Hyper-Raman scattering by chiral molecules
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A theory of hyper-Raman scattering by optically active molecules is presented. It is shown that scattering
intensities depend on the helicity of the incident light: Expressions for the differential scattering intensities
are derived taking into account electric dipole and quadrupole and magnetic dipole interactions. A helical
box model is used to estimate circular differential scattering intensity ratios and depolarization ratios.

. INTRODUCTION

In a recent paper, ! we presented a detailed theoreti-
cal analysis of the hyper-Raman effect with special
emphasis on the selection rules and vibrational mode
classification. We showed how, by collecting the hyper-
Raman spectra in five different experimental arrange-
ments, the symmetry species of each active mode could
be assigned. In this paper, we discuss a new feature
of the hyper-Raman effect which should be observable
in chiral systems. Raman scattering experiments have
already shown that chiral molecules scatter left- and
right-circularly polarized photons at different rates. 2
These experiments usually involve irradiation with cir-
cularly polarized light and measurement of plane polar-
ized components of the scattered light. The difference
in scattered intensity resulting from a change in the
handedness of the incident light, plotted against scat-
tered frequency, is known as the circular differential
Raman spectrum. An analogous effect can be expected
in hyper-Raman scattering, and in this paper we derive
expressions for the differential scattering intensities
using quantum electrodynamics.

{l. THEORY

We begin by writing down the Hamiltonian for the dy-
namical system, comprising both the molecules and the
radiation field, as

H=Hop +Hpgg+Hype (1)
]

M8 = - {87% %0 w' nln - 1)/ V3] /2 ¢) L/R ¢ L/R

where

where the molecular Hamiltonian is known and the radi-
ation field is second quantized. For H,,,, we employ

Hype = —Za: [#(E) : eL(Rg) +mlf)- b(Rg) +Q(§) : veL(Rg)] ’ 2)

where ul£), mi£), and Q(£) are the electric dipole, mag-
netic dipole, and electric quadrupole moment operators
of molecule £ located at R,, respectively; e‘(Re) and
b{R,) are the transverse electric and magnetic field op-
erators, respectively. For molecules in the gas phase
or in dilute solution, the hyper-Raman scattering inten-
sity may be written as a sum of the contributions from
individual molecules, and we have’

I= Z4ﬂzh-<|Mﬂl ). (3)

In Eq. (3), ' =w'/c, V is the quantization volume, and
the angular brackets denote rotational averaging. The
matrix element M}, for the hyper-Raman process is
given by Eq. (2.5) of Ref. 1. It can be written approxi-
mately as a sum of three terms

My, = My B) + Mpyd) + My (K) )

where we have suppressed the £ dependence. The first
term in Eq. (4) is the dominant contribution and involves
three electric dipole intéractidns; the second and third
terms are the leading corrections to M,,(B), involving
two electric dipole interactions and either a magnetic
dipole interaction [in M,,(J)] or an electric quadrupole
interaction [in M,,;(X)].

The M,(B) term is given by

exXow | Bgn | Xow? (5)

8 =12 p g g Ty TAl pg® g 7’
HrT g Ly (Em+2ﬁw)(E°,,+fiw) (Egs — h'w)(Eo,,+h’w) (Egs — Bw)lEq - 2Fw)
ue g 3’ patuy iy’

pet ug uit ] . )

(Eo, +2Rw ) E,, + w) | (Egy — B Eq, + Fw) * (Egs — Bw)(Eq - 2Hw)

In Eq. (5), nis the number of photons in the incident radiation mode, £/®g is the polarization vector of the circu-
larly polarized incident light, and e’ that of the scattered light; since the “polarization tensor” ¢ L/® e, VRe,isj, k
symmetric, the j, 2 symmetric form of 8, has been adopted. We have used the Born—Oppenhe1mer approximatlon
to separate electronic and vibrational motions; the 8 tensor (6) thus contains electronic transition energies and
transition moments; x,, and yp, are the vibrational wavefunctions of the initial and final states, respectively.

The J contribution to Eq. (4) is made up of two parts, one having the magnetic dipole interaction for emission and |

the other for absorption; we have

Mfi(J)=' i[gﬂah-awzw:n(n_ 1)/V3]1/2{(EIxel)!L/RelL/Rek<x0N| “Jllkl Xou) =Fie" L/Re! L/Rek <XON|BJUk|x0M>} . N
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The upper sign goes with left-handed polarization of the
incident beam. Both J tensors are j, 2 symmetric; the
six-term tensor %Jj,, is obtained from Eq. (6) by re-
placing u; by my; 8J, is a 12-term tensor, six terms
of which are obtained by replacing u; by m;, and the
other six by replacing u, by m,.

The K contribution to Eq. (4) is obtained in a similar
manner, and we have

My K) =[8% %P0 nln - 1)/V? e 1'% e, LR g,

X{kz( onvl Kisri | Xow) = kl<XON| aKnm'XouH , (8)

where ®K;;,; and *K;,,, are obtained from Eq. (6) in the
same manner as the J tensors, with the corresponding
substitutions p; - @, and ;- Q,;, Lp—@Qp. Again,
both K tensors are j, k symmetric; in addition, “Kj;,,
is i, I symmetric. It is interesting to note that similar
K tensors can be important in second harmonic genera-
tion in centrosymmetric crystals. ¥4

The scattering intensities now follow from Egs. (3)
and (4):

I= ¥ V‘Jl.< |Mfi(B)+Mfl(J)+Mfi(K)lz>

= I(Bz) +I(BJ) + I1BK) , (9)

where N is the number of molecules taking part in the
scattering process, ) is the contribution from

I My ()12, and the terms I|8J) and I(BK) arise from the
B~J and B- K cross terms, respectively. They are
as follows;

- 1 L/R L/R ¢+ R/IL R/L
I(Bz) _D‘el ¢ €,6; €m €nb uu oraIIjhlmn sAuvoroy
(10)
18J) = - 2D} LIR , L/R e R/L e, RIL e,

? M M M B INM] r(8)
X[(k xe ) Auva *”elﬁN J, p]Iilklmn;xuma ’
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:ngcﬂ mkug(Z)Tg , (13)
and g® and T, are the degree of second order coherence
and mean irradiance of the incident beam, respectively.
In deriving the above expressions, we have used the fact
that, for real wavefunctions, the 8 and K tensors are
real while the J tensors are imaginary. Also,

{Xox | Bau»! Xou) has been written as gJ¥, with a similar
shorthand notation for the J and K tensors. Explicit ex-
pressions for the sixth and seventh rank tensor rotation-
al averages, denoted by I'® and I"’, respectively, are
given elsewhere.’

itl. CIRCULAR INTENSITY DIFFERENTIAL RATIOS

The differential intensity of scattering is usually ex-
pressed in terms of a circular intensity differential ra-
tio defined by

LR~ u)-L(L-u)
LIR=~ p)+I{L—~ )’

a,l8)= 14)
where I,{L/R~ u) refers to the intensity of scattered
light with polarization u, and L/R refers to left/right
circularly polarized incident light; 6 is the convergence
angle defined by cosé = - k. k. In practice, scattered
light is resolved into plane polarized components with
polarization vectors e* and e" normal to and lying in the
scattering plane, respectively, such that €', €', and k'
form a right-handed set.

The contribution to the scattered intensity arising from
only electric dipole interactions I(8?) is independent of
the helicity of the incident light; the leading contributions
to the numerator of Eq. (14) come from I{8J) and I(8K).
The intensity sum in the denominator of Eq. (14) is,
however, essentially ZI(BZ). Using expressions {10)—

{11) (12), the differential ratio &,(8) can now be written as
=9i00! L/IR, LIR, ,t RIL , RIL
ItgK) =2iDe} e, s T m T A, (9) =27 b cosé + ¢ cos®d + d cos®s (15)
X(k’ﬁN" B klﬁlx“l « u )Ii!klmn# AR VOrpg * (12) " f+gCOS g ’
where D is defined by with
)

a== 4Im(43§” BJN” - 65" vvu - 5BNM A +4B~” B, vvx+11 vaﬂJﬂ'y - GB)XVuv u)w

+2k(~ 43"” B ,,,E)u“,*‘zBi”l BKN ooExy"" 637«" BKeri).ur+4Bhw orvaehut SBMW ourvihw ZBluu orw€Mr) (16)
b=-~28Im(B I - AL LN, + 4K 2B, “Kiru€ano ~ 3800 “Koore o

= sﬂN” aK woaélut 3Biv‘£lv aKN”ui).of+23}Lv;:lu aKorvvslnt) (17)
¢=-2Im(~ 123){” g ” +183NM g vv‘; +8B~” SJN lzﬁlxvuu wx 128{{[{’” BJXNA:IV + lng:v ST udy

+k(- BN” *Koer orrv€apo x:vB ooE)\ur - 43’:4411 ootve)mr - Zﬁﬂ“‘ g OIVOEMLT

+14ﬁ"” Kg'.'{,“i).o'-!- Mw Icovnvvim- 83’“’ B arwexor) ’ (18)
=28~ 5B, Ko €0 = 3B, “Kite€ruo+ 1580, “K oo rr = 38N, “Korhu €300 = 580 “Korin€oor) 5 (19)
f=2(880L Bi, — 680 Bl — 5B Bl + 1LBLL ALY, — 68L1LAIN,) (20)
g=2(— IZBI:MI uvv+96”‘l v:,+4BN”“ﬁN”’,J,—6 MWEN” +9 xuv (21)
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The result for the differential ratio A,(8) has a much
simpler 8 dependence and may be expressed as

a+c+(b+d)cosh
f+g

It is interesting to note that the 8 dependence for 4, is

similar in form to the corresponding Raman result.®

For right-angled scattering, the circular differential

ratios &, (u =1, 1) do not have contributions from the

“J and ®K tensors.

A (6)= (22)

We remark that the hyper-Raman results obtained in
this section are easily adapted for hyper-Rayleigh circu-
lar differential scattering. For the latter case, the ini-
tial and final molecular states are identical and 2|k|
=|K'|. Thus, the molecular tensors g"¥, J*¥ and
K" are replaced by their electronic counterparts g, J,
K; in particular, the g¥¥ tensor becomes the well-known
hyperpolarizability.

V. MODEL CALCULATIONS

In this section, we use a helical box model to obtain
estimates of hyper-Rayleigh differential ratios. A
right-circular helix is defined by

x=acosé

Yy =asind 0<8<27k, (23)

z=bl0- k),

where ¢ is the cylindrical radius of the helix, 27b is the
pitch, and % is the number of turns. The length of the
helix is

L=2nkla®+b%)1/2, (24)

The wavefunctions for the energy levels of a particle in
a helical box have been described previously.” They in-
volve a new system of coordinates (s, n, ¢) describing a
point near the helix:

b .
x= (a—‘l’]) cosé +W ¢ sind

J’:(a—n)sine-(;z—:l;—z)m ¢ cosé (25)
z=b(9—1rk)+(-‘;z+—‘;)g—m€

_ s
O = (26)

Here, s measures the distance along the curve; 7 and ¢
measure the components along the normal and binormal,
respectively.. The corresponding momentum operators
in terms of (s, 1, £) have been given by Craig, Power,
and Thirunamachandran, ®

For the potential box with cross section €%, such that
V=0for Inl<3e lgl<ie, and s< L, and V= else-
where, wavefunctions correct to order €2 are

” , .2 [2 Jcos| mm jcos m’ncsiny_ﬂg
mmh e L Isin{ € |sin{| € L

27)
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where m and m’ are the quantum numbers for the trans-

verse (n, {) motion and 5 for the longitudinal (s) motion.

The corresponding energies are
e (mz m'? nz>

e + +
2m, \&€ & I

E

mm’n = (28)
Since € «< L, low-energy transitions involve changes in
the n quantum number only. In studies of optical activ-
ity, the particle in a helical box model has been used to
represent the r-electron energy levels of the chiral
molecule phenanthrophenanthrene, also known as hexa-
helicene.?® We have performed calculations on the same
basis. Phenanthrophenanthrene has 26 7 electrons so
that n=13 corresponds to the highest occupied level in
the ground state. Using the crystallographic results of
Mackay, Robertson, and Sime,!? we have 275 =0.305 nm.
By fitting the absorption at 31400 cm™ to the 14~ 13
transition, the radius a is found to be 0.252 nm; &
is taken to be unity. For our calculations of the hyper-
polarizability and other tensor components, we have as-
sumed a value of 700 nm for the wavelength of the in-
cident light. The summations over the intermediate
states were carried out with an increasing number of
levels until convergence was ensured, The hyperpolar-
izability components are found to have values of about
10" esucm’, as expected for real molecular systems.
An increase by up to three orders of magnitude can be
expected under near-resonant conditions.

For right-angled scattering, we find that the circular
intensity differential ratios are A, =1.24x102 and A,
=17.49x10%, which are noticeably larger than the cor-
responding Rayleigh values A,=1,59X10™ and 4,
=-4.27x10™. In addition to calculating these differen-
tial ratios, we have used this model to calculate hyper-
Rayleigh depolarization ratios using the formulas given
in our previous paper' p, =0.425 and p,(7/2) = 0. 596.
These may be compared with the values obtained from
the formulas of Cyvin, Rauch, and Decius!! p, =0. 499 and
p,{7/2)=0.666. The difference between the p, values
arises from the assumption of full index symmetry for
the g tensor in their formulas. On the other hand, their
formula for p, is based on the use of the conventional
relation p,{n/2)=2p,(1 +p,) which, as we have shown
elsewhere, ' is inapplicable to nonlinear scattering pro-
cesses. Hence, the two values for p, are not strictly
comparable.

V. CONCLUSION

Since the hyper-Raman effect is a nonlinear process,
the scattering intensities are generally weak, and high
intensity sources are required for recording spectra.
However, with a judicious choice of incident frequency,
it is possible to approach near-resonant conditions
making the 8 tensor greater in magnitude, and thus lead
to a substantial increase in the scattered intensity. With
recent advances in laser technology, hyper-Raman spec-
troscopy should be a useful complement to the more
conventional forms of vibrational spectroscopy. In par-
ticular, measurement of the circular differential scat-
tering by large chiral molecules should provide valuable
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