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Abstract. Isotropic tensors play an important role in the theory of many physical processes 
which take place in gases and liquids. In' such systems it is usually necessary to perform a 
rotational average on prodpcts of direction cosines relating the space-fixed and molecular 
coordinate frames. The average is generally expressible in terms of isotropic tensors, and 
the results for tensors of rank n C 7  have previously been reported. In this paper the 
isotropic tensors of eighth rank are discussed, and relations between them are demon- 
strated. The rotational average of eighth rank is then evaluated in both reducible and 
irreducible form; the results are applicable to a number of processes, for example optical 
seventh harmonic generation and four-photon absorption. 

1. Introduction 

In many areas of physics we encounter systems which are homogeneous on a macro- 
scopic scale. In dealing with the behaviour of such systems under the action of a 
stimulus with tensor properties, it is necessary to make use of isotropic tensors; these 
are tensors whose components referred to any Cartesian frame are invariant under 
rotation of the frame axes. Such tensors play an important role in the microscopic 
theory of systems with a macroscopic isotropy, for example gases and liquids, where a 
rotational average is required to account for the random orientations of the component 
particles. 

Consider an isotropic system in which the molecular response to a certain stimulus is 
given by the scalar product A i l , ,  , i n P i l , .  is a tensor of rank n represent- 
ing the action of the stimulus, and Pi l . ,  is a molecular property tensor of the same rank 
associated with the interaction; here we adopt the implied summation convention for 
repeated tensor indices. Since the response is in general parametrically dependent 
upon the molecular orientation with respect to the stimulus, the expression for the 
corresponding macroscopic observable T is 

where A i l , ,  

T = (Ai , .  . . i,Pil.. . i n ) ,  (1) 
where the angular brackets denote a rotational average. 

If the tensor components in equation (1) are referred to a space-fixed frame, then 
the values of P i l . . . i ,  clearly depend on the molecular orientation, and it is more 
convenient to refer these tensor components to a molecule-fixed frame in which they 
are rotation invariant. We therefore write 

(2) p i , .  . . i ,  = l i l A 1  * . - li,h,PA~.. . A, 

where lipAp is the direction cosine of the angle between the space-fixed axis i, and the 
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molecule-fixed axis A,. The observable T can then be expressed as 

where 1;:' r n , A ,  

In terms of the Euler angles for the frame transformation, this is given by 
A n  is the rotational average of the direction cosine product I , , , ,  i ,nAn. 

A systematic method for evaluating rotational averages of this type has been 
discussed by Andrews and Thirunamachandran (19771, and the result is expressible a5 a 
linear combination of products of isotropic tensors referred to the two frames (Weyl 
1946). So far only the expressions for tensors of rank n S 7 have been reported, but the 
higher-order results are increasingly in demand for dealing with nonlinear phenomena. 
We have found it necessary to evaluate the rotational average of eighth rank in the 
course of recent studies on four-photon absorption (Andrew and Ghoul 1981); the 
result is, however, applicable to several other processes, for example optical seventh 
harmonic generation. In the following section we start with a discussion of the isotropic 
tensors and relations between them; the eighth-rank rotational average is then presen- 
ted in 9 3. 

2. Relations between the isotropic tensors 

We start by summarising the properties of isotropic tensors of arbitrary rank n. For 
even n, such tensors are products of n/2 Kronecker delta tensors, for example 
Sili2Si3i4. . . Sin-lin, whereas for odd n they are products of one Levi-Civita antisym- 
metric tensor and ( n  -3)/2 Kronecker deltas, for example E ~ ~ ~ ~ ~ ~ S ~ ~ ~ ~  . . . In each 
case there are other tensors of isomeric form which can be cbtained by index 
permutation; the full number is given by 

N,=- 3,2in-1)/2 ( n  odd). 
n !  
( ( n  -3)/2)!' 

This set of tensors is in general overcomplete, however, and the number of linearly 
independent tensors is given by 

where p assumes the value Ln/2], i.e. the integer part of n / 2 .  The number of isomers N,  
and the size of the linearly independent set Q, are shown in table 1 for n = 2 to 10; we 
find that Qn <Ai, for odd n z 5 and for even n 3 8. The procedure for choosing a 
suitable complete and linearly independent subset of Q, tensors from the set of N, 
isomers has been established by Smith (1968), and involves the construction of standard 
tableaux from Young diagrams. 

Consider the partition of n given by the sequence of integers ( n l ,  n2.  . . , It,) whose 
sum is n, with nl  z n2 . . . s  n,. Corresponding to each partition we construct a frame of 
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Table 1. The number of isotropic tensor isomers N, and the size Q, of the linearly 
independent basis set for rank n. 

n 2 3 4 5  6 7 8 9 10 

N,, 1 1 3 10 15 105 105 1260 945 
Q, 1 1 3  6 15 36 91 232 603 

n squares in rows and columns, with n, squares in row i, the first elements in each row 
lying directly above one another. For the present application it is necessary to restrict n! 
to even values, and the relevant frames for n = 8 are therefore those corresponding to 
the partitions (8); (6, 2); (4 ,4) ;  (4, 2 ,2)  and (2 ,2 ,2 ,2)  as shown in figure 1. 

Figure 1. Frames for the eighth-rank isotropic tensors. 

Standard tableaux are obtained from each frame by inserting the numbers i to n in 
such a way that they increase in every row from left to right, and in every column reading 
downwards. The number of standard tableaux belonging to the frame ( n l ,  1 2 2 . .  , n,) is 
equal to the degree of the irreducible representation d,,,,, ,,,, and is given by 
(Smith 1968); 

d,,,,, ,.,=in! IT ( a , - a k ) / a l ! a z ! .  . . a , ! ,  (8) 
i < k  

where 

a, = n, + r  - j .  (9) 

It is possible to identify with each standard tableau, a linear combination of isotropic 
tensors, by constructing a generalised Kronecker delta tensor (Sokolnikoff 1964) from 
each pair of columns. If the entries in one column are cy to p, and those in the adjacent 
column are y to 6, the appropriate tensor is 8: $, defined by 

For example, the standard tableau of figure 2(a)  is associated with the tensor 

However, tensors corresponding to standard tableaux with a greater number of rows 
than the dimensionality are null tensors (Smith 1968, 1972). Consequently in three- 
dimensional space each linear combination of tensors constructed from a standard 

S : ~ ~ ~ S : ~ S ~ ~  = s1112S171gs131461516 - S ~ 1 1 g S 1 2 1 7 S 1 3 1 q S [ 5 1 6 .  
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1 2 3 4 5 6  F 
1 4  8 i  

Figure 2. Examples of the standard tableaux corresponding to eighth-rank isotropic 
tensors. 

tableau of frame (2,2,  2, 2) is identically zero; from equation (8) we find that there are 
fourteen such tableaux. Writing in full the linear combination corresponding to the 
standard tableau of figure 2(b), for example, we thus obtain the following relation 
between eighth-rank isotropic tensors (Rivlin 1955, Kearsley and Fong 1975); 

An interesting identity concerning scalar products of vectors follows from this equation, 
and is presented in an Appendix. There are thirteen other relations of similar form to 
equation (1 l), each corresponding to a particular standard tableau, and obtainable from 
this equation by index permutation. These relations enable us to choose a suitable basis 
set of 91  linearly independent isotropic tensors, in terms of which the remaining 14 
isomers can be expressed. 

Before proceeding further, it is worth noting that from equation (11) there follow 
several further identities concerning isotropic tensors of other ranks where the set of 
tensor isomers is overcomplete. First, by taking the inner product with the Levi-Civita 
tensor F 161718 we recover a well known relation between fifth-rank isotropic tensors 
(Caldonazzo 1932, Boyle and Matthews 1971 and Healy 1975); 

E121314S1115 = g l ~ 1 2 1 ~ s 1 4 1 5  -E11L,1461315 + E l ~ l ~ 1 4 S 1 2 1 ~ *  (12) 

This relation, together with three others obtained by index permutation, allows the 
overcomplete set of 10 fifth-rank tensors to be reduced to 6. Conversely, the eighth- 
rank identities can be derived from the fifth-rank relations by taking their outer product 
with E 1 6 1 7 1 g  and making use of the formula 

Similarly, we can derive relations between seventh-rank isotropic tensors by 
contracting equation (1 1) and its index permutations with a Levi-Civita tensor having 
just two indices from the set i l  . . . is. For example contraction with s i 7 1 g l g  gives; 

- & . . , s . , s . ,  + & . , , & . & .  

+ & . . . 6 . . &  - - E . . . & . & .  + & . . . 6 . . &  - - & . , . & . S . .  

- & .  . . a ,  . s . .  + & ,  . , 6 .  . s . .  + & .  . . s .  . a . .  - & .  , . s ,  . s . .  =o ,  

111217 1315 1416 111217 1316 1415 111317 1215 1416 111317 1216 1415 

111417 1215 1316 111417 1216 1315 121317 1115 1416 121317 1116 1415 

121417 1115 1316 121417 1116 1315 131417 1115 1216 131417 1116 1215 

(14) 
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following the substitution is + i7. In all, there are 69 independent relations between 
seventh-rank isotropic tensors, which can be used to reduce the overcomplete set of 105 
tensors to a linearly independent set of 36; these relations have previously been 
obtained by Andrews (1976). 

Finally, these methods can be extended to provide important new relations between 
isotropic tensors of rank n > 8, simply by taking the product of equations (11) and (14) 
with appropriate Kronecker delta or Levi-Civita tensors. Such identities will prove 
valuable in the calculation of higher rank rotational averages. 

3. The eighth-rank rotational average 

As stated earlier, the rotational average defined by equation (4) is expressible as a linear 
combination of products of isotropic tensors referred to the space-fixed and molecule- 
fixed frames. We shall now denote eighth-rank isotropic tensors referred to the 
space-fixed frame by f ! : )  and the corresponding tensors referred to the molecule- 
fixed frame by girl the explicit form of the linearly independent set of 91 tensor 
isomers is given by table 2, in which 

Thus in general we can write 

where the coefficients m!:' are real numbers. As shown previously (Andrews and 
Thirunamachandran 1977), the matrix M @ )  whose elements are these coefficients can 
be obtained by a straightforward matrix inversion procedure; we find 

3 (18) MIS) = (s(8))-1 

where the elements sif' of S@' are calculated from the tensor inner product 

We have calculated the matrix M(8)1, and hence the full result for I!:!. . i 8 ; h l , .  . using 
this method, but the resultant expression is awkward since M'" has no discernible 
structure apart from being symmetric, and the tensor basis set is not particularly 
convenient for practical applications. 

We have therefore derived from this result an alternative, yet completely equivalent 
expression for the eighth-rank rotational average, by employing the overcomplete set 
of 105 tensor isomers as basis. For this purpose equation (17) is rewritten as follows; 

105 

C 
r' ,s '= 1 

(20) !(SI ! ( r ' )  / (s ' j  1::) . .  i g ; A l . .  . A g  = m r t s r f i i . .  . i s g A l , .  . A s ,  

t A copy of the matrix M"' is held by the British Library Supplementary Publications Scheme and is available 
from the British Library Lending Division, Boston Spa, Wetherby, Yorks, LS23 7QB (reference 
SUP 70030). 
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Table 2. The complete and overcomplete sets of eighth-rank isotropic tensors defined by 
equations (15) and (21). 

- 
r r’ u b  cd ef gh r r’ a h  cd ef gh r r’ ab cd ef g h  

I 1 12 34 56 78 
-. 2 12 34 5 1  68 

1 3 12 34 58 6 1  
- 4 12 35 46 1 8  
- 5 12 35 41  68 

2 6 12 35 48 61  
3 1 12 36 45 18  
I 8 12 36 41  58 

4 9 12 36 48 5 1  
5 10 12 31  45 68 
6 11 12 31  46 58 
1 12 12 31  48 56 
8 13 12 38 45 61  
9 14 12 38 46 5 1  

10 15 12 38 47 56 
- 16 13 24 56 78 
- 11 13 24 57 68 
11 18 13 24 58 61  
- 19 13 25 46 1 8  
- 20 13 25 41  68 
12 21 13 25 48 61 
13 22 13 26 45 1 8  
- 23 13 26 47 58 
14 24 13 26 48 51  
15 25 13 21 45 68 
16 26 13 27 46 58 
11 21 13 21  48 56 
18 28 13 28 45 67 
19 29 13 28 46 51 
20 30 13 28 41 56 
21 31 14 23 56 78 
22 32 14 23 51 68 
23 33 14 23 58 61  
- 34 14 25 36 1 8  
- 35 14 25 31  68 

24 36 14 25 38 65 
25 31  14 26 35 1 8  
- 38 14 26 31 58 
26 39 14 26 38 5 1  
27 40 14 21 35 68 
28 41 14 21 36 58 
29 42 14 21 38 56 
30 43 14 28 35 61  
31 44 14 28 36 57 
32 45 14 28 31  56 
33 46 15 23 46 1 8  
34 41  15 23 41  68 
35 48 15 23 48 61  
36 49 15 24 36 18  
37 50 15 24 31 68 
38 51 15 24 38 61  
39 52 15 26 34 1 8  
- 53 15 26 31  48 
40 54 15 26 38 47 
41 55 15 21 34 68 
42 56 15 21 36 48 
43 57 15 27 38 46 
44 58 15 28 34 61  
45 59 15 28 36 41  
46 60 15 28 31 46 
41  61 16 23 45 1 8  
48 62 16 23 41 58 
49 63 16 23 48 51 
50 64 16 24 35 18  
51 65 16 24 37 58 
52 66 16 24 38 51 
53 61  16 25 34 18  
54 68 16 25 31  48 
55 69 16 25 38 41 
56 70 16 21  34 58 

51  11 16 21 35 48 
58 1 2  16 21  38 45 
59 1 3  16 28 34 57 
60 74 16 28 35 41  
61 1 5  16 28 31 45 
62 16 11  23 45 68 
63 71 17 23 46 58 
64 1 8  17 23 48 56 
65 19  11 24 35 68 
66 80 11 24 36 58 
67 81 17 24 38 56 
68 82 17 25 34 68 
69 83 11 25 36 48 
10 84 11 25 38 46 
11 85 11 26 34 58 
72 86 11 26 35 48 
13 87 11 26 38 45 
14  88 17 28 34 56 
15  89 11 28 35 46 
76 90 17 28 36 45 
11 91 18 23 45 67 
18  92 18 23 46 51 
19 93 18 23 41 56 
80 94 18 24 35 67 
81 95 18 24 36 51 
82 96 18 24 31  56 
83 91  18 25 34 67 
84 98 18 25 36 41  
85 99 18 25 31  46 
86 100 18 26 34 57 
87 101 18 26 35 4 1  
88 102 18 26 31  45 
89 103 18 21 34 56 
90 104 18 27 35 46 
91 105 18 21 36 45 

where f : : r ’ ! ,  i g  and its molecular-frame counterpart are again given by table 2. We shall 
refer to this form of the rotational average as reducible, in distinction from the 
irreducible result which is expressed in terms of the linearly independent basis set. 
Because of the overcompleteness of the basis in the reducible case, the coefficients in 
equation (20) are not uniquely defined, in contrast to the mR’ in equation (17), and thus 
we have the freedom to impose certain conditions on the structural form of the matrix 
M’(x’ whose elements are mi!:). A similar situation arises in the case of the fifth- and 
seventh-rank rotational averages, which have been dealt with previously (Andrews and 
Thirunamachandran 1977). 

We have found it most convenient to impose on M“” the same structure as the 
matrix S’@’,  which is the analogue of S‘” with the overcomplete set of 105 tensors as 
basis. Here there are only five distinct types of matrix element, which we represent by 
the variables A,  B, C, D and E. The variable assigned to any particular matrix element 
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can be determined by the following simple method. Consider the matrix element m:!,:), 
where 

(21) f;!r,'!, = 8 .  l n l b  . 8 .  acid . 8 .  'elf . 8 .  i g i h  . . 3 

f i t s . ' ?  . is 8 izi,8 i,,,ic8 i,i,, (22) 

arid the values of a .  . . h, i t  . . p are integers in the range 1-8, given by table 2. Each 
tensor can be represented by four index pairs, i.e. (ab ) (cd ) (e f ) (gh )  and ( i j ) ( k l ) (mn) (ng) ,  
and together these link the indices in one or more closed cycles. For example for m$bs 
we have the index pairs (12)(34)(56)(78) and (18)(27)(36)(45) giving cycles 1 + 2 -+ 7 + 
8 -+ 1 and 3 -+ 4 -+ 5 + 6  -+ 3, which we can write as (1278)(3456). The way in which the 
eight indices are thereby divided into cycles determines which of the variables A-E we 
assign to the matrix eiement; there are five possibilities corresponding to the even 
partitions of 8, i.e. (2 ,2 ,2 ,2) ;  (4, 2, 2); (4 ,4) ;  (6,2);  (8). In the example given, 
(1278)(3456) corresponds to the partition (4,4),  i.e. two cycles each containing four 
integers. The value of the matrix element associated with each type of partition is given 
in table 3, together with exampies of the corresponding cycle structures. 

Table 3. Assignment of the variables A-E to elements of  the matrix M''''. 

Ex amp 1 e 
Matrix 

Partition element 
~ ~~ 

(12)(34)(56)(78) 0 (12)(34)(56)(78) = (12)(34)(56)(78) 
(12)(34)(56)(78) 0 (13)(24)(56)(78) = (1243)(56)(78) 
(12)(34)156)(78) 0 (13)(24)(57)(68) = (1243)(5687) 
(12)(34)(56)(78) 0 (13)(25)(46)(78) = (125643)(78) 
(i2)(34)156)(78) 0 (13)(25)(47)(68) = (12568743) 

Using this method it is a quite straightforward matter to generate the 105x 
105 M'(*) matrix using a computer; the result is given in table 4. It then remains to find 
values for the variables A-E. This can be achieved by reducing M"" to irreducible form 
using the relations which express the 14 redundant tensors in terms of the linearly 
independent set; the relevant equations are obtainable from the fourteen index 
permutations of equation (11). We can then construct a 105 x 9 1  matrix Ht, whose 
elements are the coefficients in  the linear combinations which relate the overcomplete 
set to the linearly independent set; 

The reducible 105 x 105 matrix M"') is then related to the irreducible 91 X 91 matrix 
M'" through the relation 

M'S' = HTM"8'H. ( 2 5 )  

A copy of the matrix H is held by the British Library Supplementary Publications Scheme and is available 
from the British Library Lending Division, Boston Spa, Wetherby, Yorks, LS23 7QB (reference 
SUP 70030). 
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Table 4. The reducible form of the eighth-rank rotational averaging matrix M''''. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 



Eighth rank isotropic tensors and rotational averages 1289 

By comparing the right-hand side of equation (25) with the result for M“’ obtained 
previously, we obtain four independent equations in terms of the variables A-E; 

A + 2B = 17194.5, (26) 

B+2C=-11/1890,  (27) 

B 4-20  = -1313780, (28) 

D f 2 E  = 1/7-56. (29) 

Any set of coefficients which satisfies these equations can be substituted in M’@’ and the 
result used in equation (20) as a reducible form of the eighth-rank rotational average. 
We have the freedom to choose the value of any one variable, and we have found it most 
convenient to set the most frequently occurring matrix element E to zero, leading to the 
following values for the other parameters; A = 22817560; B = -46/7560; C = 
1/7560; D = 1017560. It is important to note that the reducible form of the rotational 
average can be used directly, without reduction to irreducible form. 

Using formulae given previously (Andrews and Thirunamachandran 19771, we 
have verified that both the reducible and irreducible forms of the eighth-rank rotational 
average correctly reduce to the known results for the rotational averages of lower rank. 
Finally, we have also established that the relations 

r , s = l  r , s = l  

hold, in accordance with the general result (Andrews 1980) 
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Appendix. A scalar product identity 

In certain physical problems the eighth-rank molecular response tensor PA,, , .As is 
expressible as a product of vector components aA,bA2chjdh4ah5bA6ch,dA8. The result for 
the observable T given by equation (3) of the main text then involves parameters of the 
form ahlbA2cA,dA,ahsbh6cA,dAs gj;l , ,  , is a product of four Kronecker 
deltas, these parameters consist of four scalar products formed from four pairs of 
identical vectors. The number of distinct parameters of this kind is given by the 
coefficient of x4  in the expansion of (1 - - x ) - ~ ”  exp(x/2 +x2/4)  (Cayley 1874), which is 
17. From equation (ll), it follows that there is a unique linear relationship between 

(SI Since gA, , , , 
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these parameters, which can be written most simply in terms of the unit vectors as 
follows; 

( a * . b A ) 2 + ( ( a *  ~c^;2+( (a* .2 )2+(6 . c^)2+(6 .a )2  
+(e ' 2)2 - (6 6)2(c^ ' 2,'- (a* ' c^y(6 .2)' 
-(a^ ' di)2(6 * E)' - 2(ri * 6)(6 ' c^)(c^ ' a ^ )  - 2(ri * 6)(6 * d ) ( 2  ' a ^ )  

-2(& * t)(t .2)(2 ' a* )  - 2(6 *e^)(?  * 2)(2 ' 6 )  +2(& * 6)(6 * c^)(c* ' ai)d e a*)  

+2(a^ ' 6)(6 - 2)(2 ' c*)(c* * a ^ )  +2(d  * e)(? * 6)(6 * 2)(2 a* )  = 1. 

This is a perfectly general result for any real vectors a, 6, c and d.  
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