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Two-photon Photoselection : An Irreducible Tensor Analysis 

David L. Andrews and Bridget S. Webbt 
School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK 

A detailed symmetry analysis of two-photon photoselection is presented. The adoption of irreducible tensor 
methods facilitates the characterization of two-photon excited states probed either by fluorescence or by the  
absorption of a third photon from a probe laser beam. The theory also enables information on any intervening 
rotational motion to be derived from suitable polarization studies. A new generalized scheme for the symmetry 
classification of multiphoton transitions is applied to the photoselection process. 

1. Introduction 
Photoselection is a method of investigating a molecular system using a polarized beam of light to create a preferentially 
orientated population of excited molecules. Significant work in this area was first carried out in 1934 by Perrin, in order to 
investigate the hydrodynamics of molecular rotation. The term photoselection seems to have originated with Albrecht,' who in 
1961 first gave a detailed outline of the theory, and suggested that photoselection techniques should be more widely used. In the 
same year Feofilov' gave a description of photoselection as a probe of specific molecular electronic properties, but it was not 
until mode-locked lasers were widely available that photoselection became a more general technique. The difficulties of the 
spectroscopic examination of very short-lived excited states were overcome by the use of picosecond laser pulses, thus extending 
the field of study from long-lived metastable electronic states and stable photoproducts in rigid matrices to almost any state 
with a picosecond or longer lifetime. Photoselection has since become an important tool in the study of many chemical and 
biological 

Some early multiphoton photoselection studies were carried by Dowley et ul.' These experiments involved measurement of 
the polarization of fluorescence following two-photon excitation with linearly polarized light. McClain' '*' subsequently devel- 
oped much of the basic theory for two-photon photoselection by expressing the three-photon molecular response tensor as the 
product of a second-rank absorption tensor and a fluorescence transition moment. The next milestone in the theory was the 
publication in 1978 of a paper by Magde,13 in which the theory of photoselection was re-derived and extended to the non-linear 
regime, including the saturation effects which are prominent when intense laser beams are used. 

transition in benzene using multiphoton 
photoselection with both two- and three-photon excitation. Cable and Albrecht'" have also written on the theory of three- 
photon photoselection, demonstrating that five unique transition tensor invariants characterize the symmetry of the three- 
photon absorption stage. Melikechi and Allen " have investigated the angular distribution of fluorescence emitted following 
two-photon absorption, showing that in some two-photon absorption experiments more information can be gained by observ- 
ing the fluorescence at angles other than n/2 to the excitation beams, the angle most commonly used. Kummel et al.'89'9 have 
recently demonstrated the use of multiphoton photoselection techniques in the determination of the population and orientation 
of prepared states using two-photon excitation with elliptically polarized light. Docker" has also described in general terms how 
the alignment of molecular angular momenta can be measured by multiphoton methods. 

The excited state produced in photoselection studies may be examined by any spectroscopic method, although for experi- 
ments using mode-locked pulses the photoselected distribution is usually studied using time-resolved absorption and emission 
techniques before relaxation can occur.' ' The process of rotational relaxation of dyes and other polyatomic molecules mostly 
occurs on a picosecond timescale and so is usually investigated by absorption spectroscopy, but in some cases fluorescent decay 
may also be used if it is sufficiently fast. This is the case with cyanine dyes, phthalocyanines, metalloporphyrins with transition- 
metal centres and also triphenylmethane dyes. Whilst the measurement of transient absorption is usually less sensitive than a 
technique with a zero background, such as fluorescence, polarization-selective photoselection experiments can have a zero 
ba~kground ,~  and such experiments can be used to measure rotational correlation times directly. 

In general, the excited state populated by a multiphoton photoselection process can be probed either by its fluorescence or by 
absorption of one further photon from a probe laser beam. Both cases are treated in this paper within a common formalism 
based on the methods of molecular quantum electrodynamics. By employing irreducible tensor methods it is shown how 
polarization studies can provide important information on the extent of molecular rotation between the two transitions. Mea- 
surements based on the use of pulsed lasers with pump/probe instrumentation should thus furnish a greater understanding of 
excited-state dynamics. 

Since Magde's paper, Albrecht and c o - ~ o r k e r s ' ~ ' ~ ~  have studied the B,, t A 

2. Dynamics of Multiphoton Photoselection 
2.1 Perturbation Theory 

To calculate theoretical rates of absorption, and hence polarization ratios for multiphoton photoselection, the average tran- 
sition rate for a general n-photon event is needed. This is first derived from the transition rate for a single molecule localized in a 
specific orientation, and then averaged over all possible orientations. This is based on the normal assumption that the quantum 
structure of rotational motion is not resolved in the liquid phase; rich rotational structure is of course obtainable in gas-phase 
multiphoton studies, as typified by the beautiful results of Dixon and co-workers [see for example ref. (2211. 

t Present address: School of Mathematics and Physics, University of East Anglia. 
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The quantum electrodynamical Hamiltonian for a system comprising an ensemble of molecules in the presence of radiation 
may be expressed as 

= Hmol + Hiad + Hint (1) 
where 

The first term, Hmol, represents the sum over each molecule 4: at position R, of its normal non-relativistic Schrodinger operator, 
p ,  denoting the momentum of the electron a, and V(5)  the total intramolecular Coulombic potential energy. The subsequent 
term, Hrad, represents the radiation Hamiltonian expressed in terms of the transverse displacement field operator &(r) and the 
magnetic field operator b(r). The interaction Hamiltonian Hint in general consists of a series of terms. For the calculations 
leading to the results given in this paper, the electric-dipole approximation is employed for each molecule. The justification is 
the fact that provided each molecule-photon interaction is electric dipole-allowed, the contributions from other terms in Hint 
are considerably smaller in magnitude, the electric quadrupole and magnetic dipole being smaller by a factor of approximately a 
(the fine-structure constant). Finally, the mode expansion of the electric displacement field operator in a quantization volume V 
is as follows: 

where a(')&) and at(')(k) are the annihilation and creation operators for the radiation mode with wavevector k and polarization 
1. Since these operators appear linearly in d'(r), each electric-dipole interaction can be associated with either the absorption or 
emission of a single photon. 

We start with the familiar generalized expression for the time-dependent probability P,(t), associated with a single-photon 
transition I f ) t I i) of energy E f i  = Amfi, induced by radiation of circular frequency o: 

where M f i  is the transition matrix element with its usual perturbation series expansion: 

with Hint the perturbation operator. The probability given by eqn (6) peaks sharply at o = ofi , corresponding to the absorption 
of a photon, although there is a non-zero probability at o # ofi ,  associated with the time-energy uncertainty principle. The 
oscillatory nature of the transition probability is not normally seen, but has been observed in molecular-beam experiments by 
Dyke et Taking the limit of P d t )  as ofi o gives: 

I Mfi I ' t 2  P,(t) = - 
A' * 

This result applies to a system with discrete molecular energy levels and with radiation of a finite linewidth. When there is a 
finite lifetime for the excited state If), it is usual to average over a density of state p /, with the result 

(9) 2n 2 P / ( t )  = - I Mfi I P /  t-  A 

Again M f i  is the molecular transition matrix element and p r  is the density of states. This result is the Fermi 'Golden' rule. The 
two results (8) and (9) are appropriate for different stages of a multiphoton photoselection process. 

2.2 Rate Equations for Photoselection 

In the photoprocesses to be examined below, photons from the pump beams excite the system from the ground state I i) to a 
discrete excited statelf), then either another photon is absorbed from a probe beam or one is emitted, taking the system to a 
final state I g )  (fig. 1). The exact resonance equation gives the probability that any initial rn-photon transition I f )  e 1 i) will 
occur, 

with 
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Fig. 1. Schematic 
proceeds to a final 

representation of two-photon photoselection. Two photons are absorbed in the transition I i) -, I j) ; the molecule then 
state I g )  either through fluoresence or through absorption of a third photon from a probe laser beam. 

Since the secondary stage of the process terminates in a state 1s) with which decay channels are normally associated (and 
indeed are often involved in detection of the process), the Fermi rule applies, 

with 

The two probabilities given by eqn (10) and (12) now need to be combined in order to obtain an overall probability or rate of 
transition. For simplicity, the following derivation is based on the assumption of CW irradiation; the procedure for incorpo- 
rating the time-dependent effects of pulsed radiation is described in detail el~ewhere.,~ The temporal characteristics of laser 
pulsing are in any case associated with timescales normally well in excess of the optical cycle lengths. 

If P,(z) represents the fractional number of molecules that have undergone the initial transition I f )  t I z )  after a time z has 
elapsed, the rate of this transition, R,, is: 

Using eqn (1 1) and putting 

then 

and using eqn (12) with 

d 
dz 

R ,  = - P,(Z). 

2n 
h A2 = - I Mi$ 12Pg 

we obtain 

R ,  = A,  

P,(z) = A ,  Z. 

Assuming that the number of molecules in the ground state I i) does not change significantly from N throughout the process, 
then the rate equations for the system are: 

dNZo = NR,( t )  - N J t ) R ,  
dt 
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Using the complementary function #I exp(-R2t) and the particular integral y t  + S to solve the second of these differential 
equations subject to the initial condition N,-(O) = 0, we obtain the result: 

+ I). 
A2 

Using this in the third rate expression of eqn (21) we obtain 

+ t) dt 

2A1N 1 
A2 A2 

= A, - l- [exp(-A2 t) - 13 + t dt 

= 2NA1[ - A, 1 ( exp(-A2t) 

A2 

1 exp(-A,z) - 1 2,- 
= 2NAl[ - A, ( A2 -.).- 2 -  

However, 

1 exp(-A,z) - 1 
= 

- A, ( A, 
Expanding the exponential in this yields: 

A, A, r3 
3 

z-. 

Any further powers of A, z in the expansion will be very small since A, t << 1. It is worth noting that T~ characteristics have also 
been noted in connection with resonance atomic photoionization p roce~ses .~~-~ '  Going back to eqn (17) and (20), the overall 
rate therefore becomes : 

P(T) = sbpl(t)R2 dt 

and in general the integration will be performed over a time corresponding to the pulse length of the laser 

2.3 Two-photon Photoselection 

The kinetic characteristics of two-photon photoselection generally lie between two extremes : (1) absorption of two photons and 
then interaction with another photon after rotational relaxation has had time to occur, and (2) a concerted three-photon 
process. The transition probabilities for these two cases will first be determined and then an intermediate case considered. 

2.3.1 Sequential Process 
Two pump photons are absorbed in general from two different laser beams, and another is either emitted or absorbed subse- 
quently. For the pump I f )  + I i) transition 
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where Sij is the normal two-photon absorption tensor. Since the irradiance of each pump beam is given by I = nhco/V, we then 
have : 

In the special case where both pump photons derive from a single laser beam, the quantity 1112 is replaced by g(’)12, where I is 
the irradiance and g(2’ the degree of second-order coherence. To proceed further we now need to evaluate the rotational average 
of eqn (28) as expressed by the angular brackets. Using the terminology and results of ref. (28) we then obtain; 

where el and e2 denote the polarization vectors of the two beams. 

Cartesian tensors. To do so requires use of the following relations: 
In order to study the selection rules for this process it is most convenient to recast the above result in terms of irreducible 

where S ( O )  is a weight-0 tensor transforming like a scalar, S(l) a weight-1 tensor transforming like a pseudo-vector (even parity) 
and S2) has the transformation properties of a symmetric traceless rank-two tensor. Hence from eqn (26) and (29H32)  we 
obtain: 

For the secondary transition I g )  + I f) we have 

(34) 

(35) 

and so 
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0 -28 -448 112 -28 -28 -28 -28 112 7 0 0 84 42 -8 
0 112 112 112 112 7 -28 112 -28 7 0 0 0 -42 -8 

0 84 0 -8 0 7 -28 112 112 -28 -448 -28 -28 -28 42 
0 7 112 -28 112 112 112 -28 112 7 -42 -84 -84 -42 -8 
0 -28 -28 -28 -448 -28 112 112 -28 7 0 84 0 42 -8 

0 0 0 -8 0 7 -28 112 -28 7 112 112 112 112 -42 
X 140 0 0 0 0 0  0 0 0 0 56 56 56 56 20 

-140 0 0 0 0 0  0 0 0 0 28 -56 -56 -56 20 
0 0 -8 

-140 0 0 0  0 0 0  0 0 0 -56 -56 -56 28 20 
140 0 0 0 0 0  0 0 0 0 -28 -112 56 -28 20 

0 7 112 -28 -28 -28 -28 112 -448 -28 42 84 
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T:;v 
Ti;" 
T:;v r : ; v  

T::v c ; v  

T::v c : v  

T::v 

7% v v  

T:;v C ; v  

G ; v  Ti;v 
Ti:v TEV 

(38) 

The overall rate, combining eqn (33) and (35) is thus 

0 -28 -28 -28 112 7 -28 -448 112 -28 0 -84 0 0 -8 
140 0 0 0  0 0 0  0 0 0 -28 56 -112 -28 20 

-140 0 0 0 0 0  0 0 0 0 28 112 112 28 20 

2.3.2 Concerted Process 
Here three photons are absorbed or else two are absorbed and one is emitted, simultaneously. Using the result from eqn (9) 

T;:v T i ; v  
T::v F?:v 

i(nln, n3 olo2 o,)''~ - ( 2 E 0  v )3'2Tjkel ie2je3k12)  

where T ,  is the usual three-photon absorption tensor. 

tensor relations as given by ref. (29), we then obtain 
Adopting similar methods to those described in section (2.3.1) with the result for Z(6)  as given by ref. (28), and irreducible 
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2.3.3 Intermediate Case 
We now consider an intermediate case, where two photons are absorbed from the pump beams and then, before any rotational 
relaxation can occur, a probe photon is absorbed or else one photon is emitted. If there is no relaxation between the two 
transitions, the overall rate can be derived from the rate for the concerted three-photon process by bringing the sum of the first 
two photon energies into resonance with a molecular energy level, and thus essentially splitting the third-rank molecular tensor 
into a product of a second-rank and a first-rank tensor. This can be seen as follows. 

In general the third-rank tensor Tijk is given by 

where the complex energies 
&hi - $ihy,. The second-rank 

Now bringing the first two 

E f i  and Ehi incorporate damping factors and are given explicitly by E f i  = F f i  - +hyf and Ehi = 
tensor can be calculated in the same way : 

photons of the three-photon process into resonance with a statefgives: 

E f i  = ha, + ha, 

and so the summation over f in eqn (39) is dominated by one state. Because the denominator of each of the two corresponding 
resonance terms is very small, these two terms will be very much greater than the other terms, and hence 

where K = 2/ihy,, and for compactness the superscript d o n  pgf is now dropped. 

with the following substitution: 
The resulting transition probability for this case will thus be the same as that for the concerted three-photon transition, but 
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resulting in 
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nz1z2 ‘3 p=-  
840.5; c3k ’’ 

X 

1-11 0 4 15 11 4 -12 0 -12 0 0 0 -12 0 -12 
-11 0 4 15 11 4 -12 0 -12 0 0 0 -12 0 -12 

38 0 -10 -20 -10 -10 16 0 16 0 0 0 16 0 16 
3 7 -3 -6 -3 -3 9 7 9 -7 -21 -7 9 7 9 
3 -7 -3 -6 -3 -3 9 -7 9 -7 21 -7 9 -7 9 

-11 0 4 15 4 11 -12 0 -12 0 0 0 -12 0 -12 
3 7 - 3 - 6 - 3 - 3  9 7  9 7 2 1 7  9 7  9 

-4 21 11 8 4 4 -12 0 -12 0 -28 0 -12 0 -12 
3 - 7 - 3 - 6 - 3 - 3  9 7  9 7 2 1 7  9 7  9 
3 7 -3 -6 -3 -3 9 -7 9 7 -21 7 9 -7 9 

-4  -21 11 8 4 4 -12 0 -12 0 28 0 -12 0 -12 
3 7 -3 -6 -3 -3 9 -7 9 7 -21 7 9 -7 9 

-11 0 4 15 4 11 -12 0 -12 0 0 0 -12 0 -12 
3 7 -3 -6 -3 -3 9 7 9 -7 -21 -7 9 7 9 
3 -7 -3 -6 -3 -3 9 -7 9 -7 21 -7 9 -7 91 

I 

(43) 

The molecular response tensor can be regarded as real, however, when excitation frequencies are well away from resonances 
other than the E~~ resonance. In this case; 



J. CHEM. SOC. FARADAY TRANS., 1990, VOL. 86 

and eqn (43) reduces to 

X 

1-11 0 4 15 15 -12 0 -24 0 
-11 0 4 15 15 -12 0 -24 0 

38 0 -10 -20 -20 16 0 32 0 
3 7 -3 -6 -6 9 0 18 -21 
3 -7 -3 -6 -6 9 -14 18 21 

-11 0 4 15 15 -12 0 -24 0 
3 7 -3 -6 -6 9 14 18 21 

-4 21 11 8 8 -12 0 -24 -28 
3 -7 -3 -6 -6 9 14 18 21 
3 7 -3 -6 -6 9 0 18 -21 

-4 -21 11 8 8 -12 0 -24 28 
3 7 -3 -6 -6 9 0 18 -21 

-11 0 4 15 15 -12 0 -24 0 
3 7 -3 -6 -6 9 0 18 -21 

\ 3 -7 -3 -6 -6 9 -14 18 21 

0 - 1 2 \  
0 -12 
0 16 
0 9  

-14 9 
0 -12 

14 9 
0 -12 

14 9 
0 9  
0 -12 
0 9  
0 -12 
0 9  

-14 9 1  
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The rate equation for the intermediate case can be checked for plausibility by relating it to the two-step process. This is 
accomplished by rotationally averaging the ps with respect to the molecular response tensor Si,. Again using results derived in 
the Appendix and substituting this into the equation for the transition probability yields 

PgtlPgf l2 XI112 I 3  I K l2 P(t) = 
2520~: c3h 

/(el e2xe3  ' z1xz2 Z3) \' / 
(el e2)(e3 Z2)(Z1 Z3) l o  

70 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

35 
0 
0 
35 
0 
0 
0 
0 

0 " \  
- 14 

0 
0 
0 
0 

21 
0 
0 

21 
0 
0 

(45) 
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but the damping factor has dimensions of (time)- and can be written; 

which gives 

which has exactly the same form as the rate eqn (36). 

3. Selection Rules 
For a multiphoton transition from a totally symmetric ground state, the excited-state symmetry dictates the representation 
under which components of the molecular tensor must transform. Therefore, for a transition to occur one or more of the 
irreducible tensors must transform under the irreducible representation of the final state. If the initial state is not totally 
symmetric then one or more of the irreducible tensors must transform under the product of the irreducible representations of 
the initial and final states. 

To proceed further, it is necessary to determine the transformation properties of irreducible tensors under the symmetry 
operations of the point group appropriate for any particular molecule. The first stage involves mapping the irreducible represen- 
tation of the full three-dimensional rotation-inversion group O(3) onto the corresponding representations of point groups with 
lower symmetry. A complete listing for all the common molecular and crystallographic point groups is available el~ewhere.~' 

Note that the molecular response tensors involve products of electric dipole transition moments, and hence the transform- 
ation properties of s, and T i j k  are determined by relations (47) and (48); 

D'-  @ D ' -  = DO+ @ D'+ @ D2f (47) 

(48) D'- D'- 0 D'-  = D o -  @ 3 0 ' -  @ 2D2-  @ D3- .  

The weights for the two- and three-photon tensors are thus represented by O + ,  1+, 2+ and 0-, 1-, 2-, 3- ,  respectively. For each 
irreducible representation of any given point group there are certain combinations of tensor weights which may be non-zero. 
This can be illustrated by reference to the point group q. Consider the case of concerted three-photon absorption, for which 
the molecular response tensor T i j k  in general has contributions from weightsj = 0, 1, 2 and 3, all with odd parity (in the electric 
dipole approximation). However since A,, for example, appears only in the weight-three column of odd-parity representations in 
table 1, it transpires that for transitions to excited states with this symmetry only weight-three contributions are in fact permit- 
ted by the selection rules. In the case of three-photon transitions to an A, state, by contrast, only weight-zero contributions are 
allowed. 

The question of which tensor weights are permitted under multiphoton selection rules has a powerful influence in determining 
polarization behaviour. Consequently, it is helpful to classify each potential excited state in terms of the combination of allowed 
weights in tensors of each rank and parity. Table 2 illustrates the full results for molecules of & symmetry. For example from 
the column headed rank 3, odd parity, it is evident that in a three-beam concerted three-photon absorption process all tran- 
sitions are in principle allowed, and each excited-state symmetry class is associated with a different combination of weights. This 
means that suitably chosen polarization conditions will, in fact, allow the complete and unambiguous symmetry classification of 
every line in the spectrum. By contrast, the entries under the heading of rank 2, even parity, show that two-photon transitions to 
excited states of symmetry A, are forbidden, and polarization studies cannot differentiate between the polarization behaviour of 
E and T, transitions since they both carry the same weights. 

Table 1. Representations of irreducible tensors in the point group 
; even-parity representations are denoted by upright characters, 

and odd-parity by italic characters 

A1 Tl E + T, A, + T, + T, 
A ,  7-2 E + T ,  A ,  + T ,  + T ,  

Table 2. Weights allowed under the irreducible representations of the 
point group & in response tensors up to rank 3 

~ 

rank 1 rank 2 rank 3 

- + - + - parity + 
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Table 3 provides a complete listing of the various distinguishable symmetry classes that actually arise for two- and three- 
photon processes in molecules belonging to the common point groups, with examples of each class. For example, in the case of 
two-photon absorption there are six classes (i) weights 0, 1, 2, present, (ii) weights 1 and 2 alone, (iii) weights 0 and 2 alone, (iv) 
weight 2 alone, (v) weight 1 alone, (vi) weight 0 alone present. For three-photon processes there are eleven such classes. A 
suitable designation of such classes should include labels for the tensor rank and parity and it has recently been proposed3' to 
introduce new symmetry class labels defined as n*(j i ) ,  where (ji) represents the allowed weights placed in ascending order. For 
example, class I(B) of two-photon absorption is represented by 2+(02), whilst the corresponding class of three-photon absorption, 
where only weights 0 and 2 are present, is designated 3-(02). Previous classification were first introduced for the 
experimentally simpler single-beam cases, and subsequently modified for double-beam and multiple-beam applications. Tables 4 
and 5 provide the necessary correlations between the old and new classification schemes. An analysis of the allowed classes of 
transition for two- and three-photon absorption is given in table 6 for four of the major high-symmetry groups. 

By way of example we illustrate applications of these principles for the point group D,,  . For a totally symmetric ground state 
i, the two-photon absorption step can access the following intermediate states : 

The interaction of the third photon with the system involves a weight 1 - tensor which is spanned by A,, and El, in D,, , and 
the possible final-state symmetries that can be accessed are given by: 

(A," 0 El,) 63 (Alg 0 A,, 0 El, 0 E2,) = ( A 2 u  0 El,) €I3 ( A h  0 El,) 0 (El, 0 A,, 0 A,, 0 E2,) 

0 (E2, 0 Bl, 0 B,, 0 El,) 

All these final states are allowed. Table 7 shows the possible transitions: it can readily be seen that, for example, the transition 
B2, + A,, can involve resonance only with an intermediate state of E t g  symmetry. 

Table 3. Symmetry classes which arise in the common molecular 
point groups for two- and three-photon processes, with typical 
examples 

two photons three photons 

class example class example 

2 + (0 12) A/C 1 3-(0123) AIC 1 

2+(12) A&,, 3 - (1 23) n/c,, 
2 + (02) AllC,, 3-(023) 
2 + (2) E'lD3, 3-(23) T2u/0h 

2+(1) A2ID3h 3-(13) Tlu/oh 

2 + (0) A 1ITd 3-iO3) A/T 
3 - (02) c-/c,, 

3-01  Tl/I 

3 -(3) A2u/oh 

3-(2) Eu/oh 

3 - (0) Alu!oh 

Table 4. Correlation of general symmetry classes for two-photon 
processes with an earlier classification scheme for single- and double- 
beam two-photon absorption 

single double single double 

2+(012) I IA 2+(2) I1 IIB 
IV - 2+(12) I1 IIA 2+(1) 

2 + (02) I IB 2 +(O) I11 111 

Table 5. Correlation of general symmetry classes for three-photon processes with earlier classification schemes appropriate for single-, double- 
and triple-beam absorption 

single double triple single double triple 

- 3 -(0123) I IA IA' 3-(02) IV IV' 

3-(023) I1 IIA IIA' 3 -(2) IV IV 
3-(23) I1 IIA IIA 3 - u )  I11 111 I11 
3-(13) I IB IB 3 - (0) 

3 -( 123) I IA IA 3 -(3) I1 IIB IIB 
- 

- V - 

3-(03) I1 IIB IIB' 
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Table 6. The allowed classes of transition for two- and three-photon absorption 

weight weight 

point group O +  1+ 2+ class 0- 1- 2- 3- class 

2 + (0 12) AU AU AU AU 3-(0123) 
2+(12) 2Bu 3 -(3) 

'6, A, A, 
El, El, 

E2e 2 + (2) El, El, El u 3-(123) 
E2u E2u 3-(23) 

Table 7. The possible final states of the system and the correspond- 
ing intermediates 

I i  > 24 If> 14 l 9 >  

4. Polarization Ratios 
In many chemical systems the photoselection process will be neither two-photon absorption followed by an uncorrelated 
single-photon transition, nor a concerted three-photon interaction, but a process with characteristics somewhere between these 
two extremes. A parameter is therefore required to indicate where in this dynamical spectrum the process lies. The measurement 
of polarization ratios can be used for this purpose. Again this can be illustrated by reference to the example from the previous 
section, of a B,, t A,, transition in a D,, molecule. 

We first consider the sequential case, where the only possible symmetry for the two-photon resonance state is E,, . From table 
6, the only tensor weight involved in the two-photon step is 2+,  and so the transition probability is given by: 

If photons one and two are derived from a single laser beam and are plane-polarized in the same direction then we obtain; 

Because this probability does not depend on the polarization vector of the third photon, the ratio of the transition probability 
for the case where this photon is polarized parallel to the first laser beam, relative to the case where it is polarized perpendicu- 
lar, is 1. 
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0 
0 
0 
0 
1 
0 
0 
1 
0 

We now consider the same B2, t A,, transition as a concerted three-photon process. Only tensors of weight 3-  are involved 
in this transition. Considering the first two photons, again plane-polarized in the same direction, gives the transition probability 
as : 

t 1 1 1 2  I3 ZPg P(t) = 
3360~: c3A 

- 8  
- 8  
-8 
-8 
-8  
20 
20 

- 8  
20 
20 

- 8  

(77'3' T'3) ). 
Auv Apv 

If the third photon is polarized parallel to the first two, i.e. el = e3 and el - e3 = 1, we obtain 

1 -8 
1 -8  
1 -8  
1 - 8  
1 20 
1 20 
1 - 8  
1 20 
1 20 
1 -8  
1 20 
1 2o i 

However, with the third photon polarized perpendicular to the first two, i.e. el e3 = 0, we have 

-8  
-8  
-8 
-8  
-8  
20 
20 

-8  
20 
20 

and so the polarization ratio is 105/70 = 3/2. 
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S A A  S v ,  Pp F v  

SAA s v v  P p  F ,  

SPA S v ,  P p  F v  

s p v  % A  PLr F v  

SA, S A V  P p  F v  

S A V  $A, P p  J i v  

S A P  S A V  P p  F v  

S A V  S V A  P p  F ,  
S A V  spIJlp t ( v  

s,, s,, P p  F v  

S A V  S A V  Pp F p  

The above polarization ratio results apply just as equally to emission of the third photon as to absorption. The former type of 
concerted three-photon interaction represents a non-linear scattering process, the term hyper-Raman scattering being applied to 
the specific case where the two annihilated photons have the same frequency. The 3/2 polarization ratio for the case of a 3-(3) 
transition can, in fact, be identified from eqn (5.13) and (5.14) of ref. (34). In the experimental measurement of the polarization of 
fluorescence following two-photon excitation by a plane-polarized laser beam, it therefore follows that for transitions of sym- 
metry class 3-(3) the ratio of the intensity parallel to the exciting beam relative to that perpendicular to it should lie between 1.0 
and 1.5. The location of the ratio within this range thereby provides information on the extent of rotational motion, if any, 
intervening between the absorption and emission stages of the process. Where the process is a two-photon resonant interaction 
and the intermediate stage I f )  is physically realized, the polarization ratio has a value of 1.0; where there is no resonance and 
the process is one of non-linear scattering, a value of 1.5 is obtained. 

Similar arguments can usefully be applied to transitions of other symmetry classes, and further information is afforded by 
two-beam studies of the signal dependence on the angle between the polarizations of the absorbed photons.29 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0  S::‘S:;’p‘ 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0  S::’S:;’p’ 

S‘O’S‘O’ - 
S‘O’S‘2’ 0 0 0 0 0 0 1 - 1  1 - 1  1 - 1  1 - 1  1 11 p v P p F v  

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0  sg’s:;’pp jiv 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1  s:;’s:;’)lu, FV 

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1  Ap A v P p F v  

0 0 0 0 0 0 1 - 1  1 1 - 1  1 1 - 1  1 ap A v P p F v  

1 - 1  1 0  0 0 0 0 0 0 0 0 0 0 0 Ap A v P p P v  

0 0 0 0 0 0 1 - 1  1 1 - 1  1 1 - 1  1 Ap A v P p F v  

0 0 0 0 0 0 1 1  1 - 1 - 1 - 1  1 1  1 LA p v P p P v  

S‘O’S‘ 1 ’ = 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  ~p ~ v & F v  (Al)  
S‘O’S‘2’ 

S‘l’p’  
S“’s‘1’ - 
S‘ 1 ’S‘ 2 )  

S‘2’S‘O’ 

5. Appendix 
The second-rank tensor products of eqn (42) can be expressed in terms of irreducible tensors. To assist in determining the 
relevant irreducible tensors, a shorthand notation can be introduced. This involves representing each second-rank tensor S by a 
box, with dashes and crosses denoting index parameters; 
means hanging ones. Thus, ml represents say SAP SAv with the repeated A contracted between the two tensors. 

means repeated indices [hence implied summation) and 

All the possible arrangements for the indices on the tensor products are, therefore, 

-1 I.+.I I-I..) 
and their constituent irreducible parts can be derived as follows. 

svp %A P p  F v  

1 - 1 - 1 :  
Only one irreducible tensor product is needed for this case, because; 

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0  Ap Av P W F V  

All cross products between different weights of the irreducible tensors will be zero so that there are only three products that 
may be finite-valued: 

(O)s(O) S( 1)$(1) and Sit)s!:,. 1.f.J : S I ,  I p ,  Ap Ap 

Here all the possible combinations of weights may be finite-valued and so nine irreducible tensor products will be needed, all of 
the form 

S V A  SAP P p  F ,  0 0 0 0 0 0 1 1  1 - 1 - 1 - 1  1 1  1 

with a, b E (0, 1, 2).  

S‘2’S‘I’ 
Ap A v P L r F v  

1-  1 xx I: 
The weight 1 and 2 components of the first tensor will be zero, because of the repeated index. The weight 0 and 1 combination 
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This result is similar to the one for the concerted three-photon process, eqn (381, where 15 irreducible tensor products also arise. 
When the tensors S and p are real this equation reduces to one depending on 11 tensor products; 

Rotationally averaging the ps with respect to the molecular response tensor S, i.e. allowing complete rotational relaxation to 
occur between the two- and one-photon steps, enables us to compare the rate for three-photon photoselection with that for a 
two-step process. The required result is as follows : 

3 0 0  
3 0 0  
9 0 0  
1 -1 1 
1 1 1 
3 0 0  
1 1  1 
3 3 3  
1 1 1 
1 - 1  1 
3 - 3  3 
1 - 1  1 
3 0 0  
1 -1 1 
1 1 1 
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