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ABSTRACT 

 
A band at ca. 150 cm

-1
 in the far infrared spectrum of diketopiperazine (DKP) is assigned to a ring 

puckering vibration.  The multiplet structure reported for this band in the low temperature (77 K) far IR 

spectrum can be interpreted if the vibration is assumed to have quartic character.  By means of Rayleigh-

Schrödinger perturbation theory, a new vibrational selection rule, n = 1, 3, has been derived for mixed 

quartic-quadratic vibrations in the near harmonic region for the case of zero electrical anharmonicity.  

Assignments of the multiplet components have been made in the light of this vibrational selection rule.  A 

two-parameter potential energy function of the ring puckering coordinate has been derived for the DKP 

molecule.  This has enabled a value of ca. 355 cm
-1

 to be estimated for the energy barrier to interconversion 

of enantiomeric boat forms of DKP.  The 0-1 transition has been estimated to have a wavenumber value of 

0.033 cm
-1

 (1 GHz) in excellent agreement with the value of 1 GHz obtained from a gas phase microwave 

spectroscopic study. 
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1. INTRODUCTION 

 
As part of a programme of work on the vibrational properties of cyclic dipeptides, we have examined the 

unsubstituted molecule, diketopiperazine (DKP), see Figure 1.  The crystal structure of DKP suggests that 

the 6-membered ring has a planar conformation,
1
 unlike other cyclic dipeptides for which boat and twisted 

boat conformations have been reported.
2
  The 

1
H NMR spectrum of DKP in aqueous solution has also been 

interpreted to indicate that the ring has a planar conformation.
3
 

 

 
Figure 1:  Schematic representation of the DKP molecule. 

    
The planar ring conformation of DKP, determined by the aforementioned experiments, has not been 

predicted for the isolated molecule by ab initio calculations.
4,5

 An ab initio calculation of the molecular 

structure of DKP involving correlation-corrected basis functions [MP2/cc-pVDZ] predicted that a structure 

having a boat conformation of the ring (of C2 symmetry) is lower in energy by 441 cm
-1

 than a structure 

with a planar ring (of C2h symmetry) (4). Thus at room temperature (kT 209 cm
-1

) some interconversion 

can be expected to take place between the two forms.  Although the ab initio calculations have been carried 

O

NH

NH

O

H

H

H

H



 2 

out for the isolated molecule, it is possible that such an interconversion could also occur in the condensed 

phase.  In the solid extensive intermolecular H-bonding takes place between the C=O and N-H functional 

groups, and in aqueous solution H-bonding will occur with the water molecules of the aqueous solvent.  In 

spite of the H-bonding in the condensed phase, the non-rigid ring of DKP may still exhibit a 

conformational interconversion.  This would not necessarily be detected in the X-ray and NMR 

experiments which would provide only ensemble or time-averaged structures.  Vibrational spectroscopy 

provides another means of investigating structure and dynamics, so it is of interest to examine the 

possibility of DKP ring conformational interconversion using IR and Raman spectroscopy. 

 

The possibility of ring conformational interconversion was mentioned above in connection with  

DKP at room temperature.  However even at low temperature, when the thermal energy is substantially less 

than that of the energy barrier, an interconversion may still occur by a quantum tunneling mechanism.  

Such a mechanism is known to occur, for example, in the ammonia molecule which has two enantiomeric 

pyramidal geometries.  These can interconvert by tunneling through a higher energy planar geometry.  The 

conformational change occurs along the vibrational coordinate that connects the two geometries, i.e. the 2 

symmetric deformation of the NH3 molecule.  The potential energy surface has a symmetric double well 

minimum along this vibrational coordinate.  This is due to a mixed quartic-quadratic dependence of the 

potential energy, V(x), on the displacement, x, according to: 

 

V(x) = ax
4
 + bx

2
       (1) 

 

where a and b are constants, which may be of like or opposite sign (see later). 

 

In the case of the DKP molecule, the two enantiomeric boat conformations are connected along the 

ring puckering vibrational coordinate.  Recent microwave spectroscopic results indicate that the boat forms 

of gas phase DKP are located at the minima of a double-well potential energy surface, and that the ring 

puckering vibration has mixed quartic-quadratic character.
5
  Thus its potential energy may also be 

described by equation 1 (see above). 

 

The n = 1 selection rule of the harmonic oscillator does not hold rigorously when a term due to 

quartic anharmonicity appears in the potential energy function.  Although it is widely appreciated that the 

selection rule becomes modified,
6,7

 a derivation of the modified rule for a mixed quartic-quadratic oscillator 

has not been given in the literature, as far as we are aware.  Consequently a vibrational selection rule for the 

mixed quartic-quadratic oscillator will be derived in this work (see section 4, later). 

 
2. THE FAR INFRARED SPECTRUM OF DKP 

 
The infrared and Raman spectra of DKP have been interpreted on the basis of a planar ring geometry, the 

isolated molecule belonging to the C2h molecular point group.
8
  As the C2h DKP molecule possesses a 

center of symmetry, its vibrational spectrum is governed by the rule of mutual exclusion.  There are three 

ring torsional modes; of these two are infrared active and have Au symmetry and one is Raman active and 

has Bg symmetry. 

 

The room temperature far infrared spectrum of DKP exhibits two bands in the 100-400 cm
-1

 

region, at 148 and 177 cm
-1

, which have been assigned to a lattice mode and one of the infrared active ring 

torsional modes, respectively.
8
  The assignment of the 148 cm

-1
 band to a lattice mode disagreed with a 

previous assignment of this band to the other infrared active ring torsional mode.
9
 The re-assignment was 

based on the report of a band at 285 cm
-1

 in the inelastic neutron scattering spectrum.
10

  This was believed 

to be due to one of the infrared active ring torsional modes, which was presumed to have an intensity too 

low to be observed in the infrared spectrum.  However a recent inelastic neutron scattering spectroscopic 

study of DKP
11

 has revealed that there is no band at 285 cm
-1

.  Consequently we favour the original 

assignment of both the 148 and 177 cm
-1

 far infrared bands to the ring torsional modes of Au symmetry. 

 

It is interesting that a mysterious multiplet structure was reported for the band at ca.148 cm
-1

 when 

the DKP sample was at liquid nitrogen temperature.
8
  Components at 148, 155 and 158 cm

-1
 were 
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apparently observed, the first being a shoulder on the neighboring component and the last two being of 

medium intensity.  A possible explanation for the occurrence of this multiplet can be proposed in the light 

of the re-assignment of the ca. 148 cm
-1

 band to a ring torsional mode.  This is because the vibration that 

gives rise to this band is now believed to be the ring puckering vibration, which would have some quartic 

character.  Thus a quartic-quadratic vibrational selection rule would apply to this mode, and more than one 

vibrational transition could result (see later). 

 

It is noteworthy that, shortly after suggesting that this vibrational mode of DKP could have quartic 

character,
12

 confirmatory evidence was reported from the results of a gas phase rotation-inversion 

spectroscopic study of DKP.
5
  

 
3. EXAMPLES OF QUARTIC-QUADRATIC OSCILLATORS 

 
The potential energy, V(x), of a pure quartic oscillator would show a fourth power dependence of the 

displacement, x i.e. V(x) = kx
4
, where k is a constant of proportionality.  Clearly any notional harmonic 

force constant, obtained in the normal way from the radius of curvature at the bottom of the potential well, 

would not be a constant for such a vibration as it does not relate to a quadratic potential energy function.  

Such a treatment is consequently inadequate for this type of vibration, as the quartic behaviour needs to be 

properly accounted for. 

 

It is worthwhile to consider what type of vibration might exhibit quartic behaviour.  Over fifty 

years ago Bell
13

 predicted that the ring puckering vibration of a 4-membered ring such as cyclobutane, 

C4H8, would be one such example; this prediction was later proved correct.
14,15

  It was reasoned that a first 

order infinitesimal displacement (x) in the ring atoms, perpendicular to the plane of the ring, would result in 

only a second order change in the angles between any pair of bonds attached to the same atom or in the 

distances between any pair of atoms.  Since the changes in the bond distances and bond angles vary with 

the square of the displacement (x
2
), the change in potential energy is proportional to the fourth power of the 

displacement, i.e. V(x) = kx
4
 as above.  Newton's equation of motion for this oscillator is: 

 

0     3  xxm        (2) 

 

where  is a constant.  It can be shown that the classical frequency, obtained by determination of the 

vibrational time period, depends on the total energy of the oscillator.
13

  This contrasts with the classical 

frequency of a harmonic oscillator, which is independent of its total energy. 

 

 It should be mentioned that, in considering the quartic ring strain potential of cyclobutane, the 

assumption was made that there is free rotation about the C-C bonds.  This is not the case because there 

will always be some torsional (or twisting) forces of ring bonds, which will have quadratic character.  For 

this reason, it is unlikely that any molecular vibration will exhibit pure quartic behaviour, although the ring 

puckering vibration of trimethylene oxide apparently comes very close.
16

  Furthermore, the sign of the 

quadratic coefficient, b in Equation (1), may be the same as the quartic coefficient a, or it may be opposite.  

In the former case, the ring strain and torsional forces act in the same direction and reinforce each other, 

whereas in the latter they are opposed.  These two cases give rise to single minimum and double minimum 

potential energy wells, respectively. 

 

 The out of plane bending vibration of planar tetratomic molecules with the general formula XY3 

might also be expected to show quartic character, based on similar arguments to those given above.  

However a rehybridisation of the s and p orbitals can account for a first order change in the bond angles for 

small atomic displacements.  Clearly there will also be a first order change for the symmetric bending 

vibration of pyramidal XY3 molecules, such as ammonia.  Planar XY3 molecules will have a single 

minimum potential energy well, whereas pyramidal XY3 species will have a double minimum.  The 

potential energy function of the former has a and b coefficients (see Equation 1) of the same sign, whereas 

these coefficients have opposite signs for the latter.  However the relevant bending vibrations of both types 

of XY3 molecule are likely to have a great deal of quadratic character, unlike the puckering vibration of 

cyclobutane.  In the following discussion, quartic-quadratic oscillators having large percentages of either 
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quartic or quadratic character will be taken to belong to the 'near quartic' and 'near harmonic' regimes, 

respectively. The near harmonic regime has previously been regarded as where the energy levels differ 

from harmonic ones by less than 10%, and the near quartic regime as the regime in which energy levels 

differ from pure quartic ones by less than 10%.
17

  It has also been reported that the percentage of quartic or 

quadratic character depends not only on the values of a and b in Equation (1), but also on the degree of 

vibrational excitation, i.e. on the vibrational quantum number; the higher the vibrational quantum number, 

the greater the degree of quartic anharmonicity.
17

 

 

4. SELECTION RULE FOR A MIXED QUARTIC-QUADRATIC OSCILLATOR 
 
The selection rule can be derived using perturbation theory within the framework of the simple harmonic 

oscillator (S.H.O.) model, recognising that this treatment applies strictly within the near harmonic regime.  

For IR transitions the dipole moment operator, , needs to be considered, and this can be expanded in a 

Taylor series of the vibrational coordinate, x; 
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The first term in Equation (3) is the permanent dipole moment which plays no role in the absorption of 

radiation for a vibrational transition.  If the third term is very small and can be neglected, the dipole 

moment can be assumed to vary linearly with the vibrational coordinate and the vibration is regarded as 

'electrically harmonic'.  In the case of Raman transitions, the polarisability can be treated in an analogous 

way to the dipole moment.  Thus for both IR and Raman, the m' n' transition between (S.H.O. modified) 

levels involves a transition moment proportional to mxn  .   

 

For a quartic perturbation, x
4
, the modified S.H.O. levels given by Rayleigh-Schrödinger 

perturbation theory
18,19

 are represented by;  
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and the resultant transition amplitudes are; 
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neglecting terms of higher order.  Now writing x in terms of the lowering operator a and raising operator a
+
 

for harmonic wavefunctions,
20

 we have x = i(a – a
+
) where λ = (ħ/2μω)

½

 
for a vibration of circular 

frequency = /2 and effective mass (note:  is not a small parameter) and 
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



 

                        (5) 

 

Then since   11;1 2
1

2
1

  mmmammma , each a lowers the quantum number by one and 

each a
+
 raises it by one.  Hence the first term is non-zero (it has a non-vanishing result) only for n = m+1 or 

n = m-1, i.e. n = 1, as is usual.   
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Considering the numerator of the second term in Equation (5), the second (x
4
) Dirac bracket will 

be non-zero only for s = m, m2, m4, and so when it multiplies the other Dirac bracket, requiring n = s1, 

we can end up with non-zero contributions only for n = m1, m3, m5.  It works similarly with the third 

term.  The energy levels of a pure quartic oscillator diverge with increasing quantum number,
17

 showing a 

(n+½)
4/3

 dependence for large quantum numbers, n. However, since we are working within the near 

harmonic regime, the energy levels can be regarded as equally spaced in energy, to a first approximation; 

this has intuitive advantages and is consistent with the adoption of Rayleigh-Schrödinger perturbation 

theory.  Specifically, performing calculations with proper regard for the orderings of a and a
+
 since they do 

not commute, we obtain:  

 

n = 0 (i.e. n = m); S = 0  

 

n = +1 (n = m+1);      351
161 


mimiS     

 

n = +2 (n = m+2); S = 0  

 

n = +3 (n = m+3);      32151



mmmiS    

 

n = +4 (n = m+4); S = 0   

 

n = +5 (n = m+5); S = 0   

 

n = -1 (n = m-1);   351
6 mimiS 


    

 

n = -2 (n = m-2); S = 0   

 

n = -3 (n = m-3);     2151



mmmiS    

 

n = -4 (n = m-4); S = 0   

  

n =-5 (n = m-5); S = 0   

 

As mentioned above, it can be seen from the form of Equation (5) that non-zero contributions will be 

restricted to n = m1, m3, m5.  However it transpires that, for either of the cases n = 5, the two 

different contributions, i.e. the second and third terms in Equation (5), cancel exactly in Rayleigh-

Schrödinger perturbation theory.  This is because they have the same numerator but equal and opposite 

energy denominators.  Cases of still larger n values all give zero unless we go to yet higher orders of 

perturbation theory.  

 

The above analysis has provided the selection rule n = 1, 3 for a mixed quartic-quadratic 

oscillator in the near harmonic regime.  It can be seen that the n = 1 selection rule of an S.H.O. has 

become modified, as second overtone transitons (n = 3) are now allowed.  Furthermore it is satisfying 

that the degree of 'allowedness' increases with the percentage of quartic character (defined by the value of 

), as it can be seen that the transition amplitudes (S values) are proportional to  for the n = 3 

transitions (see above).  Moreover, this treatment indicates that first overtone transitions (n = 2) are 

forbidden for mixed quartic-quadratic oscillators in the near harmonic regime, if electrical harmonicity is 

assumed – see Equation (3) above.  This same assumption is also made, of course, in the derivation of the 

S.H.O. selection rule (n = 1).  The selection rule of n = 1, 3 for a mixed quartic-quadratic oscillator 

appears to contradict the empirical selection rule of n = 1 (for IR) and n = 2 (for Raman), which is 

given in a standard textbook on Raman spectroscopy.
21

 Presumably, it has been possible to observe features 

associated with n = 2 transitions in Raman spectra of mixed quartic-quadratic oscillators, on account of 

an appreciable degree of electrical anharmonicity, i.e. a non-negligible third term in Equation (3). 
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5. INTERPRETATION OF THE DKP FAR INFRARED SPECTRUM 
 

As previously mentioned, molecules having 4-membered rings (e.g. cyclobutane) are expected to have a 

ring puckering vibration exhibiting a large percentage of quartic character.  In addition, molecules with 

larger rings and rigid, double bonds can also have such a vibration.  In these molecules, any two atoms 

joined by a double bond can be considered to play the role of a single atom.  Thus, cyclopentene and 1,4-

cyclohexadiene can both be regarded as molecules with pseudo 4-membered rings.  DKP comes into this 

category because the C-N bonds of the two peptide linkages are rigid (see Figure 1, above).  Furthermore, 

as for the ammonia molecule, DKP has a double minimum potential well and consequently exhibits 

inversion doubling of vibrational levels.  Thus 0,1 are close and so are 2,3 and 4,5 etc., with the energy 

spacing of the inversion doublets increasing with vibrational quantum number. The v = 0 and v = 1 levels 

have a small energy separation, coming in the microwave region, because they are the components of the 

lowest energy doublet. At a temperature of 77 K these two levels will be populated more than any others 

according to a Maxwell-Boltzmann distribution (in thermal equilibrium).  Consequently, features are 

expected in the far infrared region at ca. 150 cm
-1

 due to 1-2 and 0-3 transitions, in view of the selection 

rule derived above for mixed quartic-quadratic oscillators.  Admittedly, the DKP ring puckering vibration 

is outside the near harmonic region, so we make the assumption that our selection rule is still valid when 

extrapolating beyond this region. 

 

 The eigenvalues for mixed quartic-quadratic potential functions in reduced (i.e. dimensionless) 

form have been tabulated by Laane
6
 for varying degrees of quartic and quadratic character.  In order to 

facilitate the computation, the physically dimensioned potential of Equation (1) was transformed to the 

reduced potential given by: 

 

V = A (Z
4
 + BZ

2
)                     (6) 
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Here the magnitude of B determines the degree of quartic and quadratic character of the oscillator.  If B = 0, 

the levels are those of a pure quartic oscillator, and when B = , the levels are those of an S.H.O.  When B 

is negative, the potential is of the double minimum type with an energy barrier of height B
2
/4.  The 

parameter A scales the eigenvalues to the wavenumbers. 

 

 If the components at 155 and 158 cm
-1

 of the DKP far IR multiplet are assigned to the 1-2 and 0-3 

transitions, respectively, Laane's tables
6
 can be used to obtain a B value of -8.0 and an A value of 22.2 cm

-1
.  

These come quite close to the B and A values, respectively, of -6.18 and 24.3 cm
-1

 for cyclopentene (also 

having a pseudo 4-membered ring) and -6.80 and 23.7 cm
-1

 for silacyclobutane.
6
  This determination of the 

two parameter potential function of DKP provides an estimate of 355 cm
-1

 for the energy barrier, and a 

wavenumber value of 0.033 cm
-1

 (i.e. 1 GHz) for the 0-1 transition.  This latter result is in excellent 

agreement with the value of 1 GHz obtained from a recent gas phase microwave spectroscopic study.
5
 

 

6. CONCLUSIONS 

 
The band at ca. 150 cm

-1
 in the far IR spectrum of DKP has been re-assigned to a ring torsional vibration.  

The reported multiplet structure of this band at low temperature has been interpreted on the basis that this 

mode has a substantial quartic character.  This interpretation is in agreement with the conclusions of a 

recent microwave spectroscopic study.
5
   

 

A new vibrational selection rule of n = 1, 3 has been derived for a mixed quartic-quadratic 

oscillator in the near harmonic regime using Rayleigh-Schrödinger perturbation theory, assuming no 

electrical anharmonicity. 
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The components of the far IR multiplet at ca. 150 cm
-1

 have been assigned to 1-2 and 0-3 

transitions of the ring puckering (torsional) vibration, both of which are allowed according to the selection 

rule derived in this work.  These assignments have been used to obtain a two-parameter, double minimum 

potential energy function by making use of eigenvalues tabulated in the literature.
6
  This has provided an 

estimate of 355 cm
-1

 for the energy barrier to interconversion of the enantiomeric boat conformers of DKP.  

It has also provided an estimate of 0.033 cm
-1

 (1 GHz) for the wavenumber of the 0-1 transition, in 

excellent agreement with the value obtained from gas phase spectroscopy.
5
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