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Abstract
This work describes an investigation into the feasibility of

producing intelligible audio speech from only visual speech fea-
tures. The proposed method aims to estimate a spectral enve-
lope from visual features which is then combined with an arti-
ficial excitation signal and used within a model of speech pro-
duction to reconstruct an audio signal. Different combinations
of audio and visual features are considered, along with both a
statistical method of estimation and a deep neural network. The
intelligibility of the reconstructed audio speech is measured by
human listeners, and then compared to the intelligibility of the
video signal only and when combined with the reconstructed
audio.
Index Terms: speech intelligibility, visual speech, GMMs,
DNNs, STRAIGHT

1. Introduction
The aim of this project is to produce intelligible audio speech
solely from visual speech features extracted from the mouth re-
gion of a speaker. This is motivated by a desire to be able to
listen to speech from a speaker when no audio is present. Our
specific application is a surveillance scenario where only the
video of a speaker is available. Other scenarios also exist where
a speaker is too far away from a microphone or when no audio
channel is available.

Using visual speech information within speech processing
applications that have traditionally used only the audio signal
has received significant interest in recent years. One of the ear-
liest applications of combining audio and visual speech infor-
mation is in audio-visual speech recognition [1, 2]. Including
visual speech information can give a significant improvement in
recognition accuracy in noisy conditions where the visual fea-
tures are largely (visual Lombard effects have been reported [3])
insensitive to the noise that distorts the audio features. How-
ever, in noise-free conditions the gain is at best only marginal
as the visual features tend not to provide complementary in-
formation to the audio features. Automatic lip reading relies
completely on the visual features to decode the speech signal
and consequently reports much lower recognition accuracy than
systems that also use audio features. In one study, decoding
accuracy was 42% with visual-only features in comparison to
87% with audio-visual features [4], which indicates the limit
of visual speech information. Visual features have also been
used effectively in audio speech enhancement where they are
transformed into an audio spectral representation to form an en-
hancement filter (e.g. Wiener filter) that is applied to the input
noisy speech [5, 6]. Results have shown the enhanced speech to
be largely free from the original noise signal but to be rather dis-
torted. The related area of speaker separation has also benefited
from visual speech information taken from the speakers in the
mixture [7, 8]. This has been used to construct binary masks for

separation and to address permutation and scaling ambiguities
present after blind source separation.

To synthesise an audio speech signal, a speech model re-
quires a number of acoustic speech features that would nor-
mally be extracted during an analysis stage. A typical set of
acoustic features comprises a voiced/unvoiced/non-speech clas-
sification, fundamental frequency (for voiced speech), spectral
envelope, and phase. It is clear that a visual-only signal will
lack many of these parameters. However, several studies have
shown correlation to exist between audio and visual speech fea-
tures, the magnitude of which depends on the specific features
being tested [9, 10, 11]. For example, low-resolution spectral
envelope audio features have higher correlation than more de-
tailed spectral features. Conversely, excitation parameters, such
as fundamental frequency have no correlation to visual features,
although it may be possible to infer some indication of voicing
from whether teeth are visible or not. Visual voice activity de-
tection (VAD) has been more successful with several schemes
proposed that outperform audio-only VADs at lower signal-to-
noise ratios (SNRs) [12]. These factors make reconstructing au-
dio speech from only visual speech features a challenging prob-
lem. Considering the source-filter components of speech, it can
largely be assumed that no voicing or fundamental frequency
information can be inferred, while only a broad spectral enve-
lope can be estimated with limited accuracy.

Our approach to this problem is to estimate a smoothed
spectral envelope from the visual features to provide vocal tract
information. No attempt is made to estimate voicing or funda-
mental frequency and instead a number of methods for produc-
ing an artificial excitation signal are considered. Given this set
of speech parameters, a model of speech production is then used
to reconstruct a time-domain audio signal. As so many compo-
nents of the speech signal are effectively missing, our metric
for success is the intelligibility of the reconstructed speech sig-
nal rather than its quality.

The remainder of the paper is organised as follows. Section
2 provides a brief overview of the speech reconstruction model
and then explains how voicing and fundamental frequency are
determined artificially. Section 3 describes the audio and visual
speech features that have been considered. A discussion and
comparison of the estimators used is given in Section 4. Sec-
tion 5 describes the results and analysis of experiments that first
examine objectively the effectiveness of audio feature estima-
tion from visual features and secondly, using human listening
tests, determines the intelligibility of the reconstructed speech.

2. Speech reconstruction model
Many models of speech production have been proposed for
speech coding and synthesis applications. These include
vocoders, sinusoidal models and harmonic-plus-noise models
[13, 14]. Based on successful application in hidden Markov



model (HMM) synthesis to produce intelligible speech, the
STRAIGHT vocoder has been chosen [15, 16].

STRAIGHT is a sophisticated implementation of a chan-
nel vocoder that separates speech into its spectral envelope and
source components and was developed to allow for flexible ma-
nipulation of parameters to produce high-quality speech modifi-
cations. To synthesise a time-domain speech signal STRAIGHT
requires three sets of parameters: the fundamental frequency,
f0i ; a measure of aperiodicity, A(f, i); and a time-frequency
surface, X(f, i); where i and f represent the frame index and
frequency bin.

When considering reconstructing a speech signal from only
visual speech information it is not possible to estimate several
of these parameters. Neither the fundamental frequency nor the
aperiodicity can be estimated from the visual speech features.
Instead suitable values need to be produced artificially. As the
key performance metric is intelligibility and not quality, suit-
able values will need to be found that maximise intelligibility,
even though this may lead to poor quality. The time-frequency
surface is the only parameter than can be estimated from the
visual speech features.

2.1. Aperiodicity and fundamental frequency

Three “artificial” methods of setting the voicing and fundamen-
tal frequency are considered. The first method, monotone, sets
the fundamental frequency for each frame to a constant value,
i.e f0i = µf0 , which produces monotone sounding speech.
From f0 analysis of the speaker used in testing (discussed in
Section 5) it was found that µf0 = 216 Hz. The second
method, time-varying, modulates the monotone f0 contour us-
ing a 0.25 Hz sinusoid with an amplitude that gives a frequency
change, ∆f0 , of ±28 Hz.

f0i = µf0 + ∆f0cos((2πi/400) + φr) (1)
where φr is a random phase offset. The settings for the time-
varying parameters were established by examining fundamen-
tal frequency contours of real speech and synthesising speech to
follow the trends measured. The final method, unvoiced, syn-
thesises an entirely unvoiced speech signal and uses Gaussian
white noise as the excitation. For unvoiced excitation, all time-
frequency aperiodicity values, A(f, i), are set to zero while in
voiced speech they are set to −∞.

A further method was also included in testing, original, and
uses the original voicing and fundamental frequency estimated
from the time-domain speech signal using PRAAT [17]. Whilst
this is not realistic in real operating conditions it provides a use-
ful baseline for evaluation.

2.2. Spectral envelope

Visual speech features exhibit correlation with spectral en-
velope which gives the possibility of estimating the time-
frequency surface, X(f, i), required by STRAIGHT, from the
visual information, i.e.

X̂(f, i) = g(vi) (2)

where vi is the visual vector and g is the estimator. The next
two sections consider choices for the audio and visual features
and then two methods of estimation.

3. Audio and visual speech features
Combinations of audio and visual features are considered with
the aim of identifying combinations that enable audio features

to be estimated from visual features with low error.

3.1. Audio features

Two spectral envelope representations are considered: linear
prediction coding (LPC) coefficients and mel-filterbank

3.1.1. LPC

LPC analysis is a common technique for estimating vocal-tract
filter coefficients. From each frame of speech, LPC analysis is
applied to create an LPC vector, ai. Different filter orders, P ,
were considered, specifically with P = {2, 4, 6, 8, 14}, where
lower orders introduce more smoothing into the spectral enve-
lope. Synthesising speech with P = 14 produced speech that
was almost indistinguishable from the original speech signal.

3.1.2. Filterbank

Filterbanks are frequently used in speech processing applica-
tions to reduce spectral detail into a spectral envelope-like rep-
resentation. This work uses a mel-filterbank based on that speci-
fied in the ETSI Aurora standard [18]. The number of filterbank
channels, K, was varied with K = {4, 7, 10, 15, 20}. The log
of the resulting filterbank channel amplitudes was taken but no
further processing was applied. Speech reconstructed from the
20-channel filterbank gave best sounding speech and was com-
parable to the LPC-14 configuration.

3.2. Visual features

Visual features can be model-based or pixel-based, and both
have been applied successfully in audio-visual speech process-
ing [6, 19, 20]. This analysis considers a model-based feature,
the active appearance model (AAM); and a pixel-based feature,
based on a 2D discrete cosine transform (2D-DCT).

3.2.1. 2D-DCT

Two-dimensional DCT features are extracted from a 128× 128
matrix of pixel intensities,P , that is centred on a tracked mouth
centre point and resampled. A 2D-DCT is applied to produce
coefficient matrix, C, from which a visual vector, v2DDCT

i ,
is obtained by extracting coefficients in a zigzag order from
the lower coefficient region of the matrix [21] to give a J-
dimensional visual vector

v2D−DCT
t = [c0,0, c0,1, c1,0, c2,0, c1,1, ...] (3)

where cm,n are elements of C. Preliminary tests found best
estimation performance when 36 coefficients were retained and
when combined with velocity temporal derivatives.

3.2.2. AAM

AAM features are commonly used in audio-visual speech pro-
cessing to model shape and appearance [19]. Shape parameters
are a concatenation of the coordinates of the set of vertices de-
tailing the outline of the inner and outer mouth, while appear-
ance parameters are pixel intensities extracted from the mesh of
the current visual frame that has been warped to the base shape.
From a set of training images, each annotated with landmark
points that outline features of the lip contours and eyes, the
AAM warps each image to a mean shape and appearance and
then builds a statistical model using principal component anal-
ysis (PCA). PCA is applied to shape and appearance separately
and then to the concatenated shape and appearance feature vec-
tors to produce a compact visual feature.



Given a test image, the AAM minimises the difference be-
tween its synthesised face image and the actual face image by
varying model parameters as well as incurring displacements in
position, scale, and orientation. Features of the final synthesised
image form a J-dimensional AAM vector, vAAM

t . Preliminary
tests found best performance with 13 AAM coefficients, aug-
mented with their velocity temporal derivatives.

4. Audio feature estimation
Given a sequence of visual vectors, vi, extracted from a speaker,
the task of estimation is to identify a corresponding sequence of
audio vectors, âi, which can then be transformed into the time-
frequency surface, X̂(f, i), needed by STRAIGHT to synthe-
sise a time-domain speech signal. Two forms of estimator have
been considered, one being a statistical estimator based on a
GMM and the other a deep neural network (DNN).

4.1. Gaussian mixture models

Estimation of an audio feature vector, âi, begins by creating a
Gaussian mixture model (GMM) that models the joint density
of the audio and visual feature vectors from a speaker. A joint
feature vector, zi, is first created by augmenting audio vectors
and visual vectors

zi = [ai,vi] (4)

From a training set of joint feature vectors, expectation-
maximisation (EM) clustering is applied to create a GMM, Φav ,
that models the joint density of the audio and visual features

Φav =

C∑
c=1

γcφc(z) =

C∑
c=1

γc N (z;µc,Σc) (5)

The GMM comprises C clusters with the cth cluster having a
prior probability, γc; Gaussian probability density function, φc,
with mean vector, µc, and covariance matrix, Σc.

Given the model of the joint density of audio-visual vectors,
Φav , an estimate of the audio vector, âi, can be made from the
visual vector extracted from the speaker’s mouth region, vi,

âi = arg max
a

(p (ai|vi,Φav)) . (6)

4.2. Deep neural network

Recently, deep neural networks (DNN) have shown success in
acoustic modelling for automatic speech recognition tasks, out-
performing state-of-the-art GMM-HMM systems [22, 23]. In
these configurations, the DNNs are being used for classifica-
tion, that is, the prediction of HMM states given an input. In
this paper, their use is explored for regression.

The DNN architecture used for this paper consists of a fully
connected network with three hidden layers between the input
layer and output layers. The three hidden layers each have 1024
units. The hidden units use Rectified Linear Units (ReLU) as
the activation functions, and linear units were used in the output
layer. The neural network was trained using resilient backprop-
agation [24] with mini-batches of 500 training examples. The
learning rate was fixed at 0.001 and z-score normalisation was
performed on the data. Network training was stopped once the
R2 of the test data stopped improving.

5. Experimental results
The aim of the experiments is to establish whether intelligible
audio speech can be reconstructed from just visual speech fea-

tures. Tests begin by first examining objectively how well au-
dio features can be estimated from visual features using the
GMM and DNN. Two of the best performing configurations
then form the basis of subjective tests where human listeners
are used to determine the intelligibility (word accuracy) of the
reconstructed speech.

The GRID audio-visual database is used for the experi-
ments [25]. Sentences comprise six words and follow the gram-
mar shown in Table 1. Thirty-four speakers form the GRID
database, with each speaker producing 1000 sentences. Speaker
S4 (female) was chosen for the tests as the speech was consid-
ered to be articulated clearly and in a study of word accuracy
across the speakers scored highly [25]. From the 1000 sen-
tences, 800 are used for training and 200 for testing.

Table 1: GRID sentence grammar.
Command Colour Preposition Letter Digit Adverb

bin blue at A-Z 1-9 again
lay green by minus W zero now

place red in please
set white with soon

5.1. Objective measurements

An objective analysis is performed to determine how accurately
the audio features are estimated from visual features using the
GMM and DNN. The correlation between the estimated audio
feature and that extracted directly from the original speech sig-
nal is measured. Tables 2 and 3 show correlation values for esti-
mating LPC coefficients and filterbank amplitudes, using DNN
and GMM classifiers, and AAM and 2D-DCT visual features.

Table 2: Correlation values, r, for LPC configurations.
DNN GMM

Num. coeffs AAM 2D-DCT AAM 2D-DCT

2 0.59 0.62 0.73 0.72

4 0.61 0.62 0.72 0.71

6 0.57 0.59 0.72 0.72

8 0.62 0.65 0.73 0.71

14 0.52 0.53 0.71 0.72

Table 3: Correlation values, r, for filterbank configurations.
DNN GMM

Num. channels AAM 2D-DCT AAM 2D-DCT

4 0.82 0.81 0.79 0.81

7 0.83 0.82 0.79 0.81

10 0.83 0.82 0.81 0.81

15 0.82 0.82 0.81 0.81

20 0.82 0.82 0.81 0.81

Comparing the audio features, filterbank amplitudes have
substantially higher correlation to visual features than LPC co-
efficients across all configurations. Table 3 shows that the cor-
relation of filterbank amplitudes is largely unaffected by the



Table 4: Methods of reconstructing audio speech from visual
features

Method TF surface Excitation
GMM ORIG GMM + AAM + LPC Original
GMM UNV GMM + AAM + LPC Unvoiced
DNN ORIG DNN + 2D-DCT + Filterbank Original
DNN UNV DNN + 2D-DCT + Filterbank Unvoiced

choice of visual feature and estimator. Considering LPC co-
efficients, using a GMM for estimation outperforms the DNN
in all cases. There is also little difference in correlation with
respect to the visual feature used.

5.2. Intelligibility tests

The aim of the subjective intelligibility experiments is three-
fold. First, to examine whether reconstructing audio speech
from visual features can produce intelligible speech. Second, to
compare the intelligibility of the reconstructed audio with the
intelligibility from just the video of the speaker, i.e. lip read-
ing. Third, to examine whether combing reconstructed audio
with the video improves intelligibility. To address these ques-
tions the subjects are presented with samples from three differ-
ent multi-media configurations: the reconstructed audio-only,
the original video only, and the reconstructed audio combined
with the original video.

To generate the reconstructed audio four different config-
urations are examined. Two methods of estimating the time-
frequency surface were used:

• GMM with AAM and 8th order LPC audio features

• DNN with 2D-DCT 20-channel filterbank audio features

These represent a small subset of the configurations anal-
ysed in Section 5.1, but it would be prohibitive to include all
combinations in the listening tests. Instead, our approach is
to use two very different configurations to examine their im-
pact on intelligibility. These were combined with two methods
for creating the speech excitation – using the original voicing
and fundamental frequency and using fully unvoiced excitation.
Again, it would be prohibitive to try all combinations of exci-
tation in the listening tests, so preliminary tests determined that
the unvoiced excitation gave the most intelligible audio of the
three methods introduced in Section 2.1. These two choices
of excitation allow the impact of having no knowledge of the
voicing/fundamental frequency to be compared to having full
knowledge. The four methods are summarised in Table 4.

XX listeners took part in the tests, which were carried out
in a quiet environment with subjects using headphones and po-
sitioned in front of a monitor. Each subject was played (in a
random order to remove any bias) 12 audio-only sentences, 12
audio-video sentences and 3 video-only sentences. The 12 au-
dio sentences comprised 3 examples from each of the four con-
figurations in Table 4. This gave a total of 27 sentences, all of
which were different. Each listener was allowed to replay the
audio/video as many time as they wished before entering the
words they heard. This was done as a potential application of
the work would be to transcribe speech from recordings where
listeners would be able to replay recordings multiple times.

Table 5 shows the intelligibility (word accuracy) for the
four different methods of reconstructing audio, listed in Table

Table 5: Intelligibility of reconstructed audio-only and audio-
video speech.

Method Audio-only Audio-video
GMM ORIG 48.37 % 60.46 %
GMM UNV 40.20 % 53.27 %
DNN ORIG 37.25 % 54.25 %
DNN UNV 28.76 % 45.10 %

4, when hearing just the reconstructed audio and when com-
bined with the original video of the sentence. The intelligibility
obtained using only the video was 49.02%. For the GRID gram-
mar shown in Table 1, the intelligibility that would be expected
by chance alone is 19% assuming unbiased test conditions.

5.3. Discussion

The results show that both configurations which have no knowl-
edge of the original audio (GMM UNV DNN UNV) are able to
reconstruct audio speech from visual features with intelligibility
higher than chance. When these are supplemented by the origi-
nal video signal, the intelligibility increases further. Intelligibil-
ity with GMM UNV audio and video is higher than using only
the video and agrees with studies that show that an audio-visual
signal is more intelligible than a single modality. The intelligi-
bility of DNN UNV audio and video remains lower than video
only and is attributed to the lower intelligibility of the audio –
around 12% lower than with GMM UNV-based audio. Identi-
fying the reason for this difference is not straightforward as the
two configurations differ in their audio and visual features as
well as the method of estimation. However, listening informally
to speech produced by a range of different configurations sug-
gests that the audio feature is most important when considering
intelligibility, rather than the visual feature or method of esti-
mation. The spectral envelope produced from estimated LPC
coefficients is closer to the original spectral envelope than that
produced by the filterbank dues to its relative coarseness.

Reconstructing audio using the fundamental frequency and
voicing estimated from the original speech this gives an abso-
lute increases in intelligibility of around 8% over using a purely
unvoiced excitation. This demonstrate the important of voic-
ing and is attributed to several of the vocabulary items requiring
voicing to be classified correctly, such as /s/ and /z/ confusions.

6. Conclusions
This work has shown that it is possible to reconstruct an in-
telligible audio speech signal from just visual speech features.
Compared to articulatory speech synthesis, where knowledge
of articulators such as the tongue is available, the information
from the video is limited to the mouth shape appearance, with
no knowledge of the excitation signal available. For the purpose
of estimating a time-frequency surface from the visual speech,
LPC audio features have been found to be better as they are
better able to model spectral surface.

Subjective tests found that the excitation provides impor-
tant information for intelligibility. The reconstructed audio was
found to have similar intelligibility to using just the video from
the speaker (i.e. lip reading) but when subjects were presented
with both the intelligibility increased. This task required of lis-
teners is acknowledged to be rather constrained at present and
important further work will extend the intelligibility tests to less



constrained tasks and concentrate on optimising the audio fea-
tures.
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structuring speech representations using a pitch-adaptive time-
frequency smoothing and an instantaneous-frequency-based f0
extraction: Possible role of a repetitive structure in sounds,”
Speech Communication, vol. 27, pp. 187–207, Apr. 1999.

[16] J. Yamagishi, H. Zen, T. Toda, and K. Tokuda, “Speaker-
independent HMM-based speech synthesis system – HTS-2007
system for the Blizzard Challenge 2007,” in Proc. Blizzard Chal-
lenge 2007, Aug. 2007.

[17] P. Boersma and D. Weenink, “Praat, a system for doing phonetics
by computer,” 2001.

[18] ETSI, “Speech Processing, Transmission and Quality Aspects
(STQ); Distributed speech recognition; Advanced front-end fea-
ture extraction algorithm; Compression algorithms,” ETSI STQ-
Aurora DSR Working Group, ES 202 050 version 1.1.1, Oct.
2002.

[19] T.F.Cootes, G. Edwards, and C.J.Taylor, “Active appearance mod-
els,” IEEE Trans. PAMI, vol. 23, no. 6, pp. 691–685, Jun. 2001.



[20] G. Meyer, J. Mulligan, and S. Wuerger, “Continuous audio-visual
digit recognition using N-best decision fusion,” Information Fu-
sion, vol. 5, no. 2, pp. 91–101, Jun. 2004.

[21] K. Sayood, Introduction to Data Compression. Morgan-
Kaufmann, 2000.

[22] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” Signal Processing Maga-
zine, IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[23] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep
neural networks for lvcsr using rectified linear units and dropout,”
in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on. IEEE, 2013, pp. 8609–8613.

[24] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The rprop algorithm,” in Neural Net-
works, 1993., IEEE International Conference on. IEEE, 1993,
pp. 586–591.

[25] M. Cooke, J. Barker, S. Cunningham, and X. Shao, “An audio-
visual corpus for speech perception and automatic speech recog-
nition,” Journal of the Acoustical Society of America, vol. 150,
no. 5, pp. 2421–2424, Nov. 2006.


