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A quantum electrodynamical theory of differential scattering
based on a model with two chromophores

I1. Differential Raman scattering of circularly polarized light
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The theory of differential scattering described in part I (preceding paper)
is applied to the Raman process. Here, a distinction between inequivalent
and equivalent chromophores is required. For systems with inequivalent
chromophores, the leading contribution to the differential intensity of
scattering involves the interference of second- and fourth-order probability
amplitudes; in near- and far-zone limits, it depends on the inverse square of
the group separation. For systems with equivalent chromophores, the
spectrum should, in general, feature a doublet. The dominant contribution
to the differential intensity comes from the second-order—second-order
interference term and has a different sign for each doublet component.
In many cases these contributions cancel and the leading term becomes
the second-order—fourth-order interference term as in the case of inequi-
valent chromophores.

1. INTRODUCTION

In part I (Andrews & Thirunamachandran 1978a) we discussed the theory of
differential Rayleigh scattering of circularly polarized light by optically active
systems, and derived expressions for differential scattering intensities using a two-
chromophore model. In this paper, the theory is extended to differential Raman
scattering, which has been observed in a number of organic compounds (Barron &
Buckingham 1975). Raman scattering is an inelastic process where the incident and
scattered photons are of unequal energies and the difference is equal to the difference
in the energies of the initial and final molecular states. In our present work we
confine our attention to a Stokes transition where the final molecular state is
vibrationally excited; the theory of the corresponding anti-Stokes transition
follows in an analogous manner. In many systems, the nuclear motions of some
normal modes are localized within particular functional groups. This feature is the
basis for the extensive use of group frequencies in the interpretation of vibrational
spectra. In the two-chromophore model, the vibrational excitation may thus be
associated with a fundamental transition in one of the chromophores. The chromo-
phores are assumed to be achiral in isolation, but chiral as a pair due to their
dissymmetric juxtaposition. It is necessary to distinguish two cases: (a) non-
identical chromophores, and (b) identical chromophores. The distinction is required
because for type (a) the final state is simply a product of wavefunctions for the
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excited state of one chromophore and the ground state of the other, whereas for
(b) the final state is a linear combination of product states. Such a distinction was
not necessary in our discussion of Rayleigh scattering in part I because both the
initial and final states were ground states.

In § 2 we calculate the differential scattering intensities for case () foranarbitrary
scattering geometry and group separation R; the leading contribution is found to
involve coupling between the chromophores. It results from the interference
between the probability amplitudes for second- and fourth-order graphs, in contrast
to Rayleigh differential scattering where a similar contribution appears as a higher-
order correction. In both the near- and far-zones, the leading term depends on R-2.

In §3 we discuss the theory of the equivalent-chromophore model. A near-zone
treatment which uses second-order perturbation theory has been given by Barron &
Buckingham (1974). In the present work, the calculations are correct to fourth
order and apply to arbitrary group separation. In contrast to (a) the excitation
must be treated as that of the pair of chromophores in either a symmetric or an
antisymmetric combination of excited states of the individual chromophores. These
combinations have frequencies close to the unperturbed frequency, the difference
arising from the interaction between the groups. In small molecules, the splitting
between the symmetric and antisymmetric modes is seldom more than 40 cm~1.
When the chromophores are arranged in a skewed manner, as in chiral systems, the
splittings are smaller (Bellamy 1968). For systems of which the spectra show a
doublet, the dominant contribution to the differential intensity is the second-order —
second-order interference term, the sign being different for each component. When
the doublet is unresolved, these contributions cancel and the leading term is that
from the interference of second- and fourth-order amplitudes as in the inequivalent

chromophore treatment.

2. NON-IDENTICAL CHROMOPHORE MODEL

The basic quantum electrodynamical theory is essentially the same as that given in
part I, §2. We again use the Hamiltonian (6) as the starting point for our calculations.
Weassume that the chromophore A undergoes a vibrational transition during the scat-
tering process. The initial and final states of the system —molecule plus radiation - are
|0A0B; ke®™/®)) and |0'A08; k’e’). As before, we evaluate the second- and fourth-order
matrix elementsfor the process and use the Fermirule to calculate the scattering rates.

For the second-order calculation we need to consider only twographs, fig. 1aandb

“of part I with suitable modifications. The other two graphs 1¢ and d do not contri-
bute because, without coupling between the chromophores, scattering at B cannot
lead to the necessary excitation of A. However, for the equivalent chromophore
model, all four graphs are admissible because scattering and vibrational excitation
can occur simultaneously at either centre. With inequivalent chromophores, the

second-order matrix element is
2nhc

I(LR) = = (357) (o), (1)
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where the scattering tensor 4a??(k) is given by

| A ﬂg'r A ’uto A 'uo’r A ’ulgo
fadf (k) = 2 {E;;}, 7R hck} @)
and the summation is over the intermediate states |r) of 4. Expression (2) reduces
to the usual frequency-dependent polarizability tensor when |0'4) = |04).

The fourth-order contributions to the matrix elements involve coupling between
the two chromophores. As before, the time-ordered graphs may be grouped into two
sets, and by means of a canonical transformation each set can be collapsed into four
graphs (cf. figures 4 and 5, part I). The calculations using these graphs are straight-
forward. With chromophore A as the origin, the required matrix elements are

My, (LJR) = (8n?ic| V) (kk')} &, e{L™[2ad0(k) Bl (k) Vb, R) 1% R
+ B (k') Ao3(k) Viun(k', R) 0= K] (3)

r

and
M4ﬂ(L/R) = (8nic/ V) (kk')b e eL/RA LY. (K, k') Budd V., (0, R)
+ BBk, k') AV, (ke — &', R) €l6¥)R], - (4)

The expression for 43%9,(k, k') in equation (4) is

A 9'0.(](; k’) - Aﬂ?’“ﬂ%“ﬂ?’ + Aﬂ%sAﬂgrAﬂgo
umfA™s = \(BA, —hck’) (B2 —hick) ' (B2 + fick’ —#ick) (B — fick)
+ Apn A A + A AusAum
(B + hick’ —hck) (BS +hck’) ' (EA, —hck’) (EA, +ick — hick')
+ AudAug A I } 5)
(BB, +Hick) (B, +tick—hck’) " (B4 +ick) (B +hick’)

and the corresponding expression for B is obtained from (5) after suitable changes of
symbols. It may be noted that (5) reduces to the Rayleigh counterpart by putting
k' =k and |[0'A) = |04).

Born-Oppenheimer approximation. To proceed further, we adopt the Born-
Oppenheimer approximation to describe the molecular states. A molecular wave-
function |, z(g,@)) is expressed as a product of an electronic wavefunction
|4,(¢, @)) and a vibrational wavefunction |xZ(Q))

where ¢ represents the electronic coordinates and ¢ the nuclear coordinates.
Usually |yE) is a product of wavefunctions for each of the normal modes of the
molecule. In our work we concentrate upon one particular mode, taking | yZ) as the
vibrational state with quantum number R. Thus the initial and final states of A are
|4do» |2x9 and |A¢yy |4xs); for chromophore B the initial and final states are the
same and are represented by |Bdg> |Exg).

Using the appropriate wavefunctions, we can now write down expressions for
Aud0, 4a20(k) and AB%%(k, k'). First we have

Apa® = CAxb| AR (@)] A X0, )
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where AER(Q) = (Aol Apn(q; @) [AP0)- (8)

The tilde sign indicates that the integration has been performed over the electronic
coordinates and the resulting quantity is @-dependent. Similarly, 4a%°(k) is given by
A) = { CAXR[ABY [y oA AXD | AR [ Car| AR A6 } _

Z\CE, 5By + (CBF—ABY) — hok + (B, — “B,) + (\BF —AE}) T fck

(9)
Here the electronic energy (AE, — AE,) is taken to be the difference in energy between
the states |4¢,) and |A@,> at their equilibrium configurations;(AEF—AEY),
(AEE —AE}) are the differences in vibrational energy between the intermediate and
the initial, and the intermediate and the final states respectively. Compared with
the electronic and photon energies in the denominators of (9), the vibrational
energies may be neglected provided the incident frequency is off-resonant with the
intermediate states. We may then effect closure over the vibrational states belonging
to each electronic state. We thus obtain for the leading contribution to 2a$?(k)

AaiP(k) & (x| A8 (k; @)] Ax0)s (10)

where 4a3)(k; @) is a generalization of the tensor defined by equation (12) of part I;
here the nuclear geometry is not restricted to the equilibrium configuration.
Although the tensor 4a(k) given by (2) is not in general symmetric in the indices ¢
and j, the leading term (10) is 4,j symmetric; this feature arises only in the off-

resonant case (Placzek 1934).
Proceeding in a similar manner, it is readily shown that the tensor A8%%(k, k')

ARtk k') = CAxb| 4B ; @) AX8 (11)

with A58 .(k; @) as a generalization of eqn (19) of part I to non-equilibrium

geometry. The approximation (11) again implies the neglect of vibrational energy

differences and this results in 4, j index symmetry of the tensor. Expressions for
Bud, Bai(k) and BAE;(k, k') now follow from (7), (10) and (11).

It is now convement to make the usual Taylor expansion of the electric dipole
transition moment #s, in terms of vibrational mode coordinates @’, about the
ground state equilibrium position @Q,;

(@) = F¥(Qo) + (0F[0Q") g (@' — Qe) + ... (12)
For the present calculations it is sufficient to retain only the first two terms in the
expansion. This approximation is satisfactory if the equilibrium positions for the
various electronic states of a given chromophore are not appreciably different. In

other cases, it is essential to include higher-order terms of the Taylor series. By (12),
the leading terms for each of the chromophore parameters discussed above are as

follows:

reduces to

, 0 . , , ,
Ao [5@; Aam(Q >] Ll G-l (13)
B0 & BI0(QL), (14)
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) |5 A5 @) CAxbli- @ 44, (15)
Bod3(k) r Pat(k; Q) (16)
IR R T3] RS AT ATS (1)
418, (h, ') = Ak Q). (18)

In equations (13)-(18), @, is the vibrational coordinate in chromophore A corre-
sponding to the mode involved in the Raman transition. If this is associated with
a circular frequency w, and force constant k, then the integrals in equations (13),
(15) and (17) expressed by the angular brackets may be replaced by (fw/2k)}. For
simplicity, we write Z3(Q.), [0f%(Q')/0Qq]q:> €be., as s, py, ete., in the results we
derive below.

We introduce two more approximations in the matrix element expressions. The
frs Ba(K) ~ Palj(k), (19)
which is consistent with the neglect of the vibrational energy differences in the
denominators of the tensors. Secondly, we write

Voun(k', R) % Vyun(k, R), (20)

although for the present we do not put V. (k— &', R) equal to 7,,,,(0, R) in view of the
rather different behaviour of these functions in the long range limit. We return to
this point later.

Differential scattering intensities. With the approximate expressions given in the
previous subsection, the differential scattering intensities can be calculated in the
same manner as for Rayleigh scattering. An important difference is that there are
no contributions from the square of the second-order matrix element (1). We recall
that for Rayleigh scattering such a second-order contribution does exist. It arises
from the interference of the amplitudes for graphs 1a and 15 with 1cand 14 (figure 1
part I). However, for Raman scattering with non-identical chromophores, only one
pair of graphs is permissible and no such interference is possible. The leading
contributions to the differential intensities now come from the interference of the
second- and fourth-order matrix elements and the results are

AL 4, = — 8r k'S ("“’) 7 o0, R)yrp B[4S (6) — S4(D))

x {cos (8, ,— R,R) (A}, Be, Aocf,,, —cos 04a}, Ba, e, )
+2(00320—1)R,\Rﬂ%cf\,, U p iy, }

+ () {(8 cos? 6 + cos 0 — 2) Aa}, By, , Acx

— (3 cos?0— 3 cos 0 — 2)4a}, By, , Ay,

+ (cos? 6+ cos § — 4) Aa}, B, Aay, ] (21)
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@
2
X (O, — R,\R,) (cos 044, B, Ay, —2ay, Ba,, Ay,

+J4(b) {(cos 0+ 1) Aay, Bax, , Aat, + (3 cos 0 — 1) Aar}, Bar, , Act,,,

+ (cos - 3) A}, Ba, , Aa, (22)

fiw
2«

AL, = = sl b ) Vo (b, R) yny RL4(A(0)— F(D))

) V,o(k~k', R)€,,, B, (1~ cos O)}

ALy, = 842, k'4(
X [(6A/4_'E:\R/¢) “q.(a) +1’é/\ﬁ/£"¢2(a)] Aa/{v Bﬂﬂpn Aluc,r’ (23)

Alz 5 = 2(1—cosO) 1AL 4. (24)
In equations (21)—(23), % and % are given by (31) and (32) of part I, with
a=|k—Fk'|R and b = kR; also we have made the approximation ¥’ ~ k& where
appropriate. For each polarization, the circular intensity differential ratios again
follow from (41) of part I. The numerators are given by Al ,,+Al; 44, and the
approximate expressions for the denominators are

I k' (# roALr ’oALY
I'R)+I'(L) ~ %O (%) [(3 cos?0—2) 2y, Aax,, + (cos? 0+ 6) Aax) 2oy, ] (25)
; Iy k' (hw ' oA / ’
and I*(R)+I+(L) » '93—0_ ('é?) [Rodn Ay, + Thaz, A“/l,u]' (26)

Whilst the only scattering tensor for chromophore A which appears in most of the
intensity contributions is the usual polarizability derivative 4a},, it is to be noted
that the Al ,, terms involve products of components of this tensor with com-
ponents of the electric dipole moment derivative 4p’. Consequently, a given vibra-
tional mode must be both Raman- and I R-active, and hence the group must be non-
centrosymmetric for these terms to be non-vanishing. The derivative tensor 44, .
does not appear in the AT, ., expressions. This may be ascribed to the lack of
retardation in the product of M, with the term in M,, which involves this tensor.

Many features of the asymptotic behaviour of the intensity differentials are
similar to those discussed in part I in connection with Rayleigh scattering, the
obvious exception being the absence of A} , contributions. However, we now have
to examine the behaviour of ¥,,,,(k— %', R) which only assumes its long-range form
when (k—%') R > 1. Since (#ick—#ck’) is the energy of the vibrational transition,
it is readily seen that this would imply a value of B which is large compared with
infra-red wavelengths. In actual applications, it is far more likely that the magnitude
of R would be in the region where ¥, (k— &', R) assumes its short-range behaviour,
i.e. where (k—%') R < 1; as shown previously, the tensor tends to ¥},,(0, R) in this
region. Thus for the near-zone, kR < 1, we find the same R-2 dependence of both
Al 4, and AT, 44 as in Rayleigh scattering, and in the region (k—k')R < 1 < kR
the Al ,, and Al; 44 results again depend on R-2 and R~ apart from modulating
factors.
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3. IDENTICAL CHROMOPHORE MODEL

We assume as before that wavefunction overlap and electron exchange between
chromophores can be neglected. Since the chromophores are identical, the states
|0A40B) and |040"B) are degenerate in contrast to the case discussed previously. The
final state is therefore represented by one of the linear combinations

2-3{|07A0B) + [040'B)}. (27)
If the symmetric and antisymmetric combinations have sufficiently different
energies, the spectrum should, in general, feature a doublet. In this section we

compute the differential scattering intensities for the components. The relevant
matrix element is
M(+) = 2-¥(k'e’; 0B0'A| I |0A0B; ke®)) + (k'e’; 0'BOA| IT |040B; ke®/B)Y], (28)
where M is given by (10) of part I. The calculation of each term of (28) is carried out
in exactly the same way as for the non-identical chromophore model described in
the previous section. It may be noted that, for the calculation of the second-order
matrix element, the first term in (28) requires graphs of the type 1a and 1b of
part I, figure 1, whereas the second term needs 1 ¢ and 1d. This may be contrasted with
the non-identical chromophore calculation where the chromophore B remained
unchanged, and graphs 1¢ and 1d were not required. Thus the scattering intensities
now include interference terms from the second-order graphs in a manner similar
to that in Rayleigh scattering. However, we should point out that the second-order
interference terms arise in Rayleigh scattering irrespective of whether the two
chromophores are identical or not because all four graphs are allowed in either case.
Asin the case of Rayleigh scattering, the dominant contributions to the differential
intensities result from interference of second-order amplitudes. For parallel and
perpendicular polarizations they are given by

pa( ) =F42I, k"‘(h—w)e,,,,, R, (1—-cos)?

2k
x (1= R\B,) A(0) + BoR, F@)] 4t Pty (29)
and Al (%) = 2(1—cos )AL} ,. (30)
The leading corrections to the differential intensities arise from interference of
second-order amplitudes with fourth-order amplitudes. These are

2m+——MAWﬁﬂ ok, R) 6y BI4(S(B) — 50))

x {cos 0(8,\/, R,\E ) (Bay, Bor, , 2oty — cos 04y, Ba, , 2o,

t Aaiv Ba, 30, F cos 04, Bay ‘\oc‘,/,)

+ 2R,\R (cos2f—1) (Aay, Bat,, 2ay, + 4y, Ba,,p ‘,ﬂ)}

+ F(b) {(3 cos® 0 + cos O — 2) (Aa), Boc,,pAoc,,,, +4a), Ba,, da,,)

+ (3 c0s20 — 3 cos 6 — 2) (Aaxy, Baxy , Ay, + Ay, Bary , At ,)

+ (cos? 6 + cos 6 — 4) (day, B, , Aoty + A0, By, A )]

— terms obtained by interchanging A and B], (31)
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ALf o £) = —dnl kS (ﬁ"’) V,o(k, R) 6y B [[4(S(0)— 5(0))

x (8,,— RyR,) (cos 040z}, Bar,, Aar,, — et} Bar,, Aary,

+cos 04ay, B, Aa,, F Aa),Bay Ao,

+5(b){(cos 0+ 1) (A, Boc p A0, Ao, Bay, Aar, )

+ (3 cos 0 — 1) (Aa/\vBaAp ont a':\ Ba;(pAaa'n)

+ (COS 60— 3) (Aasw Ba Aaa'/\ * A“Av Ba np m\)}]

— terms obtained by interchanging A and B], (32)

Al y5( ) = 44/2nl k' (—hz—g) €., B, (1—cos 0)}

x [(8ru— BrR,) F(@) + B\ R, H(a)]

X [[Aa/'\vBﬂ/tpnAlu’:era(k - k” + A“/\vBﬂ[llpn Ho pa'(O R)]

—terms obtained by interchanging A and B], (33)

Al 4p(+) = 2(1—cos ) 1AL 44 +). (34)

It is instructive tonote that, in contrast to the inequivalent chromophore results,
the above expressions contain the first derivative tensors /88, .. The selection
rules associated with these tensors are the same as those for the hyper-Raman
effect (Andrews & Thirunamachandran 1978b). The above expressions may be used
to obtain the circular intensity differential ratios according to (41) of part I with
the following results for the denominators:

I'(R)+I' (L) = (I%I%"_l) (Zw) [(8 cos?f —2) (Aa;, + Bay,)?

+ (cos? 0 + 6) (Aay, Aoy, + Bay, Bay, + 2405, By )], (35)

I;y(R)+1Ii(L)= (I%IGO )(Zw) [(Aaiy + Bad)2 4+ T(Aah, Aay, + By, Barl, + 240, Bar )]

(36)
In equations (29)—(36) the upper signs refer to the symmetric combination state and
the lower signs to the antisymmetric state as given by (27). When these states have
appreciably different energies a doublet should be observed in the circular differential
Raman spectrum with a splitting equal to the energy difference between the two
states. The dominant contributions are given by (29) and (30), and their signs are
opposite for the two components of the doublet.

4. DiscUsSSION

From our calculations in previous sections, it is clear that the largest differential
intensity effects are likely to be observed in molecules containing equivalent groups,
provided the components of the doublet are resolvable. (Molecules with inequivalent
groups can also show large effects when the vibrational frequencies are accidentally
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degenerate or nearly degenerate.) In the short range limit, the dominant contribu-
tions are

AL () 2 £ (89) Tob°R () Gy R(1 — co80)2 33,7, (37)
Alé: o(£) = 2(1—cosf)? AI{Z. (38)

An interesting feature is once again the linear R-dependence of these terms (cf.
Barron & Buckingham 1974). In this region, the magnitude of kR provides an
estimate of the size of the circular intensity differential ratio.

In molecules with small group separation as in 1,3-diketones, coplanar carbonyl
groups give rise to symmetric and antisymmetric bands separated by 30-40 cm—1.
However, molecules such as acetylacetone with non-coplanar carbonyl groups show
smaller splitting (Mecke & Funck 1956; Bellamy 1968). The doublet splitting in
chiral moleculesislikely to be small even in the near-zone region. When the two states
are nearly degenerate, the total differential intensity is obtained by adding the
contributions for the symmetric and antisymmetric states. Since the dominant
terms (37) and (38) have opposite signs for the two components they cancel, and
the leading contributions are then those from the interference of second- and fourth-
order amplitudes as in the inequivalent-chromophore treatment. In the region
(k—k')R < 1 € kR, the differential intensities have the same limiting behaviour as
for the inequivalent-chromophore model.

Finally, for chemically equivalent groups, it is important to draw a distinction
between isotopic equivalence and inequivalence. In the latter case, the group
vibrational frequencies differ appreciably and the results are given by the non-
identical chromophore model. Thus, with systems which show a doublet, isotopic
substitution of one group should lead to a marked decrease in the differential
intensities. Further, isotopic labelling of a chromophore can be used to monitor
the presence of the same isotope in the other chromophore. Experiments of this
kind should also give an indication of the relative importance of coupling.
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