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Phenomenological damping of nonlinear-optical response tensors
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The damping factors that occur in nonlinear-optical response tensors are commonly assigned signs that
depend upon the temporal ordering of the associated photon interactions. However, time-reversal symmetry is
satisfied only if all these signs are identical. For example, only then is there a formal equivalence between the
amplitudes for second-harmonic generation and parametric down-conversion and only then is electro-optic
rotation forbidden in fluids. This correction reflects deficiencies in certain commonly employed semiclassical
approaches to nonlinear optics.@S1050-2947~98!10406-7#

PACS number~s!: 42.65.2k
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I. INTRODUCTION

The theoretical formulation of nonlinear optical process
commonly entails representing the material response in te
of parameters characterizing both its ground and vari
higher-energy states. When one of the excited states di
from the initial state by any amount closely similar to t
energy of one or more participating photons, resonance
hancement is observed to occur. In such cases it is nece
to include damping in the description to properly account
the finite optical amplification or the detailed dispersion b
havior.

Apart from a few simple cases~see, for example, Ref.@1#!
there are considerable difficulties associated with the tr
ment of optical damping in a nonphenomenological mann
In an ensemble situation, the various damping mechanis
such as radiative, collisional, or intramolecular vibration
redistribution damping, will often contribute simultaneous
In principle, the formalism of quantum field theory in stati
tical physics@2,3# will give the correct form of the transition
amplitudes in such complex situations, including~as de-
scribed below! the sign of the damping factors. Howeve
detailed calculation can be a formidable task@4# and com-
monly only a phenomenological treatment is tractable. O
pragmatic alternative~for example, Ref.@5#! is to dispense
with such damping and to apply the ensuing results only
frequency regions well away from resonance. Such an
proach has the attraction of retaining a rigor that conf
what in other quantum mechanical areas would be termeab
initio status. This approach is however limited, being n
well suited to the analysis of dispersion effects.

Very close to resonance or under strong pumping con
tions ~when electromagnetic field strengths become com
rable to internal fields!, standard perturbation theory is ina
propriate and a two-level model~or a multilevel extension
thereof! is invariably employed to describe, for examp
Rabi flopping@6,7#. Here we examine the alternative case
resonances with moderate fields, i.e., the cases where a
turbative treatment is possible and where the optical
sponse can meaningfully be cast in susceptibility terms
this situation, losses that usually characterize bulk or
571050-2947/98/57~6!/4925~5!/$15.00
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semble response may enter a formulation based on inde
dent molecules so as to endow excited levels with a fin
linewidth ~see, for example, Ref.@8#!. This leads to the as
sociation of damping factors with the excited-state wa
functions, entering into the energy denominators of susc
tibility tensors as imaginary addenda@9#. The magnitude of
each imaginary addendum carries the physically signific
connotation of the lifetime of an excited state and leads
Lorentzian line shapes of appropriate and experimentally
terminable width. We accept the pragmatic value of t
damping concept and are concerned with a comparison o
signs in the resulting expression with those that result from
fully quantum calculation.

It is common practice to incorporate such damping
including imaginary terms in the energy denominators t
emerge from the perturbation treatment. Two conventio
have been used in the literature for setting the signs of th
damping factors. The most common convention is to ass
signs by time-ordering considerations. For example,
second-harmonic generation, signs are chosen oppositel
interactions preceding and following the emission of the h
monic photon. This approach has been founded on a se
classical formalism featuring the optical susceptibility@10–
13#, sometimes via an explicit appeal to causality, but ag
within the context of the semiclassical formalism@14#. We
show, nevertheless, that this convention is inconsistent w
a fully quantum development@1#, in particular with time-
reversal symmetry alone, and that all these signs should
identical. Furthermore, this quantum calculation may be u
to justify from first principles the apparently arbitrary pro
cess of including a damping factor via an explicit consid
ation of all possible quantum dynamical processes. Thi
evident in the Green’s-function approach@2# where the
imaginary factors are derived as the cumulative effects of
infinite sequence of virtual excitations, through the ima
nary part of the self-energy.

Since damping effects are often associated with unidir
tional dissipative effects, the relevance of our appeal to tim
reversal invariance needs to be clarified. Pure quantum
chanics, like classical mechanics, is time-reversal invaria
Transitions between states of the unperturbed Hamilton
4925 © 1998 The American Physical Society
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and so the damping factors associated with lifetime effe
appear in both senses of propagation~within the time-
reversal-invariant formalism!. Our discussion centers on th
signs allotted to these factors at this stage. In contrast,
arrow of time may be invoked, for example, when the d
grees of freedom of a subsystem~a bath or reservoir! are
averaged over. This step is not a necessary part of our an
sis and does not change these signs.

II. HISTORY OF ALTERNATIVE SIGN CONVENTIONS

There exist two approaches in the semiclassical treatm
of optical damping. The first operates at the wave-funct
level and is exemplified by Butcheret al. @14# and Butcher
and Cotter@9# ~see also Ref.@15#! who fix the signs of their
damping addenda by requiring that~in the evaluation of the
susceptibility tensors! time integrals should converge. Fo
the generation of optical harmonics and in the susceptib
contribution corresponding to each time ordering, the
damping terms then carry opposite signs for interactions
ceding and following emission of the harmonic photon. T
second approach involves the inclusion of damping factor
the density matrix level@10–13# and results in susceptibili
ties with an identical assignment of signs as in Re
@14,9,15#, but with extra terms added.~As described below,
each approach to some extent represents a phenomenolo
and entirely semiclassical adaptation of the quantum th
retic Green’s-function formalism.! We shall treat the two ap
proaches on the same footing since it is the signs assoc
with the damping factors that is of particular interest in th
paper. For example, in the multipolar gauge and in elec
dipole coupling, the lowest-order~linear! optical susceptibil-
ity takes the form

xab
~1!~2v;v!5(

g
(

b
F ^gumaub&^bumbug&
Eg2Eb1\v1 iGb

1
^gumbub&^bumaug&
Eg2Eb2\v2 iGb

G , ~1!

where ma is a Cartesian component of the electric dipo
operator,ug& the ~possibly degenerate! local ground state of
the unperturbed material Hamiltonian,Eg its corresponding
eigenvalue, and 2p/Gb the finite lifetime of the excited stat
ub& @9#.

Cohen-Tannoudjiet al. @1#, who consider radiative damp
ing for resonant Rayleigh scattering, employ the resolv
operator method to sum appropriate diagrams to infinite
der. The resulting transition amplitude is equal to the ab
except that the signs of the imaginary addenda are positiv
both denominators:

Aab
~1!~2v;v!5(

g
(

b
F ^gumaub&^bumbug&
Eg2Eb1\v1 iGb

1
^gumbub&^bumaug&
Eg2Eb2\v1 iGb

G . ~2!

Hecht and Barron@16#, who cite Weisskopf@17#, also arrive
at this expression. Equation~2! is also consistent with the
~closely related! application of quantum field theoretica
methods of statistical physics to electronic spectra. It i
general result of this approach that any physically observa
ts
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spectrumr(v) is related to the discontinuity of the appro
priate Green’s functionG(z) as the complex argumentz
5v6 i« is taken across the real axis@18#:

r~v!} lim
«→01

@G~v2 i«!2G~v1 i«!#. ~3!

It is a straightforward exercise@2# to verify this spectral theo-
rem in perturbation theory. The cases of one-photon abs
tion @19# and two-photon absorption@4# are explicitly avail-
able. ~In the latter, a choice exists for the frequen
argument, reflecting the different physical processes
scribed by a given Green’s function.!

We require the imaginary parts~the widths as opposed t
the shifts! of the relevant self-energy operatorsS within G.
These imaginary parts all have a common sign dictated
the imaginary part of the frequency@S(v6 i«)5L(v)
7 iG(v)# @2#. Hence Eq.~3! itself dictates the signs of the
imaginary terms associated with any self-energy appearin
a denominator in terms of the relevant spectral frequen
Note, for example, that both longitudinal~population! and
transverse~coherence! damping contribute to the dampin
factors, if with characteristic differences~for an examination
of these in the Green’s-function formalism see, for examp
Ref. @20#!. The damping factors obtained by combining t
effects of all such processes must nonetheless themselve
signed in a consistent manner which is justified in this pap

III. SYMMETRY OF HARMONIC-GENERATION
AMPLITUDES

We now compare the symmetries of rival amplitudes u
der Hermitian conjugation and time reversal; for illustrati
purposes we consider the coherent process of sec
harmonic generation. The associated optical susceptib
tensor, obtained using the methods of Butcher and Cotter@9#,
has the form

xabg
~2! ~22v;v,v!

5(
g

(
b,c

^gumauc&^cumbub&^bumgug&
~Eg2Eb1\v1 iGb!~Eg2Ec12\v1 iGc!

1
^gumbuc&^cumaub&^bumgug&

~Eg2Eb1\v1 iGb!~Eg2Ec2\v2 iGc!

1
^gumguc&^cumbub&^bumaug&

~Eg2Eb22\v2 iGb!~Eg2Ec2\v2 iGc!
. ~4!

The spectral theorem of quantum field theory~Sec. II! tells
us to expect that the second-harmonic amplitu
Aabg

(2) (22v;v,v) has the form

Aabg
~2! ~22v;v,v!

5(
g

(
b,c

^gumauc&^cumbub&^bumgug&
~Eg2Eb1\v1 iGb!~Eg2Ec12\v1 iGc!

1
^gumbuc&^cumaub&^bumgug&

~Eg2Eb1\v1 iGb!~Eg2Ec2\v1 iGc!

1
^gumguc&^cumbub&^bumaug&

~Eg2Eb22\v1 iGb!~Eg2Ec2\v1 iGc!
~5!
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~such an expression has been employed in Ref.@21#!. Equa-
tions ~4! and ~5! have identical structures, except that t
imaginary terms in the denominators of the former ha
time-ordered signs while those of the latter have fixed sig

When Hermitian conjugationH is applied~for example,
^cuOub&5^buO†uc&* @9#!, xabg

(2) , but notAabg
(2) , satisfies

$xabg
~2! ~22v;v,v!%* 5xabg

~2! ~2v;2v,2v!. ~6!

In this standard semiclassical theory the susceptibility
any process must satisfy this type of relation in order for
Fourier transform and so the polarization to be a real qu
tity @9#. However, Berger@22# argues that the reciprocit
relation of Eq. ~6! ~Berger’s ‘‘microscopic inversibility’’!
need not be a general symmetry.

Now consider the application ofHT symmetry, the com-
bination of H with time reversalT. We have, for example
that ^cuOub&5^b̄uŌ†uc̄&, where ub̄&5Tub& and Ō5TOT21

~see, for example, Ref.@23#!. We assume that the unpe
turbed eigenstates are not split by a time-odd field, e.g.
Zeeman splittings, so thatuc̄& can be replaced byuc& in the
sums and averages of the golden rule expression with
affecting statistical factors or the denominators. It is a
necessary to establish that the imaginary parts of the s
energyGb are time even (Gb5G b̄); this may be proved as
follows. A many-body or resolvent formalism@1,2# leads to
the Brillouin-Wigner perturbative expansion of the se
energy in the interactionsV:

Sb~E1 i«!5 (
n50

`

^buVS Q

E1 i«2H0
VD n

ub&; ~7!

hereH0 is the unperturbed Hamiltonian andQ a projection
operator off the levelb, E→Eb , «→01. Each denominator
in this expression may resonate, giving an imaginary p
Gb(E), which, using the limit 1/(x1 i«)→P(1/x)2 ipd(x),
takes the form

Gb~E!5p (
l ,m50

`

(
cÞb

^buVS Q

E2H0
VD l

uc&

3^cuVS Q

E2H0
VD m

ub&d~E2Ec!

5p (
l ,m50

`

(
cÞb

Pbc
~ l !Pcb

~m!d~E2Ec!, ~8!

where, writingVbc for ^buVuc&, we have

~9!

The last symmetries, which derive from Hermiticity an
time-reversal invariance when statesd,d̄, etc., are degener
ate, together with the palindromic structure of Eq.~8!, show
e
s.
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rt

that Gb(E)5G b̄(E). Therefore, the amplitudeAabg
(2) with

fixed signs, but notxabg
(2) with the time-ordered signs, is see

to satisfy

Aabg
~2! ~22v;v,v!5Aabg

~2! ~2v;2v,2v!. ~10!

Equation~10! proves the formal identity required of th
second-harmonic generation and parametric dow
conversion amplitudes. It is a general consequence of
applicability of time-reversal symmetry. Formally, the ev
lution operator for a closed light-matter system has the so
tion exp(2i/\Ht), whereH is the total Hamiltonian describ
ing all relevant degrees of freedom such as those assoc
with the rotational, vibrational, and translational modes
particles making up the system. Supposing that the ini
and final states of the system areI ,F, respectively,HT sym-
metry gives

^Fue2 i /\HtuI &5^ Ī ue2 i /\HtuF̄& ~11!

@see the work of Stedman@3#, whose ‘‘reversal theorem’’ is
related to Eq.~11!#. Assuming that the internal degrees
freedom of the system are initially at equilibrium and that t
system is not magnetic, Eq.~11! proves the equivalence o
time-reversed processes without recourse to explicit per
bative expansions. We have seen for second-harmonic
eration that as part of this equivalence all the imaginary
denda must have the same sign. It follows similarly that t
principle must also hold for higher-order transition amp
tudes. Note that the time-reversal symmetry relation of
~11! would not be expected to hold if the system we
coupled to a bath because that is no longer a thermodyn
cally isolated system. However, the generality ofH means
that the various damping mechanisms need not be re
sented by couplings to external influences. Further analy
of the ensemble ‘‘arrow of time’’ do not impinge upon ou
discussion since they do not address the physics of time
versal at the fundamental level of photon interaction@24#.

The second-harmonic intensity expressions are given
ux (2)u2 and uA(2)u2 in the time-ordered-sign and fixed-sig
formulations, respectively. When damping is included E
~4! and~5! show thatx (2) andA(2) are not proportional, nor
do they stand in a complex conjugate relationship. Theref
those alternative formulations lead to intensity expressi
that in principle are physically distinguishable. The denom
nator factors ofx (2) that may be resonant have the corre
positive imaginary parts; only the ‘‘antiresonant’’ facto
have negative imaginary parts. Hence the difference betw
results cast in terms ofx (2) andA(2) is generally likely to be
small in applications. Nevertheless, the difference is in pr
ciple measurable and in certain cases quite significant~see
below!. At this level of discussion the importance of the
corrections might be judged to be similar to that of dep
tures from the rotating-wave approximation, which itself d
pends on retaining only resonant terms.

IV. QUALITATIVE CONSEQUENCES

We now illustrate how the two sign conventions not on
give inequivalent quantitative predictions but also give d
fering qualitative predictions. To do this we consider t
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coherent process of electro-optic rotation~forward Rayleigh
scattering between orthogonal linear polarizations in
presence of an external electric field! in fluid media. The
associated expressions in the time-ordered and fixed-
conventions are, respectively,

xabg
~2! ~2v;0,v!5(

g
(
b,c

mgc
a mcb

b mbg
g

~Egb1 iGb!~Egc1\v1 iGc!

1
mgc

g mcb
a mbg

b

~Egb1\v1 iGb!~Egc2 iGc!

1
mgc

b mcb
g mbg

a

~Egb2\v2 iGb!~Egc2\v2 iGc!

1
mgc

a mcb
g mbg

b

~Egb1\v1 iGb!~Egc1\v1 iGc!

1
mgc

b mcb
a mbg

g

~Egb1 iGb!~Egc2\v2 iGc!

1
mgc

g mcb
b mbg

a

~Egb2\v2 iGb!~Egc2 iGc!
, ~12!

Aabg
~2! ~2v;0,v!5(

g
(
b,c

mgc
a mcb

b mbg
g

~Egb1 iGb!~Egc1\v1 iGc!

1
mgc

g mcb
a mbg

b

~Egb1\v1 iGb!~Egc1 iGc!

1
mgc

b mcb
g mbg

a

~Egb2\v1 iGb!~Egc2\v1 iGc!

1
mgc

a mcb
g mbg

b

~Egb1\v1 iGb!~Egc1\v1 iGc!

1
mgc

b mcb
a mbg

g

~Egb1 iGb!~Egc2\v1 iGc!

1
mgc

g mcb
b mbg

a

~Egb2\v1 iGb!~Egc1 iGc!
, ~13!

whereEgb5Eg2Eb . The application ofHT shows that the
amplitude with fixed signs, but not that with time-order
signs, satisfies

Aabg
~2! ~2v;0,v!5Abag

~2! ~2v;0,v!. ~14!

In a fluid we detect only the rotationally invariant part a
must contract these tensors with the Levi-Civita` symboleabg
~see, for example, Ref.@25#!. However, such an antisymme
ric combination is incompatible with the index symmetry
Eq. ~14!. Hence, in the correct formulation this process
forbidden, whereas it is allowed under the popular alterna
sign choice. Such qualitative differences in prediction
particularly amenable to experimental test.

Manakov and Faı˘nshteı˘n @26# and Agre and Manakov@27#
also discuss the role of damping factors in stimulating va
ous nonlinear optical processes~through the interference o
the anti-Hermitian and Hermitian terms in the transition a
plitude!. These authors assume a time-odd character for
e

gn

e
e

i-

-
he

damping constant in contradiction to our result. It would a
pear from Manakov and Faı˘nshteı˘n @26# that they reach this
erroneous conclusion because they have assumed the
reversal covariance of a diffusion equation of the fo
dW/dt52gW. However, thermodynamic diffusion effect
reflect the arrow of time and we prove that the width para
eterG is demonstrably time even. This will have significa
consequences for their analysis@26,27#.

V. SOME OTHER LIMITATIONS
OF SEMICLASSICAL APPROACHES

Why should the time-ordered-sign formalism be mislea
ing and inaccurate, given that it reflects causality consid
ations in the theory of the semiclassical susceptibility? T
amplitudes with fixed signs are based on resolvent or fi
theoretic techniques and directly calculate the observable
quantum theory. The susceptibility formulation has a mo
semiclassical foundation. The description of optical respo
in terms of susceptibility, whether linear or nonlinear, is n
universally appropriate. It derives from a tradition long e
tablished in classical optics, wherein a material polarizat
is regarded as the source of any emergent signal. This so
and hencea forteriori the various orders of susceptibility i
terms of which it is cast through series expansion, has
status of an inferred rather than an experimentally determ
able quantity. In the case of laser optics, at least, where n
linearities are usually engendered by pulsed radiation
where genuinely photonic aspects of the radiation can b
paramount importance, such an assumption is a gross o
simplification. For example, it leads to the obviously fal
conclusion that any system exposed to even one photon
through quadratic interaction mediated by a second-or
susceptibility, weakly generate second-harmonic output.

It should not be assumed that the issues we have
dressed are simply reflections of a difference originat
from a Fock state quantum electrodynamical basis. If qu
classical coherent states are employed for the radiat
damping materializes in exactly the same fashion as we h
described and its sign is correctly determined by precis
the same considerations. However, there are other reaso
doubt the utility of the semiclassical susceptibility formul
tion, for example, the obscurity it casts upon certain kinds
symmetry analysis. This is forcibly illustrated by controve
sies over the rigorous preclusion in fluid media of seco
harmonic generation, to all orders of multipolar approxim
tion @28#. Here too one can trace problems arising fro
necessarily identifying signals with a dipolar source, anot
feature at the conceptual heart of the susceptibility form
ism. We believe that the proper formulation of any optic
process requires its expression in terms of direct observab
principally rates and signal intensities, rather than the~at
best! inferred optical susceptibilities.

VI. CONCLUSIONS

In the case of weak resonances the simplest expedien
dealing with singular energy denominators is to incorpor
within each denominator factor a small imaginary adde
dum, expressly for the purpose of obtaining the desired a
lytic properties. Time-reversal symmetry requires all tho
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addenda to have the same sign. This conclusion is consi
with fully quantum-mechanical derivations. The dampi
signs usually associated with the semiclassical optical
ceptibility methods are in conflict with this symmetry and t
intensity expressions that follow differ from the correct e
pression both quantitatively and qualitatively.
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