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ABSTRACT

The propensity of conventional optical beams to convey angular momentum is very well known. As a spin-1
elementary particle any photon can assume a polarisation state with a well defined ‘spin’ angular momentum of plus or
minus 1 in the direction of propagation, corresponding to a circular polarisation of either left or right helicity. The
mechanical effects of photonic angular momentum are manifest in a variety of phenomena operating at both the atomic
and macroscopic scale. Photon angular momentum also exercises a key role in atomic spectroscopy and a host of other
fundamental optical phenomena.

The aim of this work is to study the interaction between matter and Laguerre-Gaussian beams, and others of related
structure in which a helical wavefront confers an endowment with ‘orbital’ angular momentum. Although the
principles and methods of production of these twisted beams are already quite well understood, the detailed study of the
interactions is a novel subject. We explore changes in selection rules transfer of linear and angular momentum in the
context of nonlinear processes, especially harmonic and sum-frequency generation.

Keywords: Spin angular momentum, orbital angular momentum, Laguerre-Gaussian beams, nonlinear optical processes,
optical vortices, optical spanners, selection rules.

1. THE ELECTROMAGNETIC FIELD DESCRIBED IN TERMS OF TWISTED BEAMS

It has long been known that circularly polarised light beams convey angular momentum. The photons of which any
such beam is comprised are spin-1 elementary particles, whose states with angular momentum of plus or minus 1 in the
direction of propagation correspond to circular polarisation of either left or right handedness. On the atomic scale, the
effects of this angular momentum are manifest in the selection rules governing absorption and emission; mechanical
effects are also observable on the macroscopic scale, as in Beth’s famous experiment with a suspended half-wave
plate.1. For circularly polarised light, a well-defined helicity is associated with the associated electromagnetic vector
fields.

Recently, another quite distinct type of optical helicity has become the subject of considerable interest. Whilst
circularly polarised light comprises photons that convey an intrinsic spin angular momentum, it is also possible to
optically engineer optical vortices, beams endowed with what has become known as orbital angular momentum. 2-8

Here it is the wave-front of the electromagnetic fields that assumes helical form. This new field is rife with synonyms:
whilst the radiation itself is also commonly referred to as a twisted or helical beam, the associated technology has been
termed an optical spanner (though the latter term is misleading as it has also been applied to systems where a wave-
front is mechanically rotated 9-14 Twisted beams may, but need not, comprise circular photons.
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The most commonly studied of the new twisted beams have a Laguerre-Gaussian (LG) profile, and although the
principles and methods of their production are quite well understood, the detailed study of their interactions is a subject
still in its infancy, and usually based on a classical description of the radiation. A novel approach that pays due heed to
the quantum mechanical nature of the photonic interactions is presented by quantum electrodynamics (QED). The fact
that the fully quantised theory introduces another tier of complexity in comparison to its classical counterpart might at
first be considered undesirable. However by treating interactions at the most fundamental level, this formulation
introduces a focus on certain issues that escape attention in the classical development. Recent experimental
observations of optical nonlinearity in LG beams provide the grounds to illustrate application of the QED representation
through calculation of the rate of second harmonic and sum-frequency generation in suitable media. This approach,
which can also be regarded as a test case for dealing in general with the nonlinear optics of twisted beams, reveals rules
for linear and angular momentum conservation in a particularly transparent way.

In source-free regions Maxwell’s equations governing the electromagnetic (EM) field are conveniently cast in terms of
the vector and scalar potentials, a and φ respectively. In the Lorentz gauge, 2 0tc φ−∇ ⋅ + ∂ =a , the free fields are

expressible in terms of a and φ as = ∇×b a , t φ= −∂ − ∇e a , and Maxwell’s equations reduce to the simple wave

equation.15 The orbital angular momentum (OAM) of experimentally realizable well collimated beams has generally
been studied within the paraxial approximation, the being assumption that the transverse profile varies only slowly
along the direction of propagation.16 Thus, with the constraint that the beam is only free to propagate in a designated
direction, say along the ẑ -axis, then the vector field a can be described as;

( )( , ) ( , , ) exp it u x y z kz tω= −  a r εεεε , (1)

where εεεε is a polarisation vector normal to ẑ and ( ), ,u x y z is the transverse amplitude.15, 17, 18 The spatial symmetry
associated with the paraxial approximation invites expression of the amplitude ( ), ,u x y z in cylindrical coordinates
( ), ,r zφ . Choosing ( ), ,u r zφ to be independent of z we can then express the amplitude as,

( ) ( ) ( ) ( ), , , exp ilp lp lpu r z u r f r lφ φ φ≡ = − , (2)

where ( )lpf r must satisfy the conditions imposed by Maxwell’s equations within the paraxial approximation. It has
been shown that beams possessing a field phase factor ( )exp ilφ− exhibit features associated with an orbital angular
momentum L of eigenvalue lh ,18 this signifying the conferred orbital angular momentum per photon. It is this type of
beam that we call twisted. The additional index p introduced as a parameter in the amplitude function ( ),lpu r φ
differentiates all possible modes with the same orbital angular momentum, l, i.e. its presence accommodates
considerations of degeneracy.18

The best-known examples of experimentally realizable twisted laser beams, satisfying the characteristics of the paraxial
equation, are LG modes.6, 19 Within the long Rayleigh range, Rz z>> , the amplitude distribution of such beams,

( ) ( ), , ,LG LG
lp lpu r z u rφ φ≡ , is given by;
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where; l
pC is the normalization constant; 0w is the Gaussian beam-waist at 0z = ; ( )l

pL x is the generalized Laguerre
polynomial of order p and argument x, and 2 Rz is the Rayleigh range – a measure of z over which collimation is
sustained.16 Under such conditions the amplitude ( ),LG

lpu r φ is independent of z and then takes the form given in
equation (2).



The most general description of the vector potential is a linear combination of all possible solutions of the type
presented in equation (2). In terms of such twisted modes, the vector potential field assumes a structure expressible in
the following form;

( ) ( ) ( ) ( ) ( ){ }, , ,
, , ,

ˆ, , exp i c.c.k l p lp
k l p

t k a u r kz tλ
λ

λ
φ ω= − +  ∑a r ε z , (4)

with amplitude ( ),lp lpu r uφ = precisely as given by (2). The sum over the wave-vector in equation (4) takes only one
degree of freedom, the magnitude k, the propagation direction being fixed in the ẑ direction. This mode of expression
reflects the imposition of a condition that the wave-vector k can vary only in magnitude, not in its direction. The vector
field as given by equation (4) nonetheless has obvious structural similarities to the more traditional expansion in terms
of plane waves.

From the general equation (4), the electric and the magnetic induction fields associated with all possible twisted mode
are readily obtained using the expressions in terms of the vector field a , as follows;
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, , ,

ˆ, i exp i i c.c.l p l p l p
l p

t ck u c u a kz tλ λ
λ

λ
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k

e r k k zε εε εε εε ε ; (5a)
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k

b r k k k zε εε εε εε ε . (5b)

Both fields exhibit a transverse and also a longitudinal part (as defined with respect to the direction of propagation.)
The transverse terms are very similar in form to those presented when the EM field is described as an expansion in
terms of plane waves. The distinctive longitudinal terms depend on the first derivatives of the amplitude

( ),lp lpu u r φ≡ . This last feature is highly significant since it makes possible the quantisation of the EM field: together
with the necessary mode orthogonality, it permits the later promotion of field amplitudes to operators. We note that the
‘curvature’ represented by the z-components in (5) prove not to contribute measurably to the field angular momentum.
Full details of the progression to the results given in the above equation can be found in other recent work.20

2. RADIATION, MATTER AND INTERACTION HAMILTONIAN

The classical Hamiltonian for the free field is given by;

( )3 2 2 2 30 ,
2rad radH d r c d r
ε= = +∫ ∫ e bH (6)

where radH is the Hamiltonian density. Using the EM field expressions, equations (7), it is possible to quantify the
field generated by the twisted beams, 20

( ) ( ) ( ) ( )†

, , ,

1
ˆ ˆa a .

2lp lp
k l p

H k kλ λ

λ
ω  = +  

∑ z zh (7)

where ( ) ( )† ˆlpa kzλ ( ( ) ( )ˆlpa kzλ ) is the creation (annihilation) operator of a photon whose source is the twisted beam. The
quantisation rules followed by the creation and annihilation operators are here adopted in order that the quantised
Hamiltonian is independent of the normalization constant lpA , and the amplitude function ( )lpf r . Note that the state
artificially designated 0 cannot be identified with the usual vacuum state of the EM field; the physical significance of
this difference is that it is not possible for a system to spontaneously emit a twisted beam.



The potential vector a(r,t), and the transverse parts of the electric and magnetic fields e(r,t) and b(r,t), are also
expressible in terms of the new creation and annihilation operators. From these expressions the interaction Hamiltonian
describing the coupling between the light and matter will also invoke the creation and annihilation operators for photons
with angular momentum l. Therefore, when studying optical processes involving interactions between any EM field
and matter, the QED Hamiltonian describing the system can be expressed as a sum of three terms, 21

rad matter intH H H H= + + , (8)

where radH is the EM field Hamiltonian. The matter Hamiltonian comprises the usual Schrödinger operators, summed
over the centres ξ that constitute the matter (molecules, atoms, ions, etc.); the sum of the first two terms in (10) is the
unperturbed Hamiltonian. Finally, in the electric-dipole approximation the interaction Hamiltonian, intH , which
represents the interaction between the matter and the EM field, is;

( ) ( )1
0 ,intH ξ ξ

ξ
ε − ⊥= − ⋅∑ R d Rµ (9)

representing dipolar coupling with d┴(R), the electric displacement vector associated with the field e┴(R).

The Fermi rule determines the probability of the system evolving from an initial state i to a final state f over time t;

22
,TOTAL fi f

d
P M

dt

π ρΓ = =
h

(10)

and for processes generating optical output, the density of final states, fρ , is given by ( ) ( )3 12 2k c Vdπ − − Ωh ; Mfi is the
transition matrix element between the states involved. The intensity of an emitted signal can be expressed in terms of
the rate dΓ per solid angle dΩ . Specifically, with the radiant intensity defined as the energy per unit solid angle and
per unit time radiated with polarization λ ′ , trivially it follows that;

( ) d
I k ck

d

Γ′ ′=
Ω

h . (11)

It is the radiant intensity given in (11), as determined from the transition matrix Mfi, which we need to consider when
analysing different optical processes in the following section.

3. NONLINEAR OPTICAL PROCESSES

In this section we consider two nonlinear optical processes that occur due to a coupling of matter and radiation. To this
end we adopt the QED formulation of nonlinear optics as detailed in a recent review.22 Our first example is the well-
known process of second harmonic generation (SHG) and the second, the more general sum-frequency generation
(SFG). Both are parametric, in the sense that there is no uptake or loss of energy by the medium, and coherent output
emerges. It is important to recall that the radiation fields as given by equations (4) and (5) are restricted to those cases
where all beams involved in the optical process are collinear. The generalisation to cases where twisted beams have
different propagation direction is beyond the description given in this work.

3.1 Second harmonic generation

If we consider as input a twisted Laguerre-Gaussian beam, then the interaction Hamiltonian given in equation (9) must
be deployed with reference to the field expansion, equation (5a). For simplicity and compactness of notation we define
a more general polarisation vector given by;
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accommodating most of the functional form of the LG mode. The initial and final states of the radiation–matter system
are now expressible as;

( ) ( )0 ˆ, , , , 0 , , , ,i E n k l p k l pλ λ′ ′ ′ ′= ⊗ z z (13a)
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The leading term of the transition matrix fiM is
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where the polarisation product is explicitly;
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The phase difference θ∆ introduced in equation (14) is simply given by;

( ) ( )2 2 ,l l k k zθ φ′ ′∆ = − − + − (16)

and ijkβ is the hyperpolarisability tensor given by;
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From equation (14), with cognisance of the (jk) index symmetry of the polarization vectors, it can be seen that only the
corresponding index-symmetric part of the hyperpolarisability, ( ) ( )1

2 ijk ikji jkβ β β= + , contributes to fiM .

In constructing the harmonic signal from a bulk system the above phase manifests itself in the form of a sinc2 function,
differing from the conventional form through the inclusion of the term involving angular momentum. Optimum
conversion efficiency, associated with fully coherent output, thus ensues through satisfaction of the two conditions:

2 ,

2 .

k k

l l

′ = 
′ = 

(18)

The former condition is the familiar result for wave-vector matching (conservation of photon momentum); the latter
signifies conservation of orbital angular momentum. Note that neither conservation principle is enforced by the
formalism here applied; however both emerge on an equal footing as natural conditions for coherent output. Under
such conditions the transition matrix reduces to;
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The rate of conversion to the second harmonic now follows, using equation (10) and the given expression for fρ , the
density of final states;
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The result in terms of the observable, the radiant intensity of the harmonic signal emitted by the system, harmonicI , is
then;
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where N is the number of molecules involved in the optical process. Given that the mean input irradiance of the
fundamental beam is;
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it is immediately evident that harmonicI correctly varies with the square of Iω ;
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One notable feature of the result is that SHG is a process generally allowed with an input conveying orbital angular
momentum. However this is subject to the condition that the polarisation is not circular; in an isotropic medium a strict
embargo operates on the coherent production of any harmonic with circularly polarised light.22

3.2 Sum-frequency generation

The generalization of SHG to include sum-frequency generation is straightforward. In this case the initial and final
states of the matter-radiation system are;

( ) ( ) ( )0 1 1 1 1 1 2 2 2 2 2 3 3 3 3ˆ ˆ ˆ, , , , , , , , 0 , , ,i E n k l p n k l p k l pλ λ λ= ⊗ z z z ; (23a)

( )( ) ( )( ) ( )0 1 1 1 1 1 2 2 2 2 2 3 3 3 3ˆ ˆ ˆ1 , , , , 1 , , , , 1 , , ,f E n k l p n k l p k l pλ λ λ= ⊗ − −z z z , (23b)



considering that the two absorbed photons originate from two different LG beams which are collinear, 1 2
ˆ ˆk = k . Note

that the two beams could in particular have equal frequency 1 2k k= but different angular momentum 1 2l l≠ , and
therefore be generated by the coupling of two different beams. The matrix element fiM for SFG is;
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The phase change θ∆ is given as;
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and the corresponding hyperpolarisability tensor ijkβ is now;
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The field factors in (24) take the form,

( ) ( )
2 2

, , 2 2
0 0 0 0

2 2
, exp ,

ll
p l

l p p

C r r r
L

w w w w
λ

λ

     
= − ×      

    
k R kε εε εε εε ε

and thus;

( ) ( ) ( )
3 3 3 1 1 1 2 2 2

1 2 33 2 1

3 2 1 31 2 3 1 2

1 2 3

, , 3 , , 1 , , 2

2 2 2 2

3 2 2 2 2
00 0 0 0 0

ˆ ˆ ˆ, , ,

2 3 2 2 2
exp

l p l p l pj ki

l l ll l l
p p p ll l

p p p i j k

k k k

C C C r r r r r
L L L

ww w w w w

λ λ λ

λ λ λε ε ε
+ +

      =    

         
− ×          

        

ε z R ε z R ε z R

. (26)

In obvious analogy to SHG, the optimum conversion efficiency occurs when;
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It can be seen that these conditions are very similar to those which apply for SHG; moreover by considering the case
where 1 2k k= it is seen that SHG is still valid for the case where the input photons involved have different orbital
angular momenta. The intensity of the signal can be found as in the previous section, and emerges as the following
result;
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4. EXCHANGE OF ORBITAL ANGULAR MOMENTUM

The manifestation of OAM in the interactions of twisted beams with matter has been explored theoretically, leading to
predictions that a light-induced torque can be used to control the rotational motion of atoms 23. More generally, Berry 24

has shown that orbital angular momentum is an intrinsic property of all types of azimuthal phase-bearing light,
independent of the choice of axis about which the OAM is defined. O’Neil et al. 25 have classified the engagement of
twisted beam OAM in terms of intrinsic and extrinsic interactions, i.e. those relating to electronic transitions, and those
concerned with centre of mass motion. On such grounds it might be argued that, in its interaction with an electronically
distinct and isolated system such as a free atom or a molecule, intrinsic OAM should be manifest through an exchange
of orbital angular momentum between the light and matter, just as photon spin angular momentum manifests itself in
the selection rules associated with the interactions of circularly polarised light. The QED analysis affords a means of
testing this hypothesis.

At the fundamental level, each electric interaction of twisted light with a molecule is associated with a coupling
operator given by;

( ) ( )3 ,int klH d t= − ⋅∫ r P r d r , (28)

where P(r) is the multipolar polarisation field, and considering one specific mode of the electric displacement field
associated with the fundamental electric field of equation (5a). For simplicity only electrical interactions are considered
here. To identify prototypical behaviour, the molecule may be represented by a hydrogenic two-particle system of
charges for which we have;

( ) ( )
1

1,2 0

e dα α α
α

λ δ λ
=

= − − − −  ∑ ∫P(r) q R r R q R . (29)

From the form of the matrix element it may then be concluded that the exchange of OAM is principally mediated
through electric-dipole coupling and involves only the centre of mass motion and the light beam;

{ } { }, ; ; , ; ;if z z kl int z z klM P L e n H P L g n′ ′ ′= . (30)

Crucially, the internal electronic-type motion does not exchange any OAM with the light beam in this leading order of
multipole coupling.

On detailed analysis, it transpires that only in the weaker electric quadrupole interaction, or in yet higher order
multipoles, is there an exchange involving all three subsystems (the light, the atomic centre of mass and the internal
motion). In the electric quadrupole case, one unit of orbital angular momentum is exchanged between the light beam
and the internal motion, resulting in the light beam acquiring (l±1)ħ units of OAM – which are then transferred to the
centre of mass motion.



CONCLUSIONS

In summary, we have developed an internally consistent QED representation of twisted optical beams and their
interactions with matter. The application of this formalism has been illustrated in two types of parametric process; one
is SHG, the prototypical example of optical nonlinearity; the other is SFG, its non-degenerate counterpart. With
experimentally reasonable constraints identified in the mathematical construction of the twisted modes, our results are
applicable more widely than to Laguerre-Gaussian modes. In the application to nonlinear optical processes,
conservation of orbital angular momentum is seen to arise as a necessary condition for coherent output; hence
measurements of SHG using any twisted beam pump are dominated by harmonic signals associated with a twisted
output conveying twice the input angular momentum, in accordance with experimental observations by Courtial et al.
The SFG results, which again signal OAM conservation, can also be applied to the generation of a second harmonic
from the coupling of two LG beams of identical frequency, but with different values of l. In general, our results rule out
any experiments seeking to observe OAM exchange between light beams and molecular systems through modifications
in the selection rules governing electric dipole transitions. In chiral molecules, the low symmetry enables many optical
transitions to be allowed under the selection rules for both electric and magnetic multipoles, and the entanglement of
spin and orbital photon angular momentum will require careful extrication; that is the thrust of further work currently in
progress.
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