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Abstract

This study combines two invaluable datasets that have been collected on-board vol-

unteer observing ships to analyse the variability of the carbon dioxide (CO2) sink

in the North Atlantic at a range of spatial and temporal scales. Phytoplankton in-

dices collected from the continuous plankton recorder (CPR) and the concentration

of CO2 within the surface waters show that at seasonal time-scales phytoplankton

play an important role in maintaining the carbon drawdown within the northeast

Atlantic, while sea surface temperature (SST) drives the seasonal signal in CO2

flux in the subtropics. The North Atlantic remained a significant sink of CO2 be-

tween 2002 and 2013, despite strong inter-annual variability in CO2 flux that was

correlated to changes in the North Atlantic Oscillation and the influence that this

had on SST.

Discrete dissolved inorganic carbon, total alkalinity and dissolved oxygen sam-

ples were collected during 4 voyages between April 2012 and February 2013. Us-

ing these measurements this study successfully developed and implemented a sim-

ple and inexpensive technique to estimate net community production in the surface

ocean, with the potential to extend coverage of such measurements over wider re-

gions at low cost.

Two key observations were made in the northeast Atlantic. Firstly, the increase

in SST was significantly correlated with the increase in phytoplankton colour in-

dex measured by the CPR between 1960 and 2012, despite other micro and nano-

phytoplankton counts decreasing over this time frame. This suggests that as the

surface ocean warms and stratification is enhanced, pico-phytoplankton (which

contribute to the colour index but not the phytoplankton counts) may be better

equipped to dominate the system, compared to larger species that are more nutri-

ent dependent. Secondly, the CO2 uptake capacity has decreased compared to the

1990s. Combined, these two results will likely have a significant impact on carbon

flux, export efficiency and ecosystem dynamics.
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Chapter 1

Introduction

The ocean plays a fundamentally important role in the global cycling of car-

bon, taking up 26% of anthropogenically produced carbon dioxide (CO2) (House

et al., 2002; Le Quéré et al., 2010). The processes involved in the oceanic uptake

of CO2 are therefore critical in slowing the rate of increase of CO2 in the atmo-

sphere and of subsequent climate change. The temperate and subtropical North

Atlantic (between 14◦ N and 50◦ N) is an important sink region for CO2, and is

estimated to have a net air-sea flux of CO2 of -0.22 Pg C y−1, representing 13%

of the global contemporary carbon sink and storing ∼ 23% of the global anthro-

pogenic carbon inventory (Gruber et al., 2009; Takahashi, 2009; Schuster et al.,

2009b, 2013). Studies have suggested that the uptake of CO2 in the North Atlantic

is changing (Schuster and Watson, 2007; Schuster et al., 2009b). However, as of

yet, it is unclear how much of this change is due to changing circulation patterns or

to changes in plankton activity (Hays et al., 2005), particularly on seasonal, inter-

annual and decadal time scales. This thesis aims to address this uncertainty by

investigating the interactions between the variability of sea surface partial pressure

of carbon dioxide (pCO2), and the air-sea flux of CO2, in relation to the abundance
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and distribution of different phytoplankton taxonomic groups in the North Atlantic

Ocean.

Each data chapter (3 to 6) aims to address topics included within the over-

arching aim of this thesis, and are self-contained with short introductions included.

Chapter 3 introduces the importance of phytoplankton and their role in carbon

drawdown in the North Atlantic and investigates their spatio-temporal variability

over the last ∼50 years. Chapter 4 introduces and investigates net community

production in the North Atlantic. Chapter 5 presents carbonate and biological data

in the North Atlantic in order to investigate the seasonal carbon cycle. And finally

chapter 6 investigates the spatio-temporal variability of CO2 and phytoplankton

abundance in the North Atlantic.

This chapter introduces the importance of the topic by giving background infor-

mation on anthropogenic emissions and their impact on ocean and climate warm-

ing, and the contribution carbon dioxide (CO2) has on this warming effect. The

marine carbonate system and the dissolution of CO2 within seawater is then de-

tailed, along with an explanation of the influences on CO2 concentration in surface

waters. To show how estimates of carbon cycling within the oceans are derived,

some of the key findings from long-term datasets of carbon and productivity es-

timates are introduced. The chapter then outlines the current knowledge of the

variability of both CO2 and phytoplankton community structure and abundance

within the North Atlantic. Finally the overall aims, and objectives of the thesis are

stated, and the thesis structure is outlined.

1.1 Background

1.1.1 Ocean warming and CO2

Understanding the variability in the carbon cycle and the influences involved has

become increasingly important with rising emissions and evidence of anthropogenic

impacts on our environment (IPCC, 2013; Myhre et al., 2013). The continued

emission of greenhouse gases into the atmosphere through fossil fuel burning, ce-

ment production and land use change has increased the surface temperature of the
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globe. This increase in surface temperature combined over the world’s land and

oceans from 1880 to 2012 is 0.85◦C (Hartmann et al., 2013).

The radiative energy entering the Earth’s system is not in balance, with more

energy entering the atmosphere than exiting it (Rhein et al., 2013). Figure 1.1

shows that the upper oceans (upper 700 m) shows the largest change in energy

compared to the atmosphere, deep ocean (below 700 m), ice, and land. This is

mostly due to the high heat capacity and low albedo of the ocean, which leads to

ocean warming. This warming is largest in the surface waters, with global mean

temperatures of the surface ocean (upper 75 m) increasing by 0.11◦C per decade

compared to an increase of 0.015◦C per decade in the deep ocean (below 700 m),

between 1971 and 2010 (Rhein et al., 2013).
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Figure 1.1: The energy accumulated in ZJ (1 ZJ = 1021 J) from 1971 to 2010 for different
components of the Earth’s climate system. Upper ocean (surface 700 m) = light blue, deep
ocean (below 700 m) = dark blue, ice melt (glaciers and ice caps, Greenland and Antarctic
ice sheet estimates starting from 1992, and Arctic sea ice estimate from 1979 to 2008) =
light grey, land = orange, atmosphere = purple. The total uncertainty about the error from
all five components at the 90% confidence interval is shown as a dot-dashed black line.
Reproduced from Rhein et al. (2013).

Figure 1.2 presents the radiative forcings of the main agents that have influ-

enced the climate from 1750 to 2011. The anthropogenic influence on radiative

forcing during this period is much larger than the natural influence, with the an-

thropogenic radiative forcing over the industrial era estimated to be a total of 2.29
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W m−2 (Myhre et al., 2013). Greenhouse gases show a strong positive radiative

forcing on climate, with carbon dioxide (CO2) showing the largest contribution

(figure 1.2).

Figure 1.2: The radiative forcing of the main agents that have influenced the climate from
1750 to 2011. These forcing estimates were derived from models, model simulations com-
bined with observations and observations. The hatched bars represent previously presented
estimates of radiative forcing and the solid bars represent novel effective radiative forcing
estimates. The 5 to 95% confidence range are displayed as error bars on each bar. Repro-
duced from Myhre et al. (2013).

Since the industrial revolution, measurements of CO2 from ice-cores have shown

that atmospheric CO2 concentration has continued to rise at an unprecedented rate

and that it has reached concentrations higher than those seen in the past 800,000

years (Lüthi et al., 2008). Between 1959 and 2008 the proportion of CO2 emissions

that remain in the atmosphere each year have been suggested to have increased by

40% to 50% (Le Quéré et al., 2009). Models suggest that this increase is due

to decreased uptake by both land and ocean sinks due to a number of processes

such as volcanic eruptions, climate variability and change (Le Quéré et al., 2009;

Raupach et al., 2014). Regional variations in surface water CO2 concentration are

due to complex interactions between physical, chemical, and biological processes

which drive the air-sea flux (Sarmiento and Gruber, 2006). These processes have

been difficult to quantify and predict in terms of their impact on this variability

(SAHFOS, 2006).
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1.1.2 The marine carbonate system

The following reactions take place when carbon dioxide dissolves in seawater, with

the bracketed letters (g), (aq), and (l) referring to the states; gas, aqueous solution,

and liquid respectively (Dickson et al., 2007). Dissolved carbon dioxide (CO2(aq))

reacts with water to form carbonic acid (H2CO3(aq)), which in a two-step process,

dissociates to form bicarbonate (HCO−
3(aq)), hydrogen (H+(aq)) and carbonate ions

(CO2−
3(aq)):

CO2(g) � CO2(aq) (1.1)

CO2(aq) +H2O(l) � H2CO3(aq) (1.2)

H2CO3(aq) � H+
(aq) +HCO−

3(aq) (1.3)

HCO−
3(aq) � H+

(aq) + CO2−
3(aq) (1.4)

Because it is difficult to distinguish analytically between CO2(aq) and H2CO3(aq)

these are often combined and referred to as CO∗
2(aq) (Dickson et al., 2007):

CO∗
2(aq) = CO2(aq) +H2CO3(aq) (1.5)

Using this term, the equilibrium constants between these different species’ con-

centrations are written as the following, where pCO2,atm is the partial pressure of

carbon dioxide in the air (Dickson et al., 2007; Sarmiento and Gruber, 2006):
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K0 =
[CO∗

2]

pCO2,atm
(1.6)

K1 =
[HCO−

3 ]× [H+]

[CO∗
2]

(1.7)

K2 =
[CO2−

3 ]× [H+]

[HCO−
3 ]

(1.8)

The sum of the products formed in equations 1.6 to 1.8 is the total dissolved

inorganic carbon (DIC) concentration:

[DIC] = [CO∗
2] + [HCO−

3 ] + [CO2−
3 ] (1.9)

The Total Alkalinity (TA) of a sample of seawater also influences the concen-

tration of carbon and is defined as “the number of moles of hydrogen ion equivalent

to the excess of proton acceptors (bases formed from weak acids with a dissociation

constant K ≤ 10 to 4.5 at 25◦C and zero ionic strength) over proton donors (acids

with K > 10 to 4.5) in 1 kilogram of sample” (Dickson et al., 2007). Although

there are different definitions within the literature (Peng et al., 1987), Dickson

(1981) defines TA as:

[TA] = [HCO−
3 ] + 2× [CO2−

3 ] + [B(OH)−4 ] + [OH−]− [H+] (1.10)

+[HPO2−
4 ] + 2× [PO3−

4 ] + [SiO(OH)−3 ] + [NH3]

+[HS−]− [HSO−
4 ]− [HF ]− [H3PO4]

The partial pressure of carbon dioxide in seawater (pCO2,sea) is the product

of the mole fraction of CO2 and total pressure, while the fugacity of CO2 (fCO2)

takes into account the non-ideal nature of the gas phase. The equilibrium constants

in equations 1.6 to 1.8 can be used to estimate the pCO2,sea using the reactions in

equations 1.2 to 1.4 (Sarmiento and Gruber, 2006):
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pCO2,sea =
K2

K0 ×K1
× [HCO−

3 ]2

[CO2−
3 ]

(1.11)

This, using approximations to express bicarbonate and carbonate concentration

in terms of DIC and TA is equivalent to the following (Sarmiento and Gruber,

2006):

pCO2,sea =
K2

K0 ×K1
× 2× [DIC]− [TA]2

[TA]− [DIC]
(1.12)

Therefore the pCO2,sea is affected by the ratio of the equilibrium constants,

and the ratio between the concentration of DIC and TA (Sarmiento and Gruber,

2006). The equilibrium constants are affected by solubility, which in seawater is

controlled by salinity and temperature, while the DIC and TA are influenced by the

exchange of CO2 with the atmosphere, mixing and biological processes, such as

plankton photosynthesis, respiration and calcification (this is summarised in figure

1.3).
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Figure 1.3: Schematic of the solubility, organic carbon, and inorganic carbon pumps.

Sea-surface temperature (SST) influences the solubility of DIC, as well as mix-

ing events (via stratification) which can limit the amount of nutrient and CO2 rich

waters that are mixed from below the thermocline into surface waters. With contin-

ued warming predicted from climate change, the solubility of DIC will decrease,

therefore reducing the carbon flux from the atmosphere into the ocean. Model

studies suggest that this has a particularly strong influence in the North Atlantic (Le

Quéré et al., 2010). Ocean warming has also been linked to increased thermal strat-

ification in the top 0 to 200 m surface layer by 4% (Levitus et al., 2009), which can

have significant implications for ventilation and nutrient upwelling. With increas-

ing concentrations of pCO2,sea due to increased emissions (figure 1.4), it is likely

that the buffer capacity of the oceans will change. The buffer capacity is represen-

tative of the capacity for a body of water to take up surplus CO2 (anthropogenic)

from the atmosphere, and is calculated as the fractional change in pCO2,sea relative

to the fractional change in DIC (Zeebe and Wolf-Gladrow, 2001). This capacity

is directly proportional to the ratio of DIC:TA mostly due to the regional tempera-

ture influence on DIC concentrations (Sabine et al., 2004; Sarmiento and Gruber,

2006). It is referred to as the buffer capacity because the increase in CO2 con-

centration in seawater is less than the CO2 concentration that is added from the
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atmosphere. This is due to the conversion of CO2 to HCO−
3 (bicarbonate) and the

scavenging properties of CO2−
3 (carbonate) in seawater. Increased pCO2,sea will

cause an increase in hydrogen ion concentration (increasing acidity, see increasing

pH in figure 1.4b) and a decrease in carbonate ion concentration, which combined

with the increased concentration of pCO2,sea will likely decrease the buffer capac-

ity (Sabine et al., 2004).

Figure 1.4: (a) The atmospheric concentration of CO2 (ppm) from 1958 to 2011 recorded
at Mauna Loa = red (located at 19.32 ◦N, 155.34◦W) and the South Pole = black (lo-
cated at 89.59◦S, 24.48◦W). (b) Sea surface pCO2 (µatm) = blue curves, and in situ pH =
green curves. These measurements are from three different time-series stations; Atlantic
= Bermuda Atlantic Time Series (BATS, 32◦N 74◦W) = dark blue/green and European
Station for Time Series in the Ocean (ESTOC, 29.2◦N 15.5◦W) = blue/green, Pacific =
the Hawaii Ocean Time-series (HOT, 22.45◦N 158.00◦W) = light blue/green. Reproduced
from IPCC (2013).
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Phytoplankton play an important role in the uptake of CO2 due to photosynthe-

sis, particularly in the North Atlantic where the spring bloom is a prominent fea-

ture (Takahashi et al., 1993; Follows and Dutkiewicz, 2001; Shutler et al., 2013).

Redfield et al. (1963) describes photosynthesis using the constant stoichiometric

relationship between CO2, nutrients and oxygen:

106CO2 + 16NO−
3 +HPO2−

4 + 122H2O + 18H+ (1.13)

� (CH2O)106(NH3)16(H3PO4) + 128O2

In the surface waters this process decreases the pCO2, DIC and nutrient con-

centrations which increases the gradient of CO2 between the atmosphere and the

surface waters, allowing for increased uptake of CO2. Most of the organic matter

produced in the surface waters is regenerated as a source of nitrogen and phospho-

rus used by phytoplankton or labile carbon used by bacteria. However some of

the organic matter is exported to the deep ocean by sinking particles (export pro-

duction) in the form of particulate organic carbon (POC flux in the organic carbon

pump in figure 1.3). Processes which lead to increased CO2 concentrations in the

surface waters are respiration, remineralisation of organic matter by heterotrophic

bacteria, and upwelling of CO2 rich waters from the deep ocean (Sarmiento and

Gruber, 2006).

The inorganic carbon pump describes the production of calcium carbonate by

calcifying plankton in the surface waters and the dissolution of calcium carbonate

at depth (figure 1.3, equation 1.14).

Ca2+ + 2HCO−
3 � CaCO3 +H2O + CO2 (1.14)

The export of calcium carbonate (CaCO3) to the deep ocean is important in

the sequestration of carbon. Studies have also indicated a negative feedback be-

tween CO2 flux and the activities of calcifying phytoplankton (Robertson et al.,

1993; Shutler et al., 2013). This is because during calcification CO2 is produced

(equation 1.14) which can reduce the gradient of CO2 between the atmosphere and



12 1.1 Background

surface waters therefore reducing the flux. In the North Atlantic, coccolithophores,

such as Emiliania huxleyi, form a large component of the phytoplankton blooms

(Shutler et al., 2013) (see figure 1.5), and are thought to be major contributors to

the export of carbon in the global oceans (Broecker and Clark, 2009).

Figure 1.5: National oceanic and atmospheric administration (NOAA) advanced very high
resolution radiometer (AVHRR) composite image of Emiliania huxleyi bloom in the north-
east Atlantic, from June 18th, June 29th and July 1st 1991. Light shades are coccolith light
scatter, land and clouds are black. Reproduced from Holligan et al. (1993).

1.1.3 Estimating the spatio-temporal variability in carbon cycling

In order to quantify and investigate the seasonal, inter-annual and decadal variabil-

ity of biogeochemical cycles in the North Atlantic, long-term measurements are

needed. There are a number of different methodologies used to collect such data

ranging from in situ measurements to satellite imagery. In the North Atlantic there

are three main time-series stations; Bermuda Atlantic Time Series (BATS, 32◦N

74◦W), European Station for Time Series in the Ocean (ESTOC, 29.2◦N 15.5◦W)

and the Porcupine Abyssal Plain site (PAP, 49◦N 16.3◦W) (see figure 1.6).
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Figure 1.6: Map of the North Atlantic with BATS (red diamond), ESTOC (yellow dia-
mond) and the PAP site (white diamond) time-series stations marked.

These stations use a range of sampling techniques designed around sampling

buoys with sensors attached that are calibrated and maintained regularly. Gruber

et al. (2002) provide an 18 year time series of carbon measurements from BATS

demonstrating that the seasonal cycle in near-surface waters of inorganic carbon

is driven by SST and changes in the winter-mixed layer depth, which was found

to be linked to the North Atlantic Oscillation (NAO, described in section 1.2.1).

A similar trend is seen in the eastern Atlantic at ESTOC, with a three-year time

lag between the NAO and the inter-annual variability in the carbon sink (Santana-

Casiano et al., 2007; Schuster et al., 2013). At the PAP site the seasonal cycle

of carbon is driven by a seasonal minimum caused by biological drawdown in the

spring-summer, and a maximum caused by winter mixing of carbon rich waters

(Körtzinger et al., 2008). Hartman et al. (2015) demonstrated that at this site there

is variability in the intensity of the spring bloom and the timing of the deepening

of the mixed layer between years, but that the net annual CO2 flux remained a sink

of ∼5 mmol CO2 m−2 d−1.

There is also a network of volunteer observing ships (VOS) that measure CO2

within the surface waters (this methodology is described in section 2.5). The Sur-

face Ocean Carbon ATlas (SOCAT) provides a quality controlled database of these
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measurements, with the latest update including over 10 million data points from

1968 to 2011 (Bakker et al., 2014). Figure 1.7 shows the number of unique months

sampled within this dataset, demonstrating that currently the northern hemisphere

has more data coverage and months sampled than the southern hemisphere, with

the North Atlantic appearing relatively well-sampled.

Figure 1.7: The number of unique months with fCO2 observations in each 1◦by 1◦grid
cell from 1970 to 2011 in SOCAT version 2. Reproduced from Bakker et al. (2014).

The use of VOS allows for a cost-effective efficient platform to collect in situ

measurements. The continuous plankton recorder (CPR) is an example of a long-

standing system that uses VOS networks globally (a detailed methodology is de-

scribed in section 2.1). The CPR survey provides a semi-quantitative record of

the plankton within the surface waters dating back to 1958. The dataset has been

used to determine a number of important ecological shifts and patterns, such as the

northward extension of warm-water copepod assemblages (Beaugrand et al., 2002;

Hinder et al., 2014), which has knock-on implications for their prey and predators

(including fish stocks).

Using satellite imagery it is possible to estimate the amount of chlorophyll in

the sea surface from ocean colour. This can be used to estimate plankton pro-

ductivity. Global net primary production (NPP) is calculated as the difference

between gross primary production (GPP) (rate of carbon fixed by photosynthe-

sis) and respiration by phytoplankton (primary producers). It can be estimated

using a chlorophyll based satellite technique (e.g. Vertically Generalized Produc-

tion Model (VGPM)) (Behrenfeld and Falkowski, 1997) or a carbon-based satellite
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technique (e.g. carbon-based productivity model (CbPM)) (Westberry et al., 2008).

Net community production (NCP) indicates the balance between production of or-

ganic carbon by autotrophs (P) and production of CO2 by heterotrophs (R) at the

time and space scale of the measurement technique used (Serret et al., 2009). The

metabolic state of a system can be defined by NCP (=P-R); with autotrophic sys-

tems occurring when gross primary production is greater than respiration, and het-

erotrophic systems occurring when respiration is greater than primary production

(Ducklow and Doney, 2013) (see chapter 4 for further details).

Behrenfeld et al. (2006) used the VGPM to estimate global NPP (figure 1.8a),

and demonstrate that stratification anomalies in the permanently stratified regions

of the ocean were dominating the anomalies seen in global productivity (figure

1.8b and 1.8c). The advantage of using satellite data is that it can cover large

regions with relatively high spatial and temporal resolution, and as more satellites

are deployed and these sensors and algorithms develop further, they will greatly

enhance our understanding of large-scale oceanic processes.

Combining the range of measurement techniques available (i.e. in situ and

satellite) provides the best estimate and resolution of biogeochemical processes

that may be occurring in the oceans and allows for validation of the different tech-

niques available.
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Figure 1.8: a) World map of annually averaged net primary production (NPP). b) Globally
integrated water-column chlorophyll concentration anomalies (green line) with changes
occurring in permanently stratified ocean regions (grey circles with black line). c) Global
NPP anomalies (green line) also with changes occurring in permanently stratified ocean
regions (grey circles with black line). Demonstrates that changes in the stratified regions
dominate the productivity trends. Reproduced from Behrenfeld et al. (2006).
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1.2 CO2 in the North Atlantic

The contemporary carbon flux is a combination of both anthropogenic and natu-

ral carbon flux. Geochemical processes and the natural seasonality of temperature

and vegetation primarily maintain the natural carbon flux, while the anthropogenic

carbon flux is influenced by carbon emissions due to human activity. On a global

scale the natural carbon flux is thought to be roughly balanced (neither a source or

a sink) (Gruber, 2009) with the exception of the natural out-gassing of carbon by

rivers (Wanninkhof et al., 2013). The North Atlantic Ocean is an important con-

temporary sink of CO2 because it is thought to be driven by ∼50% natural carbon

flux and ∼50% anthropogenic carbon flux (Gruber, 2009; Schuster et al., 2013).

Takahashi (2009) calculated the climatological mean annual net global air-to-sea

carbon flux for the reference year 2000 as -1.6 ±0.9 Pg C y−1 (negative value

representing marine uptake from the atmosphere), using the available pCO2 mea-

surements and an advection-based interpolation. The global ocean map produced

from these calculations demonstrates that the temperate and subtropical North At-

lantic (between 14◦ N and 50◦ N) is an important sink region for CO2 (figure 1.9).

For the reference year 2000, this region is estimated to have a net air-sea flux of

CO2 of -0.22 Pg C y−1 (Takahashi, 2009; Schuster et al., 2013).

Figure 1.9: Climatological mean annual net sea-air CO2 flux for the reference year 2000
(g C m−2 y−1). Negative values (pink and blues) represent sink areas, positive values
(yellows and red) represent source areas. Reproduced from Takahashi (2009).
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The ocean sink of CO2 can be estimated from in situ measurements of sea

surface partial pressure of CO2 (pCO2) and the difference between pCO2 and the

concentration of CO2 in the atmosphere. Although atmospheric pCO2 is relatively

homogenous, marine pCO2 varies both spatially and temporally (Telszewski et al.,

2009). The CO2 sink in the North Atlantic is maintained by the year-round north-

ward transport of cool waters, and accentuated by phytoplankton blooms that pri-

marily occur within the subpolar gyre during spring (Watson et al., 2009). The

subtropical gyre has high surface pCO2 during the spring and summer, acting as

a source of CO2, and then developing into a net sink during the winter months as

pCO2 levels decline. This process is thought to be mainly temperature driven (Tel-

szewski et al., 2009). The subpolar gyre has been reported as a major sink of CO2,

with a high biological CO2 drawdown linked to the spring and summer blooms,

that are represented by lower levels of surface pCO2. However, mixing that occurs

in the autumn counter-acts this and is believed to bring CO2 rich waters back to the

surface increasing surface pCO2 levels once again (Telszewski et al., 2009). The

contrasting seasonal cycle of pCO2 in these two regions creates a transition zone at

about 40 ◦N, in which the seasonal cycles cancel each other out, and the seasonal

amplitude is reduced (Takahashi and Sutherland, 2002; Landschützer et al., 2013).

This can be seen in figure 1.10, which shows the difference between the effects on

pCO2 of seasonal thermal (pCO2T) and non-thermal (pCO2NT) changes (pCO2T

- pCO2NT).
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Figure 1.10: The difference between the effects on pCO2 of seasonal thermal (pCO2T) and
non-thermal (pCO2NT) changes (pCO2T - pCO2NT). Negative values (green and blues)
represent where non-thermal effects exceed thermal effects, positive values (orange and
red) represent where thermal effects exceed non-thermal effects. Reproduced from Taka-
hashi and Sutherland (2002).

1.2.1 The North Atlantic Oscillation

Long-term trends in CO2 and phytoplankton species abundance have been linked

to large scale climate modes (Gruber et al., 2002; Harris et al., 2013). The North

Atlantic Oscillation (NAO) is the dominant climate mode in the North Atlantic

(Hurrell, 1995), and is therefore potentially important for CO2 uptake. It is an

oscillation of atmospheric pressure over the North Atlantic between the high pres-

sure centered in the subtropics around the Azores and low pressure around Iceland.

This phenomenon is thought to affect weather patterns, which can impact sea sur-

face temperatures, stratification, and mixing of the upper ocean (Planque and Fro-

mentin, 1996). The NAO index is measured as the difference between the mean

winter sea-level pressure over the Azores, and the mean winter sea-level pressure

over Iceland (Marshall et al., 2001). Figure 1.11 shows the annual NAO index,

with prolonged positive NAO periods occurring between 1900 to 1920 and 1990 to

2000, and prolonged negative periods occurring between 1870 to 1880 and 1960 to

1975.
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Figure 1.11: Annual NAO index from 1865 to 2012 (Hurrell, 1995). Cyan = positive
NAO, pink = negative NAO, black line = 5 year moving average.

A weaker seasonal cycle in subpolar regions of the North Atlantic can be linked

to a negative NAO pattern, in which westerly winds across the North Atlantic

would be expected to weaken. In mid-latitude regions (temperate and subtropi-

cal) a positive NAO index would be expected to result in increased SST due to

changes in circulation, while in the subpolar and tropical latitudes this would re-

sult in decreased SST (Visbeck et al., 2003). This regional difference induces a

tripole that can be seen in figure 1.12, which shows the de-trended linear regres-

sions between the NAO index and SST, heat flux and wind stress curl. The NAO is

therefore likely to have differing regional influences on the pCO2. Schuster et al.

(2009b) describe the regional tripole of SST regressed on to the NAO index as seen

in figure 1.12a, and suggest that an increase in the NAO will cause an increasing

sink of carbon in subpolar regions of the North Atlantic.
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Figure 1.12: Maps of the North Atlantic showing the linear regression between the NAO
index and the anomalies of a) sea surface temperature (SST, negative is shown using a
dashed line) b) surface turbulent heat flux (latent and sensible, dashed is out of the ocean)
and c) surface wind stress curl (dashed line for anti-cyclonic, black lines are zero wind
curl). The linear trend was removed from each dataset before calculating the linear regres-
sion. Reproduced from Marshall et al. (2001).

1.2.2 Circulation in the North Atlantic

Circulation within the North Atlantic influences the air-sea exchange and trans-

portation of carbon. The ocean conveyor circulation is driven by temperature and

salinity, with the formation of North Atlantic deep water in the high latitude North

Atlantic. The surface pCO2 remains low in this region due to the cool tempera-

tures. The cooling of the northward movement of the conveyor means that large

quantities of anthropogenic carbon are taken up and transported into the interior

ocean (Sabine et al., 2004). The surface ocean currents in the North Atlantic also

influence the distribution of carbon (green arrows in figure 1.13), with low lati-

tude water masses which are warm and carbon rich being transported to higher
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latitudes and cool water masses from higher latitudes being transported to low lat-

itudes where warming reduces the gas solubility, therefore increasing the surface

pCO2.

Figure 1.13: Map showing the influence of a positive NAO phase on the circulation and
CO2 sink in the North Atlantic. Green arrows represent different ocean currents. The
negative sign represents an increased CO2 sink, and the positive sign represents a decreased
CO2 sink. Reproduced from Gruber (2009), based on model results from (Thomas et al.,
2008).

Figure 1.13 depicts the impact of a positive phase NAO on circulation in the

North Atlantic and how this is modelled to influence the CO2 sink. The increased

westerly winds cause an extension of the subtropical gyre northward, and an accel-

eration of the North Atlantic Current, which brings more low carbon waters from

the subtropics northeastward. This increases the carbon sink in the eastern subpolar

region (blue region with negative sign in figure 1.13), because the cooling of these

waters increases their potential to take up CO2. The Labrador Current intensifies

during a positive NAO phase, which brings high concentrated carbon waters from

the Arctic into the subpolar gyre, decreasing the CO2 sink off the Grand Banks

of Newfoundland. The subtropical gyre also has a decreased carbon sink (red re-

gion with positive sign in figure 1.13), because of warm conditions and reduced

convection (Gruber, 2009).
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1.2.3 CO2 variability

An analysis of pCO2 observations and models within the Regional Carbon Cy-

cle Assessment and Processes (RECCAP) synthesis has demonstrated that there is

disagreement about the trends of pCO2 within the North Atlantic (Schuster et al.,

2013). Schuster and Watson (2007) reviewed available in situ pCO2 observations

from the mid-1990s and the period 2002-2005 suggesting that there is a large re-

gion of decreasing air-sea flux in the North Atlantic, particularly within the north-

east. This review also demonstrated that the sink for atmospheric CO2 in the North

Atlantic shows important seasonal, and interannual variability, and that there has

been an overall inter-decadal decline; with the sink reducing by >50% between

the two study periods (Schuster and Watson, 2007). This decline was thought to

be linked to a number of changing variables such as increased stratification, and

decreased rates of wintertime mixing and ventilation. CO2 uptake is higher in tem-

perate and subpolar regions of the North Atlantic compared to tropical regions due

to the seasonal deep mixing that occurs at higher latitudes in the North Atlantic.

Watson et al. (2009) further demonstrated that the change in CO2 flux had declined

by >20% in 2005 compared to the mid 1990s, and that the declining sink was non-

uniform with location. This decrease in CO2 uptake is believed to be enhanced by

the changing buffer capacity of the North Atlantic, as increasing levels of carbon

content have been recorded in the sea surface waters on the sampling route be-

tween the UK and the Caribbean from 1995-2000s (Schuster and Watson, 2007).

Numerous model studies have predicted a weakening in the Atlantic meridional

overturning circulation (AMOC), which if correct, would further decrease the CO2

uptake in the North Atlantic (Landschützer et al., 2011). The reported decrease

in the intensity of the subpolar gyre circulation due to freshening and warming

of the northern regions, has been linked with decreasing formation of dense wa-

ter (Curry et al., 2003), and thus is likely to add to the decreasing uptake of CO2

(Schuster and Watson, 2007). Watson et al. (2009) demonstrated that there was sig-

nificant inter-annual variability in the air-sea carbon flux in the northeast Atlantic

between 2002 and 2007. This has been attributed to decadal scale climate variabil-

ity (McKinley et al., 2011; Schuster et al., 2013). Although Lefèvre (2004), Olsen
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et al. (2006), Lüger et al. (2006), and Watson et al. (2009) agreed with Schuster

and Watson (2007) about the declining pCO2 sink, Ullman et al. (2009) argue that

this region has actually shown an increased sink, and Thomas et al. (2008) suggest

that the decreasing sink is transitory and due to natural variability rather than an

anthropogenic influence. More recently Landschützer et al. (2014), using a neural

network based approach to interpolate the available pCO2 measurements, showed

that the sink in the Atlantic Ocean has increased from 1998 to 2011. However, cau-

tion must be taken when comparing different regions and time-scales as it has been

demonstrated that on longer time-scales (> 25 years) the inter-annual and decadal

trends are lost, and the rise in pCO2 is in-line with increasing atmospheric CO2

(McKinley et al., 2011). These discrepancies between studies demonstrate the im-

portance of improved understanding and continued measurements to determine the

variability in the pCO2 sink and enhance model outputs.

1.3 Phytoplankton in the North Atlantic

A key control on CO2 is the biological carbon pump (both organic and inorganic),

in which phytoplankton play a large role (described previously in section 1.1.2

and figure 1.3). Decadal changes in phytoplankton abundance have been docu-

mented in the North Atlantic, with the phytoplankton colour index (PCI) from the

continuous plankton recorder (CPR) showing that north of 59◦N phytoplankton

are in decline, and those further south are increasing in season length and abun-

dance (Reid et al., 1998). The spreading of relatively cold waters from the Arctic

is a likely cause for the phytoplankton decline in the north North Atlantic (Reid

et al., 1998), and the increase further south in the North Atlantic could be due to

a decline in abundance of the herbivorous calanoid copepod Calanus finmarchicus

(Beaugrand, 2009; Hinder et al., 2014). Phytoplankton spring blooms in the North

Atlantic are the most pronounced of any open ocean region (Ueyama and Monger,

2005). For this reason it is believed that phytoplankton, due to their photosyn-

thetic capabilities, are the main biological drivers of surface pCO2 and carbon flux

variability in this region (Takahashi and Sutherland, 2002).
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1.3.1 Phytoplankton taxonomic groups

The two most abundant phytoplankton taxonomic groups in the North Atlantic are

diatoms and dinoflagellates, with the classic North Atlantic bloom consisting of a

diatom bloom in the spring followed by a summer and late autumn bloom of di-

noflagellates and smaller phytoplankton species, such as coccolithophores (Henson

et al., 2012; Hopkins et al., 2015) (figure 1.14).
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Figure 1.14: Schematic of the typical seasonal changes in the relative abundance of phy-
toplankton (green), grazers (blue), and inorganic nutrients (red) within the surface waters
of the North Atlantic. Green text indicates the dominant phytoplankton taxonomic groups.
Adapted from Kaiser et al. (2005).

This succession is mainly driven by the availability of light and nutrients, and

the life-strategies of different taxonomic groups enabling them to bloom under dif-

fering environmental conditions. Diatoms can generally bloom before other phy-

toplankton because of their relatively fast growth rates in nutrient rich turbulent

waters (typical of spring time, see figure 1.14) (Margalef, 1978). Dinoflagellates

and other smaller phytoplankton species are able to bloom under relatively poor

nutrient conditions due to a range of characteristics including; mixotrophy (both

autotrophic and heterotrophic capabilities), high nutrient uptake and low growth

rates relative to diatoms, and the presence of flagella (providing motility) (Henson
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et al., 2012). Coccolithophores are thought to adopt a life-strategy between the

two extremes of fast-growing diatoms and dinoflagellates (Margalef, 1978; Hop-

kins et al., 2015). Rhizosolenia spp. are a family of diatoms that generally bloom

slightly later than the spring-blooming diatoms because they can form algal mats

that undergo vertical migrations to exploit nutrients at deeper depths. They do

this through changes in buoyancy (Villareal et al., 1993). Laboratory experiments

indicate that this buoyancy regulation is controlled via rapid changes in the ion con-

centration within the vacuole sap of diatoms (Woods and Villareal, 2008). Kemp

et al. (2006) suggest that the large algal mats formed at depth by Rhizosolenia spp.

may have important implications for carbon export.

1.3.2 Seasonal variation

During late winter in the North Atlantic, sea surface pCO2 and nutrient levels are

relatively high due to strong vertical mixing bringing deep water to the surface

(figure 1.14). As spring approaches and sea surface temperatures increase, this

leads to stratification of the water column and higher irradiance, allowing phyto-

plankton to bloom (reaching chl-a concentrations of up to 10 mg m−3 (Shutler

et al., 2011)), thus decreasing both nutrient and pCO2 levels. Towards the end of

the summer months, nutrient levels become depleted, as stratification is too high

to allow any influx of nutrients from below the thermocline, reducing the pho-

tosynthetic activity. During autumn a small phytoplankton bloom occurs as the

thermocline breaks down and the mixed layer depth increases allowing for nutri-

ent entrainment (Martinez et al., 2011) (figure 1.14). Thus a small decrease in

sea surface pCO2 would be expected. Seasonal increases in phytoplankton in the

subpolar North Atlantic predominantly occur during the spring, but in the subtropi-

cal North Atlantic regions this bloom occurs between autumn and winter (Ueyama

and Monger, 2005). This seasonal variation shows strong correlation with strat-

ification of the upper ocean surface, which is related to sea surface temperature.

It is therefore expected that with increasing SST, increased stratification is likely

to decrease primary productivity in regions that are already permanently stratified
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(tropical regions) (Behrenfeld et al., 2006). However, in regions where strong mix-

ing can limit primary production due to light limitation (subpolar), an increase in

stratification can stimulate primary production (Beaugrand, 2009).

The seasonal cycle of phytoplankton productivity can also be influenced by

climate modes such as the NAO. Henson et al. (2012) demonstrated that at the

PAP site during negative NAO phases the dinoflagellate bloom is increased to two-

fold the long-term mean, while diatom abundance is decreased relative to the long-

term mean. During positive NAO phases both phytoplankton groups have lower

peak abundances than the long-term mean, and diatom abundance is greater than

dinoflagellate abundance. This may be due to the decreased mixing during negative

NAO phases because of decreased Westerly winds (Henson et al., 2012). This

reduces the nutrient concentration in the surface waters, allowing dinoflagellates

to out-compete diatoms when the Si:N ratio decreases. Whereas during positive

NAO and therefore high mixing conditions, diatoms are able to out-compete other

phytoplankton groups due to their relatively quick growth rates (Henson et al.,

2012). This may have implications for the amount of carbon exported, as larger

phytoplankton cells are thought to have a higher transport efficiency than smaller

cells (Kemp et al., 2006). However Henson et al. (2012) found that there were

greater volumes of POC (up to ∼15 mL m−2 d−1) within a sediment trap at 3000

m at the PAP site when dinoflagellates were more abundant than diatoms. This

highlights the need for further investigation into phytoplankton dynamics within

the North Atlantic and the possible implications they may have for carbon uptake

and export.

1.3.3 Interannual variation

Lozier et al. (2011) used satellite data and in situ time-series data from BATS to

demonstrate that in the North Atlantic subtropical gyre, although primary produc-

tion is strongly linked with upper ocean stratification on a seasonal time scale there

is little to no correlation on interannual time scales. The interannual variability

seen in primary production in the North Atlantic is thought to be due to a number

of variables including the strength of local and remote wind and buoyancy forcing,
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as well as the supply of nutrients to the surface waters. Therefore strong interan-

nual variability in the air-sea fluxes, winds, and formation of water masses over the

North Atlantic (Marshall et al., 2001) are likely to influence the interannual varia-

tion seen in stratification and thus the interannual variation of primary production

in this region. The major mode believed to link to this interannual variability of

phytoplankton production in the North Atlantic is the NAO, impacting on the lo-

cal wind-driven mixing conditions (Henson et al., 2009). Using CPR data Barton

et al. (2015) found that there are significant correlations between phytoplankton as-

semblages and the physical environment (SST, total heat flux, wind speed, mixed

layer depth, and stratification) on seasonal timescales in the North Atlantic, how-

ever these relationships were also not present when analysed on interannual and

decadal timescales. Barton et al. (2015) suggest that this is due to the year-to-year

variability in phytoplankton assemblages being greater than the variability in the

physical drivers, suggesting that larger scale physical mechanisms (that are cur-

rently poorly understood) such as ocean circulation, may play an important role in

longer-term phytoplankton trends.

1.3.4 Decadal variation

Henson et al. (2009) used time series of modelled decadal (1959-2004) variabil-

ity in bloom timing and found that within the subtropical North Atlantic region

there were no decadal long-term trends. However the North Atlantic subpolar re-

gion showed distinct decadal-scale periodicity. This periodicity was shown to be

correlated with the NAO index. The timing of the phytoplankton bloom in the sub-

polar North Atlantic is influenced by the NAO because during positive NAO phases

the surface mixed layer is deepened by stronger westerly winds, which delays the

onset of the spring bloom by ∼2-3 weeks (Henson et al., 2009). In the eastern

North Atlantic the spring blooms during the early 2000s (positive NAO) showed

higher abundance as well as range expansion further south than in the 1980s (neg-

ative NAO), and the autumn bloom occurred 1 month later in the 2000s than in

the 1980s (Martinez et al., 2011). This demonstrates the influence that a positive

NAO phase has. In the 2000s stronger wintertime winds induced deeper mixing
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which allows for more nutrient uplift, but also delays the onset of the phytoplank-

ton blooms as stratification of the surface layer occurs later. Harris et al. (2013)

highlight the importance of natural oscillations with respect to changes in the abun-

dance of different plankton groups, with diatom abundance being primarily driven

by the Atlantic Multidecadal Oscillation (AMO, climate mode based on de-trended

North Atlantic SST (Enfield, 2001)) in the North Atlantic. This demonstrates the

importance of long-term datasets as natural oscillations can complicate the influ-

ence of climate change and make it difficult to determine any long-term trends.
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1.4 Conclusion

The links between variables that can influence the uptake of CO2 in the North At-

lantic such as temperature, stratification, biological responses, wind and buoyancy

forcing are clearly complex. A major limitation of current biogeochemical models

is that they struggle to consider the full complexity of the ecosystem, and are often

lacking in situ data. Therefore when making conclusions from such models it is

important to do so with caution (Beaugrand, 2009). It is vital that in situ data con-

tinue to be collected, and opportunities such as the use of volunteer observing ships

are put into practice on a global scale in order to enhance the network of available

datasets, and improve our understanding further.

The North Atlantic variability in the flux of CO2 needs to be measured along-

side phytoplankton indices to elucidate the contribution that changes in the climate,

and the plankton, are having on the North Atlantic carbon uptake (Hays et al., 2005;

Schuster and Watson, 2007; Schuster et al., 2009b). Alongside these changes, the

different estimates of long-term trends and inter-annual variability of the North

Atlantic carbon sink between studies, highlight the need for further investigation

(Schuster et al., 2013; Landschützer et al., 2013). This thesis aims to address these

uncertainties and investigate the variability in carbon uptake in the North Atlantic

by combining different biochemical measurements made from volunteer observing

ships with modelled output and process studies.
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1.5 Aims

The aim of this thesis is to explore the relationships between phytoplankton taxo-

nomic groups and sea-surface carbon dioxide within the North Atlantic. This thesis

will also examine how plankton biological processes (such as photosynthesis, res-

piration, calcification) inter-link with the carbonate chemistry of the surface ocean

and will use a range of statistical methods to analyse such links.

1.6 Objectives

Specific objectives within the over-arching aim of this thesis are as follows:

1. Evaluate the regional and temporal variability in phytoplankton taxonomic

group abundance and distribution within the North Atlantic over the past

∼50 years.

2. Quantify the plankton net community production of temperate to subtropical

regions within the North Atlantic.

3. Determine the total alkalinity to salinity relationship in the North Atlantic.

4. Examine seasonal carbonate measurements to investigate biogeochemical

processes that may be occurring in the North Atlantic.

5. Investigate the flux of carbon dioxide in the northeast Atlantic in relation

to phytoplankton distribution and abundance on seasonal, inter-annual and

decadal time scales.

1.7 Thesis structure

Chapter 2 outlines the analytical methods used within the study to measure phy-

toplankton abundance, dissolved inorganic carbon and total alkalinity, dissolved

oxygen and pCO2.

The data chapters (3 to 6) aim to address the five objectives above. They

are self-contained, so each include a short introduction and methods section to

maintain readability and avoid repetition. Chapter 3 uses the latest long-term data
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available for phytoplankton in the North Atlantic from the Continuous Plankton

Recorder (CPR) to determine trends in phytoplankton abundance within the study

region on seasonal, inter-annual and decadal time scales [objective 1]. Chapter

4 describes two methods used to calculate net community production (NCP), and

therefore the metabolic state, from a volunteer observing ship (VOS) that traverses

the North Atlantic between Portsmouth (UK) and the Caribbean [objective 2]. Us-

ing discrete dissolved inorganic carbon (DIC) and total alkalinity (TA) data, chap-

ter 5 aims to define the TA/salinity relationship [objective 3]. The carbonate mea-

surements are then compared with phytoplankton data from both satellite and the

CPR dataset [objective 4]. Chapter 6 combines the two datasets of CO2 and phy-

toplankton abundance to investigate how changes in abundance and distribution of

phytoplankton taxonomic groups may be influencing the sea-surface pCO2 and the

air-sea flux of CO2 [objective 5].

The final chapter (7) provides a summary of the key findings, and discusses

the wider implications, limitations, and possible ways to extend the research in the

future.



Chapter 2

Analytical methods

Each data chapter (3 to 6) contains a brief description of the analytical methods

used in the chapter and detailed data-handling and statistical methodologies. Chap-

ter 2 gives details of the chemical analytical methods and sampling procedures used

within this study.

2.1 The Continuous Plankton Recorder

The Continuous Plankton Recorder (CPR) was first deployed in 1931 by Sir Alis-

tair Hardy. The design is simple and robust, which has allowed the CPR method-

ology to remain consistent through time. The Sir Alister Hardy Foundation for

Ocean Science (SAHFOS), based in Plymouth, UK, is an international charity that

operates the CPR survey.

The CPR is towed within the mixed layer at a depth of ∼6.5 m from the stern

of volunteer ships of opportunity (VOS), and research vessels (Hays, 1994). Due to

the wash created from the vessels, the water sampled incorporates the top 0 to∼20
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m of surface water (Hunt, 1968). Water enters the CPR through the entrance aper-

ture (see figure 2.1) where it passes through a silk mesh with a mesh size of 270

µm. This mesh size was chosen in order to collect the larger phytoplankton and

zooplankton, without the complication of clogging from smaller plankton. How-

ever smaller plankton are maintained on the silk, particularly the colonizing species

(i.e. chain forming and globular), and so are counted and included in the CPR sur-

vey (Hays, 1994). The mesh is wound on by a propeller that is turned by the flow

of the seawater, at a consistent rate controlled by a drive shaft and gear system

(Richardson et al., 2006). The filtered plankton are sandwiched between another

silk, and rolled up into a storage compartment containing formalin to preserve the

samples.

Figure 2.1: Cross-section of the CPR, the internal mechanism, and a photograph of the
CPR body. Reproduced from Richardson et al. (2006).

On return to the laboratory the CPR silk is divided into samples represent-

ing 10 nautical miles of tow. Before carrying out the counts of plankton within

a CPR sample the Phytoplankton Colour Index (PCI) is estimated using a green

colour chart (level of greenness is estimated), which gives an indication of the phy-

toplankton abundance within the sample. This method has remained unchanged

since 1946. PCI has been validated through comparisons with satellite chlorophyll

estimates, and even used to bridge the time gap between different satellite missions
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(Raitsos et al., 2014).

The initial count from the CPR silk is based on a visual count of all zooplankton

within each CPR sample that are > 2 mm, all of which are identified and counted.

A 1/10,000 subset of the CPR sample is then taken and all species of plankton are

identified within 20 fields of view to give an accepted value (Poisson distribution

assumes plankton randomly distributed on the silk (Colebrook, 1975)), and multi-

plied by 10,000 to give an abundance estimate for each species identified within the

CPR sample (450× magnification, using Watson Bactil microscopes). For more

detailed descriptions of the CPR methodology see Warner and Hays (1994) and

Richardson et al. (2006).

Due to the relatively large mesh-size of the CPR it is likely that the CPR under-

samples many of the smaller phytoplankton species, and can only be considered

a semi-quantitative measure of plankton abundance. However despite the semi-

quantitative nature of the CPR, the samples are considered adequate to give a

consistent estimate of the in situ taxa within a region, and reflects the seasonal

and inter-annual patterns of the plankton well (Richardson et al., 2006). When

analysing CPR data it is advised to use spatial and temporal averages due to the

biases associated with zooplankton behaviour such as diel vertical migration, and

active avoidance (Hays, 2003), and due to the sparsity of sampling routes within

certain regions (Richardson et al., 2006). The CPR standard areas divide the sam-

ple routes into shelf regions and regional seas. These are roughly 10◦longitude by

10◦latitude in size, which is considered a trade-off size between having enough

CPR samples within an area to obtain an average without compromising the spa-

tial variability (Richardson et al., 2006). The CPR dataset is the largest plankton

database in the world, with international projects and routes being added and ex-

tended to gain further global coverage.

2.2 Sampling from the MV Benguela Stream

The MV Benguela Stream is one of the VOS that tows a CPR. It maintains the

“B-route” (SAHFOS defined CPR route) going from 40 ◦W to 1 ◦W on a monthly

basis (red track in figure 2.2). The CPR data used in this thesis were provided
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by SAHFOS, and can be found at DataCite doi:10.7487/2014.44.1.10 (SAHFOS,

2014).

Discrete samples for dissolved oxygen, dissolved inorganic carbon (DIC), and

total alkalinity (TA) were collected during 4 field campaigns on the MV Benguela

Stream. This VOS operates between Portsmouth and the Caribbean Islands com-

pleting one return voyage every month (yellow track in figure 2.2). The 4 voy-

ages during which samples were collected were April/May 2012 (BS056 - Spring),

June/July 2012 (BS058 - Summer), September/October 2012 (BS062 - Autumn)

and January/February 2013 (BS066 - Winter). Samples were collected on the

spring and winter voyages by Peter Landschützer, and on the summer and autumn

voyages by Clare Ostle.

Figure 2.2: Map of the North Atlantic showing a typical MV Benguela Stream monthly
cruise track = yellow, and the continuous plankton recorder (CPR) tow route from 40 ◦W
(CPR B-route) = red.

Nutrient and salinity samples are collected by the crew on board the MV Benguela

Stream every four and twelve hours respectively. These samples were analysed

at the National Oceanography Centre (NOC) Southampton, using a SEAL Auto-

Analyzer (Grasshoff et al., 1999) and a Guildline Autosal salinometer (8400B).

Silicate, phosphate and nitrate plus nitrite (NOx) were determined following the

procedures of Hansen and Koroleff (2007) (the accuracies of these measurements

are given in table 2.1).

http://oai.datacite.org/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.datacite.org:2825297
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2.3 Dissolved Oxygen

An Aanderaa oxygen/temperature optode (model 3835) is permanently installed

on the MV Benguela Stream. The optode works based on a principle called ’dy-

namic luminescent quenching’. Ambient oxygen acts as the quenching agent, and

depending on the intensity and duration of red luminescence emitted after being

excited by a blue-green light, the absolute oxygen concentration can be determined

(Aanderaa Data Instruments, 2007). A special platinum porphyrin complex is em-

bedded in a gas permeable foil which equilibrates with the surrounding seawater

and acts as the fluorescent indicator. This foil is excited by modulated blue-green

light (505 nm), and the phase of any red luminescence emitted after excitation

is measured by a photodiode in the same window to give the oxygen concentra-

tion (Körtzinger et al., 2005). The optode is programmed to take a reading ev-

ery minute, which is logged on an onboard computer. Each month the raw data

are returned to shore, where they undergo a quality control routine in which the

data are corrected for salinity using calculated salinity from the conductivity probe

(corrected to salinity samples collected every 12 hours) and salinity compensation

equations taken from the Aanderaa operating manual (Aanderaa Data Instruments,

2007).

Winkler analysis (Winkler, 1888) was used to determine the concentration of

oxygen in surface seawater samples and these were used to correct the optode for

drift. This is an iodometric titration in which oxygen in the seawater sample quan-

titatively oxygenates iodide ions to form iodine. This is a multi-step oxidation,

using manganese as a transfer medium (Grasshoff et al., 1999).

The automated Winkler titration was undertaken using a Metrohm 765 Dosimat

Titrino, and the end point is detected photometrically from the iodine colour itself

(Williams and Jenkinson, 1982). Depending on sampling technique and titration

method, Winkler titrations can give results that typically, within fieldwork con-

ditions, have a precision ranging from 0.015 to 0.7% (del Giorgio and Williams,

2005). Throughout our analysis the sodium thiosulphate titrant was calibrated ev-

ery 24 hours with 0.1N potassium iodate using 10 replicates that gave a SD of

0.0001. The potassium iodate was then corrected using a 0.01 N standard solution
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potassium iodate (Wako Pure Chemical Industries, Ltd., Osaka, Japan). Over 8

hours (roughly the time it takes to analyse the samples from one voyage) the thio-

sulphate concentration was measured 3 times using the 0.01 N potassium iodate

(Wako Pure Chemical Industries, Ltd., Osaka, Japan), giving a standard deviation

in the thiosulphate concentration of 0.00027, which at an oxygen concentration of

280 µmol kg−1 at 15◦C equates to a difference of 0.3659 µmol kg−1. This is a

maximum difference of 0.1%.

The surface seawater collected for Winkler analysis was taken directly from

the ships’ sea inlet using hydrostatic flow, minimising any temperature fluctuations

from the surrounding environment (Cooper et al., 1998). The inlet is at 3 to 5 m

below the sea surface depending on cargo loading (Schuster and Watson, 2007).

The seawater passes through a coarse strainer (1 mm), which was cleaned daily,

before entering a T-piece with Tygon tubing attached in order to adequately control

the flow into the sample bottle and check for bubbles within the tubing. Two 125

ml replicate oxygen samples were collected every two hours during the day on the

return voyage. This was done by rinsing the bottle and lid with sample water and

allowing the bottle to overflow∼ 4 times while rotating the bottle and checking for

bubbles. The sample temperature was recorded at the time of sampling, and again

just before the reagents were added, in order to correct for any changes in volume

due to temperature changes (Bell and Johnson, 1997). Salinity was also recorded.

To fix the samples, 1 ml of MnSO4 was added, followed by 1 ml of NaI+NaOH.

The manganese (II) precipitates as hydroxide:

Mn2+ + 2OH− →Mn(OH)2 (2.1)

The dissolved oxygen becomes chemically bound as the precipitate oxidises to

form manganese (III) hydroxide:

2Mn(OH)2 +
1

2
O2 +H2O → 2Mn(OH)3 (2.2)

After replacing the lid and taking note if any bubbles were formed during this

process, the sample was then shaken for 1 minute. After mixing the sample, the
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oxygen fixes rapidly as manganese (III) hydroxide, forming a brown/whitish pre-

cipitate that sinks to the bottom of the sample bottle and remains fixed in the alka-

line medium.

Due to space restrictions on board the ship the fixed sample was then stored

underwater to prevent evaporation until it could be analysed within the laboratory

at UEA. In order to validate this method of storage for our samples, a preliminary

longevity experiment was carried out. A 20 litre water sample was decanted into

45 replicate 125 ml sample bottles. The samples were fixed, stored underwater,

and analysed over a period of 36 days. Three replicate samples were analysed

after 24 hours (this is within the usual time of sample storage (Knap et al., 1996))

giving an average oxygen concentration of 240.28 µmol kg−1 with a SD of 0.15

µmol kg−1. The remaining 42 replicates were analysed over the 36 day period

and remained within this SD of the initial mean oxygen concentration (figure 2.3).

The difference between the average oxygen concentration within the first 24hrs

and over the 36 days was 0.006 µmol kg−1. Oxygen concentrations were plotted

against time, giving a regression of 0.00005 µmol kg−1 per day. This allowed us to

be confident that storing the samples underwater for a period of less than 36 days

would have a minimal effect on the measured oxygen concentrations to less than

0.002 µmol kg−1 of oxygen.
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Figure 2.3: Oxygen concentration of replicate samples stored underwater against time in
days (black diamonds). Black line = average oxygen concentration of 3 replicates after
24 hours, green lines = 1 standard deviation between initial replicates, yellow lines = 2
standard deviations between initial replicates, red lines = 3 standard deviations between
initial replicates.

Zhang et al. (2002) found that this method of storage gave a 100.27% ± 0.3%

recovery of dissolved oxygen concentration over a period of 4 months and it also

acts to reduce the impact of any temperature fluctuations in the surrounding en-

vironment. During our field campaigns dissolved oxygen samples for Winkler

analysis were only collected on the return crossing of each voyage and analysed

after returning from each voyage. Therefore the longest a sample would be stored

before being analysed was 12 days.

Upon return to the laboratory the samples were analysed by adding 1 ml of 10

N sulphuric acid before titrating the sample with thiosulphate. The sulphuric acid

causes the precipitated hydroxide to dissolve, freeing the manganese (III) ions.

These manganese (III) ions oxidise with the previously added iodide ions from the

fixing reagents to form iodine and manganese (II) ions:

2Mn(OH)3 + 2I− + 6H+ → 2Mn2+ + I2 + 6H2O (2.3)

The surplus iodide ions react with the iodine to form a 3 iodine atom complex

with a single negative charge:
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I2 + I− ↔ I−3 (2.4)

This complex has a low vapour pressure (in comparison to molecular iodine)

and decomposes readily if iodine is removed. The iodine is then titrated with thio-

sulphate, which reduces the iodine to iodide and oxidises the thiosulphate to form

tetrathionate ions:

I−3 + 2S2O
2−
3 → 3I− + S4O

2−
6 (2.5)

1 mole of oxygen is equivalent to 4 moles of thiosulphate. However as men-

tioned earlier thiosulphate is not a primary standard as it deteriorates slowly. This is

why it was calibrated with the potassium iodate standard. The calculated combined

accuracy of measuring dissolved oxygen concentration in this study was ±2.8%

(table 2.1).

2.4 Dissolved Inorganic Carbon and Total Alkalinity

Dissolved inorganic carbon (DIC) is defined as:

DIC = [CO∗
2] + [HCO−

3 ] + [CO2−
3 ] (2.6)

Where [CO∗
2] is the total concentration of all unionized carbon dioxide, which

includes H2CO3 as well as CO2 (Dickson et al., 2007).

“The Total Alkalinity (TA) of a sample of seawater is defined as the number of

moles of hydrogen ion equivalent to the excess of proton acceptors (bases formed

from weak acids with a dissociation constant K ≤ 10 to 4.5 at 25◦C and zero ionic

strength) over proton donors (acids with K > 10 to 4.5) in 1 kilogram of sample”

(Dickson et al., 2007).

DIC and TA samples were collected every 2 hours during daylight hours and

immediately preserved following the standard operating procedure (SOP) outlined

by Dickson et al. (2007). The first sample of the day was a 500 ml sample, which

was used to assess the standard deviation between within bottle replicates, while
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the remaining samples were 250 ml. The same sampling tubing was used for col-

lecting DIC and TA samples as when collecting dissolved oxygen samples (see

section 2.3), and the bottles were rinsed and filled in the same manner. The lids

of the bottles were replaced after filling, to prevent any gas exchange while trans-

porting them to be fixed. The samples were fixed within a minute of sampling by

first removing 1% of the volume of water and then adding 50 µl of mercuric (II)

chloride to the 250 ml bottles, or 100 µl of mercuric (II) chloride to the 500 ml

bottles, following Dickson et al. (2007). The lids were then wiped and greased

before being placed in the sample bottles, and held in position with rubber bands

and cable ties to prevent any leakage or gas exchange before being stored in the

dark. The mercuric (II) chloride acts to kill any plankton within the sample water,

while preserving the carbon speciation, therefore preventing any change between

organic and inorganic carbon within the sample.

The samples were analysed on return to the laboratory (within 6 months) using

two VINDTA 3C (Versatile INstrument for the Determination of Total inorganic

carbon and titration Alkalinity) instruments, which combine an acid titration to

determine TA and a coulometric titration to determine DIC (Mintrop, 2011).

Both the seawater sample and the cell are maintained at a relatively constant

known temperature of ∼25◦C using a thermostated circulator, and water bath. To

measure TA a known volume of seawater is dispensed into a water-jacketed cell,

where acid is titrated into the sample at increments of 150 µmol kg−1 using a

motor-driven piston burette. The acid solution is made up of 0.1 M hydrochloric

acid and enough sodium chloride solution (0.7 mol kg−1) to give an approximate

background equal to the ionic strength of seawater in order to maintain a constant

activity of coefficients within the solution during the titration (Mintrop et al., 2000).

A pH meter (Brinkman model Titrino, readable to 0.1mV) monitors the titra-

tion using a proton sensitive electrode within the cell, and the titration is stopped

after the total amount of acid added reaches 4.2 ml. A non-linear least squares ap-

proach of plotting volume of acid added against electromotive force (EMF), is used

to calculate TA from titration data past the carbonic acid end-point of ∼ 4.5 pH

(see figure 2.4). The results are displayed both graphically and numerically within
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LabVIEW (National Instruments v6.1). The end-point has to be accurate with a

precision of ±1 µmol kg−1 so is therefore calculated mathematically (Schuster

et al., 2009a; Mintrop, 2011).

Figure 2.4: Typical titration curve from a seawater sample, showing the volume of acid
added against the electromotive force (EMF). Reproduced from Mintrop (2011).

To measure DIC a known volume of seawater sample is dispensed into the

stripping chamber, where it is acidified with 8.5% reagent grade phosphoric acid

to convert all carbonate species to free CO2. Pure nitrogen (N2) gas that has run

through a column of CO2 absorbent is bubbled through a fine frit at the bottom of

the stripping chamber to ensure that the sample is stripped of CO2. The N2 gas acts

as an inert carrier gas for the evolved free CO2. This then passes through a Peltier

cooling system to condense any water vapour, and an absorbent chamber filled

with magnesium perchlorate, before bubbling through the coulometer cell. Within

the coulometer cell the CO2 in the gas stream is absorbed by the cathode solution

which contains a mixture of water, tetra-ethyl-ammonium bromide, ethanolamine,

dimethylsulfoxide (DMSO) and thymolphthalein indicator. The side arm of the

coulometer cell contains anode solution, which consists of a mixture of saturated
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potassium iodide in water and DMSO (Dickson et al., 2007). The reaction between

the CO2 and ethanolamine produces hydroxyethylcarbamic acid. This reaction

causes a change in pH and therefore a colour change (blue to colourless) due to the

thymolphthalein indicator in the solution which is measured using transmittance at

∼ 610 nm. In order to maintain the transmittance of the solution at a constant value

of 29% (and therefore a constant colorimetrically defined pH), hydroxide ions are

generated at the platinum cathode by electrolysing water, for which the electrons

required are generated at the silver anode. This generated current is related by the

Faraday constant to the moles of CO2 absorbed by the solution (Johnson et al.,

1993). When the DIC cpm (counts per minute) reach a set end-point threshold of

below 50 cpm, the VINDTA 3C stops running and the sample results are recorded

within Visual Basic (Microsoft v6.0), calculating DIC within the sample following

Dickson et al. (2007):

DIC =
Ns − b× t− a

c
× 1

Vs × ρ
(2.7)

Where Ns is the coulometer reading for the sample (counts), a is the acid blank

(counts, as the acid is added to the extraction cell and then stripped of CO2 before

analysis a = 0), b is the background level of the system (counts min−1), c is the

coulometer calibration factor (counts mol−1, this is calculated using a calibration

from Certified Reference Material (CRM)), t is the time it took to measure the

sample (min), Vs is the volume of sample at the temperature of use (dm3), and ρ is

the density of the seawater sample (g cm−3).

To improve the accuracy further, two minor corrections can be applied for the

dilution due to the addition of mercuric chloride, and the exchange of CO2 within

the headspace of the sample. However these corrections are likely to be less than

0.5 µmol kg−1 (Dickson et al., 2007).

CRMs were used to assess the accuracy of both of the VINDTA instruments.

These are 500 ml samples of a known concentration of DIC and TA obtained from

Scripps Oceanographic Institute, San Diego, USA.

The instruments were stabilized by first analysing “junk” seawater samples,

and then running a CRM before running the seawater samples, and then another
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CRM at the end of the day. The known CRM values are then compared with the

measured CRM values for instrument calibration, and if necessary this can be used

to apply an acid correction to all of the TA measurements on that instrument. The

standard deviation between CRMs was also used as an indicator of accuracy. The

accuracy calculated for DIC and TA was ±2.55 µmol kg−1 and ±1.46 µmol kg−1

respectively (table 2.1). The difference between within bottle replicate samples

(500 ml) gave an indication of the precision. If replicates were> 1 µmol kg−1 (the

uncertainty of the 3C VINDTA (Mintrop, 2011)) apart, then the analysis was halted

and 500 ml “junk” seawater samples were run until the instrument consistently

gave better precision. When processing the DIC and TA measurements the World

Ocean Circulation Experiment (WOCE) flagging system was applied, whereby 2

represents good data, 3 likely bad data, 4 bad data, and an additional flag of 9 for

missing data (this flag is not included in the WOCE flagging system). Through

this process six DIC measurements were assigned a flag of 4, and one 9, and four

TA measurements were assigned a 4, and eight were flagged as 9. The remaining

data points were assigned a flag of 2, totalling 382 DIC measurements and 377 TA

measurements collected between April 2012 and February 2013.

2.5 Underway measurements of pCO2

Marine air and sea surface pCO2 are measured on board the MV Benguela Stream

using the set-up as described by Schuster and Watson (2007). The pCO2 analyser

used is a LI-COR model LI-7000 which is a differential, non-dispersive, infra-red

(NDIR) gas analyser (LI-COR, 2007). The accuracy of this system is less than 1

µatm (Dickson et al., 2007). The LI-COR detector measures CO2 based on the

difference in absorption of infra-red radiation through two gas sampling cells. One

of the sampling cells is used as a reference cell, in which a standard gas with a

known concentration of CO2 passes through, while the other cell is the sample cell

used for the sample gas. Infra-red radiation is emitted and passed through each

cell path, and the resulting radiation is measured by detectors and used to calculate

the absorption. The higher the absorption of infra-red, the higher the concentration

of CO2 in the gas. CO2 dry mole fractions (xCO2) of the gas are calculated and
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recorded by the analyser using the following gas law, which is dependent on the

number of moles of CO2 in the cell (nCO2):

n(CO2) =
x(CO2)× p× V (cell)

R× T
× φ (2.8)

Where φ is a constant that accounts for the non-ideality of the gas phase, R is

the universal gas constant, and p, T and V (cell) are the pressure and temperature

of the gas, and volume of the sample cell respectively (Dickson et al., 2007).

As this system can only measure CO2 in the gas phase, the seawater from

the underway system passes through a closed air-loop equilibrator which contains

raschig rings that create a large surface area for CO2 exchange to occur between

the seawater and air (Cooper et al., 1998), and the air is pumped off to the Li-COR

(see figure 2.5). The gas is circulated through the equilibrator and LI-COR for

about 30 minutes until equilibrium is reached. During this routine the system takes

readings approximately every minute. The LI-COR system has a built-in pressure

transducer to make corrections for any changes in barometric pressure (LI-COR,

2007). To calculate the partial pressure of CO2 in the dry gas (p(CO2)dry) the

corrected sample value of x(CO2) (corrected using standard known concentration

gases) is multiplied by the equilibrator pressure (Peq) from the time of equilibration

(Dickson et al., 2007):

p(CO2)dry = x(CO2)× Peq (2.9)

The gas measured inside the analyser is dry whereas inside the equilibrator it

is assumed to be at 100% humidity (Pierrot, 2009). Therefore a correction using

water vapour pressure is applied to the CO2 dry mole fraction calculations, given

by:

p(CO2)wet = x(CO2)× [Peq − V P (H2O)] (2.10)

In which V P (H2O) is the water vapour pressure over a seawater sample of a

given salinity at the temperature of equilibration (Dickson et al., 2007).

Marine air is sampled from an air inlet on the port side of the upper deck, and



2.5 Underway measurements of pCO2 47

is also run through the LI-COR for 30 minutes, with measurements being recorded

approximately every minute (figure 2.5).

Figure 2.5: Schematic of the underway measurement system aboard the MV Benguela
Stream, updated from Cooper et al. (1998) and Landschützer (2014). Sensors are labelled
O for oxygen, C for conductivity, T for Temperature, and P for pressure. F stands for mass
flow controller, S for solenoid valves, and W for water watchers.

The instrument is run on a looped routine whereby pCO2 is measured from

the equilibrator, air inlet, equilibrator again and then one of four secondary stan-

dard gases (at 0 µatm, 250 µatm, 350 µatm, and 450 µatm) used for calibration of

the detector (figure 2.5). These standards are calibrated in the laboratory against

primary gas standards supplied by the National Oceanic and Atmospheric Admin-

istration (NOAA) World Meteorological Organization (WMO) Central Calibration

Laboratory (CCL). Salinity samples are collected by the ships’ crew every twelve

hours from the seawater inlet and are used to calibrate salinity derived from the

in-line conductivity sensor. The in-situ Aanderaa temperature sensor is calibrated

http://www.esrl.noaa.gov/gmd/ccl/index.html
http://www.esrl.noaa.gov/gmd/ccl/index.html
http://www.esrl.noaa.gov/gmd/ccl/index.html
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regularly by the manufacturer, and is used to calibrate the platinum resistance ther-

mometers located in the equilibrator on a monthly basis (figure 2.5). All raw data

are recorded with position and GMT provided by a GPS module which is installed

on the port-side bridge wing (figure 2.5). Once received, the raw data undergo a

quality control routine and each voyage is analysed individually to check for any

instrument malfunctions or contaminations. The accuracies of the measurements

made on board the MV Benguela Stream are presented in the table below:

Table 2.1: Accuracy associated with each of the measurements made.

Measurement Accuracy Method to derive accuracy

O2 ±2.8% Combination of RMSE of residuals (1.7%),
underway sampling method (1%),
and method accuracy from the iodate
standard (0.1%).

DIC ±2.55 (µmol kg−1) Mean standard deviation of CRM DIC

TA ±1.46 (µmol kg−1) Mean standard deviation of CRM TA

NOx ±0.1(µmol kg−1) SEAL AutoAnalyzer accuracy from
international standards

Si ±0.1(µmol kg−1) SEAL AutoAnalyzer accuracy from
international standards

PO4 ±0.02(µmol kg−1) SEAL AutoAnalyzer accuracy from
international standards

Salinity ±0.05 Calculation from conductivity,
and calibration using discrete samples

Temperature ±0.03 (◦C) Aanderaa 3210 sensor accuracy

pCO2 ± <1(µatm) LI-COR suggested accuracy

Pressure ± <0.1(mbar) Omega model PX2760-600A5V accuracy



Chapter 3

Variability in phytoplankton

distribution and abundance in the

North Atlantic from 1958 to 2012

3.1 Abstract

The spatial and regional variability of phytoplankton in the North Atlantic is as-

sessed using data from the Continuous Plankton Recorder (CPR) from 1958-2012.

The main environmental drivers of this variability are wind speed and sea surface

temperature (SST), which are in turn driven by climate indices. Regional variabil-

ity was evident, with differing trends occurring for different phytoplankton groups.

The Grand Banks of Newfoundland showed a significant increase in phytoplank-

ton abundance throughout the time series, which was significantly correlated to an
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increase in wind speed and summer wind speeds in the region. The northeast At-

lantic shows an opposing trend between dinoflagellates and diatoms, with diatom

abundance increasing relative to dinoflagellate abundance. This trend was found

to be predominantly driven by the increasing SST in this region, which in turn had

significant correlations with both the Atlantic Multidecadal Oscillation (AMO) and

the North Atlantic Oscillation (NAO). There was an increase in the phytoplankton

colour index (PCI) in the northeast Atlantic that also correlated with the increas-

ing SST, this increase was not evident in any of the other phytoplankton indices.

This supports the suggestion that increased stratification due to warming may al-

low smaller phytoplankton to increase in abundance relative to larger species due

to differences in nutrient demands. This has implications for both the export of car-

bon, and the ecosystem dynamics within this important fisheries region. Although

basin scale relationships exist, the trends between plankton abundance and climate

are complex and it is more appropriate to analyse such data on a regional scale

where the underlying relationships and mechanisms can be determined.

3.2 Introduction

Sea surface temperature (SST) and wind speed are known to play an important role

in the distribution and abundance of phytoplankton (Beaugrand et al., 2012; Hin-

der et al., 2012; Helaouët et al., 2013). The seasonal increase in SST and decrease

in wind speed initiates the required stratification to allow phytoplankton to bloom

and wind speed influences the mixing needed to bring nutrients required by phy-

toplankton into the photic zone. These climatic variables have different influences

on different phytoplankton groups, depending on their physiology. For example,

in temperate regions where SST has shown a marked increase, those species that

are dependant on temperature for larval release or physiological development have

been shown to start their seasonal cycles earlier in response to warming (Edwards

and Richardson, 2004).

Dinoflagellates and diatoms are two of the most abundant phytoplankton groups

and are thought to have different contributions to the export of carbon below the

thermocline (Henson et al., 2012). Diatoms are larger than dinoflagellates and are



3.2 Introduction 51

hypothesized to be a major contributor to export flux (Michaels and Silver, 1988).

However Henson et al. (2012) found that when smaller phytoplankton species dom-

inated the plankton, the flux of carbon to 3000 m was enhanced in the northeast

Atlantic. Diatoms are known to bloom during the spring, and again during the

autumn (often at a smaller magnitude to the spring bloom), while dinoflagellates

bloom during both the summer and autumn months.

Hinder et al. (2012) found that from 1960-2009 increased summer time mixing

coupled with increased SST led to a decline in dinoflagellates and an increase in the

abundance of diatoms relative to dinoflagellate abundance in the northeast Atlantic.

A number of studies have demonstrated that colder-water affiliated plankton

species have undergone range contraction while warmer-water affiliated plankton

species have shown range expansion (Hallegraeff, 2010; Helaouët et al., 2013; Hin-

der et al., 2014). There have also been suggestions of nitrogen limitation caused

by a decrease in the influx of North Atlantic nutrient-rich waters in the North Sea

and increased stratification (McQuatters-Gollop et al., 2009). This has been linked

to a decline in dinoflagellate abundance, favouring diatoms that are constrained by

silica limitation. This has knock-on effects on copepod abundance and therefore

the ecosystem as a whole (Alvarez-Fernandez et al., 2012).

The North Atlantic Oscillation (NAO) is thought to be the predominant mode

of variability in the North Atlantic and is defined by the difference in sea level

pressure between the Azores and Iceland (Hurrell, 1995). The NAO is thought

to impact phytoplankton distribution and abundance in regions of the North At-

lantic. Henson et al. (2012) demonstrated that in the northeast Atlantic transition

zone, positive NAO increases the wind stress allowing diatoms to dominate over

dinoflagellates, and dinoflagellates dominate over diatoms during negative NAO

periods.

The aim of the present study is to analyse the abundance and distribution of key

phytoplankton indices in relation to SST, wind speed and a range of climatic in-

dices. Spatio-temporal changes in four key phytoplankton indices (phytoplankton

colour index (PCI), spring-bloom forming diatoms (diatoms), Rhizosolenia (di-

atom species often associated with later blooming-time), and dinoflagellates in the
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North Atlantic were assessed using CPR data. Interpolation of this data was used to

geo-spatially visualise the dataset and assess the seasonal, inter-annual and decadal

changes with climatic variables. Regional variability was investigated and linked

with key environmental drivers of phytoplankton abundance.

3.3 Methods

3.3.1 Study area and period

The study area lies within the North Atlantic Ocean between 60.5◦W and 10◦E and

29.5◦N and 65.5◦N. Data were collected between 1958 and 2012.

3.3.2 Data

All data sets were gridded on to a 3-dimensional (3D) grid by taking the monthly

mean for each 1 × 1◦grid cell, so that the datasets could be easily compared and

interpolated.

3.3.2.1 Continuous Plankton Recorder data

The Continuous Plankton Recorder (CPR) is designed to be towed behind volunteer

ships of opportunity (VOS). The survey uses taxonomic identification to record

plankton species’ abundance and has been in operation since 1948 with changes

in the identification process occurring in 1958 (see methods chapter section 2.1

for more detailed CPR methodology). Our long term analyses of the CPR data

therefore runs from 1958 to 2012.

The phytoplankton data from the CPR survey were divided into 4 key phyto-

plankton indices, namely phytoplankton colour index (PCI), spring-bloom form-

ing diatoms (diatoms), Rhizosolenia (diatom genus often associated with a later

blooming-time), and dinoflagellates. Kemp et al. (2006) suggest that Rhizosole-

nia should be treated as a separate “functional” group to diatoms due to their later

blooming time, and buoyancy control. Rare species bias was removed from the

dataset by only including species that occur above 1% frequency of occurrence

(Edwards and Richardson, 2004). Table 3.1 lists the species that were included
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in these indices. The phytoplankton indices were all log transformed using log10

(x+1) in order to homogenise the variance (Alvarez-Fernandez et al., 2012). Each

phytoplankton index was gridded onto a 1 × 1◦grid by taking the monthly mean

for each grid cell, and removing any grid cell where the CPR sample number was

< 3 (Helaouët et al., 2013), resulting in a 3D grid consisting of 660 months × 180

latitude × 360 longitude.
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Table 3.1: List of species in each phytoplankton index.

Diatoms Rhizosolenia Dinoflagellates
Paralia sulcata Rhizosolenia imbricata Prorocentrum spp. (’Exuviaella’ type)

Thalassiosira spp. Rhizosolenia styliformis Ceratium tripos
Pseudo-nitzschia delicatissima complex Rhizosolenia hebetata semispina Ceratium macroceros

Pseudo-nitzschia seriata complex Proboscia alata Cladopyxis spp.
Chaetoceros (Hyalochaete) spp. Gonyaulax spp.
Chaetoceros (Phaeoceros) spp. Ceratium fusus

Thalassiothrix longissima Ceratium furca
Thalassionema nitzschioides Ceratium lineatum

Leptocylindrus mediterraneus Ceratium horridum
Bacteriastrum spp. Ceratium hexacanthum

Cylindrotheca closterium Oxytoxum spp.
Scrippsiella spp.

Protoperidinium spp.
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3.3.2.2 Climate variables

Mean monthly SST and wind speed data from 1960 to 2012 were obtained from the

International Comprehensive Ocean-Atmosphere Data Set (ICOADS, 1◦enhanced

data) (Woodruff, 1987).

Monthly, annual and winter (DJFM) NAO indices were obtained from the Cli-

mate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based)

(Hurrell, 1995).

Monthly Eastern Atlantic Pattern (EAP) indices were obtained from the NOAA

Climate Prediction Center, Northern Hemisphere Teleconnection Patterns (Wallace

and Gutzler, 1981). Monthly and annual Atlantic Multidecadal Oscillation (AMO)

indices were obtained from the NOAA Earth System Research Lab, Climate Time-

series (Enfield, 2001).

Monthly and annual Northern Hemisphere Temperature anomalies (NHT) were

obtained from the Carbon Dioxide Information Analysis Center (CDIAC) (Jones

et al., 2012).

The enhanced data from ICOADS were only available starting from 1960, so

any analyses involving climatic variables or indices were from 1960 to 2012.

3.3.3 Objective mapping

Due to the sampling nature of the CPR, which relies on shipping routes, there are

irregular gaps within the dataset that have to be accounted for in order to analyse

the data spatially and compare it with climate data. There are a number of differ-

ent methods to interpolate the data, of which kriging, objective mapping, inverse-

distance weighting, and a spring metaphor nearest neighbour method have all been

trialled and are outlined in appendix A.1. Objective mapping was chosen as the

interpolation technique to be used within this study as it had the least amount of

variance within the decadal maps. Objective mapping is similar to kriging but it

assumes that the mean drift (trend) is known and uses a covariance matrix where

larger weights are assigned to points that are nearby and co-vary positively with

the estimated values (Glover et al., 2005). The method can be described by the

following equation:

http://www.esrl.noaa.gov/psd/data/gridded/data.coads.1deg.html
http://www.esrl.noaa.gov/psd/data/gridded/data.coads.1deg.html
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
http://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml
http://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml
http://www.esrl.noaa.gov/psd/data/timeseries/AMO/
http://www.esrl.noaa.gov/psd/data/timeseries/AMO/
http://cdiac.esd.ornl.gov/trends/temp/jonescru/data.html
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b = w × E−1 × r (3.1)

Where b is the mapped property, w is the data weights, E is the covariance

matrix and r is the residuals (weighted mean).

3.3.4 Decadal maps

Decadal spatio-temporal maps were produced in order to visualize the CPR dataset

following the method outlined in Edwards (2000). Monthly CPR data were sepa-

rated into 5 year periods, and 12 monthly averaged maps were produced for each

five year period using one of the interpolation techniques. 12 monthly decadal

maps were produced by taking the same month from two of the five year periods

within the decade, and applying the interpolation technique to each individual grid

cell. These 12 monthly decadal maps were then combined to form one decadal

map by averaging each grid cell. Figure 3.1 outlines this technique, using kriging

as the interpolation technique.

Figure 3.1: Schematic of CPR data organisation and interpolation, reproduced from Hin-
der et al. (2012) and based on Edwards (2000).
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3.3.5 Linear trends and congruence

For spatial analysis of the linear trends of the phytoplankton indices with climate

variables, an interpolation of the CPR data was applied to account for missing CPR

values at each 1 × 1◦grid cell. To interpolate the data at this resolution objective

mapping was used with a Gaussian distribution model with an influence radius of

2.5 and a cut off radius of 6.
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Figure 3.2: Property property plot of interpolated annual phytoplankton data against mean
annual phytoplankton data for the North Atlantic from 1960 to 2012.

After applying this interpolation to the CPR data the inter-annual variability

and the general linear long term trends compare well with the annual mean CPR

data (figure 3.2), with an r-squared value of 0.96 (n = 212).

Yearly averages were used because the seasonal cycle can often obscure long

term trends and correlations. The linear trend from 1960 to 2012 for SST, wind

speed, PCI, diatom, dinoflagellate and Rhizosolenia abundance for each 1× 1◦grid

cell was calculated. Linear congruence was estimated using a technique outlined

in Lovenduski et al. (2008), whereby the congruence (TCong) of a time series (T1)

with another time series (T2) is estimated by multiplying the regression (R) coef-

ficient between T1 and T2, by the trend in T2 (T2Trend) , see equation 3.2.

TCong = R× T2Trend (3.2)
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The significance of the linear trend was calculated following Santer et al. (2000),

whereby the ratio (tb) of the linear trend (T ) and the standard error of the linear

trend (SE(Ne)) (equation 3.4) was compared to a critical value of t (tcrit, as-

suming a distribution of student’s t) at a 95% significance level and the effective

degrees of freedom, which takes into account any autocorrelation within the time

series by using the effective sample size (Ne):

tb > tcrit(0.95, Ne− 2) = significant (3.3)

tb =
T

SE(Ne)
(3.4)

There are numerous methods to account for autocorrelation within time series

(Bartlett, 1935; Pyper and Peterman, 1998; Bretherton and Widmann, 1999; Santer

et al., 2000). The most common autocorrelation within time series is temporal

autocorrelation, which implies that throughout time preceding observations are not

independent of each other. This has implications for the significance of any trend

where temporal autocorrelation exists (Pyper and Peterman, 1998). To account

for temporal autocorrelation when calculating the significance of the linear trends

and any correlations within the time series data the modified Chelton method was

used as it has been shown to be the optimum method for altering significance due

to autocorrelation within time series (Pyper and Peterman, 1998). Those samples

that are not autocorrelated within the time-series are effectively independent and

counted within the effective sample size (Ne) which will be less than the sample

size (N ). By using the effective sample size to calculate the standard error of the

linear trend and the critical value of t (rather than N ) this reduces the significance

of the trends and therefore takes into account autocorrelation within the time series

(Lovenduski et al., 2008).

3.3.6 Correlation and autocorrelation

Relationships between the CPR data, climate data and climate indices were inves-

tigated using Pearson’s correlation. As mentioned in section 3.3.5 the significance
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of the Pearson’s correlation coefficients were adjusted for temporal autocorrela-

tion using the effective sample size (Ne) following the modified Chelton method

recommended by Pyper and Peterman (1998):

1

Ne
=

1

N
+

2

N

N/5∑
h=1

autoX(h)autoY (h) (3.5)

Where N is the sample size of the time series, h is the number of lags (which

is suggested to go from 1 to N/5) and autoX(h) is the temporal autocorrelation

in the X variable at lag h, and autoY (h) is the temporal autocorrelation in the Y

variable at lag h. The temporal autocorrelation for each time series was calculated

using the autocorr function in matlab, which utilises the equation outlined in Box

et al. (1994):

autoX(h) =

N∑
t=h+1

(Xt − X̄)(Xt−h − X̄)

N∑
t=1

(Xt − X̄)2

(3.6)

Where Xt is X at time (t), and X̄ is the mean of the time series X . Ne was

used to calculate the significance of the Pearson’s correlation coefficient (Rho) at

95% significance by first calculating the t-statistic (tStat):

tStat = Rho×
√

Ne− 2

1−Rho2
(3.7)

Then using the tcdf function in Matlab to look up the significance (p) using

Ne:

p = 2× tcdf(tStat,Ne− 2) (3.8)

3.3.7 Principal Component Analysis

Principal component analysis (PCA) is most commonly used to produce principle

components from a number of variables to more efficiently describe the structure

of the variance within the dataset (Glover et al., 2005).

Mapping of eigenvectors and plotting the time-series principal components
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produced in spatio-temporal PCA (often referred to as empirical orthogonal func-

tions (EOF) analysis) is often used to determine possible underlying processes in-

fluencing the variability of one variable through time and space (Glover et al.,

2005). This method has been carried out in a number of studies looking at the

spatio-temporal variability of CPR data (Beaugrand, 2003; Beaugrand et al., 2012;

Harris et al., 2013; Edwards et al., 2013). We used the same interpolation technique

applied to the CPR data to map the linear trends (see section 3.3.5) to interpolate

each of the phytoplankton indices and climate variables in order to map their asso-

ciated eigenvectors.

3.4 Results

3.4.1 Long term trends in the North Atlantic

Figure 3.3 shows the decadal abundance of the four phytoplankton indices since

the 1960’s. Decadal anomaly maps were produced to visualize the change in abun-

dance between each decade, and throughout the time period (appendix A.2). The

regions with the highest abundance of phytoplankton are the southern North Sea,

the northeast Atlantic approaches, and the area surrounding the Grand Banks of

Newfoundland. PCI, diatoms and dinoflagellates have all increased in abundance

in the Grand Banks of Newfoundland since the 1960’s.
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Figure 3.3: Decadal abundance of phytoplankton indices in the North Atlantic from 1960 to 2009, interpolated using objective mapping.
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Figure 3.4: Annual phytoplankton indices (RHI (Rhizosolenia), PCI, DIN (dinoflagel-
lates), DIA (diatoms)), sea surface temperature, and wind speed (WS) from 1960 to 2012
in the North Atlantic with interpolation applied to the CPR data, and line of best fit plotted.

Figure 3.4 shows that both wind speed and SST have increased and have sig-

nificant positive trends of 0.02 m s−1 yr−1 and 0.02 ◦C yr−1 from 1960-2012 in

the North Atlantic. PCI, diatoms and dinoflagellates show a significant positive

trend of 0.003 abundance (log10 (x + 1)) yr−1 , while Rhizosolenia has a signifi-

cant decreasing trend of -0.004 abundance (log10 (x+ 1)) yr−1 . Both diatoms and

dinoflagellates have decreased in abundance between 1975 and 1995. This trend

can also be seen in figure 3.3 as there are lower abundances for these indices in the

1970’s compared to the 1990’s decadal maps.

The linear trends and congruence between each phytoplankton indices’ linear

trend and the linear trend of wind speed and SST from 1960 to 2012 at each grid

cell are shown in figures 3.5 to 3.9 with red representing a positive trend or con-

gruence and blue representing a negative trend.
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Figure 3.5: A. Linear trends in sea surface temperature (◦C yr−1) and B. linear trends
in wind speed (ms−1 yr−1) from 1960 to 2012 in the North Atlantic. C. Linear sea
surface temperature trends that are congruent with wind speed. Only those trends with a
significance of > 95% are shown. The areas that are shaded grey are where there were
insufficient data.



64 3.4 Results

Figure 3.6: A.Linear trends in Phytoplankton Colour Index (PCI) from 1960 to 2012 in
the North Atlantic (log10(x+1) yr−1). B. Congruence of the linear trends in PCI with wind
speed. C. Congruence of the linear trends in PCI with sea surface temperature. Only those
trends with a significance of > 95% are shown. The areas that are shaded grey are where
there were insufficient data.
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Figure 3.7: A. Linear trends in spring-blooming diatoms (diatom) abundance (log10(x+1)
yr−1) from 1960 to 2012 in the North Atlantic. B. Congruence of the linear trends in
diatom abundance with wind speed. C. Congruence of linear trends in diatom abundance
with sea surface temperature. Only those trends with a significance of > 95% are shown.
The areas that are shaded grey are where there were insufficient data.
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Figure 3.8: A. Linear trends in dinoflagellate abundance (log10(x+1) yr−1) from 1960
to 2012 in the North Atlantic. B. Congruence of linear trends in dinoflagellate abundance
with wind speed. C. Congruence of the linear trends in dinoflagellate abundance with sea
surface temperature. Only those trends with a significance of > 95% are shown. The areas
that are shaded grey are where there were insufficient data.
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Figure 3.9: A. Linear trends in Rhizosolenia abundance (log10(x+1) yr−1) from 1960 to
2012 in the North Atlantic. B. Congruence of linear trends in Rhizosolenia abundance
with wind speed. C. Congruence of the linear trends in Rhizosolenia abundance with sea
surface temperature. Only those trends with a significance of > 95% are shown. The areas
that are shaded grey are where there were insufficient data.
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SST and wind speed show a north-south dipole in the congruence of SST with

wind speed from 1960-2012 in the North Atlantic, with SST showing positive con-

gruence with the increasing wind speed trend from about 40 ◦N - 45 ◦N and up

into the south of the North Sea, and negative congruence across the subpolar North

Atlantic (figure 3.5).

Table 3.2: Percentage of congruence between each of the phytoplankton indices and the
SST and wind speed linear trends within the North Atlantic from 1960 to 2012 (Given as a
% of the grid cells used within the study area).

-ve SST (%) +ve SST (%) -ve WS (%) +ve WS (%)
PCI 3.9 59.1 8.2 52.3
DIA 12.4 48.0 27.2 29.8
DIN 24.2 35.3 31.0 25.8
RHI 32.9 24.0 34.4 23.5

In figure 3.6 PCI shows an increasing linear trend across most of the North At-

lantic, with a small region in the Labrador Sea showing a decrease. This increasing

trend in PCI was positively congruent with the increasing SST linear trend across

59% of the North Atlantic, with only 4 % showing a negative congruence, and

the remaining coverage of the North Atlantic showing a non-significant congru-

ence (table 3.2). Diatoms have a higher percentage of positive congruence with

SST and wind speed than both dinoflagellates and Rhizosolenia, while Rhizosole-

nia have the highest percentage of negative congruence with both SST and wind

speed (table 3.2).

The Grand Banks of Newfoundland show positive congruence for all four phy-

toplankton categories with the wind speed index and sea surface temperature, with

a stronger congruence to wind speed, suggesting this is the main driver of the in-

creasing abundance of phytoplankton in this region. Diatoms and dinoflagellates

show opposing linear trends to each other in the southern North Sea, with diatoms

increasing over the sampling period and dinoflagellates decreasing. This may be

explained by their opposing congruence to wind speed and sea surface tempera-

ture within this region. The Bay of Biscay and south-west Atlantic approaches

show a decrease in both diatom and dinoflagellate abundance which is negatively

congruent with both SST and wind speed.



3.4 Results 69

Further detail of the regional trend in these relationships is investigated in sec-

tion 3.4.2.
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Figure 3.10: Line plot of the loadings of principal components 1, 2 and 3 for annual phy-
toplankton indices (PCI, diatoms (DIA), dinoflagellates (DIN), and Rhizosolenia (RHI))
with SST and wind speed (WS) from 1960 to 2012 in the North Atlantic.

Figure 3.10 shows the first three principal components’ loadings after complet-

ing PCA on the four annual phytoplankton indices, annual SST, and annual wind

speed from 1960 to 2012 in the North Atlantic (60.5◦W and 10.5◦E and 39.5◦N and

65.5◦N). The first principal component accounts for 52% of the variance within the

dataset, while the sum of all three principal components accounts for 87% of the

variance, which means that there is a lot in common between the variables and is

descriptive of the general increasing trend seen in all of the variables across the

North Atlantic (Glover et al., 2005). The first principal component loadings for

all four phytoplankton indices, SST, and wind speed in the North Atlantic shows

that all of these variables are positively correlated, while the second principal com-

ponent shows an anti-correlation between dinoflagellates and the remaining three

phytoplankton indices. This pattern is also evident in principal component 3. How-

ever SST and wind speed are anti-correlated (figure 3.10).
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Figure 3.11: Annual North Atlantic climate indices from 1960 to 2012 plotted in red, five
year running mean plotted in black. A. North Atlantic Ocsillation. B. Eastern Atlantic Pat-
tern. C. Atlantic Multidecdal Oscillation. D. Northern Hemisphere Temperature anomaly.
The grey dashed line indicates the zero line.
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Trends in the amplitude of the principal components for individual variables

can often be linked to climate indices that may be influencing these variables. Fig-

ure 3.11 shows four of the key climate indices (NAO, EAP, AMO, NHT) in the

North Atlantic from 1960 to 2012. The NAO is known to influence wind speed and

direction in the North Atlantic, which in turn influences heat transport and ocean

circulation (Hurrell et al., 2003). In figure 3.11A the NAO shows a number of

oscillations since 1960, with some strong negative indices occurring in the 1980’s

and 2010. The Eastern Atlantic Pattern (EAP) has a similar dipole in space to the

NAO with a pressure centre near to the northeast Atlantic and it is contributing to

the current (2000 to 2010) warm anomaly (Cannaby and Hüsrevolu, 2009). Figure

3.11B shows a 20 year increasing cycle in the EAP, in which the index increases

and then levels off every 20 years. Both the AMO and the NHT follow a simi-

lar increasing trend, with the latest warming phase of the AMO (1995 to 2010)

being coupled with the increased warming in the Northern Hemisphere that can

also be seen in the NHT signal (Edwards et al., 2013)(figure 3.11C and D). After

correcting for temporal autocorrelation SST was found to have a significant posi-

tive correlation with both the AMO and NHT, while wind speed was significantly

positively correlated with the NAO in the North Atlantic.
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Figure 3.12: Long-term changes in annual sea surface temperature from 1960 to 2012 in the North Atlantic. A. Map of the eigenvectors associated with principal component
1. B. Line plot of principal component 1 with the percentage of the variance explained. C. D. E. and F. follow the same structure for principal components 2 and 3 respectively.
The light grey line represents the annual principal components, and the black line represents the 5 year running mean. The eigenvectors show the correlations between changes
in annual sea surface temperature and the corresponding principal component.
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Figure 3.13: Long-term changes in annual wind speed from 1960 to 2012 in the North Atlantic.A. Map of the eigenvectors associated with principal component 1.B. Line
plot of principal component 1 with the percentage of the variance explained. C. D. E. and F. follow the same structure for principal components 2 and 3 respectively. The
light grey line represents the annual principal components, and the black line represents the 5 year running mean. The eigenvectors show the correlations between changes in
annual wind speed and the corresponding principal component.
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The first three principal components of SST (figure 3.12) and wind speed (fig-

ure 3.13) describe most of the variance in these two climate variables across the

North Atlantic. When comparing these principal components with the dominant

climate indices in the North Atlantic (figure 3.11), it is possible to identify the

main drivers of the climate variability. Figure 3.14 shows that there are signifi-

cant correlations between the first principal component of SST and the AMO, and

the second principal component and the NAO. The third principal component was

found to be correlated with EAP. However after correcting for temporal autocorre-

lation this relationship was found to be not significant. The principal components

of SST agree with Schlesinger and Ramankutty (1994); Beaugrand et al. (2012);

Harris et al. (2013) with the first principal component showing an oscillatory be-

haviour that is similar to that of the AMO and NHT indices. This trend is present

across the whole North Atlantic, is centered around the Labrador basin and is more

dominant in this area and the Irminger basin. There is also a strong signal in parts

of the North Sea, see figure 3.12. The second principal component of SST shows a

regional dipole, with the Labrador basin opposing the trend seen towards the south

of the North Atlantic, which has a strong signal in the south North Sea, and near

the Grand Banks of Newfoundland. The third principal component of SST again

has a regional dipole, that is divided more east to west, with the strongest signals

occurring in a large region to the west of the mid Atlantic ridge, and the opposing

signal occurring to the east in the North Sea and Norwegian basin.



3.4 Results 75

1960 1970 1980 1990 2000 2010 2020
−50

0

50

PC
1 

SS
T

Year

A.

1960 1970 1980 1990 2000 2010 2020
−50

0

50

−P
C2

 S
ST

Year

B.

1960 1970 1980 1990 2000 2010 2020
−20

0

20

− 
PC

3 
SS

T

Year

C.

1960 1970 1980 1990 2000 2010 2020
−1

0

1

AM
O

1960 1970 1980 1990 2000 2010 2020
−10

0

10

NA
O

1960 1970 1980 1990 2000 2010 2020
−2

0

2

EA
P

Figure 3.14: A. The first principal component for SST (black) and the AMO (red). B.
The second principal component for SST inverted (black) and the NAO (red). C. The third
principal component for SST inverted (black) and the EAP (red).

The first principal component of wind speed in figure 3.13A, shows a signal

that is present across the whole of the North Atlantic. This is most likely the in-

creasing wind speed trend seen in the linear trend map in figure 3.5. This principal

component has an oscillatory trend that is similar to that of the NHT and AMO

indices, with the third principal component showing more variability and shorter

oscillatory periods. The first three principal components of wind speed best cor-

relate with the NHT, AMO and NAO respectively (see figure 3.15), but only the

NAO was found to have a significant correlation after correcting for temporal au-

tocorrelation (Pyper and Peterman, 1998).
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Figure 3.15: A. The first principal component for wind speed inverted (black) and the
NHT (red). B. The second principal component for wind speed inverted (black) and the
AMO (red). C. The third principal component for wind speed inverted (black) and the
NAO (red).
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Figure 3.16: Long-term changes in annual PCI from 1960 to 2012 in the North Atlantic. A. Map of the eigenvectors associated with principal component 1. B. Line plot of
principal component 1 with the percentage of the variance explained. C. D. E. and F. follow the same structure for principal components 2 and 3 respectively. The light grey
line represents the annual principal components, and the black line represents the 5 year running mean. The eigenvectors show the correlations between changes in annual
PCI and the corresponding principal component.
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Figure 3.17: Long-term changes in annual spring-blooming diatom (diatom) abundance from 1960 to 2012 in the North Atlantic. A. Map of the eigenvectors associated
with principal component 1. B. Line plot of principal component 1 with the percentage of the variance explained. C. D. E. and F. follow the same structure for principal
components 2 and 3 respectively. The light grey line represents the annual principal components, and the black line represents the 5 year running mean. The eigenvectors
show the correlations between changes in annual diatom abundance and the corresponding principal component.
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Figure 3.18: Long-term changes in annual dinoflagellate abundance from 1960 to 2012 in the North Atlantic. A. Map of the eigenvectors associated with principal component
1. B. Line plot of principal component 1 with the percentage of the variance explained. Plots C. D. E. and F. follow the same structure for principal components 2 and 3
respectively. The light grey line represents the annual principal components, and the black line represents the 5 year running mean. The eigenvectors show the correlations
between changes in annual dinoflagellate abundance and the corresponding principal component.
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Figure 3.19: Long-term changes in annual Rhizosolenia abundance from 1960 to 2012 in the North Atlantic. A. Map of the eigenvectors associated with principal component
1. B. Line plot of principal component 1 with the percentage of the variance explained. C. D. E. and F. follow the same structure for principal components 2 and 3 respectively.
The light grey line represents the annual principal components, and the black line represents the 5 year running mean. The eigenvectors show the correlations between changes
in annual Rhizosolenia abundance and the corresponding principal component.
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The linear trends were not removed from the data prior to running the PCA.

Therefore the first principal component follows the linear trends which represents

most of the variance in each of the variables. This is why figures 3.12A to 3.13A,

and 3.16A to 3.19A resembles the linear trends in figures 3.5 to 3.9. It is impor-

tant to note that when looking at the amplitude of the principal components and

their associated eigenvector maps, that the sign of the principal components is in-

terchangeable, and if it were to be inverted the associated eigenvectors would also

be inverted.

The PCI and dinoflagellate principal components are very similar. However

the associated eigenvector maps of principal component 1 show a strong east-west

divide in dinoflagellate abundance and a general increasing trend across the whole

of the North Atlantic for PCI (figure 3.16 and 3.18). The Grand Banks of New-

foundland is an area that shows a strong trend in the eigenvectors for all of the

phytoplankton indices, with an oscillatory period of about 20 years.

Table 3.3: Pearson’s correlation coefficients between phytoplankton indices principal
components, SST and wind speed principal components and climate indices. Only those
relationships with a significance value> 95% after accounting for temporal autocorrelation
are shown (p-value < 0.05) (Pyper and Peterman, 1998).

Relationship Correlation Chelton p-value
DIA PC3 with AMO -0.456 0.021
RHI PC3 with AMO 0.276 0.045
PCI PC3 with EAP 0.354 0.044
DIA PC3 with EAP -0.468 0.007
PCI PC3 with NHT 0.399 0.039
DIA PC3 with NHT -0.445 0.028
DIA PC3 with SST PC1 -0.451 0.034
RHI PC3 with SST PC1 0.275 0.046
DIA PC2 with SST PC2 0.400 0.046
RHI PC2 with SST PC2 -0.347 0.042
DIA PC1 with WS PC2 -0.652 0.037
DIN PC1 with WS PC2 -0.662 0.047

Table 3.3 shows the significant Pearson correlation coefficients after correct-

ing for temporal autocorrelation (Pyper and Peterman, 1998) between each of the

phytoplankton indices principal components and the climate variables principal

components or the climate indices. The third principal component of PCI, diatoms
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and Rhizosolenia follow a similar oscillatory period which was found to be signif-

icantly correlated with the EAP and the NHT for diatoms and PCI, and with the

AMO for Rhizosolenia and diatoms. The third principal component of Rhizosole-

nia and Diatoms was found to be significantly correlated with principal compo-

nent 1 of SST, and the second principal components of these two plankton indices

were significantly correlated with principal component 2 of SST. The first principal

components of diatoms and dinoflagellates were both found to be significantly cor-

related with principal component 2 of wind speed. As prinicipal component 2 of

SST and wind speed and principal component 1 of SST were found to be correlated

with the AMO and NAO (figures 3.14 and 3.15), this suggests that these climate

indices are important drivers of the climate variability which in turn influences the

plankton variability across the North Atlantic.

3.4.2 Regional long term trends in the North Atlantic

The CPR sampling method can introduce spatial bias, for example, that associated

with the changing positions of sampling routes (Richardson et al., 2006). Therefore

in order to avoid this potential bias and assess variability on smaller spatial scales,

the dataset was divided into smaller (approx. 10◦by 10◦) bio regions (figure 3.20).

A region designated the northeast Atlantic region was defined following the co-

ordinates given in Hinder et al. (2012) (45◦ - 60◦N; 15◦W - 10◦E). This region is

shown in red in figure 3.20. Bio regions for further analysis were chosen based on

standard CPR regions which were both adequately sampled throughout the time se-

ries and which showed a strong increase or decrease in phytoplankton abundance.

Modified CPR standard areas were chosen for ease of comparison with previous

CPR studies, but also because many follow continental edges and their size is op-

timal for the trade off between having sufficient CPR samples within the region

without missing the spatial variability (Richardson et al., 2006). These regions are

designated numerically from east to west as regions 1 to 9, and shown in black in

figure 3.20.
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Figure 3.20: The mean linear trends in diatom and dinoflagellate abundance from 1960 to
2012 with modified CPR standard areas (bio regions) outlined and labelled as regions 1 to
9 in black, and the northeast Atlantic region labelled in red. Blue = mean decreasing trend,
red = mean increasing trend.

The following figures (3.21 to 3.26) show the data from the northeast Atlantic

region to assess the correspondence between the monthly sea surface temperature,

wind speed and abundance of phytoplankton between 1960 and 2012.
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Figure 3.21: Hovmoller plot of monthly sea surface temperature from 1960-2012 in the
North East Atlantic.

In the northeast Atlantic region SST and wind speed have increased in both the

summer and winter months between 1960 and 2012 (figures 3.21 and 3.22).
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Figure 3.22: Hovmoller plot of monthly wind speed from 1960 to 2012 in the North East
Atlantic.
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Figure 3.23: Hovmoller plot of monthly dinoflagellate abundance from 1958 to 2012 in
the North East Atlantic.

In figure 3.22 during the period of low abundance of dinoflagellates (between

2006 and 2009) there is an increase in wind speed during the late summer and the

autumn months (August, September and October) which corresponds to the lowest

abundance in dinoflagellates (figure 3.23).
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Figure 3.24: Hovmoller plot of monthly PCI from 1958 to 2012 in the North East Atlantic.
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Figure 3.25: Hovmoller plot of monthly diatom abundance from 1958 to 2012 in the North
East Atlantic.
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Figure 3.26: Hovmoller plot of monthly Rhizosolenia abundance from 1958 to 2012 in the
North East Atlantic.

PCI has increased between 1958 and 2012 in the northeast Atlantic (figure

3.24). A decrease in diatom abundance can be seen during the autumn months

around 2009 (figure 3.25). This decrease is more evident in the hovmoller plot

of Rhizosolenia which are known to bloom later in the season than most diatom

species, as they also show a large decrease in abundance during approximately the

same period as the dinoflagellate index (between 2006 and 2010).



3.4 Results 87

1960 1970 1980 1990 2000 2010 2020
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Year

D
IA
/D
IN

Figure 3.27: The ratio of diatom abundance (log10 (x+1))/dinoflagellate abundance (log10

(x + 1)) (DIA/DIN) in the northeast Atlantic region from 1958 to 2012. Light grey line
represents the annual means, black line represents the 5 year running mean.

By plotting the ratio of diatom abundance to dinoflagellate abundance the de-

crease in dinoflagellates relative to diatoms is evident with a sharp increase in the

ratio occurring between 1990 and 2009 (figure 3.27). The ratio drops in 2010,

when the dinoflagellates recover their abundance, and then rises again towards the

end of the time series.
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Figure 3.28: Pearson’s correlation coefficients between annual SST, wind speed, sum-
mer wind speed (SWS), diatom and dinoflagellate abundance and climate indices in the
northeast Atlantic from 1960 to 2012. After correcting for temporal autocorrelation, those
coefficients with an asterisk were identified as significant (p-value<0.05) (Pyper and Pe-
terman, 1998).

Figure 3.28 shows that dinoflagellate abundance is significantly negatively cor-

related with both SST and summer (June, July and August) wind speed (SWS). The

ratio of diatom abundance relative to dinoflagellate abundance (DIA/DIN) is sig-

nificantly positively correlated with SST, which in turn is significantly positively

correlated with both the NHT and AMO in this region. Wind speed is significantly

positively correlated with the NAO, but with no other indices after correcting for

temporal autocorrelation. The summer wind speed however is not significantly

correlated with the NAO, but was found to have a significant positive correlation

with the EAP.

Using the monthly mean of the un-interpolated CPR data hovmoller plots were

produced for each bio region (1 to 9), where the seasonal cycle and general linear

trend (increasing or decreasing) can be observed (figure 3.29).
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Figure 3.29: Hovmoller plot of monthly PCI from 1958 to 2012 in regions 1 to 9.

By applying the objective mapping interpolation method (section 3.3.3) used

to map the linear trends and the principal component eigenvectors, the gaps within

the CPR dataset were interpolated (figures 3.30 to 3.33).

Years

M
on

th
s

Region 1

 

 

1960 1980 2000
2

4

6

8

10

12

PC
I (

lo
g 10

(X
+1

))

0.2

0.4

0.6

Years

M
on

th
s

Region 2

 

 

1960 1980 2000
2

4

6

8

10

12

PC
I (

lo
g 10

(X
+1

))

0.1

0.2

0.3

0.4

Years

M
on

th
s

Region 3

 

 

1960 1980 2000
2

4

6

8

10

12

PC
I (

lo
g 10

(X
+1

))

0

0.1

0.2

0.3

0.4

0.5

Years

M
on

th
s

Region 4

 

 

1960 1980 2000
2

4

6

8

10

12

PC
I (

lo
g 10

(X
+1

))

0

0.1

0.2

0.3

0.4

Years

M
on

th
s

Region 5

 

 

1960 1980 2000
2

4

6

8

10

12

PC
I (

lo
g 10

(X
+1

))

0

0.1

0.2

0.3

0.4

0.5

Years

M
on

th
s

Region 6

 

 

1960 1980 2000
2

4

6

8

10

12

PC
I (

lo
g 10

(X
+1

))

0

0.1

0.2

0.3

0.4

Years

M
on

th
s

Region 7

 

 

1960 1980 2000
2

4

6

8

10

12

PC
I (

lo
g 10

(X
+1

))

0

0.1

0.2

0.3

Years

M
on

th
s

Region 8

 

 

1960 1980 2000
2

4

6

8

10

12

PC
I (

lo
g 10

(X
+1

))

0

0.1

0.2

0.3

Years

M
on

th
s

Region 9

 

 

1960 1980 2000
2

4

6

8

10

12

PC
I (

lo
g 10

(X
+1

))

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.30: Hovmoller plot of interpolated monthly PCI from 1958 to 2012 in regions 1
to 9.
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Figure 3.31: Hovmoller plot of interpolated monthly diatom abundance from 1958 to 2012
in regions 1 to 9.

Years

M
on

th
s

Region 1

 

 

1960 1980 2000
2

4

6

8

10

12

D
in

o 
Ab

un
da

nc
e 

(lo
g 10

(X
+1

))

1

2

3

4

5

Years

M
on

th
s

Region 2

 

 

1960 1980 2000
2

4

6

8

10

12

D
in

o 
Ab

un
da

nc
e 

(lo
g 10

(X
+1

))

0

1

2

3

4

Years

M
on

th
s

Region 3

 

 

1960 1980 2000
2

4

6

8

10

12

D
in

o 
Ab

un
da

nc
e 

(lo
g 10

(X
+1

))
0

1

2

3

4

5

Years

M
on

th
s

Region 4

 

 

1960 1980 2000
2

4

6

8

10

12

D
in

o 
Ab

un
da

nc
e 

(lo
g 10

(X
+1

))

0

1

2

3

Years

M
on

th
s

Region 5

 

 

1960 1980 2000
2

4

6

8

10

12

D
in

o 
Ab

un
da

nc
e 

(lo
g 10

(X
+1

))

0

1

2

3

4

Years

M
on

th
s

Region 6

 

 

1960 1980 2000
2

4

6

8

10

12

D
in

o 
Ab

un
da

nc
e 

(lo
g 10

(X
+1

))

0

1

2

3

4

Years

M
on

th
s

Region 7

 

 

1960 1980 2000
2

4

6

8

10

12

D
in

o 
Ab

un
da

nc
e 

(lo
g 10

(X
+1

))

0

1

2

3

Years

M
on

th
s

Region 8

 

 

1960 1980 2000
2

4

6

8

10

12

D
in

o 
Ab

un
da

nc
e 

(lo
g 10

(X
+1

))

0

1

2

3

Years

M
on

th
s

Region 9

 

 

1960 1980 2000
2

4

6

8

10

12

D
in

o 
Ab

un
da

nc
e 

(lo
g 10

(X
+1

))

1

2

3

4

Figure 3.32: Hovmoller plot of interpolated monthly dinoflagellate abundance from 1958
to 2012 in regions 1 to 9.
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Figure 3.33: Hovmoller plot of interpolated monthly Rhizosolenia abundance from 1958
to 2012 in regions 1 to 9.

Hovmoller plots of sea surface temperature and wind speed were created to

compare the seasonal and annual trends within each region (figures 3.34 and 3.35).
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Figure 3.34: Hovmoller plot of monthly sea surface temperature from 1960 to 2012 in
regions 1 to 9.
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Figure 3.35: Hovmoller plot of monthly wind speed from 1960 to 2012 in regions 1 to 9.

Figures 3.30 to 3.33 demonstrate the different seasonal blooming times of each

of the phytoplankton indices in each of the regions. High PCI occurs across most

of the spring (months 3 to 5), summer (months 6 to 8) and autumn months (months

9 to 11) in regions 1 to 5, but in region 6 and 7 high PCI is more constrained to the

summer months, and in regions 8 and 9 there is a spring/summer bloom and a sep-

arate late-autumn/winter bloom (figure 3.30). These seasonal trends are apparent

in the remaining three plankton indices (figures 3.31 to 3.33), as they are incor-

porated into the PCI. However region 8 shows a strong increase in dinoflagellate

abundance after 2000 (figure 3.32), suggesting that the PCI in the summer months

within region 8 prior to this time was dominated by diatoms.

Figure 3.34 shows that the highest SST occurs in all regions in August. Region

1 has the largest range of SST from 0.9 ◦C to 20.2 ◦C. The lowest wind speeds

occur around July in all 9 regions (figure 3.35). Region 8 experiences the largest

range of wind speeds from 5.0 m s−1 to 23.3 m s−1.

Figure 3.36 compares the linear trend in the un-interpolated annual abundance

of each phytoplankton index with the linear trend of annual wind speed and sea

surface temperature in regions 1 to 9 between 1960 and 2012, all of which were

found to be significant.

The linear trends in the un-interpolated CPR data agree with the mapped linear
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trends using the interpolated data (figures 3.5 to 3.9). Wind speed and SST show

an increasing linear trend in all 9 regions. Regions 4 and 9 have the largest increase

in wind speed, while regions 5 and 6 have the lowest increase. SST has increased

most in region 1 and region 8, and has the lowest increasing trend in regions 5

and 9. PCI is also increasing in all 9 regions, with the lowest linear increase oc-

curring in region 6, and the highest increase in region 3. All three phytoplankton

indices (diatom, dinoflagellate and Rhizosolenia abundance) are decreasing in re-

gions 2, 4, 5 and 6. Dinoflagellate abundance is decreasing in region 1, while both

diatom and Rhizosolenia abundance is increasing. In region 3 dinoflagellate and

diatom abundance are increasing while Rhizosolenia are showing a slight decrease

in abundance. Diatom abundance is showing a decrease of only -0.0014 in region

7, while both dinoflagellates and Rhizosolenia are showing increases in abundance.

Diatom and dinoflagellate abundance are increasing in region 8 and Rhizosolenia

are decreasing by -0.0030. Region 9 shows the largest increasing trend for diatom

(0.028), dinoflagellate (0.028), and Rhizosolenia (0.0058) abundance.



94 3.4 Results

6

7

8

9

 W
S 

Region 1

0

2

4

D
IN

 

0

1

2

3

R
H

I 

8

10

12

14

SS
T 

1

2

3

4

D
IA

 

1960 1970 1980 1990 2000 2010
0

0.5

1

PC
I 

Year

6

7

8

9

 W
S 

Region 2

0

2

4

D
IN

 

0

1

2

3

R
H

I 

9

10

11

12

SS
T 

0

2

4

D
IA

 

1960 1970 1980 1990 2000 2010
0

0.5

1

PC
I 

Year

7

8

9

10

 W
S 

Region 3

0

2

4

D
IN

 

0

1

2

R
H

I 

8

9

10

SS
T 

0

1

2

3

D
IA

 

1960 1970 1980 1990 2000 2010
0

0.2

0.4

PC
I 

Year

7

8

9

10

 W
S 

Region 4

0

2

4

D
IN

 

0

1

2

3

R
H

I 

14

15

16

SS
T 

0

2

4

D
IA

 

1960 1970 1980 1990 2000 2010
0

0.2

0.4

PC
I 

Year

8

9

10

11

 W
S 

Region 5

0

2

4

6

D
IN

 

0

2

4

6

R
H

I 

11

12

13

14

SS
T 

0

2

4

6

D
IA

 

1960 1970 1980 1990 2000 2010
0

0.5

1

PC
I 

Year

8

9

10

11
 W

S 

Region 6

0

2

4

D
IN

 

0

1

2

3

R
H

I 

8

9

10

11

SS
T 

0

2

4

6

D
IA

 

1960 1970 1980 1990 2000 2010
0

0.5

1

PC
I 

Year

8

9

10

11

 W
S 

Region 7

0

2

4

D
IN

 

0

1

2

3

R
H

I 

4

6

8

SS
T 

0

2

4

6

D
IA

 

1960 1970 1980 1990 2000 2010
0

0.2

0.4

PC
I 

Year

8

9

10

11

 W
S 

Region 8

0

2

4

D
IN

 

0

1

2

3

R
H

I 

5

6

7

8

SS
T 

0

2

4

6

D
IA

 

1960 1970 1980 1990 2000 2010
0

0.2

0.4

PC
I 

Year

8

9

10

 W
S 

Region 9

0

1

2

3

D
IN

 

0

1

2

R
H

I 

4

6

8

10

SS
T 

0

2

4

6

D
IA

 

1960 1970 1980 1990 2000 2010
0

0.5

1

PC
I 

Year

Figure 3.36: Line plots with linear trend lines of annual PCI, diatom, dinoflagellate, and
Rhizosolenia abundance, sea surface temperature, and wind speed from 1960 to 2012 in
regions 1 to 9.
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Figure 3.37: Line plots of the ratio of annual diatom abundance (log10 (x +
1))/dinoflagellate abundance (log10 (x + 1)) in regions 1 to 9 from 1960 to 2012. Light
grey line represents the annual means, black line represents the 5 year running mean.

The ratio of annual diatom to dinoflagellate abundance was plotted to assess

the relationship between these two groups in each region (figure 3.37). Generally

in all 9 regions diatom abundance is greater than dinoflagellate abundance. In re-

gion 1 there is a decrease in diatom abundance relative to dinoflagellate abundance
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around 1970. In 1980 there is a peak in the ratio corresponding to the decrease in

dinoflagellate abundance shown in figure 3.36. Region 2 shows two peaks in di-

atom abundance relative to dinoflagellate abundance occurring in 1978 and 2008.

In region 3 there is a decrease in the ratio starting in 1985 that lasts roughly 10

years before diatom abundance starts to increase relative to the dinoflagellates. Re-

gion 4 and 5 show a peak in the ratio in 2009 and 2007 respectively. Regions 6 to 9

have some gaps in the data but diatoms consistently have a higher abundance than

dinoflagellates.

Figure 3.38 shows the Pearson’s correlation coefficients between annual SST,

wind speed, summer wind speed and phytoplankton and climate indices in each

region. Summer wind speed was added as a climate variable because the variation

in mixing due to wind speeds during the summer months (June, July and August)

has been linked to varying phytoplankton abundance (Hinder et al., 2012). Within

regions 1 to 9 the temporal autocorrelation and 95% confidence intervals were plot-

ted for each variable to assess the amount of autocorrelation present. SST had the

most autocorrelation associated with it, while diatom abundance showed the least

temporal autocorrelation (see appendix A section A.3 for further details). Those

correlations that were found to be significant after correcting for autorcorrelation

are also listed in table format in appendix A table A.1.

The NAO is significantly positively correlated with wind speed in regions 1,

2, 3, 4 and 5, and is significantly positively correlated with SST in region 1 while

being negatively correlated with SST in regions 3, 6 and 7. The AMO is signif-

icantly positively correlated with SST in regions 4, 5, 6, 7, 8 and 9. In region

1 dinoflagellate abundance is significantly negatively correlated with wind speed,

while in regions 2 and 4 there is a significant negative correlation with summer

wind speed, and in region 5 dinoflagellates are significantly negatively correlated

with SST. Diatom abundance is significantly positively correlated with SST in re-

gion 1 and significantly positively correlated with wind speed in region 9, as is PCI

with wind speed and summer wind speed in region 9. The ratio of diatom abun-

dance to dinoflagellate abundance is significantly positively correlated with SST in

regions 1 and 5, and there is also a significant positive relationship with summer
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wind speed in regions 1 and 2, whereas in regions 7 and 9 this ratio is significantly

negatively correlated with summer wind speed.
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Figure 3.38: Pearson’s correlation coefficients between annual SST, wind speed, summer wind speed, and phytoplankton and climate indices in regions 1 to 9 from 1960 to
2012. After correcting for temporal autocorrelation, those coefficients with an asterisk were identified as significant (p-value<0.05) (Pyper and Peterman, 1998).
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PCA was applied to each region to analyse the relationships between annual

phytoplankton abundance, SST and wind speed regionally (figure 3.39).

The first principal components’ loadings follow the linear trends seen in figure

3.36 and many of the correlations in figure 3.38. For example, in region 1 principal

component 1 (PC1) for dinoflagellate abundance is anti-correlated with all of the

other variables because this was the only variable that showed a decreasing trend

in this region.

Principal component 2 suggests that wind speed has a high loading in regions

1, 3, 5, 6, and 7, while SST has a high loading in regions 2, 7, 8 and 9. The highest

variance explained by the first three principal components of these variables was

in region 9, where 87% of the variance could be explained.
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Figure 3.39: Line plot of the loadings of principal components 1, 2 and 3 when comparing different phytoplankton indices with sea surface temperature and wind speed from
1960 to 2012 in regions 1 to 9, with the variance explained by the sum of all three principal components displayed in the title.
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3.5 Discussion

3.5.1 Long term trends in the North Atlantic

The region in which the CPR data have been analysed has been extended from

that used in previous studies (Beaugrand et al., 2012; Hinder et al., 2012; Edwards

et al., 2013; Harris et al., 2013) to include the western part of the North Atlantic by

using objective mapping to interpolate the CPR data, and extended up to the year

2012.

PCI was shown to be increasing across most of the North Atlantic (figure 3.6),

which agrees with the findings from both McQuatters-Gollop et al. (2011) and

Harris et al. (2013). These studies suggest that temperature is the main driver of

this increase, with Harris et al. (2013) stating that in the northeast Atlantic almost

50% of the variation in PCI was driven by warming effects. Our findings agree

with these results, as across the North Atlantic 59% of the linear trends in PCI

were found to be positively congruent with the increasing linear trends in SST

(table 3.2).

Both SST and wind speed have increased from 1960-2012 in most regions of

the North Atlantic (figure 3.5), and the trend in SST was found to be positively

congruent with wind speed in the southern part of the North Atlantic and nega-

tively congruent in the subpolar North Atlantic. This north-south dipole can be

seen in the second principal component of SST (figure 3.12), and was found to be

significantly correlated with the NAO (figure 3.14), suggesting that the NAO has

important influences on both wind speed and SST across the North Atlantic. The

influence of the NAO is strongest in regions where the second principal compo-

nent of SST has more influence, such as the North Sea (figure 3.14). This agrees

with Harris et al. (2013) who found that the NAO showed no time lag in the north-

east Atlantic when compared with SST principal components, while both the NHT

and AMO had a 9 year lag, which was linked to the strong influence of the NAO

in the North Sea. The regional dipole seen in PC2 in figure 3.12 also agrees with

Sarmiento and Gruber (2006) who describe periods of high NAO causing low SSTs

in the Labrador Sea, and high SSTs in the Norwegian Sea and subtropical gyre.

The correlation of the first principal component of SST with the AMO concurs
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with Harris et al. (2013). However they found that the second and third principal

component of SST in the North Atlantic were correlated with EAP and NAO re-

spectively. Both our study and Harris et al. (2013) found that the significance of

the correlation with EAP was weaker than the correlations between other princi-

pal components. The likely reason for this variation in correlations is due to the

weak significance of the EAP signal but also could be because Harris et al. (2013)

de-trended the SST data and used a shorter time-series (1960 to 2009).

Edwards et al. (2013) found that the AMO is the underlying mechanism behind

a number of biological trends in the North Atlantic, as it was found to correlate

with the second principal component of SST which was linked to a cascade of

dependant variables such as phytoplankton, zooplankton and fisheries stocks. Our

study found the AMO to be strongly correlated with both wind speed and SST (see

figures 3.14 and 3.15).

The highest significance within the phytoplankton principal component corre-

lations was between principal component 3 for diatoms and the EAP, AMO and

NHT (table 3.3), suggesting that the EAP, AMO and NHT play important roles in

the abundance of this phytoplankton group within the North Atlantic. The AMO,

NHT, and NAO were also significantly correlated with the principal components of

wind speed and SST (figures 3.15 and 3.14). There have been tentative links made

between increasing wind speeds over northern and central Europe with modelled

climate scenarios, suggesting that increased warming could cause variations in

teleconnections such as the AMO and NAO, therefore influencing the wind speed

trends (Leckebusch and Ulbrich, 2004; Pryor et al., 2005). Our results agree with

Edwards et al. (2013) that the AMO is an important mode in the North Atlantic

climate variability, and that the combination of the increasing trend in the NHT is

the main driver of the rapid warming seen across the North Atlantic responsible for

abrupt temperature mediated regime shifts that have been occurring. It is evident

that climate indices play a significant role in the variability of both SST and wind

speed in the North Atlantic, which in turn influences the variability of phytoplank-

ton indices. This cascade is therefore likely to be regionally dependent as these

climatic modes have shown regional variation ( figures 3.12 and 3.13).
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3.5.2 Drivers of regional variability in the North Atlantic

Figures 3.6 to 3.9 demonstrate that phytoplankton show regional variability and

variation between phytoplankton groups. The likely key drivers of this variabil-

ity are wind speed and SST, as they influence both the distribution and timing of

blooms, and explain a large percentage of the variance in the phytoplankton data

(figure 3.10).

Climate variability is in turn influenced by underlying mechanisms which are

often driven by climate indices such as the NAO, NHT, EAP and AMO. As dis-

cussed previously these modes show regional variation which may also influence

the regional variability in phytoplankton.

Hinder et al. (2012) evaluated the abundance of phytoplankton indices from

1960 - 2009 within the North East Atlantic (45◦ - 60◦N; 15◦W - 10◦E), concluding

that the increase in abundance of diatoms relative to dinoflagellates was due to

increased SST and summertime mixing. Our results agree with Hinder et al. (2012)

as we found that the diatom to dinoflagellate ratio was significantly correlated with

SST and that dinoflagellate abundance was significantly negatively correlated with

both SST and summer wind speed (figure 3.28).
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Figure 3.40: Annual phytoplankton colour index (PCI) (green), with sea surface tempera-
ture (SST) (red) from 1960-2012 in the northeast Atlantic region.
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Although the PCI showed an increase from 1960-2012 in the northeast At-

lantic (figures 3.24 and 3.40), there is not an evident increase in either of the other

phytoplankton indices, suggesting that perhaps smaller phytoplankton species are

increasingly dominating the region. There is a significant positive correlation of

PCI with SST (p<0.05 after correcting for temporal autocorrelation, figure 3.40).

This supports modelled predictions of increased stratification from global warming

reducing the upward flux of nutrients, and therefore allowing smaller phytoplank-

ton to out-compete some of the larger (more nutrient dependant) species such as

diatoms (Bopp et al., 2005). This may have negative implications for both the

flux of carbon due to reduced export efficiencies, and the complexity of food webs

which can impact on fisheries (Beaugrand et al., 2010).
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Figure 3.41: Ratio of diatom abundance and dinoflagellate abundance (black), SST (red)
from 1960-2012 in the northeast Atlantic region.

Figure 3.41 demonstrates the significant positive correlation of SST with the

diatom to dinoflagellate ratio (figure 3.28). As SST precedes the ratio of diatom

to dinoflagellate abundance this suggests that SST is the main driver of this trend

in the northeast Atlantic. It is likely that there are a number of different environ-

mental factors linked to the increased diatom abundance relative to dinoflagellate

abundance. The possible mechanisms involving SST could be that increased SST
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is linked with increased stratification, which during periods that are usually asso-

ciated with high turbulence, would allow diatoms to bloom and perhaps prolong

their growth period allowing them to out-compete dinoflagellates (Barton et al.,

2015). The first principal component of SST follows the linear trend of SST in the

North Atlantic, which was found to be significantly correlated with the AMO. This

again agrees with Edwards et al. (2013) suggesting that the AMO is a key driver of

phytoplankton trends in this region. The abundance of dinoflagellates increases in

2010, which can be seen clearly by a sharp drop in the ratio of diatom to dinoflag-

ellate abundance. This peak occurs at the same time as a strong negative NAO

index (>1 standard deviation from the mean (Henson et al., 2012)). Henson et al.

(2012) investigated the abundance of diatom and dinoflagellate abundance around

the Porcupine Abyssal Plain (PAP) site, which lies within our northeast Atlantic

region, and showed that during strong negative NAO indices dinoflagellates bloom

more intensely and the blooms can last for double the long-term mean. This trend

was suggested as being due to a decrease in westerly winds linked with negative

phases of the NAO allowing dinoflagellates to outcompete diatoms in more strat-

ified, warm and nutrient poor conditions (Henson et al., 2012). Our results found

that the second principal component of SST in the North Atlantic was significantly

correlated with the NAO, which also showed a strong peak in the loadings in 2010

which corresponds to the strong negative NAO index (figure 3.14). Wind speed was

found to be significantly correlated with the NAO in this region, and summer wind

speed was significantly correlated with the EAP and significantly anti-correlated

with the diatom to dinoflagellate ratio. Both the NAO and EAP have been shown

to have similar characteristics, with a north-south dipole and similar centres within

the North Atlantic (figure 3.12 and 3.14) (Harris et al., 2013). These results suggest

that the diatom to dinoflagellate ratio in the northeast Atlantic is primarily driven

by the SST in this region, which in turn is significantly influenced by the AMO and

NAO.

The differing linear trends (figure 3.36) and significant correlations (figure

3.38) seen in regions 1 to 9 demonstrate the regional variability and the impor-

tance of selecting regions that are small enough to investigate this variability.
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Region 1 lies within the southern North Sea and was found to show a signif-

icant linear trend of increasing diatom abundance and decreasing dinoflagellate

abundance (figure 3.36). These trends were found to be significantly correlated

with both SST and wind speed, with SST influencing the increase in diatom abun-

dance and wind speed driving the decrease seen in dinoflagellate abundance, and

therefore both had significant impacts on the diatom to dinoflagellate ratio (figure

3.38). Both SST and wind speed have increased in this region, and were found

to have a significant correlation with the NAO. The NAO is thought to be more

prevalent within this region of the North Atlantic, as one of its centres is within

the North Sea (Barnston and Livezey, 1987; Harris et al., 2013). This suggests that

this is the main driver of the climate which in turn is influencing the dominance of

diatom abundance over dinoflagellates in this region.

Region 9 is on the west of the North Atlantic, close to the Grand Banks of New-

foundland. All four phytoplankton indices showed a significant increasing trend in

this region after a gap in the CPR dataset in the 1980’s, with dinoflagellates and

diatoms increasing the most over the time period. Although SST has increased in

this region, the linear trend was 0.01 (◦C yr−1) and no significant correlations with

the phytoplankton indices were found, whereas the linear trend in wind speed was

0.03 (m s−1 yr−1) and there were significant correlations between both PCI and

diatom abundance (figure 3.38). There was also a significant correlation between

summer wind speeds and dinoflagellate abundance in this region. These results

suggest that wind speed is the main driver of phytoplankton abundance in region 9,

as wind-driven Ekman transport is an important surface flow driver in this region

(Pepin et al., 2013), which is likely to influence the entrainment of nutrients into the

photic zone allowing a greater abundance of phytoplankton to bloom. This agrees

with the conclusion made by Barton et al. (2015) that the physical environment

within the North Atlantic drives the seasonal variability of phytoplankton.
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3.6 Summary

The relationships between climate and phytoplankton are complex, often creating

regional variability which is crucial to investigate in order to improve our under-

standing. This study demonstrates the importance of selecting regions that are

at an optimum size to detect significant relationships as well as identify the dif-

fering trends between regions. Wind speed plays a crucial role in phytoplankton

abundance, with the increase in wind speed in the Grand Banks of Newfoundland

driving the increase in both diatom and dinoflagellate abundance since the 1980’s.

The influence of climate indices such as the NAO and AMO on the climate in the

North Atlantic is evident, with both contributing to the changes in diatom and di-

noflagellate abundance seen in the northeast Atlantic. The increase in PCI in the

northeast Atlantic is driven by increasing SST, which is not represented in the other

phytoplankton indices. This supports the suggestion that increased stratification

due to warming may allow smaller phytoplankton to increase in abundance rela-

tive to larger species due to differences in nutrient demands. This has implications

for both the export of carbon, and the ecosystem dynamics within this important

fisheries region.
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4.1 Abstract

The magnitude of marine plankton net community production (NCP) is indica-

tive of both the biologically driven exchange of carbon dioxide between the atmo-

sphere and the surface ocean, and the export of organic carbon from the surface

ocean to the ocean interior. In this study the seasonal variability in the NCP of five

biogeochemical regions in the North Atlantic was determined from measurements

of surface water dissolved oxygen and dissolved inorganic carbon (DIC) sampled

from a Volunteer Observing Ship (VOS). The magnitude of NCP derived from dis-

solved oxygen measurements (NCPO2) was consistent with previous geochemical

estimates of NCP in the North Atlantic, with an average annual NCPO2 of 9.5±6.5

mmol O2 m−2 d−1. Annual NCPO2 did not vary significantly over 35 degrees of

latitude, and was not significantly different from NCP derived from DIC measure-

ments (NCPDIC). The relatively simple method described here is applicable to any

VOS route on which surface water dissolved oxygen concentrations can be accu-

rately measured, thus providing estimates of NCP at higher spatial and temporal

resolution than currently achieved.

4.2 Introduction

The global cycling of oxygen and carbon is regulated by the interactions between

oceanic physical and biogeochemical processes including mixing and plankton res-

piration and photosynthesis. The solubilities of oxygen (O2) and carbon dioxide

(CO2) are inversely proportional to temperature, so the seasonality of the satura-

tion concentrations of these gases correlates with seasonal temperature changes

(Boyer et al., 1999). The concentrations of O2 and CO2 are further influenced

by physical processes including bubble injection (Woolf and Thorpe, 1991), and

http://onlinelibrary.wiley.com/doi/10.1002/2014GB004868/abstract
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mixing of deep, often oxygen deplete and CO2 replete waters into the mixed layer

with associated increased nutrient concentrations stimulating biological produc-

tion. Heterotrophic oxidation (respiration) leads to the production of dissolved

inorganic carbon (DIC) whereas autotrophy (photosynthesis) leads to a reduction

of DIC (Falkowski, 1998). Improved measurements of respiration and photosyn-

thesis and the processes that determine their variability will aid our prediction of

their responses to natural and anthropogenic forcings (Najjar and Keeling, 2000;

Lee, 2001).

Net Community Production (NCP; sensu (Williams, 1993)), indicates the bal-

ance between production of organic carbon by autotrophs (P) and production of

CO2 by heterotrophs (R) at the time and space scale of the measurement tech-

nique used (Serret et al., 2009). The metabolic state of a system can be defined by

NCP (=P-R); with autotrophic systems occurring when gross primary production

is greater than respiration, and heterotrophic systems occurring when respiration is

greater than primary production (Ducklow and Doney, 2013) (see figure 4.1).

Figure 4.1: Schematic of Net Community Production (NCP), illustrating the balance be-
tween photosynthesis (autotrophy) and respiration (heterotrophy).

Our study region in the North Atlantic lies between 14◦ N and 50◦ N. It is an
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important sink for atmospheric CO2, with the net air-sea flux of CO2 estimated

at approximately -0.22 Pg C y−1 (negative value representing marine uptake from

the atmosphere), representing 13% of the global contemporary carbon sink (Gruber

et al., 2009; Takahashi, 2009; Schuster et al., 2013). The CO2 sink in the North

Atlantic is maintained by year-round cooling, and northward transport of waters

to the Arctic. It is further accentuated by phytoplankton blooms that primarily

occur within the subpolar gyre during spring (Watson et al., 2009). The North

Atlantic Ocean includes regions associated with high uptake of CO2 and produc-

tivity (Schuster et al., 2013), pole ward of 40◦ N (Takahashi and Sutherland, 2002),

as well as oligotrophic regions associated with low productivity (Ducklow et al.,

1995), such as the North Atlantic subtropical gyre. Determining the metabolic

state of such regions is of key importance to determining the temporal and spatial

variability in the uptake of carbon in the North Atlantic.

The North Atlantic has been sampled through repeat transects such as the At-

lantic Meridional Transect (AMT), and mooring sites such as the Bermuda Atlantic

Time Series (BATS) and the European Station for Time Series in the Ocean (ES-

TOC) (Robinson et al., 2006; Emerson and Stump, 2010; Cianca et al., 2013).

However there continue to be biases in the spatial and temporal coverage of data,

such that oligotrophic waters are under sampled compared to shelf regions, par-

ticularly on the tropical southwestern side of the North Atlantic, and full seasonal

trends are rarely recorded (del Giorgio and Williams, 2005; Serret et al., 2006;

Quay et al., 2010). Although there are a number of techniques available to derive

NCP from in situ data, many of the methods are expensive and time consuming

and many of the processes involved, such as those that influence gas exchange, are

not yet fully constrained (Lefèvre and Merlivat, 2012; Emerson and Stump, 2010).

This has led to the continued debate surrounding the metabolic state of oligotrophic

regions derived from in situ and in vitro measurements, with in vitro estimates of

NCP often suggesting heterotrophy while in situ estimates consistently report au-

totrophy (Williams et al., 2013). These challenges mean that there are few regions

in the global ocean where the current NCP rates are known (Quay et al., 2010).

The aim of this study is to develop a method for estimating NCP using automated
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high frequency measurements of surface water oxygen concentration collected on

a Volunteer Observing Ship (VOS). We present in situ seasonal estimates of NCP

between December 2011 and March 2013 within 5 biogeochemical regions in the

North Atlantic. Our calculation of NCP involves a simple quasi-1D box model to

estimate abiotic processes that may influence oxygen concentration (Emerson and

Stump, 2010; Emerson, 1987) in order to determine the biologically driven oxygen

change with time. These results are compared with published in situ estimates of

NCP derived from oxygen measurements and an alternative technique for the cal-

culation of NCP, which utilizes the seasonal change in dissolved inorganic carbon

(DIC) (Bates et al., 2005). This study demonstrates that well-constrained NCP es-

timates can be achieved through VOS campaigns, opening the way for expanded

coverage of empirical NCP estimates for the global ocean.

4.3 Methods

4.3.1 Automated sampling

Using a VOS as an oceanic measuring platform is highly efficient in terms of cost,

and spatial and temporal coverage. However VOS that are commercial ships, are

limiting in terms of laboratory space and have no scientific personnel onboard,

which means they often depend on automated sampling systems. There are a num-

ber of methods for measuring the oxygen budget, yet many of these methods are

labour intensive and costly, such as the use of Ar/O2 ratios. Although not glob-

ally applicable due to regional variability in horizontal temperature gradients that

can influence the solubility of oxygen, preliminary data collected in the Western

English Channel, suggest little difference between estimates of NCP derived from

measurements of Ar/O2 and those derived from optode measurements of dissolved

oxygen (Gloël, 2012). Several VOS routes are equipped with optodes to contin-

uously measure surface water dissolved oxygen, but to our knowledge, these data

have not yet been used to derive estimates of NCP. The VOS (MV Benguela Stream)

used in this study operates between Portsmouth (UK) and the Caribbean Islands

completing one return voyage every 28 days.
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A dual oxygen/temperature sensor (Aanderaa optode, model 3835), a conduc-

tivity sensor (Aanderaa, model 3919) and a temperature sensor (Aanderaa, model

3210) are permanently installed on the MV Benguela Stream using the set-up de-

scribed by Schuster and Watson (2007). The optode measures dissolved oxygen

concentration based on the principle of dynamic luminescent quenching. Ambient

oxygen acts as the quenching agent, and depending on the intensity and duration

of red luminescence emitted after being excited by a blue-green light, the absolute

oxygen concentration can be determined (Aanderaa Data Instruments, 2007) (see

Körtzinger et al. (2005) for further details). Data are recorded every minute onto an

instrument computer. After each voyage the raw data are returned to shore where

they undergo quality control.

The in situ temperature and conductivity sensors are calibrated annually by the

manufacturer, and additionally monthly using a three-point temperature calibration

and discrete seawater salinity samples. Calibration of oxygen measurements are

described below. All raw data are recorded with concurrent latitude, longitude,

and UTC (Coordinated Universal Time) by a GPS (Global Positioning System)

integrated into the instrument.

4.3.2 Discrete sampling

Water samples were collected by scientific personnel on voyages in April/May

2012, June/July 2012, September/October 2012 and January/February 2013.

The ship’s seawater intake is at 3 - 5 m below the sea surface depending on

cargo loading (Schuster and Watson, 2007). The seawater passes through a coarse

strainer (1 mm) before entering the instruments and a T-piece. Surface seawater

for chemical analysis was collected from this T-piece at the ship’s sea-chest using

hydrostatic flow, minimising any temperature fluctuations from the surrounding

environment (Cooper et al., 1998). Tygon R© tubing is connected to the T-piece in

order to carefully control the flow of water into the sample bottle and check for

bubbles within the tubing. Temperature (T) and conductivity of the seawater were

recorded at the time of sampling. Samples were collected for dissolved oxygen,
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total dissolved inorganic carbon (DIC), total alkalinity (TA), salinity, nitrate, sili-

cate, and phosphate. Dissolved oxygen, DIC and TA samples were collected every

two hours during daylight hours. Nutrient and salinity samples were collected ev-

ery four and twelve hours respectively. These latter samples were analysed at the

National Oceanography Centre (NOC) Southampton, using a SEAL AutoAnalyzer

(Grasshoff et al., 1999) and a Guildline Autosal salinometer (8400B) respectively.

4.3.3 Winkler analysis and sample storage

Dissolved oxygen samples were fixed onboard using standard procedures (Grasshoff

et al., 1999) and stored underwater until analysis onshore. This method of storage

has been found to give 100% recovery of dissolved oxygen concentration over a

period of 4 months (Zhang et al., 2002). Samples were only collected on the return

crossing of each voyage, therefore the longest a sample was stored before being

analysed was 12 days. A preliminary 36 day longevity experiment showed that

this storage procedure had a minimal effect on the measured oxygen concentration

(< 0.01 mmol m−3, see section 2.3 within chapter 2 for further details). Dissolved

oxygen concentration was determined by Winkler titration (Williams and Jenkin-

son, 1982; Winkler, 1888). Depending on sampling technique and titration method,

the typical precision of Winkler titrations during fieldwork is 0.015 − 0.7% (del

Giorgio and Williams, 2005). The sodium thiosulphate titrant was calibrated with

potassium iodate (Wako Pure Chemical Industries, Ltd., Osaka, Japan) to a preci-

sion of < 0.1%.

4.3.4 DIC and TA analysis

The DIC and TA samples were fixed onboard following standard methodology out-

lined in Dickson et al. (2007) and analysed once back in the laboratory using the

VINDTA 3C (Versatile INstrument for the Determination of Total inorganic car-

bon and titration Alkalinity), which combines the titration of acid to determine TA

and a coulometric method for the measurement of DIC (Mintrop, 2011). Routine

calibration using certified reference material (CRM) (provided by A.G. Dickson,

Scripps Institution of Oceanography) and corrections for silicate and phosphate,
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enabled a precision of 1.46 mmol m−3 for TA and 2.55 mmol m−3 for DIC, calcu-

lated from the standard deviation between CRM’s (Dickson et al., 2007).

4.3.5 Data processing and optode calibration

The salinity measurements derived from the conductivity probe were calibrated

with measurements of salinity made with the salinometer on discrete seawater sam-

ples. The oxygen concentration derived from the optode could then be corrected to

in situ salinity using equations provided in the Aanderaa operating manual (Aan-

deraa Data Instruments, 2007). These optode derived oxygen concentrations were

calibrated with the Winkler titration data.

Winkler oxygen data were plotted against co-located 1 minute averaged optode

values, and Chauvenet’s criterion (Glover et al., 2005) was applied to remove out-

liers. Only one data point was removed using this method. A standard model-1

linear regression was used to determine the calibration factors with an R2 value of

0.94 (n = 99), see figure 4.2 (Sokal and Rohlf., 1995).
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Figure 4.2: Property-property plot of Winkler derived oxygen concentration against op-
tode derived oxygen concentration (filled black circles) showing the standard model 1 lin-
ear regression line (red line), correction equation for optode oxygen, and its R2. A single
outlier was identified (filled red circle) and excluded from the oxygen calibration.
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This optode calibration (see figure 4.2) was applied to all of the optode mea-

surements made during the study period, as it was found to be consistent, and

avoids any seasonal bias that may be introduced using cruise specific regressions.

The error of this calibration was calculated as the RMSE (Root-Mean-Square-

Error) of the difference between the measured Winkler oxygen and the oxygen

predicted by the regression (RMSE residuals = 4.3 mmol m−3, percentage error of

the mean = 1.7%).

During February 2012 there were sporadic temperature shifts during sections

of the voyage that affected the oxygen concentration recorded by the optode. This

was attributed to a technical fault and these data were removed during the quality

control process.

The uncertainty of our oxygen measurements was calculated using a combina-

tion of the percentage error from the RMSE of the residuals (1.7%), an estimate of

the error associated with the underway sampling method (1%), and the precision

determined with the standard iodate solution (0.1%), which gives a total error of±

2.8%.

4.3.6 Biogeochemical regions

The study area was divided into biogeochemical regions in order to assess the spa-

tial variability in NCP in the mid-latitude North Atlantic under different biogeo-

chemical regimes. The method used for the division of these regions is similar to

that of Hooker et al. (2000), whereby the second derivative of in situ T, in situ den-

sity and satellite derived natural logarithm of chlorophyll-a (Chl-a) (MODIS Aqua

level-3 standard chlorophyll product, http://oceandata.sci.gsfc.nasa.gov) (Sharqawy,

2010) were calculated along the ship tracks. The second derivatives for each pa-

rameter were normalised to ensure equal weighting and then averaged. Peaks

in these averaged second derivatives identified the latitudinal boundaries between

each biogeochemical region (see figure 4.3). This method was chosen in preference

to using static ecologically defined provinces such as Longhurst (2006), because

this allows the dynamics of the boundaries to shift from year to year defined by in

situ and satellite observations.
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Figure 4.3: Map of the mid-latitude North Atlantic, divided into 5 biogeochemical regions,
the dynamic latitudinal boundaries of which are defined by peaks in the second derivative
of T, density and Chl-a. The overlapping ship tracks of 16 voyages between December
2011 and March 2013 are shown.

This method identified 4 peaks, thereby dividing the study area into 5 bio-

geochemical regions, labelled 1 to 5 from North to South (see figure 4.3). These

dynamic biogeochemical regions were used throughout the study as they avoid

calculating NCP across different water masses as the ship moved, and biases as-

sociated with the changing latitude of the ships tracks. These biogeochemical re-

gions are in broad agreement with ecologically defined provinces within the North

Atlantic (Longhurst, 2006; Hooker et al., 2000), with regions 1 to 5 aligning ap-

proximately with the Longhurst (2006) biogeochemical provinces NECS (North

East Atlantic Coastal Shelves), NECS/NADR (North Atlantic Drift), NADR/NASE

(North Atlantic Subtropical East), NASW (North Atlantic Subtropical West) and

NASW/NATR (North Atlantic Tropical) respectively.

4.3.7 Calculation of NCPO2

Net community production was derived from the change in the inventory of oxy-

gen in the surface ocean with time (Emerson, 1987; Emerson and Stump, 2010)

(NCPO2 , mmol O2 m−2 d−1). The corrected continuous surface measurements

collected between December 2011 and March 2013 were divided into biogeochem-

ical regions (see figure 4.3) and monthly means for each region were calculated for
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calibrated dissolved oxygen, temperature and salinity.

NCPO2 was calculated as the biological component (∆O2Bio, mmol m−3 ) of

the total change in oxygen concentration within the mixed layer (h, m) over the

period between monthly observations (∆t, days).

NCPO2 = h
∆O2Bio

∆t
(4.1)

∆O2Bio was determined from the difference between the observed changes in

dissolved oxygen (∆O2Obs, mmol m−3) and those predicted from abiotic (∆O2Abio,

mmol m−3) processes (i.e. solubility, gas exchange, and changes in the mixed layer

depth) on a monthly basis.

∆O2Bio = ∆O2Obs−∆O2Abio (4.2)

Where ∆O2Bio, ∆O2Obs, and ∆O2Abio are in units of mmol m−3.

∆O2Abio is calculated using the ordinary differential equation (ODE) solver

45 in Matlab (Glover et al., 2005). Temperature (T, ◦C) and mixed layer depth

(MLD) (h, m) are assumed to vary linearly over the integration period. Monthly

mean MLD was calculated for each region using ECCO2 daily 0.25◦ MLD (Men-

emenlis et al., 2008). Wind speed (U, m s−1) was applied as a time-variable input

obtained from ECMWF 6 hourly 0.75◦ 10 metre wind speed (Uppala et al., 2005).

Monthly below-thermocline oxygen concentrations (O2Deep, mmol m−3) were de-

rived from the World Ocean Atlas 2009 climatology (Garcia et al., 2010) by taking

the mean oxygen concentration from 0-25 m below the MLD within each region.

O2Deep remains constant within each NCP integration period. The predicted abi-

otic oxygen concentration change was computed as the sum of entrainment (E) and

the flux of oxygen between the atmosphere and the ocean (FO2) over the mixed

layer (h) on a daily time-step within the solver (dt).

∆O2Abio =

∫ ∆t

0

(E + FO2)

h
× dt (4.3)

Therefore, ∆O2Abio is the predicted physical change in oxygen concentration

over the period between monthly observations, due to E and FO2. This method can
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be described as a quasi-1D (vertical) box model applied over monthly integrations

in each of the biogeochemical regions.

4.3.7.1 Entrainment

When the mixed layer deepens over time the oxygen concentration will change

due to mixing between surface and deep waters. When the mixed layer shoaled we

assumed that this did not cause a change in oxygen concentration. E is calculated

as described in equation 4.4.

if
dh

dt
> 0;E =

dh

dt
× (O2Deep−O2) (4.4)

Where O2 is the oxygen concentration at the beginning of each solver time-

step.

4.3.7.2 O2 Exchange with the atmosphere

FO2 is calculated following Woolf and Thorpe (1991), where the standard thin film

model of gas exchange is combined with a term to account for the transient super-

saturation due to bubble injection. The transfer velocity, kO2, and the concentration

terms are expressed in terms of a concentration gradient on the water side of the

interface:

FO2 = kO2 × ((O2Sol ×BO2)−O2) (4.5)

Where O2Sol, mmol m−3 is the oxygen solubility (or saturation) concentra-

tion (i.e. the seawater concentration that would be in equilibrium with an assumed

atmospheric concentration of 0.2095 atmospheres of oxygen) calculated using the

Matlab function O2sol.m (Copyright c© 2010, eMarine Information Infrastructure

(eMII) and Integrated Marine Observing System (IMOS). All rights reserved.).

This function utilizes the equations outlined in Garcı́a and Gordon (1992), which

are based on values obtained from Benson and Krause (1984). O2Sol was deter-

mined using in situ temperature and salinity measured at the same time, geographic

location, and depth as the optode measurement. BO2 is the functional increase in
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saturation due to bubble injection (Woolf and Thorpe, 1991). More recent bubble

parameterisations based on models and observations exist, but deviate from one

another at high wind speeds (> 10 ms−1) (Stanley et al., 2009; Liang et al., 2013).

The NCP estimates were found to be relatively insensitive to the supersaturation

bubble term, so the empirically derived model of Woolf and Thorpe (1991) was

deemed most appropriate.

BO2 = 1 + 0.01× (
U

Uo
)2 (4.6)

Where Uo is the wind speed at which the oxygen saturation is supersaturated

at 101%, this is a constant given as 9 m s−1 (Woolf and Thorpe, 1991). The wind

speeds used for equation 4.6 were the average wind speed within each biogeochem-

ical region for the 6 hour period preceding each solver time-step, to account for the

instantaneous effect of varied wind speeds on bubbles.

Water-side transfer velocity, kO2, was calculated using Wanninkhof et al. (2009)

which represents the different wind speed regimes as polynomial equations; from

purely diffusive flux through linear (smooth surface), quadratic (rough surface) and

cubic (bubble mediated) regimes.

kO2 = 0.24× ((3 + 0.1U + 0.064U2 + 0.011U3)× (
ScO2

660
)−0.5) (4.7)

Where kO2 is in m d−1, U is the daily averaged wind speed in m s−1, and ScO2

is the temperature dependent Schmidt number of oxygen (Keeling and Stephens,

1998):

ScO2 = 1638− 81.83T + 1.483T 2 − 0.008004T 3 (4.8)

Due to variable 6 hourly winds within the solver time-steps, square and cubic

means were calculated prior to daily averaging to avoid issues with non-linearity

(Wanninkhof et al., 2009).
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4.3.8 Calculation of NCPDIC

Net community production can also be derived from seasonal changes in the con-

centration of DIC (NCPDIC , mmol C m−2 d−1) within the surface layer (Williams,

1993; Bates et al., 2005; Mathis et al., 2010). This method assumes that changes in

DIC caused by processes other than NCP (e.g. air-sea CO2 gas exchange, advec-

tion, precipitation, evaporation, formation and dissolution of calcium carbonate,

riverine inputs, vertical diffusion, entrainment) can either be accounted for or are

negligible (Bates et al., 2005).

The influence of advection was estimated from the regional change in TA be-

tween seasons. TA is not affected significantly by photosynthesis and respiration,

therefore a change in TA is likely caused by advection and/or entrainment. As there

were only small changes in observed TA between seasons (mean change < 0.1

mmol m−3 d−1), we assumed that the affect of advection on the seasonal change

in DIC was negligible (Lefèvre and Merlivat, 2012).

To remove the impact of changes in local precipitation and evaporation (Bates

et al., 2005), DIC was normalised to a salinity of 35 (nDIC), resulting in a mean

decrease in DIC of 69 mmol m−3.

Riverine input is likely to only affect those regions that are closest to the coast,

i.e. region 1; insufficient data were available to calculate NCPDIC in this region,

and riverine input can be assumed to be negligible for the other regions.

To account for the formation and dissolution of calcium carbonate, a correction

factor was used, of half the temporal change in TA, after adjusting this for the

temporal change in NO3 (Lee, 2001; Mathis et al., 2010):

Corr =
(TAt1 − TAt2)

∆t
+

(NOt1
3 −NOt2

3 )

∆t
× 0.5 (4.9)

Where (TAt1 − TAt2/∆t) is the seasonal change of TA between time 1 (t1)

and time 2 (t2), (NOt1
3 − NOt2

3 /∆t) is the seasonal change in NO3 for the same

time period, and ∆t is the number of days between t1 and t2.

NCPDIC was determined for each of the 5 biogeochemical regions as the

change in nDIC over time across the mixed layer (h, m), corrected for the for-

mation and dissolution of calcium carbonate:
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NCPDIC = h
(nDICt1 − nDICt2)

∆t
− Corr (4.10)

Where (nDICt1−nDICt2/∆t) is the seasonal change in nDIC. We chose the

spring for t1 and the autumn for t2; the autumn values were chosen rather than the

summer values because there was little to no change in nDIC between the spring

and the summer.

4.3.9 Photosynthetic Quotient

The photosynthetic quotient (PQ) was calculated as the ratio between the two in-

dependent estimations of NCP:

PQ =
NCPO2

NCPDIC
(4.11)

4.3.10 Uncertainty

The RMSE was calculated for each of the input variables in each of the regions

using a Monte Carlo approach (see table 4.1 for individual errors) (Quay et al.,

2010).

The RMSE was first calculated separately for errors above and below the mean

NCP as variables contributed differently, and then combined using the root sum

square error (RSSE) to give the variance from the mean NCP over a period of time

(i.e. seasonal error, annual error). The errors are different in each region due to

the varying geographical impacts of the input variables. For example region 3 had

the largest error associated with it’s seasonal and annual NCPO2 values due to the

sharp change in oxygen saturation that occurred between January and February in

2012 (see figure 4.4).
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To account for the error and potential bias of excluding CO2 exchange in our

NCPDIC calculation we have estimated the likely CO2 flux between spring and au-

tumn for each region using a neural network-based monthly climatology (from the

years 1998-2011) of the ocean carbon sink (Landschützer et al., 2014). We cannot

assume the same fast equilibration times for carbon as we do for oxygen, hence

we account for the exchange of CO2 as a result of the disequilibrium between the

atmosphere and surface ocean CO2 partial pressures by incorporating the CO2 flux

into our uncertainty. Ocean carbon uptake was calculated per unit volume by divid-

ing the air-sea CO2 flux by the mean summer ECCO2 MLD (Menemenlis et al.,

2008) within each region. As these regions are normally sinks for CO2 during

this time of year this introduces a negative bias into our NCPDIC estimates (i.e.

unaccounted-for CO2 influx to the surface ocean leads to an underestimation in

biological CO2 uptake, see table 4.2). As there are no estimates of CO2 flux from

Landschützer et al. (2014) for the study year, to estimate the possible effect of 2012

being an atypical year we considered the inter-annual variability (IAV) in annual

CO2 flux in the climatology (taken as 1 standard deviation) for each region (table

4.2) and included this in our error estimation. Negative error bars are thus the sum

of measurement uncertainty and any net negative excursion of the uncertainty from

the climatological mean CO2 flux (i.e. representing a possible net release of CO2

into the atmosphere over the period of NCPDIC calculation). Negative uncertainty

from the climatological mean only exceeds measurement uncertainty in region 5

where the percentage error from inter-annual variability is greater than the clima-

tological CO2 flux, see table 4.2. Positive error bars are the sum of measurement

uncertainty and any net positive flux, i.e. a net sink of CO2 from the atmosphere

into the surface mixed layer over the period of NCPDIC calculation.
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4.3.11 Assumptions and Limitations

Due to lack of DIC measurements and the different residence times of oxygen and

carbon dioxide (Sarmiento and Gruber, 2006), the calculation of NCPDIC is more

simplistic than that of NCPO2 and the uncertainties associated with the calculation

are therefore less easy to estimate, see section 4.3.10. Our calculation of NCPDIC

does not take into account the additions of DIC through gas exchange, vertical dif-

fusion and entrainment. These generally increase as the season progresses, which

can lead to an underestimation in NCPDIC (Mathis et al., 2010). This was sug-

gested by our estimations of the carbon uptake, as all five regions were found to be

net sinks of CO2 over the summer period, thus increasing the positive error on our

NCPDIC estimates (table 4.2).

Horizontal advection and vertical diffusion (diapycnal and isopycnal) were

necessarily neglected in our calculations due to the lack of available measurements.

However, as these have been shown to have a relatively small influence on oxygen

concentration due to the rapid equilibration of oxygen with the atmosphere, this

is unlikely to be a significant omission (Emerson et al., 2008; Lefèvre and Mer-

livat, 2012). Entrainment was not incorporated into the NCPDIC calculation as

no observational depth distribution DIC data were found within 1◦ latitude × 1◦

longitude during the same month (independent of the sample year) of the sampling

routes. Until more data of DIC depth distributions become available (such as in

the updated GLODAP (GLobal Ocean Data Analysis Project (Key et al., 2004))

dataset, whose release is imminent) such analysis will be difficult or impossible in

many regions of the global ocean. Lee (2001) estimate that in the North Atlantic

(between 40◦N and 70◦N) and the mid-Atlantic (40◦N and 40◦S) about 2.8% and

11.9% (respectively) of the estimate of NCP from the summer change in DIC is ac-

counted for by diffusive carbon flux. However as there was no significant change

in TA throughout the summer sampling period, this suggests that DIC had not been

entrained from below the mixed layer (Lefèvre and Merlivat, 2012), and vertical

diffusion and horizontal transport are likely to have only contributed in a minor

way (Gruber et al., 2002).
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Entrainment was incorporated into the NCPO2 calculations by using climato-

logical oxygen depth distributions and a mixed layer re-analysis. The large error

associated with these products (see table 4.1) significantly influences the error on

our NCPO2 estimates. This influence is increased when calculating NCP per unit

area rather than per unit volume due to the high error associated with the multipli-

cation across the mixed layer depth (equations 4.1 and 4.10). We estimate that the

average error on our annual estimate of NCPO2 (mmol m−2 d−1) is increased by

15.75% due to the uncertainty on the entrainment terms. As we only have surface

measurements, we cannot constrain potential systematic bias in the data products

and climatology used, but we assume that any possible bias is incorporated in the

large uncertainty associated with these products.

4.4 Results

4.4.1 Seasonal cycle of NCPO2

Monthly mean NCPO2 was calculated for each month between December 2011

and March 2013 for each biogeochemical region shown in figure 4.3, from the

daily time-step quasi-1D model and the calculations described above (see equa-

tions 4.1 to 4.8), and are shown in figure 4.4 together with mean monthly Chl-a data

(obtained from Aqua-MODIS at a resolution of 9 km and frequency of 1 month,

http://oceandata.sci.gsfc.nasa.gov), and oxygen saturation. Monthly mean NCPO2

was also compared with data from the continuous plankton recorder (CPR), how-

ever no significant relationships were found (see appendix B figures B.1 and B.2

for reference).

Surface dissolved oxygen remains supersaturated for most of the sampling pe-

riod. A distinct decrease in oxygen saturation occurs in February 2012 in regions

3 and 4, followed by supersaturation in March 2012. This change in saturation

state occurs at the time of rapid shoaling of the mixed layer depth, which is often

associated with the onset of primary production (Sverdrup, 1953). Unfortunately

during this time there were sporadic electrical faults within the sampling set-up.

As a result, data are missing from regions 1, 2 and 5 for these months, but the same
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trend can be seen in all five regions between February and March 2013, with the

saturation state becoming undersaturated in March. This suggests that a similar

trend may have been present in the months where data are missing. Throughout

the rest of the time series the oxygen saturation is mostly supersaturated within

each region, except for times of undersaturation that occur within region 1 in May

and October 2012 and in region 2 in May 2012 and January 2013. As expected, the

seasonal cycle of NCPO2 generally follows the seasonal cycle of oxygen saturation.
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Figure 4.4: Monthly mean NCPO2 , Chl-a, and oxygen saturation over time in each of 5
biogeochemical regions (see Fig. 4.3). Monthly NCPO2

, was calculated using equations
4.1 to 4.8 and are shown as coloured bars with error bars indicating the uncertainty ([mmol
O2 m−3 d−1], left axis), monthly Chl-a data are shown as green filled circles and dashed
line ([mg m−3], left axis) , and oxygen saturation are represented by the black closed
circles and line ([%], right axis). The grey area is the period from which the summer mean
NCPO2 was estimated.
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4.4.2 Summer mean and annual mean NCP

The summer mean NCPO2 for each region was calculated as the mean NCPO2

between spring and autumn 2012, and are presented in figure 4.5 together with the

NCPDIC (calculated between spring and autumn 2012, see section 4.3.8). There

are insufficient DIC and TA data for region 1 during spring of 2012, so NCPDIC for

region 1 could not be calculated. The photosynthetic quotient (see equation 4.11)

was calculated for each region where both NCPDIC and NCPO2 were available.

These data are presented in table 4.3.

Figure 4.5: Summer mean NCPO2
, and NCPDIC ,in each of 5 biogeochemical regions

(see Fig. 4.3) between spring and autumn 2012. The darker coloured striped bars represent
the NCPDIC , and the lighter coloured solid bars represent the NCPO2

, and the error bars
indicate uncertainties identified for each. Note that in region 1, insufficient data could be
collected for NCPDIC in spring 2012, and that there is a negative bias in the NCPDIC

estimates associated with CO2 flux (see section 4.3.10).

The summer means of NCPO2 and NCPDIC are not significantly different in

all 4 regions where both estimates were calculated (figure 4.5), and follow the same

regional trend with region 3 having the highest NCP and regions 1 and 5 the lowest.

As the error bars on the NCP estimates do not account for all of the assumptions

of the calculations (See section 4.3.10 and 4.3.11), we can assume that the NCP

estimates using the two different techniques in all 4 regions are not significantly
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different.
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The annual NCPO2 for each region was determined as the mean NCPO2 of all

12 months in 2012. These data are compared with annual NCPO2 estimates from

similar geochemical studies in figure 4.7.

4.5 Discussion

4.5.1 Seasonality of NCPO2

Our results show that autotrophy dominates our study area, including the west-

ern tropical and subtropical regions, with only 5 months between December 2011

and March 2013 showing negative NCPO2. This is in line with published NCP

rates derived from in situ measurements, such as the study of Neuer et al. (2007)

which found that at ESTOC between 1994 and 2000 monthly NCP values were

always autotrophic. However this contrasts with NCP estimates derived from in

vitro measurements within tropical regions of the North Atlantic which are gener-

ally heterotrophic (Williams et al., 2013).

Region 1 has the highest concentration of Chl-a with peaks occurring in March,

May, August and December 2012. This seasonal cycle of Chl-a in region 1 is

observable in the oxygen saturation and in NCPO2, with NCPO2 peaking between

May and June as well as between November and December of 2012. The monthly

range in magnitude of NCPO2 decreases from region 1 to region 5 in line with

a decrease in Chl-a concentrations. Regions 4 and 5 are oligotrophic, associated

with low nutrient conditions and the dominance of smaller sized phytoplankton

(Ducklow et al., 1995).
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Figure 4.6: Subplot A shows the month-to-month change in the observed oxygen concen-
tration (∆O2Obs, dark blue bars) along with the modelled abiotic and biotic contributions
(∆O2Abio (red bars), and ∆O2Bio (green bars), all in mmol m−3, left axis), and the
monthly oxygen concentration (O2Obs, [mmol m−3], turquoise circles, right axis) from
December 2011 to March 2013 in each of the 5 biogeographical regions. Subplot B shows
the oxygen flux ([mmol m−3 d−1], left axis) associated with entrainment (E/h, pink bars),
gas exchange (FO2/h, cyan bars), and ∆O2Abio/∆t (blue bars) between months, and the
monthly negative MLD (-h, [m], black circles, right axis) from December 2011 to March
2013 in each of the 5 biogeographical regions.

Figure 4.6 shows for each of our 5 biogeochemical regions, the relative con-

tributions of various processes involved in the calculation of NCPO2 (specifically,

equations 4.2 and 4.3), and how this contribution varies between regions. The sea-

sonal pattern in gas exchange is shown in figure 4.6B with sea surface outgassing

of oxygen during the summer months when the mixed layer is supersaturated with

oxygen, and influx of oxygen into the mixed layer when it is undersaturated with

oxygen in the winter months. This change from outflux to influx of oxygen oc-

curs after July when the wind speed starts to increase and the oxygen saturation

decreases. The gas exchange term generally varies in the opposite sense to the en-

trainment term, as the increased deepening of the mixed layer depth during the win-

ter months causes the decrease in oxygen concentration within the mixed layer as

oxygen depleted waters are entrained, while the gas exchange causes an increased

oxygen concentration as the undersaturated waters are taking up oxygen from the
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atmosphere (figure 4.6B). During most of the sampling period the oxygen concen-

tration below the thermocline is lower than that within the mixed layer. However,

during May in region 1 and briefly in July in region 4, the oxygen concentration is

higher below the thermocline than within the mixed layer. These subthermocline

higher concentrations of oxygen are likely due to production of O2 by phytoplank-

ton below the mixed layer which cannot then escape to the atmosphere (Emerson

et al., 2008). The entrainment term has the largest influence in region 2 (see figure

4.6B) and less of an impact in regions 1 and 5 where the mixed layer depth is shal-

lower and there is less of a change in the mixed layer depth during the sampling

period. The oxygen concentration (O2Obs) increases from region 5 to region 1

(figure 4.6A), a geographical pattern that is strongly linked to decreased solubility

with increasing temperatures towards the tropics (Garcia and Keeling, 2001). The

latitudinal pattern in the biological oxygen flux (∆O2Bio) shows highest values in

region 3, decreasing towards regions 1 and 5.

4.5.2 Comparison of two independent NCP estimates

The PQs for each region are given in table 4.3 along with the regional mean annual

NCPO2 for 2012. The Redfield ratio of O2:DIC (138:106) is 1.3 (Redfield et al.,

1963), however Laws (1991) suggest using PQ values of 1.4 and 1.1 for new and

recycled production respectively. Our PQ values range from 0.78±0.31 in region 4

to 1.4±0.62 in region 5. Lefèvre and Merlivat (2012) measured NCP using carbon

and oxygen at the PIRATA (Prediction and Research Moored Array in the Tropical

Atlantic) site and also found that NCP derived from dissolved oxygen concentra-

tions was lower than that predicted from NCPDIC and a PQ of 1.4. Published PQ

values range from 0.77 ±0.28 to 1.26 ±0.66 (Lefèvre and Merlivat, 2012; Lefèvre

et al., 2008; Johnson, 2010a) confirming that a constant value of 1.4 is not always

applicable.

The calculation of NCPDIC using the seasonal carbon mass balance approach

makes several assumptions in that it does not take into account additions of DIC

through gas exchange, vertical diffusion and entrainment, and the influence of

riverine inputs (section 4.3.11). Although these limitations are likely to have caused
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an underestimation in NCPDIC , our relatively low PQ values suggest that this un-

derestimation is small.

Figure 4.7: Mean annual NCP and their uncertainties in different biogeochemical regions
in the mid-latitude North Atlantic. Shown are annual mean NCPO2

in each of the 5 biogeo-
chemical regions obtained in this study (coloured bars, see Fig. 4.3), along with previously
published mean annual NCP estimates from the North Atlantic (grey bars) (Longhurst,
2006).

4.5.3 Annual Net Community Production

The summer mean NCPO2 for the months between spring and autumn is highest

in region 3 and lowest in regions 1 and 5 (see figure 4.5). However, the annual

mean NCPO2 is highest for region 2 and lowest for regions 1 and 5, (see table 4.3)

highlighting the intra-annual variability in NCPO2 within regions. It is also impor-

tant to note that our annual NCPO2 estimates integrate to the winter mixed layer

depth which varies considerably between regions, from <100m in regions 1 and 5

to ∼150m in regions 2, 3 and 4 (figure 4.6). Körtzinger et al. (2008) demonstrate

that at the Porcupine Abyssal Plain (PAP) site, which lies within region 2, one-third

of the organic matter that is exported during the summer is returned to the mixed

layer the following winter due to entrainment. This could explain why the regional

variability seen in the summer mean NCP (higher NCP in regions 2, 3 and 4 than

in 1 and 5 (figure 4.5)), is not seen in the annual mean NCPO2 (figure 4.7).
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Our estimates of annual NCPO2 range from 7.1±5.5 to 12±6.9 (mmol O2 m−2

d−1), and are not significantly different from published estimates of NCP derived

from geochemical oxygen budgets made in the mid-latitude North Atlantic that

range from 4.4±1.1 to 11±10 (mmol O2 m−2 d−1) (Spitzer and Jenkins, 1989;

Luz and Barkan, 2009; Quay et al., 2012). Our study estimated an annual NCP

of 12±6.9 (mmol O2 m−2 d−1) for region 2, which falls within the Longhurst

(2006) provinces NECS and NADR, and 9.5±9.4 for region 3, which falls within

the Longhurst (2006) provinces NADR and NASE. The geographically closest an-

nual NCP estimate of 11 ±10 (mmol O2 m−2 d−1) was derived from the CA-

RINA surface O2 data by Quay et al. (2012) using Ar/O2 ratios in the Longhurst

(2006) provinces NADR/ARCT and SARC. Luz and Barkan (2009) calculated an-

nual NCP at BATS in 2000 to 2001 using Ar/O2 ratios, and Spitzer and Jenkins

(1989) derived NCP at BATS in 1985 to 1986 from surface ocean O2 mass bal-

ance. These estimates of 4.4±1.1 and 11±3 (mmol O2 m−2 d−1) respectively fall

within the NASW Longhurst (2006) province. Our estimate of NCP in the NASW

of 10±6.8 (mmol O2 m−2 d−1) is similar to that of Spitzer and Jenkins (1989),

despite the suggestion of significant inter-annual variability in the air-sea oxygen

flux in the North Atlantic (McKinley, 2000). Interestingly our estimates of annual

NCPO2 in the mid-latitude North Atlantic are not significantly different from geo-

chemical estimates of NCP in the North Pacific (Emerson et al., 1997, 2008; Quay

et al., 2010).

The lack of latitudinal variability in our data agrees with the conclusions of

Emerson (2014) and Emerson and Bushinsky (2014), who showed that the latitu-

dinal variability in in situ derived NCP estimates is often less than that in model

derived estimates of annual NCP. Global circulation models and satellite derived

models (vertically generalised productivity model (VGPM)) (Behrenfeld and Falkowski,

1997; Najjar et al., 2007), give zonally averaged estimates of annual NCP in the

subtropics (equivalent to our region 5) that are about half of the annual NCP in tran-

sition regions (equivalent to our regions 3 and 4) (Emerson, 2014). Further in situ

measurements are therefore required to determine the latitudinal and inter-annual

variability in NCP and investigate the processes or assumptions that may cause in
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situ and model estimates of NCP to differ. Emerson and Bushinsky (2014) and

Körtzinger et al. (2005) propose a technique using atmospheric pO2 to correct the

drift of optodes installed on Argo and profiling floats. The next step is to design an

automated and accurate way of correcting for optode drift on VOSs potentially by

using measurements of atmospheric pO2. This would enable accurate automated

surface oxygen measurements and hence NCP on a global scale.

4.6 Summary

We present the first estimates of mean annual NCP for 5 biogeochemical regions

within the mid-latitude North Atlantic, covering approximately 4,300,000 km2.

We developed a simple and cost effective method (in terms of personnel time and

shipboard space requirements) which is therefore applicable for use on VOSs. The

method was validated through comparison with estimates of annual NCP derived

from more complex labour intensive methods such as Ar/O2 ratios (Quay et al.,

2012; Luz and Barkan, 2009) and an independent method using measurements

of DIC concentrations. We found no trend in the magnitude of the mean annual

NCP over a 35◦ range in latitude. The contrast in the latitudinal variation of NCP

derived from global circulation models and some satellite derived models on the

one hand, and NCP derived from in situ measurements on the other hand, highlights

the need for improved global coverage of in situ data and an improved mechanistic

understanding of why the two approaches differ. The method developed here is

ideally suited to provide the required global coverage of in situ NCP data.



Chapter 5

The marine carbonate system in

the North Atlantic

5.1 Abstract

The container ship MV Benguela Stream traverses the North Atlantic between the

United Kingdom (UK) and the Caribbean every month. This volunteer observ-

ing ship (VOS) is fitted with an automated pCO2 analyser, Aanderaa temperature

(model 3210) and conductivity (model 3919) sensors to measure surface water

pCO2, temperature and salinity and tows a Continuous Plankton Recorder (CPR)

to determine the phytoplankton community composition. Discrete dissolved inor-

ganic carbon (DIC), total alkalinity (TA) and dissolved inorganic nutrient samples

were collected on-board during 4 voyages of the VOS between April 2012 and
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February 2013. These data were used to analyse the spatial and seasonal variability

in the surface water carbonate system in relation to the abundance and distribution

of key phytoplankton groups. Dinoflagellate and coccolithophore abundance were

negatively correlated with DIC north of 45 ◦N, while south of this, sea surface tem-

perature (SST) was the main driver of DIC concentrations. South of 30 ◦N TA and

salinity decrease with decreasing latitude, due to the strong influence of river dis-

charge from the Orinoco and Amazon rivers. The study site was divided into three

regions based on the ratio of DIC:TA. The C:N:P ratio in the northern most region

was 75±14:13±1.7:1 and in the mid North Atlantic region was 71±32:15±0.9:1.

These ratios suggest phytoplankton overconsumption of DIC with respect to N and

P particularly during the autumn voyage. A decreased buffering capacity in the

northeast Atlantic is suggested, using discrete measurements of DIC and pCO2

and comparisons with literature. This is likely due to the increased uptake of an-

thropogenic CO2 within this region.

TA was conservative with salinity, allowing the calculation of DIC from pCO2

and TA derived from salinity for the entire sampling period of 11 months. Cal-

culated DIC compared well with measured DIC with a mean difference of -1.19

µmol kg−1 and an R2 value of 0.94. This calculation was therefore applied to mea-

surements of pCO2 and salinity that have been made along this route since 2002,

which gave estimates of monthly DIC from 2002-2013 with an error of 30.3 µmol

kg−1.

5.2 Introduction

Across the North Atlantic there is a latitudinal gradient between the biological and

upwelling driven carbon cycle in the subpolar/temperate regions and the tempera-

ture driven carbon cycle in the subtropics (Takahashi and Sutherland, 2002). Dur-

ing the spring and summer months north of 40 ◦N intense phytoplankton blooms

cause a reduction in the surface pCO2 which is then counteracted during winter

months with upwelling of deep waters that are rich in carbon and nutrients (Taka-

hashi et al., 1993). The distribution of phytoplankton blooms within the northeast

Atlantic is patchy, and relies on seasonally stratified nutrient rich waters (Jönsson
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et al., 2011; Kitidis et al., 2012). South of 40 ◦N is a transition zone in which the

temperature effects on pCO2 start to dominate over the biological influence and, as

the region becomes more oligotrophic, the seasonal cycle is in anti-phase with that

in the high latitudes, with the winter acting as a sink for pCO2 and the summer act-

ing as a source (Takahashi et al., 1993). Determining which phytoplankton groups

dominate this biological influence, and the nutrient ratios associated with these

different regions is important for improved understanding of the biogeochemical

variability, which in turn will be influenced by our changing environment.

Through the use of a volunteer observing ship (VOS) MV Benguela Stream,

four field campaigns were carried out traversing the North Atlantic from the United

Kingdom (UK) to the Caribbean Islands between April 2012 and February 2013.

Measurements of dissolved inorganic carbon (DIC) and total alkalinity (TA) were

made alongside a suite of measurements (pCO2, temperature, salinity, nutrients)

that have been collected since 2002 (Schuster and Watson, 2007). This chapter

investigates the relationships between the carbonate system (pCO2, DIC and TA),

phytoplankton community composition, and nutrient availability, on basin and sea-

sonal scales in the North Atlantic Ocean.

5.3 Methods

5.3.1 Study area

Discrete samples for analysis of DIC and TA were collected during 4 voyages of the

MV Benguela Stream. This VOS operates between Portsmouth and the Caribbean

Islands completing one return voyage every month. The 4 voyages during which

samples were collected were April/May 2012 (BS56 - Spring), June/July 2012

(BS58 - Summer), September/October 2012 (BS62 - Autumn) and January/February

2013 (BS66 - Winter). Figure 5.1 shows the sampling locations, with the red

closed circles representing the stations sampled while travelling from the UK to

the Caribbean, and the blue representing the stations sampled during the return

crossing to the UK.
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Figure 5.1: Map of the North Atlantic showing the location of each discrete sample. Red
= stations sampled during the voyage from the United Kingdom (UK) to the Caribbean,
Blue = stations sampled during the voyage from the Caribbean to the UK.

5.3.1.1 Regions

In order to analyse the dataset regionally, three latitudinal regions were discrimi-

nated by their ratio of DIC:TA. These regions are plotted as red boxes with SST

plotted at each of the sampling locations in figure 5.2. The regions are designated

region 1, 2 and 3 going from north to south.

Figure 5.2: Map of the North Atlantic with SST shown at each discrete sampling position,
and regions 1, 2 and 3 drawn as red boxes.
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5.3.2 Discrete measurements

DIC and TA samples were collected every 2 hours during daylight hours and im-

mediately preserved following the standard operating procedure (SOP) outlined by

Dickson et al. (2007). Temperature, pressure and conductivity were recorded at the

time of sampling. The samples were analysed on return to the laboratory (within

6 months) using two VINDTA 3C (Versatile INstrument for the Determination

of Total inorganic carbon and titration Alkalinity) instruments, which combine

an acid titration to determine TA and a coulometric titration to determine DIC

(Mintrop, 2011). For a detailed description of the methodology and sampling pro-

cedure see section 2.4 in the methods chapter, accuracy is given in table 5.1 below.

Density was calculated using SST and calibrated salinity so that DIC, TA and nu-

trient data are reported in µmol kg−1.

Nutrient and salinity samples were collected by the VOS crew every four and

twelve hours respectively. These samples were analysed at the National Oceanog-

raphy Centre (NOC) Southampton, using a SEAL AutoAnalyzer (Grasshoff et al.,

1999) and a Guildline Autosal salinometer (8400B). Silicate, phosphate and ni-

trate plus nitrite (NOx) were determined following the procedures of Hansen and

Koroleff (2007), accuracy is given in table 5.1 below.

5.3.3 Underway measurements

An automated pCO2 analyser, a dual oxygen/temperature sensor (Aanderaa op-

tode, model 3835), a conductivity sensor (Aanderaa, model 3919) and a tem-

perature sensor (Aanderaa, model 3210) are permanently installed on the MV

Benguela Stream using the set-up described by Schuster and Watson (2007). Data

are recorded every minute alongside concurrent latitude, longitude, and UTC (Co-

ordinated Universal Time) and stored on a computer. After each voyage the raw

data are quality controlled. The in situ temperature and conductivity sensors are

calibrated annually by the manufacturer, and additionally monthly using a three-

point temperature calibration and the discrete seawater salinity samples. For a de-

tailed description of the automated measurements set-up, calibration, and quality

control see section 2.5 in the methods chapter. Accuracy is given in table 5.1.
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Table 5.1: Accuracy associated with each of the measurements made.

Measurement Accuracy Method to derive accuracy

DIC ±2.55 (µmol kg−1) Mean standard deviation of CRM DIC

TA ±1.46 (µmol kg−1) Mean standard deviation of CRM TA

NOx ±0.1(µmol kg−1) SEAL AutoAnalyzer accuracy from
international standards

Si ±0.1(µmol kg−1) SEAL AutoAnalyzer accuracy from
international standards

PO4 ±0.02(µmol kg−1) SEAL AutoAnalyzer accuracy from
international standards

Salinity ±0.05 Due to calculation from conductivity,
and calibration using discrete samples

Temperature ±0.03 (◦C) Aanderaa 3210 sensor accuracy

pCO2 ± <1(µatm) LI-COR suggested accuracy

Pressure ± <0.1(mbar) Omega model PX2760-600A5V accuracy

5.3.4 Calculation and calibration of salinity

Salinity was calculated from the conductivity and temperature measurements, and

then corrected for drift using co-located discrete salinity measurements for each

voyage (figure 5.3). The accuracy was estimated from the error on the slope of the

calibration lines, and is given in table 5.1.
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Figure 5.3: Salinity correction for each voyage (BS56, BS58, BS62, BS66), calculated
using co-located discrete salinity measurements and salinity calculated from conductivity.

5.3.5 Salinity normalisation

Many studies employ the traditional salinity normalisation which designates a con-

stant salinity to correct TA and DIC measurements for precipitation and evapora-

tion (ie. normalise to a salinity of 35). However, this method ignores the influence

on these carbonate parameters of riverine input of alkalinity, deep water upwelling,

and dissolution of biogenic carbonates (Friis et al., 2003).

Friis et al. (2003) suggest the use of a zero salinity endmember to normalise

both TA and DIC as this adjusts the carbonate measurements to show no trend

with salinity, whereas the traditional technique often overshoots the correction and

a trend with salinity will still exist. This normalisation can be described by the

following equation, where c is the intercept at zero salinity, and S is the salinity

measurement.

nTA = (
TA− c
S

)× (S + c) (5.1)

The same normalisation procedure was applied to the pCO2, NOx and PO4

data in order to compare with nDIC.
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5.3.6 Calculation of potential alkalinity

During organic matter cycling there is a small influence on TA concentrations that

is due to the release or uptake of nutrients during remineralisation and photosyn-

thesis respectively. The term potential alkalinity (pTA) was suggested by Brewer

and Goldman (1976) as an indicator of the changes in TA that are not due to the

cycling of organic matter, by summing nTA with measurements of NOx:

pTA = nTA+NOx (5.2)

5.3.7 Intercomparison of the carbonate system

Using two measured carbonate parameters together with sea surface temperature

(SST), salinity, sea level air pressure, silicate and phosphate, the remaining two

carbonate parameters can be calculated (two of the following are required: DIC,

TA, either fCO2 or pCO2, and pH). SST, salinity and sea level air pressure were

measured within a minute of the sampling time, however due to the longer sam-

pling intervals of the nutrient data, the silicate and phosphate concentrations had to

be co-located to the nearest carbonate parameter sampling time. To calculate the

carbonate parameters a Matlab toolbox of CO2SYS was used which is based on

the program developed by Lewis et al. (1998) for DOS and Excel.

When using the CO2SYS toolbox there are a number of dissociation constant

and formulation options that have to be selected. For this study the dissociation

constants for carbonic acid (pK1) were taken from Mehrbach et al. (1973) that were

refitted by Dickson and Millero (1987), and the dissociation constant for HSO−
4

(KSO4) (pK2) was taken from Dickson (1990). Lueker et al. (2000) have estimated

the root-mean-square-error (RMSE) for pK1 as ±0.0055 and for pK2 as ±0.01.

The uncertainty of calculating a carbonate parameter using CO2SYS was es-

timated following a Monte Carlo approach, whereby the accuracy associated with

each of the input variables (see table 5.1) and the error associated with the disso-

ciation constants (Lueker et al., 2000) was randomly added/subtracted to the vari-

able/constant within a normal distribution 10,000 times. The standard deviation of

these 10,000 calculated values for each input measurement was then taken as the
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uncertainty surrounding the calculated parameter, and the RMSE was calculated

to provide one uncertainty value (Glover et al., 2005; Quay et al., 2010; Riebesell

et al., 2011).

5.3.8 Validation of DIC and TA

We compared our discrete measurements of DIC and TA with existing DIC and TA

data. We searched for DIC and TA surface measurements from the GLODAP v1.1

(Key et al., 2004) and CARINA (Velo et al., 2010) databases on a spatial scale of

1 ◦latitude by 1 ◦longitude.

Figure 5.4 shows the surface measurements from GLODAP v1.1 (Key et al.,

2004) and the measurements of DIC and TA collected from the MV Benguela

Stream in the North Atlantic.

Figure 5.4: Surface measurements of a) TA and b) DIC in the North Atlantic. Circles =
GLODAP v1.1 (Key et al., 2004). Stars = Measurements collected from the MV Benguela
Stream (this study).

Although GLODAP v1.1 and CARINA datasets consist of measurements that
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were collected between 1972 and 1998 and between 1977 and 2006 respectively,

for comparative purposes, we needed surface measurements made within the same

month as the MV Benguela Stream data. Unfortunately not a single co-located

measurement was found. Therefore a monthly 4◦latitude × 5◦longitude gridded

climatology of DIC and TA was used to co-locate and compare with our mea-

surements. These climatologies were obtained from the Biological and Chemical

Oceanography Data Management Office (BCO-DMO) (Takahashi and Sutherland,

2013) and are based on GLODAP v1.1 (Key et al., 2004), CARINA (Velo et al.,

2010), and LDEO databases (Takahashi et al., 2009).

5.3.9 Calculation of the Revelle factor

The Revelle factor (or buffer factor) is calculated as the slope of the regression be-

tween the natural logarithm of pCO2 and the natural logarithm of DIC (∂ln(pCO2)/∂ln(DIC))

(Takahashi et al., 1993). It is representative of the capacity for a body of water to

take up surplus CO2 (anthropogenic) from the atmosphere, where waters with a

lower Revelle factor theoretically have a higher surplus CO2. High latitude waters

have higher Revelle factors whereas lower latitude waters have lower Revelle fac-

tors. Revelle factors are directly proportional to the ratio of DIC:TA (Sabine et al.,

2004).

5.3.10 Derivation of TA from salinity

Using the linear regression between TA and salinity, TA can be predicted from

salinity when direct measurements of salinity but not TA have been made (Millero

et al., 1998). This method is particularly applicable in the open ocean where TA

is mainly driven by freshwater addition and removal, which influence salinity in

the same manner (Millero et al., 1998; Lee et al., 2006; Jiang et al., 2014). TA is

derived from equation 5.3 where m is the gradient of the linear regression between

TA and salinity and c is the intercept:

TA = m× salinity + c (5.3)

http://www.bco-dmo.org/dataset/3961
http://www.bco-dmo.org/dataset/3961
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Providing the TA:salinity relationship is robust, by measuring one of the car-

bonate parameters and calculating TA from salinity, the remaining carbonate pa-

rameters can be calculated using CO2SYS (Lewis et al., 1998).

5.3.11 Biotic and abiotic influences on the carbonate system

Thermal (pCO2T) and non-thermal (pCO2NT) driving components on pCO2 were

derived following Körtzinger et al. (2008). This method was used by Takahashi and

Sutherland (2002) and is based on the well constrained influence of temperature on

pCO2 under fixed DIC and TA conditions, where ∂ln pCO2/ ∂T = 0.04231 ◦C −1

(Takahashi et al., 1993).

pCO2T = pCO2 × e0.04231×(SST−SST ) (5.4)

pCO2NT = pCO2 × e0.04231×(SST−SST ) (5.5)

Where the over bar indicates mean parameter. pCO2T calculated following

equation 5.4 represents the pCO2 concentration if the addition or removal of car-

bon by biological and air-sea exchange processes were absent. Whereas pCO2NT

calculated following equation 5.5, removes the effect of pCO2T by correcting to the

mean SST. Therefore pCO2NT represents the pCO2 concentration due to changes

in DIC and TA, which could be influenced by biology, air-sea CO2 exchange, ad-

vection, and mixing (Körtzinger et al., 2008).

On long time scales (100,000 years) global DIC and TA are primarily driven

by weathering processes. However on shorter time scales (months) after normal-

isation, there are three main processes that influence the ratio of nDIC and nTA.

Zeebe and Wolf-Gladrow (2001) outline the relative changes in normalised DIC

and TA concentration through the use of a ’Defeyes diagram’ (figure 5.5), in which

processes that influence the carbonate chemistry of a water parcel can be inferred

by the change in the ratio between nDIC and nTA. The invasion or release of CO2

from the atmosphere to the ocean increases or decreases the concentration of DIC
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respectively, without influencing the charge balance and therefore the TA stays the

same.
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Figure 5.5: Schematic of the changes in TA and DIC that occur during respiration, photo-
synthesis, calcium carbonate dissolution and precipitation.

Respiration and photosynthesis have a similar trend to the air sea exchange

process due to the release or uptake of CO2, but there is a small influence on TA

due to the charge that is present on nutrients. For every mole of nitrate that is

assimilated by phytoplankton, TA increases by 1 mole (Wolf-Gladrow et al., 2007):

NH3 + 2O2 � NO−
3 +H+ +H2O (5.6)

Therefore during photosynthesis for every 1 unit decrease in DIC, TA increases

by 0.15 and vice versa during respiration (-16/106 = -0.15, see figure 5.5):

106CO2 +16NO−
3 +HPO2−

4 +78H2O+18H+ � C106H175O42N16P+150O2

(5.7)

The formation of calcium carbonate (CaCO3) decreases DIC and TA in a ratio

of 1:2 (figure 5.5), due to the loss of the positive charge which decreases TA, and

the loss of bicarbonate which reduces DIC.
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Ca2+ + 2HCO−
3 −→ CaCO3 + CO2 +H2O (5.8)

Although this process releases CO2, due to the buffering capacity of seawater

this only produces ∼0.03 µmol of CO2 per µmol of CaCO3 formed (Zeebe and

Wolf-Gladrow, 2001).

5.3.12 Calculation of Redfield ratios

The Redfield ratio describes the stoichiometric relationship between carbon and

inorganic nutrients, and is relatively constant within the open ocean when nu-

trient limitation is not occurring (Redfield et al., 1963; Sambrotto et al., 1993).

For example Anderson and Sarmiento (1994) found an average (for the Atlantic

and Pacific measured at depths ranging from 400m to 4000m) stochiometric ratio

of 117±14:16±1:1 (C:N:P (mol:mol:mol)). Redfield used open ocean measure-

ments of particulate and dissolved nutrients to predict the following Redfield ratio;

106:16:1 (C:N:P) (Redfield et al., 1963). Deviations from the Redfield ratio in-

dicate carbon overconsumption, nutrient limitation, and other influences such as

riverine, or nutrient recycling or fixation (Jiang et al., 2013).

Using the linear regression between measurements of normalised DIC and NOx

and PO4 the C:N and C:P ratios can be determined regionally, and compared with

Redfield’s ratio.

5.3.13 Phytoplankton community composition

A CPR is towed behind the MV Benguela Stream from 40 ◦W on every monthly

crossing between the Caribbean and the UK. For a detailed methodology of the

CPR sampling see section 2.1 in the methods chapter.

The phytoplankton data from the CPR survey were divided into 6 key phyto-

plankton indices, namely phytoplankton colour index (PCI), spring-bloom form-

ing diatoms (diatoms), Rhizosolenia (diatom genus often associated with a later

blooming-time), dinoflagellates, silicoflagellates, and coccolithophores. Table 3.1

in chapter 3 lists the species that were included in these indices, with the addition
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of coccolithaceae and silicoflagellatae, which have been counted in the CPR sam-

ples since 1993 (Richardson et al., 2006). Rare species bias was removed from

the dataset by only including species that occur above 1% frequency of occurrence

(Edwards and Richardson, 2004). The phytoplankton indices were all log trans-

formed using log10 (x+1) in order to homogenise the variance (Alvarez-Fernandez

et al., 2012).

In order to investigate phytoplankton abundance across the whole North At-

lantic basin, satellite data were used as an indicator of Chl-a concentration. These

data were obtained from Aqua-MODIS at a resolution of 9 km and frequency of 1

month (http://oceandata.sci.gsfc.nasa.gov).

5.3.14 Data interpolation

In order to create seasonal Hovmoller contour plots of the pCO2 components and

phytoplankton indices against longitude, objective mapping was used to interpolate

between data points. The best fit to the data was found to be a Gaussian distribution,

with an influence radius of 2 in the x-direction (2◦longitudinal steps) and 0.5 in

the y-direction (between seasons). Objective mapping can be described by the

following equation:

b = w × E−1 × r (5.9)

Where b is the mapped property, w is the data weight, E is the covariance

matrix and r is the residual (weighted mean).

5.4 Results

5.4.1 Distributions of DIC, TA, nutrients, salinity, pCO2 and SST

Figure 5.6 shows the relationships between DIC and TA with SST and salinity sep-

arated by latitudinal bands. DIC decreases with increasing SST (figure 5.6a) from

2138.3 µmol kg−1 at 9.17◦C to 1934.8 µmol kg−1 at 29.52◦C. This is to be ex-

pected as the increasing SST decreases the solubility of pCO2. Therefore it does
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not dissociate to form DIC as readily. SST increases linearly with decreasing lat-

itude, but DIC decreases at 3 different rates with increasing SST and decreasing

latitude, -7.93 µmol kg−1 per 1 ◦C between 50◦N and 45◦N, -4.03 µmol kg−1 per

1 ◦C between 45◦N and 30◦N where the decrease levels off slightly, and -13.78

µmol kg−1 per 1 ◦C between 30◦N and 14◦N where the rate of decrease increases

again (figure 5.6a). DIC decreases with increasing salinity from high latitudes to

low latitudes to about 30◦N where salinity starts to decrease with decreasing DIC

(figure 5.6b). TA increases with increasing SST from ∼ 10 to 15◦C at 50◦N to

about 25◦C at 30◦N where TA starts to decrease. TA and salinity increase with de-

creasing latitude from 2287 µmol kg−1 and 33.03 salinity at 50◦N to 2449.0 µmol

kg−1 and 37.42 salinity at ∼ 25◦N. Between 25◦N and 14◦N salinity decreases to

34.63 and TA decreases to 2271.6 µmol kg−1. The low salinity values were re-

ported an hour after leaving port in Le Havre. The greatest variance in the linear

relationship between TA and salinity occurs at the highest latitudes (figure 5.6d).

The seasonal change in DIC, TA, salinity, NOx, Si, and PO4 between 70 and

0◦W are shown in figure 5.7. The lowest DIC concentrations (< 2020 µmol kg−1)

occur throughout the sampling seasons westward of 65◦W, with low concentrations

reaching eastward (∼ 60◦W) throughout the autumn and summer (figure 5.7a).
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Figure 5.6: a) DIC against SST, b) DIC against salinity, c) TA against SST, d) TA against
salinity. The colour bar for each plot corresponds to the latitude ◦N of the sample.

High DIC concentrations (> 2100 µmol kg−1) occur between 0◦W and 30◦W

during the winter months. Unsurprisingly, the concentrations of NOx show a sim-

ilar seasonal/latitudinal pattern to DIC (figure 5.7c), with low NOx concentrations

(< 1 µmol kg−1) occurring in the summer across the whole transect and through-

out all of the seasons west of 30◦W. The highest concentration of NOx (> 6 µmol

kg−1) occurs at 10◦W in the winter (Jan/Feb). The TA and salinity have a similar

distribution in the spring and winter months (figure 5.7b, d). However this similar-

ity breaks down in the summer and autumn months as the salinity increases in the

autumn months (Sep/Oct) between 10◦W and 35◦W while the TA decreases. The
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Si and PO4 have similar distributions to NOx with low concentrations (∼ 0.5 µmol

kg−1 and∼ 0.05 µmol kg−1 respectively) occurring in the summer and higher con-

centrations occurring in the English Channel between 0◦W and 5◦W (figure 5.7e,

f). At 70 ◦W both Si and PO4 have a peak in concentration during the summer

sampling period (Jun/Jul).
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Figure 5.7: Hovmoller of a) DIC, b) TA, c) NOx, d) salinity, e) Si, and f) PO4 for each
sampling period from 70◦W to 0◦W along the Caribbean to UK transect.

The monthly nutrient concentrations with monthly normalised DIC in each of

the three regions defined in figure 5.2 are shown in figure 5.8. Due to sampling

logistics, there are fewer nDIC data than nutrient data. In region 1 (figure 5.8a) the

monthly trend in nDIC is similar to the monthly trend in inorganic nutrients. Note

the different y axes scales, with decreasing concentrations of nDIC and inorganic

nutrients from region 1 to region 3 and the changes in the N:P and N:Si ratios.
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pTA and nTA calculated from each TA measurement are plotted against salin-

ity in figure 5.9 to evaluate the influence of NOx on nTA. pTA data are plotted as

open circles, with the colour indicating latitude (◦N). At higher latitudes (coloured

green), where concentrations of NOx are highest, there is a greater offset between

the open circles of pTA data and the closed circles of nTA data than at lower lat-

itudes (coloured blue and purple) where NOx concentrations are lowest and the

open circles of pTA data coincide with the closed circles of nTA data.



5.4 Results 157

33 33.5 34 34.5 35 35.5 36 36.5 37 37.5
2280

2300

2320

2340

2360

2380

2400

2420

Salinity

Al
ka

lin
ity

 (µ
m

ol
 k

g−
1 )

 

 

La
tit

ud
e(
°N

)

15

20

25

30

35

40

45

50

Potential Alkalinity
Normalised Alkalinity
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closed circles) against salinity. Colour corresponds to latitude (◦N).

5.4.2 Salinity normalisation

Figure 5.10 shows the normalisation of DIC and TA in regions 1 to 3 using equation

5.1, with the regression equation of the normalised data shown on each subplot.

These plots demonstrate that the variability in DIC and TA related to the variability

in salinity has been removed using this correction , as the slopes of the regression

lines between the normalised data and salinity are close to zero. In regions 1 and 2

(figures 5.10 a and c) there is more scatter in the DIC data than in region 3 (figure

5.10e), and the normalisation procedure for TA in region 1 (figure 5.10b) makes

little difference as the normalised TA data almost completely overlays the original

TA data.
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Figure 5.10: Normalisation of DIC and TA using equation 5.1 in regions 1 to 3. Red
circles = normalised data, with red regression line. Black circles = original data, with black
regression line. Regression equation of the normalised data is shown on each subplot.

5.4.3 Intercomparison of carbonate system

DIC, TA and pCO2 were calculated using CO2SYS (see figures 5.11 to 5.13). Un-

fortunately the underway pCO2 system had some technical problems during parts

of the sampling campaign where DIC and TA were measured, particularly during

the June/July voyage, which is why there are fewer calculated data than measured

data and no calculated data during the summer months.
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Figure 5.11: TA calculated from measured DIC and pCO2 using CO2SYS (Lewis et al.,
1998) against measured TA. Red line shows the linear relationship between the co-located
samples, black line shows the optimal 1:1 relationship.

The mean difference between calculated TA and measured TA was 3.58 µmol

kg−1, with a RMSE of 9.64 µmol kg−1 and a Pearson’s correlation coefficient of

0.96 (figure 5.11). Some of the TA data collected in January fall below the optimal

1:1 regression. This is because the measured TA is lower than the calculated TA,

whereas in figure 5.12 some of the DIC data in January are above the 1:1 regres-

sion line. The mean difference between calculated DIC and measured DIC was

-3.01 µmol kg−1, with a RMSE of 8.07 µmol kg−1 and a Pearson’s correlation

coefficient of 0.98 (figure 5.12).
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Figure 5.12: DIC calculated from measured TA and pCO2 using CO2SYS (Lewis et al.,
1998) against measured DIC. Red line shows the linear relationship between the co-located
samples, black line shows the optimal 1:1 relationship.
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Figure 5.13: pCO2 calculated from measured DIC and TA using CO2SYS (Lewis et al.,
1998) against measured pCO2. Red line shows the linear relationship between the co-
located samples, black line shows the optimal 1:1 relationship.

Figure 5.13 shows the comparison between calculated pCO2 using the TA and

DIC measurements and co-located pCO2 measurements. The data points fall close

to the optimal 1:1 regression line in the spring and autumn months (coloured green

and red), even when there were high values of pCO2 recorded during the autumn.
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However during the winter months (coloured blue) some of the measurements fall

below the optimal 1:1 regression, as the calculated pCO2 is lower than the mea-

sured pCO2 during these months. The mean difference between these data points

was 5.41 µatm, with a RMSE of 14.61 µatm and a Pearson’s correlation coefficient

of 0.85.

The Monte Carlo approach outlined in section 5.3.7 showed that all of the er-

rors associated with using CO2SYS to calculate each of the carbonate parameters

were greater than our measurement uncertainties on the associated carbonate pa-

rameter, demonstrating that our data measurements are internally consistent (table

5.2).

Table 5.2: RMSE from calculating parameter with CO2SYS, measurement uncertainty,
and RMSE of the regression between measured and the CO2SYS calculated parameter.

RMSE CO2SYS Uncertainty RMSE Regression
TA (µmol kg−1) 5.72 ± 1.46 9.64
DIC (µmol kg−1) 4.14 ± 2.55 8.07
pCO2 (µatm) 8.35 ± 1 14.61

5.4.4 Validation of DIC and TA

Figures 5.14 and 5.15 show the comparison between our measurements and the

nearest measurement within the monthly 4 ◦× 5 ◦search radius of the Takahashi

and Sutherland (2013) monthly climatology. Our DIC measurements correspond

with the climatological data, as the slope of the regression is close to the opti-

mal regression slope of 1 (Figure 4.13). The mean difference between the DIC

measurements and the climatological DIC was 3.48 µmol kg−1, with a root-mean-

square-error (RMSE) of 14.95 µmol kg−1 and a Pearson’s correlation coefficient

of 0.92. This relationship does not vary between the different sampling months.
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Figure 5.14: Measured DIC against co-located DIC from Takahashi and Sutherland (2013)
climatology. Red line shows the linear relationship between the co-located samples, black
line shows the optimal 1:1 relationship.

When comparing the TA measurements with the TA climatological data the

measurements are slightly lower than the climatological values, with the mean dif-

ference being - 4.94 µmol kg−1 with a RMSE of 14.58 µmol kg−1 and a Pearson’s

correlation coefficient of 0.91 (figure 5.15). There is no relationship between sam-

pling months, but there is more variation around the slope between the TA data

(figure 5.15) than the DIC data (figure 5.14).



5.4 Results 163

2250 2300 2350 2400 2450 2500
2250

2300

2350

2400

2450

2500

Takahashi TA (µmol kg−1)

M
ea

su
re

d 
TA

 (µ
m

ol
 k

g−
1 )

y = 0.9349 x + 149
 
R2 = 0.8309

 

 

M
on

th

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

Calculated:Measured
1:1

Figure 5.15: Measured TA against co-located TA from Takahashi and Sutherland (2013)
climatology. Red line shows the linear relationship between the co-located samples, black
line shows the optimal 1:1 relationship.

5.4.5 Revelle factors

pCO2 (npCO2) was normalised following Friis et al. (2003). The Revelle factors

for each region (± 1 standard deviation (SD) of the slope) are presented in figure

5.16. The Revelle factor in region 1 was highest at 15 ± 0.8, surface waters in

region 2 had a Revelle factor of 11 ± 0.9, and surface waters in region 3 had the

lowest Revelle factor of 7 ± 0.8. Region 2 (figure 5.16b) shows the most scatter

in the data, particularly in the winter (Jan/Feb) and spring (Apr/May) months. In

regions 1 and 2 (figures 5.16a and b) the autumn (Sep/Oct) months have lower

values than the winter (Jan/Feb) months.
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Figure 5.16: ln[npCO2 (µatm)] against ln[nDIC (µmol kg−1)] with coloured circles corre-
sponding to the month of sampling, and the black line showing the regression for regions a)
1, b) 2, and c) 3. The Revelle factor is calculated as the slope of the line ± 1 SD (standard
deviation).

5.4.6 Derivation of TA from salinity

Figure 5.17 shows the relationship between TA and salinity for all data (n=389) be-

tween the UK and the Caribbean. Chauvenet’s criterion was applied to the dataset

to check for outliers (Glover et al., 2005), of which two were identified (outlined

with red circles in figure 5.17). In regions 1 and 3 there is more scatter around the

regression line at low TA and salinity concentrations in the summer and autumn

months (figure 5.17). This could be due to the influence of riverine input as region

2 (which is in the open ocean) doesn’t show these lower values or variance. How-

ever as these measurements were not identified as outliers they were included in the

derivation of the regression equation. Therefore the remaining 387 measurements

were used to calculate the regression line between TA and salinity, which gave the
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equation (± 1 SD):

TAcalc = 51(±0.7)× Salinity + 516(±26) (5.10)

The error associated with TAcalc was calculated following a Monte Carlo

method, which gave a RMSE of ±36.33 µmol kg−1.

33 33.5 34 34.5 35 35.5 36 36.5 37 37.5

2250

2300

2350

2400

2450

Salinity

TA
 (µ

 m
ol

 k
g−

1 )

 

 

TAcalc = 51 ± 0.7 ×  Salinity + 516 ± 26

M
on

th

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

Region 1
Region 2
Region 3
Outliers

Figure 5.17: TA(µmol kg−1) against salinity with coloured circles corresponding to the
month of sampling, and the black line showing the regression using data that were not iden-
tified as outliers. The symbols within the coloured circles correspond to the region, circle
= region 1, star = region 2, and triangle = region 3. The red open circles are measurements
that were identified as outliers using Chauvenet’s criterion.

DIC was then calculated using CO2SYS, from TA derived from salinity (figure

5.17) and measured pCO2. This calculated DIC compares well with measured

DIC with an R2 value of 0.94 (figure 5.18). The mean difference between the

calculated DIC and the measured DIC was -4.60 µmol kg−1, with a RMSE of

9.29 µmol kg−1 and a Pearson’s correlation coefficient of 0.97. No outliers were

identified following Chauvenet’s criterion (Glover et al., 2005). The RMSE of

calculating DIC from the TA:Salinity relationship (±36.33 µmol kg−1) and pCO2

(±1 µatm) using CO2SYS was ± 30.30 µmol kg−1, following the Monte Carlo

method outlined in section 5.3.7. This error is relatively large due to the large error

associated with calculating TA, and the error propagation within the Monte Carlo

method.
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Figure 5.18: Calculated DIC from CO2SYS (Lewis et al., 1998) using co-located pCO2

and the TA:Salinity relationship against measured DIC. Red line shows the linear relation-
ship between measured and calculated DIC, black line shows the optimal 1:1 relationship.

5.4.7 Biotic and abiotic influences on the carbonate system

pCO2 was calculated using CO2SYS for the outward and return voyages separately

(see figure 5.1), and hovmoller plots were created of the pCO2 thermal, and non-

thermal seasonal cycles using objective mapping. Figure 5.19 shows an opposing

seasonal cycle of pCO2 between 0◦W to 25 ◦W and 25◦W to 60 ◦W measured dur-

ing the outward crossings (UK to Caribbean). The seasonal maximum in pCO2 oc-

curs west of 30◦W during the summer and autumn months, while east of 7◦W there

are very high concentrations of pCO2 during August to February (figure 5.19a). At

25 ◦W the thermal component begins to dominate the pCO2 going westward, while

the non-thermal components dominate going eastward with a transition zone oc-

curring between them (at 30 to 35 ◦W) where the concentrations are similar (∼375

µatm, figure 5.19b and c).
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Figure 5.19: Hovmoller of a) pCO2, b) thermal pCO2 (pCO2T), and c) non-thermal pCO2

(pCO2NT) between Jan/Feb 2012 and Jan/Feb 2013 from 60◦W to 0◦W along the UK to
Caribbean transect.

Figure 5.20 shows the data collected during the return voyages plotted between

70◦W and 0◦W (note the port of departure in the Caribbean islands is 10◦further

westward than the port of arrival (figure 5.1)).

The opposing seasonal cycle of pCO2 between 0◦W to 25 ◦W and 25◦W to

40 ◦W is also evident on the return crossing, with seasonal maxima (> 380 µatm)

occurring west of 30◦W during the summer and then in the autumn west of 60 ◦W,

and low pCO2 (< 360 µ atm) occurring during the summer between 10◦W and 25

◦W and in the spring between 0◦W and 10 ◦W (figure 5.20a). As seen in figure
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5.19a there is a peak in pCO2 during the autumn between 0◦W and 10 ◦W (figure

5.20a). The strong thermal and biological influence on pCO2 can be seen in figures

5.20b and 5.20c as the seasonal cycle of DIC matches the seasonal cycle in non-

thermal pCO2NT and is in anti-phase with the seasonal cycle of thermal pCO2T

(figure 5.7a).
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Figure 5.20: Hovmoller of a) pCO2, b) thermal pCO2 (pCO2T), and c) non-thermal
pCO2 (pCO2NT) between Jan/Feb 2012 and Jan/Feb 2013 from 70◦W to 0◦W along the
Caribbean to UK transect.

Figure 5.21a shows the nTA against nDIC data in region 1 (see figure 5.2 for

regions) which are coloured according to the month they were measured. Figure

5.21b uses the ratios described within methods section 5.3.11 and the values within

5.21a to create a Defeyes diagram. Lowest nTA and nDIC concentrations (2290
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µmol kg−1and 2070 µmol kg−1 respectively) occur during September and October.
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Figure 5.21: Region 1 a) nTA against nDIC plotted as coloured circles corresponding to
the month of sampling, and b) processes that influence the nTA:nDIC ratio.

Data from region 2 (figure 5.22) also show lowest nTA and nDIC concentra-

tions (2365 µmol kg−1 and 2030 µmol kg−1 respectively) during October. Highest

concentrations (nTA = 2385 µmol kg−1 and DIC = 2110 µmol kg−1) occur during

June and February respectively.
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Figure 5.22: Region 2 a) nTA against nDIC plotted as coloured circles corresponding to
the month of sampling, and b) processes that influence the nTA:nDIC ratio.

In region 3, the highest and lowest concentrations of nTA occur during June
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and the highest and lowest concentrations of nDIC occur during January (figure

5.23).

Region 3

2020 2040 2060 2080
2340

2350

2360

2370

2380

2390

2400

2410

2420

nT
A 

(µ
m

ol
 k

g−
1 )

nDIC (µmol kg−1)

CaCO3 dissolution

CaCO3 formation

CO2 release

CO2 invasion

Photosynthesis

Respiration

M
on

th

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

2020 2040 2060 2080
2340

2350

2360

2370

2380

2390

2400

2410

2420

nDIC(µmol kg−1)

nT
A(
µ

m
ol

 k
g−

1 )

 

 a) b)

Figure 5.23: Region 3 a) nTA against nDIC plotted as coloured circles corresponding to
the month of sampling, and b) processes that influence the nTA:nDIC ratio.

5.4.8 Redfield ratios

Figure 5.24 shows the nDIC against normalised NOx (nNOx) following Friis et al.

(2003) for regions 1, 2 and 3. The C:N ratio of surface waters in region 1 was

6:1 ± 0.5 with lower nDIC occurring in the autumn months and higher nDIC and

nNOx occurring in February and April (Figure 5.24a). The C:N ratio of surface

waters in Region 2 was 11:1 ± 1.5 with low values of nDIC and nNOx occurring

in the summer and autumn months, and the highest nNOx occurring in the winter

(Figure 5.24b). The C:N ratio of surface waters in region 3 was -21:1 ± 7.8. Note

the different x and y scales between the subplots, and the different concentrations

between regions, with region 3 presenting the lowest nutrient concentrations and

region 1 presenting the highest nutrient concentrations.
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Figure 5.24: nDIC (µmol kg−1) against nNOx (µmol kg−1) with coloured circles corre-
sponding to the month of sampling, and the black line showing the regression for regions
a) 1, b) 2, and c) 3. Note the different x and y axes scales .

The ratio of C:P in regions 1, 2 and 3 was 75:1 ± 14, 71:1 ± 32, and -89:1 ±

55 respectively (figure 5.25). In region 2 during the autumn the concentrations of

nDIC and nPO4 were at their lowest (2030 µmol kg−1 and 0.02 µmol kg−1 respec-

tively), with high concentrations of nPO4 (0.3 µmol kg−1) occurring in the winter

(figure 5.25b). Region 3 had the largest error (± 55) and the lowest concentrations

of nPO4 during the winter, however most of these values are below the limits of

detection (<0.02 µmol kg−1, see table 5.1).
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Figure 5.25: nDIC (µmol kg−1) against nPO4 (µmol kg−1) with coloured circles corre-
sponding to the month of sampling, and the black line showing the regression for regions
a) 1, b) 2, and c) 3. Note different x and y axes scales between panels .

The ratio of N:P in regions 1, 2 and 3 were 13:1 ± 1.7, 15:1 ± 0.9, and 3:1

± 0.5 respectively (figure 5.26). In region 1 the lowest concentrations of nPO4

(<0.1 µmol kg−1)) and nNOx (<2 µmol kg−1)) occurred during the summer (fig-

ure 5.26a), surface waters in Region 2 generally had lower concentrations of nPO4

than those in region 1 (0-0.2 µmol kg−1 versus 0-0.4 µmol kg−1), while higher

concentrations of nNOx occurred during winter (figure 5.26b). Region 3 had the

lowest concentrations of both nPO4 and nNOx, and the lowest concentrations oc-

curred during the winter.
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Figure 5.26: nNOx (µmol kg−1) against nPO4 (µmol kg−1) with coloured circles corre-
sponding to the month of sampling, and the black line showing the regression for regions
a) 1, b) 2, and c) 3. Note different x and y axes scales.

5.4.9 Phytoplankton community composition

Figure 5.27 shows the seasonal cycle of plankton abundance for each of the phyto-

plankton indices, from 40 ◦W to 0 ◦. Periods of increased PCI occur throughout the

spring, summer and autumn months, with the highest concentrations occurring at

5◦W and 10◦W (figure 5.27a). Diatom abundance is highest during the spring, with

some diatoms occurring in the summer and autumn months west of 10◦W (figure

5.27b). Dinoflagellates show a clear seasonal cycle with the largest blooms occur-

ring in the summer months at 10◦W and 20◦W (figure 5.27c). Rhizosolenia bloom

later than most diatom species, and this can be seen by the peaks in abundance in

summer (figure 5.27d) as opposed to spring (figure 5.27b) at 10◦W and 5◦W. Sili-

coflagellate abundance peaks in spring at 18◦W and 24◦W, with a secondary peak

in the autumn months at 20 and 30◦W (figure 5.27e). Coccolithophore abundance
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reaches a maximum in summer at about 18◦W, with further blooms in the autumn

months between 10◦W and 30◦W (figure 5.27f).
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Figure 5.27: Hovmoller of a) PCI, b) diatom (DIA), c) dinoflagellate (DINO), d) Rhi-
zosolenia (RHI), e) silicoflagellate (SIL), and f) coccolithophore (COC) abundance for
each sampling period from 40◦W to 0◦W along the Caribbean to UK transect.

The monthly abundance of the CPR phytoplankton indices (log10(x+1)) and

Chl-a estimates (mg m−3) from satellite imagery in regions 1, 2 and 3 are shown

in figure 5.28. Since the CPR is only towed from 40 ◦W back to the UK there

were no CPR samples in region 3. The highest abundance of phytoplankton is

in region 1, with diatoms blooming in April, and dinoflagellates blooming during

the summer, peaking in August (figure 5.28a). Coccolithophores show a double

peak in abundance in June/July and again with a higher peak in September. This

corresponds with the CaCO3 formation that was suggested in September in fig-

ure 5.21a. Region 2 has similar seasonal cycles of phytoplankton abundance to
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region 1. However dinoflagellates show a double peak in abundance in June and

August, and coccolithophores bloom slightly earlier in May/June and then again

in September (figure 5.28b). Unfortunately there were no CPR samples collected

within region 3, but the satellite concentrations of Chl-a were low (< 0.1 mg m−3)

with no seasonal cycle evident, suggesting that this region has low phytoplankton

abundance (figure 5.28c).
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Figure 5.28: Left y-axis is monthly abundance of diatoms (DIA = dark green), dinoflag-
ellates (DINO) = red), Rhizosolenia (RHI = purple), silicoflagellates (SIL = cyan), and
coccolithophores (COC = dark blue) (log10(x+1)) and the right y-axis is Chl-a estimate
(mg m−3 = light green) from April 2012 to February 2013 in regions a) 1, b) 2, and c) 3.

In region 1 nDIC was negatively correlated with all phytoplankton indices.

However the only significant (p-value< 0.05) correlations were with dinoflagellate

and coccolithophore abundance (see table 5.3).
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Table 5.3: Correlation coefficients (r-value) and their significance (p-value) between each
of the phytoplankton indices and the monthly nDIC within regions 1 (R1) and 2 (R2).
Values that are significant had a p-value of < 0.05 and are marked with an asterisk (*).

R1 r-value R1 p-value R2 r-value R2 p-value
PCI -0.38 0.35 -0.50 0.32
DIA -0.14 0.74 0.01 0.99
DINO *-0.72 *0.04 -0.43 0.40
RHI -0.40 0.32 -0.05 0.93
SIL -0.19 0.65 0.17 0.75
COC *-0.79 *0.02 -0.58 0.23

5.5 Discussion

5.5.1 Abiotic influences on carbonate chemistry

DIC decreases with latitude in the North Atlantic (figure 5.6a). The high DIC con-

centrations in the northernmost latitudes are associated with the well mixed En-

glish Channel and coastal inputs of DIC (Kitidis et al., 2012; Pingree and Griffiths,

1978). Towards the mid latitudes within the subtropical gyre DIC concentrations

are associated with the relatively low mixing that occurs within this region and the

residence time of carbon (Sarmiento and Gruber, 2006). Below 30◦N DIC concen-

trations decrease with increasing SST, decreasing salinity and decreasing TA (fig-

ure 5.6). This decrease in TA and salinity is unlikely to be caused by precipitation

as Williams and Follows (2011) calculated that this region has net annual evapo-

ration, and the decreasing trend is seen throughout all seasons. The Amazon and

Orinoco are the nearest rivers to the south of the Caribbean Islands, with the Ama-

zon being the largest single riverine TA source to the Atlantic (Carter et al., 2014)

and having the world’s largest volume of river water discharge (Dai and Trenberth,

2002). The influence of the discharge of the Orinoco and Amazon rivers can be

seen as a low DIC and salinity signal which during peak North Equatorial Coun-

tercurrent (NECC) flow can reach from 50◦W to 25◦W (da Cunha and Buitenhuis,

2013; Cooley et al., 2007). This river discharge is likely to be the cause of the

change in the linear relationship with latitude seen in DIC, salinity and TA (figure

5.6) as at 30◦N both TA and salinity reach their maximum values and then decrease

rapidly going southward. This riverine influence on TA and DIC can be seen near

the northeast of Brazil (figure 5.29) in mean gridded GLODAP v1.1 surface values
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of DIC and TA (Key et al., 2004).

Figure 5.29: Mean gridded surface values of a) TA and b) DIC in the North Atlantic from
GLODAP v1.1 (Key et al., 2004).

The high values of pCO2 in autumn and winter between 0◦W and 10◦W (fig-

ures 5.19a and 5.20a) correspond to high values of DIC and low values of TA and

salinity (figure 5.7a,b and d), which indicates input of freshwater. These data were

collected from the well mixed English Channel which receives waters from the

Rivers Seine, Thames, Tamar, Loire and Gironde (Kitidis et al., 2012) (see figure

5.30). Nutrient (PO4 and NOx) concentrations were also high (>0.3 µmol kg−1

and >5 µmol kg−1 respectively ) during this period, which are typical of river-

ine input. Kitidis et al. (2012) suggest that the carbonate system in the English

Channel may be influenced by riverine input as station L4 showed characteristics

of riverine input in-comparison to station E1 (which is further from the coast than

L4, see figure 5.30).
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Figure 5.30: Map of station L4 (black circle) and E1 (red circle) and the location of
samples from region 1 in this study (BS = blue circles), with major rivers plotted as blue
lines, and the river Loire labelled.

The carbonate system has been regionally defined in Takahashi et al. (1993)

which suggests Revelle factors of about 14 for polar waters (DIC:TA ∼ 0.94), 10

for the global ocean and 8 for tropical waters (DIC:TA ∼ 0.83) based on the ratio

of DIC:TA. Figure 5.31 shows the DIC:TA ratio against latitude for each of the

samples collected in each of the regions within this chapter.
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Figure 5.31: The ratio of DIC:TA against latitude plotted as coloured circles, region 1 =
blue, region 2 = black, region 3 = red.

Sabine et al. (2004) suggest that as the oceans take up more CO2 from the
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atmosphere the decreasing pH and carbonate ion concentration will increase the

Revelle factor, therefore decreasing the ocean’s capacity to buffer increasing atmo-

spheric CO2.

Figure 5.32: Global oceans map of the Revelle factor distribution for the year 1994. Re-
produced from Sabine et al. (2004).

The ocean’s distribution of Revelle factors for 1994 is shown in figure 5.32,

from Sabine et al. (2004). Takahashi et al. (1993) report a Revelle factor of 10.97

for the north-eastern North Atlantic (44◦to 49◦N and 15 ◦to 25 ◦W) which is be-

tween region 1 and region 2. Regions 1 and 2 had a Revelle factor of 15±0.8 and

11±0.9 respectively (figure 5.16), both are higher than those presented in Taka-

hashi et al. (1993) and Sabine et al. (2004) for the year 1993 and 1994, particularly

in region 1. This suggests that the buffering capacity of regions 1 and 2 has de-

creased in the last 20 years, which is likely due to the increased uptake of CO2

within these regions (Landschützer et al., 2014), and therefore changes in specia-

tion of the carbonate system (Riebesell et al., 2009). The Revelle factor of region

3 was 7±0.8 which is similar to those suggested by Takahashi et al. (1993) and

Sabine et al. (2004) for the tropics, of ∼8 (see figure 5.32). This demonstrates and
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confirms previous findings on the differing regional influences due to both biolog-

ical and temperature driven influences on the carbonate system, and the decreasing

buffering capacity in large regions of the world’s oceans.

Using the relationship between TA and salinity measured across the North At-

lantic (figure 5.17), DIC can be calculated where salinity and pCO2 have been

measured. Calculated DIC compared well with measured DIC (figure 5.18). The

regression obtained from our TA and salinity data was not dissimilar to other pub-

lished studies within our study region (figure 5.33). Kitidis et al. (2012) defined the

regression within the western English Channel as TA = 45.6± 3.3× salinity + 733

± 117, while Nondal et al. (2009) recorded the linear regression for Atlantic water

as TA = 49.35 × salinity + 582. Regressions were also fitted for mean oceanic

values of TA and salinity. These were obtained from Jiang et al. (2014) (salinity =

35, TA = 2300 µmol kg−1, and salinity = 36.31±0.35, TA = 2377± 22 µmol kg−1

for the mean open ocean and the Atlantic respectively, figure 5.33). This confirms

that alkalinity is mostly conservative with salinity and this relationship can there-

fore be used to calculate DIC or pH in conjunction with measured pCO2 along the

sampling route used in this study.
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Figure 5.33: TA against salinity used to calculate the linear regression within this study
(solid black line and circles). The dashed lines represent published TA:salinity relation-
ships (Jiang et al., 2014; Kitidis et al., 2012; Nondal et al., 2009).
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Figure 5.34 demonstrates that DIC can be derived from this relationship, to-

gether with measured salinity and underway pCO2 from the MV Benguela Stream

between 2002 and 2013, within regions 1, 2, and 3. There is a clear seasonal cycle

of DIC in region 1, which becomes less pronounced closer to the tropics (from re-

gion 1 to 3, figure 5.34). These data compare well with nutrient concentrations in

regions 1 and 2 from 2002 to 2013 (see figure C.1 within appendix C for reference).
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Figure 5.34: Calculated DIC with error bars of 30.3 µmol kg−1 (calculated from the
RMSE of the DIC calculation, see section 5.4.6.), from 2002 to 2013 in regions a) 1, b) 2,
and c) 3.
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Calculated DIC was compared with pCO2 measurements from the MV Benguela

Stream and satellite estimates of PIC (Particulate Inorganic Carbon) (Gordon et al.,

2001; Balch, 2005) and POC (Particulate Organic Carbon) (Stramski et al., 2007).

Coccolithophore abundance from the CPR was also compared with satellite PIC

to investigate relationships between satellite carbonate parameters and measure-

ments. These results were regionally dependent, see appendix C figures C.2 to C.5

for results.

5.5.2 Biotic influences on carbonate chemistry

The low concentration of pCO2 during the spring between 0◦W and 5◦W corre-

sponds to a peak in diatom abundance (figures 5.20a and 5.27b), while the low

pCO2 at 10◦W and 20 ◦W during the summer corresponds to the two summer

peaks in dinoflagellate abundance (figure 5.7). The low concentrations of nutrients

in the spring and summer also correspond to increased diatom abundance, particu-

larly Si which is required by diatoms to produce silicate frustules (Martin-jézéquel

et al., 2000) (figure 5.7c e and f).

The significant trends between phytoplankton abundance and nDIC were only

present in region 1 (figure 5.2), suggesting that the carbonate system is driven

primarily by biology in this region, whereas the other regions are primarily driven

by abiotic influences. This is consistent with the findings of Takahashi et al. (1993)

who demonstrated that the carbon cycle is driven by biology during the productive

months in the subpolar/temperate regions of the North Atlantic, and that within

lower latitudes the carbon cycle is primarily driven by temperature. The high Si

concentrations relative to NOx in region 3 (figure 5.8c) suggest that diatoms are

not able to compete at such low NOx concentrations and are therefore not taking

up the excess Si (Sarthou et al., 2005).

Diatoms and dinoflagellates are the dominant phytoplankton groups in the

northeast Atlantic, and are thought to be important in the export of carbon. Henson

et al. (2012) demonstrated that at the Porcupine Abyssal Plain (PAP (49◦N 16.5◦W

)) site, during a dinoflagellate bloom more particulate organic carbon (POC) was
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recorded in a sediment trap at 3000 m than during a diatom bloom. This was in con-

trast to what is often expected of the transfer efficiency of different phytoplankton

groups, which suggests that because diatoms are relatively large and have heavily

silicated cells the transfer efficiency and therefore sequestration should be higher

during a diatom bloom than a dinoflagellate bloom. However Rynearson et al.

(2013) demonstrate that the dominant group at the surface can have little influence

on the amount of carbon sequestered. Although all six of the phytoplankton in-

dices were negatively correlated with nDIC concentration, only dinoflagellate and

coccolithophore abundance were found to be significant (p < 0.05, see table 5.3).

Figure 5.35 shows the monthly mean dinoflagellate and coccolithophore abundance

in region 1. The seasonal cycle of nDIC appears to be related to the bloom tim-

ing of these groups, as dinoflagellates bloomed in the summer and early autumn,

while coccolithophores peaked during September when nDIC concentrations were

at their lowest. The lack of DIC measurements in March 2012 mean that there is no

way of determining the correspondence of nDIC with peak diatom abundance, but

it appears that the nDIC reached similar concentrations in February 2013 to that of

April 2012 (5.28a and 5.8a). The correspondence of peak dinoflagellate abundance

with low nDIC is in agreement with Henson et al. (2012) who suggested that at the

PAP site, which is on the border of region 1 and 2 (figure 5.1), the POC export is

greater during a dinoflagellate bloom than when diatoms are blooming. The cor-

respondence between nDIC and the double peaks in coccolithophore abundance

agrees well with studies that have demonstrated the decrease in DIC during coc-

colithophore blooms, particularly in the autumn (Sep/Oct) months where we see

the 2:1 ratio of TA:DIC (figure 5.21) (Robertson et al., 1994; Dumousseaud et al.,

2010).
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Figure 5.35: Monthly dinoflagellate (DINO = red), and coccolithophore (COC = blue)
abundance (log10(x+1)) on the left y-axis, and monthly nDIC (black) on the right y-axis in
µmol kg−1, from April 2012 to February 2013 within region 1.

Comparing figures 5.7 and 5.27 a number of biological influences on the car-

bonate system can be inferred. The apparent breakdown in the relationship between

TA and salinity occurs between 10◦W and 35◦W during the summer and autumn

(figure 5.7b and d). The high salinity during the autumn is likely to be due to evap-

oration as this is the period when SST is at its highest. This signal would also be

expected to be seen in increased TA. This decoupling of the relationship between

TA and salinity during summer and autumn could also be due to calcification as

this region and period corresponds to the highest abundance of coccolithophores

(figure 5.27f and 5.35) which would cause a decrease in the TA without a concur-

rent change in salinity. Dumousseaud et al. (2010) reported a draw-down in TA

in the northeast Atlantic during May and July of 2006 which corresponded to high

abundances of Emiliana huxleyi which is the dominant coccolithophore in this re-

gion. Robertson et al. (1994) also report a decrease in the TA and DIC during a

bloom of Emiliana huxleyi in the northeast Atlantic in June of 1991, which was es-

timated to have reduced the air-sea gradient of CO2 by∼ 15 µatm and the TA:DIC

ratio by about 2:1 due to changes in the carbonate system caused by calcification.

Figure 5.21 suggests that CaCO3 formation occurred during Autumn in re-

gion 1 along with CO2 release and photosynthesis, while CO2 invasion occurred
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in spring and winter. The carbonate data from Region 2 (figure 5.22) are harder to

interpret, but there is an indication of CaCO3 formation occurring in the autumn

months as both nTA and nDIC have decreased along the 2:1 ratio line, and this is

the region and period during which the TA:salinity relationship breaks down and

coccolithophore abundance peaks (figures 5.7b and d, and 5.27f) . In region 3 the

spring, summer, autumn and winter data all fall along the CO2 release and invasion

line, with possible CaCO3 dissolution and formation occurring during parts of the

June voyage (figure 5.23).

The range of Redfield ratios in regions 1, 2 and 3 demonstrates the regional

variability (figures 5.24, 5.25 and 5.26). Region 1 had a C:N ratio of 6:1 ± 0.5

which was the closest to Redfield’s ratio of 6.6:1 (Redfield et al., 1963). Studies in

the English Channel have found that the ratio of C:N was often higher than Red-

field’s, at around ∼ 8:1 (Kitidis et al., 2012; Dumousseaud et al., 2010). Although

region 1 in this study includes the English Channel it also extends out into the

northeast Atlantic over the shelf break where Dumousseaud et al. (2010) recorded

a C:N ratio of 5.7:1 in 2006/2007. Region 2 had a high ratio of 11:1 ± 1.5 which

agrees with Körtzinger et al. (2008) who recorded an average ratio of 11 at the

PAP site. A high C:N ratio is indicative of carbon overconsumption, which is of-

ten observed towards the end of the productive season (Toggweiler, 1993; Kähler

and Koeve, 2001). This can be seen during the autumn months in figure 5.24b as

the nNOx concentrations remain very low along with low concentrations of nDIC.

Carbon overconsumption is when more carbon is fixed per unit of nutrient taken

up, which often occurs during times of nutrient limitation (Toggweiler, 1993). The

N:P ratios are closer to Redfields ratio of 16:1, with nutrient concentrations in re-

gion 1 having a ratio of 13:1 ± 1.7 and region 2 a ratio of 15:1 ± 0.9 (figure 5.26).

The ratio of N:P in region 3 is much lower, at 3:1 ± 0.5. However it does not give

a negative relationship unlike the other two ratios for region 3, but appears to be

too low to be the result of species-specific N:P ratios which can give N:P ratios

of between 7.1 to 43.3 (Quigg et al., 2003; Klausmeier et al., 2004), and is there-

fore likely due to the low concentrations in this region being below the limits of

detection.
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The ratios of C:N:P are much lower than the expected 106:16:1 Redfield ratio

(figure 5.25) with region 1 having a C:N:P ratio of 75±14:13±1.7:1 and region 2 a

ratio of 71±32:15±0.9:1. Martiny et al. (2013) examined the latitudinal variation

in stoichiometric ratios and found that cold nutrient-rich high latitude regions had

ratios close to 78:13:1, which is closest to our ratio measurements in regions 1 and

2. The latitudinal gradient of high ratios (195:28:1) in nutrient deplete warm low

latitude regions, and low ratios in high latitude regions reported in Martiny et al.

(2013), was suggested to be driven by varying plankton assemblages, with high

abundances of diatoms with the low C:P and N:P ratios being associated with cold

nutrient rich regions. Although the measurements used within Martiny et al. (2013)

do not fall within regions 1 and 2 of this study, the high latitudinal trends described

agreed with our measurements of ratios and plankton abundance, as diatoms had

the greatest mean abundance throughout the sampling period in both regions.

5.6 Summary

This study demonstrates the seasonal and spatial variability in the carbonate sys-

tem in the North Atlantic using a dataset collected from a VOS, which has been

shown to be internally consistent, and coherent with previous data. Three regions

are identified latitudinally, with the carbonate system being biologically driven in

the higher latitudes and transitioning into the thermodynamically driven regions

in the subtropics. This agrees with previous findings. The carbonate chemistry in

the southernmost region, between 30◦N and 14◦N, is influenced by riverine input

throughout the year, which decreases the TA, DIC and salinity. The northernmost

region between 45◦N and 50◦N, which incorporates the English Channel and the

shelf break is driven by the seasonal cycle of phytoplankton and the winter-mixing

of carbon and nutrient rich waters and riverine inputs. Coccolithophore and di-

noflagellate abundance were negatively correlated with DIC in this region, with

peak coccolithophore abundance in September coinciding with the lowest concen-

tration of DIC. The ratio of C:N:P was lower than the expected Redfield ratio,

which the literature has suggested may be associated with higher latitudes and

high abundances of diatoms. This agreed with our measurements of phytoplankton
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indices, as diatoms had the greatest abundance. A decrease in the buffering capac-

ity in the northeast Atlantic has been shown, which is likely due to the increased

uptake of anthropogenic CO2 within this region. This has global socio-economic

implications as this negative feedback reduces the ability of this important sink

region to take up anthropogenic CO2, alongside a continued increase in anthro-

pogenic emissions.





Chapter 6

Spatial and temporal variability

in the influence of phytoplankton

community structure on CO2 flux

in the North Atlantic

6.1 Abstract

This study combines two unique datasets that have been collected on-board a vol-

unteer observing ship (VOS) across the North Atlantic to analyse the variability

of the CO2 sink in the North Atlantic at a range of different spatial and tempo-

ral scales. Phytoplankton indices collected from the continuous plankton recorder
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(CPR) and the concentration of CO2 within the surface waters are analysed to re-

veal that at seasonal time-scales phytoplankton play an important role in main-

taining the air-sea flux of CO2 within the northeast North Atlantic. Further south-

westward towards the subtropical gyre sea surface temperatures are the main con-

trol on the seasonal flux of CO2. At inter-annual time scales the North Atlantic

Oscillation (NAO) drives the wind patterns and sea surface temperatures, which

is the dominant driver of annual air-sea flux of CO2. The abundance of several

phytoplankton taxonomic groups, including coccolithophores, has increased in the

North Atlantic between 1998 and 2011. Coccolithophores are calcifying phyto-

plankton that may be contributing to the increased concentration of pCO2 within

the surface waters, as CO2 is a by-product of calcification. These complex inter-

actions between the chemistry and plankton biology of the North Atlantic need to

be considered for biogeochemical models of CO2 variability, particularly as this

important sink region has been shown to be highly variable.

6.2 Introduction

Understanding the changes in the carbonate cycle and the varying influences in-

volved has become increasingly important with rising emissions and evidence of

anthropogenic impacts on our environment (IPCC, 2013; Myhre et al., 2013). With

continued warming predicted from climate change, the solubility of DIC will de-

crease, therefore reducing the carbon flux from the atmosphere into the ocean.

Model studies suggest that this has a particularly strong influence in the North At-

lantic (Le Quéré et al., 2010). The temperate and subtropical North Atlantic (14◦ N

and 50◦ N) is an important sink region for carbon dioxide (CO2), and is estimated

to have a net air-sea flux of CO2 of -0.22 Pg C y−1 (negative value representing

marine uptake from the atmosphere), representing 13% of the global contempo-

rary carbon sink and storing ∼ 23% of the global anthropogenic carbon inventory

(Gruber et al., 2009; Takahashi, 2009; Schuster et al., 2009b, 2013). Although at-

mospheric concentrations of CO2 remain fairly homogenous, regional variations in

surface water CO2 concentration are due to complex interactions between physi-

cal, chemical, and biological processes which drive the air-sea flux (Sarmiento and
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Gruber, 2006). Watson et al. (2009) demonstrated significant inter-annual vari-

ability in the air-sea carbon flux in the northeast Atlantic between 2002 and 2007,

which has been attributed to decadal scale climate variability (McKinley et al.,

2011; Schuster et al., 2013).

Phytoplankton play an important role in the uptake of CO2 due to photosyn-

thesis, particularly in the North Atlantic where the spring bloom is a prominent

feature (Takahashi et al., 1993; Follows and Dutkiewicz, 2001; Shutler et al.,

2013). Carbon export is thought to be related to the size structure of the phyto-

plankton community with smaller phytoplankton such as some dinoflagellates and

coccolithophorids expected to be responsible for less carbon export than larger

cells such as diatoms (Bopp et al., 2005; Ducklow and Doney, 2013). Continued

global warming is predicted to increase stratification and therefore reduce the up-

ward flux of nutrients, allowing smaller-sized phytoplankton to out-compete more

nutrient dependant species such as diatoms. Bopp et al. (2005) used a global bio-

geochemical model to predict that this could reduce diatom abundance within the

North Atlantic by up to 60%. Beaugrand et al. (2010) suggest that increasing num-

bers of smaller phytoplankton and zooplankton with increased stratification due to

warming waters could have negative implications for fisheries, as food webs be-

come more complex, as well as reducing the carbon export. By contrast, Henson

et al. (2012) reported that during dinoflagellate blooms the total carbon flux was

higher within a sediment trap at 3000 m at the PAP (Porcupine Abyssal Plain, 49◦N

16.3◦W) site than when diatoms were out-competing their smaller counter-parts.

Palevsky et al. (2013) also found that during high levels of autotrophic produc-

tion in the North Pacific, it was the smaller phytoplankton that were dominating

the community structure. Some studies indicate a negative feedback between CO2

flux and the activities of calcifying phytoplankton (Robertson et al., 1993; Shutler

et al., 2013). This is because groups such as coccolithophores, of which Emilia-

nia huxleyi are very common in the North Atlantic and form a large component of

the phytoplankton blooms (Shutler et al., 2013), produce CO2 during calcification

(equation 6.1) which can reduce the gradient of CO2 between the atmosphere and

surface waters, therefore reducing the flux.
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Ca2+ + 2HCO−
3 ↔ CaCO3 +H2O + CO2 (6.1)

Other key variables that influence the CO2 concentration within surface wa-

ters and the air-sea flux, include sea-surface temperature (SST) which influences

the solubility of DIC, and mixing events which can bring nutrient and CO2 rich

waters from below the thermocline into surface waters. The seasonal cycle of sea

surface pCO2 is dependent on location within the North Atlantic as the subtropical

regions tend to be driven more by SST, whereas in the subpolar and temperate re-

gions there are higher nutrient concentrations and productivity which are thought

to drive the spring/summer decrease in pCO2 (Takahashi et al., 1993; Takahashi

and Sutherland, 2002; Körtzinger et al., 2008).

Climate variables such as wind speed and SST which influence circulation and

have a large impact on CO2 flux (Le Quéré et al., 2010) are often influenced in turn

by different climate modes depending on their location. In the North Atlantic the

North Atlantic Oscillation (NAO) is the predominant mode of variability, which is

defined as the sea-level pressure difference between the Azores and Iceland (Hur-

rell, 1995). Significant correlations have been found between SST and the NAO in

the North Atlantic and how this in turn impacts phytoplankton community structure

(Harris et al., 2013) and pCO2 (Gruber et al., 2002; Schuster et al., 2009b, 2013).

It is important to note that regionally these correlations have differing strengths

due to the localisation of such modes, often with basin wide comparisons showing

weak correlations (Henson et al., 2012; Harris et al., 2013).

The inter-play between these influences on the carbon cycle are difficult to

quantify and likely to play an important role in the seasonal and inter-annual vari-

ability seen in the North Atlantic CO2 flux. In order to understand and predict such

processes, long term measurements are necessary on a global scale. One of the

more cost-effective and productive ways to collect such data has been through the

use of maintained measurements on board volunteer observing ships (VOS). Us-

ing data collected from a VOS route and modelled output data from Landschützer

et al. (2014) this chapter aims to inter-relate CO2 measurements, phytoplankton

abundance indices and a range of climate variables to try to evaluate the drivers
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of seasonal, inter-annual and decadal variability of CO2 flux at a range of spatial

scales within the North Atlantic.

6.3 Methods and results

6.3.1 Data

The underway measurements include barometric air pressure, salinity, sea surface

temperature (SST), partial pressure of CO2 in the surface waters (pCO2), and nutri-

ent concentrations that have been collected along the UK-Caribbean shipping route

since 2002. For detailed methods see chapter 2 section 2.5 and chapter 5 section

5.3. The biological data is obtained from the Continuous Plankton Recorder (CPR)

(for a detailed methodology see chapter 2 section 2.1), and satellite data were used

as an indicator of Chl-a concentration (O’Reilly et al., 1998; Werdell and Bai-

ley, 2005), PIC (Particulate Inorganic Carbon) (Gordon et al., 2001; Balch, 2005),

and POC (Particulate Organic Carbon) (Stramski et al., 2007). These data were

obtained at a resolution of 9 km and frequency of 1 month from Aqua-MODIS

(http://oceandata.sci.gsfc.nasa.gov). Mean monthly SST and wind speed data were

obtained from the International Comprehensive Ocean-Atmosphere Data Set for

the whole North Atlantic region (ICOADS, 1◦enhanced data) (Woodruff, 1987).

Monthly, annual and winter (DJFM) NAO indices were obtained from the Climate

Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based) (Hur-

rell, 1995).

6.3.2 Calculation of air-sea CO2 flux

Regional monthly-mean atmospheric xCO2 data were obtained from the GLOB-

ALVIEW marine boundary layer product (Dlugokency et al., 2014). This was

converted to atmospheric pCO2 following (Dickson et al., 2007):

pCO2,atm = xCO2,atm × (P − PH2O) (6.2)

Where P is the sea-level pressure, and PH2O is the water-vapour pressure.

The solubility of CO2 (K0, mol m−3 atm−1 ) was calculated following Weiss

http://oceandata.sci.gsfc.nasa.gov
http://www.esrl.noaa.gov/psd/data/gridded/data.coads.1deg.html
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
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(1974) and Dickson et al. (2007), where S is salinity and SST is sea surface tem-

perature:

K0 = (exp(90.5069× (100/SST )− 58.0931

+22.2940× log(SST/100) + S × (0.027766− 0.025888× (SST/100)

+0.0050578× (SST/100)2)))× 1000 (6.3)

The Schmidt number (Sc) was calculated using Wanninkhof (1992) from mea-

surements made by Jähne et al. (1987):

Sc = 2073.1−(125.62×SST )+(3.6276×SST 2)−(0.043219×SST 3) (6.4)

The gas transfer velocity (kw, m yr−1) was calculated using Wanninkhof (1992)

and Sweeney et al. (2007):

kw = (0.27× ((Sc/660)−0.5)× (u2))× 87.6581277 (6.5)

Where u is wind speed. Finally the air-sea flux of carbon dioxide (FCO2, mol C

m−2 yr−1) was calculated using these formulations and the difference in the partial

pressure of CO2 between the atmosphere and the surface waters:

FCO2 = −kw ×K0 × ((pCO2,atm − pCO2,sea)/1000000) (6.6)

Where a negative FCO2 value represents a sink of CO2 from the atmosphere

into the ocean, and a positive value represents a source from the ocean into the

atmosphere.
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6.3.3 Latitudinal bands

Figure 6.1: Map of the North Atlantic showing the location of each CPR sample. Two
regions are shown outlined in white. Yellow samples = north Band. Red samples = south
Band.

To avoid averaging across different water masses our first attempt to divide

the data regionally was to split the dataset into two bands (north 40◦- 50◦N and

south 30◦- 40◦N) and then average each month of data from 2002 to 2013 at each

1◦longitude within each band (Schuster and Watson, 2007). Phytoplankton colour

index (PCI) was used to represent total phytoplankton abundance as it has been

shown to match chl-a estimates from satellite data relatively well (Raitsos et al.,

2014).



196 6.3 Methods and results

Figure 6.2: Monthly hovmoller plot against longitude for a) SST b) sea surface pCO2 and
c) PCI from 2002-2013 in the north band region of the North Atlantic (see figure 6.1).

In the north band of the sample area SST increases from east to west during

June to October, but these higher SST waters do not contain higher concentrations

of pCO2. When temperature is the dominant influence on pCO2, the pCO2 in the

surface waters remains high as it does not dissociate to form DIC as readily because

the increased temperature decreases the solubility of DIC (Sarmiento and Gruber,

2006). The lack of correspondence between high SST and high pCO2 suggest

that SST is not the dominant driver of pCO2 in this region. Phytoplankton (here

represented by PCI) appear to drive the pCO2 seasonal cycle between April and

July, as the lowest pCO2 concentrations coincide with the highest PCI across all

longitudes (figure 6.2).
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Figure 6.3: Monthly hovmoller plot against longitude for a) SST b) sea surface pCO2 and
c) PCI from 2002-2013 in the south band region of the North Atlantic (see figure 6.1).

In the south band phytoplankton drive the seasonal cycle of pCO2 on the East-

ern side of the Atlantic as high PCI is coincident with low pCO2, but closer to the

West Atlantic, SST is the dominant driver of pCO2 as high pCO2 waters at -40◦W

during August correspond with high SST (figure 6.3).
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6.3.4 Provinces

Figure 6.4: Map of the North Atlantic showing regions 1 to 5 outlined in white and la-
belled, and the elevation indicating the bathymetry. Red circles = CPR samples.

Longhurst provinces (Longhurst, 2006) were used to allocate the data to re-

gions, providing a balance between avoiding the loss of spatial variation associ-

ated with phytoplankton abundance and adequately sampled months from the CPR

dataset (Richardson et al., 2006). An additional region within the Longhurst coastal

province (NECS) was created to differentiate between the English Channel and the

shelf seas, due to the high biogeochemical variability recorded within the English

Channel (Kitidis et al., 2012) (see table 6.1 and figure 6.4).

Table 6.1: Description of regions used (Longhurst, 2006)

No. Acronym Description
1 EC Coastal - English Channel
2 NECS Coastal - NE Atlantic Shelves Longhurst Province
3 NADR Westerlies - N Atlantic Drift Longhurst Province
4 NASE Westerlies - N Atlantic Subtropical Gyral Longhurst Province (East)
5 NASW Westerlies - N Atlantic Subtropical Gyral Longhurst Province (West)

The English Channel is highly variable in its carbonate and nutrient conditions

due to riverine input (Kitidis et al., 2012). It is fully mixed throughout the year

between 0◦W and 3◦W and transitional between stratified and fully mixed between

3◦W and 5 ◦W (Pingree and Griffiths, 1978). The shelf-sea region (NECS, figure
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6.4) is an important region for carbon export due to the spring and summer phyto-

plankton blooms, but quantifying the export and bio-physical interactions with the

CO2 cycle has proven difficult in this region due to the highly dynamic coastal in-

teractions (Kitidis et al., 2012; Laruelle et al., 2014). The NADR region is within

the northeast Atlantic Ocean and is characterised by the highly productive north

Atlantic spring bloom and deep winter mixing with high inter-annual variability

(200-800 m) (Körtzinger et al., 2008). Both the NASE and NASW regions are

seasonally stratified subtropical biomes (McKinley et al., 2011) within part of the

North Atlantic subtropical gyre which is influenced by the Portugal current. The

NASE province contains the Azores and is further influenced by the Azores Cur-

rent (Hooker et al., 2000).

6.3.4.1 Seasonal variability

Monthly means of the dataset were calculated within each region as this is the

smallest temporal resolution recommended by Richardson et al. (2006) to use with

CPR data. The CPR data were divided into 6 key phytoplankton indices, namely

phytoplankton colour index (PCI), spring-bloom forming diatoms (diatoms), Rhi-

zosolenia (diatom genus often associated with a later blooming-time), dinoflag-

ellates, silicoflagellates, and coccolithophores as described in chapter 5 section

5.3.13.
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Figure 6.5: The left panel shows the monthly-mean phytoplankton index abundances
(Blue = PCI, green = diatom, red = dinoflagellate, cyan = Rhizosolenia, purple = sili-
coflagellate, dark yellow = coccolithophore) and the right panel shows the monthly-mean
nutrient concentrations (PO4 = blue left axis, NOx = red and Si = green, both right axis) in
regions 1 to 5, averaged from 2002 to 2013.
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Monthly-mean nutrient concentrations decrease from region 1 to 5, with sea-

sonal maxima occurring in March/April and minima during June/July (right panel

in figure 6.5). The left panel in figure 6.5 shows the monthly-mean phytoplankton

abundance in regions 1 to 5, with diatoms having the largest peak in abundance in

all five regions. The spring-blooming diatoms peak during April in regions 1 to 3

and May in regions 4 and 5. In region 1 there is a second peak in July. Rhizosole-

nia generally bloom slightly later than the spring-blooming diatoms because they

can form algal mats that undergo vertical migrations to exploit nutrients at deeper

depths. They do this through changes in buoyancy (Villareal et al., 1993). This is

evident in regions 1 to 3, but in regions 4 and 5 they reach a seasonal maxima in

May which is during the same month as the spring-blooming diatoms. Dinoflagel-

lates peak in July in regions 1 to 3, and in August in region 4 and May in region

5. Silicoflagellates peak in abundance in April and show a smaller Autumn peak

in abundance in all five regions. Coccolithophore abundance in regions 1 to 3 has

three peaks occurring in May, June/July, and September. In regions 4 and 5 there

is a peak in abundance in May and another small peak in Autumn. In regions

1 to 4 apart from diatoms and silicoflagellates, the remaining phytoplankton in-

dices bloom in the summer months, whereas in region 5 the peak phytoplankton

abundance occurs in May for all indices apart from dinoflagellates. Generally the

months where phytoplankton abundance is highest are when the nutrient concentra-

tions are lowest due to the assimilation of nutrients by phytoplankton (figure 6.5).

The annual seasonal cycle for each phytoplankton index and nutrient concentra-

tion from 2002 to 2013 within each region were investigated, with coccolithophore

abundance and nutrient concentration plotted within appendix D (figures D.1 to

D.4) to demonstrate the variance about the mean.
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Figure 6.6: Left panel shows the monthly-mean sea-surface pCO2 (left axis, cyan) and
air-sea flux of CO2 (right axis, pink) and the right panel shows the monthly-mean SST
(red, left axis) and wind speed (blue, right axis) in regions 1 to 5, averaged from 2002 to
2013. The grey dashed line in the left panels indicates the zero flux line.
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The mean seasonal cycle of the FCO2 follows the oceanic pCO2 cycle, and

varies between regions 1 to 5 (left panel in figure 6.6). Region 1 has a seasonal

minima in pCO2 during May, June and July, and maxima during October and

November, becoming a source of CO2 during these winter months. Region 2 has

the lowest pCO2 concentrations occurring in May (∼ 340 µatm), and another low

pCO2 signal in September, while the peak pCO2 concentrations and fluxes occur

in December, January and March.

Regions 3 and 4 have seasonal minima in both pCO2 and FCO2 during July and

November, however the seasonal maxima are slightly different between regions

with region 3 peaking in February/March and region 4 peaking in August when it

becomes a source of CO2. Region 5 has a peak in both FCO2 and pCO2 in August

and the pCO2 concentrations remain around 350 µatm during the rest of the season.

This pattern is the same as the pattern of the SST record. Both regions 4 and 5

become sources of pCO2 during August and September, which could be linked to

the increasing SST during this period. The mean seasonal cycle of SST shows a

peak in SST in all 5 regions during August and September. SST increases from

regions 1 to 5 (ranging from ∼9◦C to ∼25◦C). The mean seasonal cycle of wind

speed shows a peak in wind speed during December and January, and a seasonal

low in wind speed during June and July in all 5 regions (ranging from ∼ 7 ms−1 to

12 ms−1, right panel in figure 6.6).

The annual seasonal cycle for mixed layer depth (MLD) (Menemenlis et al.,

2008) was also investigated from 2002 to 2013 within each region. This is plotted

within the appendix D figure D.5 for reference.
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Figure 6.7: Monthly-mean sea-surface pCO2 (blue), thermal pCO2 (pCO2T, red), and
non-thermal pCO2 (pCO2NT, green) in regions 1 to 5, averaged from 2002 to 2013.

The mean seasonal cycle of thermal (pCO2T) and non-thermal (pCO2NT) driv-

ing components of pCO2 were calculated using the monthly-mean SST and pCO2

within each region (Takahashi and Sutherland, 2002; Körtzinger et al., 2008) (see

chapter 5 section 5.3.11). The ∼5◦C seasonal range in SST seen in figure 6.6

equates to ∼100 µatm seasonal range in the pCO2T in each region (figure 6.7).

The seasonal cycle of pCO2T is counteracted by the seasonal cycle of pCO2NT,

which has a decreasing seasonal range from region 1 to region 5, from ∼150 µatm
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in region 1 to ∼75 µatm in region 5.

Principle component analysis (PCA) was carried out to analyse the monthly

CO2 flux, SST, and the different phytoplankton indices in each region from 2002

to 2013 (figure 6.8). A biplot of these results is included in appendix D figure D.7.
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Figure 6.8: Line plot of the loadings of principal components 1, 2 and 3 when comparing
monthly phytoplankton indices with sea surface temperature and air-sea flux of CO2 from
2002 to 2013 in regions 1 to 5, with the variance explained by the sum of all three principal
components displayed in the title.

Principal component 1 (PC1) in regions 1 to 3 shows that FCO2 is negatively
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associated with SST and the phytoplankton indices, whereas in region 4 and 5 SST

and FCO2 are positively associated and negatively associated with the phytoplank-

ton indices. This suggests that phytoplankton abundance drives FCO2 in regions

1 to 3, while SST drives FCO2 in regions 4 and 5. PC2 shows that diatoms and

silicoflagellates are negatively associated with FCO2, while dinoflagellate abun-

dance is positively associated with SST and FCO2 in all regions except for region

2 (figure 6.8).

The correlation coefficients between all five phytoplankton indices and FCO2,

and pCO2 were calculated, with a correction for temporal autocorrelation and sig-

nificant correlations represented by an asterisk (figure 6.9, see chapter 3 section

3.3.6 for detailed methodology).
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Figure 6.9: Pearson’s correlation coefficients between the monthly air-sea flux of CO2

(FCO2), and sea surface pCO2 and the phytoplankton indices, SST and wind speed (WS)
in regions 1 to 5 from 2002 to 2013. After correcting for temporal autocorrelation, those
coefficients with an asterisk were identified as significant (p-value<0.05) (Pyper and Pe-
terman, 1998).

All phytoplankton indices are negatively correlated with pCO2 and FCO2 in

regions 1, 2, and 3 (figure 6.9). Region 4 and 5 show a positive correlation with

dinoflagellate abundance, which is likely due to the significant positive relationship

between CO2 and SST in these two regions, and the positive relationship between
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SST and dinoflagellate abundance. Monthly wind speed and SST have opposing

relationships with pCO2 in all five regions, which corresponds to the seasonal cy-

cles seen in figure 6.6. These results were further supported with cross-correlation

analysis, which found that in regions 1 to 3 there was a lagged correlation between

pCO2 and SST, whereas in regions 4 and 5 there was a significant positive corre-

lation with no lag. pCO2 showed a significant negative correlation with PCI with

no lag in regions 1 to 3, and a reduced negative correlation in region 4 and no

correlation in region 5 (see appendix D figures D.8 to D.11 for details).
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6.3.4.2 Inter-annual variability
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Figure 6.10: Annually averaged air-sea flux of CO2 in regions 1 to 5, from 2002 to 2013,
with the mean flux written above each plot. Negative values represent a sink of CO2 from
the atmosphere into the ocean, and positive values represent a source.

There is clear inter-annual variability in the air-sea CO2 flux within each region

(figure 6.10). Regions 2 to 5 are consistently net sinks, apart from the year 2002 in

region 5 which was a small source, while region 1 is variable between a sink and a

source of CO2. The year 2007 was a low sink compared to other years in regions
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2 to 5, while 2010 is a high sink year in regions 1, 4 and 5. Region 3 is the largest

sink region with a mean sink of -1.7 mol C m−2 yr−1 throughout the study period,

while region 1 is a mean source of 0.055 mol C m−2 yr−1.
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Figure 6.11: Annually averaged air-sea flux of CO2 (grey bars = FCO2, left axis) and
phytoplankton index abundances (Blue = PCI, green = diatom, red = dinoflagellate, cyan
= Rhizosolenia, purple = silicoflagellate, dark yellow = coccolithophore) in regions 1 to 5,
from 2002 to 2013.

The average annual abundance shows that diatoms are generally the most abun-

dant phytoplankton group from year-to-year. In regions 1 and 2 this annual diatom
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abundance decreases with time from 2002 to 2013 (figure 6.11). Regions 3 and 5

show an increase in coccolithophore abundance, with high coccolithophore abun-

dance corresponding to a decreased sink of CO2 in 2007 in regions 2, 4 and 5.
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Figure 6.12: Pearson’s correlation coefficients between the annual pCO2 and the air-sea
flux of CO2, and the NAO, and winter NAO (WNAO) and phytoplankton indices, SST,
wind speed (WS), and summer (May, June, July, August) wind speed (SWS) in regions 1
to 5 from 2002 to 2013. Those coefficients with an asterisk were identified as significant
(p-value<0.05).
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Annual pCO2 is significantly negatively correlated with dinoflagellate abun-

dance in both regions 1 and 2, and is negatively correlated with diatoms in region

1 and silicoflagellates in region 2 (figure 6.12). In region 4 there is a significant

positive correlation between annual pCO2 and coccolithophore abundance. The

annual air-sea flux of CO2 is positively correlated with the North Atlantic Oscilla-

tion (NAO) and winter NAO (WNAO) in regions 1, 2, 4 and 5, positively correlated

with SST in regions 1, 4 and 5, and negatively correlated with SWS in region 3 and

WS in region 5 (figure 6.12).
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Figure 6.13: The annual winter North Atlantic Oscillation (Winter NAO = black, left axis),
air-sea flux of CO2 (FCO2 = blue, left axis), Phytoplankton Colour Index (PCI = green,
right axis), and sea-surface temperature (SST = red, right axis) in regions 1 to 5 from 2002
to 2013.
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The winter NAO has a positive index in 2007 and 2012, and a negative index in

2010. The annual SST in all five regions has a similar trend to the winter NAO with

low temperatures in 2010, and high temperatures in 2008 and 2013. In regions 1 to

4 the annual PCI drops below 0.2 log10 (x + 1), and in region 5 there is a peak in

PCI in 2012 up to ∼ 0.8 log10 (x+ 1). The annual air-sea flux of CO2 is a sink in

2010 in regions 1, 2, 4 and 5 of > -1 mol C m−2 yr−1. In 2007 the sink decreases

in all regions and becomes a source of CO2 in region 1 (figure 6.13).
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Figure 6.14: Pearson’s correlation coefficients between the annual NAO and winter NAO
and the air-sea flux of CO2, SST and PCI in regions 1 to 5 from 2002 to 2013. Those
coefficients with an asterisk were identified as significant (p-value<0.05).

In region 1 the air-sea flux of CO2 is significantly positively correlated with

both the NAO and the winter NAO, in region 4 it is correlated with the winter

NAO and in region 5 it is correlated with the NAO. SST is significantly positively

correlated with either one or both of the NAO indices in regions 1, 2, 3 and 4 (figure
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6.14).
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Figure 6.15: Annual sea-surface pCO2 (blue), thermal pCO2 (pCO2T, red), and non-
thermal pCO2 (pCO2NT, green) in regions 1 to 5, from 2002 to 2013.

Annual thermal (pCO2T) and non-thermal (pCO2NT) driving components of

pCO2 were calculated using annually averaged monthly pCO2T and pCO2NT within

each region (Takahashi and Sutherland, 2002; Körtzinger et al., 2008). In all five

regions 2010 had a lower than normal annual SST (figure 6.13) which causes a de-

crease in the pCO2T by ∼ 40 µatm, which is counteracted by the pCO2NT (figure
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6.15). SST was high in all five regions in 2008, which caused an increased pCO2T

and decreased pCO2NT. In regions 4 and 5 the annual SST in 2008 was higher than

any year within the time-series (figure 6.13).

6.3.5 Basin-scale trends

Trends in the annual average FCO2 and pCO2 in the North Atlantic were calcu-

lated using the Landschützer et al. (2014) neural network-based estimates of CO2

from 1998-2011. This time frame was chosen as these are the years that CO2 mea-

surements within the North Atlantic are adequately sampled and 2011 is the latest

year available from the SOCAT (Surface Ocean CO2 Atlas, http://www.socat.info)

database (Bakker et al., 2014). Trends were calculated by taking the linear slope of

the twelve-month running mean for each 1◦by 1◦grid cell. Those trends that were

outside of the 95% significance level are indicated with a cross-hatch.

Figure 6.16: Linear trends in annual sea-surface pCO2 in the North Atlantic from 1998 to
2011. Trends that are outside of the 95% significance level (p≥0.05) are indicated with a
cross-hatch. Blue = decreasing pCO2. Red = increasing pCO2.

Annual average sea surface pCO2 is increasing throughout most of the North

Atlantic, with small decreasing regions within the Labrador Basin and the southern

North Sea (figure 6.16).

http://www.socat.info
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Figure 6.17: Linear trends in the annual air-sea flux of CO2 (FCO2) in the North Atlantic
from 1998 to 2011. Trends that are outside of the 95% significance level (p≥0.05) are
indicated with a cross-hatch. Blue = increasing sink. Red = decreasing sink.

The annual average FCO2 shows an increasing sink (blue) in the northern North

Atlantic, and a slight decreasing sink (mostly non-significant linear trends) in the

southern North Atlantic (white-red) south of 40 to 50◦N (figure 6.17). Areas with

the strongest increasing sink are in the Labrador basin and the North Sea. The in-

creasing sink in the northern North Atlantic suggests that the seawater pCO2 con-

centration is increasing at a slower rate than the atmospheric pCO2 concentration,

and the difference between the two is therefore increasing.
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Figure 6.18: Linear trends in annual average SST in the North Atlantic from 1998 to 2011.
Trends that are outside of the 95% significance level (p≥0.05) are indicated with a cross-
hatch. Blue = decreasing SST. Red = increasing SST. Grey areas are where there were
insufficient data.

SST has increased between 55 and 65◦N, and has decreased or remained the

same in waters between 25◦N and 55 ◦N (figure 6.18).

Figure 6.19: Correlation coefficients between the air-sea flux of CO2 and SST in the North
Atlantic from 1998 to 2011. Correlations that are outside of the 95% significance level
(p≥0.05) are indicated with a cross-hatch. Blue = negative correlation. Red = positive
correlation.

North of 55◦N FCO2 is negatively correlated with SST (figure 6.19). South of

50◦N FCO2 is positively correlated with SST due to the similar increasing trends

in this region (mostly non-significant increasing linear trends).
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Due to the irregular CPR sampling across the North Atlantic, objective map-

ping was used to interpolate the CPR data onto a regular grid in order to compare

it with climate variables (see chapter 3 section 3.3.3 for detailed description of

methods).

Figure 6.20: Annual linear trends in phytoplankton abundance in the North Atlantic from
1998 to 2011. a) diatoms, b) dinoflagellates, c) silicoflagellates, and d) coccolithophores.
Trends that are outside of the 95% significance level (p≥0.05) are indicated with a cross-
hatch. Blue = decreasing abundance. Red = increasing abundance. Grey areas are where
there were insufficient data.

The linear trends of the average annual abundance of key phytoplankton in-

dices show a patchy distribution. Diatom abundance has increased in a diagonal

swathe across the North Atlantic from 50◦N 50◦W to 60◦N 10◦W, and decreased in

the diagonal swathe from∼ 40◦N 60 ◦W to 51◦N 10◦W (south-west Ireland, figure

6.20a). Dinoflagellate abundance follows a similar though not as pronounced pat-

tern as diatoms (figure 6.20b). The pattern of increasing silicoflagellate abundance

(figure 6.20c) is similar to that of diatoms, but extends further south west, while

coccolithophore abundance has increased throughout the N. Atlantic and into the

North Sea (figure 6.20d). The linear trends of PCI and Rhizosolenia abundance

showed similar regions of increase and decrease to those of the other phytoplank-

ton indices and are included in appendix D figures D.12 to D.13 for reference.
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Figure 6.21: Correlation coefficients between the air-sea flux of CO2 (FCO2) and phy-
toplankton abundance in the North Atlantic from 1998 to 2011. a) diatoms (DIA), b)
dinoflagellates (DINO, c) silicoflagellates (SIL), and d) coccolithophores (COC). Corre-
lations that are outside of the 95% significance level (p≥0.05) are indicated with a cross-
hatch. Blue = negative correlation. Red = positive correlation. Grey areas are where there
were insufficient data. Note: Decreasing FCO2 is an increasing sink.

Increasing diatom abundance correlated with the increasing sink of CO2 (blue,

figure 6.21a). The correlation coefficients between dinoflagellate abundance and

FCO2 are similar to those between FCO2 and diatom abundance, again with a

general trend of increasing abundance linked to an increasing sink (blue, figure

6.21b). Two distinct exceptions to this are centred on the North Sea and the region

to the west of the UK (55◦N 15◦W) where dinoflagellate abundance has decreased

(figures 6.20b and 6.21b).

The pattern of significant correlation between increasing silicoflagellate abun-

dance and the increasing CO2 sink (figure 6.21c) is similar to that of diatom abun-

dance and the CO2 sink. Most of the North Atlantic shows a significant correla-

tion between increasing coccolithophore abundance and the increasing CO2 sink,

particularly in the North Sea where coccolithophore abundance has increased sig-

nificantly (figure 6.20d and 6.21d). The correlation coefficients of PCI and Rhi-

zosolenia abundance with FCO2 are included in appendix D figures D.14 to D.15

for reference.
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6.4 Discussion

6.4.1 Seasonal variability

Figures 6.2 and 6.3 clearly show the differing latitudinal seasonal cycle of pCO2

and how this cycle is influenced by SST and phytoplankton abundance, with the

SST seasonal cycle driving the pCO2 cycle in the south region at western longi-

tudes, and phytoplankton growth reducing the pCO2 during spring/summer in the

eastern longitudes. The opposing relationship between the biological and temper-

ature driven influences on pCO2 have been well described. For example, Taka-

hashi and Sutherland (2002) describe the transition region between biologically

dominated and temperature dominated effects on pCO2 in the North Atlantic, and

how subpolar waters show a biological dominance whereas within subtropical wa-

ters the temperature effects exceed those of biology. This is the first study that

combines biological data from the CPR with observations of pCO2 from the same

platform, and the observations clearly support these previous findings.

At province-based spatial scales the seasonal maxima of the phytoplankton in-

dices correspond to the seasonal minima in both the pCO2 and air-sea flux of CO2,

with a larger integral of phytoplankton biomass throughout the summer in region 1,

and a shorter bloom period in the spring in region 5 (figures 6.5 and 6.6). In region

5 although there appear to be low concentrations of nutrients (< 1 µmol kg−1)

there is still a relatively large bloom in phytoplankton during May. This indicates

that the phytoplankton within this region are able to bloom under low-nutrient con-

ditions, which could suggest that the nutrient concentration is enough to initiate

the bloom but not maintain it, or it could be due to fast nutrient recycling and graz-

ing, and the presence of nitrogen fixers such as Trichodesmium sp. (Capone et al.,

2005).

The ∆pCO2 and air-sea flux of CO2 were proportional to each other with short-

term wind speeds having little effect on the flux of CO2. This agrees with McKin-

ley et al. (2011) and Le Quéré et al. (2010) who suggest that the main influence

of winds are changes in circulation and the mixing of CO2-rich waters from be-

low the thermocline. Although the seasonal range in pCO2T remains consistent in

regions 1 to 5, the seasonal range in pCO2NT reduces from region 1 to 5 (figure
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6.7). This suggests that the biologically driven components of the seasonal pCO2

cycle become less prominent from region 1 to region 5 and therefore the thermal

driving component becomes more influential. Körtzinger et al. (2008) describe the

seasonal pCO2NT cycle at the PAP site as being driven by the biological draw-

down of carbon during the winter to summer causing a decrease, and the increase

during the summer to winter months being driven by mixing of deep waters. These

mixing events bring up DIC and nutrient rich waters as well as a seasonal res-

piration element from below the thermocline (due to respiration occurring below

the mixed layer) (Körtzinger et al., 2008). This biogeochemical seasonal cycle is

likely to be affecting all of our regions, as the same trend described in Körtzinger

et al. (2008) can be seen in figure 6.7. This seasonal trend combined with the in-

creasing SST during autumn increases the concentration of pCO2 as the solubility

of DIC is decreased (Sarmiento and Gruber, 2006). This supports the DIC mea-

surements presented in chapter 5, and the results discussed within section 5.5.2

of significant trends between phytoplankton indices in the northeast Atlantic and

normalised DIC, which were not present in the subtropical regions.

The transition from biologically driven to thermally driven CO2 cycles de-

scribed by Takahashi and Sutherland (2002) in the North Atlantic is evident be-

tween our regions. There was significant anti-correlation between both the FCO2

and pCO2 with phytoplankton abundance in regions 1 and 2, and the pCO2 in re-

gion 3, and a significant positive correlation between SST and both the FCO2 and

pCO2 in regions 4 and 5 (figure 6.9). This supports the latitudinal seasonal plots

that show a transition between the north and south and from east to west (figures

6.2 and 6.3).

6.4.2 Inter-annual variability

The northeast Atlantic is a net sink for CO2, but shows strong inter-annual vari-

ability (Schuster et al., 2009b; McKinley et al., 2011; Schuster et al., 2013) (figure

6.10). 2007 stands out as a year with a particularly weak sink in regions 2 to 5,

and a source year in region 1. In region 4 there was a significant positive correla-

tion between average annual coccolithophore abundance and pCO2 (figure 6.12),
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and the highest average annual abundance of coccolithophores was recorded in

2007 (figure 6.11). In regions 2 and 5 a similar trend is seen between high an-

nual coccolithophore abundance and a weaker annual FCO2. The increased abun-

dance of coccolithophores could increase the pCO2 within the surface waters as

it is produced during calcification, therefore reducing the flux of CO2 from the

atmosphere into the sea. During the summer of 1991, Robertson et al. (1994) re-

port increased pCO2 due to calcification from a bloom of Emiliania huxleyi in the

northeast Atlantic (within the NECS and NADR Longhurst provinces (Longhurst,

2006)). Robertson et al. (1994) estimate a decrease in the air-sea gradient of CO2

by 15 µatm due to the change in alkalinity from the bloom. Beaugrand et al.

(2012) found a significant positive correlation between coccolithophore abundance

and pCO2 in the northeast Atlantic over 25 years. However, this was not corrected

for temporal autocorrelation and could be the result of increasing SST increasing

both the abundance of coccolithophores and pCO2 simultaneously rather than coc-

colithophore abundance influencing the pCO2 concentration directly (Beaugrand

et al., 2012).

2010 was a particularly strong sink year in regions 1, 4 and 5. This is likely to

be due to the unusually low SST in 2010 in all five regions which would increase

the solubility of DIC, reducing the concentration of pCO2 as it dissociates more

readily and therefore increasing the air-sea flux (figure 6.13). This can also be seen

in figure 6.15 where the low SST in 2010 drives the pCO2T concentration down,

which is counteracted by the pCO2NT, implying that there was a strong increase in

pCO2 concentrations due to non-thermal processes in 2010. This result highlights

the risk of over-simplifying the processes that influence pCO2, and demonstrates

that caution should be taken when interpreting such results, especially at inter-

annual time-scales.

The inter-annual variability in the FCO2 in the North Atlantic has been linked

to the NAO which is the major climate mode for the North Atlantic (Schuster and

Watson, 2007). At the Bermuda Atlantic Time Series (BATS, 32◦N 74◦W) the

NAO drives the inter-annual variability with no time-lag (Gruber et al., 2002),

while at the European Station for Time Series in the Ocean (ESTOC, 29.2◦N
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15.5◦W) a three year time-lag was estimated between the NAO and FCO2 (Santana-

Casiano et al., 2007; Schuster et al., 2013). Our results agree with those from

BATS, as we found that the NAO had significant correlations with no time-lag with

both SST and the FCO2 (figure 6.14). This agreement was to be expected as BATS

is closer to the ship’s route than ESTOC. Figure 6.13 shows that during strong pos-

itive (>1 (Henson et al., 2012)) NAO periods annual SSTs are increased, while

during strong negative (<-1 (Henson et al., 2012)) NAO periods annual SSTs are

decreased. This alteration in SST is likely to influence FCO2, due to changes in the

solubility, but also the changes in stratification which, if increased, may reduce the

upwelling of carbon-rich waters and the availability of nutrients into the surface

waters, therefore reducing productivity (Behrenfeld et al., 2006; Körtzinger et al.,

2008; Hartman et al., 2015). Past records of the NAO index show that it has been

more positive than negative (figure 6.22). As our results suggest that positive NAO

indices result in a reduced sink, we suggest that further negative indices, such as

that seen in 2010 (figure 6.22), may result in an increased sink. There is still a lot

of uncertainty surrounding the phase and variability of the NAO, but it is believed

that anthropogenic warming is increasing the multidecadal variability of the NAO

(Goodkin et al., 2008). If this is the case, than it is likely that increased multi-

decadal variability of the NAO will also contribute to the multidecadal variability

of the flux of CO2 in the North Atlantic.
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Figure 6.22: Annual NAO index from 1980 to 2012 (Hurrell, 1995). Cyan = positive
NAO, pink = negative NAO.

The changes in wind patterns and circulation associated with the NAO are dif-

ficult to quantify but generally negative NAO phases are associated with decreased

westerly winds and vice versa. Changes in circulation are thought to have a strong

impact on the FCO2 (Le Quéré et al., 2010). Figure 6.12 suggests that changes

in wind speed may have differing influences on the FCO2 between regions as the

correlation between FCO2 and wind speed and summer wind speed is positive in

regions 1 and 2 and negative in regions 4 and 5. This could be because increased

mixing in regions 1 and 2 increases the pCO2 due to upwelled carbon, whereas in

regions 4 and 5 which contain lower nutrient conditions, mixing enhances produc-

tivity which increases the sink of carbon dioxide. These influences on the flux of

CO2 are very challenging to disentangle and quantify due to the complex interac-

tions between them (Schuster et al., 2013). Although influences can be inferred,

it is advisable to be cautious when analysing data on inter-annual time scales as

decadal climate variability is likely to have an over-arching impact on any trends

(McKinley et al., 2011).
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6.4.3 Basin-scale trends

The concentration of surface water pCO2 shows an increasing linear trend across

most of the North Atlantic between 1998 and 2011 (figure 6.16). This is highly

likely due to the increasing atmospheric concentration of CO2 (Le Quéré et al.,

2010; Landschützer et al., 2013; IPCC, 2013). Two regions stand out as showing a

decreasing linear trend in pCO2, the Labrador Sea and the southern North Sea. The

Labrador Sea has been an interesting area in terms of phytoplankton abundance,

with strong increases in abundance seen in this region (figure 6.20) (see chapter

3 sections 3.4.1 and 3.4.2). These areas show the strongest decrease in the FCO2

(increasing sink regions) due to the decreasing pCO2 (figure 6.17).

The linear trends in coccolithophore abundance from 1998-2011 show a strik-

ing increase in abundance across most of the North Atlantic and North Sea (figure

6.20d). This has also been shown by McQuatters-Gollop et al. (2010) since the

mid 1990s to 2007 in the northeast Atlantic. The increasing SST in the northern

latitudes (> 55◦N) could be part-explanation for this increase, because as SST in-

creases, stratification is likely to increase, therefore reducing the flux of nutrients

from below the thermocline into the mixed layer and favouring smaller species,

such as Emiliania huxleyi, to out-compete some of the larger (more nutrient de-

pendent) phytoplankton species (Raitsos et al., 2006). This trend of increasing

coccolithophore abundance could therefore be linked to the longterm (from 1960

to 2012) trend of increasing SST in the North Atlantic (shown in chapter 3 fig-

ure 3.5). However, during the period used for this analysis (1998 to 2011) there

was not a clear trend in SST and SSTs were not increasing throughout the whole

North Atlantic (figure 6.18). The increase in coccolithophore abundance could

also be contributing to the increased concentration of pCO2 seen in figure 6.16 due

to calcification (Robertson et al., 1993; Shutler et al., 2013). Shutler et al. (2013)

used SeaWiFS data to estimate the abundance of coccolithophores within the North

Atlantic from 1998 to 2007, and how this might be contributing to an increasing

trend of pCO2 concentration in this region. It was estimated that blooms could

reduce the air-sea sink of CO2 by 3 to 28%. We have analysed the relationships
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between PIC from satellite data (Gordon et al., 2001; Balch, 2005) and coccol-

ithophore abundance for each region but found no significant correlations between

high abundance years and PIC (see figure D.6 in appendix D). Feng et al. (2009)

used shipboard culture experiments to demonstrate that during increased SST and

pCO2 concentrations, coccolithophore abundance increased but calcification de-

creased, suggesting that continued increases in SST and pCO2 could reduce the

calcium carbonate export relative to particulate organic carbon (POC). It is evident

that the influences of calcifying plankton should be included in regional models

to evaluate CO2 variability, such as the inclusion of coccolithophores as a phyto-

plankton functional type in the PlankTOM10 ocean biogeochemistry model (Le

Quéré et al., 2005; Buitenhuis et al., 2013). However these interactions are yet

to be fully understood and therefore quantified, as many of these studies are still

in their infancy (Riebesell et al., 2009). It should also be noted that the export

of carbon is likely to increase with this increasing trend of coccolithophore abun-

dance, due to the “ballast effect”, which is the link between fluxes of biominerals

(opal and calcite) and POC (Armstrong et al., 2002; Sanders et al., 2010). This

would mean that net sequestration of carbon is increased due to the increased cal-

cite production. However, the increased dissolution of calcite with the continued

(see Introduction chapter, figure 1.4) and predicted changes in pH, are likely to

reduce the flux associated with ballast in the future (Riebesell et al., 2009; Sanders

et al., 2010).

Although most of the North Atlantic shows a linearly increasing pCO2 sink

from 1998 to 2011, there is a band across the North Atlantic between 40◦N and

50◦N that suggests a decreasing/no significant change in the air-sea pCO2 sink

(figure 6.17). This trend agrees with the observations collected within this region

as seen in figure 6.6. It is possible that the regional divide seen in figure 6.17 is

caused by changes in circulation within this area, which could be linked to the

NAO. Schuster et al. (2009b) describe the regional tripole in the NAO influence as

a negative NAO phase causing increased SST in the northern latitudes, no-change

or cooling in the mid-latitudes and warming in the lower latitudes. As discussed

in sections 6.3.4.1 and 6.3.4.2 in the mid-latitudes, SST correlates with the NAO,
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and therefore the NAO is influencing the inter-annual FCO2. Whether the sink

is ultimately driven by the NAO influencing the heat flux (Follows and Williams,

2004), which in turn could be influenced by alternative climate indices such as the

ENSO and AMO (Shutler et al., 2013; Sun et al., 2015), these complex interactions

are difficult to quantify and these relationships remain difficult to define.

6.5 Summary

Seasonally in regions 1 to 3, phytoplankton abundance plays an important role in

air-sea CO2 flux, but further south-westward across the North Atlantic in region 5,

SST drives the seasonal air-sea CO2 flux. On inter-annual time scales NAO influ-

ences SST which in turn influences the air-sea CO2 flux. It is also possible that

increasing coccolithophore abundance across the North Atlantic is increasing the

concentration of pCO2 due to calcification, which could have a negative feedback

on the North Atlantic CO2 sink. With global biogeochemical models predicting

that continued warming will reduce the solubility and therefore carbon flux, par-

ticularly in the North Atlantic (Le Quéré et al., 2010), the added implications of

increasing coccolithophore abundance in these regions needs to be fully under-

stood and included in such models. The use of VOS provides an ideal platform for

combined observations of phytoplankton abundance and carbon flux. With con-

tinued development of sensors and financial support to maintain routes, it is likely

that some of the long-term trends and key drivers of this variability will become

apparent.





Chapter 7

Synthesis

7.1 Summary of key results

This study is the first to combine biological abundance indices from the CPR with

pCO2 measurements collected on-board the same VOS. Combining these datasets

with measurements of DIC and oxygen concentration revealed that there are strong

biological controls on the marine carbonate system in the North Atlantic on sea-

sonal time scales. A simple and cost-effective method of estimating net commu-

nity production from underway measurements of O2 has been validated, and used

to demonstrate that autotrophy dominates the North Atlantic, indicating that bio-

logical drawdown of carbon is important throughout the region. The suggestions

of a decreased buffering capacity due to increased CO2 concentrations made by

Sabine et al. (2004), have been supported using discrete measurements of DIC

and pCO2 along a ∼7,400 km east-to-west transect. The inter-annual variability

and decadal trends in the datasets are linked with the NAO, suggesting that the
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environmental changes due to alterations in the NAO in turn influence CO2 con-

centrations and phytoplankton abundance and distribution. This work confirms that

climate modes drive inter-annual variability, and caution should be exercised when

attributing any long-term trends to datasets of less than 10 years (McKinley et al.,

2011). It also agrees with estimates of regional biological and temperature control

on pCO2 suggested by Takahashi and Sutherland (2002). Results presented in this

thesis demonstrate that phytoplankton photosynthetic activity plays an important

role in the seasonal cycle of pCO2 in temperate northeast Atlantic regions, and that

SST drives the pCO2 seasonal cycle in subtropical regions. The key findings of

this research are listed below in bold under the headings of the initial objectives

outlined in section 1.6:

1. Evaluate the regional and temporal variability in phytoplankton taxonomic

group abundance and distribution within the North Atlantic over the past

∼50 years.

• SST increased from 1960 to 2012, linked to AMO and NAO

SST from 1960 to 2012 showed an increasing linear trend across the

North Atlantic. The first and second principal components of SST

in the North Atlantic were significantly correlated with the AMO and

NAO respectively (figure 3.14), with the second principal component

eigenvectors displaying a regional dipole that is characteristic of the

NAO influence (figure 3.12). This supports findings from Harris et al.

(2013) and Edwards et al. (2013) who found that the AMO is the un-

derlying mechanism behind a number of biological trends in the North

Atlantic, with correlations with the first and second principal compo-

nent of SST respectively. The regional variation in climate mode in-

fluences on SST and wind speed likely drive the variability seen in

phytoplankton distribution and abundance.

• Increase in PCI in the northeast Atlantic but no increase in indi-

vidual phytoplankton indices

PCI showed an increasing linear trend across the North Atlantic from

1960-2012 (figure 3.6). However in the northeast Atlantic there was
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not an evident increase in any of the other phytoplankton indices, sug-

gesting that smaller phytoplankton species (that are represented in the

PCI but not counted in the other phytoplankton indices) are increas-

ingly dominating this region. The increasing PCI in the northeast At-

lantic was significantly positively correlated with SST. This supports

modelled predictions of increased stratification from global warming

reducing the upward flux of nutrients, and therefore allowing smaller

phytoplankton to out-compete some of the larger (more nutrient de-

pendent) species such as diatoms (Bopp et al., 2005). This may have

negative implications for both the flux of carbon due to reduced ex-

port efficiencies, and the complexity of food webs which can impact

on fisheries (Beaugrand et al., 2010).

• Increased abundance of phytoplankton at the Grand Banks of New-

foundland driven by increased wind speeds

All four phytoplankton indices showed a significant increase in abun-

dance after the 1980’s at the Grand Banks of Newfoundland (figure

3.36). This increase was significantly correlated with wind speed, indi-

cating that nutrient transport into the photic zone by increased surface

winds may have lead to the increased phytoplankton abundance.

• Diatom abundance has increased relative to dinoflagellate abun-

dance in the northeast Atlantic. This trend follows the SST trend

SST preceded and had a significant positive correlation with the ratio of

diatom to dinoflagellate abundance from 1960 to 2012 in the northeast

Atlantic (figure 3.41). The increasing SST trend in this region was cor-

related with both the AMO and NAO, confirming that climate modes

play an important role in driving the phytoplankton trends.

2. Quantify the plankton net community production (NCP) of temperate to sub-

tropical regions within the North Atlantic.

• A simple and cost-effective method to derive NCP was developed

Using calibrated in situ measurements of oxygen concentration from
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the underway system of a VOS, monthly NCP was derived from De-

cember 2011 to March 2013 (figure 4.4). These calculations were

based on mass balance equations (Emerson, 1987) in which the abiotic

influences on oxygen concentration are subtracted from the mass bal-

ance change in oxygen concentration between time-steps. The method

was validated by comparison with NCP estimates from discrete DIC

measurements (figure 4.5), and previous studies which have estimated

NCP using oxygen mass balance in the North Atlantic (figure 4.7). No

significant difference in NCP estimates between Longhurst provinces

(Longhurst, 2006) was found.

• Autotrophy dominates the North Atlantic

All five biogeochemical regions were net autotrophic, with no signifi-

cant difference in annual NCP across a range of 35◦of latitude (figure

4.7).

• The number of provinces where NCP estimates are derived from

in situ observations was doubled

In previous studies, NCP had been derived using oxygen budgets within

3 Longhurst (2006) provinces of the North Atlantic. Our estimates

overlapped 5 different Longhurst (2006) provinces (figure 4.7). The

differing results in the latitudinal variation of NCP derived from global

circulation models and some satellite derived models (Emerson, 2014)

compared to the reduced latitudinal variation in NCP derived from in

situ measurements, highlight the need for improved global coverage

of data and an improved mechanistic understanding of why the ap-

proaches differ (Williams et al., 2013). The method developed here is

ideally suited to provide the required global coverage of in situ NCP

estimates.

3. Determine the total alkalinity to salinity relationship in the North Atlantic.

• Relationship between total alkalinity and salinity was derived and

used to estimate DIC over a >10 year time period



7.1 Summary of key results 235

Using discrete measurements of TA collected across the North Atlantic

during four seasons between 2011 and 2013, the relationship between

TA and salinity was determined (figure 5.17). The linear regression

between these two measurements agreed well with published studies,

and confirmed that alkalinity is conservative with salinity in the North

Atlantic (figure 5.33). This allowed for the calculation of DIC (with a

RMSE of ±30.3 µmol kg−1) using calculated TA and measured pCO2

from 2002 to 2013 (figure 5.34).

4. Examine seasonal carbonate measurements to investigate biogeochemical

processes that may be occurring in the North Atlantic.

• Dinoflagellate and coccolithophore abundance were significantly

negatively correlated to the seasonal decrease in nDIC in the north-

east Atlantic

All six phytoplankton indices were negatively correlated with salin-

ity normalised DIC (nDIC) concentration in the northeast Atlantic.

However only the correlations with dinoflagellate and coccolithophore

abundance were significant (p < 0.05, figure 5.35). Significant trends

between phytoplankton abundance and nDIC were only present in re-

gion 1 (northeast Atlantic), suggesting that the carbonate system is

driven primarily by biology in this region, whereas the other regions

are primarily driven by abiotic influences (mostly SST). This is consis-

tent with the study of Takahashi et al. (1993) who suggested that the

carbon cycle is driven by biology during the productive months in the

subpolar/temperate regions of the North Atlantic, and that within lower

latitudes the carbon cycle is primarily driven by temperature.

• The Revelle factor within the North Atlantic has increased, indicat-

ing that the buffering capacity has declined due to increased CO2

Regions 1 and 2 had a Revelle factor of 15±0.8 and 11±0.9 respec-

tively (figure 5.16). These values are higher than those derived in

Takahashi et al. (1993) and Sabine et al. (2004) for the years 1993
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and 1994, with region 1 presenting the larger increase. This suggests

that the buffering capacity of regions 1 and 2 has decreased in the last

20 years, which is likely due to the increased uptake of CO2, and there-

fore changes in speciation of the carbonate system within these regions

(Riebesell et al., 2009).

5. Investigate the flux of carbon dioxide in the northeast Atlantic in relation

to phytoplankton distribution and abundance on seasonal, inter-annual and

decadal time scales.

• At seasonal time scales phytoplankton play an important role in

the drawdown of CO2 in the northeast Atlantic

At province-sized spatial scales the seasonal maxima of the phyto-

plankton indices correspond to the seasonal minima in pCO2 and DIC

and increased air-sea uptake of CO2 (figures 6.5 and 6.6). This corrob-

orates the suggestion that photosynthesis drives the seasonal drawdown

of sea surface CO2 in this region (Takahashi et al., 1993; Takahashi and

Sutherland, 2002).

• At inter-annual time scales the NAO drives the environmental con-

ditions which drives the CO2 year-to-year variability

Significant correlations with no time-lag were found between the NAO

and both SST and the FCO2 (figure 6.14). This agrees with measure-

ments taken at the BATS station (Gruber et al., 2002). The correlations

between positive NAO indices and a decreased CO2 sink suggests that

more negative NAO periods will increase the CO2 sink in the northeast

Atlantic.

• Increasing coccolithophore abundance could be adding to the CO2

concentrations in the surface waters of the northeast Atlantic

In the NASE province there was a significant positive correlation be-

tween average annual coccolithophore abundance and pCO2. This could

be linked to the production of calcite which also produces CO2. This

region also had its highest average annual abundance of coccolithophores
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in 2007 when the annual CO2 sink was -0.37 mol C m−2 yr−1, which

was the smallest sink recorded for this region between 2002 and 2013.

In the NECS and NASW province a similar trend is seen between high

annual coccolithophore abundance and a weaker annual CO2 sink (fig-

ure 6.11).

7.2 Limitations

Whilst this work has demonstrated a number of important relationships between

biological indices and carbonate data, as with any study, there are limitations and

uncertainties that must be recognised.

There are a number of limitations associated with using CPR data, mainly that

it under-represents many of the smaller phytoplankton species and therefore must

be considered a semi-quantitative sampling method. There are also implications

associated with only sampling surface waters. This has been highlighted by Kemp

et al. (2006) who suggest that using satellite observations to derive productivity

estimates is inadequate, due to the inability to detect plankton biomass at depth.

Kemp et al. (2006) suggest that the large algal mats formed at depth by some

Rhizosolenia spp. may have important implications for carbon export and ocean

biogeochemical models. These algal mats are often associated with oceanic frontal

zones, such as the Azores Front (Kemp et al., 2006). The Deep Chlorophyll Maxi-

mum (DCM) is not represented using satellite imagery, and may not be adequately

represented in the CPR dataset, depending on the depth of the mixing created by

the VOS wash (Hunt, 1968). The use of surface measurements from the underway

pumped seawater system lacks measurements at depths greater than ∼ 5 to 7 m.

This limitation represents the trade-off between data coverage and efficiency and

the cost of obtaining such measurements. There is therefore a need to combine

scientific datasets into comprehensible formats in which depth profiles along with

surface measurements can be utilised. The importance of well-maintained time-

series stations, and profiling floats, alongside the continued effort to enhance and

increase VOS coverage and capabilities is evident, and will help to resolve and

quantify the role the DCM plays in carbon export.
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McKinley et al. (2011) call attention to the importance of time scale when in-

vestigating trends. McKinley et al. (2011) found that when surface water trends in

CO2 in the North Atlantic were analysed over a 25 year period, there was no signif-

icant difference from the atmospheric trend in CO2. However, when analysing data

from a 10 year period and with differing start and end years, significant trends were

found, reflecting the inter-annual and decadal variability which are likely influ-

enced by climate modes (McKinley et al., 2011). This is evident when comparing

results from chapters within this thesis. For example chapter 3 uses CPR data over

a∼50 year period to investigate changes in phytoplankton abundance and distribu-

tion in the North Atlantic, while chapter 6 compares the last ∼10 years of this data

with CO2 measurements. Between 1998 and 2011 both diatom and dinoflagellates

showed a general increase in abundance across the North Atlantic, while between

1960 and 2012 both diatom and dinoflagellate abundance had increased around

the Grand Banks of Newfoundland, but had decreased across most other regions

within the North Atlantic. These two analyses of different time frames demonstrate

the different regional shifts in phytoplankton abundance between the two periods,

and the importance of caution when attributing any long-term trends. Using pCO2

measurements from the North Atlantic McKinley et al. (2011) suggest that > 25

years of data are needed in order to determine any long-term trends. Because of

the large interannual and decadal variability associated with phytoplankton pro-

ductivity (Barton et al., 2015), Henson et al. (2010) suggest a time series of ∼ 40

years is required in order to attribute a long-term trend to global warming. In order

to be confident of trends in the carbon variability of the North Atlantic long-term

datasets are clearly needed, and therefore the continued effort to measure pCO2

and other associated variables is vital.

7.3 Wider implications

Under different future climate scenarios, global mean surface temperatures are

likely to rise by between 0.3◦C (min. RCP2.6 (RCP = Representative Concen-

tration Pathway)) and 4.8◦C (max. RCP8.5) for 2081-2100 relative to 1986-2005

(IPCC, 2013). How the marine carbon cycle will respond to such changes, and the
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processes involved in these changes, needs to be understood to enhance climate

models and estimates of the future of the oceanic carbon sink.

It has been suggested that increased SST will lead to a decrease in phyto-

plankton biomass due to increased stratification, which would likely cause a de-

crease in carbon export in the North Atlantic (Bopp et al., 2005; Beaugrand et al.,

2010). Chapter 3 presented data from the northeast Atlantic that showed PCI has

increased with increasing SST, while diatoms and dinoflagellates have decreased

in abundance from 1960 to 2012. This implies that smaller phytoplankton (pico-

phytoplankton) could be increasing in abundance, as they would cause an increase

in “greenness” (= PCI) due to clogging in the CPR samples. This supports the sug-

gestion of a decreased nutrient supply to the surface waters due to increased strati-

fication, enabling smaller phytoplankton to out-compete larger species which have

a higher nutrient demand. This is likely to impact species such as diatoms, which

generally bloom in turbulent high nutrient conditions. However it was demon-

strated in section 3.5.2 that diatoms have increased relative to dinoflagellate abun-

dance with the increasing SST trend in the northeast Atlantic. Kemp et al. (2006)

demonstrate that there are diatom species that are well adapted to stratified condi-

tions, and suggest that these species may play an important role in carbon export

as they dominate the DCM. This could have wider implications for carbon export

and biogeochemical models that describe these processes. However further inves-

tigation into quantifying the export of different phytoplankton groups and species,

and their buoyancy-controlled migrations, is needed in order to determine these

implications.

Beaugrand et al. (2010) demonstrate that increased temperatures are linked to

an increase in biodiversity within the zooplankton and phytoplankton in the north-

east Atlantic, which parallels a decrease in the mean size of copepods. This has

increased the complexity of food webs, and could have implications for important

fisheries within the region, such as the Atlantic cod. The biological carbon pump

is expected to have a reduced export under these conditions as phytoplankton and

copepod biomass is reduced, but also because more complex food webs would al-

low carbon to remain in the surface waters for longer periods as it is passed through
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the food chain (Edwards and Richardson, 2004). The influence of the increase in

PCI and decrease in the larger sized phytoplankton indices from 1960 to 2012 on

the flux of CO2 is not discernible because the CO2 dataset used within chapter 6

only extends back to 1998. Since consistent measurements of pCO2 were made

on the UK to Caribbean VOS route (from 2002 to 2013), both the PCI and SST

have shown no significant decrease or increase within our study region. It is likely

that the combination of increased SST and decreased phytoplankton biomass has

caused a reduction in carbon export in the northeast Atlantic, but a longer more

consistent time-series of sea surface CO2 measurements would be required to in-

vestigate this.

Many studies use a PQ value based on the Redfield ratio (Redfield et al., 1963)

or Laws (1991) for new and recycled production of 1.4 or 1.1 respectively, to con-

vert moles of carbon to oxygen. Chapter 4 reported a range of PQ values from

0.78 to 1.4, suggesting that this simplistic conversion method is not sufficient for

converting between carbon and oxygen and may introduce large errors. Caution

should be taken when making such assumptions and where possible both carbon

and oxygen should be measured if the conversion between the two is necessary.

The persistent autotrophy demonstrated in the North Atlantic in chapter 4 high-

lights the need for further investigation into the lack of consistency between in

situ, in vitro and satellite based NCP estimates.

Chapters 5 and 6 alluded to the increasing atmospheric concentration of CO2

and consequent increase of CO2 within surface waters, causing a reduction in

the buffer capacity, particularly in the northeast Atlantic. This has global socio-

economic implications as this negative feedback reduces the ability of this impor-

tant sink region to take up anthropogenic CO2 alongside a continued increase in

anthropogenic emissions.

The feedback between calcification by coccolithophores in the North Atlantic

and the concentration of CO2 in the surface waters needs to be investigated further.

Chapter 6 demonstrated an increasing abundance of coccolithophores across most

regions of the North Atlantic which could add to increasing concentrations of CO2,

therefore reducing the air-sea flux. However, the carbon export may be increased
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with increasing coccolithophore abundance, due to the “ballast effect”, which is the

link between fluxes of biominerals (opal and calcite) and POC (Armstrong et al.,

2002; Sanders et al., 2010). This would mean that net sequestration of carbon

is increased with increasing coccolithophore abundance due to increased calcite

production. However, the increased dissolution of calcite with the continued (figure

1.4) and predicted changes in pH, are likely to reduce the flux associated with

ballast in the future (Riebesell et al., 2009; Sanders et al., 2010).

The influence of the NAO on the environmental conditions in the North Atlantic

is evident from this study, influencing both the flux of CO2 and phytoplankton

biomass. Although NAO indices have generally been more positive than negative

since 1980, it is difficult to predict the alternations of the NAO, but our results sug-

gest that more negative NAO periods may increase the sink of CO2 in the northeast

Atlantic.

7.4 Future research

The research presented in this thesis has led to several ideas for continuation of the

work that unfortunately, due to time and economic constraints, were not possible.

These suggestions are outlined below:

7.4.1 Further data analysis

Chapter 3 presented changes in the abundance and distribution of 4 key phyto-

plankton indices. With more time the species level and size class interactions

within these indices would be investigated. For example there have been sugges-

tions of decreases in individual species in regions of the North Atlantic, such as

the dinoflagellate Ceratium spp, which may help to describe the decrease in di-

noflagellate abundance relative to diatom abundance seen in the northeast Atlantic.

The increase in PCI in the northeast Atlantic that was not evident in the other phy-

toplankton indices suggests an increase in smaller phytoplankton. This could be

investigated by re-defining the plankton indices as size class groups rather than

grouping by species. In turn the links between predators and their prey species
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should be examined, such as the impact on phytoplankton distribution due to ther-

mal range contraction and extension of copepod species, and the implications this

may have for carbon export.

The NCP ode (ordinary differential equation solver) model developed in chap-

ter 4 could be developed further and be utilised to investigate global NCP from oxy-

gen observations from sources such as the World Ocean Circulation Experiment

(WOCE) (Helm et al., 2011). However, the error associated with measurement

accuracies from these observations would need to be determined and may reduce

the viability of such NCP estimates. Emerson and Bushinsky (2014) suggest that

autonomous oxygen measurement accuracies need to be better than±3%, which is

the current expected level of supersaturation due to NCP in the ocean mixed layer.

Using levels of photosynthetically active radiation (PAR), plankton respiration (R)

could be estimated using the oxygen change during the night time and used to de-

termine net primary production (NPP = NCP + R). These estimates could then be

compared with NPP estimates from satellite models such as the VGPM (Behren-

feld and Falkowski, 1997) or CbPM (Westberry et al., 2008). It has been suggested

that satellite data underestimate the spring Chl-a concentration and satellite-based

models used to estimate productivity may overestimate photoacclimation, reduc-

ing the estimates of NPP (Emerson, 2014). Comparing these estimates may help to

determine some of the key regions in which satellite productivity estimates differ

from in situ measurements, and could be investigated further to aid our understand-

ing as to which processes cause these discrepancies.

In chapter 5 a decrease in the buffer capacity of the northeast Atlantic was

shown in comparison to Revelle factor estimates made from measurements 20

years prior (Takahashi et al., 1993; Sabine et al., 2004). In order to confirm that

this decrease in the buffer capacity is due to climate change and not due to inter-

annual variability or differences in the methodology used, data from sources such

as GLODAP (GLobal Ocean Data Analysis Project (Key et al., 2004)), of which

an updated release is imminent) can be analysed. Using these datasets, process-

models can be used to attribute the potential role of climate change, and to give

a signal of how long the measurements need to be collected for in order to detect
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long-term trends.

By defining the TA to salinity relationship in chapter 5, DIC could be estimated

from calculated TA and measured pCO2 using CO2SYS. This gave measurements

of DIC dating back to 2002. Using a similar method of determining NCP from

DIC measurements as in section 4.3.8 in chapter 4, the summertime NCP could be

determined for the last 10 years of pCO2 and salinity measurements. This NCP

estimate would include a large error associated with the calculation of DIC (±30.3

µmol kg−1) from calculated TA (±36.33 µmol kg−1). However, it could be com-

pared with summertime NCP estimates using the nutrient concentrations (which

would have a smaller error associated with measurement uncertainty) that also date

back from 2002 (calculated DIC and nutrient concentrations from 2002 to 2013 are

displayed in figure C.1 in appendix C). These two independent estimates of sum-

mer NCP from calculated DIC and nutrient concentrations could be compared, and

may provide useful insight into the inter-annual variability in the carbon flux due

to biological drawdown.

Calculated DIC was compared with pCO2 measurements from the MV Benguela

Stream and satellite estimates of PIC (Particulate Inorganic Carbon) (Gordon et al.,

2001; Balch, 2005) and POC (Particulate Organic Carbon) (Stramski et al., 2007)

using the regions defined in chapter 5 section 5.2 (see appendix C for results).

The regional variation between these correlations demonstrates the difficulty of us-

ing satellite estimates to derive carbonate parameters, and the biological influence

on these parameters. Further investigation into the relationships between satellite

estimates of carbonate parameters and in situ measurements is required to infer

possible relationships and develop algorithms that can enhance satellite estimates

further.

Further decomposition of the ∆pCO2 from 2002 to 2013 may be possible us-

ing the calculated DIC and TA estimates from chapter 5. McKinley et al. (2011)

calculated the annual linear trends of pCO2 - nDIC (salinity normalised DIC) and

pCO2 - nTA (salinity normalised TA) between Iceland and Newfoundland from

1993 to 2005, to demonstrate that increasing salinity and decreasing nTA had con-

tributed to an increase in pCO2 in this region. Using a similar model to the NCP
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ode model described in chapter 4 and calculated DIC and TA from chapter 5, the

different components of ∆pCO2 may be able to be inferred. These calculations

would be similar to those described in Jiang et al. (2013) and Shadwick et al.

(2015), whereby the difference between the observed pCO2 concentrations and

those modified by changes in DIC and temperature are calculated. This may help

to disentangle the physical, biological, and chemical constituents of the carbon

variability seen in the North Atlantic.

In chapter 6 the inter-annual variability of the air-sea flux of CO2 (FCO2) was

found to be driven by inter-annual variability in SST which had significant cor-

relations with the NAO. This relationship warrants further investigation into the

regional influence of the NAO on air-sea heat flux in the North Atlantic (Marshall

et al., 2001), and how this influences the inter-annual variability of FCO2 (Follows

and Williams, 2004).

7.4.2 Improved measurements

An extension to the set-up measuring oxygen concentration on board the MV Benguela

Stream would be to develop a method to correct the optode drift using atmospheric

measurements of pO2, as described in Emerson and Bushinsky (2014) and Bittig

and Körtzinger (2015). Once validated, this set-up could be employed on all routes

measuring underway O2, allowing for a far greater coverage of accurate O2 surface

concentration measurements, which could be used to estimate NCP.

A flow cytometer could be added to the underway pumped seawater set-up de-

scribed in section 2.5 on board the MV Benguela Stream. This would allow for de-

termination of the fluorescence and size fraction of the plankton within the surface

waters, which would validate the CPR results and provide further detail of the bio-

logical influence on pCO2 variability. Palevsky et al. (2013) used a similar set-up

to that on board the MV Benguela Stream and presented NCP estimates alongside

CO2 flux measurements and flow cytometry estimates of plankton groups, to indi-

cate that the smaller size fractions of phytoplankton dominated the system when

high levels of autotrophy were recorded in the Gulf of Alaska. However the viabil-

ity of installing a flow cytometer on the MV Benguela Stream is dependent on its
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autonomous capabilities. Currently this is limited, as the flow cytometer requires

more frequent maintenance (every few days) than the monthly servicing that sus-

tains the measurements of pCO2 on board this VOS.

A valuable extension to the measurements on board the MV Benguela Stream

would be the addition of a pH sensor. This would enable the calculation of the

remaining carbonate components using pCO2 and pH, and would aid the docu-

mentation of future changes in the carbonate chemistry. Takahashi and Sutherland

(2013) describe the global deficit of reliable pH measurements due to calibration

issues associated with pH sensors. If a viable automated pH sensor becomes avail-

able to the scientific community, this could also be housed within the CPR, which

has the potential to provide a large network of in situ pH measurements globally.

7.4.3 Global extension of measurements

The areas of the world’s oceans that are strong sinks for carbon dioxide, and the

regions where sea surface CO2 measurements have been made are given in figures

1.9 and 1.7. The North Atlantic and North Pacific are relatively well sampled, and

represent strong sink areas. I would recommend continuing CO2 measurements in

these areas, and extending measurement networks into those areas that are under-

sampled (such as the Southern Ocean). This thesis demonstrates the importance of

the combination of chemical measurements with biological parameters for under-

standing the biogeochemical processes that maintain these sink regions, and how

they vary inter-annually. The North Pacific is an important carbon sink region that

has regular measurements of CO2 (figures 1.9 and 1.7). Figure 7.1 shows all the

VOS routes that tow CPRs under the Global Alliance of CPR Surveys (GACS)

initiative. The CPR route from Japan to Vancouver is important in understanding

subpolar biological shifts, and it should be extended further south to incorporate

this carbon sink region (seen in figure 1.9). As ocean warming continues, it is ex-

pected that there will be further poleward shifts of many marine species, such as

the range contractions of the copepod Calanus finmarchicus (Hinder et al., 2014),

which is an important food source for fish. These biological shifts need to be con-

sistently monitored, and enhancing and extending the CPR networks provides a
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robust and cost-effective tool to do so.

Figure 7.1: Global map of the density of CPR samples per 1 degree area. Adapted from
http://www.globalcpr.org/maps/sample-density.aspx.

A recent scientific action plan has been implemented to increase measurements

within the Southern Ocean (Southern Ocean Carbon and Climate Observations and

Modelling (SOCCOM)) (Russell et al., 2014). The action plan includes the release

of nearly 200 Argo profiling floats, with many housing optodes to measure oxy-

gen concentration. Using the method of calibrating these optodes to atmospheric

oxygen concentration outlined by Emerson and Bushinsky (2014), would allow for

the calculation of NCP. Presently, without correction these floats equipped with

optodes are accurate to ±3% (Takeshita et al., 2013), which is equivalent to the

amount of supersaturation expected due to NCP (Emerson and Bushinsky, 2014).

Correcting these optodes for drift would greatly enhance the understanding of bi-

ologically driven carbon drawdown and export in this region, and should be given

special attention within this programme.

With continued warming tropical regions are likely to become more oxygen de-

plete (particularly within the thermocline) as solubility decreases and deep-water

ventilation is reduced due to stratification (Doney, 2010). This could be the case

for the Indian Ocean, where human impacts on the ecosystem are evident and are

becoming of increasing concern (Ramanathan et al., 2007). The second interna-

tional Indian Ocean expedition (IIOE-2) aims to increase measurements within

this region to evaluate such changes, and the impacts on the environment (Hood

et al., 2015). Using the model described in chapter 4 and a range of measurement

http://www.globalcpr.org/maps/sample-density.aspx
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techniques such as gliders, profiling floats, and mooring sites (these have been sug-

gested by the IIOE-2 science plan (Hood et al., 2015)), the NCP could be estimated

in the surface layer, together with the determination of any change in the volume

of the oxygen minimum zones at depth. NCP and dissolved oxygen concentration

could be monitored alongside phytoplankton indices, nutrient concentrations and

other biological indices in order to monitor any changes in the health of the ecosys-

tem, such as issues that arise from eutrophication (Naim, 1993). It is important that

alongside individual measurement campaigns, long-term observational platforms

are implemented and sustained to provide the long-term insight that is needed to

infer any trends (McKinley et al., 2011).

This thesis has demonstrated the importance of concurrent measurements of

carbonate chemistry and plankton community structure, in order to infer interac-

tions between the two. This would not be possible without the continued efforts

to develop and maintain long term observations such as the VOS networks that

tow CPRs and take underway measurements. Combining such measurements with

depth profiles from profiling floats and sampling buoys, and global satellite obser-

vations, will help to reduce the discrepancies between in situ measurements and

global scale models. One example is the difference between NCP derived from

dissolved oxygen measurements, and NCP derived from satellite-based and global

circulation models. The improved understanding and reduction in these discrep-

ancies will enable the development of productivity algorithms and continue the

enhancement of biogeochemical models that will aid prediction of future climate

scenarios.

7.5 Conclusion

This study has successfully developed and implemented a simple and relatively in-

expensive technique that enables in situ estimation of NCP in the surface ocean,

with the potential to extend coverage of such measurements over wider regions

at low cost. Through using VOSs as platforms for these sensors it is possible to

monitor regions at ocean basin and gyre scale at relatively high temporal reso-

lution without incurring the costs associated with conducting such studies using
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dedicated research vessels. This study gives an excellent example of the poten-

tial of such systems for monitoring and improving our understanding of changes

in biogeochemical processes and carbonate chemistry in the surface ocean. Once

autonomous calibration and quality control protocols have been developed for the

relevant optodes, such systems could help contribute to an enhanced global cov-

erage of in situ NCP measurements and help us better understand the influence of

climate change on the Worlds oceans. The current study has shown that the North

Atlantic remained a significant sink of carbon dioxide between 2002 and 2013,

despite strong inter-annual variability in CO2 flux. The seasonal cycle in carbon

drawdown was divided by region, with CO2 flux in the northeast Atlantic being

driven by the seasonal signal of phytoplankton production while SST drove the

seasonal signal in CO2 flux at lower latitudes in the subtropics. Meanwhile, the

inter-annual variability in CO2 flux was correlated to changes in the NAO and the

influence that this had on SST.

Two key results were derived using data from the northeast Atlantic. Firstly,

the increase in SST was significantly correlated with the increase in phytoplankton

colour index measured by the CPR between 1960 and 2012, despite other phyto-

plankton indices decreasing over this time frame. This suggests that as the surface

ocean warms and stratification is enhanced, smaller phytoplankton may be better

equipped to dominate the system, compared with larger species that are more nu-

trient dependent. Secondly, the buffer capacity of the northeast Atlantic region has

decreased compared to measurements from the 1990s. Combined, these two obser-

vations are likely to have significant effects on carbon flux, export efficiency and

ecosystem dynamics. Whether or not these relatively localised trends will influence

an ecosystem shift and affect the carbon sink at the North Atlantic basin scale, re-

quires a longer and more consistent time series of measurements. Implementing

the methods developed in this study to monitor the effects of climate change on the

surface ocean would be a step towards this requirement.



Appendix A

APPENDIX: Variability in

phytoplankton distribution and

abundance in the North Atlantic

from 1958 to 2012

A.1 Comparison of interpolation techniques

Figure A.1 shows the log10 of the total number of PCI samples collected using

the CPR within each 1◦× 1◦grid cell from 1958 to 2012. The seas surrounding

the United Kingdom (North Sea, Irish Sea and Bay of Biscay) have the greatest

number of samples, with the western Atlantic showing fewer observations.
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Figure A.1: Log10 total number of raw CPR samples taken within each 1◦× 1◦grid cell
from 1958 to 2012.

Figure A.2 shows the CPR data after it has been gridded on to a 1◦× 1◦grid by

taking the monthly mean for each grid point and then plotting the mean for each

decade.

NOTE: Both silicoflagellate and coccolithophore abundance counts were started

in 1993, before this only “presence” values were recorded.

Due to the reliance on voluntary sampling routes to collect CPR data there are

often gaps in the dataset. There are a number of different interpolation techniques

that can be used to fill these gaps, of which just a few are trialled in the following

figures.
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Figure A.2: Decadal abundance of phytoplankton groups in the North Atlantic, calculated using the mean monthly mean for each grid cell.
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techniquesFigure A.3: Decadal abundance of phytoplankton groups in the North Atlantic, calculated using kriging interpolation.
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The ordinary kriging methodology used in figure A.3 follows Chapter 2 in Ed-

wards (2000). The following decadal maps (see figures A.4 and A.5) also used the

same procedure for arranging the dataset but use different interpolation techniques.

The interpolation techniques are employed to map the data onto a finer scale than

the scale at which the samples were collected, the following decadal maps were

interpolated on to a grid resolution of 0.5◦× 0.5◦.

To produce these decadal spatio-temporal maps the monthly data were sepa-

rated into 5 year periods, and 12 monthly averaged maps were produced for each

five year period using one of the interpolation techniques. 12 monthly decadal

maps were produced by taking the same month from two of the five year periods

within the decade, and applying the interpolation technique to each individual grid

cell. These 12 monthly decadal maps were then combined to form one decadal

map by averaging each grid cell.

The kriging procedure uses variograms to produce estimates of the spatial

structure of the data. Firstly an experimental variogram is produced from the data,

and then a theoretical variogram is produced by applying the appropriate model

based on the experimental variogram. Throughout this analysis the experimental

variograms were fitted with a spherical model, and the estimates of the theoret-

ical variogram range, sill, and nugget were produced using the Matlab package

variogramfit.m written by Schwanghart (2010).

Objective mapping is similar to kriging but it assumes that we know the mean

drift of the trend and uses a covariance matrix where larger weights are assigned to

points that are nearby and covary positively with the estimated values (Glover et al.,

2005). A weighted mean method is also applied in figure A.4 which uses inverse

distance weighting to calculate the unknown values using the weighted average of

the known values (Beaugrand et al., 2001).
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The variance within the kriging method was high, which meant that the interpo-

lation appeared very noisy. The weighted mean interpolation matches the gridded

mean monthly data well, however it interpolates across a large area. The objective

mapping method is similar to a weighted mean except that it takes into account the

covariance matrix and how many points are near to the estimated value, and there-

fore gives better estimates and doesn’t interpolate across regions where no samples

have been recorded.

The model applied to the objective mapping and weighted mean method to

construct figures A.5 and A.4 was spherical with an influence and cut off radius of

3.
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Figure A.6: Decadal abundance of phytoplankton groups in the North Atlantic, calculated using a spring metaphor nearest neighbour mapping method.
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The interpolation method used in figure A.6 is based on a boundary value

solver, whereby partially differential equations (PDE) are solved using finite differ-

ence, and formulated according to the nearest neighbours and the boundary param-

eters of the missing values. The method used here is based on a spring metaphor

connecting each grid cell with every neighbour, extrapolating as a constant func-

tion. The boundary conditions for this method were set to spherical, treating the

first and last set of values as the north and south poles of a sphere.

A.2 Decadal Anomalies

Decadal anomaly maps were produced by subtracting each grid cell value for the

previous decade from the next decade to give a change in abundance between the

two decades, where a positive value (red) represents an increase, and a negative

value (blue) represents a decrease. This was carried out for both the weighted mean

(see figure A.7) and the objective mapping (see figure A.8) interpolation method.
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Figure A.7: Change in the decadal abundance of phytoplankton groups in the North Atlantic, calculated using weighted mean interpolation.
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Figure A.8: Change in the decadal abundance of phytoplankton groups in the North Atlantic, calculated using an objective mapping method.
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The decadal anomaly maps were then summed at each grid cell to create maps

of the change in abundance across the 50 year time-series for each phytoplankton

group, again where a positive value (red) represents an increase, and a negative

value (blue) represents a decrease.

The weighted mean method produces similar anomaly maps to objective map-

ping however it covers a wider area of the North Atlantic (figures A.7 and A.8).

From the 1990’s to the 2000’s phytoplankton abundance has increased across most

of the North Atlantic, with a small region off the West of Ireland and in the North

Sea showing decreases in abundance (figure A.7). The largest decrease in abun-

dance occurred between the 1970’s and the 1980’s, however this was also a period

where CPR sampling had reduced in the 1980’s near the Grand Banks of New-

foundland (figure A.2).

Figure A.9: Subplot showing the sum of decadal anomaly maps using a) weighted mean
and b) objective mapping for PCI in the North Atlantic from 1960-2009.
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Figure A.10: Subplot showing the sum of decadal anomaly maps using a) weighted mean
and b) objective mapping for diatom abundance in the North Atlantic from 1960-2009.
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Figure A.11: Subplot showing the sum of decadal anomaly maps using a) weighted mean
and b) objective mapping for dinoflagellate abundance in the North Atlantic from 1960-
2009.
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Figure A.12: Subplot showing the sum of decadal anomaly maps using a) weighted mean
and b) objective mapping for Rhizosolenia abundance in the North Atlantic from 1960-
2009.

The sum of the decadal anomaly maps show similar trends to the linear trend

maps and the first principal component eigenvector maps (figures 3.6 to 3.19) , as

they represent the change in the different phytoplankton indices from 1960-2009.

For all phytoplankton indices the Grand Banks of Newfoundland, North of the

Azores, and the region off the south-west of Portugal show an increase in abun-

dance from 1960-2009 (figures A.9 to A.12). PCI is increasing across the whole

of the North Atlantic (figure A.9), while Rhizosolenia are generally decreasing in

abundance across most of the North Atlantic (figure A.12).

A.3 Regional temporal autocorrelation

Temporal autocorrelation was checked for in all four phytoplankton indices, SST,

wind speed and summer wind speed in bio regions 1 to 9. Figure A.13 shows the
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temporal autocorrelation in PCI in bio regions 1 to 9, as an example plot of tem-

poral autocorrelation. If the sample autocorrelation lies within the 95% confidence

interval boundaries then the samples can be assumed to be independent of each

other, however if they lie outside of the boundary then autocorrelation is present

within the dataset and the degrees of freedom for any significance test need to be

adjusted accordingly (Glover et al., 2005).
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Figure A.13: Temporal autocorrelation (lag in years) in PCI in bio regions 1 to 9 from
1960 to 2012, with 95% confidence intervals (red lines).

Temporal autocorrelation was present in all of the variables. SST presented

temporal autocorrelation in all 9 bio regions (data not shown), while diatom abun-

dance showed relatively little temporal autocorrelation (data not shown). Out of the

four phytoplankton indices PCI showed the most temporal autocorrelation (figure

A.13). Region 6 showed the least temporal autocorrelation, while regions 1, 2, and

3 showed high temporal autocorrelation in most of the variables.

Table A.1 displays the significant correlations between annual phytoplankton

indices, climate variables, and climate indices in regions 1 to 9 between 1960 and

2012 after correcting for temporal autocorrelation.
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Table A.1: Significant (p<0.05, after correcting for temporal autocorrelation (Pyper and
Peterman, 1998)) Pearson’s linear correlation coefficients, p-values, and slopes between
annual phytoplankton indices, climate variables, and climate indices in regions 1 to 9 be-
tween 1960 and 2012.

Sig. Relationship Pearson’s correlation coefficient Chelton’s P-value Slope
Region 1 PCI with SST 0.45 0.04 3.58

RHI with DIA 0.52 0.00 0.62
DIA with SST 0.50 0.05 0.64

DIA with AMO 0.60 0.03 0.20
DIN with SWS -0.54 0.01 -0.40
DIN with EAP -0.50 0.03 -0.38
SST with NAO 0.41 0.01 1.11
SWS with NAO 0.33 0.03 1.48

Region 2 RHI with DIA 0.60 0.00 0.86
RHI with DIN 0.60 0.00 1.04
DIN with WS -0.57 0.01 -0.50
DIN with EAP -0.55 0.01 -0.38
DIN with NHT -0.65 0.02 -0.27
WS with EAP 0.54 0.03 0.43

SWS with NAO 0.46 0.00 1.72
Region 3 PCI with DIN 0.51 0.03 3.26

PCI with WS 0.64 0.02 3.30
PCI with SWS 0.64 0.05 3.31
RHI with DIA 0.50 0.00 0.70
RHI with DIN 0.40 0.00 0.70

DIA with AMO 0.58 0.01 0.22
DIA with NHT 0.56 0.03 0.30
SWS with NAO 0.58 0.00 2.30

Region 4 PCI with DIN 0.39 0.01 3.54
RHI with DIA 0.56 0.00 0.82
RHI with DIN 0.65 0.00 0.85
DIA with DIN 0.39 0.01 0.35
DIN with WS -0.35 0.04 -0.37

DIN with NHT -0.40 0.03 -0.18
SST with AMO 0.78 0.01 0.42
SST with NHT 0.81 0.02 0.61

Region 5 PCI with RHI 0.44 0.01 4.43
PCI with DIN 0.48 0.03 5.23
RHI with DIA 0.43 0.00 0.40
RHI with DIN 0.55 0.00 0.60
DIA with DIN 0.39 0.01 0.47
DIN with SST -0.51 0.04 -0.18

SST with AMO 0.65 0.01 0.36
SST with NHT 0.64 0.04 0.50
WS with EAP 0.47 0.03 0.31

SWS with NAO 0.47 0.00 2.31
SWS with EAP 0.50 0.01 0.56

Region 6 PCI with RHI 0.30 0.03 1.86
PCI with DIA 0.80 0.00 9.58
PCI with DIN 0.43 0.00 3.96
PCI with SST 0.34 0.01 1.97
PCI with WS 0.29 0.04 2.04
PCI with EAP 0.31 0.03 1.62
PCI with AMO 0.40 0.00 0.89
RHI with DIA 0.57 0.00 1.12
RHI with DIN 0.78 0.00 1.17
DIA with DIN 0.64 0.00 0.49
SST with NAO -0.34 0.02 -1.35
SST with AMO 0.70 0.01 0.27
SWS with NAO 0.41 0.00 1.54

Region 7 PCI with RHI 0.63 0.00 4.68
PCI with DIA 0.62 0.00 7.34
PCI with DIN 0.57 0.00 4.92
RHI with DIA 0.72 0.00 1.15
RHI with DIN 0.51 0.00 0.59
DIA with DIN 0.67 0.00 0.49

DIA with AMO 0.42 0.04 0.09
DIN with SST 0.34 0.04 0.28
SST with NAO -0.45 0.00 -1.52
SST with AMO 0.61 0.03 0.20

Region 8 PCI with RHI 0.36 0.02 2.26
PCI with DIA 0.76 0.00 8.49
PCI with DIN 0.71 0.00 5.21
PCI with EAP 0.43 0.02 2.16
PCI with NHT 0.51 0.03 1.53
RHI with DIA 0.48 0.00 0.84
DIA with DIN 0.79 0.00 0.52

DIA with AMO 0.45 0.01 0.09
DIA with NHT 0.42 0.03 0.11
DIN with WS 0.39 0.05 0.40

SST with AMO 0.71 0.01 0.23
SST with NHT 0.76 0.02 0.35

Region 9 PCI with RHI 0.63 0.00 1.99
PCI with DIA 0.80 0.00 6.60
PCI with DIN 0.69 0.00 3.98
RHI with DIA 0.60 0.00 1.57
RHI with DIN 0.33 0.02 0.61
DIA with DIN 0.58 0.01 0.41
DIN with WS 0.67 0.03 0.57

SST with AMO 0.51 0.02 0.15
WS with EAP 0.58 0.04 0.46
WS with NHT 0.76 0.05 0.36

Abbreviations: PCI, Phytoplankton Colour Index; DIA, diatom abundance; DIN, di-
noflagellate abundance; RHI, Rhizosolenia abundance; SWS, summer wind speed; WS,
wind speed.



Appendix B

APPENDIX: Net community

production in the North Atlantic

B.1 Comparison of NCPO2
with plankton indices

The phytoplankton data from the CPR survey were divided into 6 key phytoplank-

ton indices; phytoplankton colour index (PCI), spring-bloom forming diatoms (di-

atoms), Rhizosolenia (diatom genus often associated with a later blooming-time),

dinoflagellates, silicoflagellates, and coccolithophores. The species included in

these indices are presented in table 3.1 in chapter 3, with the addition of coccol-

ithaceae and silicoflagellatae, as described in chapter 5 section 5.3.13. Monthly

phytoplankton indices were averaged for each region defined in chapter 4 figure

4.3, and compared with monthly NCPO2 (figure B.1). The CPR is only towed

by the MV Benguela Stream from 40 ◦W to the UK, therefore there are no CPR

samples in region 5, and few samples in region 4.
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Figure B.1: Monthly mean NCPO2 , and phytoplankton abundance over time in each of 5
biogeochemical regions (see Fig. 4.3). Monthly NCPO2

was calculated using equations
4.1 to 4.8 ([mmol O2 m−3 d−1], left axis), monthly phytoplankton indices are plotted as
coloured circles and line (Diatoms = blue, PCI = green, Dinoflagellates = red, Rhizosolenia
= cyan, Silicoflagellates = magenta, Coccolithophores = yellow, [log10 (x+1)], right axis).

In region 1 peak dinoflagellate abundance corresponds to peak autotrophy be-

tween May and June 2012, this is also the case between August and September

2012 in region 2, however there are gaps in the CPR data in these regions. In re-

gion 3 peak diatom abundance corresponds to high autotrophy between March and

April 2012, while dinoflagellate abundance corresponds to maintained autotrophy

throughout the summer. There were no significant correlations found between the

phytoplankton indices and monthly NCPO2 .
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Figure B.2: Monthly mean NCPO2
, total phytoplankton, total zooplankton, and the change

in phytoplankton relative to zooplankton over time in each of 5 biogeochemical regions
(see Fig. 4.3). Monthly NCPO2 was calculated using equations 4.1 to 4.8 ([mmol O2 m−3

d−1], left axis), monthly plankton indices are plotted as coloured circles and line (total phy-
toplankton (PHYTO) = green, total zooplankton (ZOOP) = black, change in phytoplankton
relative to zooplankton (∆PHYTO/∆ZOOP) = red, [log10 (x+ 1)], right axis).

The total phytoplankton and zooplankton abundance from the CPR survey are

compared with monthly NCPO2 in figure B.2. The change in phytoplankton rela-

tive to zooplankton abundance between months (∆P/∆Z) was calculated to inves-

tigate if the biological data corresponds to the estimated NCPO2 . In region 1 and

2 there appears to be no correspondence between NCPO2 and ∆P/∆Z. In region 3,

∆P/∆Z follows the NCPO2 seasonal cycle reasonably well, however no significant

correlations were found.



Appendix C

APPENDIX: The marine

carbonate system in the North

Atlantic

C.1 > 10 years of calculated DIC with nutrient concen-

tration

Figure C.1 shows the monthly nutrient concentrations collected on board the MV

Benguela Stream, alongside DIC estimated using measurements of pCO2 and equa-

tion 5.10 used to calculate TA from salinity. In regions 1 and 2 DIC is significantly

correlated with nutrient concentrations, demonstrating the biological and mixing

influences in these regions. In region 3 there are no significant correlations be-

tween DIC and nutrient concentration.



C.2 Comparison of satellite carbonate parameters with measurements 271

Nu
tri

en
ts

 (µ
m

ol
 k

g−
1 )

DI
C 

(µ
m

ol
 k

g−
1 )

May01 Oct02 Feb04 Jul05 Nov06 Apr08 Aug09 Dec10 May12 Sep13 Feb15
0

5

10

15
Region 1

2000

2100

2200

May01 Oct02 Feb04 Jul05 Nov06 Apr08 Aug09 Dec10 May12 Sep13 Feb15
0

1

2

3

4
Region 2

2000

2100

2200

May01 Oct02 Feb04 Jul05 Nov06 Apr08 Aug09 Dec10 May12 Sep13 Feb15
0

1.5

3

4.5
Region 3

 

 

2000

2100

2200
NOx
Si
PO4
DIC

Figure C.1: Monthly NO3 (green), Si (red), PO4 (blue) on the left y-axis in µmol kg−1,
and monthly DIC (black) on the right y-axis in µmol kg−1, from 2002 to 2013 for regions
1, 2, and 3. Note the different y axes scales for nutrients.

C.2 Comparison of satellite carbonate parameters with

measurements

Satellite estimates of PIC (Particulate Inorganic Carbon) (Gordon et al., 2001;

Balch, 2005), and POC (Particulate Organic Carbon) (Stramski et al., 2007) were

obtained at a resolution of 9 km and frequency of 1 month from Aqua-MODIS

(http://oceandata.sci.gsfc.nasa.gov). These were averaged for the regions defined

in chapter 5 section 5.2, and compared with measurements of pCO2 and calculated

DIC to investigate whether relationships between these carbonate parameters and

http://oceandata.sci.gsfc.nasa.gov
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satellite observations can be inferred.
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Figure C.2: Correlation matrix plot of monthly DIC, pCO2, POC, PIC from 2002 to 2013
in region 1. Pearson’s correlation coefficients and p-values are visualized as the colour
and sizes of the circles, and values are displayed within (red = negative correlation, blue =
positive correlation). Scatter plots with linear regression of each variable combination are
also displayed.



C.2 Comparison of satellite carbonate parameters with measurements 273

DI
C

R:−0.136
p:0.200pC

O
2

R:0.569
p:0.000PO

C R:−0.547
p:0.000

R:0.124
p:0.242PI

C

DIC

R:−0.220
p:0.036

pCO2

R:0.485
p:0.000

POC PIC

Region 2

Figure C.3: Correlation matrix plot of monthly DIC, pCO2, POC, PIC from 2002 to 2013
in region 2. Pearson’s correlation coefficients and p-values are visualized as the colour
and sizes of the circles, and values are displayed within (red = negative correlation, blue =
positive correlation). Scatter plots with linear regression of each variable combination are
also displayed.
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Figure C.4: Correlation matrix plot of monthly DIC, pCO2, POC, PIC from 2002 to 2013
in region 3. Pearson’s correlation coefficients and p-values are visualized as the colour
and sizes of the circles, and values are displayed within (red = negative correlation, blue =
positive correlation). Scatter plots with linear regression of each variable combination are
also displayed.
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Region 1 showed significant correlations between all four variables. Region 2

had significant correlations between POC and DIC, pCO2, and PIC. Region 3 had

a significant correlation between pCO2 and PIC, and a weak significant correlation

between PIC and DIC. The regional variation between these correlations demon-

strates the difficulty of using satellite estimates to derive carbonate parameters, and

inferring any relationships.
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Figure C.5: Monthly PIC (Particulate Inorganic Carbon, pink) on the left y-axis in mol
m−3, and monthly coccolithophore abundance (green, log10(x+1)) on the right y-axis, from
2002 to 2013 for regions 1, 2, and 3. Note the different y axes scales for PIC.

PIC can be used to estimate coccolithophore abundance (Hopkins et al., 2015).
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Figure C.5 shows the comparison between satellite PIC (Gordon et al., 2001;

Balch, 2005) and coccolithophore abundance from the CPR. Region 1 shows a

negative correlation, while region 2 has a positive correlation. This is likely due

to the influence of abiogenic particulate matter and re-suspended material found

in coastal waters, which can influence measurements of ocean colour (Morel and

Prieur, 1977; Daniels et al., 2012; Hopkins et al., 2015). Therefore when us-

ing satellite PIC measurements to estimate coccolithophores abundance, caution

should be taken when interpreting such results depending on the location and tim-

ing of mixing events.



Appendix D

APPENDIX: Spatial and

temporal variability in the

influence of phytoplankton

community structure on CO2 flux

in the North Atlantic

D.1 Annual seasonal cycles

Figures D.1 to D.4 show the mean seasonal cycle and the inter-annual seasonal

cycle from 2002 to 2013 within each region for coccolithophore abundance, and

nutrient concentration.
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Figure D.1: Monthly mean coccolithophore abundance from 2002 to 2013 and the
monthly mean of all years (black thick line) in regions 1 to 5.

There was high variance about the mean in all phytoplankton abundance in-

dices (data not shown), coccolithophore abundance is plotted as an example (figure

D.1). The mean seasonal cycle of coccolithophores is less prominent in regions 1

to 3, with 3 peaks occurring during May, July, and September. While in regions

4 and 5 there is a defined peak that occurs in May. High abundances of coccol-

ithophores were recorded in regions 3 and 4 in 2012, and in 2007 in regions 2, 3
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and 4. Nutrient concentrations are plotted in figures D.2 to D.4.
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Figure D.2: Monthly mean nitrate and nitrite (NOx) concentration from 2002 to 2013 and
the monthly mean of all years (black thick line) in regions 1 to 5.
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Figure D.3: Monthly mean silicate (Si) concentration from 2002 to 2013 and the monthly
mean of all years (black thick line) in regions 1 to 5.



280 D.1 Annual seasonal cycles

J F M A M J J A S O N D
0

1

2

3

4

5

PO
4 (µ

m
ol

 k
g−

1 )

Region 1

J F M A M J J A S O N D
0

0.5

1

1.5

2

2.5

3

3.5

4

PO
4 (µ

m
ol

 k
g−

1 )

Region 2

J F M A M J J A S O N D
0

0.2

0.4

0.6

0.8

1

PO
4 (µ

m
ol

 k
g−

1 )

Region 3

J F M A M J J A S O N D
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

PO
4 (µ

m
ol

 k
g−

1 )

Region 4

J F M A M J J A S O N D
0

0.1

0.2

0.3

0.4

0.5

PO
4 (µ

m
ol

 k
g−

1 )

Region 5

 

 2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
Mean

Figure D.4: Monthly mean phosphate (PO4) concentration from 2002 to 2013 and the
monthly mean of all years (black thick line) in regions 1 to 5.



D.1 Annual seasonal cycles 281

In June 2007 phosphate concentrations were higher than other years in regions

3, 4 and 5. April of 2005 also had unusually high concentrations of phosphate

in regions 1, 2 and 3. These high values were not apparent in either Si or NOx

concentrations, therefore they could be due to analytical error, sample preserva-

tion issues or biogeochemical processes such as the preferential remineralisation

of particulate organic matter (Davis et al., 2014). However further investigation is

needed to determine the cause of these anomalous phosphorus years.

Monthly mean MLD was calculated for each region using ECCO2 daily 0.25◦

MLD (Menemenlis et al., 2008), the seasonal cycle from 2002 to 2013 and the

mean seasonal cycle is shown in figure D.5.
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Figure D.5: Monthly mean mixed layer depth (MLD) from 2002 to 2013 and the monthly
mean of all years (black thick line) in regions 1 to 5.

MLD shows a similar seasonal cycle in all five regions, with maxima occurring

in the winter months. This is likely driven by both wind speed and SST. Region

5 has the deepest MLD reaching up to ∼250 m, while region 1 has the shallowest

MLD with a maximum mean reaching ∼60 m.
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Figure D.6: Monthly mean SST (◦C, red), pCO2 (µatm, blue), PIC (mol m−3, green), and
coccolithophore abundance (log10(x+1), COC = orange) from 2002 to 2013 in regions 1 to
5.

Figure D.6 shows the monthly mean SST, pCO2, PIC (Gordon et al., 2001;

Balch, 2005), and coccolithophore abundance from 2002 to 2013 in regions 1 to 5.

No significant correlations between high abundance years of coccolithophores and

PIC were found.
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Biplot (figure D.7) shows the variance explained by principal component 1.

In regions 1 to 3 FCO2 is negatively associated with SST and the phytoplankton

indices, whereas in region 4 and 5 SST and FCO2 are positively associated and

negatively associated with the phytoplankton indices, suggesting that SST drives

FCO2 in regions 4 and 5.
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Figure D.7: Biplot of the loadings of principal components 1 and 2 when comparing
monthly phytoplankton indices with sea surface temperature and air-sea flux of CO2

(FCO2) from 2002 to 2013 in regions 1 to 5, with the variance explained by principle
component 1 displayed in the title.

D.2 Cross-correlation analyses

Cross-correlation analysis was carried out between variables. The red dashed line

shows the 95% confidence interval, and the lag is monthly (figures D.8 to D.11).

Cross-correlation between monthly pCO2 and SST shows a lag in regions 1, 2 and
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3; in regions 4 and 5 there was no lag. Cross-correlation between pCO2 and the

different phytoplankton indices was not significant and showed increased lag in

regions 4 and 5, whereas significant negative correlations in regions 1, 2 and 3

were found. Figures D.8 to D.11 show the correlations between SST and PCI with

pCO2 for regions 1 and 5 for comparison.
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Figure D.8: Cross-correlation between monthly mean pCO2 (µatm, blue line) and SST
(◦C, red line) from 2002 to 2013 in region 1. The bars above the red-dashed line denote
significant correlations with p < 0.05.
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Figure D.9: Cross-correlation between monthly mean pCO2 (µatm, blue line) and PCI
(log10(x+1), green line) from 2002 to 2013 in region 1. The bars above the red-dashed line
denote significant correlations with p < 0.05.
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Figure D.10: Cross-correlation between monthly mean pCO2 (µatm, blue line) and SST
(◦C, red line) from 2002 to 2013 in region 5. The bars above the red-dashed line denote
significant correlations with p < 0.05.
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Figure D.11: Cross-correlation between monthly mean pCO2 (µatm, blue line) and PCI
(log10(x+1), green line) from 2002 to 2013 in region 5. The bars above the red-dashed line
denote significant correlations with p < 0.05.

D.3 Basin-scale trends

The annual linear trends in PCI and Rhizosolenia abundance and the correlation

coefficients with the air-sea flux of CO2 (FCO2) are shown in figures D.12 to D.15.

Figure D.12: Annual linear trends in Phytoplankton Colour Index (PCI) in the North At-
lantic from 1998 to 2011. Trends that are outside of the 95% significance level (p≥0.05)
are indicated with a cross-hatch. Blue = decreasing. Red = increasing. Grey areas are
where there were insufficient data.
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The linear trends of both PCI and Rhizosolenia abundance are patchy in distri-

bution and similar to that of figure 6.20, with less significant trends (p≥0.05) seen

in Rhizosolenia distribution (figure D.13).

Figure D.13: Annual linear trends in Rhizosolenia abundance in the North Atlantic from
1998 to 2011. Trends that are outside of the 95% significance level (p≥0.05) are indicated
with a cross-hatch. Blue = decreasing abundance. Red = increasing abundance. Grey areas
are where there were insufficient data.

Figure D.14: Correlation coefficients between the air-sea flux of CO2 (FCO2) and Phy-
toplankton Colour Index (PCI). Correlations that are outside of the 95% significance level
(p≥0.05) are indicated with a cross-hatch. Blue = negative correlation. Red = positive
correlation. Grey areas are where there were insufficient data. Note: Decreasing FCO2 is
an increasing sink.

The correlation coefficients between PCI and Rhizosolenia abundance with

FCO2 are similar to each other, with the decreasing sink of CO2 in the Bay of
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Biscay correlating with the decreasing linear trends in PCI and Rhizosolenia abun-

dance (figures D.14 and D.15). The decreasing linear trends in PCI towards the

Labrador Sea, is correlated with the increasing sink in CO2 in this region (figure

D.14).

Figure D.15: Correlation coefficients between the air-sea flux of CO2 (FCO2) and Rhi-
zosolenia abundance. Correlations that are outside of the 95% significance level (p≥0.05)
are indicated with a cross-hatch. Blue = negative correlation. Red = positive correlation.
Grey areas are where there were insufficient data. Note: Decreasing FCO2 is an increasing
sink.
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P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Mer-
livat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G. H. Park,
K. Paterson, D. Pierrot, A. F. Rı́os, C. L. Sabine, S. Saito, J. Salisbury, V. V. S.
S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun,
A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima,
S. M. A. C. Van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wan-
ninkhof, and A. J. Watson (2014), An update to the surface ocean CO2 atlas
(SOCAT version 2), Earth System Science Data, 6(1), 69–90.

Balch, W. M. (2005), Calcium carbonate measurements in the surface global ocean
based on Moderate-Resolution Imaging Spectroradiometer data, Journal of Geo-
physical Research, 110.

Barnston, A., and R. Livezey (1987), Classification, seasonality and persistence of
low- frequency atmospheric circulation patterns, Monthly weather review.

Bartlett, M. (1935), Some Aspects of the Time-Correlation Problem in Regard to
Tests of Significance, Journal of the Royal Statistical Society, 98(3), 536–543.

Barton, A. D., M. S. Lozier, and R. G. Williams (2015), Physical controls of vari-
ability in North Atlantic phytoplankton communities, Limnology and Oceanog-
raphy, 60(1), 181–197.



292 References

Bates, N., M. Best, and D. Hansell (2005), Spatio-temporal distribution of dis-
solved inorganic carbon and net community production in the Chukchi and
Beaufort Seas, Deep Sea Research Part II: Topical Studies in Oceanography,
52(24-26), 3303–3323.

Beaugrand, G. (2003), An overview of statistical methods applied to CPR data,
Progress In Oceanography, 58(2-4), 235–262.

Beaugrand, G. (2009), Decadal changes in climate and ecosystems in the North
Atlantic Ocean and adjacent seas, Deep Sea Research Part II: Topical Studies in
Oceanography, 56(8-10), 656–673.

Beaugrand, G., M. Edwards, and L. Legendre (2010), Marine biodiversity, ecosys-
tem functioning, and carbon cycles, Proceedings of the National Academy of
Sciences, 107(22), 10,120.
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in the subtropical and subarctic North Atlantic based on measurements from a
volunteer observing ship, Journal of Geophysical Research: Oceans, 111(6).
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Predicting plankton net community production in the Atlantic Ocean, Deep Sea
Research Part II: Topical Studies in Oceanography, 56(15), 941–953.

Shadwick, E. H., T. W. Trull, B. Tilbrook, a. J. Sutton, E. Schulz, and C. L. Sabine
(2015), Seasonality of biological and physical controls on surface ocean CO
2 from hourly observations at the Southern Ocean Time Series site south of
Australia, Global Biogeochemical Cycles, 29, 223–238.

Sharqawy, M. (2010), Thermophysical properties of seawater: A review of existing
correlations and data, Desalination and Water Treatment, 16(10), 354–380.



References 307

Shutler, J. D., P. E. Land, C. W. Brown, H. S. Findlay, C. J. Donlon, M. Medland,
R. Snooke, and J. C. Blackford (2013), Coccolithophore surface distributions in
the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years
of satellite Earth observation data, Biogeosciences, 10, 2699–2709.

Shutler, J. D., T. J. Smyth, S. Saux-Picart, S. L. Wakelin, P. Hyder, P. Orekhov,
M. G. Grant, G. H. Tilstone, and J. I. Allen (2011), Evaluating the ability of a
hydrodynamic ecosystem model to capture inter- and intra-annual spatial char-
acteristics of chlorophyll-a in the north east Atlantic, Journal of Marine Systems,
88(2), 169–182.

Sokal, R., and F. Rohlf. (1995), Biometry: The principles and practice of statistics
in biological research., 3rd edn., W.H. Freeman, New York.

Spitzer, W. S., and W. J. Jenkins (1989), Rates of vertical mixing, gas exchange
and new production: Estimates from seasonal gas cycles in the upper ocean near
Bermuda, Journal of Marine Research, 47(1), 169–196.

Stanley, R. H. R., W. J. Jenkins, D. E. Lott, and S. C. Doney (2009), Noble gas
constraints on air-sea gas exchange and bubble fluxes, Journal of Geophysical
Research, 114.

Stoffelen, A. (1996), Error modelling of scatterometer, in-situ, and ECMWF model
winds: A calibration refinement, Tech. rep. 93R. Neth. Meteorol. Inst., de Bilt,
Netherlands.

Stramski, D., R. a. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers,
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