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This paper develops the general theory of electro-optical effects in two-photon molecular
spectroscopy. Two distinct mechanisms can play a role in these nonlinear interactions with an
external static electric field. One relates specifically to polar fluids and is associated with the
partial molecular alignment produced by the applied field. The resultant anisotropy produces a
relaxation of symmetry restrictions on the allowed two-photon transitions. The other
mechanism directly involves a nonlinear electro-optical channel and is associated with quite
distinct selection rules. Both mechanisms induce changes in line intensities and can under
suitable polarization conditions enable certain transitions to be “switched into” the spectra.
Generalized rate equations are derived using standard quantum electrodynamical procedures.
The results, which are applicable to any required laser beam configuration, are cast in terms of
irreducible Cartesian tensors. This facilitates the elucidation of the selection rules appropriate

for molecules of any given symmetry. A comprehensive tabulation of the transformation
properties of the relevant molecular tensors under the operations of the common molecular
point groups is also presented, paving the way for the subsequent application of the results
specifically to two-photon absorption and Raman scattering processes.

I. INTRODUCTION

Electrically driven two-photon processes play a central
role in the field of modern electro-optics. Kerr and Pockels
cells for example, which are widely used for the fast switch-
ing of laser beams, both involve the effect of an electric field
on an elastic light scattering process (forward Rayleigh scat-
tering) which at the quantum level is a two-photon interac-
tion.! From a spectroscopic point of view, such a process is
fairly uninteresting as there is no net exchange of energy
between the radiation and the medium, the incident and
emergent photons having the same frequency. However, the
influence of a static field on other kinds of two-photon inter-
action, such as two-photon absorption and inelastic Stokes
(Raman) scattering in which there is an uptake of energy by
the medium, has not as yet received much attention from
spectroscopists. Studies of both these processes in a field-free
environment provide key information on two-photon al-
lowed transitions, and both have found numerous and di-
verse applications ranging from speciation to the determina-
tion of molecular structure. It is the purpose of this paper
and the two which follow?? to demonstrate the large amount
of additional information which can be obtained by studying
the electric field dependence of these interactions.

A static electric field can influence two-photon interac-
tions by two distinct mechanisms. The first is an electrical
polarization effect, and relates specifically to fluids contain-
ing dipolar molecules. Here, application of the field can pro-
duce macroscopic anisotropy by inducing a degree of molec-
ular alignment. This results in a relaxation of the symmetry
restrictions on the allowed transitions, so changing the line
intensities in the two-photon spectra. The other mechanism,
which is of more universal application, is one in which two-
photon molecular transitions proceed through an electro-
optical interaction which is normally absent. Here the static
field perturbs and partially mixes the molecular wave func-
tions, thereby allowing some transitions to take place which
are otherwise forbidden. This can give rise to a novel effect
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wherein application of the field enables certain lines to be
“switched into” the spectra. The distinct roles of these two
mechanisms in conventional (single-photon) absorption
spectroscopy have been discussed in two earlier papers.*?

In this introductory paper, the general theory underly-
ing these new electro-optical effects is delineated. General-
ized rate equations are derived using quantum electrody-
namics and, with the introduction of irreducible Cartesian
tensors, the results are cast in a form which facilitates a sub-
sequent symmetry analysis. The spectroscopic selection
rules for field-induced two-photon processes are described in
detail, and illustrated by reference to common molecular
point groups. The two following papers detail the applica-
tion of the general theory to two-photon absorption® and
vibrational Raman scattering,® and include explicit intensity
expressions for specific laser polarizations.

1l. QUANTUM MECHANICS

The starting point for the calculation is the quantum
electrodynamical Hamiltonian for the system comprising
the molecules and the electromagnetic radiation, modified
to incorporate the effect of the static field:

H=Hx’nol+Hint +Hrad’ (21)

where H /,, is the molecular Hamiltonian in the presence of
the static electric field E; H,,, represents the perturbation
associated with the electromagnetic radiation, and H.,,, is
the Hamiltonian for the radiation itself. A two-photon inter-
action may now be formulated in terms of time-dependent
perturbation theory with the dressed eigenstates of H |, and
H,,, as a basis. The dressed molecular eigenstates are given
by the following equation:

=1 =3 (W EE sy +
S#Er

2.2)

where |7) represents an eigenstate of the conventional Schro-
dinger operator H,,, for the molecule in the absence of the
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applied electric field, E,, denotes the difference E (’ — E @
between the zeroth-order energies associated with the states
|r) and |s), and p*" is the transition electric dipole moment
for the |s) « |r) transition. In writing Eq. (2.2) it is assumed
that the static electric field E is not only temporally but also
spatially homogeneous across the laser beam. This assump-
tion is reviewed in a later section. Within the electric dipole
(E'1) approximation the interaction Hamiltonian may be
written as

Hint = = 6(;— lll- ¢ dl’ (23)

where p is the molecular electric dipole moment operator
and d* the transverse electric displacement operator for the
radiation field. The dipole approximation is sufficient for
considering the majority of cases in which electronic excita-
tions of molecules are restricted to regions much smaller
than a typical wavelength for optical-frequency radiation.
The transverse electric displacement operator can be written
in terms of a summation over radiation modes as follows®:

di(r) = Y (whicke,/2V){e® (k)a® (k)e™*
kA

— &M (k)at® (k)e~ &}, (24)

Here ¢*’ (k) is the unit polarization vector for the mode
characterized by propagation vector k and polarization A,
with frequency given by @ = c|k|; ¥’ (k) and a"* (k) are
the corresponding annihilation and creation operators
which operate on the eigenstates of H,,,; Vis the quantiza-
tion volume.

The rate of an electro-optical interaction can be calcu-
lated from the Fermi Golden Rule,

*

F=2_I;T'Mﬁ|zp > (2:5)
where p, is a density of final states for the process, and the
matrix element M} is given by the series

My = (| Hli)) + 3 ‘ﬁllﬂmlrsg(rslﬂim!in

ir

<f;|f1int |ss)(ssII{int|rs)(rs|fIint|is> +
EBE‘ir

+y ,
(2.6)
where the subscript s within the Dirac brackets denotes the
fact that the states and the energies relate to the system com-
prising both the molecule and the radiation. The energy de-
nominators in the above expression are complex to ensure
that even near to resonance the series for the matrix element
converges. Thus, E, = E,, — iifiy,, where the imaginary
term is a damping factor associated with state 7. This effec-
tively models the time dependences of the virtual intermedi-
ate states when decay processes are taken into account.
When frequencies of irradiation are close to a single reso-
nance, the matrix element becomes almost entirely imagi-
nary, but well away from resonance the imaginary compo-
nent of the energy denominators can be ignored and the
matrix element can be considered real.

For normal Raman scattering and two-photon absorp-
tion the first term in Eq. (2.6) vanishes and the leading con-
tribution arises from the second-order term. The third-order
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term then represents the leading correction due to involve-
ment of the static electric field. For the special case of two-
photon transitions which are allowed even in the absence of
the field, the second-order term will naturally dominate even
when the field is present, and under these conditions the
higher-order terms will not be significant. However, certain
two-photon transitions which would normally be forbidden
in the E 1 approximation may be induced by the static field
through the third-order term. The result for the matrix ele-
ment may, in general, conveniently be expressed as follows:

M; = K(S;e,e;; — Tyee B + ), 2.7)

i
where the exact form of the constant X is given for each
process in the subsequent papers,>* and the molecular re-
sponse tensors S; and T, are derived from the appropriate
time-ordered diagrams. The former tensor results from the
coupling of two electric-dipole interactions with the radi-
ation (E 1XE 1), and the latter a coupling of three electric
dipoleinteractions (E 1 X E 1 X E 1), of which the third is as-
sociated with the static field. The polarization vectors e, and
e; relate to the two photons involved in the interaction, and
the prime on the e, component signifies that the complex
conjugate is to be taken in the case of Raman scattering,
where it is associated with the emitted photon. In Eq. (2.7),
and subsequently, we adopt the implied summation conven-
tion for repeated tensor indices. In passing we note that if
undressed molecular states are used as the basis for the calcu-

lation with the full interaction Hamiltonian,
Hint - —60— lu.dl—p'E, (2.8)

then precisely the same result ensues.
Equations (2.5) and (2.7) lead to the following result
for the rate,

['=L|See; — ﬂjkeueﬁjEkP, 2.9)
where
L =27K’p,/#. (2.10)

The major contribution to the rate for a transition allowed in
the absence of the static field thus results from the square
modulus of the first term in Eq. (2.9). In this case the higher
order correction terms are not of much interest, other than in
representing small corrections to the exact transition rate.
For a transition which is induced by the field, the leading
contribution to the rate comes from the square modulus of
the second term in Eq. (2.9).

lil. ROTATIONAL AVERAGING

The result represented by Eq. (2.9), as it stands, is valid
for application to solid media in which the molecules have a
fixed orientation relative to the radiation. For the case of
partially ordered molecules absorbed on substrates, the ap-
propriate result can be developed using the methods recently
described by Mazely and Hetherington.” However for appli-
cation to fluid media, the distribution of molecular orienta-
tions has to be modeled by rotationally averaging the result.
At this point, it becomes necessary to consider the anisotro-
py which the static electric field induces in the sample if the
constituent molecules are polar.

In general, polar molecules will experience a torque of
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magnitude p% X E in the static field, where u® is the perma-
nent molecular electric dipole moment, and E is the electric
field. The resultant anisotropic distribution of orientations is
associated with an interaction energy AE = — p®-Eanda
Boltzmann-weighting factor exp(pu% « E/kT). The correct-
ly averaged result for the rate is thus given by,

r=L <|Sijelie§j — Tyeye,E, |2 exP(P'OO ~E/kT))/

{exp(R™E/kT)), (3.1)
where the angular brackets denote the rotational average.
The electric field strength E which appears in the calcula-
tions above is strictly the field E,_ ;, experienced by each sam-
ple molecule, in other words the applied field E,,, modified
by the electrostatic environment produced by surrounding
molecules. For a continuous medium of dielectric constant
«, these are related by the well-known Lorentz local-field
equation,

Epo = }(x + 2)E,,. (3.2)

However, this equation is only correct at electric field
strengths of less than =~ 10° V. m ™' where the two fields E,,,,
and E,, are approximately proportional to one another. At
large electric field strengths the correct field-dependent
expression for the dielectric constant must be adopted and
Eq. (3.2) becomes

Epoa =E,,, +1u% ! NL(p), (3.3)

where N is the number density, and L(y) is the Langevin
function which is defined as

L(y) =coth(y) — 1/7, (3.4)
and where
¥ =p%E 01 /KT. (3.5)

For nitrobenzene at 300 K in an external field of 108 V.m ™",
the local fields are in excess of 10° Vm™!, and the Boltz-
mann-weighting exponent, p * E_, /kT, takes the value of
4.8.

Before proceeding further it is worth assessing the valid-
ity of the electric-dipole approximation for the interaction
energy. First, this rests on the assumption that spatial inho-
mogeneities in the applied field are small enough that higher
order electric multipolar interactions will be insignificant
compared to the dipolar coupling. This should normally be
the case where the electric field results from applying a po-
tential difference across a pair of parallel electrode plates. In
the special case of an electrolyte, however, in which the max-
imum degree of molecular orientation occurs close to the
surface of an electrode, the local field may be highly inhomo-
geneous, and quadrupolar effects may need to be considered.
Secondly, it is assumed that the interaction energy is linear in
the applied field. In general the nonlinear correction terms
will be small; the leading correction involves the molecular
polarizability « and is given by

AE= —a,E,E, (3.6)

It can readily be shown that, under nonresonant conditions,
this contribution to the interaction energy must be at least a
factor of /100 smaller than the dipolar term; hence it is
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normally sufficient to adopt the dipole approximation for
the Boltzmann weighting. The other factor which is worth
considering is the possibility of laser-induced molecular ori-
entation due to a coupling with the electric field of the light
itself. Here, molecular orientation will not be possible within
the short duration of an optical cycle, and the time average is
clearly zero. Thus, only the quadratic term can produce any
nonzero time-averaged response, and once again it is readily
shown that for the typical laser intensities used in two-pho-
ton absorption, the size of this effect will be entirely negligi-
ble.

Returning to the rate equation, we can now consider in
detail the two cases mentioned earlier.

A. Two-photon interactions allowed in the absence of
the static electric field

For two-photon transitions which are allowed in the ab-
sence of the static field, the leading S; term in Eq. (3.1) is
nonzero, and greatly outweighs the contribution from the
T term. Hence, to a good approximation, we have

T =L (|Sye,.e5|° exp(n* « E/kT))/{exp(n® - E/KT)).
3.7)

The procedure for evaluating this type of weighted rota-
tional average has been described in earlier work.® The cal-
culation proceeds as follows:

T = L (S;e,,e3;Sie ey exp(p® - E/kT))/
(exp(n* - E/KkT))
= LS;.,‘EmeneijélkEilUu ljulkvlloexp(p'oo *E/kT))/
(exp(n® - E/kT)), (3.8)

where the polarization vectors are now referred to a labora-
tory-fixed Cartesian frame denoted by Latin indices, and the
molecular response tensors are referred to a molecule-fixed
frame, denoted by Greek indices. The direction cosines such
as/,; refer tothe (i, A) elements of the Euler angle matrix for
the transformation between the two sets of axes. In the short-
hand terminology developed previously, we thus have

T =LS;,S,.ee52uel 5., (— i EA%®), (3.9)
where

(4
1 ijkLAuvo

(— ipEQ®) =108, (— i B{%) /1%,
(3.10)

The results for 7 ¢ involve expansions in terms of spherical
Bessel functions j, _ , ( — i¥), and explicit expressions are
given in Ref. 8. It is the fact that the calculation involves
weighted averages which results in the appearance of fea-
tures differing from the case where the static field is absent
and the medium is isotropic. The leading field-independent
contribution in the expansion of 7 ’*’? is the isotropic aver-
age I, Thus it is the higher-order correction terms involv-
ing ji, =j,/jo (1<n<4), which produce the novel features.
The functions involved in the weighting of the higher order
terms are given explicitly in Table I. The interesting features
that arise as a result of these further correction terms are
detailed in the following papers.
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TABLE I. The explicit form of the reduced spherical Bessel functions, j |, = j, /jo-
Full expression for j, ( — iy) Low-field limit, y<1 High-field limit, ¥» 1
Jo=1 Jo=1 Jo=1
Ji =i(1/y — coth ) Ji= —i(¥/3 — /45 + 24°/945...) Ji=i(l/y—=1)
Ji=—1=3/74 (3/y)cothy Ji= — /154247315, h=—1+3y-3/9
Ji =il(1 4+ 15/9)coth y — 6/y — 15/%°} 75 = i(¥7105 — °/945...) Ji =il —6/y + 15/9% — 15/9°)
Ji=1+45/+105/¢ Ji = 7/945... Ji=1—10/y + 45/9*
— (10/7 + 105/7*)coth y — 105/ + 105/9*
B. Two-photon interactions forbidden in the absence of S5 =160 (60080 ) =4(Ss, — S0, (4.3)
electric field
the statlc SEO =4(Si + S — $4,S,s (4.4)

In the case where the static field induces transitions
which are forbidden in its absence, the leading S;; term in Eq.
(3.1) is zero, and the rate is thus given by

[ =L (|Tye e, Eyx {Pexp(u® - E/KT))/

(exp(u® < E/KT)). (3.11)
Following the same procedure as before we obtain
= LTA;LV—TOﬂpelieéjEkzllz2mEn
XTG0 s rvome  — i EA). (3.12)

Once again the result involves weighted averages. However,
in this case, since there is no field-independent rate, the most
significant term in the expansion of  *?/I ©°’ s the leading
term, equivalent to the isotropic result 7'®. The formula for
this is as follows®:
15
Ilgji;r?;n;llp.vonp = Z m:vg)f:(]?c’ler)mgﬁft’zzﬂp ’ (3'13)
p.q
where m,, are numerical coefficients and f ‘5’ and g%
denote sixth-rank isotropic tensors, which are triple prod-
ucts of Kronecker deltas, such as §;6,,8,,, and §,,8,,6,,.
From Egs. (3.12) and (3.13) we obtain a rate equation given
by
15
r=L Zapml‘,g’tq. (3.14)
e
where a, form a set of 15 parameters determined by polar-
ization conditions, and given by

(3.15)

The ¢, form a corresponding set of linearly independent mo-
lecular invariants defined by

— £6:p) 3 K
ap '—fljklmneiejEkelemEn‘

(3.16)

— p(6:9) U2
tq - g&uvo#p T}.;.w Taﬂp 4

as listed in Table II.

IV. REPRESENTATION OF RESULTS IN TERMS OF
IRREDUCIBLE TENSORS

In order to clarify the selection rules it is preferable to
express results in terms of irreducible tensors. The irreduci-
ble parts of the S;; and T tensors are as follows. For S, we
have the well-known results

S =SET+SLT+SEH), 4.1)
Sat =16:.5, (4.2)

where §,,, is the Kronecker delta and the plus sign in the
superscript signifies even parity. Clearly the weight-1 term
vanishes if S;,, is index symmetric, as it is for nonresonant
Raman scattering, and for single-beam two-photon absorp-
tion. The rate equation for the optically allowed channel, Eq.
(3.9), is readily recast in terms of these irreducible tensors;
explicit results are given in the following papers.2?

The decomposition into irreducible parts of the electro-
optical tensor T,,,, is less well known and takes the form'®

lev = Tg.([)t;) + z Tf{:l: #)
p=aBy
+ X TR72+Th, (4.5)

g=a, B
T/(I?AT )= %e/luvepa"r Tpo-n (4'6)
T,({;.::'_ )= ]"0(46}.;4 Tppv - ‘SAV Tppy - 6;41/ Tpp/l )’ (4'7)
T/("'Lﬂ;") =1!o( —5ﬂﬂTpvp +46'{VTPI‘P —6FVTP/1P)’ (48)
Tl(l/l];_ )= '&)( - 5}.;4 Tvpp - 611' Typp + 46,“; T,lpp )9 (4'9)
T = 1€, 26,0, Tpoy + 26,5, T, + €,5, T

t €pu Tops — 28,1 €1p0 Topo ), (4.10)

TABLE II. Linearly independent basis sets of the isotropic molecular pa-
rameters; ¢, are inner products of the reducible tensor T ,,,, with itself, and
¢ are the nonzero inner products of the irreducible tensor.

g 1, 1
l Tllll[lT}lW T:l?;: )T/(l?n—: )
2 T/MFTV;‘V T,(l:a: :G)Tf{:;: -
3 TAA,‘TW,, 7"51:;: ;G)T/(I}‘: o
4 T T T, @T L
S TA,MTV,‘V Tﬁ:;: :3)7‘1(1:4; o
6 Tis T TePT L, ®
7 TA‘L"TAW T;L: :3)7'51:‘: Bl
8 o T T4 "ToT
9 TA,WTAV,‘ TSI};: ;”T;.:J s
10 T Toe T, PTL. ™
1 oo Tt TG T o
12 Tope Tois TE,=TE,®
13 T Do Te,OTE, ™
14 Tor Tt TG PTo,#
15 T Tos Tflfw“ ’Tﬁ; )
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T =1€,., (26,0, Tipy + 26,0, T

Tp0

+ €por Tpora
+ €301 Tor = 283,€0 Ty, 4.11)
=M T + Toyp + Tty + T + Topp, + T,,)
~ 5[0, (T + T, +T,,)

veop
+ alv(Tppn + Tp#p + T#pp)
+ 8/”' ( Tppi

+ T +T,,,)1, (4.12)
where€,,,, is the Levi-Civita tensor, and where each compo-
nent has odd parity. A number of new features arise in con-
nection with this third rank tensor which we detail below.

The molecular parameters 1, in Eq. (3.14), which are
all tensor products, e.g., T, 7,., (see Table II), can be
reexpressed in terms of irreducible tensor products - by
using the relation given in Eq. (4.5). Because of index sym-
metry properties, the inner product of tensors with unequal
weights is zero. Hence there are 15 nonvanishing products,
which are also listed in Table II. The reducible parameters
can be expressed in terms of the irreducible parameters by
means of the relation

T(3——)

Auv

(e,+e5) (& +E)(E; -E)]”
le, - e;]?
(€,°¢;)(e,*E)(e; - E)
L|E|? le, - E|*
F=—""1} (e e;)(e;*E)(e;-E)
840 5
o5 - E|
1
(e;*€;)(€,*E)(e; - E)
=7 |2
I e, + & i
— 56 84 - 21 0 0 0 42
112 — 28 7 0 0 0 —42
—28 —28 — 28 14 56 — 28 — 28
— 28 112 7 — 14 28 28 - 14
- 336 84 —21 0 0 0 42
112 112 112 — 14 — 56 — 56 — 56
0 0 0 56 56 56 56
112 —448 —28 14 —28 56 —28
0 0 0 — 56 —56 — 56 28

12

— 16

20
12
20
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15
tp=3 (G hH.th,
r=1
where j represents a matrix whose numerical components
are given in Ref. 10. By introducing the matrix

(4.13)

w,, = ml‘,g)(j"‘)q, (4.14)
the rate can be reexpressed as
15
T=LY auw,t,. (4.15)
br

However, because one of the field interactions is with the
static field for which the direction unit vector has to be real
(in contrast to the complex polarization vectors which arise
for circularly polarized radiation, for example), the 15 po-
larization parameters a, are not all linearly independent.
This condition reduces the number of linearly independent
polarization parameters to nine, and thus we can write

9 15
I‘=L22apwp,t',. (4.16)
p r
The explicit result is given by Eq. (4.17);
0 -5 —336 -—336 -5 =21 84
0 112 112 112 112 7 —28
140 7 —28 112 112 —-28 —448
— 140 7 112 — 28 112 112 112
0 —-56 — 56 -5 336 -—21 84
7 — 28 112 —-28 7 112
0 0 0 0 0 0 0
140 7 112 —28 —28 28 —28
0 0 0 0 0 0
©—)yF@©O—) |
T/lpv )T,(lyv )
la = )7 (la —
T8 T s
la — Yo —
T8 T
le —)F(ly—
Ty TyL
(18- )Y (la— .
T TS
(B— )y (18—
T/Ipﬂ;' )T/(t,ﬂ !
(18— )T (1y—
Tﬂ.,u‘?' )T/(lpt )
1y =) (la—~
T T
Uy — ) (1f—
TA;]; )T/(hg' !
Uy — )y (ly—
T4 T
T8 TG
2a— Y —
T TR
(2B~ (a—
TEETE: ™)
QB— VT (28—
TUa T
L T,‘lfw"T,(li:’ (4.17)
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Equation (4.17) applies in the general case where the
molecular parameters ¢’ are formed from a tensor T;.,
which does not have index symmetry. In the application to
field-induced Raman scattering however, detailed analysis
of the tensor® reveals index symmetry in the first two indices.
The electro-optical two-photon absorption tensor can also
possess index symmetry if the two excitation beams are of
the same frequency.”? When the molecular tensor has pair
index symmetry the weight-0 component vanishes, and only
two of the three weight-1 tensors and one of the two weight-2
tensors are linearly independent (see the Appendix). The
appropriate transition rate can still be derived from Eq.
(4.17), since the molecular parameters for the two cases are
related by a nonunique mapping x,

6
tiS,nis)r = zxrstifi,is)s' (418)
Here the subscript 3 indicates the rank of the tensor, and the
subscripts nis and is indicate no index symmetry and index
symmetry, respectively. There are 15 linearly independent
t{3nis) terms and 6 linearly independent t{;;,, terms, and
consequently the mapping x is described by a 15X 6 matrix.
The explicit form of x and its derivation are given in the
Appendix. Inserting Eq. (4.18) into Eq. (4.16) then gives
the rate equation for the case where T, has pair index sym-
metry
15 6

9 .
=L 2 z z AW, X, 1 (355
p r s

V. DERIVATION OF THE SELECTION RULES

The (E1XE 1)-optically allowed channel, and the
(E 1 X E 1XE 1)-electro-optically allowed channel are each
associated with a distinct set of selection rules. In each case,
as the detailed analysis of the molecular response tensors
reveals, the general principle is that the product of the irre-
ducible representations of the initial and final states of the
molecule must be spanned by one or more components of the
appropriate tensor. In the common case of a totally symmet-
ric ground state, this reduces to a requirement that one of the
irreducible parts of the tensor transforms under the same
representation as the excited state. The optically allowed
channel involves the concerted action of two photons at one
molecular center, and the selection rules are thus governed
by how the direct product of the two dipole operators, (one
for each photon), transforms. This can be expressed as

Siopep,5>D e D)

<:>D(°+)$D“+)$D(Z+), (51)
where the symbol <> means transforms as. Consequently,
the irreducible components of the tensor S, may transform
as either the scalar, x*> + y* + 2, the rotations, R, ,,, or as
the components of an index-symmetric traceless weight-2
tensor in the case of § 2 °. Here the sole effect of the electric
field is to bring about some degree of order to the molecular
orientations, producing an anisotropic distribution within
the sample. Although this causes an associated change of line
intensities within the spectra, conventional two-photon se-
lection rules still apply and will therefore not be discussed
further here.

(4.19)

For the electro-optical channel a completely different
set of selection rules is applicable. The interaction of the
electric field with the absorbing species may be viewed as a
radiation—molecule interaction in the limit where the radi-
ation is of zero frequency. Hence, electro-optically allowed
electric field induced two-photon processes proceed via three
photon-molecule events. Consequently the selection rules
are governed by how the direct product of the three dipole
operators transforms,

T/l,uv<:>:uzl ®,u;¢ ®,uv©D“_)®D(l—)®D(I—)

&SDOP 3D 92D D). (5.2)

The seven resultant irreducible representations are all of odd
parity. This highlights one of the very important distinctions
between the electro-optical and the optical channels in cen-
trosymmetric molecules. The electro-optical channel leads
to Laporte-type selection rules, (g<>u), whereas the optical-
ly allowed channel results in parity-preserving selection
rules of the type g«<»g and u<u. Thus, field-induced two-
photon absorption transitions have the characteristics of
three-photon absorption,'® and field-induced Raman transi-
tions obey selection rules characteristic of hyper-Raman
scattering.'!12

The symmetry properties of T, are governed by Eq.
(5.2), and the irreducible components of Egs. (4.6)—(4.12)
have the following transformation properties under the
operations of the full rotation group:

(i) T, transforms as a traceless, fully index-symmet-
ric third rank polar tensor, which is odd with respect to
spatial inversion.

(ii) T /(sz ? transforms as a traceless rank two tensor, odd
with respect to spatial inversion.

(iii) T, transforms as a polar vector.

(iv) T, transforms as a pseudoscalar, again odd with
respect to spatial inversion.

There are 11 distinct classes of electro-optical transition
determined by the particular combination of irreducible
weights allowed, as shown in Table III. The classification
scheme adopted here is a development of that used in earlier
work.'® Table IV presents an analysis of the classes of transi-
tion allowed in a double-beam electric-field-induced two-
photon absorption, (EFITPA), and electric-field-induced

TABLEIII. Allowed classes for EFITPA and EFIRS: Each weight is asso-
ciated with components of the third rank polar tensor T ,,,, and thus has odd
parity.

Single beam Double beam

Weights EFITPA,EFIRS EFITPA,EFIRRS
3,2,1,0 IA’
3,21 1A 1A

3,1 1B IB

3,20 I1IA’

32 ITA ITA

3,0 IIB’

3 11IB IIB

1 I I

2,0 v’

2 v v

0 v
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TABLE 1V. Representations spanned by the irreducible components of the

tensor T, for selected molecular point groups.

Point group Weight0 Weight1 Weight2 Weight3 Class

Cer A, A, A, A, IA’
2B, 1B
E, E;, E,, IA
E, E,, 1A
Dy, A, A4y, v
4, 4, IB
B, 1B
B,, 1B
E,, E,, E,, IA
E,, E,, 1A
T, A, A, ii:
E, v
F, 2F, IA
0, A, v
Ay, 1B
E, v
F., F. B
F,, F,, 1A
I, A, \'
F,, I
F, IIB
G, IIB
H, v
D A s 4, 1A
A, I
E, E, E., 1A
E, E, A
E,, 1B

resonance-Raman scattering, (EFIRRS). The same classes
are allowed for single-beam EFITPA and off-resonance elec-
tric-field-induced Raman scattering, (EFIRS), with the ex-
ception of class ¥V (weight-0 alone) which is forbidden by
virtue of the index symmetry of the molecular tensor. How-
ever, as Table IV shows, only molecules of octahedral, icosa-
hedral, (or T, ) symmetry possess states of this type.
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APPENDIX: ANALYSIS OF THE INDEX-SYMMETRIC
FORMS OF THE IRREDUCIBLE WEIGHTS OF THE
MOLECULAR RESPONSE TENSOR 7,,,,

In order to derive the mapping x,, it is necessary to
consider the index-symmetric form of each of the irreducible
weights of the molecular response tensor in turn. From Eq.
(4.6) the index-symmetric form of the weight-0 component
is given by

T &0 = (1/6)€1,0€00r T ooy (A1)

However, the molecular tensor is symmetric in its first two
indices, as indicated by the bracketed subscripts and there-
fore interchanging the first two indices must give the same
result, i.e.,

T =T85) =(1/6)€,1,€,0, T 10y~

= — (1/6)€4, €00 Tiporr = — T (350 (A2)
where the third equality follows from the fact that €,,,
= — €,4,. Clearly Eq. (A2) can only be valid if the weight-
0 tensor is identically zero.
Imposing index symmetry on £ and y weight-1 compo-
nents of Eqs. (4.8) and (4.9) leads to

TG = (1/10) (= 83, Ty,

+45,{,,T(Pmp 6 Tpvl)p)’ (A3)
Tf,‘ﬁ;;’: (1/10)( — 5,1,‘ (ovIp
=6, T, (owp + 46;"' T(M)P ). (A4)

. Explicit calculation of the triply-contracted tensor products

(BT (18~) (18— (ly =) (ly =) (18—)
T(lﬂ)v Z(iﬂ)" 4 T(/lﬂ)v T(i#)v ’ T(A#)v T(/lu)v » and
T 355 TG reveals the following linear dependence;

AB— )T (1B—) _ AB— )Y (ly—)
T(Ap)v T(zly)v - "—4T(/1u)v T(llﬁ)v
ATy TAB—) _ P Uy—) T (ly—)
- 4T(/1y)v T(lp) T(lp)v T(/Ip)v .

(AS)

It is therefore preferable to introduce a new weight-1 compo-
nent of the form

T = T + T - (A6)

The fact that the two weight-2 tensors of Eqgs. (4.10)
and (4.11) are linearly dependent is not so obvious. Consid-
er

T35 = (1/6)€,,,(2€,,,
+ €oor Tiapyo + €pov L (rpre — 261:€ 000

(pa)v + 26 (po)f

(ﬂp)o)
(AT)

The first, second, and fifth terms in Eq. (A7) vanish because
of the antisymmetric properties of the Levi-Civita tensor €
and we thus have

T3 = (1/6)€4,, (€,0: Tiopyo + €0 Tispyo ). (A8B)
Similarly from Eq. (4.11) we have
T&ﬁ)—v) = (1/6)61"'7( T(lp)a + 26 T(fp)a
+ €, T(Po')r{ + T(PU)T 26/11'61rpa(1rp)a )’
(A9)

giving
T 385 = (1/3)€,40, (€00r Tiapyo + €poa Tirpyo )+ (A10)

The linear dependence of Eqs. (A8) and (A10) is only ap-
parent when all possible tensor products of these tensors are
taken, when it is again found that they are related by simple
numerical factors

TEBTQB—) _4T

QRa—)FQ2a—-) __ (28— )7 (2a —
(‘-wv (Ap)v (lmv T(Amv = _—4T(/l,u)v T(AZ)V)

— _4T(2a—)7‘(2ﬂ—). (A11)

v 4 Qv

Hence it is appropriate to combine the (2a — ) and (28 — )
components as

Tioe =T + TE (A12)
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The explicit form of Eq. (4.11) now follows directly from Eqs. (A1)-(A12), and is given by

(0—)
T(/’#)v

(la—)

(Au)v

(la — ) (18—)
T(‘P)v T

(l#)v T(/Il-t)v
T(IB—)T(la~)

(B—) P (8—)
T(Aﬂ)v r

0—)
(Au)v

(Ap)v

(la—- )Y (la—)
T T |

(Ap)v
(ly—)

(Ap)v

(Ap)v

—h
[\S B =]
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—

(lﬁ— Y (ly—)
(llp)v T(ly)v

T(IY— )T(la-)

(Ap)v £ (Ap)v

Ay —)Yp(18—)
T(/lp)v T(Ap)v

(lr— Y (ly—)
(llt)v T(A#)v

(Qa— )T 2a—)
T(M)v T(iﬂ)v

(2a — )7
T(lp)v T(ly)v

12
28— )Y (2a—)
T(M)v T(iz)v

O 000000000000
|
C O 0O ®NON®OOOOO
b
wWLwWwOoOOOoOOOOOSCOEe O
OO0 00O0O0CCO0OOOCOQ

0
0
0
0
6
0
0
6
0
0
0
0
0
0
0

CO 000000000 0OOo

(=]

0o 12

(2B-)F(28-) = —
T(A-M)v T(lﬂ)v

(3—) 3-)

T(/I#)v (Ap)v

where the matrix of numerical coefficients represents x,,
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