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ABSTRACT

lodine chemistry in the marine aerosol plays important roles in the marine boundary
layer such as ozone destruction and new aerosol particle formation. lodine has a
complex chemistry in the gas and aerosol phases and to date, what controls iodine
speciation, the interactions and roles of individual iodine species are not well
understood. This research aims to identify key controls on iodine speciation in marine

aerosol.

Effects of filter types on iodine and extraction methods were tested to provide optimum
conditions for extraction of iodine species. Coupling of ion chromatography and
inductively coupled plasma — mass spectrometry (IC-ICP-MS) for the measurement of
iodine speciation was developed to provide a reliable analytical method. These
optimised methods were used to determine iodine speciation in samples collected during
cruises in the Atlantic Ocean (AMT21) and the Pacific Ocean (TransBrom and SHIVA).
Major ions were also determined in these samples by ion chromatography (IC) with the

results providing insight into the chemical characteristics aerosol samples.

A high variability of the total soluble iodine (TSI) was observed between AMT21 (12—
82, median 30 pmol m®) and TransBrom (1.6—-27, median 6.9 pmol m®) and SHIVA
(5.9-15, median 8.4 pmol m=). The proportions of iodide (I"), iodate (103" and soluble
organic iodine (SOI) on the three cruises also showed a high variability: AMT21: I' 5.2—
39%, median 14%; 103 36-99%, median 66%; and SOI 13-47%, median 28%,
TransBrom: I 8.8-64%, median 46%; 103" 1.8-65%, median 6.2%; and SOI 5.9-50%,
median 39%, SHIVA: I 22-79%, median 42%; 103~ 17-66%, median 39%; and SOI
non-determinable value—41%, median 14%.

Three main types of aerosol with distinctive iodine speciation were identified: polluted
aerosol, clean seasalt and mineral dust. pH seems to play an important role in regulating
iodine speciation. The formation of HOI and the reduction of iodate are driven by acidic
conditions in polluted aerosol. In clean less acidic seasalt aerosol, a high iodine
enrichment was observed (565-1675, median 725), especially in the fine mode aerosol.

For mineral dust, uptake of HIO3 on calcium carbonate surfaces seems to dominate.
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Chapter 1  Introduction and Background Knowledge

1.1 Introduction

This chapter aims to introduce the research topic of iodine speciation in the marine
aerosol. The content of this chapter will cover a review of background knowledge
relating to the atmospheric aerosol and its main sources, the cycling of halogens in the
marine atmosphere, a review of atmospheric iodine chemistry and iodine speciation in
the marine aerosol. The final part of this chapter points out key research objectives as

well as a brief description of each chapter of the thesis.

1.2 Review of Background Knowledge

1.2.1 Introduction to the Atmospheric Aerosol

The aerosol defined as “a suspension of fine solid or liquid particles in a gas” is an
important component for the Earth’s atmosphere (Seinfeld and Pandis 2006; Hobbs
2000; Wayne 2000). Atmospheric aerosols are particles with a diameter range from a
few nanometres (nm) to tens of micrometres (um). Generally, particles can be removed
from the atmosphere by two main processes, dry deposition (deposition at the Earth’s
surface via gravitational setting) and wet deposition (formation of precipitation), (Hobbs
2000).

Atmospheric aerosols play important roles in the global climate system, especially
influencing radiative forcing (Prospero 2002; Boucher et al. 2013). “Direct” effects of
aerosol particles are interactions with solar radiation through absorption, scattering and

emission. Aerosols also provide condensation nuclei for cloud droplets which also
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interact with solar radiation (known as “indirect” effects) and participate in
heterogeneous chemical reactions (Andreae and Crutzen 1997).They also contribute a
wider role by carrying nutrients to ocean ecosystems. An overview of the atmospheric
aerosol and environmental variables and processes influencing aerosol-radiation and

aerosol-cloud interactions is shown in Figure 1.1.
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Figure 1.1 Overview of the atmospheric aerosol and environmental variables and
processes influencing aerosol-radiation and aerosol-cloud interactions (Boucher et al.
2013). (POA = primary organic aerosol, SOA = secondary organic aerosol, BC = black
carbon, ERF = Effective Radiative Forcing, ari = aerosol-radiation interactions, and aci
= aerosol — cloud interactions).

Important sources of the atmospheric aerosol originate from natural and anthropogenic
pathways, through primary emission of particulate matter and secondary formation of
particulate matter from gaseous precursors (Boucher et al. 2013). The main components
of the atmospheric aerosol are inorganic species such as sulphate (SO4%), nitrate (NO3),
ammonium (NH4"), seasalt, organic species (organic aerosol, black carbon (BC) and
mineral dust) (Boucher et al. 2013).

Sea spray is one of the major components of the natural aerosol system. This type of
aerosol also is important for the marine atmosphere, which impacts on the Earth’s
radiative budget, biogeochemical cycling and ecosystems (O'Dowd and de Leeuw
2007). Reviews of the atmospheric marine aerosol can be found in Fitzgerald (1991),
O'Dowd et al. (1997), and O'Dowd and de Leeuw (2007). Sources contributing to the
atmospheric aerosol are discussed below.



1.2.2 Sources of Atmospheric Aerosol

Main sources of aerosol originates from primary and secondary production of particles
(Fitzgerald 1991; O'Dowd et al. 1997; O'Dowd and de Leeuw 2007). Primary
production of aerosol originates from both natural sources such as soil and rock debris,
volcanic dust, sea spray and biological debris; and anthropogenic sources from
industrial dust, black carbon and organic aerosol. The global emission estimates for
major aerosol classes are shown in Table 1.1, which provides details of the sources of
both primary and secondary production of aerosol. Seasalt and mineral dust are the two

main primary aerosols.

Secondary production of aerosol occurs through gas-to-particle conversion processes.
Important sources of this type of aerosol are sulphate from dimethylsulfide (DMS),
volcanic sulphur dioxide (SO2) and organic aerosol from biogenic volatile organic
compounds (VOC). Sulphates (from SO>) and nitrates (from nitrogen oxides, NOy) are
also main sources of the secondary aerosol from anthropogenic activities (Seinfeld and
Pandis 2006).

Table 1.1 Global emission estimates for major aerosol classes

Source Estimated Flux
Tgyrt
Natural  Primary Mineral dust
0.1-1.0 um 48
0.1-10.0 um 1490
Seasalt 10,100
Volcanic dust 30
Biological debris 50
Secondary  Sulphates from DMS & Volcanic SO; 32.4
Organic aerosol from biogenic VOC 11.2
Anthropogenic
Primary Industrial dust (except black carbon) 100
Black carbon 12 (Tg C)
Organic aerosol 81 (Tg C)
Secondary  Sulphate from SO, 48.6 (Tg S)
Nitrate from NOy 21.3 (Tg NO3)

(adapted from Seinfeld and Pandis (2006)).



1.2.2.1 Primary Production of Aerosol

Two main types of primary aerosol, seasalt and mineral dust are described below.

1) Seasalt Aerosol

Seasalt aerosol is the dominant constituent of coarse mode particles of the primary
aerosol in the marine environment. This type of aerosol is ejected into the air through
bubble bursting at the sea surface by wind (O'Dowd and de Leeuw 2007; von Glasow
and Crutzen 2014; Fitzgerald 1991; Hobbs 2000; O'Dowd et al. 1997). Seasalt
concentrations in the Atlantic can vary between seasons (Yoon et al. 2007). In winter,
maximum seasalt concentrations were observed, which resulted from high wind speeds

over the North Atlantic during the winter season.
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Figure 1.2 Four stages in the production of seasalt aerosol by the bubble-bust
mechanism (von Glasow and Crutzen (2014) adapted from Pruppacher and Klett
(1997)). Seasalt aerosol production: (a) the formation of a thin film after bubble rises to
the ocean surface, (b) flowing of water down the sides of the cavity further thins the
film that eventually ruptures into many small sea spray particles, (c) an unstable jet
release a few large sea spray drops, and (d) tiny salt particles remain airborne as drops
evaporate; a new bubble is formed.

At the ocean surface, air bubbles are generated by wind stress, after bursting, they
produce film drops and jet drops as shown in Figure 1.2. Each bubble burst can produce
between one to ten jet drops (radii <10 um) and several hundred small film drops (radii
<1lum) (Fitzgerald 1991). Freshly produced seasalt aerosol is generally alkaline with pH
~ 7.0 - 8.7 (Keene et al. 1998). As well as its influence on atmospheric radiative
properties (see section 1.2.1), seasalt is a carrier of halogen species, Cl, Br and | as well
as S which play important roles in atmospheric chemistry, as discussed in Section 1.3
(Gong et al. 1997).



2) Mineral Dust

Mineral dust from the lithosphere originates from the suspension of minerals and is
composed of various oxides and carbonates. The influences of mineral dust can be
found in the marine atmosphere. Typically, background concentrations of mineral dust
are <5% of the mass of seasalt, except material which has undergone long-range
transport from arid regions of continents (Fitzgerald 1991; Prospero 2002). The size of
mineral dust vary from nanometres to hundreds of microns being highly variable within

the coarse mode (Formenti et al. 2011).

For the Atlantic Ocean, the Sahara is the major source of mineral dust. Saharan dust can
be lifted by the convection over hot desert areas, then, they can reach very high
altitudes. It can be then transported by winds over long distances, especially across the
Atlantic by the trade winds (Prospero and Carlson 1980; Johansen et al. 2000;
Mahowald et al. 2014). In the Pacific Ocean, evidence of intercontinental transport of
mineral dust were found in the western north Pacific during the spring period (Prospero
and Savoie 1989; Uematsu et al. 2003). Studies of Zhang et al. (2010) also showed
evidences of mineral dust of the marine aerosol in both Atlantic and Pacific Oceans.

1.2.2.2 Secondary Production of Aerosol

Secondary aerosol is formed by gas-to-particles conversion processes, mainly non-
seasalt (nss) sulphate from anthropogenic pollution. Examples of gas-to-particle
conversion processes are the generation of new particles (homogeneous nucleation) or
condensation on existing particles (heterogeneous nucleation and condensation)
(O'Dowd et al. 1997). Figure 1.3 shows related reactions of secondary aerosol
formation. O'Dowd and de Leeuw (2007) reviewed secondary aerosol formation in the
marine atmosphere and concluded that apart from sulphuric acid, isoprene and iodine
oxides are two additional compounds for this secondary aerosol formation. Oxidation
products of isoprene are likely to participate in growth, while, sulphuric acid tends to
participate in nucleation. lodine oxides are seemingly involved in both nucleation and

growth,
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Figure 1.3 Schematic of both primary and secondary aerosol production and growth of

marine aerosol (O'Dowd and de Leeuw 2007).

1.2.3 Physical Properties of Aerosols in the Marine Atmosphere

Physical properties of the marine aerosol are variable. The composition, number and

size distribution of the aerosol vary in time and space depending on a number of

different processes, which involve both primary and secondary particle production

(Fitzgerald 1991) (as discussed early in Section 1.2.2).

In general, aerosols are formed in three distinct size modes: the Aitken (particle

diameter, ~Dp <0.1 pm), the accumulation (~ 0.1 < Dp < 1.0 um), and the coarse (~Dp

> 1.0 um) modes. The size distribution of an aerosol population varies depending on

their sampling location, origins of air masses and meteorological conditions (wind

speed) (Seinfeld and Pandis 2006).



1.3 The Cycling of Halogens in the Marine Atmosphere

Halogens play important roles in anthropogenic stratospheric ozone-depletion chemistry
as well as the chemistry of the troposphere. Chlorine, bromine and iodine have become
important halogens, which are influenced the chemistry of the marine boundary layer
(MBL) (von Glasow and Crutzen 2014). The main sources of chlorine and bromine in
the MBL originate from seasalt aerosol which is produced by wave breaking at the sea
surface (Gong et al. 1997; Keene et al. 1999; Sander et al. 2003). Sources of
atmospheric iodine and the chemical cycling of iodine in the marine atmosphere will be

explained further in Section 1.4.

In the marine boundary layer, active halogen radicals (Cl and Br) are generated by
different processes. Cl radicals can be formed by the release of chlorine from seasalt
through acid displacement (HNOs, H2SO4) or photochemical processes (Saiz-Lopez and
von Glasow 2012). Active Br radicals are released to the MBL by different processes
such as autocatalytic liberation from seasalt aerosol, followed by photolysis (Toyota et
al. 2004; Sander et al. 2003). Fast oxidising active bromine atom by O3 in the
troposphere produces BrO (Pszenny et al. 2004).

Halogen radicals can influence the composition of the Earth’s atmosphere, especially
enhancing the oxidation of hydrocarbons and the destruction of Oz in near-surface
marine air (Saiz-Lopez and von Glasow 2012; von Glasow and Crutzen 2014; Pszenny
et al. 2004). Important halogen-related processes in the troposphere are shown in Figure
14.
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Figure 1.4 Schematic depiction of the most important halogen-related processes in the
troposphere (von Glasow and Crutzen 2014).

1.3.1 Chemical Cycling of Chloride

The chemical cycling of chloride in sea spray aerosol is important as it could link to
important chemical processes in the MBL and in ozone destruction. Released HCI from
aerosols could undergo recycle processes via a multiphase pathway to sustain
significant Cl-radicals (Pszenny et al. 2004). Chloride loss in seasalt aerosol is one of
the main findings of studies investigating the cycling of chloride (Duce et al. 1965;
Ayers et al. 1999; Johansen et al. 2000).

Johansen et al. (2000) reported CI" loss through acid displacement from both coarse and
fine mode aerosols of the tropical north Atlantic Ocean. In the Pacific Ocean, high
aerosol CI™ depletion was related to air pollution over the northern South China Sea
(Hsu et al. 2007). Newberg et al. (2005) also found CI" depletion in seasalt particles
over the north-eastern Pacific Ocean. Acid displacement of chloride in marine aerosols
generally occurs via sulphuric acid in submicron particles (fine particles size < 1um)
and by nitric acid in the super-micron particles (coarse particles size > 1um) (Newberg
et al. 2005).



The main reason for the CI deficit is the release of HCI from seasalt aerosol by acid
displacement, as well as the influences of other acids such as HNO3z, methanesulfonic
acid (MSA) and oxalic acid (von Glasow and Crutzen 2014). In acidified aerosol
particles, acid displacement causes dechlorination, a less volatile strong acid such as
H2SO4 or HNO3z which are derived from anthropogenic SO, and NOy displaces Cl in the
form of more volatile acid HCI (Gabriel et al. 2002; Newberg et al. 2005), as shown in

following reactions.

Equation 1.1  H2SOs4(g) + CI"(p) —> HCI (g) + HSO4 (p) (mainly in fine mode)
Equation 1.2 HNOz(g) + CI"'(p) —> HCI (g) + NOs (p) (mainly in coarse mode)
where g = gas and p = particulate

In summary, depletion of CI" directly links to acidic conditions of marine aerosol. This
halogen depletion was observed in both the Atlantic and the Pacific (Sander et al. 2003;
Avyers et al. 1999; Pszenny et al. 2004; Hsu et al. 2007; Newberg et al. 2005; Johansen
et al. 2000). Previous studies concluded that CI" loss in marine aerosol occurs through
reactions of acid displacement, with HNO3 in coarse mode and H2SOy4 in fine mode

aerosol.

1.3.2 Chemical Cycling of Bromine

There has been previous research which attempted to explain the chemical cycling of
bromine as reviewed by Sander et al. (2003). This section will focus on the chemical
cycling of bromine in the condensed phase aerosol. Bromine can be released from
aerosols depending on the pH of seasalt aerosol particles (von Glasow and Crutzen
2014). In the marine aerosol, submicron particles often show bromine enrichment,
whereas bromine depletion can occur in the super-micron seasalt aerosol (Sander et al.
2003; Gabriel et al. 2002). The enrichment factor of bromine (EFe;) is the ratio of
bromine concentrations to sodium concentration in aerosol to the same ratio for bulk
seawater. Details of calculations of the enrichment factor are shown in Section 2.5.4).
Evidence of bromine enrichment in size segregated aerosol can be found in Figure 1.5
(Sander et al. 2003).



Br depletion in the coarse mode aerosol was observed at various locations such as the
Atlantic Ocean (Johansen et al. 2000), the Pacific Ocean (Pszenny et al. 2004; Newberg
et al. 2005; Hsu et al. 2007), the Indian Ocean (Gabriel et al. 2002), and Cape Grim,
Tasmania (Ayers et al. 1999). Similar to CI" loss, Br loss in coarse mode aerosol has a
direct link with the presence of pollutants (Sander et al. 2003; von Glasow and Crutzen
2014).
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Figure 1.5 Enrichment factor of bromine in size segregated aerosols, where different
colours refer to different analytical methods (NAA = neutron activation analysis, IC =
ion chromatography and PIXE = particle-induced X-ray emission) (Sander et al. 2003).
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1.4 Review of Atmospheric lodine Chemistry

The chemistry of iodine in the atmosphere is very complex of which several chemical
reactions have yet to be understood. Over the past 15 years, much research has
attempted to study further iodine chemistry in the atmosphere, including that in the
marine aerosol. Atmospheric iodine chemistry is linked to ozone destruction and the

formation of new particles (Saiz-Lopez et al. 2012).

1.4.1 Sources of Atmospheric lodine

Recent research of Carpenter et al. (2013) reported that inorganic iodine, HOI and I,
could be produced by the reaction of Oz and iodide at the air-sea interface (Figure 1.6).
This reaction of Oz and iodide could account for ~75% of observed iodine oxide levels
of the tropical Atlantic Ocean. Previous research also found that emissions of biogenic
alkyl iodides from the oceans are also sources of atmospheric iodine, through
votalisation of iodine carriers such as CHzsl, C2Hsl, 1- and 2-C3H-I, and more reactive
polyhalogenated compounds such as CHzICI, CH2IBr, CH2l; and I,. In addition, Iz,
inorganic iodine can be produced by macro-algae and phytoplankton that live in the
upper ocean and in the coastal region (O'Dowd et al. 2004; Saiz-Lopez et al. 2012; von
Glasow and Crutzen 2014; Vogt et al. 1999).
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Figure 1.6 Schematic of HOI and I> production following the reaction of Oz and I at
the air-sea interface (Carpenter et al. 2013). Mass transfer from the aqueous to gas
phase is denoted by Kt and mixing from the interfacial layer to bulk sea water is
denoted by Kmix.
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1.4.2 Atmospheric lodine Photochemistry

The photochemistry of atmospheric iodine has become more important for tropospheric
photochemistry. Carpenter (2003) reviewed the photolysis of organoiodines generating
iodine atoms and its impact on iodine cycling in the marine boundary layer (MBL).
Lifetimes of these organoiodines range from many days (for CHzl, C2Hsl, 1- and 2-
CzH7l), many hours (CH2ICI), an hour (CH:IBr) or less, to ~ 5 minutes at midday
(CHa2l2). Both CH2ICI and CHal» are important compounds which contribute iodine to
the MBL, similarly to CHal.
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Figure 1.7 Schematic diagram of atmospheric iodine photochemistry in gas- and
condensed-phase processes. Dashed lines represent photolysis, and dotted lines illustrate
phase equilibration from aerosols. X and Y are halogen atoms, DOM is dissolved
organic matter, and SOI is soluble organic iodine (Saiz-Lopez et al. 2012).

In gas-phase processes, several cycles occur with iodine atoms as shown in the gas
phase atmospheric iodine photochemistry in Figure 1.7. In this figure, iodine monoxide
(10) radicals are formed by reaction of iodine atoms with Os. lodine atoms could be
regenerated rapidly though the photolysis of 10. Thus, during the day time, a steady
state exists between | and 10 (10y), this cycle shows no net effect on 10x or Os

chemistry (Carpenter 2003). The formation of HOI is another important pathway in gas-
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phase processes. HOI is believed to be the major component of gas-phase inorganic
iodine (Davis et al. 1996). Photolysis of iodine nitrate (IONO3) could allow subsequent
reaction between | atoms and ozone to occur. Another important pathway is the
formation of OIO, the self-reaction of 10 radicals. This OlO contributes to ozone

destruction and uptake to aerosol (Ashworth et al. 2002; von Glasow et al. 2002).

1.4.3 Uptake and Release of lodine in Aerosol

The uptake and release of iodine in aerosols are responsible for the net transfer of iodine
leading up to a 100 to 1000—fold enrichment of iodine in fine mode marine aerosol (by
comparing to the 1/Na ratio in seawater) (Baker et al. 2000; Hou et al. 2009; Moyers
and Duce 1972). Some iodine in the condensed phase can be released back to the gas
phase through interaction of HOI and available halide ions to form IBr and ICI (Vogt et
al. 1999). Early studies from Vogt et al. (1999) and Cox et al. (1999) introduced further
explanation on iodine cycling in aqueous phase aerosol. As shown in Figure 1.7, iodine
can be accumulated in the aerosol through several uptake pathways Ol1O, HOI, HIO3,
IONOz, and HI.

lodine was observed to be enriched (relative to sea water) in marine aerosol, with very
high value in fine mode aerosol (~up to 3700 in the wet season for particles size < 0.49
um) (Duce et al. 1983). Recent studies of Baker (2005) showed high enrichment of
iodine in fine mode aerosol of the AMT13 (enrichment factor, EFiodine ~1600), and a
smaller value for coarse mode aerosol (EFiodine ~94). In addition, EFioedine in fine mode
aerosol of two size segregated samples were more than 2900, and EFodine Was less than
100 for particles size >1.5 um (Baker et al. 2000). Continuous increasing values of the
EFi0dine Were observed with smaller particle sizes of the Antarctic aerosol sample,
highest EFodine (~388) was also observed in fine particles on the backup filter (Gabler
and Heumann 1993).
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1.5 Review of lodine Speciation in the Marine Aerosol

In the condensed phase aerosol, potential species of inorganic iodine are I, HOI, I, ICI,
IBr, and 103" (Saiz-Lopez et al. 2012). I and 103" are non-volatile ionic species which
cannot be converted back to the gas phase once they are formed. Reactive HOI and
insoluble IX (X = ClI, Br, 1) are not expected to accumulate in aerosols because these
compounds are active and potentially involved in removal mechanisms. Older
modelling studies concluded that iodate should be the only stable species in aerosol
(McFiggans et al. 2000; Vogt et al. 1999).

However, observational findings in the marine aerosol made by Baker (2004) and Baker
(2005) showed that the ratio of 17/103" in the marine aerosol to be highly variable. This
also can be found in results of iodine speciation in rain samples (Baker et al. 2001;
Gilfedder et al. 2007b). Another important iodine species is soluble organic iodine
(SOI), which became an interesting aspect of iodine speciation in the marine aerosol
through recent research (Baker 2005; Gilfedder et al. 2008; Lai et al. 2008; Xu et al.

2010a). Data relating to iodine speciation from different locations are discussed below.

1.5.1 lodine Speciation in Open Ocean Sites

The open oceans have become important sites for examining iodine speciation in the
marine aerosol. Studies of Baker (2005) present iodine speciation data for both the
northern and southern Atlantic. For the tropical north Atlantic, data of iodine speciation
can be found in Baker (2004), Baker (2005), Allan et al. (2009) and Gilfedder et al.
(2010). Data from the tropical south Atlantic were reported in Wimschneider and
Heumann (1995) for the tropical south Atlantic and in G&bler and Heumann (1993) for
the Weddell sea, near Antartica. Unlike the Atlantic Ocean, only studies of Lai et al.
(2008), Xu et al. (2010a) and Gilfedder et al. (2010) have reported iodine speciation

data in the Pacific Ocean.
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A summary of concentration ranges and average concentrations of the different iodine
species for the Atlantic (M55 and AMT13 campaign) and the Pacific Ocean are shown
in Table 1.1. Concentrations of total soluble iodine (TSI) of the Atlantic aerosol are
considerably higher than TSI value of the Pacific Ocean, whereas iodide seems to show
no difference between these two locations. However, for iodate, coarse mode aerosol of
the Atlantic shows higher concentrations for both M55 and AMT13, compared with
those observed for the Pacific. SOI concentrations show different values between the

two campaigns of the Atlantic, especially in fine mode aerosol.

Table 1.1 Concentration ranges and average concentrations (pmol m=2) and standard
deviations (in parentheses) of iodine species for the Atlantic and the Pacific Ocean.

Species Atlantic Ocean® Pacific
b
_ M55 AMT13 Ocean
(pmol m) _ _ (Fine+Coarse)
Fine Coarse Fine Coarse
TSI 4.4 49 3.2-57 3.3-20 5.8-45 1.2-28

(13 11) (18 + 16) (9.4+41)  (15+9.7) (9.4 +7.0)

lodide 0436 07-68 10-14 0611 ND — 16
(1.3+0.9) (22+16) (42+30) (43+29)  (28+3.4)

lodate 0.4-16 0947 ND _ 4.7 ND — 42 ND — 4.7
(5+41)  (11+14)  (12%11)  (10+£98)  (0.6%0.9)

SOl 3.0-30 04-14 1.0-89 02-5.7 0.8-17
(9.0£7.0) (52+28)  (40+18) (22+17)  (6.0%4.3)

4 = Data from Baker (2005) , ® = data from Lai et al. (2008). ND = not detectable.

For the comparison of proportions of iodine species, iodate is the dominant species in
aerosol of the tropical north Atlantic (~ 8 — 72% for Baker (2005) and 24 — 69% from
Allan et al. (2009)). Highest iodate concentrations in aerosols were observed in coarse
mode samples which were strongly influenced by Sahara dust for both the AMT13 and
M55 campaigns (Baker 2005). This high proportion of iodate (~80%) also was found in
data for the south Atlantic (Wimschneider and Heumann 1995). However, data of Baker
(2004) also found that iodate was absent in aerosols in the southern tropical Atlantic.
lodate also was undetectable at the northern end of the AMT13 cruise in air masses
originating from polluted European sources (Baker 2005). Previous studies of the
Pacific Ocean showed lower proportions of iodate compared to iodide and SOI (Lai et
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al. 2008), but Xu et al. (2010a) reported that the iodate fraction was higher (~ 8 — 82%),

especially over the Arctic Ocean.

Soluble organic iodine (SOI) also was observed to make up substantial proportions of
the total soluble iodine in the Atlantic Ocean (~ 2 — 65% for Baker (2005) and 14 — 50%
for Allan et al. (2009). This iodine species is present mainly in fine mode aerosol.
Similarly to the Atlantic, results of the Pacific found that SOI constituents ~ 7.5 — 100%
(Lai et al. 2008). However, smaller proportions of SOI in aerosol of the northwest
Pacific and the Arctic (<35%) were reported in Xu et al. (2010a).

1.5.2 lodine Speciation in Coastal Sites

Data relating to iodine speciation also are available from previous studies focused on
coastal sites (Gabler and Heumann 1993; Baker et al. 2000; Baker et al. 2001; Gilfedder
et al. 2008; Gilfedder et al. 2010). These data can be used to compare the behaviour of
iodine speciation between clean aerosol of open oceans and anthropogenic influenced

coastal aerosols.

Gabler and Heumann (1993) showed data of size fractioned aerosol from the German
North Sea coast, using a six stage impactor system. These data showed specific patterns
between anthropogenic influence of aerosols from the European Continent and
unpolluted marine aerosols. This research reported that iodate contributed less than 10%
of the total. Research of Baker et al. (2001) found that iodate proportions were between
<1 and 93% in aerosol samples collected from North Norfolk coast, England. Gilfedder
et al. (2008) also reported small proportions of iodate (~<1 — 6%) in aerosol samples
collected from Mace Head, on the west coast of Ireland. This study found that SOl was

the most abundant species in most aerosol samples.
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1.5.3 Summary

In summary, over the past few decades, there have been few studies on iodine speciation
in the marine aerosol from open oceans and coastal sites. These studies showed a high

variability on iodine speciation.

Most of the research focussing on iodine speciation in the marine aerosol has been
carried out in the Atlantic Ocean, while there were limited numbers of studies on iodine
speciation in the Pacific Ocean. Findings from previous studies showed highly variable
values of 171037, with a lack of clear understanding of what controls iodine speciation
(Saiz-Lopez et al. 2012).

While older model studies concluded that 103” would be the only stable iodine species in
aerosols (Vogt et al. 1999; McFiggans et al. 2000), recent research has found that I" and
SOl also contribute significantly to iodine speciation (Baker 2005; Gilfedder et al.

2008; Gilfedder et al. 2007a; Gilfedder et al. 2010; Lai et al. 2008), with SOI not even
included in those early modelling studies. Baker (2005) suggested that SOI is partly

formed by the reaction between aerosol organic matter and HOI.

Currently, there have been no standardised methods for selecting filter types for aerosol
collection, samples extraction and analytical techniques for iodine speciation. For filter
types, most of the previous research used cellulose filters (CF) to collect aerosol
samples. However, the recent studies of Xu et al. (2010a) and Gilfedder et al. (2010)
used glass microfibre filter (GF). Ultrasonication has typically been used to extract
aerosol samples. However, there might be problems associated with using both methods
of extraction. Using high temperature for extraction, there may be problems associated
with the breakdown of iodo-organic compounds (Baker et al. 2000). Also,
ultrasonication could cause conversion of inorganic iodine to soluble organic iodine
(SOI) (Baker et al. 2000; Saiz-Lopez et al. 2012).
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Table 1.2 Summary of previous findings of the speciation of iodine in the marine

aerosol
. i Methods for Species
Locations Filter Types / -;-A nalytical Determination
: echniques
References (Types of Extraction g i i
Pes & h for lodine Species  Species
sampling site) Method Speciation
p Measured Calculated
Gabler and Weddell Sea, CF / leaching with
Heumann Antarctica bidistilled water IDMS TI, A B
(1993) (Open Ocean) & sulphite sin.
Wimschneider Tropical CF&GF/
and Heumann S Atlantic Stirred at boiling  Anion exchange A B -
(1995) (Open Ocean) water
Tropical
Baker (2004) N Atlantic CF/ Voltammetry 1o A g c
Ultrasonication & UV Spec.
(Open Ocean)
Tropical
Baker (2005) N Atlantic CF/ Voltammetry 1o A g c
Ultrasonication & UV Spec.
(Open Ocean)
N&S CF/
Lai et al. (2008) Pacific S IC-ICP-MS TSI, A, B C
Ultrasonication
(Open Ocean)
Tropical
Allan et al. N Atlantic CF_/ _ Voltammetry TSI, A, B c
(2009) Ultrasonication & UV Spec.
(Open Ocean)
NW Pacific and GF / dissolved in
é‘é;’(t):)' Arctic 10%NHssln.at ~ Icicems 0 TSPA e
(Open Ocean) 185°C for 15 hrs
Eastern Tropical
Gilfedder et al. N Atlantic + N&S CF&GF/ Voltammetry &
. Thermal TI, TSI B
(2010) Pacific . Photometry.
Extraction
(Open Ocean)
Gébler and German North Sea  CF / leaching with
Heumann coast bidistilled water IDMS A B -
(1993) (Coastal Site) & sulphite sin.
Baker et al. SE England CFé;tgr;d at Voltammetry TI, TSI, cD
(2000) (Coastal Site) Ultrasonication & UV Spec. TH
Baker et al. SE England CF/ Voltammetry
(2001) (Coastal Site) Ultrasonication & UV Spec. TSl B A+C
Gilfedder etal.  Ireland West Coast CF/ IC-ICP-MS TSL A B c
(2008) (Coastal Site) Ultrasonication B P
Tsukada et al. Tokyo, Japan Multi-types of
(1987) (Terrestrial Site) filters N/A Ts1.B.D
Wimschneider Regensburg, CF / leaching with
and Heumann Germany bidistilled water ~ Anion exchange A B -

(1995)

(Terrestrial Site)

& sulphite sin.

Adapted from Saiz-Lopez et al. 2012. Details of abbreviations are shown in the following page.
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N/A = Not available, sIn.= solutions, IDMS = Isotope dilution mass spectrometry,
UVSpec.=UV/Vis Spectrophotometer. INAA = Instrumental neutron activation
analysis. Codes: iodide (A), iodate (B), Soluble organic iodine (C), insoluble organic
(D), total iodine (T1), total soluble iodine (TSI) and total inorganic iodine (TII)

Previous studies of Baker (2004) and Baker (2005) applied an electrochemical method
(voltammetry) for iodide analysis and UV/Vis spectrophotometry to detect iodate in
aerosol samples. Recent research of Lai et al. (2008), Xu et al. (2010a), and Gilfedder et
al. (2008) have coupled ion chromatography and inductively coupled plasma — mass
spectrometry (IC-ICP-MS) to determine iodine speciation. Table 1.2 shows a summary
of iodine speciation determination in aerosol from previous research. This summary
covers data from both open oceans and coastal sites. Thus, it is important to recognise
differences in methodology which might contribute to the very large variability in

iodine speciation observed.

1.6 Key Research Objectives

The overall research aim is to understand and identify key controls of iodine speciation
in the marine aerosol. In order to achieve this, type of air mass and chemical
characteristics of the marine aerosol will be used to consider the links between different

behaviours in iodine speciation.

Specific research objectives are shown as follows:

- To examine a suitable filter type for aerosol collection and to develop optimum
extraction methods and conditions.

- To develop an appropriate analytical method for the determination of iodine
speciation.

- To apply these methods to the analysis of aerosol samples collected during field
campaigns in the Atlantic and Pacific Oceans.

- To examine the iodine speciation and Cl and Br cycling, together with air mass
and background chemical characteristics, in these samples.

- To compare findings of this research with previous studies, in order to link the

potential key controls for iodine speciation in the marine aerosol.
19



The next chapter of this thesis, Chapter 2 will explain research methods, including
aerosol sampling methods, analytical techniques for major ion analysis and data analysis
which were used in this research. Chapter 3 discusses the method development for
iodine speciation and appropriate extraction methods which will be applied to aerosol
samples. This chapter will also explain the basic principles of analytical methods for the
determination of iodine speciation. Chapters 4 and 5 will show results and discussion of
the iodine speciation of the Atlantic Ocean and the western Pacific Ocean aerosols
respectively. In these two result chapters, air mass back trajectories will be used to
classify types of air mass and their potential influences. Finally, chapter 6 will display a
comparison of iodine speciation between findings of this research (both the Atlantic and
the Pacific) and previous studies. This chapter will also discuss and summarise key
controls of iodine speciation in the marine aerosol, as well as recommendations for

future work.
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Chapter 2 Sampling and Analytical Methodologies

2.1 Introduction

This chapter aims to describe research methods which were used in this study. These
research methods include aerosol sampling, rain sample collection, aerosol sample
extraction, analytical methods for major ion analysis and data analysis. Analytical
methods for the total soluble iodine (TSI) and iodine speciation analysis will be

described in Chapter 3.

2.2 Aerosol and Rain Sample Collection

2.2.1 Aerosol Collector - High Volume Air Sampler

In this research, Tisch high volume air samplers were used as aerosol collectors (Figure
2.1). Aerosol particles could be collected which are based on the aerodynamic principle
of particles (Seinfeld and Pandis 2006). The aerosol collector comprises of a shelter,
filter holders (cassette), air pump, a timer and a circular-chart recorder box. For filter
holders, a multi-stage cascade impactor and a single-stage impactor are the two main
types for aerosol sample collection. For the air pump, there were two types of air
volume controller, i.e. a mass flow controller and a controller with the volumetric
control system. The flow rate of a mass flow controller can be adjusted manually.
However, for the volumetric control system, the flow rate was designed after calibration
through an automatic control system. Details of the methods for aerosol sample

collection are described in Section 2.2.4.

The cascade impactor cassette with filters was placed in the housing inside the top of
the collector. Inside the air sampler (Figure 2.1b), the new circular chart in the recorder

inside the door was installed for each new sample collection. Sampling time was
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recorded from the recorded box inside the collector before and after each aerosol
sampling, as well as air temperature, atmospheric pressure, wind speed and relative
wind direction. Approximate sampling time was ~23 hours. For the AMT21, the
sampling time was terminated before the cruise stop for daily CTD sampling. However,
in the very clean marine atmosphere of the southern hemisphere, the collection time was

changed to 48 hours.

a) Plate of cascade impactor (inside housing) and
slotted filter

b) Control
box, air
pump and
circular-
chart
recorder box
(inside)

¢) Wind sector
controller

d) Rain
collecting
funnel

Figure 2.1 High volume air sampler, rain collecting funnel, wind sector controller and
cascade impactor.

2.2.1.1 Calibration Procedures

The calibration of the aerosol collector flow rate was required before conducting aerosol
collection. The aerosol collector flow rate was calibrated using the stagnation pressure
process, which is based on the mass flow controlled principle. Readings from the
manometer and the chart recorder as well as air temperature and the atmospheric
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pressure were used to calculate flow rate and corrected chart recorder. The approximate
desired flow rate was about 1.0 m® min. So, the flow rate on the chart recorder was set
according to the calculated value after the calibration (CFM unit). An example of the
calculation sheet for the volumetric flow controlled aerosol samples using stagnation

pressure is shown Appendix A.

2.2.2 Cascade Impactor / Filter Cassette

For collecting size distributed aerosols, the high volume air sampler was attached to a
multi-stage cascade impactor (six stages of the plate). For this research, the coarse mode
aerosol of almost all samples of AMT21 and TransBrom were collected using only
stages 3 and 4. However, there were 2 AMT21samples (115 and 130), which were
collected using all six stages, stages 1 — 4 for coarse mode aerosol, and stages 5 — 6 and
the back up filter for fine mode aerosol. Details of modal particle sizes for the six stages

of the cascade impactor are given in Table 2.1.

Table 2.1 Modal particles size of different stages of the cascade impactor at the flow
rate of ~1.0 m® min™,

Aerosol Mode Cascade Impactor Stage Modal Particles Size

(nm)

Stage 1 >12

Coarse Mode Stage 2 >0
Stage 3 2.4

Stage 4 1.6

Stage 5 0.9

Fine Mode Stage 6 0.4
Backup filter <0.1

2.2.3 Filter Preparation

Both glass microfibre filter (GF) and cellulose filter (CF) were used to collect aerosol

samples in this research. For GF, this type of filter was used on AMT21 and SHIVA

cruises, however, CF filters were used in TransBrom project. Before using the GF

filters, they were cleaned in order to remove the inorganic contaminants. Dried GF
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filters were ashed at 450°C overnight to get rid of potential organic matter in the filters.

However, CF filters were used to collect aerosol samples directly without cleaning.

The procedure of cleaning GF filters can be described as follows. Glass microfiber
filters, both slotted and backup filters were washed using ultrapure water (18.2 MQcm™,
Purelab Ultra, MilliQ water). Each filter was rinsed thoroughly by MilliQ water, then, it
was soaked in the first MilliQ water bath for one hour. After that the filter was then
washed again with MilliQ water, followed by soaking in a second MilliQ water bath for
5 minutes. Finally, the filter was rinsed thoroughly using MilliQ water and was
transferred to drying racks in a laminar flow cabinet. Dried filters were wrapped in
aluminium foil and then ashed at ~450°C overnight. After cooling, ashed filters inside

aluminium foil were wrapped in a clean plastic bag.

2.2.4 Sample Collection (including Use of a Wind Sector Controller) and Storage

2.2.4.1 Sample Collection

During the AMT21 and SHIVA cruises, glass microfibre filters (GF, Tisch filter TE-
230-GF for slotted filter and TE-G653 for backup filter) were used to collect aerosol
samples. Aerosol samples from TransBrom were collected using cellulose filters (CF,
Whatman 41). Both coarse and fine mode aerosols were collected during AMT21 and
TransBrom, but, only bulk samples were collected during the SHIVA campaign.
TransBrom and SHIVA aerosol samples were collected by other scientists during those
cruises. However, samples from AMT21 were collected by the author during the
campaign in 2011. Aerosol samples from the roof of the University of East Anglia
building (UEA roof) were collected twice and used in the extraction experiment
reported in Chapter 3. Details of aerosol collection methods for all aerosol samples are

shown in Table 2.2.

Two types of filters were used during AMT21 aerosol sample collection, slotted and
back up filters. Slotted filters (14.3 x 13.7 cm slotted glass microfiber filter) were used
to collect coarse mode aerosol (cascade impactor stage 3 and 4, with a particle modal

size of ~>1.0 um) and fine mode aerosol (particle modal size ~< 1.0 um) were collected
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using back up filters. For SHIVA and UEA roof samples, only back up filters were used

to collect aerosol material.

Table 2.2 Details of Aerosol Collection Methods adopted for AMT21, TransBrom,
SHIVA and aerosol sample collection from the UEA roof.

Aerosol Collector

Cruises / Collection Filter Wind Sector
S | Dat T Controller Air Flow Types of Collected
Ampes o yPeS (WSC) Controllin Cassette /
g
Types of Samples
01/10/2011 - Mass Flow Cascade Impactor /
AMT21 09/11/2011 GF Yes Controller Fine + Coarse
TransBrom 10/10/2009 — CE No Vcc):lgmfglric Cascade Impactor /
23/10/2009 Fine + Coarse
System
Volumetric .
16/11/2011 — Filter Cassette /
SHIVA 29/11/2011 GF No Control Bulk
System
UEA Roof .
forthelst  040022011- ., o " V‘é'é‘f?;fg['c Filter Cassette /
extraction 07/02/2011 Bulk
) System
experiment
UEA Roof .
forthe 2nd  05/07/2012 — GE + CF No V%Ig;?fglnc Filter Cassette /
extraction 08/07/2012 Bulk
. System
experiment

2.2.4.2 The Use of Wind Sector Controller

A wind sector controller (WSC) is an instrument which helps to minimise the collection
of contaminated samples. This WSC was connected to both an aerosol collector and an
anemometer, which was used for measuring the relative wind speed and the wind
direction (Figure 2.1c). The anemometer was installed nearby the aerosol collector. The
programme of this WCS was set to turn on the high volume air sampler when the
relative wind speed is more than 2 ms?, and the relative wind direction is within the
designated range of ~80° to 145° relative to the bow of the ship, avoiding contaminated

wind which comes from the back of the vessel where the ship’s stacks are located.
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The WSC was used only during the AMT21, there was no WSC available during
aerosol collection during both TransBrom and SHIVA cruises. So, for these two Pacific
cruises, control of potentially contaminating air was carried out manually. The aerosol
collector was turned off when the relative wind direction came from the back of the
vessel. For both TransBrom and SHIVA, there was no indication of contamination from

the ship (e.g. black colouration of filters indicating the presence of ship’s soot).

2.2.4.3 Sample Storage

After collection, collected filters were folded in half, so that the two faces of the folder
touch each other. Then, they were wrapped in aluminium foil, placed into zip-lock

plastic bags. These bags were stored at -20°C in a freezer.

2.2.5 Filter Blanks

Three types of filter blanks were collected to examine potential different influences: a
cassette blank, a motor blank and an exposure blank. For the cassette blank, filters were
loaded into the cassette, covered, placed in a plastic bag and left for ~24 hours. The
motor blank was treated in exactly the same as normal samples, except that once the
cassette was loaded in the sampler, then, the sampler was switched on to allow the
motor to run for only 5 — 10 seconds. For the exposure blank, filters were placed in the
cassette, then, loaded in the sampler and the cassette was placed into the sampler for
~24 hours without switching on the sampler. High values of potential contaminants
could be observed in the exposure blank. Thus, only the cassette blank and the motor
blank were used to determine values of blanks which were used in the calculations. A

mean value of detected blanks for these two blanks was used for blank subtractions.

2.2.6 Rain Sample Collection and Storage

Rain samples were collected using a plastic funnel connected to clean polyethylene
bottles (see Figure 2.1d). Both the rain sample bottles and the rain collecting funnel

were soaked in a 5% decon solution for 48 hours, followed by rinsing thoroughly with
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deionised water. After that, these rain sample bottles and funnel were soaked in
deionised water for 48 hours before rinsing with deionised water 3 times. Rain sample
bottles were rinsed by MilliQ twice before filling with MilliQ water and placed into zip-
lock plastic bags. Before collecting rain samples, the rain collecting funnel was rinsed
thoroughly using MilliQ. After collection, rain samples were put in zip-lock plastic bags

and stored in a -20°C freezer.

2.3 Aerosol Sample Extraction and Rain Sample Preparation

for Analysis

2.3.1 Extraction Procedures

A quarter of each filter was cut into small pieces (~ 0.5 cm x 1.5 cm), then, placed in a
50 mL plastic centrifuge tubes. For coarse mode aerosol, slotted filters of the cascade
impactor stages 3 and 4 were combined together. 25 mL of MilliQ water were added,
then, samples were extracted by shaking at room temperature for 30 minutes using a
rotation shaker (an orbital mixer, Denley) with moderate shaking speed. Shaking at
room temperature is the extraction procedure for aerosol samples in determining major
ions and iodine speciation for AMT21 and SHIVA. However, for TransBrom major ion
analyse, aerosol samples were extracted by ultrasonication and analysed as published in
Martino et al. (2014b). Samples of TransBrom for iodine speciation analysis were
extracted by shaking at room temperature for 30 minutes. Extracted samples were then
filtered through a 0.2 pum syringe filter (cellulose acetate membrane). The collected
filtrate was transferred into 15 mL plastic centrifuge tubes, then, stored in a -20°C

freezer for further analysis.

Details of selected conditions (i.e. shaking at room temperature for 30 minutes) for

aerosol sample extraction will be explained and discussed further in Chapter 3.
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2.3.2 Rain Sample Preparation

Rain samples were defrosted at room temperature, then, they were filtered through a 0.2
pum syringe filter (cellulose acetate membrane). The collected filtrate was transferred

into 15 mL plastic centrifuge tubes and stored in a -20°C freezer for further analysis.

2.4 Analytical Methods

This section covers analytical methods for major ion analysis only. Details of the
analytical methods for total soluble iodine (TSI) and iodine speciation determinations

will be explained in Chapter 3.

2.4.1 Major lon Analysis by lon Chromatography

2.4.1.1 Reagents

Stock standard solutions were prepared using the following solid chemicals with MilliQ
water, i.e. sodium (from sodium chloride), ammonium (from ammonium chloride),
potassium (from potassium chloride), manganese (from magnesium chloride), calcium
(from calcium chloride), chloride (from sodium chloride), bromide (from sodium
bromide), nitrate (from sodium nitrate), sulphate (from sodium sulphate) and oxalate
(from sodium oxalate). These stock standard solutions were used to make up
intermediate standard solutions. Intermediate standard solutions were used to prepare
the working standard solutions. Both intermediate standard and working standard
solutions were prepared for every new batch of sample analysis. Different concentration
ranges of anions and cations working standard solutions for different types of aerosol
samples were prepared according to concentrations of those ions found in previous
studies (Baker et al. 2006a; Martino et al. 2014b). Concentration ranges for working

standard solutions for cations and anions are shown in Table 2.3.
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Table 2.3 Concentration ranges of working standard solutions for cations and anions.

Concentrations Ranges (umol L?)

lons ) Aerosol
Rain
Blank Fine Coarse Bulk
Cations
Sodium (Na*) 0-200 0-60 0-200 0-1000 0 - 1000
Ammonium
(NH:") 0-20 0-20 0-300 0-30 0-200
Potassium (K*) 0-50 0-4.0 0-50 0-50 0-50
Magnesium 0-100 0-40 0-50 0 - 150 0200
(Mg™)
Calcium (Ca?") 0-50 0-4.0 0-50 0-100 0-200
Anions
Chloride (CI") 0-200 0-60 0-250 0-1000 0-1000
Bromide (Br) - 0-45 0-10 0-10 0-10
Nitrate (NO3) 0-10 0-8.0 0-50 0-150 0-200
Sulphate (SO4?*) 0-100 0-8.0 0-350 0-100 0-200
Oxalate (C,04%) 0-10 0-4.0 0-10 0-10 0-12

2.4.1.2 lon Chromatography System

Anion and cation concentrations were measured using an ion chromatography system
Dionex ICS-5000 (Dionex Ltd., Camberley, UK) with suppressed conductivity
detection. This method is well established at the School of Environmental Sciences,
University of East Anglia. Previous studies that used similar methods and conditions of
this ion chromatography system are found in Baker et al. (2006a) and Martino et al.
(2014b). The data of this system were processed using Chromeleon software 6.8
(Dionex Ltd., Camberley, UK).

The following setup was used for anion analysis: Dionex lon Pac™ AG18 guard
column (50 mm x 2 mm), Dionex Ion Pac™ AS18 analytical column (250 mm x 2 mm),
gradient elution with potassium hydroxide (KOH) from 12 mM to 34 mM, flow rate:

0.250 ml/min, column temperature: 30°C.
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The following setup was used for cation analysis: Dionex Ion Pac™ CG12A guard
column (50 mm x 2 mm), Dionex Ion Pac™ CS12A analytical column (250 mm x 2
mm), gradient elution with methanesulfonic acid (MSA) from 11 to 25 mM, flow rate:

0.250 ml/min, column temperature: 30°C.

A range of six anion and cation standards (concentration range depending on types of
samples, see Table 2.3) as well as MilliQ water were analysed at the beginning and at
the end of each sample batch for the calibration of the instrument and to account for any

instrument drift during the run.

2.4.1.3 Instrumental Drift

For checking instrumental drift, standard solutions were analysed at the beginning and
at the end of each analysis. Figure 2.2 shows examples of two calibration curves of
sodium standard solutions at the beginning and at the end of each batch of sample
analyse. There was no difference between the slope and R? values for both sets of
standard solutions. For calculation of the major ion concentrations, instrumental drift
was used in the calculations. This calculation provided actual concentrations without

influences of instrumental drift.

12
Begin std. sIn. : y = 0.0098x + 0.7481 .
10 RZ=0.9988 X Begin
A End
© 8 Linear (Begin)
S v T B Linear (End)
< 6 |
X
3
o 4
9 | End std. sIn. : y = 0.0098x + 0.843
R2? =0.9989
0 -

0 200 400 600 800 1000 1200

Concentration (UM)

Figure 2.2 Two calibration curves of sodium standard solutions at the beginning and at
the end of a batch of samples, where std. sIn. means standard solutions.
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For instrumental drift, the calculation is based on the assumption of linear gradient
behaviour. The corrected concentration of the sample was calculated by considering
both corrected factors of converted concentrations of samples from both the beginning

and the end standard solution.

(N-n+1)
(N+1)

Corrected Factors for the beginning standard curve (CFgegin) = (2.1)

Corrected Factors for the end standard curve (CFenqg) = (1\(12)1) (2.2)

where N = numbers of samples in the batch; n = position number of that sample

(N—-n+1)
(N+1)

+ [Cend] =2 (2.3)

(N+1)

Corrected concentrations = [Cgegin]

where [Cegegin] = Concentrations of samples calculated from the beginning standard curve

[Cena] = Concentrations of samples calculated from the end standard curve

In order to check analytical accuracy, a certified reference material (CRM, AES-05
Canada Environment) was used at the beginning and at the end of each sample batch.
Results of the CRM provide the confidence of the accuracy of the ion chromatography
system. The percentage recoveries of ions from the CRM solution are shown in Table
2.4.

Table 2.4 Measured concentrations (umol L) and percentage recoveries in analysed
CRM solution (n = 2).

CRM Measured Values
lons Concentrations Mean Measured o

(umol L)* Concentrations (umol L*%)™ % Recovery
Sodium 79+10 149109 189 + 55
Ammonium 17.3+£1.7 15.4+0.1 89.1+8.8
Magnesium* 15+£03 3.0x0.2 199 + 50
Potassium* 0.7+£0.3 <0.8 <108
Calcium 47+0.8 57+12 122 + 56
Chloride 6.3+0.9 72%0.2 115+ 18

Data of measured CRM values were obtained from analysing blank samples. "Numbers of
range of CRM concentrations are mean + standard errors, “numbers of range of mean
measured concentrations are mean * spreads of duplicated measurements and ““numbers of
ranges of % recovery are mean * errors of calculations derived from spreads of mean
measured concentrations. * are ions which have very low concentrations of in CRM solution.
9" means values of detection limits.
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2.5 Data Analysis

2.5.1 Blanks and Detection limits

Three types of blanks were analysed and used for blank corrected values. For most
cases, concentrations of all blanks per filter were used for blank correction. However, in
some cases, lowest blanks values were selected instead. When samples were below
detection, 75% of the detection value was used as a concentration of that sample (dI).
Detection limits were calculated using 30 of the blank value and assuming equivalent
air volume of 1,400 m® (~23 hours sampling times) for AMT21 and SHIVA (Baker et
al. 2006a). However, approximate air volume of TransBrom is 1,500 m3 (~23 hours
sampling times) (Martino et al. 2014Db). Details of filter blank values and atmospheric
detection limits for soluble aerosol major ions for AMT21, TransBrom and SHIVA

cruises are shown in Table 2.5.

2.5.2 Calculations of Atmospheric Concentrations

Atmospheric concentrations were calculated based on converting concentrations in
extracts (moles L) to the total quantity of analyte on each filter, after appropriate blank
correction. Then, the total quantity of each filter was divided by the known volume of

air filtered for each sample.

Blank corrected of moles per filter (moles)

moles
filter

)— Blank value (mOleS) (2.4)

= Measured number of moles per filter ( lter

lon Atmospheric concentrations (mol m)

_ Blank corrected of moles per filter (moles) 2.5)

Air Volume (cubic metre)
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Table 2.5 Aerosol collection substrate blank values and limits of detection for aerosol soluble ions.

Substrate blanks (pmol / filter)

Detection limits (nmol m-3)

AMT?21 TransBrom* SHIVA AMT?21 TransBrom* SHIVA
Analyte

Fine Coarse Fine Coarse Bulk Fine Coarse Fine Coarse Bulk
Cations
Na* 12 3.1 24 1.5 15 2.2 0.35 0.69 0.68 3.0
NH4* <0.17 <0.04 3.4 0.53 0.17 0.16 0.04 0.28 0.15 0.16
K* 1.1 0.14 0.08 0.06 1.45 0.31 0.03 0.04 0.04 0.41
Mg?* 0.50 0.12 0.29 0.20 0.49 0.02 0.02 0.03 0.07 0.05
Ca** 0.17 0.03 0.51 0.51 0.16 0.05 0.01 0.08 0.33 0.11
Anions
ClI 3.6 0.22 8.3 4.5 6.6 2.1 0.10 1.3 0.40 7.8
Br <0.04 <0.01 <0.04 <0.04 0.04 0.04 0.01 0.02 0.02 0.04
NO;5 0.41 0.05 0.28 <0.11 0.33 0.14 0.02 0.09 0.10 0.19
SO4* 0.44 0.05 0.14 0.06 0.62 0.43 0.02 0.04 0.17 0.50
C204* 0.08 <0.01 0.19 0.06 52 0.05 0.01 0.02 0.01 0.05

* obtained data from (Martino et al. 2014b), approximate 1500 m? for 23 hrs sampling, but for AMT21 and SHIVA, using 1400m? for 23 hrs sampling time.
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2.5.3 Calculations of Non-seasalt lons Concentrations

Non-seasalt ions concentrations (nss) of aerosol were calculated from the difference
between the total concentrations of ions and its seasalt-derived concentration. The
seasalt concentrations were calculated from the aerosol concentrations of Na*, using the
concentration ratio of the component of interest to Na* in seawater (Baker et al. 2006a).
Concentrations in seawater of all cations and most of anions refer to values from Stumm
and Morgan (Stumm and Morgan 1981), except for bromide (Libes 1992) and iodine
(Wong 1991).

nss ion concentrations Total lon Concentration [MI] — Seasalt concentration

Ion Concentration in Seawater

- [MI] a ([MI] X Na Concentration in Seawater) (2'6)
where [M1] is the total ion concentration (n mol m)
. Ion C trationin S t
Seasalt concentrations = [MI] x o e (2.7)

Na Concentration in Seawater

2.5.4 Calculations of Enrichment Factor (EF)

The enrichment factor (EF) for aerosol iodine (EFiodine) (Truesdale 1995) and bromine
(EFer) (Sander et al. 2003), relatively to seawater composition can be calculated as in

the following equation:

. (X/Na)
Enrichment Factor (EF) = aerosol (2.8)

(X/Na)seawater

where X = Concentrations of iodine and bromine
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2.5.5 Propagation of Error

Standard error propagation methods were used to determine uncertainties in calculated
atmospheric concentrations (Miller and Miller 2010). This propagation of error was
applied to all calculation stages of data analysis.

Two types of errors were taken into account for error propagation: analytical error and
standard deviations of repeated analyses. Analytical errors were derived from
uncertainties in calibration curves (Miller and Miller 2010). Where analysis was
repeated, standard deviation (or spreads for n = 2) were calculated. When both
analytical error and standard deviation / spread were available during error propagation,
the higher of these values were used. For data of major ions in Chapter 4 and Chapter 5,

only analytical errors were shown as a single sample analysis was available.

2.5.6 Test of Significance of Data

The significant test of two sets of data will be conducted by using a comparison of two
experimental means (t-test) (Miller and Miller 2010). In order to test Ho: p1 = 2 of two
samples which have different populations and assuming that the two samples have

unequal standard deviations.

The static t is calculated from the following.

t = ——% (2.9)

where x = means of both samples,
s = samples standard deviation, and n = number of sample size
with

2
2 2

S S
(_1+_2>
nq1 np

4 4

1 . S2
nz(n —1)Tn2(n -1)

1\ 22

degrees of freedom = (2.10)
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Chapter 3 Development of Analytical Methods and
Sample Extraction for lodine Speciation in the

Marine Aerosol

3.1 Introduction

This chapter discusses the development of analytical methods and sample extraction for
iodine speciation in marine aerosol samples. The first part of this chapter will discuss
problems associated with using ultrasonication for aerosol extraction of cellulose filters.
Then, this study will demonstrate appropriate extraction methods as well as analytical
techniques for iodine speciation. The last part of this chapter will present results of
analytical techniques for iodine speciation and extraction conditions which will be
appropriate for real aerosol sample extraction.

3.1.1 Problems Associated with Ultrasonication and Cellulose Filters

Over the past few decades, different extraction approaches have been introduced in
order to achieve optimum iodine extraction from aerosol samples such as
ultrasonication or extraction under high temperature conditions (Baker et al. 2000).
Inorganic iodine species, iodide (I") and iodate (I03") are the two main ionic species
which can be measured from extracted aerosol samples. For extracting these iodine
species, there have been some cautions with regards to their stability under extraction

methods, especially ultrasonication.

Ultrasonication has been used widely for extracting iodine species in aerosol samples.
However, there have been some concerns with regards to the effects of this extraction
method (Baker et al. 2000), especially problems associated with using cellulose filters
(Xu et al. 2010b). Under ultrasonication extraction, cellulose filters could interfere with

the stability of iodide species. This interference was explained by Saiz-Lopez et al.
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(2012), this review pointed out that the absence of iodide was due to the acoustic
cavitation leading to the creation of oxidising species i.e. H2O. and superoxide, that
could then release iodine (I2) from aerated solutions of iodide. Consequently, this iodine
could react with organic substances to form soluble organic iodine.

Further, problems associated with cellulose filters have been stated by Xu et al. (2010Db).
This study suggested the effect of filter materials on the stability of iodine species. Their
experimental results revealed that glass microfiber filters (GF) are more suitable than
cellulose filters (CF) for iodine extraction under ultrasonication. With longer
ultrasonication, the cellulose texture of the CF filters may interfere with the stability of
iodide species; on the other hand, the GF blank did not show this interference (Xu et al.
2010b; Baker et al. 2000).

3.1.2 Effects of Temperature on Aerosol Extraction

There have been some concerns of using high temperature extraction, with regards to
breaking down of organoiodine compounds in aerosol samples. Apart from
ultrasonication, Baker et al. (2000) have examined the effect of temperature on iodine
extraction. This study showed that a lower extraction yield could be found with samples
extracted at low temperature (20°C), compared with extraction at 95°C for 3 hours. This
high temperature extraction however could cause the conversion of the organic fraction

to detectable iodine.

The effect of high temperature extraction was also found in Xu et al. (2010b), extracting
aerosol samples using pressurising decomposition with dilute ammonia at 105°C for 2
hours. This high temperature extraction provided significantly high extraction yields of
iodine species, compared with ultrasonication. This pressurising decomposition with
high temperature may destroy some unknown form of organo-iodine compounds in

aerosol during the extraction.

Thus, from the above concerns of using cellulose filters to collect aerosol samples, it is
important to reconfirm how iodine species behave under different extraction conditions,

i.e. comparing ultrasonication with extraction using shaking at different temperatures.
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Comparing both CF and GF under different extraction conditions will allow us to make

sure that aerosol samples can be extracted with optimum results.

3.1.3 Experimental Objectives

The aim of this section is to compare the analytical performance of analytical methods
for determining iodine species (both iodide and iodate) between IC-ICP-MS and the
voltammetric analysis for iodide and UV spectrophotometric analysis for iodate.
Another important aim of this section is to identify appropriate extraction conditions for
iodine speciation as well as finding suitable filter types to use for collecting aerosol
samples. This experiment was also designed to investigate changes in iodine species
under different extraction conditions and the length of extraction.

3.2 Analytical Methods

3.2.1 Analytical Methods for Total Soluble lodine (TSI)

3.2.1.1 Reagents

Stock standard solutions of both iodide (from potassium iodide) and iodate (from
potassium iodate) were prepared in MilliQ water. These stock standard solutions were
used to make up intermediate standard solution by combining both iodide and iodate
stock standard solutions together. Then, intermediate standard solutions were used to
prepare working standard solutions. Working standard solutions were prepared for
every new batch of samples analysis. For analysing aerosol samples, 6 — 7 working
standard solutions were prepared, which covered low, medium and high ranges of

concentrations for both iodide and iodate (~0 — 300 nM).
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3.2.1.2 Inductively Coupled Plasma — Mass Spectrometry (ICP-MS)

Total soluble iodine (TSI) in aerosol samples was measured using inductively coupled
plasma — mass spectrometry (ICP-MS) (Thermo Electron, X5 Series I). The four main
components of the ICP-MS are a sample induction system, an ionisation source, a mass
selective analyser and an ion detector. This ICP-MS is fully controlled by the software
Plasma Lab from Thermo Electron Corporation. Previous research which used similar
methods and conditions for analysing TSI by ICP-MS can be found in Baker (2004) and
Baker (2005). For the analysis of TSI, 0.1% Tetramethylammonium hydroxide (TMAH)

was used as rinse solution.

For standard solutions, stock iodate standards were prepared by dissolving potassium
iodate with MilliQ (~0.01M). These stock standard solutions were used to make up
intermediate standard solution. Then, intermediate standard solutions were used to
prepare working standard solutions which were prepared for every new batch of sample

analysis.

For checking instrumental drift, standard solutions were analysed at the beginning and
at the end of each analysis (Figure 2.2). This figure shows examples of two calibration
curves of seven TSI standard solutions at the beginning and at the end of sample
analysis. This figure shows a very slight difference between slope and R? values for
both sets of standard solutions. For calculations of TSI concentrations, instrumental drift

was taken into account in the calculations (see section 2.4.1.3).

1.5E+06
Begin std. sIn. y = 1.366E+03x + 4.448E+03 )
1.3E+06 R2=9.999E-01 X Begin
A End
« 1.0E+06 1 Linear (Begin)
E --------- Linear (End)
< 7.5E+05 |
3
& 5.0E+05 -
| #End std. sln. y = 1.340E+03x + 2.904E-+04
25E+05 ) R2 = 9.996E-01
0.0E+00 &

0 200 400 600 800 1000 1200

Concentration (nM)

Figure 3.1 Two calibration curves of TSI standard solutions at the beginning and at the
end of a batch of samples, where std. sIn. means standard solutions (calibration curves
for 1% exp. spiked samples analysis).
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3.2.1.3 Blanks and Detection limits

Similar to calculating major ions in section 2.5.1, blank samples were used to correct
aerosol extract concentrations. Details of substrate blanks and detection limit values are

shown in Table 3.1. This table includes values of all detection limits.

Table 3.1 Substrate blank values and limits of detection for TSI of aerosol samples
(analysed by ICP-MS).

Samples Filter Types Substrate blanks Detection limits
(nmol / filter) (pmol m?)
AMT21 Fine 0.8 0.5
Coarse 0.2 0.2
TransBrom Fine 0.8 0.1
Coarse 0.2 0.2
SHIVA Bulk 2.5 0.9

Detection limits were calculated based on collected air volume, 1,400 m® for AMT21 and
SHIVA and 1,500 m? for TransBrom.

3.2.2 Electrochemical Measurement of lodide

Electrochemical analysis using cathodic stripping square wave voltammetry (CSSWV)
was used to determine iodide in extraction samples. Previously, this electrochemical
method has been widely used to analyse iodide in water (seawater) samples (Luther et
al. 1988; Moreda-Pineiro et al. 2011). This analytical method also can quantify iodide
concentrations in environmental and biological samples (Campos 1997; Edmonds and
Morita 1998). Further, Baker (2004) and Baker (2005) used this method to analyse
iodide in aerosol samples. However this analytical method is a time consuming

measurement.

Cathodic stripping square wave voltammetry (CSSWV) was used to determine iodide
concentration in samples. The voltammeter consists of three main electrodes; 1) hanging
mercury drop working electrode (HMDE), 2) standard calomel electrode (SCE) or
reference electrode and 3) the glassy carbon auxiliary electrode, measuring current

across the cell. In the sample cell, a rotating Teflon rod was used to stir the samples
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while nitrogen gas is used to purge oxygen from the sample. The main principle of
CSSWV involve performing an additional oxidation stage to convert all dissolved

iodine forms to iodate (Moreda-Pineiro et al. 2011)

The standard addition method was applied during the analysis. An Eco-chemie
nAutolab Type Il voltammeter was used to measure iodide, connected to an IME 663
control unit and a Metrohm 663 VA hanging mercury drop electrode in the HMDE
mode. lodide standard solutions (made up from solid potassium iodide) and triton-X
100 solutions were used as well as MilliQ water. Sample dilution with MilliQ water in a
proportion of 1:10 was prepared in the sample cell, adding 75 pL of 0.2 % triton-X 100
solution and 50 uL of 1M potassium chloride (KCI). Then, the solution was purged with
nitrogen gas for 300 seconds. A deposition potential of -0.1 V was used for 60 seconds.
Then, a square wave modulated stripping potential 0 to -0.55 V was applied. Peak
height was measured, followed by addition of a quantity of potassium iodide (10 or
10" M) to approximately double the height of the original peak. Then, the solution was
purged for another 60 seconds. Five further scans were carried out and the peak heights
were recorded. Quantifying the iodide concentration was calculated by the difference in

peak height before and after adding potassium iodide standard.

3.2.3 Spectrophotometric Measurement of lodate

The UV spectrophotometer was used to measure iodate. The main principle of the
quantification is the reaction with acid and excess added iodide, providing the iodonium
ion (I37), which can be detected by spectrophotometry at 350 nm (Truesdale and Smith
1979; Truesdale and Spencer 1974; Edmonds and Morita 1998).

For analysing iodate, a Perkin EImer Lambda 35 UV/VIS spectrophotometer was used
with a 1 cm reduced-size quartz glass cuvette. This spectrophotometer was set to zero
by using deionised water. For each sample, 1 mL of sample was pipette into a cuvette
containing 22 pL of 1.5 M sulfamic acid. At 350 nM, the background absorbance (A1)
was measured after 60 seconds. Then, 65 pL of 0.6 M potassium iodide was added. The
second absorbance (Az) was then recorded after 150 seconds. Between each sample, the
cuvette and lid were rinsed thoroughly with deionised water. A stock iodate standard
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was prepared from solid potassium iodate. Fresh standards were prepared from the stock
standard before each analysis. The difference between A1 and A for the standards was
used to construct a calibration curve and determine concentrations in samples
(Truesdale and Spencer 1974; Jickells et al. 1988; Baker et al. 2001).

An example of a calibration line of iodate standard solutions is shown in Figure 3.2.
This standard curve shows a high correlation coefficient (r=0.999). The detection limit
of this analytical method was ~21.9 nM, which was relatively high, compared with
<10.0 nM, detection limits of IC-ICP-MS (~3.2 nM for detection limits of low

concentrations range of standard solutions between 0 — 50 nM).
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1.0E-02 - y = 6.05E-05x + 1.97E-03
R? =9.98E-01

5.0E-03 -

4
0.0E+00 ‘ ‘ ‘ ‘
0 100 200 300 400 500

Concentration (nM) of iodate

Figure 3.2 Example of calibration curve of iodate standard solution analysed by UV
Spectrophotometer.

3.2.4 Coupling of IC and ICP-MS (IC-1CP-MS) for lodine Speciation Analysis

Recently, coupling of ion chromatography (IC) and ICP-MS was developed to analyse
iodine speciation in aerosol samples (Lai et al. 2008; Gilfedder et al. 2008; Gao et al.
2010; Xu et al. 2010a). IC-ICP-MS was also used to analyse iodine speciation in rain
and snow samples. This technique also provides low detection limits for analysing both
iodate and iodide species in aerosol samples (Gilfedder et al. 2007a, 2007b; Lai et al.
2008).

The IC system is composed of a pump, LC25 column oven, AS 50 autosampler, a

Dionex Ion Pac™ AS16 column with an Dionex Ion Pac™ AG16 guard column, 35

mM NaOH was used as eluent (Gilfedder et al. 2007b), with a flow rate of 0.25 mL

mint, with a syringe flush volume of 2 mL between samples. The auto-sampler was
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used to run sampling and flushing process. After the separation of samples by IC, iodine
species in samples were then analysed by Thermo Electron ICP-MS. The retention

times of iodate and iodide were ~230 and 480 seconds respectively (Figure 3.3).
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Figure 3.3 Chromatogram peaks of iodate and 1odide concentrations of 50 nM
separated by IC-ICP-MS.

For checking instrumental reproducibility, independent standard solutions of both iodate
and iodide (~100 nM each) were used to analyse their peaks 5 times by IC-ICP-MS. For
iodate, the percentage recovery was ~ 95.7 + 4.2 nM (RSD ~ 4.4%), and the percentage
recovery of iodide was ~ 98.5 £ 2.1 nM (RSD ~ 2.2%).

For standard solutions, it is difficult to estimate concentrations ranges of both iodate and
iodide in aerosol samples. Therefore, a series of working standard solutions (~13) were
prepared to cover low, medium and high ranges of concentrations for both iodide and
iodate (~0 — 250 nM). Examples of the peaks of standard solution between 10 — 50 nM

are shown in Figure 3.4.
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Figure 3.4 IC-ICP-MS chromatogram peaks of standard solutions of iodate and iodide
concentrations of 10, 20, 30, and 50 nM.
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3.2.4.1 Reagents

Stock standard solutions of both iodide and iodate were prepared by dissolving solid
chemicals in MilliQ water (from potassium iodide and potassium iodate). These stock
standard solutions were used to make up intermediate standard solution by combining
both iodide and iodate stock standard solutions together. Then, intermediate standard
solutions were used to prepare working standard solutions. Working standard solutions
were prepared for every new batch of samples analysis. Examples of iodate and iodide

standard solutions are shown in Figure 3.5.

a) lodate Standard Curve b) lodide Standard Curve
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Figure 3.5 Examples of iodate and iodide standard curves of IC-ICP-MS analysis.

3.2.4.2 Instrumental Drift

For checking instrumental drift, similar to the calculations of section 2.4.1.3, standard
solutions were analysed at the beginning and at the end of each analysis. Figure 3.6a
and Figure 3.6b shows examples of two calibration curves of iodate and iodide standard
solutions at the beginning and at the end of sample analysis. Both figures show slight
difference between calibrations between the beginning and the end standard solutions.
For calculations of iodine species concentrations, instrumental drift was taken into

account.
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a) lodate Standard Curve b) lodide Standard Curve
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Figure 3.6 Examples of two calibration curves of (a) iodate standard solutions and (b)
iodide standard solutions at the beginning and at the end of a batch of samples, where
std. sIn. means standard solutions.

In order to check analytical accuracy, independently prepared iodate and iodide standard
solutions (range 50 — 100 nM) were used to check instrumental accuracy. This was done
by analysing these independent standard solutions at the middle, beginning and the end
of standard solutions for each batch of samples analysis. Results of these independent
standard solutions showed that the recovery of iodate was ~ 97.7 + 2.2 (RSD ~ 2.2%)
and the recovery of iodide was ~ 104.4 + 5.8 (RSD ~ 5.6%).

3.2.4.3 Blanks and Detection limits
Blank samples were used to correct aerosol concentrations. Details of substrate blanks

and detection limits values are shown in Table 3.2. This table includes values of all

detection limits.
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Table 3.2 Substrate blank values and limits of detection for iodate and iodide of aerosol
samples (analysed by IC-ICP-MS).

Samples Filter lodate lodide
Types

Substrate Detection Substrate Detection
blanks limits blanks limits
(nmol / filter) ~ (pmol m3)  (nmol / filter)  (pmol m)

AMT21 Fine <0.3 <0.2" <0.9 <0.7"
Coarse <0.2 <0.1 <0.2 <0.2

TransBrom Fine <0.2 <0.1" 0.4 0.3
Coarse <0.2 <0.1" 0.5 0.3

SHIVA Bulk <04 <0.2" <0.7 <0.5"

* means values that were calculated from instrumental detected limits. Detection limits were
calculated based on collected air volume, 1,400 m® for AMT21 and SHIVA and 1,500 m? for
TransBrom.

3.2.5 Calculations of lodine Species Concentrations

For calculating iodine species concentrations, TSI, iodate (analysed by UV
spectrophotometer), and iodate and iodide (analysed by IC-ICP-MS), standard curves
were used similar to the major ion analysis (section 2.5.2). However, for iodide
analysed by voltammatry, the standard addition method was used to determine the
concentrations. Concentrations of soluble organic iodine (SOI) can be determined by
calculating the difference between TSI and inorganic iodine (SOl = TSI — (I" + 103Y))
(Baker 2005). Obtained values of SOI could be subject to high errors and uncertainties

associated with their calculation.

3.3 Extraction Methods

In order to identify an appropriate extraction method for marine aerosol samples in this
research. Two extraction experiments were designed to determine the optimum
extraction method, which will not interfere or cause changes to the iodine species.
Further, these experiments aimed to identify different results which obtained from using
both CF and GF filters.
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3.3.1 Filter Samples

Both CF and GF filters were used in these extraction experiments. The three types of

filters that were used in the experiment are as follows:

Blank Samples

For GF, this filter type was washed and ashed, but for CF, this filter was used without

cleaning.

Spiked Samples

Spiked samples were known amounts of iodide and iodate standards added blank
samples.

Aerosol Samples

Aerosol samples were filters which were used to collect aerosol samples from the roof
of the Environmental Science Building, University of East Anglia, Norwich, for 72
hours (the 1st extraction experiment aerosol samples were collected during 4" — 71"
January 2011 and the 2nd extraction experiment aerosol samples were collected during
5t — 8™ July 2012). Two aerosol collectors were used to collect aerosol samples (both
using CF and GF back up filter) with a flow rate of about 1.0 m® min*. Collected filter
samples were sealed and stored in a freezer before extraction and analysis.

3.3.2 Extraction Experimental Design

3.3.2.1 The 1%t Extraction Experiment

The first experiment was carried out in order to identify appropriate analytical methods
for determining iodine speciation, by comparing results of coupling of IC-ICP-MS and
iodide analysed by the voltammetry and iodate analysed by the spectrophotometer.

This experiment was also designed to identify appropriate extraction condition for both
cellulose and glass microfibre filters. Spiked samples were used to test the recovery of

extraction methods as well as to investigate changes in iodine species under different
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extraction conditions. Different extraction methods were applied in this experiment such
as non-shake, shake at 10°C, shake at room temperature (~20°C), shake at 30°C and
ultrasonication. Experimental design for this 1% extraction experiment is shown in Table
3.3. In this experiment, extractions were done in duplicate, except for ultrasonication

extraction, which was carried out by one sample for each extraction.

Table 3.3 Experimental design for the 1% extraction experiment, samples extraction by
shake at different temperatures and ultrasonication.

Extraction Time (min)

Samples
5 15 30 60
Blank Samples NS, S10.RT. 30 - - NS, SI0.RT.30
I+ 105" Spiked
Samples NS, S10.RT. 30 SRT SRT NS, S10.RT.30 |
(200 nM each)
Aerosol Samples NS, S10-RT.30 SRT SRT NS, SI0.RT.30

NS = Non Shake, S©RT30 = Shake at 10°C, at Room Temperature (~20°C), and at 30°C
respectively and U = Ultrasonication

3.3.2.2 The 2" Extraction Experiment

Results of the 1% extraction experiment showed that shaking at room temperature
provided less changes in iodine speciation and a high recovery, compared with other
extraction conditions with different temperatures and ultrasonication. So, shaking at

room temperature was selected as the potential extraction condition.

The 2nd extraction experiment was designed to compare extraction efficiency between
shaking at room temperature and ultrasonication at different extraction times. As for the
first experiment, this experiment also tested the influence of filter types on iodine
speciation. The 2nd extraction experiment included additional tests on the effect of

adding filters to rain water samples and to spiked iodide standard on iodine speciation.
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For spiked samples, lower concentrations for both 1" and 103” were used in this 2"
experiment (spiked ~100 nM for each iodide and iodate standards). One sample was
used in this experiment, however, duplicate readings were carried out. Details of the 2"

extraction experiment are shown in Table 3.4.

Table 3.4 Experimental design for the 2" extraction experiment, samples extraction by
shaking at room temperature and ultrasonication.

Extraction Time (min)

Samples
5 10 15 30 60

No filter SRT U - SRT U SRT, U SRT U
Blank Samples SRT U - SRT U SRT U SRT U
10s™ Spiked Only RT ) RT RT RT
Samples (100 nM) s U s U st U st U
I+ 105" Spiked
Samples SRT U - SRT U SRT U SRT U
(100 nM each)
Aerosol Samples SRT U SRT SRT U SRT, U SRT U
Rain Samples SRT U - - - SRT U
Rain Samples + RT - - - RT
Filters st U s U
Rain Samples + SRT U - - - SRT U

Filters + I (25nM)

SRT = Shake at Room Temperature (~20°C), and U = Ultrasonication

3.3.3 Extraction Procedures

Blank CF and GF filter and aerosol samples were prepared from 1/16 portion of a filter,
each sample was then cut into small pieces, and placed in 50 mL plastic centrifuge
tubes. Filters were extracted by adding 45 mL MilliQ water under different extraction

conditions such as non-shake, shaking different temperatures, and ultrasonication.

For the 1% extraction experiment, for spiked samples, both known quantities of iodate
and iodide standard solutions were pipetted directly on to the filters, followed by adding

MilliQ water immediately. The sum of concentrations of iodate and iodide of spiked
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samples were ~200 nM for each species (total spiked concentrations ~400 nM). These
concentrations are higher than normal ranges of both iodate and iodide concentrations of
analyte of marine aerosol samples in Baker et al. (2000) (analytical TSI values from
sample L57, ~ 55 nM, this is the concentration before converting to atmospheric

concentrations).

For shaking extraction, an orbital shaker with moderate speed was used to conduct the
experiment. Three different temperatures were used for extraction, i.e. at 10°C, at room
temperature (~20°C), and at 30°C respectively, with the length of extraction time, i.e. 5,
15, 30 and 60 minutes, applied to most samples. Details of extraction time can be seen
in Table 3.3 and Table 3.4.

For all samples, after extraction, extracts were filtered through 0.2 um cellulose acetate
filters, collected in 15 mL centrifuge tubes. These collected extracts were stored in the

freezer (-20°C) for analysis.

3.4 Results and Discussion

3.4.1 Comparison of lodine Speciation of Spiked Samples of the 15t Extraction

Experiment Determined by Different Analytical Methods

For comparing results of analytical methods, the sum of both iodide and iodate analysed
by the voltammetry and the spectrophotometer were compared with the TSI results from
ICP-MS (Figure 3.7). This plot shows that spiked GF samples analysed by IC-ICP-MS
provided values (iodate + iodide) that are close to expected concentrations of iodate and
iodide (~400 nM). Spiked CF samples showed slightly lower concentrations of the sum
iodate and iodide. Both spiked GF and spiked CF samples, IC-ICP-MS showed higher
concentrations of iodate + iodide, compared with results derived from voltammetric and

spectrophotometric analyses.
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Spiked GF samples show slightly less value of the sum concentration of 103™and I
analysed by the spectrophotometer and the voltammatry, compared with TSI analysed
by ICP-MS. For spiked CF sample, high concentration of TSI was found in the range of
400 — 600 nM, which is much higher than expected concentration of inorganic iodine
(103 + 1.
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Figure 3.7 The plot of the sum of both iodide and iodate concentration (analysed by
voltammetry, UV spectrophotometry and IC-ICP-MS) in both spiked CF and GF
samples (spiked iodate & iodide ~200 nM each), against the total soluble iodine (TSI)
analysed by ICP-MS. Bars are spreads of duplicate measurements, except bars of samples
extracted by ultrasonication and most samples of I" of CF spiked samples, which are
analytical errors for a single determination.

In order to examine different results of iodine speciation between IC-ICP-MS and
voltammetry and UV spectrophotometer, results of both I~ and 103™ concentrations of
spiked samples analysed both those methods were plotted in Figure 3.8. Results of
analysing iodide and iodate concentrations by IC-ICP-MS method provided results that

were relative close to expected concentrations (Figure 3.8a and Figure 3.8Db).

For spiked CF samples, iodide and iodate concentrations showed very different
behaviour, compared with expected concentrations. lodide concentrations of spiked CF
samples analysed by the voltammetry showed about 50 — 70% of expected
concentrations. These spiked CF samples also showed excessive iodide concentrations
which were analysed by IC-ICP-MS.
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Figure 3.8 Scatter plot of spiked samples (I03™ and 17200 nM each) of (a) iodide
concentrations analysed by voltammetry against iodide concentrations analysed by I1C-
ICP-MS and (b) iodate concentrations analysed by UV spectrophotometer against iodate
concentrations analysed by IC-ICP-MS (2"¢ extraction experiment). Bars are spreads of
duplicate measurements, except bars of samples extracted by ultrasonication and most
samples of I analysed by IC-ICP-MS of CF spiked samples, which are analytical errors for
a single determination.

3.4.2 Comparison of the Recovery of Spiked Samples of the 1%t Extraction
Experiment under Different Extraction Conditions

Results of different extraction methods are shown in Table 3.5, which shows the
recovery of both spiked CF and GF samples under different extraction conditions,
analysed by IC-ICP-MS.

Table 3.5 Recovery of iodide, iodate, and total soluble iodine in spiked samples under
non-shake, shaking at room temperature, shaking at 30°C and ultrasonication extraction.

Extraction Extraction Recovery (%)
Samples - ) )
Conditions Time (min) I 103 TSI
5 135+ 23 <1.8 127 +9.4
Non-shake
60 157 +7.5 <1.8 143 £5.3
5 167 + 2.6 <1.8 137+1.8
Shake at 10°C
60 159 +2.4" <1.8 132 +£35
Spiked Shake at Room 5 151+2.2" <1.8 127+4.1
CF Temperature (~20°C) 60 134 +1.9" <1.8 122 £6.2
5 161 £ 2.5" <1.8 134+ 0.5
Shake at 30°C .
60 158+24 <1.8 135+0.8
5 165 + 2.5" <1.8 136 +1.5"

Ultrasonication
60 153 +2.4" <1.8 129+ 15"
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Table 3.5 (continued)

Extraction Extraction Recovery (%)
Samples o _ _
Conditions Time (min) I- 103 TSI
5 108+10 75%2.2 107 £ 3.9
Shake at 10°C
60 90+28 93+23 95+1.1
Shake at Room 5 111+16 76+3.3 105+7.8
Spiked  Temperature (~20°C) 60 91+£7.3 93+1.8 97+£2.6
GF 5 109+9.3 83%6.0 104 £ 0.9
Shake at 30°C
60 86+95 91+6.3 97+0.3
5 62+1.9" 64+04" 72+1.0

Ultrasonication . . .
60 69+19° 96+05 87+0.9

<1.8% refers to value below detection limits (<3.5 nmol Lt). Numbers of range refer to
mean = errors of calculations which are derived from spreads of duplicate measurements or
analytical errors for “ultrasonication extraction and most samples of |- of CF spiked
samples.

Total soluble iodine concentrations under ultrasonication shows no difference within
errors with other extraction conditions for cellulose filters (CF). Concentrations of
iodate for all spiked CF samples were lower than 1.8% (the detection limit of 3.5 nmol
L1). For CF spiked samples, it appears that iodate was not found in any extraction
conditions. The recovery of TSI shows higher recovery between the range of 122 —
127% for shake at room temperature and it appears there was not much difference
among different extraction conditions. Reasons for low iodate recoveries for CF filters
are still unknown. However, after checking data thoroughly, the methodological

procedures and analytical techniques were accurately conducted.

The recovery of iodide in spiked CF (both 103™ and I") appeared to be higher than 100%
recovery. Ultrasonication at 5 minutes recovered 165 + 2.5%, similarly to the recovery
of shaking samples at 30°C. However, shaking samples at room temperature showed a
value close to its TSI recovery for both short and long extraction time. Longer
extraction (60 minutes) caused a decrease in TSI recovery. The largest drop of TSI was

found in shaking samples at room temperature.

For GF spiked samples, higher concentrations of iodide and TSI were observed with a
long length of ultrasonication. The recovery of iodide for spiked GF shows a close value

to 100% recovery. A drop of iodide recovery was observed in 60 minutes extraction
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time in samples extracted by shaking at 10°C, at room temperature and at 30°C. Low
percentage of recovery of TSI could also be found in both 5 and 60 minutes
ultrasonication extraction, with only 72 = 1.0 and 87 + 0.9% recovery. For iodate
concentrations in spiked GF samples, IC-ICP-MS could detect an increase with time of
iodate concentrations for all conditions. The recovery of iodate in 60 minutes extraction
time was found in the range of 91 £ 6.3 to 96 £ 0.5 nM.

It can be summarised that shake extraction with different length of time could be used to
extract samples, instead of ultrasonication, which appears to lead to problems of
conversion of organo-iodine in aerosol samples. Therefore, the extraction method with
shaking could be appropriate method for aerosol extraction. However, it is also
important to examine behaviour of iodine species under shaking with different length of
time and temperatures. The next section will show results of effects of temperature on

iodine species changes.

3.4.3 Comparison of the Effects of Temperature on lodine Species Changes of

Aerosol Samples of the 1t Extraction Experiment

In order to investigate changes of iodine species, aerosol samples were extracted under
different extraction conditions, i.e. non-shake, shaking at 10°C, shaking at room
temperature (~20°C), and shaking at 30°C as well as ultrasonication. For illustrating
iodine species changes, only total soluble iodine and iodide concentration of aerosol
samples are shown in Figure 3.9. Results and discussions for appropriate shaking time

and temperature for iodine extraction are presented below.

3.4.3.1 Effects of Temperature on lodine Species Changes of Cellulose Filter (CF)
Samples

For cellulose filter, shaking at room temperature appeared to be appropriate extraction
conditions for aerosol samples. Extracted results of both iodide and TSI of shaking at
room temperature were slightly lower than shaking at warmer temperature (30°C)
(Figure 3.9a and Figure 3.9Db).
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Figure 3.9 Results of the 1% extraction experiment, concentrations of (a) total soluble iodine
(TSI) and (b) iodide in CF aerosol samples with different extraction conditions and times,
and concentrations of (c) TSI and (d) iodide in GF aerosol samples with different extraction
conditions and times. Number of samples, n = 2, except a single determination for CF and
GF aerosol samples of shake at room temperature in Figure 3.9a) and Figure 3.9c) and for
ultrasonication extraction samples. Bars are spreads of duplicate measurements, except for
CF and GF aerosol samples of shake at room temperature in Figure 3.9a) and Figure 3.9c),
which bars are analytical errors for a single determination as well as bars of ultrasonication
extraction.



In addition, shaking at room temperature, iodide concentrations appeared to be highest
at 30 minutes shaking (54.9 nM). The iodide concentrations tend to drop to about 49.1
nM after 60 minutes extraction, while TSI of shake at room temperature for 30 and 60

minutes appeared to be higher.

3.4.3.2 Effects of Temperature on lodine Species Changes on Glass microfibre
Filter (GF) Samples

For GF aerosol samples extracted by using ultrasonication and shaking at 30°C for 60
minutes appeared to provide slightly higher iodide concentration, compared with
shaking at room temperature (Figure 3.9d). However, shaking aerosol samples at both

room temperature and 30°C gave similar TSI concentration (Figure 3.9c).

For GF aerosol samples extracted by shaking at room temperature, iodide
concentrations dropped slightly after 15 minutes extraction. This decreasing trend was
also observed with TSI of GF aerosol sample. However, iodide concentrations of
shaking at room temperature for 30 minutes decreased slightly, compared with 15
minutes shaking (from 58.4 to 56.2 nM).

3.4.4 Comparison of Changes of TSI and lodine Species under Different
Extraction Time of the 2" Extraction Experiment

This section aims to compare results of changes of TSI and iodine species of samples
extracted by shaking at room temperature and ultrasonication. Results of analysing
aerosol samples from the 2" extraction experiment are presented in the following

section.
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3.4.4.1 Extraction by Shaking at Room Temperature

During shaking at room temperature, TSI concentrations showed no significant changes
with different extraction times in most aerosol extractions (Figure 3.10). However,
gradually increasing trends of TSI concentration between 30-60 minutes shaking were
observed in the 2" GF aerosol (Figure 3.10b) sample. Then, the TSI concentration

remained stable after 30 minutes extraction.

lodide concentrations decreased slightly between 5 — 15 minutes of shaking, however,
its concentrations remain stable throughout 60 minutes extraction. lodate concentrations

are below detection limits for both CF and GF aerosol.
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Figure 3.10 Concentrations of TSI, iodide and iodate of the 2" extraction experiment of
aerosol samples extracted by using shake at room temperature with different extracting
times, both CF (a) and GF (b) aerosol samples. Bars are spreads of duplicate
measurements.

The iodide concentration of both CF and GF spiked samples decreased slightly after 30

minutes extraction. The recovery of both iodide and iodate in the range of 86-95% were
observed in the 2" GF spiked samples. However, the recovery of both iodide and iodate
in CF spiked samples were different from GF spiked sample. lodate concentration in CF

spiked samples were below 50% recovery.
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Figure 3.11 Recovery of TSI, iodide and iodate of spiked samples of the 2" extraction
experiment extracted by shake at room temperature with different extracting times, both
CF (a) and GF (b) filters. Bars are errors from calculations which are derived from
spreads of duplicate measurements.

3.4.4.2 Ultrasonication Extraction

For ultrasonication extraction, the concentration of TSI in the GF aerosol was more
stable than in CF aerosol samples. During the first 30 minutes of the CF aerosol sample
ultrasonication, fluctuating TSI was found in the 2" extract solution (Figure 3.12a).
Under ultrasonication, GF aerosol samples showed slight changes in iodide
concentrations at the first 15 minutes, then, it remained stable (Figure 3.12b). In this 2"
CF aerosol, there was a gradual rise of iodide concentration from 22.2 + 3.8 t0 36.7 +
3.4 nM during 60 minutes ultrasonication (Figure 3.12a). For both shake and

ultrasonication extractions, iodate concentrations were below detection limits.
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Figure 3.12 Concentrations of the total soluble iodine, iodide, and iodate concentrations
of the 2" extraction experiment of aerosol samples extracted by using ultrasonication
with different extracting times, both CF (a) and GF (b) aerosol samples. Bars are
spreads of duplicate measurements.
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For ultrasonication of spiked samples, the recovery of TSI remained stable in the range
of 106-108% (Figure 3.13a), however slightly increasing trend of TSI with longer

ultrasonication was noticed in the 2" extraction experiment GF spiked sample (Figure
3.13h).

For the CF spiked sample, the iodide recoveries (94-120%) were higher than that for
iodate species (48-79%). In contrast, the recoveries of iodide (78-89%) in the GF spiked

sample were slightly less than the recoveries of iodate concentration (80-92%).
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Figure 3.13 Recovery of TSI, iodide and iodate of spiked samples of the 2" extraction
experiment, extracted by ultrasonication with different extracting times, both CF (a) and
GF (b) filters. Bars are errors from calculations which are derived from spreads of
duplicate measurements.

3.4.5 Comparison of Extraction Efficiency of TSI Extracted by Shaking and

Ultrasonication of the 2" Extraction Experiment

Conventionally, ultrasonication has been widely used to extract iodine in aerosol
samples (Baker et al. 2000; Baker 2004; Gilfedder et al. 2008; Lai et al. 2008). As there
have been some problems as a result of conversion of iodine species associated with
ultrasonic extraction, shaking at room temperature was chosen to extract iodine from
aerosol samples for this study. However, it is important to make sure that shaking at
room temperature will provide a similar extraction efficiency, compared with that for
the ultrasonic method.
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Thus, in order to compare the extraction efficiencies of both shaking and
ultrasonication, the ratio of the total soluble iodine of shake/ultrasonication (S/U) was
calculated. S/U ratio can be used to show extraction performance of both extraction
conditions. The value of the S/U ratio 1.00 means that the extraction efficiency for TSI
by shaking is equally matched with the value of ultrasonic extraction. So, shaking
extraction could release similar amounts of TSI as that which occurs with

ultrasonication.

Figure 3.14 shows the S/U ratio for TSI in aerosol, spiked and rain samples for both CF
and GF. In most cases, the S/U ratio revealed a very close numbers to 1.00, which
means that shaking at room temperature released a similar amounts of TSI to that
released with ultrasonication. In the 2" extraction experiment aerosol sample, the S/U
ratio of CF filter deviated from 1.00 during the first 30 minutes extraction, with large

uncertainties involved. (Figure 3.14a).

In the period of 30 to 60 minutes extraction, the extraction efficiency remained stable in
all 2" extraction experiment aerosol and spiked samples. For both sample types,
shaking extraction generally gave relatively similar extraction efficiencies to ultrasonic

conditions for TSI.

For the rain experiment, the S/U ratio showed very stable values, which were close to
1.00 for both adding CF and GF filters into rain samples, and for rain samples with an
absence of filters (Figure 3.14d, Figure 3.14e and Figure 3.14f). In the experiment of
adding filters to rain sample, both CF and GF filters did not interfere with the value of
TSI. This similar behaviour of stable S/U ratio was also noticed in the rain experiment
of adding both filters and the iodide standard 25 nM. Therefore, from the stable S/U
ratio of rain experiments, it could be concluded that adding filters to rain samples does

not cause interferences in the extraction of iodine species.
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Figure 3.14 Ratio of TSI between shake (S) and ultrasonication (U) extraction of
aerosol samples, spiked samples and rain samples of both CF and GF filter in the 2"
extraction experiment. Bars are errors from calculations which are derived from spreads
of duplicate measurements.

In summary the S/U ratio of aerosol samples showed insignificant changes over longer
extraction times, especially between 30 and 60 minutes. The S/U ratio of the rain
experiment also revealed a similar value of 1.00. So, this experiment demonstrated that
there were no significant differences between shaking and ultrasonication for the

extraction of total soluble iodine.
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3.4.6 Comparison of Changes of lodine Species under Shaking at Room
Temperature and Ultrasonication Extraction using Results of the 15t and 2"

Extraction Experiment

In this work, the most important consideration for aerosol extraction is that it should not
cause changes of iodine species over the period of extraction. In order to investigate
iodine species changes during extraction, both shaking and ultrasonic extraction were
examined by using the ratio of iodide and total soluble iodine (I/TSI), and iodate and
total soluble iodine (10s/TSI). These two ratios represented changes of iodine species

over the period of 60 minutes extraction.

I/TSI and 1037/TSI ratios could be used to show how iodide and iodate species changed
during the extraction process. Stable values of I'/TSI ratios represent no changes in
iodide concentration at different extraction time. Similarly, unchanged 1037/TSI ratios
also reveal stable concentrations of iodate in the extraction. In order to examine changes
of iodine species, it is also important to consider the concentration of iodine under
different extraction times in section 3.4.5. Results of both experiments were used to

investigate changes of iodine species at different extraction time.

3.4.6.1 Changes of lodide (I/TSI Ratio)

Changes of iodide species under both shake and ultrasonication extraction are shown in
Figure 3.15, Figure 3.16 and Figure 3.17 as a ratio of I'/TSI for aerosol, spiked and rain
samples respectively. Ratios of I'/TSI of aerosol and spiked samples extracted by

shaking were more stable than ultrasonic extraction.

For the 2" extraction experiment, results of Figure 3.15a and Figure 3.15b showed
slight increases in I'/TSI ratio, especially for the CF aerosol sample. For spiked CF
sample, there was one experiment of shake extraction which I'/TSI ratio decreased
slightly on the first 30 minutes of extraction (Figure 3.16d). This I'/TSI ratio showed

gradual decreasing trends over 60 minutes extraction.
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Thus, results from Figure 3.15 and 3.16 showed that I'/TSI ratios of shaking extraction
were more stable than ultrasonication. Both aerosol and spiked samples revealed that
there was no significant change in iodide concentration under shaking extraction.

In rain sample, there were significant variations of /TSI ratios, in the experiment of
analysing rain sample without the presence of filters (Figure 3.17a) and the experiment
of adding CF and GF filter into rain samples (Figure 3.17b and Figure 3.17c). Both
shake and ultrasonication extraction showed highly variable I'/TSI ratios. Within the
natural composition of rain sample, there were large uncertainties associated with these

rain experiments.
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Figure 3.15 I/TSI ratio of CF and GF aerosol samples extracted by both shake at room
temperature (Shake) and ultrasonication (Ultra) in the 2nd extraction experiments. Bars
are errors from calculations which are derived from spreads of duplicate measurements.
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Figure 3.16 I'/TSI ratio of CF and GF spiked samples extracted by both shake at room
temperature (Shake) and ultrasonication (Ultra) in the 1% and 2" extraction experiment.
Bars are errors from calculations which are derived from spreads of duplicate
measurements.
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Figure 3.17 I/TSI ratio of rain samples in the 2" extraction experiment extracted by
both extracted by both shake at room temperature (Shake) and ultrasonication (Ultra).
Bars are errors from calculations which are derived from spreads of duplicate
measurements.
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3.4.6.2 Changes of lodate (103s/TSI Ratio)

I1037/TSI ratios were shown only for some spiked and rain samples experiments, as the
concentration of iodate of aerosol samples were below the detection limits. In spiked
samples, both shaking and ultrasonication showed unchanged concentrations of iodate
species over a longer extraction time. Shake extraction provided more stable 103/TSI
compared with ultrasonication. In rain samples, similar to /TSI ratio, |IO3/TSI ratios
appeared to show large uncertainties, especially both in the experiment of rain sample
without filters and adding filters to rain sample. Overall, the ratios of 103/TSI were
moderately stable. This means that there have been no significant changes over iodate

species during the extraction.
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Figure 3.18 1037/TSI ratio of CF and GF spiked samples extracted by both shake at
room temperature (Shake) and ultrasonication (Ultra) in the 2" extraction experiment.
Bars are errors from calculations which are derived from spreads of duplicate
measurements.
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Figure 3.19 1057/TSI ratio of rain samples of the 2" extraction experiment extracted by
both extracted by both shake at room temperature (Shake) and ultrasonication (Ultra).
Bars are errors from calculations which are derived from spreads of duplicate
measurements.

67



3.5 Summary

This chapter presented experimental results for the development of an extraction
method as well as the development of analytical techniques for iodine speciation. The
effect of filter types on iodine speciation changes over different extraction times was
investigated. Glass microfibre filter, GF, was chosen to be an appropriate type of filters
to collect aerosol samples for iodine speciation. GF filter showed no effects on iodine
species changes, especially in the 2" extraction experiment where GF filters were added
to rain samples, whereas CF filter caused slight changes in iodide species in aerosol

samples.

GF filter also showed higher recoveries of iodine species, compared with CF filter. This
result agreed well with the finding of Xu et al. (2010b), who reported that GF is
favourable for iodine species analysis under different extraction conditions. Thus, in this
research, GF was used to collect aerosol samples for the two campaigns, the AMT21
(see Chapter 4) and SHIVA (see Chapter 5).

Mechanical shaking at room temperature for 30 minutes was tested and selected as a
suitable condition for aerosol extraction. This extraction method and conditions
provided comparable extraction efficiency of TSI, compared with ultrasonic extraction.
Further, shaking at room temperature for longer than 30 minutes (up to 60 minutes)

showed no significant changes of iodine species.

The development of coupling between IC and ICP-MS provided a reliable analytical
method for iodine speciation in aerosol samples, with low detection limits, reproducible
results and high recoveries of both iodate and iodide. Results of iodine speciation
analysed by IC-ICP-MS provide a preferable analytical method for determining iodine
species, especially with aerosol samples collected by GF filter. Therefore, IC-ICP-MS
was chosen as the analytical technique for the determination of iodine speciation of

aerosol samples in this research.
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Chapter 4 lodine Speciation and Chemical Characteristics

of Marine Aerosol in the Atlantic Ocean

4.1 Introduction

This chapter discusses the iodine speciation and chemical characteristics of the marine
aerosol in the Atlantic Ocean by examining aerosol samples collected during the
Atlantic Meridional Transect (AMT21) between 29" September and 14" November
2011. The first part of this chapter will provide details of the AMT21 cruises. Results of
air mass back trajectory analyses will be shown in the following section. Results and
discussion of major ion concentrations will be presented accordingly to the type of air
mass, as well as halogen cycling of aerosol samples. For iodine speciation, data of
individual iodine species will be presented both in concentration and proportion values.
Data of major ions and iodine speciation of size segregated samples will also be shown.
Also, another important part of this chapter is the discussion of the factors controlling
the aerosol iodate uptake. The final section of this chapter will be a comparison between

iodine speciation of rain and aerosol samples.

The cruise track of AMT21 is shown in Figure 4.1. Details of aerosol collections are
shown in Appendix B. This chapter will present the distributions of iodine species in the
Atlantic Ocean which will lead to further understanding of what controls iodine
speciation in the marine aerosol and the nature of individual iodine species. In addition,
this chapter will attempt to understand the influences of atmospheric iodine chemistry

and to compare aerosol characteristics of different atmospheric sources.
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Sample positions

104 Start (01-10-11)
N\ &
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BO"W B0 40°W 20°W i 20°E
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Figure 4.1 Approximate sample positions of AMT21 aerosol collection. Points on the
cruise track show the start of sampling location, where samples 104 and 136 were the
first and the last collected aerosol samples.

For AMT21, different atmospheric origins will be categorised by 120-hour back
trajectories. Characteristics and behaviours of different atmospheric sources of major
ions and halogen chemistry will be examined. For major ions, the behaviour of ions
associated with both primary aerosol (sodium (Na*), magnesium (Mg?*), non-seasalt
calcium (nss-Ca?*), soluble aluminium, and non-seasalt potassium (nss-K*)) and
secondary aerosol (nitrate (NO3’), ammonium (NH4*), non-seasalt sulphate (nss-SO4%),
and oxalate (C2042)) will be presented and discussed. Cycling of halogens will be
presented through examining chloride (CI), bromide (Br’) and total soluble iodine
(TSI).

70



lodine speciation of this Atlantic aerosol will be investigated through the behaviour of
iodine species mainly iodide (1), iodate (I03°) and soluble organic iodine (SOI). Two
size segregated samples with 6-stage cascade impactor will be used to explain the
behaviour of size distributions of chemical characteristics and iodine species in details.

Effects of mineral dust on iodate concentrations in aerosols will also be investigated.
Chemical characteristics and iodine speciation between rain samples and aerosol
samples collected at the same day will also be compared.

4.2 Results and Discussion

4.2.1 Air Mass Back Trajectories Analysis

AMT21 aerosol samples were categorised according to their air mass origins and
transport, based on the criteria of air mass classification of Baker et al. (2010) and
Baker et al. (2006a). Throughout the AMT21, different air mass characteristics were
taken into consideration of air mass classification. Continental landmasses surrounding
the basin and remote air circulating over the ocean were examples of origins of air mass

transport.

Classification was done using three altitudes (10 m, 500 m and 1000 m) which were
chosen to represent the marine boundary layer (MBL). Surface trajectory was used to
represent the air mass origin of that aerosol whenever higher trajectories were over the
remote ocean. The high altitude air mass could also play an important role for aerosol
transport, due to gravitational settling into lower altitude air masses (Baker et al.
2006a). Continental arrivals from higher levels were also used to classify the air mass

when the surface trajectory was over the ocean.
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Figure 4.2 Examples of air mass back trajectories during the AMT21.
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Apart from air mass origin and transport, chemical characteristics of aerosol such as
nss-Ca?* and nss-K* are also used as additional criteria for air mass categorisation. The
presence of nss-Ca?* concentration of more than 5 nmol m= in coarse mode aerosol can
be used to identify the presence of Saharan dust (Baker et al. 2006a). The presence of
nss-K* is also used as a tracer of biomass burning (Baker et al. 2006a; Andreae and
Merlet 2001). The concentration of nss-K* of more than 0.5 nmol m= in fine mode

aerosol is used to identify Southern Africa biomass burning aerosol (SAfr-BB).

For each individual aerosol sample, 120-hour air mass back trajectories were obtained at
the ship’s position from the NOAA HYSPLIT model (FNL data set) (Draxler and Rolph
2013). For some samples such as 101 (NAtl-Rem), 119 (Sahara), 120, 123 (SAfr) and 127
(SAtl-Rem), 240-hour air mass back trajectories were also examined together with 120-
hour trajectories initiated at 6-hour intervals during sample collection. Results of
trajectories analysis of these longer back trajectories show quite similar pattern of
sources and pathways of air masses compared with 120-hour trajectories categorisation.

Examples of these back trajectories are shown in Appendix F.

Details of different types of air mass are explained in the following section.

Northern Atlantic Remote (NAtl-Rem)
NALtl-Rem is an air mass type that has been circulating for up to 72 hours over the
remote northern Atlantic region. Three aerosol samples were classified as NAtl-Rem air
mass type, 104, 106 and 107. An example of back trajectories representative of the NAtI-

Rem air mass is shown in Figure 4.2a.

European Continent (Eur)
Only one aerosol sample (105) is classified as Europe air mass type (Eur). In Figure
4.2b, both air mass height of 500 and 1000 metres have travelled from the European
continental landmass (Portugal and Spain), despite the air mass height of 10 m that has

travelled over the ocean.

Northern Africa and Sahara Desert (Sahara)
Sahara is the air mass type which is classified based on air mass travelled over the
landmass of the Northern African continent. Twelve aerosol samples (108-119) were
classified as Sahara air mass type. Evidences of yellow/orange/brown mineral dust on

filters were also used as important evidence to support this air mass classification of
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Sahara aerosol (Figure 4.2c). Dark yellow/brown colour was observed in samples 116-
119.

All samples of this mass type are influenced by Saharan dust. However, African
continent arrivals from higher levels were used to identify the air mass when the surface
trajectory was over the ocean in sample 110 (Appendix C), 111 (Figure 4.3a) and 118
(Figure 4.2c). These can undergo gravitational settling at the upper-level transportation.
This process can introduce Sahara dust into surface air masses, this could occur as

desert dust transportation occurs at heights of 1-5 km. (Baker et al. 2006a; Prospero and

Carlson 1980). Sample 119 is the last sample of Saharan aerosol before the wind

direction changes from the north-east (Figure 4.3b and Figure 4.3c) to the southern

direction near the end of the collection time (Figure 4.3d).
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Figure 4.3 Examples of air mass back trajectories of Sahara aerosol sample 111 and 119.
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Southern Africa (SAfr) and Southern Africa Biomass Burning (SAfr-BB)

These two aerosol types have their air mass derived from Southern Africa. In some of
SAfr samples, 5-days air mass has travelled over the ocean but their original air mass
comes from the south-east direction of the south Atlantic. Four aerosol samples (120,
122-123, and 126) were classified as SAfr air mass type (Figure 4.2d). However, there
are a few aerosol samples for which their high altitude air mass travelled over the
western Africa coast, which will have introduced influences from biomass burning
(based on the presence of nss-K*) (Allen and Miguel 1995). These samples were

classified as the Southern Africa biomass burning (SAfr-BB).

Baker et al. (2006a) and Baker et al.(2010) differentiated between SAfr and SAfr-BB
by the characteristics of the air mass back trajectories and the presence of biomass
burning (April — October). For SAfr-BB, the air mass travelled through western arrivals
at 1000 m, but the S-E arrivals were found at the lower levels (Baker et al. 2010). For
those samples which were collected during the biomass burning season (i.e. during
AMT21) and their back trajectories matched with these criterions, they will be classified
as SAfr-BB.
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Figure 4.4 An example of air mass back trajectories of SAfr aerosol, sample 123.
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As a result of the presence of determinable nss-K* in fine mode aerosol, three aerosol
samples (121, 124 and 125) were classified as SAfr-BB (sample 124 in Figure 4.2¢).
Although sample 123 (Figure 4.4) showed higher level air mass from the African
continent similar to those classified as SAfr-BB, this aerosol sample was classified as
SAfr aerosol because there was an absence of nss-K* in fine mode aerosol. For SAfr and
SAfr-BB, the direction of trajectories does not change over 24 hours of sample
collection. Examples of trajectories of every 6-hour collection location are shown in
Appendix F.

Southern Atlantic Remote (SAtl-Rem)

SAtl-Rem is an air mass type that has been circulating over the remote southern Atlantic
region. Eight aerosol samples (127-132, 135 and 136) were classified as SAtl-Rem air
mass type. An example of a SAtl-Rem air mass is shown in Figure 4.2f. In sample 127,
the direction of trajectories do not change over 24 hours of sample collections (in
Appendix F), this behaviour was also observed in other SAtl-Rem samples.

Southern America (SAmer)
SAmer is classified based on air masses that have travelled over the Southern America

continent landmass. Two aerosol samples (133 and 134) were observed during the

AMT21. An example of a SAmer air mass is shown in Figure 4.2g.
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A summary of air mass classifications and their origins is shown in Table 4.1. Colour
codes are used to represent different types of air mass in the plots of experimental

results. Air mass back trajectories of all samples are shown in Appendix C.

Table 4.1 Air mass classifications for AMT21 aerosol samples.

Samples ID Air Mass Types
(numbers of Colour
samples) Abbreviation Code Origins

104, 106-107 (3) NAIt-Rem ] North Atlantic Remote
105 (1) Eur Europe
108-19 (12) Sahara [ ] Northern Africa + Sahara desert
120, 122-123, 126 (4)  SAfr Southern Africa
121, 124-125 (3) SAfr-BB [ 1] South African Biomass Burning
127-132, 135-136 (8)  SAIt-Rem [ 1 Southern Atlantic Remote
133-134 (2) SAmer [ 1 Southern America

4.2.2 Major lon Chemistry of AMT21 Aerosol Populations

Results of major ion analysis will be used to examine the background chemistry of
AMT21 aerosol. These measured concentrations define the chemical characteristics of
the AMT21 aerosol populations, according to their air mass types. Sources of air masses
reveal differences of their chemical characteristics. Thus, concentrations of major ions
such as Na*, Mg?*, NOs", NH4*, nss-Ca?*, nss-SO4%, nss-K*, and C204% can be used to
characterise chemical properties, which will be useful in understanding the chemical
nature of AMT21 aerosol populations and the relationship between major ions and
aerosol iodine chemistry. Details of major ion chemistry which are associated with both

primary and secondary aerosol, are discussed in the following section.
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Table 4.2 Median (in bold) and the concentration range (in parenthesis) for Na*, Mg?*, nss-Ca?*, nss-K*, NO3", NH4", nss-SO4> and C204>
for the AMT21 aerosol samples (both fine and coarse mode), according to air mass type. The concentrations unit is expressed in nmol m=,
(ND = Non-determinable values of non-seasalt calculations, see Section 2.5.3).

_ lons
Alr Mass Na* Mg?* nss-Ca?* nss-K* NOs- NH4* nss-SO4> C204%
NAtl-Rem (n=3)
Eine 14 <0.1 <0.2 ND 0.2 <0.2 3.4 <0.2
(12-16) (<0.1-<0.2)  (<0.1-0.3)  (ND-0.4)  (<0.1-0.3) (<0.1-8.7) (3.0-13) (<0.1-0.3)
Coarse 99 9.4 1.6 <0.3 7.0 0.3 1.2 0.1
(73-106) (4.7-11) (13-41)  (<0.2-<04)  (34-11)  (<0.1-0.5) (0.8-3.8)  (<0.1-0.2)
Europe (n=1)
Fine 16 <0.1 2.2 <0.2 <0.1 13 9.0 05
Coarse 71 11 0.3 <0.3 11 0.3 37 0.2
Sahara (n=12)
Eine 13 0.3 1.2 0.4 0.2 1.1 11.3 0.2
(9-28) (0.1-1.2) (0.3-4.1) (ND-2.9)  (<0.03-1.0) (<0.1-182)  (6.0-26) (<0.1-1.8)
Coarse 106 9.7 6.9 0.3 11 0.3 5.8 0.5
(27-257) (1.9-24) (1.5-36) (<0.1-0.6) (4.9-20)  (<0.1-0.8) (1.5-16) (<0.1-1.8)
SAfr (n=4)
Eine 13 <0.2 <0.2 <0.3 0.2 0.1 5.6 0.4
(12-14) (<0.1-<0.2)  (ND-0.2)  (ND-<0.3)  (<0.1-03)  (<0.1-0.2) (5.2-5.9) (0.3-0.5)
Coarse 101 7.9 1.0 <0.2 6.2 <0.1 1.3 0.5
(46-152) (3.5-12) (0.9-2.4)  (<02-<0.3)  (3.9-92)  (<0.1-02)  (<0.2-17)  (0.4-0.7)
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Table 4.2 (continued)

lons
Air Mass
Na* Mg?* nss-Ca?* nss-K* NOs NH4* nss-SO4* C204%
SAfr-BB (n=3)
Fine 16 <0.2 0.2 0.8 0.1 1.6 9.2 0.6
(13-18) (<0.1-<0.2) (<0.1-0.5) (0.7-1.1) (<0.1-0.1) (0.6-1.9) (8.2-11) (0.6-0.8)
Coarse 127 11 1.8 <0.2 12 0.3 1.5 0.8
(125-180) (9.8-15) (1.3-1.9) (<0.2-<0.3) (8.6-12) (0.3-0.4) (0.5-2.6) (0.6-0.9)
SAtl-Rem (n=8)
Fine 7.9 <0.1 0.1 ND 0.2 <0.1 1.6 0.1
(3.5-13) (<0.03-<0.2) (<0.01-0.3) (ND-<0.04) (<0.1-0.2) (<0.06-0.2) (1.0-3.0) (<0.1-<0.1)
Coarse 179 15 1.9 <0.3 1.6 <0.2 0.4 0.1
(59-218) (3.8-2) (0.9-2.1) (<0.2-<0.4) (1.0-3.0) (<0.1-0.5) (<0.3-2.5)  (<0.1-<0.2)
SAmer (n=2)*
<0.06,
Fine 75,79 <0.1,0.2 ND, <0.1 ND, ND 0.1,0.2 <0.04 13,34 <0.1,0.2
Coarse 224, 177 17,23 18,15 <0.2,<0.2 11,27 <0.1,<0.5 <0.3,<0.3 <0.1,0.1

* Both values of air mass with 2 aerosol samples were presented.
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4.2.2.1 lons Associated with Primary Aerosol

Primary aerosol from sea spray contains ions such as sodium and magnesium. Sodium

(Na") is one of the main constituents of sea spray aerosol as well as chloride (CI") and

sulphate (SO4%). Concentration profile plots of both Na* and Mg?* are shown in Figure

4.5a and Figure 4.5b. Both Na* and Mg?* were strongly associated with coarse mode

aerosol, with median proportions of these two ions being about 90% and 98%

respectively.
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Figure 4.5 Concentrations of (a) Na* and (b) Mg?* in fine and coarse modes of AMT21
aerosol samples. Bars are analytical errors of a single determination.

The pattern of concentrations of these two ions was similar throughout AMT21 but

higher concentrations of Na* by a factor of 13 were observed. These relatively high

concentrations of Na* are not different from the expected given the percentage mass in
seawater of Na* is higher than Mg?* by a factor of 15 (Seinfeld and Pandis 2006). Mg?*

concentrations were undetectable in almost all of fine mode samples, except two of the

Saharan samples (117 and 118).
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High concentrations of both Na* and Mg?* in coarse mode aerosol were observed in the
southern Atlantic aerosol samples. Median concentrations of these ions in SAtl-Rem
and SAmer aerosols were 179 and 200 nmol m (for Na*), and 15 and 20 nmol m- (for
Mg?*). Two Saharan aerosol samples (117 and 118) showed the highest concentrations
of both ions with the peak concentrations being 244 nmol m=for Na* and 22 nmol m
for Mg?*.

For AMT21, the average relative wind speed was calculated from recorded data for
every minute during aerosol collection. The value of the southern Atlantic was slightly
higher than in the northern Atlantic (Figure 4.6). The strongest wind speed was recorded
in samples 133 and 134, which leads to one of the highest Na* and Mg?* concentrations.
Correlation between Na* concentrations and average relative wind speed was shown
statistically significant at 0.01 level (r = 0.76, p-value < 0.001). According to Sander et
al. (2003) and Gong et al. (1997), high concentrations of sea spray are directly
influenced by high wind speeds.
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Figure 4.6 The average relative wind speed (ms™) of AMT21 aerosol samples. Bars are
standard deviations.
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Another important primary aerosol originates from mineral dust. Evidence of mineral
dust can be observed in both nss-Ca?* and soluble aluminium (Figure 4.7).
Concentrations of nss-Ca?* was non-uniformly distributed along the Atlantic, this was
based on the amount of dust influence. Aerosol samples of Saharan air masses showed
higher concentrations compared with other air mass types, especially 115-119. Low

concentrations of both nss-Ca?* and soluble aluminium were found in non-Sahara

aerosol.
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Figure 4.7 Concentrations of (a) nss-Ca?* and (b) soluble aluminium in fine and coarse
mode of AMT21 aerosol samples (Concentrations of soluble aluminium were obtained
from unpublished data from Alex Baker (2014)). Bars of nss-Ca?* are errors from nss-
Ca?* calculations derived from analytical errors of Ca?* and Na*. Bars of soluble
aluminium are analytical errors for a single determination.

For Sahara aerosol (sample 108-119), it is clear that nss-Ca* was associated with coarse
mode aerosol, the median concentration in coarse mode was about 8 times higher than
in fine mode aerosol. However, soluble aluminium was found almost equally in both

coarse and fine modes, with slightly higher concentrations in fine mode aerosol.
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High concentrations of both nss-Ca?* and soluble aluminium were found in 5 Sahara
aerosol samples (115-119) with the median concentration of 25 nmol m™ (range from 12
to 40 nmol m™) for nss-Ca?*, and with a median concentration of 1,776 pmol m= (range
from 1,403 to 2,684 pmol m) for soluble aluminium. High concentrations of nss-Ca?*
(> 5 nmol m) have previously been used by Baker et al. (2006a) to identify the
presence of Saharan dust. Low concentrations of nss-Ca?* and soluble aluminium were
observed in coarse mode aerosol in SAfr, SAfr-BB, SAtl-Rem and SAmer aerosol
samples. These low concentrations of components associated with mineral dust also

were found in NAtl-Rem and Europe aerosol samples.

Concentrations of soluble aluminium in fine mode aerosol were slightly higher than
coarse mode aerosol, this is because aluminium is less soluble in coarse mode aerosol

than in fine mode aerosol (Baker et al. 2006b).

Non-seasalt potassium (nss-K*) is classified as ions associated with primary aerosol
based on criteria physical release processes or origins (Allen and Miguel 1995).
Concentrations of nss-K* can be used as tracer for biomass burning (Johansen et al.
2000; Andreae and Merlet 2001). Along the Atlantic, southern Africa is the region
where influences of biomass burning probably could be observed (Baker et al. 2006a;
Baker et al. 2010; Zhang et al. 2010).

Figure 4.8 shows nss-K* profile plots. Detectable concentrations were found in 7
samples of Sahara, 3 samples of SAfr-BB, and one Eur aerosol sample. Observed nss-
K™ was associated mostly with fine mode aerosol samples. In Sahara aerosol, the
median concentration of detected nss-K* concentration in fine mode aerosol was 0.6

nmol m= (range from 0.4 to 2.9 nmol m=3).

For SAfr-BB, the median concentration of nss-K* in fine mode aerosol was 0.8 nmol
m= (range from 0.7 to 1.1 nmol m3). These observed values from AMT21 were slightly
lower than previous findings of the AMT13 cruise, during which most of the detected
nss-K* samples were less than 2.0 nmol m3, and the highest peak of about 5.0 nmol m
(Baker et al. 2006a). South of the equator, the peak of biomass burning activity occurs
in the mid of the dry seasons (between July and November) (Sakaeda et al. 2011; Eck et
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al. 2013). In AMT21, SAfr-BB sample were collected from 17" October 2011, this
collection period appears to reach the end period of the biomass burning in this region
(Eck et al. 2013). As a result, concentrations of nss-K* of the southern Africa aerosol
seem to be low during the AMT21.

Non-seasalt potassium in fine mode aerosol was not detectable in all samples of SAtl-
Rem, SAfr and SAmer and some samples of NAtl-Rem aerosol. Undetectable
concentrations of nss-K* in Southern Atlantic aerosol implies no influences of biomass

burning properties, compared with other air masses.
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Figure 4.8 Concentrations of nss-K* in fine and coarse mode of AMT21 aerosol
samples. Unfilled bars are samples which have concentration below detection limits.
Bars of nss-K* are errors from nss-K* calculations derived from analytical errors a
single determination of K"and Na".
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4.2.2.2 lons Associated with Secondary Aerosol

lons which are associated with the secondary aerosol are NOs", NH4*, nss-SO4% and

C,0.%. Details of the characteristics of each ion will be discussed as follows.

Nitrate concentration can indicate anthropogenic sources from combustion in the form
of NOx. Results from the plot of nitrate concentrations (Figure 4.9a) revealed that this
ion was associated mostly in coarse mode aerosol. This coarse mode association of
nitrate is due to a reaction between nitric acid and sea salt aerosol. The nitric acid is
derived primarily from NOx emissions from combustion processes (Andreae and
Crutzen 1997).

HNOs(g) + NaCl (p) — HCI(g) + NaNOs3(p)

where g and p, are the gas and particulate phases.

A high concentration of nitrate in the coarse mode aerosol was observed in Sahara dust
aerosol samples, with the median concentration of 11 nmol m (range from 4.9 to 20
nmol m=). These high concentrations of NO3"in Sahara dust samples, i.e. 110-112 and
116-118 showed Saharan aerosols appear to be mixed with anthropogenic pollution,
similar to previous results of Baker et al. (2006a). Further, SAfr-BB aerosol also
showed high concentrations of nitrate with a median concentration of 12 nmol m
(range from 8.6 to 12 nmol m). These high NOs™ concentrations were suggested to be a
result of NOx emissions from biomass burning (Swap et al. 1996; Baker et al. 2006a).
Unlike coarse mode aerosol, one third of fine mode aerosol showed non-detectable
concentration of this major ion. NOs™ concentrations of fine mode aerosol were less than

0.5 nmol m=,

The difference between Southern Atlantic aerosol (i.e. SAtl-Rem and SAmer) and other
air mass types were observed clearly in the concentration of nitrate in the coarse mode
aerosol. Median nitrate concentrations of Europe, SAfr-BB, and Saharan aerosol were
higher than SAlt-Rem aerosol by about a factor of seven and by a factor of six for
SAmer aerosol. These low concentrations of NOgz™ indicate cleaner properties of the
aerosol, with less influences from both combustion and biomass burning sources. The
average concentrations of NOgz™ in both fine plus coarse sample for SAtl-Rem and
SAmer were 1.8+0.6 and 2.0+1.2 nmol m™ respectively. These values of southern
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Atlantic aerosol agreed well with the results of Zhang et al. (2010) which found that the
low concentrations of NO3™ in the Southern Atlantic can be used as a “background”

level, approximately 0.12+0.15 pg m=(1.9+2.4 nmol m).

Ammonium is another important major ion which can be used to indicate anthropogenic
influences, i.e. agricultural activities and biomass burning (Aneja et al. 2001; Johansen
et al. 2000). Figure 4.9b shows ammonium concentrations in AMT21 collection
aerosols which were mostly associated with fine mode aerosol. Concentrations of
ammonium were observed in the fine mode for most aerosol samples, except in SAtl-
Rem and SAmer in which most samples had undetectable NH4*. There were detectable
amounts of NH4" in 8 Saharan samples, 3 samples of SAfr-BB and one sample each of
SAfr and NAtl-Rem aerosol. SAfr-BB aerosol samples were detectable with
concentrations ranging from 0.6 to 1.9 nmol m™. One of European aerosol (107) also

shows high NH4* concentration of about 8.7 nmol m™,

The presence of NH4" in biomass burning influenced aerosol samples agreed with the
finding of evidence for a relationship between ammonium and biomass burning (Baker
et al. 2006a). NH4* concentrations were undetectable in most of the fine mode aerosol
samples of SAtl-Rem and SAmer samples (<0.1 nmol m). Highest concentrations of
NH4" were observed in samples 110-112 of Saharan aerosol with concentrations ranging

from to 5.7 — 18.2 nmol m™3.

Results of NH4" in several samples of tropical north Atlantic aerosols were slightly
lower than previous studies of Johansen et al. (2000) which found that concentrations of
NH4* were between 4 — 14 nmol m™ for the tropical north Atlantic aerosols (using
cellulose filter). In the AMT21, glass micro-fibre filters were used to collect aerosol
samples for analysing major ions and iodine species. According to Schaap et al. (2004),
artefacts in the sampling of ammonium nitrate with glass micro fibre filters were
complex but it could occur. Evaporative loss is likely to occur with semi-volatile
ammonium nitrate in aerosol collected by micro fibre filters, especially in high air
temperature condition (> 20°C). This might be a reason for low NH4* concentrations in
several samples of the north Atlantic which are different from aerosol samples collected

by cellulose filter of other studies.
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Figure 4.9 Concentration of (a) NOs’, (b) NH4*, (c) nss-SO4%", and (d) C204? in fine and
coarse mode of AMT21 aerosol samples. Unfilled bars are samples which have
concentration below detection limits. Bars of NOs", NH4* and C,04?" are analytical
errors for a single determination. Bars of nss-SO4?" are errors from nss-SO4>
calculations derived from analytical errors for a single determination of SO4> and Na*.
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Concentrations of nss-SO4> were calculated based on the ratio of SO+ and Na* in sea
water. Baker et al. (2006a) also revealed that anthropogenic activity such as biomass
burning is the main source of nss-SO.%, via SO oxidation. Evidence of high
concentrations of nss-SO4% influenced by anthropogenic sources in the Bay of Bengal

was also confirmed by Kumar et al. (2008).

The profile plot of nss-SO4? in Figure 4.9¢ shows two different regions of high and low
concentrations. High concentration of nss-SO42” were observed in Europe, Sahara, SAfr
and SAfr-BB aerosol samples. SAtl-Rem, SAmer and NAtl-Rem (except sample 107)

appeared to have low concentrations of nss-SO42".

Highest concentration of nss-SO42” were observed in Saharan fine mode aerosol samples
of 110-112, with a median concentration of 19.7 nmol m™. For samples 110-112, there
might be some influences of anthropogenic pollution. For most of the aerosol samples,
nss-SO4% concentrations were mostly associated with fine mode aerosol rather than
coarse mode aerosol. Strong influences of Saharan dust provided relatively high
concentration of nss-SO4” in coarse mode aerosol, with median concentrations in fine

and coarse mode aerosol of 115-119 are 12.1 and 10.6 nmol m™ respectively.

Figure 4.9¢ shows concentrations of nss-SO4% in fine mode aerosol of SAfr-BB which
appear to be slightly higher than in SAfr aerosol (nss-SO4% proportions between fine
and coarse mode are 8.7 for SAfr-BB and 8.6 for SAfr). Both SAfr-BB and SAfr aerosol
originate from air masses which travelled from the southern African continent. High
concentration of nss-SO42 in SAfr-BB aerosol confirmed that biomass burning also is
another source for non-seasalt sulphate. These findings agree well with Baker et al.
(2006a) which found that the variation of nss-SO4?" in the southern hemisphere was

accounted for by variations of nss-K*.

SAtl-Rem, SAmer and NAtI-Rem aerosol samples have low concentration of nss-SO4%,
however, NAtl-Rem seems to have slightly higher concentrations. Concentrations of
nss-SO42” of SAtl-Rem aerosol were less than 3.0 nmol m™. In NAtl-Rem fine mode
aerosol, the median concentration of nss-SO42” was 2 times more than its concentrations
in SAtl-Rem aerosol. This low concentration of nss-SO4* of SAtl-Rem indicated less

contaminant by anthropogenic activities in the Southern Atlantic remote ocean, in

88



agreement with results for NO3z". On the other hand, the possibilities of anthropogenic
contaminant in aerosol of the area Northern Atlantic remote could occur because the air

masses may have travelled over areas where there were anthropogenic activities.

For tropospheric aerosol, oxalate, the anion of oxalic acid is one of the most abundant
measurable organic species and it is the final product of photochemically induced
reactions involving many organic precursors (Kawamura et al. 2010; Johansen et al.
2000). Oxalic acid could be produced by both primary biogenic and anthropogenic
emissions (combustion process) and secondary transformations of organic precursors in
the gaseous and condensed phases (Laongsri and Harrison 2013). However, in the
marine aerosol, high oxalate concentrations were observed in polluted environment,
which has its origins over the continent (Rinaldi et al. 2011). Oxalate in the marine

environment also relates to its potential sources in the submicron aerosol.

In Figure 4.9d, concentrations of oxalate were relatively smaller than other major ions
such as NO3z", NH4" and nss-SO4%". Oxalate concentrations of AMT21 aerosol samples
revealed similar pattern to other major ions, especially in NOs and nss-SO4%. High
concentrations of C204% in Europe, Sahara, SAfr and SAfr-BB were observed. On the
other hand, very low concentrations of this ion were seen in most samples of SAtl-Rem,
SAmer and NAtI-Rem aerosol samples. The proportion of C,04? between coarse and

fine modes varied in different aerosol types.

Most of the detectable C204% in the fine mode is slightly lower than its proportions in
the coarse mode i.e. fine fractions of C,04%* of SAfr and SAfr-BB aerosol were 44% and
47% respectively. However, there are some Saharan samples which show higher
proportions of C204% in the fine mode compared to the coarse mode aerosol, i.e. sample
110 and 111. In aerosol samples of NAtl-Rem and Europe origin, the oxalate fraction of
detectable samples in fine mode were between about 56% and 68%. These findings
agree with previous research of the oxalate in the north Atlantic which showed about

60% oxalate presence in the fine mode fraction (Johansen et al. 2000).
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For SAtl-Rem, SAmer and NAtI-Rem aerosols (except, 107), C204> was not detectable
in most aerosol samples both in the fine and coarse modes. In coarse mode aerosol,

concentrations of C,042 of SAtl-Rem and SAmer were smaller by at least a factor of 4
than SAfr, Sahara and SAfr-BB aerosol samples. In SAfr-BB, concentrations of C,04>"

were higher than SAfr aerosol by a factor of nearly two.

Figure 4.10 shows the plot of nss-SO4? against C.04% in total (fine plus coarse mode)
aerosol in the northern and southern hemispheres. Correlation between nss-SO42" and
C204% concentrations was found statistically significant at 0.01 level for both
hemispheres (r = 0.86, p-value < 0.001 for northern hemisphere and r = 0.94, p-value <
0.001 for southern hemisphere). In Figure 4.10b, oxalate concentrations of SAfr-BB
provides higher concentrations of oxalate, compared with other southern hemisphere
aerosol. This was due to related photochemically induced reactions involving many

organic precursors of biomass burning aerosol (Johansen et al. 2000).
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Figure 4.10 The plot of nss-SO4% against C204> in fine plus coarse aerosol of (a)
northern hemisphere aerosol and (b) southern hemisphere aerosol. Bars of C204 are
analytical errors for a single determination. Bars of nss-SO4?" are errors from nss-SO4>
calculations derived from analytical errors for a single determination of SO4> and Na®.

This correlation between nss-SO4>” and C,04% agreed well with Johansen et al. (2000)
which revealed that oxalate and sulphate showed significant correlation in the tropical
north Atlantic Ocean. In addition, results of Yu et al. (2004) also showed that both

species are highly correlated in the East Asia region.
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4.2.3 Halogen Chemistry of AMT21 Aerosol

Halogens in the troposphere are very active and play important roles in ozone
destruction in both the stratosphere and the troposphere (Saiz-Lopez and von Glasow
2012; von Glasow and Crutzen 2014). In order to achieve a better understanding of the
complexity of halogens, the chemistry of halogens in AMT21 collected aerosols need to

be examined thoroughly.

Apart from the previous findings of the major ions in the AMT21 aerosols, chloride and
bromide variation are also important data sets for understanding chemical characteristics
of aerosol samples. lodine is another important halogen which the total soluble iodine
(TSI) can be used to represent the concentrations of total soluble iodine both inorganic
and organic fractions. Both CI" and Br~ were used as comparisons with TSI, as these two

halogen species are the dominant forms of chlorine and bromine in aerosols.

4.2.3.1 Chloride (CI), Bromide (Br-) and Total Soluble lodine (TSI)

Concentrations

A summary of the median and concentration ranges for CI-, Br  and TSI for the AMT21
aerosol samples both fine and coarse mode, according to air mass types is shown in
Table 4.3.

ClI" is the highest concentrated ion in seawater. Results of ionic analysis found that
chloride concentrations in all aerosol samples were associated strongly with coarse
mode aerosol, accounting for more than 97% of the average CI" fraction. High
concentrations of CI” were observed in southern Atlantic aerosol samples. Median

concentrations of this ion in SAtl-Rem and SAmer aerosols were 210 and 219 nmol m?.
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Figure 4.11 Concentrations of (a) CI" (b) Br-and (c) TSI in fine and coarse mode of AMT21 aerosol samples. Unfilled bars are
samples which have concentrations below detection limits. Bars are analytical errors for a single determination.
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Table 4.3 Median (in bold) and range concentration (in parenthesis) for CI, Br, TSI, I, IOz  and SOI in the AMT21 aerosol samples both
fine and coarse mode, according to air mass types. (Concentration unit for CI-and Br~ is nmol m and pmol m= for TSI, I, 105” and SOI).

Air Masses CI Br TSI I 105 SOl
NAtl-Rem (n=3)
Fine 1.8 (0.6-5.6) <0.03 (<0.03-0.06) 4.2 (3.9-5.7) <1.2 (0.9-1.6) 2.4 (<0.2-2.5) 2.1(0.8-2.1)
Coarse 103 (70-120) 0.08 (0.07-0.09) 24 (13-31) 3.9 (<0.6-4.6) 18 (9.6-26) 1.1 (0.9-2.7)
Europe (n=1)
Fine <0.4 <0.03 7.2 3.2 <0.2 3.9
Coarse 74 0.06 16 2.8 9.3 3.4
Sahara (n=12)
Fine <0.4 (ND-3.4) <0.03 (<0.02-0.05) 11 (8.6-19) 2.4 (1.3-7.0) 5.4 (<0.2-12) 3.8(1.0-7.1)
Coarse 120 (25-275) 0.10 (<0.03-0.2) 26 (15-62) 3.3(1.4-4.3) 23 (10-58) 3.1(0.2-5.5)
SAfr (n=4)
Fine 0.8 (ND-3.1) <0.1 (<0.02-<0.16) 4.3 (3.6-5.9) 1.6 (1.2-2.5) <0.2 (<0.2-<0.2) 2.6 (2.2-3.2)
Coarse 105 (48-152) 0.03 (<0.02-0.10) 14 (8.8-27) 1.6 (0.8-3.7) 9.7 (4.4-17) 3.3(2.2-6.4)
SAfr-BB (n=3)
Fine ND (ND-ND) <0.02 (<0.02-<0.02) 6.9 (4.3-8.4) 0.2 (0.2-0.2) <0.2 (<0.2-<0.2) 3.9 (2.4-5.0)
Coarse 120 (119-180) <0.02 (<0.01-0.09) 17 (15-23) 2.2 (1.5-3.0) 9.6 (9.2-13) 5.4 (4.0-6.2)
SAtl-Rem (n=8)
Fine 3.7 (1.7-5.4) <0.02 (<0.01-0.06) 5.6 (4.4-16.5) 1.2 (<0.5-6.0) 2.3 (<0.2-6.0) 2.3(1.7-5.1)
Coarse 210 (67-241) 0.19 (0.07-0.23) 17 (9.8-25) 3.9 (<0.6-4.6) 13 (6.3-27) 2.1 (1.5-3.0)
SAmer (n=2)* Both values of 2 aerosol samples were presented. ND means undeterminable values.
Fine 43,14 <0.04, <0.02 4.1,4.0 08,15 2.5,1.0 0.7,1.6
Coarse 250, 187 0.07,0.22 9.0, 18 0.7,1.2 95,21 ND, ND




Two of the Sahara aerosol samples, 117 and 118, also showed high concentrations with
peak concentrations of 272 nmol m and 275 nmol m. However, there were three
Saharan samples (113-115), which showed very low concentrations of Cl” with
concentrations ranges from 27 to 49 nmol m. NAtI-Rem derived aerosol samples

showed lower concentrations compared with SAtl-Rem aerosols by a factor of two.

Bromide concentrations were associated mostly with coarse mode aerosol samples. For
this coarse mode aerosol, concentrations of bromide were detectable in 26 out of 33
samples. High Br- concentrations were observed in coarse mode aerosol of the SAtI-
Rem with a median concentration of 0.19 nmol m (range from 0.07 to 0.23 nmol m™).
Two SAmer aerosol samples showed Br- concentrations of 0.07 and 0.22 nmol m™
respectively. Detected Br~ concentrations in coarse mode aerosol also were found in
most of the Sahara aerosol samples, i.e. 108-111 and 116-119. For coarse mode aerosol,
there were few samples, which showed undetectable Br~ concentrations i.e. Sahara (3
samples), SAfr (2 samples) and SAfr-BB (2 samples). Unlike coarse mode aerosol, all
of fine mode samples were below detection limits (Figure 4.11b).

Sander et al. (2003) discovered that sea salt is the main source of bromine in the marine
boundary layer. Bromide is the dominant form of inorganic bromine in sea water. The
flux of sea salt bromine is mainly a function of wind speed, which creates the generation
of seasalt particles. Thus, results of high Br concentrations in both SAtl-Rem and

SAmer aerosol can link directly to high seasalt concentration (Na*), in section 4.2.2.1.

The plot of concentrations of total soluble iodine (TSI) of aerosol samples of the
AMT21 is shown in Figure 4.11c. A summary of the median and concentration range
for TSI in AMT21 aerosols of fine mode, coarse mode and fine plus coarse mode

aerosol, according to air mass types is shown in Table 4.3.

The median concentrations of TSI in fine mode aerosol was about 6.9 pmol m™ (range
from 3.6 to 19 pmol m%), while 22 pmol m™ (range from 8.8 to 62 pmol m) was found
in coarse mode aerosol. The median TSI concentration in the coarse mode aerosol was
nearly 3 times larger than that in the fine mode aerosol. In fine mode aerosol, Sahara
aerosol samples showed the highest range of TSI concentrations, with a median of about
11 pmol m (range from 8.6 to 19 pmol m™). For other air mass origins, the median TSI
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concentrations were less than 5.0 pmol m™3, except for Europe, SAfr-BB and SAtl-Rem

derived aerosol.

Similarly to fine mode aerosol, the Sahara coarse mode aerosol fraction also revealed
the highest range of TSI concentrations with a median of 26 pmol m™ (range from 14.9
to 62 pmol m™). For other air mass origins, the median TSI concentrations were equal
or less than 17 pmol m3, except NAtlI-Rem aerosol which has its median TSI
concentration in coarse mode samples of about 24 pmol m. In Sahara aerosol samples,
115-118, the highest range of TSI concentration in both fine (range from 34 to 62 pmol
m-3) and coarse mode aerosol (range from 51 to 82 pmol m3) was observed. Unlike
Sahara aerosol, SAfr and SAmer aerosol samples appear to have the lowest TSI
concentration both in fine and coarse mode aerosol, as well as fine plus coarse mode

concentration.

4.2.3.2 The Chemical Cycling of Halogens

Chemical cycling of halogens occur with bromine, chlorine and iodine in the marine
boundary layer. Both fine and coarse aerosol particles show different behaviours in their
halogen cycling. Details of halogens (chlorine and bromine) loss and enrichment factors

are discussed below.

4.2.3.3 The Loss of Chloride and Bromide

The loss of chloride and bromide is shown in Figure 4.12 and Figure 4.13. Both figures
display concentrations of both chloride and bromide, their seasalt concentrations (see
calculation details in Section 2.5.3) and percentage loss in both fine and coarse mode
aerosols. The loss of chloride occurs in large proportions in fine mode aerosol, while CI°
loss in coarse mode fraction is less than 20%. Unlike chloride, bromide loss occurs
mainly in coarse mode aerosol (Sander et al. 2003). For AMT21, Br loss can be
calculated only in coarse mode aerosol, while, in fine mode fraction, this Br™ loss cannot

be estimated because of bromide concentrations were below detection limits.
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The loss of CI- was observed largely in fine mode aerosol throughout the AMT21.
Median percentage loss of CI” in most of air masses (except SAtl-Rem and SAmer) was
up to 99% (range 61% to 99%). SAtl-Rem and SAmer show slightly lower percentage
loss of CI” (SAtl-Rem median 62%, range 38 to 71% and SAmer, 51 and 85%). For
coarse mode aerosol, the proportion of CI™ loss was observed to be about 3 to 4 times
smaller than in fine fractions. Moderate high CI" losses (range 10% to 20%) were shown
in SAfr-BB, SAfr, three samples of Sahara (111 — 113) and one sample of NAtl-Rem.
However, most samples of Sahara (except sample 111 — 113) and SAtl-Rem aerosol
showed little loss of CI- with the median of percentage loss of 4.7% and 4.2%

respectively.

In the total concentrations (fine + coarse), results of CI" loss of Sahara aerosol agree
well with results of Johansen et al. (2000) which found that CI- depletion occurred in all
samples of the tropical North Atlantic Ocean (average Cl loss 18 + 9.1%). CI- was
believed to be released from the aerosol phase through the acid displacement reactions
with mainly NHOs in coarse mode and H2SO4 in fine mode aerosol (Sander et al. 2003).

For bromide loss, as mentioned earlier, the loss of Br™ can be calculated only in coarse
mode aerosol for the AMT21. This loss of Br varied depending on air mass origins. The
highest Br~ loss was observed in both SAfr-BB (median 93%, range from 72% to 94%)
and SAfr aerosol samples (median 75%, range from 55% to 91%). For Sahara aerosol,
the loss of bromide varied largely with its median of 55% (range 13% to 90%). Aerosol
samples of SAIt-Rem and SAmer showed slight low percentage Br loss, with the
median of 43% (range 21 % to 60%) for SAtl-Rem and 21 and 43% for SAmer samples.
Results of Br™ loss for SAtl-Rem and SAmer agreed well studies of Ayers et al. (1999)
and Sander et al. (2003) which discovered Br- deficits in the Southern ocean were large

with average values of about 30% to 50%.
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Figure 4.12 Concentrations of CI" in aerosol samples and their seasalt (ss) ions in (a)
fine mode, (b) coarse mode aerosol and (c) percentage loss in both coarse and fine mode
aerosol. Unfilled bars and data points are dataset which their Cl- concentrations are
below detection limits. Error bars in Figure 4.12a) and Figure 4.12b) are analytical
errors of CI for a single determination. Error bars of ss-Cl are errors from ss-ClI
calculations derived from analytical errors for a single determination of CI- and Na*.
Error Bars in Figure 4.12c) are errors of %CI" loss calculations derived from analytical
errors of CI".
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Figure 4.13 Concentrations of Br~ in aerosol samples and their seasalt (ss) ions in (a)
fine mode, (b) coarse mode aerosol and (c) percentage loss in coarse mode aerosol.
Unfilled bars and data points are dataset which their Br- concentrations are below
detection limits. Error bars in Figure 4.13a) and Figure 4.13b) are analytical errors are
analytical errors of Br for a single determination. Error bars of ss-Br™ are errors of ss-
Br- calculations derived from analytical errors for a single determination of CI- and Na*.
Error bars in Figure 4.13c) are errors of %Br loss calculations derived from analytical

errors of Br.
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Chloride loss occurs mainly in fine mode aerosol, which can be seen from the plot of CI
loss against both nss-SO4?" and NOs™. Chloride loss will reach more than 80% when nss-
S04 was more than 5 nmol m= in fine mode aerosol, especially in aerosol samples of
Sahara, Europe, SAfr, and SAfr-BB (Figure 4.14a and Figure 4.15a). A clear
relationship between CI- loss concentrations and nss-SO4?" is shown in Figure 4.15a.
The link between high nss-SO4> and CI- loss agree well with previous studies of Sander
et al. (2003), Johansen et al. (2000) and Ayers et al. (1999). Also, in this fine mode
aerosol, no clear relationships between CI™ loss and NO3™ was observed (Figure 4.14c
and Figure 4.15c).
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Figure 4.14 Plots of percentage loss of Cl" against nss-SO4? (a and b) and NO3™ (c and
d) in both fine and coarse mode aerosol. Bars in Figure 4.12a) and Figure 4.12b) are
analytical errors. Bars of NO3z™ are analytical errors for a single determination. Bars of
nss-SO42 are errors of nss-SO42" calculations derived from analytical errors for a single
determination of SO4% and Na*. Bars of %CI" loss are errors of %CI- loss calculations
derived from analytical errors of CI.
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In coarse mode aerosol, there is no clear relationships between CI loss (proportions and
concentrations) and nss-SO4? (Figure 4.14b and Figure 4.15b). In addition, this CI loss
showed no clear relationship with NOs™ in coarse mode aerosol (Figure 4.14d and Figure
4.15d), which is different from previous findings of clear links between CI- loss with the

presence of acid in coarse mode aerosol (Ayers et al. 1999; Johansen et al. 2000).
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Figure 4.15 Plots of concentrations of CI” loss against nss-SO4?" (a and b) and NO3™ (¢
and d) in both fine and coarse mode aerosol. Bars of NO3™ are analytical errors for a
single determination. Bars of nss-SO4? are errors of nss-SO4" calculations derived from
analytical errors for a single determination of SO4> and Na*. Bars of %Cl" loss are
errors of %CI" loss calculations derived from analytical errors of CI-.
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Unlike chloride loss, bromide loss can only be observed in coarse mode aerosol. The
relationship between Br loss (proportions and concentrations) and nss-SO4% does not
show a clear pattern of correlation (Figure 4.16a) and (Figure 4.16¢). With nss-SO4>",
very high proportions of Br~ loss (>80%) were observed in some samples of SAfr and
SAfr-BB despite their low concentrations of nss-SO4? (<2.6 nmol m). For other air
masses, unclear relationships between Br loss and nss-SO4>" were observed. However,
the relationship of Br~ loss with NOs™ concentrations showed stronger relationships,
compared with nss-SO4?* (Figure 4.16b) and (Figure 4.16d). Relationship between
concentrations of Br™ loss and NO3™ agree well with previous studies of Sander et al.
(2003).
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Figure 4.16 Plots of percentage loss of Br~ against nss-SO4% (a) and NO3™ (b) and plots
of Br- loss concentrations again nss-SO42 (c) and NOs™ (d) in coarse mode aerosol. Bars
of NOs are analytical errors for a single determination. Bars of nss-SO4% are errors of
nss-SO4% calculations derived from analytical errors for a single determination of SO4>
and Na*. Bars of %Br- loss and Br- loss are errors of %Br loss and Br- loss calculations
derived from analytical errors for a single determination of Br.
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4.2.3.4 The Enrichment of lodine

The enrichment factor of iodine (EFodine) in both fine and coarse mode aerosol is shown
in Figure 4.17. In fine mode aerosol, the median EFqdine Value was 648, with a range of
244 to 1675. Lower values of EFodine Were found in SAfr, NAtl-Rem and SAfr-BB,
with their median EFodine Values of 349, 357 and 439 respectively. High ranges of
EFiodine Value (>1,000) for fine mode aerosol was found in Sahara dust, especially
samples of 113 — 118. These high EFiadine Value can be observed in few samples of SAtl-
Rem aerosol samples such as 130, 132 and 135. For coarse mode aerosol, lower values of
EFiodine were found (median 196, range 42 to 1090). Only three samples of Sahara
aerosol have EFodine Values between 786 and 1090. The lowest ranges of EFogine Were
observed in aerosol samples of SAtl-Rem (median = 95, range from 57 to 444) and
SAmer (42 and 105). .
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Figure 4.17 The Enrichment Factor (EF) of iodine in fine and coarse mode of AMT21
aerosol samples. Bars of EFodine are errors of EFjodine calculations derived from
analytical errors for a single determination of TSI and Na*.

The higher EFodine Values of fine mode aerosol agree well with previous research
(Moyers and Duce 1972; Baker et al. 2000; Baker 2004, 2005; Hou et al. 2009). These
studies found that iodine enrichment factors of fine mode aerosol were higher than
coarse mode aerosol. Baker (2005) also revealed that EF values of inorganic iodine
were much higher in the fine mode (median EF values were 640 and 1600 in M55 cruise

and AMT13 fine mode aerosol, compared to 68 and 94 in the coarse mode). Results of
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these differences between fine and coarse mode aerosol could be used to support the
hypothesis of formation of aerosol iodine by gas-to-particles conversion from volatile
iodocarbons such as methyl iodide, either directly or via other gaseous precursors
(Baker 2005).

4.2.4 lodine Speciation of AMT21 Aerosol

4.2.4.1 lodide (I"), lodate (103 and Soluble Organic lodine (SOI) Concentrations

A summary of the median and concentration ranges for I, 103” and SOI for the AMT21
aerosol samples both fine and coarse mode, according to air mass types is shown in
Table 4.3.

Concentrations of iodide were more likely to be evenly distributed between both fine
and coarse mode aerosol (Figure 4.11a). Median concentrations of I" in both fine and
coarse fractions are 1.6 pmol m (range from 0.7 to 7.0 pmol m™), and 2.1 pmol m
(range from 0.6 to 4.6 pmol m™) respectively. However, each air mass type of aerosol
has a different distribution. The highest range of I" concentrations (both fine plus coarse)
were observed in three Sahara aerosol samples, 110-112, with a concentration of more
than 8.0 pmol m. Most of the aerosol samples have iodide concentrations more than 5
pmol m=3, this includes most samples of Sahara aerosol, and some of the samples of
NAtl-Rem, Europe, SAfr, SAfr-BB and SAmer aerosol samples.

Almost a half of fine mode aerosol (15 out of 33 samples) has slightly higher iodide
concentrations compared with coarse mode aerosol. These samples were found in
aerosol of Europe (105), Sahara (110-114), SAfr (120, 126), SAfr-BB (121, 124-125),
SAtl-Rem (130-131, 135) and SAmer (133-134). Most of SAtl-Rem aerosol samples have
low I concentrations (fine + coarse), which were less than about 5 pmol m3. These low
concentrations of iodide also were observed in two samples of NAtl-Rem aerosol.
lodide was below detection limit for some NAtl-Rem and SAtl-Rem aerosol samples. In
104 (NAtI-Rem) and 130 (SAtl-Rem), iodide concentrations were not detectable in both

fine and coarse mode aerosol.
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Figure 4.18 Concentration of (a) I, (b) 103 and (c) SOI in both fine and coarse mode aerosol. Unfilled bars are samples which have
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lodate was observed mostly in association with coarse mode aerosol. This iodine
species is dominant in coarse mode aerosol with its median concentration of 15 pmolm
(range from 4.4 to 58 pmol m). The highest range of iodate concentration was detected
in Sahara aerosol samples, 115-118. Compared with other air mass, aerosol samples of
Europe, SAfr-BB and SAfr have the lowest ranges of 103™ concentration, with their

median of 103” concentration of 9.3, 9.6 and 9.7 pmol m™ respectively.

In contrast to high concentrations of iodate in coarse mode aerosol, concentrations of
this iodine species were undetectable for 13 out of 33 of fine mode aerosol samples,
with a median concentration of 2.2 pmol m= (range from 0.2 — 12 pmol m™). This
iodate absence was in all samples of SAfr and SAfr-BB aerosol, and some of the Sahara
(110-111), Europe, NAtl-Rem and SAtl-Rem aerosol samples (Figure 4.18b). The
absence of iodate in fine mode SAfr-BB aerosol agree well with the study of Baker
(2005), which discovered that 103™ was undetectable in southern hemisphere aerosol
samples. Further, Baker (2005) also found undetectable 103 concentrations in

European-origin air along the AMT13 transect.

SOI cannot be measured directly, but is calculated from the measured values for TSI, I’
and 103 (SOI = TSI — (I + 1037)). In some cases, the cumulative errors in the measured
parameters combine to give an uncertainty in SOI that is greater than the magnitude of
the calculated SOI concentration. Where is occurred the SOI concentration was
considered to be undeterminable. These undetermined values of SOI were found in
aerosol samples of Sahara (108-109, 114), SAtl-Rem (132, 135), and SAmer (133-134).

The median concentration of SOI in fine mode aerosol (2.76 pmol m) was only
slightly lower than its median in coarse mode samples (2.82 pmol m™). In Figure 4.18c,
in fine mode aerosol, SOI were determined in all samples, these SOI values were not
detectable in 7 out of 33 samples of the coarse mode aerosol. SOI concentrations of
SAfr-BB, SAfr and Europe aerosol can be determined in all aerosol samples both fine
and coarse mode. However, the SAlt-Rem aerosol of the southern hemisphere showed
slightly lower concentrations of SOI, compared with other air mass types such as SAfr-
BB and Sahara aerosol. In SAfr-BB and SAfr (except sample 126), almost all of these
aerosol samples has SOI concentration in the coarse mode higher than in the fine mode

aerosol.
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Figure 4.19a and Figure 4.19b show the distribution of iodine species in both fine and
coarse mode aerosols. Details of iodine species distribution will be discussed in the
following section. Figure 4.19c shows the sum of concentrations of iodine species of
both fine and coarse mode, which will be used to compare the distribution of iodine
species of the AMT21 aerosol with samples collected during TransBrom and non-size

segregated aerosol of SHIVA respectively (see Chapter 6).
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Figure 4.19 Concentration of iodine species distribution in AMT21 aerosol samples (a)
fine mode, (b) coarse mode and (c) total concentrations of aerosol (fine + coarse).
Unfilled bars are samples which have concentration below detection limits. Bars of I’
and 103" are analytical errors. Bars of SOI are errors derived from SOI calculations.
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4.2.4.2 Proportions of lodine Species

Proportions of iodine species, I, 103” and SOI are shown in Figure 4.20, both in fine
mode (Figure 4.20a) and coarse mode (Figure 4.20b) aerosol. For fine mode aerosol,
there was no clear pattern of dominance for any iodine species. There were several
samples for which iodate was not detectable, details of the proportions of iodine species
of fine mode aerosol were discussed as followed. However, for coarse mode samples,

iodate was the dominant species with low proportions of iodide and SOI.

As shown in Figure 4.20a, the proportion of iodine species in fine mode aerosol varied
depending on the type of aerosol along the Atlantic Ocean. None of iodine species
showed their distributions as a dominant species. However, iodate and SOI showed
higher proportions (median proportion of 40% for 103~ and 38% for SOI), compared to
I” (median proportion of 24%).

In contrast with fine mode aerosol, iodate was dominant iodine species for coarse mode
aerosol samples with a median concentration of 80% (ranged proportions from 51 to
95%), with small proportions of SOI (median 12%) and iodide (median 9%)
respectively (Figure 4.20b). Further, SOI was undeterminable on about a third of the
coarse mode aerosol samples (14 out of 33), which are some of the aerosol samples of

NAtl-Rem, Sahara, SAtl-Rem and all samples of SAmer aerosol.
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The composition of iodine species of AMT21 aerosol samples is plotted in the ternary

composition plot between iodide, iodate and SOI (Figure 4.21). In Figure 4.21a, two

different groups of fine mode aerosol were observed (based on differences of iodate

concentrations. The first group lies within the region of low iodate proportion (3 —
15%), with higher proportions of SOI (35 — 65%) and iodide (30 — 65%) respectively.

This group consists of aerosol of SAfr, SAfr-BB and three Sahara samples. The second

group is located in the region where SOI ranges from 10 to 45%, iodide ranges 10 to

55% and iodate ranges from 35 to 75%. The main aerosol samples present in this

secondary group are Sahara and SAtl-Rem aerosol. In contrast with fine mode, iodate in

coarse mode aerosol contributes more than 50% of its proportions, and contains less
than 40% of SOI and 30% of iodide respectively (Figure 4.21Db).

a) Fine mode aerosol

0 100

lodide
(%) 80 20
90 10
100 ¥ 0

0 10 20 30 40 50 60 70 80 90 100
lodate (%)

b) Coarse mode aerosol

100

90
80
70

NAtl-Rem 0
Eur 10
Sahara
S Afr-BB 20 7
SAfr 30
SAtl-Rem 40
SAmer

50 ¢
60

SOl (%)

>>> bbb

60

lodide
(%)

90

100 ¥———F———— A 4. 0

0 10 20 30 40 50 60 70 80 90 100

lodate (%)

Figure 4.21 Ternary composition diagrams for iodine species of AMT21 aerosol
samples: (a) fine mode and (b) coarse mode. Each axis shows the percentage of I, 103

and SOI contained in each aerosol sample.
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A summary of median and ranges of proportions of iodine species of different air mass

types is presented in Figure 4.22. This figure shows box and whisker plots of the

proportions of individual iodine species (I, 103" and SOI) in different air mass types.
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Figure 4.22 Modified box and whisker plots, showing proportions of iodine species of

AMT21 aerosol samples (a) I, (b) 1037, (c) SOI in fine mode aerosol, and (d) I, (e) 103",
(f) SOI in coarse mode. These plots omit data of European aerosol type due to only one
sample being collected. Numbers in parenthesis represents numbers of aerosol samples.

The box shows the interquartile range (IQR) containing values between 25" and 75™
percentile. Bars represent the largest observation that is less than or equal to the upper
quartile plus 1.5 length of the IQR. Bars also show the smallest observation that is

greater than or equal to the lower quartile plus 1.5 times the length of IQR. Outliers are
observations outside lower-upper bar range. Red asterisks are the maximum values and

pink asterisks are the minimum values.

As discussed early, proportions of iodide in fine mode aerosol did not show differences

in all types of aerosol. However, both SOI and iodate showed similar median

proportions of 38 and 40% respectively, with 24% of iodide median proportions. For

coarse mode aerosol, iodide contributes a low proportion with a median of 9% (ranges

from 4 to 29%). SAfr and SAfr-BB aerosol samples have slightly higher proportions
(median 12 and 13%) compared with Sahara (median 8%) and other air masses.
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For iodate concentrations, Saharan aerosol samples showed the highest concentrations
in both fine and coarse mode aerosol. The median iodate proportion in the fine mode
aerosol samples of NAtl-Rem, SAIt-Rem and SAmer are 43%, 41% and 43%
respectively. In the coarse mode aerosol samples, median values of iodate proportions
of these three air-mass origins also were similar (median 80%, 81% and 94%). In this
fine mode aerosol, there are 13 out of 33 samples which has iodate proportion less than
5%. These low iodate proportion were found in all samples of SAfr and SAfr-BB and
Europe aerosol samples. In addition, there were 3 Sahara (110-112) and one of both
NAtl-Rem (107) and SAtl-Rem (128) that have low iodate proportions as well. It is
observed that most of these low 103" in fine aerosol samples have more than 50% of SOI
in their proportions. Undeterminable SOI value was found in coarse mode aerosol of
NAtl-Rem, Sahara, SAtl-Rem and SAmer aerosol samples.

4.2.5 Chemical Properties of Size Segregated Aerosols

In order to understand the origin and mechanisms of the formation of iodine species,
two aerosol samples from the northern (sample 115, lat. 22.4° — 20.2°N) and southern
hemisphere (sample 130, lat.18.3° — 20.1°S) were collected using filters in a 6-stage
cascade impactor and backup filter. Modal particles size of each stage are shown in
Table 2.1, Section 2.2.2.2). The northern hemisphere sample, 115, was classified as a
Saharan aerosol according to results of the analysis of air mass back trajectories. Sample
130 was grouped as a SAtl-Rem aerosol sample having pristine properties of the

Southern Atlantic remote aerosol. Air mass back trajectories of both samples are shown

in Figure 4.23.
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Figure 4.23 Air mass back trajectories of sample 115 and 130.
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4.2.5.1 Major lon Concentrations in Size Segregated Aerosol

Concentrations of ions associated with primary aerosols, sodium and nss-Ca?* were
strongly distributed in large size fractions for both 115 and 130 samples, especially with
aerosol modal size >2.4 um (Figure 4.24). The highest concentrations of both sodium
and nss-Ca?* were observed with aerosol modal size between 5.0 and 12 um. High
concentrations of sodium in coarse mode aerosol from sea spray were observed in the
SAtl-Rem sample (range 7.5 to 71 nmol m), which was higher than sodium
concentrations in sample 115 (range 3.6 to 16 nmol m™3). Coarse mode aerosol, 115
contained higher concentrations of nss-Ca?* (range 2.2 to 6.2 nmol m), compared with
130, the SAtl-Rem aerosol (range <0.3 to 0.8 nmol m™). This high nss-Ca?*

concentration in sample 115 was influenced as a result of strong mineral dust.

Results of high sodium concentrations in coarse mode aerosol agree well with the
findings of Keene et al. (2009), which revealed that sea salt contributed high
concentrations to the supermicron aerosol (>1 um). Highest Na* concentrations in
northern African aerosol samples were observed in the range of particles size between 7
to 11 um, while, the southern Atlantic aerosol appeared to show its highest seasalt
concentration in the 7 um size fraction. Submicon aerosol samples (<1 um) were

observed to have very low concentration in fine fractions.

For ions associated with primary aerosol, nss-K*, the overall concentrations of this ion
were observed almost equally in both fine and coarse mode aerosol for 115 sample, with
concentrations of 0.44 and 0.45 nmol m™ respectively. However, the distribution of this
nss-K* is quite different between these two size fractions. In Figure 4.24e,
concentrations of nss-K* in the fine mode fraction were about 2 — 3 times higher than
coarse mode aerosols. Sample 115 was one of the only two aerosol samples which
showed detectable nss-K* in coarse mode aerosol. Evidence of nss-K* found in both fine
and coarse fractions of the northern African aerosol were also found by Virkkula et al.
(2006). Unlike the Saharan sample (115), concentrations of nss-K* of 130 were not

detectable in both fine and coarse modes of aerosol.
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Figure 4.24 Concentrations of Na*, nss-Ca?* and nss-K* for size segregated samples 115
and 130. Unfilled bars mean concentrations below detection limits. * refers to values
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errors from nss-Ca?* and nss-K* calculations derived from analytical errors of Ca?*, K*
and Na".



3.0 a) Nitrate - Sample 115 1.0 - b) Nitrate - Sample 130
& 25
£ 0.8 -
g 20 -
S 0.6
5 15
£ 0.4 -
s 1.0 -
2
S 05 - 0.2 1
0.0 - 0.0 -
>12 50 24 16 09 04 <01 >]2 50 24 16 09 04 <01
1.0 + C) Ammonium - Samp|e 115 1.0 d) Ammonium - Sample 130
708 - 0.8 4
5
Eos 0.6
S
E0.4 0.4 -
c
g
30.2 02 1
0.0 0.0 -
>12 50 24 16 09 04 <01 >12 50 24 16 09 04 <01
e) nss-SO,2 - Sample 115 19 - f) nss-SO42* - Sample 130
5 .
& 1.0 1
£ 4 - E3
E Ea 08
£ 3 1
S 0.6
S -
§ 0.4
31 Ij 0.2 |—|
0 - - - - - - - 0.0 +——
>]2 50 24 16 09 04 <01 >12 50 24 1.6 0.9 04 <01
0.20 - h) Oxalate - Sample 115 0.20 i) Oxalate - Sample 130
(1)80.15 0.15
S
£
£
§0.10 0.10 -
g
g
50.05 - 0.05 -
) J:L_EL_EL_DM
0.00 - 0.00 -
>]2 50 24 16 09 04 <01 >12 5.0 2.4 1.6 0.9 04 <01
Modal Particles Size (um) Modal Particles Size (um)

Figure 4.25 Concentrations of NOs, NH4*, nss-SO4?* and C,04% for size segregated
samples 115 and 130. Unfilled bars mean concentrations below detection limits. Bars of
NOs’, NHs" and C204 are analytical errors for a single determination. Bars of nss-SO%
are errors from nss-SO.?" calculations derived from analytical errors for a single
determination of SO4>" and Na*.
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Figure 4.25a and Figure 4.25b show plots of the size distribution of NOs". Large
fractions of aerosol shows higher NO3z™ concentration in both sample 115 and 130.
Concentration of this ion in sample 115 is nearly three times higher than in sample 130.
For both aerosol samples, high concentrations of this ion were observed in three stages
(Stage 2, 3 and 4) of coarse mode aerosol, except aerosol particles size >12 um
impactor. For both aerosol samples, proportions of NOs™ in these three stages accounted

for nearly 90% of the total.

For ammonium, this ion was detected only in Stage 5 and 6 of the cascade impactor
(fine mode aerosols) in sample 115. Concentrations of NH4* were undetectable for all

coarse mode aerosol of 115 and almost all for 130, except in Stage 2.

Behaviour of nss-SO4?" in size distributions was different between 115 and 130 (Figure
4.25e and Figure 4.25f). Concentrations of nss-SO42" were detectable in all size fractions
of sample 115, while, two samples of fine mode aerosol of sample 130 showed
concentration of this ion below detection limits. For 115, fine mode aerosol showed
larger concentrations of nss-SO4% for all fine mode aerosols with range between 3.2 to
4.0 nmol m3. Larger aerosol particles displayed lower nss-SO4? concentrations for I115.
However, different concentration between fine and coarse mode aerosols of sample 130
showed a less clear pattern according to the size distribution. These differences were
due to different sources of air mass, i.e. Saharan sample for 115 and SAtl-Rem sample
for 130.

For oxalate, its concentrations in sample 130 were not detectable in both fine and coarse
modes of aerosol. In contrast, concentrations of this ion in sample 115 were higher in the
coarse mode (range <0.03 to 0.17 nmol m) and lower in the fine mode aerosol (range
<0.05 to 0.07 nmol m).
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In summary, the chemical properties of these two size fraction samples show slightly
different behaviour in some ions as they have different air mass origins. However, these
two samples 115 and 130 have illustrated some similar patterns of supermicron
dominance in their size distributions such as Na*, nss-Ca?* and NOs". In sample 115, a
Saharan aerosol sample showed a strong influence of mineral dust through nss-Ca?*
concentrations, especially in coarse fractions, while, sample 130 had much lower
concentrations. NOs™ is accumulated in large particles in both samples 115 and 130. The
nitrate accumulation in coarse mode in Figure 4.25a and Figure 4.25b confirms
evidence of coarse mode dominance for nitrate (see Section 4.2.2.2 ions associated with
secondary aerosol). Oxalate in the coarse mode of sample 115 contributes about 70%,
this sample shows evidence from anthropogenic influences of the northern Atlantic

aerosol sample.

In fine mode aerosol, nss-K*, nss-SO4* and NH4* appeared to be dominated in these
fine fractions. For sample 115, the size distribution of nss-SO4% appears to be as
expected with higher concentrations in fine fractions, similarly for nss-K* and nss-SO4*
. On the other hand, the size distributions of nss-SO4?* of sample 130 showed unexpected
detected concentrations of this ion in the coarse mode aerosol. The presence of nss-
SO4% in the coarse mode is different from most of SAtl-Rem aerosol samples which
have higher distributions in fine mode aerosol (see also Section 4.2.2.2). Undetectable
concentrations of nss-K* and NH4* were observed in sample 130. These concentrations
of nss-S04%, K* and NH4* indicate low influences from pollutants in the SAtl-Rem

aerosol.
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4.2.5.2 Halogen Concentrations in Size Segregated Aerosol

For halogens, the pattern of size distributions of chloride concentrations is similar to
sodium for both 115 and 130 samples (Figure 4.26a and Figure 4.26b). Highest
concentrations of chloride were detected with aerosol modal size between 5.0 and 12
pm. On the other hand, very low concentrations of chloride were observed in the fine
mode aerosol for both aerosol samples. Concentrations of bromide were detected only
in Stage 1 and 2 of the cascade impactor of 130 sample. Concentrations of this ion were

undetectable for all sizes of aerosol in 115 sample.

The distribution pattern of TSI concentrations was different from chloride and bromide
concentrations. The TSI distribution of both samples 115 and 130 are quite similar with
coarse mode contributing larger proportions. The highest concentration of TSI was
observed in Stage 4 of the cascade impactor (modal particles sizes between 1.6 and <2.4
pmol m3). Low concentrations of TSI were detected in larger and smaller particle sizes

(modal particles sizes of >12 um and <0.4 pm).
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Figure 4.26 Concentrations of CI°, Br and TSI for size segregated samples 115 and 130.
Unfilled bars mean concentrations below detection limits. Bars are analytical errors.
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4.2.5.3 The Loss of Chloride and Bromide in Size Segregated Aerosol

In order to understand the behaviour of chloride and bromide loss in detail, Cl- and Br-
loss were calculated based on their concentrations in aerosol and seasalt concentrations.

This section will help understand the impact of the size on the loss of both ions.

As discussed earlier in Section 4.2.5.1, chloride loss occurs largely in the fine mode
aerosol, while, coarse mode aerosol showed very low percentages of chloride loss. In
coarse mode aerosol of Figure 4.26a and Figure 4.26b, both sample 115 and 130 show
concentrations of seasalt chloride to be nearly equal or slightly lower than the
concentration of chloride in the aerosol, except sample 115 Stage 1 and sample 130
Stage 2. Thus, the loss of chloride of these coarse fractions is not determinable or occurs

in very low percentage losses.

As expected, chloride loss in fine mode aerosol was observed clearly in both samples
(Figure 4.26¢ and Figure 4.26d). In sample 115, the percentage loss of chloride is more
than 60% in all fine fractions. Unlike sample 115, sample 130 showed some slightly
lower of chloride loss in the very small particles size (<0.1 pm).

For both samples, analytical uncertainty associated with the calculation of chloride loss

is rather high. This high uncertainty comes from very low concentrations of chloride for
each fine fraction in these size segregated samples.
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As in Section 4.2.5.1, bromide loss occurs mostly in coarse mode aerosol. Evidence of

size segregation sample, especially in Sample 130 supports this finding. In Figure 4.28c,
the loss of bromide is about 32+14% and 36+15% in aerosol stage 1 and 2 of sample
130. This bromide loss agrees well with Ayers et al. (1999) which found that Br- deficit

of particles in Southern Ocean ranged from -30% to -50% on an annual basis. In

addition, Sander et al. (2003) also showed that supermicron seasalt aerosol in the

marine boundary layer is depleted often exceeding 50%. In sample 115, the

concentration of bromide in all size fraction samples are below detection limits. Further,

seasalt bromide of sample 115 are lower than the detection limit, except a sample of the

cascade impactor Stage 2 which has its seasalt bromide concentration slightly higher

than detection limits (~0.022 pmol m™).
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Figure 4.28 Concentrations of Br™ and their seasalt (ss) ions for sample 115 and 130
(Figure 4.28a-b) and Br percentage loss in size segregated samples 130 (Figure 4.28c).
Unfilled bars in Figure 4.28a-b and unfilled point in Figure 4.28c means concentrations
of bromide are below detection limits. Bars of Br are analytical errors for a single
determination. Bars of ss-Br and %Br loss are errors of ss-Br and %Br™ loss

calculations derived from analytical errors of Br-.
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Although all bromide concentration in fine mode aerosol (aerosol modal particles size
0.9, 0.4 and <0.1 um) of both samples 115 and 130 are below detection limits, this data
set might be useful in order to estimate potential maximum enrichment factors.
However, it is very difficult to calculate bromine enrichment factor (EFgr) accurately as
all fine mode aerosol have their bromide concentrations below detection limit and
seasalt concentrations in these size fractions were relatively low. In order to estimate
this potential maximum value of EFg;, in fine mode aerosol, detection limits of bromide
of each submicron aerosol samples were used to calculate with seasalt bromide
concentrations. Estimated overall EFg: of samples 115 and 130 are 1.1 and 0.8 about

respectively.
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Figure 4.29 Estimated bromine enrichment factor (EFeg) in size segregated sample 115
and 130. Unfilled points mean concentrations of bromide which are below detection
limits. Circles points are coarse mode aerosol, and squares are fine mode aerosol. Bars
of EFg; are errors of EFg; calculations derived from analytical errors for a single
determination of Br-and Na".

Bromine enrichment factors for all fine mode aerosol of both sample 115 and 130 have
estimated EFgr higher than coarse mode aerosol. Sample 130 shows possibly larger
value of EFg, than sample 115. EFg; in fine mode aerosol of sample 115 (lat 22.4° —
20.2°N) and 130 (lat 18.3° — 20.1°S) were estimated to not exceed 2.6 and 8.9. The
highest estimated EFg: values were observed in the fine modal particle size of 0.9 um
for both samples. In addition, in sample 130, EFg: of two detected coarse samples with

modal particles size of >12 and 5.0 m were about 0.91 and 0.86. These estimated EFg,
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values agreed well with the range of EFg, of the Atlantic aerosol samples, especially
data of the ATL94 in Sander et al. (2003) (Figure 4.30). Therefore, this estimated EFg,
was observed as important evidence to confirm the findings of Sander et al. (2003)
which concluded that bromine in submicron aerosol is often enriched.
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Figure 4.30 Bromine enrichment factor as a function of latitude for ATL 94 (asterisks)
and ATL96b (diamonds) (Sander et al. 2003).
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4.2.5.4 The Enrichment of lodine in Size Segregated Aerosol

In contrast to Cl and Br, iodine is strongly enriched in both fine and coarse mode
aerosols compared with chlorine and bromine. Both samples 115 and 130 show a similar
trend in enrichment in different aerosol size fractions. Calculated EFjodine for sample 115
and 130 show their lowest values in large size particles (modal size >12 pm). The
highest value EFjogine (>4000 for sample 115 and >1000 for sample 130) appeared to
occur with particles sizes range of 0.9 — 1.6 um. Estimated values of EFodine for sample
115 might not be used as the representative pattern of EFodine for the marine aerosol
because this size segregated sample is strongly influenced by Sahara dust. For sample
130, EFodine for the fine mode fractions (cascade impactor stage 5 and 6) could be

potentially higher as seasalts in these samples were below detection limits.
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Figure 4.31 Enrichment factors of size segregated samples 115 and 130. Unfilled points
in Figure 4.31b mean EF values which were calculated from sodium concentrations
below detection limits. Bars of EFjogine are errors of EFodine Calculations derived from
analytical errors for a single determination of TSI and Na™.
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4.2.5.5 lodine Species Concentrations in Size Segregated Aerosol

A clear pattern in the iodate distribution with particle size in both sample 115 and 130
was observed. Unlike iodate, iodide and SOI distributions in both samples do not show

a clear pattern with size distribution.

lodide concentrations were much lower compared with iodate concentrations for sample
115. For this sample, detected iodide was observed in coarse mode aerosol with particle
sizes between 1.6 and 12 pm. lodide also was found in very small particle sizes of <0.1
pm in the fine mode aerosol. However, iodide was undetectable for all cascade impactor

stages for sample 130.

The distribution patterns of iodate in both aerosol samples, 115 and 1130 are similar i.e.
iodate is dominant in coarse mode aerosol. For the Saharan sample (115), iodate is
distributed mostly in the smaller sizes of the coarse mode aerosol, i.e. iodate
concentration in Stage 4 > Stage 3 > Stage 2 > Stage 1 respectively. However, in the
coarse mode aerosol of sample 130, iodate was distributed less unevenly between Stage
2 — 4. In Stage 1 (modal particles size >12 pum), lower concentrations of iodate were
observed which were less than its concentrations in other coarse mode aerosols of Stage
2 — 4. lodate concentrations were lower than observed in other coarse mode fractions. In
samples 115 and 130, iodate concentrations were relatively low in aerosol fractions with
the modal size <0.4 um, in agreement with the findings of Wimschneider and Heumann
(1995). They have also discovered that iodate of the Southern Atlantic marine aerosol

was transported directly by large sized sea spray particles.

The pattern of SOI concentrations is different between sample 115 and 130. For 115
sample, SOI was determined in all fine mode aerosol sizes with lower concentration
being found in the cascade impactor Stage 6. This low concentration of SOI in Stage 6
was also found in sample 130 (Figure 4.32e and Figure 4.32f). SOI is present in most
coarse mode aerosols of sample 130, except in Stage 1. This coarse mode distribution

was hardly observed in SOI for sample 115.
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SOl of fine mode aerosol were also be determined with higher SOI concentration in
aerosol size <0.1 um. This high SOI concentration of the backup filter was also

observed in sample 115.
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Figure 4.32 Concentrations of I, IOz and SOI in size segregated samples 115 (a,c and
e) and 130 (b, d and f). Unfilled bars mean concentrations below detection limits and *
refers to size segregated samples which SOI is not determinable. Bars of I" and 103" are
analytical errors for a single determination. Bars of SOI are errors derived from SOI
calculations.
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Figure 4.33 Concentrations and its proportions of I, 10s” and SOI in size segregated
samples 115 (a, c) and 130 (b, d). Unfilled bars mean concentrations below detection
limits. Symbol of * refers to size segregated samples which SOI were not determinable,
and ** refers to samples which have more than one iodine species below detection limit.
Bars of proportions of I, 103 and SOI are errors derived from proportional calculations.

As discussed previously in Section 4.2.6.2, concentrations of iodine species (iodide,
iodate and SOI) were distributed largely in coarse mode aerosol. The highest
concentration of iodine species was observed in Stage 4 of the cascade impactor (modal
particles sizes 1.6 pmol m). Similar patterns of iodine proportions in both samples 115
and 130 were observed, with larger proportions of iodate in the larger particle size, in
contrast larger proportions of SOI were observed in smaller particle sizes (Figure 4.33c
and Figure 4.33d). For both samples, the particles (<0.1 pum) represent at least 38% of
SOl for sample 115 and 45% of SOI for sample 130.
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4.2.6 Control Factors of Aerosol Uptake of lodine

Most uptake reactions are likely to occur at the surface of aerosols. Aerosol uptake is
the process which involves chemical reactions of gaseous uptake. In order to understand
the controlling factors of gaseous uptake, surface area equivalent (SAE) was calculated
based on modal particle sizes of the aerosol and air volume. This SAE value could link
to reactions occurring at surfaces of aerosol. Both mineral dust (nss-Ca2*) and sea spray
(sodium) are two main factors which can be used to link aerosol uptake activities and
concentration of iodine species and other main ions such as nss-sulphate and nitrate
(Fairlie et al. 2010).

The surface area equivalent is calculated based on the assumption that all aerosols are
spherical particles. The modal size of particles of each cascade impactor stage is used to
determine the radius of particles. SAE is calculated based on two main aerosol factors

i.e. mineral dust (nss-Ca?*) and sea spray (Na®). So, SAE is determined by

SAE = lonic concentration (nss-Ca?* or Na*) x Particles Surface Area (4mr?)
Air Volume (4/3nr®)
where r = radius of particles

4.2.6.1 Surface Area Equivalent in Size Segregated Aerosol

Surface area equivalent of both nss-Ca?* (mineral dust) and sodium (sea spray) of two
size segregated aerosol samples, 115 and 130 were calculated and were plotted against
concentrations of nss-sulphate, nitrate and iodate (Figure 4.34). In this figure, data for
both sample 115 and 130 were plotted according to their aerosol size fraction, i.e. fine
and coarse modes, except data for the fine mode of sample 130, for which the surface

area equivalent of nss-Ca?* and sodium are undeterminable.
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Correlation between iodate concentrations and nss-Ca?* SAE in sample 115 (fine and
coarse mode) and sample 130 coarse mode aerosol was shown statistically significant at
0.01 level (r = 0.83, p-value = 0.005) (Figure 4.34c). This clear link between nss-Ca?*
SAE and iodate indicates a linkage between iodate uptake activities with mineral dust.
For the effect of mineral dust, it is less a clear pattern of relationship between nss-Ca?*
and nss-SO4* and NOs™.

For the sea spray effect on aerosol uptake, plots of sodium SAE against nitrate
concentrations (Figure 4.34€) show a clear pattern in coarse mode aerosol in both
samples, 115 and 130. Coarse mode aerosol of sample 115 exhibited a very strong
relationship between nitrate concentration and sodium SAE, with a higher gradient
compared with the coarse mode aerosol of sample 130. Sample 130 was collected in the
southern hemisphere with its origins of air mass coming from the Southern Atlantic
remote area with much higher sea spray concentrations and low contaminant of SOy and
NOxy in the atmosphere, compared with the northern hemisphere. The effect of sea spray
does not show its clear relationship with nss-SO4? and iodate concentration (Figure
4.34a and Figure 4.34c).
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Figure 4.34 Plots of surface area equivalent (SAE) of mineral dust (nss-Ca?") (a-c) and sea spray (sodium) (d-f) against nss-SO4%", NOs™ and 103"
concentrations of two segregated aerosol samples, 115 and 130. Surface area equivalent values of nss-Ca?* and sodium for 130 fine samples are
undeterminable. Bars of NO3s™ and 103™ are analytical errors for a single determination. Bars of nss-SO4% are errors from nss-SO4?" calculations
derived from analytical errors for a single determination of SO4% and Na*.
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In order to confirm the effect of mineral dust on iodate concentration, iodate
concentrations are plotted along with nss-Ca?* surface area equivalent for the 6-stage
sizes of segregated Sahara aerosol, sample 115 (Figure 4.35). lodate concentrations in
these size fraction show strong correlation with nss-Ca?* surface area equivalent, except

for very fine particles (<0.1um), which showed a high nss-Ca?* SEA value of ~8.0.

High iodate concentration in Sahara samples, especially in samples 115 — 118, may be
related to the uptake of acidic HIOs on to the alkaline calcium carbonate of Sahara dust,
which may explain an an important route for aerosol iodate formation (Plane et al.
2006).
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Figure 4.35 The plot of 103" concentrations and nss-Ca?* surface area equivalent (SAE)
versus modal particles size of size segregated sample, 115. Bars of 103 are analytical
errors.

In order to discuss further the effects of mineral dust on iodate concentration (see
Section 4.2.7.1) a clear relationship between iodate concentration and nss-Ca?* SEA
was observed. This section will demonstrate further the effects of mineral dust on iodate

aerosol formation.

131



Concentrations of iodine species show considerable differences in fine and coarse
aerosol particles (see Section 4.2.4.1). However, iodate is the dominant species in the
coarse mode aerosol of all air mass type aerosols. Figure 4.36 shows the plot of iodate
concentrations against nss-Ca?* of coarse mode aerosol samples. This figure shows that
iodate is strongly associated with coarse mode of Sahara dust aerosol (y = 1.20x +
13.23, r2=10.81 and p-value < 0.000). However, four out of twelve Sahara dust aerosol
samples (108, 109, 113 and 114) show slightly different patterns of the relationship of

these two ions.
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Figure 4.36 The plot of 103 concentrations against nss-Ca?* concentrations of coarse
mode aerosol samples, according to their air mass origins. Linear line refers to the
correlation between 103™ and nss-Ca?* for Saharan aerosols. Bars of 103™ are analytical
errors for a single determination. Bars of nss-Ca?* are errors from nss-Ca?* calculations
derived from analytical errors for a single determination of Ca®* and Na*.
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4.2.7 Comparison of lodine Speciation of Rain and Aerosol Samples

In order to achieve a better understanding of the behaviour of the iodine species in
precipitation, rain samples were collected and analysed for their iodine speciation.
During AMT21, 7 samples were collected, 6 samples (R102 — RI107) from the northern
hemisphere and only one rain sample (R108) from the southern hemisphere. Details of

rain sample collection are shown in Table 4.4.

Table 4.4 Details of rain sample collection

Location Collected Collected

Samples Date GMT-Time Volume
Latitude Longitude (hours) (mL)
R102 50°08.58'N  008° 30.03'W 30.9.11 09:20 (4) 130
RI103 24° 33.75'N  040° 06.76' W 11.10.11 19:49 (13) 100
R104 23°05.40'N  040° 35.14'W 12.10.11 11:08 (2) 125
RI105 22°46.25'N  040° 20.90' W 12.10.11 14:55 (1) 400
RI106 12°09.09'N 032°47.85'W 16.10.11 19:53 (1) 200
RI107 10°45.09'N 031°52.76' W 17.10.11 06:38 (6) 225
R108 29°57.02'S 027°38.72' W 31.10.11 20:45 (12) 240

Table 4.5 shows comparison of iodine species (iodide, iodate and SOI) and their
proportions in both rain and aerosol samples which were collected at the same day.
Three rain samples, R102 — R104 have larger concentrations of iodine species, compared
with the other 4 rain samples (range 13 to 21 nmol L™). For these three rain samples,
soluble organic iodine (SOI) contributes a half or more of soluble iodine, with iodide
contributing 23-34% and iodate less than 20% of iodine species. These low proportions
of iodate concentrations was also found in other rain samples (<40%). For iodide, this

iodine species was observed to be less than 35% of iodine species in all rain samples.
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Table 4.5 Comparison of the concentrations of iodine species: TSI, I, 103" and SOI and
their proportions (in parenthesis) in rain and aerosol samples collected on the same day.

Rain (nmol L?) Aerosol (pmol m=)
Rain Aerosol
Samples TSI lodide lodate SOl Samples TSI lodide lodate SOl
RI02 131 29 <19 83 No aerosol collected
(23%)  (<14%)  (63%)
RI03 196 6.1 3.8 9.7 113 351 35 27.0 4.6
(32%)  (19%)  (49%) (10%)  (77%)  (13%)
R104 917 7.4 <1.9 12.4 114 341 55 28.6 0.02
(34%)  (<9%)  (57%) (16.2%) (83.7%)  (0.1%)
RI05 3.2 1.1 0.8 <1.3 114 341 5.5 28.6 0.02
' (34%)  (26%)  (<40%) T (162%) (83.7%)  (0.1%)
RI06 46 <2.0 2.1 <0.5 119 358 2.7 26.4 6.7
(<43%)  (46%)  (<11%) (7%) (74%)  (19%)
RI07 43 2.2 <1.9 <0.2 119 358 2.7 26.4 6.7
' (51%)  (<44%)  (<5%) ' %) (74%)  (19%)
RI08 <41 <2.0 <1.9 <0.2 132 395 3.6 28.9
(<49%)  (<46%)  (<5%) (11%)  (89%)

* refers to SOI value which is not determinable.

For the remaining 4 rain samples (RI105 — RI08), iodine concentrations were low, with
the total soluble iodine (TSI) less than 5 nmol L. Proportions of iodine species of these
samples show different values compared with the first three samples as some iodine
species in those rain samples were below detection values. Although it is difficult to
calculate proportions of iodine species in these low concentrations of these rain

samples, iodate proportions of RI05 and R106 were about 26% and 46% respectively.

In order to compare proportions of iodine species between rain and aerosol samples,
those samples which were collected on the same day will be compared in Table 4.5. It is
clear that iodate is the dominant species in aerosol samples, with >70% of its
proportions in all aerosol samples (113, 114, 119 and 132), with much lower proportions

of iodide and SOI respectively. For the first three rain samples, SOl was the dominant
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species as also observed by Gilfedder et al. (2008). For the other 4 rain samples, iodate
seems to be present in smaller proportions in rain samples, compared to high iodate

proportions in aerosol samples which were collected on the same day.

However, comparison of iodine species in both aerosol and rain samples encounters
difficulties due to the different nature of sample collection. In aerosol samples, it refers
to records of the particles suspended at the level of the collector; while, the rain fall

acquires matter from several hundred metres of the atmosphere above the ship.

Rain samples R103 and R104 showed relatively high concentrations of TSI, compared to
TSI concentrations in aerosol samples. However, this was not observed in rain samples
RI105 — R108. Although R103 — RI07 were collected under influences of Sahara aerosol
(113 - 119), proportions of iodine species in rain samples were very different between
R103 — R104 and RI105 — RI07.

For R104 and RI105, these two rain samples were collected on the same day (R104 at
11:08 a.m. for 2 hours (~125 mL) and at RI05 at 14:55 for 1 hour (~400 mL). TSI
concentration of R104 was about 7 times higher than RI05. Lower TSI concentration of
RI105 is partly due to its higher water volume, because the rain rapidly strips aerosol
particles out of the atmosphere. Low TSI concentrations were also observed in tropical
rain samples R106 and R107. Data of samples R106 — R108 were difficult to use for

interpretation as their TSI concentrations were very low (< 5 nmol LY).

For RI103 and R104, SOI is the dominant species in these two rain samples with very low
iodate concentrations, similar to findings of Gilfedder et al. (2008) (~50-80% SOI
proportions in rain samples). The reason for the speciation difference between aerosol
and rain samples is still unclear. However, in this research, careful work was carried out
to avoid changes in speciation during aerosol sampling and analysis. The aerosol
samples record only the speciation of aerosol at the surface, whereas the rain samples
collect material from the cloud and the atmosphere below it, so there may be differences

introduced by that.
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4.3 Summary

In this chapter, characteristics of the marine aerosol of the Atlantic Ocean were
examined through their chemical characteristics and iodine speciation. Different air
masses were categorised in order to identify for their potential sources, pathways and
origins. For aerosol samples, both fine and coarse mode aerosols were studied their
patterns of chemical distribution as well as iodine speciation. lons which are associated
with both primary and secondary sources showed different behaviour depending on air
mass sources. The northern hemispheric aerosols were influenced mainly by
anthropogenic emissions. Some samples of Saharan aerosol also showed evidence of
anthropogenic pollution. Cleaner aerosols were observed in the southern Atlantic
aerosol, i.e. the southern Atlantic remote and Southern America origins. These aerosol

types showed low concentrations of ions such as nss-SO42, NH4*, NO3  and C204%.

Halogen cycling can be observed clearly through chloride and bromide loss, as well as
the enrichment of iodine. Chloride loss occurs largely in fine mode aerosol, with much
less loss occurring in coarse mode aerosols. The acid displacement is the reaction
driving chloride loss in aerosol (nss-SO42" and NO3’). Bromide loss was observed

mainly in coarse mode aerosol.

However, bromide enrichment factors in fine mode aerosol could not be estimated with
limitations of bromide concentrations, which were below detection limits for all
samples. Very high iodine enrichment was observed in fine mode aerosol, but these

values vary depending on their air mass origins.

Studies of size segregation samples confirm behaviours of chemical characteristics and
the distributions of iodine section in aerosol samples. A high variability of TSI was
observed for different air mass types of aerosol. Also, iodine speciation in both fine and
coarse mode aerosol also showed high variability. lodate is the most abundant iodine
species in coarse mode aerosol, with highest concentrations being found in Saharan dust
aerosols. In fine mode aerosol, iodate was absence in aerosol which was influenced by
anthropogenic pollution, such as Europe, SAfr and SAfr-BB aerosols. High
concentrations in iodate of Sahara mineral dust can possibly be linked to the uptake of
HIO:z to its available alkaline surface area. lodine speciation in both rain and aerosol

samples cannot be easily compared due to different pathways of its accumulation.
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Chapter 5 lodine Speciation and Chemical Characteristics

of Marine Aerosol in the Western Pacific Ocean

5.1 Introduction

This chapter examines the chemical characteristics and iodine speciation of aerosols
from the western Pacific Ocean. Data for both the TransBrom and SHIVA campaigns
will be presented at the beginning of this chapter. Chemical characteristics and iodine
speciation of both cruises will be discussed with data of previous studies within this
region. Further, potential influences of halogen cycling and iodine speciation of the

western Pacific Ocean will also be examined.

5.1.1 Details of TransBrom Sonne Cruise

The TransBrom cruise started to sail non-stop from Tomakomai, Japan (42° N, 142°E)
on 9" October 2009, to Townsville, Australia (19°S, 147° E) on 24™ October 2009. This
cruise travelled from the northern to the southern subtropics, passed through the tropical
western Pacific (Krlger and Quack 2013). The cruise track and sample positions of
TransBrom aerosol are shown in Figure 5.1. Details of aerosol collections are shown in

Appendix B.

According to Kriger and Quack (2013), three climatological regimes of TransBrom
were classified as the northern, the tropical and the southern regime. Air masses origins
of the northern regime come from the East Russian and Japanese mainland and coastal
areas via strong northerly winds. Thus, anthropogenic, terrestrial and coastal activities

have influenced atmospheric properties of this northern regime.
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For the tropical regime (24°N until 6°S), shorter trajectory lengths and weaker winds
were observed, as well as a rotation of the trajectories. Air masses of this regime
originate from the open ocean. In October 2009, the central part of the tropical western
Pacific was affected by EI Nifio which enhanced the tropical convection and
precipitation. During the night of 13" October 2009, the ship cruise was hit by
Nepartak, the tropical depression causing the largest winds recorded during the whole
cruise and heavy rain until noon. In the afternoon of 15" October 2009, two days after
that depression, the tropical storm Lupit developed at 12°N and caused high wind

speeds (Grofimann et al. 2013).

The southern regime starts at about 6°S and was influenced by moderate to strong
southeast trade winds. Air masses travelled past the Tasman, Coral and Solomon Seas
and the Great Barrier Reef. The main sources for the ocean and atmospheric trace gases
were from islands, coasts and coral reefs with high primary productivity (Kriger and
Quack 2013).
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Figure 5.1 Sample positions of TransBrom aerosol collection. Points on the cruise track
show the start sampling location, where samples 101 and 113 were the first and the last
collected aerosol samples.
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Each aerosol sample of TransBrom was collected for 24 hours by using a high volume
aerosol collector (a flow rate at ~1.1 m® min'). Whatman 41 cellulose filters, slotted
and back up filters, were used to collect both fine and coarse mode aerosol separately

through a Sierra-type cascade impactor (Martino et al. 2014a).

5.1.2 Details of SHIVA Sonne Cruise

Aerosol samples of SHIVA were collected during the SO218 cruise (by RV Sonne)
from Singapore to Manila, Philippines between 15" to 29" November 2011, under the
project “Stratospheric ozone: Halogen Impacts in a Varying Atmosphere” (SHIVA)
(Quack and Kriiger 2013). This cruise travelled from Singapore, the southwest of the
South China Sea, the east coast of Malaysia, the coast of Borneo, passed through the
Sulu Sea and islands of the Philippines. The cruise track and sample positions of

SHIVA aerosol are shown in Figure 5.2. Details of aerosol collections are shown in

Appendix B.
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Figure 5.2 Sample positions of SHIVA aerosol collection. Points on the cruise track
show the start sampling location, where samples MI01 and MI113 were the first and the
last collected aerosol samples (M108 and M110 were blank samples, so, they were
neglected from samples code).
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The South China Sea is a marginal sea of the western Pacific Ocean, covering an area
from Singapore and Malacca Strait of Taiwan. The Celebes Sea is connected to the
South China Sea through the Sulu Sea (Quack and Kriger 2013). According to Quack
and Kriger (2013), two main air mass origins were detected, the northern wind
direction (during 15" — 19" November 2011) and the Northeast trade wind (20" — 29™"
November 2011). However, during 18" — 19" November 2011, the wind direction
changed to the west before the ship reached the coast of Kuching, Sarawak. Details of
air mass classification will be discussed in Section 5.3.1.

As can be seen in Figure 5.2, the SHIVA aerosol samples could be influenced by
anthropogenic activities of both Malaysian peninsula and Southeast Asia islands such as
Sumatra, Borneo and islands of the Philippines. Anthropogenic activities of these
islands could be important sources of polluted air such as fossil fuel burning and
biomass burning. In addition, this region also has strong influences by polluted
continent of the Southern China (Quack and Kriiger 2013).

Each aerosol sample of SHIVA was collected for ~24 hours by using a Tisch total
suspended particulate sampler (a flow rate of ~1 m® mint). Pre-cleaned 20 x 25 cm
glass fibre filters were used to collect bulk samples.

5.1.3 Data of Previous Research

The tropical western Pacific is the region where iodine chemistry has not been
examined widely. So far, only one data set of iodine speciation of Lai et al. (2008) is
available. This research presented data of iodine speciation in marine aerosols along a
30,000 km round-trip cruise from Shanghai, China to Prydz Bay, Antarctica. For aerosol
chemical characteristics data (major ions) of the western Pacific, there were several
studies which have been conducted in this region such as Martino et al.(2014a)
(TransFuture cruises, i.e.TF5-1), Jung et al.(2011) and Zhang et al.(2010).
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Data of these previous studies will allow comparison of chemical characteristics with
this research, which could support understanding the behaviour of marine aerosol and
their origins of the west Pacific. Examples of cruise tracks of previous studies in this

tropical western Pacific are shown in Figure 5.3.
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Figure 5.3 Cruise tracks of SHIVA, TransBrom, TF5-1 (Martino et al., 2014), partial
cruise tracks from Zhang et al. (2010), Jung et al. (2011) and Lai et al. (2008) samples

collection.
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5.2 Results of TransBrom

5.2.1 Air Mass Back Trajectories Analysis

Air mass origins and transport were used for categorising different types of air masses
of TransBrom cruise. 120-hour air mass back trajectories were obtained at the heights of
10, 500 and 1,000 m above the ship’s position from the NOAA HYSPLIT model (FNL
data set) (Draxler and Rolph 2013).

Three main air mass types were classified for TransBrom, the northeast Asia (NE Asia),
the western Pacific (W Pacific) and the Tasman (Tasman). This air mass classification
follows three distinct climatology regimes of Kriiger and Quack (2013), the northern,
the tropical Pacific and the southern regime respectively. 120 and 240-hour air mass
back trajectories at 6-hourly time intervals for selected samples (103 (NE Asia), 104 (W
Pacific), 110 (W Pacific) and 111 (Tasman)) during TransBrom are shown in Appendix
G.

Details of different types of air mass are explained as followed.

North-East Asia Continent, Japan and Siberia (NE Asia)

NE Asia air masses are classified based on air masses which have travelled over the
north-eastern Asia continent, Japan and Siberia. Three aerosol samples (101 — 103) were
classified as NE Asia air mass. Example of NE Asia air mass is shown in Figure 5.4a.

Tropical Western Pacific (W Pacific)

W Pacific is an air mass type which has been circulating by the easterly flow over the

open tropical Pacific Ocean for many days. Seven aerosol samples (104 — 110) were

classified as W Pacific air mass. Sample 104 was also considered as W Pacific aerosol

although the air mass of the beginning point of aerosol collection has influences of NE

Asia air mass. However, the midpoint of sample 104 (Figure 5.4b) has air mass travelled

over the open western Pacific. Details of trajectories of sample collection (sample 104)
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for every 6 hours are shown in Appendix G. After six hours from the start point of the
aerosol collection, the origin of the air mass has changed from NE Asia to the western
Pacific. Three aerosol samples (107 — 109) have trajectories over the inter-tropical
convergence zone (ITCZ) of the equatorial North Pacific (between 2—12°N). For sample
110, throughout 24 hours of sample collection, the origin of air mass comes from both
the western and the southern Pacific. Figure 5.4d shows the trajectories for the midpoint

of aerosol collection, suggesting the air mass originates from the southern Pacific.

Tasman Sea — Southern Ocean (Tasman)

Tasman is an air mass type in which air flow has spent many days travelling over the
Southern Ocean, Tasman Sea and the eastern coast of Australia (Coral Sea). Three
aerosol samples (111 — 113) were observed during TransBrom that fall into this category.
For sample 111, although the air mass passes over the southern Pacific, after 6 hours of
sample collection the trajectory starts from the Tasman Sea (Figure 5.4e). Another
example of Tasman aerosol (sample 113) trajectories are shown in Figure 5.4f.

A summary of classifications of air mass and their origins is shown in Table 5.1. Colour
codes are used to represent different types of air mass in the plots of experiment results.

Air mass back trajectories of all TransBrom samples are shown in Appendix D.

Table 5.1 Air Mass Classifications for TransBrom Aerosol Samples.

Samples ID Air Mass Types
Colour
(numbers of Abbreviation Origins
g

samples) Code

101-103 (3) NE Asia ] North East Asia, Japan, Siberia
104-110 (7) W Pacific ] Tropical Western Pacific Ocean
111-113 (3) Tasman ] Tasman sea — Southern Ocean
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Figure 5.4 Examples of air mass back trajectories during TransBrom.
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5.2.2 Major lon Chemistry of TransBrom Aerosol

Details of major ions that are associated with both primary and secondary aerosol are

discussed below. A summary of ion concentrations is shown in Table 5.2.

5.2.2.1 lons Associated with Primary Aerosol

For primary aerosol, both Na* and Mg?* are the two main components which are
derived from sea spray (Harrison and Pio 1983; Kline et al. 2004). Concentration profile
plots of both Na* and Mg?* are shown in Figure 5.5. These two ions were mainly
associated with coarse mode aerosol, which was non-uniformly distributed along the
TransBrom cruise track. The median proportions of these two ions in coarse mode over
fine mode aerosol were 98% for Na* and 97% for Mg?*. In coarse mode, Na*
concentrations were higher than Mg?* by a factor of 9. This Na*:Mg?* ratio was slightly
smaller than results of the AMT21 (Na*:Mg?* ratio = 13) (in Section 4.2.2.1).
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Figure 5.5 Concentrations of (a) Na* and (b) Mg?* in fine and coarse mode of
TransBrom aerosol samples. Bars are analytical errors.

145



High Na* concentrations were observed in Tasman aerosol (>300 nmol m). For other
air mass types, there are a couple aerosol samples which also have high Na* more than
250 nmol m3, 103 of NE Asia and 109 of W Pacific aerosol. Low Na* concentrations
were found in W Pacific aerosol (<200 nmol m-3), with very low Na* concentrations
especially in sample 107 — 108. Similar patterns of Mg?* distributions were also
observed in TransBrom, with high Mg?* concentrations in Tasman aerosol and low

concentrations in W Pacific aerosol.

Figure 5.6a and Figure 5.6b show concentrations of nss-Ca?* and nss-K* in both fine
and coarse mode of TransBrom aerosol. Low concentrations of nss-Ca?* were observed
for all TransBrom aerosol (<3 nmol m™). Highest total nss-Ca?* concentrations (fine +
coarse) were found in NE Asia aerosol sample 102 (2.7 nmol m-3). Only 5 out of 13
coarse mode samples showed higher nss-Ca?* concentrations than in fine mode aerosol.
This low nss-Ca?* in coarse aerosol implies non dust influences in TransBrom aerosol.
Dust concentrations in TransBrom aerosols were low, especially compared with those
collected during AMT21 (see Chapter 4).
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Figure 5.6 Concentrations of (a) nss-Ca®* and (b) nss-K* in fine and coarse mode of
TransBrom aerosol samples. Unfilled bars are samples which have concentration below
detection limits. Bars of nss-Ca2* and nss-K* are errors from nss-Ca?* and nss-K*
calculations derived from analytical errors for a single determination of Ca?*, K* and
Na*.
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Table 5.2 Median (in bold) and Concentrations Range (in parenthesis) for Na*, Mg?*, nss-Ca?*, nss-K*, NOs", NH4*, nss-SO4% and C,04*
for TransBrom aerosol samples both fine and coarse mode, according to air mass types. Concentration unit is nmol m=.

lons
Air Mass
Na* Mg?2* nss-Ca?* nss-K* NO3z NH4* nss-SO4% C204>
NE Asia (n=3)
Fine 2.5 0.6 0.9 0.2 1.6 8.9 6.8 0.3
(2.3-4.4) (0.5-0.9) (0.7-1.4) (0.1-0.3) (0.5-2.2) (6.2-11) (5.1-14) (0.2-0.3)
Coarse 128 15 0.7 0.2 9.8 1.3 1.7 0.4
(91-286) (10-32) (0.4-1.3) (0.2-0.9) (4.5-11) (1.1-3.2) (1.1-2.1) (0.4-0.5)
W Pacific (n=7)
Fine 2.9 0.3 0.4 0.1 0.4 2.8 1.4 0.1
(0.9-5.5) (0.1-0.6) (0.2-0.9) (0.04-0.1) (0.2-0.5) (0.3-6.0) (0.5-9.3) (<0.01-0.1)
(37-262) (3.5-30) (0.3-1.2) (<0.2-0.6) (0.7-2.9) (0.3-2.0) (0.3-2.6) (0.1-0.4)
Tasman (n=3)
Fine 13 0.9 0.6 0.2 0.4 3.3 4.5 0.4
(8.2-16) (0.9-1.1) (0.6-0.8) 0.1-0.6) (0.3-0.4) (2.8-8.9) (3.5-2.4) (0.2-0.7)
Coarse 300 35 0.5 1.1 3.8 0.6 0.7 0.6
(295-381) (34-39) (0.3-1.3) (1.0-1.9) (3.6-6.5) (0.2-1.8) (0.6-2.0) (0.3-1.1)
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For nss-K*, almost all detected values were associated strongly with coarse mode
aerosol. Influences of biomass burning were observed mainly in Tasman and NE Asia
aerosol and some samples of the W Pacific aerosol. Highest concentrations were
observed in Tasman aerosol (>1.0 nmol m). Samples of W Pacific aerosol have very
low nss-K* concentrations in the fine fraction and more than a half of the coarse mode
aerosol were below detection limits. Further, nss-K* concentrations were detected in
two samples of NE Asia aerosol. Sample 103 of NE Asia aerosol showed slightly higher
nss-K*, compared with other aerosol samples of this air mass.

5.2.2.2 lons Associated with Secondary Aerosol

Concentration profile plots of NOs", NH4*, nss-SO4% and C204% are shown in

Figure 5.7. Concentrations of these four ions varied in different aerosol types.
Behaviours of these four ions which are associated with coarse and fine mode aerosol
were similar to those observed during AMT21 (Section 4.2.2.2). NO3™ is mainly
associated with coarse mode aerosol, while, NH4* and nss-SO4? are associated mostly
in fine mode. However, C204% is associated with coarse mode slightly higher than fine

mode aerosol.

Highest NOs™ concentrations were observed in two samples (101 and 102) of NE Asia
aerosol (>10 nmol m=). High NO3™ concentrations are likely due to the influence of
anthropogenic activities from NE Asia and Japan region. Matsumoto et al. (2004)
showed evidence of anthropogenic influence with high NO3s™ concentrations for two
Japanese islands of the western North Pacific aerosol (average 8.4 + 7.3 nmol m3, range
0.8 - 34 nmol m). W Pacific aerosol samples have the lowest range of NO3"

concentrations (<5 nmol m=).

High concentrations of NH4" were observed in NE Asia aerosol, especially in sample
101 (total concentrations (fine + coarse) of 14 nmol m). Four out of seven aerosol
samples of W Pacific aerosol had total NH4" concentrations in the range 4.5 to 7.9 nmol
m=3. The lowest NH4* concentrations were found in sample 105 — 107 of W Pacific
aerosol. Only one sample (111) of Tasman aerosol showed total NH4* concentrations of

more than 10 nmol m™=3.
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Concentrations of nss-SO.42" clearly showed distinctive differences between air mass
types. Highest nss-SO4% concentrations were observed in sample 102 of NE Asia
aerosol (total concentrations of 16 nmol m™3). Concentrations of this ion decreased from
NE Asia to W Pacific region. However, W Pacific aerosol have lowest ranges of total
nss-SO42” concentrations (range 0.8 to 4.7 nmol m3), except sample 110. The air mass of
sample 110 travelled over the north Latangai and New Britain islands. High nss-SO4*
concentrations of this W Pacific aerosol sample might be influenced from these islands.
In Tasman aerosol, nss-SO42 concentrations were slightly lower than NE Asia but

higher than W Pacific aerosol (total concentrations range 4.2 to 8.4 nmol m).

For C204%, the highest total concentration was observed in Tasman aerosol sample 111
(1.1 nmol m3). Concentrations of C204> in NE Asia aerosol were observed slightly
lower than Tasman aerosol (total concentrations range 0.4 to 0.5 nmol m3). W Pacific
aerosol showed the lowest range of C,04> concentrations (total concentrations range 0.1
to 0.4 nmol m®). Both concentration of C,04* and nss-SO4?" are relatively higher than
W Pacific aerosol, this implies anthropogenic influences of those Tasman aerosol
(Gioda et al. 2011).
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Figure 5.7 Concentration of (a) NOs", (b) NH4*, (c) nss-S04%, and (d) C204% in fine and
coarse mode of TransBrom aerosol samples. Unfilled bars are samples which have
concentration below detection limits. Bars of NOs", NH4* and C,04% are analytical
errors for a single determination. Bars of nss-SO42" are errors from nss-SO4>
calculations derived from analytical errors for a single determination of SO4> and Na*.
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5.2.3 Halogen Chemistry of TransBrom Aerosol

5.2.3.1 Chloride (CI"), Bromide (Br’) and Total Soluble lodine (TSI)

Concentrations

A summary of median and concentrations range of CI°, Br- and TSI for TransBrom
aerosol samples in both fine and coarse modes is shown in Table 5.3. According to
Figure 5.8, the distribution pattern of TransBrom aerosol of CI" concentrations was very
similar to sea spray, while, the pattern of Br~ concentrations was less similar. However,

the TSI distribution was completely different compared to the distribution pattern of sea

spray.

Chloride was associated mainly with coarse mode aerosol, with a median coarse
fraction of 97%. For the distribution of CI-, a similar pattern was observed with that of
Na* concentrations along TransBrom. High concentrations of CI- were observed in
Tasman aerosol (median total concentrations 357 nmol m®). Concentration of Cl- for
NE Asia and W Pacific were lower than Tasman. Median total concentrations of this ion
of NE Asia and W Pacific were 145 and 147 nmol m,

Bromide concentrations were associated mostly with coarse mode aerosol. This ion was
detected in almost all coarse aerosol samples, except sample 108. High Br-
concentrations were observed in Tasman aerosol, as well as sample 103 of NE Asia and
109 of W Pacific, which have Br concentrations of more than 0.4 nmol m=. Low
concentrations of Br- concentrations were observed in some samples of W Pacific such
as sample 104, 107 and 108. Unlike the coarse mode, all fine mode aerosol samples have
Br- concentrations below 0.1 nmol m=. Four samples (104 — 107) of fine mode W Pacific

aerosol were below detection limits (<0.02 nmol m).
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TSI concentrations were moderately associated with coarse mode aerosol except in a
few samples such as samples 104 — 106 of W Pacific aerosol and 111 — 113 of Tasman
aerosol. Concentrations of TSI of TransBrom varied depending on types of air mass.
The highest TSI concentration was observed in W Pacific, sample 104 (total
concentrations 32 nmol m), and the lowest TSI concentration was found also in W
Pacific aerosol, 110 (total concentrations 3.0 nmol m3). Median total concentrations of
TSI for Tasman and NE Asia were and 19 and 8.3 nmol m™. Concentrations of TSI of
this study were comparable with results of Lai et al. (2008), which reported a TSI

concentrations range of 1.2 — 28.2 pmol m™,
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Table 5.3 Median (in bold) and range concentration (in parenthesis) for CI-, Br,, TSI, I, 103" and SOI of TransBrom aerosol samples both

fine and coarse mode, according to air mass types. (Concentration unit for CI-and Br~ is nmol m and pmol m= for TSI, I, I05” and SOI).
lons
Air Mass
Cr Br- TSI - 105 SOl
NE Asia (n=3)
Fine 2.7 0.04 3.6 2.0 0.2 1.9
(1.8-5.4) (0.03-0.04) (5.4-5.3) (1.4-2.4) (<0.2-0.3) (0.9-2.1)
Coarse 143 0.2 8.3 1.4 0.2 1.9
(97-324) (0.1-0.5) (6.7-8.6) (1.1-3.5) (0.1-0.2) (1.5-2.3)
W Pacific (n=7)
Fine 3.7 <0.02 6.9 1.1 <0.2 1.2
(1.3-8.2) (<0.02-0.03) (1.6-27) (0.7-1.8) (<0.2-<0.2) (0.6-3.7)
Coarse 146 0.2 9.5 3.2 0.5 2.0
(46-316) (0.1-0.5) (3-32) (<0.4-17) (0.1-6.1) (0.4-9.1)
Tasman (n=3)
Fine 15 0.05 16 1.1 <0.2 1.6
(10-15) (0.04-0.1) (13-21) (1.0-1.3) (<0.2-<0.2) (1.0-4.5)
Coarse 344 0.2 19 2.1 11 3.0
(342-449) (0.2-0.5) (19-23) (<0.4-2.2) (9.7-15) (2.7-3.6)
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5.2.3.2 The Chemical Cycling of Halogens

This section on chemical cycling of halogens will examine both the loss and the

enrichment of halogen, chloride, bromide and iodine.

The loss of CI- was observed largely in some of the fine mode aerosol, i.e. samples 102
and 103 of NE Asia aerosol, and samples 105, and 110 of W Pacific aerosol (Figure
5.9¢). These four fine mode samples of TransBrom showed more than 30% CI" loss. In
the coarse mode, only 5 samples were detected to have CI™ loss. This CI" loss in coarse
mode occurred in all samples of NE Asia, sample 105 of W Pacific aerosol, as well as
113 of Tasman aerosol. These coarse mode aerosol samples 102, 103, 105 and 113

showed less than 5% CI- loss.

The loss of Br~ occurred mostly in coarse mode aerosol. Largest ranges of Br™ loss were
observed in Tasman aerosol (median loss 59%) (Figure 5.10d). Br™ loss also occurred in
NE Asia and W Pacific, but with smaller proportions (median loss of NE Asia = 27%,
median loss of W Pacific = 11%). For fine mode aerosol, the enrichment of bromide
was observed. The enrichment factor of bromide (EFg:-) was in the range between 2 and
10. High EFgr. values were measured in sample 101 and 102 of NE Asia aerosol and 111

of Tasman aerosol (Figure 5.10c).
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The enrichment of iodine in both fine mode and coarse mode aerosol is shown in Figure
5.11. EFjodine Of fine mode was much higher than its values in coarse mode aerosol
(median proportions = 16). However, different values of EFqdgine Were found depending
on air mass types. Nine out of thirteen of fine mode aerosol samples had EFodine Of
more than 500 (median EFiodine = 795, range 169 to 2915). Samples 109 and 110 of W
Pacific and 112 and 13 of Tasman show lower value of EFqdine. FOr coarse mode, low
EFi0dine Values also were observed in these 4 samples. For W Pacific coarse aerosol,
EFi0dine Was observed larger than 100 for 5 samples, with the largest EFodine in Sample
104 (EFodine = 381). The lowest EFodine Value was found in 109 (EFiodine = 9). Unlike

fine mode, coarse mode samples of NE Asia showed low EFodine Of less than 50.
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Figure 5.11 The Enrichment Factor of iodine (EFodine) in (a) fine mode and (b) coarse

mode of TransBrom aerosol samples. Bars are errors of EFjqdgine Calculations derived
from analytical errors for a single determination of TSI and Na*.
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5.2.4 lodine Speciation of TransBrom Aerosol

5.2.4.1 lodide (I"), lodate (103°) and Soluble Organic lodine (SOI) Concentrations

A summary of median and concentration range for I, 103" and SOI for TransBrom
aerosol samples both fine and coarse mode, according to air mass types is shown in
Table 5.3.

Concentrations of iodide were associated strongly with coarse mode aerosol, especially
aerosol sample 104 — 106 of W Pacific aerosol samples which have I" concentrations
more than 5.0 pmol m™. I concentrations of all of fine mode aerosol samples were
lower than 2.5 pmol m=. Very low I concentrations were observed in sample 110 of W
Pacific aerosol and sample 111 of Tasman.

For iodate, very low concentrations were observed in most of fine mode aerosol, except
samples of 101 and 102 (11 out of 13 samples were below detection limits of 0.2 pmol
m-3). Largest 103™ concentrations were observed in coarse mode of Tasman aerosol
(median concentration of 11 pmol m, range 9.7 to 15 pmol m). One coarse mode
sample of W Pacific aerosol, sample 106, also showed detectable 103 with its

concentrations of about 6.1 pmol m=,

For SOI, coarse mode aerosol show slightly higher concentrations, compared with fine
mode aerosol in most samples. High concentrations of SOI (> 10 pmol m™%) were
observed in samples 104 and 105 of W Pacific aerosol. However, in W Pacific aerosol,
there were also samples which show very low SOI concentrations such as sample 106,
109 and 110. Tasman aerosol samples have slightly higher SOI concentrations than NE

Asia aerosol.
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In this study, concentrations of I, 103" and SOI of different air masses showed different
ranges of concentrations. For TransBrom aerosol, I" and SOI were the two dominant
species in high iodine species concentrations such as 104 — 106 of the W Pacific aerosol.
However, 103" species was dominant in Tasman aerosol. In order to compare the
distribution of iodine species in aerosol samples, proportions of iodine species will be

discussed in Section 5.2.4.2.

Figure 4.19a and Figure 4.19b show the distribution of iodine species in both fine and
coarse mode aerosol. Details of iodine species distribution and proportions will be
discussed in the following section. The sum of the concentrations of iodine species of
both fine and coarse mode will be used to compare the distribution of iodine species of
TransBrom aerosol with the AMT21 and SHIVA respectively (see Chapter 6).
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Figure 5.13 Concentration of iodine species distribution in TransBrom aerosol samples
(@) fine mode, and (b) coarse mode. Unfilled bars are samples which have
concentrations below detection limits. Bars of I and 103" are analytical errors. Bars of
SOl are errors derived from SOI calculations.

5.2.4.2 Proportions of lodine Species

Proportions of iodine species I, 103” and SOI are shown in Figure 5.14, in fine mode,

and coarse mode.

For fine mode, I" and SOI were the two dominant iodine species, with slightly higher
concentrations of SOI in some samples, such as 104-105 of W Pacific aerosol, 103 of NE
Asia and 111-112 of Tasman aerosol. I contributes nearly 50% or more in most of fine

mode aerosol, except samples 112, 104, 105 and 111.

For coarse mode, I~ was the dominant species in most of W Pacific aerosol. SOI
contributes larger proportions in two of NE Asia aerosol, 101 and 102 (>50%). Aerosol
of NE Asia and most of W Pacific aerosol samples (4 out of 7 samples except 1106, 109
and 110), have a small fraction of 103™ (<5.1%). In Tasman, 103 contributes more than
70%.
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Large proportions of iodine species were associated with coarse mode aerosol. I shows
largest proportions with median proportions of 46%, followed by SOI (median
proportions 39%) and 103™ (median proportions 6%) respectively. For W Pacific
aerosol, I was the dominant iodine species (> 45%), except for sample 110 where the I
proportion was about 35%. More than half of W Pacific aerosol samples have small 103"
proportions, except 106, 109 and 110 (proportions range 20% — 30%). 103" is the
dominant species in all Tasman aerosol samples (proportions median 61%, range 52% —
65%).

Previous research of iodine species from Shanghai, China to Prydz Bay, Antarctica was
carried out by Lai et al. (2008). A half of this journey covered the western Pacific area,
including the Chinese coast, the South China Sea, the ocean between Indonesia and
Australia. This study found that SOI is the most abundant fraction (about 70%) of total
soluble iodine (TSI). The inorganic iodine species, I and 103™ contributed less than 30%
of the total iodine. However, the contribution of iodine species in different regions

showed different proportions of both inorganic and organic fractions.
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Figure 5.14 Proportions of iodine species: I, IOz and SOI in (a) fine mode and (b)
coarse mode aerosol. Unfilled bars mean concentrations below detection limits. Bars of
proportions of I, 103 and SOI are errors derived from proportional calculations.
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The composition of iodine species of TransBrom aerosol samples is plotted in the

ternary composition plot between I, 103” and SOI (Figure 5.15). Fine mode samples of

NE Asia, W Pacific and Tasman aerosols show less than 20% of 103™ proportions

(Figure 5.15a). In this pattern group, aerosol of NE Asia show larger proportions of I’

(between 35 — 65%). For coarse mode aerosol (Figure 5.15b), distinctive groups of

proportions of iodine species were observed between Tasman, NE Asia and W Pacific

aerosol. Tasman showed large proportions of 103”with smaller proportions of SOI and I

respectively. However, for W Pacific aerosol, there is no clear pattern of these aerosol

types. Figure 5.15b shows three different sub-groups of aerosol, i.e. i) very low iodate,
ii) absence of SOI and iii) sample 110 (20% I°, 40% 103", and 40% SOI).
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Figure 5.15 Ternary composition diagrams for iodine species of TransBrom aerosol
samples: (a) fine mode and (b) coarse mode. Each axis shows the percentage of I", 103"

and SOI contained in each aerosol sample.

A summary of median and ranges of proportions of iodine species for different air mass

types is presented in Figure 5.16.

In fine mode, NE Asia aerosol samples have slightly higher I proportions (median

50%), compared with W Pacific (median 43%) and Tasman aerosol (median 37%).

However, proportions of 103" in three aerosol types did not show differences. The

proportion of SOI is highest in Tasman aerosol (median 56%). Proportions of SOl of W

Pacific (median 49%) and NE Asia (median 43%) aerosol were slightly lower than its

proportions in Tasman aerosol.



For coarse mode aerosol, Tasman aerosol samples were very different from NE Asia
and W Pacific aerosol. These differences were observed clearly in low I" (median 11%)
and high 103™ (median 72%) proportions. For I, NE Asia aerosol (median 40%) has
slightly lower proportions than W Pacific aerosol (median 60%). Unlike I proportions,
SOl proportions of NE Asia contributed 56% of median proportions, where 34% for

median proportions of W Pacific aerosol.
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Figure 5.16 Modified box and whisker plots, showing proportions of iodine species of
TransBrom aerosol samples (a) I, (b) 103, (c) SOI in fine mode aerosol, and (d) I, (e)
1037, (f) SOI in coarse mode. Numbers in parenthesis represents numbers of aerosol
samples. The box shows the interquartile range (IQR) containing values between 25™
and 75" percentile. Bars represent the largest observation that is less than or equal to the
upper quartile plus 1.5 length of the IQR. Bars also show the smallest observation that is
greater than or equal to the lower quartile plus 1.5 times the length of IQR. Outliers are
observations outside lower-upper bar range. Red asterisks are the maximum values and
pink asterisks are the minimum values.
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5.3 Results of SHIVA

5.3.1 Air Mass Back Trajectories Analysis

For each individual aerosol sample, 120-hour (5 days) air mass back trajectories were
obtained at the heights of 10, 500 and 1,000 m above the ship’s position from the
NOAA HYSPLIT model (FNL data set) (Draxler and Rolph 2013). Air mass
classification of SHIVA is based on 120-hour air mass back trajectories.

According to Quack and Kriger (2013), two main air mass origins, with northerly and
the north-easterly winds, were observed during SHIVA. This observation agreed with
the classification of air mass of this research. Details of different types of air mass are

explained in the following section.

South China Sea and Southern China (S China)

S China is an air mass type that travelled from southern China and South China Sea.
This type of aerosol contains polluted air from southern China. Three aerosol samples
were classified as S China air mass type, M101 — MI103. Example of S China air mass is
shown in Figure 5.17a. For sample MI03, during 18 — 24 hours of sample collection, the
air mass originated from the southern part of Malaysian Peninsula, the east of Sumatra

and the sea between Borneo islands.

Sumatra and Borneo (Sumatra)

Two aerosol samples (MI104 and MI105) were classified as Sumatra air mass type. This
air mass spent the last five days over the eastern coast of Sumatra, the sea between
Sumatra and Borneo and the coast of Sarawak. This type of aerosol could be influenced
by anthropogenic emissions of the Malaysian Peninsula, Sumatra and Borneo islands.

Example of Sumatra air mass is shown in Figure 5.17b.
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Tropical Western Pacific and the Philippines (W Pac - Philip)

W Pac-Philip is an air mass type that has been travelled over the tropical western Pacific
Ocean (the northeast trade wind), pass through the Philippines. This aerosol type also
was influenced by anthropogenic activities such as biomass burning. Four of six aerosol
samples (MI07 (Figure 5.17¢), MI09, MI12 and MI13) have their air masses passed
over central islands area of the Philippines (Visayas). For MI106, low altitude air mass
(both 10 m) had travelled over Visayas for the last 5 days, however, the high altitude air
mass (1,000 m) had travelled over the southern islands (Mindanao). For MI111 (Figure
5.17d), all three heights of air masses passed over Mindanao from the western Pacific,

except the surface air mass which spent last five days over Mindanao.
A summary of classifications of air mass and their origins is shown in Table 5.4. Colour

codes are used to represent different types of air mass in the plots of experiment results.

120-hour air mass back trajectories of all SHIVA samples are shown in Appendix E.

Table 5.4 Air Mass Classifications for SHIVA Aerosol Samples.

Samples 1D Air Mass Types
Colour
(numbers of Abbreviation Origins
g
samples) Code
MI01-MI03 (3) S China [ | South China Sea and Southern
China

MI104-MI05 (2) Sumatra Sumatra and Borneo

MI106, MI07, M109, W Pac—Philip [ |  Tropical Western Pacific, The
MI111-MI13 (6) Philippines (and Sulu Sea for
MI106, MI07 and MI09)
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Figure 5.17 Examples of air mass back trajectories during SHIVA.

168



5.3.2 Major lon Chemistry of SHIVA Aerosol

Details of major ions that are associated with both primary and secondary aerosol are

discussed below. A summary of ions concentrations is shown in Table 5.5.

5.3.2.1 lons Associated with Primary Aerosol

Both Na* and Mg?* showed lower concentrations in S China and Sumatra aerosol than
aerosol of W Pac-Philip. Na" concentrations of all S China and Sumatra aerosol were
lower than 100 nmol m3; whereas only one sample of W Pac-Philip aerosol with Na*
concentrations <100 nmol m= was observed. Sample MI09 showed the highest Na*
concentrations among all aerosol samples, similarly to Mg?* concentrations. The
distribution pattern of Mg?* concentrations was comparable with Na*. However, Mg?*
concentration is lower than Na* concentrations by a factor of 12. For W Pac-Philip,

sample MI113 showed lowest concentrations of both Na* and Mg?*.

300 - a) Sodium
250 -
200 -
150 -

100 -

“Moponlll |

MI01 MI02 MI03 M104 MI05 MIO6 MIO7 MIO9 MI11 MI12 MI13

Concentration (nmol m-3)

25 - b) Magnesium

20 + T
15 4

10 -

M an Dﬂ, 1 ﬂ

MI01 MI02 MIO3| M104 MI05 MIO6 MIO7 MI09 MI1l MI12 MI13

Concentration (nmol m-3)

S China Sumatra W Pac-Philip

Samples
Figure 5.18 Concentrations of (a) Na* and (b) Mg?* in bulk samples of SHIVA aerosol.
Bars are analytical errors.
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Table 5.5 Median (in bold) and concentrations range (in parenthesis) for Na*, Mg?*, nss-Ca?*, nss-K*, NOs", NH4*, nss-SO42" and C,04*
for bulk samples of SHIVA aerosol, according to air mass types. Concentration unit is nmol m=,

lons
Air Mass
Na* Mg?* nss-Ca?* nss-K* NOz" NH4* nss-SO4* C204>
S China (n=3)
48 3.6 1.2 <0.3 13 1.7 11 0.6
(41-62) (2.7-5.4) (1.0-2.2) (<0.2-2.0) (12-31) (1.1-2.7) (8.6-14) (0.5-2.2)
Sumatra (n=2)
48, 51 3.6,3.9 15,14 2.3,0.3 13,10 26,12 78,75 22,14
W Pac - Philip (n=6)
144 15 2.8 <0.3 10 1.8 4.6 0.9
(91-239) (7.8-22) (2.5-3.1) (<0.3-1.0) (6.4-22) (1.2-3.7) (3.5-8.3) (0.6-1.8)
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Low concentrations of nss-Ca?* were observed for all SHIVA aerosol (<3.5 nmol m™).
Concentrations of nss-Ca?* for S China and Sumatra were slightly lower than W Pac-

Philip aerosol (median 2.8, range 2.5 to 3.1 nmol m™).

For nss-K*, more than a half of SHIVA aerosol samples (6 out of 11) were lower than
detection limits. Two samples, MI03 of S China aerosol and M104 of Sumatra aerosol
were more than 2.0 nmol m™3, The other three aerosol samples (M105, M111 and M113)

that nss-K* concentrations were detected below 1.0 nmol m™=.
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Figure 5.19 Concentrations of (a) nss-Ca®* and (b) nss-K* in bulk samples of SHIVA
aerosol. Unfilled bars are samples which have concentrations below detection limits.

Bars of nss-Ca?* and nss-K* are errors from nss-Ca?* and nss-K* calculations derived
from analytical errors for a single determination of Ca?*, K* and Na*.
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5.3.2.2 lons Associated with Secondary Aerosol

Most of the aerosol samples showed NO3™ concentrations less than 15 nmol m3, except
MI01 and MI13. For MI01, high NOz™ concentrations could be influenced by
anthropogenic sources of the southern China. Similar to MI101, higher NO3’
concentrations of MI113 may come from anthropogenic emissions of islands in Visayas.

No clear pattern of NH4" concentrations of the three air mass types was observed. Most
aerosol samples of SHIVA were below 3 nmol m3, except MI09 (3.7 nmol m=3). Very
low NH4* concentrations showed in samples M102 of S China aerosol, M104, MI05 of

Sumatra aerosol, and M1121 of W Pac-Philip aerosol.

Aerosol of S China air mass showed highest nss-SO4% concentrations, compared with
Sumatra and W Pac-Philip aerosol. Concentrations of nss-SO42* Sumatra aerosol are
slightly higher than W Pac-Philip, except MI13 (3.7 nmol m%). Most of W Pac-Philip
aerosol samples have nss-SO42* concentrations lower than 5.0 nmol m3, except M105
and MI113.

For C204%, highest concentrations were observed in M103 (2.2 nmol m®), which was
much higher than M101 and M102 of S China aerosol (C204% concentrations <1.0 nmol
m-3). Sumatra aerosol and three samples of W Pac-Philip (M111-M113) showed similar
concentrations range of C204% (range 1.0 — 2.0 nmol m™3). Lowest concentrations of W
Pac-Philip aerosol were detected in M106, M107 and MI09.
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Figure 5.20 Concentration of (a) NOs", (b) NH4*, (c) nss-SO4%, and (d) C204% in bulk
samples of SHIVA aerosol. Bars of NOs", NH4* and C>04?" are analytical errors for a
single determination. Bars of nss-SO42" are errors from nss-SO42" calculations derived
from analytical errors for a single determination of SO4* and Na*.
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5.3.3 Halogen Chemistry of SHIVA Aerosol

5.3.3.1 Chloride (CI"), Bromide (Br’) and Total Soluble lodine (TSI)

Concentrations

Similar to the distribution of Na* concentration in Section 5.3.2.1, S China and Sumatra
aerosol have lower CI" concentrations than W Pac-Pacific aerosol. Lowest CI
concentrations were found in S China aerosol. CI” concentrations of W Pac-Philip
aerosol were more than 50 nmol m™3, Highest CI- concentrations was observed in sample
MI09 (248 nmol m?).

Concentrations of Br™ of all samples of S China and Sumatra aerosol were below
detection limits. Only two samples of W Pac-Philip, MI09 and MI112, have detectable
Br- concentrations (0.08 nmol m™ for M109 and 0.09 nmol m™ for MI112).

No clear pattern of TSI concentrations was observed. Sumatra aerosol samples have
slightly lower TSI concentrations compared with S China aerosol. Two samples (M106
and MI11) of W Pac-Philip aerosol showed highest TSI concentrations (~15 nmol m),
but other aerosol samples of this aerosol type have TSI concentrations lower than 10

pmol m=,
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Figure 5.21 Concentrations of (a) CI (b) Br and (c) TSI in bulk samples of SHIVA.
Unfilled bars are samples which have concentrations below detection limits. Bars are
analytical errors.
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Table 5.6 Median (in bold) and range concentration (in parenthesis) of CI-, Br-, TSI, I', 103” and SOI for bulk samples of SHIVA aerosol,

according to air mass types. (Concentration unit for CI- and Br~ is nmol m and pmol m™ for TSI, I, 103™ and SOI).
lons
Air Mass
Cr Br- TSI - 105 SOl
S China (n=3)
18 <0.03 10 3.4 6.0 1.4
(12-21) (<0.03-<0.04) (7.5-12) (2.3-4.4) (1.9-6.8) (1.2-2.4)

W Pacific (n=2)

29, 60 <0.03, <0.04 8.0,84 33,36 1.4,2.6 3.3,2.2
W Pac-Philip (n=6)
143 <0.05 8.2 4.5 4.6 1.3
(65-248) (<0.05-0.09) (5.9-15) (3.0-6.1) (1.6-9.8) (0.8-4.8)
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5.3.3.2 The Chemical Cycling of Halogens

The highest CI" loss was found in S China aerosol (median 73%, range 62 to 79%). In
Sumatra aerosol, CI" loss was lower than S China aerosol but higher than W Pac-Philip
by a factor of 2. CI" loss of all samples of W Pac-Philip aerosol was lower than 20%,
except MI13 (CI" loss 39%).

For Br loss, only M109 and MI112 showed exact percentage of Br~ loss (82 + 6 % for
MI09 and 59 + 14% for MI112). However, minimum potential Br~ losses for other
samples which have Br~ concentrations below detection limits can also be estimated.
These minimum potential Br~ losses were within the range of 60 — 90%. Estimated
minimum potential Br™ losses of S China and Sumatra were slightly lower than W Pac-

Philip aerosol.
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Figure 5.22 Concentrations of CI" of bulk samples of SHIVA aerosol and their seasalt
(ss) ions (a) and CI" percentage loss (b). Bars of CI" are analytical errors. Bars of ss-Cl
and %CI" loss are errors of ss-Cl and %CI loss calculations derived from analytical
errors of CI".
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Figure 5.23 Concentrations of Br™ of bulk samples of SHIVA aerosol and their seasalt
(ss) ions (a) and Br percentage loss (b). Unfilled squares in Figure 5.23b were potential
minimum %Br" loss calculated from aerosol samples which Br- concentrations were
below detection limits (unfilled bar in Figure 5.23a). Bars of Br are analytical errors.
Bars of ss-Br and %Br~ loss are errors of ss-Br and %Br- loss calculations derived from
analytical errors of Br-.
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The enrichment factor of iodine (EFodine) Was observed highest in S China aerosol, with
highest EFodine 0f sample (M102 EFodine = 297). Sumatra aerosol showed slightly lower
values of EFiodine, Whereas W Pac-Philip aerosol samples have lowest EFjodine. LOWeSt
EFiodine was found in sample MI109 of W Pac-Philip aerosol (EFiodine = 33).
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Figure 5.24 The Enrichment Factor of iodine (EFodine) in bulk samples of SHIVA
aerosol. Bars are errors of EFodine Calculations derived from analytical errors for a single
determination of TSI and Na*.
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5.3.4 lodine Speciation of SHIVA Aerosol

5.3.4.1 lodide (I"), lodate (103°) and Soluble Organic lodine (SOI) Concentrations

A summary of median and concentration range of I, 103™ and SOI for SHIVA aerosol

samples, according to air mass types is shown in Table 5.6.

No clear pattern of I" concentrations was observed in SHIVA aerosol. Most SHIVA
aerosol samples have similar I concentrations except samples MI11 — MI113 of W Pac-
Philip aerosol (>5.0 pmol m?). In S China aerosol, the range of I concentrations was
from 2.3 — 4.4 pmol m™ (median 3.4 pmol m™). Sumatra aerosol samples have a similar
range of I” concentrations to M106, MI07 and MI109 of W Pac-Philip (range 3.0 — 4.0

pmol m3).

Low concentrations of iodate (<3.0 pmol m®) were observed in Sumatra aerosol,
sample MI103 of S China and sample M113 of W Pac-Philip. For S China, two aerosol
samples, MI01 and MI102, showed 103™ concentrations of 6.8 and 6.0 pmol m=3. Highest
103™ concentrations of were found in M106 (9.8 pmol m). For W Pac-Philip, 103"
concentrations of most aerosol samples (except M106 and MI113) were in the range from
3.310 5.0 pmol m™,

For SOI, only three samples (M104 and MI105 of Sumatra and MI11 of W Pac-Philip)
were determinable with the concentrations of more than 2.0 pmol m. However, there
were samples of S China aerosol and samples M106 and MI07 of W Pac-Philip which
SOI showed larger values of propagated errors associated with SOI than determined
SOI concentrations. Those samples have SOI concentrations lower than 2.4 pmol m.
Three samples of W Pac-Philip (M111 — MI13) have undeterminable SOI values.
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Figure 5.25 Concentration (pmol m=) of (a) I, (b) 105 and (c) SOl in bulk SHIVA
aerosol. Unfilled bars of SOI (Figure 5.25c) are samples (M101 — M103, M106 and
MI07) which have propagated errors larger than determined SOI. Bars of I" and 103" are
analytical errors. Bars of SOI are errors derived from SOI calculations.

181



5.3.4.2 Proportions of lodine Species

Proportions of iodine species I, I03™ and SOI are shown in Figure 5.26. No clear pattern
of iodine species was observed in three aerosol types. For S China aerosol, SOI
proportions were slightly different among three aerosol samples. However, 103 median
proportions were higher than I median proportions. For Sumatra aerosol, proportions of
I were higher than 103 and SOI. For W Pac-Philip aerosol, there is no clear distribution
pattern of iodine species in this type of aerosol. Small proportions of SOI (<10%) were
found in most samples except sample MI11. For sample MI112 and MI13, proportions of
I” of these two samples were more than 50%.

20 - a) Concentrations
SOl
15 - I = |odate
lodide

Concentration (pnmol m-3)

H l1e

MI01 MI02 MI03 MI04 MIO5 MIO6 MI07 MI0S MI11 MI12 MI13

b) Proportions

100% - ‘[ + I
S
2
=l
‘é’_ 50%
S 1
o
7]
0%

MI01 MI02 MIO3{MI04 MIOS MI06 MI0O7 MI09 MI11 MI12 MI13

S China Sumatra W Pac-Philip
Samples

Figure 5.26 Concentration of iodine species distribution in bulk samples of SHIVA
aerosol (a) and proportions of iodine species (b): I', IOz and SOI. Unfilled bars are
samples which have SOI values are undeterminable. Bars of 1" and 103" are analytical
errors and bars of SOI are errors derived from SOI calculations (Figure 5.26(a)). Bars of

proportions of I, 103 and SOI (Figure 5.26(b)) are errors derived from proportional
calculations.
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An iodate proportion of 103" was found in samples MI101, MI02 of S China aerosol and
MI06, MI109 of W Pac-Philip. For sample MI03 of S China aerosol and M112, MI13 of
W Pac-Philip, their iodide proportions were larger than 50%. Highest I- proportions was
observed in sample MI113 (79%). For W Pac-Philip, undeterminable SOI values were
observed in three samples MI109, MI12 and MI13. Largest SOI proportions (31%) for W

Pac-Philip aerosol was found in sample MI11.

Composition of iodine species of SHIVA aerosol samples is plotted in the ternary
composition plot between I, 103" and SOI Figure 5.27. No clear pattern of composition
of iodine species were observed. However, this composition plot showed distinctive
undetermineable SOI values of three samples of W Pac-Pacific aerosol. One sample of
S China (MI103) and MI11 of W Pac-Philip aerosol showed slightly similar pattern of
iodine species composition. Other two samples of S China (MI01 and M102) and M106
and MI107 of W Pac-Philip aerosol have large 103 proportions (more than 45%), with |-
proportions range 20 — 50%.
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Figure 5.27 Ternary composition diagrams for iodine species of bulk samples of
SHIVA aerosol. Each axis shows the percentage of I, I03” and SOI contained in each
aerosol sample.
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A summary of median and range of proportions of iodine species of different air mass

types is presented in Figure 5.28.

Median proportions of iodide for both Sumatra and W Pac-Philip aerosol were slightly
higher than S China aerosol. However, I proportions for all three aerosol types are not
much different, with slightly higher I proportions of Sumatra aerosol. Highest

proportions of two samples of W Pac-Philip

103 proportions were lower in Sumatra aerosol than W Pac-Philip and S China aerosol
nearly by the factor of 2. SOI proportions were highest compared with S China and W
Pac-Philip aerosol. SOI proportions were lowest in W Pac-Philip aerosol, with three

SOl undeterminable samples.
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Figure 5.28 Modified box and whisker plots, showing proportions of iodine species of
bulk samples of SHIVA aerosol (a) I', (b) 1037, (c) SOI. Numbers in parenthesis
represents numbers of aerosol samples. The box shows the interquartile range (IQR)
containing values between 25" and 75" percentile. Bars represent the largest
observation that is less than or equal to the upper quartile plus 1.5 length of the IQR.
Bars also show the smallest observation that is greater than or equal to the lower
quartile plus 1.5 times the length of IQR. Qutliers are observations outside lower-upper
bar range. Red asterisks are the maximum values and pink asterisks are the minimum
values.
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5.4 Discussion of the Pacific Aerosol Chemistry

A discussion of the Pacific aerosol chemistry will be based on a comparison of results
from TransBrom and SHIVA with previous studies in the Pacific Ocean, especially in
the Western Pacific (See cruise tracks in Figure 5.3). Findings of TransBrom cruise will
be presented as total concentrations of aerosol data (fine + coarse mode).
Concentrations of nss-Ca?*, nss-K*, and nss-SO4? of Zhang et al. (2010) and Martino et
al. (2014a) were calculated using available data from concentrations of Ca?*, K* and
S04%. Concentrations of non-seasalt ions were calculated from the aerosol
concentration of Na* using the concentration ratio of the component of the ions to Na*

in seawater (see Section 2.5.3).

5.4.1 Major lon Chemistry of the Pacific Aerosol

A summary of major ions of TransBrom, SHIVA and previous studies is shown in
Table 5.7. Previous studies include a partial data set of Zhang et al. (2010) and results
of TransFuture (TF) cruises of Martino et al. (2014) (See Figure 5.3 for examples of
cruise tracks). TransFuture cruises were categorised into two groups according to
periods of data collection, i.e. TransFutureaprii-sune during April — June (TF5-1 and TF5-
2) and TransFutureaug-nov during August — November (TF5-3 and TF5-5).

Results of both TransBrom and SHIVA showed low concentrations of nss-Ca?*, with
less than 3.5 nmol m™. This low nss-Ca?* concentrations indicate a lack of dust
influences for both TransBrom and SHIVA aerosol. From previous studies, low
concentrations of nss-Ca?* were observed in aerosol data of Chichi-jima, an island in the
southern of Japan (Matsumoto et al. 2004). However, Zhang et al. (2010) reported
slightly higher concentrations of nss-Ca?* of the western Pacific than TransBrom and
SHIVA aerosol (median 7.0 nmol m™, range 1.7 to 17 nmol m™).
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For nss-K*, findings of TransBrom and SHIVA revealed comparable results with Zhang
et al. (2010). Findings of Zhang et al. (2010) showed slightly lower nss-K*
concentrations (median 0.2 nmol m=, range -0.2 to 2.7 nmol m) compared with results
of TransBrom (median 0.4 nmol m, range <0.3 to 2.1 nmol m™) and SHIVA (median

0.3 nmol m3, range 0.7 to 0.8 nmol m™).

For NOs", SHIVVA showed higher concentrations than TransBrom aerosol. These high
NOs™ concentrations of SHIVA might be influenced by anthropogenic emissions within
the South China Sea, Sumatra islands as well as the Philippines. TransBrom showed
less pollution with lower NOs™ concentrations (median concentrations 3.4 nmol m,
range 1.1 to 12 nmol m=). Lower NOs™ concentrations of TransBrom agreed well with
findings of Jung et al. (2011), which reported NO3™ concentrations of the subtropical
western North Pacific aerosol (average concentrations 2.5+1.0 nmol m, range 1.1 to
4.4 nmol m3). Furthermore, previous studies of Zhang et al. (2010) also presented low
NOs™ concentrations (median 0.5 nmol m, range 0.1 to 9.7 nmol m~) of the western
Pacific aerosol.

Low NH4* concentrations were observed in SHIVA aerosol (median 1.6 nmol m-3, with
range 1.1 to 3.7 nmol m™3). For TransBrom, NH4* concentrations were higher than in
SHIVA aerosol (median 4.8 nmol m™, range 0.7 to 14 nmol m=). Results of TransBrom
agreed well with previous studies of Jung et al. (2011) (average concentrations 5.9 + 2.9
nmol m3, range 2.4 — 12 nmol m®), and Matsumoto et al. (2004) (average

concentrations in Chichi-jima of 6.0 = 2.4 nmol m?, range 4.8 — 11 nmol m).
For nss-S042" and C2,04%, SHIVA aerosol showed slightly higher concentrations than in

TransBrom aerosol samples. However, these two ions of SHIVA were observed slightly

lower than previous studies of Zhang et al. (2010).
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Table 5.7 Median (in bold), average and standard deviations (in italic) and concentrations range (in parenthesis) for Na*, Mg?*, nss-Ca?*,
nss-K*, NO3z", NH4", nss-SO42 and C204% for TransBrom (total concentrations of fine + coarse), bulk samples of SHIVA aerosol, and

previous studies. Concentration unit is nmol m=,

Air Mass lons
Na* Mg?* nss-Ca?* nss-K* NOs NH4* nss-SO42 C204*
(Tnii‘g)s(%z?%og) 149,181+ 115 17,2113 11,1306 04, 0.7+0.6  3.4,46+37 48.509+42  47,58+44 0.3, 0.3+0.3
(37-381) (3.8-40) (0.6-2.7) (<0.3-2.1) (1.1-12) (0.7-14) (0.8-16) (<0.02-1.0)
?NHO\',\zlaal‘l()”:“) 91, 110465 7.8,10+6.9  25,2.1+08 0.3,0.7+0.8  11,13+7.3  16,1.8408 75,7232  12,1.1+06
(41-239) (2.7-22) (1.0-3.1) (<0.2-2.3) (6.4-31) (1.1-3.7) (3.5-14) (0.5-2.2)
Jung et al. (2011) (n=8) (Aug — Sept 2008) — data of Subtropical western North Pacific (STWNP)
2.5+1.0 5.9+2.6
N/A N/A N/A N/A (1.1-4.4) (2.4-12) N/A N/A
Zhang et al. (2010)” (n=9) (Nov — Dec 2007)
173, 207+143 21, 2517 6.9,6.3t2.2  0.6,0.7+1.0  0.3,1.2+16 74,8666 1.6, 1.5+1.3
(15-467) (2.1-56) (1.7-9.0) (-0.2-2.7) (0.1-5.0) N/A (1.9-19) (0.1-3.7)
Tl’anSFUtureApril-June** (n=20) TF5-1 (May/June 2007) and TF5-2 (April/May 2008)
169, 285+289 19, 32+33 07,1617  05,06+1.4  4.4,85+8.2  8.1,12+10 10, 20422 0.3,0.5+0.5
(63-1083) (6.8-124) (0.4-6.6) (-3.1-3.7) (1.6-30) (3.6-45) (3.0-89) (0.1-2.2)
TransFutureaug-Nov . (n=20) TF5-3 (Aug/Sept 2008) and TF5-5 (Oct/Nov 2009)
164, 180+130 18, 2015 0.7,09+04  0.6,0.7£0.3  3.0,5.1+6.9 7.5 10+7.6 7.8,13+15  0.3,0.4+0.3
(35-539) (3.6-61) (0.4-2.0) (0.3-1.7) (1.0-32) (3.8-35) (0.4-58) (0.1-1.2)

“ Selected data from Zhang et al. (2010), this is a partial set of data of Cruise | over the Pacific Ocean, starting from the eastern coast of Harvey Bay,

Queensland, Australia to the western Pacific Ocean (northern east of the Philippines).

“* Data from Martino et al. (2014), N/A means data not available.
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5.4.2 Halogen Chemistry of the Pacific Aerosol

5.4.2.1 Chloride (CI"), Bromide (Br’) and Total Soluble lodine (TSI)

Concentrations

A summary of halogen concentrations of TransBrom, SHIVA and previous studies is
shown in Table 5.8. Previous studies include a partial data set of Zhang et al. (2010) and
results of TransFuture cruises of Martino et al. (2014). Similarly to Table 5.7,
TransFuture cruises were presented into two groups according to periods of data
collection, i.e. TransFuture aprii-june (TF5-1 and TF5-2) and TransFuture aug- nov (TF5-3
and TF5-5).

Chloride concentrations of TransBrom were considerably higher than average
concentration of SHIVA aerosol by a factor of two. However, these high CI
concentrations of TransBrom were comparable with previous studies of TransBrom ayg -
nov (Martino et al., 2014) and Zhang et al. (2010).

Similarly to CI" concentrations, Br~ concentrations of TransBrom were much higher than
SHIVA aerosol by a factor of 4 - 6. These low Br~ concentrations of SHIVA were also
lower than previous findings of TransFuture TF5-5 (Martino et al., 2014). Br
concentrations of TransBrom aerosol was slightly higher than findings of TF5-5 of

TransFuture cruise.
For TSI, both TransBrom and SHIV A data displays comparable concentrations. TSI

concentrations of SHIVA were slightly lower than TransBrom aerosol. However,
SHIVA data agreed well with the range of TSI concentrations of Lai et al. (2008).
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Table 5.8 Median (in bold), average (in italic) and range concentration (in parenthesis) of CI, Br, TSI, I', 103 and SOI for TransBrom
(total concentrations of fine + coarse), bulk samples of SHIVA aerosol, and previous studies. (Concentration unit for CI- and Br- is nmolm™
and pmol m™ for TSI, I', 105~ and SOI).

_ lons
Air Mass
Cl Br- TSI I 105 SOl
TransBrom (n=13) (Oct 2009)
169, 215+134 0.2,0.3+0.2 9.5, 14+9.5 3.6,6.2+5.8 0.7,3.74#5.2 4.0,4.8+3.6
(51-464) (<0.08-0.5) (3.0-32) (1.1-19) (0.3-15) (1.0-13)
SHIVA (n=11) (Nov 2011)
65, 9579 <0.05, <0.05+0.02 8.2,9.6+3.1 3.7,4.0+1.2 4.2,4.31£2.6 1.8,2.2+1.3
(12-248) (<0.03-0.09) (5.9-15) (2.3-6.1) (1.4-9.8) (0.8-4.8)
Zhang et al. (2010)" (n=9) (Nov — Dec 2007)
156, 200+153
(11-455) N/A N/A N/A N/A N/A

Tl’anSFUtureApril-June** (n=20) TF5-1 (May/June 2007) and TF5-2 (April/May 2008)
188, 254+245

(34-1062) N/A N/A N/A N/A N/A
TransFutureaug-Nov . (n=20) TF5-3 (Aug/Sept 2008) and TF5-5 (Oct/Nov 2009)
206, 205+151 0.1,0.2+0.1
(34-560) (0.03-0.5) N/A N/A N/A N/A
Lai et al. (2008) (n=57) (Nov 2005 — Mar 2006)
N/A N/A 9.4+7.0 2.8+3.4 0.6+0.9 6.0+4.3

[1 9 D0\ /NI 108\ AN DY AN [0 O 10\

* Selected data from Zhang et al. (2010), this is a partial set of data of Cruise | over the Pacific Ocean, starting from the eastern coast of Harvey Bay,

Queensland, Australia to the western Pacific Ocean (northern east of the Philippines).” Data from Martino et al. (2014). * only TF5-5 data are
available. N/A means data not available.
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5.4.2.2 The Chemical Cycling of Halogens

For chloride loss in the Pacific Ocean, data of both TransBrom and SHIVA showed
large differences. Percentages CI™ loss of SHIVA (average 37+25%) were much higher
than TransBrom aerosol samples (average 1.8+2.2%). CI" loss was found in all samples
of SHIVA aerosol, whereas only six out of thirteen samples of TransBrom showed CI-
loss. For TransBrom, Cl- losses were observed in all samples of NE Asia aerosol, while

only two samples of W Pacific and one sample of Tasman aerosol showed CI" loss.
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Figure 5.29 Percentage loss of (a) Cl and (b) Br™in TransBrom aerosol (fine + coarse)

samples. Bars of %CI loss and % Br loss are errors of %CI" loss and % Br- loss
calculations derived from analytical errors of Cl"and Br-.
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For Br loss, data of SHIVA showed much larger proportions compared with Br™ loss in
TransBrom aerosol. Although the percentage of Br loss in SHIVA was calculated from
approximate potential minimum values, these values displayed an average percentage of
Br loss of about 73+8.7 %. For TransBrom, low percentage of Br~ loss was observed in
NE Asia and W Pacific aerosol, with less than 20% except samples 104 — 106. However,

Tasman aerosol showed larger Br™ loss with the percentage loss between 27 — 54 %.

In order to compare the loss of both chloride and bromide in aerosol of the western
Pacific Ocean, data of previous studies were used to compare and to discuss behaviour
of these halogens loss in this region. A summary of percentage of halogen loss of
TransBrom, SHIVA and previous studies is shown in Table 5.9. Previous studies
include a partial data set of Zhang et al. (2010) and results of TransFuture cruises of
Martino et al. (2014). For TransFuture, data of each cruise was presented individually as

Br loss data is only available in TF5-5 cruise.

Data of CI" loss in the western Pacific Ocean occurred varied throughout the region. For
SHIVA, CI" loss occurred in all samples, similarly to data of Zhang et al. (2010). For
TransFuture cruises, TF5-1 and TF5-2 showed CI" loss occurring more than a half of
their aerosol samples. However, ClI"loss occurred less a half of aerosol samples for
TransBrom as well as TF5-3 and TF5-5. SHIVA showed highest percentage of this
halogen loss, with slightly higher than previous studies of Zhang et al. (2010). For
TransFuture cruises (TF5-1, TF5-2, TF5-3 and TF5-5) showed consistency of their CI°
loss. However, CI" loss during April — June (TF5-1 and TF5-2) occurred with more
samples than in TF5-3 and TF5-5 (August — November).

For Br loss, data of TF5-5 showed higher than Br~ loss in TransBrom almost a factor of
two. However, Br- loss of this TransFuture cruise showed much lower value of Brloss
in SHIVA. Both TransBrom and TF5-5 have much lower values of Br- loss than
TransFuture TF5-5. Low Br~ loss of both TransBrom and TransFuture indicated

different factors that lead Br~ loss, compared with SHIVA aerosol.
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Table 5.9 Median (in bold), average (in italic) and range concentration (in parenthesis)
of percentage ClI" loss and Br loss of TransBrom, SHIVA aerosol, and previous studies

Cruises % CI Loss % Br Loss
0.0,1.8+2.2 11, 17418
TransBrom (0.0-5.9) (0.0-54)
(CI" loss found 6/13 samples)
33, 37225 72, 73+8.7
SHIVA (11-79) (59-86)
(CI'loss found in all samples)
22,2414
Zhang et al. (2010)" (7.3-50) N/A
(CI' loss found in all samples)
6.1, 9.4+11
TF5-1™ (0.0-34) N/A
(CI" loss found 7/10 samples)
5.8, 11+15
TF5-2" (0.0-44) N/A
(CI" loss found 9/10 samples)
0.0, 7.7£12
TF5-3" (0.0-34) N/A
(CI loss found 4/10 samples)
+
TE5-5" 0((()) ;15‘57 18, 28+32
: (0.0-82)

(CI" loss found 4/10 samples)

“ Selected data from Zhang et al. (2010), this is a partial set of data of Cruise | over the Pacific
Ocean, starting from the eastern coast of Harvey Bay, Queensland, Australia to the western
Pacific Ocean (northern east of the Philippines). ™ Data from Martino et al. (2014). N/A means
data not available.

As in previous CI loss discussion, it is interesting to examine further under which
conditions that CI™ loss occurs in aerosol. In Chapter 4, acid displacement reactions were
discussed as causes of chloride loss. Thus, by showing relationship of CI loss and the
presence of acids (both nss-SO42" and NO3), this would help to confirm the chloride
loss, which caused by the acid displacement. Results of plotting chloride loss against
nss-SO4%, NOs™ and NOs™ + 2 (nss-SO4%) of both TransBrom and SHIVA are shown in
Figure 5.30.

In Figure 5.30, CI" loss of SHIVA shows relatively stronger relationships with both nss-
S04 and NOs", compared with TransBrom. Correlation between CI- loss and NO3™ + 2

(nss-S04%) of SHIVA was found statistically significant at 0.01 level (r = 0.84, p-value
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< 0.001) (Figure 5.30f). In contrast, correlation between CI" loss and NO3z™ + 2 (nss-
S04%) of TransBrom was not shown statistically significant (r = 0.55, p-value = 0.052)
(Figure 5.30c). For SHIVA, it is clear that polluted aerosol such as S China and Sumatra
have very strong relationship between chloride loss and NO3™ + 2 (nss-SO4?). However,
for TransBrom, for each individual types of aerosol, it was no clear relationships

between chloride loss and these 2 ions.

Plotting of CI" loss of both TransBrom and SHIVA against nss-SO42", NOz  and NO3™ +
2 (nss-S0O4%) was presented in Figure 5.31a-c. Results of both cruises showed some
degrees of the relationship between CI" loss and the presence of acids. Correlation
between CI- loss and NOs™ + 2 (nss-SO4%) of TransBrom and SHIVA cruises was shown
statistically significant at 0.01 level (r = 0.69, p-value < 0.001) (Figure 5.31c).

Further, data of previous studies, Zhang et al. (2010) and TransFuture (TF5-1, TF5-2,
TF5-3 and TF5-5) were also presented in Figure 5.31d-f. In Figure 5.31f, although less
clear relationship between CI- loss and NO3z™ + 2 (nss-SO42") was observed, correlation
between CI- loss and NOs3™ + 2 (nss-SO4%) of Zhang et al. (2010), and TransFuture
cruises were found statistically significant at 0.01 level (r = 0.51, p-value < 0.001). Data
of individual cruises such as TF5-2 and TF5-3 showed very strong relationship between
of CI" loss and the presence of acids ions in aerosol (statistically significant at 0.01 level
for TF5-2 (r = 0.98, p-value < 0.001), statistically significant at 0.01 level for TF5-3 (r =
0.95, p-value <0.001).

Thus, it can be summarised that CI- loss and the presence of acids (NOs™ + nss-SO4%),
occurred variously in this western Pacific area. Three cruises (SHIVA, TF5-2 and TF5-
3) showed strong relationship between CI- loss and NO3™ + 2 (nss-SO4%). These
evidences supported CI" loss occurring due to acid displacement reactions, similarly to
findings of CI" loss in the subtropical South China Sea (Hsu et al. 2007). However, there
were some other cruises which have no clear relationships such as TransBrom, Zhang et
al. (2010), TF5-1, and TF5-5.
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Figure 5.30 Plots of concentrations of Cl- against (a, d) nss-SO4%, (b, €) NOs and (c, f) NOs™ + 2(nss-SO4%) in TransBrom (fine+coarse)
aerosol and bulk sample of SHIVA aerosol, according to their air mass types. Remarks: One data point of TF5-1 was not plotted due to very
high CI- loss found (199 nmol m=). Bars of %CI- loss are errors of %CI loss calculations derived from analytical errors for a single
determination of CI. Bars of NO3™ are analytical errors for a single determination. Bars of nss-SO4?" are errors from nss-SO4% calculations
derived from analytical errors for a single determination of SO4? and Na*.
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Figure 5.31 Plots of concentrations of CI- loss against (a) nss-SO4%, (b) NO3z and (c) NO3z + 2(nss-SO.%) in TransBrom (fine+coarse) aerosol and
bulk sample of SHIVA aerosol, and against (d) nss-SO4>, (€) NOs™ and (f) NOs™ + 2(nss-SO4%) in aerosol samples of Zhang et al. (2010), and
TransFuture cruises TF5-1, TF5-2, TF5-3 and TF5-5. (One sample of TF5-1 was not included in the plot, Cl- loss ~198 nmol m=). Bars of %CI- loss
are errors of %CI" loss calculations derived from analytical errors for a single determination of CI. Bars of NOs™ are analytical errors for a single
determination. Bars of nss-SO.* are errors from nss-SO4> calculations derived from analytical errors for a single determination of SO,> and Na*.
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The enrichment of iodine of the western Pacific Ocean was observed in both TransBrom
and SHIVA aerosol. EFodine Of both cruises showed comparable data results. EFodine Of
TransBrom was slightly higher than SHIVA aerosol. For TransBrom, high EFodine
values were observed in W Pacific aerosol, which were cleaner aerosol compared with
other air mass types, except sample 109 and 110 (Figure 5.32). In SHIVA, high EFodine
values were shown in S China aerosol, M102. Other two aerosol samples of this aerosol

showed EFiqdine Values of more than 150 (Figure 5.24).
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101 102 103|104 105 106 107 108 109 110 |11 112 113

NE Asia W Pacific Tasman
Samples

Figure 5.32 The enrichment factor of iodine (EFiodine) in TransBrom aerosol samples.
Bars are errors of EFedine Calculations derived from analytical errors for a single
determination of TSI and Na*.

Plots of the relationship between EFodine and the presence of acid ions (both nss-SO4
and NOz") were displayed in Figure 5.33. In TransBrom, concentrations nss-SO4™ and
NOj3 of cleaner samples (W Pacific) were lower than 5.0 nmol m™. These unpolluted
samples showed higher EFiodine, cOmpared with NE Asia and Tasman aerosol types. No
clear pattern between EFiqdine and the presence of nss-SO4  and NOs™ was observed as
shown in plots of relationship between EFogine and NO3™ + 2(nss-SO4) of both
TransBrom and SHIVA Figure 5.33c and Figure 5.33f respectively.
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Figure 5.33 Plots of the Enrichment Factor of iodine against (a, d) nss-SO4%, (b, €) NOs™ and (c, f) NOs™ + 2(nss-SO4%) in TransBrom (TB)
(fine+coarse) aerosol and bulk sample of SHIVA aerosol, according to their air mass types. Bars of EFodine are errors of EFodine calculation
derived from analytical errors for a single determination of TSI and Na*. Bars of NOs™ are analytical errors a single determination. Bars of
nss-SO42" are errors from nss-SO4% calculations derived from analytical errors a single determination of SO4% and Na*.
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5.4.3 lodine Speciation of the Pacific Aerosol

5.4.3.1 Concentrations of lodine Species

For TransBrom samples, three types of air mass showed different pattern of total
concentrations of iodine species and proportions. Results of NE Asia aerosol displays
concentrations of iodine species less than 10 pmol m, similarly to samples 107 — 110 of
W Pacific aerosol sample. For these samples, iodide contributes between 35 — 65% of
total iodine. SOI was the second largest iodine species contributions. However, 103" is
the least abundant of iodine species (<30%). For sample 104 — 106 of W Pacific aerosol,
concentrations of iodine species were in the range of 21 to 32 pmol m=. These three
samples of W Pacific also have large I proportions (almost 60%). SOl is the second
largest contributions of iodine species, except in sample 106. For Tasman aerosol, all
three aerosol samples showed total iodine concentrations of up to 10 pmol m=. These
Tasman samples have different pattern of iodine species distribution. lodate is the most
abundant species (range 52 — 65%), and iodide is the least proportions for these samples
(< 20%).

a) lodine Species Concentrations b) lodine Species Proportions
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Figure 5.34 Total concentrations (fine + coarse) and proportions of iodine species
distribution in TransBrom aerosol samples. Bars of I" and 103" are analytical errors for a
single determination. Bars of SOI are errors derived from SOI calculations. Bars of
proportions of I, 103 and SOI are errors derived from proportional calculations.
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Data of iodine species concentration of the western Pacific Ocean from TransBrom and
SHIVA was presented in Table 5.8, comparing with previous research. In the western
Pacific Ocean, so far, there was only one research of Lai et al. (2008), which studied
iodine speciation in marine aerosols along a 30,000 km round-trip cruise from Shanghai,

China to Prydz Bay, Antarctica.

For iodide, TransBrom showed concentrations comparable to SHIVA, with slightly
higher average concentrations. However, this study found higher I~ concentrations than
were reported by Lai et al. (2008) by a factor of 3. For iodate, SHIVA showed
considerably higher concentration than the previous studies of Lai et al. (2008). For
TransBrom, only three samples of Tasman aerosol showed high 103 concentrations
(ranged 10 — 15 pmol m3). For the rest of TransBrom aerosol, 103 concentrations were
lower than 6.1 pmol m= (TransBrom median 103 concentrations 0.7 pmol m™). For
SOl, its concentrations in SHIVA aerosol were lower than TransBrom by a factor of
two. Concentrations of SOI of both TransBrom and SHIVA aerosol were higher than
reported by Lai et al. (2008).
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5.4.3.2 Proportions of lodine Species

The proportions of iodine species between TransBrom and SHIVA aerosol, and data of
Lai et al. (2008) are plotted in Figure 5.35. No clear pattern of proportions distributed
was observed between TransBrom and SHIVA aerosol. Both TransBrom and SHIVA
showed less than 50% of SOI proportions, unlike data of Lai et al. (2008). In this
previous research, almost all types of aerosol have similar pattern of low iodate
proportions, and large proportions of SOI, except aerosol of ocean between Southeast
Asia and Australia (C2).
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SHIVA

Cl-Lai et al.

C2-Lai et al.

O1-Lai etal.

O2-Lai et al.

>rO@E+0®@0

lodide 79
(%)
90

100 < T T v T T i v 4 T *+ 0
0 10 20 30 40 50 60 70 80 90 100

lodate (%)

Figure 5.35 Ternary composition diagrams for iodine species of TransBrom, SHIVA
and average data of aerosol in different regions of Lai et al. (2008) (C1= Chinese coast,
C2=Southeast Asia where islands spread, O1=South China Sea, and O2=0cean between
Southeast Asia and Australia). Each axis shows the percentage of I, 103" and SOI
contained in each aerosol sample.

For NE Asia aerosol of TransBrom and aerosol of Chinese coast (C1) and the South
China Sea aerosol (O1) of Lai et al. (2008), these three types of aerosol showed
similarity of small proportions of iodate (<10%). These regions of the coast of Asia both
China and Japan are the place where anthropogenic emissions are influenced chemical

properties of aerosol.
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5.5 Summary

For halogen cycling, SHIVA aerosol showed larger proportions of CI” loss in all samples
compared with TransBrom, which CI" loss was observed only a half of its samples.
Different behaviour of CI" loss occurred among four cruises of TransFuture. No clear
relationship between CI loss and polluted ions observed in TransBrom, but strong
relationship was found in SHIVA. For TransBrom, bromide was enriched in fine mode
aerosol, unlike coarse mode aerosol, which Br loss occurred, especially in the Tasman
aerosol. For SHIVA, Brloss occurred in all samples.

For iodine speciation, TSI concentrations of TransBrom was considerably higher than
SHIVA in some samples of open ocean of W Pacific and Tasman aerosol. Both
TransBrom and SHIVA aerosol showed different patterns of iodine speciation. TSI
concentrations of SHIVA were comparable with near coast NE Asia aerosol of
TransBrom. Larger concentration of TSI were found in some of open ocean aerosol of
W Pacific and Tasman of TransBrom. No clear pattern of iodine speciation was
observed in three types of SHIVA aerosol.

For TransBrom, different pattern of proportions of 103~ were observed between NE Asia
and Tasman aerosol, especially in coarse mode aerosol. 103™ proportions were very
small in most of northern hemisphere aerosol, but the proportion of this iodine species
in the southern hemisphere (Tasman aerosol) was up to 70-75%. TSI in coarse mode is
larger than in fine mode by a factor of 2 (average TSI ratio in coarse mode over fine
mode aerosol 3.5+2.8). In fine mode aerosol, SOI proportion (median 49%) was slightly
higher than I proportion (median 43%). 103™ proportion was very small, contributing
less than 15% of iodine proportions in all samples. In coarse mode aerosol, I was the
dominant species in coarse mode in cleaner samples of W Pacific aerosol. This iodine

species was very small in the southern hemisphere.
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For iodine enrichment, the southern aerosol of TransBrom (sample 109-113), iodine was
enriched considerably less, compared to the cleaner aerosol of W Pacific. This smaller
enrichment was also found in polluted aerosol of NE Asia aerosol (EFiodine l€ss than
100). EFiodine of W Pac-Philip (SHIVA) was comparable with values of NE Asia and

Tasman aerosol.

Results of both TransBrom and SHIVA provided different pattern of chemical
characteristics and iodine speciation, this was mainly due to differences of collected
marine environment. For TransBrom, the open ocean with cleaner environment
provided different pattern of iodine speciation compared with polluted aerosol. For
SHIVA, anthropogenic emissions of surrounded islands influenced behaviour of iodine

speciation.
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Chapter 6 Discussion, Conclusions and Suggestions for
Further Work

This chapter aims to discuss key controls of iodine speciation in marine aerosol as well
as conclusions of this research and suggestions for further work. Firstly, findings of
iodine speciation from previous results chapters (Chapter 4 and 5) will be summarised.
Then, results of this research will be used to compare with other previous research in
both sites of study. However, data of this research and previous were obtained by
different types of filter used, extraction methods and analytical techniques. Thus, it is
important to examine systematic differences among those iodine speciation data.
Important findings of that comparison will be used to point out key controls of iodine
speciation in the next section. The last section of this chapter will be conclusions of this
research and suggestions for further work.

6.1 Summary of lodine Speciation Findings

6.1.1 The Atlantic Ocean - AMT21

lodine Distribution of Coarse and Fine Mode Aerosol

- Very distinct differences in iodine speciation between fine and coarse aerosol, with
larger concentrations of TSI found in Saharan aerosol.

- Coarse mode TSI was larger by a factor of 3 (median 21.7, average = 23 + 12 pmol
m-3), compared with fine mode aerosol (median 6.9, average = 8.4 + 4.8 pmol m™).

- 103 is the dominant species in coarse mode aerosol as well as the total
concentrations of 103™ (fine + coarse), with largest proportions in most Saharan

aerosol samples, and some samples of SAtl and SAmer aerosol.
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lodine Enrichment

Fine mode aerosol was enriched more than coarse mode (EFiodine fine mode range
300 to 1,500), highest EFodgine found in of Sahara aerosol (113 — 119).

lodate Uptake by Mineral Dust

Evidence of iodate uptake by mineral dust was shown by dominant 103 species in
the coarse mode aerosol. The largest 103 concentration was found in Saharan
aerosol, especially in samples 115-118, while SOI was undeterminable in some of

Saharan aerosol.

Polluted Aerosol

I03™ concentrations in fine mode were very low in most samples of SAfr, SAfr-BB,
Europe and some samples of Saharan aerosol (110 — 112) (I" concentrations ~>5
pmol m3, larger than other aerosol samples and determinable SOI for these
samples).

SOl in coarse mode was determinable with higher concentrations in SAfr and SAfr-

BB aerosol.

Clean Aerosol

Clean aerosol samples of SAtl-Rem showed lower TSI concentrations than in the
northern hemisphere aerosol. This difference between the northern and southern
hemispheres was clearly shown in low 103™ concentrations (sample 120 onwards).

Both NAtl-Rem and SAtl-Rem aerosol have comparable TSI concentrations.

6.1.2 The Western Pacific Ocean — TransBrom and SHIVA

lodine Distribution of Coarse and Fine Mode Aerosol

Similar to AMT21, both fine and coarse mode of TransBrom aerosol showed a
distinct difference in iodine speciation with larger concentrations of TSI found in
Tasman and 3 samples of open ocean aerosol of W Pacific (samples M104 — MI06).
TSI in the coarse mode of TransBrom was larger by a factor of ~3 (median 6.9,
average = 11 + 8.7 pmol m), compared with fine mode aerosol (median 2.8,

average = 3.3 + 1.5 pmol m™®).
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- Total concentrations (fine+coarse) of TransBrom TSI (median TSI 9.5, average
14.2 + 9.4, range 3.0 — 32 pmol m) was slightly higher than TSI of SHIVA
(median TSI 8.2, average 9.6 + 3.1, range 5.9 — 15 pmol m™). TSI concentrations of
SHIVA were comparable with near coast NE Asia aerosol of TransBrom.

- lodide dominates iodine species in northern hemisphere aerosol (>50%) for
TransBrom. No clear pattern of I" proportions are present for SHIVA, but both
TransBrom and SHIVA showed large I fractions, compared to AMT21

- lodate fractions were very small in most of northern hemisphere aerosol, the
southern hemisphere aerosol (Tasman) showed 103" proportions up to 70-75%.

- Small proportions of SOI were present in coarse mode of Tasman and 2 samples
(106 & 109) of W Pacific aerosol (TransBrom), with non-determinable SOI
concentrations for 106 & 109.

lodine Enrichment

- Similar to AMT21, the fine mode aerosol of TransBrom was enriched greater than
coarse mode (EFiogine fine mode range 100 to 450), high EFodine in W Pacific
aerosol, except 2 aerosol samples of southern hemisphere (MI109 — MI10).

- High EFiodine Was also found in S China aerosol (range 150 to 300).

lodate Uptake by Mineral Dust

- Unlike AMT21, no evidence of iodate uptake by mineral dust because dust
concentrations were very low (estimated by nss-Ca?*) in both TransBrom and
SHIVA.

Polluted Aerosol
- No clear relationship between iodine speciation and the presence of pollutant in

aerosol samples.
Clean Aerosol

- lodide was the dominant species in coarse mode in cleaner samples of W Pacific

aerosol, but very small proportions were found in Tasman aerosol.

205



6.2 Examining Systematic Differences of lodine Speciation
Data

Since there have been various differences in the techniques to determine the iodine
speciation in this research and previous studies such as types of filters, extraction
methods and analytical techniques, this section will examine systematic differences in
those iodine speciation data in order to determine whether these differences in sampling
and analysis methods produce systematic differences in iodine speciation.

Table 6.1 shows details of cruise data from this research and previous studies. These
cruise data include the location of aerosol collection, filter types, extraction methods
and analytical techniques. Available data of iodine speciation from previous cruises in
the Atlantic cruises can be obtained from M55 (Baker 2004), RhaMble (RMB) (Allan et
al. 2009), AMT13 (Baker 2005) and AMT21 cruises. For the Pacific, only one data set
of iodine speciation of Lai et al. (2008) is available, which will be presented in this
section in average proportions of iodine species in different regions of the cruise tracks.

Table 6.1 Details summary of cruises data of this research and previous studies.

Cruises Filter Extraction Analytical Techniques
Types Methods I"& 103 TSI
AMT21 A GF Shake at Room IC-ICP-MS ICP-MS
Temperature
L Voltammetry &
Atl -
AMT13 CF Ultrasonication UV Spectrophotometer ICP-MS
- Voltammetry &
Atl -
M55 CF Ultrasonication UV Spectrophotometer ICP-MS
RhaMble At o Voltammetry &
(RMB) CF Ultrasonication UV Spectrophotometer ICP-MS
TransBromP®  CF Shake at Room IC-ICP-MS ICP-MS
Temperature
SHIVA P GF Shake at Room IC-ICP-MS ICP-MS
Temperature
Lai et al. P CF Ultrasonication IC-ICP-MS ICP-MS

Al = Atlantic Ocean; P* = Pacific Ocean. CF = cellulose filter and GF = glass
microfibre filter. Lai et al. " means approximate data from Lai et al. (2008).
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Cruise tracks for the Atlantic Ocean are shown in Figure 6.1 (AMT13, RMB, M55 and
AMT21). For the Pacific, cruise tracks of TransBrom, SHIVA and Lai et al. (2008) are
plotted in Figure 5.3.

Sample positions

G0N

20°N

Latitude ©°

205

20°s I . ] = = AMT13 |
. // RMB
~ e AMT21
B0°5 ' :
g0°W BO°W 40°W 20°W o 20°E

Longitude

Figure 6.1 Cruise tracks of AMT13, RMB, M55 and AMT21.

Before examining systematic differences of all data, proportions plots of iodine species
between the Atlantic and Pacific Ocean are shown in Figure 6.2. Plots in this figure will
provide overviews of iodine speciation data of the two oceans. For the Atlantic aerosol,
AMT21 and RMB showed relatively similar patterns of iodine species proportions, as
well as a half of the M55 aerosol samples. This pattern of iodine species displayed 103
as the dominant species. The second group of the M55 aerosol samples showed large

SOl species instead.
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Most of the samples of AMT21, RMB and M55 have small proportions of I species,
unlike AMT13. For AMT13, no clear pattern of iodine species proportions was
observed. Also, for SHIVA, no clear pattern of proportions of iodine species was found.
However, there were a few samples of TransBrom and Lai et al. (2008) that showed less

than 10% of 103" proportions.
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Figure 6.2 Ternary composition diagrams of iodine species proportions of (a) four
cruises (M55, RhaMble (RMB), AMT13 and AMT21) of the Atlantic Ocean (b) three
cruises (TransBrom and SHIVA) of the Pacific Ocean and (c) all cruises of both
Atlantic and Pacific Ocean.
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6.2.1 Filter Types

Xu et al. (2010b) and findings of this research suggested that glass microfibre filter
(GF) is more suitable than cellulose filter (CF) for iodine species analysis under various
extraction conditions. In Figure 6.3, both CF and GF showed a scattered pattern of
proportions of the iodine species for both Atlantic and Pacific cruises. SOI proportions
of GF were less than 50% in all samples, unlike data of CF filter for which many

samples showed high SOI proportions (Figure 6.3c).
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SOl (%)
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Figure 6.3 Ternary composition diagrams of iodine species proportions of cellulose
filter (CF) and glass microfibre filter (GF) of (a) four cruises of the Atlantic Ocean (b)
three cruises of the Pacific Ocean and (c) all cruises of both Atlantic and Pacific Ocean.
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6.2.2 Extraction Methods

Figure 6.4 shows ternary composition diagrams of proportions of iodine species of both
extraction methods of ultrasonication and shaking at room temperature. For both
Atlantic and Pacific data, shaking at room temperature showed SOI of less than 50%,
unlike Iand 103" species which ranged between 5% and 85%. For ultrasonication, there
were several samples of the Atlantic and samples of Lai et al. (2008) of the Pacific
Ocean that displayed SOI higher than 50%. According to Saiz-Lopez et al. (2012) and
(Baker et al. 2000), ultrasonication may cause conversion of inorganic iodine to SOI.
Thus, for some data of high SOI proportions of M55 and Lai et al. (2008), this might be

linked to the conversion of inorganic iodine to SOI.

Another important problem of the ultrasonication extraction is the power of
ultrasonication bath. In previous studies, (Baker et al. (2000), Baker (2004), Baker
(2005), and Lai et al. (2008)) no indication of the power of the ultrasonication bath was
given. Therefore, it is difficult to compare data derived from the application of
ultrasonication extraction. Thus, using shaking at room temperature as an extraction
method in this research helps to avoid potential problems associated with

ultrasonication extraction.

In Figure 6.4c, high SOI proportions are shown in aerosol samples under
ultrasonication. However, SOI proportions of most of shaking extraction were equal to
or less than 50%. This observed pattern of high SOI in Figure 6.4c is similar to Figure
6.3c. This similar pattern seems to show significant differences between CF aerosol

samples under ultrasonication extraction and GF aerosol filter under shaking extraction.
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ultrasonication and shake extraction for (a) four cruises of the Atlantic Ocean, (b) three
cruises of the Pacific Ocean and (c) all cruises of both Atlantic and Pacific Ocean.
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6.2.3 Analytical Techniques

Figure 6.5 shows a comparison of the analytical techniques for the determination of
iodine speciation in this research (IC-ICP-MS) and previous studies obtained using
different techniques (voltammetry and UV spectrophotometry). Results for both
analytical techniques displayed no clear pattern of the relative proportions of iodine
species. However, in Figure 6.5c, both techniques showed similar scattered pattern of
iodine species proportions, which cover most areas in Figure 6.5c. Thus, using different

analytical techniques for analysing iodine speciation may not affect iodine species

changes.
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Figure 6.5 Ternary composition diagrams of iodine species proportions of both iodine
speciation techniques both voltammatry (1) and UV spectrophotometer (for 1037), and
IC-ICP-MS for (a) four cruises of the Atlantic Ocean, (b) three cruises of the Pacific
Ocean and and (c) all cruises of both Atlantic and Pacific Ocean.
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In summary, it is not straight forward to compare data of iodine speciation between data
from this research and previous studies. Filter types, extraction methods and analytical
techniques are important factors to be taken into consideration for comparison and
discussion. Nevertheless, all available data sets of iodine speciation for both the Atlantic
and Pacific Ocean will be used in order to explore what are the key controls of iodine

speciation of marine aerosol.

6.3 Main Findings for Key Controls of lodine Speciation

According to results summary of iodine speciation, key controls of iodine speciation
could be categorised into three important controls: the presence of mineral dust, clean

seasalt aerosol and aerosol which was influenced by pollutants.

6.3.1 lodate Uptake by Mineral Dust

Proportions of iodine species in Saharan aerosol of all Atlantic cruises are plotted in
Figure 6.6. Most aerosol samples of RMB, AMT13 and AMT21 showed similar pattern
of iodine species proportions, in which 103 is the dominant species. Evidence of iodate
uptake by mineral dust can be seen in Figure 6.7. This figure shows plots of iodate
concentrations versus nss-Ca2* of Sahara aerosol of M55, RMB, AMT13 and AMT21

cruises.
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Figure 6.6 Ternary composition diagrams of iodine species proportions of COARSE
mode Sahara aerosol of four Atlantic cruises (M55, RMB, AMT13 and AMT21).
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As discussed earlier in Section 4.2.7, concentrations of 103™ in coarse mode Sahara
aerosol may be potentially linked to nss-Ca?* surface equivalent area (SEA). Strong
relationships between iodate and nss-Ca?* concentrations can be observed in other
previous studies such as AMT13, R%= 0.86 (Figure 6.7b), RMB, R?= 0.87 (Figure 6.7a)
and AMT21, R?= 0.80 (Figure 6.7c). Even though, the data of M55 displayed no clear
relationship between these two species (R? = 0.26), most data of the Atlantic Ocean

showed a strong relationship between iodate and nss-Ca?* concentrations.

a) RMB b) AMT13
70 70 1
_ 60 - 60 1 X Sahara
'E 50 x y =2.03x - 3.55 50 A y =053x +5.17 O Non-Sahara
2 40 - * R#=0.87 40 - R? = 0.86
o
@ 30 - 30 -
5+
3 20 1 20
10 T = 10
01 . . . . 0= . . . .
0 20 40 60 80 0 20 40 60 80
d) M55
- c) AMT21 20 -
60 60 -
"?5 50 y=1.20x +13.23 50 - X y = 0.68X + 6.32
— - 2 =
5 R2=0.81 10 R2=0.26
X
g
@ 30 30 - x
< S
8 20 P 20 -
10 10 - X x
0 + T T r ) 0 %. i i .
0 20 40 60 80 0 20 40 60 80
e) Sahara Aerosol - Individual Cruises
70 -
60 - % ®RMB
& 50 - & %9 L +AMT13
g 40 4 %, OAMT21
o
= 30 -éi 9 B’ A A M55
S 20 @°9 &
8
10 - j H
A
0 Ak TE : : .
0 20 40 60 80

nss Ca%* (nmol m3)

Figure 6.7 Plots of iodate versus nss-Ca?* concentrations of the Atlantic cruises
separated between Sahara and non-Sahara coarse mode aerosol of (a) RMB, (b)
AMT13, (c) AMT21, (d) M55 and (e) the plot of Sahara coarse mode aerosol for
individual cruises. Linear lines in (a) — (d) were plotted of Sahara aerosol for each
cruises. Bars of 103™ are analytical errors a single determination. Bars of nss-Ca?* are
errors from nss-Ca2* calculations derived from analytical errors a single determination.
of Ca®* and Na".
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Figure 6.8 Modified diagram showing important reactions in marine aerosol (coarse
mode) in the presence of mineral dust. Molecules in dash line are active iodo-containing
compounds in aqueous phase aerosol, i.e. HOI and HIO; (adapted from Saiz-Lopez et
al. (2012)).

In order to illustrate the pathway of iodate uptake by mineral dust, Figure 6.8 shows
important reactions in the aqueous phase of marine aerosol (coarse mode) with the
presence of mineral dust. Large arrows show the main reactions which would likely
occur in the iodate uptake by mineral dust. In mineral dust aerosol, iodate is dominant
species in coarse mode aerosol; both iodide and SOI appear to contribute low

concentrations.

The acid H103 which is stable in the gas phase and formed by OlIO + OH — HIOs3,
(Plane et al. 2006), can be taken up on mineral dust aerosol which contains alkaline
calcium carbonate. In coarse dust aerosol, both iodide and SOI have lower
concentrations implying that conversion reactions in agueous phase aerosol are slow
(small arrows in Figure 6.8). Therefore, mineral dust plays an important role in iodate

uptake onto aerosol.
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6.3.2 Clean Seasalt Aerosol

For clean seasalt aerosol, these samples were classified based on types of air mass back
trajectories. Aerosol of SAtl-Rem and NAtI-Rem of the Atlantic Ocean and W Pac
aerosol of the Pacific Ocean were classified as clean seasalt aerosol as low nss-SO4>
concentrations were observed in the fine mode aerosol (see Chapter 4 and 5). Data of
clean seasalt aerosol are plotted in Figure 6.9, showing ternary composition diagrams of
iodine species proportions of fine and coarse mode aerosol of Atlantic and Pacific

Ocean.

For clean aerosol of the Atlantic, fine and coarse mode showed different iodine
speciation. lodate is the dominant species in coarse mode clean aerosol, while SOI
contributes larger proportions in fine mode. For NAtl-Rem, there were three coarse
mode samples which showed larger SOI proportions (30 — 60%). In fine mode clean
aerosol, more than a half of NAtl-Rem and SAtl-Rem samples have iodate proportions
less than 20%. However, the second group of this clean aerosol group showed 30 — 50%
iodate. Proportions of iodide were slightly lower in coarse mode than its proportions in

fine mode aerosol. (Figure 6.9a and Figure 6.9c).

For the clean aerosol of the Pacific, the pattern of iodine speciation of fine mode aerosol
is similar to the Atlantic pattern, with very low iodate concentrations, moderately low
iodide and high SOI proportions (Figure 6.9b). Similar pattern of low iodate proportions
was also observed in a half of coarse mode aerosol, but with lower proportions of SOI
(Figure 6.9d).

By comparing coarse mode samples, Atlantic and Pacific clean aerosol showed very
different patterns of iodine species proportions. lodate was the dominant species in the
Atlantic Ocean, but had very low proportions in most samples of the clean aerosol of the
Pacific Ocean. For fine mode aerosol, the Pacific clean aerosol of W Pac showed similar
results to most of clean samples of the Atlantic, with low proportions of iodate,

followed by iodide and SOI proportions respectively.
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Figure 6.9 Ternary composition diagrams of iodine species proportions of clean seasalt
aerosol for (a) fine mode and (b) coarse mode aerosol of the Atlantic Ocean, (c) fine

mode and (d) coarse mode aerosol of the Pacific Ocean.
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Figure 6.10 Modified diagram showing important reactions in clean seasalt aerosol.
Molecules in dash line are active iodo-containing compounds in aqueous phase aerosol,
i.e. HOI, 1X, 10 and HIO> (adapted from Saiz-Lopez et al. (2012)).

The review of von Glasow and Crutzen (2014) reported that high wind speed and high
seasalt alkalinity were found in the southern Atlantic Ocean. Also, in clean seasalt
aerosol, dehalogenation of seasalt is not significant as low concentrations of acids are
insufficient to titrate with the seasalt alkalinity (Murphy et al. 1998). Figure 6.10 shows
important reactions in aqueous phase of clean seasalt aerosol. This figure illustrates
potential pathways by uptake of various iodine-containing compounds (gas-to-
particulates). Small arrows of agueous phase aerosol indicate slow reactions which

probably would be regulated by low acidic conditions.
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In basic clean seasalt aerosol, the forward reactions (6.1 and 6.2) are slow. This

recycling of reactive iodine could lead to transformation of more reactive iodine species
(HOI, HIOy), but in clean basic seasalt aerosol, less iodate reduction would be expected.
Re-emission of 1X to the gas phase is then less than under acidic condition (Pechtl et al.
2007). Therefore, in clean seasalt aerosol, iodate is the dominant species in coarse mode

aerosol.
105 + I + 2H* 4_' HIO; + HOI (6.1) (Pechtl et al. 2007)

HOI + X + H* 4_' IX (6.2) (Pechtl et al. 2007)
where X =1, Br, and Cl in reaction 6.1 and 6.2 respectively and thin arrows indicate slow

reactions.

The following section will discuss another important control of iodine speciation,
polluted aerosol. lodine speciation of polluted aerosol showed opposite behaviour
compared to clean seasalt aerosol, mainly driven by acidic conditions. This section
provides observational evidence of effects of pH on iodate concentrations as suggested
in the modelling studies of Pechtl et al. (2007).
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6.3.3 Polluted Aerosol

In this research, polluted aerosol was classified based on types of air mass origins which
were influenced by anthropogenic activities such as fossil fuel burning, industrial
burning and biomass burning. For the Atlantic data, polluted aerosol was samples of
Europe, SAfr and SAfr-BB. For AMT21, three samples of Sahara aerosol (110 — 112)
will be included in this polluted category of aerosol as a result of high nss-SO4>
concentration of fine mode aerosol. These three types of aerosol were influenced by
anthropogenic emissions. Data of three cruises, AMT13, M55 and AMT21 were used to
examine the effect of pollution on aerosol chemistry. Based on air mass classification,

no polluted aerosol samples were observed in RMB cruise.

For the Pacific data, only TransBrom data was presented as data of the fine mode
aerosol is not available for SHIVA. Polluted aerosol types of TransBrom were NE Asia
and Tasman aerosol. However, one sample of W Pacific was observed to have high nss-
S04 (110), so, this sample was included in the plot.

Polluted fine mode aerosol of Atlantic and Pacific Ocean showed similar characteristics
of proportions of iodine species (Figure 6.11a and Figure 6.11c). For the Atlantic fine
mode aerosol, 103™ proportions were less than 25% of for polluted. These low 103

proportions also were observed in polluted aerosol of the western Pacific (<10%).

For coarse mode polluted aerosol, more than a half of the Atlantic samples showed
similar patterns of proportions of iodine species to clean seasalt aerosol (Figure 6.9),
with iodate dominant. However, nearly a half of Atlantic coarse mode aerosol had high

SOl proportions, compared with coarse mode samples of clean seasalt aerosol.
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Figure 6.11 Ternary composition diagrams of iodine species proportions of polluted
aerosol for a) fine mode and (b) coarse mode aerosol of the Atlantic Ocean, (c) fine

mode and (d) coarse mode aerosol of the Pacific Ocean.
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Figure 6.12 Plots of proportions of iodate versus nss-SO42" concentrations in fine mode
aerosols of the Atlantic cruises (Europe, SAfr, and SAfr-BB aerosol) and other types of
aerosol of (a) RMB, (b) AMT13, (c) AMT21, (d) M55, (e) TransBrom and (f) the plot
of only polluted fine mode aerosol for individual cruises. Bars of proportions of 103" are
errors derived from proportional calculations. Bars of nss-SO4? are errors from nss-
S04? calculations derived from analytical errors of SO4%.

222



In order to compare different behaviour of iodate proportions of polluted aerosol, plots
of proportions of iodate and nss-SO4?" in fine mode aerosol are shown in Figure 6.12. In
this figure, clear differences between polluted and other types of aerosol were observed,
especially in samples of AMT21 (Figure 6.12c). For other cruises such as M55 and
AMT13, some of other types of aerosol showed higher proportions of iodate, compared
with its low proportions in polluted aerosol. All polluted aerosol, both Atlantic and

Pacific Ocean showed low proportions of iodate (<20%).

For polluted aerosol, oxalate is one of anthropogenic tracers (Johansen et al. 2000),
which may have an effect on the speciation of iodine in the particle. Thus, it is
interesting to examine effects of oxalate on changes of iodine species in marine aerosol.
However, findings of this research showed no differences of SOI proportions between
polluted and other types of aerosol (Figure 6.13). This indicates that the presence of
oxalate in both polluted and other types of aerosol seems not to influence iodine

speciation in aerosol.

a) Fine mode b) Coarse mode
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Figure 6.13 Plots of proportions of SOI versus oxalate concentrations of polluted
aerosol and other types of aerosol of the Atlantic cruises (RMB, AMT13, AMT21 and
M55) and the Pacific cruise (TransBrom) for (a) fine mode and (b) coarse mode aerosol.
Bars of C,04% are analytical errors a single determination. Bars of proportions of SOI
are errors derived from proportional calculations.

In the presence of polluted marine aerosol, a strong link between nss-SO42 and CI- loss
concentrations was observed in the AMT21 (see Section 4.2.3). This implies that acidic
condition of polluted aerosol could potentially cause CI loss. It is also interesting to
examine the effect of pollutants on changes of iodine speciation in aerosol. The
following section will present the relationship between CI™ loss and the iodine

enrichment factor of all data sets from the Atlantic and Pacific Ocean.
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Figure 6.14 Plots of the enrichment factor of iodine (EFodine) Versus CI™ loss concentrations for Atlantic and Pacific cruises of (a) fine mode, (b) coarse
mode and (c) total concentrations (fine+coarse), and box and whisker plots of EF.dine Versus CI™ loss concentrations of (d) fine mode, (e) coarse mode, and
() total concentrations (fine+coarse). Data of SHIVA are values of bulk samples. Numbers in parenthesis of the x-axis of Figure 6.14(e-f) are numbers of
samples which showed CI- loss within that range of concentrations. The box shows the interquartile range (IQR) containing values between 25" and 75"
percentile. Bars in d), e) and f) represent the largest observation that is less than or equal to the upper quartile plus 1.5 length of the IQR. Bars also show
the smallest observation that is greater than or equal to the lower quartile plus 1.5 times the length of IQR. Outliers are observations outside lower-upper
bar range. Red asterisks are the maximum values and pink asterisks are the minimum values. Bars of a), b) and c) are errors of EFjqgine Calculations derived
from analytical errors a single determination of TSI and Na*. Bars of CI loss are errors of CI” loss calculations derived from analytical errors a single

determination of CI".
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Figure 6.14 shows plots of the enrichment factor of iodine (EFiodine) versus CI- loss
concentrations of the Atlantic and Pacific, fine mode, coarse mode and the total
concentrations (fine + coarse). Figure 6.14a, b and c provides data of all cruises of both
oceans; however, it is difficult to see clear relationships between EFogine and CI™ loss.
Therefore, the box and whisker plots of both EFjedine and CI™ loss were presented in

Figure 6.14d, e and f, with different ranges of CI" loss concentrations.

In fine mode aerosol, low concentrations of CI" loss, aerosol samples showed high
EFodine Values (Figure 6.14d). Median EFodine Of CI™ loss concentrations range of 0.0 —
9.9 nmol m was 1675, which was higher than CI- loss concentrations range of 10.0 —
19.9 nmol m™ (median EFjodine = 608). The median EFodine Of higher range of CI- loss
concentrations of 20.0 — 29.9 nmol m= show no difference, compared with 10.0 — 19.9

nmol m=3.

T-test for means assuming unequal variances was used to examine statistical differences
between two concentrations ranges of CI- loss of 0.0 — 9.9 nmol m= and 10.0 — 19.9
nmol m= (Miller and Miller 2010). Results of this T-test revealed that EFiogine of CI” loss
range 0.0 — 9.9 nmol m™ was significantly different with the EFodine Of CI” loss range
10.0 — 19.9 nmol m™ (as observed t = 6.25, the critical value is t7s = 1.99 (p-value =
0.05)). This observed t is larger than the critical value, so, the null hypothesis is
rejected. There is evidence that both concentration ranges of CI™ loss are significantly
different. So, this implies that high iodine enrichment factors in fine mode aerosol

potentially links with less polluted conditions in aerosol.

Unlike fine mode, coarse mode and total concentrations (fine + coarse) aerosol showed
no clear link between the EFjogine and CI™ loss. The median EFjogine Value of all ranges of
CI" loss concentrations were between 79 and 135 for coarse mode aerosol, and between

143 and 248 for total concentrations of aerosol.
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Figure 6.15 Modified diagram showing important reactions in polluted aerosol (fine
mode). Molecules of 103 (in dot) of fine mode aerosol, is iodine species with very low
concentrations. Molecules in dash line are active iodo-containing compounds in
condensed-phase aerosol, i.e. HOI, IX, 10 and HIO; (adapted from Saiz-Lopez et al.
(2012)).

Unlike clean seasalt aerosol, polluted aerosol showed iodate being absence in fine mode
samples. SOI contributed large proportions to both fine and coarse mode of polluted
aerosol. Related reactions which could potentially occur in marine aerosol and are
influenced by pollutant are shown in Figure 6.15. The presence of H" in acidic aerosol

could cause faster reactions of 6.1 and 6.2.

105 + I' + 2H* T HIOz +HOI (6.1) (Pechtl et al. 2007)

HOl + X + H* _" IX (6.2) (Pechtl et al. 2007)
where X =1, Br, and Cl in reaction 6.1 and 6.2 respectively and thin arrows indicate slow

reactions.
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Thus, the presence of acid could cause fast reactions of iodate reduction (reaction 6.1)
and the formation of IX species (reaction 6.2). As a result, IX species can be re-emitted
to the gas phase (Pechtl et al. 2007). This release of iodine from aqueous to the gas
phase could be supported by evidence of low EFcdine Of polluted fine mode aerosol
(Section 6.3.3).

In polluted aerosol, larger proportions of SOI were observed, compared with other non-
polluted aerosol types. Baker (2005) suggested that HOI might react with organic matter
to produce SOl in particles. Further, iodide concentrations of polluted aerosol were
higher than other types of aerosol (see Section 4.2.4). This could be evidence to support
the iodide formation by the reaction of HOI and dissolved organic matter (DOM) when
fast reactions occurs, competing with reaction of the inorganic cycle.

HOI + DOM —> I+ H*+ DOM (6.3) (Pechtl et al. 2007)

6.4 Conclusions and Suggestions for Further Work

In conclusion, this research points out key controls of iodine speciation in marine
aerosol, which mainly link to three different types of aerosol: mineral dust, clean seasalt
aerosol and polluted aerosol. In mineral dust, uptake of HIO3 on the alkaline surface of
mineral dust seems to lead to iodate the dominant species in coarse mode aerosol.
lodine speciation in both clean seasalt and polluted aerosol is strongly regulated by pH,
the presence of pollutants driving pH-related reactions such as the formation of reactive
HOI and the reduction of iodate. Clean seasalt aerosol with less acidic conditions, the

high enrichment of iodine was observed, especially in fine mode aerosol.
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The following further research area would be helpful to provide better understanding on

iodine speciation in marine aerosol.

- Since iodine chemistry of marine aerosol is very complex, future research
could be extended to explore further how iodine species change in aqueous
phase aerosol and related reactions of the iodine cycling in the aqueous phase

aerosol.

- For effects of mineral dust, it may be helpful to compare behavior of iodate
uptake by mineral dust of other geographical areas such as the Asian dust in
the north-west Pacific region.

- The investigation of the relationship between pH and iodine speciation of
polluted aerosol could help to reveal further understanding of related
reactions and behaviors of iodine species in aqueous phase aerosol. This
could be done through collaborating observation research and modeling

studies.

- Additional laboratory work and modelling studies on interactions of iodine
species and organic matters under different conditions of aerosol, would
enable to provide further explanation about factors that control iodine

speciation in marine aerosol.
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Appendix A

An example of the Calibration of Volumetric Flow Controlled Aerosol
Samplers using Stagnation Pressure

CALIBRATION OF MASS FLOY CONTROLLED AFROSOL SAMPLERS
FIRST RESAYE THIS FILE [USING SAYE AS IN THE FILE MENU) ¥ITH AN APPROPRIATE NAME

ENTER DATA FROM THE CALIBRATION SHEET IN THE RED BOXES - ENSURE ALL RED BOXES ARE FILLED

Date Calibration Orifice Serial Number
Sampler | m b
Operator if 767N 102 -0.027434
Serial No. IF 768N 1 -0.01951
Temp "C if 17 0.97761 -0.0066
P(mB!h rb'alues For The Calibration Orifice Used:
P (mm Hg m ¥ 0.97761 b ¥ -0.0066
Test |Chan Reading |[Manometer Reading |[Flow Rate Corrected
Readin 1 [CFM) (inches) m?* min~* IC (for T&P)

1

2 625 7.55 1.75 3871

3 530 5.77 153 3283

4 460 4.28 132 2849

5 380 3.07 112 2354

B 340 280 103 2108

7 420 385 1.22] 2601

g 45.0 417 1.30 2787

9 50.0 5.00 142 30.87

10 56.0 B.22 159 3468

1 620 7.32 172 3840

(If you have more than € readings just copy down the formulae in columns f.g andh -
the easiest way is to highlight these three cells in row 22 and pull down the small square
in the bottomn right hand cormner. If you have less than 6 readings, delete the zeros in the unused row).

45.00
40.00
35.00

25.00

T

FLOW RATEVS. CORRECTED CHART RECORDER READING (IC)
15.00
10.00 |

y=24.267x - 3.6843
R*=0.5581 /
500 |

0.00 N N :
0.0 0.5 1.0 1.5 20
FLOW RATE m2 min-1

THE SLOPE AND INTERCEPT YALUES IN THE RED BOXES BELOY SHOULD BE THE SAME AS THOSE IN
THE GRAPH ABOYE

SLOPE 2426739 INTERCEPT
ENTER DESIRED FLOW RATE (in m* min*)
SET THE CHART RECORDER ON THE HI¥OL TO CFM
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Appendix B

Details of aerosol and rain sampling for AMT21 and aerosol sampling
for TransBrom and SHIVA

1) Details of Aerosol Sampling of AMT21

Average Start Sampling End Sampling
Air Relative
Samples Volume Wind )
(m°) Speed Date Latitude Longitude Latitude Longitude
(ms)
AMT21 104 575.8 4.9 1.10.11 49 °07.39'N 014°48.44'W | 47°03.86'N 017°49.05' W
AMT21 105 1,150.2 8.8 2.10.11 46° 41.32'N 018°04.03'W | 43°49.38'N 019°55.17'W
AMT21 106 1,256.3 10.8 3.10.11 43°40.91'N 019°59.81'W | 40°42.17'N 021°50.28' W
AMT21 107 1,191.7 9.3 4.10.11 40° 26.83'N 021°59.47"W | 37°20.18'N 023° 48.50' W
AMT21 108 1,011.0 9.7 5.10.11 37°15.72'N 023°50.56'W | 34°91.76'N 026° 85.50' W
AMT21 109 1,029.8 9.8 6.10.11 34°53.62' N 026°51.77"W | 32°50.59'N 029° 37.72' W
AMT?21 110 580.6 7.9 7.10.11 32°48.04'N 029°38.10'W | 30°54.08'N 032°09.96' W
AMT21 111 1,039.4 8.1 8.10.11 30°53.37'N | 032°11.05W | 28°53.02'N | 034°44.79' W
AMT21 112 1,307.5 7.8 9.10.11 28°50.33'N | 034°48.33'W | 26°55.84'N | 037°11.86'W
AMT?21 113 1,273.2 7.6 10.10.11 | 26°55.21'N 037°12.56'W | 24°58.84'N 039° 36.15' W
AMT21 114 1,186.9 5.3 11.10.11 | 24°55.40'N 039°41.19'W | 22°47.44'N 040° 21.32' W
AMT21 115 1,242.1 8.5 12.10.11 | 22°39.04'N 040°14.85°W | 20°24.48'N 038° 33.60' W
AMT?21 116 1,122.6 9.4 13.10.11 | 20°23.46'N 038°32.49'W | 18°15.00'N 036° 59.58' W
AMT21 117 1,011.0 9.6 14.10.11 | 18°01.30'N 036°50.20' W | 15°51.99'N 035°19.04' W
AMT21 118 1,199.7 124 15.10.11 | 15°39.76'N | 035°10.96'W | 12°59.20'N | 033°21.32'W
AMT?21 119 1,209.0 7.4 16.10.11 | 12°4527'N 033°12.04'W | 09°45.78'N 031° 13.45'W
AMT21 120 1,255.2 9.1 17.10.11 | 09°38.77'N 031°08.44'W | 06°39.55'N 029°13.10' W
AMT21 121 1,282.1 11.7 18.10.11 | 06°31.24'N 029°07.69°'W | 03°88.29'N 027° 45.10' W
AMT?21 122 1,221.4 114 19.10.11 | 03°41.25'N 027°17.72°W | 01°10.90'N 025° 44.69' W
AMT21 123 1,130.4 8.9 20.10.11 | 01°01.99'N | 025°38.96'W | 01°40.13'S 025° 00.51' W
AMT21 124 1,420.7 11.7 21.10.11 01°56.55'S 025° 00.61' W 05°24.46'S 025°01.43' W
AMT21 125 1,311.7 135 22.10.11 05°36.37'S 025°01.47"'W 08°32.80'S 025°03.31' W
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2) Details of Aerosol Sampling of AMT21 (continued)

Average Start Sampling End Sampling
Air Relative
Samples Volume Wind ) ) ) )
(m°) Speed Date Latitude Longitude Latitude Longitude
(ms?)
AMT21 126 1,379.2 11.9 23.10.11 | 08°4222'S 025° 03.35' W 11°39.82'S 025°03.91' W
AMT21 127 1,404.0 13.8 2410.11 | 11°39.23'S 025° 03.63' W 14°10.60' S 025° 04.59' W
AMT?21 128 1,275.3 11.6 25.10.11 14°10.34'S 025° 04.48' W 16°57.42'S 025° 05.48' W
AMT21 129 1,362.1 11.6 26.10.11 16° 56.83'S 025° 04.94' W 18°31.79'S 025° 06.01' W
AMT21 130 1,223.0 11.6 27.10.11 18°31.91'S 025° 04.60' W 21°05.76'S 025° 04.44' W
AMT21 131 926.8 8.3 28.10.11 | 21°05.03'S 025° 04.64' W 26°52.08'S 025° 00.73' W
AMT21 132 1,907.7 8.8 30.10.01 27°09.40'S 025°00.17'W 31°26.45'S 029° 42.05' W
AMT21 133 1,9715 15.0 11111 31°26.52'S 029°41.33' W 35°22.42'S 035° 16.68' W
AMT21 134 2,684.2 15.7 3.11.11 35°31.55'S 035°30.85' W 38°48.46'S 040° 24.34' W
AMT21 135 798.0 5.6 5.11.11 | 39°05.13'S | 040°46.69'W | 42°5511'S | 046°51.87W
AMT21136 | 1.796.9 6.3 7.11.11 | 43°06.55'S | 047°10.79'W | 46°57.28'S | 054°43.48' W
3) Details of Rain Water Sampling of AMT21
Approx. Start Sampling End Sampling
Collected
Samples Volume Time Time
L) Date (GMT) Latitude Longitude Date (GMT) Latitude Longitude
AMT21 ) 50°08.58' | 008°30.03' ) 49°57.28' | 009°07.47
RI02 130 30.9.11 | 09:20 N W 30.9.11 | 12:00 N W
AMT21 ) 24°33.75' | 040°06.76' ) 23°18.72' | 040°45.43'
RIO3 100 11.10.11 | 19:49 N W 12.10.11 | 09:24 N W
AMT21 ) 23°05.40' | 040°35.14' ) 22°52.60' | 040°25.25'
RIDA 125 12.10.11 | 11:08 N W 12.10.11 | 12:55 N W
AMT21 ) 22°46.25' | 040°20.90' ) 22°43.86' | 040°18.53'
RIOS 400 12.10.11 | 14:55 N W 12.10.11 | 16:00 N W
AMT21 ) 12°09.09' | 032°47.85' ) 12°01.30" | 032°42.68'
RI106 200 16.10.11 | 19:53 N W 16.10.11 | 20:48 N W
AMT21 ) 10°45.09' | 031°52.76' ) 09°58.80' | 031°21.92'
RI07 225 17.10.11 | 06:38 N W 17.10.11 | 11:46 N W
AMT21 ) 29°57.02' | 027°38.72 ) 31°05.96' | 029°13.63
R108 240 31.10.11 | 20:45 S W 1.11.11 09:40 S W
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4) Details of Aerosol Sampling of TransBrom

Air Start Sampling End Sampling
Samples Volume . . .

(m?) Date Latitude Longitude Latitude Longitude
101 1,765.5 10.10.09 38°77'N 142° 80'E 33°57'N 144° 32'E
102 1,337.2 11.10.09 33°27'N 144° 40'E 29°41'N 145° 36'E
103 1,696.9 12.10.09 29° 29'N 145° 36'E 24° 43'N 145° 68' E
104 1,350.4 13.10.09 24° 29'N 145° 73'E 20° 55'N 146° 95'E
105 1,479.7 14.10.09 20° 46'N 146° 98' E 16° 53'N 148° 22'E
106 1,512.1 15.10.09 16° 36' N 148° 27'E 12°54'N 149° 46'E
107 1,531.9 15.10.09 12°04'N 149° 50' E 07°95'N 150° 86' E
108 1,520.0 17.10.09 07°72'N 150° 93'E 03°08'N 152° 36'E
109 1,534.5 18.10.09 02°98'N 152° 39'E 01°50'S 153° 76' E
110 1,518.0 18.10.09 01°61'S 153°79'E 05°95'S 154° 01'E
111 1,518.7 19.10.09 06°09'S 154° 03'E 09° 86'S 154° 47'E
112 1,548.4 21.10.09 09°96'S 154° 48' E 13°25'S 152°05'E
113 1,519.3 22.10.09 13°33'S 151°91'E 15°76'S 148° 04'E
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5) Details of Aerosol Sampling of SHIVA

Air Start Sampling End Sampling
Samples Volume . . .

(m?) Date Latitude Longitude Latitude Longitude
MI01 1,682.5 16.11.11 03°20.0'N 105° 13.0'E 05°35.0'N 108° 34.0' E
MI102 1,563.5 17.11.11 05°35.0'N 108° 36.0'E 02°42.0'N 110° 31.0'E
MI103 1,633.0 18.11.11 02°38.5'N 110°31.5'E 01°51.6'N 110°41.9'E
MI104 1,714.0 19.11.11 01°50.6'N 110°42.2'E 03°17.7'N 112°17.4'E
MI105 1,682.5 20.11.11 03°18.5'N 112°18.9'E 04° 31.8'N 112°59.0' E
M106 1,807.2 21.11.11 04°33.9'N 113°08.1'E 06° 06.0'N 114° 46.7'E
MI107 1,772.8 22.11.11 06° 06.0'N 114° 46.7'E 05° 58.6'N 115° 44.2'E
MI109 1,737.7 24.11.11 07°22.4'N 116°11.0'E 07°36.0'N 118°59.0' E
MI11 1,720.5 26.11.11 06° 30.3'N 120° 20.0'E 06° 30.3'N 120° 20.0' E
MI112 1,598.6 27.11.11 09°98.0'N 120°12.3'E 11°56.4'N 121°88.0'E
MI113 9334 28.11.11 11°58.8'N 121°72.0'E 14° 87.0'N 120° 10.8' E
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Appendix C

120-hour air mass back trajectories at 6-hourly time intervals for
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Appendix D

120-hour air mass back trajectories at 6-hourly time intervals for
TransBrom

Source * at 38.77 N 14280E
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Appendix E

120-hour air mass back trajectories at 6-hourly time intervals for
SHIVA
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3.18N 112.19E
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Appendix F
120 and 240-hour air mass back trajectories at 6-hourly time intervals
for selected samples during AMT21
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Source % at 12.45N 33.12W

Meters AGL

Source x at 11.70N 32.62W
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3) Sample 120 (SAfr)

Start Point — 120 hrs back trajectory
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4) Sample 123 (SAfr)

Start Point — 120 hrs back trajectory

NOAA HYSPLIT MODEL
Backward trajectories ending at 1500 UTC 20 Oct 11
GDAS Meteorological Data

Start Point — 240 hrs back trajectory

NOAA HYSPLIT MODEL
Backward trajectories ending at 1500 UTC 20 Oct 11
GDAS Meteorological Data

2
[}
o
wn
[3Y
z
o |
S Py
o
x
[}
e
3 |
o |
-
9]
<
@
2
[
= | 1000
1D&0 8 DHO 8 DO & DO & DOOIS DO 0 8 DO 8 DEC & DEO & DA S
iz “5‘ 09,18 12 05 00 18 12 06 00 15 12 06 00 18 12 05 00 18 10/20 10/19 10/18 10117 10/16 10/15 1014 1013 10/i2 10/11

Job 1D: 17 Job Start: Sun Sep 7:10:12 UTC 2013 Job | 46747 Job Start: Sun Jan 25 21:17x 35 UTC 2015

S0hick 118671.0199 lon.: -25.3886 biter 10, 500, 1000 m AGL Source 1at.: 1.0199 lon.: -25.3896 hgts: 10, 500, 1000 m A(

Jizjectory Direction: Backward,  Duratian: 120 b VA Moton Coiutatan Hethod " \Fodel Varteal Velocity

Verlical Kotion Calculation Method: - aode Verial Velocity Meteorology: 00007 15 Oct 2011 - GDAS1

NOAA HYSPLIT MODEL NOAA HYSPLIT MODEL
Backward trajectories ending at 2100 UTC 20 Oct 11 Backward trajectories ending at 0300 UTC 21 Oct 11
GDAS Meteorological Data GDAS Meteocrological Data
=
(=1
o
[T+
o
s e '
S
%17
*
L]
g
5
o
»
—
5} 2500
< 2000
& 1500
1000 oo 1000 g 1000
500 500 = 500

18 12 06 00 18 12 06 00 18 12 06 00 18 12 06 00 18 12 06 00
10/20 0/1 10/ 10/1 10/

00 18 12 06 00 18 12 06 00 18 12 nﬁ nn 18 12 ns 00 15 12 06
10/21 10/20 10/19

Job TD: 146752
Source 1 lat.: 0.415 lon.:

Job Start: Sun Jan 25 21:20:05 UTC 2015
-25.293 hgts: 10, 500, 1000 m AGL

Trajectory Direction: Backward  Duration: 120 h
ical Motlon Calculation Method:  Model Vertical Velocity
Meteorology: 00007 15 Oct 2011 -

Job 1D: 141
Sonton 1 1ate0.191 fon.:

Job Slarl Sun Jan 25 21 2145 uTC 2015
-25.197 0, 500, 1000 m AGL

Duration: 120 h

Trajectory Direction: Backward s
liodel Vertical Velocity
1

ical Motion Calculation Method:
02 15 Oct 2011 -

Location of 18 hours after start point

NOAA HYSPLIT MODEL
Backward trajectories ending at 0900 UTC 21 Oct 11
GDAS Meteorological Data

End Point — 120 hours back trajectory

NOAA HYSPLIT MODEL
Backward trajectories ending at 1100 UTC 21 Oct 11
GDAS Meteorological Data

.

| .

s =
=} ol
-/ S o .
N . 4 9 o o
X »
o
. <
®
*
(]
e
5
3
a
— —
e ea 2500 [0} e 3000
e 2000 < Sl o 2500
- 1500 a " 2000
1000 oo - gt 1000 s " 1500
500 500 @ | 1000 W 1000
= | 500 00

4 e

06 00 18 12 06 00 18 12 06 00 18 12 06 00 18 12 06 00 18 12
10/21 10/20 1019 10/18 1017

Job 1D: 141 Start: Sun Jan 25 21:03:07 UTC 2015
Sotcn T 1ats-0.796 lon.: -25. 101 hgts: 10, 500, 1000 m AGL

Trajectory Direction: Backward  Duratian: 120 h

ical Motion Calculation Methox Modet Vertical Velocity
0000Z 15 Oct 2011 - GDAS1

256

#

06 00 18 12 06 00 18 12 06 00 18 12 06 00 18 12 06 00 18 12
1/ 10/20 1019 10718 1017

Job 1D: 14¢
Source 1 \at 71 401 lon.:

b Start: Sun Jan 25 21:25:27 UTC 2015
-25. ocs hgts: 10, 500, 1000 m AGL

Trarl‘entnry Direction: Backward  Duration: 120 hrs
ical Muuun Ca\cu\auun Method: M et Veriical Velocity
00Z 15 Oct 2011 -




5) Sample 127 (SAlt-Rem)

Start Point — 120 hrs back trajectory
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