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When electronic excitation transfer occurs, it is of considerable interest to establish whether

angular momentum can also be conveyed in the process. The question is prompted by a

consideration that when the participating chromophores are atoms, ions, or molecular systems

having high local symmetry, the electronic excited states that are involved are generally

characterized not only by energy, but by angular momentum properties. Moreover, it is known

that electron spin can be communicated between quantum dot exciton states. Resolving the

general issue entails an electrodynamic representation exploiting irreducible tensor methods, the

analysis being illustrated by application to energy transfer associated with a variety of multipolar

transitions. The results exhibit novel connections between an angular momentum content of the

electromagnetic coupling and a strongly varying distance dependence. It is concluded that the

communication of angular momentum does not in general map unambiguously between a donor

and energy acceptor.

1. Introduction

In materials comprising chromophores displaying optically

well characterized and distinct absorption and fluorescence,

electronic energy acquired by the absorption of light

commonly migrates between closely neighbouring chromo-

phores. Beyond the region of significant orbital overlap, the

primary means for such a relocation of excitation energy—a

process occurring well before complete thermal degradation—

is a mechanism often referred to as resonance energy transfer.1–6

Usage of the term ‘resonance’ here establishes a connection

with other physical systems in which energy migrates from one

component to another; the term is no longer used in an earlier

sense7 that signified a lack of engagement with molecular

vibrations. Commonly, resonance energy transfer (RET) is

associated with the electric dipole-allowed Förster mechanism,

though it is widely acknowledged that especially complex,

low-symmetry molecular systems can necessitate more sophis-

ticated theories—see for example recent work by Hsu et al.,8

and May.9

It is no surprise that energy is conserved in the transfer of

excitation between chromophores, even if that conservation

accommodates some intramolecular dissipation at one or

other location. Until recently, however, little attention has

been given to the apparently analogous possibility of

non-contact angular momentum transfer. A comprehensive

analysis, even for lone atoms, is complicated by a need to

consider not only electric dipole-allowed transitions, but also

those that occur by higher order forms of multipolar coupling.

Nonetheless, simple atomic systems are subject to well-known

selection rules for electronic transitions,10 their discrete energy

and angular momentum states reflecting detailed properties

that emerge under conditions of local isotropy. This might

lead to a suspicion that, in the course of resonance energy

transfer, angular momentum could be conveyed, quantum for

quantum, between donor and acceptor—the corollary being

that the multipolar form of donor decay would necessitate an

excitation of the same multipolar form in the acceptor. The

possible validity of such an assumption demands resolution.

For molecules, or atoms placed in anisotropic environ-

ments, an additional tier of complexity is encountered. In

systems where full rotational symmetry is compromised, not

every electronic state can be uniquely characterized in terms of

angular momentum, nor can each electronic transition be

unambiguously associated with a specific angular momentum

change; a given transition may be allowed by more than one

form of multipolar coupling. Under such circumstances it

might be anticipated that no correlation would exist between

the multipolar characters of the donor decay and acceptor

excitation transitions. Again, it is important to ascertain the

truth of such a supposition. Generally, one can pose the

question: With what degree of fidelity can the electrodynamic

coupling responsible for resonance energy transfer also convey

angular momentum information between a given donor and

acceptor? The analysis that follows aims to address the key

issues. Before proceeding, however, it is worth attending to

some other features of contextual relevance.

Certain developments that first came to light twenty years

ago impinge significantly on the current issues of angular

momentum conveyance. First, it became known from a

number of quantum electrodynamical studies that the form

of electrodynamic coupling involved in resonance energy

transfer is identical to that which radiatively conveys fluores-

cence to a detector. The key difference is that the latter is a

phenomenon generally observed over wave-zone distances—

i.e. distances significantly larger than the corresponding

optical wavelength—whereas resonance energy transfer

operates primarily over near-field, i.e. sub-wavelength distances.

What are commonly called ‘radiative’ and ‘radiationless’ energy
School of Chemistry, University of East Anglia, Norwich NR4 7TJ,
United Kingdom

This journal is �c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 7409–7417 | 7409

PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics



transfer are simply asymptotes of a unified electrodynamic

mechanism.11–17 In the case of electric dipole-allowed

transitions the two distance regimes are characterized by an

inverse-square dependence on distance in the wave-zone,

inverse sixth power in the near-field. Over intermediate

distances additional terms arise, giving rise to an overall

distance dependence as exhibited in Fig. 1. In the present

context, the significance is a perspective it affords on the

fundamental character of energy transfer; the mechanism

entails an electrodynamic form of coupling that exhibits

increasingly prominent retardation features as distance is

increased. This is a fact that will prove important for compre-

hending the results that emerge.

Over much the same period, parallel advances in quantum

optics have led to a dawning appreciation that electro-

magnetism can convey not only spin angular momentum—

through the familiar connection with circular polarization

states—but also what has become known as an orbital angular

momentum of light, generally deriving from a helical structure

in a propagating wavefront. The terms ‘spin’ and ‘orbital‘ used

in this particular connection have no established connection

with the usage of those terms in electronic state designations,

but the terminology has become ingrained.18–20 Insofar as

analogies exist, it is notable that the orbital angular

momentum of light is quantized in a sequence of integer

values—although there is no upper bound. The capacity to

experimentally exploit such features has already evolved into a

subject in its own right, and it is a topical area that is

generating a rapidly burgeoning range of applications.21,22

However, although much interest has focused on optically

engineered vortex beams, the capacity for the propagation of

orbital angular momentum has much wider scope.19 For the

present analysis these developments serve as a reminder

that electromagnetic fields can convey angular momentum

information that is not restricted to one bit per photon23–25—and

hence not just one bit per energy-releasing decay transition.

One further development of contextual relevance is the

growing interest in the transfer of electronic excitation

between quantum dots, an effect that shows some promise

for eventual implementation in quantum computation.

Technical developments in this area generally seek to exploit

the discrete, size-tunable, and highly intense character of

quantum dot exciton transitions, as well as their ultrafast

response to optical excitation. More significantly still, the

use of circularly polarized excitation can populate specific

exciton spin states, enabling the coding of additional

information.26–33 It has been shown by quantum electro-

dynamics (QED) analysis that the spin state of an exciton

can be transmitted through RET between quantum dots;34,35

the plots in Fig. 2 illustrate the effect of rotating one quantum

dot relative to another. When the transition moments are

parallel, the exciton spin orientation is faithfully communi-

cated from one quantum dot to another; when the moments

are antiparallel, excitation transfer causes the spin to flip.

Energy migration down a column of quantum dots oriented

in a common direction therefore proceeds with a full retention

of spin orientation, signifying conservation of angular

momentum. The establishment of this result again highlights

the need to secure an equally thorough understanding of what

wider, more general principles might operate in the inter-

chromophore communication of angular momentum.

2. Electrodynamic foundations

The nature of the issues that arise in the conveyance of angular

momentum in electronic energy transfer, which requires full

consideration of not just electric dipole but also higher order

multipole coupling,36,37 invites a thorough quantum electro-

dynamical analysis—a consideration that is reinforced by

recognizing the theoretical provenance of the context detailed

above. QED treats matter and light on the same fully

quantized basis. Amongst its singular features, this formula-

tion of theory has a proven explanatory role, providing

physical insights and revealing the fundamental mechanisms

for commonplace as well as more exotic phenomena.

For example it successfully accounts for single-molecule

fluorescence, a process where semiclassical theory surprisingly

fails.38–42 The reason is plain; for an isolated atom or

molecule, any electronically excited eigenstate of the

corresponding atomic or molecular Hamiltonian operator is

necessarily a stationary state—whereas in QED the additional

Fig. 1 Log–log plot of the efficiency of electronic energy transfer over

distances R (in metres), for a transfer wavelength of 700 nm, vertical

scale arbitrary. In the near-field region the gradient is �6, indicating
radiationless transfer; in the long-range asymptote the slope of �2
signifies ‘radiative’ transfer.

Fig. 2 Quantum dot energy transfer. Variation of (a) spin antiparallel

and (b) spin parallel transfer functions as a function of relative

orientations. Adapted from Scholes et al.35
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presence of a vacuum radiation field perturbs the system and

can induce an electronic decay transition. It has been demon-

strated that even the representation of a dipole (indeed any

multipole) transition is ultimately legitimate only in a

quantum electrodynamical basis.43 QED methods are

singularly well suited for the analysis of nanoscale photonic

interactions,44 and they have recently brought to light the

possible significance of a change in intermolecular force that

accompanies energy transfer—resulting from the fact that pair

potentials depend on the electronic state of each molecular

component.45,46 The same methods have revealed the possibi-

lity of optically controlling energy transfer by a non-resonant

laser beam, operating through an optically nonlinear mecha-

nism. In systems where electronic energy transfer is designedly

precluded by geometry or selection rules, the process can thus

effect the function of an optical transistor, acceptor excitation

being activated by the laser signal.47,48

The following analysis aims to elicit angular momentum and

symmetry-related features in electronic energy transfer, to be

identified from a suitable development of the founding

equations that govern the process of energy transfer. To

address resonance energy transfer from A to B, the initial

and final states of the system (comprising A, B and the

radiation field) are written as |jA*;jB;0i and |jA;jB*;0i,
respectively, and the energy transfer rate constant is given by

the Fermi rule;

kRET ¼
2p
�h

Mfi

�� ��2r; ð1Þ

where Mfi is the quantum amplitude connecting the initial and

final states of the entire system, and r a density of states.

Although it is not to be pursued here, a development of the

density of states in terms of a vibrational structure in the

energy levels leads to the familiar dependence of the transfer

rate on the spectral overlap between the donor fluorescence

and acceptor absorption.13 The evaluation of eqn (1) requires

a determination of the quantum amplitude. For this purpose

time-dependent perturbation theory is deployed, beginning

with the exact multipolar (Power–Zienau–Woolley, PZW)

Hamiltonian:49–52

H = HA + HB + Hint(A) + Hint(B) + Hrad. (2)

The first two terms in (2) denote the unperturbed Hamiltonian

operators for the two chromophores, and the Hint operators

represent their corresponding interactions with the radiation

field in an arbitrary state. The final term, Hrad, is the radiation

Hamiltonian. Since both Hint terms and Hrad are operators,

they are part of the sum whether or not photons are present.

The absence of any term in eqn (2) directly linking A

with B signifies that every form of electrodynamic interaction

between the two must be mediated by interactions with the

radiation field.

It is expedient to focus on electric multipole transitions, for

reasons that will emerge. From the detailed form of the PZW

quantum electrodynamical Hamiltonian, the individual

interaction terms in (2) can be determined from;

Hint(x) = �e�10

R
p>(x,r)�d>(r)d3r, (3)

in which the radiation operator d>(r) represents the trans-

verse electric displacement field, and the matter operator

p>(x,r) is the transverse electric polarization. The latter

is concisely expressible as follows, defined in terms of a

summation that is taken over all of the composite

charges ea, at positions qa, within the donor/acceptor x located
at Rx:

52

p?ðx; rÞ ¼
P
aðxÞ

eaðqa � RxÞ
R1
0

d?ðr� Rx � lðqa � RxÞÞ dl:

ð4Þ

where d> is the transverse Dirac delta function. The expansion

of eqn (4) in powers of l delivers the electric multipolar series

in its entirety, and Hint(x) is expressible as;

Hint(x) = �e�10 l(x)�d>(Rx) � �e�10 Q(x): rd>(Rx)

�e�10 O(x)^rrd>(Rx) � . . .. (5)

Using the Einstein summation convention for repeated

Cartesian indices, the leading, electric dipole term can be

written as �e�10 l(x)�d>(Rx), the second, electric quadru-

pole term as �e�10 Qij(x)rjdi
>(Rx), and the third as

�e�10 Oijk(x)rkrjdi
>(Rx). Transitions designated as octupolar

are comparatively rare, since in any system of less than

spherical symmetry most transitions allowed by electric

octupole coupling will also be allowed, more strongly, by a

lower order multipole. Nonetheless, examples can be found

not only in lanthanide ions for example53 but also, with

surprisingly prominent effect, in argon.54 For generality, it is

expedient to write the multipole of order 2m as a tensor E(m)
x ,

such that the entire electric multipolar series (5) can be written

as a sum of terms of a common form;

HintðxÞ �
X
m

HðmÞ
int
ðxÞ ¼ �e�10

X
m

E
mð Þ
x;a1:::am

ram :::ra2d
?
a1
ðRxÞ

ð6Þ

Time-dependent perturbation theory is now applied with (6) as

the perturbation operator; the lowest order non-vanishing

contribution comes from second order, since the operator

must act twice—namely in the donor decay and the acceptor

excitation transitions.

We can now address the electrodynamic coupling between a

donor decay and acceptor excitation transition. Each can be

ascribed an electric transition multipole, Em for the donor

decay and for the acceptor excitation En, (E1 denoting the

electric dipole, E2 the quadrupole, etc.). In practice, such

designations generally reflect not the only, but simply the

lowest allowed order of multipole—and hence the quantita-

tively most important—as will be discussed in Section 4.

Moreover, in the PZW transformation that delivers the multi-

polar series from a minimal coupling Hamiltonian,40 magnetic

multipoles Mn emerge from the from the same order of

expansion as E(n + 1). Therefore, even if both are allowed

in a given order, the magnetic multipole is generally much

weaker than its electric counterpart; this is the reason that

magnetic contributions are generally irrelevant for the current

considerations. Continuing to focus on electric transition
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multipoles, the quantum amplitude for the process, MEm�En
fi ,

is given by:

MEm�En
fi ¼

X
r

hf HðmÞ
int
ðAÞ

��� ���rihr HðnÞ
int
ðBÞ

��� ���ii
ðEi � ErÞ

ð7Þ

where i, f, and r denote initial, final, and intermediate states of

the system and E signifies a corresponding system energy. The

general result can be expressed as follows;55,56

MEm�En
fi ¼ E

ðmÞ
A;a1 :::am

Va1 :::amb1:::bnðk;RÞE
ðnÞ
B;b1:::bn

ð8Þ

The coupling tensor that engages Em donor decay with En

acceptor excitation is generally given by;

Va1:::amb1:::bnðk;RÞ

¼ ð�1Þ
4pe0

mþn�1
ra2 :::ramrb2 :::rbnð�r2da1b1 þra1rb1Þ

e�ikR

R
;

ð9Þ

where k = DE/�hc, DE is the transferred energy and R is the

displacement vector defined by RB � RA. Immediate notice

should be drawn to the non-vanishing character of the result

for m a n, an important possibility that has been overlooked

in some literature. In the most common E1–E1 case, (where

both the donor and acceptor transitions are electric dipole

allowed), implementation of the necessary tensor calculus

leads to a result that is concisely expressible as:

ME1�E1
fi = mAiVij(k,R)mBj, (10)

where each l is to be understood as a transition dipole, and the

E1–E1 coupling tensor is defined by;

Vijðk;RÞ ¼
eikR

4pe0R3

�
ðdij � 3R̂iR̂jÞ � ðikRÞðdij � 3R̂iR̂jÞ

� ðkRÞ2ðdij � R̂iR̂jÞ
�
:

ð11Þ

Details are given in the original literature, and in a more

accessible form by Andrews and Bradshaw.57 With a view to

the subsequent analysis, notable features of the particular

result (11) are the R�3 dependence on the donor–acceptor

separation distance in the short-range or near-zone (kR { 1)

and its convergence to R�1 in the long-range (the wave-zone,

kR c 1); as follows from (1). This is the origin of the R�6 and

R�2 short- and long-range limits of the transfer rate exhibited

in Fig. 1, reflecting the quadratic dependence of rate on

quantum amplitude.

The above result, and those for the next two higher ranks,

can be recast more concisely in terms of spherical Bessel

functions whose explicit forms are as given in Appendix 1:55

Vijðk;RÞ ¼ �
ik3

4pe0
½dijhð1Þ0 ðkRÞ � ðkRÞ

�1dijh
ð1Þ
1 ðkRÞ

þ R̂iR̂jh
ð1Þ
2 ðkRÞ�;

ð12Þ

Vijkðk;RÞ ¼
ik4

4pe0
½dij R̂kh

ð1Þ
1 ðkRÞ

� ðkRÞ�1ðdij R̂k þ dikR̂j þ djkR̂iÞ � h
ð1Þ
2 ðkRÞ

þ R̂iR̂jR̂kh
ð1Þ
3 ðkRÞ�; ð13Þ

Vijklðk;RÞ ¼
ik5

4pe0

h
dijdklh

ð1Þ
1 ðkRÞ � ðkRÞ

�2

� ðdijdkl þ dikdjl þ dildjkÞhð1Þ2 ðkRÞ

� dij R̂kR̂lh
ð1Þ
2 ðkRÞ þ ðkRÞ

�1

� ðdij R̂kR̂l þ dikR̂jR̂l þ dil R̂jR̂k

þ dklR̂iR̂j þ djl R̂iR̂k þ djkR̂iR̂lÞ

� h
ð1Þ
3 ðkRÞ�R̂iR̂jR̂kR̂lh

ð1Þ
4 ðkRÞ

i

ð14Þ

It is noteworthy that the function h(1)j (kR) has terms running

from R�1 to R�(j+1). Hence the result delivered by (9) has a

short-range asymptote running as R�(m+n+1), whereas the

wave-zone limit is invariably R�1; the latter serves to ensure

operation of the inverse square law in radiative energy

transfer, irrespective of the multipoles involved in emission

and detection.

3. Irreducible tensor formulation

The isotropy of atomic systems, which engages irreducible

representations (irreps) of the full rotation group R3 in simple,

one-to-one relationships between angular momentum and

multipolar form, supports the familiar development of

multipole expansions in a spherical tensor basis.58 However,

for systems of less than spherical symmetry, such as molecules

or atoms in lattice environments that produce crystal field

splitting, it is considerably more expedient to tackle angular

momentum issues using the tools of irreducible Cartesian

tensor analysis. The relationships between the components

of tensors in the two representations are well established.59

The methods to be described below directly relate to the

Cartesian expressions given above, allowing a physically

transparent and amenable correlation to be established

between angular momentum and multipolar character.

In isolated atoms, states of integer angular momentum

transform under the symmetry operations of the full three-

dimensional rotation group R3 or the rotation-inversion group

O(3) in accordance with irreducible representations labelled

S, P, D,. . . for j = 0, 1, 2,. . . etc. of degeneracy or weight

(2j+1). For an electronic transition to be supported by

coupling of a given multipolar form, the product of represen-

tations for the initial and final states must be spanned by

components of the multipole tensor. In the common case of

transitions originating from, or terminating in, a totally

symmetric ground state, this reduces to a requirement for

one or more irreducible components to have the same

transformation properties as the excited state. For example
1S0 ’

1D2 decay in O2+ with Dj=2 corresponds to an electric

quadrupole allowed transition.60
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For molecular systems, necessarily of lower symmetry than

atoms, such a correspondence is no less rigorous—but the

decay and excitation transition moments typically have

components that span more than one irreducible representa-

tion of the molecular point group. The general rule for an

allowed transition is that the product of the irreducible

representations for the initial and final states (for the acceptor

the ground and excited states, vice versa for the donor) spans

one or more of the representations with which the transition

moment components transform, under symmetry operations

that reflect the structure of the chromophore and its local

electronic environment. Here, the sought transformation

properties of the transition multipoles under the operations

of the appropriate point group are determined by mapping

irreducible representations of the full three-dimensional

rotation-inversion group O(3) onto the corresponding repre-

sentations of point groups with lower symmetry, usually by

reference to correlation tables.61

Since the machinery of irreducible Cartesian tensors is to be

deployed with regard to not only transition multipoles, but

also the electromagnetic fields involved in energy transfer,

general features can first be developed with reference to an

arbitrary tensor T(n) for which the number of independent

Cartesian components is 3n. The reduction of any such

Cartesian tensor results in a sum of irreducible tensors, each

characterised by a weight j r n and having (2j + 1) inde-

pendent components;62–64 some weights may be represented

more than once and are therefore distinguished by a seniority

index, q;

T nð Þ ¼
Xn
j¼0

XNðjÞn
q¼1

T
ðj;qÞ
ðnÞ : ð15Þ

The multiplicity of weight j in the reduction scheme, N(j)
n , is

given by the following explicit formula;65

NðjÞn ¼
X
k

ð�1Þk ð2n� 3k� j � 2Þ!nðn� 1Þ
ðn� 3� jÞ!ðn� kÞ!k!

: ð16Þ

Here the sum over k is delimited by the condition

0 r k r I1
3
(n � j)m, the truncated bracket signifying the floor

function (integer part). The total number of components in the

reduction duly sums to 3n, as established by the identity:

Xn
j¼0
ð2j þ 1ÞNðjÞn ¼ 3n ð17Þ

Explicit results for the form of irreducible Cartesian tensors up

to rank 4 are available,66 and the corresponding transforma-

tion properties under each irreducible representation of all the

common point groups has been tabulated.67 In application to

the electric quadrupole, a traceless form can be adopted for the

quadrupole, consistent with the transverse character of the

electric displacement field (ridi
>(Rx) = 0).

Given any particular form of coupling, each of the three

Cartesian tensors in eqn (8)—the donor decay multipole, the

electromagnetic coupling tensor and the acceptor excitation

multipole—can be reduced into irreducible parts. It is expe-

dient to focus on the most complex of these, the coupling

tensor V(k, R). As is evident from the specific results shown in

eqns (12)–(14), this has the general structure of a power series

in R�1, and by exploiting this feature the general result can be

cast as follows;

Va1:::amb1 :::bnðk;RÞ ¼ ð4pe0Þ
�1kmþnþ1eikR

�
Xmþnþ1
p¼1
ðkRÞ�pW ðp�1Þ

a1:::amb1:::bn
ðR̂Þ:

ð18Þ

Written in this form, the angular momentum character of the

electromagnetic coupling is distributed between reducible

tensors W(p)(R̂), the superscript identifying the associated

inverse power of kR. Each W(p)(R̂) can then be resolved into

its own irreducible components of weights j(p);

W
ðp�1Þ
a1 :::amb1:::bn

ðR̂Þ ¼
Xmþn
j¼0

W
ðp�1;jðpÞÞ
a1:::amb1:::bn

ðR̂Þ: ð19Þ

It transpires that the only weights j(p) that are supported

in the sum on the right of eqn (19) are those in the range

(p – 1 r j(p) r m + n); moreover, only alternate values

of j deliver non-zero results. All other terms vanish by virtue of

tensor contractions being effected between index-symmetric

and correspondingly antisymmetric terms. Accordingly, from

the results it is possible to identify correlations between

non-zero weights j(p) and the corresponding R�p distance

dependence, as shown in Table 1.

To understand the results it is helpful to focus on a specific,

non-trivial case. By way of illustration, Fig. 3 exhibits the

results obtained for fourth rank coupling, exhibiting the

strikingly different forms of distance-dependence associated

with angular momentum components identified from eqn (19),

running from within the near-zone out into the wave-zone.

The implications of such patterns of behaviour can now be

explored, particularly with a view to their reconciliation with

the angular momentum aspects of the donor and acceptor

transitions.

4. Analysis

As an overarching principle, the rules of angular momentum

coupling, |j1�j2| r j1"j2 r j1 + j2, apply to the engagement

of each chromophore’s transition moment with the electro-

magnetic coupling tensor V. Following eqn (8) and applying

this rule pairwise (in any order) yields a result that necessarily

Table 1 Terms in R�p and corresponding weights j(p) in the V coupling tensors for each of the principal (lowest order) forms of electric multipole
coupling: E1–E1 (m+n = 2); E2–E1 and E1–E2 (m+n = 3); E3–E1, E2–E2 and E1–E3 (m+n = 4)

Coupling E1–E1 E2–E1, E1–E2 E3–E1, E2–E2, E1–E3

Terms in R�p R�1 R�2 R�3 R�1 R�2 R�3 R�4 R�1 R�2 R�3 R�4 R�5

j(p) 0, 2 2 2 1, 3 1, 3 3 3 0, 2, 4 2, 4 2, 4 4 4
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admits a contribution of weight zero; since the result is a scalar

(rank zero), any other weight, exceeding the rank, would

deliver a vanishing result. Also as a general rule, in the near-

zone that is of principal interest for observations of resonance

energy transfer, the term with the highest inverse power of R

clearly overshadows all other contributions. Thus for E1–E1

coupling, for example, the R�3 term which dominates is

consistent with a coupling of one unit of angular momentum

from the transition dipole at each chromophore (i.e. the donor A

and the acceptor B) with two units, j(p) = 2, in the V tensor.

It is misleading to regard this first result as indicating an

invariably faithful conveyance of the unit angular momentum

from A to B, however. To understand the wider issue of

fidelity, one has to entertain the possibility that other multi-

polar forms of coupling might also be involved in coupling the

same donor and acceptor transitions—which can only

be resolved by considering the detailed selection rules that

operate for each transition, as determined by the symmetry

point group that applies in each location. For example if the

donor decay is not only electric dipole but also electric

quadrupole allowed, then the finite E2–E1 coupling admits

additional R�4 contributions to the quantum amplitude for

energy transfer, and the rules of angular momentum addition

are still fully satisfied. Moreover, other cases can be found

where the donor decay is only E2 allowed and the acceptor

transition only E1 allowed. To better understand the principles

that operate here, it is useful to rehearse the possible combina-

tions of weights that can be simultaneously allowed. The

following principles are general and, although illustrative

examples are given, a definitive listing of all the possibilities

that arise for each of the common symmetry point groups is

provided in ref. 67, and in Appendix A6.2 of ref. 66.

Table 2 exemplifies the results for the common point groups

C2v, D4h, Td and CNv.

Electric dipole-allowed transitions

Electric dipole transitions have transition moments whose

Cartesian components provide a basis for weight 1 representa-

tions. For any particular transition to admit an electric dipole

character almost invariably signals that weight 3 (hence

electric octupole) character is also allowed. The sole excep-

tions amongst all the familiar point groups are cases of

icosahedral (I or Ih) symmetry—reflecting how closely one

has to approach full spherical symmetry before the different

weights are entirely separable. Nonetheless, for an E1-allowed

transition, additional contributions (whether of E2, E3 or

higher multipolar form) are considerably weaker in effect,

and their presence makes no difference to the primary

designation.

Electric quadrupole-allowed transitions

Transitions that are designated as electric quadrupolar have

transformation properties that necessarily admit weight 2;

according to the local symmetry, weight 1 may additionally

be permissible under the same, corresponding irreducible

representation. The two possibilities for quadrupole-allowed

transitions are therefore that they are either allowed by weight

2 alone (and though of little interest, conceivably by higher

orders), or by both weights 2 and 1. In the latter case a further

distinction can be drawn between chiral and achiral centres. In

an achiral centre, electric dipoles and their weaker magnetic

counterparts transform differently, and in consequence some

transitions that are E1-forbidden can be both electric quadru-

pole and magnetic dipole allowed (e.g. A2 transitions in

molecules of C2v symmetry). However, for reasons that were

explained in Section 2, in such cases magnetic dipoles and

electric quadrupoles can give broadly similar contributions to

the quantum amplitude; as such, these transitions are still

meaningfully designated as having electric quadrupolar

character. So, the remaining cases of interest are either

those transitions that are both electric dipole and electric

quadrupole allowed—in which case they are designated by

the lower order and more prominent dipole, and the electric

Fig. 3 Indicative log–log plot against kR of the fourth rank electro-

magnetic coupling V connecting electric multipoles Em and En,

(m+n = 4), exhibiting the various contributions having different

short-range inverse power dependences on the donor–acceptor

distance R, also revealing the composition of each angular momentum

weight. In the wave-zone asymptote the contributions of all weights

run with R�1, consistent with an inverse square rate law for radiative

energy transfer.

Table 2 Five-fold categorization of transition symmetries according
to their electric multipole character, up to and including the octupole,
illustrated by common point groups. In the column on the left, the first
entry is the designated character, signifying the lowest allowed order
(hence the strongest contribution to the transition); subsequent terms
in brackets signify other multipoles that are also allowed, e.g. E2 (E3)
denotes a transition symmetry that spans components of both E2 and
E3. The absence of a bracketed term denotes that no higher orders of
electric multipole (below hexadecapole) are allowed

Allowed multipoles C2v D4h Td CNv

E1 (E2,E3) A1, B1, B2 T2 S+, P
E1 (E3) A2u, Eu

E2 A1g, B1g, B2g, Eg E
E2 (E3) A2 D
E3 B1u, B2u A, T1 F
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quadrupolar component is a minor correction—or they are

allowed by weight 2 at lowest order (as for example in

transitions of B1g or B2g symmetry in D4h species).

Electric octupole-allowed transitions

Here weight 3 is necessarily allowed; the possible combina-

tions are (a) 3 alone; (b) 3 and 2; (c) 3 and 1; (d) 3, 2 and 1. The

last two of these cases relate to transitions that are necessarily

electric dipole allowed (the parity is the same as that which

admits the octupole, so there is no need to consider even parity

magnetic dipoles). These are transitions for which the presence

of other contributions only signifies small corrections. Once

more in case (b) it is possible to identify a different behaviour

in chiral and achiral chromophores; in achiral species, electric

and magnetic quadrupoles transform differently and some

transitions may be both electric octupole and magnetic

quadrupole allowed (e.g. a B1u or B2u transition in D4h

symmetry); again, the magnitudes of the two forms of

coupling are broadly similar and the electric octupolar

descriptor is valid. Thus it is only cases (a) and (b) that

demand attention, and the latter is none other than an electric

quadrupole transition with an octupolar correction. The key

electric octupole transitions of interest are therefore those of

type (a)—those allowed by weight 3 alone.

The results for the case of m + n = 4 coupling, as exhibited

in Fig. 3, are particularly illuminating. The same fourth-rank

form of electromagnetic coupling tensor mediates E3–E1 and

E1–E3, and also E2–E2 energy transfer. Revisiting the corres-

ponding results in Table 1, it might be considered that the

weight 0 term, which delivers the least significant component

of the quantum amplitude in the usual distance regime for

energy transfer, should only satisfy the rule for the addition of

angular momenta in the E2–E2 case. However, the j(p) = 0

contribution does not vanish in either case of E3 transfer,

because the electric octupole tensor is not fully pairwise

traceless; a weight 1 part of the octupole persists68 and as a

result, the weight 0 part of the coupling tensor does not

compromise the rules of angular momentum coupling.

5. Conclusion

In the majority of materials in which resonance energy transfer

is observed, the participating chromophores have less than

spherical symmetry, and for any such species the electronic

state transitions are commonly mediated by more than one

form of electric multipole. In the light of the present analysis,

it is clear that finite quantum amplitudes routinely arise for the

transfer of energy between decay and excitation transition

multipoles of different order, even in the exceptional cases

where a specific multipole is uniquely allowed, to a given

order. It is not generally possible to secure a one-to-one

correlation between the transition multipoles involved in

source decay and detector excitation; any inference of a

faithful conveyance of orbital angular momentum, between

energy donor and acceptor, is critically undermined.

Nonetheless, with the electromagnetic coupling properly

understood, it is evident that the rules of angular momentum

addition are indeed faithfully adhered to. The overall result

reflects the fact that angular momentum is locally conserved in

both the source emission and detector excitation quantum

transitions. Since these transitions are individually no different

in character from those that can occur in individual optical

emission and absorption processes, the conclusion is

consistent with the results of a recent analysis of radiative

transitions, based on vector spherical harmonics.69 In the

context of electronic energy transfer, however, it is highly

significant that that local isotropy does not extend to the

combined source-detector system, and there are indeed

differences in form between spherical radiation modes centred

on spatially translated donor and acceptor locations.70 This is

one reason why a Cartesian tensor basis is more conducive for

the analysis. As has been shown, the key result is that angular

momentum associated with donor decay cannot be assumed to

identify with that involved in a corresponding acceptor

excitation.

Further, ongoing work in this area is assessing the

implications for the long-range asymptotes of the electro-

magnetic coupling.71 In connection with this distance regime,

which relates to radiative coupling, a consideration of the

fidelity of angular momentum transfer leads into a new raft

of issues concerning the character of the photons that

propagate between any source and detector of different

multipolar operation. In this connection, for example, it has

already proven possible to correct a surprisingly prevalent

notion that the detection of radiative emission of a particular

multipolar order should require a detector having an excita-

tion of matching multipolarity. As has recently been shown,71

the resolution of this and other closely related issues may

relate at a yet more fundamental level to angular momentum

uncertainty. It appears that the correct understanding

establishes a fundamental limitation on the propagation of

multipolar character, and a new constraint on angular

momentum-based information delivery in long-range quantum

communication.

Appendix 1: Spherical Bessel functions

The general form of the spherical Bessel functions has the

following series representation;

h
ð1Þ
j ðzÞ ¼ i�ðjþ1Þ

eiz

z

Xj
p¼0

i

2z

� �p ðj þ pÞ!
p!ðj � pÞ!

giving the following explicit results required by eqn (12)–(14);

h
ð1Þ
0 ðkRÞ ¼ � ieikR

1

kR

� �

h
ð1Þ
1 ðkRÞ ¼ � eikR

1

kR
þ i

k2R2

� �

h
ð1Þ
2 ðkRÞ ¼ eikR

i

kR
� 3

k2R2
� 3i

k3R3

� �

h
ð1Þ
3 ðkRÞ ¼ eikR

1

kR
þ 2i

k2R2
� 15

k3R3
� 15i

k4R4

� �

h
ð1Þ
4 ðkRÞ ¼ eikR

�i
kR
þ 10

k2R2
þ 45i

k3R3
� 105

k4R4
� 105i

k5R5

� �
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