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The quantum electrodynamics of synergistic
two-photon processes

D. L. ANDREWS and N. P. BLAKE
School of Chemical Sciences, University of East Anglia,
Norwich NR4 7TJ, England

Abstract . In this paper it is demonstrated how the phenomena of cooperative
Raman scattering and cooperative two-photon absorption may be described in a
unified manner, through canonically transforming the system Hamiltonian . The
unique features associated with the virtual photon coupling between centres are
discussed . In particular it is illustrated how in the near-zone, close proximity
leads to two-body two-photon events involving interaction-induced dipoles . In
the far-zone, it is shown how the coupling between molecules may be understood
in terms of a radiative dipole effect . Attention is focused upon the behaviour of
this coupling for distributive and cooperative mechanisms in fluids, and the
relative importance of each process discussed, particularly with regard to their
very different range dependences . A detailed analysis of the coupling reveals that
in two-photon absorption the distributive mechanism dominates, whilst in
Raman scattering cooperative energy transfer is favoured . Finally recent progress
in the field of synergism is reviewed along with the characteristics associated with
synergism in Raman scattering and two-photon absorption .

1 . Introduction
Conventional theories of two-photon inelastic light scattering and two-photon

absorption are generally based on the assumption that the signal from a fluid or
molecular crystal results from a simple superposition of signals from individual
molecules, subject to local field corrections . Nonetheless it is well known that in
single-photon absorption the interaction of atoms or molecules irradiated with light
of a suitable frequency can result in the simultaneous excitation of two distinct
species. The first observations of this effect were made in infrared studies on
compressed gases, though recent work has mostly focused on interaction-induced
optical transitions in gases and crystals .

In condensed matter, other cooperative effects are known to occur in connection
with the photoproduction of relatively long-lived triplet states, either in individual
molecules in the case of liquids, or in triplet excitons in crystalline solids . Because of
their long lifetimes, the concentrations of such species can build up to a point where
triplet-triplet annihilation ensues, either by molecular diffusion or by exciton
migration [1], resulting in the generation of highly excited states decaying through
short-wavelength luminescence. These processes often have a quadratic dependence
on irradiance, and thus exhibit features characteristic of two-photon absorption .
However, since the separate photon absorption processes and also the subsequent
triplet-triplet annihilation are uncorrelated, such phenomena cannot be regarded as
genuine multiphoton processes . Where singlet states are concerned, lifetimes are
generally too short for concentrations to build up to a point where collisional
annihilation is significant, if conventional irradiation sources are employed . With
laser light of sufficient intensity, however, such effects are indeed observable .
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Laser excitation also provides the means for observing nonlinear optical effects
involving the interaction of two or more photons with each atomic or molecular pair .
The theoretical prediction of such a process was first made by Rios Leite and De
Araujo (1980) in a paper concerned with cooperative absorption by atom pairs in
solids [2] . However the first experimental observation made shortly afterwards by
White (1981) [3] came from laser excitation studies of gaseous mixtures of barium
and thallium : Atoms of both species were found to be simultaneously promoted to
excited states by a concerted process involving the pairwise absorption of laser
photons .

Recently, a number of new types of optical synergism involving two-photon
processes have been the subject of renewed theoretical interest [4-8] . Here the two
chemical centres which undergo concerted excitation may or may not be chemically
similar, and can represent either distinct chromophores within a single molecule,
loosely bound systems such as van der Waals molecules or solute particles within a
coordination shell of solvent molecules, or else completely separate molecules . In the
most general case, the two participating centres A and B undergo concerted
excitation through either an elastic scattering process such as Stokes-Raman
scattering, figure 1 (a), or two-photon absorption, figure 1 (b) . The two processes are
thus characterized by the absorption of one photon fow l, and either the emission or
absorption of a second photon hw2 . In general the process can be represented by the
equation

A+B+hwl ±hw2 -+A*+B*.

	

(1)

For the purposes of the calculations presented below it is assumed that both
molecules A and B are initially in their ground states, and that they are promoted
during the synergistic process to excited vibrational or vibronic states designated by
the asterisks in equation (1), and labelled a and fi respectively. Then equation (1) is
restricted only by the energy conservation requirement

E-0 +Ego = ho)l ±hw2 .

	

(2)

In the case of two-photon absorption, two types of synergistic absorption are of
special interest . These are distinguished by whether the photons absorbed have the
same, or different frequencies . The latter condition is in most cases determined by
whether a single laser beam or two laser beams are employed for the excitation . In
single-beam bimolecular photoabsorption the two absorbed photons have the same
frequency and it is the synergistic interaction between two non-identical centres that
is of interest . This interaction provides the mechanism for energy exchange such that
an overall process ;

A+B+2hw-+A*+B*

can take place even when the individual transitions A-+A* and B-+B* are forbidden
on energy grounds. From a phenomenological viewpoint, the process therefore has
the characteristics of mean frequency photoabsorption .

In the other case of interest the two centres have identical chemical composition
and are excited by the absorption of two different photons, as for example from two
different laser beams with frequencies w l andw2. This process can be represented by
the equation

A+A+hwl +hw2-+A*+A* .
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Figure 1 . Energy level diagrams for synergistic two-photon processes involving a chemically
inequivalent molecular pair A, B : (a) Stokes-Raman scattering, and (b) two-photon
absorption .

This synergistic phenomenon again has the characteristics of mean-frequency
absorption: here, however, it is the molecular excitation frequency which equals the
mean of the two photon frequencies .

Synergism in Raman scattering allows for different vibrational modes to be
excited at centres A and B . It is therefore characterized by the appearance of
bimolecular combination bands in the spectrum, since the coupling itself places no
constraints on the modes excited at each centre . In this case the observed
combination frequencies cannot arise through any intermolecular mechanism, and
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must be the result of synergistic Raman scattering. However if A and B are
chemically identical, it is possible for identical modes to be excited at each site . This
leads to vibrational harmonics in the Raman spectrum, even in the absence of any
inherent anharmonicity in the corresponding vibration [8] .

Each of the above-mentioned synergistic two-photon processes can in principle
take place by one of two mechanisms. The first process, termed cooperative,
corresponds to a case where both photons hwl and hw2 interact with a different
molecule as shown in figure 2 [9] . The second mechanism, termed distributive,
describes a process in which both photon events occur in a single molecule as in
figure 3 [10] . In each case, the energy mismatch for the molecular transitions is
transferred by means of a virtual photon which couples with each molecule by
electric-dipole coupling . However, important differences arise in the range-
dependences of the two mechanisms . These differences, as is shown in section 3,
hinge on the magnitude of the energy mismatch conveyed by the virtual photon. A
detailed analysis of the coupling reveals that in two-photon absorption, it is the
distributive mechanism that is dominant, whilst in Raman scattering cooperative
energy transfer is favoured .

There is also a significant difference in the selection rules applying to the two
types of process. In the cooperative case the two molecular transitions are separately
allowed under well known Raman (two-photon) selection rules, since each molecule
interacts with one real photon and either emits or absorbs a virtual photon . In the
same way the distributive case provides for excitation through three- and one-
photon allowed transitions, and may thus lead to excitation of states which are
formally Raman- or two-photon forbidden . Since on the whole these processes are of
most interest for molecules of fairly high symmetry, it can safely be assumed that in
most cases one mechanism alone is involved in the excitation to a particular pair of
excited states a and fl . In the following section, a theory is developed for the former,
cooperative, mechanism which relates to transitions allowed under the normal
symmetry selection rules for two-photon absorption and Raman scattering . The
corresponding theory for the distributive mechanism follows along very similar lines
and has been discussed in detail elsewhere [6, 10] . The novel features which arise out
of virtual photon coupling are essentially identical for both types of mechanism, and
it is these which are subsequently examined in section 3 .

k
1

(a)

P 0
(b)

Figure 2 . A schematic illustration of the two types of cooperative two-photon process
involving the molecular centres A and B; (a) cooperative two-photon absorption, and (b)
cooperative Raman scattering : p in this figure represents the propagator for virtual
photon coupling .
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Figure 3 . A schematic illustration of the two possible types of distributive two-photon
process involving the molecular centres A and B ; (a) two-photon absorption, and (b)
Raman scattering .

2. The quantum electrodynamics of synergistic two-photon processes
In molecular quantum electrodynamics, the adoption of the Coulomb gauge with

the multipolar interaction Hamiltonian of Power, Zienau and Woolley [11], leads to a
description of molecular interactions in terms of a coupling associated with the
creation and subsequent annihilation of virtual photons . All energy transferred
between molecular centres is therefore mediated through the radiation field via
virtual photons . As a consequence of this, the interactions which occur between
charges in different molecules propagate with the speed of light . In the near-zone,
virtual photon coupling is purely longitudinal with respect to the intermolecular
separation vector R, and therefore has the characteristics of a static interaction in
which the electron distribution of one molecule responds to the scalar field of the
neighbouring centre . Thus in the electric-dipole approximation, the near-zone
result is the familiar induced-dipole-induced-dipole result as obtained from the
semi-classical calculations, see for example [12] . In the far-zone, the virtual
photon that propagates between the centres takes on a real character, and the effect is
essentially that of a radiative dipole .

The starting point for any calculation is construction of the probability
amplitude connecting the initial and final states for the system . In the problem to be
considered here, two interacting molecules, arbitrarily labelled A and B, are placed
within the interaction volume of a laser beam, or beams . Initially, at time t = 0, it is
assumed that both molecules are in their ground states, 10) . The calculation then
proceeds to evaluate the probability that at a later time t, the molecules are
synergistically excited to states ja) and If), via the annihilation of two photons
(cooperative two-photon absorption), or the annihilation of one laser photon and
creation of one scattered photon (cooperative Raman scattering) . In the quantum
electrodynamical representation of these processes the initial and final states Ii) and
if) respectively are therefore defined as

Here the sequence in the ket denotes ; I the state of A; the state of B ; the number of
photons in mode 1 ; the number of photons in mode 2 ; the number of virtual
photons>. For both cooperative Raman scattering (RS), and synergistic two-photon
absorption (TPA), mode 1 refers to the mode of the laser radiation, with the curly

Ii)=10 ; 0 ; {nl} ; {n2} ; 0), (3)

If) = Ia; fl; {(nl -1 )} ; {(n2+ 1)} ; 0) • (4)
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brackets denoting that a set of modes is to be used for multi-mode sources . Mode 2
however denotes distinctly different number states for the Raman scattering and
two-photon absorption processes . In the former case, mode 2 is the mode of the
scattered photon; in the final state the occupation number of this number state is
increased by one . In the latter case, mode 2 is associated with a second laser, and
consequently in the final state the occupation number of this mode is decreased by
one. The coherence factor which marginally modifies the above treatment in the case
where modes 1 and 2 are the same is discussed elsewhere [9, 10] .

As noted above, intermolecular perturbations are described in terms of virtual
photon coupling; thus for the processes under consideration here, four distinct
radiation-molecule interactions occur within the time interval t . The probability
amplitude, cf ,(t), for either process li>-+If> defined in equations (3) and (4) can be
therefore be calculated from

cf1(t) = <fI U(t, 0) li>, (5)

where the evolutionary operator U(t, 0) for the process results from the fourth-order
perturbation term in the Dyson equation [13] and is

U(t, 0) = (ik)-4

T[
ft dtl

t
dt2

t
dt3

t
dt4

4!

	

0

	

J0

	

J0

	

Jo

x Hnt(k, t0Hnt(p, t2)H!nt(p, t3)RjBnt(k', t4)],

	

(6)

where T is the Dyson time-ordering operator . Here there is implicit summation over
virtual photon modes, and polarization labels are dropped for brevity . The evolution
operator describes how any stationary state of the initially unperturbed system (i .e . a
state of the system in the absence of any time-dependent perturbation) evolves
through time when the perturbation is `switched on'. In the Heisenberg represen-
tation, the interaction Hamiltonian, in the electric-dipole approximation, has the
explicit form

Hnt(k, A, t) = -go 'p(~, t) - dl(k, A, R4, t),

	

(7)

where p(~) is the electric dipole moment operator for a molecule ~ at a position R { ,
and dl is the transverse electric displacement operator which, for the mode with
propagation vector k (circular frequency w=clkl) and polarization A, is given by

dl(k, A, r, t) = i(kcks0/2 V)' 12

x [e(z)(k)a(x)(k, t) exp (ik • r)-e(z)(k)at(z)(k, t) exp (- ik • r)] .

	

(8)

Here e(2) is a polarization vector in the direction of the electric field, a(z)(k, t),
at(xkk, t) are the normal photon annihilation and creation operators respectively, and
a(xO,t)=a('(k)exp(-iwt). To calculate the result for cf;(t) explicitly requires the
summing of all 24 time-orderings in equation (6) . This calculation is facilitated by
the use of time-ordered diagrams ; figure 4 illustrates four typical contributions : (a)
and (b) relate to TPA and (c) and (d) to RS .

In a recent paper [8], it has been illustrated how the derivation of the required
probability amplitude is simplified if the system Hamiltonian is canonically
transformed. In this procedure the original Hamiltonian undergoes a unitary
transformation in Hilbert space . This transformation eliminates the lowest-order
interaction terms, and the remaining lowest order interactions, denoted by H,ff, are
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k z

	

k t

	

k z

P

(c)

	

(d)

Figure 4 . Typical time-order diagrams for cooperative two-photon processes, involving two
molecules A and B . Figures (a) and (b) relate specifically to two-photon absorption, and
(c) and (d) to Raman scattering.

second-order in the perturbation. These terms are found to be directly responsible
for synergistic processes at each molecular centre. The derivation of the desired
time-evolution operator thus becomes a simple matter of applying second-order
perturbation theory with the result that

U(t, 0)- (ih)_2 TY C rt dt 1

	

dt2Hff(k1 ; p, t1)Hff(k2 ; P, t2)21 p, J 0

	

J0

	

]

= (ih)-4
T[

rt
dt1

rt
dt2

rt
dt3

~
.t dt4

41

	

o

	

Jo

	

0

	

0

x Hnt(k1) t1)Hnt(P, t2)HBot(P, t3)HBnt(k2, t4)],

	

(9)

where HCff(k ; p, - t 1 ) and so on are the Heisenberg operator forms of

Heff(k1 ; p) = -i[SA(k1 , A), Hnt(P, e)],

	

(10)

HBff(k2 ; P) = - i[SB(k2, 2 ' ), HBot(P, c)],

	

(11)

where SA and SB are the generators for sites A and B respectively, defined in terms of
the commutator relation

i[SA(k1, A), Ho] + i[SB(k2, 2'), Ho] =Hnt(k1, ).) +HBot(k2,1'),

	

(12)
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where Ho represents the complete system Hamiltonian in the absence of any
radiation-molecule perturbation term . Operating on either side of equations (10)
and (11) with the initial and final state vectors for the system we find that the matrix
element for the effective Hamiltonian at each molecular centre for the transition

li>-+If> is simply

Here and through the paper upper signs relate to TPA and lower signs to RS . The
asymmetry in defining equations (15) and (16) arises in the choice of generator,
which for simplicity we elect to be a function of the real photon parameters . The
tensors a)(k) and aB(k) are clearly equivalent for the case of TPA . For Raman
scattering, the equivalence of the two tensors is best illustrated in the long-range
limit where the photon scattered at A assumes a real character. With Ia>=10> for
example, then energy conservation demands that Ego =hc(kl -k2) . Substitution of
this result into the energy denominators of equation (16) replicates the result in
equation (15) . Despite the similarity in form of the tensors for TPA and RS, it should
be borne in mind that the excited states a and fi are vibronic in the first case but
vibrational in the second. In fact application of the Born-Oppenheimer wavefunc-
tion expansion in the latter case, together with the usual Placzek approximations [14]
results in index symmetry in non-resonant cases. In previous work on cooperative
TPA [5] results are expressed in terms of the molecular tensors S;j (kq) = -a;;(k„ ),
and to avoid confusion, the S tensors are used below whenever specifically referring
to cooperative TPA .

The probability amplitude cf1 (t) for the process is obtained by substitution of
equations (9)-(16) into equation (5) . Carrying out the necessary time integrations,
and performing the summation over the polarizations of the virtual states, leads to
the following result involving only four terms corresponding to the contracted time-
order diagrams shown in figure 5 ;

exp [i(-F k2	. Rb - kl • R8)]

	

"2 n

	

scr`(t)°

	

4EZV2

	

[nmzkikz] a~,(ki)aki(kz)e~(ki(ei(k2)
0

X

	

p(S,k-fijfik)~
{exp [ict(KK+Ks)]-1} exp (ip • R)

P =O

	

(Ka+KO)(Ko +p)

- {exp [ict(K, -P)] -1} exp (ip • R) + {exp [ict(K,, + K,,)] -1 } exp (- ip • R)
(Ka-p)(K,O+p)

	

(K,+Ks)(KQ+p)

- {exp [ict(KK -p)] - 1} exp (- ip • R)
(K~-p)(K8+p)

	

(17)

<fI Hff(k i ; p) li>= -s0-'a t(ki)d,; (P)dt (ki), (13)

<fI HBff(kz ; P) li>= -E0-O 2 a j(k2)di (P)dj (k2) . ( 14)

The rank-2 tensors appearing in equations (13)

a^

	

µa
i)=

	

itiro +

(E,Q+hck 1"(k

and (14)

µa µro
are defined as

'
(15)

r

jir r0

as{k2)=Y
~i'u` +

E,o -hck l

pr
r0

pi µ' (16)
r E,~ ± hck2 E, 0 4 hck2
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P

B

(a)

(b)

Figure 5 . The contracted time-order diagrams for (a) cooperative two-photon absorption,
and (b) cooperative Raman scattering.

Here n2 = n2 for synergistic two-photon absorption, and n? =1 for Raman scattering .
The vector R=(Rb-Ra ) is the intermolecular separation vector that defines the
location of centre B with respect to A, and the quantities K,, and KK are defined as

Ka=
Eao hck 1 '

	

(18)
h

K =
Epo ±hck2 .

	

(19)

In the above equations (18) and (19), it is assumed that for Raman scattering the
photon of frequency (o l is annihilated at site A, and that the scattered photon is
created at site B . For the TPA process, it is assumed that the photon annihilated at
site B is greater in energy than the final state (E,,0 < hw1 ), whilst EEo > ho 2 . Thus
Ka < 1 and KK> 1 . In order to simplify equation (17) the summation over the virtual
modes is converted to an integral in p-space according to the prescription [15]

°°

	

V f °°

E _8 7C 3 dap.

	

(20)

A

P

B

k
Y
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Resorting to spherical polar coordinates, and carrying out angular integrations, gives

c'1(t)=exp [i(k2' RZ - k1 - Ra)]
Lnmzkikz) l 1za;;(ki)akt(kz)e,(ki)e,(kz)167c s oV

x(-V26A+ViVk)

	

sin(pR) exp[ict(K2+Ks)]-1fo iR

	

(Ka+Kp)(Ks +p)
exp [ict(K, -p)] - 1 exp [ict(Ka +Ks)] - I
(Ka-p)(Ks+p) + (Ka +Kp)(Ka +p)

exp [ict(Ka-p)]-1

}dP .

	

(21)
(Ks-p)(KK+p)

The integrals in p-space can now be evaluated by noting that in timescales
beyond the femtosecond region, only processes on the energy shell (Ka=-Ks)
contribute. This simply reflects the fact that energy conservation must be obeyed as
the sampling time t-+ oo ; this becomes evident when a summation over final states is
conducted . On the energy shell, it is possible to reveal a hidden symmetry in the
integrands by changing the variable of integration from p to -p in some of the above
integrals . In so doing, it is possible to show that

°° sin (pR) exp [ict(K,+Ks)] -1 exp [ict(Ka-p)] -1
o iR

	

(Ka+Ks)(Kp +p)

	

(Ka-p)(Kp+p)

+ exp [ict(Ka +Ks)] -1 - exp [ict(KK -p)] -1 dp
(Ka +KK)(K2 +p)

	

(Ks-p)(KK+p)

f

°sin (pR) Jexp [ict(Ka +Ks)] -1

	

1
_~ iR

	

(Ka +Ks)(Kp+p) + (KK-p)(KK+p)} dp

°° sin (pR) exp [ict(Ka-p)] + exp [ict(KK-p)]
dp

	

(22)
o iR {(Ka+ p)(KK -p) (Ks -p)(Ka +p)

Of the last two integrals the first term has no pole in the region of integration, and is
highly oscillatory . This integral is very similar to that ignored in the Fermi Golden
Rule treatment of the second-order matrix element . This term averages to zero over
periods of ctp that are sufficiently large, and is therefore ignored . The fourth
integrand has two simple poles in the region of integration, and cannot be ignored .
Noting that the principal contribution to this integral arises from the poles, it is
possible to extend the limits of integration to (- oo, oo ) . The integral involved is then
easily solved by taking the Cauchy principal part [16] leading to the following
inherently causal result ;

"p
[i(±

8
k2. Rb-ki '	R.)

	

112ce(t)=

	

87t zEO V

	

Lnm zk ik 2 1 a (k)ackl(k )e1(k)et(k )

x (- V26

	

1 7E exp (iKsct)
sk + VJVk)R (K.+Kp)

x {exp [-iKa(R-ct)]-exp [iKs(R-ct)]} ; ct>R

cf1(t)=0 ;

	

R>ct.

(23)
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To obtain the rate requires that the time derivative of the probability for the
transition be calculated . The probability is simply the modulus square of the
probability amplitude, and hence the rate, r, is given by

TPA

	

(nln2klk2) A

	

B

	

A1'f9 (t)= 4s2 V2 ajr(ki)akj(k2)ej(ki)ei(k2)& (ki)Pp(k2)e,~(ki)e,(k2)
0

x(4nsO) -1(- P28;k +VJVk) R(47taO ) - '(-V,26. +Pn

	

'

X (Ka +K
p

) {exp [-iKK(R-ct)-iKK(R'-ct)]

- exp [iKp(R-ct)+iK,(R'-ct)]}

=INf'12(KQ+Kp)
{exp[-iKK(R-ct)-iKp(R'-ct)]

(24)

- exp [iKp(R-ct)+iK8(R'-ct)]} .

The final stage in the calculation of the transition rate is to sum over an appropriate
set of final states for the system, this being tantamount to assuming that transitions
occur to a continuum of states . This procedure is different for cooperative RS and
TPA. In the Raman case the final states summation can be converted to a familiar
integral over the frequency of the scattered photon ; this procedure is outlined
elsewhere [8] . Here we concentrate upon the summation over final states for two-
photon absorption, since this has not previously been explicitly performed .

In cooperative TPA the appropriate final states for the system are the molecular
final states Ia> and If> . Thus two summations are strictly required, and the observed
transition rate is therefore given by

~~INf,l2	'C	
a

	

(Ka +Kp)

x {exp [-iKQ(R-ct)-iKp(R'-ct)]-exp [iKp(R-ct)+iK,,(R'-ct)]} . (25)
By converting the summation over the la> states to an integral over K a , it is possible
to show that, in the long-timescale limit, the observed rate takes the form

INf ,l 2 21tltc2 exp [iKa(R-R')]Pf (k 1 +k2 -K~0),

	

(26)
P

where, in deriving this result, it is implicitly assumed that the molecular response
tensors and the density of final states, p f , for molecule A are stationary functions of
Ka in the frequency region close to w, . Finally one recasts the summation over the
final states of molecule B as an integral over KB , with the result that the observed
time-independent transition rate may be written as

F11A _ 2ttk2c 3 jNfil 2 JP(kif +k2 -k)pB(k) exp [i(k-k2)(R-R')] dk

_ nI
(
k Ik
2E c

	 2) dkpf(kl+k2 - k)PB(k)

x I Sij(k,)Sk,(k2)eI(kl)ek(k2)
2

x(4xc0 ) -1(-V2S;,+VjV;) I exp[-i(k-k2)R] ,

	

(27)
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where I(kn ) represents the irradiance (power per unit cross-sectional area) of the
laser beam for mode kn . In cooperative Raman scattering it is more useful to cast the
result in terms of a radiant scattering intensity IfRS(k2 ), defined as the Raman
scattering energy radiated in the direction of k' per unit solid angle per unit time :

IRS ,f. (k )= (47rEO)2 )(ki) (k2)e,(ki)al(k2)amn(ki)aop(k2)em(Ii )ep(k2)-	

x(4ttEO) -i ( - V28jk+VjVk)R(4neo -i(-P,Zano + P;,Po)R,

x exp [i(Kgo-k2)(R-R')] .

	

(28)

Equations (27) and (28) represent the master equations for two-photon coopera-
tive phenomena . Of specific interest in these equations are the virtual photon
coupling tensors, which are essentially of identical form not only in the phenomena
considered here, but also in other resonant excitation transfer processes [17] : its
properties are analysed in the following section .

3. Virtual photon coupling tensor
In this section, the properties of virtual photon coupling are discussed in some

detail. As noted in section 1 both cooperative and distributive TPA and RS are
characterized by a coupling tensor of the form

(4=O)-i(- P2(Sjk+ PjPk) 1 exp (iKR) = Vjk(K, R)

1
{ [(S jk - 3Rjf

4ne oR 3

	

k)

x [cos (KR) + KR sin (KR)]

- (8jk - t2j'5k)K2R2 cos (KR)]

+ i{(8jk - 31j1Ck)[sin (KR) -KR cos (KR)]

-(Sjk-RjRk)K2R2 sin(KR)}} .

	

(29)

tensor essentially describes how the energy mismatch between molecularThe
centres is mediated . It is often referred to as the virtual photon propagator [18], or
tensor field [19] . This term is of direct interest since all properties of intermolecular
coupling are manifest within it. Whilst Vjk(K, R) is oscillatory in nature, the
molecular energy transfer function Re (Vjk(K, R) Vno(K, R)), involved in all coupling
terms which appears in the transition rate, is non-oscillatory and has the form

~
Vjk(K, R)Vno(K, R) =	

1
16tc 2 E 2 6

[(ajk-3Rj~k)(ano-3Pn1`o)(1 +K 2R2)

- [(ajk - 3xjxk)(ano - xnxo)

+ (ajk- Rj'k)lsno - 3Rn1o)]K2R2

+ (ajk - RJRk)('5no --1Cn1o)K4R4 .

	

(30)

In the limit where the intermolecular separation is small (KR < 1) only the first term
in the above expression contributes appreciably to the rate equations . Substitution of
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this term into the master equations (27) and (28) simply gives the familiar induced-
dipole-induced-dipole results for two-photon absorption and Raman scattering
respectively .

In the long-range limit (KR > l) the last term in equation (30) becomes
dominant. This result, which is transverse with respect to R, shows that the
intermolecular coupling tensor describes the long-range propagation of a real photon
between molecular centres . The limit therefore corresponds to a process where a real
photon mediates the mismatch energy E.0 -hck l to B through a scattering
mechanism at A. This photon then proceeds to a subsequent two-photon absorption
or scattering process at site B . The quantum electrodynamical result given in
equations (27) and (28) thus shows how multiple-body and induced-dipole-
induced-dipole mechanisms are in fact merely the long- and short-range limits of a
unified theory of cooperative two-photon processes, involving intermolecular virtual
photon energy transfer .

For fluids, it is necessary to sum over all possible interacting pairs when arriving
at an expression for the observed rate or intensity . In practice therefore, R may take
any one of a continuum of values, and a distributional average for the ensemble is
required. It can safely be assumed that pair interactions are negligible over distances
greater than the width of the laser beam, and hence the number of potential
interacting pairs separated by distance R within a beam interaction volume V, is
V,p2(R)g(R)R2 dR, where p(R) is the number density and g(R) the pair correlation
function for the fluid . In randomly oriented molecular fluids free of translational
symmetry it is thus possible to show that only incoherent contributions to
the scattering remain, with the molecular energy transfer function,

Re [VJk(K, R)Vno(K, R)] effectively being replaced by [8] ;

41tVIR 2p(R)g(R)VJk(K, R)Vno(K, R) dR .

	

(31)

Thus the cooperative processes described by the master equations (27) and (28) are

now described by [6, 8,10]

rrr^= tt2l(

60c
1l(k2)V'P'

J
dk ^ k

	

a k
f
~~dRR2 Rfi

	

2

	

Pf( I+k2 - k)Pf( )

	

S'( )

x <«{SA(k1)Sk!(k2)eI(kl)ek(k2)V;I(K,R)

+[k1'-'k2] exp[-i(k1+k2)-R]}{`S n(k1)~p(k2)em(k1)eo(k2)Vnp(K,R)

+[k1*-->k2] exp [i(k l + k2) • R]} >>>

	

(32)

Ifas(k')= I(8~E2 VIP2

	

dRR2g(R)
0

x <<< {a (kl)akl(k2)e,(kl)e,(k2) VJk(K, R)

+[k14-k2 ] exp [- i(kl +k2)' R]}{ot aǹn,(kl)a p(k2)e,n(kl)ep(k2) V,0(K, R)

+{k14-k2 ] exp [i(k l + k2) • R]} >>>,

	

(33)

where the angular brackets <<< >>> reflect the fact that a series of three rotational
averages is required to account for (i) the random orientation of the A, B pair with
respect to the laboratory frame, (ii) the random orientation of A with respect to B,
and (iii) the random orientation of B with respect to A [10] .
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In explicitly carrying out the necessary averaging it is found that virtual photon
coupling is governed by a linear combination of the isotropic components of the term
Re [V,j(K, R)Vk,(K, R)A.,R koiCp], derived by contraction with index permut-
ational isomers of the quadruple Kronecker delta product bjjbk,b,„„ bop . Thus the rate
of any synergistic process in molecular fluids involves terms of the general form

Tijklmnop(K, K; R)=(Vli(K, R)Vkl(K, R)R,,,A,RoPp)I0) , (34)
where K=K8 as defined in equation (18), K=Ego -hck l /htc, and the superscripted
(0) indicates that the weight-0 (isotropic) part of the tensor must be taken . The rate
contribution associated with each weight-0 isomer of TTJk,,,,,,,,p carries a spherical
Bessel function j„(Ik l ~-k2jR) of order n equal to the number of It vectors contracted
with V,jVkl [20] . Since for all physical processes the near-zone dominates the rate
equations, jo is considerably larger in magnitude than higher order terms . The most
significant rate contributions therefore result from terms in which the indices i, j, k
and l are contracted together, giving the two molecular energy transfer functions
Vjk(K, R) Vjk(K, R) and Vj;(K, R)Vkk(K, R) . Special functional forms arise, how-
ever, in cases where K=K. From equation (29) the required results are as follows :

Vjk(K, R)Vjk(K, R)= 8tt212R6 (3 +K 2R2+K4R4),

	

(35)

V • K R) V • K' R
exp [i(K- K)R]

,,k( ,

	

Jk( , ) =	87E2EOR6

	

(3-3i(K-K)R+(3KK-K2-K2)R2

The cases where K0 K occur only in processes where E„ o ;A E,0 . Here contributions
involving equations (36) and (38) arise through quantum mechanical interference
between probability amplitudes for processes in which the photon hck l is annihilated
at each of the sites A and B. It is interesting to note that such terms are characterized
by range-dependences involving odd powers ofR.

In the more common processes where K=K one only needs to consider the
results given in equations (35) and (37) . Such cases arise in all distributive
mechanisms and in cooperative mechanisms where the two species A and B are
chemically identical, as manifest in (i) mean-frequency two-photon absorption, and
(ii) vibrational harmonic Raman scattering . The latter is quite distinct from Raman
scattering involving an overtone frequency, where the oscillator is necessarily
anharmonic . Here the distinction between single-centre vibrational overtone and
bimolecular vibrational harmonic scattering can most readily be differentiated
through their difference in Raman frequency shift . Of the two terms (35) and (37) it is
clearly the former that is more important in the near-zone; thus for most processes
the latter term may be neglected and attention focused upon Vjk(K, R)Vjk(K, R) .

Terms of precisely the same form as the results (35) to (38), but with different K
values given by kl ±k2i arise in dealing with the distributive mechanisms. Here
crucial differences occur in connection with the extent of their near-zone behaviour,
determined by the energy mediated by the virtual photon. In both synergistic TPA

+ i(K2K -KK2)R3 +K2K2R4), (36)

K4R4Vjj(K, R) Vkk(K, R) = 4i2eoR6 , (37)

K2K2R4Vjj(K,R)Vkk(K',R)=
422s2R6

exp [i(K- K)R] . (38)
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Figure 6. Typical log-log plot on an arbitrary vertical scale of the excitation transfer
function A(k, R) against intermolecular separation .

and RS the cooperative and distributive mechanisms are associated with very
different coupling frequencies . For TPA the cooperative mechanism involves
transfer of an energy difference typically equivalent to a molecular vibrational
energy. By contrast the distributive mechanism involves transfer of an electronic
energy. For RS, however, it is the distributive mechanism which conveys a
vibrational energy and the cooperative mechanism an electronic energy [21] .

Figure 6 illustrates the implications of this point with a log-log plot of the general
function V (K, R) V (K, R) which occurs in all triply-averaged rate equations . The
upper curve is plotted for a value ofK=1 .6 x 10' m-1 , corresponding to conveyance
of an electronic energy Ego with a wavelength of about 400 rim . The lower curve with
K=8 x 10'm- ' corresponds to a mechanism where only an electronic energy
difference (nominally Epo/20) is conveyed ; here the difference equates to a vibrational
energy with a wavenumber of around 1250 cm -1 . At short distances the two graphs
are indistinguishable and display the near-zone R -6 dependence . However, the
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extent of the near-zone for the former case is much shorter, with the limiting far-
zone R-Z behaviour already established at R=1 gm; for the latter case far-zone
behaviour obtains at R=10 gm. The result of this difference is that the long-range
rates (which vary with K4) differ by a factor of (20) 4 =160 000 in favour of the
distributive mechanism for synergistic TPA and the cooperative mechanism in RS
[21] .

4. Conclusion
In this paper, the characteristics of synergistic two-photon processes have been

outlined in some detail . Whilst the theory expounded above shows that these effects
are weaker than the single-centre contributions, certain novel features of the
bimolecular processes should readily lead to an identification of the corresponding
effects in TPA and RS spectra .

Synergism may first be characterized through the appearance of novel bands in a
two-photon spectrum corresponding to simultaneous electronic, or vibrational,
excitations . In TPA it is noted that one interesting effect would be the manifestation
of mean-frequency absorption, whilst in RS it should be possible to identify
combination bands, either as a result of simultaneous excitation of different
vibrational modes in two distinct molecules, or by the appearance of vibrational
second harmonics. In the case where the synergistic effect is purely intermolecular in
nature, the unique nonlinear density and pressure characteristics of the bands in the
spectrum should be readily identifiable .

Synergistic TPA may also lead to anomalous absorption in single-photon
absorption experiments involving white or broadband light, such as the ultrafast
laser supercontinuum [7]. This phenomenon, whereby molecular pairs synergisti-
cally absorb photons whose energy sum equals twice the transition energy for each
molecule, should lead to a modification of the normal Beer-Lambert exponential
decay law. The modification involves the addition of a term involving the frequency
autocorrelation of the light, and should be manifest in a decrease in the apparent
width of many lines in the absorption spectrum ; in fact the Lorentzian linewidth of
the synergistic process is readily shown to be approximately 0 .64 times the ordinary
absorption linewidth. Other types of optical nonlinearity which modify the form of
any single-photon absorption spectrum are generally distinguishable by higher
degrees of nonlinearity in the incident light intensity . Thus not only intensity-
dependent lineshapes or extinction coefficients but also the appearance of ostensibly
extraneous spectral lines may all be attributable to the effects of synergistic two-
photon absorption .

Synergism may also occur within individual molecules or complexes . Here sites
A and B will refer to otherwise uncoupled chromophores in a large molecule, a van
der Waal's complex or a solvation complex, for example . In such systems it can be
demonstrated that optical synergism is associated with gyrotropic effects . This is
important since it demonstrates how one achiral centre can confer chirality upon
another through their dissymmetric displacement with respect to each other . Where
chiral effects occur in individual chiral centres, they are due to contributary
interactions of magnetic-dipole character . However the detailed theory of both
cooperative and distributive effects shows that both circular dichroism and circular
differential scattering are a natural consequence of synergism, even in the local
electric-dipole approximation, so long as the chromophores are dissymmetrically
juxtaposed. The most interesting feature of these effects is their linear dependence
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on R in the near-zone. Since circular dichroism or differential scattering in achiral
sites can only occur as a result of synergism, use of this relatively simple technique
provides another means of unambiguously identifying the effect .

In assessing the significance of the theoretical results presented above, it is useful
to have some idea of the magnitude of the quantities involved . Although as noted
above, synergistic effects in TPA are now experimentally well documented, neither
experiment nor ab initio calculations have yet been performed to provide quantita-
tive values for the various tensor parameters involved in the rate equations .
Estimation of the more general significance of many of the results presented earlier
must therefore proceed from a different basis . As shown in early work on cooperative
photoabsorption [9, 10], neighbouring molecules can be expected to display a
synergistic rate approaching the rate of a two-photon process in individual
molecules, a result which is more readily calculated : this can be argued as follows .

A comparison of the short-range limit of the rate equation for cooperative
absorption and the corresponding rate equation for normal two-photon absorption
shows that the former contains an additional factor of the order of p=Sa°/a0R3 . Far
from accidental resonances, the molecular tensor should be similar in magnitude to
the polarizability, since it is constructed in the same way from products of electric
dipole transition moments divided by energy mismatch factors . Molecular polariza-
bilities, at least for small molecules, have well documented values, and are mostly
similar in magnitude to the cube of molecular diameter . Hence when R represents a
nearest-neighbour distance, the factor p approaches the value of unity, and the
cooperative rate is comparable with that of a conventional two-photon process .
Similar reasoning can be applied to the case of the distributive mechanism .

In the light of these arguments it is perhaps not surprising that synergistic effects
are now being reported in two-photon spectroscopy . The explicit characterization of
synergistic single-beam two-photon absorption has recently been described by
Fajardo et al. [22,23] in connection with a study of laser-induced charge transfer
process. Here it has been possible to make a clear distinction from sequential
absorption on the basis of kinetic considerations, and it has been show that
synergistic TPA is the only mechanism which can satisfactorily account for all the
experimental observations .
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