Resonant excitation transfer: A quantum electrodynamical study
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A new quantum electrodynamical (QED) method is presented, based in the Schrédinger
representation, for the calculation of the rate of energy transfer between identical molecules. In
contrast to existing methods in this representation, the new treatment gives explicitly causal
and energy-conserving results. By returning to perturbation theory the correct, complex form
for the electric dipole—electric dipole interaction tensor is obtained, without recourse to the
physical, “outgoing wave” arguments of quantum scattering theory necessary if the Fermi rule
is used. This method also allows a new interpretation for the role of the time-ordered diagrams
involved, which may be useful in the rigorous treatment of higher order cooperative processes.
The QED treatment uses virtual photon coupling, and incorporates both the Coulombic, R —°
dependence, and the R ~2 dependence characteristic of two-step radiative transfer.

I. INTRODUCTION

In a very wide range of phenomena in chemical physics,
the observed behavior of a system is determined by intermo-
lecular interactions. Such interactions are strongest over
short distances where wave function overlap and electron
exchange occur, but they nonetheless remain significant
over longer distances where individual molecules can be re-
garded as chemically distinct. The mechanism for these
longer-range interactions is electromagnetic, and is illustrat-
ed by the well-known R ~¢ London potential associated with
an induced-dipole-induced-dipole interaction.

In the Power-Zienau-Woolley formalism of molecular
quantum electrodynamics (QED)"? there are no Coulom-
bic (longitudinal) intermolecular fields and all intermolecu-
lar interactions are mediated by the propagation of (trans-
verse) virtual photons.®> The term “virtual” arises because
these photons cannot be observed, their role being similar to
that of the virtual molecular states which are involved in the
description of scattering and other multiphoton processes.
In the diagrammatic construction of perturbational QED,*
the “real” photons may be distinguished from the virtual
photons since the latter exist merely as part of the intermedi-
ate states and thus have two space-time termini correspond-
ing to creation and annihilation, whereas the former are
parts of the final or initial states and thus have only one
terminus. Another way of describing these interactions is to
consider separate electrodynamical molecular processes to
be linked via coupling to a radiation mode.

Quantum electrodynamical calculations based on vir-
tual photon coupling provide fully retarded results, allowing
time for the signal to travel between the molecules, and thus
providing a causal description. This has important conse-
quences, for example, in modifying the R ~¢ dependence of
the London potential at large distances to the correct long-
rangeR ~7 dependence given by the Casimir—Polder results.’
However, many other phenomena can be described as vir-
tual photon processes, such as cooperative absorption®= and
optical rotation resulting from the dissymmetric juxtaposi-
tion of chromophores in polyatomic molecules.’

Regrettably, there has been some confusion in the litera-
ture as to the correct details of the electric-dipole—electric-
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dipole coupling tensor. In some places this has been repre-
sented as a real function,'®!! while elsewhere it contains
both a real and an imaginary part.’? In a recent series of
papers,'?™!5 expressions for Maxwell fields were developed
in which the coupling tensor correctly appeared in its com-
plex form, but a transformation to the Heisenberg represen-
tation seemed necessary for its derivation. In the Heisenberg
representation, the time dependence of operators is explicit,
while in the Schrdodinger representation the time dependence
is only explicit once observables are calculated. There is a
conventional preference for the former representation when
the fields are the primary operators, and for the latter repre-
sentation when the molecules are primary, though of course
both must lead to the same results.

In this paper by considering the very simplest process
which can involve virtual photons, namely the resonant
transfer of excitation between two molecules, the limitations
of the standard Schrodinger representation approach are
demonstrated, while by careful use of time-dependent per-
turbation theory it is shown that a correct result is obtainable
in this representation. Inclusion of the imaginary part of the
coupling tensor is shown to be important in ensuring the
correct long-range behavior, when the overall optical pro-
cess becomes separable into distinct interactions at the two
centers. The conditional nature of the integrals and of the
final results are emphasized as they arise, since this is shown
to allow a physical interpretation of the roles of the time-
ordered diagrams.

Ii. THE STANDARD APPROACH1®

The resonant transfer of energy can be described as a
process in which the initial system state consists of molecule
(a) in state |@) and molecule (b) in state |0), while the final
system state is that in which the molecule (a) is in state |0)
and molecule (b) isinstate |8 ). Although the two molecules
are regarded as chemically identical so that, in principle,
symmetric and antisymmetric combination states may be
formed, such radiation-free stationary states are not appro-
priate for a treatment of radiation transfer in which time
dependence and causality are to be examined. Here, states
which are formed from the bare product of wave functions
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for each center are a suitable basis. There is assumed to be no
observable change in the radiation field, though intermedi-
ate states in which the radiation field is excited relative to the
initial and final states are included as mediators of the energy
transfer process.

The conventional starting point for the development of
the theory is the Fermi rule rate equation

where p, represents a density of final states, and M;; is the

matrix element connecting the initial and final states of the
system, which has the perturbation expansion

(leint '7‘) <rlHint Il>

(E; —E,)
where H,,, is the perturbation operator on the basis eigen-
states of the unperturbed radiation and molecular Hamilto-

nians. For present purposes it is sufficient to consider the
electric dipole approximation

Hy, = —¢€ 'pedt. (3

Here p is the electric dipole operator, and d* is the trans-
verse electric displacement operator. The appropriate time-
ordered diagrams are shown in Figs. 1(a) and 1(b), and
arise from the second-order term in the matrix element (2),

My = (flHp ) + 3 , (2)

k,\

k,\

o 0

a b

FIG. 1. (a) and (b) The time-ordered diagrams for resonant energy trans-
fer.

where the corresponding intermediate states are given by
(a) |r)=10(a); 0(d); e(k,A)), 4)
(b) |r)y=|a(a); B(b); e(kA)). (5)

Here e(k,A) represents the state of a virtual photon with
wave vector k and polarization vector e¥’. Summing the
above contributions to the M, gives an expression

M = Z ick ﬂ?o(a)ﬂgo(b)[eia —"—ﬂ‘:‘k—"‘
i1 2e,V / ' E,, — #ick
_ &R
] ©
Eg, + fick

where summation over repeated tensor indices is implied.
This leads to a physical model where the two centers are
coupled to each other via the intermediate photon states, in
the same way that the initial and final molecular states in the
tensor representing a nonlinear optical process are linked via
intermediate molecular states.

The A summation gives

M, =Y (2eV) " 'ufub0 (8, — I%,.l’%j)k

k

e!'k'R e—fk’R
x[ - ] 7
Ko —k Kyo+k

where K o = E o /fic, Kzo = Eg,/#c, and the denominators
serve to extract the value of & which corresponds to that
required through the energy conservation condition.

The procedure is then to replace the summation by an
integral facilitated in the limit of a large quantization volume
through the corresponding increase in the density of allowed
k values. The appropriate conversion is

(7K nodkdod 8
;:’L LL (2r)3 st %, ®)

giving for Eq. (7):

2 T oo
1
M. = e 13 %0 BO
fi LLL 22me,

X ( — V28, + V,V,)dk d6 d¢

e

stine[ ¢

kR — kR ]

Usually the principle of energy conservation is introduced at
this early stage, requiring that K, = Kz, = K, so that on
performing the angular integrations the integral over K may
be extended to negative values. The result may then be ex-
pressed as

My, = ufuBo(— V28, + V,V,) Iﬂzl—e- G(K.R), (10)
1]

where G(K,R) is the Green’s function

« . 1 i
G(K,R =f 2R) " 'sin(kR [ — ]dk
( ) . (2R) (kR) K-k K+k
(i
This Green’s function must lead to a real result since the
integrand is real, and when the Cauchy principal value is
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taken, it gives

G(K,R) = _,,&SR{{&, (12)
giving for the matrix element
My; = piul%; (K.R), (13)

with the coupling tensor o, (K,R) given by

K3 l an (cos KR  sin KR)
JKR) = 5, — 3R.R,
% BB = el e xR
~ ~  cos KR
— 8 ~RR) = } (14)

The limiting behavior of the coupling tensor is neatly sepa-
rated into two regions; the near zone, where KR €1, and the
wave zone, where KR> 1. The tensor in these regions is then
approximated as

near zone: 0;(K,R) = a,;(0,R)

(15)

AN 2
wave zone: 0;(K,R) = — (§; — R;R;) M
4me R
(16)
the former giving the K — 0 limit corresponding to the longi-
tudinal coupling between permanent moments, and the lat-
ter the transverse R ~' dependence expected for the radiative
field on an oscillating dipole. Note that although the cou-
pling is longitudinal with respect to R in the near zone, it is
mediated by a photon polarized transverse with respect to k.
A case which illustrates the error of using this form for
the coupling tensor concerns calculation of the rate of reso-
nant energy transfer between two identical molecules in the
wave zone limit. If Eq. (13) is then substituted into the Fer-
mi rule expression (1) and the result is averaged isotropical-
ly for application to a fluid phase, the rate is given by

L .
36wl AR ?

This result is inconsistent with that obtained classically,
owing to the presence of the oscillatory cos? KR term; in Sec.

V1 the correct nonoscillatory result is shown to arise when
the full, complex form for the interaction tensor is used.

cos’KRp,, KR>1. (17)

Hi. THE GREEN’S FUNCTION

An exactly similar Green’s function to that appearing in
Eq. (11) arises in the treatment of quantum scattering prob-
lems.!” Here a complex result is obtained from the Green’s
function, either by forcing the poles to be displaced through
the introduction of an infinitesimal imaginary part to the
denominators of Eq. (11)8:

G(K,R) =lim ¢~0J R™!
(1]

XsinkR[ L1 ]dk,
K—k+id K+k—iv
(18)

or by changing the contour of integration.'® The sine func-

Im k
——————————————————————————— »1
__________________________ C

N id 3 _Rek
[ i Mottt C
C,

FIG. 2. Four choices of contours to avoid poles on the axis. They are closed
by continuation with a semicircle in either the upper or lower plane.

tion in Eq. (11) may be expanded to give two integrals:

1 —® eikR eikR
G(K,R) = j - dk
4R J. K—k K+k
— — ikR — ikR
__L e e gk (19)
4R J. K-k K+k
which give for each of the contours C, to C, in Fig. 2:
G(K,R) for C; =0 — (7/R)cos KR, (20)
G(K,R) for C,= — (w/R)cos KR + 0, (21)

G(K,R) for C;= — (7/2R)exp( — iKR)

— (7/2R)exp( — iKR), (22)
G(K,R) for C,= — (m/2R)exp(iKR)

— (m/2R)exp(iKR), (23)

where continuation of the contour by a vanishing integral
has been accomplished by the appropriate semicircle. To en-
sure an outgoing wave solution the contour C, is chosen,
though of course this has no a priori mathematical basis.

Neither of these approaches is particularly thorough,
the latter method having no simple physical justification in
itself. The overwhelming physical argument used in both
cases is that the solution must behave as a pure outgoing
wave in the limit of large R. This gives the correct form for
G(K,R) as required classically:

ikR

= gt _. 24
G(K,R) T 2 (24)

Rigorously, this approach should be avoided since knowl-
edge of the long-range form of the interaction is necessary for
calculation of the general behavior, which is only physically
justified as a boundary condition for scattering problems. In
the type of problem under consideration in this paper only
the molecular system can have boundary conditions, since
the virtual photon is unobservable. In the following section it
is shown that by returning to time-dependent perturbation
theory and carefully proceeding to the rate equation the cor-
rect form can be obtained without recourse to this funda-
mentally recursive argument.
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IV. TIME-DEPENDENT PERTURBATION THEORY
REVISITED

The full second-order expression for the time-dependent
probability amplitude C;, (¢) is

Cei (8) =3 (f|Hin 1) (r|Hppe 1)

» [eiw“t__ 1 B &t ]’
EE,; E E,

where again it should be emphasised that both states and
energies refer to the entire system, and, for example, E;; is
the zeroth order energy difference between the initial and
final states. In the conventional approach to a rate expres-
sion the second oscillatory term is neglected as being only
significant when intermediate state resonances are impor-
tant.?® For molecular response tensors this approximation is
generally valid, since the experimental conditions at which
resonance occurs can be avoided by a suitable choice of irra-
diation frequency. In the case of the time-ordered diagram in
Fig. 1 (a), however, the virtual photon comprises the inter-
mediate state, and its frequency is integrated over an infinite
range. In this case, therefore, the resonance condition (when
the intermediate state energy is equivalent to the initial or
final state energy) is logically significant.

If the appropriate intermediate states are inserted in Eq.
(25), the probability amplitude becomes

(25)

Cii (1) = — p(a)uf°(b)fic(4m€,) ~1( — V36, +V,V,)

[t ey
o R | (Ey — Epo) (E o — fick)

ei(KBO — ket 1
+ —
(B o — fick) (Eg, — fick)
_ ei(KBO — Kot _ 1
(Bgo + #ick) (E o — Epy)
e‘“i(KaO"'k)“’_ 1 ]

B (Ego + #ick) (E, + fick)

(26)

This integral is causal, vanishing for times where R > ct,
while the denominators impose restrictions on the signs of
the various energy terms. The detailed form of the contribu-

tions to the new Green’s function are
Case (al): R<ct and E_, >0:
i(Kgo — Kag)ct n_eil(aoR

#icR

e

G(Ry) = X

(27)

Pei (1) = {u®(a)pf °(b) (47e;) ~'( — V25, + V,V,)R ~'}
X (@) °(b) (4me,) =1 ( — V'8, + Vi V)R '~} X

x [ 2 _ oKso— Kao)cteiK,oRe — iKgoR' ¢~ iKso~ K,,o)cteiKBoRe — KR ] ,
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Case (a2): R<ct and Eg, >0:

e PR
G(R,t) = — . (28)
Case (b1): R<ct and Eg, <0:
ei(K,,o — K o)t o iKgoR
G(R,t) = (29)
(Ego —Eno) #icR
Case (b2): R<ct and E,, <O0:
— KR
GRt) = — —2¢ . (30)
(Ego — E 0 )ficR

The case identifier, (a) or (b), refers the terms to their ap-
propriate time-ordered diagram in Fig. 1, whereas the nu-
meric identifier has no similar significance. It is interesting
to note that the contribution which arises from the first of the
oscillatory terms in Eq. (25), that which is used in the con-
ventional derivation of the Fermi rule, is exactly cancelled
by a contribution from the other oscillatory term.

Examination of the energy requirements of cases (a)
and (b) allows the time-ordered diagrams of Fig. 1 to be
interpreted as follows: (a) corresponds to the transfer of
energy from molecule (a) to molecule (b), with the neces-
sary requirement that E_, and Eg, are positive; (b) corre-
sponds to the transfer of energy from molecule (b) to mole-
cule (a), with the requirement that E,, and E,, are
negative. Hence the time-ordered diagrams describe the two
directions of energy transfer, and thus only one can contri-
bute for any particular problem.

In the next section, by choosing one of the possible cases,
(a), the rate equation is derived, allowing the energy conser-
vation condition to arise naturally. The rate equation for the
other case is obvious from the derivation, so that finally the
results for both cases are obtained.

V. CALCULATION OF THE RATE EQUATION

In order to evaluate the rate of energy transfer from
molecule (a) to molecule (b), first the time-dependent prob-
ability P; (¢), given by the square modulus of the probability
amplitudes (26)-(30), must be calculated:

Pri (1) = I#?o(a)/"fo(b) (4mey) ' (— V26ij + V. V)
X{(Ego — E.0)R}~ 1{ g/ Kpo — Kug)et K aoR

— ™Ry, (31)
This may be expanded as
S S
(EBO —E, )?
(32)
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where the label R ' has been introduced to ensure that each
distance variable is only operated on by the appropriate dif-
ferential operators V, V'.

Since it is the rate which is sought, expression (32) must
be differentiated with respect to time. Hence the molecular
components and other parameters not included in the square
brackets, which are not explicitly dependent on time, need
not be considered. Differentiating the terms within the
square bracket then gives

— iKgo(R' — ct) + iKpo(R — ct)}

[eiKpD(R — o0, Kao(R' =) , = iKpo(R' — D) iKo(R ~ D ]

XiC(KBo "‘Kao)’ 33)

where it should be emphasized that R < cf, from Eq. (26).

Asin the standard approach to the Fermi rule, a density
of energy states p,, is introduced, and the final states are
then summed. In this case the final state energy is Ego, and
by manipulating the summation to an integral over K, the
rate becomes

_ ‘N . |2 + @ i{eiKEo(R_“) — K o(R’ — c1) i
fi
- (Kgo — K5)

where N, is the operator

Nei = {u(@)pf(b) (4me,) ~1( — V38, + V. V,)R ~1}.
(35)

In the integral (34), the pole ensures the energy conserva-
tion condition Kz, =K, = K, while the detailed form
leads to

= | N I?mp,/#) (™R x e~ *R'}, (36)

from which the matrix element M;, can be inferred by com-
parison with the standard Fermi rule expression (1), and by
ensuring that the operator Ny; only operates on the appropri-
ate phase factor

M,, = N, kR
iKR
= (@)l °(b) (4me,) ~'( — V35, + V,V,)
(37)
which has the correct R dependence, as required by the cor-

respondence principle.

Before proceeding to examine the form of the interac-
tion tensor, it is pertinent to state the result that would have
been obtained if the conditions necessary for case (b) had
been used. For case (b) the interaction tensor is expressed as

— iKR

4meR
which allows a simple generalization, applicable to both
cases:

;= — (= V%, +V,v)) < (38)

1|K |R
ireR

Thus, in this section a rigorous method for the derivation of

the correct R and K dependence has been obtained, which

incidentally ensures the appropriate conditions of
K, and K, without recourse to physical arguments.

6y = — (~ V%, +V,V)) (39)

VI. SOME PROPERTIES OF THE TRUE INTERACTION
TENSOR

In an analogous fashion to Eq. (14) for o, the interac-
tion tensor 6; may be written

PrdKpo, (34)
{
i|K|RK3 A 1 i
0,(K.R) =% { 85, —3R.R, ( )
o (50 dre, 1% Nere Y ere
A A 1
— (5, —RR) ﬁ}, (40)

or alternatively the real and imaginary parts may be separat-
ed to give

0; = oy +iry, (41)
where g, is given by Eq. (14) and 7 is defined as
K3 { ( cos KR  sin KR)
 (K,R) = o, 3R R —
Tf( ) 4'7T€ ( ) 2R 2 KBR 3
sin KR
+ 6, ~RR, ] 42
( ) KR (42)

In passing, it should be noted that the definitions of o, and
7; used here differ from those adopted by Power and Thirun-
amachandran'® by a factor of 47,

If the rate expression (36) is now used to calculate the
rate of transfer of energy from molecule (a) to molecule (b),
then after rotational averaging the counterpart to the result
of Eq. (17) is

_ | ’uaO | 4 K 4

36mei#iR 2
which is correct for all R < ct. As opposed to the earlier cal-
culation, this rate is nonoscillatory, smoothly changing from
along-range R ~*behavior to a short-range, K-independent,
R ~% behavior. To further elucidate the nature of the rate
expression, a simple comparison can be made with the rate
expected for the radiative transfer of energy between the two
centers.

In this calculation, molecule (a) is now regarded as the
radiator which decays spontaneously, and molecule (b) be-
haves as a resonant detector in the field of this radiator. The
rate of spontaneous emission can, after rotational averaging,
be expressed21

{3(KR)~* + (KR) >+ 1}p;, (43)

= 2, 4
360#,11# I (44)

or in terms of power per unit area, the resultant irradiance at
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a distance R is given by

T#icK cK?
I(R) = = @012 45
R =R zrer, M (@)
If this irradiance is then substituted into the standard ab-

sorption rate equation, the overall rate expression becomes
K4 a0(4

r = X o,
36meifiR

When Egs. (46) and (43) are compared, it seems that the

long-range behavior of the virtual photon adequately de-

scribes the system coupled via a real photon. Hence, it ap-

pears that using the virtual photon formalism, QED is able

to describe electromagnetic interactions at all ranges, in-

cluding the wave zone where conventionally the theory is
cast in terms of a real photon.

(46)

V. DISCUSSION

In Sec. V a new method of extracting the virtual-photon
coupling tensor has been introduced in the Schrédinger rep-
resentation. While it can be shown that in the Heisenberg
representation the same result can be extracted,'* the meth-
od used here is unique in making explicit the source of the
conditional nature of the result. The advantages of the
Schrodinger representation for understanding the dynamics
of the molecular system are obvious, though of course with
regard to causality the two representations can be regarded
as complementary.

The unsatisfactory nature of the conventional method,
when treated in a rigorous fashion, has been shown to lead to

Y

Y
B
Y

the wrong result (Sec. IT). In Sec. III it was shown that by
using physical arguments the correct result could be ob-
tained, but this method has no sound mathematical basis. It
has nonetheless been demonstrated that a rigorous method
does exist which leads to the correct physical results, and
reveals the conditional, causal, and resonant nature of the
process in a particularly clear manner. The treatment has
also allowed further elucidation of the nature of the two
time-ordered diagrams, showing that Fig. 1(a) represents
the transfer of energy to molecule (b), and that Fig. 1 (b)
represents the transfer of energy from molecule (b).

In coupled oscillator models for optical rotation and
multiphoton cooperative absorption, the virtual photon for-
malism is required for a full quantum electrodynamical
treatment.® Previous work in the Schrédinger representa-
tion, based on the Fermi rule, has demonstrated that the
same electric dipole interaction tensor results for all such
higher order processes mediated by a single virtual photon.
While the results presented here offer a new and detailed
insight into the nature of two-center resonance coupling, the
method requires that the usual Fermi rule route to the rate is
abandoned. Hence, an exact treatment of such higher order
processes would strictly require for each a similar analysis,
and thus from this calculation alone the interaction tensor
cannot necessarily be assumed to take the same form for all
virtual photon processes.

From preliminary work on cooperative single-photon
absorption, the six time-ordered diagrams for which are
shown in Fig. 3, it appears possible to use the results of Sec. V
to justify the perturbing of the Green’s function (Sec. III) to

s

J\/\/\/\f

FIG. 3. The six time-ordered diagrams for cooperative single-photon absorption by a pair of molecules.
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give the correct result of Eq. (39). Unfortunately, even for
this relatively simple process, the rigorous calculation re-
quires the calculation of nearly 2000 integrals. Again no gen-
eralization of the coupling tensor can be made, and already
conditions are apparent where the use of the methods in
Secs. IT and III are inadequate, such as when molecular re-
sonances are important. A full treatment of this cooperative
process will be the subject of a future paper.

Finally, the results for the long-range rate show that
virtual photon coupling gives the same results as associated
with real photon transfer. This ties in neatly with absorber
theory,”* in which rather than having boundary conditions
introduced as a condition of closure within a certain volume,
the allowed photon states are made countable by confining
the system within an infinite array of perfect absorbers.
Thus, the real photons used in conventional calculations of,
say, the spontaneous emission rate, become effectively vir-
tual since they are absorbed by one of the array of absorbers.
This condition, that a photon once emitted must be ab-
sorbed, also amounts to an energy conservation condition on
the system being studied. It is pertinent to note that the real
photon of absorption calculations is only real because the
effective of the absorbing center on the source has been ne-
glected.
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