An In Vitro Evaluation of the Anew Zephyr Open-Bag IOL in the Prevention of Posterior Capsule Opacification Using a Human Capsular Bag Model

Eldred, Julie A., Spalton, David J. and Wormstone, I. Michael (2014) An In Vitro Evaluation of the Anew Zephyr Open-Bag IOL in the Prevention of Posterior Capsule Opacification Using a Human Capsular Bag Model. Investigative Ophthalmology and Visual Science, 55 (11). pp. 7057-7064. ISSN 0146-0404

Full text not available from this repository. (Request a copy)

Abstract

PURPOSE. During cataract surgery an IOL is placed within the capsular bag. Clinical studies show that IOLs with a square edge profile and complete contact between the IOL and the anterior capsule (AC) are currently the best way to prevent posterior capsule opacification (PCO). This has been challenged by recent clinical and experimental observations, which suggest that if the capsular bag is kept open with separation of contact between the AC and posterior capsule (PC) by an "open-bag device" PCO is dramatically reduced. Therefore, the current study set out to evaluate the putative merits of an open-bag IOL (Anew Zephyr) in a human capsular bag model. METHODS. An in vitro organ culture model using the bag-zonular-ciliary body complex isolated from fellow human donor eyes was prepared. A capsulorhexis and lens extraction were performed, and an Alcon Acrysof IOL or Anew Zephyr IOL implanted. Preparations were secured by pinning the ciliary body to a silicone ring and maintained in 6 mL Eagle's minimum essential medium (EMEM) or EMEM supplemented with 2% vol/vol human serum (HS) and 10 ng/mL TGF-beta 2 for 28 days. Cell growth and capsular modifications were monitored with phase-contrast and modified dark-field microscopy. RESULTS. In serum-free EMEM culture conditions, cells were observed growing onto the PC of preparations implanted with an Anew Zephyr IOL, but this was retarded relative to observations in match-paired capsular bags implanted with an Alcon Acrysof IOL. In the case of cultures maintained in 2% HS-EMEM plus TGF-b2, the movement on to the PC was again delayed with the presence of an Anew Zephyr IOL. Differences in the degree of growth on the PC and matrix modifications were apparent with the different donors, but in each case the match-paired Alcon Acrysof implanted bag exhibited significantly greater coverage and modification of the capsule. CONCLUSIONS. The Anew Zephyr open-bag IOL performs consistently better than the Alcon Acrysof IOL in the human capsular bag model. We propose that the benefits observed with the Anew Zephyr result from a reduction in growth factor levels available within the capsular bag and a barrier function imposed by the ring haptic.

Item Type: Article
Uncontrolled Keywords: intraocular lens,posterior capsule opacification,cataract,human,in vitro,model,edged intraocular lenses,epithelial-cells,cataract-surgery,equator rings,long-term,silicone,efficacy,rates,eyes
Faculty \ School: Faculty of Science > School of Biological Sciences
Depositing User: Pure Connector
Date Deposited: 22 Jan 2016 11:00
Last Modified: 22 Apr 2020 00:54
URI: https://ueaeprints.uea.ac.uk/id/eprint/56746
DOI: 10.1167/iovs.14-15302

Actions (login required)

View Item View Item