The theory of double-beam three-photon absorption. II.
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This paper further develops the theory of double-beam three-photon spectroscopy introduced in part 1. A
much simpler method than that described previously is proposed for the experimental characterization of the
three-photon excited states, where measurement of two polarization ratios alone suffices for a complete
analysis. A comprehensive classification of the excited state symmetries is provided for the common

molecular point groups.

{. INTRODUCTION

In a recent paper, ! henceforth denoted by I, it has
been shown how the use of two laser sources in three-
photon molecular spectroscopy provides access to a
greater variety of excited states than if just one laser
source is used. The transitions take place according
to the energy relation

Ef= E0+ h’w1+ Zh_(dz ) (1. 1)

where one photon of frequency w; is absorbed from beam
1, and two photons of frequency w; are simultaneously
absorbed from beam 2: the frequencies w; and w, neces-
sarily differ for the purposes of this analysis. Com-
pared with the process where three identical photons are
absorbed from a single beam, much fuller symmetry in-
formation is provided by the double-beam experiment,
thus removing some of the latent ambiguities in sym-
metry assignment.

InI, it was demonstrated that in a double-beam ex-
periment with the beams crossed at 60°, the measure-
ment of five spectra under different specified polariza-
tion conditions allows the determination of five molecu-
lar parameters which characterize the symmetry of the
excited state, thereby providing for the unambiguous
assignment of this excited state to one of six different
symmetry classes,

Further study has now revealed that there is a much
simpler method, involving the measurement of polariza-
tion ratios, for achieving the same objective. The mea-
surement of polarization ratios is a well-established
procedure in many areas of molecular spectroscopy;
the widespread utilization of depolarization ratio data in
Raman spectroscopy is probably the most familiar ex-
ample. In the case of single-beam three-photon ab-
sorption, the ratio of the absorbance of circularly po-
larized light to that of plane polarized light is the most
directly useful measurement, and has recently been
discussed in detail by several authors. 2% In this paper,
it is shown how the determination of just two polariza-
tion ratios in double-beam three-photon spectroscopy
provides all the information required for a full analysis
and classification of the excited state symmetry accord-
ing to the principles developed previously.

Il. THEORY

The basic equations for the rate of three-photon ab-
sorption with arbitrary beam geometry and polariza-
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tion have been derived inI. In these equations, each
rate is expressed in terms of five distinct molecular
parameters, basedon a division of the molecular transi-
tion tensor T,,, into irreducible parts, thus leading to
a requirement for five separate experiments with dif-
ferent beam polarizations for a complete analysis.
However, it may be shown that three of these rate
equations are expressible in terms of just three molecu-
lar parameters which together completely determine the
symmetry classification of the transition. These three
parameters are products of the following irreducibie
tensors:

7(N1‘cv) = 1%-(36“, Topo + 300 Tpny = 26,,T )

=t (400 Tooo = 63T ps = 60 Trse) (2.1)
T52) = ¥ el €or Toow *+ €oow Toor)
+ € (€por Toon + €00 Toor) » (2.2)
TS, = HTous + Tyn + Toi)
= %(Gm Taav + GwToau + GuuTnn)
— 56 Topo + 6T+ 8, o) (2.3)

In the above equations, the delta tensors are Kronecker
deltas, the epsilons are Levi-Civita antisymmetric ten-
sors, and the implied summation convention for repeated
tensor indices is employed. Although the equation for
Tﬁ;’;’, given here differs from that given in I, simple
manipulation shows that the two expressions are exactly
equivalent; details are given in the Appendix.

Each of the irreducible tensors defined by Egqs. (2.1)
to (2. 3) has different transformation properties under
the operations of the rotation group: the weight 1 tensor
T4 transforms as a polar vector; T2, of weight 2
transforms as a traceless index-symmetric second rank
axial tensor, and T{3), of weight 3 transforms as a fully
traceless and index-symmetric third rank polar tensor.
Each tensor either has finite components or else is
a null tensor according to the symmetry of the three-
photon transition, as discussed inI. By methods de-
scribed later, the particular combination of allowed
tensor weights for a given transition can be determined,
and hence the transition may be classified into one of the
six symmetry classes introduced inI. A comprehensive
list of the irreducible representations contained in each
class is given for the common molecular point groups in
Table1.
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TABLE 1. Classification of three-photon excited state symmetries for the common molecular

point groups.

Class IA IB IIA IIB 111 v
Weights 1,2,3 1,3 2,3 3 1 2

Nonaxial groups

Cy A
o A,
Ce ATLA"
Axial groups

C, A,B
Cs AE
Cy A,E B
Cs A,E, vas E, ves e e
Cg A,E, ves E, ves e
S, B.,E A
S A, E,
Sg B,E, E, Eq
Coa A, B,
Ca A E' E" Al .

Ca A E, B,
Ca A" E E;’ EJ
Ce A, By E,yy B,
Cyy Ay, By, By A,
Cyy E Ay A,
Cy E Ay By, By A,
Csp E, A E, A,
Cev E, 44 E, By, By A,
Dihedral groups

D, B,, B,, B; A
Dy E A, Ay
Dy E A, By, By Ay
D5 E1 Az Ez s sen A1
D E, A, E, B,, B, Ay
Dza BM’BZH’B&C cos Au s ss e s e
Dy E’ Af' E" Al A A{'
Dy E, Agy, By, By, vee Ay
Dg E{ AJl! E;! E/ ces Al
DGII Elu AZU Ez,‘ Bm, Bm aaa Alu
Dyg E By A, A, e B,
Dy, E, Ay, Ay
DM E1 Bz EZ E3 ces Bl
Dy Ey, Ay E,, Ay,
Dgg E, B, E, Eq By
Linear groups

Cooy I z* A & o
Doy 1, Zy A, o, cee bom
Cubic groups

T T A E
Th T, Ay E,
Ty T, Ty Ay E
0 T T, A, E
O Ty Toy Ay, E,
Icosahedral groups

I cee e es e Tz,G T] H
Ih o000 coe cen TZU’ G,‘ T!“ Hll

We can now consider the rate equations for three
specific experimental arrangements. In each case,
beam 2 is cirvcularly polarized, and the angle between
the two beams is 60°, (It is readily established that for

beam angles of 0°, 90°, or 180°, the corresponding equa-
tions are no longer linearly independent, and hence the
analysis is incomplete without further polarization
measurements.) The three experiments are as follows:
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TABLE II. Values of the polarization ratios « and 8 for transitions belonging to each symmetry class.
Class 1A IB IIA B I v
Weights 1,2,3 1,3 2,3 3 1 2

3 &4 < 8 £ <a< & -5 a=8 -

, 13 <<8 g3 o< 13°%“%3 =83 = =713

Polarization ratios

46 _(o+2) (54 —65q) _ 46 _ B

g3 <F<2 B="3% B=7= 83 p=2 p=z

(i) Beam 1 is plane polarized with its electric field B=T,/T; . (3.2

vector perpendicular to the plane containing the two
beams. The rate of absorption, denoted here by I
corresponds to I'§ inI.

(ii) Beam 1 is plane polarized with its electric field
vector lying in the plane containing the two beams. The
rate of absorption is denoted by I',, and corresponds to
r{inl.

(iii) Beam 1 is circularly polarized with the same
helicity as beam 2, and the rate here denoted by I, cor-
responds to I'} in 1.

In terms of the irreducible tensors given by Egs.
(2.1) to (2. 3), the three rate equations are as follows:

L, = 1655 S (1740 TUC + 35742, TR, + 80T 8, T,
(2.4)

L= 4200 (TGS TLS + 4557 BT, + 23073, T
(2.5)

I = 8400 o (TS TS + 455T 2, T2, + 8307 3, T
(2.9)

where G is an absorption constant which is independent
of the beam angle or polarizations, and is defined in1I.
The above equations can be solved for the three molec-
ular parameters to give the results

TS TS = 5G7(65T, + TF, = 54Ty) , (2.7
O TXY = 367'(51, - T, - 21y,) , (2.8)
T T =162, -T) . (2.9)

The zero or nonzero values of each weight of the molecu-
lar transition tensor can thus be established from these
three experiments. However, a much more direct
method involving the study of polarization ratios is
demonstrated below,

l1l. POLARIZATION RATIOS

We now introduce polarization ratios, defined as
ratios of the absorbance of plane polarized light to that
of circularly polarized light. In the double-beam three-
photon experiment we have considered, where beam 2
is taken to have circular polarization in every case, we
may take ratios of the three-photon absorbance depen-
dent upon the polarization of beam 1, Since we have two
orthogonal planes of polarization for beam 1, there are
two such ratios to consider, and these are defined by

a=T,/T¢, (3.1)

The values of & and g depend entirely on the symmetry
of the three-photon excited state, and they provide a
means for discriminating between the six symmetry
classes described in I; the results are tabulated for each
class in Table II. (Here we assume that the incident
light frequencies are sufficiently far removed from
resonances with intermediate states that the imaginary
part of each T,,, element is smaller than the real part,
so that each of the three molecular parameters T“c’
xTC TR, and T, TS, is both real and posi-
tive.) Note that @ and g are only genuinely independent
for a Class I A transition.

The simplest way to assign a three-photon transition
to one of the six classes is then by a diagrammatic
method illustrated in Fig. 1. Figure 1(a) shows the re-
sult of plotting the values of the polarization ratio g

B(weight 2) (weight DA
(a)
46|
831 C(weight 3)
NS 8 a
B
2 Class IV Class Il
Class IA
Class TA Class IB

46 ' {b}
83 Class IIB
o g 8 a
FIG. 1. Symmetry assignment of three-photon transitions on

the basis of polarization ratios o and 8.
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against the values of a. For any three-photon transi-
tion, the point (a,8) representing the results of the two
polarization ratio measurements must lie within the
triangle ABC having vertices (8, 2), (§,2), and (§,49.
These vertices may be associated with weights 1, 2,

and 3, respectively, as indicated on the diagram; experi-

mental results may then be interpreted as follows.

If (o, B) lies at one of the vertices A4, B, or C, then
T,.» contains contributions of one weight only, i.e.,
weight 1, 2, or 3, respectively; hence the transition
belongs to Class III, 1V, or II B respectively. If (a,f8)
lies on the line AC, then T,,, contains weights 1 and 3,
and hence the transition belongs to Class I B; if (&, 8)
lies on the line BC, then T),,, contains weights 2 and 3,
and the transition belongs to Class 1A, Finally, if
(a, g) lies anywhere else within ABC, then the molecular
transition tensor contains all three weights, and thus the

APPENDIX

transition belongs to Class IA. The results are illus-

trated in Fig. 1(b).

IV. CONCLUSION

It has been shown how double-beam three-photon
absorption experiments with three different polariza-
tions of one beam provide all the information necessary
for a complete symmetry analysis of each excited state.
By ratioing the spectra obtained under these conditions,
two polarization ratios a and g are obtained for each
transition, and by reference to the simple diagram shown
in Fig. 1(b), an immediate classification can be made
according to the sixfold symmetry classification scheme
developed in 1. By reference to Table I, it should then
be possible to completely determine the irreducible
representation of most three-photon excited states,
This is a considerable simplification of the method pro-
posed previously.

The expression for T‘j’ given in Eq. (2.3) differs from that given inI: in this Appendix, it is demonstrated that

v

the two results are exactly equivalent, The equation for T‘,f", in I is as follows:

(3 _ 14) 1B) 2)
T)mv_Txu.v-T(mv -T)(uv _T(mv

=Ty "1%(35)&» Topy + 385, Tppy — 26uvTon) "1%(_ Onis Tupp = O Tpp + 46uvT)um) - %'[Exuf((acr Toww *+ Eannor)

+ €M(€paf Toou + €oop Tpar)] .

using the following well-known results:
O O On
Exnur €oov = Suo Ouo Ouv | »
8o o Opu

€mur€por = 025 By = Org By «

Hence, we obtain

(A1)

The last four terms in Eq. (A1) which involve products of Levi—Civita antisymmetric tensors may be expanded
(a2)
(A3)

Tﬁi)v = va —1%(3611; Topv + 36)prpu - 25uanpx) '110'(" 6M Tvpo - GwTum: + 45u vTMa) "'H:Tuw - T“ wt Txuu - T;rréu.v
“Tyu* Tereuy+ TureOrw = Teurn * T = Tons + Tris = Tare B = Tosa + Trne B + Tone O = Trin B ] - (A9

By replacing the dummy index 7 by p and making use of the index symmetry in the last two indices of T,,,, we then

(3)

obtain the expression for T2, exactly as given in Eq. (2.3).
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