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The interaction of atoms and molecules with structured light, specifically laser light endowed with the property of

orbital angular momentum, such as Laguerre-Gaussian light, is discussed. The primary effects of interest here are

the influence of the light on the gross motion of atoms and molecules and the possibilities this motion provides for

particle manipulation in cooling, heating and trapping experiments. It turns out that, in addition to the possibility

of modifying translational motion, suitably structured light can facilitate the manipulation of rotational motion. The

latter possibility arises from a light-induced torque that is directly attributable to the orbital angular momentum

property of the light. We outline the physics responsible for these effects and consider applications to typical cases

in which atoms and ions are subject to near resonant Laguerre-Gaussian beams, leading to characteristic trajectories

and eventual trapping in specific regions. Details are given for optical molasses configurations based on twisted light

beams arranged in one-, two- and three-dimensional counter-propagating pairs. We extend consideration to the case

of liquid crystals, subject to Laguerre-Gaussian light tuned far off-resonance, and show how this leads to the twisting

of the directors in the liquid crystal, coinciding with the intensity distribution of the light.

1. Introduction

Optomechanical forces have a long history. The op-
eration of the eighteenth century Crookes radiome-
ter (the familiar rotating propeller in an evacuated
bulb) is a popular demonstration of light produc-
ing a mechanical force, through a mechanism well
known to have its origins in thermal effects. The
validity of direct radiation pressure as a mechani-
cal principle was also well understood in that cen-
tury, and was first experimentally verified using a
Nichols radiometer in 1901. Following the develop-
ment of the laser in 1960, the possibilities for prac-
tical utilisation of optomechanical forces to manip-
ulate small particles came newly to the fore, largely
owing to the pioneering work of Ashkin about ten
years later [1]. Here another principle was estab-
lished, namely that motion can be produced by
forces associated with spatial inhomogeneity in an
optical beam. This field evolved very rapidly and
by the mid-eighties it had led to the invention of
optical tweezers, a technique which has since be-
come a mainstream tool for the optical trapping
and manipulation of a diverse range of particles.

For optical manipulation, the mechanisms that
are most prominent in any specific system are pri-
marily dictated by the size of the target particles.
The particle size, in turn, determines the nature

of the physical system in which such effects can be
observed; the scale of size for optical tweezers and
allied methods runs up to a significant fraction of
the beam width. Microscopic particles such as cells
and polymer beads represent optically controllable
particles at this higher limit of size [2-4]. To off-
set gravitational forces, such materials are most
conveniently studied in liquid suspension, and in
such cases the particle position and motion are
controllable by various means including intensity
gradients (optical tweezing of individual particles
at a laser focus, or for large numbers of particles
in holographically generated traps) and multiple-
scattering (optical binding). Together, such meth-
ods represent a branch of optical technology that
has already found extensive applications in the
fields of medicine, sensors and micromechanical de-
vices.

At the opposite extreme, the lower end of the
size scale, most such methods are clearly unus-
able. Individual atoms and small molecules do not
present sufficient cross-section to respond differen-
tially, across their own dimensions, to wavelength-
scale variations in intensity, nor are they so readily
localizable. In the condensed phase, the optical
manipulation of particles smaller than 100 nm be-
comes problematic because of Brownian motion.
In the gas phase, laser cooling schemes such as the
configuration known as optical molasses, based on
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momentum exchange and exploiting Doppler shift
to its own ultimate demise, allow the optical gen-
eration of traps within which further optical ma-
nipulation can be achieved. This science of cold
atoms [5-9] has of course recently developed into
another burgeoning area of study, the generation
and control of Bose-Einstein condensates [10]. In
such systems the responsive motion of individual
atoms or molecules, or of the whole assembly in
the Bose-Einstein case, is determined by an opti-
cally generated potential well.

There is a growing recognition of the potential
for distinctively nanoscale mechanisms and appli-
cations of optomechanical force. The range of ac-
tivity in this area has recently seen a huge increase,
with the latest technological advances leading to
new methods of applying optical forces, and the
creation of exquisite new beam structures for laser
light. This is a subject that now covers a broad
and exciting forefront of optical technology. Its
focus includes not only nanoscale applications of
well developed optical tweezer techniques; it also
accommodates topics ranging from cold atom ma-
nipulation to optically driven fluidics. In this area,
theory and experiment have a particularly vigorous
dynamic: theory is constantly informing and sug-
gesting new experiments, while experimental re-
sults challenge and invite new theory.

Against this background, the theoretical and
technological developments that have led to the
production of structured laser light introduce an-
other tier of possibilities associated with orbital an-
gular momentum (OAM) content [11-15]. For the
studies to be discussed in this review, the most de-
cisive advance has been the achievement of optical
beams with phase-imprinted wavefronts, of which
helically twisted Laguerre-Gaussian beams are the
most widely studied example (see Fig. 1). While
spin angular momentum is one of the best known
properties of the photon, most obviously manifest
in circular polarisations, recognition has emerged
that light beams with a helical wave-front display
other kinds of angular momentum, now generally
called orbital. This new radiation is often described
as a twisted beam or optical vortex, and the torque
it exerts an optical spanner. Specifically, if such
a beam has an integer number l twists within its
wavelength, each photon conveys an orbital angu-
lar momentum of ~l, distinct from any spin angu-
lar momentum. Such beams, which are now read-
ily producible in the laboratory, generate optical
forces and torques with no counterpart in conven-
tional optics. Already it has been shown that the
exploitation of such beams for atomic and molec-

ular manipulation can lead to a variety of lattice
structures, clusters and rings [16-18].

In the following, we describe the general princi-
ples, and we give the key equations. We also ex-
hibit some of the results that have emerged from
studies of optically trapped atoms, and molecules
in the quasi-static environment of a liquid crys-
tal [19]. First, we begin with a brief overview of
the context of the engagement of light possess-
ing orbital angular momentum with atoms and
molecules.

2. Twisted light

Maxwell’s theory predicts that a light beam car-
ries both energy and momentum but, until rela-
tively recently, the angular momentum property
of light was predominantly understood to refer to
the spin angular momentum associated with wave
polarisation. The orbital component was only for-
mally defined in Maxwell’s theory, and was rarely
discussed in an experimental context. The first ex-
periment on optical angular momentum was car-
ried out by Beth [24], but this only concerned cir-
cularly polarised light and so it dealt only with the
spin component. Related work on the spin optical
angular momentum was carried out by P.J. Allen
[21], Simon et al. [22] and Bretenaker and Le Floch
[23].

The development of lasers as sources of coherent
light beams has enabled the production of various
modes that can collectively be described as twisted
light. This is because such light beams possess an
orbital angular momentum arising from their non-
uniform spatial distribution. Of particular interest
in this context are the Laguerre-Gaussian modes
which are characterised by helical wavefront struc-
tures involving a number of intertwined helices, as
shown schematically in Fig. 1.

FIG. 1: Schematic wavefront structure of a Laguerre-
Gaussian light beam with three intertwined helices.
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The production of Laguerre-Gaussian light beams
involves the use of an ordinary laser beam with
planar wavefronts in the form of rectangularly sym-
metric Hermite-Gaussian modes, characterised by
two integer indices m and n. A Laguerre-Gaussian
(LG) mode will conveniently emerge on passing
Hermite-Gaussian light through a pre-designed
computer generated hologram. Such a LG mode
is characterised by two indices: an azimuthal inte-
ger index l, representing the number of intertwined
helices and a radial integer index p, representing
the number of radial nodes. We will use the no-
tation LGlp to donate a Laguerre-Gaussian mode
of indices (l, p). When both l and p are zero, we
get a (0, 0) mode as an ordinary Gaussian distri-
bution that carries no angular momentum and has
no radial nodes. For l 6= 0 and p = 0 we have
the so-called doughnut (donut) modes, which ex-
hibit ring shaped intensity distributions, as shown
Fig.2 for the cases l = 1 and l = 3. Figure 2
also shows the case of two-rings mode arising when
l = 1, p = 1. A photon of an LGlp beam carries
a well defined orbital angular momentum equal to
l~. This was first shown by Allen et al. using the
paraxial approximation [20]. Within the paraxial
approximation [24] we have for the electric field
vector of a Laguerre-Gaussian beam travelling in
the +z-direction and polarised principally in the x
direction
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where zR is the Rayleigh range and w2(z) = 2(z2+
z2

R)/kzR is the beam width at distance z from the
beam waist (at z = 0) and C is a normalisation
factor.

A characteristic feature of all modes possessing
orbital angular momentum is the phase factor eilφ.

FIG. 2: The intensity distributions of modes, respectively,
for LG1,0 (donut mode), LG3,0 (donut mode) and LG1,1

(two-ring). These radial intensity distributions are at the
waist plane z = 0. The insets exhibit graphically the corre-
sponding radial intensity distributions with radial distance
in units of wavelength. The functional forms of LG modes
are given below.

This term will be shown here to be responsible for
all rotational effects when Laguerre-Gaussian light
interacts with atoms and molecules

3. Atoms and molecules in LG beams - brief

overview

The literature dealing with study of the engage-
ment of light endowed with orbital angular momen-
tum with atoms and molecules is relatively sparse
in comparison with that involving optical manipu-
lation of the larger particles [6] mentioned above,
such as biological cells and polymer beads. Most
published works on atoms and molecules are con-
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cerned with theoretical studies, but there are also
a few experimental studies.

The possibility that orbital angular momentum
effects can influence matter at the atomic and
molecular level was first mentioned as a specula-
tion in pioneering work by Allen et al. [24]. This
was followed by a number of theoretical investi-
gations [25-29] that led to the prediction of the
light-induced torque [25], the azimuthal Doppler
shift [26] and a number of studies on the motion
of atoms and ions in Laguerre-Gaussian beams, in-
cluding optical molasses in one, two and three di-
mensions [27-29]. The role of photon spin when
considered in the same context as OAM was clar-
ified [28]. This led to the identification of a spin-
orbit term and a contribution involving l-s coupling
in the azimuthal force due to circularly polarised
Laguerre-Gaussian light. More recent work con-
centrated on trapping in dark regions of the beam
profile, indicating that under such circumstances
the trapped atoms would experience diminished
heating effects [30]. Studies dealing with the se-
lection rules governing the interaction of light with
the internal and external degrees of freedom were
undertaken by van Enk [31] and Babiker et al.
[32], while Juzeliunas et al. identified novel fea-
tures in the interactions of Bose-Einstein conden-
sates [33,34]. As interest in the subject has grown,
many other groups have also engaged with the is-
sues surrounding the effects of OAM on atoms and
molecules [35-40].

The first experimental study involving atoms in-
teracting with orbital angular momentum of light
was that by Tobosa and Petrov [41] in which they
demonstrated the transfer of OAM from the beam
to cold caesium atoms. Other studies have dealt
with the channelling of atoms in material struc-
tures possessing cylindrical symmetry, where the
optical modes are distinguished by orbital angular
momentum features. Theoretical studies [42,43]
have shown that, in such structures, the chan-
nelling of atoms involves light torques similar to
those produced by free space Laguerre-Gaussian
beams - which have also been employed as atom
guides [44-49]. In the molecular context particular
interest has focused on liquid crystals, despite their
complexity, since their distinctive combination of
anisotropic local structure and relatively labile ori-
entational motion is directly amenable to optical
interrogation. The effects of OAM on liquid crys-
tals have been studied recently by Piccarillo and
co-workers [50,51] and a subsequent analysis em-
ploying the dielectric model of the nematic liquid
crystal has been reported by Carter et al. [19].

4. Transfer of OAM to atoms and molecules

For both structured and unstructured light, most
optical processes involve electric dipole interac-
tions with the radiation fields, this type of interac-
tion generally being the strongest form of coupling.
Depending on the specific process, the dipolar in-
teractions entailed may invoke either static or tran-
sition moments. In connection with the interac-
tions of structured light - twisted beams in partic-
ular - distinctive issues revolve around the possible
involvement of other electric and magnetic multi-
poles. One issue concerns the possibility that the
left- or right-handed character of a twisted beam
(i.e. the handedness of its helical wavefront sur-
face) might engage differentially with fluids com-
prising chiral molecules, according to the molecular
handedness. This hinges on the form of the elec-
tromagnetic coupling because, in such media, chi-
ral discrimination requires electronic transitions to
be simultaneously allowed by multipoles of oppo-
site parity: this is a problem addressed in Chapter
15.

Berry [52] showed theoretically that the orbital
angular momentum is an intrinsic property of all
types of azimuthal phase-bearing light. If so, then
it could be argued that in its interaction with an
atom or a molecule, orbital angular momentum
should be exchanged in an optical transition, just
as spin angular momentum is exchanged in a ra-
diative transition. Another question arises in con-
nection with the multipolar interactions of twisted
light. This concerns the fact that the photon or-
bital angular momentum can engage in electric
quadrupole and higher electric multipole interac-
tions, and it is necessary to consider whether this
might introduce modified selection rules for elec-
tronic transitions. These matters have been ex-
plored by an explicit analysis [14], which concluded
that the exchange of OAM occurs in the electric
dipole approximation and couples only the centre
of mass to the light beam. The internal degrees of
freedom associated with the ‘electronic’ motion are
not involved in any OAM exchange with the light
beam to this leading order. It is only in the next
order, namely in an electric quadrupole transition,
that an exchange involving the light, the centre of
mass and the internal degrees of freedom can be
realised. One unit of OAM is exchanged between
the light and the internal dynamics, so that the
light beam possesses (l ± 1)~ units of OAM and
the centre of mass motion gains ±1 units. These
conclusions suggest that no experiments can detect
OAM exchange between Laguerre-Gaussian light
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and molecular systems through changes involving
electric dipole transitions. The analysis confirms
the fact that OAM effects are manifest primarily
in the centre mass motion by the imposition of ad-
ditional forces and associated torques. The study
of these additional forces is best carried out by a
extending the formalism of Doppler cooling and
trapping to the case of light possessing OAM, as
we discuss next.

5. Doppler forces and torques

It has long been known that the Doppler effect
responsible for broadening atomic transitions can
be exploited for laser cooling. On irradiating
an atomic gas with a laser beam detuned to the
red of an absorption frequency, only a subset of
the atoms - those that experience a compensat-
ing (blue) Doppler shift due to motion towards
the light source - can absorb the light. The de-
cay of the resulting excited state releases a pho-
ton in a random direction. Due to the extremely
short lifetime usually associated with the excited
state, this is a process that can recur with great
rapidity, and the net effect over a series of absorp-
tion and emission cycles is that such atoms expe-
rience a net imparted momentum against their di-
rection of travel, slowing them down. For the self-
selected group of atoms within the laser beam pro-
file this loss of translational energy signifies cool-
ing, to the extent that such a term can mean-
ingfully be applied to a non-equilibrium system.
With two counter-propagating beams the veloci-
ties of the fastest atoms in each direction can be
reduced, and as the laser frequency is gradually
increased the breadth of the initially Maxwellian
velocity distribution becomes increasingly narrow.
Transverse motions can be controlled by the ad-
dition of further counter-propagating beams, with
each pair of sources in a mutually orthogonal con-
figuration; this is the essence of optical molasses.

The significant features introduced by the use of
structured light possessing orbital angular momen-
tum are: (i) there is, in addition to translational
effects, a light-induced torque which causes a ro-
tational motion of the atoms about the beam axis
and; (ii) there are regions of maximum and min-
imum intensities in the beam cross-section. The
forces and torque are, in general, time-dependent
as well as position-dependent. As we discuss be-
low, the full space- and time-dependence of the
motion is, in general, characterised by a transient
regime, followed by a steady state regime after a

sufficiently large time has elapsed from the instant
in which the beam is switched on (typically for
elapsed times much larger than the characteristic
timescale of the problem).

5.1. Essential formalism

Consider an atom or a molecule for which the gross
motion is that of the centre of mass and the inter-
nal dynamics is modelled in terms of a two-level
atom. In the presence of a laser field, the total
Hamiltonian for the whole system is

H = ~ωa†a+
P2

2M
+ ~ω0π

†π − i~
[

π̃†f(R) − h.c.
]

(4)
where π̃ and f(R) are given by

π̃ = πeiωt; f(R) = (µ12 · ǫ̂)αFklp(R)eiΘklp(R)/~

(5)

Here π and π† are the ladder operators for the two-
level system; P is the centre-of-mass momentum
operator with M the total mass and ω0 the dipole
transition frequency. The operators a and a† are
the annihilation and creation operators of the laser
light and ω is its frequency. In the classical limit,
appropriate for the case of a coherent beam, the a
and a† operators become c-numbers involving the
parameter α such that

a(t) → αe−iωt; a†(t) → α∗eiωt. (6)

The last term in eq(4) is the interaction Hamilto-
nian coupling the laser light to the two-level system
in the electric dipole and rotating wave approxi-
mations, evaluated at the centre of mass position
vector R. The coupling function f(R) in Eq.(5)
involves µ12, the transition dipole matrix element
of the atom interacting with a Laguerre-Gaussian
light mode characterised by ε̂, the mode polarisa-
tion vector, the mode amplitude function, Fklp(R)
and phase Θklp(R), given by
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Here Fk00 may be identified as the amplitude for
a plane wave propagating along the z-axis with
wavevector k; the coefficient Nlp =

√

p!/(|l|+ p!)
is a normalisation constant; w(z) is a characteris-
tic width of the beam at axial coordinate z and is
explicitly given by w2(z) = 2(z2 + z2

R)/kzR, where
zR is the Rayleigh range. The LG mode indices l
and p determine the field intensity distribution and
are such that l~ is the orbital angular momentum
content carried by each quantum.

We now assume the position R and the momen-
tum operator P of the atomic centre of mass should
take their average values r and P0 = MV, where
V is the centre of mass velocity. Thus we are
treating the atom gross motion classically, while
its internal motion continues to be treated quan-
tum mechanically. This treatment is justified pro-
vided that the spread in the atomic wavepacket
is much smaller than the wavelength of the light,
and that the recoil energy is much smaller than the
linewidth. The system density matrix can then be
written as

ρS = δ(R − r)δ(P −MV)ρ(t), (9)

where ρ(t) is the internal density matrix, which
follows the time evolution

dρ

dt
= − i

~
[H, ρ] + Rρ, (10)

and where the term Rρ represents the relaxation
processes in the two-level system. The optical
Bloch equations governing the evolution of the den-
sity matrix elements can be written as follows
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Here the relaxation processes are assumed to be
characterised by an inelastic collision rate, Γ1, and
an elastic collision one, Γ2. The effective, velocity-
dependent, detuning ∆ is given by ∆ = ∆0 −
∇Θ.V and we have set ρ̂ = ρ̃ exp(−itV ·∇Θ). We
have also made use of the relation ρ11(t)+ρ22(t) =
1.

The average force due to the light acting on the
centre of mass is the expectation value of the trace
of −ρ∇H ,

〈F〉 = −〈tr(ρ∇H)〉 (12)

The total force can be written as the sum of two
types of force, a dissipative force 〈Fdiss〉 and a
dipole force 〈Fdipole〉, and these are related to the
density matrix elements as follows

〈Fdiss(R, t)〉 = −~∇Θ(ρ̂∗21f(r) + ρ̂21f
∗(r))(13)

〈Fdipole(R, t)〉 = i~
∇Ω

Ω
(ρ̂∗21f(r) − ρ̂21f

∗(r)).(14)

Here we have introduced the position dependent
Rabi frequency Ω(R), defined as

~Ω(R) = |(µ12 ·ǫ̂)αF(R)|; f(R) = Ω(R)eiΘ(R)

(15)
Clearly all quantities depend on the mode type and
implicitly carry the labels klp.

The centre of mass dynamics is determined by
Newton’s second law, written in the form

M
d2R

dt2
= 〈F(t)〉 (16)

where 〈F(t)〉 is the total average force. Since this
differential equation is second order in time, val-
ues of the position vector components R(0) and
initial velocity vector components V(0) should be
stated as initial conditions. The main outcome of
solving Eq.(16) is a complete determination of the

trajectory function R(t), along with V(t) = Ṙ(t).
Furthermore, as will become apparent, the devel-
opment furnishes important information about the
evolution of the light-induced torque.

5.2. Transient dynamics

The transient effects are most prominent for transi-
tions with a long excited state lifetime. Rare-earth
ions provide such a context; we consider an Eu3+

ion which has M= 25.17 × 10−26 kg and for its
5D0 →7 D1 transition λ = 614 nm and Γ = 1111
Hz. We focus on the l = 1, p = 0 Laguerre-
Gaussian mode and assume the laser intensity to
be I = 105 W cm−2, and the beam waist w0 = 35λ.
The transient regime can be explored for three spe-
cial cases, namely (a) exact resonance; (b) strong
collisions and (c) intense field. For the latter case
we shall assume the higher intensity I = 108 W
cm−2. Evaluations have been carried out for a pe-
riod tmax ≈ 5Γ−1 ≈ 4.5 ms, which is sufficiently
long to exhibit effects both for the transient regime
and the steady state.

The results are shown in Fig.3 for the cases of
strong collisions. The atom follows a characteristic
path with an axial motion superimposed on an in-
plane motion. The in-plane motion is seen to be in
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the form of loops in the shape of petals. It is in this
characteristic motion that the effects of the optical
torque are evident. A similar trajectory arises in

FIG. 3: The path in the x-y-plane of an Eu3+ ion subject
to an LG1,0 mode in the case of strong collisions. The initial
position is represented by a dot. Other parameters used for
the generation of this figure are given in the text.

the case of an intense external field, as shown in
Fig. 4, but here it is seen that there are many
more loops due to the atom gaining kinetic energy
with a larger force and torque. Fig. 5 explores the
initial stages of the trajectory before the second
petal is formed. In the case of exact resonance,
Fig. 6, there is no dipole force acting on the atom
and so no radial force, due to the zero-detuning.
The atomic radial position is constant.

FIG. 4: As in Fig. 3, but for the case of a strong
external field, as described in the text.

The time-dependent torque is defined as

T (t) = r(t) × 〈F(t)〉 (17)

The evolution of this torque can be determined
along with the corresponding trajectories. The
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FIG. 6: The path of an Eu3+ ion subject to a LG1,0 in
the case of exact resonance. Other parameters are the
same as those in Figs. 3 and 4.

torque experienced by the Eu3+ ion for the case
of strong collisions is displayed in Fig. 7. It is ev-
ident from Fig. 7 that once the beam is switched
on, there is an abrupt increase in the magnitude of
the torque, which then oscillates and rapidly de-
cays towards a steady state value. Furthermore
the evolution exhibits a collapse and revival pat-
tern, with each cycle corresponding to a loop in
the trajectory. The peak of the torque corresponds
to the outer tip of the loop, and the collapse cor-
responds to the points near the beam axis. The
sudden jumps in the torque are real events aris-
ing from the change in the direction of motion as
the atom is repelled from regions of extremum field
intensity values.
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5.3. Steady state dynamics

The formal expressions for the steady state forces
can be deduced by taking the limit t → ∞, or the
time derivatives in the optical Bloch equations set
equal to zero. In the steady state, where Γt ≫
1 (where Γ is the de-excitation rate of the upper
state of the atomic transition), the total force on
a two-level atom exhibits position-dependence and
is naturally divisible into two terms. Restoring the
explicit reference to a specific Laguerre-Gaussian
mode, the steady state force on a moving atom due
to a single beam propagating along the positive z
axis is written

〈F〉klp = 〈Fdiss〉klp + 〈Fdipole〉klp (18)

where 〈Fdiss〉klp is the dissipative force

〈Fdiss(R,V)〉klp = 2~ΓΩ2
klp(R) ·

(

∇Θklp(R)

∆2
klp(R,V) + 2Ω2

klp(R) + Γ2

)

(19)

and 〈Fdipole(R,V)〉klp is the dipole force

〈Fdipole(R,V)〉klp = −2~Ωklp(R)∇Ωklp ·
(

∆klp(R,V)

∆2
klp(R,V) + 2Ω2

klp(R) + Γ2

)

(20)

The effective detuning ∆klp(R,V) is now both
position- and velocity-dependent;

∆klp(R,V) = ∆0 − V.∇Θklp(R,V) (21)

The dissipative force is due to absorption followed
by spontaneous emission of light by the atom, while
the dipole force is seen to be proportional to the
gradient of the Rabi frequency. Both types of force
feature prominently in atom cooling and trapping,
with the dissipative force creating a net a frictional
force in optical molasses, and the dipole force trap-
ping the atom in regions of extremum field inten-
sity.

The inference that a light induced torque is auto-
matically created in this context can be confirmed
by examining at the velocity-independent forces.
For V = 0 and for z << zR we have

〈

F0
diss(R)

〉

klp
=

2~ΓΩ2
klp(R)

∆2
0 + 2Ω2

klp(R) + Γ2

[

kẑ +
l

r
φ̂

]

(22)
There are thus two components of force: an ax-
ial component and an azimuthal component. The
latter has a non-vanishing moment about the axis,
i.e. a torque given by

T =
2~ΓΩ2

klp(R)

∆2
0 + 2Ω2

klp(R) + Γ2
lẑ (23)

In the saturation limit, where Ω >> ∆0 and Ω >>
Γ we have

T ≈ ~lΓẑ (24)

This simple form of the light-induced torque was
first pointed out by Babiker et al. [25]. In general,
the

torque is velocity- and position-dependent, and
therefore changes along the path of the atom.

5.4. Dipole potential

The velocity-independent dipole force can be de-
rived from the dipole potential

〈U(R)〉klp =
~∆0

2
ln

[

1 +
2Ω2

klp(R)

∆2
0 + Γ2

]

(25)

such that
〈

F0
dipole

〉

klp
= −∇〈U(R)〉klp. This po-

tential would trap atoms in the high intensity re-
gions of the beam for ∆0 < 0 (red-detuning). For
blue detuning, ∆0 > 0, the trapping would be in
the dark regions of the field. For example, consider
the LG mode for which l = 1, p = 0. On the plane
of the beam waist z = 0, the potential minimum
occurs at r = r0 = w0/

√
2. For a beam propa-

gating along the z axis the locus of the potential



African Physical Review (2007) 1:0002 26

minimum is a circle in the xy plane given by

x2 + y2 = r20 (26)

Expanding 〈U(R)〉k10 about r0 we have

〈U〉k10 ≈ U0 +
1

2
Λk10(r − r0)

2 (27)

where |U0| is the potential depth given by

|U0| =
1

2
~|∆0| ln

[

1 +
2Ω2

k10(r0)

∆2
0 + Γ2

]

(28)

and Λk10 is an elastic constant given by

Λk10 =
4~|∆0|

∆2
0 + 2e−1Ω2

k00 + Γ2

(

e−1Ω2
k00

w2
0

)

(29)

An atom of mass M, trapped if its energy is less
than |U0|, will exhibit a vibrational motion about
r = r0 of angular frequency approximately equal

to {Λk10/M}1/2
.

6. The Doppler shift

The force expressions contain the effective detun-
ing ∆klp defined by

∆klp = ω − ω0 − ∇Θklp.V; (30)

this can be written as

∆klp = ω − ω0 − δ (31)

where δ is an effective Doppler shift associated with
the beam. On substituting for Θ(R) we obtain for
δ

δ =

(

krz

z2 + z2
R

)

Vr +
lVφ

r

+

{

kr2

2(z2 + z2
R)

[

1 − 2z2

z2 + z2
R

]

+
(2p+ l + 1)zR

z2 + z2
R

+ k

}

Vz (32)

where Vr, Vφ and Vz are the velocity components
in cylindrical coordinates. The Doppler shift com-
prises four types of contribution: an axial term, a
contribution due to the Guoy phase, a curvature
term and an azimuthal contribution, so that

δ = δaxial + δGuoy + δcurve + δazimuth (33)

The axial term corresponds to a Doppler shift due
to a plane wave travelling along the beam axis

δaxial = kVz (34)

This would be the largest shift if the atom has
a substantial axial velocity component. The shift
associated with the Guoy phase is

δGouy =

(

(2p+ l + 1)zR

z2 + z2
R

)

Vz (35)

Since typically zR >> w0, the Guoy shift is nor-
mally negligibly small. The shift arising from the
beam curvature is

δcurve =

(

krz

z2 + z2
R

)

Vr

+
kr2

2(z2 + z2
R)

[

1 − 2z2

z2 + z2
R

]

Vz (36)

This is due to beam spreading in the radial and
axial directions and arises from the curvature of
the wavefront. It could be observable under ap-
propriate conditions. The azimuthal Doppler shift
is

δazimuth =
lVφ

r
(37)

This shift is directly proportional to the orbital
angular momentum quantum number l of the
Laguerre-Gaussian mode and is inversely propor-
tional to the radial coordinate of the atom. It is
just one of a number of effects directly attributable
to orbital angular momentum content of the light.
The Doppler term involving the gradient of the
phase is also responsible for the radiation forces
generating atomic trajectories, as we now discuss.

6.1. Trajectories

Newton’s second law determines the form of the
atom dynamics, subject to initial conditions. The
solutions lead to the trajectory R(t) and they also
determine the evolution of other variables of the
system. Unfortunately, R(t) cannot, in general, be
determined analytically and it is necessary to pro-
ceed using numerical analysis. It is easy to check
that the trajectories for two cases in which a Mg+

ion is subject to single separate beams differing
only in the sign of l will only display a reversal of
the direction of rotation. This is consistent with
the existence of the light-induced torque.

6.2. Multiple Beams

Doppler cooling manifests itself in the so-called op-
tical molasses configurations in one, two and three
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dimensions. For beams endowed with OAM a de-
scription of optical molasses requires the specifica-
tion of individual field distributions referred to the
laboratory coordinate system. We therefore need
to apply multiple coordinate transformations with
reference to the original Cartesian axes. The to-
tal force acting on the atom is the vector sum of
individual forces in a given configuration of light
beams.

For a light beam of frequency ω, axial wavevec-
tor k and quantum numbers l and p coupled to
an atom or an ion at a general position vector
R = (r, φ, z) in cylindrical coordinates, the phase
Θklp(R) and the Rabi frequency Ωklp(R) can be
taken as follows

Θklp = lφ+ kz (38)

and

Ωklp(R) ≈ Ω0

(

r
√

2

w0

)|l|

exp(−r2/w2
0)L

|l|
p

(

2r2

w2
0

)

(39)
These expressions are applicable for a Laguerre-
Gaussian beam in the limit z ≪ zR, where zR is
the Rayleigh range; also setting w(z) = w0, i.e.
ignoring all beam curvature effects.

The total forces acting on the atomic centre
of mass moving with velocity V = Ṙ are given
above in the steady state, but with the approxi-
mate phase Θklp(R) and Rabi frequency Ωklp(R),
as in Eqs.(38) and (39). These are given in cylin-
drical polar coordinates, with the beams propa-
gation parallel to the z-axis. However, in order
to consider multiple beams, it is convenient to
begin by expressing the position dependence in
the Rabi frequency and phase in Cartesian coor-
dinates R = (x, y, z), simply by the substitutions

r =
√

x2 + y2 and φ = arctan(y/x). A beam prop-
agating in an arbitrary direction is determined by
applying two successive transformations. The first
transformation is a rotation of the beam about the
y-axis by an angle θ and the second is a subsequent
rotation about the x axis by an angle ψ. This sig-
nifies to the following overall coordinate transfor-
mation

x → x′ cos(θ)x + sin(θ)z (40)

y → y′ = − sin(θ) sin(ψ)x + cos(ψ)y

+ cos(θ) sin(ψ)z (41)

z → z′ − sin(θ) cos(ψ)x − sin(ψ)y

+ cos(θ) cos(ψ)z (42)

By suitable choice of the angles θ and ψ we ob-
tain the force distribution due to a twisted light

beam propagating in any direction. In this man-
ner, we are able to consider geometrical arrange-
ments involving counter-propagating beams (espe-
cially those corresponding to one-, two- and three-
dimensional optical molasses configurations), for
beams possessing OAM.

We concentrate on the case of optical molasses
of magnesium ions Mg+ with a transition of fre-
quency ω0 corresponding to the transition wave-
length λ = 280.1 nm and transition rate Γ =
2.7 × 108 s−1. The Mg+ massM = 4.0×10−26 kg.
We consider red-detuned light to induce trapping
in areas of high intensity, ∆0 = −Γ and w0 = 35λ.
The equation of motion for the Mg+ ion is now

M
d2

dt2
R(t) =

∑

i

〈Fi〉 (43)

where the sum is taken over individual (total) force
contributions from each beam present. In the
one-dimensional molasses configuration, a pair of
counter-propagating beams is set up along the z
axis. The specification of the force due to the beam
propagating in the negative z-direction is given by
Eqs.(40), (41) and (42) with θ = π and ψ = 0.
Figure 8 shows the trajectory of the Mg+ ion with
l1 = −l2 = 1 and p1 = p2 = 0. The initial ra-
dial position is r = 10λ and the initial velocity is
V(0) = 5ms−1ẑ. The motion is for a time dura-
tion equal to 2× 105Γ−1. It is clear that the atom
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FIG. 8: Path of a Mg+ ion in the one-dimensional
twisted optical molasses created by two counter-
propagating Laguerre-Gaussian beans with l1 = −l2 =
1 and p1 = p2 = 0 propagating along the z-axis. The
initial velocity is v = 5ẑ ms−1

is slowed down to a halt in the z-direction, while
in its motion in the x-y plane it is attracted to
the region of high beam intensity at approximately
r0 > w0/

√
2. The long-time motion is a uniform
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circular motion, as can be deduced from Fig. 9 ,
which exhibits the corresponding evolution of the
velocity components. Once the Mg+ ion is trapped
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FIG. 9: Evolution of the three velocity components of
the Mg+ ion in the one-dimensional optical molasses
of Fig. 8. The axial component of the velocity rapidly
approaches zero, consistent with Doppler cooling, while
the in-plane components vx and vy show a convergence
towards uniform circular motion.

axially, it continues to rotates clockwise about the
axis, subject to a torque which, in the saturation
limit, is given by |〈T 〉| ≈ l1~Γ − l2~Γ = 2~Γ. The
motion of the ion gives rise to an electric current
equal to e/τ ≡ evs/2πr0. With vs of about 2 ms−1

and r0 ≈ w0 = 35λ we have an ionic current of the
order of a femtoAmp if a single ion is involved. It
is significant that the current scales with the num-
ber of trapped ions; obviously a million or so ions
can produce a current on the nA scale.

6.3. Two- and three-dimensional molasses

We now introduce a second pair of counter-
propagating beams along the x axis and one pair
could be characterised by a different width w′

0.
The total force is now the vector sum of individ-
ual forces from the four beams. The specifications
of three of the beams is made with the help of
the transformation equations (40)-(42). The tra-
jectories of two Mg+ ions positioned at different
initial points, each having an initial velocity of
vz = 5ms−1, are shown in Fig. 10, where each
of the four beams has an azimuthal index, l = 1,
and radial index, p = 0. Since by choice of l values
in this case, the total torque arising from either
pair of beams is zero; each ion ends up at a spe-
cific fixed point, where it remains essentially mo-
tionless. To understand this, one should note that
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FIG. 10: Trajectories of two Mg+ ions with different
initial locations subject to a two-dimensional optical
molasses formed by two pairs of counter-propagating
twisted beams, with li = 1 and pi = 0 for i = 1− 4. It
is seen that each ion ends up motionless on the locus of
lowest potential energy minima corresponding to two
oblique orthogonal circles, as explained in the text.

the deepest potential well is four times as deep as
that of a single beam, with the potential minima
situated along the locus of spatial points defined
simultaneously by two equations x2 + y2 = w2

0/2

and y2 + z2 = w′2
0/2. For w′

0 = w0 these two
equations describe two orthogonal oblique circles
representing the intersection curves of two cylin-
ders of radii w0/

√
2. Solving for x and y we have

x = ±z and y = ±
√

w2
0/2 − z2. The locus of

spatial points where the dipole potential is min-
imum can be described by the parametric equa-
tions x(u) = (w′

0/
√

2) cos u; y(u) = (w′
0/
√

2) sinu;

z(u) = ±
√

w2
0/2 − (w′2

0/2) sin2 u . All Mg+ ions

in the two-dimensional configuration of orthogonal
counter-propagating pairs of twisted beams will be
trapped at points lying on one of the two oblique
circles, as determined by the initial conditions. An
ensemble of Mg+ ions with a distribution of ini-
tial positions and velocities will populate the two
circles, producing two orthogonal essentially static
Mg+ ion loops. Associated with this system of
charges would be a Coulomb field whose spatial
distribution, for example, for ions uniformly dis-
tributed in the ring can easily be evaluated. When
the values of l are such that each pair of beams
generates a torque, the motion becomes more com-
plicated, but the ions will seek to congregate in the
region of potential minima, while responding to the
combined effects of two orthogonal torques and or-
thogonal axial cooling forces.

When a third pair of counter-propagating beams
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FIG. 11: Trajectories of eight Mg+ ions in a three-
dimensional twisted optical molasses formed by three
pairs of counter-propagating Laguerre-Gaussian beams
with li = 1 and pi = 0 where i = 1 − 8. The initial
velocity of each of the ions is vz = 5 ms−1. The ions
end up motionless at the corners of a cube of side w0.

is added to the two-dimensional configuration,
orthogonal to the plane containing the original
beams, we have a three-dimensional configuration.
In this case the deepest potential minima are lo-
cated at eight discrete points defined by the co-
ordinates: x = ±w0

2 , y = ±w0

2 , z = ±w0

2 . These
coincide with the eight corners of a cube of side
w0, centred at the origin of coordinates, as shown
in Fig.11.

7. Rotational effects on liquid crystals

As observed earlier, a liquid crystal is another
physical system where new physical effects should
arise when subject to twisted light. The most
prominent effect in this case can be expected to
be an optical influence on the angular distribution
of the director n̂(r) in the illuminated region. To
focus on a case of direct and practical relevance, let
us consider a liquid crystal film of thickness d occu-
pying the region 0 ≤ z ≤ d, with the light incident
in such a manner that the beam waist coincides
with the plane z = 0.

To begin with, we first note that in the absence
of the light, the free energy density of the system
is given by [53]

F0(r) =
1

2
K1 [∇.n̂(r)]2 +

1

2
K2 [n̂.∇ × n̂(r)]2

+
1

2
K3 [n̂ × ∇ × n̂(r)]

2
(44)

where K1,2,3 are the Frank elastic constants and
the terms represent splay, twist and bend contri-
butions to the free energy density, respectively. As
an approximation we set K1 = K2 = K3 = K, cor-
responding to elastic isotropy. Then Eq.(44) be-
comes

F0(r) =
1

2
K
{

[∇.n̂(r)]
2

+ [∇ × n̂(r)]
2
}

(45)

Symmetry considerations suggest that n̂ can be
written in terms of Ψ(r), the local azimuthal an-
gle such that n̂ = (sin Ψ, cosΨ, 0). The free energy
expression thus reduces to

F0 =
1

2
K∇Ψ.∇Ψ (46)

Next consider the electric field of a twisted light
beam, at a general position vector r = (r, φ, z) in
cylindrical coordinates, expressible as

Eklp(r) = fklp(r) eiΘklp(r) (47)

where fklp is the electric field amplitude function
corresponding to the expressions given in Eq.(7).
At frequencies far removed from a molecular reso-
nance, the coupling of the light can be cast in terms
of the dielectric properties of the liquid crystal. Ig-
noring any frequency dispersion, the application of
the twisted light thus leads to an additional field-
dependent free energy term Fint given by [48]

Fint = −1

4
ε0εa (n̂.Eklp)

(

n̂.E∗
klp

)

(48)

where εa is is the dielectric isotropy of the liquid
crystal. Assuming that the field is plane-polarised
along the x-axis, we find that total free energy can
be written as

F = F0 + Fint =
1

2
K∇Ψ.∇Ψ − Λklp sin2 Ψ(r, z)

(49)
where Λl,p is given by

Λklp =
1

2
ε0εa |fklp|2 (50)

Using Landau’s free energy formalism, it emerges
that Ψ satisfies a second order partial differential
equation in two-dimensions (r, z);

K
{

∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
+
∂2Ψ

∂z2

}

− Λl,p sin 2Ψ(r, z) = 0

(51)
The above theory has been applied to the case

of the nematic liquid crystal 5CB (pentylcyanotr-
phenyl) doped with an anthraquinone derivative
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dye (AD1). The system is modelled as an infinitely
wide film of thickness d, sandwiched between two
thin glass plates, which fix the director angle along
the top z = d and bottom z = 0. The general
boundary conditions are then in the form

Ψ(r, 0) = Ψ0

Ψ(r, d) = Ψd (52)

and

∂Ψ(r, z)

∂r

∣

∣

∣

∣

r=∞

= 0 (53)

The relevant parameters in this case are K =
0.64 × 10−12 N, and εa = 0.5832 [54]. The thick-
ness of the film is taken as d = 2000λ where
λ = 600 nm is the wavelength and the intensity of
the light is 108 Wm−2; the beam waist is taken as
w0 = 50λ. We consider the cases of (l, p) = (5, 0)
and (l, p) = (5, 1), but the theory can be applied
to any l, p mode and we shall choose other modes
for illustration.

Figures 12 and 13 display a vector field distri-
bution and the corresponding colour-coded plot of
the director orientations in the r − z plane with
the boundary conditions Ψ0 = 0 and Ψd = π/2
corresponding to the situation in the absence of
the twisted light. Figures 14 and 15 show the
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FIG. 12: A vector field representation of the director
orientation of the twisted nematic liquid crystal before
application of the twisted light. The orientation at the
boundaries z = 0 (bottom) and z = d (top) are fixed
as described in the text.

modified landscape once a twisted light beam with
l = 5, p = 0 has been switched on. It is clear that

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6

(b)

 0  50  100  150  200

r/λ

 0

 500

 1000

 1500

 2000

z/
λ

FIG. 13: A colour-coded contour representation of the
same data as in Fig. 10. The key represents a scale
of the local director orientation angle Ψ relative to the
r−axis. It spans the angular range Ψ = 0 at the bot-
tom (red) to Ψ = π/2 at the top (magenta)

there is a marked re-orientation of the directors,
when compared to the situation in the beam-free
case. Figures 16 and 17 concern the case where
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FIG. 14: A vector field representation of the director
orientation of the twisted nematic liquid crystal after
the application of the twisted LGl,p light where l =
5, p = 0

l = 5, p = 1 for the applied twisted light mode. It
is seen that the differences in the variation of inten-
sity of the light manifest themselves in the director
re-orientation.

8. Comments and conclusions

This article has been concerned primarily with a
theory of two-level systems responding to the field
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FIG. 15: A colour-coded contour representation of the
same data as in Fig. 14. The key represents a scale
of the local director orientation angle Ψ relative to the
r−axis. It spans the angular range Ψ = 0 at the bot-
tom (red) to Ψ = π/2 at the top (magenta)
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FIG. 16: A vector field representation of the director
orientation of the twisted nematic liquid crystal after
the application of the twisted LGl,p with l = 5, p = 1.
Other parameters are described in the text.

of Laguerre-Gaussian light and, as a supplemen-
tary topic, the influence of such light on liquid
crystals. The primary aim has been to present
an up-to-date account of work in this branch of
optical angular momentum effects. The results
for atomic, ionic and molecular motion display
novel features; not only do such particles experi-
ence modified translational forces in such fields,
but the radiation forces include rotational com-
ponents which are solely attributable to to the
OAM of the light. In the transient regime, ap-
plicable within the time interval of the order of
Γ−1, where Γ is the transition rate from the up-
per state, the particles experience time-dependent
forces and torques leading to characteristic particle
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FIG. 17: A colour-coded contour representation of the
same data as in Fig. 16. The key represents a scale
of the local director orientation angle Ψ relative to the
r−axis. It spans the angular range Ψ = 0 at the bot-
tom (red) to Ψ = π/2 at the top (magenta).

trajectories. In the steady state regime, applicable
for times much larger than Γ−1, the particles ex-
perience time-independent forces and torques and
the motion leads to cooling, trapping and novel ro-
tational effects in a variety of situations. The sat-
uration light-induced torque has the simple form

T ≈ ~lΓẑ (54)

The result has the simple interpretation that a sin-
gle transition transfers angular momentum of mag-
nitude ~l, and since there are Γ transitions per unit
time, the product amounts to a torque of magni-
tude ~Γl along the beam axis ẑ. This supports
the prediction that the orbital angular momentum
of light is quantised in units of ~. We have also
seen that the two-level system subject to such light
experiences a new Doppler shift associated with
the rotational component of the interaction. We
have seen that this additional Doppler shift is the
source of modification of the dissipative forces re-
sponsible for laser cooling. The treatments of opti-
cal molasses involving pairs of Laguerre-Gaussian
beams in one-, two- and three dimensions involve
a variety of steady state optical forces with the
propensity to produce a novel and highly distinc-
tive behaviour. The Laguerre-Gaussian light gen-
erates optical potential wells associated with the
total dipole force contributions from all the beams
present, while the total dissipative force provides
a mechanism for cooling or heating the azimuthal
motion along with the axial motion. For each pair
of counter-propagating beams, the light-induced
torque is doubled or annulled, depending on the
relative sign of the OAM quantum number l.
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It is clear that the subject of atomic and molecu-
lar manipulation using structured light, especially
light carrying orbital angular momentum is still at
an early stage of development. Experimental work
in which atoms, ions and molecules are trapped in
optical potentials generated by multiple beams is
still to be carried out. Although the theoretical
predictions presented here involve trapping in the
maximum intensity regions, similar predictions, al-
beit differing in detail, can be made for trapping in
the dark regions of higher order intersecting mul-
tiple beams. Moreover, for particles trapped in
optical beam arrays, it is also emerging that the
light can itself engage with the inter-particle forces.
This can, for example lead to azimuthally periodic
force fields, generating necklace-like ring struc-
tures. In all these potentialities, the exploratory

studies conducted so far are giving every indica-
tion that there is indeed a rich scope for further
technical advances leading to widespread optome-
chanical applications of structured light [55].
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