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Five-wave mixing in molecular fluids
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Abstract. The theory of a novel five-wave mixing process is developed for application to
liquids and solutions. In its simplest implementation a sum-frequency signal is generated in
a process which also accommodates features of optical phase conjugation. The flexibility in
the beam geometry affords considerable scope for the study of the polarization and angular
dependence. Together with the extensive possibilities for frequency tuning (and incidental
exploitation of resonance features) the process proves to be powerfully dependent on molecular
symmetry, and it lends itself to a very complete characterization of fourth-order optical
nonlinearity.

1. Introduction

It is well known that optical three-wave mixing processes such as sum-frequency generation
(SFG) are forbidden in fluid media except under certain rather specialized conditions.
Principally, for coherent output, all three optical modes must have different frequencies
and different polarization vectors; additionally, if the fluid is isotropic it must be comprised
of chiral molecules (Rentzepiset al 1966, Andrews and Hands 1996). The former conditions
on the radiation ensure that second harmonic generation (SHG) is forbidden, even through
multipolar coupling, so that frequency doubling can be observable only through the operation
of other exceptional mechanisms such as six-wave mixing (Andrews 1994, Allcock and
Andrews 1997).

Against this background here we describe a novel five-wave mixing process which,
though of a higher order than the familiar SHG and SFG, should offer conversion
efficiencies broadly comparable to many well studied four-wave processes such as optical
phase conjugation, with which it shares certain characteristics. The five-wave process
offers considerable scope for the exploitation of resonances and (unlike SHG or SFG) it
presents a flexible geometry—two features which greatly enhance its value for the fullest
characterization of optical nonlinearity.

In what follows we first establish the logic that constrains the viability of five-wave
mixing in a fluid, enabling a beam geometry that satisfies those constraints to be ascertained.
The full theory is then developed through application of the methods of molecular quantum
electrodynamics (QED), enabling the structure of the appropriate nonlinear susceptibility to
be derived. Through irreducible tensor methods the rotational and distributional averaging
necessary for proper representation of the material fluidity is then implemented to obtain
directly applicable rate equations.

Particular attention is paid to the symmetry constraints governing the process. Molecular
symmetry plays an important role in determining the basic condition (lack of inversion

† Corresponding author: email address: D.L.Andrews@uea.ac.uk

0953-4075/97/235609+11$19.50c© 1997 IOP Publishing Ltd 5609



5610 L C Dávila Romero et al

symmetry) for the salient nonlinear optical susceptibility to be supported; however, the
condition becomes more stringent when such species comprise the bulk of an isotropic fluid.
Then it transpires that only chiral species can exhibit the five-wave interaction. Following a
detailed analysis of the polarization behaviour of the process, we conclude with a discussion
of special cases and potential applications.

2. Initial considerations and constraints

Since it has received relatively scant attention in the previously published literature, with
a few key exceptions (Dubrovskiiet al 1992, Shkurinovet al 1992, Koroteev 1995), it is
appropriate first to review the general constraints and experimental viability of optical five-
wave mixing. With five photons involved in each elementary interaction, the parametric
processes of most interest are those: (i) involving the annihilation of three photons and the
creation of two, or (ii) vice versa. The only other possibilities are (iii) the already well
understood case of fourth harmonic generation (more generally, four-frequency addition),
or (iv) the down-conversion counterparts. We focus on case (i) noting that the theory for
(ii) is obtainable as the time inverse.

The simplest processes involving the annihilation of three photons and the creation
of two are: (i) a trivial and essentially uninteresting higher-order contribution to SHG,
representable in the conventional terminology as a process mediated by the nonlinear
optical susceptibilityχ(4)(−2ω;−ω,ω, ω, ω) and (ii) the 3

2-frequency generation process
invokingχ(4)(− 3

2ω,− 3
2ω;ω,ω, ω). Both parametric interactions, and indeed any other such

five-wave processes involving modes in collinear propagation, are forbidden in molecular
fluids or other isotropic media for symmetry reasons. To discover an allowed process is
then a matter of a progressive reduction in simplicity, by which is meant considering the
involvement of an increasingly large number of optical modes, allowing for the possibility
that two or more might have the same frequency.

Let us then consider processes that involve three photon frequencies,ω,ω′ andω′′, the
first two designating input and the third, output. At the simplest level we can impose the
SFG condition:

ω + ω′ = ω′′. (2.1)

In order to satisfy energy conservation we must require that the other two photons involved
in each elementary interaction, one annihilated and one created, have a common frequency,
which again for simplicity we can take to beω. The created (non-signal) photonω may be
assumed to emerge through stimulated emission, i.e. following the direction of a throughput
beam.

In summary, we can consider an elementary interaction involving the absorption of
three photons (ω′, ω andω) and the emission of another two (ω′′ andω), thereby invoking
a five-wave susceptibility expressible asχ(4)(−ω′′; −ω,ω, ω, ω′). Viewed only with regard
to the frequency arguments of the susceptibility, this could merely signify a higher-order
contribution to SFG; however, as with degenerate four-wave phase conjugation mediated by
χ(3)(−ω;−ω,ω, ω), novel features arise where modes having the same optical frequency
impinge on the nonlinear medium from different directions.

In order to ascertain the constraints on directionality, the next step is to consider the
requirement for wavevector matching. In general, this introduces a second condition, which
in some cases can lead to trivial solutions such asω′′ = ω′ = ω or ω′ = ω. To identify
interesting but non-trivial solutions we can simplify the problem by considering the refractive
index of the medium to be frequency independent—this is a simplification that we need
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not impose for the subsequent detailed calculations. With carefully chosen wavevector
directions, phase matching can lead to the same conditions as the conservation of energy,
thus affording a greater degree of experimental flexibility. The simplest processes are those
involving just two (positive or negative) directions; we then conceive as the simplest non-
trivial solution the beam geometry depicted in figure 1.
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~
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k λ          ′ ′k ,λ

α
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 y
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Figure 1. Beam geometry.

The five photons involved in each elementary interaction have the following
characteristics. Two of the absorbed photons are of the same frequencyω and polarization
λ, but propagate in opposite directions,k̂ and−k̂. The third absorbed photon has frequency
ω′ and polarizationλ′, and its propagation direction̂k′ forms an angleα with −k̂. The
emitted photons have different characteristics. One is a stimulated photon of frequencyω

and polarizationλ̃, propagating in the−k̂′ direction, while the signal photon is emitted
with frequencyω′′, polarizationλ′′ and propagation direction̂k′′ ≡ k̂′. Here, in common
with phase conjugation experiments, the counterpropagating geometry for thek̂ and−k̂
beams offers an experimental opportunity for an intracavity implementation. In this case
the general condition on the wavevectors is

ω′′k̂′ − ωk̂′ = ω′k̂′ + ωk̂ − ωk̂ (2.2)

with ω + ω′ = ω′′. The full set of photon parameters is summarized in table 1.

Table 1. Photon characteristics.

Frequency Direction of propagation

Absorbed photons
(k, λ) ω k̂

(−k, λ) ω −k̂
(k′, λ′) ω′ k̂′

Emitted photons
(k̃, λ̃) ω −k̂′
(k′′, λ′′) ω′′ k̂′
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3. Quantum electrodynamical formulation

The system formed by the molecules and the electromagnetic (EM) field, has an associated
HamiltonianH expressible as

H = H0+ V. (3.1)

The first term, whose eigenstates form the basis for the perturbation theoretical treatment,
is

H0 =
∑
ξ

H
ξ

mol+Hrad (3.2)

whereHξ

mol is the Hamiltonian of moleculeξ andHrad is the Hamiltonian of the field. The
second term of (3.1) is the coupling

V =
∑
ξ

H
ξ

int (3.3)

between the molecules and the EM field. In the Power–Zienau–Woolley multipolar
formulation, each molecule interacts separately with the field, intermolecular interaction
being mediated by virtual photon coupling.

Figure 2. Feynman diagram representing the form of the interaction between the field and the
molecules.
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To help develop in a detailed form the interaction between the field and the molecules,
we introduce Feynman diagrams. Figure 2 represents one of the 120 different time-ordering
graphs that contribute. With the aid of such graphs we can calculate the probability
amplitude associated with transition between initial and final states specified as follows:

|i〉 = |E0; n+(k, λ); n−(−k, λ); n′(k′, λ′); ñ(k̃, λ̃)〉
|f 〉 = |E0; (n+ − 1)(k, λ); (n− − 1)(−k, λ); (n′ − 1)(k′, λ′); (ñ+ 1)(k̃, λ̃); 1(k′′, λ′′)〉

(3.4)

properly differentiating photons that have the same frequency but opposite directions of
propagation. To calculate the transition rate0, through the application of the Fermi golden
rule

0 =
(

2π

h̄

)
|Mfi |2ρ (3.5)

our first task is to calculate the matrix elementMξ

f i for the moleculeξ , in terms of which
the system matrix elementMfi for N molecules is given by

Mfi =
N∑
ξ

M
ξ

f i . (3.6)

For a five-wave mixing process the principal contribution to the matrix element is fifth order
in the interaction term, i.e.

M
ξ

f i = 〈f |UI (t, t0)|i〉ξ

≈ 〈f |
{(

1

ih̄

)5 ∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4

∫ t4

t0

dt5 Ṽ (t1)Ṽ (t2)Ṽ (t3)Ṽ (t4)Ṽ (t5)

}
|i〉ξ

(3.7)

Ṽ (ti) = exp

[
i
H0(ti − t0)

h̄

]
V exp

[
−i
H0(ti − t0)

h̄

]
. (3.8)

Calculating the five time integrals for the process described in section 2, and under the
electric dipole approximation, we obtain

M
ξ

f i = (−i)

(
h̄c

2ε0V

)5/2

(k3k′k′′)1/2(n+n′n−(ñ+ 1))1/2

×ē′′i ¯̃ej e′kelemχξijklm(ω′′; −ω,ω, ω, ω′) exp[i(k′ − k̃ − k′′) ·Rξ ]. (3.9)

Here e′′, ẽ, e′, e are the polarization vectors of the photons,Rξ is the position vector of
the moleculeξ andχξijklm is its fifth-rank response tensor, whose explicit form is discussed
in the following section.

From expression (3.6) and imposing wavevector matching, the total matrix element can
finally be written as

Mfi=(−i)

(
h̄c

2ε0V

)5/2

(k3k′k′′)1/2(n+n′n−(ñ+ 1))1/2ē′′i ¯̃ej e′kelem
∑
ξ

ξijklm(ω
′′; −ω,ω, ω, ω′).

(3.10)

Note that the effect of refractive dispersion will generally mean thatexact collinearity
of the k′,k′′ and k̃ wavevectors cannot be achieved. However, fulfilment of wavevector
matching under such conditions still generates a matrix element correctly represented by
equation (3.10).
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4. Structure of χ(4)

Using the concise notation introduced recently by Naguleswaran and Stedman (1996), the
nonlinear response tensorχ(4) can be written compactly as follows:

χ
(4)
λ1λ2λ3λ4λ5

≡ χπ{λ,ηω}f i =
∑
π{λ}{r}

N
π{λ}{r}
f i

D
π{ηω}{r}
f i

(4.1)

whereλ = (λ1, λ2, λ3, λ4, λ5) denotes the set of Cartesian coordinates in a molecular frame,
r = (r, s, t, u) the intermediate (virtual) states, with the linked permutation of each set of
labels denoted by the bracesπ{ }. Each numerator in equation (4.1) involves a product of
transition electric dipole components:

N
π{α}{s}
f i = µouλ1

µutλ2
µtsλ3

µsrλ4
µroλ5

. (4.2)

The 120 time orderings which contribute to the tensor are separable into two sets which
differ by interchange of the fourth and fifth indices; as a consequence of the degeneracy
in the corresponding beam frequencies, the tensor is rigorously index-symmetric in these
indices (alone).

To be supported in a molecule of any given symmetry, components ofχ(4) must span
the totally symmetric representationD(0−) of the corresponding point group. Through its
index symmetry property, the reducible representation ofχ(4) itself derives from a product
of the representations of a third-rank odd-parity and a second-rank even-parity tensor,

(D(0−) ⊕ 3D(1−) ⊕ 2D(2−) ⊕D(3−))⊗ (D(0+) ⊕D(2+))
= (3D(0−) ⊕ 9D(1−) ⊕ 9D(2−) ⊕ 7D(3−) ⊕ 3D(4−) ⊕D(5−)) (4.3)

by the rules of angular momentum coupling (Andrews 1989). The result (4.3) obviously
includes all weights 06 j 6 5, leading (if there were a complete absence of molecular
symmetry) to 162 independent components. In general, more than one of the weights will
correlate with the totally symmetric representation of the molecular point group and lead
to non-zero components forχ(4); using methods well described by Barron (1982), these
components and the relations between them are readily identified for any chosen symmetry.
One immediate and general conclusion, based on the negative parity of the representations
in (4.3), is that components ofχ(4) can assume finite values only where there is no molecular
centre of symmetry. For this reason the process is forbidden in centrosymmetric molecules,
and, for that matter, in centric crystals. In fluids, additional constraints become apparent
once account is taken of bulk rotational symmetry (as we shall show in the following
section) since full rotational symmetry supportsD(0−) alone.

The denominators in equation (4.1) involve differences between molecular state energies,
Er0 = Er − E0, and also the energies of the emitted and absorbed photons,

D
π{ηω}{r}
f i = (Eu0− E4− E3− E2− E1)(Et0− E3− E2− E1)(Es0− E2− E1)(Er0− E1)

(4.4)

where the energiesEi (16 i 6 5) are

E1 = h̄ω′ −E2 = E3 = E4 = h̄ω E5 = −h̄ω′′. (4.5)

In frequency regionsvery substantially removed from single- or multi-photon absorption
bands, approximate symmetry with respect to the permutationsπ{r} would lead to Kleinman
(complete) index symmetry inχ(4). Then, its reducible representation collapses to
(D(1−) ⊕D(3−) ⊕D(5−)), with (at most) 21 independent components.
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Resonance is not a necessary condition for five-wave mixing to occur, though exploiting
its onset through a judicious choice of frequency might expedite signal recovery, through
reduction of one or more of the factors in (4.4). To avoid unphysical singularities and
properly model the dispersion behaviour, it is appropriate to incorporate in each energy
factor in (4.4) a term representing excited state damping. Then the difference in energyEr0
is replaced by

Ẽr0 = Er0− i0 (4.6)

where 2π/0r is the lifetime of the molecular excited state|r〉, and the sign in equation (4.6),
consistent with Cohen-Tannoudjiet al (1992) properly accords with considerations of time-
reversal invariance (Andrewset al 1997). Under conditions ofexact resonance, it would
be appropriate to reformulate the interaction to include the effects of coherence decay.

5. Distributional and rotational averaging

In this section we impose two further conditions, both of which will be physically realized
in the vast majority of experimental measurements. First we take account of the fact that the
N molecules in a fluid phase will be oriented randomly so that the ensemble response can
be found by taking a rotational average, denoted below by angular brackets. Implementing
this average on the modulus square of the matrix element gives a result which is expressible,
through (3.6), as a sum of one-centre and two-centre terms:〈∣∣∣∣ N∑

ξ

M
ξ

f i

∣∣∣∣2〉 = 〈 N∑
ξ

∣∣Mξ

f i

∣∣2〉+ 〈 N∑ N∑
ξ ′ 6=ξ

M
ξ

f iM̄
ξ ′
f i

〉
= N 〈∣∣Mξ

f i

∣∣2〉
ξ
+N(N − 1)

〈
M
ξ

f i

〉
ξ

〈
M̄
ξ ′
f l

〉
ξ ′

= N 〈∣∣Mξ

f i

∣∣2〉+N(N − 1)
∣∣〈Mξ

f i

〉∣∣2. (5.1)

Here, in the last step, use is made of the fact that rotationally averaged parameters must be
the same for all molecules of the ensemble. The first term in the result (5.1) corresponds to
the incoherent addition of one-centre terms, given by the average squared modulus of the
matrix element, while the second term represents the coherent interference of two-centre
signals, for which rotational average is taken before the modulus squared. The persistence
of the coherent term depends on fulfilling the condition of wavevector matching—failing
this, theRξ position-dependent phase factor in (3.9) will carry through into the average to
be conducted below, leading to effective cancellation of the two-centre terms. Under such
conditions the incoherent (one-centre) response would certainly provide a signal, but one
that is likely to be below the threshold of experimental detection. The assumption of phase
matching thus allows neglect of the incoherent term, giving〈∣∣Mfi

∣∣2〉 ≈ N2
∣∣〈Mξ

f i

〉∣∣2 = N2

(
h̄c

2ε0V

)5

(k3k′k′′)n+n′n−(ñ+ 1)
∣∣〈ē′′λ1
¯̃eλ2e

′
λ3
eλ4eλ5

〉
χλ1λ2λ3λ4λ5

∣∣2
(5.2)

from equation (3.10).
Implementation of the fifth-rank tensor rotational average is calculationally intricate,

but readily achievable by methods based on isotropic tensor calculus. The method entails
first referring all tensor components to a common molecule-fixed Cartesian frame (suitably
denoted in (5.2) by theλ indices) in which the susceptibility tensor components are invariant
to rotation, then transforming the polarization components into a laboratory-fixed frame
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(denoted below by indicesi) in which they too are invariant to molecular orientation. Thus
we write〈
ē′′λ1
¯̃eλ2e

′
λ3
eλ4eλ5

〉
χλ1λ2λ3λ4λ5 =

〈
ē′′i1
¯̃ei2e′i3ei4ei5`i1λ1`i2λ2`i3λ3`i4λ4`i5λ5

〉
χλ1λ2λ3λ4λ5

= ē′′i1 ¯̃ei2e′i3ei4ei5χλ1λ2λ3λ4λ5

〈
`i1λ1`i2λ2`i3λ3`i4λ4`i5λ5

〉
= ē′′i1 ¯̃ei2e′i3ei4ei5χλ1λ2λ3λ4λ5I

(5)
i1i1i2i3i4i5;λ1λ2λ3λ4λ5

(5.3)

in which the direction cosinèij λj is the (ij , λj ) element of the Euler angle matrix relating
the laboratory to the molecule-fixed frame. Expressed in this way, it is only these angles
which vary with molecular orientation, so the problem reduces to finding the average of the
product`i1λ1`i2λ2`i3λ3`i4λ4`i5λ5, denoted byI (5)i1i2i3i4i5;λ1λ2λ3λ4λ5

. This is a linear combination of
products of fifth-rank isotropic tensors referred to the two frames. Each isotropic tensor is the
product of a Levi-Civita antisymmetric tensor and a Kronecker delta, and the coefficients of
the linear combination can be taken directly from Andrews and Thirunamachandran (1977).
The result is the following expression:〈∣∣Mfi

∣∣2〉 ≈ (N
30

)2(
h̄c

2ε0V

)2

(k3k′k′′)n+n′n−(ñ+ 1)

×∣∣{[ē′′ · ¯̃e× e′](e · e)ελ1λ2λ3δλ4λ5

+[ē′′ · ¯̃e× e](e′ · e)(ελ1λ2λ4δλ3 lambda5 + ελ1λ2λ5δλ3λ4

)
+[ē′′ · e′ × e]

( ¯̃e · e)(ελ1λ3λ5δλ2λ4 + ελ1λ3λ4δλ2λ5

)
+[ ¯̃e · e′ × e](ē′′ · e)(ελ2λ3λ4δλ1λ5 + ελ2λ3λ5δλ1λ4

)}
χλ1λ2λ3λ4λ5

∣∣2. (5.4)

In each term in equation (5.4) the contraction of the Levi-Civita and delta tensor product
with the nonlinear susceptibility tensor generates a pseudoscalar (D(0−)), i.e. a scalar of
negative parity. It may be observed that, because the symmetry of the full rotation group
now applies, contributions associated with any other weight disappear. Since pseudoscalars
are quantities supported only by chiral species, i.e. molecules which possess neither a centre
of symmetry nor any mirror plane or improper rotation axis, the process of interest is thus
subject to more stringent symmetry constraints in fluids than in crystals. Note that in
frequency regions where full Kleinman symmetry holds, these pseudoscalars necessarily
vanish (because weight zero is then not represented inχ(4)) and the process becomes
forbidden. In the next section the process will be analysed with regard to its dependence
on beam polarization.

6. Polarization behaviour

6.1. Linear polarization

First we consider the case where all beams have linear polarization. The simplest geometry
which leads to a finite signal is one in which photons derived from the counterpropagating
beams (k and −k) are polarized in the beam plane and thek′ beam is polarized
perpendicularly to the plane. Allowing arbitrary linear polarizations for the other photons,
we thus have

e = êx e′ = êz e′′ = aêz + bê‖ e = cêz + dê‖ (6.1)

where the directionŝx andẑ (right-hand rule) are defined in figure 1,ê‖ necessarily satisfies

k̂′ × êz = ê‖ (6.2)
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and the real constantsa, b, c andd are subject to the conditions√
a2+ b2 = 1

√
c2+ d2 = 1. (6.3)

Substituting in equation (5.4) we obtain

〈∣∣Mfi

∣∣2〉 ≈ (N
30

)2(
h̄c

2ε0V

)5

(k3k′k′′)n+n′n−(ñ+ 1)

×∣∣ 1
2bd sin(2α)

(
ελ1λ3λ5δλ2λ4 + ελ1λ3λ4δλ2λ5

+ελ2λ3λ4δλ1λ5 + ελ2λ3λ5δλ1λ4

)
χλ1λ2λ3λ4λ5

∣∣2 (6.4)

with the angleα as shown in figure 1.
For conciseness we can define the following pseudoscalar coefficients:

ελ1λ2λ3δλ4λ5χλ1λ2λ3λ4λ5 = χ(4)1

ελ1λ2λ4δλ3λ5χλ1λ2λ3λ4λ5 = χ(4)2

ελ1λ2λ5δλ3λ4χλ1λ2λ3λ4λ5 = χ(4)3

ελ1λ3λ4δλ2λ5χλ1λ2λ3λ4λ5 = χ(4)4

ελ1λ3λ5δλ2λ4χλ1λ2λ3λ4λ5 = χ(4)5

(6.5)

and, noting the following which result from fundamental relationships between fifth-rank
isotropic tensors (Andrews and Thirunamachandran 1977):

ελ2λ3λ4δλ1λ5χλ1λ2λ3λ4λ5 = χ(4)1 − χ(4)2 + χ(4)4

ελ2λ3λ5δλ1λ4χλ1λ2λ3λ4λ5 = χ(4)1 − χ(4)3 + χ(4)5

(6.6)

we can finally express the result as

〈∣∣Mfi

∣∣2〉 = (N
30

)2(
h̄c

2ε0V

)5

(k3k′k′′)n+n′n−(ñ+ 1)

×∣∣ 1
2bd sin(2α)

{
2
(
χ
(4)
1 + χ(4)4 + χ(4)5

)− (χ(4)2 + χ(4)3

)}∣∣2. (6.7)

The result necessarily vanishes forα = 0, and suggests an angle of±45◦ for the optimum
signal.

6.2. Circular polarization

This case is not as simple as the former, though the calculational procedure is the same.
Here we consider the following beam polarizations:

e = 1√
2
(êx + iêz) e′ = 1√

2
(êx − iêz)

e′′ = aêz + bê‖ ẽ = cêz + dê‖.
(6.8)

Although the constantsa, b, c and d still satisfy the normalization relation (6.3), they are
now complex quantities. Here it is important to realize that thek and−k beams have
polarizations of opposite circularity, although they are described by the same polarization
vector. In this case the final result is, as might be anticipated, more complicated then when
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working with linear polarization;

〈∣∣Mfi

∣∣2〉 = (N
30

)2(
h̄c

2ε0V

)5

(k3k′k′′)n+n′n−(ñ+ 1)

×
∣∣∣∣{(ad − bc)∗ sinα√

2

(
χ
(4)
2 + χ(4)3

)+(− ib∗√
2

)
sinα(d cosα + ic)∗

(
χ
(4)
4 + χ(4)5

)
+
(
− id∗√

2

)
sinα(b cosα + ia)∗

(
2χ(4)1 − χ(4)2 − χ(4)3 + χ(4)4 + χ(4)5

)}∣∣∣∣2. (6.9)

Notice that the linear combination ofχ(4)n appearing in (6.9) differs from that in (6.7). In
principle, measurements of the effect under both linear and circular polarization conditions
thus offers additional information on the fourth-order susceptibility parameters.

7. Discussion

For the study of molecular fluids, the process described here offers a number of
advantages over more familiar nonlinear optical processes, even in its simplest sum-
frequency implementation. In particular, the greater flexibility in achieving wavevector
matching affords considerable scope for study of the dependence on beam polarization and
geometry. The angular dependence itself offers a ready means for characterizing the five-
wave interaction, especially in the case of linear polarization. Together with the extensive
possibilities for frequency tuning the process lends itself to a very complete characterization
of fourth-order optical nonlinearity. Although we have focused on addressing the theory to
isotropic molecular fluids, results for the substantially simpler case of an acentric crystalline
material follow directly from the equations of section 3.

To assess the likely magnitude of the signal, we can assume that the magnitudes of the
transition dipole moment and energy denominator factors in equation (4.1) largely mirror
those of the third-order susceptibility associated with four-wave mixing processes. It is
then a straightforward matter to show that, compared with such processes, the five-wave
interaction should generate a signal which is smaller by a factor typically of the order of
γ = I/J . Here I is the input irradiance andJ is a critical irradiance associated with
departure from perturbation theory, i.e. the irradiance providing electric fields comparable
to intramolecular Coulombic values, often quoted as around 1011 W cm−2. Thus, if studied
with input pulses having a peak irradiance of 1010 W cm−2, the five-wave process should
offer output intensities around one tenth of those normally associated with phase conjugation
and allied phenomena. We have shown that in isotropic fluids the five-wave interaction is
forbidden in regions of transparency where Kleinman symmetry applies, although neither
resonance nor pre-resonance is necessary for observation of the process, the corresponding
signal enhancement will prove more than usually significant for optimizing signal detection.
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