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Abstract 

Recently, optical beams with a new and distinctive type of helicity have become the 
subject of considerable interest. While circularly polarised light is associated with 
electromagnetic fields whose locus takes a helical form, for these optically engineered phase-
bearing or ‘twisted’ laser beams it is the wave-front surface that is helical. Consequently, a 
new and intriguing manifestation of optical handedness is available for characterising optical 
interactions with matter. Many of the interactions that have been studied with such beams 
utilise or exhibit their intrinsic ‘orbital’ angular momentum. To date, however, such studies 
have mostly focused on interactions with achiral (generally mirror-symmetric) matter. It is 
timely to assess what new features, if any, can be expected when such beams are used to 
interrogate a chiral (molecularly right- or left-handed) system. In this review we introduce and 
analyse the concepts that determine whether optically twisted beams should offer a 
controllable specificity in their interactions with chiral matter, associated with orbital angular 
momentum transfer. By explicit analysis of the grounds for chiroptical behaviour, and with a 
specific focus on circular dichroism, we establish the principle that the helicity of optical 
vortices cannot directly engage through any parametric or non-parametric optical process with 
the chirality of a molecular system, up to the level of electric quadrupole interactions. These 
conclusions have been corroborated by recent experimental results.  

1 Introduction 

Of the many notable advances marked by its designation as World Year of Physics, 2005 is 
the hundredth anniversary of the photon concept. As the quantum of electromagnetic 
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radiation – the gauge boson for electromagnetic coupling – the photon has properties that are 
generally well known and which can be found listed in any table of elementary particles. 
Amongst these properties it is usual to include the unit spin angular momentum – whose 
manifestation in circular polarisations is also very well known and corresponds to projections 

, according to the circular sense, along the direction of propagation. [1] Circularly 
polarised light is intrinsically handed, its left- or right-handed helicity associated with the 
locus of the electromagnetic field vectors. Less well known is the fact that such features are 
usually interpreted with implicit reference to a well-collimated non-divergent beam with a 
planar wavefront, reflecting common experimental practice. When other kinds of light beam 
are engineered, novel features can emerge that have no counterpart in conventional optics. 
Just over ten years ago, [2] recognition first emerged that light beams with a helical wavefront 
could display other kinds of angular momentum, now generally called orbital. Specifically, if 
such a twisted beam has an integer number l twists within its wavelength, an orbital angular 
momentum of l  is associated with each photon – quite distinct from any spin angular 
momentum determined by the polarisation. Such beams are now readily producible in the 
laboratory. [3-5] This new field is rife with synonyms: the radiation itself is often described as 
comprising optical vortices, and the associated technology has also been termed an optical 
spanner (though this term has also been applied to beams whose wave-front is mechanically 
rotated). Amongst the many issues that arise in the construction, application and 
representation of twisted beams is the question of how their handedness may or may not 
engage with chiral matter. [6] 

±=

=

Molecular chirality signifies a structural handedness that changes under spatial inversion 
or a combination of inversion and rotation, equivalent to the usually stated criterion of a lack 
of any improper axes of rotation. The optical manifestations of such chirality known as 
optical activity are well attested, [7] ranging from the optical rotation widely used to 
characterise the enantiomeric (left- and right-handed optical isomeric) forms of sugars, to the 
circular differential Raman scattering that has emerged as a means of exhibiting the chirality 
of protein folding. [8] Traditionally, chiral optics engages circularly polarised light – even in 
the case of optical rotation, the phenomenon is commonly interpreted through a description of 
the plane polarised state as a superposition of circular polarisations with opposite handedness. 
It is for this reason that the interactions of circularly polarised light with matter are 
enantiomerically specific. Whereas twisted beam have until now been studied primarily in 
their interactions with achiral matter, extensive interest has arisen in the intriguing 
possibilities represented by their interactions with chiral systems, such as some recent work 
with liquid crystals. [9] Interested parties range from those researching in the theory of optical 
angular momentum to others interested in possible applications to molecular motors, nano-
manipulation and biotechnology. It is in this broad context that we assess what new features, 
if any, can be expected if such beams are used to interrogate a system whose optical response 
is associated with enantiomerically specific molecules. 

In the following, we introduce salient quantum electrodynamical principles for 
subsequent discussion of issues relating to the interplay of quantised spin and orbital angular 
momentum – the latter with particular reference to twisted beams. The theoretical basis for 
our discussion is molecular quantum electrodynamics – the only theory in which the photon 
concept has full legitimacy. [10,11] To avoid unnecessary distraction by lengthy detail, the 
arguments are pursued with only the most salient equations explicitly presented. Section 2 
introduces the principles of molecular chirality at a fundamental level appropriate for 
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subsequent discussion, in section 3, of issues relating to the interplay of quantised spin and 
orbital angular momentum – the latter with particular reference to twisted beams. The key 
results are summarised in section 4. 

2 Foundation Principles 

Considerable intricacies of symmetry can arise when a twisted laser beam interacts with 
chiral matter. Specifically, it is necessary to construct a theory that can accommodate as 
independent quantities the handedness of the molecules, the circularity of the optical 
polarisation, and the sense of twist in the laser beam – see Figure 1. In anticipation of the 
complexity that ensues, we shall therefore first determine a theoretical framework amenable 
to the issues of interest, to exact in generalised form the criteria for manifestations of 
chiroptical interactions. From this framework, in which conventional chirality can be 
understood in terms of molecular symmetry and multipole properties, we can extend the 
arguments to address light with a twisted wavefront. For simplicity, materials with a unique 
enantiomeric specificity are assumed – signifying a chirality that is intrinsic and common to 
all molecular components (or chromophores) involved in the optical response. Results for 
systems of this kind will also apply to single-molecule studies. Longer-range 
translation/rotation order can also produce chirality, as in twisted nematic crystals, but such 
mesoscopic chirality cannot directly engender enantiomerically specific interactions except 
under particular conditions. The only exception is where optical waves probe two or more 
electronically distinct, dissymmetrically oriented but intrinsically achiral molecules or 
chromophores. Then chirality can be manifest as in the two-group model (see below). Here 
we are concerned with intrinsically chiral centres rather than chiral arrays. 
 

(a)  

(b)  
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(c)  

Fig. 1. Interaction of left circularly polarised radiation (represented by red arrows) with left-hand 
(randomly oriented) chiral molecules: a) plane waves; b) left-handed Laguerre-Gaussian beam,  
and c) right-handed Laguerre-Gaussian beam l

3l =
3= − . In all three cases the radiation is represented by 

surfaces of constant phase. 

Chiroptical interactions can be distinguished by their electromagnetic origins. For 
molecular systems in their usual singlet electronic ground state (where we exclude free 
electron spin effects), chiroptical interactions are linked at a fundamental level with the 
spatial variation of the electric and magnetic fields associated with the input of optical 
radiation. This variation over space can be understood to engage chirality either through its 
coupling with dissymmetrically placed, neighbouring chromophore groups (Kirkwood’s two-
group coupled-dipole model, [12] now of limited application) or more generally through the 
coupling of its associated electric and magnetic fields with individual groups. As chirality 
signifies a local breaking of parity selection rules, i.e. parity is no longer a good quantum 
number, it thereby permits the interference of electric and magnetic interactions – or, for 
example, the interference of multipolar electric interactions having different parity. Even in 
the two-group case, the paired electric dipole interactions of the system equate to electric and 
magnetic interactions of the single entity which the two groups comprise. Thus, for 
convenience, the term ‘chiral centre’ is used in the following to denote either chromophore or 
molecule. To understand how this works, it will be necessary to unveil the structure of the 
quantum amplitude, specified as the amplitude for the optical interaction of a single 
intrinsically chiral species. 

2.1 Hamiltonian and Field Expansions 

In order to properly represent the quantum features of the radiation we shall develop the 
theory using the framework of quantum electrodynamics. The Hamiltonian for any chiroptical 
interaction comprises the unperturbed operators for the radiation and for N chiral centres, here 
differentiated by a label ξ, and also a light-matter interaction Hamiltonian; 

 

 ( ) ( )rad centre int .
N N

H H H H
ξ ξ

ξ ξ= + +∑ ∑  (1) 
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As an energy operator, each component of the Hamiltonian is necessarily of even parity 
with respect to space inversion and also even with respect to time reversal. The first two 
terms of (1) determine the basis in which the different states of the system can be described, 
i.e. a direct product of eigenstates of the radiation and the matter. The interaction term can be 
expressed either in minimal coupling form (cast in terms of coupling with the vector potential 
of the radiation field) or the more familiar multipolar formulation, directly expressed in terms 
of electric and magnetic fields. [13] These two (and also other less well-known) options lead 
to identical results for real processes, that is those subject to overall energy conservation; 
[14, 15] for convenience in the following we develop theory using the multipolar form. 

The multipolar interaction Hamiltonian divides into three parts: one is a linear coupling 
of the molecular polarisation field (accommodating all electric multipoles En) with the 
transverse electric field  of the radiation; another entails linear coupling of the molecular 
magnetisation field (all magnetic multipoles Mn) with the magnetic field 

( )e r
( )b r  of the 

radiation. The third is a coupling of the molecular diamagnetisation field, quadratically with 
the magnetic radiation field: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 31
int 2 , .ij i jH d d O b b d⊥ 3d′ ′ ′= − ⋅ − ⋅ +∫ ∫ ∫p r e r r m r b r r r r r r r r  (2) 

 
In the Schrödinger representation the time-dependence of these operators is suppressed. 

The first term in equation (2) depends on the molecular polarisation field ( )p r  while the 
second depends on the magnetisation field ( )m r ; the last term, which involves the 
diamagnetisation field , is associated with the variation of current density when the 
fields are switched on. The latter term is typically an order of magnitude smaller than the first 
two (by a factor of the order 

( ,ijO ′r r )
2α , with α  the fine structure constant) and for present purposes 

it need concern us no further – indeed there appears to be no suggestion of its engagement in 
any form of molecular chirality. 

The interaction Hamiltonian is considered a perturbation of the system, allowing 
transition from one eigenstate of the unperturbed Hamiltonian, rad centres , to another. By 
expanding the parent polarisation and magnetisation fields as Taylor series about the 
molecular positions, the terms comprising equation (2) can be expanded in multipolar orders 
– principal amongst which (retaining terms up to the order of α) are the electric-dipole 

H H+

( )ξµ , 
electric-quadrupole ( )ijq ξ  and the magnetic-dipole ( )ξm . The leading terms of (2) are thus 
cast as follows; 

 

( ) ( ) ( ) ( ) ( ) ( )int ij i jH q eξ ξ
ξ ξ ξ

ξ ξ ξ⊥ ⊥= − ⋅ + ∇ + − ⋅ +∑ ∑ ∑µ e R R m b R… …ξ  (3) 

 
The parity under time and space symmetry of the electric dipole, electric quadrupole and 

magnetic dipole are given in Table 1. 
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Table 1: Space and time parity of electromagnetic quantities 

Operator Time parity Space parity 
Hamiltonian 1+  1+  
Electric field 1+  1−  
Electric field of LG mode ( ), , ,k l pλ  1+  ( ) 11 l+−  

Electric dipole 1+  1−  
Magnetic field 1−  1+  
Magnetic field of LG mode ( ), , ,k l pλ  1−  ( )1 l−  

Magnetic dipole 1−  1+  
Wave-vector 1−  1−  

 
The electric and magnetic fields that feature in (3) are solutions of Maxwell’s equations 

within the QED framework. In free space, and within the Coulomb gauge, the simplest 
solutions are given by the plane waves; 

 

 ( ) ( ) ( ) ( ) ( ) [ ]
1
2

, 0

i a exp i
2

ck h c
V

λ λ

λ ε

⎧ ⎫⎛ ⎞⎪ ⎪= ⋅⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑
k

e r ε k k k r= . .+  (4a) 

 

 ( ) ( ) ( )( ) ( ) ( ) [ ]
1
2

, 0

ˆi a exp i
2

k h c
cV

λ λ

λ ε

⎧ ⎫⎛ ⎞⎪ ⎪= × ⋅⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑
k

b r k ε k k k r= . .+  (4b) 

 
Here V is the quantisation volume, k is the wave-vector and λ is a polarisation label; the 

latter two quantities together represent four independent degrees of freedom. In the classical 
interpretation, the terms represented explicitly in equation (4) signify the positive frequency 
analytic signals [16]; corresponding negative frequency components are conveyed by the 
hermitian conjugate terms (in which the phase factor has the opposite sign). 

For optically engineered radiation with orbital angular momentum, the electromagnetic 
fields are commonly cast in terms of Laguerre-Gaussian (LG) modes. From an analytical 
point of view, these modes constitute another complete set, also arising as paraxial solutions 
of the source-free Maxwell equations. For example the  mode is a phase quadrature 
superposition of 10HG  and 01  Hermite-Gaussian modes. [2] Explicitly, the electric and 
magnetic field expansions for a beam propagating in the z direction emerge in the following 
form as functions of cylindrical coordinates (r, z, φ); 

1
0LG

HG

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1
2

, , , 0

ˆ ˆi a exp i
2 lp lp lp

l p lp

ck k . .f r k kz l h c
A V

λ λ

λ

φ
ε

⊥
⎧ ⎫⎛ ⎞⎪ ⎪= −⎡ ⎤⎜ ⎟⎨ ⎬⎣ ⎦⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑
k

e r ε z z=
+ , (5a) 
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 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1
2

, , , 0

ˆ ˆ ˆi a exp i
2 lp lp lp

l p lp

k k f r k kz l h c
cA V

λ λ

λ

φ
ε

⎧ ⎫⎛ ⎞⎪ ⎪= × −⎡ ⎤⎜ ⎟⎨ ⎬⎣ ⎦⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑

k

b r k ε z z= . .+ , (5b) 

 
where ( )a lp

λ  is the photon annihilation operator and ( )
lp
λε is the wave polarisation vector, which 

can describe linear, circular or any other basis polarisation. The four degrees of freedom 
manifest in the summation variables are the magnitude of the wave-vector (its direction 
assigned to a specified direction z), the polarisation λ and two other labels, l and p, that 
designate the order of the associated Laguerre polynomial [3,17] – see Appendix 1. Also, l 
denotes the orbital angular momentum quantum number, for which a positive sign denotes 
left helicity and a negative sign, right. Here we note that the radial functions ( )lpf r  are 
independent on the sign of l; consequently all information of the handness of the optical 
vortex is in the phase factor [ ]exp ilφ− , a characteristic that is crucial when analysing the 
interactions of such beams with chiral centres. 

Returning to the expression given by equation (3), the electric dipoles ( )rµ  (E1) have an 
odd signature for space parity and even for time; electric quadrupoles q (E2) are even in both 
space and time, while the magnetic dipoles ( )m r  (M1) are even in space and odd in time. 
Similarly, independent of which mode expansion is used, the electric field ( )e r of the overall 
radiation field is space-odd and time-even; conversely the magnetic field ( )b r  is of even 
parity under space inversion and of odd parity under time inversion – the latter temporal 
features readily apparent in the interaction picture representation.[11] Note, however, that the 
symmetry assertions for the electric and magnetic fields of the radiation are true only for the 
whole; they do not necessarily apply when only one or a finite number of modes is considered 
(independent of the mode expansion used). These and other fundamental symmetry properties 
are summarised in Table 1. Cognisance of these features proves extremely significant in 
developing and identifying non-zero terms in the quantum amplitude for optical processes. 

The polarisations of the photon can be described by the vectors . For circular 
polarisations the explicit expressions are; 

( ) ( )λε k

 

 ( ) ( ) ( )1
2

ˆ ˆi± = ±ε k x y  (6) 

 
where the positive (negative) superscript denotes left-(right-) circular polarisation. It can be 
seen that ( ) ( ) ( ) ( )± =ε k ε k∓  and ( ) ( ) ( ) ( )± − = −ε k ε k∓ . With the wave-vector k ,  and 

 form a right triad. 

( ) ( )+ε k
( ) ( )−ε k
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2.2 Perturbation Theory and Quantum Amplitudes 

The probability of a given chiroptical process is determined by its quantum amplitude. For 
one molecule ξ we have; 

 

 
( ) ( ) ( ) ( )

1

0 0 0

0 1 2 1 2
1

1, 1
nn ttt

fi n I I I n
n t t t

M f U t t i f dt dt dt V t V t V t i
i

ξ
∞

=

⎧ ⎫⎪ ⎪⎛ ⎞≡ = +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∫ ∫ ∫… …
=

 (7) 

 
where the operator  is the interaction Hamiltonian int( )IV t H  in the interaction picture. 
Depending on the number of photons involved in the process the relevant term of the 
expansion is considered – for example for second harmonic generation, SHG, where two 
photons are annihilated and one created in each fundamental interaction, the term  is the 
one that gives the first contribution. Generally, for an n-photon process we have; 

3n =

 

 

( ) ( ) ( )

1

0 int int
0

1,
n

n
fi

i

M f U t t i f H H i
H E

ξ

−
⎛ ⎞

≡ = ⎜⎜ −⎝ ⎠
⎟⎟  (8) 

 
The quantum amplitude Mfi for a specific optical interaction in a single chiral centre is 

constructed from time-dependent perturbation theory and entails a linear combination of 
scalar terms, each of which is the inner product of two rank r tensors: , a radiation tensor, 
and , a molecular tensor, both detailed below; [18] 

( )rS
( )rT

 

 
( ) ( ) ( )

; ; ; ;
, 0

exp
n

r r
fi e m n e m

e m
M iξ

ξ e m n e m− − −
=

= ∆ ⋅ ⊗∑k R S T −

r S≡ r T=T
)

 (9) 
 
Here, ∆k is the mismatch between the wave-vector sum of all input and the sum of all 

output photons (if any) involved in the process at a chiral centre ξ located at Rξ . To identify 
the radiation and molecular tensors, 

1 2 ri i iS …  and 
1 2 ri i i…  respectively, three labels 

are used: , corresponding to the number of electric-dipole, magnetic-dipole and 
electric quadrupole interactions, respectively. The sum of these equals the number of photon 
interactions involved in the process, e m

( ) ( )

( ; ;e m q

q n+ + = . 
The rank  of the tensors  and  is determined by the labels (  through 

the simple relation , which signifies that the rank is between  and . For 
plane wave photons, the structure of the radiation tensor  is that of an outer product of the 
beam polarisation vectors , taking the complex conjugate for emitted photons – and 
also wave-vector components, in the case where quadrupole (or higher) multipoles are 
involved. This tensor also carries factors relating to other beam parameters – which, in the 
signal derived from 

( )r ( )rS ( )rT ); ;e m q
2r e m q= + + n 2n

( )rS
( ) ( )λε k

( ) 2n
fiM ξ  (see below) will manifest the dependence on beam intensities 

and degrees of coherence. If the LG mode expansion is considered, the radiation tensor  
will also include the complex profile structure of the radiation, given by 

( )rS
( )lpf r  and its 

derivatives (see also Appendix 1). The molecular tensor  can be written in a form that 
entails a product of one or more molecular transition integrals, as determined by the number 
of photons involved. In every case the origin of such forms is a single transition integral, 

( )rT
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expressible as a Dirac bracket with the appropriate number of electromagnetic interactions 
coupling the initial state to the final state. The simple case of single-photon absorption serves 
to illustrate the point. Here one interaction couples the two molecular states, and that 
interaction embodies the entire family of multipolar contributions. In order for the transition 
integral not to vanish identically, the triple product of the group theoretic representations for 
the initial and final state wavefunctions with that of the interaction must contain the totally 
symmetric representation. It is here that the implications of molecular chirality emerge. 

Before considering chiral systems in more detail, it is instructive to reflect on the case of 
a centrosymmetric molecular system, where parity is a good quantum number and all 
wavefunctions have definite parity. Here, the only non-zero contributions to the transition 
integral can be those whose parity equates to the product signature of the initial and final state 
molecular wavefunctions. For example if electric dipole coupling is to give a non-vanishing 
contribution (i.e. that coupling is allowed) then, for that same transition, electric quadrupole 
and magnetic dipole contributions would indeed vanish (they would be forbidden) by virtue 
of their opposite spatial parity. Thus, for centrosymmetric species, all multipolar contributions 
to any given quantum amplitude will have the same spatial parity. Clearly for chiral systems, 
where parity is not a good quantum number, no such rule applies and the amplitude may 
entail contributions of both positive and negative parity signature. 

2.3 System Response 

Not only molecular symmetry determines the nature and extent of any chiroptical response; 
macroscopic symmetry is important too. In particular, when the system of interest is a fluid or 
other microscopically disordered medium, the isotropic symmetry of the bulk comes into 
play. In general, experimental measurements result from the optical interactions of more than 
one chiral centre, and the observable results from a quantum amplitude comprising an 
ensemble sum of contributions from all relevant centres. In calculating the observable 
associated with a particular optical interaction it is usual to apply the Fermi Rule; 

 

 
22

TOTAL fi f
d P M
dt

π ρΓ = =
=

. (10) 

 
Here the transition matrix represents all the system, i.e. all the molecules present in the 

sample and therefore we have: 
 

 
1

N

fi fiM M ξ

ξ =

=∑  (11) 

 
and hence, 

 

 

2

,

N

fi fi fiM M Mξ ξ

ξ ξ

′

′

Γ ∝ =∑  (12) 
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a result that emerges from the modulus square of the quantum amplitude. For chiral species 
this therefore includes, in addition to diagonal terms that are all of even parity in both 
radiation and molecular parameters, various terms associated with the quantum interference 
of couplings with opposite parity, correspondingly of odd parity for both the radiation and 
molecule. 

As is apparent from the ( )exp i ξ∆ ⋅k R  factor in (9), each quantum amplitude 
contribution generally has a different phase associated with spatial variance in the registration 
of light at the corresponding chiral centre. Most optical processes are incoherent and non-
parametric (i.e. ), such that the interference of quantum amplitudes from different 
centres gives a null contribution when those centres are isotropically distributed – a principle 
that holds generally true except in certain nanomaterials.1[19,20,21] For such processes, no 
role is played by any orientational order characterising long-range chirality. In the following 
we focus specifically on chiroptical observables associated with non-parametric processes in 
which the ensemble signal, by virtue of the ergodic theorem, represents the time-averaged 
response of a single chiral centre. The two reasons for studying such optical processes are; (i) 
it is processes of this category that are involved in the most common manifestations of 
chirality (circular dichroism, differential Rayleigh and Raman scattering, circularly polarised 
luminescence etc.); (ii) where optical vortices are concerned, it is known that parametric 
processes generally entail conservation of orbital angular momentum by the radiation field, 
such that chirality is not engaged. [17] 

0∆ ≠k

For a non-parametric interaction the transition rate of a single chiral centre is a sum of 
amplitude contribution products, featuring amongst which are quantum interferences of a 
particular class, i.e. products that are odd in parity for both the matter and radiation – terms 
that can only arise in the case of chiral systems. Handedness is apparent in two respects. If the 
space inversion operator (signifying a change to the opposite enantiomeric form) is applied to 
all properties of the molecule – and in particular its multipole moments – but not the radiation 
(signifying retention of its circularity), then these interference terms change sign. The same is 
true if the radiation changes handedness, (on space inversion) but the molecule retains its 
enantiomeric form; then again, these specific interference terms change sign. Clearly all 
contributions to the signal are invariant to inversion of the whole system. This is indeed the 
reason why chiral interactions must involve handed radiation, usually circular (elliptical 
polarisations are also permissible). Plane polarisations are invariant under space inversion; 
consequently, applying space inversion to a molecular system interacting with plane polarised 
light has the same effect as applying it to both the molecule and the radiation; clearly no 
chiral specificity can emerge. Optical rotation, as noted earlier, is an exception since it is a 
parametric process. 

For the interference terms that support chiral selectivity; it remains to discover any 
further conditions that need to be satisfied to ensure that they are not identically zero. To this 
end we focus on the issue of rotational averaging. For any component of a non-parametric 
signal – and in particular the odd-parity quantum interference terms – rotational averaging 
effects a disentanglement of the radiation and molecular fields,  and  respectively. 
When rotational averaging is implemented the result is a product of scalars (or, for tensors of 

( )nS ( )nT

                                                        
1 Amplitudes of different centres effectively add within a range 1)−(∆k , eliciting coherent response in 

mesoscopically disordered systems comprising structured nanoparticles.  
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rank four or more, a linear combination of such scalars), one scalar for the radiation and one 
for the molecule (see Appendix 2). Each scalar is derived by contracting the tensor,  or 

, with an isotropic tensor of the same rank – in the language of spherical tensors this 
signifies the angular momentum J = 0 contribution. For example in the E1-M1 interference 
term for photon absorption by a chiral molecule the molecular tensor 

( )nS
( )nT

( )2 [ ][ ]=T mµ , on 
contraction with the isotropic tensor of rank 2 (the Kronecker delta), yields the scalar 

(T = ⋅mµ )  – signifying that the electric and magnetic transition moments must not be 
orthogonal (in transitions between non-degenerate states, m  will be antiparallel to ). 
Equally 

m
( )2 [ ][ ]=S e b  yields the scalar ( )S = ⋅e b ; this determines that chiral resolution 

vanishes when plane polarised light is employed, for then the field polarisations are real and 
the orthogonality of the electric and magnetic vectors gives ( ) 0⋅ =e b . But for any circular 
(or even for elliptical) polarisation,  is non-zero and, since it also changes sign on reversal 
of circularity; 

S

 

 
( ) ( )( )S = ⋅ ⎯⎯→ − ⋅ = −e b e bI S  (13) 

 
chiral specificity is manifest. Since T takes opposite signs for chiral molecules of opposite 
enantiomeric form, 

 

 
( ) ( )( )T = ⋅ ⎯⎯→ − ⋅ = −µ m µ mI T  (14) 

 
the rate of absorption of left-handed circularly polarised radiation, for example, is different 
for left- and right-handed enantiomers – though only marginally, because of the relative 
weakness of the salient interference terms compared to the dominant (usually electric dipole) 
diagonal contributions to the signal. Equally, each enantiomer exhibits a slightly different rate 
of absorption for left and for right-handed circular input. This is the origin of circular 
dichroism. Similar remarks apply to optically more intricate processes involving more than 
one photon, where the quantum amplitude itself comprises products of multipolar couplings, 
each associated with a definite resultant spatial parity, and the key interference terms arise 
from products of these products with opposite inversion symmetry. Again, for a chirally 
specific signal to emerge, it is necessary that the resultant radiation and molecular scalars do 
not vanish identically. 

3 The Interactions of Twisted Beams 

Having elicited the key principles, we can now address the central issue of how, if at all, a 
twisted laser beam can engage in a chirally differentiable way with matter. Most of the tools 
for addressing this issue have been introduced in the last section. The helicity of optical 
vortices is present in their wave-front structure. As we have seen, the chirality of the electric 
and magnetic fields is manifest through additional phase factors in the positive and negative 
frequency components. In particular, from equation (5a) the (un-normalised) positive 
frequency analytic signal for the electric field of a Laguerre-Gaussian (LG) mode propagating 
in the z-direction with a wave-vector of magnitude k, is expressible as; 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆi a exp ilp lp lpk f r k kz lλ λ φ⊥ = −⎡ ⎤⎣ ⎦e r ε z z  (15) 

 
where  is the polarisation operator. Of the two space-dependent terms in the field phase, the 
first is the origin of the wave-vector mismatch factor in (9) – here delivered as  – and 
the second is an azimuthal phase factor, a characteristic of twisted beams. The first 
component of the phase in (15) changes sign on space inversion (and equally, on complex 
conjugation) just as the circular polarisation vectors behave. The second phase factor changes 
by addition of π on space inversion. The magnetic field for a twisted beam has an exactly 
similar form. [20] 

ε̂
zξ ∆k

No difference should be expected between the behaviour of right and left forms of any 
twisted mode if the photons it comprises are plane polarised and the material they interact 
with is achiral, in accordance with the dictates of parity. This is equivalent to the case of 
circularly polarised, planar wave-front (e.g. Gaussian) modes, interacting with achiral 
material. However, there are several differences between LG photons and those associated 
with planar wave-fronts. In the present context a significant difference is that plane waves 
have no restriction in the direction of propagation, while the symmetry of LG photons 
designates propagation in one direction, . This characteristic indicates that mirror inversion 
along a plane containing the axis becomes the relevant symmetry element, as opposed to 
space inversion. Arguing symmetry on these grounds is sufficient to establish that there is no 
differentiation between LG beams of opposite handedness when achiral material is 
interrogated, since a left-handed optical vortex transforms to a right-handed one. 

ẑ
ẑ

Now we come to the crux, the interaction of a twisted beam with chiral matter. Consider 
first the case of a twisted beam comprising plane polarised photons; superficially this appears 
exactly analogous to the case of circular polarisations in a plane wave. Mirror inversion of 
either part of the system (molecule or radiation) gives a system different from the original, 
and so a change in signal signifying chiral specificity might be anticipated. Representing in 
brackets the circularity of the radiation and the matter respectively, both cases require identity 
of (L, L) and (R, R), and so too (L, R) and (R, L). However (L, L) and (L, R) differ. More 
succinctly, denoting either handedness L/R by a circularity c and the reverse by c , we have 
( ) ( ), ,c c c c=  – which may or may not be equal to ( ),c c . 

For the twisted beam case it is therefore necessary to ascertain whether there is a 
mechanism, by means of which signals that are permissibly different in these terms may in 
fact differ. In the previous section it was seen that in a fluid, the observable is obtained as the 
ensemble sum of contributions from all relevant centres. As in the case of plane waves, the 
factor ( )exp iz kξ∆  continues to play an important role and represents any net (longitudinal) 
optical phase shift associated with a process mediated by a chiral centre ξ located at 

( ),r zξ φ= ,r . However, another (azimuthal) phase factor of similar form, ( )exp i lφ− ∆ , now 
appears alongside it2 and also enters fiM ξ  through the radiation tensor . Here  
represents any mismatch between the orbital angular momentum sum of all input and the sum 
of all output photons involved in the process at the chiral centre. First, if the optical process is 
parametric, then  and all dependence on the sign of the orbital angular momentum of 
the radiation is lost. The transition rate, proportional to the modulus square of the rotationally 

( )nS l∆ =

0l∆ =

                                                        
2 In separate work we have verified that this form for the azimuthal phase factor is unchanged when higher order 

multipole couplings are entertained.  
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averaged quantum amplitude, 
2

fiM , has no dependence on the sign of the orbital angular 
momentum l and therefore is not a chiral discriminator. If, on the other hand, we consider a 
non-parametric process where 0l∆ ≠ , the incoherent character means that the rate is 
proportional to the rotational average of the modulus square of the quantum amplitude, 

2

fiM , in which the azimuthal phase factor cancels each and every centre ξ; again the 
observable transition rate does not involve the orbital angular momentum or its sign. Hence 
the circularity of the beam is immaterial. 

In the case of chiral molecules interacting with twisted light comprising circular photons, 
and in view of the observations made above, the problem reduces to exactly that which 
applies to other beams of circular polarisation – but now there is a mechanism for the 
associated signals actually to differ. Again the helicity of the wave-front is immaterial so far 
as chiral specificity is concerned. Consider for example Figure 1(b), in which a left-handed 
twisted beam comprising left-handed circular photons interacts with a system of left-handed 
molecular enantiomers. Let us entertain the simplest optical process in which chirality can be 
manifest, namely circular dichroism. Then, the quantum interference terms responsible for 
chiral discrimination change sign if either the circularity of the photons or the isomeric form 
of the molecules is changed; the interference terms are invariant to a change of both. No 
component of the rate changes if, for example, the beam becomes a right-handed vortex but 
the sense of the photons and molecular handedness is the same as before. Note that this 
conclusion is contingent upon the azimuthal phase factors for the electric and magnetic fields 
being identical; however this is a necessary consequence of Maxwell’s equations, as has been 
shown explicitly for quantised Laguerre-Gaussian modes. [17] This lack of exchange of 
orbital angular momentum between the optical vortex and the chiral matter has been 
experimentally demonstrated by the research group at The Laboratory of Chemical and 
Biological Dynamics at Leuven, Belgium. [22]  

3.1 Explicit Calculation for Circular Dichroism 

To ground the above analysis with a specific application, let us consider the simplest case, i.e. 
photon absorption, where any enantiomeric rate dependence would signify a type of 
dichroism. In this case the initial and final state of the system is given by; 

 

 ( )ˆ; , , ,i A n k l pλ= z  (16a) 

 

 ( ) ( )ˆ; 1 , , ,f B n k l pλ= − z  (16b) 

 
The three leading contributions to the transition matrix are in this case expressible as; 
 

 ( ) ( ) ( ) ,
m q
fifi fi

fi i i i i ij j i

i i i i ij j i

MM M

M f e m b q e i

f e i f m b i f q e i
µ

µ

µ

⊥ ⊥

⊥ ⊥

= − − + ∇

= − + − + ∇���	��
���	��
 ���	 
��
 (17) 

 



D. L. Andrews, L. C. Dávila Romero and M. Babiker 158 

whose evaluation invokes the result; 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1
2

, , , 0

ˆ ˆi , exp i . .
2j i i lp lp lp j

k l p lp

cke e k f r a k r kz
A V

λ λ

λ

φ φ
ε

⊥
⎧ ⎫⎛ ⎞⎪ ⎪⎡ ⎤∇ = − +⎡ ⎤⎜ ⎟⎨ ⎬⎣ ⎦⎣ ⎦⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑r z z G= l h c (18) 

 
with 

 

 ( ) [ ]i iˆ ˆ, cos sin sin cos ir lp r lp

lp lp

f fl l
lp f r f rr xφ φ φ φ φ∂ ∂⎡ ⎤ ⎡ ⎤= + + − +⎣ ⎦ ⎣ ⎦G ŷ k z  (19) 

 
This is worth considering in detail because it can be seen that, when the quadrupole 

interaction is involved, not only is the handness of l present in the azimuthal factor, but it is 
also present in the profile factor ( ),lp r φG . Therefore it is at least conceivable that, when 
electric-quadrupole interactions are taken into account, the selectivity of OAM is similar to 
that of the photon spin. Using the notation given in equation (9) we have; 

 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

; ; 1 ; ; 1
, 0

1 1 1 1 1 1
1; 0; 0 1; 0; 0 0;1; 0 0;1; 0 0;0; 1 0;0; 1

exp

exp ,

r r
fi e m e m e m e m

e m
M i

i

ξ
ξ

ξ

− − − −
=

= ∆ ⋅ ⊗

⎡ ⎤= ∆ ⋅ ⊗ + ⊗ + ⊗⎣ ⎦

∑k R S T

k R S T S T S T
 (20) 

 
which we can succinctly represent as a sum of the three terms ; 

 and . 

( ) ( )1 1
1; 0; 0 1; 0; 0fiM µ = ⊗S T

( ) ( )1
0;1; 0 0;1; 0

m
fiM = ⊗S T 1 ( ) ( )1 1

0;0; 1 0;0; 1
q
fiM = ⊗S T

Since single-photon absorption is associated with an inelastic interaction it is non-
parametric and the rate observable is proportional to 

2

fiM . Thus, if the rate is to depend 
on the sign of l it can only be through the x and y components of the ( ),lp r φG  tensor. When 
the term

2

fiM  is calculated we obtain; 
 

 
{

}

incoherent 2

2 Re 2 Re 2 Re

m m q q
f fi fi fi fi fi fi

m q
fi fi fi fi fi fi

N M M M M M M

M M M M M M

µ µ

µ µ m q

π ρΓ = + +

⎡ ⎤ ⎡ ⎤ ⎡+ + +⎣ ⎦ ⎣ ⎦ ⎣

=
⎤⎦

 (21) 

 
Of the six terms in equation (21) we already know that fi fiM Mµ µ , m m

fi fiM M  and 
m

fi fiM Mµ  are independent of the handness of l. The other three terms, those which are 
connected to the electric-quadrupole interaction, must be analysed individually. We first 
consider the q q

fi fiM M case. The explicit expression of this term is; 
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )
1 3 1 2 3 4 1 2 3 4 1 22 4

2

4
;

2 30

                  , ,

lpq q
fi fi

lp o

ba ba
i i lp lp i i i ii i

fckM M
A V

e e G r G r I q qλ λ
3 4λ λ λ λ λ λ λ λ

ε

φ φ

⎛ ⎞
= − ×⎜ ⎟⎜ ⎟

⎝ ⎠
⎡ ⎤ ⎡ ⎤× ⎣ ⎦ ⎣ ⎦k k

=
 (22) 
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where the 4th rank rotational average tensor is; [13] 

 

 ( )
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 3 2 4 1 3 2 4

1 4 2 3 1 4 2 3

T

4
;

4 1 1
1 1 4 1
30

1 1 4

i i i i

i i i i i i i i

i i i i

I
λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ

δ δ δ δ

δ δ δ δ

δ δ δ δ

⎡ ⎤ ⎡− −⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥= − −

⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥− −⎣ ⎦

⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (23) 

 
Therefore q q

fi fiM M  takes the form; 

 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

T

2 30

, , 4 1 1
, , 1 4 1

1 1 4, ,

lpq q
fi fi

lp o

ba balp lp

ba ba
lp lp

ba ba

lp lp

fckM M
A V

r r q q

r r q q

q qr r

λ λ

λλ νν
λ λ

λν λν

λ λ λν νλ

ε

φ φ

φ φ

φ φ

⎛ ⎞
= − ×⎜ ⎟⎜ ⎟

⎝ ⎠

⎡ ⎤⎡ ⎤ ⎡ ⎤⋅ ⋅ ⎡ ⎤⎣ ⎦ ⎣ ⎦ − −⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎡ ⎤ ⎡ ⎤⋅ ⋅ − − ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ − −⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎣ ⎦⋅ ⋅⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

e G e k G

e k e k G G

e k G e k G

=

 

(24)

 

To proceed further we have to consider the different possible polarisations of the 
absorbed photon. Let us first consider that the photon is linearly polarised; say . 
Then; 

( ) ( ) ŷλ =e k

 

 

2

2

2

2

2

2
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2 2
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2
2 2
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4 1 1
1 4 1

2 30
1 1 4
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r lp

lp
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λν λν
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φ φ

ε

φ φ

∂

∂

∂
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= q q
⎥
⎥

 (25) 

 
which is independent of the sign of l. If, instead, we consider the photon to be circularly 
polarised; i.e. ( ) ( ) (1

2
ˆ ˆi )x yλ = +e k , then; 

 

 

2

2

2

2

2

2
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2
2

2

2
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q qλν λν
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∂

∂
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+⎢ ⎥⎣ ⎦

=  (26) 

 
which is also independent of the l sign. 

The next term we consider is q
fi fiM Mµ , which can be written as; 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 1 2 3 1 2 3 13

1 2 3 1 2 3

2 3
;

2

,
2

,
2 6

q ba ba
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lp o
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=

=
 (27) 

 
where we have used ( )

1 2 3 1 2 3 1 2 3 1 2 3

3 1
; 6i i i i i iI λ λ λ λ λ λε ε= . In the case of linearly polarised light it can easily 

be seen that ( ) ( ) ( ) ( ) ( ),lp rλ λ φ⎡ ⋅ ×⎣ ⎦e k e k G 0⎤ ≡ . The other possible case, i.e. circularly 
polarised light, results in ( ) ( ) ( ) ( ) ( ) (,lp rλ λ φ⎡ ⎤ )k⋅ × =⎣ ⎦e k e k G − , and therefore q

fi fiM Mµ  does 
not retain any information of the handness of the optical vortex, therefore independent of l. 

It remains to consider m q
fi fiM M , given by; 
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( )
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2 3
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,
2 6

q ba ba
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λ λµ m qλ λ λ λ λ λ

λ λ λ λ λ λ

ε φ
ε

φ ε
ε
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⎡ ⎤= −⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠

⎛ ⎞
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=
 (28) 

 
As ( ),lp iG r kφ⎡ ⎤ = −

z⎣ ⎦ , the result is independent of the signature of l. Thus it is 
confirmed, by explicit calculation, that the helicity of a Laguerre-Gaussian beam cannot 
engage in any enantiomerically specific sense in its absorption by a chiral molecule. 

4 Conclusion 

Through rigorous analysis of the grounds for chiroptical behaviour involving electric and 
magnetic dipole interactions, it transpires that the helicity of twisted beams cannot engage 
through any parametric or non-parametric optical process with the chirality of a molecular 
system – other than through any circularity of its photons. Thus, the manifestations of orbital 
angular momentum differ markedly from those associated with photon spin angular 
momentum. The analysis is comprehensive, within the scope of the assumptions given, with 
recent experimental verification confirming our theoretical results. [22] It remains to study 
those optical processes invoking electric quadrupole and other higher multipole interactions; 
the analysis reported here excludes the possibility of any magnetic dipole contributions to 
such chiral specificity. In the specific case of electric quadrupole interactions, the analysis 
carried out for circular dichroism illustrates the difficulties that higher order multipole 
considerations introduce, where the simplest symmetry arguments are not sufficient to attest 
enantiomeric specificity. Assessing the possible chiral selectivity of the mechanical 
interactions of such twisted beams is an issue that merits separate attention, and which is the 
subject of other recent and ongoing work. [21,23] 
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Appendix 1 LG Functions, Generalised Laguerre Polynomials 
and their Properties 

The positive frequency, un-normalised electric field of an LG mode as expressed by equation 
(15) can be written as; 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆi a exp ilp lp lp klpk f r k kλ λ θ⊥ ˆ⎡ ⎤= ⎣ ⎦e r ε z z z  (A1.1) 

 
The position-dependent polarisation functions ( ) ( )ˆlp kλε z  and ( )ˆklp kθ z  are, respectively, 

the mode amplitude distribution function and phase function, which are explicitly given 
by; [20] 
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/

ε z (A1.2) 

 

 

( ) ( ) ( ) ( )
2

1
2 2

ˆ 2 1 tan /
2klp R

R

kr zk l p l z z
z z

θ φ −= + + + + +
+

z .kz  (A1.3)

 
 
Here 00kε  is the amplitude for a plane wave of wave-vector k; ( )!/ !lpC p l p= +  is a 

normalisation factor; ( )l
pL x  is the generalised Laguerre polynomial of indices l  and p. The 

width  of the beam is defined in terms of the Rayleigh range, R , by ( )w z z
( ) ( )2 2 22 /Rw z z z kz= + R . The generalised Laguerre polynomials ( )xLl

p  are well-known 
functions whose properties can be found in the established literature. [24,25] Different works 
of reference give explicit expressions which differ by a constant factor. Table A1 gives the 
expressions as used in our work. 

Table A1: Properties of generalized Laguerre Polynomials [24,25]. 

Explicit expression: ( ) ( ) m
p
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p x
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lp
xL 11
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∞
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The products of two identical generalized Laguerre polynomials are also tabulated in the 

literature, as; 
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In passing we note that in reference [24] there is a typographical error in the gamma 
function in the denominator of the expression (A1.4). However, even with correction the 
above formula is incorrect. We have found a different expression, which also is a linear 
combination of polynomials; ( )2

2 2l
kL x
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Here the coefficients  are more complicated and different to those in equation (A1.4); l
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with; 
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For , a trivial example, the results given by both expressions, (A1.4) and (A1.5) are 

identical. However, for  there is a difference by a numerical factor between the two 
equations. For  the difference is more than just a factor, and as the p index increases this 
difference is accentuated. We have verified that the expression given in (A1.5), obtained by 
using the properties listed in Table A1, is correct and should be used instead of (A1.4). 

0=p
1p=

2p=

Appendix 2 Optical Interaction Tensors and Rotational Averages 

For any chiroptical process taking place in a fluid, or otherwise microscopically disordered 
system, it is required to evaluate: 

 

 
2

,

N

fi fiM M ξ ξ

ξ ξ
fiM ′

′

= ∑  (A2.1) 

 
see, for example, equation (12). Using the specific expression for the transition matrix given 
in equation (9) we have; 
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The first term on the right of equation (A2.2) signifies an incoherent contribution, and the 
second term a coherent response. The latter dominates if the process is parametric, and 
evaluation of the corresponding term requires the implementation of a rotational average over 

. However if the process is non-parametric the coherent term vanishes (through the 
interference of the different phase factors for each molecular centre) and the response derives 
solely from the incoherent term, where the rotational average is effected over 

( )rT

( ) 2rT , 
invoking tensors of rank . In each case the rotational average involves the molecular 
tensors alone, since it is considered that the radiation components are fixed with respect to a 
laboratory-anchored cartesian frame. Since  refers to a molecular property it is 
convenient to express it with respect to a molecule fixed frame through the relation; 
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 (A2.3) 

 
where ( )rI  is the rotational average tensor of rank ( )2r . The Latin and Greek indices refer to 
space-fixed and molecule-fixed frames respectively. Then the rotational average of the 
molecular tensor is given by; 
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Thus for a parametric process, 0∆ =k , we have; 
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On the other hand if then; 0∆ ≠k
 



D. L. Andrews, L. C. Dávila Romero and M. Babiker 164 

 
( ) ( ) ( ) ( ) ( )

22

; ; ; ; ; ; ; ;
, , , 0

incoherent

fi fi

n
r r r r r r

e m n e m e m n e m e m n e m e m n e m
e m e m

M N M

N I

ξ

′ ′+
′ ′ ′ ′ ′ ′ ′ ′− − − − − − −

′ ′=
∑ S S T T

�

� −

 
(A2.5)

 

 
To evaluate the result in either case, using equation (A2.4) or (A2.5) as appropriate, it is 

necessary to engage the double tensor ( )kI , which is explicitly the rotational average of a 
direction cosine product; 
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where each 

k kil λ  is the cosine of the angle between the space-fixed axis and the molecule-
fixed axis. The rotational average tensor ( )kI  can be expressed as a linear combination of 
isotropic tensors, i.e. tensors that are invariant under rotation. It is important to notice that the 
way that the tensor ( )kI  is defined in equation (A2.6) implies that the rank of the tensor is 

. Each member of the linear combination is a product of two isotropic tensors, one 
referred to the space-fixed frame and the other to the molecule-fixed frame. An important 
property of these products is that the Latin and Greek indices do not mix; explicitly; 
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Here ( )k

sf  ( ) is an k-rank tensor in the space-fixed (molecule-fixed) frame, and the 
tensor indices 1 k  

( )k
tg

i i… ( 1 k )λ λ…  are suppressed for convenience. Then the rotational average 
of the quantum amplitude product emerges as; 
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Finally, for calculational implementation a simpler notation can be adopted, where the 

rotational average of the molecular and radiation tensors is implied; 
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