74) 0.93 (0.61-1.42) 1.04 (0.69-1.56) P=0.80 
            

Spinal fracture [Events] [33]  [19]  [29]  [14]  [29]  
 Unadjusted 1.00 0.62 (0.34-1.12) 0.89 (0.53-1.50) 0.44 (0.23-0.84)* 0.92 (0.55-1.55) P=0.51 
 Model 1 1.00 0.61 (0.34-1.12) 0.88 (0.52-1.49) 0.46 (0.24-0.88)* 0.93 (0.55-1.57) P=0.57 
 Model 2 1.00 0.63 (0.34-1.14) 0.89 (0.52-1.50) 0.47 (0.24-0.91)* 0.94 (0.55-1.58) P=0.64 
            
Wrist fracture [Events] [47]  [43]  [53]  [38]  [37]  
 Unadjusted 1.00 0.97 (0.63-1.51) 1.16 (0.76-1.76) 0.82 (0.52-1.28) 0.76 (0.49-1.20) P=0.17 
 Model 1 1.00 0.90 (0.58-1.41) 1.13 (0.74-1.74) 0.80 (0.51-1.27) 0.75 (0.47-1.20) P=0.20 
 Model 2 1.00 0.91 (0.58-1.44) 1.16 (0.76-1.77) 0.85 (0.53-1.35) 0.78 (0.49-1.25) P=0.30 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first health 
check. No significant differences between the two upper quintiles referent to the lowest quintile. Model 1 adjusted for age, family history of osteoporosis, BMI, smoking, physical 
activity, use of steroids or aspirin, menopausal status and HRT. Model 2 additionally adjusted for energy intake, dietary calcium intake, use of calcium supplements and use of 
vitamin D supplements. n 2755 for total fracture, n 2526 for hip fracture, n 2335 for spine fracture, n 2410 for wrist fracture. 
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4.5 Discussion 

These epidemiological investigations of potential associations between vitamin K1 intake and 

measures of heel ultrasound and fracture risk addressed some of the previous limitations in the 

literature, including the scarcity of epidemiological evidence in men and the limited availability 

of data from British populations, which tend to have lower dietary intakes of vitamin K1 than US 

populations (158-160). Following multivariate adjustment, the results from the cross-sectional study 

of heel ultrasound showed that dietary vitamin K1 intake was significantly positively associated 

with VOS in men and with BUA in women. In the prospective investigations of fracture risk, 

dietary vitamin K1 intake was not associated with the risk of fracture at any site in men, although 

a significant association between higher intakes (quintile 4 vs. quintile 1) and a reduction in spine 

fracture risk was found in women.  

 

4.5.1 Heel ultrasound 

In the cross-sectional study, higher dietary intakes of vitamin K1 were significantly associated 

with higher heel ultrasound measurements. In men, there was a marginal linear relationship 

between vitamin K1 and VOS, with men with the highest dietary intakes (122-459 µg/d) having 

0.6% higher VOS compared to those men with the lowest intakes (19-58 µg/d). A similar linear 

relationship was also found in women, where those with the highest intakes (121-578 µg/d) had 

5.5% higher BUA compared to those with the lowest intakes (12-55 µg/d). The difference in 

mean vitamin K1 intake between the extreme quintile groups was approximately 133 µg/d in 

men and 121 µg/d in women. This may be equivalent to the consumption of one 100g bag of 

mixed lettuce leaves (214) which demonstrates that the intakes associated with these findings are 

achievable through the habitual diet. The cross-sectional findings of a positive association 

between dietary vitamin K1 intake and measures of heel ultrasound potentially reflect the 

important role of the nutrient in bone health. Vitamin K1 has been suggested to play a role in 

reducing bone-related inflammation (150, 151, 231), a process associated with upregulated bone 

resorption (232). Moreover, it acts as a cofactor in the γ-carboxylation of osteocalcin, the most 

abundant non-collagenous protein in bone, which is crucial for its ability to bind calcium (11). 

Furthermore, vitamin K1 may also be one explanatory factor for the positive associations found 

between fruit and vegetable intakes and bone health in this cohort. Vitamin K1 is exclusively 

found in plant-based foods such as green leafy vegetables (214), and positive associations 

between intakes of fruit and vegetables were reported in previous epidemiological studies (90, 131-

134), although the underlying mechanisms are not fully established yet. Preliminary analyses in 

this cohort presented in Chapter 3 (pages 69-71) showed that men in the top vs. the lowest 

quintile of vegetable intake had 0.7% higher VOS (compared to 0.6% for vitamin K1) and women 

had 7.3% higher BUA (compared to 5.5% for vitamin K1). 
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 In the present study, percentage differences in VOS were much smaller than those of 

BUA, possibly due to the scale differences between these two bone parameters. However, one 

previous study has shown that their relative fracture risk implications are very similar (66). The 

present magnitude of effect of BUA in women (5.5%) is in agreement with the literature, as 

effect sizes of 3.6-5.8% for hip and lumbar spine BMD have previously been found with higher 

intakes of vitamin K1 (155). Moreover, the present findings were also comparable to effect sizes 

previously reported for other bone-related dietary factors including intakes of potassium (3-4%) 

and magnesium (3%) (133). In previous studies, associations between vitamin K1 and VOS were 

either not significant or reported differently to the present study (156, 290), hence the magnitude of 

effect could not be compared.  

Interestingly, in the present study, vitamin K1 intakes were associated with VOS in men 

and BUA in women. Potential reasons for this sex difference are currently not known. However, 

there is evidence regarding the independent heritability of the two ultrasound parameters (77), 

and both measures have also been shown to be independently associated with osteoporotic 

fractures (21, 69, 70). 

 

4.5.2 Fracture risk 

To date, a number of prospective studies have investigated potential associations between 

intakes of vitamin K1 and fracture risk, and those have predominantly found a reduction in 

fracture risk with higher dietary intakes after 7-10 years of follow-up (157-159). However, to the 

best of my knowledge, there is no data from British populations despite population differences 

in dietary intakes, and hence our investigations are novel. In the present prospective study of 

4709 British men and women, there were no significant associations between vitamin K1 intake 

and fracture risk at multiple sites after the 12.6-year follow-up, although women with higher 

dietary intakes (86-116 µg/d) compared to those with the lowest intakes (5-51 µg/d) had 53% 

lower spine fracture risk. The present findings are in agreement with only one previous study 

which also reported a lack of association between dietary intakes of vitamin K1 and hip and non-

vertebral fracture risk in an older Chinese population of 2944 men and women (283). In contrast, 

in line with vitamin K1 being exclusively found in plant-based foods (214), intakes of fruit and 

vegetables were significantly inversely associated with fracture risk at the hip in men and the 

spine in women in this cohort (Chapter 3, pages 69-71). This may suggest that the potentially 

beneficial role of fruit and vegetables in reducing fracture risk (134) may not be related to dietary 

intakes of vitamin K1. Nevertheless, the lack of association in the present study may be related to 

the habitual consumption of the nutrient in British populations (160), including the EPIC-Norfolk 

population. Currently, habitual vitamin K1 intakes are not routinely estimated for the UK 

population by large scale studies such as the National Diet and Nutrition Survey (292). However, 

around 60% of participants in this study had dietary intakes equal to or above the UK safe intake 
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level of 1 µg/kg/d (225), suggesting that it was a relatively healthy population. Despite these 

adequate intakes, dietary intakes from US populations tend to be higher (158, 159); and those 

prospective studies, which reported significant inverse associations between vitamin K1 intake 

and fracture risk, were based on US population groups with much higher mean dietary intakes 

than the present study. For example, mean vitamin K1 intakes in the present study were 98 µg/d 

in men and 91 µg/d in women, and those were much lower than dietary intakes in the study by 

Feskanich et al. (median intake: 163 µg/d) (159) and Booth et al. (mean intake: men: 143 µg/d; 

women: 163 µg/d) (158). Thus, dietary vitamin K1 intakes in the present study may have been too 

low to detect any significant associations with fracture risk. Another explanation may be the use 

of different dietary assessment methods. In our study, vitamin K1 intake was estimated from a 

7dDD, whereas those studies mentioned above were based on FFQs. There is evidence to 

suggest that FFQs tend to overestimate fruit and vegetable intake (202, 204), and potentially also 

vitamin K1 as the main food source of this nutrient are green leafy vegetables.  

 

4.5.3 Strengths and limitations 

The present epidemiological investigations had a number of potential strengths over previous 

studies. The inclusion of both men and women in the study design addressed previous 

limitations regarding the scarcity of data in men. Moreover, the EPIC-Norfolk cohort provided 

more evidence for British populations, where data availability is limited despite population 

differences in dietary vitamin K1 intakes (158-160). For example, no prospective study had 

previously investigated potential associations between vitamin K1 intake and fracture risk in a 

British population; and our cohort had a greater age range than the only British study which 

investigated cross-sectional associations with BMD in women only (154). Therefore, our cross-

sectional findings are applicable to a wider UK population. The present studies also investigated 

both cross-sectional and prospective associations in the same population using different bone 

health measures, including heel ultrasound and fracture risk, in contrast to most previous 

studies which investigated only one of these parameters per population. Furthermore, the post-

hoc sample size calculations showed that the significant associations between vitamin K1 intake 

and heel ultrasound reached statistical significance despite the quintile sample sizes being 

smaller than the estimated required sample sizes, indicating the robustness of these 

associations. Nonetheless, vitamin K1 intake was not consistently associated with all heel 

ultrasound parameters in men and women, and this may have been due to small sample sizes 

which were not large enough to detect smaller effect sizes between extreme quintiles. Further 

limitations of the present investigations include the cross-sectional study design of the heel 

ultrasound analyses which only examined relations with diet for a single point in time. The 

positive associations reported for VOS in men and BUA in women suggest that there was a 

relation between dietary intakes of vitamin K1 and measures of heel ultrasound, but conclusions 
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about the influence of vitamin K1 on bone health cannot be drawn. Similarly, the prospective 

study design of the fracture risk analyses was limited by the inability to identify possible secular 

changes in dietary vitamin K1 intakes over the follow-up period and subsequent exposure 

misclassification, as data were only available from the 7dDDs taken at baseline. Moreover, the 

fracture data had been obtained from hospital admissions which are most likely underestimated 

for spine fractures due to a large absence in their clinical attention and radiologic detection (168, 

293, 294). This may have reduced the power of the present study to detect the associations 

between vitamin K1 intake and spine fracture risk. Although multivariate adjustment models 

were applied in the analyses, a number of other relevant confounders previously associated with 

bone health, including sunlight exposure (295), were not measured as part of the EPIC-Norfolk 

study. Furthermore, residual confounding may have occurred despite the adjustment for 

covariates and may have resulted in bias in exposure effect estimates. 

 

4.6 Conclusion 

The present cross-sectional investigations in EPIC-Norfolk participants found that higher dietary 

intakes of vitamin K1 were significantly associated with 0.6% higher VOS in men and 5.5% higher 

BUA in women. These differences in bone health between those with low and high vitamin K1 

intakes may have important implications for the development of fractures in the long term, 

although in our prospective investigations, we did not find an association with fracture risk in 

either sex, possibly due to lower dietary intakes of the nutrient in this cohort compared to 

previous studies reporting significant effects. The present study provides novel prospective data 

from a British cohort on fracture risk and vitamin K1 intake, and addresses a number of 

limitations of previous cross-sectional studies including the limited availability of data in men. 

Future epidemiological studies should investigate the association between vitamin K1 and bone 

health in other British cohorts in order to address the scarcity of data and enhance our current 

understanding of potential population differences. Moreover, future studies should conduct 

RCTs to investigate the effects of vitamin K1 supplementation and fracture risk, as this has not 

been conducted before.  
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CHAPTER 5 

 

VITAMIN C AND BONE HEALTH 

 

 

Cross-sectional and prospective 

associations between vitamin C intake 

and plasma status with heel ultrasound 

and fracture risk 

 

5. 5 
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5.1 Abstract 

Vitamin C plays a crucial role in bone collagen synthesis and may mediate osteoclastogenesis 

and osteoblastogenesis. Previous epidemiological studies have shown positive associations 

between dietary and supplemental intake of vitamin C and bone density, and inverse 

associations with bone loss and fracture risk. However, studies on blood vitamin C status are 

scarce as most studies used estimates of vitamin C intake, predominantly from FFQs. Moreover, 

there is only limited data in men and in British populations, and associations with fracture risk as 

the clinical endpoint of osteoporosis are underinvestigated. Therefore, this study aimed to 

explore i) potential cross-sectional associations between dietary intakes and plasma 

concentrations of vitamin C with measures of heel ultrasound and ii) potential prospective 

associations between vitamin C intake and plasma status with the risk of fractures in a sub-set of 

the 25,639 EPIC-Norfolk men and women aged 39-79 years at baseline. The results from the 

cross-sectional study showed that dietary intakes and total intakes (diet and supplements 

combined) of vitamin C were significantly associated with 0.6% higher VOS in men and with up 

to 4.2% higher BUA in women. The largest difference in mean dietary vitamin C intake between 

the highest and lowest group was 136 mg/d in both men and women, and this is achievable 

through the usual diet. In the prospective study, higher intakes of vitamin C were significantly 

associated with 48% lower total fracture risk (hip, spine and wrist fractures combined) in men 

after a median follow-up of 12.6 years. Moreover, higher plasma concentrations of vitamin C 

were significantly associated 74%, 65% and 52% lower fracture risk for spine, hip and total 

fractures, respectively, in men. Vitamin C intake or plasma status was not a significant predictor 

of fractures in women. This study provides novel prospective data on fracture risk in a British 

population, and the cross-sectional investigations addressed previous limitations with regards to 

scarcity of data in men and for vitamin C plasma status. The present findings highlight the 

importance of fruits and vegetables in our diet, being the main sources of vitamin C, for both 

short- and long-term bone health. Future studies should consider RCTs which will investigate the 

effects of vitamin C supplementation on indicators of bone health as this has not been 

conducted before. 
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5.2 Introduction 

Scurvy, the clinical manifestation of vitamin C deficiency, was first described in the 17th and 18th 

centuries in sailors on long-haul ocean journeys. However, it was the discovery of vitamin C in 

the early 20th century and subsequent animal studies that lead to the suggestion of a link 

between vitamin C and collagen synthesis. Scurvy is associated with wounds and fractures that 

fail to heal and it was established that this resulted from impaired collagen formation in vitamin 

C deficiency (296). Collagen is an essential component of bone tissue with around 98% of the 

organic phase of bone being comprised of type I collagen (13). Vitamin C is important for 

adequate collagen formation via the hydroxylation of prolyl and lysyl residues (7-10). More 

recently, many cell and animal studies reported that vitamin C may also mediate 

osteoclastogenesis and osteoblastogenesis (161-164), although the precise biological mechanisms 

have not been fully established yet. 

 

Figure 5.1: The structure of vitamin C.  

   
Adapted from Rumsey & Levine (1998) (297). 

 

The formation of the water-soluble vitamin C in plants requires gulonolactone oxidase. The 

absence of this enzyme in humans means that we cannot synthesise vitamin C ourselves, making 

it an essential micronutrient that must be consumed as part of the diet (91, 125). Both active forms 

of vitamin C, ascorbate and dehydroascorbate (Figure 5.1), are present mainly in plant-based 

foods such as fruits and vegetables with the highest concentrations found in citrus and soft 

fruits, their fruit juices and some vegetables including peppers and broccoli (145, 225). Vitamin C is 

also available as a supplement in the form of synthetic L-ascorbic acid. It is chemically identical 

to the natural form, and there are no reported differences in their bioavailability (298).  

 The mean dietary intake of the vitamin in the UK population is 94.1 mg/d as estimated 

by the National Diet and Nutrition Survey 2008/2009 for people aged 19-64 years. This is around 

235% higher than the UK recommended nutrient intake (RNI) of 40 mg/d. Dietary intake and 

plasma concentrations of vitamin C when plotted against each other show a sigmoidal 
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relationship (299, 300). Average vitamin C intakes (60-100 mg/d) reflect plasma levels of around 40-

60 µM/l. Higher intakes result in a progressive flattening of the curve and very high intakes of 

400 mg/d and above appear to saturate vitamin C in plasma at concentrations of 70-85 µmol/l 

(300). Vitamin C supplements may increase circulating levels more than twofold, although these 

effects appear to be only short-lived (301). Vitamin C status is influenced by a number of biological 

and lifestyle factors including age, sex, BMI, body fat distribution, fat-free mass, smoking and 

infection (227, 302-306). For example, women tend to have higher circulating levels of vitamin C than 

men, possibly due to a volumetric dilution (227), but also due to higher energy-adjusted dietary 

intakes (224). Moreover, smokers have lower blood vitamin C levels independent of dietary intake 

compared to non-smokers (306), and it is thought that this is a result of the higher turnover of 

vitamin C to counteract the increased level of oxidative stress in smokers (307). 

  

The importance of vitamin C in collagen formation has previously been linked to osteoporosis 

and fracture prevention, and positive associations between vitamin C intake and BMD have 

previously been reported (91, 133, 165), although the evidence is limited, especially in men.  

 

5.2.1  The potential role of vitamin C in bone health 

5.2.1.1 Osteoclastogenesis 

Vitamin C has been suggested to mediate osteoclast differentiation and possibly apoptosis (163, 

308) and findings have been relatively consistent. In cell cultures containing both osteoblasts and 

osteoclasts, vitamin C promoted osteoclastogenesis (309-311) and this was associated with an 

increase in RANKL expression (310). In concordance with these findings, vitamin C deficiency 

resulted in a decrease in osteoclast differentiation (310, 311). However, in cultures containing only 

osteoclasts, stimulatory effects (312) as well as inhibitory effects (163, 309, 313) of vitamin C on 

osteoclast differentiation have been reported. Recent in vitro findings have helped explain these 

contradictory results by showing that vitamin C at a concentration of 50 µg/ml initially exhibited 

pro-oxidant activity resulting in an increase in the number, size and nucleation of osteoclasts; 

although vitamin C initiated accelerated osteoclast death at later stages(308). Deficiency studies 

are in agreement with most previous findings, indicating that vitamin C deficiency in animal 

models stimulated osteoclastogenesis via the up-regulation of the RANKL/RANK pathway(161, 163). 

Moreover, mice supplemented with vitamin C had a reduction in RANKL expression (161).  

 

5.2.1.2 Osteoblastogenesis 

To date, there is consistent experimental evidence for a beneficial role of vitamin C in 

osteoblastogenesis. For example, a decrease in the number of osteoblasts and suppressed 

osteoblast differentiation has previously been observed in vitamin C deficient mice (161). In 
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concordance with these findings, an increase in the number of osteoblasts following vitamin C 

treatment has been reported from in vitro work (314). Furthermore, studies using osteoblast-like 

cell cultures including human tissue have shown that osteoblast proliferation and differentiation 

was enhanced with the addition of vitamin C (162, 164, 314, 315). Concentrations of 50 µg/ml and 200 

µg/ml vitamin C have previously been suggested as optimal and maximum concentrations for 

this effect (162, 164).  

 Initially, work from the 1990s suggested that vitamin C may be important for 

osteoblastogenesis through stimulating collagen synthesis (314, 315), although recent evidence 

suggests the underlying mechanisms are more complex. For example, vitamin C has been 

reported to mediate gene expression of a number of genes involved in pre-osteoblast cell 

activities including growth, metabolism, communication and death (316). Furthermore, studies 

have shown that the expression of PPAR-γ, an essential transcription factor in adipogenesis (18), 

may mediate osteoblast differentiation resulting in bone loss (317, 318). Recently, these findings 

have been investigated further and a link to vitamin C established. An in vivo study reported that 

PPAR-γ expression in osteoblasts was significantly up-regulated in vitamin C deficient mice and 

was accompanied by suppressed osteoblast differentiation; whereas treatment with vitamin C 

mediated PPAR-γ expression to almost normal levels (161).  

 

5.2.1.3 Bone collagen synthesis 

Experimental evidence for a role of vitamin C in bone collagen synthesis by osteoblasts is well 

established. For example, early in vitro work reported that collagen synthesis increased more 

than four fold in the presence of ascorbate (319). The underlying mechanisms for this are thought 

to relate to the role of vitamin C in stimulating both the quantity and the quality of collagen 

synthesis. For the former, vitamin C is an important initiator of collagen synthesis in osteoblasts 

(136), possibly via stimulating pro-collagen type I mRNA (320, 321); whereas for the latter, vitamin C is 

an essential activator of enzymes involved in the hydroxylation of amino acid residues within 

collagen fibres (7-10, 322). The hydroxylation reaction, illustrated in Figure 5.2, takes place in the 

endoplasmic reticulum (323) and enables the formation of covalent bonds between the amino 

acid residues, increasing overall collagen strength (136). The hydroxylation of collagen lysine 

requires lysyl hydroxylase in combination with a number of cofactors including oxygen, ferrous 

ion, a reducing agent such as ascorbic acid and α-ketoglutarate to form collagen hydroxylysine (9, 

10). The importance of vitamin C in this reaction is in the reduction of ferric ion (Fe3+) to ferrous 

ion (Fe2+) which in turn activates lysyl hydroxylase. Similar to lysine, the hydroxylation of collagen 

proline requires prolyl hydroxylase and cofactors identical to those mentioned above.  
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Figure 5.2: The hydroxylation of lysine in collagen fibres.  

 
Adapted from Medeiros & Wildman (2011) (324). 

 

Evidence from in vitro studies has shown that compounds including the amino acid cysteine and 

the strong reducing agent dithiothreitol may replace vitamin C in this hydroxylation reaction to a 

minor extent (325-327). However, vitamin C was shown to be the most effective reducing agent (322) 

and it is currently unknown whether these in vitro effects would also be observed in humans. 

Previous in vitro and in vivo studies have also indicated that vitamin C deficiency was associated 

with the formation of underhydroxylated and unhydroxylated collagen (328, 329), highlighting the 

importance if the vitamin in this process.  

 To date, in vitro evidence has shown that vitamin C increases the hydroxylation of amino 

acid residues (330), and a dose-response relationship between vitamin C and type I collagen was 

recently reported in an in vitro study, with the highest amounts of collagen found to be present 

at vitamin C concentrations of 200 µg/ml compared to 100 µg/ml and 25 µg/ml (162). This 

suggests that vitamin C deficiency may lead to inadequate hydroxylation of collagen fibres, 

subsequently mediating bone structure and decreasing the overall strength and stability of bone. 

As both bone and cartilage contain a structurally stable network of collagen, a reduction in the 

quantity and quality of collagen resulting from inadequate vitamin C intake may potentially be a 

risk factor for the development of osteoporosis and associated fractures.  

 

5.2.2 Associations between vitamin C and bone health in previous studies 

My recent review of the literature on vitamin C and bone health (168) highlighted that, to date, 

there is evidence from epidemiological studies for a potential role of different forms of vitamin C 

in reducing osteoporosis and fracture risk, although evidence from RCTs is currently less well 

defined. In these studies, bone health was investigated as i) fracture incidence as the best 

indicator of bone health, ii) BMD using DXA as the gold standard method or other measurements 

including ultrasound, and iii) biochemical markers of bone formation including BSALP, OC, PINP 

and PICP, as well as markers of bone resorption including PYD, DPD, CTx and NTx. The following 
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section will review previously published studies which investigated associations between vitamin 

C and osteoporosis and fracture risk. RCTs as the best indicator of causality will be discussed 

first, and this will be followed by observational studies in hierarchical order of decreasing ability 

to determine causality.    

 

5.2.2.1 Intervention studies and randomised controlled trials 

A summary table of intervention studies investigating potential associations between vitamin C 

and bone health can be found in Appendix 2, Table A2.1. RCTs are the best studies for inferring 

causality and for determining which factors influence disease. Thus, they are the gold standard 

as they limit both selection biases and confounding. To my knowledge, there is only one such 

published RCT with a double-blind design that has examined the effects of vitamin C 

supplementation on bone density (331). The trial compared the effects of taking a placebo vs. a 

combination of vitamin C and E supplements on bone density in three groups of 30 men and 

women for 12 months. The two intervention groups received 400 IU of vitamin E daily and either 

500 mg/d or 1000 mg/d of vitamin C. The group with the highest vitamin C intake had 

significantly less hip bone loss compared to the placebo group (effect sizes and P-values not 

reported), although no such observations were made at the lumbar spine. However, the study 

criteria allowed for inclusion of smokers and of participants with controlled chronic disease 

which may have biased the study outcomes. Moreover, the trial was undertaken in a small 

number of participants. Furthermore, the trial only investigated the additive effects of the 

vitamins. Thus, it remains unclear to what extent vitamin C was involved in preventing bone loss.  

Two intervention studies used a combination of an exercise programme and 

supplementation with vitamin C and E (332, 333). One trial was a randomised placebo-controlled 

pilot study in 34 women who followed an intervention of 60 minutes of resistance training three 

times per week and daily supplementation with vitamin C (1000 mg/d) and E (600 mg/d) for six 

months. They were randomised into four treatment groups of either placebo, vitamins, exercise 

and placebo, or exercise and vitamins (332). BMD of the lumbar spine, but not the femoral neck, 

decreased significantly by 1% in the placebo group over six months (BMD pre: 1.01 ± 0.17 g/cm2; 

BMD post: 1.00 ± 0.16 g/cm2; P<0.05) and was maintained in the other groups. No additive 

effects of the exercise intervention and the vitamin supplementation were found. However, the 

results may have been biased by changes in dietary habits as a reduction in vitamin C intake over 

the course of the study period was reported for the vitamin group. Moreover, the study did not 

report whether the outcome was assessed in a blind fashion. The second study, a two month 

intervention in 13 men and women, included an hour of aerobic exercise three times per week 

and the daily use of vitamin C (500 mg/d) and vitamin E (100 mg/d) supplements for all subjects 

(333). Although markers of calcium homeostasis improved significantly with parathyroid hormone 

decreasing and vitamin D increasing (effect sizes not reported), the bone formation marker 
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BSALP decreased unexpectedly by 14.5% (P-value not reported). One may be critical about the 

lack of control group in this study as well as its applicability to the general population 

considering that the intervention was undertaken in only 13 individuals. Moreover, both 

intervention studies included regular aerobic exercise as well as the use of vitamin E 

supplements. Thus, the effects of vitamin C per se are impossible to differentiate from these 

interventions. Exercise has previously been shown to stimulate bone formation resulting in 

higher BMD and a decreased risk of fracture (79); although the effects of vitamin E on the 

skeleton are currently equivocal (334). Moreover, both studies were of short duration of only two 

to six months, although changes in BMD are more likely to be observed after a longer duration of 

treatment as the rate of bone loss is estimated to be only about 1% per year. 

 In summary, evidence from previous trials investigating the potential preventative 

effects of vitamin C in osteoporosis remains equivocal. There are limitations regarding study 

design, inclusion and exclusion criteria, limited duration of treatment and small sample sizes. 

Moreover, published intervention studies have used vitamin supplements containing vitamin E 

in addition to vitamin C and have included exercise programmes during treatment. Future trials 

should consider having more participants, stricter inclusion and exclusion criteria and 

interventions consisting of vitamin C supplementation only.  

 

5.2.2.2 Prospective studies 

Prospective cohort studies may be used to investigate the aetiology of a disease as the exposure 

is measured prior to the condition occurring, making data less prone to recall bias than case-

control studies. Furthermore, as cases and controls are drawn from the same population, there 

is less selection bias. To date, only three prospective studies have investigated potential vitamin 

C to bone associations, and a summary table of these studies can be found in Appendix 2, Table 

A2.2. One study of 944 British men and women (mean age = 72 years) reported that those with 

higher dietary intakes of vitamin C (99-363 mg/d) compared with lower intakes (7-57 mg/d) lost 

significantly less BMD at the hip after 2-5 years of follow-up (166). Another study in a US cohort of 

606 subjects aged 75 years on average reported that lumbar spine and trochanter BMD loss, but 

not femoral neck and radial shaft BMD loss, decreased significantly across tertiles of dietary 

vitamin C intake in men but not in women (230). However, the findings were not consistent across 

these two studies with results varying mainly for sex and bone site. Potential explanations for 

this might be differences in measures of dietary intake, bone density measures and adjustment 

for confounding factors. For example, the first study used 7-day food diaries and did not adjust 

for important confounders including age, sex and smoking (166). In contrast, the second study 

used a semi-quantitative FFQ and measured BMD via two different types of bone scans (i.e. DPA 

at baseline and DXA at follow-up) (230). However, DXA scans have been shown to produce lower 
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results than DPA scans (335), hence the effect size in this study may be more modest than the true 

result. 

A potential role for vitamin C in fracture prevention has only been investigated in one 

previous prospective study. The study used a sample of 918 US men and women with a mean 

age of 75 years and found a risk reduction in hip fracture of 44% for supplemental vitamin C 

intake (mean: 260 mg/d compared to 0 mg/d) and of 69% for total (dietary and supplemental) 

vitamin C intake (mean: 313 mg/d compared to 94 mg/d) after 15-17 years of follow-up (RR and 

95%CI not reported) (167). However, no associations between dietary vitamin C intake and the risk 

of fracture at different sites were reported. Further large prospective cohort studies are needed 

of older men and women with long follow-up, which investigate fractures as the clinical 

endpoint of osteoporosis. Furthermore, there is only limited prospective data on a potential link 

between vitamin C status and bone health. To my knowledge, only one study has investigated 

plasma vitamin C concentrations and reported no significant associations with changes in hip 

BMD (166). Similar issues regarding the adjustment for important confounding factors as discussed 

above also apply to these prospective studies; and more studies are needed as current evidence 

is limited. 

 In conclusion, there is only limited data from three prospective and longitudinal studies 

investigating potential associations between vitamin C and bone health. Currently, it is difficult 

to assess the strength of the associations as not all studies reported effect sizes. A greater 

number of prospective and longitudinal studies and adjustment for confounding factors may 

help establish more consistent findings of the relationship between vitamin C intake and status 

with osteoporosis and associated fractures. 

 

5.2.2.3 Case-control studies 

Case-control studies, summarised in a table in Appendix 2, Table A2.3, are used to examine 

specific exposures as potential risk factors of a disease in people with and without the condition. 

The exposures preceded the disease outcome, and thus case-control studies are prone to recall 

bias where case subjects tend to have a better recollection of specific exposures than the 

controls. Moreover, selection bias is an issue as both the exposure and the disease outcome are 

pre-defined. To date, three case-control studies have consistently shown that osteoporosis and 

fracture patients had lower serum vitamin C concentrations (cases: 17-37 µmol/l; controls: 23-54 

µmol/l) and lower plasma vitamin C concentrations (cases: 30 µmol/l; controls: 55 µmol/l) than 

controls (336-338). Only one study reported differently, but the authors inferred that their findings 

reflected the daily consumption of orange juice given at breakfast during the recent hospital 

admission of their study population, thus reflecting recent rather than habitual food intake (339).  

In contrast to vitamin C status measures, findings for potential differences in dietary 

vitamin C intakes between cases and controls are less consistent. Differences in measures of 
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dietary intake and relatively small sample sizes may explain some of these inconsistent findings. 

Although previous case-control studies have reported no significant differences for mean 

vitamin C intakes (336, 339), associations with the relative risk of osteoporosis and fractures were 

reported when stratified by quartiles of the populations’ intakes although often in a non-linear 

fashion. For example, Martinez-Ramirez et al. (2007) showed a marginally significant fracture 

risk reduction for participants in the second quartile of vitamin C intake compared to the first 

(OR = 0.39; 95%CI 0.15-1.00; vitamin C intake range: 204-247 mg/d compared to ≤203 mg/d) (336). 

This was not significant for higher vitamin C intakes, possibly due to the high vitamin C intake 

(mean: 200 mg/d) of the study population. Moreover, Park et al. (2011) reported that those in 

the third quartile of vitamin C intake had a significantly reduced risk of osteoporosis compared 

to those in the lowest quartile (OR = 0.29; 95%CI 0.09-0.96; vitamin C intake range: 137-176 

mg/d compared to ≤92 mg/d) (340).  

In conclusion, published case-control studies have shown consistent results for 

associations between lower vitamin C status in osteoporosis and fracture patients, however 

findings for dietary vitamin C intakes were less consistent. Moreover, although reported effect 

sizes appear to be large, this data is limited to only two case-control studies and a dose-response 

relationship was not apparent in these studies. More case-control studies are needed to help 

clarify the discrepancies in vitamin C intake between osteoporosis and fracture patients and 

controls currently reported in the literature. 

 

5.2.2.4 Cross-sectional studies 

Cross-sectional studies are used to report the prevalence of a disease in a defined population at 

a specific point in time. Whether the exposure predated the disease or not cannot be 

determined. Previous cross-sectional studies investigating vitamin C and bone health 

associations are summarised in Appendix 2, Table A2.4. They have reported inconsistent 

findings with outcomes related to age (341), menopausal status (169), smoking behaviour (230) and 

oestrogen use (341). Nevertheless, positive associations between vitamin C and BMD have 

previously been reported. For example, higher intakes of dietary vitamin C were associated with 

3-5% higher BMD (133). Moreover, every 100 mg/d increment in vitamin C intake was associated 

with 0.01-0.02 g/cm2 higher BMD (91, 169), although there is currently limited understanding of this 

clinical relevance. In one study, users of vitamin C supplements (mean [range] = 745 mg/d [70-

5000 mg/d]) had 4% higher BMD compared to non-users (165). Moreover, in the same study, users 

of supplement doses of ≥1000 mg/d had 14% higher BMD than non-users. Although positive 

associations between dietary and supplemental vitamin C intake and bone density have 

previously been reported, findings have been inconsistent (124, 131, 230, 342-344), possibly, at least in 

part, due to differences in the adjustment for confounding factors. The use of different dietary 

assessment methods as means of measuring dietary vitamin C intake may also explain some of 
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these discrepancies. Methods have included semi-quantitative FFQs with 97–126 food items (91, 

124, 133, 229, 230, 341, 342, 345), three to seven-day dietary records (131, 345) and 24-hour recalls (169, 344). 

Total vitamin C intake has not been linked with BMD in women (342, 344, 345); and both positive and 

negative associations have been reported in men (230), although the latter findings may have 

been biased by the population’s smoking behaviour. Dietary intakes of vitamin C have previously 

been shown to be significantly lower in smokers than non-smokers (306) and serum vitamin C 

levels are lower in smokers independent of dietary vitamin C intake (306, 346). The exclusion of 

smokers to the study may have led to more consistent findings. 

Potential associations between vitamin C and fracture risk have only been examined in 

one cross-sectional study which did not find a link between higher dietary vitamin C intakes and 

self-reported fractures in women (169). In the same study, men with mean dietary vitamin C 

intakes of 200 mg/d reported fewer fractures than men with higher or lower intakes. The study 

also found no significant associations between serum vitamin C concentrations and self-reported 

fracture risk. One may be critical about the large age range of the study population. As 

osteoporosis and associated fractures are known to be more prevalent in the elderly population 

(22), the inclusion of very young participants may explain the non-significant findings.  

Cross-sectional data on vitamin C and markers of bone homeostasis is sparse with only 

two studies investigating potential associations. New et al. (2000) found that higher intakes of 

vitamin C were associated with lower excretion of deoxypyridinoline (no effect size shown), 

indicating reduced bone resorption (124). Similarly, Pasco et al. (2006) reported a significant 

association between the duration of vitamin C supplement use and markers of bone resorption, 

with serum CTx concentrations being 0.022 pg/mL lower for every 1-year supplement use 

increment (343). 

Although there is data from a number of cross-sectional studies investigating vitamin C 

and bone health relationships, current evidence is not consistent. Effect sizes of present cross-

sectional studies are comparable to those previously reported for other dietary factors including 

potassium, although many studies did not report effect sizes. Future cross-sectional studies 

investigating the relationship between vitamin C intake and status with osteoporosis and related 

fractures are needed to address the discrepancies between current cross-sectional studies. 

 

5.2.2.5 Summary of previously published studies 

My recent review of the literature on vitamin C and bone health (168) highlighted that only a very 

few interventions have examined the effects of vitamin C supplementation on changes in BMD 

and bone turnover markers, and those have reported beneficial effects. However, all previous 

interventions had mixed treatments using a combination of different vitamins and an exercise 

intervention, thus making it difficult to disentangle the relative contribution of vitamin C to the 

shown beneficial effects. Issues regarding study design and duration of treatment were 
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identified with only one study following the design of a double-blind RCT and all studies having 

relatively short interventions of 2-12 months. Future RCTs of longer duration are needed that 

are designed to establish the effects of vitamin C supplementation on different aspects of bone 

health. My review (168) also highlighted that support for mechanistic studies for a potential link 

between vitamin C and osteoporosis prevention has come from a variety of epidemiological 

studies, although differences in study populations, dietary assessment methods, outcome 

measures and use of confounding factors in statistical analyses may have resulted in inconsistent 

findings. Epidemiological data from British populations is scarce and data are particularly limited 

for men. Moreover, the majority of these studies have used FFQs to estimate habitual vitamin C 

intake, despite the availability of more accurate dietary assessments including food diaries. 

Published studies have also focused on the intake of vitamin C, although biological markers of 

nutrient status may be less subjective to factors such as storage, processing and bioavailability 

(170). With regards to bone health as the health outcome, data are particularly lacking for fracture 

risk. Furthermore, some studies stratified by additional factors such as smoking status, 

oestrogen use or calcium intake, hence reducing the applicability of their findings to greater 

populations. More epidemiological studies in the general population are needed to address 

some of these limitations. 

 

5.2.3 Chapter aims and objectives 

In order to address some of these limitations, this chapter aimed to: 

i) Investigate the cross-sectional associations between vitamin C intake from diet and 

from the combined total intake of diet and supplements, which is available from a 

carefully constructed ViMiS database established by EPIC-Norfolk (213), as well as 

plasma vitamin C concentrations with the heel ultrasound parameters BUA and VOS. 

ii) Examine the prospective associations between dietary and total vitamin C intake and 

plasma vitamin C with the risk of fracture at the hip, spine and wrist in a British 

population of men and women aged between 39 and 79 years at baseline.  

iii) Undertake a number of sensitivity analyses for both of these aims by a) using 

residuals of vitamin C intake (347), b) excluding current vitamin C supplement users, c) 

investigating vitamin C intake per kilogram bodyweight, and d) restricting the cohort 

to older men and women aged 65 years and over. 

 

The findings will provide more evidence in a British population, particularly in men, where data is 

limited; and more evidence for potential vitamin C to bone associations using more accurate 

dietary information (7dDD and ViMiS database) compared to most previous studies (FFQs). 

Moreover, this study will provide novel findings of potential associations between vitamin C 
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status and fracture risk. It was hypothesised that vitamin C intake and status are positively 

associated with measures of bone density and inversely associated with the risk of fracture. 

 

5.3 Methods 

As discussed in Chapter 2 (page 40), a cross-sectional study and a prospective case-cohort study 

were performed on a representative sample of men and women of the EPIC-Norfolk cohort 

study. For both types of studies, analyses using vitamin C as the predictor variable were 

performed using quintiles and were undertaken for i) intake from the diet, ii) total intake which 

accounted for intake from both diet and supplements, and iii) plasma concentrations. The first 

study was undertaken in a random sub-cohort of 4000 EPIC-Norfolk participants and used 

multiple regression with multivariate adjustment to assess the cross-sectional relation of 

quintiles of vitamin C to BUA and VOS. Both BUA and VOS are measures of heel ultrasound, but 

BUA is an indicator of the structural organisation of bone, whereas VOS determines bone 

stiffness (63). In the second study, undertaken in a case-cohort sub-sample (n=5319) of the EPIC-

Norfolk cohort, Kaplan-Meier survival curves alongside log-rank tests of equality were computed 

to evaluate differences in crude total osteoporotic fracture incidence over the median 12.6-year 

follow-up between the quintile groups. Then, Prentice-weighted Cox proportional hazard ratios 

(221) were used to investigate the prospective relations of quintiles of vitamin C to fracture risk for 

three important fracture sites (hip, spine and wrist). In both studies, potential associations 

between the top two quintiles referent to the lowest quintile of vitamin C intake or plasma 

concentrations were investigated, as a number of previous studies reported a bell-shaped dose-

response of the nutrient (133, 169). As previously discussed, all analyses were stratified by sex and 

adjusted for relevant confounders using an unadjusted and two multivariate models (Chapter 2, 

page 49). The final model included age, family history of osteoporosis, BMI, smoking, physical 

activity, steroid medication, menopausal status and HRT in women, total energy intake, dietary 

calcium intake, calcium supplements and vitamin D supplements. Moreover, the procedures for 

dealing with missing data and the number of exclusions in each study are discussed in detail in 

Chapter 3 (pages 55-57). 

Following the primary analysis, further explorative investigations were undertaken for 

both the cross-sectional study of heel ultrasound and the prospective study of fracture risk. 

Despite adding total energy intake to the multivariate model, dietary and total vitamin C intakes 

were also adjusted for energy using the residual method of Willett because this is a useful way 

to identify the actual variation in vitamin C intake whilst energy intake is being held constant (347). 

For this, dietary and total vitamin C intakes were regressed on total energy intake. The 

calculated vitamin C residual, which is uncorrelated with energy intake, was then regressed on 

BUA and VOS as well as total osteoporotic fracture risk using the full covariate model.  
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In order to evaluate potential associations between vitamin C from the diet independent 

of supplement use, a sensitivity analysis was also undertaken. This is because supplement users 

compared to con-users tend to have higher dietary intakes of most micronutrients (262, 348, 349). 

Hence, subjects, who had reported the current use of vitamin C supplements, were excluded 

from the subsequent regression analyses of the final covariate model.  

A number of studies have reported that the distribution of vitamin C in plasma and 

tissues may be influenced by body weight (302). Thus, for each participant, dietary and total 

intakes and plasma concentrations of vitamin C were also calculated per kilogram bodyweight, 

before being regressed on BUA, VOS and total fracture risk using the full covariate model. 

Previous studies have indicated that fracture rates increase progressively with increasing 

age (22), possibly because osteoporosis is unlikely to have progressed to its clinical endpoint at a 

young age. Preliminary analyses presented in Chapter 3 (page 68) showed that this was 

applicable to the present study population. Thus, associations between vitamin C and total 

osteoporotic fracture risk adjusted using the full covariate model were also determined in a 

smaller case-cohort sample of older men and women aged 65-79 years at baseline.    

 

5.4 Results 

5.4.1 Descriptive statistics stratified by quintiles of dietary vitamin C intake 

Characteristics of the 4711 EPIC-Norfolk men and women stratified by quintiles of dietary 

vitamin C intake are presented in Table 5.1. In the 1957 men, mean±SD dietary vitamin C intakes 

for the quintiles were: Q1 33.9±8.8 mg/d, Q2 53.3±5.0 mg/d, Q3 73.1±6.7 mg/d, Q4 101.1±9.4 

mg/d and Q5 166.8±50.1 mg/d. In the 2754 women, mean±SD dietary vitamin C intakes for each 

quintile were similar: Q1 35.6±9.3 mg/d, Q2 57.8±5.5 mg/d, Q3 78.5±6.8 mg/d, Q4 105.9±9.6 

mg/d and Q5 168.2±42.2 mg/d. There were no significant differences in age, family history of 

osteoporosis and the use of steroids between the quintile groups in both sexes. However, with 

higher dietary vitamin C intakes, the use of vitamin D supplements increased, whereas the 

prevalence of current smoking decreased (all P<0.001). In women, BMI differed significantly 

between the quintile groups (P=0.010). Moreover, women with higher dietary vitamin C intakes 

were more physically active and more likely to use calcium supplements than women with lower 

intakes (P≤0.007). BMI, physical activity and the use of calcium supplements did not differ 

significantly between quintiles of dietary vitamin C intake in men. There were no differences in 

menopausal status and HRT between the quintile groups in women. As expected, mean plasma 

vitamin C concentrations increased significantly with higher dietary intakes of vitamin C in both 

sexes (P<0.001). 
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5.4.2 Descriptive statistics stratified by quintiles of plasma vitamin C 

Characteristics of the 4130 men and women stratified by quintiles of plasma vitamin C are 

shown in Table 5.2. In the 1754 men, mean±SD plasma vitamin C concentrations for the quintiles 

were: Q1 20.2±6.5 µmol/l, Q2 37.7±3.8 µmol/l, Q3 48.0±2.5 µmol/l, Q4 56.5±2.4 µmol/l and Q5 

71.3±10.0 µmol/l. In the 2376 women, plasma vitamin C intakes for each quintile were: Q1 

30.3±9.9 µmol/l, Q2 50.1±3.3 µmol/l, Q3 59.5±2.3 µmol/l, Q4 68.2±2.9 µmol/l and Q5 85.8±13.4 

µmol/l. Men and women with higher plasma vitamin C levels were significantly younger, lighter, 

less likely to smoke and more physically active than those with lower plasma levels (P≤0.013). 

Women with higher vs. lower plasma levels were also less likely to be postmenopausal 

(P=0.018), but there were no differences in HRT between the groups. There were no significant 

differences in family history of osteoporosis and the use of steroids between the quintile groups 

in both sexes, but the use of calcium and vitamin D supplements increased significantly across 

quintiles of plasma vitamin C levels (P<0.001). As expected, mean dietary vitamin C intake 

increased significantly with higher plasma concentrations in both sexes (P<0.001). 
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Table 5.1: Baseline characteristics of the 1957 men and 2754 women of the EPIC-Norfolk case-cohort by quintiles of dietary vitamin C intake. 

 Men   Women  

Vitamin C intake  
(mg/d) 

Quintile 1 
0 – 45.2 
n = 392 

Quintile 2 
45.3 – 61.9 

n = 391 

Quintile 3 
62.0 – 85.6 

n = 392 

Quintile 4 
85.7 – 119.6 

n = 391 

Quintile 5 
119.7 - 471.4 

n = 391 P-trend 

 Quintile 1 
0.1 – 48.4 

n = 551 

Quintile 2 
48.5 – 66.9 

n = 551 

Quintile 3 
67.0 – 90.5 

n = 551 

Quintile 4 
90.6 – 124.2 

n = 551 

Quintile 5 
124.3 – 405.3 

n = 550 P-trend 

Mean (SD)                        
Age (years) 59.4 (10.0) 59.7 (9.7) 59.7 (9.1) 60.4 (9.5) 59.4 (9.6) P=0.64  60.2 (10.2) 59.3 (9.5) 60.0 (9.6) 59.8 (9.3) 59.7 (9.1) P=0.69 
BMI (kg/m

2
) 26.6 (3.4) 26.4 (3.2) 26.6 (3.4) 26.5 (3.4) 26.4 (3.2) P=0.63  26.4 (4.4) 26.3 (4.5) 26.2 (4.4) 26.0 (4.0) 25.9 (4.3) P=0.023 

Plasma vitamin C 
(µmol/l)† 

34.2 (17.2) 41.4 (17.7) 45.4 (16.6) 51.3 (14.7) 59.1 (14.0) P<0.001  44.9 (20.5) 55.5 (20.4) 58.6 (17.2) 63.1 (16.2) 68.8 (17.5) P<0.001 

n (%)                        
Menopausal Status                       P=0.98 

Pre-mp - - - - - - - - - -   86 (15.6) 87 (15.8) 84 (15.3) 82 (14.9) 74 (13.5)  
Peri-mp (<1 yr) - - - - - - - - - -   21 (3.8) 24 (4.4) 23 (4.2) 28 (5.1) 31 (5.6)  
Peri-mp (1-5 yrs) - - - - - - - - - -   90 (16.3) 89 (16.2) 88 (16.0) 89 (16.2) 92 (16.7)  
Post-mp - - - - - - - - - -   354 (64.3) 351 (63.7) 356 (64.6) 352 (63.9) 353 (64.2)  

HRT                       P=0.86 
Current User - - - - - - - - - -   92 (16.7) 99 (18.0) 97 (17.6) 83 (15.1) 101 (18.4)  
Former User - - - - - - - - - -   64 (11.6) 61 (11.1) 69 (12.5) 62 (11.3) 68 (12.4)  
Never Used - - - - - - - - - -   395 (71.7) 391 (71.0) 385 (69.9) 406 (73.7) 381 (69.3)  

Smoking           P<0.001            P<0.001 
Current smoker 88 (22.5) 51 (13.0) 43 (11.0) 34 (8.7) 22 (5.6)   125 (22.7) 59 (10.7) 69 (12.5) 49 (8.9) 41 (7.5)  
Former smoker 202 (51.5) 241 (61.6) 222 (56.6) 194 (49.6) 222 (56.8)   171 (31.0) 186 (33.8) 189 (34.3) 170 (30.9) 174 (31.6)  
Never smoked 102 (26.0) 99 (25.3) 127 (32.4) 163 (41.7) 147 (37.6)   255 (46.3) 306 (55.5) 293 (53.2) 332 (60.3) 335 (60.9)  

Physical activity           P=0.21            P<0.001 
Inactive 141 (36.0) 112 (28.6) 111 (28.3) 129 (33.0) 121 (31.0)   224 (40.7) 195 (35.4) 183 (33.2) 156 (28.3) 149 (27.1)  
Mod. inactive 88 (22.5) 95 (24.3) 108 (27.6) 88 (22.5) 92 (23.5)   168 (30.5) 181 (32.9) 164 (29.8) 194 (35.2) 170 (30.9)  
Mod. active 87 (22.2) 92 (23.5) 93 (23.7) 73 (18.7) 91 (23.3)   95 (17.2) 102 (18.5) 127 (23.1) 118 (21.4) 135 (24.6)  
Active 76 (19.4) 92 (23.5) 80 (20.4) 101 (25.8) 87 (22.3)   64 (11.6) 73 (13.3) 7 (14.0) 83 (15.1) 96 (17.5)  

Family history of OP 9 (2.3) 12 (3.1) 7 (1.8) 16 (4.1) 14 (3.6) P=0.31  28 (5.1) 35 (6.4) 31 (5.6) 32 (5.8) 28 (5.1) P=0.88 
Steroids 13 (3.3) 18 (4.6) 14 (3.6) 11 (2.8) 12 (3.1) P=0.69  28 (5.1) 22 (4.0) 18 (3.3) 24 (4.4) 22 (4.0) P=0.66 
Calcium supp. 4 (1.0) 2 (0.5) 6 (1.5) 7 (1.8) 6 (1.5) P=0.52  18 (3.3) 30 (5.4) 34 (6.2) 24 (4.4) 49 (8.9) P=0.001 
Vitamin D supp. 50 (12.8) 74 (18.9) 107 (27.3) 97 (24.8) 102 (26.1) P<0.001  131 (23.8) 168 (30.5) 171 (31.0) 191 (34.7) 214 (38.9) P<0.001 

Values are means (standard deviations) or numbers (frequencies). Abbreviations: Mp, menopausal; Family history of OP, family history of osteoporosis; Supp., supplements. 
† Plasma vitamin C levels were available for 1754 men and 2376 women. 
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Table 5.2: Baseline characteristics of the 1754 men and 2376 women of the EPIC-Norfolk case-cohort stratified by quintiles of plasma vitamin C. 

 Men   Women  

Plasma vitamin C  
levels (µmol/l) 

Quintile 1 
3 – 30 

n = 355 

Quintile 2 
31 – 43 
n = 373 

Quintile 3 
44 – 52 
n = 364 

Quintile 4 
53 – 61 
n = 317 

Quintile 5 
62 – 132 
n = 345 P-trend 

 Quintile 1 
4 – 43 

n = 491 

Quintile 2 
44 – 55 
n = 505 

Quintile 3 
56 – 63 
n = 437 

Quintile 4 
64 – 73 
n = 488 

Quintile 5 
74 – 170 
n = 455 P-trend 

Mean (SD)                        
Age (years) 61.8 (9.6) 60.2 (9.7) 59.3 (9.1) 57.9 (9.3) 58.6 (9.8) P<0.001  61.1 (9.4) 59.4 (10.0) 59.0 (9.7) 59.5 (9.6) 59.4 (8.8) P=0.013 
BMI (kg/m

2
) 26.6 (3.4) 27.0 (3.4) 26.7 (3.1) 26.3 (3.0) 25.5 (2.9) P<0.001  27.0 (4.7) 26.8 (4.6) 25.7 (4.1) 25.5 (3.8) 25.3 (3.8) P<0.001 

Vitamin C intake (mg/d) 51.9 (23.4) 72.3 (35.7) 88.6 (47.5) 99.9 (48.1) 119.8 (67.6) P<0.001  60.5 (34.0) 83.4 (46.7) 92.6 (45.5) 102.6 (49.7) 112.7 (55.2) P<0.001 
n (%)                        

Menopausal Status                       P=0.018 
Pre-mp - - - - - - - - - -   50 (10.2) 93 (18.4) 78 (17.8) 74 (15.2) 69 (15.2)  
Peri-mp (<1 yr) - - - - - - - - - -   18 (3.7) 27 (5.3) 25 (5.7) 17 (3.5) 17 (3.7)  
Peri-mp (1-5 yrs) - - - - - - - - - -   86 (17.5) 70 (13.9) 68 (15.6) 89 (18.2) 73 (16.0)  
Post-mp - - - - - - - - - -   337 (68.6) 315 (62.4) 266 (60.9) 308 (63.1) 296 (65.1)  

HRT                       P=0.74 
Current User - - - - - - - - - -   88 (17.9) 84 (16.6) 76 (17.4) 82 (16.8) 89 (19.6)  
Former User - - - - - - - - - -   52 (10.6) 55 (10.9) 54 (12.4) 53 (10.9) 61 (13.4)  
Never Used - - - - - - - - - -   351 (71.5) 366 (72.5) 307 (70.2) 353 (72.3) 305 (67.0)  

Smoking           P<0.001            P<0.001 
Current smoker 90 (25.3) 39 (10.5) 25 (6.9) 19 (6.0) 25 (7.2)   103 (21.0) 61 (12.1) 42 (9.6) 42 (8.6) 32 (7.0)  
Former smoker 188 (53.0) 222 (59.5) 201 (55.2) 171 (53.9) 188 (54.5)   154 (31.4) 144 (28.5) 143 (32.7) 172 (35.3) 157 (34.5)  
Never smoked 77 (21.7) 112 (30.0) 138 (37.9) 127 (40.1) 132 (38.3)   234 (47.6) 300 (59.4) 252 (57.7) 274 (56.1) 266 (58.5)  

Physical activity           P=0.006            P=0.004 
Inactive 135 (38.0) 112 (30.0) 121 (33.2) 88 (27.8) 83 (24.1)   197 (40.1) 157 (31.1) 140 (32.0) 146 (29.9) 122 (26.8)  
Mod. inactive 83 (23.4) 96 (25.7) 93 (25.6) 72 (22.7) 85 (24.6)   146 (29.7) 179 (35.4) 145 (33.2) 156 (32.0) 152 (33.4)  
Mod. active 65 (18.3) 95 (25.5) 72 (19.8) 74 (23.3) 88 (25.5)   96 (19.6) 98 (19.4) 85 (19.5) 103 (21.1) 110 (24.2)  
Active 72 (20.3) 70 (18.8) 78 (21.4) 83 (26.2) 89 (25.8)   52 (10.6) 71 (14.1) 67 (15.3) 83 (17.0) 71 (15.6)  

Family history of OP 6 (1.7) 13 (3.5) 9 (2.5) 11 (3.5) 11 (3.2) P=0.55  27 (5.5) 29 (5.7) 16 (3.7) 34 (7.0) 29 (6.4) P=0.26 
Steroids 16 (4.5) 13 (3.5) 15 (4.1) 9 (2.8) 8 (2.8) P=0.50  28 (5.7) 27 (5.4) 17 (3.9) 15 (3.1) 12 (2.6) P=0.06 
Calcium supp. 0 (0.0) 3 (0.8) 1 (0.3) 7 (2.2) 13 (3.8) P<0.001  11 (2.2) 18 (3.6) 24 (5.5) 39 (8.0) 45 (9.9) P<0.001 
Vitamin D supp. 40 (11.3) 79 (21.2) 72 (19.8) 81 (25.6) 113 (32.8) P<0.001  103 (21.0) 138 (27.3) 149 (34.1) 184 (37.7) 198 (43.5) P<0.001 

Values are means (standard deviations) or numbers (frequencies). Abbreviations: Mp, menopausal; Family history of OP, family history of osteoporosis; Supp., supplements. 
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5.4.3 Associations between vitamin C and heel ultrasound 

Associations between the two bone density parameters BUA (in dB/MHz) and VOS (in m/s) with 

dietary and total intakes and plasma levels of vitamin C are presented in Figure 5.3 for men and 

in Figure 5.4 for women. The results are discussed in detail below. Briefly, we found that dietary 

and total intakes of vitamin C were significantly positively associated with VOS in men and with 

BUA in women. 

 

5.4.3.1 Primary analysis 

Dietary and total vitamin C intake and heel ultrasound 

In univariate analyses, dietary and total vitamin C intake did not correlate with heel ultrasound 

in men, but a small yet significant correlation was found between dietary intake and BUA in 

women (r=0.06, P<0.05). 

In the 967 men, there was a positive linear relationship between VOS and quintiles of 

dietary vitamin C intake, and this association remained significant even after adjustment for age, 

family history of osteoporosis, BMI, smoking, physical activity, use of steroids, energy intake, 

dietary calcium intake and the use of calcium and vitamin D supplements (β 2.47 m/s per 

quintile, P-trend=0.008; Figure 5.3B). Moreover, there were significant differences in VOS 

between the two upper quintiles of dietary vitamin C intake referent to the lowest quintile of 

intake, with VOS being 0.6% higher for quintile 4 (β 9.65 m/s, P=0.019) and 0.5% higher for 

quintile 5 (β 8.79 m/s, P=0.035). Results were similar when investigating total vitamin C intake 

estimated from both diet and supplements. There was a significant linear association between 

total intake and VOS (β 2.00 m/s per quintile; P-trend=0.034), VOS was 0.8% higher in quintile 4 

compared to quintile 1 (β 12.82 m/s; P=0.002). BUA was not found to be associated with neither 

dietary nor total vitamin C intake after multivariate adjustment in men (Figure 5.3A).  

 In contrast to men, there was no relation between VOS and dietary and total vitamin C 

intake in the 1356 women (Figure 5.4B). However, BUA increased significantly across quintiles of 

dietary vitamin C intake in a linear fashion after adjustment for important confounding factors (β 

0.81 dB/MHz per quintile, P-trend=0.004; Figure 5.4A). There were also significant and positive 

differences of 3.7% and 5.8% between quintiles 4 and 5 of dietary vitamin C intake referent to 

quintile 1, respectively (β 2.56 dB/MHz, P=0.041 and β 4.06 dB/MHz, P=0.001).  In women, total 

vitamin C intake showed very similar associations with heel ultrasound, where the trend across 

quintiles was linear for BUA (β 0.71 dB/MHz per quintile, P-trend=0.014) and not significant for 

VOS. 
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Figure 5.3: Associations between dietary intakes and plasma concentrations of vitamin C with mean BUA 
(A) and VOS (B) in men. 

 

 
Mean vitamin C intake or plasma concentrations for quintile 1 and 5 ranged from 37-173 mg/d for dietary 
intake, 38-240 mg/d for total intake and 24-72 µmol/l for plasma levels. Standard error of the mean (SE) 
was 1.2-1.4 dB/MHz for BUA and 2.8-3.1 m/s for VOS. Total intake is the sum of vitamin C intake from the 
diet and from supplements. The analysis used EPIC-Norfolk data from the second health check and was 
based on a multivariate-adjusted linear regression analysis. Differences between the two upper quintiles 
referent to quintile 1 were significant at *P<0.05 and **P<0.01. n=967 for intake and n=884 for plasma 
concentrations. 
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Figure 5.4: Associations between dietary intakes and plasma concentrations of vitamin C with mean BUA 
(A) and VOS (B) in women. 

 

Mean vitamin C intake or plasma concentrations for quintile 1 and 5 ranged from 40-172 mg/d for dietary 
intake, 42-361 mg/d for total intake and 34-88 µmol/l for plasma levels. Standard error of the mean (SE) 
was 0.9-1.0 dB/MHz for BUA and 2.2-2.4 m/s for VOS. Total intake is the sum of vitamin C intake from the 
diet and from supplements. The analysis used EPIC-Norfolk data from the second health check and was 
based on a multivariate-adjusted linear regression analysis. Differences between the two upper quintiles 
referent to quintile 1 were significant at *P<0.05 and **P<0.01. n=1356 for intake and n=1193 for plasma 
concentrations. 
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Plasma vitamin C concentrations and heel ultrasound 

In univariate analyses, plasma vitamin C concentrations did not correlate with heel ultrasound in 

participants of the EPIC-Norfolk cohort.  

Figures 5.3-5.4 also show the relationship between quintiles of plasma vitamin C and 

heel bone density in men and women, respectively. The categorisation of subjects into sex-

specific quintiles of plasma vitamin C concentrations differed between the two sexes. The 

plasma concentration range of quintile 1 in women (4-46 µmol/l) reflected that of quintiles 1 and 

2 in men (5-35 µmol/l and 36-46 µmol/l). Subsequently, quintiles 2 and 3 in women 

corresponded with plasma levels of quintiles 3 and 4 in men, respectively. In both men and 

women, plasma vitamin C levels were not significantly associated with heel bone density before 

and after adjustment for important confounding factors.  

 

5.4.3.2 Secondary analysis 

The impact of energy intake 

Associations between vitamin C intake and bone density were also performed using vitamin C 

residuals in order to account for the total caloric consumption of participants. The results are 

presented in Table 5.3. 

In men, the non-significant findings for crude dietary and total vitamin C intakes in 

association with BUA remained unchanged, although results for VOS differed slightly. Using 

residuals, the differences between the two upper quintiles of dietary vitamin C intake referent to 

quintile 1 were non-significant, although the trend for linearity was unchanged (β 2.13 m/s per 

quintile, P-trend=0.019). Associations between total intake and VOS were not affected by the 

use of residuals. In women, residuals of dietary vitamin C intake strengthened the associations 

with BUA, with both the trend for linearity and the differences between quintile 4 referent to 

quintile 1 being more significant. Results for total vitamin C intake and BUA were similar when 

using residuals and findings for dietary and total vitamin C in association with VOS remained 

non-significant. 

 

Sensitivity analysis 

Results from the primary analysis indicated that a large number of participants had very high 

plasma vitamin C concentrations. It was hypothesised that this may have resulted from the use 

of vitamin C supplements. Further analyses showed that the frequency of vitamin C supplement 

use increased significantly across quintiles of plasma vitamin C in both sexes (P<0.001), ranging 

from 12% to 55% in quintiles 1 to 5 in men respectively, and from 15% to 61% in women. Hence, 

a sensitivity analysis was performed in order to evaluate potential associations between vitamin 

C from the diet independent of supplement use.  
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Following the exclusion of current vitamin C supplement users (Table 5.3), VOS in men 

and BUA in women remained significantly higher in those with higher dietary vitamin C intakes 

(P≤0.008). Interestingly, a significant 0.5% difference in VOS between extreme quintiles of 

dietary vitamin C intake referent to quintile 1 also became apparent in women (β 8.04 m/s, 

P=0.024). Plasma vitamin C concentrations were still not significantly associated with heel 

ultrasound in either sex. 

 

The effects of body weight 

Accounting for body weight did not change the associations between dietary vitamin C and bone 

density in men (Table 5.3). However, the trend for linearity between VOS and total intake of 

vitamin C became significant when vitamin C intake was considered per kilogram bodyweight (β 

2.38 m/s per quintile, P-trend=0.014). In contrast to men, body weight had a greater influence 

on associations in women. All significant associations between BUA and both dietary and total 

vitamin C intake lost significance when analysed per kilogram body weight. The non-significant 

relations between plasma vitamin C and heel bone density remained unchanged in both sexes.  
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Table 5.3: Associations between vitamin C and BUA and VOS in comparison to i) using residuals of vitamin C intake, ii) following the exclusion of vitamin C supplement users or iii) 
accounting for body weight. 

Bone density stratified  
by vitamin C 

 Men  Women 
    n Q4 vs. Q1 Q5 vs. Q1 Linear trend     n Q4 vs. Q1 Q5 vs. Q1 Linear trend 

Primary analysis           
BUA by dietary intake  968 β  1.85; P=0.31 β  0.39; P=0.83 β  0.35; P=0.39  1359 β  2.59; P=0.038 β  4.06; P=0.001 β  0.82; P=0.004 
BUA by total intake  968 β  3.31; P=0.07 β  0.59; P=0.75 β  0.51; P=0.22  1359 β  3.05; P=0.015 β  3.62; P=0.005 β  0.69; P=0.017 
BUA by plasma level  885 β  1.69; P=0.38 β -1.99; P=0.29 β -0.35; P=0.42  1195 β  0.33; P=0.80 β  0.83; P=0.53 β  0.12; P=0.69 
VOS by dietary intake  968 β  9.15; P=0.026 β  8.65; P=0.038 β  2.40; P=0.010  1359 β -1.12; P=0.72 β  4.67; P=0.14 β  0.93; P=0.19 
VOS by total intake  968 β 12.95; P=0.002 β  5.23; P=0.21 β  2.01; P=0.034  1359 β  2.10; P=0.51 β  5.43; P=0.09 β  0.78; P=0.28 
VOS by plasma level  885 β  6.73; P=0.12 β -0.22; P=0.96 β  0.25; P=0.80  1195 β  2.86; P=0.37 β  0.01; P=1.00 β  0.28; P=0.71 
           
Residuals of vitamin C           
BUA by dietary intake  967 β -0.08; P=0.97 β  0.05; P=0.98 β  0.32; P=0.42  1356 β  2.98; P=0.015 β  3.67; P=0.003 β  0.86; P=0.002 
BUA by total intake  967 β  2.00; P=0.27 β  0.41; P=0.82 β  0.55; P=0.18  1356 β  2.31; P=0.07 β  3.25; P=0.012 β  0.76; P=0.009 
VOS by dietary intake  967 β  2.83; P=0.49 β  5.29; P=0.19 β  2.13; P=0.019  1356 β -0.48; P=0.88 β  4.76; P=0.13 β  0.91; P=0.19 
VOS by total intake  967 β  8.19; P=0.044 β  3.73; P=0.37 β  2.02; P=0.028  1356 β  3.03; P=0.33 β  4.60; P=0.15 β  1.22; P=0.09 
           
Minus supplement users           
BUA by dietary intake  870 β  2.54; P=0.19 β  1.88; P=0.34 β  0.69; P=0.12  1113 β  4.07; P=0.004 β  4.97; P<0.001 β  0.95; P=0.003 
BUA by plasma level  795 β  1.42; P=0.48 β -1.21; P=0.55 β -0.17; P=0.71    975 β  0.46; P=0.75 β  1.21; P=0.42 β  0.15; P=0.65 
VOS by dietary intake  870 β 13.26; P=0.002 β 11.60; P=0.008 β  3.08; P=0.002  1113 β  0.82; P=0.82 β  8.04; P=0.024 β  1.37; P=0.09 
VOS by plasma level  795 β  3.60; P=0.42 β  2.50; P=0.58 β  0.67; P=0.50    975 β  3.57; P=0.34 β  4.10; P=0.27 β  0.96; P=0.25 
           
Vitamin C / body weight           
BUA by dietary intake  967 β  1.75; P=0.35 β -0.91; P=0.63 β  0.09; P=0.83  1356 β  1.55; P=0.22 β  2.49; P=0.06 β  0.53; P=0.07 
BUA by total intake  967 β  2.50; P=0.18 β -0.01; P=1.00 β  0.34; P=0.43  1356 β  2.18; P=0.09 β  1.90; P=0.15 β  0.42; P=0.16 
BUA by plasma level  884 β -1.08; P=0.58 β -2.39; P=0.48 β -0.43; P=0.35  1193 β  0.46; P=0.74 β -1.08; P=0.47 β -0.13; P=0.70 
VOS by dietary intake  967 β 10.08; P=0.017 β  8.48; P=0.045 β  2.46; P=0.010  1356 β  0.48; P=0.88 β  5.77; P=0.08 β  1.11; P=0.13 
VOS by total intake  967 β 11.78; P=0.005 β  6.55; P=0.12 β  2.38; P=0.014  1356 β  2.71; P=0.40 β  3.49; P=0.29 β  0.87; P=0.24 
VOS by plasma level  884 β  4.12; P=0.34 β  5.91; P=0.20 β  1.41; P=0.18  1193 β  5.21; P=0.14 β  3.40; P=0.36 β  1.12; P=0.18 

Total vitamin C intake is the sum of vitamin C intake from the diet and from supplements (mg/d). BUA in dB/MHz and VOS in m/s. All analyses were based on a 
multivariate-adjusted linear regression analysis.  
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5.4.4 Associations between vitamin C and fracture risk 

5.4.4.1 Primary analysis 

In the case-cohort sub-sample of EPIC-Norfolk participants, there were 112 hip fractures, 78 

spine fractures and 70 wrist fractures in men, and 339 hip fractures, 124 spine fractures and 218 

wrist fractures in women. In the case-cohort, which contained participants with a fracture at any 

of these three fracture sites, there were 248 and 616 total fractures in men and women, 

respectively. The results of the calculation of hazard ratios of fracture risk according to vitamin C 

intake or plasma concentrations are discussed in detail below. Briefly, higher plasma vitamin C 

concentrations were significantly inversely associated with the risk of hip, spine and total 

fractures in men only, and similar associations were also found between dietary intakes of 

vitamin C and total fracture risk in men only. 

 

Vitamin C characteristics of participants with or without a fracture  

Differences in dietary and total intake and plasma concentrations of vitamin C between those 

who did and did not fracture over the median 12.6-year follow-up are summarised in Table 5.4. 

Mean dietary or total vitamin C intake did not differ significantly between participants who had 

experienced a fracture at the hip, spine or wrist combined and those who stayed free from 

fractures. Similarly, mean plasma vitamin C levels did not differ significantly in women. However, 

mean plasma vitamin C concentrations were significantly lower in men with fractures compared 

to those who remained free from fractures (42.5±18.5 vs. 46.9±18.1 µmol/l, P<0.001).  
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Table 5.4: Vitamin C intake and plasma status in subjects with and without a total fracture. 

  Subjects without a fracture  Subjects with a fracture   

  n Mean (SD) [Range]  n Mean (SD) [Range]    P 

Men             
Dietary vitamin C intake (mg/d)   1709 85.8 (51.0) [0; 471]  248 84.0 (57.5) [0.9; 471]  0.60 
Total vitamin C intake (mg/d)  1709 103.3 (113.2) [0; 1595]  248 97.8 (117.6) [0.9; 1202]  0.47 
Plasma vitamin C levels (µmol/l)  1532 46.9 (18.1) [3; 132]  222 42.5 (18.5) [6; 94]  0.0008 

             
Women             
Dietary vitamin C intake (mg/d)   2138 89.5 (49.8) [0.2; 405]  616 88.2 (51.0) [0.1; 353]  0.56 
Total vitamin C intake (mg/d)  2138 125.6 (231.2) [0.2; 6142]  616 119.2 (155.1) [0.1; 1918]  0.52 
Plasma vitamin C levels  (µmol/l)  1851 58.4 (20.0) [4; 170]  525 58.1 (20.2) [5; 138]  0.75 
Total vitamin C intake is the sum of vitamin C intake from foods and supplements. 
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Dietary and total vitamin C intake and fracture risk 

Pearson correlation coefficients for vitamin C intake from the diet and from the sum of dietary 

and supplemental (total) intake were 0.54 in men but only 0.31 in women (P<0.05).  

 In men, the Kaplan-Meier plot demonstrated some overlap and cross-over between 

quintiles of dietary vitamin C intake, although those in quintile 4 appeared to diverge markedly 

from those in the remaining quintiles for periods of time (Figure 5.5). However, the log-rank test 

for equality showed that total osteoporotic fracture incidence did not differ significantly 

between quintiles of dietary vitamin C intake. Results from the Cox proportional hazard ratio 

analyses showed that the relationships between dietary vitamin C intake and fractures at the 

hip, spine and wrist were all non-linear (Table 5.5). Although total osteoporotic fractures, 

describing the occurrence of fractures at the three different sites combined, showed a significant 

risk reduction for men in quintile 4 of dietary vitamin C intake compared to those in quintile 1, 

even after multivariate adjustment (HR 0.58, 95%CI 0.36-0.92; P=0.020). Results for total vitamin 

C intake were very similar (Appendix 3, Table A3.1). Those men in quintile 4 of total vitamin C 

intake compared to those in quintile 1 had a significant reduction in total fracture risk (HR 0.52, 

95%CI 0.33-0.83; P=0.007) and a marginally significant fracture risk reduction at the wrist (HR 

0.41, 95%CI 0.17-0.99; P=0.048). 

 In women, the Kaplan-Meier plot predominantly showed both overlap and cross-over 

between quintiles of dietary vitamin C intake (Figure 5.6), and the log rank test showed that 

there were no significant differences in total osteoporotic fracture incidence over the median 

12.6-year follow-up between the different quintiles. Furthermore, Cox proportional hazard ratios 

revealed that dietary vitamin C intake (Table 5.6) as well as total vitamin C intake (Appendix 3, 

Table A3.2) were not associated with the risk of fracture at any site in EPIC-Norfolk women.  
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Figure 5.5: Kaplan-Meier plot of total fractures by quintiles of vitamin C intake in men. 

 
The quintile groups differed significantly according to the log-rank test for equality (P=0.12). n=1957. 

 

Figure 5.6: Kaplan-Meier plot of total fractures by quintiles of vitamin C intake in women. 

 
There were no significant differences between the quintile groups according to the log-rank test 
for equality (P=0.32). n=2754. 
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Table 5.5: Associations between dietary vitamin C intake and fracture risk in men of the EPIC-Norfolk case-cohort. 

  Dietary vitamin C intake (mg/d)  

 

 Quintile 1 
0 – 45.2 
n = 392 

Quintile 2 
45.3 – 61.9 

n = 391 

Quintile 3 
62.0 – 85.6 

n = 392 

Quintile 4 
85.7 – 119.6 

n = 391 

Quintile 5 
119.7 - 471.4 

n = 391 
 

  HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture [Events] [61]  [48]  [48]  [40]  [51]  
 Unadjusted 1.00 0.74 (0.48-1.13) 0.76 (0.50-1.15) 0.59 (0.38-0.91)* 0.81 (0.53-1.22) P=0.18 

 Model 1 1.00 0.74 (0.48-1.13) 0.76 (0.50-1.15) 0.60 (0.39-0.94)* 0.83 (0.55-1.26) P=0.25 
 Model 2 1.00 0.72 (0.47-1.11) 0.74 (0.48-1.13) 0.58 (0.36-0.92)* 0.78 (0.51-1.21) P=0.19 
            

Hip fracture [Events] [30]  [21]  [24]  [18]  [19]  
 Unadjusted 1.00 0.67 (0.36-1.23) 0.77 (0.43-1.38) 0.54 (0.29-1.01) 0.61 (0.33-1.14) P=0.09 
 Model 1 1.00 0.68 (0.37-1.26) 0.77 (0.43-1.39) 0.55 (0.29-1.05) 0.64 (0.34-1.19) P=0.12 

 Model 2 1.00 0.68 (0.36-1.29) 0.77 (0.41-1.46) 0.55 (0.28-1.09) 0.64 (0.34-1.23) P=0.15 
            

Spinal fracture [Events] [19]  [12]  [15]  [11]  [21]  
 Unadjusted 1.00 0.59 (0.28-1.24) 0.75 (0.37-1.51) 0.52 (0.25-1.12) 1.10 (0.58-2.08) P=0.86 
 Model 1 1.00 0.58 (0.27-1.25) 0.75 (0.38-1.50) 0.52 (0.24-1.12) 1.12 (0.59-2.15) P=0.80 
 Model 2 1.00 0.57 (0.26-1.22) 0.72 (0.36-1.47) 0.50 (0.23-1.10) 1.05 (0.52-2.13) P=0.91 
            
Wrist fracture [Events] [16]  [17]  [12]  [10]  [15]  
 Unadjusted 1.00 1.06 (0.53-2.14) 0.75 (0.35-1.61) 0.62 (0.28-1.39) 0.94 (0.46-1.92) P=0.47 
 Model 1 1.00 1.06 (0.52-2.18) 0.75 (0.35-1.59) 0.64 (0.29-1.43) 0.95 (0.45-1.97) P=0.52 
 Model 2 1.00 0.96 (0.46-1.98) 0.63 (0.29-1.39) 0.56 (0.24-1.27) 0.79 (0.38-1.63) P=0.28 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first health 
check. Significant differences between the two upper quintiles referent to the lowest quintile: * (P<0.05), ** (P<0.01). Model 1 adjusted for age, family history of osteoporosis, 
BMI, smoking, physical activity and use of steroids. Model 2 additionally adjusted for energy intake, dietary calcium intake, calcium supplements and vitamin D supplements. n 
1957 for total fracture, n 1842 for hip fracture, n 1808 for spine fracture, n 1806 for wrist fracture. 
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Table 5.6: Associations between dietary vitamin C intake and fracture risk in women of the EPIC-Norfolk case-cohort. 

  Dietary vitamin C intake (mg/d)  

 

 Quintile 1 
0.1 – 48.4 

n = 551 

Quintile 2 
48.5 – 69.9 

n = 551 

Quintile 3 
67.0 – 90.5 

n = 551 

Quintile 4 
90.6 – 124.2 

n = 551 

Quintile 5 
124.3 – 405.3 

n = 550 
 

  HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture [Events] [135]  [121]  [123]  [111]  [126]  
 Unadjusted 1.00 0.97 (0.72-1.32) 1.02 (0.75-1.37) 0.82 (0.61-1.12) 1.07 (0.79-1.45) P=0.92 

 Model 1 1.00 0.98 (0.72-1.34) 1.05 (0.77-1.43) 0.85 (0.62-1.15) 1.10 (0.81-1.50) P=0.91 
 Model 2 1.00 1.00 (0.74-1.37) 1.08 (0.79-1.47) 0.87 (0.64-1.20) 1.14 (0.83-1.58) P=0.74 
            

Hip fracture [Events] [71]  [67]  [68]  [60]  [73]  
 Unadjusted 1.00 1.09 (0.74-1.62) 1.08 (0.73-1.60) 0.93 (0.63-1.39) 1.26 (0.85-1.85) P=0.49 
 Model 1 1.00 1.11 (0.75-1.66) 1.16 (0.77-1.73) 0.98 (0.65-1.47) 1.26 (0.85-1.89) P=0.45 

 Model 2 1.00 1.15 (0.77-1.71) 1.20 (0.80-1.79) 1.02 (0.67-1.53) 1.33 (0.88-2.00) P=0.34 
            

Spinal fracture [Events] [36]  [20]  [21]  [21]  [26]  
 Unadjusted 1.00 0.60 (0.34-1.06) 0.62 (0.36-1.09) 0.61 (0.35-1.07) 0.81 (0.48-1.38) P=0.44 
 Model 1 1.00 0.62 (0.35-1.11) 0.67 (0.38-1.19) 0.64 (0.36-1.14) 0.88 (0.50-1.54) P=0.62 
 Model 2 1.00 0.63 (0.35-1.12) 0.68 (0.38-1.22) 0.65 (0.36-1.16) 0.90 (0.50-1.61) P=0.68 
            
Wrist fracture [Events] [51]  [42]  [46]  [37]  [42]  
 Unadjusted 1.00 0.83 (0.54-1.28) 0.94 (0.61-1.43) 0.70 (0.45-1.10) 0.85 (0.55-1.31) P=0.33 
 Model 1 1.00 0.82 (0.53-1.28) 0.94 (0.61-1.44) 0.69 (0.44-1.08) 0.84 (0.54-1.31) P=0.30 
 Model 2 1.00 0.84 (0.54-1.30) 0.95 (0.62-1.45) 0.69 (0.44-1.10) 0.84 (0.53-1.32) P=0.30 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first health 
check. No significant differences between the two upper quintiles referent to the lowest quintile. Model 1 adjusted for age, family history of osteoporosis, BMI, smoking, physical 
activity, use of steroids, menopausal status and HRT. Model 2 additionally adjusted for energy intake, dietary calcium intake, calcium supplements and vitamin D supplements. n 
2754 for total fracture, n 2525 for hip fracture, n 2334 for spine fracture, n 2409 for wrist fracture. 
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Plasma vitamin C concentrations and fracture risk 

In the 1754 men, there was no clear divergence between quintiles of plasma vitamin C in 

relation to total osteoporotic fracture incidence as shown by the Kaplan-Meier plot (Figure 5.7), 

although results from the log-rank test for equality indicated that the quintiles differed 

marginally significantly (P=0.047). In concordance with these findings, results from the Cox 

proportional hazard ratio analyses showed that there was a linear inverse relationship between 

plasma vitamin C levels and hip fractures (HR 0.82, P-trend=0.016), and a marginally significant 

relationship with total osteoporotic fractures (HR 0.89, P-trend=0.046) after adjustment for age, 

family history of osteoporosis, BMI, smoking, physical activity, use of steroid medication, energy 

intake, dietary calcium intake and the use of calcium and vitamin D supplements (Table 5.7). 

Moreover, men in quintile 4 of plasma vitamin C had a significantly lower risk of hip fracture (HR 

0.35, 95%CI 0.16-0.80; P=0.012), spine fracture (HR 0.26, 95%CI 0.10-0.69; P=0.007) and total 

osteoporotic fracture (HR 0.50, 95%CI 0.31-0.82; P=0.006) compared to those in the lowest 

quintile, even after adjustment for important confounding factors. Wrist fractures were not 

significantly associated with plasma vitamin C concentrations in EPIC-Norfolk men. 

In the 2376 women, the log-rank test for equality showed no significant differences in 

total osteoporotic fracture incidence over the 11-year follow-up between the different quintiles 

of plasma vitamin C levels, and this was confirmed by quintile overlap and cross-over in the 

Kaplan-Meier plot (Figure 5.8). Furthermore, results from the multiple Cox regression analyses 

showed that there were no linear relationships between plasma vitamin C concentrations and 

risk of fracture at all measured sites before and after adjustment for important confounding 

factors (Table 5.8). There were also no associations between the top two quintiles referent to 

the lowest quintile of plasma vitamin C in these women. 
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Figure 5.7: Kaplan-Meier plot of total fractures by quintiles of plasma vitamin C in men. 

 
* The quintile groups differed significantly according to the log-rank test for equality (P=0.047). n=1754. 

 

Figure 5.8: Kaplan-Meier plot of total fractures by quintiles of plasma vitamin C in women. 

 
* There were no significant differences between the quintile groups according to the log-rank test 

for equality (P=0.09). n=2376.



 

 
 

P
age | 133

 

Table 5.7: Associations between plasma vitamin C and fracture risk in men of the EPIC-Norfolk case-cohort. 

  Plasma vitamin C (µmol/l)  

 

 Quintile 1 
3 - 30 

n = 372 

Quintile 2 
31 - 43 
n = 388 

Quintile 3 
44 - 52 
n = 383 

Quintile 4 
53 - 61 
n = 336 

Quintile 5 
62 - 132 
n = 363 

 

  HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture [Event] [65]  [46]  [44]  [27]  [40]  
 Unadjusted 1.00 0.70 (0.46-1.06) 0.80 (0.52-1.24) 0.52 (0.32-0.84)** 0.71 (0.45-1.10) P=0.06 

 Model 1 1.00 0.70 (0.45-1.08)  0.76 (0.49-1.19)  0.50 (0.30-0.81)**  0.69 (0.43-1.09) P=0.048 
 Model 2 1.00 0.71 (0.46-1.09) 0.76 (0.49-1.19) 0.50 (0.31-0.82)** 0.68 (0.42-1.08) P=0.046 
            

Hip fracture [Event] [33]  [23]  [20]  [8]  [14]  
 Unadjusted 1.00 0.77 (0.43-1.38) 0.88 (0.47-1.62) 0.36 (0.16-0.81)* 0.56 (0.29-1.11) P=0.025 
 Model 1 1.00 0.78 (0.42-1.43) 0.78 (0.42-1.48) 0.34 (0.15-0.77)** 0.51 (0.25-1.04) P=0.013 

 Model 2 1.00 0.77 (0.42-1.43) 0.76 (0.40-1.42) 0.35 (0.16-0.80)* 0.52 (0.25-1.06) P=0.016 
            

Spinal fracture [Event] [21]  [14]  [12]  [5]  [17]  
 Unadjusted 1.00 0.71 (0.35-1.41) 0.67 (0.32-1.41) 0.30 (0.11-0.80)* 0.97 (0.50-1.90) P=0.49 
 Model 1 1.00 0.70 (0.34-1.42) 0.61 (0.28-1.33) 0.28 (0.10-0.75)* 0.95 (0.46-1.98) P=0.47 
 Model 2 1.00 0.68 (0.33-1.40) 0.61 (0.28-1.32) 0.26 (0.10-0.69)** 0.90 (0.42-1.90) P=0.38 
            
Wrist fracture [Event] [16]  [10]  [14]  [15]  [11]  
 Unadjusted 1.00 0.62 (0.28-1.39) 0.89 (0.43-1.88) 1.01 (0.49-2.10) 0.70 (0.32-1.53) P=0.77 
 Model 1 1.00 0.62 (0.27-1.41) 0.89 (0.41-1.92) 1.02 (0.47-2.18) 0.72 (0.32-1.60) P=0.83 
 Model 2 1.00 0.65 (0.28-1.49) 0.95 (0.43-2.07) 1.12 (0.52-2.42) 0.77 (0.34-1.72) P=1.00 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first health 
check. Significant differences between the two upper quintiles referent to the lowest quintile: * (P<0.05), ** (P<0.01). Model 1 adjusted for age, family history of osteoporosis, 
BMI, smoking, physical activity and use of steroids. Model 2 additionally adjusted for energy intake, dietary calcium intake, calcium supplements and vitamin D supplements. n 
1754 for total fracture, n 1650 for hip fracture, n 1619 for spine fracture, n 1621 for wrist fracture. 
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Table 5.8: Associations between plasma vitamin C and fracture risk in women of the EPIC-Norfolk case-cohort.  

  Plasma vitamin C (µmol/l)  

 

 Quintile 1 
4 - 43 

n = 533 

Quintile 2 
44 - 54 
n = 497 

Quintile 3 
55 - 63 
n = 518 

Quintile 4 
64 - 73 
n = 527 

Quintile 5 
74 - 170 
n = 479 

 

  HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture [Event] [109]  [122]  [88]  [97]  [109]  
 Unadjusted 1.00 1.26 (0.92-1.73) 1.00 (0.71-1.40) 1.03 (0.74-1.43) 1.33 (0.96-1.84) P=0.34 

 Model 1 1.00 1.29 (0.94-1.78) 0.98 (0.69-1.39) 1.02 (0.73-1.42) 1.33 (0.95-1.85) P=0.41 
 Model 2 1.00 1.30 (0.94-1.80) 1.00 (0.70-1.42) 1.04 (0.74-1.46) 1.35 (0.96-1.90) P=0.33 
            

Hip fracture [Event] [59]  [61]  [52]  [57]  [62]  
 Unadjusted 1.00 1.18 (0.78-1.80) 1.14 (0.74-1.76) 1.18 (0.78-1.80) 1.48 (0.97-2.25) P=0.11 
 Model 1 1.00 1.19 (0.78-1.82) 1.08 (0.69-1.68) 1.11 (0.71-1.73) 1.43 (0.93-2.21) P=0.20 

 Model 2 1.00 1.20 (0.79-1.84) 1.09 (0.69-1.72) 1.13 (0.73-1.77) 1.46 (0.94-2.27) P=0.18 
            

Spinal fracture [Event] [22]  [32]  [19]  [22]  [15]  
 Unadjusted 1.00 1.71 (0.96-3.04) 0.98 (0.52-1.85) 1.15 (0.62-2.13) 0.89 (0.45-1.77) P=0.41 
 Model 1 1.00 1.80 (1.01-3.23) 1.01 (0.52-1.97) 1.20 (0.63-2.32) 0.97 (0.47-1.99) P=0.59 
 Model 2 1.00 1.83 (1.02-3.29) 1.03 (0.52-2.03) 1.24 (0.63-2.42) 1.01 (0.48-2.11) P=0.71 
            
Wrist fracture [Event] [39]  [38]  [32]  [33]  [40]  
 Unadjusted 1.00 1.09 (0.68-1.74) 1.00 (0.61-1.64) 0.94 (0.58-1.53) 1.26 (0.79-2.00) P=0.56 
 Model 1 1.00 1.10 (0.69-1.77) 0.96 (0.58-1.59) 0.89 (0.54-1.47) 1.19 (0.74-1.91) P=0.80 
 Model 2 1.00 1.13 (0.70-1.82) 0.98 (0.59-1.63) 0.91 (0.55-1.51) 1.19 (0.73-1.93) P=0.80 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first health 
check. No significant differences between the two upper quintiles referent to the lowest quintile. Model 1 adjusted for age, family history of osteoporosis, BMI, smoking, physical 
activity, use of steroids, menopausal status and HRT. Model 2 additionally adjusted for energy intake, dietary calcium intake, calcium supplements and vitamin D supplements. n 
2376 for total fracture, n 2183 for hip fracture, n 2024 for spine fracture, n 2080 for wrist fracture. 
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5.4.4.2 Secondary analysis 

The impact of energy intake 

As shown in Table 5.9, results for Cox proportional hazards of total fracture risk using residuals 

of both dietary and total vitamin C intake did not differ from findings of crude vitamin C intakes 

in women. However, the reduction in total fracture risk for men in quintile 4 of dietary as well as 

total intake compared to quintile 1 became non-significant. 

 

Sensitivity analysis 

The exclusion of participants reporting the current use of vitamin C supplements did not affect 

the present findings. As shown in Table 5.9, there were still no associations between vitamin C 

and total fracture risk in women, and all significant risk reductions in men with both dietary 

intake and plasma levels of vitamin C remained significant. However, interestingly, the significant 

total fracture risk reduction for plasma vitamin C quintile 4 referent to quintile 1 of the crude 

analysis (HR 0.50, 95%CI 0.31-0.82; P=0.006) became even more significant (HR 0.38, 95%CI 

0.22-0.65; P<0.001). 

 

The effects of body weight 

As shown in Table 5.9, when dietary vitamin C intake was considered per kilogram bodyweight, 

the significant reduction in total fracture risk for men in quintile 4 referent to quintile 1 became 

non-significant. Results for total intake per kilogram bodyweight remained unchanged in 

comparison to the crude analyses. However, there was a marginally significant total fracture risk 

reduction between extreme quintiles of plasma vitamin C (HR 0.60, 95%CI 0.36-0.99; P=0.046) 

which was not significant in the crude analyses. In women, the non-significant findings between 

intake and plasma levels of vitamin C and total fracture risk remained unchanged when body 

weight was accounted for. 

 

Associations in older people 

Table 5.9 also shows the relationship between vitamin C and total fracture risk in older men and 

women aged 65 years and over at baseline. Findings for dietary intakes of vitamin C were similar 

to those of the full case-cohort sample in both sexes, although there were no significant 

associations between total intake and total fracture risk in the older men. Furthermore, the 

significant linear inverse relationship between plasma vitamin C and total fracture risk in men 

was no longer significant when younger participants were excluded from the analyses. 
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Table 5.9: Associations between vitamin C and total fracture risk in comparison to i) using residuals of vitamin C intake, ii) following the exclusion of vitamin C supplement users, 
iii) accounting for body weight or iv) investigations undertaken in the elderly population only. 

Total fracture risk stratified 
by vitamin C 

 Men  Women 
 n  cases/ 

non-cases 
Q4 vs. Q1 Q5 vs. Q1 Linear trend  

n  cases/ 
non-cases 

Q4 vs. Q1 Q5 vs. Q1 Linear trend 

Primary analysis            
Dietary intake  248/1709 HR 0.58; P=0.020 

(95%CI 0.36-0.92) 
HR 0.78; P=0.27 
(95%CI 0.51-1.21) 

HR 0.93; P=0.19 
(95%CI 0.84-1.04) 

 616/2138 HR 0.87; P=0.40 
(95%CI 0.64-1.20) 

HR 1.14; P=0.41 
(95%CI 0.83-1.58) 

HR 1.01; P=0.74 
(95%CI 0.94-1.09) 

Total intake  248/1709 HR 0.52; P=0.007 
(95%CI 0.33-0.83) 

HR 0.76; P=0.23 
(95%CI 0.49-1.18) 

HR 0.92; P=0.15 
(95%CI 0.83-1.03) 

 616/2138 HR 0.99; P=0.97 
(95%CI 0.72-1.37) 

HR 1.16; P=0.40 
(95%CI 0.83-1.61) 

HR 1.02; P=0.66 
(95%CI 0.94-1.10) 

Plasma concentrations  222/1532 HR 0.50; P=0.006 
(95%CI 0.31-0.82) 

HR 0.68; P=0.10 
(95%CI 0.42-1.08) 

HR 0.89; P=0.046 
(95%CI 0.80-1.00) 

 525/1851 HR 1.04; P=0.81 
(95%CI 0.74-1.46) 

HR 1.35; P=0.08 
(95%CI 0.96-1.90) 

HR 1.04; P=0.33 
(95%CI 0.96-1.13) 

Residuals of vitamin C           
Dietary intake  248/1709 HR 0.66; P=0.06 

(95%CI 0.42-1.02) 
HR 0.78; P=0.26 
(95%CI 0.51-1.20) 

HR 0.94; P=0.26 
(95%CI 0.85-1.04) 

 616/2138 HR 0.86; P=0.36 
(95%CI 0.63-1.18) 

HR 1.17; P=0.33 
(95%CI 0.85-1.60) 

HR 1.01; P=0.83 
(95%CI 0.94-1.08) 

Total intake  248/1709 HR 0.66; P=0.07 
(95%CI 0.43-1.03) 

HR 0.71; P=0.13 
(95%CI 0.46-1.10) 

HR 0.93; P=0.18 
(95%CI 0.84-1.03) 

 616/2138 HR 1.05; P=0.77 
(95%CI 0.76-1.45) 

HR 1.09; P=0.61 
(95%CI 0.78-1.52) 

HR 1.02; P=0.56 
(95%CI 0.95-1.10) 

Minus supplement users           
Dietary intake  228/1780 HR 0.54; P=0.015 

(95%CI 0.33-0.89) 
HR 0.76; P=0.23 
(95%CI 0.48-1.20) 

HR 0.91; P=0.11 
(95%CI 0.81-1.02) 

 525/2309 HR 0.95; P=0.76 
(95%CI 0.67-1.34) 

HR 1.16; P=0.40 
(95%CI 0.82-1.63) 

HR 1.03; P=0.50 
(95%CI 0.95-1.11) 

Plasma concentrations  203/1596 HR 0.38; P<0.001 
(95%CI 0.22-0.65) 

HR 0.67; P=0.10 
(95%CI 0.41-1.08) 

HR 0.87; P=0.018 
(95%CI 0.77-0.98) 

 445/1983 HR 1.31; P=0.14 
(95%CI 0.91-1.89) 

HR 1.17; P=0.41 
(95%CI 0.80-1.72) 

HR 1.04; P=0.33 
(95%CI 0.96-1.13) 

Vitamin C / body weight           
Dietary intake  248/1709 HR 0.70; P=0.13 

(95%CI 0.44-1.11) 
HR 0.78; P=0.29 
(95%CI 0.50-1.23) 

HR 0.94; P=0.22 
(95%CI 0.84-1.04) 

 616/2138 HR 0.96; P=0.80 
(95%CI 0.70-1.32) 

HR 1.07; P=0.70 
(95%CI 0.76-1.50) 

HR 1.01; P=0.88 
(95%CI 0.93-1.09) 

Total intake  248/1709 HR 0.59; P=0.032 
(95%CI 0.36-0.96) 

HR 0.74; P=0.20 
(95%CI 0.47-1.17) 

HR 0.93; P=0.21 
(95%CI 0.83-1.04) 

 616/2138 HR 1.03; P=0.85 
(95%CI 0.75-1.43) 

HR 1.19; P=0.33 
(95%CI 0.84-1.68) 

HR 1.03; P=0.41 
(95%CI 0.95-1.12) 

Plasma concentrations  222/1532 HR 0.61; P=0.03 
(95%CI 0.39-0.95) 

HR 0.60; P=0.046 
(95%CI 0.36-0.99) 

HR 0.87; P=0.017 
(95%CI 0.77-0.97) 

 525/1851 HR 1.17; P=0.40 
(95%CI 0.81-1.67) 

HR 1.23; P=0.29 
(95%CI 0.84-1.79) 

HR 1.04; P=0.37 
(95%CI 0.95-1.14) 

Subjects aged 65+ years           
Dietary intake  131/587 HR 0.48; P=0.035 

(95%CI 0.24-0.95) 
HR 0.64; P=0.15 
(95%CI 0.34-1.18) 

HR 0.89; P=0.15 
(95%CI 0.76-1.04) 

 390/633 HR 0.89; P=0.60 
(95%CI 0.58-1.38) 

HR 1.20; P=0.41 
(95%CI 0.77-1.86) 

HR 1.04; P=0.44 
(95%CI 0.94-1.15) 

Total intake  131/587 HR 0.56; P=0.09 
(95%CI 0.29-1.09) 

HR 0.64; P=0.18 
(95%CI 0.33-1.22) 

HR 0.89; P=0.16 
(95%CI 0.76-1.04) 

 390/633 HR 1.06; P=0.80 
(95%CI 0.69-1.63) 

HR 1.17; P=0.74 
(95%CI 0.74-1.85) 

HR 1.04; P=0.49 
(95%CI 0.94-1.15) 

Plasma concentrations  119/519 HR 0.37; P=0.012 
(95%CI 0.17-0.81) 

HR 0.76; P=0.41 
(95%CI 0.39-1.46) 

HR 0.88; P=0.12 
(95%CI 0.75-1.03) 

 330/544 HR 1.28; P=0.30 
(95%CI 0.80-2.04) 

HR 1.12; P=0.65 
(95%CI 0.69-1.81) 

HR 1.05; P=0.43 
(95%CI 0.94-1.17) 

Total vitamin C intake is the sum of vitamin C intake from the diet and from supplements (mg/d). The analyses are adjusted Prentice-weighted Cox proportional hazard ratios of 
total fracture risk. 
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5.5 Discussion 

To my knowledge, these data are the first to investigate potential cross-sectional and 

prospective associations between intakes and plasma levels of vitamin C and measures of bone 

density as well as fracture risk in the same population group in both men and women. Although 

prospective associations between vitamin C intake and status with bone density have previously 

been published on this cohort (166), the study by Kaptoge et al. focused on 2-5 year change in 

BMD measured by DXA in a small sub-cohort of 944 participants aged 67-79 years and they did 

not adjust for a number of important confounding factors including age, sex and smoking status. 

In contrast, the present study investigated both cross-sectional associations with heel ultrasound 

and prospective associations with fracture risk, adjusting for more confounding factors, and was 

undertaken in a much larger sub-cohort of up to 5319 participants with a much wider age range 

(39-79 years). Following multivariate adjustment, the results from the primary analysis showed 

that i) dietary and total intakes of vitamin C were significantly and positively associated with 

either BUA or VOS measures of heel ultrasound in men and women, and ii) higher intakes of 

vitamin C, but more so plasma concentrations, were significantly and inversely associated with 

the risk of fragility fractures in men only. 

 

5.5.1 Heel ultrasound 

In men, there was a linear relationship between vitamin C intakes and VOS, with dietary intakes 

of 92-127 mg/d and 127-471 mg/d being associated with 0.6% higher VOS compared to intakes 

of up to 48 mg/d. In women, dietary intakes of 96-129 mg/d and 129-353 mg/d were 

significantly associated with 3.2-4.2% higher BUA compared to intakes of up to 52 mg/d, and this 

relationship was also found to be linear. In both sexes, the differences in mean dietary vitamin C 

intake between the two upper quintile groups compared to the lowest quintile were 

approximately 70 mg/d for quintile 4 and 136 mg/d for quintile 5. These higher vitamin C intakes 

are easily achievable through the usual diet and may reflect the consumption of, for example, 

one orange per day to reach the levels of intake for quintile 4 and one orange as well as three 

average-sized broccoli spears per day for quintile 5 (145, 350). The results for total vitamin C intake, 

derived from the sum of vitamin C intake from the diet and from supplements, were very similar 

to those for dietary intake in women and mostly comparable to those in men. The comparability 

might be explained by the high level of agreement in the classification of participants into sex-

specific quintiles of dietary and total vitamin C intake. Residual adjustment of dietary and total 

intake had little influence on these findings. The cross-sectional findings of a positive association 

between vitamin C intake and measures of heel ultrasound potentially reflect the important role 

of vitamin C in bone health. It is well documented that vitamin C plays a crucial role as a cofactor 

in the hydroxylation reactions within collagen fibres (7-10), and this increases overall collagen 
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strength (136). Moreover, recent cell and animal studies have reported that vitamin C may also 

mediate osteoclastogenesis and osteoblastogenesis (161-164), although the precise biological 

mechanisms have not been fully established yet. Furthermore, vitamin C may also be one 

explanatory factor for the positive associations found between fruit and vegetable intakes and 

bone health in this cohort. Vitamin C is exclusively found in fruits and vegetables (145, 225), and 

positive associations between their intakes and measures of bone health were reported in 

previous epidemiological studies (90, 131-134), although the underlying mechanisms are not fully 

established yet. Preliminary analyses in this cohort presented in Chapter 3 (pages 69-71) showed 

that higher vs. lower intakes of vegetables were significantly associated with 0.7% higher VOS in 

men (compared to 0.6% for vitamin C) and fruit and vegetable intakes with 5.1-7.3% higher BUA 

in women (compared to 3.2-4.4% for vitamin C). 

In contrast to diet, vitamin C status was not found to be associated with heel bone 

density in men and women of the present study. Dietary intakes and plasma concentrations of 

vitamin C may not have shown comparable results because the ranking of subjects into sex-

specific quintiles of plasma vitamin C showed some disagreement with both dietary and total 

intakes of vitamin C (this will be discussed in more detail in Chapter 8, page 212). To my 

knowledge, only one previous study from the US has investigated the cross-sectional 

relationship between vitamin C status and BMD in a large population of 13080 men and women 

(169). The results were sex-specific and showed that men with serum vitamin C concentrations of 

28.4-56.8 µmol/l had higher hip BMD compared to men with lower or higher blood levels, but no 

such observations were made in women. As vitamin C status measures can overcome issues 

associated with measuring intake including recall error and bioavailability (170) and current data 

on the relationship between blood vitamin C levels and bone density is scarce, more cross-

sectional studies using vitamin C status are needed. 

Percentage differences in VOS were much smaller than those of BUA in the present 

study, possibly due to the scale differences between these two bone parameters. However, one 

previous study has shown that their relative fracture risk implications are very similar (66). 

Moreover, the magnitude of effect of BUA is in agreement with the literature, as effect sizes of 

3-4.5% for hip and lumbar spine BMD have previously been found with higher intakes of vitamin 

C (133). The percentage difference in BUA between low and high intakes of vitamin C as reported 

in the present study was also comparable to effect sizes previously reported for other bone-

related dietary factors including intakes of potassium (3-4%) and magnesium (3%) (133). To date, 

there is no cross-sectional data that used dietary vitamin C intakes and VOS measurements, and 

associations between dietary intakes of other nutrients and VOS have either not been significant 

(290) or were not reported in great enough detail (351). Hence, the effect size of 0.6% for men with 

higher dietary vitamin C intakes as reported in the present study could not be compared to 

previous studies, suggesting that it is a novel finding.  
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It has previously been reported that supplement users compared to non-users tend to 

consume a more micronutrient-rich diet (262, 348, 349). Thus, we also performed our analyses 

following the exclusion of participants with self-reported current use of vitamin C supplements, 

although this did not affect the present findings significantly. 

Nonetheless, a 0.4% marginally significant and positive difference in VOS between 

extreme quintiles of dietary vitamin C intake was revealed in women, which was not found in the 

primary analysis. There is currently no data in the literature on the relationship between 

nutrients from the diet and VOS in women. However, in the present primary analyses, 

associations between vitamin C and heel ultrasound in women have been consistently found for 

BUA rather than VOS. It is thus reasonable to assume that this secondary finding, although 

beneficial, may have occurred by chance.  

 Associations between intake and status of vitamin C were mainly independent of body 

weight in men, although body weight had a greater influence in women. For example, all 

significant relationships between vitamin C intake and BUA in women lost significance; whereas 

total intake gained significance in relation to VOS. As previously discussed, the latter may have 

been a chance finding. 

Interestingly, in the present study, vitamin C intakes were associated with VOS in men 

and BUA in women. Potential reasons for this sex difference are currently not known. However, 

there is evidence regarding the independent heritability of the two ultrasound parameters (77), 

and both measures have also been shown to be independently associated with osteoporotic 

fractures (21, 69, 70). 

 

5.5.2 Fracture risk 

To my knowledge, the potential prospective relationship between vitamin C and the risk of 

fractures has not previously been investigated in a British population. Using data from the EPIC-

Norfolk cohort, the present novel findings showed that men with higher dietary vitamin C 

intakes (86-199 mg/d) had a 48% lower total fracture risk compared to those with the lowest 

intakes (0-45 mg/d) after a median of 12.6-years follow-up. In line with vitamin C being 

exclusively found in plant-based foods (145, 225), this effect size is smaller than those of our 

preliminary analyses presented in Chapter 3 (pages 69-71), which showed a 69% and 57% 

reduction in hip fracture risk in men with higher vs. lower intakes of fruit and of fruit and 

vegetables, respectively. Total vitamin C intakes showed further fracture risk reductions at the 

wrist for men with intakes of 92-130 mg/d compared to 0-46 mg/d. Vitamin C was not a 

significant predictor of fracture risk in women, despite the significant inverse associations 

between intakes of fruit and spine fracture risk in this cohort, as shown in Chapter 3. Residual 

adjustment of dietary and total vitamin C intake did not affect the significant study outcomes. In 

comparison to the present findings, only one US-based prospective cohort study investigated 
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fracture risk in relation to vitamin C intake and the authors reported bone-site specific and 

vitamin C intake-specific associations (167). For example, no significant associations were found 

between dietary vitamin C intake and fracture risk at any site; whereas total vitamin C intake 

was associated with a 44% reduction in fracture risk at the hip. Despite the longer follow-up of 

15-17 years, this study may have reported non-significant results for dietary vitamin C due to a 

small sample size of 918 participants and the analyses of a combined sample of men and 

women. Furthermore, the use of tertiles of vitamin C intake may not have given a fine enough 

discrimination of the data.  

Potential prospective associations between vitamin C status and fracture risk have not 

previously been investigated, and the present study indicated low blood levels were a significant 

predictor of fracture risk in men. We found that the mean plasma vitamin C concentration of 

42.5 µmol/l of men with a fracture was significantly lower than 46.9 µmol/l of those who 

remained free from fractures after the median 12.6-year follow-up. Moreover, men with plasma 

levels of 53-61 µmol/l had a significant fracture risk reduction of 65% at the hip, 74% at the spine 

and 52% for total osteoporotic fractures compared to men with blood levels of up to 30 µmol/l. 

Furthermore, hip and total osteoporotic fracture risk was inversely related to plasma vitamin C 

in a linear fashion. In women, there was no association between plasma vitamin C 

concentrations and fracture risk at any site. The reasons for this are unclear, the number of 

fractures did not differ across the quintile groups of plasma vitamin C in women. As the present 

study was the first of its kind to investigate potential prospective associations between vitamin C 

status and fracture risk, more prospective cohort studies are needed to confirm the present 

findings and to help understand whether the beneficial results observed in men are indeed sex-

specific. 

The present prospective findings were not affected by age or by the current use of 

vitamin C supplements but were significantly influenced by body weight. For example, the 

associations in men between dietary vitamin C intake and total osteoporotic fracture risk 

weakened, whereas that for both total intake and plasma levels of vitamin C lost significance 

when vitamin C intake and plasma status was assessed according to body weight. Reasons for 

this may include the influence of body weight on the distribution of vitamin C in the body.  

 

5.5.3 Strengths and limitations  

The present study offers a number of potential advances over previous observational studies. 

The inclusion of men and women in the study population provided more evidence that the 

potential beneficial effects of higher vitamin C intake for greater bone density and a reduction in 

fracture risk are relevant to both sexes. There have only been two cross-sectional studies and 

three prospective studies that examined associations in populations of both sexes, however 

positive results were often restricted to population subgroups. For example, associations 
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between dietary vitamin C intake and bone density have been reported for pre-menopausal 

women only (169) and another study found that total vitamin C intake was associated with bone 

density only among male never-smokers (230). Furthermore, the only prospective study 

investigating associations between vitamin C and fracture risk used a combined sample of men 

and women rather than performing sex-specific analyses. Hence, the sole stratification by 

vitamin C quintile groups and by sex make the present study novel in providing evidence for a 

positive association between vitamin C intake and bone density and an inverse association 

between plasma vitamin C and fracture risk in a representative UK population. Moreover, the 

present cross-sectional and prospective studies, comprising a case-cohort sample of up to 5011 

men and women of the EPIC-Norfolk cohort, addressed previous limitations regarding small 

sample sizes. To date, only two US-based cross-sectional studies encompassed cohorts of more 

than 11,000 (342) and 13,000 subjects (169); whereas all other observational studies comprised 

cohorts of less than 1000 participants (Appendix 2, Tables A2.2-A2.4). Investigations into the 

potential relationship between intakes and status levels of vitamin C and bone health have not 

previously been conducted in such a large cohort of older British men and women. Thus the 

present observational studies may provide novel data for the UK of a representative Caucasian 

population. 

Although the present study had a robust study design, it also had a number of 

limitations. For example, the cross-sectional study design of the bone density analyses only 

examined relations between diet and bone density for a single point in time. The positive 

associations found in this study suggest that there was a relation between dietary and total 

vitamin C intakes and heel bone density in both men and women, but conclusions about the 

influence of vitamin C on bone health cannot be drawn. Similarly, the prospective study design 

of the fracture analyses was limited by the inability to identify possible secular changes in dietary 

vitamin C intakes and plasma vitamin C concentrations over the follow-up period and 

subsequent exposure misclassification, as data were only available from the 7-day food diaries 

and blood sample collected at baseline. Another limitation to the present study may have been 

the high mean vitamin C intake of the study population. Although dietary vitamin C intakes in 

this cohort (86 mg/d in men and 89 mg/d in women) were comparable to those of the general 

UK population aged 50-64 years around the time of data collection (94.5 mg/d) (292); around 87% 

of the EPIC-Norfolk population had higher intakes of vitamin C than the UK RNI of 40 mg/d (225). 

Hence, in the present study, associations between extreme quintiles of vitamin C and bone 

parameters may have been weakened by the population’s overall high dietary intake of the 

nutrient. Although multivariate adjustment models were applied to the analyses, a number of 

other relevant confounders previously associated with bone health including sunlight exposure 

(295) were not measured as part of the EPIC-Norfolk study. Furthermore, residual confounding 
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may have occurred despite the multivariate modelling and may have resulted in bias in exposure 

effect estimates.  

 

5.6 Conclusion 

The present study found that higher dietary intakes of vitamin C were cross-sectionally 

associated with 0.6% higher VOS in men and up to 4.2% higher BUA in women. These differences 

in bone density between subjects with low and high vitamin C intakes may have important 

implications for fracture risk in the long term. Moreover, higher plasma vitamin C concentrations 

were a significant predictor of reduced fracture risk in men, with the greatest protection found 

at the spine. The present findings highlight the importance of fruits and vegetables in our diet, 

being the main sources of dietary vitamin C, and may suggest that as little as one or two 

additional portions of vitamin C-rich foods per day, such as citrus fruits, could have important 

implications for bone health. The present vitamin C investigations provide novel cross-sectional 

data as well as prospective data for vitamin C intake and status associations in a UK population 

of older men and women. Future studies should consider RCTs investigating the direct effects of 

vitamin C intake on indicators of bone health in humans. This has not been conducted previously 

and will be an important step in confirming the present observational findings as well as allowing 

for further understanding of the potential mechanisms involved. 
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CHAPTER 6 

 

IRON AND BONE HEALTH 

 

 

Cross-sectional and prospective 

investigations of iron intake and  

serum ferritin with heel ultrasound  

and fracture risk 

 

6. 6 
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6.1 Abstract 

Iron plays a crucial cofactor role in the hydroxylation reactions within bone collagen fibres, 

thereby increasing overall collagen strength, as well as in the synthesis of vitamin D, an 

important mediator of calcium absorption. Previous epidemiological studies have shown positive 

associations between dietary iron intakes and bone density, and inverse associations with bone 

loss. However, studies investigating markers of iron status have had contradictory findings, 

possibly due to short follow-up and small sample sizes. To date, epidemiological evidence from 

large studies of men and women is limited, especially from British populations, and prospective 

data on long-term fracture risk is lacking. Therefore, this study aimed to explore i) potential 

cross-sectional associations between dietary iron intakes and serum ferritin concentrations as a 

marker of iron stores with measures of heel ultrasound and ii) potential prospective associations 

between iron intake and serum status with the risk of fractures in a sub-set of the 25,639 EPIC-

Norfolk men and women aged 39-79 years at baseline. The results from the cross-sectional study 

showed that iron intake, but not serum ferritin, was significantly associated with 4.4% higher 

BUA in women only. The largest difference in mean dietary iron intake between the extreme 

quintile groups in women was 9 mg/d, and this is achievable through the usual diet, although 

particular attention should be paid to consuming a variety of iron-rich foods. In the prospective 

study, higher compared to the lowest iron intakes were significantly associated with 35% lower 

total fracture risk and up to 59% lower spine fracture risk in women only. Moreover, spine 

fracture risk was up to 70% lower in women with higher compared to the lowest serum ferritin 

concentrations. There were no associations between iron intake or serum ferritin with heel 

ultrasound and fracture risk in men in this cohort. The present study provides novel prospective 

data on long-term fracture risk with iron intake and status, and addresses a number of 

limitations of previous cross-sectional studies including providing data for British men and 

women and using a larger sample size. The present findings highlight the importance of an 

adequate iron intake and iron status in women. Future studies should conduct RCTs to 

investigate the effects of iron supplementation on changes in bone density and fracture risk, as 

this has not been conducted before. 
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6.2 Introduction 

The first connections between iron and bone health were made in the late 1950’s where bone 

changes were noted in subjects with chronic iron deficiency. Initially, x-ray-based reports were 

confined to alterations of the skull (352-354); however, further investigations revealed more 

pronounced bone changes such as osteoporosis in the short and long bones (355). It was proposed 

that these changes may reflect bone marrow hyperplasia initiated by chronic iron deficiency 

anaemia in conjunction with other dietary deficiencies (355). Later investigations reported that 

iron is crucial for adequate bone collagen synthesis and maintenance, acting as a cofactor in the 

hydroxylation of proline and lysine residues within a collagen fibre (9), thus contributing to 

adequate formation of collagen cross-links and subsequent stronger collagen fibres. Collagen is 

an essential component of bone tissue with around 98% of the organic phase of bone being 

comprised of type I collagen (13). Iron is also involved in converting vitamin D, an important 

mediator of calcium homeostasis (125), into its active form (1,25-dihydroxycholecalciferol) via 

acting as a cofactor to the reaction-specific enzyme 25-hydroxycholecalciferol 1-hydroxylase (172).  

 

Iron is an essential mineral to humans and is one of the most abundant metals in the body (356). 

The body has an efficient mechanism of recycling iron from degraded red blood cells, thus its 

daily nutritional requirements are relatively small (1.0-1.5 mg/d) (357). Dietary iron may be 

derived from animal and plant sources with varying degrees of absorption and bioavailability in 

the human gut. Approximately 15-30% of mainly animal-derived ferrous iron (Fe2+) and 3-15% of 

predominantly plant-based-derived ferric iron (Fe3+) may be absorbed, predominantly depending 

on factors including the iron content and composition of the meal and an individual’s iron status 

(358). The absorption of Fe3+ may also be enhanced by the simultaneous presence of a reducing 

agent such as vitamin C in the gut (359). The absorption of iron in general may also be inhibited by 

a number of factors including high intakes of other minerals and trace elements. For example, 

calcium consumed both as part of the diet (calcium-containing foods) and as supplements may 

be one of the most inhibiting compounds for iron (360-363), possibly by interfering with iron 

transport within intestinal mucosal cells (364). In contrast, calcium has not been shown to 

interfere with iron stores (360, 365, 366). 

In the UK, the main sources of iron intake in adults are iron-fortified cereals and cereal 

products (45%), such as breakfast cereals and white bread (367). Other contributors to dietary iron 

intake include meat and meat products (15-19%) and vegetables (16-19%). The intake of iron 

from both foods and supplements in the UK population is estimated to be 10-15 mg/d in men 

and 8-13 mg/d in women (367). Men have higher total intakes of iron than women; however, 

when correcting for total energy intake both sexes were shown to have a similar iron density of 

the diet of around 0.3 mg/1000kcal/day (367). In the UK, the RNI and LRNI for adults are 8.7 mg/d 
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and 4.7 mg/d, respectively, for both men and post-menopausal women, and at 14.8 mg/d and 8 

mg/d for women of reproductive age (225). A comparison with daily intakes showed that women 

of reproductive age only met approximately 66-87% of the RNI, whereas recommendations were 

met by older women and men (367). Persistent low intakes of iron may eventually lead to iron 

deficiency anaemia which is defined as a blood haemoglobin levels below 130 g/l in men and 120 

g/l in women aged 15 years and over (368, 369). Anaemia is suggested to be the most prevalent 

nutrient deficiency worldwide, affecting approximately 1.6 billion people, particularly women of 

reproductive age (368), and it has been associated with reduced cognitive and physical 

development in children, reduced physical performance such as work productivity in adults, an 

increased risk of maternal and child mortality, susceptibility to falling and frailty (368, 370).  

 

Figure 6.1: A proposed schematic cross-section of ferritin in the liver.  

 
Ferritin consists of protein shell subunits (grey lobes ) which surround a central cavity.  

The latter holds loosely packed ferric ions (yellow circles ) and tightly packed ferric ions (red circles ) 
forming eight ferrihydrate crystal structures (four of which are shown here). From Pan et al. (2009) (371). 

 

Most of the iron stored in the body is bound to ferritin, a protein containing up to 4000 iron 

atoms in its centre (Figure 6.1) (371, 372). Ferritin is primarily present in the liver, spleen, bone 

marrow and skeletal muscles and only very small amounts of the molecule are secreted into the 

blood. Ferritin measured in blood is the most sensitive indicator of iron stores, for example a 

plasma ferritin concentration of 1 µg/l may reflect iron stores of 140-180 µmol/l (8-10 mg) (373).  

Ferritin is also a useful indicator of long-term high or inadequate dietary iron intake (374) because 

it accounts for the varying bioavailability of iron to the body, which in turn is dependent on 

factors such as the source of iron intake and current body stores (374). The normal range of serum 

ferritin varies by sex, with men having higher concentrations than women, and by age (357, 372). In 

men, serum ferritin concentrations peak between the ages of 30 and 39 years and thereafter 

remain constant until the age of 70 years. In women, levels are much lower during the 

reproductive ages, but start rising post menopause (375). Serum ferritin levels are considered 

normal at ranges between 20-300 µg/l in men and 15-150 µg/l in women (376). Lower 

concentrations indicate depleted iron stores (369, 376). In 1998, the National Diet and Nutrition 
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Survey for people aged 65 years and over reported that 7% and 9% of British men and women, 

respectively, had depleted serum ferritin concentrations (223). Levels above the normal sex-

specific range were reported for 6% of men and 11% of women. Elevated levels may be a result 

of inflammation and infection or, in the absence of these, are indicative of iron overload 

(haemochromatosis).  

 Interestingly, correlations between serum ferritin and dietary iron intakes are generally 

very low, with significant but weak correlation coefficients of r=0.14-0.15 (P≤0.03) previously 

reported (223, 377). In contrast, a number of studies failed to show a significant association 

between dietary iron intakes and serum ferritin concentrations in different population groups 

including adolescents and adult men and women (378-382). Potential explanations for these 

findings may be related to a number of factors, including i) variations in the biological availability 

of iron from foods which is mediated amongst other factors by the degree of intestinal 

absorption, the composition of meals and individual iron requirements, ii) physiological iron 

losses such as menstruation and other iron losses, for example, blood donation which are 

independent of dietary iron intake, iii) the use of iron supplements, and iv) errors associated 

with the reporting of iron intake or measuring ferritin concentrations in blood (379).  

 

To date, the evidence for a potential protective role of iron intake and body iron stores for 

developing osteoporosis and fractures is scarce, despite a number of suggested underlying 

mechanisms in bone health including the production and maintenance of bone collagen and 

vitamin D synthesis (9, 172). 

 

6.2.1 The potential role of iron in bone health 

6.2.1.1 Bone collagen synthesis 

It is well established that iron, alongside a reducing agent, oxygen and α-ketoglutarate, is an 

essential activator of enzymes involved in the hydroxylation of prolyl and lysyl residues within 

collagen fibres (Figure 6.2) (8, 10). Residues of lysine and proline, an essential and non-essential 

amino acid respectively, get hydroxylised to form hydroxylysine and hydroxyproline. This 

reaction is a crucial step in bone collagen synthesis, as the subsequent formation of covalent 

bonds between adjacent collagen fibres leads to stronger collagen cross-links, thus increasing 

overall collagen strength (136). Mechanistic studies of the relative importance of iron in the 

hydroxylation reaction have shown that there was an absolute dependence of iron for prolyl 

enzyme activity, as no hydroxylation took place in its absence (322). In concordance with this, it 

has been hypothesised that in iron deficiency, the lesser amount of iron available to the 

hydroxylation enzymes may lead to decreased cross-linking activity and subsequent weakened 

collagen fibres (322). As both bone and cartilage contain a structurally stable network of collagen, 
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impaired collagen synthesis resulting from inadequate iron intake may potentially be a risk 

factor for the development of osteoporosis and associated fractures. 

 

Figure 6.2: The hydroxylation of lysine in collagen fibres. 

 
Adapted from Medeiros & Wildman (2011) 

(324)
. 

 

6.2.1.2 Vitamin D synthesis 

Another important role of iron in maintaining bone health is its involvement in vitamin D 

synthesis, thereby affecting calcium absorption. Calcium is one of the fundamental bone-forming 

compounds and vitamin D is an important mediator of calcium homeostasis by increasing 

calcium absorption efficiency (125). During vitamin D synthesis, in response to low wavelength-

dependent UV light exposure of the skin, iron is involved in converting 25-hydroxyvitamin D into 

its active form 1,25-dihydroxycholecalciferol in the kidneys (Figure 6.3). Iron in the form of 

ferredoxin, alongside a ferredoxin reductase and a cytochrome P450, acts as a cofactor to the 

reaction-specific enzyme 25-hydroxycholecalciferol-1-hydroxylase (172, 383). It has previously been 

hypothesised that in iron deficiency the availability of iron to this enzyme may be limited, and 

this may lead to decreased vitamin D synthesis and subsequently lower intestinal calcium 

absorption (177). Thus, insufficient dietary iron intake may also play a role in osteoporosis and 

fracture development by potentially lowering the mineralisation of bone tissue. Recently, a 

cross-sectional study of 554 US men and women showed that the prevalence of anaemia was 

significantly higher in vitamin D deficient subjects compared to those with normal vitamin D 

levels (49% vs. 36%, P<0.01) (384). Moreover, participants with vitamin D deficiency had a 

significant OR for anaemia of 1.9 (95%CI 1.3-2.7). However, the potential relationship between 

iron deficiency and vitamin D deficiency remains to be investigated further in relation to bone 

health. 
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Figure 6.3: The role of iron in vitamin D synthesis. 

 
Adapted from DeLuca (1976) (172) and Jones et al. (1998) (383). 
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6.2.1.3 Both iron deficiency and iron overload may have unfavourable effects 
on bone health 

There is evidence that iron at both deficient and very high levels may exert negative effects on 

bone and potentially promote the development of osteoporosis. In iron deficiency, as discussed 

above, the limited amount of iron available may compromise adequate collagen formation and 

vitamin D synthesis (177, 322). Recently, different aspects of bone turnover have also been shown 

to be mediated. For example, whereas low concentrations of iron (induced by 5 µmol/l of 

deferoxamine, an iron chelating agent) promoted osteoblast activity in human osteoblastic cells, 

very low concentrations (induced by 10-20 µmol/l of deferoxamine) had an inhibitory effect (385). 

Moreover, low concentrations of iron inhibited osteoblastogenesis in vitro (386). 

The notion that iron at high concentrations may contribute to the development of 

osteoporosis is evident in patients with hereditary iron overload (haemochromatosis) or 

impaired iron metabolism such as in sickle cell anaemia, both characterised by an accumulation 

of iron in the body (387, 388). For example, in observational studies, osteoporosis (T-score of -2.5 

SD) and osteopenia (T-score of -1 SD) were present in 25-34% and 41-79% of haemochromatosis 

patients, respectively (387, 389, 390). In recent years, numerous animal models (including mouse, rat 

and pig) showed that experimental or genetically-induced iron overload negatively impacted on 

bone turnover. For example, an excessive iron status was associated with an increase in the 

number of osteoclasts and upregulated osteoclast activity (391-393). Moreover, iron overload was 

shown to inhibit osteoblast gene expression and osteoblast activity in a concentration-

dependent manner (385, 394-396). An increase in the concentration of intracellular reactive oxygen 

species (ROS) was also reported in vitro (392, 395, 397). It was subsequently suggested that oxidative 

stress in iron overload may decrease bone formation by inhibiting osteoblast activity (395), and 

increase bone resorption via upregulating RANKL-induced osteoclastogenesis as well as the 

expression of the pro-inflammatory cytokines TNF-α and IL-6 (392, 397). This is in agreement with a 

recent mouse model, where levels of CTx (a marker of bone resorption) and TNF-α were 

approximately 50% higher in the iron overload mice compared to the controls (398). The reported 

changes in bone cell synthesis, bone cell activity and reactive oxygen species expression in these 

animal and cell studies may suggest that iron overload potentially causes an increase in bone 

resorption and a simultaneous decrease in bone formation. Such an imbalance in bone turnover 

is known to be linked with increased bone loss and subsequently compromised bone strength in 

the long-term. In concordance with this, a recent study in mice showed that iron overload was 

associated with a decrease in bone load-bearing capacity (a measure of bone elasticity and its 

ability to withstand bending stress), and subsequently a higher risk for developing fractures (398). 

 



 

Page | 151  
 

6.2.2 Associations between iron and bone health in previous studies 

Despite suggestions of a potential mechanistic role for dietary iron in bone health, this has not 

received much attention, possibly due to the simultaneous emerging interests in calcium and 

vitamin D for bone health. However, there is evidence from animal studies reporting lower BMD 

and BMC, reduced mechanical strength and increased porosity in iron deficient and severely iron 

deficient rats and rats on iron-restricted diets (173-176, 399, 400). The rate of bone turnover was also 

mediated (173, 174, 177, 400), predominantly evident by decreased bone formation and increased 

bone resorption. Moreover, the degree of bone mineralisation was reduced as evident by a 

decrease in calcium, phosphorus and magnesium content of bone despite adequate dietary 

intakes of these nutrients (177, 401). In vitro studies partly supported previous in vivo findings, 

showing that iron deficiency, induced by an iron chelator, resulted in up to 70% less mineralised 

surface area (P<0.05) (386, 399), possibly due to inhibited differentiation into osteoblasts (386). To 

date, there is limited evidence from epidemiological studies for a potential role of iron in 

reducing osteoporosis risk, and from RCTs investigating the effects of iron supplementation on 

surrogate markers of bone health. The detailed findings of the literature review are discussed in 

the following sections, and the evidence is presented in hierarchical order of decreasing ability 

to infer causality. 

 

6.2.2.1 Intervention studies and randomised controlled trials 

Despite evidence from many animal studies, evidence for a potential role of iron in osteoporosis 

and fracture prevention from human RCTs is limited. RCTs are considered to be the gold 

standard for inferring causality. They can determine which factors influence disease, limiting 

both selection biases and confounding. To our knowledge, only three double-blind RCTs have 

recently been published by a Spanish research group, and a summary table of these studies can 

be found in Appendix 4, Table A4.1. The trials measured the effects of iron supplementation on 

the bone formation markers BSALP or PINP and the bone resorption marker NTx in young 

Spanish women in different settings. In the largest of the three RCTs, 165 women aged 18-35 

years received either no supplementation (control group: iron sufficient) or 15 mg/d of iron with 

or without vitamin D (5 µg/d) using fortified skimmed milk (treatment groups: iron deficient) for 

four months (180). The supplementation with iron alone had no effect on markers of bone 

turnover; however, the results may have been affected by the chosen supplementation medium. 

Calcium and casein, which are naturally present in milk, are strong inhibitors of iron absorption 

(361, 362). In fact, the authors reported that there was no improvement in iron status in those 

women receiving the iron-fortified milk, suggesting that the treatment was ineffective. The 

additional fortification of the milk with vitamin D resulted in a significant reduction in bone 

resorption over the four months, although this is most likely not related to iron as beneficial 
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effects of vitamin D for bone health have previously been shown (121, 402). Thus, definitive 

conclusions regarding the effects of iron on markers of bone turnover may not be drawn from 

this trial. The smallest RCT by the same research group used fruit juice as the supplementation 

medium (179). In this study, 41 iron deficient women also aged 18-35 years were given 500ml of 

either a placebo fruit juice or a fruit juice fortified with 18mg/d of iron pyrophosphate for four 

months. The results showed that markers of bone turnover (BSALP and NTx) were not affected 

by the supplementation, despite the improved iron status of the treatment group. The non-

significant findings may be explained by the time period the RCT was undertaken, which was for 

four months during the winter months. The authors reported that vitamin D status was 

significantly lower in all women at the end of the study, with 75% of women having 25-

hydroxyvitamin D levels below 45 nmol/l (vitamin D deficiency). This may reflect the insufficient 

UV light exposure and subsequent lack of vitamin D synthesis during the winter months in 

populations living at latitudes higher than 40° (403). Low levels of circulating 25 hydroxyvitamin D 

have previously been associated with low BMD (404), and these mechanisms may have 

overpowered the potentially beneficial effects of iron on bone markers in this population. 

Finally, the third RCT (n=73) compared bone turnover markers between anaemic women (mean 

age: 35±5 years) and healthy women (mean age: 28±3 years) (178). The results showed that bone 

resorption at baseline, measured from NTx levels, was significantly higher in anaemic women 

compared to healthy controls (37.8±16.5 vs. 21.9±8.4 nmol bone collagen equivalents 

(BCE)/mmol creatinine, P<0.001), but there were no differences in the rate of bone formation 

between the two groups. The RCT also investigated the effects of recovering from anaemia via 

the supplementation with ferrous sulphate tablets (iron: 80-160 mg/d) for 2-4 months on 

markers of bone turnover. The results showed that, in women who recovered from anaemia, 

PINP levels decreased significantly from 41.2±17.5 to 32.6±14.5 ng/ml (P<0.001) and NTx levels 

from 40.0±17.2 to 31.0±9.9 nmol BCE / mmol creatinine (P<0.05), indicating that the recovery 

from anaemia is associated with a decrease in the rate of both bone formation and bone 

resorption. No such changes were observed in those women who remained anaemic following 

the iron treatment. Moreover, there were no significant differences in markers of bone turnover 

between the two groups at both baseline and end of treatment. 

To date, there is data from only three RCTs, all originating from one Spanish research 

group, which investigated the effects of iron supplementation on the bone formation markers 

BSALP or PINP and the bone resorption marker NTx in young Spanish women in different 

settings. The results were predominantly non-significant; however, issues regarding the small 

sample size (n=41-165), the supplementation medium (milk) and the period of study (winter 

months) were identified, and those may have affected the study results. Moreover, no RCTs 

have included men, and RCTs which use changes in BMD as an outcome measure have not been 

conducted yet. Thus, larger RCTs are needed which run for several years and which investigate 
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the effects of iron supplementation on indicators of bone health including changes in BMD in 

larger populations of men and women. 

 

6.2.2.2 Prospective studies 

Prospective cohort studies are a preferred methodology of investigating the aetiology of a 

disease with less recall bias than case-control studies as the exposure is measured prior to the 

disease occurring. In these studies, selection bias is also limited because the cases and controls 

are drawn from the same population. To the best of our knowledge, there are only three 

prospective studies on iron and bone health, and those are summarised in a table in Appendix 4, 

Table A4.2. All studies explored potential associations between dietary iron intake or status and 

changes in BMD (185, 186, 405), and one additionally investigated incident vertebral fractures (185). 

One study was undertaken in 228 US postmenopausal women aged 40-65 years with a mean 

iron intake of 15±5 mg/d (405). Iron intake from foods was determined from eight randomly 

selected days of diet records completed for two to three weeks at three different time points 

over the course of one year. The study showed that iron intake was significantly and positively 

associated with 1-year change in BMD at the trochanter (β 0.041±0.017 g/cm2, P=0.015) and the 

Ward’s triangle (β 0.055±0.026 g/cm2, P=0.037). Moreover, iron intake accounted for around 3-

9% of the variance in BMD change. The study also investigated other BMD sites including the 

femoral neck, lumbar spine and total body, but those were not found to be associated with BMD 

change. Potential explanations for this may be the small sample size of less than 230 women 

which may have limited the statistical power of the study to detect significant associations. 

Another limitation may have been the short follow-up period of only one year. Bone turnover is 

generally a very slow process with one remodeling cycle at any one site taking approximately 

between three and six months (19, 20), thus any changes in BMD or lack of thereof may have been 

more pronounced after several years of follow-up. The second prospective study on iron and 

bone health had a longer follow-up time of 3.5-5 years, but investigations were undertaken in a 

much smaller study population of 32 British postmenopausal women aged 46-55 years (186). The 

dietary iron intake in these women was 12 mg/d (SD not reported) and was estimated from 7-13 

individual food diaries which had been completed for either three or seven days. When iron 

intake was adjusted for energy intake, it was significantly correlated with less spinal BMD loss 

over the 3.5-5-year follow-up period (r=0.42, P=0.02). Moreover, higher intakes of iron were also 

significantly associated with less BMD loss at the spine following the adjustment for energy 

intake and BMI (β 0.141±SD not reported g/cm/year, P<0.0001). Despite these positive findings, 

the study was limited by the very small sample size of only 32 women, as previously discussed. 

Moreover, the study did not adjust for covariates known to be associated with bone health 

including smoking and exercise. Furthermore, the measurement of spinal BMD was performed 

using dual photon absorptiometry (DPA) at baseline and some of the earlier time points; 
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however, DXA was used at later follow-up time points. Although this was adjusted for by the use 

of conversion factors, the use of different measuring equipment during the course of the study 

may still not have been as accurate as if the same method had been used throughout. The 

largest prospective study was undertaken in 1729 Korean men and women aged 56±8 years and 

had a follow-up time of three years (185). The results showed potential detrimental effects of 

higher iron status for bone health. The annualised bone loss rate at different hip sites was 

significantly faster in quartile 4 compared to 1 of serum ferritin concentrations in both men (78-

113%) and women (34-37%, P≤0.023); and this inverse trend was found to be significant across 

all quartiles (P-trend≤0.043). Moreover, the odds for morphological vertebral fracture risk were 

positively associated with ferritin in women but not in men (P-trend=0.023), with women in 

quartile 4 compared to those in quartile 1 having a significant five-fold higher fracture risk (OR 

5.27, 95%CI 1.12-24.94). A limitation to the study was that women in the top quartile of serum 

ferritin tended to be older than those women in the lowest quartile (56.5±6.5 vs. 55.4±6.0, 

P=0.07), and increasing age has previously been associated with lower BMD (30, 31). Thus, the 

detrimental effects of increasing age for bone health may have masked the associations with 

serum ferritin in this study. Moreover, the follow-up of three years was very short for exploring 

the association between iron status and fracture risk. 

 To date, there is some evidence for a potentially beneficial effect of iron intake for 

preserving bone loss. However, current findings are limited to only two prospective studies 

which were undertaken in very small populations, and one study had a very short follow-up 

period. Moreover, both studies were performed in women and no prospective studies to date 

have included men, despite osteoporosis becoming an increasingly greater health burden in both 

sexes (171). Only one prospective study has investigated associations with measures of stored iron 

in the body and found potential harmful effects of higher serum ferritin for bone health in men 

and women and for fracture risk in women only. However, this study had a short follow-up of 

only three years and may have been biased by the known detrimental effects of age on bone 

health. To date, no prospective studies have investigated potential associations between iron 

intake or serum concentrations with long-term fracture risk in a large population of men and 

women.  

 

6.2.2.3 Case-control studies 

In case-control studies, specific exposures in people with and without a pre-defined condition 

are being compared in order to determine their potential as risk factors of the disease. Both 

exposure and disease outcome are pre-defined but the exposure measurement must precede 

the development of the condition. Hence, case subjects may report specific exposures 

inaccurately as a result of their experience of symptoms, resulting in both selection bias and 

recall bias. To the best of our knowledge, there are no case-control studies investigating the 
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potential relationship between dietary iron intakes or iron stores with the prevalence of 

osteoporosis and fractures up to this date. 

 

6.2.2.4 Cross-sectional studies 

In cross-sectional studies, it cannot be determined whether or not the exposure predated the 

disease, as investigations are limited to a specific point in time. However, these studies are still 

useful for understanding the prevalence of a disease in a defined population and for hypothesis 

generation. A summary table of previous cross-sectional studies investigating potential 

associations between iron and bone health can be found in Appendix 4, Table A4.3. To date, 

there is some evidence from cross-sectional studies for higher dietary iron intakes or iron status 

potentially being important for osteoporosis prevention. To our knowledge, four cross-sectional 

studies have previously investigated iron intake in relation to BMD, and those have had some 

significant findings. For example in two studies of 242-244 postmenopausal US women, higher 

iron intake was significantly associated with higher BMD at all investigated sites including the 

spine, femoral neck, femoral trochanter, Ward’s triangle and total body (β 0.085-0.251 g/cm2, 

P≤0.01) (181) and (β 0.214-0.426 g/cm3, P≤0.05) (142). Moreover, the highest compared to the 

lowest iron intake (details of intakes not reported) was also associated with 4-14% higher BMD at 

all sites (P≤0.05) (181). Another cross-sectional study of 175 Swedish women aged 28-74 years also 

found significant associations between higher dietary iron intakes and BMD; however, the 

results were only significant in the univariate analyses (β 0.0069-0.011, P≤0.02) (406). Potential 

explanations for this may relate to the slightly smaller sample size compared with the two US 

studies and the multivariate analysis not including important covariates such as dietary calcium 

intakes and the use of supplements. The smallest cross-sectional study investigating potential 

associations between iron intake and BMD was undertaken in 159 Australian pre-menopausal 

and postmenopausal women (407). The study did not account for a number of covariates known 

to affect bone health including smoking, exercise and dietary calcium intakes which must be 

considered when interpreting the study outcomes. The results showed that iron intake was an 

independent predictor of BMD at the femoral neck alongside age and weight (R2=0.25, P<0.001), 

but only in pre-menopausal not postmenopausal women. Iron intake in pre-menopausal women 

was also significantly positively correlated with femoral neck BMD (r=0.24, P<0.05) and bone 

mineral content of the forearm (r=0.26, P<0.05). Despite some evidence for a potential role of 

dietary iron intake in osteoporosis prevention, to date, there is data from only four cross-

sectional studies. Those were undertaken in women only and had very small sample sizes 

(n=159-244) which may have limited their power to detect all potential associations. Moreover, 

the studies used different means of assessing dietary iron intake, including a 3dDD (181) and a 

weighed 4dDD (407), or a combination of methods such as an FFQ and four 7dDDs (406), and an FFQ 

and eight 24hRs (142). To our knowledge, there is also no cross-sectional data from British 
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populations. Thus, further studies are needed which will investigate potential iron-bone 

associations in both men and women using populations of larger sample sizes, as this has not 

been done before. 

 Associations between iron status and BMD have previously been investigated in five 

cross-sectional studies. The smallest study was undertaken in 455 Italian postmenopausal 

women and showed that there was a significant inverse correlation between serum transferrin 

and BMD at the spine (r=-0.2, P=0.015) and the hip (r=-0.34, P<0.001), although no such 

associations were found with serum iron or ferritin concentrations (183). Another cross-sectional 

study also investigated serum iron concentrations in 728 Turkish women (mean age: 57±6 years) 

(408). They found that in women aged 45-59 years, serum iron concentrations were significantly 

lower in those with osteoporosis at the femoral neck (101.1±45.0 vs. 90.7±43.1 µg/dl, P=0.030) 

and total hip (101.0±44.7 vs. 86.8±43.4 µg/dl, P=0.012) compared to women without 

osteoporosis, although no such observations were made in older women aged 60-79 years. 

Moreover, there were no differences in the risk of osteoporosis at multiple sites between 

women with low and normal serum iron concentrations in either age group (OR 1.0, 95%CI 0.6-

1.9, P≥0.33). Another cross-sectional study investigated potential associations between the 

prevalence of anaemia with trabecular and cortical BMD and bone area in 950 Italian men and 

women aged 65-102 years (184). The results showed that women with anaemia compared to 

those without had significantly lower trabecular BMD (179±76 vs. 199±59 mg/cm3, P=0.02) and 

cortical BMD (935±96 vs. 988±71 mg/cm3, P<0.001); whereas men with anaemia had significantly 

lower cortical bone density only (993±87 vs. 1019±62 mg/cm3, P=0.01). Moreover, in both men 

and women, every SD increase in bone density at multiple sites was significantly associated with 

higher haemoglobin levels (β 0.076-0.112, P≤0.04), and in women only, with a lower prevalence 

of anaemia (β -0.335-(-)0.428, P≤0.04). A larger cross-sectional study in 2943 South Korean men 

and women aged 65 years and over investigated associations between serum ferritin 

concentrations and BMD at the hip and spine (182). The results did not show any significant 

associations in women; however in men, higher serum ferritin levels were significantly 

associated with higher BMD at all investigated sites (β 0.008-0.018 ± 0.004-0.005 (SE), P≤0.049). 

Moreover in men, BMD at all sites increased and the prevalence of osteoporosis decreased 

significantly across tertiles of serum ferritin (P≤0.022). The largest cross-sectional study 

investigating potential associations between iron status and BMD at the spine and hip was a 

recent study in 5148 Korean men and women aged 10-95 years which reported potential 

detrimental effects of higher iron status for bone health (409). The results were sex-specific and 

showed that serum ferritin concentrations were significantly inversely associated with all BMD 

sites in women aged ≥45 years and with spine BMD in 25-44 year old women only (β -0.012-(-

)0.039 ± 0.005-0.007 (SE), P≤0.041). Further investigations in women (≥45 years) showed that 

spine BMD was significantly lower in women in the two upper quartiles compared to those 
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women in the lowest quartile of ferritin (3.2-3.4%, P<0.05). Moreover, the odds for osteoporosis 

were significantly higher in women (≥50 years) in the two upper compared to the lower quartile 

of ferritin (quartile 3vs1: OR 1.45, 1.02-2.05; quartile 4vs1: OR 1.55, 1.09-2.23). Similarly, the 

odds for self-reported fractures were also significantly higher in women in quartile 4 compared 

to those in quartile 1 (OR 1.52, 1.02-2.27).  

Despite all published cross-sectional studies showing some significant associations 

between iron status and bone health, the results were contradictory as both potentially 

beneficial and detrimental associations were found. However, the data are limited to five studies 

which used different exposure assessments and outcome measures to investigate the role of 

iron status in bone health. Moreover, only two studies included a large population of more than 

2000 participants and those were undertaken in Korea, whereas no cross-sectional studies have 

been undertaken in British populations. Future cross-sectional studies need to investigate the 

potential relationship between iron status and bone health in a large population of men and 

women, particularly of British origin. 

 

6.2.2.5 Summary of previously published studies 

To date, a significant proportion of evidence for a potential role of iron sufficiency in bone health 

has come from animal studies, but data in humans are limited. To the best of my knowledge, 

there is data from only three RCTs, three prospective studies and nine cross-sectional studies, 

but no case-control studies. The results have been inconsistent, possibly due to the small sample 

sizes. For example, RCT evidence has shown that the rate of bone resorption was significantly 

higher in anaemic women compared to controls; whereas other RCTs did not find any evidence 

that iron supplementation may be beneficial to bone health. However, the results may have 

been affected by the small sample sizes of the RCTs, the pre-existing iron status of the 

population, the supplementation medium and the period of study; and all published RCTs were 

conducted in only women. In prospective studies, higher dietary iron intake was significantly 

associated with less BMD loss over time, but these investigations were undertaken in women 

only. Issues regarding small sample sizes, a short follow-up period and changes in BMD 

measuring equipment during the course of the study may have affected the study outcomes. 

Furthermore, data from prospective studies investigating iron stores rather than dietary iron 

intakes is available from only one study which found potentially harmful effects of higher iron 

stores for bone health in men and women and for fracture risk in women only. However, issues 

regarding a short follow-up and masking detrimental effects of age have been identified. To 

date, data from prospective studies investigating long-term fracture risk in a large population of 

men and women is lacking. Some but not all cross-sectional studies have found significant 

associations between higher dietary iron intakes and higher BMD at multiple sites, although all 

studies had small sample sizes and were conducted in women only. Cross-sectional associations 
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between iron status and BMD have also previously been reported, although both positive and 

negative relationships were found. However, only two of those studies were undertaken in large 

populations of more than 2000 participants, and no studies have been undertaken in British 

populations. 

In conclusion, as a range of potential underlying mechanisms for iron and bone have 

previously been suggested, and iron deficiency anaemia is considered to be the most prevalent 

global nutrient deficiency, more epidemiological evidence for a potential association between 

iron intake and status with indicators of bone health is needed. Evidence is particularly limited 

from epidemiological studies of large populations of men and women. For prospective studies, 

investigations should be conducted for both dietary iron intake and iron status; and outcome 

measures should include both BMD and fracture risk after many years of follow-up. Future cross-

sectional studies should investigate iron intake and status in the same population as this has not 

previously been done before. Moreover, there is no evidence for a potential role of iron in bone 

health in British populations, thus data from UK cohorts is needed.  

 

6.2.3 Chapter aims and objectives 

In order to address some of these limitations, this chapter aimed to: 

i) Investigate potential cross-sectional associations between dietary iron intake as well 

as serum ferritin concentrations with the heel ultrasound parameters BUA and VOS. 

ii) Examine potential prospective associations between dietary iron intake and serum 

ferritin concentrations with the risk of fracture at the hip, spine and wrist in a British 

population of men and women aged between 39 and 79 years at baseline.  

 

This study will provide novel investigations of potential associations between dietary iron intake 

and serum ferritin with the long-term risk for fractures. Moreover, the findings will also provide 

more evidence in a British population, particularly in men where data is limited, and will use a 

larger sample size than most previous studies. It was hypothesised that dietary intakes of iron 

and serum ferritin are positively associated with measures of bone density and inversely 

associated with the risk of fracture. 
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6.3 Methods 

Two types of analyses were undertaken on a randomly selected sample of men and women of 

the EPIC-Norfolk prospective cohort study, as discussed in detail in Chapter 2 (page 40). Briefly, 

the cross-sectional study of heel ultrasound was based on a random sub-cohort of 4000 

participants who had attended the first health check, and the prospective investigations of 

fracture risk were based on a case-cohort design using the same subset of 4000 participants and 

a set of 1502 participants who had experienced a fracture up to 31st March 2009. For both types 

of studies, analyses using iron as the predictor variable were performed using quintiles and were 

undertaken for i) iron intake from the diet and ii) serum ferritin concentrations. Firstly, multiple 

regressions determined the cross-sectional relation of quintiles of dietary iron intake from foods 

and quintiles of serum ferritin concentrations with BUA and VOS. Both BUA and VOS are 

measures of heel ultrasound, but BUA is an indicator of the structural organisation of bone, 

whereas VOS determines bone stiffness (63). Secondly, the differences in crude total fracture 

incidence over the median 12.6-year follow-up between the quintile groups was evaluated by 

computing Kaplan-Meier survival curves alongside log-rank tests of equality. Then, potential 

prospective associations between quintiles of dietary iron intake and quintiles of serum ferritin 

concentrations with fracture risk at the hip, spine and wrist were investigated using Prentice-

weighted Cox proportional hazard ratios (221). For both the cross-sectional and the prospective 

studies, potential associations between the extreme quintiles of iron intake or serum ferritin 

concentrations referent to the lowest quintile were investigated. As previously discussed, all 

analyses were stratified by sex and adjusted for relevant confounders using an unadjusted and 

two multivariate models (Chapter 2, page 49). The final model included age, family history of 

osteoporosis, BMI, smoking, physical activity, steroid medication, menopausal status and HRT in 

women, total energy intake, dietary calcium intake, calcium supplements and vitamin D 

supplements. The procedures for dealing with missing data and the number of exclusions in each 

study are discussed in detail in Chapter 3 (pages 55-57). 
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6.4 Results 

6.4.1 Cohort descriptives 

6.4.1.1 Descriptive statistics stratified by quintiles of dietary iron intake 

Characteristics of the 4711 EPIC-Norfolk participants stratified by quintiles of dietary iron intake 

are presented in Table 6.1. In the 1957 men, mean±SD iron intakes for the quintile groups were 

as follows: Q1 8.6±1.3 mg/d, Q2 11.0±0.5 mg/d, Q3 12.8±0.6 mg/d, Q4 14.8±0.7 mg/d and Q5 

19.3±3.9 mg/d. Mean iron intakes for each quintile were slightly lower in the 2754 women: Q1 

6.9±1.0 mg/d, Q2 9.0±0.4 mg/d, Q3 10.4±0.4 mg/d, Q4 12.0±0.6 mg/d and Q5 16.1±2.8 mg/d. 

There were no differences in family history of osteoporosis, steroid use and calcium supplement 

use between the quintile groups. However, those with the lowest compared to higher iron 

intakes were least likely to use vitamin D supplements (P≤0.007). Moreover, there were 

significant decreases in age (P<0.001) across quintiles of iron intake. For example, men were 

61.9±9.5 and 58.1±9.4 years old in quintiles 1 and 5 respectively, and women were 62.1±9.7 and 

58.2±9.5 years. A similar decrease across the quintiles was also found for BMI (P≤0.041). 

Participants with higher compared to the lowest iron intakes were also more likely to be non-

smokers and more physically active (P<0.001). Serum ferritin levels increased significantly with 

higher iron intakes in men (P=0.024), but a significant decrease was found in women (P=0.014). 

 

6.4.1.2 Descriptive statistics stratified by quintiles of serum ferritin 

Following the exclusion of those with missing information for serum ferritin (n=1506, 32%), 

characteristics of the 3205 participants stratified by quintiles of serum ferritin are presented in 

Table 6.2. In the 1385 men, mean±SD serum ferritin for the quintile groups were as follows: Q1 

30.2±11.4 ng/ml, Q2 62.6±8.6 ng/ml, Q3 94.3±11.2 ng/ml, Q4 137.9±15.7 ng/ml and Q5 

253.4±74.5 ng/ml. Mean serum ferritin for each quintile were lower in the 1820 women 

compared to men: Q1 16.5±5.1 ng/ml, Q2 33.3±4.8 ng/ml, Q3 51.0±5.7 ng/ml, Q4 75.7±9.3 

ng/ml and Q5 147.4±56.4 ng/ml. There were no significant differences in smoking, physical 

activity, family history of osteoporosis, steroid medication and the use of calcium or vitamin D 

supplements between the quintile groups. Moreover, in women, HRT did not differ between the 

quintile groups. However, women with the highest serum ferritin concentrations were more 

likely to be post-menopausal compared to those with lower intakes (P<0.001). In line with this, 

there was a significant increase in age across quintiles of serum ferritin in women (P<0.001). For 

example, women were 56.4±9.7 and 63.0±8.0 years old in quintiles 1 and 5, respectively. In 

contrast, age significantly decreased in men (P=0.003), with men being 60.9±9.2 and 59.0±8.9 

years old in quintiles 1 and 5, respectively. In both sexes, BMI increased significantly (P<0.001). 

In men, dietary iron intake increased significantly in men (P=0.006), but decreased in women 

(P=0.042).  
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Table 6.1: Baseline characteristics of the 1957 men and 2754 women of the EPIC-Norfolk case-cohort stratified by quintiles of dietary iron intake. 

 Men   Women  

Dietary iron 
intake (mg/d) 

Quintile 1 
3.4 – 10.1 

n = 392 

Quintile 2 
10.2 – 11.9 

n = 391 

Quintile 3 
12.0 – 13.7 

n = 392 

Quintile 4 
13.8 – 16.1 

n = 391 

Quintile 5 
16.2 - 42.2 

n = 391 P-trend 

 Quintile 1 
1.9 – 8.2 
n = 551 

Quintile 2 
8.3 – 9.6 
n = 551 

Quintile 3 
9.7 – 11.0 

n = 551 

Quintile 4 
11.1 – 13.1 

n = 551 

Quintile 5 
13.2 – 29.7 

n = 550 P-trend 

Mean (SD)                        
Age (years) 61.9 (9.5) 60.5 (9.5) 60.1 (9.5) 57.9 (9.3) 58.1 (9.4) P<0.001  62.1 (9.7) 59.9 (9.3) 59.3 (9.5) 59.4 (9.2) 58.2 (9.5) P<0.001 
BMI (kg/m

2
) 26.8 (3.6) 26.5 (3.1) 26.6 (3.2) 26.2 (3.4) 26.4 (3.3) P=0.041  26.8 (4.7) 26.4 (4.3) 26.0 (4.1) 25.9 (4.2) 25.7 (4.2) P<0.001 

Serum ferritin (ng/ml)† 112.0 (88.8) 110.5 (80.5) 111.7 (77.4) 117.8 (82.4) 126.4 (94.6) P=0.024  70.6 (55.3) 65.5 (52.2) 63.0 (51.4) 63.7 (56.7) 60.9 (46.7) P=0.014 
n (%)                        

Menopausal Status                       P<0.001 
Pre-mp - - - - - - - - - -   63 (11.4) 76 (13.8) 87 (15.8) 90 (16.3) 98 (17.8)  

Peri-mp (<1 yr) - - - - - - - - - -   17 (3.1) 18 (3.3) 29 (5.3) 18 (3.3) 45 (8.2)  
Peri-mp (1-5 yrs) - - - - - - - - - -   76 (13.8) 95 (17.2) 94 (17.0) 82 (14.9) 101 (18.4)  
Post-mp - - - - - - - - - -   395 (71.7) 362 (65.7) 341 (61.9) 361 (65.5) 306 (55.6)  

HRT                       P=0.033 
Current User - - - - - - - - - -   71 (12.9) 96 (17.4) 91 (16.5) 111 (20.2) 103 (18.7)  
Former User - - - - - - - - - -   65 (11.8) 59 (10.7) 80 (14.5) 58 (10.5) 62 (11.3)  
Never Used - - - - - - - - - -   415 (75.3) 396 (71.9) 380 (69.0) 382 (69.3) 385 (70.0)  

Smoking           P<0.001            P<0.001 
Current smoker 80 (20.4) 48 (12.3) 40 (10.2) 39 (10.0) 31 (7.9)   100 (18.2) 73 (13.3) 70 (12.7) 58 (10.5) 42 (7.6)  
Former smoker 223 (56.9) 207 (52.9) 215 (54.9) 216 (55.2) 220 (56.3)   178 (32.3) 167 (30.3) 174 (31.6) 167 (30.3) 203 (36.9)  
Never smoked 89 (22.7) 136 (34.8) 137 (34.9) 136 (34.8) 140 (35.8)   273 (49.5) 311 (56.4) 307 (55.7) 326 (59.2) 305 (55.5)  

Physical activity           P<0.001            P<0.001 
Inactive 165 (42.1) 132 (33.8) 124 (31.6) 95 (24.3) 98 (25.1)   238 (43.2) 183 (33.2) 173 (31.4) 171 (31.0) 142 (25.8)  
Mod. inactive 87 (22.2) 93 (23.8) 104 (26.5) 94 (24.0) 93 (23.8)   159 (28.8) 187 (33.9) 183 (33.2) 165 (30.0) 183 (33.3)  
Mod. active 74 (18.9) 94 (24.0) 77 (19.7) 93 (23.8) 98 (25.1)   93 (16.9) 98 (17.8) 128 (23.2) 123 (22.3) 135 (24.5)  
Active 66 (16.8) 72 (18.4) 87 (22.2) 109 (27.9) 102 (26.0)   61 (11.1) 83 (15.1) 67 (12.2) 92 (16.7) 90 (16.4)  

Family history of OP 10 (2.6) 10 (2.6) 13 (3.3) 13 (3.3) 12 (3.1) P=0.94  32 (5.8) 26 (4.7) 30 (5.4) 30 (5.4) 36 (6.7) P=0.77 
Steroids 21 (5.4) 9 (2.3) 13 (3.3) 12 (3.1) 13 (3.3) P=0.20  27 (4.9) 26 (4.7) 22 (4.0) 21 (3.8) 18 (3.3) P=0.65 
Calcium supp. 4 (1.0) 2 (0.5) 8 (2.0) 5 (1.3) 6 (1.5) P=0.40  19 (3.5) 34 (6.2) 31 (5.6) 32 (5.8) 39 (7.1) P=0.11 
Vitamin D supp. 70 (17.9) 72 (18.4) 106 (27.0) 96 (24.6) 86 (22.0) P=0.007  134 (24.3) 171 (31.0) 179 (32.5) 184 (66.6) 207 (37.6) P<0.001 

Values are means (standard deviations) or numbers (frequencies).  
† Serum ferritin levels were available for 1385 men and 1819 women. 
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Table 6.2: Baseline characteristics of the 1385 men and 1820 women of the EPIC-Norfolk case-cohort stratified by quintiles of serum ferritin. 

 Men   Women  

Serum ferritin  
levels (ng/ml) 

Quintile 1 
8.5 – 47.8 

n = 277 

Quintile 2 
47.9 – 76.0 

n = 277 

Quintile 3 
76.1 – 113.2 

n = 277 

Quintile 4 
113.3 – 169.2 

n = 277 

Quintile 5 
169.3 – 447.2 

n = 277 P-trend 

 Quintile 1 
8.0 – 25.1 

n = 367 

Quintile 2 
25.2 – 41.7 

n = 362 

Quintile 3 
41.8 – 61.3 

n = 366 

Quintile 4 
61.4 – 94.4 

n = 361 

Quintile 5 
94.5 – 442.9 

n = 364 P-trend 

Mean (SD)                        
Age (years) 60.9 (9.2) 60.3 (9.7) 58.6 (9.5) 58.9 (9.2) 59.0 (8.9) P=0.003  56.4 (9.7) 58.8 (9.2) 61.3 (8.7) 61.7 (8.8) 63.0 (8.0) P<0.001 
BMI (kg/m

2
) 26.1 (3.5) 26.0 (3.2) 26.2 (3.2) 26.5 (3.0) 27.2 (3.2) P<0.001  25.6 (3.8) 25.8 (4.0) 26.1 (4.3) 26.2 (4.5) 26.9 (4.3) P<0.001 

Iron intake (mg/d)† 13.1 (3.6) 13.1 (4.1) 13.1 (3.6) 13.4 (3.7) 13.9 (4.6) P=0.006  11.0 (3.5) 11.2 (3.3) 11.1 (3.4) 10.9 (3.5) 10.5 (3.4) P=0.042 
n (%)                        

Menopausal Status                       P<0.001 
Pre-mp - - - - - - - - - -   94 (25.6) 49 (13.5) 33 (9.0) 34 (9.4) 19 (5.2)  
Peri-mp (<1 yr) - - - - - - - - - -   26 (7.1) 21 (5.8) 12 (3.3) 9 (2.5) 8 (2.2)  
Peri-mp (1-5 yrs) - - - - - - - - - -   71 (19.3) 76 (21.0) 53 (14.5) 47 (13.0) 54 (14.8)  
Post-mp - - - - - - - - - -   176 (48.0) 216 (59.7) 268 (73.2) 271 (75.1) 283 (77.8)  

HRT                       P=0.25 
Current User - - - - - - - - - -   70 (19.1) 82 (22.6) 63 (17.2) 53 (14.7) 62 (17.0)  
Former User - - - - - - - - - -   42 (11.4) 39 (10.8) 52 (14.2) 46 (12.7) 43 (11.8)  
Never Used - - - - - - - - - -   255 (69.5) 241 (66.6) 251 (68.6) 262 (72.6) 259 (71.2)  

Smoking           P=0.77            P=0.82 
Current smoker 36 (13.0) 26 (9.4) 36 (13.0) 35 (12.6) 32 (11.6)   49 (13.4) 43 (11.9) 42 (11.5) 41 (11.4) 47 (12.9)  
Former smoker 143 (51.6) 154 (55.6) 148 (53.4) 159 (57.4) 148 (53.4)   127 (34.6) 110 (30.4) 111 (30.3) 120 (33.2) 121 (33.2)  
Never smoked 98 (35.4) 97 (35.0) 93 (33.6) 83 (30.0) 97 (35.0)   191 (52.0) 209 (57.7) 213 (58.2) 200 (55.4) 196 (53.9)  

Physical activity           P=0.09            P=0.27 
Inactive 91 (32.8) 85 (30.7) 75 (27.1) 88 (31.7) 87 (31.4)   105 (28.6) 108 (29.8) 116 (31.7) 124 (34.4) 136 (37.4)  
Mod. inactive 47 (17.0) 71 (25.6) 63 (22.7) 65 (23.5) 83 (30.0)   117 (31.9) 110 (30.4) 121 (33.1) 114 (31.6) 121 (33.2)  
Mod. active 67 (24.2) 58 (20.9) 66 (23.8) 59 (21.3) 57 (20.6)   82 (22.3) 87 (24.0) 77 (21.0) 72 (19.9) 65 (17.9)  
Active 72 (26.0) 63 (22.8) 73 (26.4) 65 (23.5) 50 (18.0)   63 (17.2) 57 (15.8) 52 (14.2) 51 (14.1) 42 (11.5)  

Family history of OP 8 (2.9) 11 (4.0) 5 (1.8) 6 (2.2) 8 (2.9) P=0.58  23 (6.3) 20 (5.5) 22 (6.0) 26 (7.2) 22 (6.0) P=0.92 
Steroids 14 (5.1) 8 (2.9) 8 (2.9) 6 (2.2) 7 (2.5) P=0.32  14 (3.8) 15 (4.1) 18 (4.9) 13 (3.6) 19 (5.2) P=0.79 
Calcium supp. 3 (1.1) 4 (1.4) 6 (2.2) 5 (1.8) 2 (0.7) P=0.64  19 (5.2) 22 (6.1) 22 (6.0) 21 (5.8) 21 (5.8) P=0.99 
Vitamin D supp. 61 (22.0) 62 (22.4) 78 (28.2) 56 (20.2) 61 (22.0) P=0.22  119 (32.4) 140 (38.7) 124 (33.9) 103 (28.5) 119 (32.7) P=0.07 

Values are means (standard deviations) or numbers (frequencies). 
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6.4.2 Associations between iron and heel ultrasound 

Associations between the bone density parameters BUA (in dB/MHz) and VOS (in m/s) with 

dietary iron intake and serum ferritin concentrations are presented in Figure 6.4 for men and in 

Figure 6.5 for women. The results are discussed in detail below. Briefly, we found that dietary 

iron intake was significantly positively associated with BUA in women only. 

 

6.4.2.1 Dietary iron intake and heel ultrasound 

In univariate analyses, dietary iron intake correlated significantly and positively with BUA and 

VOS in women (both r=0.08, P<0.05), although no such associations were found in men. 

In concordance with the findings from the univariate analyses, multivariate-adjusted 

linear regression analyses reported that quintiles of dietary iron intake were not associated with 

measures of heel ultrasound in men. However, a significant linear relationship between 

increasing quintiles of dietary iron intake and higher BUA was found in women, even after 

adjustment for age, family history of osteoporosis, BMI, smoking, physical activity, use of 

steroids, menopausal status, HRT use, energy intake, dietary calcium intake and the use of 

calcium and vitamin D supplements (β 0.66 dB/MHz per quintile, P-trend=0.045; Figure 6.5). 

Moreover, BUA was 4.4% higher in women in quintile 5 compared to those in the lowest quintile 

of dietary iron intake (β 3.08 dB/MHz, P=0.036), and the 3.6% difference between quintile 4 

compared to quintile 1 almost reached statistical significance (β 2.55 dB/MHz, P=0.062). Despite 

the positive correlation between iron intake and VOS in women in univariate analyses, there was 

no linear trend in multivariate-adjusted regression analyses. Moreover, there was no significant 

difference in VOS between women of the upper quintiles compared to those of the lowest 

quintile of dietary iron intake, although the 0.41% difference in VOS between women of quintile 

4 compared to quintile 1 was almost significant (β 6.57 m/s, P=0.054). 

 

6.4.2.2 Serum ferritin and heel ultrasound 

In univariate analyses, serum ferritin concentrations did not correlate with measures of heel 

ultrasound in men or women. 

The results from the multivariate-adjusted regression analyses investigating the 

relationship between sex-specific quintiles of serum ferritin concentrations with BUA and VOS 

are also shown in Figures 6.4-6.5. There were no significant associations between serum ferritin 

levels and heel ultrasound in participants of this cohort. The categorisation of participants into 

quintiles of serum ferritin differed between men and women, with a finer discrimination in 

women. For example, men in quintile 1 had a serum ferritin concentration of 9-49 ng/ml and this 

reflected serum levels of women in quintiles 1 and 2 (8-25 and 25-41 ng/ml, respectively).  
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Figure 6.4: Associations between dietary iron intake and serum ferritin concentrations with mean BUA (A) 
and VOS (B) in men.  

 

 
The mean iron intake for quintile 1 and 5 ranged from 9-20 mg/d. Mean serum ferritin concentrations for 
quintile 1 and 5 ranged from 32-242 ng/ml. The standard error of the mean (SE) was 1.3-1.5 dB/MHz for 
BUA and 2.8-3.4 m/s for VOS. The analysis used EPIC-Norfolk data from the second health check and was 
based on a multivariate-adjusted linear regression analysis. There were no significant differences between 
the two upper quintiles referent to quintile 1. n=968 for iron intake and n=682 for serum ferritin. 
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Figure 6.5: Associations between dietary iron intake and serum ferritin concentrations with mean BUA (A) 
and VOS (B) in women. 

 

 
The mean iron intake for quintile 1 and 5 ranged from 7-16 mg/d. Mean serum ferritin concentrations for 
quintile 1 and 5 ranged from 17-142 ng/ml. The standard error of the mean (SE) was 0.9-1.1 dB/MHz for 
BUA and 2.2-2.7 m/s for VOS. The analysis used EPIC-Norfolk data from the second health check and was 
based on a multivariate-adjusted linear regression analysis. Differences between the two upper quintiles 
referent to quintile 1 were significant at *P<0.05. n=1359 for iron intake and n=910 for serum ferritin. 
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6.4.3 Associations between iron and fracture risk 

In the case-cohort sub-sample of EPIC-Norfolk participants, there were 112 hip fractures, 78 

spine fractures and 70 wrist fractures in men, and 339 hip fractures, 124 spine fractures and 218 

wrist fractures in women. In the case-cohort that investigated participants with a fracture at any 

of these three fracture sites (total fracture), there were 248 and 616 fractures in men and 

women, respectively. The results of the calculation of hazard ratios of fracture risk according to 

dietary iron intake and serum ferritin concentrations are discussed below. Briefly, both iron 

intake and serum ferritin were significantly inversely associated with the risk of spine fractures in 

women only. 

 

6.4.3.1 Iron characteristics of participants with or without a fracture  

Women who remained free from fractures over the median 12.6-year follow up had significantly 

higher mean iron intake from foods compared to those women with a fracture (11±3.4 vs. 

10.5±3.5 mg/d, P=0.003; Table 6.3). No such differences were found in men, and there were no 

significant differences in mean serum ferritin concentrations between fracture and non-fracture 

subjects in either sex. 
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Table 6.3: Dietary iron intake and serum ferritin in subjects with and without a total fracture. 

  Subjects without a fracture  Subjects with a fracture   

  n Mean (SD) [Range]  n Mean (SD) [Range]    P 

Men             
Dietary iron intake (mg/d)   1709 13.3 (4.0) [3.4; 42.2]  248 13.5 (4.5) [5.7; 37.1]  0.39 
Serum ferritin levels (ng/ml)  1212 115.4 (83.6) [8.5; 447.2]  173 117.6 (95.1) [9.1; 439.4]  0.76 
             
Women             
Dietary iron intake (mg/d)   2138 11.0 (3.4) [1.9; 29.7]  616 10.5 (3.5) [3.7; 27.0]  0.003 
Serum ferritin levels (ng/ml)  1409 63.6 (52.2) [8; 442.9]  411 68.5 (53.9) [8; 296.6]  0.10 



 

Page | 168  
 

6.4.3.2 Dietary iron intake and fracture risk 

In men, the Kaplan Meier plot showed that there was both overlap and cross-over between the 

five quintiles of dietary iron intake and no one quintile diverged significantly from the others 

(Figure 6.6). The log-rank test for equality confirmed these observations, showing that total 

osteoporotic fracture incidence did not differ significantly according to dietary iron intake. In 

concordance with these findings, the results from the unadjusted as well as fully adjusted 

Prentice-weighted Cox proportional hazard ratios showed that dietary iron intake was not 

associated with fracture risk at any site in men (Table 6.4).  

In women, the Kaplan Meier plot showed that total fracture incidence in quintile 4 of 

dietary iron intake appeared to diverge markedly from the other quintiles (Figure 6.7), and the 

log-rank test for equality confirmed this observation (P=0001). In contrast to men, higher dietary 

iron intake was significantly associated with a reduced fracture risk in women (Table 6.5). 

Associations were present for spinal fracture risk, where a significant inverse trend was found 

across the quintile groups (HR 0.85, 95%CI 0.73-0.99, P-trend=0.041), after adjustment for age, 

family history of osteoporosis, BMI, smoking, physical activity, use of steroid medication, 

menopausal status, HRT use, energy intake, dietary calcium intake and the use of calcium and 

vitamin D supplements. Moreover, women in the upper quintiles of dietary iron intake had 

significantly lower multivariate-adjusted hazard ratios of spine fracture risk compared to those 

women in quintile 1 (quintile 4: HR 0.51, 95%CI 0.29-0.92, P=0.025; quintile 5: HR 0.41, 95%CI 

0.21-0.79, P=0.008). Although quintile 4 of dietary iron intake was also significantly associated 

with a reduction in hip fracture risk, the association lost statistical significance following the 

adjustment for all covariates. Dietary iron intake was not associated with wrist fractures in this 

cohort. When investigating hip, spine and wrist fractures combined (total fracture), women in 

quintile 4 had a significantly lower hazard ratio than those women with the lowest iron intakes 

(HR 0.65, 95%CI 0.47-0.92, P=0.014), and this remained significant after multivariate adjustment. 

The categorisation of participants into quintiles of dietary iron intake differed between 

men and women, with a finer discrimination in women. For example, the dietary iron intakes of 

men in quintile 1 (3.4-10.1 mg/d) were similar to those of women in quintiles 1 and 2 (1.9-8.2 

and 8.3-9.6 mg/d, respectively).  
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Figure 6.6: Kaplan-Meier plot of total fractures by quintiles of dietary iron intake in men. 

 
There were no significant differences between the quintile groups according to the log-rank test 
for equality (P=0.12). n=1957. 

 
 
 

Figure 6.7: Kaplan-Meier plot of total fractures by quintiles of dietary iron intake in women. 

 
The quintile groups differed significantly according to the log-rank test for equality (P=0.001). n=2754.
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Table 6.4: Associations between dietary iron intake and fracture risk in men of the EPIC-Norfolk case-cohort.  

  Dietary iron intake (mg/d)  

 

 Quintile 1 
3.4 – 10.1 

n = 392 

Quintile 2 
10.2 – 11.9 

n = 391 

Quintile 3 
12.0 – 13.7 

n = 392 

Quintile 4 
13.8 – 16.1 

n = 391 

Quintile 5 
16.2 - 42.2 

n = 391 
 

  HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture [Events] [56]  [40]  [50]  [46]  [56]  
 Unadjusted 1.00 0.70 (0.45-1.09) 0.92 (0.60-1.40) 1.02 (0.66-1.56) 1.21 (0.80-1.82) P=0.15 

 Model 1 1.00 0.73 (0.46-1.14) 0.92 (0.60-1.41) 0.99 (0.64-1.53) 1.20 (0.80-1.81) P=0.19 
 Model 2 1.00 0.72 (0.46-1.15) 0.90 (0.56-1.46) 0.97 (0.59-1.58) 1.12 (0.67-1.86) P=0.36 
            

Hip fracture [Events] [30]  [19]  [24]  [21]  [18]  
 Unadjusted 1.00 0.65 (0.35-1.20) 0.84 (0.47-1.50) 1.03 (0.56-1.89) 0.80 (0.43-1.49) P=0.91 
 Model 1 1.00 0.71 (0.37-1.33) 0.84 (0.47-1.52) 1.00 (0.54-1.87) 0.81 (0.43-1.53) P=0.86 

 Model 2 1.00 0.80 (0.41-1.56) 1.00 (0.51-1.98) 1.17 (0.57-2.40) 0.92 (0.45-1.90) P=0.80 
            

Spinal fracture [Events] [15]  [11]  [18]  [13]  [21]  
 Unadjusted 1.00 0.75 (0.34-1.67) 1.28 (0.63-2.59) 1.11 (0.52-2.40) 1.75 (0.89-3.46) P=0.07 
 Model 1 1.00 0.77 (0.35-1.74) 1.28 (0.62-2.62) 1.06 (0.49-2.27) 1.72 (0.87-3.40) P=0.09 
 Model 2 1.00 0.79 (0.33-1.88) 1.31 (0.58-2.94) 1.11 (0.44-2.83) 1.84 (0.77-4.39) P=0.12 
            
Wrist fracture [Events] [13]  [9]  [13]  [13]  [22]  
 Unadjusted 1.00 0.66 (0.28-1.54) 0.96 (0.44-2.11) 0.95 (0.44-2.08) 1.70 (0.85-3.38) P=0.08 
 Model 1 1.00 0.64 (0.27-1.51) 0.95 (0.43-2.11) 0.90 (0.41-1.94) 1.70 (0.82-3.17) P=0.09 
 Model 2 1.00 0.53 (0.23-1.26) 0.73 (0.31-1.73) 0.65 (0.29-1.45) 0.98 (0.42-2.29) P=0.75 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first health 
check. No significant differences between the two upper quintiles referent to the lowest quintile. Model 1 adjusted for age, family history of osteoporosis, BMI, smoking, physical 
activity and use of steroids. Model 2 additionally adjusted for energy intake, dietary calcium intake, calcium supplements and vitamin D supplements. n 1957 for total fracture, n 
1842 for hip fracture, n 1808 for spine fracture, n 1806 for wrist fracture. 
 



 

 
 

P
age | 171

 

Table 6.5: Associations between dietary iron intake and fracture risk in women of the EPIC-Norfolk case-cohort. 

  Dietary iron intake (mg/d)  

 

 Quintile 1 
1.9 – 8.2 
n = 551 

Quintile 2 
8.3 – 9.6 
n = 551 

Quintile 3 
9.7 – 11.0 

n = 551 

Quintile 4 
11.1 – 13.1 

n = 551 

Quintile 5 
13.2 – 29.7 

n = 550 
 

  HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture [Events] [151]  [123]  [137]  [89]  [116]  
 Unadjusted 1.00 0.92 (0.69-1.24) 1.14 (0.85-1.52) 0.61 (0.45-0.83)** 1.01 (0.74-1.36) P=0.24 

 Model 1 1.00 0.91 (0.67-1.23) 1.11 (0.83-1.50) 0.60 (0.44-0.82)** 1.01 (0.74-1.38) P=0.25 
 Model 2 1.00 0.95 (0.69-1.30) 1.20 (0.87-1.66) 0.65 (0.47-0.92)* 1.12 (0.78-1.62) P=0.61 
            

Hip fracture [Events] [79]  [73]  [77]  [43]  [67]  
 Unadjusted 1.00 1.17 (0.80-1.71) 1.37 (0.94-1.99) 0.62 (0.41-0.94)* 1.29 (0.87-1.90) P=0.89 
 Model 1 1.00 1.13 (0.76-1.67) 1.28 (0.87-1.89) 0.60 (0.39-0.91)* 1.32 (0.89-1.96) P=0.91 

 Model 2 1.00 1.21 (0.81-1.81) 1.44 (0.95-2.19) 0.68 (0.44-1.07) 1.57 (0.98-2.52) P=0.65 
            

Spinal fracture [Events] [44]  [14]  [27]  [22]  [17]  
 Unadjusted 1.00 0.35 (0.19-0.66) 0.73 (0.44-1.23) 0.56 (0.33-0.95)* 0.48 (0.27-0.86)* P=0.044 
 Model 1 1.00 0.35 (0.19-0.67) 0.76 (0.45-1.29) 0.59 (0.33-1.03) 0.50 (0.27-0.91)* P=0.08 
 Model 2 1.00 0.33 (0.18-0.62) 0.67 (0.37-1.20) 0.51 (0.29-0.92)* 0.41 (0.21-0.79)** P=0.041 
            
Wrist fracture [Events] [51]  [45]  [49]  [34]  [39]  
 Unadjusted 1.00 1.00 (0.65-1.52) 1.14 (0.75-1.73) 0.72 (0.46-1.13) 0.93 (0.60-1.45) P=0.38 
 Model 1 1.00 0.97 (0.63-1.50) 1.09 (0.71-1.66) 0.69 (0.43-1.09) 0.87 (0.55-1.37) P=0.24 
 Model 2 1.00 0.99 (0.63-1.57) 1.16 (0.73-1.83) 0.74 (0.45-1.22) 0.95 (0.56-1.62) P=0.48 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first health 
check. Significant differences between the two upper quintiles referent to the lowest quintile: * (P<0.05), ** (P<0.01). Model 1 adjusted for age, family history of osteoporosis, 
BMI, smoking, physical activity, use of steroids, menopausal status and HRT. Model 2 additionally adjusted for energy intake, dietary calcium intake, calcium supplements and 
vitamin D supplements. n 2754 for total fracture, n 2525 for hip fracture, n 2334 for spine fracture, n 2409 for wrist fracture. 
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6.4.3.3 Serum ferritin concentrations and fracture risk 

In men, the Kaplan Meier plot demonstrated a great risk of total fracture incidence in quintile 1 

of serum ferritin compared to the higher quintiles (Figure 6.8). However, the log-rank test for 

equality showed that this was not statistically significant (P=0.22). These findings demonstrate 

that men in serum ferritin quintile 1 had a high number of fractures early during the follow-up 

period compared to those men in the other quintiles, and at the end of the follow-up (March 

2009), the number of fractures were comparable between all quintile groups of serum ferritin. 

The results from the Prentice-weighted Cox proportional hazard ratio analysis also showed that 

quintiles of serum ferritin concentrations were not associated with fracture risk at any site in 

men (Table 6.6).  

In women, the Kaplan Meier plot showed that the number of total fractures in quintile 1 

of serum ferritin markedly diverged from that of the other quintiles, which was statistically 

significant using the log-rank test for equality (P=0.018, Figure 6.9). Moreover, in women serum 

ferritin concentrations were significantly inversely associated with spinal fracture risk (HR 0.78, 

95%CI 0.65-0.94, P-trend=0.009), even after the adjustment for age, family history of 

osteoporosis, BMI, smoking, physical activity, use of steroid medication, menopausal status, HRT 

use, energy intake, dietary calcium intake and the use of calcium and vitamin D supplements 

(Table 6.7). Moreover, the multivariate-adjusted risk of fractures at the spine was also 

significantly lower in women of quintile 4 (HR 0.30, 95%CI 0.14-0.64, P=0.002) and quintile 5 (HR 

0.44, 95%CI 0.22-0.87, P=0.018) compared to those women in the lowest quintile of serum 

ferritin. Serum ferritin levels were not associated with hip, wrist and total fracture in women. 

As with dietary intakes of iron, the categorisation of participants into quintiles of serum 

ferritin also differed between men and women, with a finer discrimination in women. For 

example, ferritin in quintile 1 in men (8.5-47.8 ng/ml) was comparable to that of quintiles 1 and 

2 in women (8.0-25.1 and 25.2-41.7 ng/ml, respectively). 
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Figure 6.8: Kaplan-Meier plot of total fractures by quintiles of serum ferritin in men. 

 
There were no significant differences between the quintile groups according to the log-rank test 
for equality (P=0.22). n=1385. 

 

Figure 6.9: Kaplan-Meier plot of total fractures by quintiles of serum ferritin in women. 

 
The quintile groups differed significantly according to the log-rank test for equality (P=0.018). n=1820. 
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Table 6.6: Associations between serum ferritin and fracture risk in men of the EPIC-Norfolk case-cohort.  

  Serum ferritin levels (ng/ml)  

 

 Quintile 1 
8.5 – 47.8 

n = 277 

Quintile 2 
47.9 – 76.0 

n = 277 

Quintile 3 
76.1 – 113.2 

n = 277 

Quintile 4 
113.3 – 169.2 

n = 277 

Quintile 5 
169.3 - 447.2 

n = 277 
 

  HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture [Events] [42]  [32]  [32]  [28]  [39]  
 Unadjusted 1.00 0.72 (0.43-1.20) 0.81 (0.49-1.34) 0.63 (0.37-1.07) 1.00 (0.62-1.63) P=0.82 

 Model 1 1.00 0.69 (0.41-1.16) 0.76 (0.45-1.26) 0.62 (0.36-1.04) 0.94 (0.57-1.53) P=0.67 
 Model 2 1.00 0.68 (0.40-1.15) 0.78 (0.46-1.31) 0.58 (0.33-1.00) 0.88 (0.53-1.47) P=0.51 
            

Hip fracture [Events] [18]  [17]  [14]  [14]  [16]  
 Unadjusted 1.00 0.93 (0.45-1.89) 0.91 (0.44-1.91) 0.77 (0.36-1.64) 1.05 (0.51-2.15) P=0.89 
 Model 1 1.00 0.89 (0.42-1.88) 0.88 (0.41-1.92) 0.79 (0.36-1.72) 1.03 (0.49-2.18) P=0.92 

 Model 2 1.00 0.88 (0.40-1.94) 1.09 (0.48-2.44) 0.69 (0.30-1.57) 0.91 (0.40-2.08) P=0.64 
            

Spinal fracture [Events] [13]  [9]  [6]  [8]  [14]  
 Unadjusted 1.00 0.70 (0.29-1.65) 0.51 (0.19-1.34) 0.63 (0.25-1.54) 1.19 (0.55-2.56) P=0.79 
 Model 1 1.00 0.68 (0.29-1.63) 0.48 (0.18-1.28) 0.61 (0.25-1.48) 1.08 (0.49-2.39) P=0.93 
 Model 2 1.00 0.68 (0.29-1.64) 0.47 (0.16-1.31) 0.63 (0.25-1.58) 1.13 (0.50-2.56) P=0.87 
            
Wrist fracture [Events] [14]  [7]  [11]  [9]  [9]  
 Unadjusted 1.00 0.49 (0.19-1.26) 0.77 (0.34-1.75) 0.61 (0.26-1.43) 0.64 (0.27-1.53) P=0.43 
 Model 1 1.00 0.46 (0.18-1.20) 0.69 (0.31-1.56) 0.56 (0.24-1.32) 0.57 (0.24-1.33) P=0.29 
 Model 2 1.00 0.47 (0.18-1.25) 0.72 (0.32-1.61) 0.57 (0.23-1.40) 0.56 (0.22-1.39) P=0.31 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first health 
check. No significant differences between the two upper quintiles referent to the lowest quintile. Model 1 adjusted for age, family history of osteoporosis, BMI, smoking, physical 
activity and use of steroids. Model 2 additionally adjusted for energy intake, dietary calcium intake, calcium supplements and vitamin D supplements. n 1385 for total fracture, n 
1304 for hip fracture, n 1277 for spine fracture, n 1283 for wrist fracture. 
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Table 6.7: Associations between serum ferritin and fracture risk in women of the EPIC-Norfolk case-cohort.  

  Serum ferritin levels (ng/ml)  

 

 Quintile 1 
8.0 – 25.1 

n = 367 

Quintile 2 
25.2 – 41.7 

n = 362 

Quintile 3 
41.8 – 61.3 

n = 366 

Quintile 4 
61.4 – 94.4 

n = 361 

Quintile 5 
94.5 – 442.9 

n = 364 
 

  HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture [Events] [76]  [75]  [76]  [89]  [95]  
 Unadjusted 1.00 0.70 (0.47-1.04) 0.58 (0.39-0.86) 0.68 (0.46-1.00) 0.69 (0.47-1.02) P=0.15 

 Model 1 1.00 0.72 (0.48-1.07) 0.61 (0.41-0.92) 0.69 (0.47-1.03) 0.73 (0.50-1.08) P=0.22 
 Model 2 1.00 0.72 (0.48-1.08) 0.62 (0.42-0.93) 0.71 (0.48-1.05) 0.73 (0.49-1.08) P=0.23 
            

Hip fracture [Events] [36]  [35]  [41]  [59]  [60]  
 Unadjusted 1.00 0.69 (0.40-1.18) 0.62 (0.37-1.05) 0.89 (0.55-1.47) 0.87 (0.54-1.42) P=0.76 
 Model 1 1.00 0.67 (0.39-1.17) 0.65 (0.38-1.11) 0.89 (0.53-1.49) 0.92 (0.56-1.52) P=0.60 

 Model 2 1.00 0.68 (0.39-1.19) 0.66 (0.38-1.14) 0.93 (0.55-1.55) 0.93 (0.57-1.54) P=0.57 
            

Spinal fracture [Events] [22]  [17]  [13]  [12]  [18]  
 Unadjusted 1.00 0.58 (0.30-1.13) 0.36 (0.17-0.74) 0.30 (0.15-0.63)** 0.45 (0.23-0.86)* P=0.012 
 Model 1 1.00 0.61 (0.31-1.19) 0.38 (0.18-0.81) 0.31 (0.15-0.65)** 0.44 (0.22-0.86)* P=0.009 
 Model 2 1.00 0.62 (0.32-1.20) 0.38 (0.18-0.81) 0.30 (0.14-0.64)** 0.44 (0.22-0.87)* P=0.009 
            
Wrist fracture [Events] [29]  [27]  [26]  [29]  [33]  
 Unadjusted 1.00 0.74 (0.42-1.29) 0.60 (0.34-1.04) 0.65 (0.37-1.13) 0.69 (0.40-1.19) P=0.23 
 Model 1 1.00 0.74 (0.42-1.30) 0.61 (0.34-1.07) 0.67 (0.38-1.17) 0.75 (0.43-1.31) P=0.37 
 Model 2 1.00 0.74 (0.42-1.31) 0.62 (0.35-1.09) 0.68 (0.39-1.20) 0.74 (0.42-1.30) P=0.37 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first health 
check. Significant differences between the two upper quintiles referent to the lowest quintile: * (P<0.05), ** (P<0.01). Model 1 adjusted for age, family history of osteoporosis, 
BMI, smoking, physical activity and use of steroids. Model 2 additionally adjusted for energy intake, dietary calcium intake, calcium supplements and vitamin D supplements. n 
1820 for total fracture, n 1673 for hip fracture, n 1538 for spine fracture, n 1585 for wrist fracture. 



 

Page | 176  
 

6.5 Discussion 

To the best of my knowledge, these data are the first to investigate both the potential 

prospective associations between dietary iron intakes and iron status with the long-term 

fracture risk; and the cross-sectional associations between iron intake and bone health in a large 

population of British men and women. Following multivariate adjustment, the results from the 

cross-sectional study showed that dietary iron intake, but not serum ferritin concentrations, 

were significantly and positively associated with BUA in women; and the prospective 

investigations showed that both higher dietary iron intake and higher serum ferritin 

concentrations were significantly inversely associated with fracture risk in women, particularly 

spine fractures. In contrast to women, in men, there were no associations between iron intake 

or serum status with heel ultrasound and fracture risk. 

 

6.5.1 Heel ultrasound 

In the cross-sectional study, there were no associations between serum ferritin and heel 

ultrasound, but associations with dietary iron intake were sex-specific, with significant 

associations found in women. For iron intake, there was a marginal linear relationship with BUA 

in women; and mean intakes of 16 mg/d compared to 7 mg/d were significantly associated with 

4.4% higher BUA. The difference in mean iron intake between the extreme quintiles (9 mg/d) 

can be achieved through the usual diet, although particular attention should be paid to 

consuming a variety of iron-rich foods. For example, three whole ready-to-eat apricots 

(equivalent to one portion) and ten cashews as snack foods, combined with four tablespoons of 

green or brown lentils and four spears of broccoli as part of a main meal have an iron content of 

approximately 9 mg (145, 350). The cross-sectional findings of a positive association between 

dietary iron intake and measures of heel ultrasound potentially reflect the important role of iron 

in bone health. It is well documented that iron plays a crucial role as a cofactor in the 

hydroxylation reactions within collagen fibres (8, 10), which increases overall collagen strength (136), 

as well as in the synthesis of vitamin D (172, 383), an important mediator in calcium absorption (125). 

Our findings are in agreement with two US studies of a small number of women (n<250) which 

reported similar findings with BMD (142, 181). The effect sizes of 4-14% higher BMD between 

extreme quartiles of iron intake were dependent on the BMD site (181), but were comparable to 

the present findings of 4.4% with BUA. A direct comparison of the absolute values for the effect 

sizes was not possible, as no observational study has previously used measures of heel 

ultrasound. Despite the agreement with previous studies, the present investigations were 

conducted in a much larger sample of women (n=1359 vs. n<250), and thus may provide more 

robust findings compared to those of previous studies. Moreover, to the best of my knowledge, 

this study is the first cross-sectional investigation of a potential association between dietary iron 
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intake and bone health in men, as previous studies were only undertaken in small female 

populations (142, 181, 406).  

In contrast to dietary intakes of iron, serum ferritin concentrations as an indicator of iron 

stores in the body were not associated with measures of heel ultrasound in both men and 

women in this cohort. To date, only two comparable cross-sectional studies have been published 

and those reported contradictory findings (182, 409). In comparison to the present iron status 

investigations in 1592 British participants aged 60±10 years, the studies were undertaken in 

2943 older South Korean men and women (mean age: 72±11 years) and 5148 Korean men and 

women with a large age range of 10-95 years (mean age: 45±19 years), respectively. In the first 

investigation, the results were sex-specific, with significant positive associations between serum 

ferritin levels and multiple BMD sites found only in men (182). In this study, mean serum ferritin 

concentrations were higher in both men and women than those of the present study population 

(men: 128±230 vs. 114±79 ng/ml; women: 77±123 vs. 63±51 ng/ml) which may, at least in part, 

explain the contradictory findings. In the second study, the results were also sex-specific, but 

were significant in women (409). Moreover, that study found potentially detrimental effects of 

higher iron status for bone health in older women, with the highest compared to the lowest 

serum ferritin concentrations being significantly associated with 3.4% lower BMD and an 

increased risk for osteoporosis (OR 1.55, 1.09-2.23) and fractures (OR 1.52, 1.02-2.27). However, 

these inverse associations were only in women older than 45 years, and the authors suggested 

that the significant drop in oestrogen levels associated with women of this age group may partly 

explain these findings. The contradictory cross-sectional results of the present investigations 

compared to the two previous studies in Korean populations highlight the importance for more 

epidemiological studies which investigate potential associations between markers of iron status 

and bone health in large populations of men and women. 

Interestingly, in our study, ferritin levels increased significantly with higher dietary iron 

intakes in men, but levels decreased significantly in women. To the best of my knowledge, this is 

a novel finding, and it may be a result of the differences in age-related ferritin levels which are 

independent of diet. In our study, those women with the highest iron intake in quintile 5, but 

who had much lower serum ferritin levels compared to women with the lowest intake in quintile 

1, were significantly younger and less likely to be post-menopausal. There is a vast body of 

evidence to show that ferritin concentrations are much lower during the reproductive ages in 

women, but levels tend to increase two to three fold following menopause, possibly as a result 

of ceased menses (375, 381, 410). In contrast to women, there is no difference in ferritin across age 

groups in men, with levels being relatively steady at all ages (382), and hence the significant 

decrease in age across quintiles of iron intake in this study was most likely not a determining 

factor of serum ferritin in men. The present findings may also be an explanation for the small 

association between iron intake and ferritin concentrations, which has been shown to be 
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especially low in women.  For example, in this study, their correlation coefficient was significant 

in men (r=0.16; P<0.05) but not in women (r=-0.02; P>0.05); and this is in agreement with 

previous studies which found either very weak (r=0.14-0.15, P≤0.03) or no correlation between 

dietary iron and ferritin (223, 377-382). Further explanations for these weak relationships include 

variations in the biological availability of iron from foods, iron losses and the use of iron 

supplements (379). Moreover, in the present study, the small association between the two iron 

measures may provide an explanation for the differing associations that were observed between 

heel ultrasound and dietary intakes of iron and serum ferritin.  

Another potential reason for the different associations of iron intake and ferritin with 

heel ultrasound in the present study may relate to the differing numbers of pre- and 

postmenopausal women in the quintiles in our study, although menopausal status was adjusted 

for in the multivariate model. In the iron intake investigations, where significant positive 

associations with heel ultrasound were found, the number of pre- and postmenopausal women 

was relatively equally distributed between the quintiles. However, in the serum ferritin 

investigations, where there were no significant associations, quintile 1 had the highest number 

of pre-menopausal women (13%) and the lowest number of post-menopausal women (54%), but 

numbers were vice versa in quintile 5 (0% premenopausal women, 88% postmenopausal 

women). Postmenopausal status compared to pre-menopausal has previously been associated 

with significantly lower BMD due to a high rate of bone loss during the menopausal transition (80, 

411). Thus, the high percentage of postmenopausal women in the top quintile of serum ferritin in 

this study may partly explain the absence of a relationship between serum ferritin and heel 

ultrasound in women. This is in spite of the positive relationship between indices of body fat 

distribution and ferritin levels, as reported in numerous epidemiological studies (412-414). Obesity 

is associated with changes in iron metabolism leading to alterations in iron status, including low 

serum iron concentrations (hypoferraemia), although the aetiology is uncertain. In agreement 

with this, those men and women in our study with the highest serum ferritin levels had 

significantly higher BMI than participants with the lowest levels, and higher BMI has previously 

been shown to be protective for bone health (84, 112). However, in the present study, the 

detrimental effects of increasing age and being post-menopausal, as previously discussed, are 

likely to have outweighed the protective effects of higher BMI and serum ferritin levels on bone 

health, and this may partially explain the lack of association between ferritin and heel 

ultrasound.  

In conclusion, the present cross-sectional investigations found significant associations 

between higher dietary intakes of iron and higher BUA in women but not in men, but serum 

ferritin concentrations as an indicator of iron status were not associated with measurements of 

heel ultrasound in this population. More epidemiological studies in both men and women and 
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with large sample sizes are needed to investigate whether the present findings are indeed sex-

specific. 

 

6.5.2 Fracture risk 

To date, only a few prospective studies have been published and those available have focused 

on investigating associations between dietary iron intake and bone loss (186, 405), or associations 

between iron status and bone loss and short-term fracture risk (185). However, to the best of my 

knowledge, no previous studies have examined the potential role of iron in reducing long-term 

fracture risk. Thus, the present prospective investigations of iron intake and status with long-

term fracture risk in a large sample of older British men and women are completely novel. We 

found that both iron intake and serum ferritin concentrations in association with fracture risk 

were sex-specific, with significant associations only found in women. For dietary iron intakes, we 

reported that women with intakes of 12.0±0.6 mg/d compared to those with the lowest intakes 

of 6.9±1.0 mg/d had a 35% lower total fracture risk (fracture risk of the hip, spine and wrist 

combined) after the median 12.6 years follow-up. There was also a significant linear trend 

between higher iron intake and lower spine fracture risk in these women. Moreover, spine 

fracture risk was 49% and 59% lower in women with intakes of 12.0±0.6 mg/d and 16.0±2.8 

mg/d compared to the lowest intakes of 6.9±1.0 mg/d, respectively. When comparing women 

with all total fractures and those who remained free from fractures during follow-up, we found 

that women, who developed fractures, reported significantly lower mean dietary iron intakes at 

baseline (10.5±3.5 vs. 11.0±3.4 mg/d). Higher serum ferritin concentrations were also 

significantly associated with lower fracture risk in women but not in men in this cohort. The 

association between higher ferritin and a reduction in spine fracture risk was found to be linear; 

and women with mean serum ferritin concentrations of 73.9±9.1 ng/ml and 144.2±57.3 ng/ml 

compared to the lowest concentrations of 16.3±4.9 ng/ml had a significantly reduced spine 

fracture risk of 70% and 56%, respectively. In contrast to women, there were no significant 

associations between dietary intakes and status of iron with fracture risk in men in this cohort. 

 To date, only one prospective study has investigated iron status and fracture risk (185), 

and their findings of a potential detrimental association between higher serum ferritin 

concentrations and increased fracture risk in women are in disagreement with our results, which 

suggest a beneficial effect in the same sex. This study in 1729 Korean middle-aged men and 

women had a much shorter follow-up of only three years compared to the median follow-up of 

12.6 years in the present study. Moreover, the populations’ mean ferritin concentration was 

higher in both men and women compared to that of our study population (men: 147±84 vs. 

114±79 ng/ml; women: 77±51 vs. 63±51 ng/ml), and this may explain some of the discrepancies 

in results. 
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The reason for the present sex-specific findings of significant associations between iron 

intake and serum ferritin with fracture risk in women may partly be due to the smaller number 

of fracture events in men, which is consistent with the published literature (22). In this case-

cohort sub-sample, there were 6%, 4% and 4% of fractures at the hip, spine and wrist 

respectively in men compared to 13%, 5% and 9% of fractures respectively in women. The 

present investigations may thus have had more power to detect potential associations between 

intake and status measures of iron and fracture risk in women than in men. Moreover, our sex-

specific findings may also be explained by differences in dietary iron intakes between men and 

women. Although the mean serum ferritin concentrations in men (116±85 ng/ml) and women 

(65±53 ng/ml) were within the normal ranges of 20-300 and 15-150 ng/ml, respectively (376), 

there were sex-specific differences in adequate intakes of dietary iron. Most men (91%) met the 

RNI of 8.7 mg/d, whereas only 51% of older women and 13% of menstruating women up to the 

age of 50 years met their respective RNIs of 8.7 and 14.8 mg/d. Moreover, less than 1% of men 

did not meet the LRNI of 4.7 mg/d, whereas a fairly large number of younger women (14%) did 

not meet the LRNI of 8 mg/d. Thus, women in this cohort had a much wider range of dietary iron 

intakes than men, and this may partly explain our sex-specific results of significant associations 

in women only. The differences in iron intakes may also relate to the different categorisation of 

men and women into quintiles of iron. For example, the dietary iron intakes of men in quintile 1 

(3.4-10.1 mg/d) reflected those of women in quintiles 1 and 2 (1.9-8.2 and 8.3-9.6 mg/d, 

respectively). The same pattern was also found for serum ferritin concentrations, where ferritin 

in quintile 1 in men (8.5-47.8 ng/ml) was comparable to that of quintiles 1 and 2 in women (8.0-

25.1 and 25.2-41.7 ng/ml, respectively). The finer discrimination of quintiles of both iron intake 

and serum ferritin in women may be another explanation for why significant inverse associations 

between iron and fracture risk were only found in women. 

In conclusion, the present investigation shows that lower dietary iron intakes and serum 

ferritin concentrations as an indicator of iron status were a significant predictor of a higher 

fracture risk in women, and future prospective studies of large mixed populations are needed to 

confirm the present sex-specific novel findings. 

 

6.5.3 Strengths and limitations 

The cross-sectional study of heel ultrasound provides a number of potential advantages over 

previous epidemiological studies; whereas our prospective investigations of fracture risk are 

completely novel. The inclusion of both men and women in the study population has provided 

novel data of a cross-sectional association between iron intake and bone health. To the best of 

my knowledge, only two previous cross-sectional studies included both men and women in their 

investigations of iron status and BMD (182, 409). Moreover, our work of iron intake and heel 

ultrasound addressed limitations of small sample sizes, which had previously ranged from 159-
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244 participants. In contrast, our study comprised 2327 men and women, and thus was better 

powered to detect potential diet-bone associations. To date, there is data from only two cross-

sectional studies of iron status and bone health in Asian populations, which are comparable to 

our investigations, and those had contradictory findings (182, 409). Our study of serum ferritin 

concentrations and heel ultrasound provides the first data from a Western population, although 

we did not find a relationship between iron status and bone health in either sex. Our prospective 

investigations of dietary iron intake and serum ferritin concentrations as an indicator of iron 

status with long-term fracture risk are novel. To date, there is data from only one study which 

has investigated the role of iron status on short-term fracture risk (185). The results of a potential 

role of both higher dietary iron intakes and higher serum ferritin concentrations in fracture risk 

reduction in a large sample of women are thus novel findings. 

Although our work had a robust study design, it also had a number of limitations. The 

cross-sectional study design of the bone density analyses only examined relations between diet 

and bone density for a single point in time. The positive associations reported in women suggest 

that there was a relation between dietary intakes of iron and heel ultrasound, but conclusions 

about the influence of iron on bone health cannot be drawn. Similarly, the prospective study 

design of the fracture analyses was limited by the inability to identify possible secular changes in 

dietary iron intakes and iron status over the follow-up period and subsequent exposure 

misclassification, as data were only available from the 7-day food diaries and blood samples 

taken at baseline. Moreover, the fracture data had been obtained from hospital admissions 

which are most likely underestimated for spine fractures due to a large absence in their clinical 

attention and radiologic detection (168, 293, 294). This may have reduced the power of the present 

study to detect the associations between iron intake or serum ferritin concentrations and spine 

fracture risk. Although multivariate adjustment models were applied in the analyses, a number 

of other relevant confounders previously associated with bone health, including sunlight 

exposure (295), were not measured as part of the EPIC-Norfolk study. Furthermore, residual 

confounding may have occurred despite the adjustment for covariates and may have resulted in 

bias in exposure effect estimates.  
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6.6 Conclusion 

The present cross-sectional investigations found that higher dietary intakes of iron were 

significantly associated with 4.4% higher BUA in women, but not in men, in this cohort. These 

differences in bone density between women with low and high iron intakes may have important 

implications for the development of fractures in the long term. In fact, in our prospective study 

we found that higher dietary intakes of iron were significantly associated with up to 49% lower 

spine fracture risk as well as 35% lower total fracture risk (hip, spine and wrist fracture risk 

combined) in these women. Moreover, higher serum ferritin concentrations as an indicator of 

iron status were a significant predictor of up to 70% reduced spine fracture risk in women. The 

present findings highlight the importance of an adequate iron intake from foods and iron status 

in women. With iron deficiency anaemia being the most prevalent nutrient deficiency worldwide 

and women having a particularly high risk of developing osteoporosis and associated fractures 

with increasing age, women should ensure an adequate intake of iron from foods as this may be 

an important strategy in long-term fracture prevention. The present study provides novel 

prospective data on the long-term fracture risk with iron intake and status, and addresses a 

number of limitations of previous cross-sectional studies on bone density including a large 

sample size and the use of a British study population of men and women. Future studies should 

conduct RCTs to investigate the effects of iron intake on bone density and long-term fracture 

risk, as this has not been conducted before. These studies will be crucial for confirming the 

present sex-specific findings of a potential beneficial role of iron in preventing osteoporosis and 

fractures in women.   
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CHAPTER 7 

 

THE ROLE OF IRON INTAKE FROM 

DIFFERENT FOOD SOURCES  

IN BONE HEALTH 

 

7. 7 
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7.1 Abstract 

Iron is crucial for bone collagen synthesis and vitamin D synthesis. In the previous chapter, 

epidemiological associations between iron intake and body iron stores with indicators of bone 

health were investigated and the results showed that iron was a significant predictor of higher 

heel ultrasound and reduced spine fracture risk in women, but not in men. However, the dietary 

intake of iron provides no information on its bioavailability, which differs between the different 

chemical forms of iron, thereby potentially affecting the underlying mechanisms differently. It 

may be suggested that animal compared to plant iron intake may be stronger associated with 

measures of bone health due to its higher absorption rate. To date, the role of iron in bone 

health has only been studied independent of the food source, and hence the present 

investigations are completely novel. We aimed to explore i) potential cross-sectional 

associations between dietary iron intake from different sources and measures of heel ultrasound 

and ii) potential prospective associations with fracture risk in a sub-set of the 25,639 EPIC-

Norfolk men and women aged 39-79 years at baseline. The results from the cross-sectional study 

showed that iron intake from plant sources was significantly associated with up to 5.8% higher 

BUA and 0.5% higher VOS in women only. The largest difference in mean plant iron intake 

between the highest and lowest group in women was 8 mg/d, and this is achievable through the 

usual diet, although particular attention should be paid to consuming a variety of iron-rich foods. 

In the prospective study, the highest vs. the lowest iron intake from animal sources was 

significantly associated with 56% lower spine fracture risk in women, but with increased hip 

fracture risk in men (HR 2.29, 95%CI 1.11-4.73). These data are completely novel as previous 

studies have only investigated iron intake independent of the food source. Our findings suggest 

that the different food sources of iron intake may need to be taken into consideration in future 

epidemiological studies of iron and bone health, as these provide important information on the 

bioavailability of iron. 
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7.2 Introduction 

In the previous chapter (Chapter 6, page 143), associations between dietary iron intake and bone 

health, amongst others, were investigated and the results showed that higher iron intakes were 

significantly associated with higher heel ultrasound measurements and a reduction in spine 

fracture risk in women only. These sex-specific findings of a potential beneficial role of iron in 

bone health may reflect its two cofactor roles which are relevant to bone: the synthesis of bone 

collagen and the synthesis of vitamin D. Firstly, iron is an essential activator of enzymes involved 

in the hydroxylation of prolyl and lysyl residues within collagen fibres (8, 10) (Figure 7.1). In this 

reaction, ferrous iron is oxidised to ferric iron, activating lysyl and prolyl hydroxylase to form 

collagen hydroxylysine and hydroxyproline in the process, respectively. The subsequent 

formation of covalent bonds between adjacent collagen fibres leads to stronger collagen cross-

links, thus increasing overall collagen strength (136). As both bone and cartilage contain a 

structurally stable network of collagen, impaired collagen synthesis resulting from inadequate 

iron intake may potentially be a risk factor for the development of osteoporosis and associated 

fractures. 

 

Figure 7.1: The hydroxylation of lysine in collagen fibres. 

 
Adapted from Medeiros & Wildman (2011) (324). 

 

 Secondly, iron is crucial to the conversion of 25-hydroxyvitamin D into its active form 

1,25-dihydroxycholecalciferol in the kidneys (Figure 7.2). Iron in the form of ferredoxin acts as a 

cofactor to the reaction-specific enzyme 25-hydroxycholecalciferol-1-hydroxylase (172, 383). 

Vitamin D is an important mediator of calcium homeostasis by increasing calcium absorption 

efficiency, and calcium is one of the fundamental bone-forming compounds (125). An insufficient 

dietary iron intake may thus also play a role in osteoporosis and fracture development through 

compromised mineralisation of bone tissue. 
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Figure 7.2: The role of iron in vitamin D synthesis. 

 
Adapted from DeLuca (1976) (172) and Jones et al. (1998) (383). 

 

Despite the significant associations between higher dietary iron intake and higher heel 

ultrasound and a reduction in fracture risk in women in this study, the dietary intake of iron 

provides no information on its bioavailability, which differs between the different chemical 

forms of iron (188-192, 358, 359, 415), thereby potentially affecting the underlying mechanisms 

differently. Iron exists in two forms: haem and non-haem. Haem iron is a derivative of 

haemoglobin and myoglobin of meat and fish, whereas non-haem iron is present as iron salts in 

foods. Animal sources of iron including red meat, poultry and fish contain both chemical forms, 

with less than 40% present as haem-iron (187). In contrast, plant-based sources of iron including 

whole grains and fruit and vegetables only contain the non-haem form of iron. To date, the role 

of iron in bone health has only been studied independent of the food source (142, 181, 186, 405-407). 

Therefore, it is unclear whether or not iron from plant- and animal-based sources may vary in 

their underlying mechanisms. It may be suggested that, if plant and animal iron were to act 

differently, this may be a result of their differing levels of intestinal absorption. Animal-based 

haem iron is much better absorbed than iron in its non-haem form (15-40% vs. 1-15%) (188-192). 

Moreover, the level of absorption of non-haem iron is highly dependent on factors such as the 

iron content of the meal, an individual’s iron status and the presence of absorption inhibitors 

including phytates and polyphenols, and absorption enhancers including the reducing agent 

vitamin C (358, 359, 415). In contrast, the absorption of haem iron is not affected by any of these 

factors. Furthermore, potential differences in haem and non-haem iron intake are most likely 

not reflected beyond the intestinal absorption of iron. This is because there is no differentiation 

between the different iron sources in the metabolism and transport of iron. During absorption, 

haem iron enters the intestinal cell as an intact compound separated from its haemoprotein (i.e. 

haemoglobin or myoglobin). Once in the enterocyte, haem is cleaved by haem oxygenase, 

thereby releasing iron which enters a pool of intracellular iron from non-haem sources (357). Iron, 

bound to the plasma protein Tf, is then released into the circulation (370). Therefore, haem iron is 

the greater contributor towards the body’s iron pool resulting from its higher level of absorption 

despite non-haem iron making out a greater percentage of total dietary iron intake (193). The 

consequences of this for bone health are not known. However, it may be suggested that animal-
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based haem iron may potentially be contributing more towards the underlying mechanisms of 

bone health than non-haem iron due to the differences in intestinal absorption. To date, no 

studies have investigated potential differences in iron sources in their role in bone health.  

 

7.2.1 Chapter aims and objectives 

In order to address some of these limitations, this chapter aimed to: 

i) Investigate potential cross-sectional associations between dietary iron intake from 

different sources and the heel ultrasound parameters BUA and VOS. 

ii) Examine potential prospective associations between dietary iron intake from 

different sources and the risk of fracture at the hip, spine and wrist in a British 

population of men and women aged between 39 and 79 years at baseline.  

 

This study will provide novel investigations of potential differences between animal- and plant-

based iron and their role in bone health. It was hypothesised that animal compared to plant iron 

intake may be stronger associated with higher heel ultrasound and a reduced risk of fractures 

due to its higher absorption rate. 

 

7.3 Methods 

As described in detail in Chapter 2 (page 40), two types of studies were undertaken on a 

randomly-selected sample of men and women of the EPIC-Norfolk study. Briefly, the cross-

sectional study of heel ultrasound was based on a random sub-cohort of 4000 participants who 

had attended the first health check, and the prospective investigations of fracture risk were 

based on a case-cohort design using the same subset of 4000 participants and a set of 1502 

participants who had experienced a fracture up to 31st March 2009. 

Initially, the EPIC-Norfolk dataset included data on total dietary iron intake, but the 

relative contributions of plant and animal sources of iron were unknown. Thus, I created a new 

group of variables, in collaboration with one other colleague, which identified the following food 

sources: plant, animal (land), animal (marine) and animal-derived. We each coded all of the 

11,326 food items according to their food sources. Foods with multiple food sources received 

multiple responses. We then checked our coding against each other and agreed on the final 

coding for each food item. We were responsible for the decisions we made. Following the initial 

coding, members of staff at EPIC-Norfolk combined the group of variables into sensible food 

source combinations. The new dataset included four categories of food sources which were 

specific to iron intake as well as 17 categories of unclassified foods and mixed dishes. All 

categories were based on iron intake in mg/d. I then calculated iron intake for the different 

sources according to these categories. For the purpose of this chapter, the calculation of iron 
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intake from plant and animal sources included only those food categories with obvious plant or 

animal sources. Categories were not included in the calculation if they contained foods with an 

unknown contribution of iron from plant and animal sources. I calculated the intake of plant iron 

from the plant category which exclusively contained plant-based foods including fruits, 

vegetables, grains and concentrated squashes. Animal iron intake was estimated from six food 

categories: animal land (e.g. beef and chicken), animal marine (e.g. fish and seafood), animal-

derived (e.g. milk and eggs) and three categories of unclassified foods which contained a large 

number of mainly animal-based mixed dishes including meat and offal dishes, savoury pies, and 

sandwich fillings and soups with meat.  

All analyses were stratified by sex. Subjects were excluded from the subsequent analyses 

if they had missing data for the 7dDD and covariate information, and if they had suffered a 

fracture at a different site and were not part of the random sub-cohort. Firstly, iron intake was 

calculated separately for total dietary iron intake and for the plant and animal-based sources 

using means and standard deviations, as all variables were relatively normally distributed. Then, 

the percentage contribution of animal iron towards total dietary iron intake was calculated, and 

this is hereafter referred to as the % animal ratio. Differences in mean estimates of iron from 

different sources between men and women were determined using paired t-tests. To assess 

differences in the correlation between iron intake from different food sources with total dietary 

iron intake and serum ferritin concentrations, Pearson correlation coefficients were determined. 

The latter were also used to determine the correlation between measurements of heel 

ultrasound and iron. Next, participants were grouped into two sets of quintiles according to their 

mean iron intake from plant sources, animal sources or the % animal ratio. For the cross-

sectional study of heel ultrasound, associations between quintiles of iron sources and broadband 

ultrasound attenuation (BUA) and velocity of sound (VOS) as measures of heel ultrasound were 

determined using multiple regressions. BUA is an indicator of the structural organisation of 

bone, whereas VOS determines bone stiffness (63). Then, potential prospective associations 

between quintiles of iron sources and fracture risk at the hip, spine, wrist and their combined 

total were investigated using Prentice-weighted Cox proportional hazard ratios (221). For both the 

cross-sectional and the prospective studies, potential associations between the top and the 

lowest quintile were investigated. The investigations from chapter 7 of associations between 

total dietary iron intake and i) heel ultrasound and ii) fracture risk were also repeated in this 

chapter for comparison reasons. All analyses adjusted for age, family history of osteoporosis, 

BMI, smoking, physical activity, steroid medication, menopausal status and HRT in women, total 

energy intake, dietary calcium intake, calcium supplements and vitamin D supplements.  
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7.4 Results 

Following the exclusion of 608 subjects (11.4%) from the subsequent analyses as previously 

discussed, the study was performed in 4711 participants, 58% of which were women. 

Participants were on average (mean±SD) 60±10 years old and had a mean BMI of 26.3±3.9 

kg/m2. In the 1385 men and 1819 women with blood measurements, mean serum ferritin was 

significantly higher in men compared to women (115.7±85.1 vs. 64.7±52.6 ng/ml, P<0.001). 

 

7.4.1 Cohort descriptives 

7.4.1.1 The relationship between iron by food source and total dietary iron 

Plant foods contributed more towards total dietary iron intake than animal-based foods (Table 

7.1), although the relative contributions were comparable between men and women. For 

example, approximately 65% and 67% of iron intake in men and women respectively were 

associated with plant-based foods, whereas the remaining contributions (35% and 33%) were 

from animal sources. Despite these similarities, men compared to women had significantly 

higher plant iron intake (8.7±3.7 vs. 7.3±3.1 mg/d), animal iron intake (2.8±1.5 vs. 2.1±1.2 mg/d), 

and total dietary iron intake (13.3±4.1 vs. 10.9±3.4 mg/d, P<0.001). The ratio of the percentage 

contribution of animal iron towards total dietary iron intake was also significantly higher in men 

than in women (21.7±10.2 vs. 19.7±9.9, P<0.001).  

 

Table 7.1: Dietary iron intake from animal and plant sources. 

  Men 
(n=1957) 

 Women 
(n=2754) 

  

   Mean SD  Mean SD  P-value 

Total dietary iron intake (mg/d)  13.3 4.1  10.9 3.4  P<0.001 
Plant iron intake (mg/d)  8.7 3.7  7.3 3.1  P<0.001 
Animal iron intake (mg/d)  2.8 1.5  2.1 1.2  P<0.001 
Ratio (% animal)  21.7 10.2  19.7 9.9  P<0.001 

Ratio is iron intake from animal sources as a percentage of total dietary iron intake. 

 

Pearson correlation coefficients showed that plant-based iron was highly correlated with total 

dietary iron intake in both men (r=0.89) and women (r=0.90, all P<0.05) (Table 7.2). Correlations 

between animal and total iron intake were also significant, but were only moderate (r=0.33, 

P<0.05 in both sexes). In contrast, serum ferritin showed better correlations with iron intake 

from animal than plant sources. For example, the correlation between serum ferritin and animal 

iron was low but significant in both men (r=0.14) and women (r=0.09, all P<0.05); whereas plant 

iron showed no correlation with serum ferritin in men (r=0.02, P>0.05) and a small but negative 

correlation in women (r=-0.06, P<0.05). The correlation between animal and plant iron intake 

was slightly negative and only significant in men (men: r=-0.06, P<0.05; women: r=-0.02, P>0.05). 
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Table 7.2: Correlations between iron intake by food source with serum ferritin. 

  Men (n=1957)  Women (n=2754) 

  Plant iron Animal iron Ratio (% animal) Total dietary iron  Plant iron Animal iron Ratio (% animal) Total dietary iron 

Animal iron  -0.06* - - -  -0.020 - - - 
Ratio (% animal)  -0.51* 0.81* - -  -0.49* 0.78* - - 
Total dietary iron  -0.89* 0.33* -0.20* -  -0.90* 0.33* -0.21* - 
Serum ferritin  -0.020 0.14* -0.10* 0.07*  -0.06* 0.09* -0.12* -0.05* 

Pearson correlation coefficients were significant at *P<0.05. 
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7.4.1.2 Descriptive statistics by quintiles of iron intake by food source 

Characteristics of the 4711 men and women stratified by quintiles of iron intake by food source 

are shown in Table 7.3 for plant iron, Table 7.4 for animal iron and Table 7.5 for the animal-to-

total-iron ratio. The mean±SD iron intakes from plant sources for the quintile groups were as 

follows: in men: Q1 4.7±0.9 mg/d, Q2 6.7±0.4 mg/d, Q3 8.1±0.4 mg/d, Q4 9.8±0.6 mg/d and Q5 

14.2±3.9 mg/d; and in women: Q1 3.9±0.8 mg/d, Q2 5.5±0.3 mg/d, Q3 6.7±0.3 mg/d, Q4 8.2±0.5 

mg/d and Q5 12.0±2.7 mg/d. Higher intakes of plant-based iron was associated with a healthier 

lifestyle. For example, subjects in quintile 5 were less likely to smoke, more active and had a 

healthier BMI compared to those in quintile 1 (P≤0.001). Participants in the top compared to the 

bottom quintile of plant iron were also younger and more likely to report the use of calcium or 

vitamin D supplements (P≤0.011). However, there were no differences in family history of 

osteoporosis and steroid medication use across quintiles of plant iron (P≥0.13). In women, 

serum ferritin levels decreased significantly with each quintile of plant iron intake (β±SE -2.5±0.9 

ng/ml, P=0.005), but ferritin did not differ between plant iron quintiles in men (P=0.79).  

For iron intake from animal sources, the mean±SD for the quintile groups were as 

follows: in men: Q1 1.2±0.4 mg/d, Q2 2.0±0.2 mg/d, Q3 2.5±0.2 mg/d, Q4 3.2±0.3 mg/d and Q5 

5.1±1.6 mg/d; and in women: Q1 0.8±0.3 mg/d, Q2 1.4±0.1 mg/d, Q3 1.9±0.1 mg/d, Q4 2.4±0.2 

mg/d and Q5 3.8±1.4 mg/d. In contrast to plant iron, higher intake of animal iron was associated 

with an unhealthier lifestyle. For example, subjects in quintile 5 were more likely to smoke 

compared to those in quintile 1 (P≤0.042), and BMI increased significantly across quintiles of 

animal iron intake (Q5 vs. Q1: 27.1 vs. 26.0 kg/m2 in men; 26.7 vs. 25.7 kg/m2; all P<0.001). There 

were no differences in family history of osteoporosis, physical activity, steroid medication use, 

and calcium or vitamin D supplements across quintiles of animal iron in both sexes (P≥0.16). 

Serum ferritin concentrations increased significantly with each increasing quintile of animal iron 

in both sexes (β±SE 7.2±1.6 ng/ml in men and 4.3±0.9 ng/ml in women; all P<0.001).  

The mean±SD iron intake by quintile groups for the animal iron ratio were as follows: in 

men: Q1 9.2±3.2 mg/d, Q2 15.8±1.2 mg/d, Q3 20.4±1.5 mg/d, Q4 26.1±1.8 mg/d and Q5 

36.9±7.6 mg/d; and in women: Q1 7.8±2.9 mg/d, Q2 13.9±1.4 mg/d, Q3 18.5±1.3 mg/d, Q4 

23.7±1.8 mg/d and Q5 34.6±7.8 mg/d. In agreement with iron from animal sources, the ratio of 

animal iron to total dietary iron intake was also associated with an unhealthier lifestyle. For 

example, men and women in quintile 5 were more likely to smoke and had a higher BMI 

compared to those in quintile 1 (P<0.001), and women were also less active and less likely to 

report the use of vitamin D supplements (P≤0.008). There were no differences in family history 

of osteoporosis, the use of steroid medication and calcium supplements between quintiles of the 

ratio of animal iron to total dietary iron intake in both men and women (P≥0.08). Serum ferritin 

concentrations increased significantly with each increasing quintile of the animal iron ratio in 

both sexes (β±SE 5.1±1.6 ng/ml in men and 5.8±0.9 ng/ml in women; all P≤0.002).  
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Table 7.3: Baseline characteristics of the 1957 men and 2754 women stratified by quintiles of plant iron intake. 

 Men   Women  

Plant iron intake 
(mg/d) 

Quintile 1 
1.2 – 5.8 
n = 392 

Quintile 2 
5.9 – 7.3 
n = 391 

Quintile 3 
7.4 – 8.8 
n = 392 

Quintile 4 
8.9 – 10.9 

n = 391 

Quintile 5 
11.0 – 39.1 

n = 391 P-trend 

 Quintile 1 
0.0 – 4.9 
n = 551 

Quintile 2 
5.0 – 6.1 
n = 551 

Quintile 3 
6.2 – 7.3 
n = 551 

Quintile 4 
7.4 – 9.1 
n = 551 

Quintile 5 
9.2 – 24.9 

n = 550 P-trend 

Mean (SD)                        
Age (years) 61.2 (9.8) 61.1 (9.5) 59.2 (9.1) 58.7 (9.4) 58.5 (9.6) P<0.001  61.8 (9.8) 60.0 (9.4) 59.7 (9.3) 59.1 (9.4) 58.2 (9.5) P<0.001 
BMI (kg/m

2
) 26.9 (3.7) 26.6 (3.2) 26.6 (3.1) 26.4 (3.2) 26.1 (3.3) P=0.001  26.8 (4.5) 26.3 (4.5) 26.3 (4.2) 25.8 (4.1) 25.6 (4.2) P<0.001 

Animal iron (mg/d) 2.8 (1.6) 2.9 (1.5) 2.9 (1.5) 2.8 (1.5) 2.6 (1.6) P=0.032  2.1 (1.5) 2.1 (1.1) 2.1 (1.0) 2.0 (1.2) 2.0 (1.2) P=0.25 
Ratio (% animal) 29.4 (11.4) 24.3 (8.8) 22.0 (8.2) 18.8 (7.5) 13.8 (7.1) P<0.001  27.4 (11.7) 22.0 (8.6) 19.4 (7.6) 16.6 (7.5) 12.9 (6.7) P<0.001 
Total iron (mg/d) 9.3 (2.2) 11.3 (1.9) 12.8 (1.9) 14.6 (1.8) 18.6 (4.2) P<0.001  7.4 (1.9) 9.2 (1.6) 10.3 (1.3) 11.8 (1.6) 15.6 (3.0) P<0.001 
Serum ferritin (ng/ml) 117.8 (93.6) 108.9 (76.0) 120.5 (86.1) 114.0 (83.4) 117.3 (85.7) P=0.79  68.8 (54.7) 66.5 (50.8) 67.9 (61.8) 61.7 (49.7) 58.9 (44.2) P=0.005 
Energy (kcal/d) 1864 (432) 2137 (428) 2257 (446) 2413 (438) 2528 (538) P<0.001  1404 (336) 1618 (335) 1703 (328) 1795 (367) 1898 (365) P<0.001 
Fat (g/d) 76.2 (23.7) 84.6 (24.2) 87.6 (25.2) 91.0 (24.9) 91.4 (29.5) P<0.001  57.3 (18.9) 64.1 (20.0) 64.8 (19.4) 67.4 (21.6) 67.7 (20.1) P<0.001 
MUFA (g/d) 26.8 (8.6) 29.4 (8.4) 30.7 (9.2) 31.7 (8.9) 31.8 (10.6) P<0.001  19.8 (6.8) 22.1 (6.8) 22.5 (6.8) 23.1 (7.6) 23.6 (7.5) P<0.001 
PUFA (g/d) 13.5 (5.1) 15.4 (5.6) 16.7 (6.3) 17.5 (6.1) 18.2 (7.2) P<0.001  10.1 (3.7) 12.0 (4.3) 12.3 (4.2) 13.2 (4.8) 13.5 (4.6) P<0.001 
Saturated FA (g/d) 29.4 (10.9) 32.7 (11.3) 32.9 (11.2) 34.3 (11.4) 33.7 (12.4) P<0.001  22.5 (8.8) 24.7 (9.4) 24.5 (8.9) 25.4 (9.8) 25.0 (9.0) P<0.001 

n (%)                        
Menopausal Status                       P=0.002 
Pre-mp - - - - - - - - - -   67 (12.2) 80 (14.5) 76 (13.8) 91 (16.5) 100 (18.2)  
Peri-mp (<1 yr) - - - - - - - - - -   15 (2.7) 20 (3.6) 24 (4.4) 32 (5.8) 36 (6.6)  
Peri-mp (1-5 yrs) - - - - - - - - - -   82 (14.9) 85 (15.5) 103 (18.7) 81 (14.7) 97 (17.6)  
Post-mp - - - - - - - - - -   387 (70.2) 366 (66.4) 348 (63.1) 347 (63.0) 317 (57.6)  
HRT                       P=0.15 
Current User - - - - - - - - - -   72 (13.1) 92 (16.7) 92 (16.7) 109 (19.8) 107 (19.5)  
Former User - - - - - - - - - -   69 (12.5) 61 (11.1) 69 (12.5) 64 (11.6) 61 (11.1)  
Never Used - - - - - - - - - -   410 (74.4) 398 (72.2) 390 (70.8) 378 (68.6) 382 (69.4)  
Smoking           P<0.001            P<0.001 
Current smoker 80 (20.4) 64 (16.4) 31 (7.9) 33 (8.4)  30 (7.7)   121 (22.0) 86 (15.6) 58 (10.5) 45 (8.2) 33 (6.0)  
Former smoker 214 (54.6) 210 (53.7) 224 (57.1) 226 (57.8) 207 (52.9)   174 (31.6) 157 (28.5) 182 (33.0) 174 (31.6) 202 (36.7)  
Never smoked 98 (25.0) 117 (29.9) 137 (35.0) 132 (33.8) 154 (39.4)   256 (46.4) 308 (55.9) 311 (56.4) 332 (60.2) 315 (57.3)  
Physical activity           P<0.001            P<0.001 
Inactive 158 (40.3) 141 (36.1) 115 (29.3) 105 (26.8) 95 (24.3)   243 (44.1) 183 (33.2) 172 (31.2) 153 (27.8) 156 (28.4)  
Mod. inactive 93 (23.7) 85 (21.7) 107 (27.3) 100 (25.6) 86 (22.0)   149 (27.0) 190 (34.5) 176 (31.9) 189 (34.3) 173 (31.4)  
Mod. active 71 (18.1) 79 (20.2) 90 (23.0) 93 (23.8) 103 (26.3)   97 (17.6) 100 (18.1) 119 (21.6) 126 (22.9) 135 (24.6)  
Active 70 (17.9) 86 (22.0) 80 (20.4) 93 (23.8) 107 (27.4)   62 (11.3) 78 (14.2) 84 (15.3) 83 (15.0) 86 (15.6)  
Family history of OP 8 (2.0) 10 (2.6) 13 (3.3) 14 (3.6) 13 (3.3) P=0.69  32 (5.8) 29 (5.3) 25 (4.5) 36 (6.5) 32 (5.8) P=0.68 
Steroids 14 (3.6) 19 (4.9) 16 (4.1) 6 (1.5) 13 (3.3) P=0.13  24 (4.4) 31 (5.6) 19 (3.5) 19 (3.5) 21 (3.8) P=0.33 
Calcium supp. 4 (1.0) 2 (0.5) 5 (1.3) 8 (2.1) 6 (1.5) P=0.40  17 (3.1) 34 (6.2) 24 (4.4) 42 (7.6) 38 (6.9) P=0.006 
Vitamin D supp. 64 (16.3) 79 (20.2) 93 (23.7) 102 (26.1) 92 (23.5) P=0.011  128 (23.2) 165 (30.0) 182 (33.0) 199 (36.1) 201 (36.6) P<0.001 

Abbreviations: Mp, menopausal; Family history of OP, family history of osteoporosis; Supp., supplements.  
Values are means (standard deviations) or numbers (frequencies).  



 

 
 

P
age | 193

 

Table 7.4: Baseline characteristics of the 1957 men and 2754 women stratified by quintiles of animal iron intake. 

 Men   Women  

Animal iron intake 
(mg/d) 

Quintile 1 
0.1 – 1.6 
n = 392 

Quintile 2 
1.7 – 2.2 
n = 391 

Quintile 3 
2.3 – 2.8 
n = 392 

Quintile 4 
2.9 – 3.7 
n = 391 

Quintile 5 
3.8 – 16.4 

n = 391 P-trend 

 Quintile 1 
0.8 – 1.1 
n = 551 

Quintile 2 
1.2 – 1.6 
n = 551 

Quintile 3 
1.7 – 2.1 
n = 551 

Quintile 4 
2.2 – 2.7 
n = 551 

Quintile 5 
2.8 – 24.3 

n = 550 P-trend 

Mean (SD)                        
Age (years) 60.1 (10.1) 60.0 (9.4) 60.5 (9.4) 59.6 (9.5) 58.5 (9.2) P=0.018  58.8 (10.1) 60.3 (9.6) 59.8 (9.3) 60.2 (9.3) 59.7 (9.3) P=0.17 
BMI (kg/m

2
) 26.0 (3.2) 26.1 (3.0) 26.5 (3.2) 26.7 (3.3) 27.1 (3.6) P<0.001  25.7 (4.2) 25.8 (4.0) 26.2 (4.5) 26.3 (4.4) 26.7 (4.4) P<0.001 

Plant iron (mg/d) 9.3 (4.4) 8.6 (3.5) 8.7 (3.6) 8.3 (3.2) 8.6 (3.6) P=0.004  7.3 (3.1) 7.4 (3.3) 7.2 (2.8) 7.3 (3.3) 7.3 (3.0) P=0.68 
Ratio (% animal) 10.9 (5.1) 17.1 (4.8) 20.9 (5.6) 25.7 (6.5) 33.8 (9.5) P<0.001  9.2 (4.7) 15.3 (4.9) 19.2 (5.3) 23.2 (6.6) 31.4 (9.7) P<0.001 
Total iron (mg/d) 12.3 (4.5) 12.4 (3.6) 13.0 (3.8) 13.4 (3.4) 15.6 (4.1) P<0.001  9.7 (3.3) 10.3 (3.2) 10.6 (2.9) 11.2 (3.4) 12.5 (3.5) P<0.001 
Serum ferritin (ng/ml) 99.9 (77.0) 114.2 (88.9) 114.6 (79.2) 113.4 (77.3) 136.6 (98.3) P<0.001  55.4 (46.5) 59.5 (43.3) 66.8 (53.5) 69.5 (58.2) 72.0 (57.9) P<0.001 
Energy (kcal/d) 2034 (486) 2152 (471) 2203 (466) 2352 (497) 2457 (530) P<0.001  1544 (396) 1618 (348) 1668 (343) 1760 (381) 1828 (388) P<0.001 
Fat (g/d) 74.1 (22.5) 81.8 (24.3) 84.1 (22.7) 92.7 (27.0) 98.2 (27.0) P<0.001  56.3 (20.5) 60.3 (18.3) 63.8 (17.7) 68.8 (19.9) 72.1 (21.1) P<0.001 
MUFA (g/d) 25.4 (8.1) 28.3 (8.4) 29.4 (8.3) 32.6 (9.3) 34.7 (9.6) P<0.001  19.1 (7.3) 20.7 (6.5) 22.0 (6.2) 24.0 (6.9) 25.2 (7.4) P<0.001 
PUFA (g/d) 15.2 (6.0) 15.7 (5.7) 15.8 (5.9) 16.8 (6.8) 17.8 (6.7) P<0.001  11.6 (5.1) 11.7 (4.2) 12.0 (4.1) 12.8 (4.3) 13.0 (4.6) P<0.001 
Saturated FA (g/d) 27.4 (9.9) 31.2 (11.2) 31.8 (10.1) 35.5 (11.8) 37.1 (12.1) P<0.001  21.0 (8.8) 22.9 (8.4) 24.4 (8.0) 26.3 (9.3) 27.6 (10.0) P<0.001 

n (%)                        
Menopausal Status                       P=0.31 
Pre-mp - - - - - - - - - -   104 (18.9) 75 (13.6) 78 (14.2) 75 (13.6) 82 (14.9)  
Peri-mp (<1 yr) - - - - - - - - - -   24 (4.3) 21 (3.8) 32 (5.8) 21 (3.8) 29 (5.3)  
Peri-mp (1-5 yrs) - - - - - - - - - -   93 (16.9) 89 (16.2) 86 (15.6) 89 (16.2) 91 (16.5)  
Post-mp - - - - - - - - - -   330 (59.9) 366 (66.4) 355 (64.4) 366 (66.4) 348 (63.3)  
HRT                       P=0.34 
Current User - - - - - - - - - -   91 (16.5) 86 (15.6) 101 (18.3) 97 (17.6) 97 (17.6)  
Former User - - - - - - - - - -   69 (12.5) 53 (9.6) 57 (10.4) 68 (12.3) 77 (14.0)  
Never Used - - - - - - - - - -   391 (71.0) 412 (74.8) 393 (71.3) 386 (70.1) 376 (68.4)  
Smoking           P=0.042            P=0.028 
Current smoker 37 (9.4) 52 (13.3) 47 (12.0) 56 (14.3) 46 (11.8)   51 (9.3) 62 (11.2) 62 (11.3) 85 (15.4) 83 (15.1)  
Former smoker 217 (55.4) 193 (49.4) 237 (60.5) 217 (55.5) 217 (55.5)   189 (34.3) 175 (31.8) 173 (31.4) 167 (30.3) 185 (33.6)  
Never smoked 138 (35.2) 146 (37.3) 108 (27.5) 118 (30.2) 128 (32.7)   311 (56.4) 314 (57.0) 316 (57.3) 299 (54.3) 282 (51.3)  
Physical activity           P=0.16            P=0.56 
Inactive 123 (31.4) 137 (35.0) 122 (31.1) 109 (27.9) 123 (31.5)   178 (32.3) 188 (34.1) 183 (33.2) 169 (30.7) 189 (34.4)  
Mod. inactive 103 (26.3) 93 (23.8) 95 (24.2) 79 (20.2) 101 (25.8)   182 (33.0) 182 (33.0) 175 (31.8) 182 (33.0) 156 (28.4)  
Mod. active 87 (22.2) 88 (22.5) 84 (21.5) 94 (24.0) 83 (21.2)   113 (20.5) 114 (20.7) 104 (18.9) 117 (21.2) 129 (23.4)  
Active 79 (20.1) 73 (18.7) 91 (23.2) 109 (27.9) 84 (21.5)   78 (14.2) 67 (12.2) 89 (16.1) 83 (15.1) 76 (13.8)  
Family history* 11 (2.8) 12 (3.1) 10 (2.6) 11 (2.8) 14 (3.6) P=0.93  27 (4.9) 36 (6.5) 32 (5.8) 24 (4.4) 35 (6.4) P=0.45 
Steroids 16 (4.1) 8 (2.1) 16 (4.1) 12 (3.1) 16 (4.1) P=0.42  24 (4.4) 20 (3.6) 16 (2.9) 32 (5.8) 22 (4.0) P=0.17 
Calcium supp. 7 (1.8) 4 (1.0) 5 (1.3) 5 (1.3) 4 (1.0) P=0.88  35 (6.4) 30 (5.4) 36 (6.5) 26 (4.7) 28 (5.1) P=0.63 
Vitamin D supp. 97 (24.7) 89 (22.8) 90 (23.0) 79 (20.2) 75 (19.2) P=0.33  181 (32.9) 176 (31.9) 185 (33.6) 159 (28.9) 174 (31.6) P=0.51 

Abbreviations: Mp, menopausal; Family history of OP, family history of osteoporosis; Supp., supplements. 
Values are means (standard deviations) or numbers (frequencies). 
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Table 7.5: Baseline characteristics of the 1957 men and 2754 women stratified by quintiles of the iron source ratio (% animal). 

 Men   Women  

Ratio 
(% animal) 

Quintile 1 
0.1 – 1.6 
n = 392 

Quintile 2 
1.7 – 2.2 
n = 391 

Quintile 3 
2.3 – 2.8 
n = 392 

Quintile 4 
2.9 – 3.7 
n = 391 

Quintile 5 
3.8 – 16.4 

n = 391 P-trend 

 Quintile 1 
0.0 – 11.5 

n = 551 

Quintile 2 
11.6 – 16.2 

n = 551 

Quintile 3 
16.3 – 20.6 

n = 551 

Quintile 4 
20.7 – 27.0 

n = 551 

Quintile 5 
27.1 – 85.0 

n = 550 P-trend 

Mean (SD)                        
Age (years) 58.6 (9.9) 60.6 (9.5) 59.9 (9.4) 59.1 (9.1) 60.4 (9.7) P=0.15  58.0 (9.8) 59.5 (9.4) 60.3 (9.6) 60.1 (9.0) 61.0 (9.7) P<0.001 
BMI (kg/m

2
) 25.9 (3.2) 26.1 (3.0) 26.7 (3.3) 26.6 (3.1) 27.2 (3.7) P<0.001  25.5 (4.3) 26.0 (4.0) 25.6 (4.0) 26.6 (4.7) 27.1 (4.4) P<0.001 

Plant iron (mg/d) 11.9 (4.9) 9.4 (3.1) 8.4 (2.8) 7.6 (2.2) 6.3 (2.2) P<0.001  9.6 (3.8) 8.1 (2.9) 7.1 (2.2) 6.3 (2.0) 5.2 (2.0) P<0.001 
Animal iron (mg/d) 1.4 (0.6) 2.1 (0.6) 2.6 (0.8) 3.3 (0.9) 4.6 (1.9) P<0.001  1.0 (0.5) 1.6 (0.5) 2.0 (0.6) 2.4 (0.7) 3.4 (1.6) P<0.001 
Total iron (mg/d) 15.2 (5.1) 13.6 (3.8) 12.8 (3.6) 12.6 (3.1) 12.5 (3.8) P<0.001  12.2 (4.1) 11.3 (3.3) 10.7 (2.9) 10.2 (2.7) 9.9 (3.2) P<0.001 
Serum ferritin (ng/ml) 100.0 (78.3) 116.0 (81.0) 121.1 (88.7) 114.0 (78.9) 126.8 (95.6) P=0.002  53.2 (44.1) 58.1 (42.6) 63.4 (50.3) 75.5 (60.6) 73.2 (59.4) P<0.001 
Energy (kcal/d) 2265 (506) 2258 (536) 2219 (490) 2272 (485) 2184 (539) P=0.07  1700 (400) 1694 (359) 1727 (388) 1680 (380) 1617 (388) P=0.001 
Fat (g/d) 81.0 (24.3) 84.7 (27.3) 86.0 (25.1) 90.2 (25.7) 88.9 (27.4) P<0.001  60.9 (20.8) 63.1 (19.1) 65.6 (20.5) 65.7 (20.4) 66.0 (20.4) P<0.001 
MUFA (g/d) 27.8 (8.8) 29.4 (9.5) 30.1 (9.0) 31.6 (9.2) 31.5 (9.7) P<0.001  20.8 (7.5) 21.8 (6.9) 22.6 (7.3) 22.9 (7.1) 23.0 (7.1) P<0.001 
PUFA (g/d) 16.6 (6.2) 16.3 (6.9) 16.4 (6.0) 16.5 (6.0) 15.5 (6.3) P=0.06  12.6 (5.0) 12.4 (4.3) 12.2 (4.4) 12.2 (4.5) 11.7 (4.3) P=0.001 
Saturated FA (g/d) 29.9 (10.8) 32.0 (11.8) 32.4 (11.1) 34.5 (11.3) 34.1 (12.2) P<0.001  22.5 (9.0) 23.8 (8.5) 25.2 (9.4) 25.1 (9.4) 25.6 (9.6) P<0.001 

n (%)                        
Menopausal Status                       P=0.005 
Pre-mp - - - - - - - - - -   107 (19.4) 81 (14.7) 83 (15.1) 65 (11.8) 78 (14.2)  
Peri-mp (<1 yr) - - - - - - - - - -   29 (5.3) 28 (5.1) 21 (3.8) 33 (6.0) 16 (2.9)  
Peri-mp (1-5 yrs) - - - - - - - - - -   100 (18.1) 96 (17.4) 79 (14.3) 90 (16.3) 83 (15.1)  
Post-mp - - - - - - - - - -   315 (57.2) 346 (62.8) 368 (66.8) 363 (65.9) 373 (67.8)  
HRT                       P=0.60 
Current User - - - - - - - - - -   95 (17.2) 99 (18.0) 97 (17.6) 101 (18.3) 80 (14.5)  
Former User - - - - - - - - - -   66 (12.0) 54 (9.8) 64 (11.6) 66 (12.0) 74 (13.5)  
Never Used - - - - - - - - - -   390 (70.8) 398 (72.2) 390 (70.8) 384 (69.7) 396 (72.0)  
Smoking           P<0.001            P<0.001 
Current smoker 23 (5.9) 44 (11.3) 53 (13.5) 53 (13.5) 65 (16.6)   48 (8.7) 42 (7.6) 53 (9.6) 89 (16.2) 111 (20.2)  
Former smoker 208 (53.0) 209 (53.4) 230 (58.7) 211 (54.0) 223 (57.0)   192 (34.9) 183 (33.2) 160 (29.1) 166 (30.1) 188 (34.2)  
Never smoked 161 (41.1) 138 (35.3) 109 (27.8) 127 (32.5) 103 (26.4)   311 (56.4) 326 (59.2) 338 (61.3) 296 (53.7) 251 (45.6)  
Physical activity           P=0.20            P=0.006 
Inactive 105 (26.8) 120 (30.7) 127 (32.4) 121 (31.0) 141 (36.1)   171 (31.0) 163 (29.6) 176 (31.9) 175 (31.8) 222 (40.4)  
Mod. inactive 96 (24.5) 100 (25.6) 84 (21.4) 99 (25.3) 92 (23.5)   185 (33.6) 178 (32.3) 167 (30.3) 193 (35.0) 154 (28.0)  
Mod. active 94 (24.0) 98 (25.0) 88 (22.5) 78 (20.0) 78 (19.9)   126 (22.9) 114 (20.7) 121 (22.0) 107 (19.4) 109 (19.8)  
Active 97 (24.7) 73 (18.7) 93 (23.7) 93 (23.8) 80 (20.5)   69 (12.5) 96 (17.4) 87 (15.8) 76 (13.8) 65 (11.8)  
Family history* 12 (3.1) 11 (2.8) 11 (2.8) 12 (3.1) 12 (3.1) P=1.00  33 (6.0) 29 (5.3) 27 (4.9) 31 (5.6) 34 (6.2) P=0.89 
Steroids 16 (4.1) 8 (2.0) 8 (2.0) 19 (4.9) 17 (4.4) P=0.08  20 (3.6) 21 (3.8) 22 (4.0) 21 (3.8) 30 (5.5) P=0.54 
Calcium supp. 9 (2.3) 4 (1.0) 3 (0.8) 4 (1.0) 5 (1.3) P=0.35  39 (7.1) 35 (6.4) 34 (6.2) 23 (4.2) 24 (4.4) P=0.14 
Vitamin D supp. 107 (27.3) 86 (22.0) 90 (23.0) 87 (22.3) 60 (15.4) P=0.002  191 (34.7) 191 (34.7) 183 (33.2) 167 (30.3) 143 (26.0) P=0.008 

Abbreviations: Mp, menopausal; Family history of OP, family history of osteoporosis; Supp., supplements. 
Values are means (standard deviations) or numbers (frequencies). 
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7.4.2 Associations between iron by food source and heel ultrasound 

In univariate analyses in men, there were no correlations between iron intake from any sources 

or serum ferritin and measures of heel ultrasound (Table 7.6). In contrast, in women, there were 

small but significant positive correlations between plant iron intake and both BUA and VOS (both 

r=0.08, P<0.05), and this reflected the relationship with total dietary iron intake which showed 

similar correlations with both measures of heel ultrasound (both r=0.08, P<0.05). Animal iron 

intake showed no relationship with the ultrasound measurements in women (r=0.00, P>0.05). 

However, the percentage contribution of animal iron towards total dietary iron intake showed a 

small and non-significant trend towards a negative relationship with BUA (r=-0.04) and VOS (r=-

0.05, both P>0.05), which somewhat reflected the significant negative correlation between 

serum ferritin and BUA (r=-0.09) and VOS (r=-0.12, both P<0.05). 

 

Table 7.6: Correlations between iron intake by food source with BUA and VOS. 

  Men  Women 

  BUA VOS  BUA VOS 

Serum ferritin  0.02 0.01  -0.09* -0.12* 
Total dietary iron intake  -0.01 0.02  0.08* 0.08* 
Plant iron intake  -0.01 0.03  0.08* 0.08* 
Animal iron intake  0.00 -0.04  0.000 0.000 
Ratio (% animal)  0.00 -0.06  -0.040 -0.050 
Pearson correlation coefficients were significant at *P<0.05. For iron 

intake: n=968 men and n=1359 women; and for serum ferritin: n=682 
men and n=910 women. 

 

Associations between iron intake by food source and measures of heel ultrasound are shown in 

Figure 7.3 for men and Figure 7.4 for women. Briefly, higher plant iron intake was significantly 

associated with both parameters of ultrasound in women, but there were no associations in 

men. For comparison reasons, the associations with total dietary iron intake and serum ferritin 

concentrations, which were investigated in the previous chapter (Chapter 6, page 143), were 

also included in these graphs. In concordance with the findings from the univariate 

investigations in men, the results from the multivariate-adjusted linear regression analyses 

showed that quintiles of iron intake from any sources were not associated with measures of heel 

ultrasound. Interestingly, in men, the association between plant iron intake and VOS was almost 

identical to that of total dietary iron intake (Figure 7.3B). Following the adjustment for age, 

family history of osteoporosis, BMI, smoking, physical activity, steroid medication, menopausal 

status, HRT, total energy intake, dietary calcium intake, calcium supplements and vitamin D 

supplements in women, there was a positive linear relationship between quintiles of plant iron 

intake and both BUA (β 0.79 dB/MHz per quintile, P-trend=0.010) and VOS (β 1.58 m/s per 

quintile, P-trend=0.038; Figure 7.4). These positive associations somewhat reflected those of 

total dietary iron intake and BUA (β 0.66 dB/MHz per quintile, P-trend=0.045), although the 
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associations with plant iron were stronger. Moreover, in women, there were significant 

differences in both BUA and VOS between the two upper quintiles of plant iron intake referent 

to quintile 1, with BUA being 5.8% higher for quintile 4 of plant iron (β 4.03 dB/MHz, P=0.002)  

and 4.5% higher for quintile 5 (β 3.16 dB/MHz, P=0.019), and VOS being 0.5% higher for quintile 

4 (β 8.88 m/s, P=0.006) and 0.4% higher for quintile 5 (β 7.20 m/s, P=0.032). Interestingly, in 

women, associations between the animal iron ratio and heel ultrasound followed a similar 

pattern to that of serum ferritin. Although none of these associations were significant, there was 

a tendency for a negative linear association between BUA and the animal iron ratio (β -0.53 

dB/MHz per quintile, P-trend=0.057) and between extreme quintiles of the latter (β -2.54 

dB/MHz, P=0.042). 
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Figure 7.3: Associations in men between iron intake by food source with mean BUA (A) and VOS (B) in 
comparison to total dietary iron intake and serum ferritin. 

 
The mean iron intake for the lowest and highest quintiles respectively was 4.9±0.9 and 14.6±4.4 mg/d for 
plant iron, 1.2±0.4 and 4.9±1.2 mg/d for animal iron, and 9.2±3.1 and 35.4±6.8 % for the ratio. The 
standard error of the mean (SE) was 1.2-1.5 dB/MHz for BUA and 2.8-3.4 m/s for VOS. The analysis used 
EPIC-Norfolk data from the second health check and was based on a multivariate-adjusted linear 
regression analysis. There were no significant differences between the two upper quintiles referent to 
quintile 1. n=968 for iron intake and n=682 for serum ferritin. 
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Figure 7.4: Associations in women between iron intake by food source with mean BUA (A) and VOS (B) in 
comparison to total dietary iron intake and serum ferritin. 

 
The mean iron intake for the lowest and highest quintiles respectively was 4.2±0.8 and 12.2±2.3 mg/d for 
plant iron, 0.8±0.3 and 3.7±1.5 mg/d for animal iron, and 7.6±2.8 and 32.4±6.9 % for the ratio. The 
standard error of the mean (SE) was 0.9-1.1 dB/MHz for BUA and 2.1-2.7 m/s for VOS. The analysis used 
EPIC-Norfolk data from the second health check and was based on a multivariate-adjusted linear 
regression analysis. Differences between the two upper quintiles referent to quintile 1 were significant at 
*P<0.05 and **P<0.01. n=1359 for iron intake and n=910 for serum ferritin. 
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7.4.3 Associations between iron from different food sources and fracture risk 

In the case-cohort sub-sample of EPIC-Norfolk participants, there were 112 hip fractures, 78 

spine fractures and 70 wrist fractures in men, and 339 hip fractures, 124 spine fractures and 218 

wrist fractures in women. In the case-cohort that investigated participants with a fracture at any 

of these three fracture sites combined (total fracture), there were 248 and 616 fractures in men 

and women, respectively. The results from the investigations of potential associations between 

iron intake by food source and fracture risk are discussed below. Briefly, iron intake from animal 

sources and the ratio of animal iron were significantly associated with higher hip fracture risk in 

men, whereas the former was significantly associated with lower spine fracture risk in women; 

and no associations were found for plant iron intake in either sex. 

 

7.4.3.1 Iron intake by food source in fracture and non-fracture participants 

Both iron intake from animal sources and the animal iron ratio did not differ between 

participants with and without a total fracture (Table 7.7). However, women with a fracture had 

significantly lower iron intake from plant sources compared to those women who remained free 

from fractures over the median follow up of 12.6 years (7.0±3.1 vs. 7.3±3.0 mg/d, P=0.032). In 

men, plant iron intake did not differ between fracture and non-fracture participants. 
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Table 7.7: Iron intake by food source in subjects with and without a total fracture. 

  Subjects without a fracture  Subjects with a fracture   

  n Mean (SD) [Range]  n Mean (SD) [Range]    P 

Men             
Dietary iron intake (mg/d)   1709 13.3 (4.0) [3.4; 42.2]  248 13.5 (4.5) [5.7; 37.1]  0.39 
Plant iron intake (mg/d)  1709 8.7 (3.7) [1.2; 39.1]  248 8.7 (3.9) [2.3; 29.1]  0.91 
Animal iron intake (mg/d)  1709 2.8 (1.5) [0.1; 16.4]  248 3.0 (1.8) [0.1; 11.7]  0.09 
Ratio (% animal)  1709 21.6 (10.1) [0.8; 84.6]  248 22.3 (10.7) [0.7; 62.9]  0.31 
             
Women             
Dietary iron intake (mg/d)   2138 11.0 (3.4) [1.9; 29.7]  616 10.5 (3.5) [3.7; 27.0]  0.003 
Plant iron intake (mg/d)  2138 7.3 (3.0) [0.0; 24.9]  616 7.0 (3.1) [1.05; 24.2]  0.032 
Animal iron intake (mg/d)  2138 2.1 (1.2) [0.0; 24.3]  616 2.0 (1.1) [0.1; 9.9]  0.54 
Ratio (% animal)  2138 19.5 (9.8) [0.0; 85.0]  616 20.3 (10.2) [0.7; 81.4]  0.11 
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7.4.3.2 Differences in hazard ratios of fracture risk by iron sources 

In men, all Kaplan Meier plots showed that there was both overlap and cross-over between the 

five quintiles of iron intake, independent of the food source (Figure 7.5). Nevertheless, the log-

rank test for equality showed that total fracture incidence differed between quintiles of the 

animal iron ratio (P=0.030). In contrast to the previous investigations of total dietary iron intake 

and serum ferritin with fracture risk in men (Chapter 6, page 143), which were all non-significant, 

there were some significant associations with iron intake according to the food source (Table 

7.8). For example, higher animal iron intake was significantly associated with higher fracture risk 

at the hip (HR 1.22, 95%CI 1.04-1.42; P=0.012). Moreover, men in the upper quintiles of animal 

iron intake compared to those in quintile 1 had significantly higher hip fracture risk (quintile 4: 

HR 2.14, 95%CI 1.05-4.37, P=0.036; quintile 5: HR 2.29, 95%CI 1.11-4.73, P=0.025). In men, there 

was also a significant linear trend between a higher animal ratio and higher hip fracture risk (HR 

1.20, 95%CI 1.03-1.40, P=0.021); and those men in the top quintile compared to the lowest 

quintile of the animal ratio had a significantly higher hip fracture risk (HR 2.61, 95%CI 1.25-5.45, 

P=0.011) and total fracture risk (HR 1.61, 95%CI 1.03-2.53, P=0.038). Interestingly, there was a 

trend for an inverse association between animal iron intake and wrist fractures, although was 

not significant (HR 0.83, 95%CI 0.69-1.01, P=0.059). Plant iron intake was not associated with 

fracture risk at any site in men. 

In women, there was both overlap and cross-over between the five quintiles of iron 

intake, independent of the food source, as shown by all Kaplan Meier plots (Figure 7.6). 

Nevertheless, the log-rank test for equality showed that total fracture incidence differed 

between quintiles of plant iron intake (P=0.017). However, results from the calculation of 

Prentice-weighted Cox proportional HRs showed that both plant iron intake and the ratio of 

animal iron were not associated with fracture risk at any site in women (Table 7.9). In contrast, 

women in the top compared to the lowest quintile of animal iron intake had a significantly lower 

spine fracture risk (HR 0.44, 95%CI 0.24-0.82, P=0.009). These results are comparable to the 

previous investigations in Chapter 7, where HRs for spine fracture risk were 0.41 (95%CI 0.21-

0.79, P=0.008) for total dietary iron intake and 0.44 (95%CI 0.22-0.87, P=0.018) for serum 

ferritin. However, the previously established significant inverse associations between spine 

fracture risk and total dietary iron intake (HR 0.85, 95%CI 0.73-0.99, P-trend=0.041) and serum 

ferritin concentrations (HR 0.78, 95%CI 0.65-0.94, P-trend=0.009) were not significant in the 

present investigations of animal iron intake (HR 0.87, 95%CI 0.75-1.01, P=0.08). 
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Figure 7.5: Kaplan-Meier plot of total fractures by quintiles of iron intake by food source in 1957 men. 

 
Kaplan-Meier survival estimates for quintiles of iron intake from (A) plant sources, (B) animal sources and 
(C) the animal iron ratio. The quintile groups of the animal ratio differed significantly according to the log-
rank test for equality (P=0.030), but there were no differences between the plant iron quintiles groups 
(P=0.91) and the animal iron quintile groups (P=0.38). 
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Figure 7.6: Kaplan-Meier plot of total fractures by quintiles of iron intake by food source in 2754 women. 

 
Kaplan-Meier survival estimates for quintiles of iron intake from (A) plant sources, (B) animal sources and 
(C) the animal iron ratio. The quintile groups of plant iron intake differed significantly according to the log-
rank test for equality (P=0.017), but there were no differences between the quintiles groups of animal iron 
intake (P=0.09) and those of the animal iron ratio (P=0.46). 
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Table 7.8: Associations between iron intake by food source and fracture risk in men of the EPIC-Norfolk case-cohort in comparison to total dietary iron intake and serum ferritin. 

 

Iron intake 

Quintile 1 
n = 392 

Quintile 2 
n = 391 

Quintile 3 
n = 392 

Quintile 4 
n = 391 

Quintile 5 
n = 391  

 HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture Serum ferritin 1.00 0.68 (0.40-1.15) 0.78 (0.46-1.31) 0.58 (0.33-1.00) 0.88 (0.53-1.47) P=0.51 
(248 events) Total dietary iron 1.00 0.72 (0.46-1.15) 0.90 (0.56-1.46) 0.97 (0.59-1.58) 1.12 (0.67-1.86) P=0.36 
 Plant iron 1.00 0.98 (0.63-1.53) 1.04 (0.65-1.65) 1.02 (0.61-1.69) 1.11 (0.68-1.82) P=0.64 

 Animal iron 1.00 1.02 (0.65-1.60) 1.11 (0.71-1.74) 0.99 (0.61-1.58) 1.27 (0.80-2.00) P=0.41 
 Ratio (% animal) 1.00 1.38 (0.88-2.15) 0.97 (0.61-1.56) 1.00 (0.62-1.59) 1.61 (1.03-2.53)* P=0.20 
            

Hip fracture Serum ferritin 1.00 0.88 (0.40-1.94) 1.09 (0.48-2.44) 0.69 (0.30-1.57) 0.91 (0.40-2.08) P=0.64 
(112 events) Total dietary iron 1.00 0.80 (0.41-1.56) 1.00 (0.51-1.98) 1.17 (0.57-2.40) 0.92 (0.45-1.90) P=0.80 
 Plant iron 1.00 1.00 (0.54-1.84) 0.81 (0.40-1.67) 1.13 (0.57-2.26) 0.86 (0.42-1.78) P=0.84 

 Animal iron 1.00 1.45 (0.72-2.95) 1.70 (0.83-3.47) 2.14 (1.05-4.37)* 2.29 (1.11-4.73)* P=0.012 
 Ratio (% animal) 1.00 1.85 (0.88-3.88) 1.19 (0.54-2.64) 1.66 (0.78-3.54) 2.61 (1.25-5.45)* P=0.021 
            

Spinal fracture Serum ferritin 1.00 0.68 (0.29-1.64) 0.47 (0.16-1.31) 0.63 (0.25-1.58) 1.13 (0.50-2.56) P=0.87 
(78 events) Total dietary iron 1.00 0.79 (0.33-1.88) 1.31 (0.58-2.94) 1.11 (0.44-2.83) 1.84 (0.77-4.39) P=0.12 
 Plant iron 1.00 1.04 (0.47-2.33) 1.41 (0.65-3.06) 1.28 (0.51-3.21) 1.54 (0.64-3.70) P=0.30 

 Animal iron 1.00 1.10 (0.51-2.39) 1.33 (0.64-2.75) 0.79 (0.33-1.86) 1.50 (0.70-3.19) P=0.52 
 Ratio (% animal) 1.00 1.44 (0.69-3.02) 1.09 (0.49-2.43) 1.07 (0.48-2.35) 1.49 (0.68-3.24) P=0.61 
            

Wrist fracture Serum ferritin 1.00 0.47 (0.18-1.25) 0.72 (0.32-1.61) 0.57 (0.23-1.40) 0.56 (0.22-1.39) P=0.31 
(70 events) Total dietary iron 1.00 0.53 (0.23-1.26) 0.73 (0.31-1.73) 0.65 (0.29-1.45) 0.98 (0.42-2.29) P=0.75 
 Plant iron 1.00 0.97 (0.42-2.25) 1.11 (0.50-2.44) 0.62 (0.25-1.50) 1.18 (0.53-2.62) P=0.97 

 Animal iron 1.00 0.72 (0.35-1.49) 0.58 (0.27-1.25) 0.46 (0.21-1.02) 0.52 (0.24-1.12) P=0.06 
 Ratio (% animal) 1.00 0.81 (0.38-1.72) 0.71 (0.34-1.45) 0.52 (0.24-1.13) 0.78 (0.37-1.64) P=0.28 

Values are adjusted Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first 
health check. Iron intake from plant and animal sources was in mg/d, and the animal ratio in %. Differences between the two upper quintiles referent to quintile 1 were significant 
at *P<0.05. n 1957 for total fracture, n 1842 for hip fracture, n 1808 for spine fracture, n 1806 for wrist fracture. 
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Table 7.9: Associations between iron intake by food source and fracture risk in women of the EPIC-Norfolk case-cohort in comparison to total dietary iron intake and serum ferritin. 

 

Iron intake 

Quintile 1 
n = 551 

Quintile 2 
n = 551 

Quintile 3 
n = 551 

Quintile 4 
n = 551 

Quintile 5 
n = 550  

 HR (ref) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) P-trend 

Total fracture Serum ferritin 1.00 0.72 (0.48-1.08) 0.62 (0.42-0.93) 0.71 (0.48-1.05) 0.73 (0.49-1.08) P=0.23 
(616 events) Total dietary iron 1.00 0.95 (0.69-1.30) 1.20 (0.87-1.66) 0.65 (0.47-0.92)* 1.12 (0.78-1.62) P=0.61 
 Plant iron 1.00 1.23 (0.91-1.66) 0.92 (0.67-1.27) 0.85 (0.61-1.17) 1.15 (0.83-1.59) P=0.77 

 Animal iron 1.00 0.84 (0.62-1.14) 0.82 (0.60-1.11) 0.91 (0.65-1.26) 0.75 (0.53-1.04) P=0.19 
 Ratio (% animal) 1.00 0.93 (0.68-1.28) 0.82 (0.60-1.12) 0.92 (0.67-1.27) 0.85 (0.61-1.18) P=0.40 
            

Hip fracture Serum ferritin 1.00 0.68 (0.39-1.19) 0.66 (0.38-1.14) 0.93 (0.55-1.55) 0.93 (0.57-1.54) P=0.57 
(339 events) Total dietary iron 1.00 1.21 (0.81-1.81) 1.44 (0.95-2.19) 0.68 (0.44-1.07) 1.57 (0.98-2.52) P=0.65 
 Plant iron 1.00 1.26 (0.85-1.85) 1.11 (0.74-1.66) 0.75 (0.49-1.16) 1.32 (0.87-2.01) P=0.91 

 Animal iron 1.00 0.86 (0.58-1.28) 0.82 (0.54-1.23) 1.04 (0.68-1.59) 0.81 (0.52-1.26) P=0.65 
 Ratio (% animal) 1.00 0.69 (0.45-1.04) 0.64 (0.42-0.97) 0.83 (0.55-1.26) 0.76 (0.50-1.17) P=0.52 
            

Spinal fracture Serum ferritin 1.00 0.62 (0.32-1.20) 0.38 (0.18-0.81) 0.30 (0.14-0.64)** 0.44 (0.22-0.87)* P=0.009 
(124 events) Total dietary iron 1.00 0.33 (0.18-0.62) 0.67 (0.37-1.20) 0.51 (0.29-0.92)* 0.41 (0.21-0.79)** P=0.041 
 Plant iron 1.00 1.43 (0.85-2.41) 0.76 (0.41-1.39) 0.94 (0.51-1.74) 0.83 (0.46-1.52) P=0.25 

 Animal iron 1.00 0.52 (0.29-0.92) 0.50 (0.28-0.90) 0.73 (0.41-1.28) 0.44 (0.24-0.82)** P=0.08 
 Ratio (% animal) 1.00 1.33 (0.73-2.41) 1.03 (0.56-1.90) 0.68 (0.35-1.31) 0.89 (0.48-1.65) P=0.21 
            

Wrist fracture Serum ferritin 1.00 0.74 (0.42-1.31) 0.62 (0.35-1.09) 0.68 (0.39-1.20) 0.74 (0.42-1.30) P=0.37 
(218 events) Total dietary iron 1.00 0.99 (0.63-1.57) 1.16 (0.73-1.83) 0.74 (0.45-1.22) 0.95 (0.56-1.62) P=0.48 
 Plant iron 1.00 0.88 (0.58-1.34) 0.68 (0.43-1.08) 0.71 (0.45-1.13) 0.89 (0.56-1.40) P=0.38 

 Animal iron 1.00 1.16 (0.74-1.81) 1.19 (0.75-1.87) 1.09 (0.67-1.77) 0.97 (0.58-1.63) P=0.84 
 Ratio (% animal) 1.00 1.12 (0.70-1.80) 1.06 (0.66-1.70) 1.27 (0.78-2.04) 1.08 (0.66-1.78) P=0.62 

Values are adjusted Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). The analysis used data from the first 
health check. Iron intake from plant and animal sources was in mg/d, and the animal ratio in %. Differences between the two upper quintiles referent to quintile 1 were significant 
at *P<0.05 and **P<0.01. n 2754 for total fracture, n 2525 for hip fracture, n 2334 for spine fracture, n 2409 for wrist fracture. 
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7.5 Discussion 

To the best of my knowledge, these data are the first to investigate potential associations 

between dietary iron intake from different food sources with measures of bone health in a cross-

sectional study, and with the risk of fractures in a prospective study of a large sample of British 

men and women. Following multivariate adjustment, the results from the cross-sectional study 

showed that higher plant iron intake was significantly associated with higher heel ultrasound 

measurements in women only, and no relationship with animal iron intake or the ratio of animal 

iron to total dietary iron intake was found in either sex. The results from the prospective 

investigations were contradictory and showed that higher animal iron intake was significantly 

associated with reduced spine fracture risk in women but with increased hip fracture risk in men, 

and there were no associations between plant iron intake and fracture risk at any site in either 

sex. 

 

7.5.1 Heel ultrasound 

In our novel cross-sectional study, dietary iron intake was not associated with heel ultrasound in 

men, and this was independent of the food source. In contrast, in women, plant iron intake 

correlated significantly with both BUA and VOS in women (r=0.08), possibly due to women in this 

cohort having significantly higher dietary intakes of fruit and vegetables than men (284±169 vs. 

250±164 g/d). Moreover, there was a significant linear relationship between quintiles of plant 

iron intake and both measures of heel ultrasound in women, and plant iron intakes of 7.7-9.5 

mg/d and 9.5-20.7 mg/d compared to 1.8-5.2 mg/d were significantly associated with 5.8% and 

4.5% higher BUA and 0.5% and 0.4% higher VOS in women, respectively. Plant-based iron is 

predominantly found in pulses, whole grains and some green leafy vegetables including spinach 

and broccoli (145). The differences in mean plant iron intake between the two upper quintiles in 

women were 4 mg/d for quintile 4 and 8 mg/d for quintile 5. These higher plant iron intakes can 

be achieved through the usual diet, although particular attention should be paid to consuming a 

variety of iron-rich foods. For example, three tablespoons of green or brown lentils contain 

approximately 4mg of plant iron; whereas ten cashews as snack foods combined with four 

tablespoons of green or brown lentils and four spears of broccoli as part of a main meal would 

need to be consumed  additionally to the reach the levels of intake for quintile 5 (145, 350). Despite 

the significant relationship between plant-based iron and measures of bone heath in women in 

the present study, there were no associations with animal iron intake. However, there was a 

tendency for a negative relationship between a higher ratio of animal iron to total dietary iron 

intake and BUA in women, although this was not significant. The cross-sectional findings of a 

positive association between plant-based iron intake and measures of heel ultrasound in women 

potentially reflect the important role of iron in bone health. It is well documented that iron plays 
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a crucial role as a cofactor in the hydroxylation reactions within collagen fibres (8, 10), which 

increases overall collagen strength (136), as well as in the synthesis of vitamin D (172, 383), an 

important mediator in calcium absorption (125). To date, it is not known whether the different 

sources of iron intake influence the underlying mechanisms in bone health differently. 

To the best of my knowledge, no previous studies have investigated a potential 

difference between iron intakes from different food sources in association with bone health. 

Thus, the present findings of a significant positive association between plant iron intake and 

measures of heel ultrasound in women are completely novel. The effect sizes of 4.5-5.8% higher 

BUA and 0.4-0.5% higher VOS between upper and lower quintiles of plant iron intake in women 

in our study were comparable to the findings from a US study which reported effect sizes of 4-

14% higher BMD depending on the bone site between extreme quartiles of total dietary iron 

intake (181). A direct comparison with previous studies of the absolute values for the effect sizes 

was not possible, as no published observational study has used measures of heel ultrasound. 

However, in the previous chapter (Chapter 6, page 143), we investigated the cross-sectional 

association between total dietary iron intake and heel ultrasound in EPIC-Norfolk men and 

women, and our results showed that the highest compared to the lowest quintile of total dietary 

iron intake was significantly associated with 4.4% higher BUA in women. Interestingly, in women, 

the relationship between plant iron intake and heel ultrasound in the present chapter somewhat 

reflected that of total dietary iron intake in the previous chapter, but  effect sizes with BUA were 

greater for plant iron intake (4.5-5.8%) than for total dietary iron intake (4.4%). This may suggest 

that, in women, total dietary iron intake is more reflective of iron intake from plant sources than 

from animal sources. In fact, there is evidence to show that the contribution of plant-based iron 

towards total dietary iron intake is greater than that of animal iron (193). In the previous chapter, 

we also investigated the cross-sectional relationship between serum ferritin concentrations and 

heel ultrasound, but there were no significant associations in either sex. In contrast to iron 

intake, the relationship between the animal iron ratio and heel ultrasound in women followed a 

similar pattern to that of serum ferritin. Therefore, serum ferritin concentrations may be more 

indicative of a higher percentage contribution of animal iron to total dietary iron intake than of 

plant-based iron in women. A potential reason for this may be that animal iron is a greater 

contributor towards the body’s iron pool than plant iron as it is much better absorbed (15-40% 

vs. 1-15%) (188-192). Animal iron is more readily bioavailable and its absorption is not affected by 

factors which are known to inhibit plant iron absorption including the presence of absorption 

inhibitors including phytates and polyphenols or absorption enhancers including vitamin C (358, 359, 

415). In contrast to women, these relationships were less clear in men, and this may in part 

explain the non-significant associations between iron intake independent of the food source and 

heel ultrasound in men in the present study. For example, both plant-based iron and the animal 
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iron ratio followed a similar pattern to total dietary iron intake, but none of the iron food 

sources appeared to be reflective of serum ferritin concentrations in men. 

Another potential explanation for the present sex-specific results may be that the 

contribution of animal and plant iron towards total dietary iron intake differs between men and 

women. For example, in the present study, men compared to women had a significantly higher 

ratio of the contribution of animal iron towards total dietary iron intake (21.7±10.2% vs. 

19.7±9.9%, P<0.001). Our findings are in agreement with data from the NDNS, undertaken at the 

time of recruitment of EPIC-Norfolk participants, which showed that haem iron, which is only 

found in animal-based food sources, accounted for 6.6% and 6.2% of total dietary iron intake in 

older men and women, respectively (223). This may suggest that men tend to have a higher intake 

of the more bioavailable haem iron from animal foods; whereas women tend to have a higher 

consumption of the less well absorbed non-haem iron from mainly plant-based food sources. To 

date, the potential consequences of this for bone health are not known. However, a higher 

intake of animal-based haem iron in men may be indicative of a less healthy dietary pattern 

characterised by a high consumption of animal foods such as red meats at the expense of plant-

based foods such as fruit and vegetables. In contrast to men, a higher intake of plant iron in 

women may be indicative of a healthier dietary pattern characterised by a high consumption of 

fruit and vegetables. In previous epidemiological studies, higher dietary intakes of fruit and 

vegetables were associated with higher BMD (90, 131, 416), and this may partly explain the present 

sex-specific findings of a positive association between plant iron intake and heel ultrasound in 

women.  

In conclusion, the present cross-sectional investigations found significant associations 

between higher plant iron intake and higher BUA in women only, but there were no associations 

with animal iron intake and the ratio of animal iron as a percentage of total dietary iron intake in 

either sex. These findings are completely novel, and thus more epidemiological studies are 

needed which will investigate potential associations between iron intake from different food 

sources and measures of bone health in other populations. 

 

7.5.2 Fracture risk 

In our novel prospective study, there were no associations between quintiles of iron intake from 

plant-based sources and fracture risk at any site in either sex, although women with a fracture 

had significantly lower iron intake from plant sources at baseline (7.0±3.1 mg/d) compared to 

those women who remained free from fractures over the median follow up of 12.6 years 

(7.3±3.0 mg/d). In contrast, the results for animal iron intake were sex-specific, with a significant 

inverse association with spine fracture risk in women and a significant positive association with 

hip fracture risk in men. For example, women with the highest animal iron intakes (2.8-24.3 

mg/d) compared to those with the lowest intakes (0-1.2 mg/d) had a 56% lower spine fracture 
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risk. In contrast to women, there was a significant linear trend between higher animal iron intake 

and higher hip fracture risk in men. Moreover, men with animal iron intakes of 2.8-3.7 mg/d and 

3.7-16.4 mg/d compared to those with the lowest intakes (0.1-1.7 mg/d) had significantly higher 

hip fracture risk (HR 2.14, 95%CI 1.05-4.37; and HR 2.29, 95%CI 1.11-4.73, respectively). The 

ratio of animal iron to total dietary iron intake showed similar results to the crude animal iron 

intake in men, in that there was a significant linear trend between a higher animal iron ratio and 

higher hip fracture risk. Moreover, the hazard ratios for hip fracture risk (HR 2.61, 95%CI 1.25-

5.45) and for total fracture risk (HR 1.61, 95%CI 1.03-2.53) were also significantly higher in men 

with an animal iron ratio of 29.2-84.6% (mean: 36.9%) compared to 0.7-13.6% (mean: 9.2%). To 

the best of my knowledge, no previous epidemiological studies have investigated potential 

associations between iron intake from different food sources and fracture risk, and hence the 

present results are novel findings.  

 The reason for the present sex-specific findings for animal iron intake may partly be 

related to differences in the dietary pattern and absorption mechanisms of iron. As previously 

discussed, a higher intake of animal-based haem iron in men may be indicative of a less healthy 

dietary pattern characterised by a high consumption of animal foods such as red meats at the 

expense of plant-based foods such as fruit and vegetables. In previous epidemiological studies, 

lower dietary intakes of fruit and vegetables were associated with lower BMD (90, 131, 416), and this 

may explain why hip fracture risk was increased in men with higher animal iron intake or a 

higher ratio of animal iron. In women, a higher intake of animal iron may be indicative of better 

iron status, as animal-based haem iron is more bioavailable and thus better absorbed than plant-

based non-haem iron (15-40% vs. 1-15%) (188-192). In fact, in the present study, women in quintile 

5 compared to quintile 1 of animal iron intake had significantly higher total dietary iron intake 

(12.5±3.5 vs. 9.7±3.3 mg/d) and serum ferritin concentrations (72.0±57.9 vs. 55.4 ng/ml). 

Therefore, the significant reduction in spine fracture risk in women with higher animal iron 

intakes may be a reflection of the higher bioavailability of animal iron which may be associated 

with more adequate iron stores.  

 Interestingly, the present results of an inverse association between animal iron intake 

and spine fracture risk in women (HR 0.44, 95%CI 0.24-0.82) reflected the findings from our 

previous chapter (Chapter 6), which also showed significant spine fracture risk reductions for 

total dietary iron intake (HR 0.41, 95%CI 0.21-0.79) and for serum ferritin concentrations (HR 

0.44, 95%CI 0.22-0.87). In contrast to women, the present results in men of a significant increase 

in hip fracture risk with higher animal iron intake did not reflect the findings from the previous 

chapter, which did not find an association with total dietary iron intake and serum ferritin in 

men. This may suggest that investigations of total dietary iron intake and markers of iron status 

in association with bone health may only provide limited insight into this relationship, and 
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differences in iron food sources should be taken into account as these provide additional 

information on the bioavailability of iron. 

In conclusion, the present prospective investigations found significant associations 

between higher animal iron intake and reduced spine fracture risk in women but increased hip 

fracture risk in men, but there were no associations between plant iron intake and fracture risk 

at any site in either sex. These findings are completely novel, and thus more epidemiological 

studies are needed which will investigate potential associations between iron intake from 

different food sources and fracture risk in other populations. 

 

7.5.3 Strengths and limitations 

To the best of my knowledge, no previous epidemiological studies have explored the role of iron 

intake from animal and plant food sources in bone health, and thus the present cross-sectional 

and prospective investigations are completely novel. Previous studies have only explored the 

role of dietary iron in bone health independent of the food source (142, 181, 186, 405-407). However, the 

intake of iron from foods provides no information on its bioavailability, which differs between 

the haem and non-haem forms of iron (188-192, 358, 359, 415), thereby potentially affecting the 

underlying mechanisms differently. Our study comprised up to 4711 men and women aged 39-

79 years from the EPIC-Norfolk cohort and showed i) a significant positive association between 

plant iron intake and heel ultrasound in women and ii) a significant decrease in spine fracture 

risk in women but a significant increase in hip fracture risk in men with higher animal iron 

intakes. Our novel findings may have important implications for informing future guidelines on 

bone health, suggesting that the food source of iron in addition to an adequate dietary iron 

intake may play an important role in osteoporosis and fracture prevention. 

Although the present study had a robust study design, there were also limitations. The 

cross-sectional study design of the bone density analyses only examined relations between diet 

and bone density for a single point in time. The positive associations reported in women suggest 

that there was a relation between plant iron intakes and heel ultrasound, but conclusions about 

the influence of plant iron on bone health cannot be drawn. Similarly, the prospective study 

design of the fracture analyses was limited by the inability to identify possible secular changes in 

animal and plant iron intakes over the follow-up period and subsequent exposure 

misclassification, as data were only available from the 7-day food diaries taken at baseline. 

Moreover, the fracture data had been obtained from hospital admissions which are most likely 

underestimated for spine fractures due to a large absence in their clinical attention and 

radiologic detection (168, 293, 294). This may have reduced the power of the present study to detect 

the associations between animal and plant iron intake and spine fracture risk. Another limitation 

was related to the derivation of iron intake by food source in the present dataset. Following the 

initial coding of all food items in the EPIC-Norfolk study, the present dataset contained 21 
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categories of food sources which were based on dietary iron intakes. However, some categories 

contained foods of mixed animal and plant iron sources, for example “savoury pies and quiches” 

and “sandwich fillings with vegetables and egg or cheese”. These foods had an unknown 

contribution of plant and animal iron towards the total iron food content and could not be 

included in the present food source-specific iron analyses. Therefore, the dietary intakes of both 

plant and animal iron in the present dataset are incomplete, although we do not know the 

extent to which they were underestimated and whether this would affect our findings. Although 

multivariate adjustment models were applied in the analyses, a number of other relevant 

confounders previously associated with bone health, including sunlight exposure (295), were not 

measured as part of the EPIC-Norfolk study. Moreover, we could not account for factors which 

are known to affect non-haem iron absorption, including the iron content of a meal, an 

individual’s iron status and the presence of absorption inhibitors including phytic acid and 

polyphenols, and absorption enhancers including the reducing agent vitamin C (358, 359, 415). These 

factors are specific to the absorption of non-haem iron and do not affect that of haem iron. 

Furthermore, residual confounding may have occurred despite the adjustment for covariates 

and may have resulted in bias in exposure effect estimates. 

 

7.6 Conclusion 

The present cross-sectional investigations in EPIC-Norfolk participants found that higher plant 

iron intakes were significantly associated with up to 5.8% and 0.5% higher BUA and VOS 

respectively in women only. These differences in bone density between women with low and 

high iron intakes from plant-based sources may have important implications for the 

development of fractures in the long term, although in our prospective investigations, we did 

not find an association between plant iron intake and fracture risk in either sex. However, higher 

animal iron intakes were significantly associated with a spine fracture hazard ratio of 0.44 in 

women, but a hip fracture hazard ratio of 2.29 in men, possibly due to sex-specific differences in 

habitual dietary intakes. These data are completely novel as previous studies have only 

investigated iron intake independent of the food source, but our findings suggest that the 

different food sources of iron intake may need to be taken into consideration when studying the 

role of iron in bone health as these provide additional information on the bioavailability of iron. 

Therefore, future epidemiological studies should investigate potential associations between iron 

intake from different food sources and bone health in other populations. These studies will be 

crucial for confirming the present sex-specific findings of a positive association between plant-

based iron and bone density in women, and a potential role of animal iron in reducing spine 

fracture risk in women but increasing hip fracture risk in men. 
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8.1 Abstract 

Dietary assessment methods inaccurately reflect estimates of habitual food intake in populations 

due to measurement errors associated with their use, although biomarkers of dietary intake 

have other sources of error. Thus, establishing population intakes is associated with errors which 

may attenuate diet-disease relationships. Combining measures of dietary intake with biomarkers 

may be a useful approach for limiting the effects of such measurement error, but no previous 

studies have investigated this in bone health. Therefore, this chapter aimed to explore whether 

the addition of a biomarker to an intake estimate improves the detection and strength of the 

diet-disease association compared to using single measures at the example of vitamin C and 

bone health. The results showed that combining measures of vitamin C intake and plasma status 

strengthened the positive associations with heel ultrasound and inverse associations with 

fracture risk in men, but not in women. Our findings are completely novel. We suggest that more 

epidemiological studies investigate the concept of using a combination of dietary assessment 

methods in association with other common chronic disease risks. 
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8.2 Introduction 

This chapter discusses the issue of bias and measurement error which naturally arise from 

estimating dietary intakes in epidemiological studies, and its effects on diet-disease associations. 

Assuming there is a positive relationship between vitamin C and bone health, the aim was to 

assess whether the addition of a biomarker to an intake estimate improves the detection and 

strength of the diet-disease association.  

 Epidemiological studies investigate the prevalence of an exposure, a disease rate or 

health outcome, or most commonly the association between these parameters, in a population. 

The overall aim of these studies is to detect any associations as well as their direction and 

strengths as accurately as possible. This relies on the use of measurements which reflect the true 

rather than estimated exposure and health outcome. However, as epidemiological studies are 

undertaken in humans and are subject to practical and ethical constraints, the introduction of 

bias and errors is unavoidable (199). For example, errors associated with the measurement of 

exposure and outcome variables are common, and those are referred to as measurement errors. 

Exposure measurement errors may reduce the statistical power to detect any associations as 

they shift the estimated relative risk towards no effect, thus underestimating potential risk 

associations (200). 

 A common exposure assessed in relation to disease outcome is diet, and measuring 

dietary intake at the individual, household and national level introduces measurement error due 

to reporting bias and daily variations in dietary intake (194, 198). It is possible to explore the 

relationship between true and observed exposure of diet from a validation study, which is useful 

for determining the extent to which observations differ from the truth, i.e. the extent to which 

estimated food intake differs from what was actually consumed, absorbed and utilised by the 

body (199). To determine the accuracy of a chosen dietary assessment method, the comparison 

against a gold standard method is desirable, as those are independent of reporting bias arising 

from self-report methods (198). In nutritional epidemiology, the measures considered to be most 

independent of dietary intake are biological markers, and hence those are most often used in 

validation studies. Agreement between the intake measure and the biological reference 

measure can indicate the usefulness of the former to estimate dietary intake. In validation 

studies, both the validity and the reproducibility of the intake measure are assessed. Validity is 

the ability of a measurement to measure what it purports to measure. For this, the agreement 

between the measure to be assessed and an absolute standard is evaluated. In nutritional 

epidemiology, however, all dietary assessment methods are prone to bias and no true reference 

measure exists. Hence, the test measure is compared to what is believed to be a more accurate 

measure of food and nutrient intake, assessing the “relative” validity of the dietary assessment 

methods. Reproducibility is the ability of a measurement to produce the same results when used 
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repeatedly in the same setting. However, in nutritional epidemiology, any one setting cannot be 

replicated as individual food intake varies by day, week and season. The variation in observations 

may be due to the actual daily variability of an individual’s food consumption or biases 

associated with the chosen method of dietary assessment. 

 As previously discussed, the presence of exposure measurement error may reduce the 

statistical power to detect any diet-disease associations (200). However, the adjustment for 

measurement error may limit the underestimation of the relative risk, although this does not 

compensate for the loss of statistical power (417). Additional measurement errors, which occur 

during the measurement of confounders in multivariate models, increase the complexity of this 

issue, and this may result in over- or underestimation of relative risks by any magnitude (417). 

Hence, the adjustment for measurement error is advised and numerous approaches have been 

suggested over the last few decades (418-425). For example, a linear regression calibration includes 

a validation study which uses reference instruments such as biomarkers to relate true and 

observed exposure of the covariates (426). One such study investigated the association between 

protein intake and incident frailty before and after correcting for measurement error (427). They 

developed regression calibration equations of a biomarker (urinary nitrogen) and applied those 

to the FFQ estimates of protein intake. The results showed that protein intake was significantly 

inversely associated with incident frailty, and the use of the calibration method greatly improved 

the strength of the association by almost doubling the odds ratios. Another approach is that of 

combining different dietary intake measurements (206, 418), which has been suggested to increase 

the statistical power to detect the diet-disease association (205). For example, one study 

investigated dietary lutein plus zeaxanthin, estimated from a FFQ and from serum 

concentrations of the carotenoids’ trans isomers, in association with the risk of nuclear cataracts 

and nuclear sclerosis (206). They ranked participants according to the mean dietary intakes and 

serum concentrations, before combining these ranks. The results showed that the association 

was stronger when using the biomarker compared to the intake estimate in the nuclear cataract 

investigations, whereas the associations were similar in the nuclear sclerosis analyses. 

Moreover, for both disease outcomes, the combination of the intake measure with the 

biomarker resulted in slightly improved odds ratios compared to using single measures. For 

example, the odds for nuclear cataract were 0.77 (95%CI 0.57-1.02) for the FFQ estimate, 0.69 

(95%CI 0.51-0.94) for serum concentrations and 0.66 (95%CI 0.48-0.91) for the combination of 

the dietary intake with the biomarker. The results of this study may suggest that combining 

measures of dietary intake with a biomarker may be superior to using single measures in 

detecting the diet-disease relationship. To the best of my knowledge, only a limited number of 

studies have used the approach (206) and no such studies have investigated bone health. 

Therefore, this chapter will explore this approach using the association between dietary intakes 

and nutrient status of vitamin C with indicators of bone health as an example, due to the 
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availability of data in the EPIC-Norfolk study (vitamin C intake estimated from 7dDD and FFQ, 

plasma vitamin C, heel ultrasound, DXA and fractures) and due to the moderate correlation 

between vitamin C intake and blood measures reported in previous studies (r=0.20-0.55) (202, 303, 

428-432). The next sections will discuss vitamin C intake and blood status as exposure variables and 

bone health as an outcome variable. 

 

8.2.1 Vitamin C intake and status as exposure variables 

As discussed in detail in Chapter 1 (pages 34-36), there are a range of methods used in 

nutritional epidemiology to quantitatively assess food and nutrient intakes on the individual and 

population level (195). All written dietary assessment methods and biomarkers are inaccurate 

estimates of the habitual dietary intake, and thus the choice of assessment usually depends on 

the sample size of the study population, the practicality of the assessment and evaluation of 

intake and the subsequent costs involved. The most commonly used methods are the 16-day 

weighed record, 7dDD, FFQ, 24hR, as well as biological markers of dietary intake. They mainly 

differ in the type of intake they assess (habitual or recent intake), the accuracy of intake 

assessment and their practicability.  

 

8.2.1.1 Methods assessing dietary intakes of vitamin C 

Dietary intakes of vitamin C may be assessed using any of the written methods above. 

Assessment of vitamin C intake from 7dDDs has been shown to yield the most comparable 

intake data with weighed records (r=0.70) (202, 204), the assessment method most commonly used 

in dietary validation studies, compared to FFQs and 24-h recalls (both r=0.54). In contrast, FFQs 

have consistently been shown to overestimate intakes of fruits and vegetables and consequently 

intakes of vitamin C (201-204); whereas 24-hour recalls tend to underestimate vitamin C intakes due 

to the inability to assess seasonal and day-to-day variation (202, 204). Moreover, the repeatability 

for measuring vitamin C intake was highest for 7dDDs (r=0.68) compared to FFQs (r=0.65) and 

24-h recalls (r=0.50) (430). Similarly, the classification of vitamin C intake into the same quartiles 

as those obtained with the weighed record was most consistent for the 7dDD (48%) compared to 

the FFQ (37%) and 24-h recall method (39%) (202, 204). Studies have also shown that FFQs had the 

lowest correlations with other dietary assessment methods. For example, the between-method 

correlations ranged from 0.34-0.52 for FFQs and 7dDDs (201, 203, 430) and from 0.35-0.60 for FFQs 

and 24-hour recalls (142, 430) compared to between-method correlations of 0.63 for vitamin C 

intake assessed by 7dDDs and 24-hour recalls (430).  

 In summary, a number of validation studies have shown that 7dDDs provide more 

accurate estimates of dietary vitamin C intake than FFQs and 24-hour recalls. 
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8.2.1.2 Biological markers of vitamin C 

Despite their practicality and relatively low cost, written dietary assessment methods are likely 

to be subjective and prone to human recall error. Moreover, they may not account for factors 

such as length of storage of food items, cooking practises and variations in individual 

bioavailability and genetic variation in metabolism of vitamin C which may influence actual 

intakes (207, 433). The use of biological markers of vitamin C in plasma or serum has been suggested 

to overcome some of these issues (170). For example, plasma vitamin C is thought to represent 

dietary vitamin C intakes from the preceding few weeks (170) and may therefore better indicate 

the habitual intake of the nutrient than most written dietary assessment methods. However, 

vitamin C in blood reflects the amount of which it is influenced by a number of biological, 

environmental and dietary factors. For example, increasing age has been shown to be associated 

with lower blood vitamin C concentrations (304), possibly due to low dietary intakes of vitamin C 

in older populations rather than age-related changes in vitamin C absorption and metabolism 

(434, 435). Women have been shown to have higher blood levels of vitamin C than men (303, 436), 

which is also relative to their higher energy-adjusted dietary intake of vitamin C (224). Moreover, 

blood levels of vitamin C are reduced during periods of infection (305). Other biological factors 

affecting blood vitamin C levels include individual differences in vitamin C absorption into the 

gut, bioavailability, genetic variation in vitamin C metabolism, storage capacity, saturation levels 

in blood and excretion. For example, there is a renal threshold for vitamin C which results in 

saturated plasma concentrations at 70-85 µmol/l (300), and this corresponds to very high dietary 

vitamin C intakes of approximately 400 mg/d. Lifestyle factors such as smoking and body weight 

are also known to affect blood vitamin C levels. For example, studies have shown that smokers 

have lower serum vitamin C concentrations than non-smokers independent of dietary intakes of 

the nutrient (306, 346, 437), possibly due to an increased turnover of the nutrient (307). Moreover, 

both BMI and body composition have been shown to be negatively associated with blood 

vitamin C concentrations (302, 304). As humans are unable to synthesise vitamin C, the body’s only 

source of vitamin C is through food consumption (91, 125). Thus, circulating vitamin C 

concentrations are highly related to habitual intakes of foods and beverages naturally high in 

vitamin C such as fruit and vegetables. Studies have shown that intakes of fruit and vegetables at 

physiological doses are associated with plasma vitamin C concentrations (428, 429, 438); and 

correlations were stronger for fruit intakes than for vegetable intakes (304, 438).  

 In summary, although measures of vitamin C status may overcome issues of recall bias 

from dietary intake assessments and inaccuracies arising from food processing, storage and 

preparation, blood vitamin C measures are prone to a number of dietary and biological factors 

which must be taken into account when interpreting this data. 
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8.2.1.3 The relationship between vitamin C intake and status 

A number of studies have shown that the relationship between plasma vitamin C levels and 

quartiles or quintiles of vitamin C intake was positively correlated (429, 432, 439) (Table 8.1). 

Correlations appear to be only modest, with ranges of 0.20-0.55 being most commonly reported 

(202, 303, 428-432). The inclusion or exclusion of supplement users appears to have little effect on the 

relation between vitamin C intake and plasma levels (431, 432), although one study reported 

differently (440). When the time point of dietary assessment was taken into account, higher 

within-subject correlations of up to 0.62 and higher between-subject correlations of up to 0.71 

could be achieved by measuring vitamin C intake seven days and three days prior to the plasma 

vitamin C measurement, respectively (441). Moreover, the type of dietary assessment has also 

been shown to impact on the relationship between intake and plasma levels (430, 439). Of the 

different dietary assessment methods, vitamin C intake assessed by weighed records was 

reported to be most correlated with plasma vitamin C concentrations (r=0.49-0.51) (202). Vitamin 

C intake estimated from 7-day diet diaries has been reported to be better correlated with 

plasma vitamin C concentrations (r=0.40-0.54) than vitamin C intake estimated from FFQs 

(r=0.28-0.42) and 24-hour recalls (r=0.10-0.35) (430, 431, 442), although not all studies showed 

consistent findings (202). In regression analyses, linear associations between vitamin C intake and 

plasma levels were significantly stronger for intake assessed by a 7-day diet diary compared to a 

FFQ (linear trend: diary β = 5.6 mmol/l vs. FFQ β = 3.9 mmol/l, P<0.05) (439).  

 

8.2.1.4 Vitamin C intake and status as predictors of common chronic diseases 

Previous observational studies of common chronic disease outcomes or mortality have shown 

significant associations with both dietary intakes and plasma concentrations of vitamin C (Table 

8.2). Overall, the strengths of the associations were comparable between the intake and 

biomarker methods (439, 443). However, in a number of studies, dietary intake of vitamin C failed to 

show any associations with the according chronic disease despite significant associations being 

found with plasma concentrations (428, 443, 444). Thus, biomarker levels of vitamin C might be better 

predictors of common chronic diseases than dietary intakes estimated from questionnaires and 

diaries.  
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Table 8.1: Examples of observational studies investigating the relationship between dietary intake and biological markers of vitamin C. 

Study Subjects 
Vitamin C 
intake 

Vitamin C 
biomarker 

Statistics 
Correlation between vitamin C 
intake and biomarker 

Further results 

Bates(441) 
1979 
UK 

n: 23 
Men and women 
Age: (72-86) yrs 

Daily qualitative 
food records for 
12 months and 
weighed 
records every 6-
8 weeks 

Plasma and 
buffy-coat 

Within- and between-
subject correlations 
between intake and 
biomarker levels for 
differing periods of 
dietary assessment; and 
linear regression for sex-
specific differences 
 

Strongest within-subject correlation: 
r=0.62 (P<0.001) unadjusted 
  (7d before plasma measurement) 
 
Strongest between-subject correlation: 
r=0.71 (P<0.001) unadjusted  
  (3d before plasma measurement) 

Duration of dietary assessment markedly 
affected within-subject correlations between 
vitamin C intake and plasma levels, whereas 
between-subject correlations were affected to 
a lesser extent. Correlations ranged from 0.22 
to 0.62 within subjects (P<0.05) and from 0.59 
to 0.71 between subjects (P<0.01). No sex-
specific differences were found.  
 

Jacques(432) 
1993 
US 
 

n: 139 
Men and women 
Age: 61 (40-83) yrs 

FFQ  Plasma  Correlation between 
intake and plasma; and 
linear regression of 
plasma levels stratified 
by quartiles of intake 

Data excluding supplement users: 
r=0.34 (P<0.01) unadjusted 
r=0.40 (P<0.01) energy adjusted 
r=0.38 (P<0.01) age, sex, energy adjusted 
 
Data including supplement users: 
r=0.39 (P<0.01) unadjusted 
r=0.44 (P<0.01) energy adjusted 
r=0.43 (P<0.01) age, sex, energy adjusted 
 

There was a significant positive linear 
relationship between plasma vitamin C levels 
and quartiles of intake after adjustment for 
age, sex and energy intake and independent of 
the inclusion or exclusion of supplement users 
(P<0.001).  

Bingham(440) * 
1995 
UK 

n: 160 
Women 
Age: (50-65) yrs 

16d weighed 
record 

Plasma Pearson correlations 
between plasma and 
intake 
 

Data excluding / including supplements: 
r=0.32 / r=0.86 
 
 

/ 

Bingham(202) * 
1997 
UK 

n: up to 156  
Women 
Age: (50-65) yrs 
 

16d weighed 
record, 7dDD, 
FFQ, 24-h recall 

Plasma Spearman correlations 
between plasma and 
intake  

Data excluding supplement users: 
r=0.49 (weighed record) 
r=0.26 (FFQ) 
r=0.26 (recall) 
r=0.22 (diary) 
 
Data including supplements: 
r=0.51 (weighed record) 
r=0.35 (FFQ) 
r=0.34 (recall) 
r=0.22 (diary) 
 

(Note: this study studied the same sub-
populations of the EPIC-Norfolk cohort as 
Bingham 1995.)  
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Table 8.1: (continued)      

Study Subjects 
Vitamin C 
intake 

Vitamin C 
biomarker 

Statistics 
Correlation between vitamin C 
intake and biomarker 

Further results 

Bingham(430) 
2001 
UK 

n: up to 237  
Men and women 
Age: (45-75) yrs 
 

7dDD; FFQ; 
24hR (baseline 
and follow-up) 
 

Plasma 
(baseline) 

Pearson correlations 
between plasma and 
repeat intakes  

r=0.40 and r=0.37 (1st and 2nd diary) 
r=0.28 and r=0.42 (1st and 2nd FFQ) 
r=0.35 and r=0.30 (1st and 2nd 24-h recall) 

/ 

McKeown(431) 
2001 
UK 

n: 134  
Men and women 
Age: 60 yrs 

7dDD; FFQ  Plasma Spearman correlations 
between plasma and 
intake  

Data excluding supplement users: 
r=0.52 and r=0.40 (1st and 2nd diary) 
r=0.44 and r=0.45 (1st and 2nd FFQ) 
 
Data including supplement users: 
r=0.54 and r=0.44 (1st and 2nd diary) 
r=0.42 and r=0.39 (1st and 2nd FFQ) 
 

Women had higher correlation coefficients 
than men (e.g. diary r=0.56 vs. r=0.41). 

Fletcher(429) 
2003 
UK 

n: 1214 
Men and women 
Age: (75-84) yrs 
 
 

FFQ  Plasma Correlation between 
intake and plasma; and 
intake stratified by 
quintiles of plasma levels 

r=0.30 (P=Data not shown) There was a significant positive linear 
relationship between vitamin C intake and 
plasma levels (P<0.01). 

Galan(303) 
2005 
France 

n: 3128 
Men and women 
Age: 50 (35-60) yrs 

Six 24hRs in 2-
month intervals 

Serum Spearman partial 
correlation and linear 
regression of serum 
levels and intake 
 

r=0.28 (P<0.0001) unadjusted 
r=0.31 (P<0.0001) age, sex, energy, BMI, 
alcohol, smoking adjusted 

Age, vitamin C intake, energy intake, BMI and 
smoking explained 11% and 10% of the 
variance of serum vitamin C in men and 
women, respectively. 

Wannamethee(428) 
2006 
UK 

n: 3258 
Men 
Age: 68 (60-79) yrs 
 

FFQ (assessing 
past 7 days 
only) 

Plasma Correlation between 
intake and plasma 

r=0.26 (P<0.0001) /  

Bingham(439) 
2008 
UK 

n: 12474 (baseline); 
n: 7370 (follow-up); 
Men and women 
Age: (45-75) yrs 

7dDD; FFQ 
(baseline) 

Plasma 
(baseline 
and follow-
up) 

Linear regression of 
baseline and follow-up 
plasma levels stratified 
by quintiles of intake 

/ Using baseline data (but not follow-up data), 
the diary showed significantly stronger 
associations with plasma levels than the FFQ 
(linear trend: FFQ 3.9  vs. diary 5.6, P<0.05; and 
Q1 vs. Q5: FFQ 16.6  vs. diary 23.0, P<0.05).  
 

Vandevijvere
(442)

  
2013 
Europe 

n: 697 
Boys and girls 
Age: 15 yrs 

24hR Plasma Spearman and Pearson 
correlation between 
intake and plasma 

Spearman; Pearson 
r=0.10 (P=0.093); r=0.12 (P=0.028) (boys) 
r=0.17 (P=0.001); r=0.16 (P=0.003) (girls) 

/ 
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Table 8.2: Examples of observational studies assessing both dietary intake and biological markers of vitamin C for the prediction of chronic disease outcomes and mortality. 

Chronic disease 
outcome 

Study Subjects 
Vitamin C  
intake 

Vitamin C 
biomarker 

Statistics Results 

Cancer Jenab(444) 
2006 
Europe / US 

n: 631 
Men and women 
Age: 59 yrs 

Validated country-
specific 
questionnaires 
over the past year 

Plasma ORs of gastric cancer risk 
stratified by quartiles of 
plasma and intake; OR of 
1SD increase in gastric 
cancer risk 
 

Higher plasma but not intake was associated with a significant 
reduction in gastric cancer risk (P=0.043). Associations with 1SD 
increase in risk were non-significant for both intake (OR 1.09; CI 
0.90-1.33) and plasma (OR 0.93; CI 0.77-1.12), but the OR for 
plasma was lower than that of intake. 
 

IHD Wannamethee(428) 
2006 
UK 

n: 3258 
Men 
Age: 68 (60-79) 
yrs 

FFQ (assessing 
past 7 days only) 

Plasma IHD markers stratified by 
quartiles of plasma and 
intake   
 

For the majority of IHD markers measured in blood, correlations 
with plasma were stronger than those with intake. Moreover, 
plasma was associated with a number of IHD markers which were 
not found to be associated with intake. 
 

IHD Bingham(439) 
2008 
UK 

n: 11134 
Men and women 
Age: (45-75) yrs 

7dDD; FFQ Plasma  HRs of IHD risk stratified by 
quintiles of plasma and 
intake 

7dDD intake predicted IHD risk to a similar extent as plasma 
(7dDD: linear trend HR 0.91, CI 0.86-0.96; plasma: linear trend HR 
0.90, CI 0.85-0.95). In contrast, FFQ intake failed to predict IHD 
risk (linear trend HR 1.00, CI 0.94-1.05). 
 

Mortality Gale(445) 
1995 
UK 

n: 730 
Men and women 
Age: 65+ yrs 

7dDD Plasma HRs of mortality from 
stroke or from coronary 
heart disease stratified by 
plasma and intake 

Both intake and plasma were significantly associated with the risk 
of mortality from stroke across all tertiles (P<0.001 and P=0.012, 
respectively). Moreover, subjects with the highest compared to 
the lowest intake had significantly lower risk of dying from stroke 
(HR 0.4, 95%CI 0.2-0.6), but no such observations were found for 
plasma (HR 0.7, 95%CI 0.4-1.1). Although non-significant, HRs of 
mortality from coronary heart disease between extreme tertiles 
of intake and plasma were very similar (intake: HR 0.8, 95%CI 0.6-
1.2; plasma: HR 0.9, 95%CI 0.6-1.3). 
 

Mortality Sahyoun(443) 
1996 
US 

n: 725 
Men and women 
Age: 60+ yrs 

3dDD Plasma RRs of mortality stratified 
by plasma and intake 

Plasma but not intake was significantly associated with the risk of 
mortality across all groups (P=0.02 and P=0.2, respectively). For 
both intake and plasma, the RR of mortality differed significantly 
between extreme quintiles to a similar extent (intake: HR 0.55, 
95%CI 0.34-0.88; plasma: HR 0.56, 95%CI 0.34-0.91). 

Abbreviations: IHD = ischemic heart disease. 
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8.2.2 Bone health as an outcome variable 

Osteoporosis is defined as a T-score at the hip or spine of 2.5 standard deviations below the sex-

specific young adult mean (59), with fractures being the clinical consequences of osteoporosis. 

The established standard measurement of bone density for the diagnosis of osteoporosis is DXA 

which determines the average amount of bone mineral of the scanned area in a two dimensional 

format (in g/cm2) (60). However, DXA only informs about the area density (63). Although radiation 

exposure during a routine clinical DXA examination is very low (61), non-radiative alternative 

methods, such as ultrasound, may be a more favourable technique for determining bone 

density. Ultrasound measurements, typically performed at the heel, determine the parameters 

BUA (in dB/MHz) and VOS (in m/s). In contrast to DXA, BUA measures the structural organisation 

of bone and VOS is a measure of bone stiffness (63). Although ultrasound is a less precise method 

for determining bone density than DXA and is currently not used for the diagnosis of 

osteoporosis, it is faster, cheaper and more portable than DXA (62). Moreover, ultrasound has 

previously been shown to be capable of distinguishing bone densities of subjects with and 

without osteoporosis (67), and several studies have indicated that ultrasound measurements 

predict the risk of fractures as well as DXA measurements (68-71). 

 

8.2.2.1 Vitamin C intake and status as predictors of bone health 

To date, there is only limited evidence regarding the predictability of vitamin C intake compared 

with biomarkers for osteoporosis and fracture risk (Table 8.3). Although studies have found 

associations for both dietary intakes and biomarker levels of vitamin C, the findings are 

contradictory. For example, studies have shown significant associations between intake and 

BMD loss or self-reported fractures, but no observations were found for plasma concentrations 

(166, 169). As previously discussed, biomarkers of vitamin C may be better predictors of common 

chronic diseases than intake estimated from dietary assessments. However, whether this may 

also apply to osteoporosis and fracture risk is not known, as studies comparing their 

predictability between intake and biomarker levels of vitamin C are currently scarce. Moreover, 

no previous study has combined vitamin C intake with its respective biomarker when 

investigating the potential role of vitamin C in bone health. 
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Table 8.3: Observational studies of bone density and fracture risk assessing dietary intake with or without biological markers of vitamin C. 

Study Subjects 
Vitamin C 
intake 

Vitamin C 
biomarker 

Statistics 
Results 

Vitamin C intake Vitamin C biomarker 
Simon(169) 
2001 
US 

n 13080 
Men and women 
Age: (20-90) yrs 

24hR Serum TH BMD or self-
reported fractures 
stratified by 100 mg/d 
increments in vitamin C 
intake or by SD 
increments in serum 
levels 

Associations were only significant with TH BMD 
in pre-menopausal women and with self-
reported fractures in men. In pre-menopausal 
women, TH BMD was 0.01 g/cm2 higher for 
every 100 mg/d increase in intake (P=0.002). In 
men, associations with fractures were non-
linear, with the incidence being least common 
at dietary intakes of around 200 mg/d, and 
higher or lower intakes being associated with a 
higher fracture prevalence (P=0.01).  
 

Associations were only significant with TH 
BMD in men and were non-linear. TH 
BMD was highest at serum concentrations 
between approximately 28.4-56.8 µmol/l, 
whereas higher or lower levels were 
associated with lower TH BMD (P<0.05). 

Kaptoge(166) 
2003 
UK 

n 944 
Men and women 
Age: 72 (67-79) yrs 

7dDD Plasma 2-5 year change in TH 
BMD stratified by 
tertiles of vitamin C 
intake and plasma 
levels 

Associations with change in TH BMD were only 
significant in women. Associations were linear 
(P-trend=0.016), and those in tertiles 2 and 3 of 
intake had approximately 52% (P=0.015) and 
54% (P=0.010) less hip BMD loss, respectively. 
 

No significant associations between 
plasma levels and change in TH BMD in 
either sex. 

Farrell(142) 
2009 
US 

n: 244 
Women 
Age: 56 yrs 

8 repeat 24hRs; 
FFQ 

/ Multiple linear 
regression of each 
intake method and 
BMD at five sites 

There were multiple associations between 
intake and BMD. However, an agreement 
between the two dietary methods was only 
found at one of the five bone sites (spine BMD, 
FFQ β 0.170, 24-h recall β 0.155, P≤0.05).  

/ 

Abbreviations: TH BMD = total hip bone mineral densit
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8.2.3 Chapter aims and objectives 

Dietary assessment methods are associated with measurement errors; although biomarkers of 

dietary intake may be better predictors of common chronic diseases by overcoming some of 

these issues. Moreover, combining different exposure measures may be superior to using single 

measures. However, to the best of my knowledge, only a limited number of studies have used 

this approach, and none exists on vitamin C and bone health. Therefore, the aims of this chapter 

were to i) evaluate the comparability of vitamin C intake estimated from different dietary 

assessment methods with vitamin C status, and ii) investigate whether combining intake 

measures may be superior to using single measures when predicting diet-bone relationships at 

the example of vitamin C and bone health in the EPIC-Norfolk cohort of older men and women.  

 

The objectives were to: 

i) Determine potential cross-sectional associations between i) vitamin C intake estimated 

from a 7dDD, ii) vitamin C intake estimated from a FFQ and iii) plasma vitamin C 

concentrations with measurements of heel ultrasound and DXA. 

ii) Compare the predictability of fracture risk in a prospective cohort study by i) vitamin C 

intake estimated from a 7dDD, ii) vitamin C intake estimated from a FFQ and iii) plasma 

vitamin C concentrations. 

iii) Assess whether combining the different dietary exposure methods into i) 7dDD+FFQ, ii) 

7dDD+plasma, iii) FFQ+plasma and iv) 7dDD+FFQ+plasma may strengthen any potential 

associations with bone density and the predictability of fracture risk in comparison to 

using any of the three dietary assessment methods alone. 
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8.3 Methods 

The following analyses were performed on a representative sample of men and women of the 

EPIC-Norfolk cohort study. Vitamin C was chosen as the exposure variable of interest due to i) a 

number of suggested underlying mechanisms in bone health, ii) modest correlations between 

dietary intake and blood concentrations of vitamin C and iii) the availability of intake and 

biomarker data in the EPIC-Norfolk study. It is well established that vitamin C is crucial to bone 

collagen synthesis (7-10), and recently a number of animal and cell studies suggested a role in 

osteoclastogenesis and osteoblastogenesis (161-164). Moreover, the correlation between dietary or 

supplemental intake of vitamin C and circulating levels in blood are modest, with ranges of 0.20-

0.55 being most commonly reported (202, 303, 428-432). Furthermore, in the EPIC-Norfolk study, a 

range of vitamin C-related data had previously been measured. Dietary intakes of vitamin C were 

estimated by means of a 7dDD and a FFQ in all participants and plasma vitamin C concentrations 

were measured in a large number of subjects. Bone health measures included ultrasound of the 

heel bone which had been measured as part of the second health check and DXA measurements 

of the hip which had been undertaken in a small sub-sample of the cohort. Data regarding the 

occurrence of fractures was available from baseline up to March 2009. Details on the data 

collection methods of each variable can be found in Chapter 2 (page 40). 

 All analyses were stratified by sex. Of the random sub-cohort of 4000 participants, 

subjects were excluded from the subsequent analyses if they had missing data for either dietary 

assessment method or for plasma vitamin C concentrations. Firstly, the assessment of vitamin C 

intake from foods was compared between the 7dDD and the FFQ. For this, the mean (SD) 

vitamin C intake was calculated for each method, as the data were normally distributed, and 

differences in mean estimates were determined using a paired t-test. To assess the correlation 

between 7dDD and FFQ estimates, Pearson correlation coefficients were determined. Next, 

participants were grouped into quintiles according to their mean vitamin C intake as estimated 

from either method. Then, the level of agreement or misclassification between the two dietary 

methods was evaluated by determining the percentage of participants classified into the same 

or opposite quintiles, respectively. 

 Next, the relationship between vitamin C intakes estimated from the two dietary 

assessment methods with plasma vitamin C concentrations was investigated. For this, the mean 

(SD) plasma concentration of vitamin C was calculated. Correlations between the two intake 

assessment methods with plasma levels were compared using Pearson correlation coefficients. 

Next, the level of agreement and misclassification into the same or opposite quintiles, 

respectively, were compared between the two dietary intake methods with plasma 

concentrations of vitamin C as discussed above. We also assessed the ranking ability of the two 

intake methods by stratifying mean plasma vitamin C concentrations by quintiles of the 7dDD 
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and the FFQ using linear regression analyses. A test for trend across the quintiles of each method 

was indicative of the linearity of the data. 

 For the cross-sectional investigations of heel ultrasound in the random sub-cohort 

(n=4000), further participants were excluded from the analyses if they had missing data for the 

heel ultrasound measures or any of the covariates used in the multivariate model, as discussed 

in Chapter 3 (pages 55-57). Prior to regression analyses, vitamin C intake and status measures 

were divided into different quantiles separately for men and women. The distribution of the 

data was most suitable when using quartiles, possibly due to the smaller sample size, and hence 

these were used throughout the heel ultrasound analyses in this chapter. In order to compare 

the regression coefficients of vitamin C intake and status with heel ultrasound, standardised 

measures of BUA and VOS were calculated by dividing the bone measures by their standard 

deviation. Firstly, correlation coefficients were determined between vitamin C measures and 

standardised heel ultrasound measures. Then, adjusted linear regression analyses were 

performed for quartiles of vitamin C intake from 7dDD and from FFQ and plasma vitamin C 

concentrations with the standardised measures of BUA and VOS. We also combined intake and 

status measures of vitamin C (7dDD+FFQ, 7dDD+plasma, FFQ+plasma and 7dDD+FFQ+plasma) 

according to Howe’s method (222), in order to determine if this may be a superior method of 

determining diet-bone associations than using only one dietary exposure method. Howe 

suggests different approaches for combining the data, and we chose the method which has 

previously been shown to be superior (205, 206). For this, participants were grouped into the 

number of quantiles that was equal to the sample size (n=865 in men; n=1167 in women), 

separately for the 7dDD, the FFQ and for plasma vitamin C concentrations. Scores were 

subsequently calculated which reflected the quantile ranking of the participants for each method 

combination. The calculated scores were then re-grouped into quartiles and those were used as 

the explanatory variable in the linear regression analyses of 7dDD+FFQ, 7dDD+plasma, 

FFQ+plasma and 7dDD+FFQ+plasma with measures of heel ultrasound. All regression 

coefficients were compared for the linear trend across all quartiles and for differences between 

the higher quartiles with the lowest quartile. The linear regression analyses were adjusted for 

age, family history of osteoporosis, BMI, smoking, physical activity, steroid medication, 

menopausal status and HRT in women, energy intake, dietary calcium intake, calcium 

supplements and vitamin D supplements. 

 The main bone density measurement used in the EPIC-Norfolk study was an ultrasound 

measurement at the heel bone which had been determined as part of the second health check, 

but DXA measurements at the hip were also performed in a small sub-sample of the cohort. As 

the latter are considered the gold standard in estimating bone density, we also performed the 

cross-sectional study of different measures of vitamin C intake and status in a small sub-sample 

of participants who had data for both the heel ultrasound and the DXA measurements. The bone 
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measures were standardised, as previously discussed. Due to the small sample size (n=151), the 

study was performed in a combined cohort of men and women and all analyses were adjusted 

for sex. The participants were grouped into tertiles (due to the small sample size) according to 

their vitamin C intake (7dDD, FFQ) or status prior to the linear regression analyses of heel 

ultrasound and DXA, and multivariate adjustment was applied as above. All regression 

coefficients were compared for the linear trend across all tertiles and for differences between 

the extreme tertiles. We also used Howe’s method (222), as previously discussed, to determine if 

the combination of different exposure measurements may be superior in determining 

associations with heel ultrasound and DXA than using only one dietary exposure method. 

 For the prospective investigations of fracture risk in the case-cohort sample (n=5319), 

subjects were excluded from the subsequent analyses if they had missing data for the 7dDD, the 

FFQ, plasma vitamin C concentrations or any of the covariates used in the multivariate model, as 

discussed below. Moreover, they were also excluded if they had suffered a fracture which did 

not occur at the hip, spine or wrist and they were not part of the random sub-cohort. In the 

present investigations, the combined sum of fractures at the hip, spine and wrist (total fractures) 

was used to increase the power of the study to detect potential prospective associations 

between vitamin C and fracture risk. Similar to the heel ultrasound investigations, intake and 

plasma measures of the vitamin C were divided into sex-specific quartiles. Then, Prentice-

weighted Cox proportional hazard ratios were calculated for quartiles of vitamin C intake from 

7dDD and from FFQ and plasma vitamin C concentrations with total fracture risk after the 

median follow-up of 12.9 years. We also combined intake and status measures of vitamin C 

according to Howe’s method (222), as previously discussed, before calculating further hazard 

ratios for the combined measures (7dDD+FFQ, 7dDD+plasma, FFQ+plasma and 

7dDD+FFQ+plasma). We compared the hazard ratios for the linear trend across all quartiles and 

for differences between the higher quartiles with the lowest quartile of vitamin C. The 

calculations of all hazard ratios were adjusted for age, family history of osteoporosis, BMI, 

smoking, physical activity, steroid medication, menopausal status and HRT in women, energy 

intake, dietary calcium intake, calcium supplements and vitamin D supplements. 
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8.4 Results 

8.4.1 The relationship between 7dDD and FFQ estimates of vitamin C intake 

Following the exclusion of those with missing data (n=598) in the random sub-cohort sample as 

discussed previously, 3402 participants (55% women) with a mean age of 60±10 years remained 

for analysis. Firstly, the assessment of vitamin C intake from foods was compared between the 

two different dietary assessment methods 7dDD and FFQ (Table 8.4). Mean±SD dietary vitamin 

C intakes estimated from the 7dDD were 86.7±51.2 mg/d and 90.3±49.6 mg/d for men and 

women, respectively, whereas mean intakes from the FFQ were 30% and 50% higher (all 

P<0.001). Pearson correlation coefficients indicated that vitamin C intake estimated from the 

7dDD was moderately correlated with that of the FFQ, with significant correlation coefficients of 

0.44 in men and 0.39 in women (P<0.05) (Figure 8.1). 

 

 

Table 8.4: Estimates of dietary vitamin C intake from 7dDD and FFQ. 

  Vitamin C intake (mg/d) estimated from    
  7dDD  FFQ   

  Mean (SD)  Mean (SD)  P 

Men  86.7 (51.2)  113.0  (52.8)  P<0.001 
Women  90.3 (49.6)  135.3 (62.9)  P<0.001 

n=1520 men and n=1882 women. 
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Figure 8.1: The correlation of vitamin C intake estimated from 7dDD and FFQ. 

  
The Pearson correlation coefficients were (A) r=0.44 (P<0.05) in men and (B) r=0.39 

(P<0.05) in women. n=1520 men and 1882 women. 
 

(A) 

(B) 



 

Page | 230  
 

Next, the extent to which the two dietary assessment methods were able to classify individuals 

into the same quintile of vitamin C intake was investigated (Table 8.5). The amount of 

misclassification into the extreme quintiles was also determined. In both sexes, the highest level 

of agreement was found for the lowest quintile of vitamin C intake, with 43-45% of participants 

being classified into this quintile using both the 7dDD and the FFQ. The top quintile of vitamin C 

intake showed the second highest agreement with 39% in men and 35% in women. The 

agreement between quintiles was much lower in quintiles 2-4, with the percentage agreement 

ranging from 23-25% in men and 20-25% in women. In both sexes, 2-8% of participants were 

misclassified into the opposite quintiles of vitamin C intake. 

 

Table 8.5: The agreement and disagreement between 7dDD and FFQ. 

 
Quintiles of  

vitamin C intake 
 

Classification  
into quintiles (%) 

 7dDD vs. FFQ  Men  Women 

Agreement Q1 vs. Q1  43  45 
Q2 vs. Q2  23  22 
Q3 vs. Q3  25  20 
Q4 vs. Q4  24  25 
Q5 vs. Q5  39  35 

      
Disagreement Q1 vs. Q5  8  8 

Q5 vs. Q1  2  3 
Values are the percentage classification of participants into the 

same quintiles (agreement) and extreme quintiles (disagreement) of 
7dDD and FFQ estimates of vitamin C intake. n=1520 men and 

n=1882 women. 

 

8.4.2 The relationship between 7dDD and FFQ estimates of dietary intake 
with blood levels of vitamin C 

Mean plasma vitamin C concentrations were 46.9±18.0 µmol/l in men and 58.6±20.0 µmol/l in 

women. Firstly, the correlation coefficients of vitamin C intake and plasma concentrations were 

determined. All correlations were significant (all P<0.05), although correlations in men appeared 

to be higher than those in women (Figure 8.2). Vitamin C intake estimated from the 7dDD was 

better correlated with plasma vitamin C concentrations than the FFQ in both men (r=0.44 vs. 

r=0.30) and women (r=0.37 vs. r=0.22). 
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Figure 8.2: Correlations of 7dDD and FFQ estimates of vitamin C intake with plasma status. 

 
The Pearson correlation coefficients were (A) r=0.44 (P<0.05) between 7dDD and plasma vitamin C in men, (B) r=0.30 (P<0.05) between 
FFQ and plasma vitamin C in men, (C) r=0.37 (P<0.05) between 7dDD and plasma vitamin C in women and (D) r=0.22 (P<0.05) between 

FFQ and plasma vitamin C in women. n=1520 men and n=1882 women. 

 

(A) (B) 

(C) (D) 
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Next, the relationship between vitamin C intakes assessed by either dietary assessment method 

compared to plasma vitamin C concentrations was further investigated by determining the level 

of agreement of classifying participants into the same quintile (Table 8.6). The agreement 

between quintiles of intake and plasma levels ranged from 22-45% for the 7dDD and from 22-

44% for the FFQ. The classifications were comparable between the 7dDD and the FFQ for all 

quintiles except for quintile 5. The latter showed much higher agreement with quintiles of 

plasma vitamin C for the 7dDD (41% in men, 34% in women) compared to the FFQ (28% in men, 

27% in women). A similar discrepancy was found in women of quintile 1, where the agreement 

was 45% for the 7dDD but only 38% for the FFQ. 

 

Table 8.6: The agreement between 7dDD and FFQ with plasma vitamin C. 

  Agreement between quintiles of vitamin C (%) 

  Men  Women 

Quintile  7dDD vs. plasma  FFQ vs. plasma  7dDD vs. plasma  FFQ vs. plasma 

Q1  45 44  45 38 
Q2  25 25  24 22 
Q3  22 22  23 23 
Q4  22 26  27 22 
Q5  41 28  34 27 

n=1520 men and n=1882 women. 
 
 

Then, plasma vitamin C concentrations were classified into quintiles of dietary vitamin C intake  

estimated from i) the 7dDD and ii) the FFQ (Table 8.7). Plasma vitamin C concentrations 

increased significantly across quintiles of intake for both dietary assessment methods in a linear 

fashion in both sexes (all P<0.001). In both men and women, mean plasma levels increased at 

relatively consistent intervals when stratified by 7dDD intake estimates. In contrast, the 

classification by FFQ was less consistent. Mean plasma concentrations increased from quintile 1 

to quintile 2 by an interval of 9.7 µmol/l in men and 8.5 µmol/l in women. This was followed by 

much smaller intervals of 1.1-4.0 µmol/l in men and 0.8-2.7 µmol/l in women for the remaining 

quintiles. 
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Table 8.7: Changes in plasma vitamin C across quintiles of 7dDD and FFQ vitamin C intake. 

 
  

 Plasma vitamin C concentrations (µmol/l)  
by quintiles of dietary vitamin C intake 

    7dDD  FFQ 

 Quintile n  Mean (SD) [Range]  Mean (SD) [Range] 

M
en

 

Q1 304  35.3 (17.4) [4 – 96]  35.9 (17.5) [4 – 95] 
Q2 304  41.8 (17.4) [6 – 132]  45.4 (16.9) [3 – 101] 
Q3 304  46.3 (16.5) [3 – 104]  47.9 (17.8) [6 – 106] 
Q4 304  51.3 (14.4) [12 – 106]  52.0 (17.2) [9 – 132] 
Q5 304  59.8 (14.1) [23 – 127]  53.4 (15.3) [14 – 127] 

    P-trend<0.001  P-trend<0.001 
           

W
o

m
en

 

Q1 377  45.7 (20.9) [4 – 153]  49.0 (21.2) [4 – 116] 
Q2 376  55.5 (20.4) [4 – 151]  59.0 (21.5) [4 – 170] 
Q3 377  59.0 (16.9) [8 – 170]  59.2 (17.8) [14 – 140] 
Q4 376  63.7 (16.6) [6 – 139]  61.7 (18.7) [6 – 127] 
Q5 376  69.2 (16.6) [6 – 136]  64.1 (17.2) [6 – 136] 

    P-trend<0.001  P-trend<0.001 
n=1520 men and n=1882 women. 
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8.4.3 Cross-sectional associations between vitamin C estimated from 
different exposure assessments and heel ultrasound 

Following the exclusion of participants with further missing data of heel ultrasound 

measurements and covariate information, 865 men and 1167 women remained for the following 

cross-sectional analyses of vitamin C and heel ultrasound. Firstly, BUA and VOS were 

standardised for comparison reasons using their respective standard deviations (sBUA, sVOS), 

and the results of these calculations are shown in Table 8.8. Standardised BUA was 5.2 and 4.4 

dB/MHz/SD in men and women respectively, and sVOS was 41.3 and 40.4 m/s/SD respectively.  

 

Table 8.8: Mean BUA and VOS as crude and standardised values. 

  BUA (dB/MHz)  sBUA (dB/MHz/SD)  VOS (m/s)  sVOS (m/s/SD) 

  Mean (SD)  Mean (SD)  Mean (SD)  Mean (SD) 

Men  90 (17)  5.2 (1)  1645 (40)  41.3 (1) 
Women  72 (16)  4.4 (1)  1624 (40)  40.4 (1) 

Abbreviations: sBUA and sVOS, standardised BUA and VOS. n=865 men and n=1167 women. 

 

Pearson correlation coefficients between standardised heel ultrasound measurements and 

vitamin C were very small and predominantly non-significant (Table 8.9). Only vitamin C intake 

estimated from the 7dDD correlated significantly positively with both sBUA (r=0.07) and sVOS 

(r=0.06, both P<0.05) in women only. 

 

Table 8.9: Correlations between BUA and VOS with vitamin C estimates from 7dDD, FFQ and plasma. 

  Men  Women 

  sBUA  sVOS  sBUA  sVOS 

7dDD vitamin C intake   -0.01  0.04  0.07*  0.06* 
FFQ vitamin C intake  -0.04  -0.03  -0.030  -0.020 
Plasma vitamin C levels  0.00  0.05  0.040  0.040 

Abbreviations: sBUA and sVOS, standardised BUA and VOS. 
n=865 men and n=1167 women. 

*Pearson correlation coefficients were significant at P<0.05. 

 

Due to the smaller sample size in the bone health investigations, participants were classified into 

quartiles rather than quintiles of vitamin C intake and status for the following analyses. Results 

from the linear regression analyses of the different vitamin C exposure measurements and 

measures of heel ultrasound are shown in Table 8.10 for men and in Table 8.11 for women. All 

β-coefficients are shown adjusted for age, family history of osteoporosis, BMI, smoking, physical 

activity, steroid medication, menopausal status and HRT use in women, energy intake, dietary 

calcium intake, calcium supplements and vitamin D supplements. 

 In men, associations between quartiles of vitamin C intake (7dDD, FFQ) and status 

(plasma) with sBUA and sVOS were non-significant (Table 8.10). Despite the lack of statistical 
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significance, the β-coefficients of the 7dDD investigating the linearity of the data and potential 

differences between quartiles were all positive in contrast to those of the FFQ which were pre-

dominantly negative. The β-coefficients of plasma vitamin C were of mixed nature, although 

coefficients were predominantly positive. We also combined the different measures of vitamin C 

in order to investigate whether their combination may be superior to using them separately. 

When measures were combined in men, the associations with heel ultrasound remained non-

significant, except for a significant difference in sVOS for men in quartile 2 compared to quartile 

1 of 7dDD+plasma (β 0.206±0.096 m/s, P=0.031). However, the combination of 7dDD+plasma 

compared to using separate measures improved most β-coefficients. For example, coefficients 

for quartile 4 vs. 1 were 0.164±0.099 m/s (P=0.10) for the 7dDD intake and 0.024±0.101 m/s 

(P=0.81) for plasma concentrations, but 0.177±0.100 m/s (P=0.08) for 7dDD+plasma. Both the 

7dDD+FFQ measure and the combination of all three vitamin C estimates (7dDD+FFQ+plasma) 

mainly strengthened the associations between vitamin C and heel ultrasound in a similar 

fashion. In contrast, the combined FFQ+plasma measure showed only minor improvements as 

the associations remained predominantly negative but non-significant.  

 In women, there was a significant linear trend across quartiles of intake estimated from 

the 7dDD (β 0.063±0.023 dB/MHz per quartile, P-trend=0.007), and women in quartile 3 (β 

0.144±0.072 dB/MHz, P=0.047) and quartile 4 (β 0.180±0.074 dB/MHz, P=0.015) of 7dDD intake 

had significantly higher sBUA compared to women in quartile 1 (Table 8.11). Moreover, although 

non-significant, there was a trend for a linear relationship between sVOS and 7dDD intake (β 

0.044±0.024 m/s per quartile, P-trend=0.07) and a trend for an association between sVOS and 

extreme quartiles of 7dDD intake (β 0.137±0.075 m/s, P=0.07). In contrast, intake estimated 

from the FFQ was not associated with either sBUA or sVOS. For plasma vitamin C concentrations, 

a significant difference in women of quartile 2 compared to quartile 1 of was found for both 

sBUA (β 0.153±0.070 dB/MHz, P=0.030) and sVOS (β 0.174±0.072 m/s, P=0.016), but no 

associations were found for the upper quartiles. When the different vitamin C measurements 

were combined, associations with 7dDD+FFQ, FFQ+plasma and 7dDD+FFQ+plasma were non-

significant. However, women in quartile 2 (β 0.154±0.071 dB/MHz, P=0.031) and quartile 4 (β 

0.185±0.074 dB/MHz, P=0.012) of 7dDD+plasma compared to those women in quartile 1 had 

significantly higher sBUA, and the test for linearity across all quartiles was almost significant (β 

0.045±0.023 dB/MHz per quartile, P-trend=0.052). Interestingly, in contrast to men, the 

combination of vitamin C measures did not necessarily improve the strength of the associations.  
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8.4.3.1 Cross-sectional associations with heel ultrasound and DXA 

As DXA measurements are considered the gold standard method for determining bone density, 

and DXA measurements at the hip were available in a small sub-sample of EPIC-Norfolk 

participants, the cross-sectional study of dietary intake and plasma concentration estimates of 

vitamin C was also performed in a small sub-sample of 151 participants (52% men) who had data 

for both the heel ultrasound measurements and the DXA measurements. All analyses were 

adjusted for age, sex, family history of osteoporosis, BMI, smoking, physical activity, steroid 

medication, menopausal status and HRT use in women, energy intake, dietary calcium intake, 

calcium supplements and vitamin D supplements. In this study, the results from the linear 

regression analyses showed that there were no significant associations between any of the 

vitamin C measures (single or combined) and either standardised measurement of bone density 

(all P≥0.05, Data not shown). For example, associations between tertiles of vitamin C and the 

standardised DXA measurements were (β 0.132±0.085 g/cm2/SD per tertile, P=0.12) for the 

7dDD vitamin C intake, (β 0.038±0.084 g/cm2/SD per tertile, P=0.65) for the FFQ vitamin C intake 

and (β 0.077±0.087 g/cm2/SD per tertile, P=0.38) for plasma vitamin C. 
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Table 8.10: Associations between quartiles of vitamin C (7dDD, FFQ, plasma and their respective combinations) with BUA and VOS in 865 men. 

  Q2 vs. Q1 Q3 vs. Q1 Q4 vs. Q1 Linear trend across all Qs 

sBUA 7dDD β  0.007 ± 0.097; P=0.94 β  0.026 ± 0.100; P=0.80 β  0.013 ± 0.100; P=0.89 β  0.006 ± 0.032; P=0.86 
 FFQ β -0.118 ± 0.096; P=0.22 β  0.019 ± 0.096; P=0.84 β -0.096 ± 0.098; P=0.33 β -0.015 ± 0.031; P=0.63 
 Plasma β  0.005 ± 0.095; P=0.96 β  0.040 ± 0.097; P=0.68 β -0.045 ± 0.102; P=0.66 β -0.009 ± 0.032; P=0.78 
 7dDD+FFQ β -0.152 ± 0.096; P=0.11 β  0.034 ± 0.097; P=0.72 β -0.069 ± 0.099; P=0.49 β -0.002 ± 0.031; P=0.96 
 7dDD+Plasma β  0.093 ± 0.097; P=0.34 β  0.049 ± 0.099; P=0.62 β  0.035 ± 0.101; P=0.73 β  0.006 ± 0.032; P=0.86 
 FFQ+Plasma β -0.004 ± 0.096; P=0.96 β -0.012 ± 0.098; P=0.90 β -0.091 ± 0.099; P=0.36 β -0.028 ± 0.031; P=0.37 
 7dDD+FFQ+Plasma β -0.005 ± 0.096; P=0.96 β  0.059 ± 0.097; P=0.55 β -0.053 ± 0.100; P=0.60 β -0.009 ± 0.032; P=0.77 
      
sVOS 7dDD β  0.038 ± 0.096; P=0.69 β  0.133 ± 0.099; P=0.18 β  0.164 ± 0.099; P=0.10 β  0.059 ± 0.032; P=0.06 
 FFQ β -0.045 ± 0.095; P=0.63 β  0.039 ± 0.095; P=0.69 β -0.046 ± 0.097; P=0.64 β -0.005 ± 0.031; P=0.86 
 Plasma β  0.074 ± 0.094; P=0.43 β  0.113 ± 0.096; P=0.24 β  0.024 ± 0.101; P=0.81 β  0.012 ± 0.032; P=0.70 
 7dDD+FFQ β -0.140 ± 0.095; P=0.14 β  0.158 ± 0.095; P=0.10 β -0.014 ± 0.098; P=0.89 β  0.026 ± 0.031; P=0.40 
 7dDD+Plasma β  0.206 ± 0.096; P=0.031 β  0.180 ± 0.097; P=0.07 β  0.177 ± 0.100; P=0.08 β  0.050 ± 0.032; P=0.12 
 FFQ+Plasma β  0.084 ± 0.095; P=0.38 β  0.082 ± 0.097; P=0.40 β -0.036 ± 0.098; P=0.71 β -0.012 ± 0.031; P=0.71 
 7dDD+FFQ+Plasma β  0.020 ± 0.095; P=0.84 β  0.121 ± 0.096; P=0.21 β  0.017 ± 0.099; P=0.86 β  0.016 ± 0.031; P=0.62 

Abbreviations: sBUA and sVOS, standardised BUA and VOS. Values are adjusted β-coefficients ± SE. Measures of vitamin C were combined using Howe’s method of ranks (222). 
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Table 8.11: Associations between quartiles of vitamin C (7dDD, FFQ, plasma and their respective combinations) with BUA and VOS in 1167 women. 

  Q2 vs. Q1 Q3 vs. Q1 Q4 vs. Q1 Linear trend across all Qs 

sBUA 7dDD β  0.053 ± 0.072; P=0.46 β  0.144 ± 0.072; P=0.047 β  0.180 ± 0.074; P=0.015 β  0.063 ± 0.023; P=0.007 
 FFQ β  0.037 ± 0.071; P=0.61 β -0.048 ± 0.072; P=0.50 β -0.040 ± 0.072; P=0.58 β -0.020 ± 0.023; P=0.38 
 Plasma β  0.153 ± 0.070; P=0.030 β  0.083 ± 0.073; P=0.26 β  0.097 ± 0.074; P=0.19 β  0.022 ± 0.023; P=0.35 
 7dDD+FFQ β  0.022 ± 0.071; P=0.75 β  0.007 ± 0.072; P=0.92 β  0.083 ± 0.073; P=0.26 β  0.023 ± 0.023; P=0.31 
 7dDD+Plasma β  0.154 ± 0.071; P=0.031 β  0.054 ± 0.072; P=0.45 β  0.185 ± 0.074; P=0.012 β  0.045 ± 0.023; P=0.05 
 FFQ+Plasma β  0.127 ± 0.072; P=0.08 β -0.023 ± 0.072; P=0.75 β -0.009 ± 0.073; P=0.90 β -0.014 ± 0.023; P=0.55 
 7dDD+FFQ+Plasma β  0.063 ± 0.072; P=0.38 β  0.031 ± 0.072; P=0.67 β  0.063 ± 0.074; P=0.39 β  0.016 ± 0.023; P=0.50 
      
sVOS 7dDD β  0.015 ± 0.073; P=0.84 β  0.041 ± 0.074; P=0.58 β  0.137 ± 0.075; P=0.07 β  0.044 ± 0.024; P=0.07 
 FFQ β  0.100 ± 0.073; P=0.17 β  0.024 ± 0.074; P=0.75 β  0.073 ± 0.074; P=0.32 β  0.015 ± 0.023; P=0.53 
 Plasma β  0.174 ± 0.072; P=0.016 β  0.102 ± 0.075; P=0.17 β  0.047 ± 0.075; P=0.54 β  0.006 ± 0.024; P=0.79 
 7dDD+FFQ β -0.030 ± 0.073; P=0.68 β -0.016 ± 0.074; P=0.82 β  0.047 ± 0.075; P=0.53 β  0.015 ± 0.024; P=0.51 
 7dDD+Plasma β  0.065 ± 0.073; P=0.38 β  0.049 ± 0.074; P=0.51 β  0.108 ± 0.075; P=0.15 β  0.031 ± 0.024; P=0.20 
 FFQ+Plasma β  0.113 ± 0.074; P=0.12 β  0.071 ± 0.074; P=0.34 β  0.010 ± 0.075; P=0.90 β -0.002 ± 0.024; P=0.94 
 7dDD+FFQ+Plasma β  0.055 ± 0.073; P=0.45 β  0.067 ± 0.074; P=0.37 β  0.083 ± 0.075; P=0.27 β  0.026 ± 0.024; P=0.27 

Abbreviations: sBUA and sVOS, standardised BUA and VOS. Values are adjusted β-coefficients ± SE. Measures of vitamin C were combined using Howe’s method of ranks (222). 
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8.4.4 Prospective associations between vitamin C estimated from different 
exposure assessments and total fracture risk 

In order to increase the power to detect potential prospective associations between vitamin C 

and fracture risk, the following investigations were based on total fractures, describing the 

combined sum of fractures at the hip, spine and wrist. Moreover, participants were classified 

into quartiles rather than quintiles of vitamin C intake and status. Following the exclusion of 

participants with missing data and of those not part of the random sub-cohort who had a 

fracture which had not occurred at the hip, spine or wrist, 1702 men and 2308 women remained 

for analysis in this case-cohort sample. The results from the calculations of Prentice-weighted 

Cox proportional hazard ratios (HRs) are shown in Table 8.12. All HRs were adjusted for age, 

family history of osteoporosis, BMI, smoking, physical activity, steroid medication, menopausal 

status and HRT in women, energy intake, dietary calcium intake and calcium and vitamin D 

supplements. 

 In men, there were significant associations between total fracture risk and FFQ intake as 

well as plasma concentrations, but not between fracture risk and 7dDD intake. For example, 

men in quartile 3 compared to those in quartile 1 of FFQ intake (HR 0.55, 95%CI 0.36-0.85; 

P=0.006) and of plasma concentrations (HR 0.54, 95%CI 0.35-0.84; P=0.006) had a significantly 

lower risk of total fracture. Moreover, the trend across all quartiles was also significant and 

comparable between the two methods of vitamin C assessment (FFQ: HR 0.86, 95%CI 0.75-0.99; 

P=0.040; plasma: HR 0.86, 95%CI 0.74-0.99; P=0.041). When the different exposure measures 

were combined, the HR indicating the linearity of the association improved slightly for 

FFQ+plasma (HR 0.83, 95%CI 0.73-0.96; P=0.010), and the associations between the different 

quartiles of FFQ+plasma were now significant between extreme quartiles rather than quartile 3 

(HR 0.55, 95%CI 0.35-0.86; P=0.009). In contrast, combining only the two intake measures 

(7dDD+FFQ) lead to non-significant associations between vitamin C and total fracture risk. 

Interestingly, the combined 7dDD+plasma measure improved the associations compared to 

those of the assessment methods alone. For example, the association between extreme 

quartiles of vitamin C and total fracture risk were not significant for the 7dDD intake (HR 0.73, 

95%CI 0.48-1.13; P=0.16) and plasma concentrations (HR 0.71, 95%CI 0.46-1.09; P=0.12) when 

used alone, but combining the measures to 7dDD+plasma strengthened the association and it 

gained significance (HR 0.55, 95%CI 0.35-0.86; P=0.010). Slight improvements were also found 

for the trend across quartiles of 7dDD+plasma (HR 0.83, 95%CI 0.72-0.96; P=0.012). The 

7dDD+FFQ+plasma measure showed some improvements in the strength of the association 

compared to the use of separate measures, particularly for the difference between extreme 

quartiles of vitamin C. However, this measure showed less improvement compared to the 

7dDD+plasma and the FFQ+plasma measures.  
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 In women, vitamin C was not associated with total fracture risk, independent of the 

assessment method used. Interestingly, the calculated HRs were comparable between the 7dDD 

intake and plasma concentrations but less so with FFQ intake, in contrast to men where HRs 

were comparable between the FFQ and plasma levels. For example, in women, the non-

significant HRs for differences between extreme quartiles were 1.20 (95%CI 0.86-1.66, P=0.28) 

for 7dDD intake, 1.21 (95%CI 0.88-1.67, P=0.23) for plasma concentrations but 1.07 (95%CI 0.79-

1.44, P=0.67) for FFQ intake. In contrast to men, combining the different measures of vitamin C 

did not improve the results in women.  
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Table 8.12: Total fracture risk stratified by quartiles of vitamin C (7dDD, FFQ, plasma and their respective combinations). 

 Q2 vs. Q1 Q3 vs. Q1 Q4 vs. Q1 Linear trend across all Qs 

Men     
7dDD HR 0.67, 95%CI 0.44-1.03; P=0.07 HR 0.73, 95%CI 0.48-1.13; P=0.16 HR 0.73, 95%CI 0.48-1.13; P=0.16 HR 0.91, 95%CI 0.79-1.06; P=0.22 
FFQ HR 0.80, 95%CI 0.53-1.21; P=0.30 HR 0.55, 95%CI 0.36-0.85; P=0.006 HR 0.70, 95%CI 0.46-1.07; P=0.10 HR 0.86, 95%CI 0.75-0.99; P=0.040 
Plasma HR 0.80, 95%CI 0.54-1.19; P=0.27 HR 0.54, 95%CI 0.35-0.84; P=0.006 HR 0.71, 95%CI 0.46-1.09; P=0.12 HR 0.86, 95%CI 0.74-0.99; P=0.041 
7dDD+FFQ HR 0.77, 95%CI 0.51-1.17; P=0.22 HR 0.77, 95%CI 0.51-1.16; P=0.22 HR 0.70, 95%CI 0.45-1.09; P=0.12 HR 0.90, 95%CI 0.78-1.03; P=0.13 
7dDD+Plasma HR 0.76, 95%CI 0.50-1.14; P=0.19 HR 0.73, 95%CI 0.48-1.11; P=0.14 HR 0.55, 95%CI 0.35-0.86; P=0.010 HR 0.83, 95%CI 0.72-0.96; P=0.012 
FFQ+Plasma HR 0.83, 95%CI 0.56-1.23; P=0.34 HR 0.77, 95%CI 0.51-1.17; P=0.23 HR 0.55, 95%CI 0.35-0.86; P=0.009 HR 0.83, 95%CI 0.73-0.96; P=0.010 
7dDD+FFQ+Plasma HR 0.76, 95%CI 0.50-1.15; P=0.19 HR 0.94, 95%CI 0.63-1.41; P=0.76 HR 0.62, 95%CI 0.39-0.97; P=0.036 HR 0.89, 95%CI 0.77-1.02; P=0.09 
     
Women     
7dDD HR 1.16, 95%CI 0.85-1.59; P=0.35 HR 1.02, 95%CI 0.74-1.39; P=0.92 HR 1.20, 95%CI 0.86-1.66; P=0.28 HR 1.04, 95%CI 0.94-1.15; P=0.45 
FFQ HR 1.02, 95%CI 0.74-1.39; P=0.93 HR 0.91, 95%CI 0.66-1.24; P=0.53 HR 1.07, 95%CI 0.79-1.44; P=0.67 HR 1.01, 95%CI 0.92-1.11; P=0.83 
Plasma HR 1.17, 95%CI 0.86-1.58; P=0.32 HR 1.02, 95%CI 0.75-1.40; P=0.89 HR 1.21, 95%CI 0.88-1.67; P=0.23 HR 1.05, 95%CI 0.95-1.16; P=0.38 
7dDD+FFQ HR 1.10, 95%CI 0.81-1.49; P=0.54 HR 0.94, 95%CI 0.69-1.28; P=0.69 HR 1.12, 95%CI 0.82-1.54; P=0.47 HR 1.02, 95%CI 0.92-1.13; P=0.72 
7dDD+Plasma HR 1.02, 95%CI 0.75-1.38; P=0.92 HR 1.18, 95%CI 0.87-1.61; P=0.29 HR 0.99, 95%CI 0.72-1.38; P=0.97 HR 1.01, 95%CI 0.92-1.12; P=0.78 
FFQ+Plasma HR 1.29, 95%CI 0.95-1.76; P=0.11 HR 1.12, 95%CI 0.82-1.54; P=0.47 HR 1.14, 95%CI 0.83-1.56; P=0.43 HR 1.02, 95%CI 0.93-1.13; P=0.63 
7dDD+FFQ+Plasma HR 1.18, 95%CI 0.87-1.60; P=0.28 HR 0.98, 95%CI 0.72-1.34; P=0.89 HR 1.12, 95%CI 0.81-1.54; P=0.50 HR 1.02, 95%CI 0.92-1.12; P=0.77 

Values are adjusted Prentice-weighted Cox proportional hazard ratios of total fracture risk. Measures of vitamin C were combined using Howe’s method of ranks (222).  
n=1702 men and n=2308 women. 
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8.5 Discussion 

The main findings of the present study were that combining dietary intake and plasma estimates 

of vitamin C using different dietary assessment methods compared to single measures 

strengthened the associations between vitamin C with both heel ultrasound and fracture risk in 

men, but not in women.  

 Dietary assessment methods are known to inaccurately reflect estimates of habitual 

food intake in populations due to measurement errors associated with their use. However, 

combining different exposure measures may be superior to using single measures, as this 

approach has previously been shown to potentially increase the power of studies in detecting 

diet-disease associations (205). To the best of my knowledge, only a limited number of studies 

have used this approach and none exist on bone health. Assuming that vitamin C is positively 

associated with bone health due to its crucial role in bone collagen synthesis (7-10), we aimed to 

investigate vitamin C estimated from three different exposure methods (dietary intake from a 

7dDD and a FFQ, and plasma concentrations), and their respective combinations, and compare 

their ability to detect i) the cross-sectional association between vitamin C and heel ultrasound 

and DXA, and ii) the prospective association between vitamin C and fracture risk. Our results, 

showing that combining different measures strengthened the associations with heel ultrasound 

in men but not in women, are completely novel. 

 

8.5.1 Heel ultrasound 

In detail, in the cross-sectional study of heel ultrasound, we found that in men, associations 

between quartiles of vitamin C and heel ultrasound were non-significant, independent of the 

assessment method used. Interestingly, using single measures, the 7dDD and plasma showed 

positive trends, whereas the FFQ showed a negative trend. Assuming that vitamin C is associated 

with bone health, we aimed to investigate whether different ways of combining the exposure 

methods would give superior estimates of the associations compared to using single methods. 

We first combined the two intake measures. Their combination may improve the detection of an 

association between vitamin C and bone health, but only to a minor extent, possibly because 

their measurement errors may correlate with one another (194, 293). In contrast, measures of 

intake and blood concentrations have unrelated errors, thus their combination may provide a 

superior way of detecting the associations between vitamin C and measures of bone health. We 

found that the different combinations (7dDD+FFQ, 7dDD+plasma and 7dDD+FFQ+plasma) 

mainly improved the associations, although only minor improvements were found when 

combining the FFQ with plasma. The latter finding may be due to the 7dDD having been shown 

to give more accurate estimates of vitamin C compared to a FFQ (201-204). Thus, one may expect to 

find that the combination of the 7dDD with plasma levels may be superior to combining a FFQ 
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with a biomarker. In women, using separate measures, significant associations were only found 

for the 7dDD and sBUA as well as a trend for an association with sVOS. The combination of the 

7dDD with plasma reflected those associations, but all other combinations of measures 

(7dDD+FFQ, FFQ+plasma and 7dDD+FFQ+plasma) showed no significant associations. However, 

in contrast to men, combining measures in women did not consistently lead to improved 

associations between vitamin C and heel ultrasound, but we are not sure why this might be. 

 

8.5.2 DXA measurements 

We also performed the cross-sectional study of different measures of vitamin C intake and status 

in a small sub-sample of participants who had additional data for DXA measurements at the hip, 

as DXA is regarded the gold standard method for measuring bone density (446). In the present 

study, there were no significant associations between any of the vitamin C measures, neither as 

single measures nor as their respective combinations, and both heel ultrasound measurements 

and DXA. It is likely that this was due to the small sample size of only 151 participants which had 

too little power to detect any significant diet-bone associations.  

 

8.5.3 Fracture risk 

The prospective fracture risk investigations showed similar sex-specific findings for the 

superiority of combined measures as with the cross-sectional study of heel ultrasound. In men, 

using separate measures, total fracture risk was significantly lower with higher vitamin C intakes 

estimated from the FFQ and with plasma concentrations, and the HRs were comparable 

between these methods. There were no associations with the 7dDD. Apart from the 

combination of the two intake measures (7dDD+FFQ), all other combinations of measures 

showed significant associations with fracture risk and the HRs indicated stronger associations. 

Although the combination of all three measures improved the associations, the combination of 

an intake measure with a blood concentration measure (7dDD+plasma, FFQ+plasma) showed 

the strongest associations with total fracture risk. The latter findings may relate to the 

correlation of errors in the combined variable of exposure measures (293). This is because when 

combining two intake measures with a biomarker, the measurement errors from the intake 

measures would be expected to correlate with one another, whereas those from the intake and 

plasma measures would not. Thus, the idea of combining two intake measures with a biomarker 

may not necessarily provide a better way of detecting diet-disease associations compared to 

using a combination of two methods, but may still be superior to using only a single exposure 

assessment method. In women, there were no significant associations between vitamin C and 

total fracture risk, independent of the assessment method used. In contrast to men, the 

combination of different measures in women did not improve the associations. Moreover, the 
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HRs were comparable between the 7dDD and plasma levels and not between the FFQ and 

plasma as seen in men, but we are not sure why this might be.  

 To the best of my knowledge, only a limited number of studies have used the approach 

of combining different exposure measures in order to potentially increase the statistical power  

of the diet-disease association (205). For example, one prospective cohort study investigated the 

associations between dietary lutein plus zeaxanthin and the risk of nuclear cataracts and nuclear 

sclerosis (206). The study was based on dietary intakes estimated from a FFQ and serum 

concentrations of the carotenoids’ trans isomers. The two methods were combined using the 

same approach as the present study, namely Howe’s score with ranks where the number of 

quantiles was equal to the sample size (222), although they then modelled the risk based on a 

continuous scale in contrast to our quartile rankings. The study showed that both intake and 

biomarker levels were associated with nuclear cataracts risk and with nuclear sclerosis. In the 

nuclear cataract investigations, the odds ratios were stronger when using the biomarker, 

whereas the odds ratios were similar in the nuclear sclerosis analyses. The study also showed 

that, for both disease outcomes, the combination of the intake measure with the biomarker 

levels improved the odds ratios slightly compared to using single measures. For example, the 

odds for nuclear cataract were 0.77 (95%CI 0.57-1.02) for the FFQ, 0.69 (95%CI 0.51-0.94) for 

serum levels and 0.66 (95%CI 0.48-0.91) for the combination of dietary intake and biomarker 

levels. The findings of this prospective cohort study are in agreement with the results from our 

prospective investigations in men, showing that nutrient estimates from multiple dietary 

assessment methods are a stronger predictor of disease risk compared to using single nutrient 

estimates.  

 

8.5.4 Strengths and limitations 

The present investigations, which studied three different exposure methods as single measures 

or as their respective combinations, and their comparative ability to detect i) the cross-sectional 

associations with heel ultrasound and DXA and ii) the prospective associations with fracture risk, 

are completely novel. To date, only a limited number of studies have used the approach of 

combining different exposure measures as means of increasing the power to detect diet-disease 

associations (205), but to the best of my knowledge, none exists on bone health. The present 

results, which showed that combining different exposure measures of vitamin C in comparison 

to using single measures strengthened the associations with heel ultrasound in men but not in 

women, are thus novel findings. Moreover, our investigations comprised a large sample of 2032 

and 4010 participants in the heel ultrasound study and the fracture risk study, respectively; and 

both studies were performed in both men and women. 
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 The present investigations also had a number of limitations. Firstly, our analyses were 

based on the assumption that there is a definite relationship between vitamin C and bone 

health. However, despite suggestions of a number of underlying mechanisms (136, 161, 163), 

published epidemiological evidence is contradictory (124, 131, 166, 167, 230, 342-344), and the associations 

in the present cohort were also inconsistent. We propose that, in the case of a definite cross-

sectional and prospective association between vitamin C and bone health, our findings would 

have been more consistent and may have been shown significant associations in both men and 

women. Another limitation was the small sample size of 151 participants in the DXA analyses. In 

order to allow for comparison between the heel ultrasound and DXA measurements, it was 

important to exclude those with missing data for either measurement, and this resulted in a very 

restricted cohort sample. The latter may have been too small to detect any significant 

associations between measures of vitamin C intake or plasma status and either bone 

measurement, whereas a larger sample may have had more power to show these associations.  

 

8.6 Conclusion  

The present study found that combining dietary intake and plasma estimates of vitamin C using 

different dietary assessment methods compared to using estimates from single measures 

strengthened i) the cross-sectional association between vitamin C and heel ultrasound in men 

only and ii) the prospective association between vitamin C and total fracture risk in men, but not 

in women. These findings highlight that future epidemiological studies investigating the 

relationship between diet and bone health should aim to estimate nutrient intakes from two 

different dietary assessment methods, ideally using one intake and one biomarker measure, as 

this could significantly increase the studies’ power to detect the diet-disease relationship. Our 

findings are completely novel, and thus more validation studies are needed which will 

investigate the concept of using a combination of dietary assessment methods in association 

with other common chronic disease risks such as cardiovascular disease and diabetes. This will 

determine whether this concept is applicable to i) exposure and outcome measures other than 

vitamin C and bone health and ii) nutrients, where the dietary intake and the biological marker 

of intake do not correlate very well. 
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CHAPTER 9 

 

FINAL DISCUSSION AND FUTURE 

DIRECTIONS 

 

9. 9 
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9.1 Main research findings 

The purpose of this thesis was to contribute to a better understanding of the role of diet in 

osteoporosis and fracture prevention and to explore issues associated with the measurement of 

dietary intakes in populations. Current public health recommendations for the prevention of 

osteoporosis and fractures are limited (2), but diet may be a useful strategy as it is modifiable. A 

number of dietary factors have been extensively studied, and those include calcium for its role in 

providing bone strength and stability, vitamin D for maintaining calcium homeostasis and 

protein for its importance in the overall integrity of bone (3, 4, 6, 133).  However, there is only 

limited data on other nutrients including vitamin K1, vitamin C and iron, despite suggestions of 

multiple underlying mechanisms with bone health. Vitamin K1 may play a role in reducing bone-

related inflammation (150, 151, 231), a process associated with upregulated bone resorption (232), and 

it is crucial to the calcium-binding ability of osteocalcin, the most abundant non-collagenous 

protein in bone (11). Both vitamin C and iron play crucial cofactor roles in bone collagen synthesis 

(7-10), thereby increasing overall collagen strength (136). Additionally, vitamin C may also mediate 

osteoclastogenesis and osteoblastogenesis (161-164); whereas iron has another cofactor role in the 

synthesis of vitamin D (172, 383). However, previous epidemiological studies, which investigated 

associations between these nutrients and measures of bone health, are limited with regards to 

studying men (155, 157, 158, 168, 182, 184, 185, 409), using data from British populations (154, 168, 186) and 

including nutrient status measurements as opposed to estimations of only dietary intakes (166, 169, 

182, 183, 408, 409). Moreover, the role of iron in bone health has only been studied independent of the 

food source (142, 181, 186), yet this does not account for the different bioavailability of animal and 

plant sources of iron (188-192). A greater understanding of dietary factors, which may be beneficial 

to long-term bone health, could inform future diet-bone RCTs, and these data are crucial to 

informing future nutritional guidelines for the prevention of osteoporosis and fractures.  

 

Establishing accurate diet-disease relationships is challenging as errors arising from the 

estimation of dietary intakes in populations may attenuate potential associations (200). A number 

of approaches for limiting the effects of such measurement error have previously been 

suggested including combining measures of dietary intake with dietary biomarkers (205, 206). The 

latter could provide a new strategy for improving the methodology of future nutritional 

epidemiological studies, thereby determining potentially more accurate associations between 

diet and bone health. However, only a limited number of studies have used this method and no 

such studies have investigated bone health (206).  
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This thesis aimed to i) investigate associations between dietary intakes and blood measures of a 

number of micronutrients with bone density from heel ultrasound measurements and fracture 

risk at multiple sites in men and women from the EPIC-Norfolk study, and ii) explore means of 

limiting the impact of measurement error on diet-disease relationships using estimates of 

vitamin C intake and plasma status in association with heel ultrasound and fracture risk as an 

example. The main findings are summarised in Figure 9.1 and are discussed in more detail in the 

following sections. 
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Table 9.1: Summary of main research findings. 

 Men  Women 

 
Heel 

ultrasound  

Fractures  Heel 
ultrasound 

Fractures 

 Total Hip Spine Wrist  Total Hip Spine Wrist 

Fruit and vegetable intake 
 

 
+
   

+    

Fruit intake 
 

 
+
   

+   
+
 

Vegetable intake 
+ 

    
+    

Vitamin K1 intake 
+ 

    
+   

+
 

Vitamin C intake (diet) 
+ 

+    
+    

Vitamin C intake (total) 
+
 

+
   

+
 

+
    

Plasma vitamin C  
+ 

+ 
+      

Iron intake (diet)      
+ 

+  
+
 

Iron intake (plant-based)      
+
    

Iron intake (animal-based)   ¯      
+
 

Iron intake (animal ratio)  ¯ ¯       

Serum ferritin         
+
 

The table shows the associations between a number of nutrient intakes and biomarkers with heel ultrasound (cross-sectional study) and 
fracture risk at multiple sites (prospective study). Dietary factors were significantly associated with higher heel ultrasound or reduced 

fracture risk (+), significantly associated with a higher fracture risk (¯) or not associated with heel ultrasound or fracture risk ().
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9.1.1 Diet and heel ultrasound 

Following the adjustment for relevant confounding factors, the results from the present cross-

sectional studies suggest that higher dietary intakes of vitamin K1 and vitamin C were significant 

predictors of higher VOS in men, with an effect size of 0.6% between the upper quintiles 

referent to the lowest quintile of intake for both nutrients, which is slightly smaller compared to 

the effect sizes of vegetable intake in men in this cohort (0.7%). Similarly in women, higher 

dietary intakes of vitamin K1, vitamin C and iron, especially plant-based iron, were significantly 

associated with higher BUA. The scale of these associations between the upper and the lowest 

quintile in women was 3.2-5.8%, with the highest magnitude observed for plant iron intake, and 

this was also smaller compared to the associations with fruit and vegetable intake (5.1-7.3%) in 

women in this cohort. In contrast, serum ferritin concentrations as an indicator of body iron 

stores were not associated with heel ultrasound in women; and neither dietary iron intake nor 

iron status was a significant predictor of heel ultrasound in men. Moreover, there were no 

associations with plasma vitamin C concentrations in either sex.  

Percentage differences in VOS were much smaller than those of BUA in the present 

study, possibly due to the scale differences between these two bone parameters. However, one 

previous study has shown that their relative fracture risk implications are very similar (66). 

Interestingly, where significant associations were found in the present study, dietary intakes and 

nutrient status measurements were almost consistently associated with VOS in men and BUA in 

women. Only plant-based iron showed a significant positive association with both measures of 

heel ultrasound in women. Potential reasons for this apparent sex difference are currently not 

known. However, there is evidence regarding the independent heritability of the two bone 

parameters (77), and they have also been shown to be independently associated with 

osteoporotic fractures (21, 69, 70). These hereditary properties may have affected the present cross-

sectional associations between nutrient intakes and status with bone health, resulting in 

differing findings between BUA and VOS. To date, bone heritability has not been studied to a 

great extent and genetic factors have not been accounted for in most epidemiological studies as 

they are mostly unknown. Future research should address this as the determination of 

heritability-independent relationships between diet and bone health is crucial in our 

understanding of the role of diet in osteoporosis and fracture prevention. 

To date, most epidemiological studies have used DXA scans, as it is the gold standard for 

measuring bone density (60), but only a limited number of studies have investigated associations  

between diet and ultrasound measurements (156, 290, 351). Hence, understanding the implications 

of our findings is difficult, as previous data is scarce. Nevertheless, we were able to compare the 

effects of diet on heel ultrasound with those of age in our study by comparing the effect sizes of 

the extreme quintiles of nutrient intakes with a 10-year increase in age. Increasing age is a risk 

factor for developing both osteoporosis and fractures and it is one of the largest predictors of 
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low bone density (30, 31). In women, the effect of diet on heel ultrasound in comparison to a 10-

year change in age was similar, with the scale of the association for age being around two times 

greater than diet for BUA. In contrast to women, the effect of diet on heel ultrasound was only 

small in men, with the scale of the association for age being approximately 14 times larger than 

diet for VOS. However, dietary behaviour is modifiable; whereas ageing is not. Moreover, in both 

men and women, the differences between extreme quintiles of all nutrient intakes, which 

showed significant positive associations with heel ultrasound, are achievable through the usual 

diet (145, 214, 350). Therefore, the findings from this thesis suggest that diet may be crucial to 

preserving higher levels of bone density in older people, especially in women; and dietary 

behaviour modification may be an important and feasible strategy for the prevention of 

osteoporosis.  

 

9.1.2 Diet and fracture risk 

The results from the present prospective studies showed that, following multivariate 

adjustment, higher dietary vitamin C intake was a significant predictor of 48% lower total 

fracture risk (hip, spine and wrist fractures combined) in men in the upper compared to the 

lowest quintile of intake after the median 12.6-year follow-up. In comparison to fruit and 

vegetable intake in men in this cohort (fruit intake: HR 0.31, 95%CI 0.15-0.65; F&V intake: HR 

0.43, 95%CI 0.22-0.87), the effect size for vitamin C intake was smaller. Moreover, in men, 

plasma concentrations of vitamin C were an even stronger predictor of lower fracture risk than 

dietary intake, with a magnitude of effect between the upper and the lowest quintile of 74% at 

the spine, 65% at the hip and 52% for total fractures. In contrast, in men, the highest compared 

to the lowest intake of animal iron and the highest ratio of animal iron as a percentage of total 

dietary iron intake were significantly associated with higher hip fracture risk (HR 2.29, 95%CI 

1.11-4.73; and HR 2.61, 95%CI 1.25-5.45, respectively). There were no associations between 

dietary vitamin K1 intakes and serum ferritin concentrations with fracture risk in men. Higher 

dietary intakes and plasma concentrations of vitamin C may represent a higher consumption of 

fruit and vegetables; whereas a higher intake of animal iron may be indicative of a less healthy 

dietary pattern characterised by a high consumption of animal foods such as red meats at the 

expense of plant-based foods such as fruit and vegetables. In previous epidemiological studies, 

lower dietary intakes of fruit and vegetables were associated with lower BMD (90, 131, 416), and this 

may explain why fracture risk was increased in men with a higher animal iron intake, whereas it 

was lower in men with higher vitamin C intake and plasma status. In women, vitamin K1 and 

vitamin C were not associated with fracture risk in the present prospective investigations. 

However, higher compared to the lowest dietary intake of iron was a significant predictor of up 

to 59% lower spine fracture risk and 35% lower total fracture risk. When iron intake was 

investigated by food source, we found a 56% reduction in spine fracture risk in women with the 
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highest compared to the lowest intakes of iron from animal sources. Moreover, serum ferritin as 

an indicator of body iron stores was a significant predictor of up to 70% lower spine fracture risk 

in women in the upper compared to the lowest quintiles. A higher intake of animal iron in 

women may be a reflection of the higher bioavailability of animal-based haem iron (188-192), which 

may be associated with more adequate iron stores. Hence, in women, high intakes of the more 

bioavailable iron from animal sources may play a role in fracture prevention. 

  A potential reason for the present sex-specific findings may be the smaller number of 

fracture events in men, which is consistent with the published literature (22). Men have a lower 

prevalence of fractures than women after the age of 50 years (103), partly due to a higher amount 

of bone tissue and a shorter life span. In this case-cohort sample of EPIC-Norfolk participants, 

12% of men had a fracture compared to 21% of women (P<0.001). The present investigations are 

likely to have had greater power to detect potential associations between diet and fracture risk 

in women, and we hypothesise that we may have found more significant relationships in a larger 

number of cases in men. Nevertheless, our prospective investigations of fracture risk were based 

on a case-cohort design, which addressed some of the limitations of the present dataset 

including the smaller prevalence of fractures in men and the unavailability of data from the full 

EPIC-Norfolk cohort (447). 

 

9.1.3 Measurement error in dietary assessments 

Assuming there is a positive relationship between vitamin C and bone health, we investigated 

whether the addition of a biomarker to an intake estimate may improve the detection and 

strength of the diet-disease association. The results from this study showed that combining 

dietary intake and plasma estimates of vitamin C using different dietary assessment methods 

compared to single measures strengthened the associations between vitamin C with both heel 

ultrasound and fracture risk in men, but not in women. For example, in men, associations 

between vitamin C and heel ultrasound were non-significant when using single measures, 

independent of the assessment method used. Although the associations remained non-

significant, the combination of different measurements slightly improved the associations. For 

example, in comparison to the association between quartiles of plasma vitamin C and VOS in 

men (β±SE 0.012±0.032 m/s per quartile, P-trend=0.70), the combination of intake and blood 

measurements increased the β-coefficient to 0.050±0.032 m/s per quartile (P-trend=0.12) for 

7dDD+plasma and to 0.016±0.031 m/s per quartile (P-trend=0.62) for 7dDD+FFQ+plasma. When 

we investigated the associations in a small sub-sample of participants who had additional data 

for DXA measurements at the hip, we found no significant associations between any of the 

vitamin C measures, neither as single measures nor as their respective combinations, and both 

heel ultrasound measurements and DXA, possibly due to the small sample size (n=151). 

However, in our prospective associations in men, most single or combinations of measures of 
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vitamin C showed significant inverse associations with fracture risk, and the strongest 

association was found for the combination of an intake measure with a blood concentration 

measure. For example, the association between plasma vitamin C and total fracture risk had a 

HR of 0.86 (95%CI 0.74-0.99, P=0.041); whereas the HR was 0.83 (95%CI 0.72-0.96, P=0.012) for 

the combination of 7dDD+plasma and 0.83 (95%CI 0.73-0.96, P=0.010) for FFQ+plasma. 

 The present investigations were based on the assumption that vitamin C intake and 

plasma concentrations are positively associated with bone density and inversely associated with 

the risk of fractures, and this was based on the biological importance of vitamin C in bone 

collagen synthesis (7-10). However, previous epidemiological studies have shown inconsistent 

results on vitamin C and bone health, with studies reporting both significant and non-significant 

findings (91, 124, 133, 167, 169, 230, 341, 342, 344, 345). A potential reason for these inconsistencies in previous 

study outcomes may be the use of different dietary assessment methods to estimate vitamin C 

intake as sources of error and bias differ between the different methods (195). The interpretation 

of our findings is thus limited as the assumptions we made prior to our analyses were not 

confirmed in all previous studies.  

 

9.2 Overview of strengths and limitations 

The present investigations had a number of strengths and limitations. The inclusion of both men 

and women in the study design addressed previous limitations regarding the scarcity of data on 

diet and bone health in men (155, 157, 158, 168, 182, 184, 185, 409). Moreover, the EPIC-Norfolk cohort 

provided more evidence for diet-bone associations in British populations, where data availability 

is also limited (154, 168, 186). However, the cohort comprised almost exclusively of Caucasian 

participants, and thus future epidemiological studies in British populations should include a 

greater ethnic diversity. Another strength of the present studies was that they addressed 

previous limitations regarding small sample sizes (142, 156, 158, 168, 181, 183, 186, 405-408), with the present 

studies comprising of up to 5011 men and women. The present investigations were based on a 

sub-sample of the EPIC-Norfolk study as data from the whole cohort (n=25,639) were not 

available for analysis. However, as this was a random sample, this should not have affected the 

present findings. As shown in the post-hoc sample size calculations, significant associations 

between vitamin K1 intake and heel ultrasound reached statistical significance despite the 

quintile sample sizes being smaller than the estimated required sample sizes, indicating the 

robustness of these associations. This may also apply to the associations between dietary intakes 

and blood markers of vitamin C and iron which were based on similar sample sizes. Nonetheless, 

the post-hoc sample size calculations revealed that non-significant findings of the present 

studies may have been a result of too small participant numbers which were not large enough to 

detect smaller effect sizes between upper and lower quintiles. 
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The present studies investigated both cross-sectional and prospective associations in the 

same population using different bone health measures, including heel ultrasound and fracture 

risk, in contrast to most previous studies which investigated only one of these parameters per 

population (133, 154, 159, 182, 186, 341, 405). This allowed us to explore the associations between diet and 

bone health with both short-term and long-term bone health measures in this population. 

However, a limitation was the observational nature of the present investigations which cannot 

infer causality. Moreover, although multivariate adjustment models were applied in the 

analyses, a number of other relevant confounders previously associated with bone health, 

including sunlight exposure (295), were not measured as part of the EPIC-Norfolk study. 

Furthermore, residual confounding may have occurred despite the adjustment for covariates 

and may have resulted in bias in exposure effect estimates. 

Another strength was that the EPIC-Norfolk study used 7dDD taken at baseline to 

estimate habitual dietary and supplemental intakes, and data from these were available in the 

present studies. The dietary analysis was based on more than 11,000 food items and almost 600 

portions  (DINER) (212), a previously published vitamin K1 database (214), which had been 

developed further to include predominantly British food items (160, 215), and a vitamin and mineral 

supplement database (ViMiS) (213). Previous validation studies on this cohort have shown that the 

estimated 7dDDs were most comparable to weighed food records for the majority of nutrients 

(202, 204). For example, vitamin C intake estimated from a weighed food record correlated better 

with intake measured from the 7dDD (r=0.70) compared to the FFQ and the self-reported 24-h 

recall (both r=0.54). 7dDDs provide a relatively accurate indication of usual intake due to the 

nature of keeping a diary (195). Moreover, as food and drinks are recorded as they are being 

consumed, the reliance on long-term memory is not an issue. 

Despite their practicality and non-invasiveness, written dietary assessment methods  

including the 7dDD are likely to be subjective and prone to human recall error (170). In contrast, 

biological markers of nutrient status account for factors such as length of storage of food items, 

cooking practises and variations in individual nutrient bioavailability which may influence actual 

intakes (207). Therefore, another strength of the present investigations was the availability of 

nutrient status data for vitamin C (plasma vitamin C) and iron (serum ferritin) which had been 

measured in EPIC-Norfolk participants at baseline. However, it must be noted that any nutrient 

status may be influenced by a number of biological, environmental and dietary factors. For 

example, factors that have previously been shown to affect plasma vitamin C concentrations 

include age, sex, BMI, body fat distribution, fat-free mass, smoking and infection (227, 302-306).. 

Moreover, serum ferritin concentrations are dependent on factors including age, sex, body fat 

distribution and current iron stores (357, 372, 374, 375, 412-414). Thus, neither written dietary assessment 

methods nor biological markers of nutrient status give an exact account of actual dietary intake; 
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however, the availability of both dietary measures in the present investigations allowed us to 

explore the diet-bone relationships from a broader perspective. 

Another limitation of the present studies was that bone density was measured using 

ultrasound at the heel bone, which is a less precise method for determining bone density than 

DXA (60). However, in the EPIC-Norfolk study, ultrasound was chosen as a non-radiative 

alternative method which is faster, cheaper and more portable than DXA (62). Moreover, 

ultrasound has previously been shown to be capable of distinguishing bone densities of subjects 

with and without osteoporosis (67), and correlations between ultrasound and relevant 

confounders of bone density were comparable to those with DXA measurements (85). As 

epidemiological studies using ultrasound measurements are scarce  (156, 290), we were unable to 

compare some of our findings to those of previous studies, and thus the present investigations 

have provided a great amount of novel data, especially regarding effect sizes, for this bone 

density measurement.   

Another limitation was the time difference between measurements in the cross-

sectional study. The dietary intake estimated from the 7dDD and nutrient status measured in 

blood were taken at baseline, whereas the heel ultrasound measurements were performed as 

part of the second health examination. However, 7dDDs estimate habitual dietary intake which 

is likely to still be representative of intake at the time the ultrasound measurements were 

performed. Moreover, the rate of age-related bone loss is only small, and thus the time 

difference between these measurements of three years at most is unlikely to have had a 

significant impact on the present findings.  

In the present investigations, the fracture data had been obtained from hospital 

admissions which are most likely underestimated for spine fractures due to a large absence in 

their clinical attention and radiologic detection (168, 293, 294). This may have reduced the power of 

the present studies to detect the associations between nutrient intake or status and spine 

fracture risk, and we hypothesise that we may have had more consistent findings if we had been 

able to account for the underestimation of spine fractures. 

 

9.3 Public health implications and future research directions 

Current UK public health recommendations for the prevention of osteoporosis and fractures 

were recently updated (2) but are still limited as the underlying mechanisms of osteoporosis are 

still not fully understood (1). Within these guidelines, diet-specific recommendations focus on 

dietary calcium intake, the use of calcium and vitamin D supplements and reduced alcohol 

consumption, although no specific recommendations were proposed (2). However, the present 

findings have highlighted that a number of micronutrients, including vitamin K1, vitamin C and 

iron, may have small but important protective effects for bone health, but further studies are 
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needed before these nutrients may be included in future public health guidelines for the 

prevention of osteoporosis and fractures. Nevertheless, this thesis addressed some previous 

limitations of observational studies with regards to a scarcity of data in men, in British 

populations, biomarkers of nutrient status and fracture risk. Although the present investigations 

found significant associations between vitamin K1 intake and heel ultrasound in both men and 

women, there were no associations with fracture risk. Moreover, there is already a large body of 

evidence from RCTs on the effects of vitamin K1 supplementation on bone health (152, 270, 274-278). 

However, the present epidemiological investigations of dietary intakes and nutrient status of 

vitamin C and iron have provided more novel data, as these nutrients have been much less 

investigated in association with bone health. We found that vitamin C was a predictor of bone 

health predominantly in men and iron in women, with significant associations between vitamin C 

intake and heel ultrasound in both sexes, plasma vitamin C and fracture risk in men, iron intake 

and heel ultrasound in women, and both iron intake and serum ferritin with fracture risk in 

women. Moreover, we also found that the food source of iron played an important role in these 

associations. To ensure long-term bone health, our findings suggest that men should ensure 

adequate dietary intakes of vitamin C-rich foods such as citrus fruits and berries, whilst reducing 

their consumption of meat and meat products; whereas women should ensure adequate dietary 

intakes of iron-rich foods, especially from the more bioavailable animal sources such as red 

meat. Our preliminary investigations also highlighted that fruit and vegetable intake was a 

significant predictor of bone health in both men and women, suggesting that people should aim 

to follow the current international guideline of consuming at least five portions of fruit and 

vegetables every day (228) to ensure long-term bone health. 

 In terms of future work, it would be interesting to explore the potential of a synergistic 

relationship between vitamin C and iron in bone health, as the nutrients share a common 

mechanism in bone collagen synthesis (7-10). It is well known that vitamin C and iron interact 

during the intestinal absorption of iron. However, nutrient interactions beyond these, such as in 

bone collagen synthesis, have not yet been explored. In hydroxylation reactions within bone 

collagen fibres, iron undergoes a cyclic oxidation and reduction which is driven by vitamin C as 

the reductant. The subsequent formation of covalent bonds between adjacent collagen fibres 

leads to stronger collagen cross-links, thus increasing overall collagen strength (136). This may 

suggest that, apart from their different underlying mechanisms in bone, vitamin C and iron may 

also have synergistic properties which relate to the synthesis of bone collagen. However, to 

date, evidence is limited to the independent requirements of either nutrient in the hydroxylation 

reactions, and studies investigating potential interactions between vitamin C and iron in bone 

collagen synthesis are completely lacking. Future studies investigating this may be of 

observational nature and could explore whether measures of bone density are higher in people 

with high dietary intakes or nutrient status of both nutrients. Moreover, future studies may also 
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investigate this in intervention studies, looking at the effects of iron and vitamin C intake on 

bone collagen-specific biomarkers such as PINP, to explore whether the combination of the 

nutrients may improve such markers.  

 This thesis also explored whether combining a dietary intake estimate with a biomarker 

of nutrient status would improve the diet-disease association at the example of vitamin C and 

bone health. The present findings showed that the combined measures resulted in improved 

associations in men, but not in women. To the best of my knowledge, no studies have explored 

the combined use of dietary intake and nutrient status at the example of iron, and hence we do 

not know whether the findings would be comparable to our investigations of vitamin C. 

However, future studies aiming to explore potential synergistic relationships of vitamin C and 

iron in bone collagen synthesis may still consider measuring both dietary intakes and nutrient 

status of both nutrients, and combining vitamin C intake with plasma/serum vitamin C and iron 

intake with a marker of body iron stores such as serum ferritin. As we found some 

improvements in the diet-disease associations when combining vitamin C intake with plasma 

status, we think that this approach may also be useful in the detection of potential synergistic 

associations between vitamin C and iron in bone health. 

  

In conclusion, this thesis has contributed to the current literature on dietary factors in 

osteoporosis and fracture prevention by providing novel epidemiological insights into the 

associations between dietary intakes and nutrient status (where available) of vitamin K1, vitamin 

C and iron from different food sources with heel ultrasound measures and fracture risk at 

multiple sites in men and women from the EPIC-Norfolk cohort. However, further investigations 

are warranted, especially with regards to exploring potential synergistic effects of vitamin C and 

iron in bone collagen synthesis. Combining estimates of dietary intake with biomarkers of 

nutrient status may be a useful approach in detecting such associations in future studies. 
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Table A1.1: Intervention studies on vitamin K1 and bone health included in the meta-analysis by Fang et al. (2012). 

Study 
Duration; 
study design 

Subjects Age (yrs) Intervention 
Primary 
outcome 

Results* Comments 

Braam 
(153)

 
2003 
Netherlands 

36 months; 
double-blind 
RCT 
 

n: 155 
(women) 

55 ± 3 
(50 – 60) 

3 groups:  
Placebo group (n=60): maltodextrin; 
Suppl. group (n=58): 500mg calcium, 

150mg magnesium, 10mg zinc and 
8µg vitamin D; 

K1 group (n=63): same as suppl. group 
and 1mg phytonadione 

 

FN, LS BMD  
 
 
 
BSALP, OC 

M 
 
 
 

NS 

Women receiving K1 had 1.7% and 1.3% less FN BMD loss than those taking 
the placebo or the supplement without vitamin K1, respectively. No effects 
of vitamin K1 supplementation on LS BMD.  
 
No effects of vitamin K1 supplementation on bone markers. 

Braam 
(279)

 
2003 
Netherlands 

29 months;  
double-blind 
RCT 
 
 

n: 115 
(women)  
(endurance 
athletes) 

NR  
(15-50) 
 

2 groups: 
Placebo group (n=56): corn starch grain; 
K1 group (n=59): 10mg K1 

FN, LS BMD  
 
BSALP, OC, 
DPD 

NS 
 

M 

No effects of vitamin K1 supplementation on BMD. 
 
In the K1 group, OC and DPD decreased by 5.6% and 2%, respectively, and 
this was significantly different from the placebo group (P<0.05). No 
significant effects on BSALP levels. 
  

Cheung 
(280)

 
2008  
Canada 

24 months; 
double-blind 
RCT 
 

n: 440 
(women) 
(osteopenic) 

59 ± NR 
(40-82) 

2 groups (receiving unspecified doses of 
calcium and vitamin D): 

Placebo group (n=202): not specified; 
K1 group (n=198): 5mg K1 
 

TH, FN, LS, 
UDR BMD 
 
OC, CTx 
 

NS 
 
 

M 

No effects of vitamin K1 supplementation on BMD. 
 
 
OC levels decreased by 16% from baseline in the K1 group and this was 
significantly different from the placebo group (P<0.001). CTx levels did not 
differ between the groups. 
 

Shea 
(272)

 
2008  
UK 

36 months; 
double-blind 
RCT 

n: 379 
(157 men; 
222 women) 
 

68 ± 6 
(60-81) 

2 groups (receiving 600mg calcium and 
10µg vitamin D): 

Placebo group (n=190): multivitamin 
formulation;  

K1 group (n=189): same as placebo 
group + 500µg phylloquinone 

 

FN, LS, WB 
BMD 
 
OC, %ucOC 
 

NS 
 
 

M 

No effects of vitamin K1 supplementation on BMD. 
 
 
%ucOC decreased by 47% in the K1 group; whereas it increased by 5% in 
the placebo group (P<0.001). No significant effects on OC levels. 

Volpe 
(273)

 
2008 
US 

6 months; 
double-blind 
RCT 

n: 21 
(women) 

36 ± 9 
(25-50) 

2 groups: 
Placebo group (n=10): not specified; 
K1 group (n=11): 600µg phylloquinone 
 

FN, WT, GT, 
LS, RS BMD 
 
OC, NTx 

NS 
 
 

M 

No effects of vitamin K1 supplementation on BMD. 
 
 
NTx levels increased by around 165% in the K1 group and this was 
significantly different from the 12% change in the placebo group. No 
significant differences in OC levels.  

Reference: Fang et al. (2012) (270). 
Abbreviations: TH, total hip; FN, femoral neck; GT, greater trochanter; WT, Ward’s triangle; LS, lumbar spine; UDR, ultradistal radius; RS, radial shaft; WB, whole body; BSALP, bone-

specific alkaline phosphatase; OC, osteocalcin; %ucOC, undercarboxylated osteocalcin as a percentage of total osteocalcin; CTx, collagen type 1 cross-linked C-telopeptide; NTx, 
collagen type 1 cross-linked N-telopeptide; DPD, deoxypyridinoline. 

* Results were significant (S), non-significant (NS) or of mixed nature (M).
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Table A1.2: Further intervention studies on vitamin K1 and bone health. 

Study 
Duration; 
study design 

Subjects Age (yrs) Intervention Primary outcome Results* Comments 

Kruger 
(277)

 
2006 
New Zealand/ 
UK 

4 months; 
single-blind 
RCT 
 

n: 82 
(women) 

27 ± 5 
(20-35) 
 

3 groups: 
Control group (n=26): no treatment; 
Calcium group (n=26): 1000mg calcium-

enriched milk with 5µg vitamin D3; 
K1 group (n=26): same as calcium group 

+ 80µg phylloquinone 
 

OC, ucOC, CTx, 
PINP 

S ucOC decreased significantly by around 50% compared to baseline in K1 
group (P<0.05); in contrast to the placebo group. OC, PINP and CTx levels 
decreased by more than 15%, 15% and 30% respectively from baseline in 
both treatment groups, and values were significantly different from the 
placebo group (P<0.05).   
 

Bolton-Smith 
(275)

 
2007 
UK 

24 months; 
double-blind 
RCT 
 

n: 209 
(women) 

68 ± 6 
(60+) 

4 groups: 
Placebo group (n=56): not specified; 
K1 group (n=54): 200µg K1; 
Ca+D group (n=50): 1000mg calcium 

carbonate + 10µg vitamin D3; 
Ca+D+K1 group (n=49): same as Ca+D 

group + 200µg K1 

FN, T, WT, MDR, 
UDR BMD and 
BMC  
 
 
BSALP, ucOC,  
%ucOC, NTx 

NS 
 
 
 
 

M 

No significant differences in BMD and BMC between groups at any bone 
site. Nevertheless, BMD and BMC increased from baseline by 
approximately 5-6 mg/cm

2
 and 20 mg respectively in the Ca+D+K1 group 

(P<0.05) but not in the other groups.  
 
ucOC levels decreased by 31% and 45% and %ucOC decreased by 48% and 
54% for the the K1 group and the Ca+D+K1 group respectively compared to 
baseline levels (P<0.001); whereas ucOC levels increased by up to 69% in 
the placebo group and the Ca+D group (P<0.001). No significant differences 
in BSALP and NTx between groups.  
 

Bügel 
(276)

 
2007 
Denmark/ 
Netherlands/ 
Ireland 

3x 1.5 months; 
double-blind 
cross-over RCT 
 

n: 31 
(women) 

63 ± 4 
(NR) 

3 cross-over treatments (subjects also 
received 10µg vitamin D3): 

Control: no treatment; 
Low K1: 200µg phylloquinone; 
High K1: 500µg phylloquinone 
 

BSALP, OC, ucOC, 
NTx, PYR, DPD 

M In comparison to the control group, ucOC levels decreased by around 40% 
and 68% with 200 and 500 µg vitamin K1, respectively (P<0.001). The 500 g 
K1 supplementation also resulted in approximately 15% higher OC levels 
compared to the control (P<0.05). No significant effects on any other bone 
turnover marker.  

Booth 
(278)

 
2008 
US 

36 months; 
double-blind 
RCT 
 

n: 401 
(164 men, 
237 women) 

69 ± 6 
(60-80) 
 

2 groups (receiving 600mg calcium 
carbonate and 10µg vitamin D3): 

Control group (n=223): unspecified 
multivitamin  

K1 group (n=229): same as control 
group + 500µg phylloquinone 

 

FN, LS, WB BMD 
 
 
OC, %ucOC, NTx 

NS 
 
 

M 

No significant differences in BMD changes between groups at any bone 
site. 
 
The K1 group had 44-52% lower %ucOC levels compared to baseline 
(P<0.001); whereas there were no changes in the control group. No 
significant effects on serum NTX and OC. 

Binkley 
(274)

 
2009 
US 

12 months; 
double-blind 
RCT 
 

n: 329 
(women) 

62 ± 1 
(NR) 

3 groups (receiving 315mg calcium and 
5µg vitamin D3): 

Control group (n=115): 1x placebo 
phylloquinone + 3x placebo MK4; 

K1 group (n=108): 1mg phylloquinone + 
3x placebo MK4; 

K2 group (n=106): 1x  placebo 
phylloquinone + 3x 15mg MK4 

 

TH, LS BMD  
 
BUA, SOS  
 
BSALP, OC, ucOC , 
NTx 

NS 
 

NS 
 

M 

No effects of vitamin K1 supplementation on BMD at any site. 
 
No effects of vitamin K1 supplementation on BUA or SOS. 
 
The percentage difference between the K1 group and the control group 
following the intervention was -8% for OC and 61% for ucOC (P≤0.005). No 
significant effects on BSALP and NTX. 
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Table A1.2: (continued) 

Study 
Duration; 
study design 

Subjects Age (yrs) Intervention Primary outcome Results* Comments 

Kanellakis 
(152)

 
2012 
Greece/ 
Netherlands 

12 months; 
RCT 
 

n: 115 
(women)      

62 ± 6 
(54-73) 

4 groups (treatment given in form of 
dairy foods): 

Control group (n=39): no treatment; 
Ca+D group (n=26): 800mg calcium + 

10µg vitamin D3; 
K1 group (n=26): Same as Ca+D group + 

100µg phylloquinone; 
K2 group (n=24): Same as Ca+D group + 

100µg menaquinone-7 

TH, FN, T, iT, WT, 
LS, WB, pelvis, 
leg, arm BMD 
 
 
 
 
OC, %ucOC, PYR, 
DPD 

M 
 
 
 
 
 
 

M 

The Ca+D group, K1 group and K2 group had significantly higher WB BMD 
(2.1%, 1.1% and 1.1% respectively) compared to baseline (P<0.05), and this 
was significantly different from the control group (-0.1%, P=0.001). Changes 
in LS BMD also differed significantly in the K1 group (1.35%) and the K2 
group (0.5%) compared to the control group (-2.9%; P=0.001). No 
significant differences at other BMD sites. 
 
%ucOC levels in the K1 group and K2 group reduced from 40.8% and 47% at 
baseline to 27.5% and 23.4% at 12 months; whereas %ucOC levels 
increased in the Ca+D group and the control group (P<0.001). DPD was also 
borderline significantly lower in the K1 group (9.9%) and K2 group (9.8%) 
compared to the Ca+D group (12.6%) and the control group (11.1%; 
P=0.047). No significant differences for other bone markers between 
groups. 

Abbreviations: TH, total hip; FN, femoral neck; T, trochanter; iT, intertrochanter; WT, Ward’s triangle; LS, lumbar spine; MDR, mid-distal radius; UDR, ultradistal radius; WB, whole body; 
SOS, speed of sound; BSALP, bone-specific alkaline phosphatase; OC, osteocalcin; ucOC, undercarboxylated osteocalcin; CTx, collagen type 1 cross-linked C-telopeptide; NTx, collagen 
type 1 cross-linked N-telopeptide; PINP, procollagen type I N-terminal propeptide; PYR, pyridinoline; DPD, deoxypyridinoline; MK4, menatetrenone. 

* Results were significant (S), non-significant (NS) or of mixed nature (M).
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Table A1.3: Prospective studies on vitamin K1 and bone health. 

Study 
Follow-
up 

Subjects Age (yrs) 
Dietary 
assessment 

Mean ± SD (range) vitamin K1 intake 
or blood levels 

Outcome measures 
and analyses 

Results* Comments 

Szulc 
(236)

 
1996 
France 

3 yrs 
 

n: 183  
(women) 
(n=30 with 
fracture (F); 
n=153 without 
fracture (NF)) 

86 ± 7 (F) 
83 ± 6 (NF) 
 (70-97) 

N/A OC levels: 
F = 7.9±4.3 ng/ml ; NF = 6.2±3.3 ng/ml 
ucOC levels: 
F = 1.5±1.7 ng/ml ; NF = 0.9±0.9 ng/ml 
ALP levels: 
F = 92±40 IU/l; NF = 78±37 IU/l 
 

Risk of hip fracture 
by OC, ucOC and 
ALP levels 

Status: S Women who sustained a hip fracture during the 3-year follow-
up had significantly higher serum OC (27%), ucOC (67%) and 
ALP levels (18%) than those without a fracture (P<0.05). 

Feskanich 
(159)

 
1999 
US    
 

10 yrs n: 72,327 
(women) 
 

51 ± 7 
(38-63) 

FFQ Dietary intake: 
Median = 163 µg/d 
Quintile 1 < 109 µg/d 
Quintile 2 = 109-145 µg/d 
Quintile 3 = 146-183 µg/d 
Quintile 4 = 184-242 µg/d 
Quintile 5 > 242 µg/d 
 

Risk of hip fracture 
by quintiles of 
vitamin K1 intake 
 

Diet: S When quintiles 2-5 were combined, women in the upper 
quintiles had a reduced risk of a hip fracture compared to 
those in quintile 1 (RR 0.70, 95%CI 0.53-0.93).  

Booth 
(158)

 
2000 
US 

7 yrs n: 888 
(335 men; 
553 women) 
 

75 ± 5 
(68-94) 

FFQ Dietary intake: 
Men = 143±97 µg/d 
Women = 163±115 µg/d 
Quartile 1 = 56 µg/d (median) 
Quartile 2 = 105 µg/d 
Quartile 3 = 156 µg/d 
Quartile 4 = 254 µg/d 
 

Change in hip, 
spine and radial 
BMD by quartiles of 
vitamin K1 intake  
 
Risk of hip fracture 
by quartiles of 
vitamin K1 intake 

Diet: NS 
 
 
 
 
Diet: S 

No significant associations between vitamin K1 intake and 
changes in BMD over 7 years in men and in women. 
 
 
 
In the combined sample, those in quartile 4 had a significantly 
reduced risk of hip fractures compared to quartile 1 (RR 0.35, 
95%CI 0.13-0.94), and higher vitamin K1 intakes were 
borderline significantly associated with lower hip fracture risk 
(P-trend=0.047). 
 

Rejnmark 
(281)

 
2006 
Denmark 

5 yrs n: 1139 – 1869 
(women) 

50 (median) 
(43-58) 

4dDD or 
7dDD 

Dietary intake at baseline: 
Quartile 1 <  46 µg/d 
Quartile 2 =  46-67 µg/d 
Quartile 3 =  67-105 µg/d 
Quartile 4 >  105 µg/d 
Lowest 5% of intake <24.5 µg/d 
Highest 5% of intake  >209 µg/d 
Intake at 5-year follow-up: 
Quartile 1 <  38 µg/d 
Quartile 2 =  38-60 µg/d 
Quartile 3 =  60-99 µg/d 
Quartile 4 >  99 µg/d 
Lowest 5% of intake <17 µg/d 
Highest 5% of intake  >214 µg/d 

Changes in FN and 
LS BMD by 
quartiles of vitamin 
K1 intake  
 
 
Changes in FN and 
LS BMD between 
lowest and highest 
5% of vitamin K1 
intake 

Diet: NS 
 
 
 
 
 
Diet: NS 

No significant associations between quartiles of vitamin K1 
intake and BMD between baseline and 5-yr follow-up 
(baseline intake) and between 5-yr and 10-yr follow-up (intake 
at 5-yr follow-up). 
 
 
No significant differences in changes in BMD over 5 years at 
either site between the extreme 5% of vitamin K1 intake.  
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Table A1.3: (continued) 

Study 
Follow-
up 

Subjects Age (yrs) 
Dietary 
assessment 

Mean ± SD (range) vitamin K1 intake 
or blood levels 

Outcome measures 
and analyses 

Results* Comments 

Tsugawa 
(284)

 
2008 
Japan 

3-4 yrs n: 379 
(women) 
 

63 ±11 
(30-88) 

N/A Plasma vitamin K1: 
1.58±1.2 ng/ml 
Low K1 group < 1.20 ng/ml 
High K1 group > 1.20 ng/ml 
ucOC levels:  
4.68±3.2 ng/ml 

Vertebral fracture 
incidence by 
plasma K1 or ucOC 
 
Relative risk of 
vertebral fractures 
in low and high 
plasma K1 groups 
 

Status: M 
 
 
 
Status: S 

Plasma K1 concentrations were significantly negatively 
associated with the incidence of vertebral fractures (β -0.244; 
P=0.007). No significant association with ucOC.  
 
The RR for vertebral fractures in the low K1 group was 3.58 
(95%CI 3.26-3.93) compared to the high K1 group. 

Apalset 
(157)

 
2011 
Norway    

10 yrs n: 2807 
(1238 men; 
1569 women) 

72 ± 1 
(71-75) 
 

FFQ Dietary intake: 
Men: 
Quartile 1 <  52.9 µg/d 
Quartile 2 =  52.9-77.4 µg/d 
Quartile 3 =  77.4-113.9 µg/d 
Quartile 4 >  113.9 µg/d 
Women: 
Quartile 1 <  42.2 µg/d 
Quartile 2 =  42.2-66.7 µg/d 
Quartile 3 =  66.8-108.6 µg/d 
Quartile 4 >  108.7 µg/d 
 

Risk of hip fracture 
stratified by 10 
µg/d increments in 
vitamin K1 intake 
 
Risk of hip fracture 
by quartiles of 
vitamin K1 intake  

Diet: S 
 
 
 
 
Diet: S 

Every 10 µg/d increment in dietary vitamin K1 intake was 
borderline significantly associated with a 2% reduction in hip 
fracture risk (HR 0.98, 95%CI 0.95-1.00; P=0.030). 
 
 
In the combined sample, the risk for hip fracture was higher 
for those in quartiles 1 and 2 compared to quartile 4 
(quartile1: HR 1.63, 95%CI 1.06-2.49; quartile 2: HR 1.21, 
95%CI 0.82-1.80; P-trend=0.015). 

Bullo 
(156)

 
2011 
Spain  
 

2 yrs n: 200 
(men; women, 
n not reported) 

67 ± 6 
(55-80) 

FFQ Dietary intake: 
Men = 333.6±17.3 µg/d 
Women = 299.8±11.6 µg/d 
 

Change in BUA and 
SOS by change in 
vitamin K1 intake 
 

Diet: NS No significant differences in changes in BUA/SOS during 
follow-up between subjects who either increased or 
decreased their dietary vitamin K1 intake during the follow-up.  

Chan 
(282)

 
2011 
Hong Kong 

 4 yrs n: 2217 
(1225 men; 
992 women) 

72 ± 5 
(65+) 

FFQ Dietary intake: 
Men = 248.0 µg/d (median); (161.8-
365.9 µg/d) 
Women = 242.9 µg/d (median); 
(169.1-343.5 µg/d) 
 

Hip and FN BMD 
loss by vitamin K1 
intake 

Diet: NS Vitamin K1 intake was not associated with hip and FN BMD 
loss after the 4-year follow-up. 

Chan 
(283)

 
2012 
Hong Kong 

6.9 yrs n: 2944 
(1605 men; 
1339 women) 

74 ± 5 
(NR) 

FFQ Dietary intake: 
Men: 240.9-266.7 µg/d (medians); 
(154.8-361.9 µg/d)† 
Women: 238.8-244.0 µg/d (medians); 
(161.9-407.9 µg/d)† 

Vitamin K1 intake in 
subjects with and 
without fracture 
 
Fracture risk by 
vitamin K1 intake 

Diet: NS 
 
 
 
Diet: NS 

Vitamin K1 intake did not differ between subjects with and 
without a hip or non-vertebral fracture. 
 
 
Vitamin K1 intake was not associated with hip and non-
vertebral fracture risk. 

Abbreviations: FN, femoral neck; LS, lumbar spine; ALP, alkaline phosphatase; OC, osteocalcin; ucOC, undercarboxylated osteocalcin; SOS, speed of sound. 
* Results were significant (S), non-significant (NS) or of mixed nature (M). 
† Vitamin K1 intake was reported separately for participants with and without hip fracture, and with and without vertebral fracture. 
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Table A1.4: Case-control studies vitamin K1 intake or status in osteoporosis and fracture patients. 

Study Subjects Age (yrs) 
Dietary 
assessment 

Mean ± SD or range vitamin K1 intake or 
blood levels 

Outcome measures and 
analyses 

Results* Comments 

Hodges 
(289)

 
1993 
France 

n: 51 hip fracture 
cases; 38 controls; 
(women) 
 

81 ± NR 
(NR) 

N/A Serum vitamin K1: 
CA = 0.34±0.3 ng/ml; CO = 0.59±0.5 ng/ml 

Serum vitamin K1 levels in 
age-matched cases and 
controls 

Status: S Cases had significantly lower serum vitamin K1 levels 
(42%) than controls (P<0.01). 

 

Kanai 
(288)

 
1997 
Japan 

n: 19 low BMD cases; 
52 controls; 
(women) 
 

54 ± 6 
(NR) 

N/A Serum vitamin K1: 
CA = 0.41±0.2  ng/ml; CO = 0.64±0.4 ng/ml 

Serum vitamin K1 levels in 
cases and controls 

Status: S Cases had significantly lower serum vitamin K1 levels 
(36%) than controls (P<0.05). 

 

Vergnaud 
(235)

 
1997 
France/ 
Japan 

n: 104 hip fracture 
cases; 255 controls; 
(women) 

82 ± 4 
(75+) 

N/A Serum OC: 
CA = 28.0±12.5 ng/ml; CO = 27.5±11.2 ng/ml 
Serum ucOC (ELISA or HAP): 
CA = 6.7±4.8 ng/ml; CO = 5.8±4.1 ng/ml 
CA = 5.1±3.7 ng/ml; CO = 4.4±3.3 ng/ml 
%ucOC (HAP): 
CA = 17.0±7.5 %; CO = 15.1±6.8 % 
 

Serum OC, ucOC measured 
by two different techniques 
or %ucOC in cases and 
controls 

Status: M %ucOC was significantly higher in cases than in age-
matched controls (17.0±7.5 vs. 15.1±6.8, P=0.04). 
Serum OC and ucOC measured by either technique did 
not differ between cases and controls. 

Tamatani 
(287)

 
1998 
Japan 

n: 12 osteopenic 
cases; 15 controls; 
(men) 
 

74 ± 10 
(60-90) 

N/A Plasma vitamin K1: 
CA = 0.27±0.3 ng/ml; CO = 0.38±0.3 ng/ml 

Plasma vitamin K1 levels in 
cases and controls 

Status: S Cases had significantly lower plasma vitamin K1 levels 
(29%) than controls (P<0.05). 
 

Rejnmark 
(281)

 
2006 
Denmark 

n: 360 fracture cases; 
1140 controls; 
(women) 

50 (median) 
(48-52) 
 

4dDD or 
7dDD 

Vitamin K1 intake: 
CA = 66 µg/d; CO = 67 µg/d (median) 
Quartile 1 <  46 µg/d 
Quartile 2 =  46-67 µg/d 
Quartile 3 =  68-105 µg/d 
Quartile 4 >  105 µg/d 
Lowest 5% of intake <25 µg/d 
Highest 5% of intake >210 µg/d 
 

Differences in FN and LS 
BMD between cases and 
controls 
 
Fracture risk in cases and 
controls by quartiles of 
vitamin K1 intake 
 
Fracture risk in lowest and 
highest 5% of K1 intake 

Diet: S 
 
 
 
Diet: NS 
 
 
 
Diet: NS 

Cases compared to controls had significantly lower FN 
BMD (median: 0.758 vs. 0.795 g/cm

2
, P<0.001) and LS 

BMD (median: 0.981 vs. 1.033 g/cm
2
, P<0.001). 

 
No significant differences in the risk of fractures 
between cases and controls by vitamin K1 intake. 
 
 
No significant differences in the risk of fractures 
between cases and controls in the extreme 5% of 
vitamin K1 intake. 
 

Nakano 
(286)

 
2011 
Japan 

n: 99 hip fracture 
cases; 48 controls 
(40 men;  
 107 women) 
 

83 ± 8 
(NR) 

N/A Plasma vitamin K1 (men; women): 
CA = 0.31±0.2 ng/ml; CO = 0.55±0.3 ng/ml 
CA = 0.46±0.4 ng/ml; CO = 0.77±0.4 ng/ml 

Plasma vitamin K1 levels in 
cases and controls 

Status: S Cases had significantly lower plasma vitamin K1 levels 
than controls in both men (44%, P<0.05) and women 
(40%, P<0.01).  
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Table A1.4: (continued) 

Study Subjects Age (yrs) 
Dietary 
assessment 

Mean ± SD or range vitamin K1 intake or 
blood levels 

Outcome measures and 
analyses 

Results Comments 

Torbergson 
(285)

 
2014 
Norway 

n:111 hip fracture 
cases; 73 controls 
(53 men; 
131 women) 

83 ± 9 
(NR) 

N/A Serum vitamin K1: 
CA = 0.24±0.3 ng/ml; CO = 0.55±0.6 ng/ml 
ucOC levels: 
CA = 2.3±3.5 ng/ml; CO = 2.7±5.4 ng/ml 

Serum vitamin K1 levels and 
ucOC levels in cases and 
controls 
 
Hip fracture risk by serum 
vitamin K1 levels and ucOC 
levels 

Status: M 
 
 
 
Status: S 

Cases had significantly lower serum vitamin K1 levels 
(56%) than controls (P<0.001). No differences in ucOC 
between cases and controls. 
 
Low serum vitamin K1 levels were a significant 
predictor of hip fracture risk (OR 0.07, 95%CI 0.02-
0.32; P=0.001). No associations with ucOC. 

Abbreviations: CA, cases; CO, controls; FN, femoral neck; LS, lumbar spine; OC, osteocalcin; ucOC, undercarboxylated osteocalcin; %ucOC, undercarboxylated osteocalcin as a 
percentage of total osteocalcin. 

* Results were significant (S), non-significant (NS) or of mixed nature (M). 
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Table A1.5: Cross-sectional studies on vitamin K1 and bone health. 

Study Subjects Age (yrs) 
Dietary 
assessment 

Mean ± SD (range) vitamin K1 intake or 
blood levels 

Outcome measures and 
analyses 

Results* Comments 

Szulc 
(237)

 
1994 
France 

n: 98 
(women) 

81 ± 6 
(NR) 

N/A ucOC levels: 
Normal <1.65 ng/ml 
High > 1.65 ng/ml 

Hip BMD (FN, T, iT, WT) in 
women with normal and 
high ucOC levels 

Status: M Women with elevated compared to normal ucOC levels 
had significantly lower BMD at the total hip, FN and T sites 
(e.g. for FN: 0.58±0.13 vs. 0.43±0.13 g/cm

2
, P<0.001). 

 
Booth 

(158)
 

2000 
US 

n: 888 
(335 men; 
553 women) 

75 ± 5 
(68-94) 

FFQ Dietary intake: 
Men = 143±97 µg/d 
Women = 163±115 µg/d 
Quartile 1 = 59 µg/d (median) 
Quartile 2 = 106 µg/d 
Quartile 3 = 159 µg/d 
Quartile 4 = 248 µg/d 
 

Hip (FN, T, WT), LS and 
radial (R, UDR) BMD by 
quartiles of vitamin K1 intake  

Diet: NS No significant associations between vitamin K1 intake and 
any BMD site in men and in women.  

Booth 
(155)

 
2003 
US 

n: 2591 
(1112 men; 
1479 women) 

59 ± 9 
(29-86) 

FFQ Dietary intake: 
Men: Mean = 153±115 µg/d 
Quartile 1 = 8-87 µg/d 
Quartile 2 = 88-129 µg/d 
Quartile 3 = 130-189 µg/d 
Quartile 4 = 190-1956 µg/d 
Women: Mean = 171±103 µg/d 
Quartile 1 = 13-101 µg/d 
Quartile 2 = 102-148 µg/d 
Quartile 3 = 149-216 µg/d 
Quartile 4 = 217-983 µg/d 
 

Hip (FN, T, WT) and LS BMD 
by quartiles of vitamin K1 
intake  
 

Diet: M Higher vitamin K1 intakes were associated with higher 
BMD at all sites in women (P-trend≤0.005), for example 
those in quartile 4 compared to quartile 1 had 4.0%, 3.6%, 
5.8% and 4.4% higher BMD at the FN, T, WT and LS, 
respectively.  No significant associations in men. 

Booth 
(234)

 
2004  
US 

n: 1604 
(741 men; 
863 women) 

59 ± NR 
(32-86) 

FFQ Men: 
K1 intake = 151±119 µg/d 
Plasma K1 = 0.69±0.9 ng/ml 
%ucOC = 16.1±16.2 % 
Premp. women: 
K1 intake = 172±104 µg/d 
Plasma K1 = 0.47±0.5 ng/ml 
%ucOC = 17.6±16.7 % 
Postmp. women (oestrogen / no oestrogen): 
K1 intake = 177±101 / 164±92 µg/d 
Plasma K1 = 0.66±0.6 / 0.64±0.7 ng/ml 
%ucOC = 14.3±15.9 / 23.5±18.4 % 
 
 
 
 

Hip (FN, T) and LS BMD by 
plasma vitamin K1 or %ucOC 

Status: M In men, low plasma K1 concentrations were associated 
with low hip BMD (β 0.006-0.007 g/cm

2
; P≤0.05), as was 

high serum %ucOC (β -0.0008-(-)0.001 g/cm
2
; P≤0.01). No 

associations between plasma K1 and LS BMD in men. In 
postmenopausal women not taking oestrogen, there was 
a significant association between low plasma K1 levels and 
low LS BMD (β 0.015 g/cm

2
; P=0.007). No significant 

associations for postmenopausal women taking oestrogen 
and for premenopausal women. 
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Table A1.5: (continued) 

Study Subjects Age (yrs) 
Dietary 
assessment 

Mean ± SD (range) vitamin K1 intake or 
blood levels 

Outcome measures and 
analyses 

Results* Comments 

McLean 
(290)

 
2006 
US 

n: 1351 
(583 men; 
768 women) 

59 ± NR 
(NR) 

FFQ Men: 
K1 intake = 151±120 µg/d 
Plasma K1 = 0.68±0.9 ng/ml 
%ucOC = 16.2±16.2 % 
Premp. women: 
K1 intake = 165±96 µg/d 
Plasma K1 = 0.50±0.5 ng/ml 
%ucOC = 18.2±16.8 % 
Postmp. women (oestrogen / no oestrogen): 
K1 intake = 176±102 / 164±92 µg/d 
Plasma K1 = 0.68±0.6 / 0.63±0.7 ng/ml 
%ucOC = 14.5±15.9 / 23.6±18.4 % 
 

BUA and SOS by vitamin  
K1intake 
 
BUA and SOS by plasma 
vitamin K1 levels or %ucOC 

Diet: NS 
 
 
Status: M 

No significant associations between vitamin K1 intake and 
both BUA and SOS in men and in women. 
 
In men, each 1 nmol/l (0.4507 ng/ml) increase in plasma 
vitamin K1 was associated with an increase in BUA of 1.13 
dB/MHz and in SOS of 1.6 m/s (P=0.02). %ucOC was not 
associated with either bone parameter in men. No 
significant associations in women. 

Rejnmark 
(281)

 
2006 
Denmark 

Dataset 1: 
n: 1869 
(women) 
 
Dataset 2: 
n: 1139 
(women) 

50 (median) 
(43-58) 
 
 
55 (median) 
(48-63) 

4dDD or 
7dDD 

Dietary intake (Dataset 1): 
Quartile 1 <  46 µg/d 
Quartile 2 =  46-67 µg/d 
Quartile 3 =  67-105 µg/d 
Quartile 4 >  105 µg/d 
Lowest 5% of intake <24.5 µg/d 
Highest 5%of intake  >209 µg/d 
Dietary intake (Dataset 2): 
Quartile 1 <  38 µg/d 
Quartile 2 =  38-60 µg/d 
Quartile 3 =  60-99 µg/d 
Quartile 4 >  99 µg/d 
Lowest 5% of intake <17 µg/d 
Highest 5%of intake  >214 µg/d 
 

FN and LS BMD by quartiles 
of vitamin K1 intake 
 
Differences in FN and LS 
BMD between lowest and 
highest 5% of vitamin K1 
intake 

Diet: NS 
 
 
Diet: NS 

No significant associations between vitamin K1 intake and 
BMD in either dataset.  
 
No significant differences in BMD between the extreme 
5% of vitamin K1 intake in either dataset. 

Macdonald 
(154)

 
2008 
UK 

n: 2466 - 
3199 
(women) 

49 ± 2 
(49-54) 

FFQ Dietary intake: 
Mean = 107±50 µg/d (8-494 µg/d) 
Quartile 1 =  59±17 µg/d (mean) 
Quartile 2 =  91±16 µg/d 
Quartile 3 =  116±19 µg/d 
Quartile 4 =  162±57 µg/d 
 

FN and LS BMD by quartiles 
of vitamin K1 intake  
 
 
 
PINP levels by quartiles of 
vitamin K1 intake  
 
DPYD/Cr and PYD/Cr ratios 
by quartiles of vitamin K1 
intake  
 

Diet: M 
 
 
 
 
Diet: NS 
 
 
Diet: S 

A borderline significant positive association between 
vitamin K1 intake and FN BMD (P-trend=0.044), for 
example FN BMD was 1.4% and 0.4% higher in quartiles 3 
and 4 compared to 1. No association with LS BMD. 
 
No significant associations between vitamin K1 and PINP 
levels.  
 
The ratios of PYD/Cr and DPYD/Cr were both 5.6% lower 
in quartile 4 compared to quartile 1 (P≤0.002; P-
trend=0.003). 
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Table A1.5: (continued) 

Study Subjects Age (yrs) 
Dietary 
assessment 

Mean ± SD (range) vitamin K1 intake or 
blood levels 

Outcome measures and 
analyses 

Results* Comments 

Apalset 
(157)

 
2011 
Norway 

n: 4461 
(1886 men; 
2575 women) 

49 ± 1 
(47-50) ; 
 
73 ± 1 
(71-75) 

FFQ Dietary intake (47-50 yrs):  
Men = 129.1±119.2 µg/d 
Women = 132.4±116.0 µg/d 
Dietary intake (71-75 yrs):  
Men = 101.1±78.7 µg/d 
Women = 97.0±91.4 µg/d 
 

Risk of low BMD by quartiles 
of vitamin K1 
 

Diet: M In the age-combined sample, in women, lower vitamin K1 
intakes were significantly associated with a higher risk of 
having low BMD (P-trend=0.007); and women in quartile 1 
compared to quartile 4 had a significantly higher risk of 
low BMD (OR 1.60, 95%CI 1.14-2.24). No associations in 
men. 

Bullo 
(156)

 
2011 
Spain 

n: 362 
(162 men; 
200 women) 
 
n: 125 
(64 men; 
61 women) 

67 ± 6 
(55-80) 

FFQ Dietary intake: 
Men = 333.6±17.3 µg/d 
Women = 299.8±11.6 µg/d 
 
Dietary intake: 
(Data not shown) 

BUA and VOS by 100µg/d 
increments in vitamin K1 
intake 
 
BSALP and DPD/CR by 
100µg/d increments in 
vitamin K1 intake 

Diet: S 
 
 
 
Diet: NS 

A 100 µg/d increment in vitamin K1 intake was associated 
with an increase of 0.96 dB/MHz in BUA (P=0.039) and of 
1.13 m/s in VOS (P=0.028). 
 
No significant associations between vitamin K1 intake and 
bone markers. 

Emaus 
(233)

 
2013 
Norway/ 
Australia 

n: 285-334 
(women) 

54 ± 3 
(50-60) 

N/A ucOC levels: 
4.12±2.6 ng/ml 
%ucOC: 
18.8±10.6 % 

TH, FN, LS and WB BMD by 
ucOC and %ucOC 

Status: M Higher ucOC levels were significantly associated with 
lower BMD at all sites (β±SE: TH and FN: -0.007±0.002 
g/cm

2
, P≤0.008; LS: -0.008±0.003 g/cm

2
, P=0.008; WB: -

0.005±0.002 g/cm
2
, P=0.003). In contrast, no associations 

were found for %ucOC. 

Abbreviations: FN, femoral neck; T, trochanter; iT, intertrochanter; WT, Ward’s triangle; LS, lumbar spine; R, radius; UDR, ultradistal radius; SOS, speed of sound; BSALP, bone-specific 
alkaline phosphatase; OC, osteocalcin; ucOC, undercarboxylated osteocalcin; %ucOC, undercarboxylated osteocalcin as a percentage of total osteocalcin; PINP, procollagen type I N-
terminal propeptide; PYD/Cr, free pyridinoline cross-links relative to creatinine; DPYD/Cr, free deoxypyridinoline cross-links relative to creatinine. 

* Results were significant (S), non-significant (NS) or of mixed nature (M).
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Table A2.1: Intervention studies on vitamin C and bone health. 

Study 
Duration; 
study 
design 

Subjects Age (yrs) Intervention 
Primary 
outcome 

Results* Comments 

Maimoun 
(333)

 
2008 
France 

2 months; 
/ 

n 13 
(4 men,  
9 women) 

NR ± NR 
(69 - 79) 

No groups. All participants received the 
following treatment: 60 min of aerobic 
exercise 3 times/wk, vitamin C (500 
mg/d) & vitamin E (100 mg/d) 

Markers of 
calcium 
homeostasis, 
BSALP, OC 
and CTx 

M A significant increase in serum vitamin D 
and decrease in intact parathyroid 
hormone (Details not reported). BSALP 
concentration decreased significantly by 
14.5% (P=Data not reported). Differences 
in OC levels (2.3%) and CTx levels (8.8%) 
were not significant. 
 

Chuin (332) 
2009 
Canada/France 

6 months; 
randomised, 
controlled 
pilot study 

n 34 
(women) 

NR ± NR 
(61 - 73) 

4 groups. 
Placebo group (n 7): placebo (lactose); 
Vitamin group (n 8): ascorbic acid (1,000 

mg/d) & α-tocopherol (600 mg/d); 
Exercise & placebo group (n 11): 60 min of 

resistance training 3 times/wk & placebo 
in form of lactose; 

Exercise & vitamin group (n 8): 60 min of 
resistance training 3 times/wk & ascorbic 
acid (1,000 mg/d) & α-tocopherol (600 
mg/d) 

 

FN and LS 
BMD 

M LS BMD decreased significantly by 1% in 
the placebo group (BMD pre: 1.01 ± 0.17 
g/cm2; BMD post: 1.00 ± 0.16 g/cm2; 
P<0.05) but remained stable in the three 
intervention groups. No significant 
differences in FN BMD between the 
groups. 
 

Ruiz-Ramos (331) 
2010 
Mexico 

12 months;  
double-
blind RCT  

n 90 
(25 men,  
65 women) 

68 ± NR 
(NR) 

3 groups: 
Placebo group (n 30): placebo (no details); 
Low vitamin group (n 30): ascorbic acid 

(500 mg/d) & α-tocopherol (400 IU/d); 
High vitamin group (n 30): ascorbic acid 

(1000 mg/d) & α-tocopherol (400 IU/d) 

TH and LS 
BMD 

M The high vitamin group lost significantly 
less bone at the hip compared to the 
placebo group (Details not reported). No 
significant differences in LS BMD 
between groups. 

Abbreviations: BSALP, alkaline phosphatase; OC, osteocalcin; CTx, collagen type 1 cross-linked C-telopeptide; FN, femoral neck; LS, lumbar spine; TH, total hip. 
* Results were significant (S), non-significant (NS) or of mixed nature (M). 
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Table A2.2: Prospective studies on vitamin C and bone health. 

Study 
Follow-
up 

Subjects Age (yrs) 
Dietary 
assessment 

Vitamin C intake (mg/d)* 
Outcome measures 
and analyses 

Results† Comments 

Kaptoge (166) 
2003 
UK 

2-5 yrs n 944 
(470 men;  
474 women) 
 

72 
(67-79) 

7dDD Median (range) dietary intake: 
Tertile 1 = 73 (7-57) 
Tertile 2 = 78 (58-98) 
Tertile 3 = 132 (99-363) 
Plasma data not shown. 
 

2-5 year change in 
TH BMD stratified by 
tertiles of either 
dietary vitamin C 
intake or plasma 
vitamin C levels 

Diet: M 
Plasma: NS 

Women in tertile 2 and 3 of vitamin C intake 
had around 52% and 54% less hip BMD loss, 
respectively (P=0.015 and P=0.010; P-
trend=0.016). No associations with intake in 
men and no associations between plasma and 
change in TH BMD in either sex. 
 

Sahni (230) 
2008 
US 

4 yrs n 606 
(213 men; 
393 women) 

75 FFQ Mean (SD) dietary intake: 
Men = 141 (73) 
Women = 158 (83) 
Mean (SD) suppl. intake: 
Men = 82 (235) 
Women = 95 (248) 
Mean (SD) total intake: 
Men = 223 (259) 
Women = 253 (267) 
Intake data for tertiles not shown. 
 

4-year change in LS, 
FN, T and RS BMD 
stratified by tertiles 
of dietary or total 
vitamin C intake or 
categories of suppl. 
vitamin C intake and 
either calcium 
intake, vitamin E 
intake, smoking or 
oestrogen use 

Diet: M 
Suppl.: NS 

In men, LS and T BMD loss was significantly 
less with higher dietary vitamin C intakes (P-
trend≤0.05). FN and T BMD loss was 
significantly less for higher total vitamin C 
intake among men with low calcium intakes 
or low total vitamin E intakes (P-trend≤0.03). 
A reduction in T BMD loss of around 102% 
was found between tertile 3 vs. 1 of total 
vitamin C intake among men with low calcium 
intakes (P<0.05). No significant associations 
for suppl. vitamin C intake in men. No 
significant associations in women. 
 

Sahni (167) 
2009 
US 

15-17 yrs n 918 
(39.1% men;  
60.9% women) 

75 FFQ Median (range) dietary intake: 
Tertile 1 = 86 
Tertile 2 = 133 
Tertile 3 = 208 
Suppl. intake: 
Tertile 1 = 0 
Tertile 2 < 75 
Tertile 3 ≥ 75 
Median (range) total intake: 
Tertile 1 = 94 / 95§ 
Tertile 2 = Data not shown 
Tertile 3 = 313 / 308§ 

Risk of hip fracture 
or non-vertebral 
fracture stratified by 
tertiles of dietary, 
suppl. or total 
vitamin C intake in 
the combined 
sample of men and 
women 

Diet: NS 
Suppl.: M 
Total: M 

A reduction in hip fracture of 69% for tertile 3 
compared to tertile 1 of supplemental vitamin 
C intake (P=0.007; P-trend=0.02) and of 44% 
for total vitamin C intake (P=0.04; P-
trend=0.04). No significant associations with 
non-vertebral fractures and no associations 
between dietary vitamin C intake and fracture 
risk at any site (P-trend=Data not shown).  

Abbreviations: TH, total hip; Suppl, supplement; LS, lumbar spine; FN, femoral neck; T, trochanter; RS, radial shaft. 
* Total intake is the sum of dietary intake and intake from supplements. 
† Results were significant (S), non-significant (NS) or of mixed nature (M). 
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Table A2.3: Case-control studies of vitamin C intake or status in osteoporosis and fracture patients. 

Study Subjects Age (yrs) 
Dietary 
assessment 

Mean ± SD or range vitamin C 
intake or blood levels 

Outcome measures and 
analyses 

Results Comments 

Falch (338) 
1998 
Norway 

n 40 hip fracture 
cases; 102 
controls 
(men and 
women) 

82 (men) 
83 (women) 

N/A Serum concentrations: 
CA = 37 µmol/L, CO = 50 µmol/L 
Serum concentrations in 20 case-
control pairs matched for age: 
CA = 34 µmol/L, CO = 54 µmol/L 
 

Serum vitamin C 
concentrations in cases 
and controls or in 20 case-
control pairs matched for 
age 

Serum: S Serum vitamin C concentrations were 
significantly lower in cases than in controls 
(P<0.01). 

Lumbers (339) 
2001 
UK 

n 75 hip fracture 
cases; 50 
controls 
(women) 

80 
(61-103) 
 

three 
24hRs 

Dietary intake: 
CA = 60.7 mg/d, CO = 55.2 mg/d 
Plasma concentrations: 
CA = 42.7 µmol/L, CO = 20.8 µmol/L 
 

Vitamin C intakes or 
plasma concentrations in 
cases and controls 

Intake: NS 
Plasma: S 

No significant differences between vitamin 
C intakes in cases and controls; however, 
plasma concentrations were significantly 
higher in cases than in controls (P<0.001).  
 

Maggio 
(337)

 
2003 
Italy 

n 75 
osteoporotics; 
75 controls 
(women)  
 

60+ N/A Plasma concentrations: 
CA = 30.0 µmol/L, CO = 55.5 µmol/L 

Plasma vitamin C 
concentrations in cases 
and controls 

Plasma: S Cases had significantly lower plasma 
vitamin C concentrations than controls 
(P<0.001). 

Martinez-
Ramirez (336) 
2007 
Spain 

n 167 fracture 
cases; 167 
controls 
(20% men; 80% 
women) 

65+ FFQ Intake: 
CA = 268 mg/d, CO = 275 mg/d 
Quartile 1 ≤ 203 mg/d  
Quartile 2 = 204-247 mg/d 
Quartile 3 = 248-334 mg/d 
Quartile 4 > 334 mg/d 
Serum concentrations: 
CA = 17.6 µmol/L, CO = 23.3 µmol/L  
Quartile 1 ≤ 8.4 µmol/L 
Quartile 2 = 8.5-19.6 µmol/L 
Quartile 3 = 19.7-34.1 µmol/L 
Quartile 4 > 34.1 µmol/L 
 

Vitamin C intakes or serum 
concentrations in cases 
and controls and in 
association with fracture 
risk 

Intake: M 
Serum: S 

No significant differences in mean vitamin 
C intakes between cases and controls apart 
from a marginal significant fracture risk 
reduction for quartile 2 compared to 
quartile 1 of vitamin C intake (OR = 0.39; 
95%CI 0.15-1.00; P-trend=0.87). Mean 
serum concentrations were significantly 
lower in cases than in controls (P=0.012) 
and a significant reduction in fracture risk 
for quartile 4 compared to quartile 1 of 
serum concentrations was found (OR = 
0.31; 95%CI 0.11-0.87; P-trend=0.03). 

Park (340) 
2011 
South Korea 

n 72 
osteoporotics; 
72 controls 
(women) 

50-70 FFQ Dietary intake: 
Quartile 1 ≤ 91.5 mg/d 
Quartile 2 = 91.5-136.9 mg/d 
Quartile 3 = 136.9-176.3 mg/d 
Quartile 4 > 176.3 mg/d 

Dietary vitamin C intake & 
Risk of osteoporosis 

Intake: S A significant reduction in the risk of 
osteoporosis for quartile 3 compared to 
quartile 1 of dietary vitamin C intake (OR = 
0.29; 95%CI 0.09-0.96; P-trend=0.24) 

CA, cases; CO, controls; sign, significant; NS, not significant. 
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Table A2.4: Cross-sectional studies on vitamin C and bone health. 

Study Subjects Age (yrs) 
Dietary 
assessment 

Mean (SD); range vitamin C intake or 
blood levels 

Outcome measures 
and analyses 

Results Comments 

Sowers (344) 
1985 
US 

n 324 
(women) 

67 
(55-80) 

24hR Total intake: 
Low calcium group = 211 (351) mg/d 
High calcium group = 268 (309) mg/d 
 

Association between 
MR BMD and vitamin 
C intake 

Total: NS Vitamin C intake was only marginally associated with MR BMD 
(Effect size not shown; P=0.051). 

Leveille (341) 
1997 
US 

n 1892  
(women) 

72 
(55-64) 

FFQ Dietary intake = 113 (52); 12-399 mg/d 
Suppl. intake = 294 (447); 0-2500 mg/d 
Duration of suppl. use: 
Group 1 = non-user 
Group 2 = 1-5 yrs 
Group 3 =5-10 yrs 
Group 4 ≥ 10 yrs  
Total intake = 407 (454); 13-2560 mg/d 

FN BMD stratified by 
vitamin C intake or 
FN BMD stratified by 
duration of vitamin C 
suppl. use and either 
age groups (55-64yrs, 
65-74yrs and 75+) or 
oestrogen use 

Diet: NS 
Suppl: M 
Total: NS 

No significant associations between dietary or total vitamin C 
intake and FN BMD. Approximately 6.7% and 3.2% higher FN 
BMD for longest supplement users compared to non-users in 
women aged 55-64yrs (P=0.02; P-trend=0.01) and in women 
who had never taken oestrogen (P=0.02; P-trend=0.02), 
respectively. No significant differences in older age groups. The 
duration of supplement use did not affect FN BMD in past 
oestrogen users and in the combined population sample.  
 

New (133) 
1997  
UK 

n 994  
(women) 

47 
(44-50) 

FFQ Dietary intake = 126 (96); 16-1164 mg/d 
Intake data for quartiles not shown. 
 

LS, FN, T and WT 
BMD stratified by 
quartiles of dietary 
vitamin C intake 

Diet: S Dietary vitamin C intake correlated significantly with LS BMD 
(r2=0.10; P<0.001). Approximately 4.5% higher LS BMD 
(P<0.002), 3% higher FN BMD (P<0.01) and higher T and WT 
BMD (Effect sizes not shown; P<0.02) for quartile 3 vs. 1 of 
vitamin C intake.  
 

Hall (91) 
1998 
US 

n 775  
(women) 

56 
(45-64) 

FFQ Dietary intake = 140 (76) mg/d  
Note: dietary calcium intake: 
Low (n 199) < 500 mg/d 
High (n 574) > 500 mg/d 
 

LS, FN and TH BMD 
stratified by 100mg/d 
increments of 
vitamin C intake with 
and without 
stratification by low 
and high calcium 
intake 
 

Diet: M FN and TH BMD were 0.017 g/cm2 higher for each 100 mg/d 
increase in vitamin C intake (P=0.002 and P=0.005). The 0.014 
g/cm

2
 increment in LS BMD was not significant (P=0.078). 

Moreover, for every 100 mg/d increment in dietary vitamin C 
intake a significant 0.0199 g/cm2 increment at the LS (P=0.024), 
0.0190 g/cm2 increment at the FN (P=0.002) and 0.0172 g/cm2 
increment at the TH (P=0.010) was found for the high calcium 
group. No significant associations in the low calcium group.  

New (124) 
2000 
UK 

n 62  
(women) 

47 
(45-54) 

FFQ Dietary intake = 103 (66); 24-453 mg/d 
Intake data for quartiles not shown. 

LS, FN, T, WT and 
forearm BMD and 
markers of bone 
metabolism (PYD, 
DPD, OC) stratified by 
quartiles of dietary 
vitamin C intake 

Diet: M Dietary vitamin C intake did not correlate with markers of bone 
metabolism. But significantly lower mean DPD excretion across 
quartiles of dietary vitamin C intake (Effect size not shown; P-
trend<0.02). No significant differences between dietary vitamin 
C intake and any BMD site.  
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Table A2.4: (continued)      

Study Subjects Age (yrs) 
Dietary 
assessment 

Mean (SD); range vitamin C intake or 
blood levels 

Outcome measures 
and analyses 

Results Comments 

Morton (165) 
2001 
US 

n 994  
(women) 

72 
(50-98) 

N/A Suppl. intake: 
Non-users = 0 mg/d 
Users = 745 mg/d; 70-5000 mg/d  
Group 1 = 0 mg/d (non-users) 
Group 2 ≤ 500 mg/d 
Group 3 ≥ 1000 mg/d 
 

LS, FN, TH, MR and 
UR BMD stratified by 
use of vitamin C 
suppl. with and 
without additional 
stratification by 
oestrogen use or by 
oestrogen and 
calcium use; and 
BMD stratified by 
dose of vitamin C 
supplements 
 

Suppl.: M 4.1% higher FN BMD for supplement users compared to non-
users (P=0.02). No significant differences at other BMD sites 
and in BMD between users and non-users of vitamin C and 
oestrogen supplements. For current users of oestrogen, 
calcium and vitamin C supplements, BMD was higher by 
approximately 6% at the TH (P=0.05), 9% at the FN (P=0.0001) 
and 12% at the UR (P=0.02) compared to non-vitamin C users. 
Approximately 14% higher UR BMD for women with the highest 
vitamin C supplement dose compared to non-users (P<0.05; P-
trend<0.04). No significant differences at other bone sites. 
 

Simon 
(169)

 
2001 
US 

n 13080 
(6137 
men;  
 6943 
women) 

(20-90) 24hR 
 

 

Men: 
Dietary intake = 102 (104) mg/d 
Serum levels = 38.0 (23.8) µmol/L 
Pre-menopausal women: 
Dietary intake = 81 (83) mg/d 
Serum levels = 43.7 (25.6) µmol/L 
Post-menopausal women: 
Dietary intake = 88 (80) mg/d 
Serum levels = 50.5 (27.8) µmol/L 

TH BMD or self-
reported fractures 
stratified by 100 
mg/d increments in 
dietary vitamin C 
intake or by SD 
increments in serum 
ascorbic acid levels 

Diet: M 
Serum: M 

In men, TH BMD was highest at serum ascorbic acid 
concentrations between about 28.4-56.8 µmol/l and self-
reported fractures were least common at dietary vitamin C 
intakes of about 200 mg/d; whereas higher and lower levels 
were associated with lower TH BMD (P<0.05) and a higher self-
reported fracture prevalence (P=0.01). In pre-menopausal 
women, TH BMD was 0.01 g/cm2 higher for every 100 mg/d 
increase in dietary vitamin C intake (P=0.002). No such 
observations in postmenopausal women. Dietary vitamin C 
intake or serum ascorbic acid levels were also not significantly 
associated with self-reported fractures in women.  
 

Ilich (345) 
2003  
US 

n 136  
(women) 

69 
(57-88) 

3dDD Dietary intake = 128 (70); 23-402 mg/d Dietary vitamin C 
intake as a predictor 
of WB BMD and BMC 
and of TH, FN, WT, T, 
RS, UR and hand 
BMD  
 
 
 
 
 

Diet: S Dietary vitamin C intake was a predictor of BMD of more than 
1% for TH (P=0.012), T (P=0.047) and RS (P=0.027) BMD and a 
marginally significant predictor of WT BMD (P=0.052). 
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Table A2.4: (continued)      

Study Subjects Age (yrs) 
Dietary 
assessment 

Mean (SD); range vitamin C intake or 
blood levels 

Outcome measures 
and analyses 

Results Comments 

Wolf (342) 
2005 
US 

n 11068  
(women) 

63 
(50-79) 

FFQ Dietary intake = 84 (49) mg/d 
Total intake = 170 (182) mg/d 
 

WB, LS, TH, FN and T 
BMD stratified by 
dietary or total 
vitamin C intake and 
additional 
stratification by 
either calcium intake, 
smoking or HRT use 
 

Diet: NS 
Total: NS 

No significant associations between dietary or total vitamin C 
intake and BMD at any site. But there was a significant positive 
interaction effect between HRT use and total vitamin C intake 
for WB (P=0.045), LS (P=0.03), TH (P=0.029) and FN (P=0.004) 
BMD. No significant interactions between vitamin C intake and 
calcium intake or smoking for any BMD site. 
 

Pasco (343) 
2006 
Australia 

n 533  
(women) 

56-82 N/A Intake data not shown. 
Duration of suppl. use  
(vitamin C + E): 
Group 1 = 0 yrs (non-user) 
Group 2 < 5 yrs 
Group 3 ≥ 5 yrs 
 

WB BMD, serum CTx 
and BSALP stratified 
by use or duration of 
vitamin C and E 
supplements 

Suppl.: M No significant differences in (unadjusted) WB BMD, CTx and 
BSALP between users and non-users of vitamin C and E 
supplements. Duration of vitamin C and E supplement use of ≥5 
years was associated with significantly lower CTx levels 
compared to non-supplement users (P<0.05). CTx levels were 
0.022 pg/mL lower for each year of vitamin supplement use 
(P=0.05). BSALP and WB BMD were not associated with 
duration of supplement use.  
 

Prynne (131) 
2006 
UK 

n 257 
(111 boys;  
 101 girls); 
n 67  
(older 
women) 
 

17 
(16-18); 
68 
(60-83) 

7dDD Dietary intake: 
Boys = 96 mg/d 
Girls = 95 mg/d 
Older women = Data not shown. 

WB, LS, TH, FN and T 
BMD stratified by 
vitamin C intake 

Diet: M In boys, each 100% change vitamin C intake was associated 
with a 3-5% change in BMD at all sites (P<0.05). No significant 
associations in girls and older women.   

Sahni (230) 
2008 
US 

n 874 
(334 men;  
 540 
women) 

75 FFQ Dietary intake: 
Men = 141 (73) mg/d 
Women = 158 (83) mg/d 
Suppl. intake: 
Men = 82 (235) mg/d 
Women = 95 (248) mg/d 
Total intake: 
Men = 223 (259) mg/d 
Women = 253 (267) mg/d 
Intake data for tertiles not shown. 
 

LS, FN, T and RS BMD 
stratified by tertiles 
of dietary or total 
vitamin C intake or 
categories of suppl. 
vitamin C intake and 
either calcium intake, 
vitamin E intake, 
smoking or oestrogen 
use 
 

Diet: NS 
Suppl.: M 
Total: M 

In men, total vitamin C intake was positively associated with FN 
BMD but only among never-smokers (P-trend=0.04). In current 
smokers, total and supplemental vitamin C intake were 
negatively associated with T BMD (P-trends=0.01). No 
significant associations between dietary vitamin C intake and 
BMD in men and no significant associations in women for any 
of the BMD sites. 



 

  
 

P
age | 306

 

Table A2.4: (continued)      

Study Subjects Age (yrs) 
Dietary 
assessment 

Mean (SD); range vitamin C intake or 
blood levels 

Outcome measures 
and analyses 

Results Comments 

Sugiura (229) 
2011 
Japan 

n 293  
(women) 

60 FFQ 
 

Dietary intake = 170 (161-179) mg/d† 
Tertile 1 = 47-139 mg/d‡ 
Tertile 2 = 140-214 mg/d 
Tertile 3 = 215-625 mg/d 

Risk of low radial 
BMD stratified by 
tertiles of dietary 
vitamin C intake 

Diet: S Significantly lower risk of low radial BMD for tertile 3 compared 
to tertile 1of dietary vitamin C intake (OR = 0.25; 95%CI 0.07-
0.82; P-trend=0.01). 

MR, mid radius; NS, not significant; Suppl, supplement; FN, femoral neck; LS, lumbar spine; T, trochanter; WT, Ward’s triangle; sign, significant; TH, total hip; PYD, pyridinoline; DPD, 
deoxypyridinoline; OC, osteocalcin; UR, ultradistal radius; WB, whole body; RS, radial shaft; CTx, collagen type 1 cross-linked C-telopeptide; BSALP, bone-specific alkaline phosphatase. 

* Data shown for men / women. 
† Geometric mean (95%CI). 
‡ Intake range. 
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Appendix 3: Associations between total vitamin C intake 

and fracture risk 

 

Table A3.1: Results in men 

 

Table A3.2: Results in women 
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Table A3.1: Associations between total vitamin C intake and fracture risk in men of the EPIC-Norfolk case-cohort. 

  Total vitamin C intake (mg/d)  

 

 Quintile 1 
0 – 45.8 
n = 411 

Quintile 2 
45.9 – 64.4 

n = 410 

Quintile 3 
64.5 – 92.1 

n = 411 

Quintile 4 
92.2 – 130.2 

n = 410 

Quintile 5 
130.3 – 1595.3 

n = 410 
 

  HR (ref) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) P-trend 

Total fracture [Events] [61]  [46]  [53]  [38]  [50]  
 Unadjusted 1.00 0.68 (0.44-1.04) 0.83 (0.55-1.25) 0.54 (0.35-0.85)** 0.78 (0.51-1.18) P=0.14 

 Model 1 1.00 0.68 (0.44-1.05) 0.82 (0.54-1.25) 0.54 (0.35-0.85)** 0.79 (0.51-1.20) P=0.17 
 Model 2 1.00 0.66 (0.43-1.03) 0.80 (0.52-1.23) 0.52 (0.33-0.83)** 0.76 (0.49-1.18) P=0.15 
            

Hip fracture [Events] [28]  [22]  [26]  [18]  [18]  
 Unadjusted 1.00 0.70 (0.38-1.29) 0.88 (0.50-1.58) 0.55 (0.29-1.04) 0.61 (0.32-1.15) P=0.09 
 Model 1 1.00 0.68 (0.36-1.27) 0.88 (0.48-1.60) 0.54 (0.28-1.04) 0.60 (0.31-1.15) P=0.09 

 Model 2 1.00 0.72 (0.38-1.37) 0.92 (0.49-1.73) 0.55 (0.27-1.10) 0.64 (0.33-1.25) P=0.13 
            

Spinal fracture [Events] [19]  [11]  [15]  [13]  [20]  
 Unadjusted 1.00 0.51 (0.24-1.10) 0.73 (0.36-1.48) 0.67 (0.33-1.37) 0.98 (0.51-1.90) P=0.82 
 Model 1 1.00 0.51 (0.23-1.13) 0.74 (0.37-1.48) 0.66 (0.32-1.35) 1.00 (0.51-1.97) P=0.80 
 Model 2 1.00 0.49 (0.22-1.08) 0.69 (0.34-1.42) 0.63 (0.30-1.33) 0.91 (0.43-1.95) P=0.93 
            
Wrist fracture [Events] [17]  [17]  [12]  [8]  [16]  
 Unadjusted 1.00 0.99 (0.49-1.97) 0.70 (0.33-1.48) 0.46 (0.20-1.08) 0.93 (0.46-1.86) P=0.36 
 Model 1 1.00 1.00 (0.49-2.02) 0.72 (0.34-1.52) 0.47 (0.20-1.11) 0.97 (0.48-1.98) P=0.45 
 Model 2 1.00 0.90 (0.44-1.82) 0.60 (0.27-1.31) 0.41 (0.17-0.99)* 0.86 (0.42-1.76) P=0.29 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). Total vitamin C intake is the sum of vitamin C 
intake from foods and supplements. The analysis used data from the first health check. Significant differences between the two upper quintiles referent to the lowest quintile: * 
(P<0.05), ** (P<0.01). Model 1 adjusted for age, family history of osteoporosis, BMI, smoking, physical activity and use of steroids. Model 2 additionally adjusted for energy 
intake, dietary calcium intake, calcium supplements and vitamin D supplements. n 1957 for total fracture, n 1842 for hip fracture, n 1808 for spine fracture, n 1806 for wrist 
fracture. 
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Table A3.2: Associations between total vitamin C intake and fracture risk in women of the EPIC-Norfolk case-cohort. 

  Total vitamin C intake (mg/d)  

 

 Quintile 1 
0.1 – 50.6 

n = 592 

Quintile 2 
50.7 – 73.1 

n = 592 

Quintile 3 
73.2 – 99.7 

n = 592 

Quintile 4 
99.8 – 141.3 

n = 592 

Quintile 5 
141.4 – 6141.9 

n = 591 
 

  HR (ref) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) P-trend 

Total fracture [Events] [136]  [126]  [117]  [115]  [122]  
 Unadjusted 1.00 1.04 (0.77-1.40) 0.97 (0.72-1.31) 0.93 (0.69-1.27) 1.07 (0.79-1.45) P=0.92 

 Model 1 1.00 1.09 (0.80-1.48) 0.99 (0.72-1.34) 0.96 (0.71-1.31) 1.12 (0.82-1.53) P=0.79 
 Model 2 1.00 1.11 (0.81-1.51) 1.01 (0.74-1.37) 0.99 (0.72-1.37) 1.16 (0.83-1.61) P=0.66 
            

Hip fracture [Events] [71]  [68]  [61]  [74]  [65]  
 Unadjusted 1.00 1.14 (0.77-1.69) 1.05 (0.70-1.56) 1.28 (0.87-1.88) 1.19 (0.80-1.77) P=0.30 
 Model 1 1.00 1.24 (0.82-1.85) 1.08 (0.72-1.62) 1.36 (0.91-2.02) 1.19 (0.79-1.81) P=0.32 

 Model 2 1.00 1.28 (0.85-1.92) 1.12 (0.74-1.69) 1.42 (0.95-2.14) 1.25 (0.81-1.95) P=0.24 
            

Spinal fracture [Events] [36]  [24]  [19]  [19]  [26]  
 Unadjusted 1.00 0.73 (0.42-1.25) 0.60 (0.33-1.07) 0.58 (0.32-1.02) 0.87 (0.351-1.47) P=0.37 
 Model 1 1.00 0.79 (0.45-1.19) 0.65 (0.36-1.19) 0.61 (0.34-1.10) 0.95 (0.54-1.69) P=0.54 
 Model 2 1.00 0.80 (0.45-1.40) 0.66 (0.36-1.21) 0.63 (0.34-1.16) 1.01 (0.55-1.87) P=0.68 
            
Wrist fracture [Events] [51]  [45]  [44]  [33]  [45]  
 Unadjusted 1.00 0.92 (0.60-1.41) 0.93 (0.61-1.42) 0.65 (0.41-1.03) 0.99 (0.65-1.51) P=0.49 
 Model 1 1.00 0.93 (0.60-1.43) 0.89 (0.58-1.37) 0.64 (0.40-1.02) 0.98 (0.64-1.51) P=0.45 
 Model 2 1.00 0.94 (0.61-1.45) 0.89 (0.57-1.37) 0.63 (0.39-1.02) 0.94 (0.60-1.49) P=0.37 

Values are Prentice-weighted Cox proportional hazard ratios of fracture risk after a median follow-up of 12.6 years (with 95%CIs). Total vitamin C intake is the sum of vitamin C 
intake from foods and supplements. The analysis used data from the first health check. No significant differences between the two upper quintiles referent to the lowest quintile. 
Model 1 adjusted for age, family history of osteoporosis, BMI, smoking, physical activity, use of steroids, menopausal status and HRT. Model 2 additionally adjusted for energy 
intake, dietary calcium intake, calcium supplements and vitamin D supplements. n 2754 for total fracture, n 2525 for hip fracture, n 2334 for spine fracture, n 2409 for wrist 
fracture. 
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Appendix 4: Literature tables for chapter 6 

(Iron & bone health) 

 

Table A4.1: Intervention studies 

 

Table A4.2: Prospective studies 

 

Table A4.3: Cross-sectional studies 
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Table A4.1: Summary of intervention studies on iron and bone health. 

Study Subjects Age (yrs) 
Duration; 
study design 

Intervention 
Primary 
outcome 

Results* Comments 

Toxqui (180) 
2014 
Spain 

n 165 
(women) 

25 ± 4 
(18-35) 

4 months; 
double-blind 
RCT 

3 groups: 
Control group (n 56, iron sufficient): no 

supplementation; 
Fe group (n 54, iron deficient): iron (15 mg/d) 

via fortified skimmed milk; 
Fe+D group (n 55, iron deficient): iron (15 

mg/d) and vitamin D3 (5 µg/d) via fortified 
skimmed milk 

PINP, NTx M Significant negative correlations between 
transferrin and PINP (R2=0.058, P=0.002) and 
between ferritin and NTx (R2=0.079, P<0.001) at 
baseline in all subjects. The iron-fortified milk did 
not improve iron status over the 16 weeks. 
Subsequently, PINP and NTx levels were not 
affected by iron supplementation (Fe group). 
However, the addition of vitamin D (Fe+D group) 
significantly decreased bone marker concentrations 
from baseline to 16 weeks (PINP: from 53.3 to 48.4, 
P=0.004; NTx: from 64.0 to 47.4, P<0.001).  
 

Blanco-Rojo (179) 
2013 
Spain 

n 41 
(women) 

26 ± 6 
(18-35) 

4 months; 
double-blind 
RCT 

2 groups (both iron deficient): 
Control group (n 18): 500 ml/d placebo fruit 

juice; 
Fe group (n 23): 500 ml/d iron-fortified fruit 

juice (18 mg/d of iron pyrophosphate) 
 

BSALP, NTx NS BSALP and NTx concentrations did not change over 
the four months in neither the iron-fortified group 
nor the control group.  

Wright (178) 
2013 
Spain 

n 73 
(women) 

35 ± 5 and 
28 ± 3 
(anaemics 
and 
controls) 

2-4 months; 
not reported 

2 groups: 
Control group (n 38, iron sufficient); 
Anaemic group (n 35): iron (80-160 mg/d) via 

ferrous sulphate tablets. Further split into 
two subgroups of those that recovered (n 22) 
and did not recover (n 13) from iron 
deficiency 

PINP, NTx M At baseline, anaemic women had significantly 
higher NTx levels than controls (37.8±16.5 vs. 
21.9±8.4 nmol bone collagen equivalents (BCE) / 
mmol creatinine, P<0.001). There were no 
differences in PINP and NTx at baseline and after 
iron supplementation between recovered and non-
recovered anaemic women. However, both bone 
markers decreased significantly during the iron 
supplementation in recovered women only (before 
vs. after treatment: PINP: 41.2±17.5 vs. 32.6±14.5 
ng/ml, P<0.001; NTx: 40.0±17.2 vs. 31.0±9.9 nmol 
BCE / mmol creatinine, P<0.05). 

Abbreviations: BSALP, bone-specific alkaline phosphatase; NTx, collagen type 1 cross-linked N-telopeptide; PINP, procollagen type I propeptide. 
* Results were significant (S), non-significant (NS) or of mixed nature (M). 
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Table A4.2: Prospective studies on iron and bone health. 

Study Subjects 
Age 
(yrs) 

Follow-
up 

Dietary 
assessment 

Mean ± SD (range) iron 
intake or blood levels 

Outcome 
measures and 
analyses 

Results* Comments 

Maurer (405) 
2005 
US 

n 228 
(women) 

56 ± 5 
(40-65) 

1 yr 8 randomly 
selected days 
from 2-3 week 
diet records 
taken at 0, 6 
and 12 months 
 

Dietary intake: 
15 ± 5 mg/d 

Associations 
between iron 
intake and 1-year 
change in TB, LS, 
FN, T and WT BMD 

Diet: M Iron was significantly positively associated 
with 1-year change in T BMD (β 0.041, 
P=0.015) and WT BMD (β 0.055, P=0.037). No 
associations with TB, LS and FN BMD. Iron 
accounted for 3-9% of the variance in BMD 
change. 
 

Abraham (186) 
2006 
UK 

n 32 
(women) 

NR 
(46-55) 

3.5-5 yrs 7-13 weighed   
3dDD or 7dDD 

Dietary intake: 
12.0 ± NR (6.2-24.7) mg/d 

Associations 
between iron 
intake and 3.5-5 
year change in  LS 
BMD 

Diet: S Energy-adjusted iron intake correlated 
significantly with the preservation of LS BMD 
over time (r=0.42, P=0.02). Higher iron intake 
was also significantly associated with less LS 
BMD loss after correcting for energy intake 
and BMI (β 0.141, P<0.0001). 
 

Kim (185) 
2012 
Korea 

n 1729 
(789 men; 
940 women) 

56 ± 8 
(NR) 

3 yrs N/A Serum ferritin: 
Men = 147.3 ± 83.6 ng/ml 
Women = 76.9 ± 50.6 ng/ml 
 

Associations 
between serum 
ferritin and 
annualised 3-year 
change in FN, T 
and TH BMD 
 
Associations 
between serum 
ferritin and 
morphological 
vertebral fracture 
risk 

Status: M 
 
 
 
 
 
 
Status: M 

Subjects in quartile 4 compared to 1 had 
significantly faster annualised bone loss at the 
FN and TH (women: 34-37%; men: 78-113%; 
P≤0.023); and the trends across all quartiles 
were also significant (P-trend≤0.043). 
 
 
In women, the odds for fractures were 
significantly higher in quartile 4 compared to 1 
(OR 5.27, 95%CI 1.12-24.94), and this inverse 
association across all quartiles was significant 
(P-trend=0.023). No such associations were 
found in men.  

TB, total body; LS, lumbar spine; FN, femoral neck; T, trochanter; WT, Ward’s triangle; NR, not reported; N/A, not applicable. 
* Results were significant (S), non-significant (NS) or of mixed nature (M). 



 

 
 

P
age | 313

 

Table A4.3: Cross-sectional studies on iron and bone health. 

Study Subjects Age (years) 
Dietary 
assessment 

Mean ± SD (range) iron intake or blood 
levels 

Outcome measures 
and analyses 

Results* Comments 

Angus (407) 
1988 
Australia 

n 159 
(women) 

38 ± 8  
(pre-mp),  
59 ± 8  

(post-mp), 
(23-75) 

4dDD 
(weighed) 

Dietary intake: 
Pre-mp = 10.9 ± 3.8 mg/d 
Post-mp = 9.9 ± 3.4 mg/d 

Association between LS, 
FN, WT, GT BMD and 
forearm BMC and iron 

intake 

Diet: M In pre-mp women, there were positive 
correlations between iron intake and FN BMD 
(r=0.24) and forearm BMC (r=0.26) (all P<0.05). 

Iron intake was also an independent predictor of 
FN BMD alongside age and weight (R2=0.25, 
P<0.001). No associations were found in post-mp 
women. 

 
Michaëlsson (406) 
1995 
Sweden 

n 175 
(women) 

51 ± NR 
(28-74) 

FFQ,  
four 7dDDs 

Dietary intake: 
FFQ = 11.4 ± 3.9 (3.4-34.9) mg/d 
7dDD = 12.3 ± 3.3 (3.6-20.4) mg/d 
 

Associations between 
TB, LS, FN, WT and T 
BMD and serum OC with 
iron intake 

 

Diet  
FFQ: NS 
7dDD: M 

Iron intake (7dDD) was significantly and positively 
associated with all BMD sites but only in 
univariate analyses (β 0.0069-0.011, P≤0.02). No 
significant associations with serum OC. Iron intake 

(FFQ) was not associated with BMD and serum OC. 
 

Harris (181) 
2003 

US 

n 242 
(women) 

55 ± 5 
(40-66) 

3dDD Dietary intake: 
16 ± 6 mg 

 
 
 
 

Categories of iron intake: 
Cat.1 = <10 mg 
Cat.2 = 10-14 mg 
Cat.3 = 14-20 mg 

Cat.4 = 20-40 mg 

Associations between 
TB, LS, FN, WT and T 

BMD with iron intake 
 
 
 

Interaction effects 
between iron and 
calcium intake on TB, LS, 
FN, WT and T BMD 

Diet: S Iron intake was significantly and positively 
associated with adjusted BMD at all sites (β 0.085-

0.251, P≤0.01). In linear regression analyses, BMD 
at all sites increased by 4-14% between extreme 
quartiles of iron intake (P≤0.05). 
 

For women with calcium intakes of 800-1200 
mg/d, those that had iron intakes of ≥20 mg/d had 
higher BMD at all sites than those with iron 
intakes of <10 mg/d (results visualised in graph, no 

effect sizes and significance levels reported). 
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Table A4.3: (continued)       

Study Subjects Age (years) 
Dietary 
assessment 

Mean ± SD (range) iron intake or blood 
levels 

Outcome measures 
and analyses 

Results Comments 

Cesari (184) 
2005 

Italy 

n 950 
(420 men,  

530 women) 

75 ± 7 
(65-102) 

N/A Anaemia, defined as: 
Men: Hb levels < 13 g/dl 

Women: Hb levels < 12 g/dl 

Differences in TRAB and 
CORT bone density 

between subjects with 
and without anaemia 
  
 

 
Associations between 
anaemia and Hb levels 
with TRAB and CORT 

bone density 
 
 
 

The relationship 
between Hb levels 
above and below 
anaemia cut-off points 
with TRAB and CORT 

bone density 

Anaemia: 
M 

In unadjusted analyses, women with anaemia had 
significantly lower bone density at all sites than 

those without anaemia (differences = 20.4 – 75.8 
mg/cm3, P≤0.02). In men, anaemia subjects had 
significantly lower cortical bone density only 
(difference = 26.4 mg/cm3, P=0.01).  

 
In adjusted analyses, every SD increase in bone 
density (at different sites) was significantly 
associated with higher haemoglobin levels in both 

sexes (β 0.076-0.112, P≤0.04) and with a lower 
prevalence of anaemia in women only (β -0.335-(-
)0.428, P≤0.04).  
 

In adjusted analyses, women with Hb levels above 
the anaemia cut-off had significantly higher bone 
density at multiple sites than those with anaemia 
(differences = 26.9-39.4 mg/cm3, P≤0.03). In men 
this was only significant for cortical bone density 

(difference = 34 mg/cm3, P=0.01). 
 

D’Amelio (183) 
2008 

Italy 

n 455 
(women) 

66 ± 10 
(NR) 

N/A Serum iron:  
92-99 ± 22-26 µg/dl + 

Serum transferrin:  
236-267 ± 33-37 mg/dl + 
Serum ferritin:  
74-85 ± 31-67 ng/dl + 

 

Correlations between 
serum iron, transferrin 

and ferritin with LS and 
FN BMD 
 

Status: M Serum transferrin significantly correlated with 
BMD at both sites (LS: R=-0.2, P=0.015; FN: R=-

0.34, P<0.001). No other correlations were 
reported. 

Farrell (142) 
2009 
US 

n 244 
(women) 

56 ± 5 
(NR) 

FFQ  and 
eight 24hRs 

Dietary intake: 
FFQ = 14 ± 6 mg/d 
24hR = 15 ± 5 mg/d 
 

The agreement between 
multiple linear 
regression of each 
intake method with TB, 

LS, FN, T and WT BMD 
 

Diet: S Iron intake was significantly associated with 
adjusted BMD at all sites regardless of the dietary 
assessment used (24hR: β 0.214-0.380 g/cm3; FFQ: 
β 0.232-0.426 g/cm3). 
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Table A4.3: (continued)       

Study Subjects Age (years) 
Dietary 
assessment 

Mean ± SD (range) iron intake or blood 
levels 

Outcome measures 
and analyses 

Results Comments 

Kim (409) 
2013 

Korea 

n 5148 
(2621 men; 

2527 women) 

Men:  
45 ± 19 

(10-93); 
Women: 
44 ± 18 
(10-95) 

N/A Serum ferritin in people aged ≥45 years: 
Men = 118.9 (95%CI 115.0-122.9) ng/ml 

Women = 58.1 (95%CI 55.8-60.4) ng/ml 
 
 
 

 
Serum ferritin in women aged ≥45 years: 
Quartile 1 = 1.1-28.0 ng/ml 
Quartile 2 = 28.1-50.5 ng/ml 

Quartile 3 = 50.6-77.9 ng/ml 
Quartile 4 = 78.0-486.1 ng/ml 

Associations between 
serum ferritin levels and 

LS, FN and TH BMD 
stratified by age and sex 
 
 

 
Associations between 
quartiles of serum 
ferritin levels and LS, FN 

and TH BMD in women 
aged ≥45 years 
 
 

Associations between 
quartiles of serum 
ferritin levels and the 
odds for prevalent 
osteoporosis and self-

reported fractures in 
women aged ≥50 years 
 

Status: M 
 

 
 
 
 

 
Status: M 
 
 

 
 
 
 

Status: S 

In men, serum ferritin levels were not associated 
with BMD at any site in any age group. In women, 

ferritin was significantly inversely associated with 
all BMD sites in women aged ≥45 years and with 
LS BMD only in 25-44 year old women (β -0.012-(-
)0.039 ± 0.005-0.007 (SE), P≤0.041). 

 
Women in quartiles 3 and 4 of ferritin levels had 
significantly lower LS BMD (approximately 3.2% 
and 3.4%, respectively) compared to those in 

quartile 1 (P<0.05), and this inverse association 
was linear (P-trend<0.001). No such associations 
were found for FN and TH BMD. 
 

The odds for osteoporosis were significantly 
higher in women in quartiles 3 (OR 1.45, 1.02-
2.05) and 4 (OR 1.55, 1.09-2.23) compared to 
quartile 1 of serum ferritin, and this association 
was linear (P-trend=0.013). The odds for self-

reported fractures was also significantly higher in 
women in quartile 4 vs. 1 (OR 1.52, 1.02-2.27), 
with a significant linear trend across all quartiles 
(P=0.034). 

 
Lee (182) 
2013 
South Korea 

n 2943 
(1371 men; 
1569 women) 

72 ± 11 
(NR) 

N/A Serum ferritin: 
Men = 127.7 ± 6.2(SE) ng/ml 
Women = 77.1 ± 3.1(SE) ng/ml 

Associations between 
serum ferritin levels and 
LS, FN and TH BMD 

Status: M Serum ferritin levels were significantly and 
positively associated with all BMD sites in men (β 
0.008-0.018 ± 0.004-0.005 (SE), P≤0.049). 

Moreover, with increasing tertiles of serum 
ferritin, BMD at all sites increased and the 
prevalence of osteoporosis decreased significantly 
in men (P≤0.022). No such observations were 
found in women. 
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Table A4.3: (continued)       

Study Subjects Age (years) 
Dietary 
assessment 

Mean ± SD (range) iron intake or blood 
levels 

Outcome measures 
and analyses 

Results Comments 

Okyay (408) 
2013 

Turkey 

n 728 
(women) 

57 ± 6 
(47-79) 

N/A Serum iron in 45-59 yr age group (n=576): 
NOP = 101.0-101.3 ± 43.5-45.0 µg/dl ++ 

OP = 86.8-93.0 ± 43.1-48.1 µg/dl ++ 

Serum iron in 60-79 yr age group (n=152): 
NOP = 106.0-108.7 ± 46.9-50.4 µg/dl ++ 

OP = 99.6-101.0 ± 46.8-49.7 µg/dl ++ 

 

Differences in serum 
iron levels between 

those with and without 
osteoporosis at the LS, 
FN or TH stratified by 
age 

 
 
The risk of OP at the LS, 
FN and TH for those 

with low vs. normal 
serum iron levels 

Status: M 
 

 
 
 
 

 
 
Status: NS 

In the younger age group, women with FN and TH 
OP but not LS OP had significantly lower serum 

iron levels than NOP women (FN: 101.1±45.0 vs. 
90.7±43.1 µg/dl, P=0.030; TH: 101.0±44.7 vs. 
86.8±43.4 µg/dl, P=0.012). Serum iron did not 
differ between OP and NOP subjects in the older 

age group. 
 
The risk for OP did not differ between women 
with low or normal levels of serum iron at any 

bone site (OR 1.0, 95%CI 0.6-1.9, P≥0.33). 

Abbreviations: pre-mp, pre-menopausal; post-mp, post-menopausal; LS, lumbar spine; FN, femoral neck; WT, Ward’s triangle; GT, greater trochanter, NR, not reported; TB, total body; 
T, trochanter; OC, osteocalcin; Hb, Haemoglobin; TRAB, trabecular; CORT, cortical; TH, total hip; NOP, no osteoporosis; OP, osteoporosis. 
* Results were significant (S), non-significant (NS) or of mixed nature (M). 
+ Values were reported separately for osteoporotic never-fractured women, osteoporotic fractured women and non-osteoporotic women. 
++ Values were reported separately for specific bone sites (lumbar spine, total femur and femoral neck). 
 


