
PHYSICAL REVIEW A 89, 033837 (2014)

Direct generation of optical vortices
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A detailed scheme is established for the direct generation of optical vortices, signifying light endowed with
orbital angular momentum. In contrast to common techniques based on the tailored conversion of the wave front
in a conventional beam, this method provides for the direct spontaneous emission of photons with the requisite
field structure. This form of optical emission results directly from the electronic relaxation of a delocalized
exciton state that is supported by a ringlike array of three or more nanoscale chromophores. An analysis of the
conditions leads to a general formulation revealing a requirement for the array structure to adhere to one of a
restricted set of permissible symmetry groups. It is shown that the coupling between chromophores within each
array leads to an energy level splitting of the exciton structure, thus providing for a specific linking of exciton
phase and emission wavelength. For emission, arrays conforming to one of the given point-group families’ doubly
degenerate excitons exhibit the specific phase characteristics necessary to support vortex emission. The highest
order of exciton symmetry, corresponding to the maximum magnitude of electronic orbital angular momentum
supported by the ring, provides for the most favored emission. The phase properties of the emission produced by
the relaxation of such excitons are exhibited on plots which reveal the azimuthal phase progression around the
ring, consistent with vortex emission. It is proven that emission of this kind produces electromagnetic fields that
map with complete fidelity onto the phase structure of a Laguerre-Gaussian optical mode with the corresponding
topological charge. The prospect of direct generation paves the way for practicable devices that need no longer
rely on the modification of a conventional laser beam by a secondary optical element. Moreover, these principles
hold promise for the development of a vortex laser, also based on nanoscale exciton decay, enabling the production
of coherent radiation with a tailor-made helical wave front.
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I. INTRODUCTION

In recent years, the field of optics has been enriched by
the rapid development of theory and experiments involving
light endowed with orbital angular momentum (OAM), distinct
and separable from any spin angular momentum associated
with the polarization state [1]. The theoretical basis for the
propagation of such beams, which are distinguished by an
azimuthal progression of phase around an axis of field singu-
larity, was first established in a series of works introducing the
associated concept of an “optical vortex” [2–5]. The classical
representation is a bundle of rays whose wave vector precesses
about the axis of beam propagation. The phase discontinuity at
the core is responsible for field distributions whose transverse
structures comprise one or more rings, centered upon the core.
Recent advances have consolidated the theory and allowed the
quantum nature of such beams to be fully elicited.

The detailed structure of vortex beams is primarily char-
acterized by a topological charge, l (signifying an OAM of
lћ per photon), which can take any real integer value, a
positive or negative parity denoting either left- or right-handed
gyration, respectively. Further aspects are determined by the
transverse form of the electromagnetic fields, for which a
Laguerre-Gaussian radial distribution is the most commonly
assumed. A beam with the topological charge l thus exhibits
a field distribution in the form of l intertwined helices, each
of which completes a turn of 2π radians about the axis over a
span of l wavelengths, as exemplified in Fig. 1 [6–8].
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There is an increasing recognition of the wide scope to
exploit the unique properties of optical vortex beams, with
wide ranging applications [9–11]. One of the key motivators
in current experimental pursuits is the aim of maximizing
optical data transfer speeds, based on the information content
per photon—although due consideration as to how much
information can ultimately be conveyed in a single quantum
of light is required [12–18]. In this connection, it is notable
that schemes for separating and identifying the OAM content
of vortex light are rapidly achieving higher levels of fidelity,
primarily through angular sorting [19–22].

The particular aspiration for achieving increased speed
and data content of free-space data transmission [23,24] is,
however, potentially compromised by atmospheric turbulence
[25–28]. Another proven application is in optical manipulation
[29–33], where the capacity to exert a far greater torque
than a regular circularly polarized beam has earned the
technique the name “optical spanners (wrench)” [34–37].
There are also numerous methods utilizing structured light
in imaging applications, edge contrast enhancement [38] and
microparticle trapping [39], for example.

Up until recently [40] it was deemed only possible to
produce a vortex beam by imparting OAM onto a pre-
existing beam, through wave-front modification. There are
several well documented and experimentally proven mech-
anisms for bestowing OAM character onto a conventional
beam, for example, by passage through pitchfork holograms
[41–43], paired cylindrical lenses [44], q plates [45], hy-
perbolic metamaterials [46], spiral phase plates [47], or
spatial light modulators (SLMs) [48,49]. The many recent
advances in such devices have provided new insights into the
interaction and coupling between the spin and orbital angular
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FIG. 1. Schematic representation of the wave front for a typical
l = 3 optical vortex, over the span of three wavelengths. The interval
between successive wave fronts is one wavelength.

momenta [50], experimentally exploited in a q plate, and also
the nonuniform polarization fields of other “vector” beams
[51–53]. A common, significant disadvantage of most previous
devices is that they can deliver output varying in not only the
integer of topological charge but also the sign of the emission.

By way of contrast, a method for the direct generation of
a vortex beam, based on optical emission from a nanoscale
array, is now fully investigated [54,55]. First, we examine
the physical principles for photon emission arising from the
relaxation of an excited array system with a geometry defined
in the following. The aim of this analysis is to ascertain the key
symmetry features of the locally extended electronic excitation
from such an array that generates the vortex photon. The the-
oretical foundation for the emission mechanism is examined
in detail, before explicit demonstration and characterization of
the wide ranging outputs that are achievable. To conclude we
identify possible future developments, including the prospect
of an OAM laser.

II. PRINCIPLES OF PHOTON EMISSION FROM
A MOLECULAR ARRAY

Symmetry constraints on the emitter array are governed
by certain fundamental principles. Both for simplicity and
practicality—and in order to establish a directionality for the
emitted light—it is expedient to assume a ringlike array in
which the centers of each component lie in a single plane. The
primary consideration is then to establish a correlation between
the symmetry properties of the sought emission, and those of
the exciton state from which the vortex beam is to be launched.
In an array of essentially planar form a progression of phase
around the ring can deliver the required effect, operating in a
fashion similar to a helically ramped structure such as a phase
plate—without the radial discontinuity at the edge of the latter
optical element. While this phase progression is an obvious
geometric corollary of a propagating vortex beam, it is also a
structural feature that can be transcribed from a static material
component.

Since we are concerned with emission, rather than transmis-
sion, the sought phase property is determined by the character
of each specific excited state, rather than the array upon which

that state resides. In turn this means that, given an array with
a sufficient number of components, it is possible for vortex
structures of various topological charge to be generated from
a single array. The extended, partially delocalized excitation
of essentially ringlike form will have a symmetry that is
lower than that of the material system upon which it is
based. To achieve such a form of excitation is impossible
with the atomic components of any conventional source: Since
nonspherical emitters are required, molecular sources are an
obvious choice. Crucially, neither the individual emitters nor
the array need have a chiral form. Similar principles are
deployed in connection with the plasmonic structures known
as planar chiral metamaterials [56–60].

Suitable structures for the arrays can be found by examining
the Schoenflies point-group tables [61,62]. We require point-
group symmetries that feature biaxial degeneracy (for the
two axes defining the plane of the ring), yet lack “vertical”
mirror symmetry (whose presence would undermine the
sought progression of phase around the ring). Satisfying these
criteria, suitable families of groups prove to be Cn, Cnh, Sn,
T , Th, where n is the number of chromophores comprising
the ring. Within these groups, attention now focuses on
the doubly degenerate irreducible representations, which are
the bases for the requisite forms of delocalized electronic
exciton. Our concern is with the transitions that occur as
those exciton states decay radiatively [63]. Assuming that
such decay terminates in a ground state belonging to the
totally symmetric representation, then the symmetry character
of the initial excited state maps directly onto the symmetry
of the decay transition, and hence the vortex structure of
the emitted electromagnetic radiation. (Formally, the direct
product of representations for photon electronic field, and that
of the excitonic state, has to include the totally symmetric
representation.) Table I details the possible integer values of
orbital angular momentum that can be emitted from an array
with symmetry defined below, characterized by its respective
Schoenflies point group.

TABLE I. Summary of the allowed topological charge l, for OAM
outputs based on arrays of the allowed symmetry groups. For the
Sn groups, q = 0 if i /∈ {Sn}; q = 1 if i ∈ {Sn}. In addition (but not
shown), the groups T and Th may also support a unit topological
charge. The entries in the last row, for the general case, express the
necessary conditions incorporating a floor function [64].

Symmetry group

Number of emitters Cn, Cnh Sn

3 1 —
4 1 1
5 1,2 —
6 1,2 1
7 1,2,3 —
8 1,2,3 1,2,3
9 1,2,3,4 —
10 1,2,3,4 1,2
11 1,2,3,4,5 —
12 1,2,3,4,5 1,2,3,4,5

n |l| � � n−1
2 � |l| �

⌊(
1
2

)q
n−2

2

⌋
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FIG. 2. Schematic depiction of the chromophore array, illustrat-
ing the case of seven emitters, in a plane whose normal is the z

direction. The dotted lines are guides for the eye. The angle Φ

designates the azimuthal position in the plane; α and β are angles
that specify the identical local orientation of each emitter.

By setting the angle α = π/2 in Fig. 2, the array will
move to a higher symmetry group C7h from C7, by virtue of
the additional horizontal mirror symmetry. The same applies
for point groups of arbitrary rotational symmetry. For similar
reasons it is necessary that α �= 0, nor β = 0 or π , to forestall
the introduction of additional symmetry that undermines the
sought chirality.

III. EXCITON HAMILTONIAN AND WAVE FUNCTIONS

Having considered the symmetry requirements, we now
turn to the detailed form of the delocalized electronic wave
functions and the associated energies. Given n emitters,
it is immediately evident that a state in which only one
chromophore is electronically excited, and the others are in
their ground state, does not represent a stationary state of the
system due to the coupling between adjacent emitters. In order
to determine the stationary states, a block diagonalized form
of the array Hamiltonian is required, with the singly excited
states as the basis. The stationary states then emerge in the
form of superpositions of these basis states with normalized
coefficients [65].

In general the array Hamiltonian may be expressed in matrix
form as follows:1

Hrs =Euδrs +[μr · V(Rrs) · μs](δr−1,s(mod n) + δr(mod n),s−1),

(1)

where each element of the n-square matrix relates to a pair of
emitters {r,s} ∈ N. Each diagonal element Eu signifies the
energy of an isolated nanoemitter in its excited electronic
level u; the off-diagonal elements denote interactions between
emitter pairs. These interactions, in turn, are determined by
the electrodynamic coupling V(Rrs) between neighboring
transition dipole moments μr and μs—all of which are
identical in magnitude to the coupling between a nominated

1This formula correctly generates additional off-diagonal terms
missing from a simplified formula given previously [40].

pair such as nanoemitters 1 and 2:

V (Rrs) ≡ Vr,(r+1) mod n(ku,Rr,(r+1) mod n) ≡ V12(ku,R12).

(2)

Here, Rrs is the vector displacement between the relevant
nanoemitters [66]: R is defined by Rr − Rs ≡ Rrs = RR̂rs ,
the caret here denoting a unit vector. Under the symmetry
conditions described in the previous section, all the nonzero
off-diagonal elements of Eq. (1) return the same scalar value,
U . Explicitly, the latter is expressed as

U = μr · V(Rrs) · μs

≡ eikuR

4πε0R3

[{1 − ikuR − (kuR)2}(μ0u
1 · μ0u

2

)
−{3 − 3ikuR − (kuR)2}{(μ0u

1 · R̂12
)(

μ0u
2 · R̂12

)}]
,

(3)

where the individual electric dipole transition moments are
defined by μ0u

r ≡ 〈ξ r;0|μ(r)|ξ r;u〉 and ku = Eu/�c.

To diagonalize Eq. (1), and identify the eigenstates corre-
sponding to the excited-state splitting (as detailed in Sec. IV),
we require that

0 = det[Hrs − λI ]
= det[(Eu − λ)δrs + V (δr−1,s(mod n) + δr(mod n),s−1)].

(4)

Moreover, the result for the n eigenfunction excitons is
secured as follows:

|ψp〉 = 1√
n

n∑
r=1

ε(r−1)p
n |ξ r;u〉

∏
s �=r

|ξ s;0〉, p ∈ {1, . . . ,n}. (5)

In this linear combination, |ξ r;u〉 is a state function
corresponding to an emitter r in electronic state u, and εn =
exp(2πi/n). In every summand of Eq. (5), one chromophore
is in the electronically excited state u, while the others are in
their ground states. The energy eigenvalues associated with
the above exciton states are generally expressible in the form

Ep = Eu + 2U cos(2pq/n), (6)

with −�(n − 1)/2� < q � �n/2� and with this index q related
to p in Eq. (5) through

q =
{
p|p � �n/2�
p − n|p > �n/2� . (7)

It is also possible for two emitters to be simultaneously
excited within a given exciton ring, although this will not
be considered any further. Despite the corresponding analysis
having a broadly similar basis in theory, the achievement of
such a configuration would be experimentally much more
demanding, since the initial excitation would necessitate the
absorption of two quanta within the excited-state lifetime and,
accordingly, a significantly higher intensity for the excitation
beam.

Table II, which summarizes the relationships between the
indexes p, q for a range of n values, (3 � n � 7), also indicates
the irreducible representation of the corresponding family of
point groups Cn, associated with each excitonic state. Their
properties are described in the following section.
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TABLE II. List of the irreducible representations (irreps) of the
Cn exciton states for n = 3–7.

n p 1 2 3 4 5 6 7

3 q 1 –1 0
Irrep E1 E1 A

4 q 1 2 –1 0
Irrep E1 B E1 A

5 q 1 2 –2 –1 0
Irrep E1 E2 E2 E1 A

6 q 1 2 3 –2 –1 0
Irrep E1 E2 B E2 E1 A

7 q 1 2 3 –3 –2 –1 0
Irrep E1 E2 E3 E3 E2 E1 A

IV. STRUCTURE OF THE EXCITONIC ENERGY LEVELS

Due to their differences in symmetry, the exciton eigen-
states will also exhibit differences in energy, manifest as
line splittings centered upon the frequency of an isolated
emitter. On examination of an exemplary nanoarray with n = 3
emitters, we determine that the positioning of exciton levels
leads to one nondegenerate state (belonging to the totally
symmetric representation A), with energy Eu − 2U , and two
doubly degenerate (E representation) states of energy Eu + U .
Furthermore, the sign of the coupling U is readily shown to
be positive for all n � 3, which is a requirement to form a
singularity along the axis of propagation. The E excitons exist
in the form of pairs, one with a left-handed and the other a
right-handed sense of phase progression around the ring. These
states exactly correspond with the sought distributions of phase
about the symmetry axis, and are separated in energy from the
A form by 3U , a principle that should enable the selective
excitation of one symmetry type [65]. As will emerge, the E

exciton distributions accordingly map onto the optical field
produced by their decay, leading to an optical vortex.

The different symmetry designations of excitons with
representations Eq , A (and also B, if present) are reflected
in their association with different energies. The decay of
each doubly degenerate exciton labeled q can therefore
result in the emission of a photon with a characteristic
wavelength, corresponding to the initial excitation level. In
practice, consistent with Kasha’s rule (which applies in the
context of vibrational sublevels), the emission usually relates
to the energy gap between the lowest-lying energy level and the
ground state, as illustrated by Fig. 3. In most physical cases,
the exciton pair with the lowest energy will be associated
with the highest values of |q | and, as it emerges, the largest
topological charge for the emitted vortex.

V. OPTICAL VORTEX EMISSION FROM
A CIRCULAR ARRAY

To determine the phase map of the emitted beam, which
corresponds to the described excitons, an expression for the
electric field Ep(RD) from each constituent nanoemitter is

Eu

E

E

E

E
A

FIG. 3. Excitonic irreducible representations and Davydov en-
ergy level splitting for an array of C7 point-group symmetry.

required; i.e.,

Ep(RD) =
n∑
r

eikRDr ε
(r−1)p
n

4πε0R
3
Dr

{[(
R̂Dr × μ0u

r

) × R̂Dr

]
k2R2

Dr

+ [
3R̂Dr

(
R̂Dr · μ0u

r

) − μ0u
r

]
(1 − ikRDr )

}
, (8)

where RD signifies the displacement, relative to the ring center,
of a point of measurement or detection. Notably, each term in
Eq. (8) carries the phase factor, ε(r−1)p

n , from the corresponding
emitter component in Eq. (5), thus delivering the sought
progression in phase around the ring. At any point in space, the
most appropriate measure of the phase for the emitted radiation
is the function defined by

θi (R) = arg{Ep; i(RD)}. (9)

Here the phase θ is given as the principle argument of the
complex electric field vector. Our analysis thus enables the
identification of expressions for the phase θ relevant for each
of the electric field components in the x, y, and z directions
individually, where i indexes the Cartesian components. Typi-
cal maps of the electromagnetic phase distributions, shown in
Figs. 4–6, exhibit the variation of the phase in planes parallel
to the source array, for several combinations of chromophore
number, exciton symmetry, and distance from the source. The
plot at the top left of Fig. 4 serves to reinforce the conclusion
that two emitters cannot generate the required field chirality;
the remaining panes in this figure show the l = 1 vortex
structures supported by rings with three to six chromophore
components. Figure 5 displays the changes that result from
different l values, and varying distance from the source
plane; Fig. 6 enables identification of the phase properties
in individual polarization components, for one representative
case.

The phase properties of the electromagnetic fields emitted
by the arrays in each of these cases can be shown to map exactly
to the azimuthal phase dependence of the corresponding
Laguerre-Gaussian optical mode. Specifically, it transpires
that for any field with an l value that is a prime number, its
projection onto a mode with any other value of the topological
charge in the interval [–l, l] delivers a vanishing integrated
result.
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FIG. 4. (Color online) Exciton phase cross section of the scalar optical field in the array plane, calculated for a series of arrays supporting
optical vortex emission, with an increasing number of chromophores, n = {2,3,4,5,6}, l = −1, oriented to conform to the Cn family of point
groups. Each color represents a different phase and the contours radiating in a spiral manner from the ring of emitters are lines of constant
phase. The phase cycles through 2π c around concentric circles of constant radius from the ring center. The angle α between the normal to the
plane, and the radial position vector of the corresponding emitter, equals π/4, as does the angle β subtended by each emission dipole moment
onto the plane containing the array centers (see Fig. 2). In this case the coupling constant U is positive. Notice the field singularity at the core.
In these plots the emitters are radially disposed at a distance of λ/200π from the center, where λ is the optical wavelength of emission, and the
lateral span across each plot corresponds to distances R = λ/10π.

FIG. 5. (Color online) Extending from lowermost right image in Fig. 4, all simulations in this panel have n = 7, the top row having l = +1
fixed; however, the phase progression has been captured incrementally above the array plane, specifically at z = {3,24,100 000} × 10−3. Now
the lines of constant phase on the cross sections can be connected into a plane of constant phase, which is commonly depicted as seen in Fig. 1,
with l = 3 corresponding to that displayed in the lower right corner. The bottom row of the panel displays all possible |l| values plotted from an
array of n = 7; note that all of the negative counterparts are also permissible in addition to the emission of an l = 0. The physical dimensions
of the emitter core are the same as in Fig. 4.
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FIG. 6. (Color online) Sagittal, coronal, and transverse planar cross sections intersecting at the ring’s center, corresponding to the
Ex, Ey, Ez, respectively, for an array with n = 7, l = −2. Physical dimensions of the emitter core as in Fig. 4.

VI. CONSIDERATION OF VORTEX LASER EMISSION
BASED ON ARRAY EMISSION

Since an exciton may decay to produce a photon with vortex
beam characteristics, it is speculated that achieving population
inversion within a set of such nanoarrays might enable stimu-
lated emission to occur—and hence, with suitably configured
optics, provide the mechanism for a vortex laser. Such a device
could, for example, be based upon nanofabricated surfaces
suitably tailored with preformed, surface-deposited molecular
arrays, akin to chiral sculptured thin films [67–69]. The arrays
could themselves provide repeat units for a metastructured
material as, for example, might comprise stacks within the
cavities of a porous silicate, zeolite, or similar lattice. In
contrast to other recent propositions for lasers delivering
photons endowed with topological charge, this design does not
require the use of efficiency-reducing optical elements [70]. It
can be expected that vortex laser beams will display subsidiary
sidebands and other features associated with vortex instability,
as demonstrated recently in studies with Raman-active crystals
[71]. Achieving suitable phase matching along the emission
direction would undoubtedly be paramount. With sufficiently
strong pumping and an optical cavity suitably constructed to
support emission in the predetermined direction, normal to the
array planes, bulk materials of this kind might then lead to a
viable optical vortex laser source.

In further developing and refining the analytical represen-
tation of such a device it is anticipated that the embedding
medium will have a strong influence on the emission process.
This will indeed provide a technical basis for optimizing
emission characteristics. It is already known how to create the
necessary adaptations to the formulation we have provided;
the dipole-dipole interaction tensor in the above calculations
may be replaced with the medium-modified form introduced
by Juzeliūnas [72]. Experimentally, the feasibility of such a
setup also requires additional consideration, with the stability
of higher l-value states having been questioned in recent work
on the decay of high-order vortex modes into groups of more
stable unit vortices [73–75]. Such problems have nonetheless
been shown to be surmountable: The propagation of OAM
modes in a single mode fiber can preserve OAM structure [76].

VII. DISCUSSION

The present work affords an unusual opportunity to consider
the emission of structured light upwards from the single photon

level. It is interesting to note the exploitation of a principle that,
even though the individual emission dipoles do not exhibit
the nature associated with a higher multipole, the array as a
whole is capable of producing a field distribution of complex
multipolar form. In this way it is possible to overcome the
fundamental obstacle that isolated multipole emitters cannot
produce radiation imprinted with a corresponding orbital
angular momentum. To generate light with OAM it is neither
possible nor necessary to invoke an electronic transition of the
cognate character in individual emitters [77,78].

Although attention has already been drawn to the more con-
ventional methods of optical vortex generation, it is of interest
to note that the presently proposed, fabrication-based method
for the generation of structured light represents a very different
approach to another recently described computational method,
for securing beams shaped in three dimensions [79]—although
in the latter case there seems to have been no suggestion that
such methods could produce the phase structures associated
with optical vortices. Again, although similar concepts have
drawn attention to the possibility of producing multivortex
emission, from larger antenna structures formed in lattices, the
emission wavelength in such cases is determined by geometry,
rather than atomic or molecular constitution [80,81]. The latter
work is closer in concept to the radio arrays pioneered by
Tamburini and co-workers [82]. Again, a key difference in our
work is that the material itself, in consequence of its intrinsic
molecular electronic states, determines the wavelength of
emission.

The analysis elaborated in previous sections represents
a combination of principles that are directly amenable to
implementation in suitably fabricated molecular arrays. Prior
to this, we have purposely endeavored to avoid being too
prescriptive concerning the detailed systems of choice. In fact,
by extension of this groundwork, a wider variety of possible
means of implementation might be envisaged. One obvious
alternative to an array of individual molecular components is a
multichromophore architecture, which could satisfy the neces-
sary conditions if distinct electronic transitions occur in each
of the constituent chromophores [83,84]; such possibilities
could offer means to achieve the symmetry exhibited by the
structure displayed in Fig. 2. By more extensive means [85,86],
bespoke arrays could be directly manufactured to provide for
pairwise coupling between neighboring nanoscale antennae.
Here, there are options for a variety of planar deposition
techniques [87,88], including those that can produce layered
chiral thin films of dielectric materials [89], or others that
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provide for tailored metallic structures exhibiting delocalized
electronic motions [90,91]. Electron beam and other forms
of lithography could be used to etch the surface of a
suitable substrate [92–94]. Further opportunities might be
afforded by quantum dot nanoarrays [95], especially given the
possibility of forming anisotropic components with directional
emission properties [96]. Lastly, since magnetic guidance
proves amenable to maneuvering magnetizable nanoparti-
cles, this too might afford a means of fulfilling the neces-
sary symmetry conditions without the demands of intrinsic
symmetry [97].

In quantum information transfer and processing, the use
and miniaturization of vortex light sources is a highly topical
field of research [98,99]. Against this context it is notable
that our array basis for emission, given consideration of
time reversal, clearly offers additional scope for use as a

detector of orbital angular momentum. However, the basic
physics may be more clouded by the difficulties of quantum
measurement, in which the nature of the detector and detection
process are inextricably bound. Other methods for detecting
orbital angular momentum, based on spatial separation are
also already attracting considerable attention [19,20,27]. In
forthcoming work a thorough investigation will focus on this
aspect of the work. It is also planned to extend current work to
include the explicit consideration of superimposing differently
centered vortices.
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W. Singer, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Proc.
SPIE 6038, 603813 (2006).

[33] M. J. Padgett, Proc. SPIE 8637, 863702 (2013).
[34] N. B. Simpson, L. Allen, and M. J. Padgett, J. Mod. Opt. 43,

2485 (1996).
[35] N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Opt.

Lett. 22, 52 (1997).
[36] T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop,

J. Mod. Opt. 48, 405 (2001).
[37] L. Chen, G. Zheng, and W. She, Phys. Rev. A 75, 061403

(2007).
[38] S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt.

Express 13, 689 (2005).
[39] M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia,

Opt. Lett. 38, 4919 (2013).
[40] M. D. Williams, M. M. Coles, K. Saadi, D. S. Bradshaw, and

D. L. Andrews, Phys. Rev. Lett. 111, 153603 (2013).
[41] V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, JETP Lett. 52,

429 (1990).
[42] V. Y. Bazhenov, M. Soskin, and M. Vasnetsov, J. Mod. Opt. 39,

985 (1992).

033837-7

http://dx.doi.org/10.1088/2040-8978/13/6/064014
http://dx.doi.org/10.1088/2040-8978/13/6/064014
http://dx.doi.org/10.1088/2040-8978/13/6/064014
http://dx.doi.org/10.1088/2040-8978/13/6/064014
http://dx.doi.org/10.1098/rspa.1974.0012
http://dx.doi.org/10.1098/rspa.1974.0012
http://dx.doi.org/10.1098/rspa.1974.0012
http://dx.doi.org/10.1098/rspa.1974.0012
http://dx.doi.org/10.1016/0030-4018(89)90180-6
http://dx.doi.org/10.1016/0030-4018(89)90180-6
http://dx.doi.org/10.1016/0030-4018(89)90180-6
http://dx.doi.org/10.1016/0030-4018(89)90180-6
http://dx.doi.org/10.1103/PhysRevA.45.8185
http://dx.doi.org/10.1103/PhysRevA.45.8185
http://dx.doi.org/10.1103/PhysRevA.45.8185
http://dx.doi.org/10.1103/PhysRevA.45.8185
http://dx.doi.org/10.1364/OL.24.000430
http://dx.doi.org/10.1364/OL.24.000430
http://dx.doi.org/10.1364/OL.24.000430
http://dx.doi.org/10.1364/OL.24.000430
http://dx.doi.org/10.1088/1464-4266/4/2/360
http://dx.doi.org/10.1088/1464-4266/4/2/360
http://dx.doi.org/10.1088/1464-4266/4/2/360
http://dx.doi.org/10.1088/1464-4266/4/2/360
http://dx.doi.org/10.1103/PhysRevLett.107.053601
http://dx.doi.org/10.1103/PhysRevLett.107.053601
http://dx.doi.org/10.1103/PhysRevLett.107.053601
http://dx.doi.org/10.1103/PhysRevLett.107.053601
http://dx.doi.org/10.1887/0750309016
http://dx.doi.org/10.1103/PhysRevLett.88.257901
http://dx.doi.org/10.1103/PhysRevLett.88.257901
http://dx.doi.org/10.1103/PhysRevLett.88.257901
http://dx.doi.org/10.1103/PhysRevLett.88.257901
http://dx.doi.org/10.1364/OPEX.12.005448
http://dx.doi.org/10.1364/OPEX.12.005448
http://dx.doi.org/10.1364/OPEX.12.005448
http://dx.doi.org/10.1364/OPEX.12.005448
http://dx.doi.org/10.1103/PhysRevA.78.062320
http://dx.doi.org/10.1103/PhysRevA.78.062320
http://dx.doi.org/10.1103/PhysRevA.78.062320
http://dx.doi.org/10.1103/PhysRevA.78.062320
http://dx.doi.org/10.1103/PhysRevA.79.033802
http://dx.doi.org/10.1103/PhysRevA.79.033802
http://dx.doi.org/10.1103/PhysRevA.79.033802
http://dx.doi.org/10.1103/PhysRevA.79.033802
http://dx.doi.org/10.1117/12.860584
http://dx.doi.org/10.1117/12.860584
http://dx.doi.org/10.1117/12.860584
http://dx.doi.org/10.1117/12.860584
http://dx.doi.org/10.1117/12.873878
http://dx.doi.org/10.1117/12.873878
http://dx.doi.org/10.1117/12.873878
http://dx.doi.org/10.1117/12.873878
http://dx.doi.org/10.1088/1367-2630/13/5/053017
http://dx.doi.org/10.1088/1367-2630/13/5/053017
http://dx.doi.org/10.1088/1367-2630/13/5/053017
http://dx.doi.org/10.1088/1367-2630/13/5/053017
http://dx.doi.org/10.1364/OE.20.024444
http://dx.doi.org/10.1364/OE.20.024444
http://dx.doi.org/10.1364/OE.20.024444
http://dx.doi.org/10.1364/OE.20.024444
http://dx.doi.org/10.1117/12.979934
http://dx.doi.org/10.1117/12.979934
http://dx.doi.org/10.1117/12.979934
http://dx.doi.org/10.1117/12.979934
http://dx.doi.org/10.1038/srep02402
http://dx.doi.org/10.1038/srep02402
http://dx.doi.org/10.1038/srep02402
http://dx.doi.org/10.1038/srep02402
http://dx.doi.org/10.1117/12.2026929
http://dx.doi.org/10.1117/12.2026929
http://dx.doi.org/10.1117/12.2026929
http://dx.doi.org/10.1117/12.2026929
http://dx.doi.org/10.1364/OL.34.000142
http://dx.doi.org/10.1364/OL.34.000142
http://dx.doi.org/10.1364/OL.34.000142
http://dx.doi.org/10.1364/OL.34.000142
http://dx.doi.org/10.1038/nphoton.2012.138
http://dx.doi.org/10.1038/nphoton.2012.138
http://dx.doi.org/10.1038/nphoton.2012.138
http://dx.doi.org/10.1038/nphoton.2012.138
http://dx.doi.org/10.1364/JOSAA.30.000708
http://dx.doi.org/10.1364/JOSAA.30.000708
http://dx.doi.org/10.1364/JOSAA.30.000708
http://dx.doi.org/10.1364/JOSAA.30.000708
http://dx.doi.org/10.1364/OL.38.004062
http://dx.doi.org/10.1364/OL.38.004062
http://dx.doi.org/10.1364/OL.38.004062
http://dx.doi.org/10.1364/OL.38.004062
http://dx.doi.org/10.1103/PhysRevA.86.012334
http://dx.doi.org/10.1103/PhysRevA.86.012334
http://dx.doi.org/10.1103/PhysRevA.86.012334
http://dx.doi.org/10.1103/PhysRevA.86.012334
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1103/PhysRevLett.75.826
http://dx.doi.org/10.1103/PhysRevLett.75.826
http://dx.doi.org/10.1103/PhysRevLett.75.826
http://dx.doi.org/10.1103/PhysRevLett.75.826
http://dx.doi.org/10.1063/1.1339995
http://dx.doi.org/10.1063/1.1339995
http://dx.doi.org/10.1063/1.1339995
http://dx.doi.org/10.1063/1.1339995
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1117/12.651760
http://dx.doi.org/10.1117/12.651760
http://dx.doi.org/10.1117/12.651760
http://dx.doi.org/10.1117/12.651760
http://dx.doi.org/10.1117/12.2013768
http://dx.doi.org/10.1117/12.2013768
http://dx.doi.org/10.1117/12.2013768
http://dx.doi.org/10.1117/12.2013768
http://dx.doi.org/10.1080/09500349608230675
http://dx.doi.org/10.1080/09500349608230675
http://dx.doi.org/10.1080/09500349608230675
http://dx.doi.org/10.1080/09500349608230675
http://dx.doi.org/10.1364/OL.22.000052
http://dx.doi.org/10.1364/OL.22.000052
http://dx.doi.org/10.1364/OL.22.000052
http://dx.doi.org/10.1364/OL.22.000052
http://dx.doi.org/10.1080/09500340108230922
http://dx.doi.org/10.1080/09500340108230922
http://dx.doi.org/10.1080/09500340108230922
http://dx.doi.org/10.1080/09500340108230922
http://dx.doi.org/10.1103/PhysRevA.75.061403
http://dx.doi.org/10.1103/PhysRevA.75.061403
http://dx.doi.org/10.1103/PhysRevA.75.061403
http://dx.doi.org/10.1103/PhysRevA.75.061403
http://dx.doi.org/10.1364/OPEX.13.000689
http://dx.doi.org/10.1364/OPEX.13.000689
http://dx.doi.org/10.1364/OPEX.13.000689
http://dx.doi.org/10.1364/OPEX.13.000689
http://dx.doi.org/10.1364/OL.38.004919
http://dx.doi.org/10.1364/OL.38.004919
http://dx.doi.org/10.1364/OL.38.004919
http://dx.doi.org/10.1364/OL.38.004919
http://dx.doi.org/10.1103/PhysRevLett.111.153603
http://dx.doi.org/10.1103/PhysRevLett.111.153603
http://dx.doi.org/10.1103/PhysRevLett.111.153603
http://dx.doi.org/10.1103/PhysRevLett.111.153603
http://dx.doi.org/10.1080/09500349214551011
http://dx.doi.org/10.1080/09500349214551011
http://dx.doi.org/10.1080/09500349214551011
http://dx.doi.org/10.1080/09500349214551011


WILLIAMS, COLES, BRADSHAW, AND ANDREWS PHYSICAL REVIEW A 89, 033837 (2014)

[43] M. Mirhosseini, O. S. Magana-Loaiza, C. Chen, B. Rodenburg,
M. Malik, and R. W. Boyd, Opt. Express 21, 30196 (2013).

[44] M. W. Beijersbergen, L. Allen, H. E. L. O. Vanderveen, and
J. P. Woerdman, Opt. Commun. 96, 123 (1993).

[45] L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96,
163905 (2006).

[46] J. Sun, J. Zeng, and N. M. Litchinitser, Opt. Express 21, 14975
(2013).

[47] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and
J. P. Woerdman, Opt. Commun. 112, 321 (1994).

[48] N. R. Heckenberg, R. Mcduff, C. P. Smith, and A. G. White,
Opt. Lett. 17, 221 (1992).

[49] A. S. Ostrovsky, C. Rickenstorff-Parrao, and V. Arrizón, Opt.
Lett. 38, 534 (2013).

[50] L. Marrucci, J. Nanophotonics 7, 078598 (2013).
[51] C. Holbrow, E. Galvez, and M. Parks, Am. J. Phys. 70, 260

(2002).
[52] C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-

Marte, New J. Phys. 9, 78 (2007).
[53] Z. Zhao, J. Wang, S. Li, and A. E. Willner, Opt. Lett. 38, 932

(2013).
[54] D. L. Andrews, M. M. Coles, M. D. Williams, and D. S.

Bradshaw, Proc. SPIE 8813, 88130Y (2013).
[55] M. M. Coles, M. D. Williams, K. Saadi, D. S. Bradshaw, and

D. L. Andrews, Laser Photonics Rev. 7, 1088 (2013).
[56] B. Bai, Y. Svirko, J. Turunen, and T. Vallius, Phys. Rev. A 76,

023811 (2007).
[57] V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V.

Khardikov, and S. L. Prosvirnin, Nano Lett. 7, 1996 (2007).
[58] E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and

N. I. Zheludev, Phys. Rev. Lett. 102, 113902 (2009).
[59] N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly,

N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala,
Nano Lett. 12, 977 (2012).

[60] N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman,
Opt. Lett. 38, 4358 (2013).

[61] J. A. Salthouse and M. J. Ware, Point Group Character Tables
and Related Data (Cambridge University Press, London, 1972).

[62] R. L. Carter, Molecular Symmetry and Group Theory
(John Wiley, New York, 1998).

[63] L. Valkunas, D. Abramavicius, and T. Mancal, Molecular
Excitation Dynamics and Relaxation: Quantum Theory and
Spectroscopy (Wiley-VCH, Weinheim, 2013).

[64] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics
(Chapman & Hall/CRC, Boca Raton, FL, 2003), p. 1077.

[65] R. D. Jenkins and D. L. Andrews, J. Chem. Phys. 118, 3470
(2003).

[66] D. S. Bradshaw and D. L. Andrews, J. Phys. Chem. A 117, 75
(2013).

[67] K. Robbie, M. J. Brett, and A. Lakhtakia, Nature 384, 616
(1996).

[68] T. G. Mackay and A. Lakhtakia, Opt. Express 15, 14689
(2007).

[69] Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and
J. Xu, Appl. Phys. Express 5, 032102 (2012).

[70] H. Yu, M. Xu, Y. Zhao, Y. Wang, S. Han, H. Zhang, Z. Wang,
and J. Wang, AIP Adv. 3, 092129 (2013).

[71] M. Zhi, K. Wang, X. Hua, H. Schuessler, J. Strohaber, and
A. V. Sokolov, Opt. Express 21, 27750 (2013).
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