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Phenomenological damping of nonlinear-optical response tensors
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The damping factors that occur in nonlinear-optical response tensors are commonly assigned signs that
depend upon the temporal ordering of the associated photon interactions. However, time-reversal symmetry is
satisfied only if all these signs are identical. For example, only then is there a formal equivalence between the
amplitudes for second-harmonic generation and parametric down-conversion and only then is electro-optic
rotation forbidden in fluids. This correction reflects deficiencies in certain commonly employed semiclassical
approaches to nonlinear opti¢§1050-294{®8)10406-7

PACS numbdis): 42.65—k

[. INTRODUCTION semble response may enter a formulation based on indepen-
dent molecules so as to endow excited levels with a finite
The theoretical formulation of nonlinear optical processedinewidth (see, for example, Ref8]). This leads to the as-
commonly entails representing the material response in termsociation of damping factors with the excited-state wave
of parameters characterizing both its ground and varioufunctions, entering into the energy denominators of suscep-
higher-energy states. When one of the excited states differtibility tensors as imaginary addend@]. The magnitude of
from the initial state by any amount closely similar to the each imaginary addendum carries the physically significant
energy of one or more participating photons, resonance erconnotation of the lifetime of an excited state and leads to
hancement is observed to occur. In such cases it is necessdrgrentzian line shapes of appropriate and experimentally de-
to include damping in the description to properly account forterminable width. We accept the pragmatic value of this
the finite optical amplification or the detailed dispersion be-damping concept and are concerned with a comparison of the
havior. signs in the resulting expression with those that result from a
Apart from a few simple casdsee, for example, Reffl])  fully quantum calculation.
there are considerable difficulties associated with the treat- It is common practice to incorporate such damping by
ment of optical damping in a nonphenomenological mannerincluding imaginary terms in the energy denominators that
In an ensemble situation, the various damping mechanismgmerge from the perturbation treatment. Two conventions
such as radiative, collisional, or intramolecular vibrationalhave been used in the literature for setting the signs of these
redistribution damping, will often contribute simultaneously. damping factors. The most common convention is to assign
In principle, the formalism of quantum field theory in statis- signs by time-ordering considerations. For example, in
tical physicq2,3] will give the correct form of the transition second-harmonic generation, signs are chosen oppositely for
amplitudes in such complex situations, includifas de- interactions preceding and following the emission of the har-
scribed below the sign of the damping factors. However, monic photon. This approach has been founded on a semi-
detailed calculation can be a formidable t4df and com- classical formalism featuring the optical susceptibility)—
monly only a phenomenological treatment is tractable. Onél 3], sometimes via an explicit appeal to causality, but again
pragmatic alternativéfor example, Ref[5]) is to dispense within the context of the semiclassical formaligid]. We
with such damping and to apply the ensuing results only irshow, nevertheless, that this convention is inconsistent with
frequency regions well away from resonance. Such an ap fully quantum developmentl], in particular with time-
proach has the attraction of retaining a rigor that confergeversal symmetry alone, and that all these signs should be
what in other quantum mechanical areas would be teralred identical. Furthermore, this quantum calculation may be used
initio status. This approach is however limited, being notto justify from first principles the apparently arbitrary pro-
well suited to the analysis of dispersion effects. cess of including a damping factor via an explicit consider-
Very close to resonance or under strong pumping condiation of all possible quantum dynamical processes. This is
tions (when electromagnetic field strengths become compaevident in the Green's-function approa¢B] where the
rable to internal fields standard perturbation theory is inap- imaginary factors are derived as the cumulative effects of an
propriate and a two-level modébr a multilevel extension infinite sequence of virtual excitations, through the imagi-
thereoj is invariably employed to describe, for example, nary part of the self-energy.
Rabi flopping[6,7]. Here we examine the alternative case of Since damping effects are often associated with unidirec-
resonances with moderate fields, i.e., the cases where a péienal dissipative effects, the relevance of our appeal to time-
turbative treatment is possible and where the optical rereversal invariance needs to be clarified. Pure quantum me-
sponse can meaningfully be cast in susceptibility terms. Irchanics, like classical mechanics, is time-reversal invariant.
this situation, losses that usually characterize bulk or enTransitions between states of the unperturbed Hamiltonian
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and so the damping factors associated with lifetime effectspectrump(w) is related to the discontinuity of the appro-
appear in both senses of propagatiomithin the time- priate Green’s functionG(z) as the complex argumerzt
reversal-invariant formalisin Our discussion centers on the =, +j¢ is taken across the real axis8]:

signs allotted to these factors at this stage. In contrast, the

arrow of time may be invoked, for example, when the de- p(w)x lim [G(w—ie)—G(w+ig)]. 3
grees of freedom of a subsystef@ bath or reservojrare e—0"

averaged over. This step is not a necessary part of our anal

sis and does not change these signs. ftisa straightforward exercigd@] to verify this spectral theo-

rem in perturbation theory. The cases of one-photon absorp-
Il. HISTORY OF ALTERNATIVE SIGN CONVENTIONS tion [19] and two-photon abgorptio[rﬂ] are explicitly avail-
able. (In the latter, a choice exists for the frequency
There exist two approaches in the semiclassical treatmerirgument, reflecting the different physical processes de-
of optical damping. The first operates at the wave-functiorscribed by a given Green’s function.
level and is exemplified by Butchet al. [14] and Butcher We require the imaginary partthe widths as opposed to
and Cotterf9] (see also Ref.15]) who fix the signs of their  the shiftg of the relevant self-energy operat@swithin G.
damping addenda by requiring th@ the evaluation of the These imaginary parts all have a common sign dictated by
susceptibility tensojstime integrals should converge. For the imaginary part of the frequench2(w=*ie)=A(w)
the generation of optical harmonics and in the susceptibility=iT" ()] [2]. Hence Eq.(3) itself dictates the signs of the
contribution corresponding to each time ordering, thesémaginary terms associated with any self-energy appearing in
damping terms then carry opposite signs for interactions prea denominator in terms of the relevant spectral frequency.
ceding and following emission of the harmonic photon. TheNote, for example, that both longitudingbopulation and
second approach involves the inclusion of damping factors atansverse(coherence damping contribute to the damping
the density matrix leve[10—13 and results in susceptibili- factors, if with characteristic differencéfor an examination
ties with an identical assignment of signs as in Refsof these in the Green’s-function formalism see, for example,
[14,9,19, but with extra terms addedAs described below, Ref.[20]). The damping factors obtained by combining the
each approach to some extent represents a phenomenologie#fects of all such processes must nonetheless themselves be

and entirely semiclassical adaptation of the quantum theosigned in a consistent manner which is justified in this paper.
retic Green’s-function formalismhWe shall treat the two ap-

proaches on the same footing since it is the signs associated ;. SYMMETRY OF HARMONIC-GENERATION

with the damping factors that is of particular interest in this AMPLITUDES

paper. For example, in the multipolar gauge and in electric

dipole coupling, the lowest-ordélinearn optical susceptibil- We now compare the symmetries of rival amplitudes un-

ity takes the form der Hermitian conjugation and time reversal; for illustrative

purposes we consider the coherent process of second-
2 E <9|Ma|b><b|ﬂﬁ|9> harmonic generation. The associated optical susceptibility
X“B 5 Eq—Eptho+illy tensor, obtained using the methods of Butcher and Ciéter

has the form
N (9l pglb)(blie,|9)
Eg— Eb—ﬁw—in !

(1) Xffﬁ)y( 20, 0,w)

where u, is a Cartesian component of the electric dipole _ <9|Ma|C><C|Mﬂ|b><b|ﬂv|g>

operator,|g) the (possibly degeneratdocal ground state of 7 bt (Eg—Eptho+iTp)(Eqg—Ec+2hw+il)

the unperturbed material Hamiltonial, its corresponding

eigenvalue, and 2/T",, the finite lifetime of the excited state n (9l mgle)(clmalb)(blp,l9)

|b) [9]. (Eg—Eptho+il'y)(Eg—Ec—ho—il)
Cohen-Tannoudjet al.[1], who consider radiative damp-

ing for resonant Rayleigh scattering, employ the resolvent i <9|My|c><c|ﬂﬁ|b><b|l/«a|g> 4

operator method to sum appropriate diagrams to infinite or- (Eg—Ep—2fiw—il',)(Eg—Ec—frw—il¢)’

der. The resulting transition amplitude is equal to the aboverqh wral th ¢ wm field th 0 tell
except that the signs of the imaginary addenda are positive i € Spectral theorém of quantum fie eg8ec. 1) tells
us to expect that the second-harmonic amplitude

both denominators: A2)
(—2w;w,w) has the form

an
(1) <g|ﬂa|b><b|ﬂﬁ|g> A
A )= E 2 [E “Eygtho+ily Agp—20,0,0)
«|C)(cluglb)(b|w,|g)
(9l )bl 0) _ (Olaalcitclalbblusle)
Eg—éb—ﬁwﬂrb - ) % 2 (Eq—Ep+ha+iTp)(Eg—Ect 2ha+iTy)
Hecht and Barrof16], who cite Weisskopf17], also arrive n (9l mgle)(clmalb)(blp,|9)
at this expression. Equatiof?) is also consistent with the (Eg—Eptho+ily)(Eg—Ec—fiw+ily)
(closely related application of quantum field theoretical b\(b
methods of statistical physics to electronic spectra. It is a + (gluyle)(c|uplb)(blral9) (5)

general result of this approach that any physically observable (Eg—Ep—2fio+iTp)(Eg—Ec~fro+il)
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(such an expression has been employed in pAfl). Equa-

tions (4) and (5) have identical structures, except that the
imaginary terms in the denominators of the former hav
time-ordered signs while those of the latter have fixed signs.

When Hermitian conjugatioil is applied(for example,

(c|O|b)=(b|O|c)* [9]), x'Z,, but notAG), , satisfies

(2)

X~ 20;0,0)}* = X2, 20~ 0,~0).  (6)

In this standard semiclassical theory the susceptibility for;
any process must satisfy this type of relation in order for thetion expl-
Fourier transform and so the polarization to be a real quan
tity [9]. However, Bergef22] argues that the reciprocity

relation of Eq.(6) (Berger's “microscopic inversibility’)
need not be a general symmetry.

Now consider the application ¢ T symmetry, the com-
bination of H with time reversalT. We have, for example,

that (c|O|b)=(b|O"|c), where|b)=T|b) andO=TOT !

(see, for example, Ref23]). We assume that the unper-
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that T'y(E)=T4(E). Therefore, the amplituded‘?)

apy With
fixed signs, but noj((f/;y with the time-ordered signs, is seen
o satisfy

Aﬁfﬁ)y( 20 w,0)=A2)

aBy (10

w,—w,— w).
Equation(10) proves the formal identity required of the
second-harmonic generation and parametric down-
conversion amplitudes. It is a general consequence of the

applicability of time-reversal symmetry. Formally, the evo-
ution operator for a closed light-matter system has the solu-
i/fiHt), where’H is the total Hamiltonian describ-

ing all relevant degrees of freedom such as those associated
with the rotational, vibrational, and translational modes of
particles making up the system. Supposing that the initial
and final states of the system dr&, respectivelyHT sym-
metry gives

(Fle™ "1y =(Ife""""|F) (11)

turbed eigenstates are not split by a time-odd field, e.g., nfsee the work of Stedmdi3], whose “reversal theorem” is

Zeeman splittings, so th@ can be replaced bjc) in the

related to Eq.(11)]. Assuming that the internal degrees of

sums and averages of the golden rule expression withodteedom of the system are initially at equilibrium and that the
affecting statistical factors or the denominators. It is alsosystem is not magnetic, EqL1) proves the equivalence of
necessary to establish that the imaginary parts of the selfime-reversed processes without recourse to explicit pertur-
energyl’, are time evenI(,=TI}); this may be proved as bative expansions. We have seen for second-harmonic gen-

follows. A many-body or resolvent formalisfd,2] leads to

eration that as part of this equivalence all the imaginary ad-

the Brillouin-Wigner perturbative expansion of the self- denda must have the same sign. It follows similarly that this

energy in the interactiony:

Q no
v @

Eb(E+is)=nZO (b|V e —.

hereH, is the unperturbed Hamiltonian ag@l a projection
operator off the leveb, E—E,, e—0". Each denominator

in this expression may resonate, giving an imaginary parfi

I'y,(E), which, using the limit 1X+ie)— P(1/X)—i7d(X),
takes the form

“ I
To(B)=m > 2, <b|v(E_QH0v) lc)

,m=0 c#b

X<C|V(E_LHOV) |b>5(E— E.)

=7 > > PRPWSE-E,), ®
I,m=0 c#b

where, writingVy,. for (b|V|c), we have

1

Via VeV,
P(l) — bd Vde™** Vge - )« - Pff)
' d,gg(E - Ey)-(E~E,) "¢ 3 ©

The last symmetries, which derive from Hermiticity and

principle must also hold for higher-order transition ampli-
tudes. Note that the time-reversal symmetry relation of Eq.
(11) would not be expected to hold if the system were
coupled to a bath because that is no longer a thermodynami-
cally isolated system. However, the generality’¢fmeans
that the various damping mechanisms need not be repre-
sented by couplings to external influences. Further analyses
of the ensemble “arrow of time” do not impinge upon our
iscussion since they do not address the physics of time re-
versal at the fundamental level of photon interactiaa].

The second-harmonic intensity expressions are given by
|x?|? and | A®)? in the time-ordered-sign and fixed-sign
formulations, respectively. When damping is included Egs.
(4) and(5) show thaty(® and.A‘® are not proportional, nor
do they stand in a complex conjugate relationship. Therefore,
those alternative formulations lead to intensity expressions
that in principle are physically distinguishable. The denomi-
nator factors ofy(? that may be resonant have the correct
positive imaginary parts; only the “antiresonant” factors
have negative imaginary parts. Hence the difference between
results cast in terms of(® and A is generally likely to be
small in applications. Nevertheless, the difference is in prin-
ciple measurable and in certain cases quite signifi¢set
below). At this level of discussion the importance of these
corrections might be judged to be similar to that of depar-
tures from the rotating-wave approximation, which itself de-
pends on retaining only resonant terms.

IV. QUALITATIVE CONSEQUENCES

We now illustrate how the two sign conventions not only

time-reversal invariance when statd, etc., are degener- give inequivalent quantitative predictions but also give dif-

ate, together with the palindromic structure of E8), show

fering qualitative predictions. To do this we consider the
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coherent process of electro-optic rotatidarward Rayleigh  damping constant in contradiction to our result. It would ap-
scattering between orthogonal linear polarizations in theear from Manakov and Fashten [26] that they reach this
presence of an external electric fielsh fluid media. The erroneous conclusion because they have assumed the time-
associated expressions in the time-ordered and fixed-sigeversal covariance of a diffusion equation of the form

conventions are, respectively, dW/dt= — yW. However, thermodynamic diffusion effects
reflect the arrow of time and we prove that the width param-
2 (0@ =S S Igchepihg eterI" is demonstrably time even. This will have significant
By T G 8% (Ege+iTh) (Eget o +iT o) consequences for their analy§26,27.
oceouh
+ 9 g V. SOME OTHER LIMITATIONS
(Egpthiw+ily)(Ege—il'c) OF SEMICLASSICAL APPROACHES
+ M'gcﬂgb:“gg Why should the time-ordered-sign formalism be mislead-
(Egp—ho—iTp)(Ege—hw—il'y) ing and inaccurate, given that it reflects causality consider-
o v B ations in the theory of the semiclassical susceptibility? The
+ HMgclchMhg amplitudes with fixed signs are based on resolvent or field
(Egptho+iTp)(Egethio+il'o) theoretic techniques and directly calculate the observables of
8« v quantum theory. The susceptibility formulation has a more
N MgctcbMpg semiclassical foundation. The description of optical response
(EgbTiTp)(Eqge—hw—iT;) in terms of susceptibility, whether linear or nonlinear, is not

universally appropriate. It derives from a tradition long es-
tablished in classical optics, wherein a material polarization
is regarded as the source of any emergent signal. This source,
and hence forteriori the various orders of susceptibility in

5 ,ugcﬂcﬁb,ugg terms of which it is cast through series expansion, has the
A&;%y(—w;o,w)=2 > (Eapt1Tp)(Eget ho+ilg) status of an inferred rather than an experimentally determin-

9 b iEghT Il bJiEgeT T e able quantity. In the case of laser optics, at least, where non-
linearities are usually engendered by pulsed radiation and
where genuinely photonic aspects of the radiation can be of
paramount importance, such an assumption is a gross over-
simplification. For example, it leads to the obviously false
conclusion that any system exposed to even one photon can,
through quadratic interaction mediated by a second-order
susceptibility, weakly generate second-harmonic output.

It should not be assumed that the issues we have ad-
dressed are simply reflections of a difference originating
from a Fock state quantum electrodynamical basis. If quasi-
classical coherent states are employed for the radiation,
damping materializes in exactly the same fashion as we have
described and its sign is correctly determined by precisely
(13 the same considerations. However, there are other reasons to
doubt the utility of the semiclassical susceptibility formula-
tion, for example, the obscurity it casts upon certain kinds of
symmetry analysis. This is forcibly illustrated by controver-
sies over the rigorous preclusion in fluid media of second-
harmonic generation, to all orders of multipolar approxima-

) HyciColhg
(Egb_ﬁw_irb)(Egc_irc) ,

12

N TR
(Egot i+ 1Tp)(EgetiT)

. Mhck ot
(Egb—ﬁw+in)(Egc—hw+ti)

. TR
(Egothw+iTp)(Egetfiw+ily)

.\ AT
(Egot1Tp) (Ege— e tiTy)

.\ 1Y Eutg
(Ego— i+ 1Tp)(Egot 1T’

whereEgy,=Ey—E;,. The application oHT shows that the
amplitude with fixed signs, but not that with time-ordered
signs, satisfies

A2 (—:0,0)=A? (—w;0,w) (14) tion [28]. Here too one can trace problems arising from
“pri T payt TR necessarily identifying si i i
y identifying signals with a dipolar source, another
In a fluid we detect only the rotationally invariant part and feature at the conceptual heart of the susceptibility formal-
must contract these tensors with the Levi-Ciiganbole,, 5 ism. We believe that the proper formulation of any optical

(see, for example, Refl25]). However, such an antisymmet- Process requires its expression in terms of direct observables,
ric combination is incompatible with the index symmetry of Principally rates and signal intensities, rather than the

Eq. (14). Hence, in the correct formulation this process isPest inferred optical susceptibilities.

forbidden, whereas it is allowed under the popular alternative

sign choice. Such qualitative differences in prediction are VI. CONCLUSIONS
particularly amenable to experimental test. '
Manakov and Faishten [26] and Agre and Manakoj27] In the case of weak resonances the simplest expedient for

also discuss the role of damping factors in stimulating vari-dealing with singular energy denominators is to incorporate
ous nonlinear optical processéhrough the interference of within each denominator factor a small imaginary adden-
the anti-Hermitian and Hermitian terms in the transition am-dum, expressly for the purpose of obtaining the desired ana-
plitude). These authors assume a time-odd character for thigtic properties. Time-reversal symmetry requires all those
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addenda to have the same sign. This conclusion is consistent

with fully quantum-mechanical derivations. The damping
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